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application of EM analysis using computational methods. The symposium offerings include technical presentations, 
demonstrations, vendor booths and short courses. All aspects of electromagnetic computational analysis are repre- 
sented.  Contact Richard Gordon for details. 

Technical Program Chairman Symposium Administrator 
Eric Michielssen Richard W. Adler 
ECE Department ECE Dept./Code ECAB 
University of Illinois Naval Postgraduate School 
1406 West Green Street 833 Dyer Rd. Room 437 
Urbana, IL 61801-2991 Monterey, CA  93943-5121 
Phone:  (217) 333-3803 Phone: (408) 649-1111 
FAX:       (217)333-5962 FAX:     (408)649-0300 
Email:michiels@decwa.ece.uiuc.edu Email:  rwa@mcimail.com 

Symposium Co-Chairman Symposium Co-Chairman 
Jiaming Jin Keith Whites 
ECE Department ECE Department 
University of Illinois University of Kentucky 
1406 West Green Street 453 Anderson Hall 
Urbana, IL 61801 -2991 Lexington, KY 40506-0046 
Phone: (217) 244-0756 Phone: (6061-257-1768 
FAX:     (217)333-5962 FAX:    (6061-257-3092 
Email:jjin@uvh.cso.uiuc.edu Email:whites@engr.uky.edu 

1997 ACES Symposium 
Sponsored by: ACES, NCCOSC, NPS, DOE/LLNL 
In cooperation with: The IEEE Antennas and Propagation Society, the IEEE Electromagnetic 

Compatibility Society and USNC/URSI 
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THE APPLIED COMPUTATIONAL ELECTROMAGNETIC SOCIETY 

CALL FOR PAPERS 

The 1 3th Annual Review of Progress 

in Applied Computational Electromagnetics 

Papers may address general issues in applied computational electromagnetics, or may focus on specific 
applications, techniques, codes, or computational issues of potential interest to the Applied Computa- 
tional Electromagnetics Society membership.  Areas and topics include: 

Code validation 
Code performance analysis 
Computational studies of basic physics 
Examples of practical code application 
New codes, algorithms, code enhancements, and code fixes 
Computer hardware issues 
Partial list of applications: antennas 

radar imaging 
shielding 
EMP, EMI/EMC 
dielectric & magnetic materials 
microwave components 
fiberoptics 
communications systems 
eddy currents 

wave propagation 
radar cross section 
bioelectromagnetics 
visualization 
inverse scattering 
MIMIC technology 
remote sensing & geophysics 
propagation through plasmas 
non-destructive evaluation 

Partial list of techniques: frequency-domain & time-domain techniques 
integral equation & differential equation techniques 
finite differences & finite element techniques 
diffraction theories physical optics 
modal expansions perturbation methods 
hybrid methods moment methods 

INSTRUCTIONS FOR AUTHORS AND TIMETABLE 

For both summary and final paper, please supply the following data for the principal author:    name, 
address, Email address, FAX, and phone numbers for both work and home. 

October 6, 1996: Submission deadline. Submit four copies of a 300-500 word summary to the Tech- 
nical Program Chairman. 

November 24, 1996:    Authors notified of acceptance. 

December 22, 1996: Submission deadline for camera-ready copy. The papers should not be more than 
8 pages long including figures. 

Registration fee per person for the Symposium will be approximately $245.   The exact fee will be an- 
nounced later. 

SHORT COURSE 

Short courses will be offered in conjunction with Symposium covering numerical techniques, computational methods, 
surveys of EM analysis and code usage instruction. It is anticipated that short: courses will be conducted principally on 
Monday March 25 and Friday March 29. Fee for a short course is expected to be approximately $90 per person for a 
half-day course and $140 for a full-day course, if booked before March 3, 1997. Full details of 1997 Symposium will 
be available by November 1996. Short Course Attendance is not covered by the Symposium Registration Fee! 

EXHIBITS 

Vendor booths and demonstrations will feature commercial products, computer hardware and software demonstra- 
tions, and small company capabilities. 
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ACES 

1996 

March 18-22, 1996 
Monterey, CA 

For more information, please contact: 

Technical Program Chairman 
Richard Gordon 
EE. Dept., University of Mississippi 
Anderson Hall. Box 41 
University, MS 38677 
Phone: (601)232-5388 
FAX: (601)232-7231 
Email: eegordon@cypress.mcsr.oIemiss.edu 

Short Course Chairman 
Robert Lee 
Dept Of Electrical Engineering 
ElectroScience Laboratory 
The Ohio State University 
1320 Kinnear Road 
Columbus, OH 43212 
Phone: (614) 292-1433 
FAX: 614-292-7596 
Email: Iee@ee.eng.ohio-stat.edu 

Symposium Administrator 
Richard W. Adler 
ECE Department/Code ECAB 
Naval Postgraduate School 
833 Dyer Road Room 437 
Monterey, CA 93943-5121 
Phone:(408)646-1111 
FAX: (408) 649-0300 
Email: 5541304@mcimail.com 

Conference Co-Chair 
Eric Michielssen 
Department of Electrical and Computer Eng. 
Everitt Laboratory 
1406 West Green Street 
University of Illinois at Urbana-Cliampaign 
Urbana, Illinois 61801-2991 
Phone: (217) 333-3803 
FAX: (217) 333-8986 
Email: michiels@decwa.ece.uiuc.edu 

Conference Co-Chair 
Jin-Fa Lee 
Department of Electrical and Computer Eng. 
Worcester Polytechnic Institute 
100 Institute Road 
Worcester, MA 01609-2280 
Phone:(508)831-5778 
Email: jinlee@ee.wpi.edu 

APPLIED COMPUTATIONAL 
ELECTROMAGNETICS SOCIETY 

The Twelfth Annual Review of Progress in 
Applied Computational Electromagnetics 

Welcome to the 12th Annual Review of 
Progress in Applied Computational 
Electromagnetics. I want to especially thank 
several individuals who contributed significantly 
to the conference. Jin-Fa Lee arranged the 
advertising for the conference. Robert Lee once 
again did an excellent job of organizing the 
Short Courses. Eric Michielssen and Shirley 
Dipert received all the papers and put them 
together to produce these Proceedings. Robert 
Bevensee assisted in the preparation of the 
preliminary agenda. Elliott Hutchcrafl helped 
me in the construction of the author database 
and in the preparation of an electronic mail 
database. And, of course, Richard and Pat Adler 
must be recognized for arranging for the 
printing of the Proceedings, for providing access 
to the NPGS Facilities, and for all their other 
contributions to the conference. 

Please enjoy your time in Monterey as 
much as possible, whether listening to a paper 
being presented, catching up on the latest 
"gossip" in the hallways, or enjoying the sights 
of Monterey. 

A^Cc/wA^ Mm>4p\ 

Richard K. Gordon 
Technical Program Chairman 
1996 ACES Conference 



ACES PRESIDENTS STATEMENT 

Were it not for the ACES Annual Reviews, it would be difficult to justify being in Monterey in March. (This 
coming from one who spent the Winter of 95-'96 in the Midwest!) But it is time for ACES'96, so here we are 
in Monterey, once again. And we think that this will be the best review yet. 

In addition to our regular staple of high-quality technical papers, and our world-renowned short-courses, 
we are adding a new feature this year—an amateur radio session. Judging from the number of interesting 
questions and applications described in the NEC-LIST, amateur radio operators are a natural part, or should 
be, of the ACES community. Perry Wheless is to be commended for assembling this session, which appears 
to be well populated. 

Our congratulations go to Dick Gordon, who is the Technical Program Chairman, and his colleagues, Eric 
Michielssen, Jin-Fa Lee, Robert Lee, W. Elliott Hutchcraft, Bob Bevensee, and Dick Adler for organizing and 
managing the 12th Annual Review. Their hardwork is another manifestation of the can-do spirit of 
dedicated volunteers in a voluntary society. 

There must be more of you out there who are ready to step forward and offer your time and services to ACES. 
Call me! The Society, the Profession, and you will benefit enormously. 

Enjoy the 12th Annual Review. 

Harold A. Sabbagh 
Sabbagh Associates, Inc. 
4635 Morningside Drive 
Bloomington, IN 47408 
(812)339-8273 
(812) 339-8292 FAX 
emaihhas@sabbagh.com 
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ACES 1996 SHORT COURSES 

MONDAY MARCH 18 FULL-DAY COURSES 

0830-1630      "Wavelets: Theory, Algorithms, and Applications' 
by Andrew E. Chan, Texas A&M. 

0830-1630      "Using Mathematical Software for Computational Electromagnetics" 
by Jovan Lebaric, Naval Postgraduate School. 

0830-1630      "Practical EMI/EMC Design and Modeling" 
by Todd Hubing, University of Missouri-Rolla. 

MONDAY MARCH 18 HALF-DAY COURSES 

0830-1200     "An Application Oriented Introduction to the NEC-BSC Workbench" 
by Ron J. Marhefka and Lee W. Henderson, The Ohio State University. 

1300-1630      "Application of Modern Analytical and Hybrid Tools for Antenna 
Modeling and Synthesis", 
by Roberto Rojas and Prabhakar Pathak, The Ohio State University. 

FRIDAY MARCH 22 FULL-DAY COURSES 

0830-1630     "Finite Element Methods for Electromagnetics" 
by John Volakis, University of Michigan and 
John Brauer, Mac-Neal-Schwendler Corporation. 

0830-1630      "Conformal Time Domain Numerical Electromagnetics" 
by Kane Yee, Lockheed. 

FRIDAY MARCH 22 HALF-DAY COURSES 

0830-1200      "Using Model-Based Parameter Estimation to Increase the Efficiency 
and Effectiveness of Computational Electromagnetics" 
by Ed Miller. 

1300-1630      "Antenna Properties in Linear and Nonlinear Environments" 
by Robert Bevensee, BOMA Enterprises. 



FINAL AGENDA 

The Twelfth Annual Review of Progress in Applied Computational Electromagnetics 

NAVAL POSTGRADUATE SCHOOL 
18-22 MARCH 1996 

Richard Gordon, Technical Program Chairman 

Eric Michielssen, Conference Co-Chair 

Jin-Fa Lee, Conference Co-Chair 

Robert Lee, Short Course Chairman 

W. Elliott Hutchcraft, Technical Assistant 

Robert Bevensee, Assistant Conference Co-Chair 

Richard W. Adler, Conference Facilitator 

MONDAY MORNING 18 MARCH 1996 

0745-0830       SHORT COURSE REGISTRATION 

0830-1200       SHORT COURSE (HALF-DAY) 
"An Application Oriented Introduction to the NEC-BSC Workbench" 
R.J. Marhefka & L.W. Henderson, The Ohio State University 

0830-1630       SHORT COURSE (FULL-DAY) 
'Wavelets: Theory, Algorithms, and Applications" 
A.K. Chan, Texas A8.M 

0830-1630       SHORT COURSE (FULL-DAY) 
"Using Mathematical Software for Computational Electromagnetics" 
J. Lebaric, Naval Postgraduate School 

0830-1600       SHORT COURSE (FULL-DAY 
"Practical EMI/EMC Design and Modeling" 
T. Hubing, University of Missouri-Rolla 

0900-1200       REGISTRATION 

MONDAY AFTERNOON 

1300-1630       SHORT COURSE (HALF-DAY) 
"Application of Modern Analytical and Hybrid Tools for Antenna Modeling and Synthesis" 
R. Rojas & P. Pathak, Ohio State University 

1630-1900       REGISTRATION 

1700-1915       AMATEUR RADIO DINNER 

SESSION 0:   AMATEUR RADIO SESSION 
Chair: W.P. Wheless, Jr. 

1930 "Ground-Plane Antennas with Elevated Radial Systems" 

1950 "Review of Characteristics for HF Dipole Antennas Including the Cases Where the Dipoles 
are Above and Parallel to the Surface of Real-World Grounds" 

2010 "HF Multi-Frequency Antennas Using Coupled Resonators" 

2030 'The Optimized Wideband Antenna (OWA) and its Application" 

2050 'The Quad-Rhomb Antenna - A New All Band Antenna for Amateur Radio Applications" 

2110 BREAK 

2130 "SKY-WAVES-95" 

2150 "Using Ham Radio CEM Codes to Gain Insight to VHF Ground Plane Antennas and to 
Mitigate 75 Meter Mars RFI at a Naval Receiving Site" 

2210 "Development of Practical Landstorfer Antennas for Amateur Use" 

2230 'Two-Port Network Specification of Baluns for NEC Analysis and Other Applications" 

103 Glasgow Hall 

102 Glasgow Hall 

122 Ingersoll Hall 

419 Spanagel Hall 

119 Ingersoll Hall 

103 Glasgow Hall 

102 Glasgow Hall 

103 Glasgow Hall 

122 Ingersoll Hall 

J.S. Belrose 

G.M. Royer 

G.A. Breed 

J.K. Breakall 

R. Anders 

R. Anders 

A. Hoffman & R.W. Adler 

M.C. Tarplee 

W.P. Wheless, Jr., 
& C.S. Wheless 



TUESDAY MORNING 19 MARCH 1996 

0700-0800       REGISTRATION 

CONTINENTAL BREAKFAST 

ACES BUSINESS MEETING 

WELCOME 

0700-0745 

0730 

0745 

SESSION 1: 

President Hal Sabbagh 

Richard Gordon 

HIGH FREQUENCY METHODS  (Parallel with Sessions 2, 3, 4, & 5) 
Chair: R.J. Burkholder 

0800 "Physical Theory of Diffraction Analysis of Impedance Structures" 

0820 "Hybrid SBR/GTD Radio Propagation Model for Site-Specific Predictions in an Urban 
Environment" 

0840 "Analysis of Dielectric Structures Using the NEC-BSC" 

0900 "Hybrid MM-PO-Fock Analysis of Monopole Antennas Mounted on Curved Convex Bodies" 

0920 "Numerical Diffraction Coefficient for an Impedance Wedge with a Material Body Attached 
to its Edge" 

0940 "Reflection and Diffraction of Well-Focussed General Astigmatic EM Gaussian Beams" 

1000 BREAK 

1020 "Polarized Scattered Light by a Semicylindrical Boss on a Conducting Flat Plane" 

1040 "Divergence of Rays in Modulated Atmospheric Ducts" 

1100 "Diffraction by a Weak Dielectric Wedge" 

1120 "Far-field Diffraction Effects of EUV Fresnel Zone Plates" 

1200 LUNCH 

SESSION 2:    INVERSE SCATTERING   (Parallel with Sessions 1, 3, 4, & 5) 
Chairs: P.M. Goggans and L. Riggs 

0800 "Radar Time and Frequency-Domain Received Signals for Realistic Antennas and Scatterers" 

0820 'The Extraction of Scattering Mechanisms from Measured Data" 

0840 "Using the E-pulse Technique and Hypothesis Testing to Perform Radar Target Identification" 

0900 "A Boundary-Integral Code for Electromagnetic Nondestructive Evaluation" 

0920 'The Numerical Analysis of Planar Antennas Buried in Layered Media" 

SESSION 3:   RCS ANALYSIS   (Parallel with Sessions 1, 2,4, & 5) 
Chain M. El-Shenawee 

0940 "A Response Surface Methodology Study of Electromagnetic Data Compression and 
Reconstruction" 

1000 BREAK 

1020 "Curvilinear, Isoparametric Modelling for RCS Prediction, Using Time Domain Integral 
Equations" 

1040 "Double Scatter Radar Cross Sections for Two Dimensional Random Rough Surfaces that 
Exhibit Backscatter Enhancement" 

SESSION 4:    APPLICATIONS OF PARALLEL COMPUTING   (Parallel with Sessions 1, 2, 3 & 5) 
Chairs: L. Epp and K. Naishadham 

1100 "Solution of Electromagnetic Eigenproblems on Multiprocessor Superscalar Computers" 

103 Glasgow Hall 

Glasgow Hallway 

102 Glasgow Hall 

102 Glasgow Hall 

102 Glasgow Hall 

H.H. Syed & J.L Volakis 

J. Schuster & R. Luebbers 

R. Marhefka & L. Henderson 

U. Jakobus & F.M. Landstorfer 

M.F. Otero & R.G. Rojas 

G. Zogbi, H.T. Chou, 
P.H. Pathak, & R.J. Burkholder 

H.A. Yousif 

I.P. Zolotarev 

A.V. Popov 

Y.V. Kopylov, V.A.Baranov, 
A V.Popov, & A Vinogradov 

Engr Auditorium 

P.M. Goggans & J.D. Pursel 

H.M. Chizever&K.M. Pasala 

L. Riggs, J. Mooney, & C. Smith 

K. Murphy & H.A. Sabbagh 

J. van Tonder, J. Cloete, 
& D. Davidson 

Engr Auditorium 

V.M. Floyd, Jr., A. Terzuoli, Jr., 
G.C. Gerace & P.F. Auclair 

S.P. Walker, M.J. Bluck, 
M.D. Pocock, C.Y. Leung, 
& S.J. Dodson 

M. El-Shenawee & E. Bahar 

1120 "Implementation of Hybrid FDTD/FVTD Conformal Algorithm on a Massively Parallel Computer" 

1140 "Parallel CARLOS-3D Code Development" 

SESSION 6:    NEW DEVELOPMENTS IN TLM MODELING   (Parallel with Sessions 1, 2, 3, & 4) 
Chair: W.J.R. Hoefer 

0800 "On the Advantages of ATLM Over Conventional TLM" 

0820 "Advanced Node Formulations in TLM - The Matched Symmetrical Condensed Node (MSCN)" 

0840 "A General and Complete Two-Dimensional TLM Hybrid Node Formulation Based on 
Maxwell's Integral Equations" 

Engr. Auditorium 

M.P. Debicki, P. Jedrzejewski, 
J. Mielewski, P. Przybyszewski, 
& M. Mrozowski 

J.S.ChenS A.A. Seidl 

J.M. Putnam & J.D. Kotulski 

122 Ingersoll Hall 

M. Krumpholz & P. Russer 

V. Trenkic, C. Christopoulos, 
& T.M. Benson 

N. Pena & M.M. Ney 



TUESDAY MORNING 19 MARCH 1996 

SESSION 5:   NEW DEVELOPMENTS IN TLM MODELING  (Parallel with Sessions 1,2, 3, & 4) (cont) 

0900 "A General Formulation of a Three-dimensional TLM Condensed Node with the Modeling of 
Electric and Magnetic Losses and Current Sources" 

0920 "A Numerical Comparison of Dispersion in Irregularly Graded TLM and FDTD Meshes" 

0940 "Accuracy Considerations of a Class of Frequency-Domain TLM Nodes" 

BREAK 

1020 "Distributed Simulation of Planar Circuits by TLM Method in a Parallel Computing" 
Environment" 

1040 "Modeling Gyromagnetic Media in Symmetrical Condensed Node TLM" 

1100 "A Comparative Performance Study of Absorbing Boundary Conditions in TLM and FDTD" 

1120 "Modelling of Coplanar Waveguide Discontinuities Using the Alternating Transmission Line 
Matrix (ATLM) Method" 

1140 "Quasi-Static Correction of a Knife Edge Corner in 2D TLM Algorithm" 

122 Ingersoll Hall 

N. Pena, & M.M. Ney 

F.J. German, J.A. Svigelj, 
& R. Mittra 

S. Chen & R. Vahldieck 

B. Isele, J. Schmöiler, 
S P. Russer 

L. de Menezes & W.J.R. Hoefer 

C. Eswarappa & W.J.R. Hoefer 

B. Bader & P. Russer 

L. Cascio, G. Tardioli, T. Rozzi, 
& W.J.R. Hoefer 

1200 LUNCH 

1200 BOARD OF DIRECTORS MEETING/LUNCHEON 

TUESDAY AFTERNOON 

1400-1800       VENDOR EXHIBITS AND STARTING AT 1600 -1800, WINE AND CHEESE BUFFET 

SESSION 6:    INTERACTIVE TECHNICAL SESSION, 

1400-1800      "Electromagnetic Visualization Using Commercial Software" 

"Performance of Multiple, Thin Layers of Lossy Dielectrics as Broadband Attenuators" 

"Research & Engineering Framework (REF) Data Dictionary Specification for Computational 
Electromagnetics" 

"Development of an Electromagnetic and Mechanical Simulation Tool for the Computer 
Modeling of the TACAMO LFA/LF Communication System" 

"A New Look at Antenna Traps" 

"Imaging of Conductive and Ferromagnetic Materials Using a Magnetic Induction Technique" 

DelMonte Room,, Herrmann Hall 

Ballroom, Herrmann Hall 

Ballroom, Herrmann Hall 

H.A. Nott 

G.W. Jarriel, Jr., M.E. Baginski, 
& L.S. Riggs 

M.C. Longtin, R.W. Sutton, 
K.J. Laskey, & P.J. Morrison 

P.W. Leonard 

J. Ferreira, F. Linhares, 
J. Velez, J. de Ribomar S. 
Oliveira, & A.R. Borges 

"Investigation of the Properties of Wavelet-Like Basis Functions in the Finite Element Analysis   L.A. Harrison & R.K. Gordon 
of Elliptic Problems" 

"Continuing Development of the Research and Engineering Framework (REF) for 
Computational Electromagnetics" 

"Numerical and Experimental Modelling of Liquid Dielectrics Using a Coaxial Cavity" 

"Hardware/Software Codesign Model for XPATCHF Optimization" 

"3D FDTD Simulation of EM Detection of Buried Waste" 

"Application of Digital Filters to the Construction of Wideband Dispersive Boundary Conditions" 

"Note on Large Crane Coupling to Nearby AM Radio Stations" 

"XPATCHF Software System Analysis and Profiling" 

'Theoretical Studies of Photonic Band Gap Materials" 

"On the Use of Richardson Extrapolation in the Finite Element Analysis of Two-Dimensional 
Electrostatics Problems" 

"Scattering from Chirally Coated Bodies" 

L.W. Woo, B. Hartman, 
K. Siarkiewicz, J. LaBelle, 
& R. Abrams 

M. Bingle, D.B. Davidson, 
& J.H. Cloete 

B.A. Kadrovach, T.S. Wailes, 
A.J. Terzuoli, Jr., & D.S. Gelosh 

D. Sullivan, B. Hansen 
& N. Skousen 

M. Mrozowski, M. Niedzwiecki, 
& P. Suchomski 

P.W. Leonard & J.B. Hatfield 

B.A. Kadrovach, T.S. Wailes, 
A.J. Terzuoli, Jr., & D.S. Gelosh 

M. Sigalas, R. Biswas, C. Chan, 
K. Ho, & C. Soukoulis 

W.E. Hutchcraft & R.K. Gordon 

R. Sharma & N. Balakrishnan 



TUESDAY AFTERNOON 19 MARCH 1996 

1400-1800       VENDOR EXHIBITS AND STARTING AT 1600 -1800, WINE AND CHEESE BUFFET 

SESSIONS:    INTERACTIVE TECHNICAL SESSION,   (cont) 

"A Mixed Formulation to Compute the Source Current Density in Inductors of Any Shape" 

"High Power Microwave Amplification for High-Intensity Relativistic Electron-Beam 
Storage-Rings" 

"Real-Time Digital Signal Processor in Ionosphere Measurements" 

"High Frequency Electromagnetic Safety Analysis by Numerical and Empirical Methods on 
Mobile Platforms" 

"Computational Modeling of Wave Plasma Interaction" 

"Attenuation of HF Radio Waves in a Forest: Results from Experiment" 

"Statistical Reflection Properties of Electromagnetic Monopulse by Buried Object in 
Subsurface Random Ground Using FDTD" 

"Running NEC4 on the Cray at NPS" 

1730 NO HOST BAR 

1830 AWARDS BANQUET 

WEDNESDAY MORNING 20 MARCH 1996 

0715 CONTINENTAL BREAKFAST 

SESSION 7:    FDTD APPLICATIONS AND ENHANCEMENTS   (Parallel with Sessions 8, 9,10,11 & 12)    102 Glasgow Hall 
Chair: J.H. Beggs 

Ballroom, Herrmann Hall 

Ballroom, Herrmann Hall 

F. Robert, P. Dular, 
J.F. Remade, M. Urne, 
& W. Legros 

R.A. Speciale 

A.L. Karpenko & V.V. Koltsov 

M.J. Packer, & R.C. Ferguson 

V.A. Eremenko & Y.Cherkashin 

I.P. Zolotarev. VAPopov 
&V.P. Romanuk 

Y. Miyazaki & Y. Jyonori 

B. Neta 

Terrace Room 

Ballroom, Herrmann Hall 

0800 "UHFA/HF Propagation Model Characterization Over Irregular Terrain Using MOM/FDTD" 

0820 "Validation of FDTD Modeling of Ground-Penetrating Radar Antennas" 

0840 "FDTD Analysis of Radiation from a Lens Terminated Conical TEM Antenna" 

0900 "FDTD Analysis of a Dipole Antenna Driven from Various Excitation Sources" 

0920 "An Efficient Hybrid PEE-FDTD Field Modeling Technique in Cylindrical Coordinates" 

K.A. Lysiak, J.K. Breakall, 
& J. Zmyslo 

S.A. Blocher, E.A. Baca, 
& T.S. Bowen 

M.R. Zunoubi, N.H. Younan 
CD. Taylor, & J.H. Beggs, 

M. Mrozowski, M. Okoniewski, 
& M.A. Stuchly 

1000 BREAK 

SESSION 8:    FINITE ELEMENT AND FINITE VOLUME METHODS FOR ELECTROMAGNETIC FIELD SIMULATION   102 Glasgow Hall 
Chairs: R. D-Edlinger and R. Lee {Parallel with Sessions 9,10,11 & 12, 

1020 "Local Tetrahedron Modeling of Microelectronics Using the Finite-Volume Hybrid-Grid DJ. Riley & CD. Turner 
Technique" 

1040 "Full Wave Vector Maxwell Equation Modeling of Self-Limiting Effects and Optical Nonlinear      S.V. Polstyanko & J-F. Lee 
Vortices" 

S. Bindiganavale & J.L. Volakis 

R.R. DeLyser & H. Pohle 

1100 "A Hybrid FEM-FMM Technique for Electromagnetic Scattering" 

1120 "Finite Element Method Analysis of the Celestron-8 Telescope" 

1200 LUNCH 

SESSION 9:    NUMERICAL ERROR ANALYSIS AND CONTROL I   (Parallel with Sessions 7 8,10,11, & 12) 122 Engersoll Hall 
Chair: J.L. Volakis 

0800 "Error Analysis in the Adaptive Integral Method (AIM)" 

0820 "Using Model-Based Parameter Estimation to Estimate the Accuracy of Numerical Models" 

0840 "Guidelines for Using the Fast Multipole Method to Calculate the RCS of Large Objects" 

0900 "Developments in Error Estimation for Covolume and Staggered Mesh Approximations to 
Maxwell's Equations" 

0920 "Adaptive Methods for the Numerical Solution of Reaction-Diffusion Problems" 

0940 "Error Estimates for Subgridded FDTD Schemes" 

1000 BREAK 
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Numerical Investigation of Antennas for Hand-Held 
Radiotelephones Using NEC Code. 

A. A. Efanov, M. S. Leong and P. S. Kooi 

Department of Electrical Engineering 
National University of Singapore 

10 Kent Ridge Crescent, Singapore 0511 
FAX: (+65) 777-3117 

ABSTRACT - The classic quarter- and half-wavelength monopole antennas, the quarter-wavelength 
helical antenna, the bottom-loaded monopole antenna and the modified sleeve dipole have been 
modelled using the NEC-2 code. The last two antenna configurations are new, they have a good 
performance and relatively small sizes. These antennas could be used for hand-held radiotelephones as 
well as for other applications. 
1. INTRODUCTION 

Development of the modern personal communication systems stimulates an improvement of 
portable radiotelephone antennas. A design of such antennas must satisfy several quite contradictory 
requirements such as good performance, small size, cost factor, etc. Numerous papers were devoted to 
this problem [1], 

This report presents the results of the numerical investigation and the mutual comparison of several 
types of antennas for hand-held radiotelephones. The following antennas are considered here: the 
classic quarter- and half-wavelength monopoles, the quarter-wavelength helix, the bottom-loaded 
monopole and the modified sleeve dipole. The last two antenna configurations are new, and they could 
be used for portable radiotelephones as well as for other applications. 

All the antennas have been modelled for the GSM band (890-960 MHz, European standard), but the 
obtained results could be used for the PCS/PCN applications (1.8/1.9 GHz) as well. 

The characteristics of the portable antennas are dependent on the radiotelephone box sizes and on 
the actual antenna position. It is assumed that the antennas are placed at the center of the top side of a 
conducting box with the following dimensions: 40 x 50 x 180 mm (0.123 x 0.154 x 0.555 X). A wire- 
grid model (Fig. 1) has been used for the modelling of the box. The NEC-2 code [2] has been used for 
the numerical simulations. 
2. MONOPOLE AND HELICAL ANTENNAS 

The quarter- and half-wavelength monopoles and the quarter-wavelength helix are the well known 
antennas widely used for mobile communications [1]. There are several papers devoted to an 
investigation of the characteristics of a monopole antenna mounted on a conducting box [3-5]. Mobile 
applications of various helical antennas have been considered in [6-7]. 

The quarter-wavelength monopole (Fig.l) has the 84 mm length. Its calculated radiation pattern 
(ZOX vertical plane) is shown in Figure 3. There is a deep null in the vicinity of the 0 = 90 degrees, 
since the resonant X/4-monopole antenna excites strong RF currents (Fig. 8) on the portable radio case, 
which is an integral part of the radiating system. This is the most negative feature of this antenna, 
because the standard operating 0 angular range for the hand-held radiotelephone systems (in an 
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elevation plane) is from 40 to 140 degrees [1]. The quarter-wavelength resonant monopole antenna has 
very good input impedance characteristics (Fig. 4a). 

The half-wavelength monopole (the end-fed dipole) has the 155 mm length. Its radiation pattern has 
much better performance (Fig.3). However, it is necessary to match its high rad.ation resistance 
(Fig 4b) to the standard 50-Ohms output impedance of a radiotelephone. 

A typical helical monopole antenna used for mobile communications has a physical length of about 
1/12 wavelength and an electrical length of about a quarter wavelength [1]. The helical antenna is 
shown in Figure 2 It has 4 and 7/8 turns of the 10 mm diameter with the whole height of 30 mm. The 
antenna electrical length has been chosen a little bit longer than at resonance to obtain an input 
resistance of about 50 Ohms. For this case it is necessary to use a matching capacitor to compensate an 
inductive component (+J316 Ohms) of the input impedance. The input characteristics (with the 0.5 pF 
capacitor) are shown in Figure 4c. The antenna radiation pattern (Fig. 3) suffers from the same 
shortcomings as for the quarter-wavelength monopole case. The resonant helical antenna also strongly 
excites the RF currents on the radiotelephone box (Fig. 8). 
4. BOTTOM-LOADED MONOPOLE 

The bottom-loaded monopole (Fig.5) consists of a horizontal rectangular conducting plate placed 
near to the top side of the radiotelephone box and a monopole rod connected to the plate from above. 
The antenna feeding point is between the plate and the top side of the box. The plate is placed at the 15 
mm (0 046 X) height above the box, and the whole antenna height is 113 mm (0.35 X). 

This configuration, which has a radiation pattern (Fig.6) similar to the half-wavelength monopole, 
however leads to a whole antenna height that is sufficiently smaller for practical implementation. The 
calculated input characteristics are shown in Figure 7. A good impedance matching could be made by a 
proper choice of the feeding point position. This antenna excites much smaller RF currents on the 
radiotelephone box (Fig.8) than the quarter-wavelength monopole and the helix. 
5. MODIFIED SLEEVE DIPOLE 

The classic sleeve dipole antenna [8] is widely used for various applications. It contains a quarter- 
wavelength coaxial resonant choke which isolates the dipole from the feeding coaxial line. However, a 
resonant nature of the choke leeds to the rapid radiation pattern deteriorations for even a small 
frequency detuning [1], The whole antenna length is about half-wavelength. 

We have improved a construction of the sleeve dipole to increase its operating band and to reduce 
the antenna height. The modified sleeve dipole (Fig.9) consists of a quarter-wavelength helical 
monopole fed by a coaxial line and a quarter-wavelength sleeve formed by four wire arms placed 
parallel to the coaxial line. The diameter of the helix is 10 mm (0.03 X), the whole antenna length is 100 
mm (0 31 X) The distance between the opposite sleeve arms is 10 mm (0.03 X). The calculated 
radiation patterns are shown in Figure 10. The calculated input characteristics are shown in Figure 11. 
The antenna has a good performance and a relatively small sizes what makes it possible to use it for a 
hand-held radiotelephones as well as for various other mobile applications. 

6. CONCLUSIONS 
The several antennas suitable for the hand-held radiotelephone applications have been modelled 

using the NEC-2 code. The gain of the considered antennas is compared in Figure 12, where the 
radiation patterns are shown in dBi for the 925 MHz central operating frequency. The bottom-loaded 
monopole and the modified sleeve dipole antenna have a good performance and relatively small sizes. 
They could be used for hand-held radiotelephones at GSM and PCS/PCN bands as well as for several 
other portable mobile applications. 
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Figure 1. Wire-grid model of the 
radiotelephone box with the quarter- 

wavelength monopoie antenna. 

Figure 3. Calculated radiation 
patterns of the monopoles and the 

helix at 925 MHz. 
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Figure 9. Wire-model ot the modified 
sleeve dipole antenna. 

Figure 10. Calculated radiation 
patterns of the modified sleeve dipole 

antenna. 
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EVALUATION OF THE DISCRETE COMPLEX-IMAGE METHOD 
FOR A NEC-LIKE MOMENT-METHOD SOLUTION * 

G. J. Burke 
Lawrence Livermore National Laboratory 

P.O. Box 5504, L-156, Livermore, CA 94550 

Abstract 

The discrete image approximation for the field of a half-space is tested in the NEC antenna 
modeling program as an alternative to the interpolation method presently used. The accuracy 
and speed of the discrete image approximation are examined for varying number of images and 
approximation contour, and the solution for current is obtained on a horizontal wire approaching 
the interface. 

1. INTRODUCTION 

A common extension to frequency domain moment-method codes is to model structures in a 
stratified medium or at least near a homogeneous ground. The solution then requires the Green's 
function for the stratified medium or half-space, which in its exact form involves an integral 
over an infinite spectrum of waves [1, 2]. The moment-method solution generally requires many 
evaluations of the Green's function for numerical integration over sources, so evaluation time and 
accuracy become critical. A number of methods have been used in this evaluation, including 
integration over the real radial wavenumber or on a contour deformed to the steepest descent 
path [3]. Linear filters have been very effective for lossy media [4]. Lindell [5] has converted the 
spectral integrals of Sommerfeld into integrals over an image distributed in complex space. While 
this solution remains exact, it still requires numerical integration over the distributed images, 
although the integrals may be more easily evaluated than the spectral form. The code NEC [6] uses 
an interpolation method for a half-space [7]. The Sommerfeld integrals are evaluated numerically 
on contours deformed to accelerate convergence [8]. The values are then transformed using the 
approximate quasistatic or asymptotic behavior of the fields to remove rapid variations, and are 
stored in tables from which the required values are obtained by interpolation. Alternatively, 
a "model" containing functions from the asymptotic solution and variable parameters is fit to 
the computed values in a technique known as model-based parameter estimation [9]. These 
interpolation methods are fast, accurate and reasonably simple when source and evaluation points 
are in the same medium, but can get complicated for interactions across interfaces. 

More recently a simple approximation of the Green's function for a stratified medium or 
half-space has been developed in terms of a sum of discrete images in complex space [10]. This 
method has been applied to the solution of microstrip problems [11, 12] and to antennas over a 
homogeneous ground [13] using the mixed-potential form of the integral equation. In this paper 
results of using the discrete image method in a solution with continuous current expansion and 

* Work performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore 
National Laboratory under Contract W-7405-Eng-48. 
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point matching of the field are reported.  The accuracy of the discrete image approximation is 
investigated, and the speed is compared with the interpolation method in NEC. 

2. THE DISCRETE IMAGE APPROXIMATION FOR A HALF-SPACE 

The discrete image approximation is obtained by numerical 
processing of the Sommerfeld integrals for the potentials due to 
a half-space, after first extracting a quasistatic term to improve 
convergence. The method is outlined here to obtain the field 
components needed in NEC. The solution for the field of a source 
in the presence of a half-space can be found in many references, 
for example [1, 2]. The geometry of the problem is shown in 
figure 1, using the convention that the lower medium is medium 
1 and the upper is medium 2. The wavenumbers are h = k0(ei - 
j<ri/cjeo)1/2 and k2 = k0(e2 - j(T2/ueo)1/2 with k0 = Uy/iwö 
and eiut time variation assumed. The form of the solution used 
here is from [2] in terms of the potentials U22 and V22 which, 
together with the free-space Green's functions for the source and 
its image, yield all of the components of electric field in the upper medium due to vertical and 
horizontal electric dipoles in the upper medium. The potentials involve infinite integrals over the 
radial component of wavenumber kp which can be written in terms of either Bessel or Hankel 
functions in kp as 
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i 'z 
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Fig. 1. Geometry for source 
and evaluation points above a 
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Ru(kz2) 
kz2 

kz\ + kz2 

(la) 
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(lc) 

(Id) 

and fczl = (k2 - k2)1'2 and kz2 = (Xg - k2)1'2 with \m{kzl, kz2) < 0. The basic contours for 
evaluating these integrals on the real axis are shown in figure 2 as C0 for the Bessel function form 
and Ci for the Hankel function form. 

AsJJi = Ip2 + (z + z1)2}1/2 becomes small the integrals in (1) converge more slowly, leading 
to a Rx singularity in the integrals. The quasistatic term containing this singularity can be 
extracted by subtracting the constant limits that Rv and Rv approach as kp or kz2 become large. 
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Fig. 2. Contours for evaluation of the Sommerfeld integrals: a) contours in the k& plane, b) contours in the k„ 
plane, with branch cuts from fci and k%. 

The remainders of the potentials after subtracting the quasistatic terms are 
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The extracted quasistatic terms can be combined with the free space Green's function for 
the image by applying the Sommerfeld identity, 
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The equations for the electric field components are then 
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where the subscripts on E or S indicate the cylindrical component of the field and the superscript 
indicates a vertical electric dipole (V) or horizontal dipole on along the x axis (H). G22 and G21 
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axe the free space Green's functions for the source and its image, G22 = exp(-jk2R2)/R2 and 
G21 = exp(-jk2Ri)/Ri with Ri = [p2 + (z± z')2] . The final terms, containing the remaining 
Sommerfeld integrals, are 

v     -jultpo  d2   ,2 
S*>=-M^dtfzk^ ^ 

^ = -^-^-—+«22 + ^--^^. (M) 

The final G2i terms are included in (6c) and (6d) to complete the field of the quasistatic image 
in (5) as the field of a source in free space. After subtracting the quasistatic terms, the remaining 
integrals «22 and ^22 remain finite as R\ goes to zero, while the field components in equations (6) 
have 1/Äi singularities from the derivatives of vn- The advantage of extracting the quasistatic 
components for the discrete image approximation is that the functions Ru(kz2) and Rv{kz2) 
in equation (3) decay as k~2 for large kz2, and these decaying functions are better suited to 
approximation by a sum of exponentials than are Ru and Rv which become constant. The 
quasistatic terms are also subtracted in the interpolation method used in NEC, where the singular 
remainders in equation (6) are multiplied by R\ so that they can easily be approximated with linear 
or quadratic interpolation. Alternatively, the singularities in equations (6) can be approximated 
[6] and also the next constant terms can be obtained. For example, in S^ 

d2^ _,fcf(fcj-fc2) /_sino_\ J_ 
dp2   * (fc2 + fc2)2  Vl + suW Äi + 

jktjkl + klh-klk2-2^1-214) jk\4Ck 
3(*l+fc2)(fc1+*2
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for small i?i, where . ,  
=       t /2fa ~ *a)(fc? - fcifc2 + kbjk2 + k2

2\ 

*     tan     I  2k\ - 4fcf k2 + bk2q - 4kxk\ + 2k\ J 

with Im(Cfc) < 0 and sin a = (z + z,)/Rx. 

For the discrete image approximation Rn{kz2) and Rv{kz2) are approximated with a sum of 
exponential functions in kz2 by means of the Prony [14] or Matrix Pencil [15] methods. Since these 
methods require equally spaced samples in a real variable, the substitution kz2 = k2[ta+t{tb-ta)} 
is made. Applying the Matrix Pencil method with equally spaced samples over 0 < t < 1 yields 
the exponential approximation over the range kz2 e (k2ta, k2tb) as 

N, Nt 

AU w * $3 AieBii>   *»(**) * E «*** 
•=1 :=1 

674 



with at = Aie-BiUI(t>'-u) and 6* = Bi/[k2(tb - ta)]. When the exponential approximation of 
Ä„(fcz2) is substituted into (2) the integral for each term can be evaluated using the Sommerfeld 
identity (4) to get a sum of discrete images 

"""ZLV-R— (8) 
i=l 

with Ri = [p2 + (z + z1 + jbi)2}1/2. Thus «22, and similarly u22 are approximated by a sum of 
free-space Green's functions for images in complex space. 

In applying the discrete image method a contour similar to C2 in figure 2 is usually chosen 
for the approximation [10]. Hence, ta = 1 and tb is a negative imaginary value. This deformation 
from Co yields a linear path in the kz2 plane and also avoids surface-wave poles that would occur 
for a stratified medium. It also moves the path further from the Zenneck pole in Rv, making the 
approximation easier. 

3. NUMERICAL RESULTS 

The accuracy of the discrete image approximation was tested against the numerical evaluation 
routines in SOMNEC [6] after reducing the error limits in the Romberg adaptive integration by 
two orders of magnitude and increasing the accuracy of the Bessel and Hankel functions. With 
these changes the relative error in the integration seems to be around 10-6 to 10" . 

The error from the discrete image approximation for i;22 is shown in figure 3a for a lossy 
ground with the number of images Nt varied. The matrix pencil method was used with N3 = 300 
samples and tb = -jlO. Nt = 12 was the maximum number of terms that could be obtained from 
the matrix pencil method with the tolerance in the singular-value decomposition set to 10_1 . 
The approximation is seen to converge rapidly in the region of 0.1 < #i/A0 < 1. The error with 
varying tb is shown in figure 3b, where Nt was always the maximum returned by matrix pencil. 
The increased error for small fii is due to the truncation of the approximation contour at k2tb as 
the integrand converges more slowly, so a larger tb reduces the error. The use of the Sommerfeld 
identity for equation (8) implies an integration contour to infinity, but the error is uncontrolled 
beyond k2tb and increases as the integrand decays. The increased error in figure 3b for large R\ 
and large tb is due to insufficient sampling, and would be reduced with a larger Ns at the cost 
of increased time for determining the image parameters. Figure 3c shows the error with varying 
tb for grazing incidence along the ground. The error due to truncation at tb occurs sooner as Ri 
is decreased than for points off the interface, since the integrand decays more slowly without the 
e-jk*{*+>?) term. In numerical integration the Hankel function form of equation (1) could be used 
in this case, with the integration contour deformed downward to a steepest descent path. The 
contour C2 used in the discrete image approximation is more nearly optimum for large (z + z')/p. 
For large Äi the error increases rapidly, apparently from difficulty in approximating Rv near the 
Zenneck pole near kz2 = fc2- A small tb reduces the error for large Ri with increased error for 
small Ri. Figure 3d shows the same result as 3c but for dielectric ground. In this case the error 
increases more rapidly for large Äi, perhaps due to the difficulty in approximating the lateral 
wave. Although the lateral wave, with wavenumber fci, must be synthesized from exponentials in 
k2 the approximation is successful for a number of cycles determined by the number of discrete 
image terms.   For example, the lateral wave was approximated to about Ri/X = 0.7 with 5 
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1E-S lE-< .81 

Fig. 3. Error in the discrete image approximation of v& with Nt images and N, samples. The ground permittivity 
is E = ti - jtr/uev and 0 = tan"1 [p/(z + 2')]. 

images, to Ri/X = 1.3 with 10 images and to Ri/X = 3 with 22 images. Beyond these distances 
the approximation diverged rapidly. 

Figure 4 shows the relative error in approximating d2v22/dp2 for the Ej* field component 
needed to model a horizontal wire over ground. The increased error over the approximation for 
Ü22 shows that the 1/Äi singularity in this second derivative is not contained in the discrete 
image approximation. When integrated over a filament of current, this 1/Äi term contributes to 
the log singularity in the field parallel to the filament, although the importance of it relative to 
the integral of the quasistatic image terms depends on the coefficients multiplying the terms. If 
necessary the approximations from equation (7), shown as curves Ax and A2 in figure 4, can be 
used to reduce the error. 

A version of NEC-2 has been set up to use the discrete image approximation instead of 
interpolation for arbitrary wire structures above ground.   As an initial test, a horizontal A/2 
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Fig. 5. Input impedance of a Ao/2 dipole with radius 
10"7Ao at height h above the ground, comparing re- 
sults of NEC Sommerfeld/interpolation, discrete im- 
age (DCI) and lYesnel reflection coefficient (RCA). 

Fig. 4. Error in approximating cPvv/df? for varying 
contour limit tb. Curves Ai and A2 are quasistatic 
approximations from equation (7) with the first term 
(1/fii) and all terms, respectively. 

dipole over ground was modeled, since it was expected to be a more difficult test than a vertical 
wire. Results with varying numbers of images, with and without the quasistatic approximation 
in equation (7), were in excellent agreement with the standard NEC-2. Figure 5 shows the result 
with one discrete image for U22 and zero discrete images for vn, and the agreement is very good. 
With three images for each potential the noticeable difference between the curves essentially 
disappears. If the single discrete image for u22 is dropped, using only quasistatic terms, the error 
in impedance for small h/\0 is about twenty percent, and the wiggles between 0.1 and 1 in h/\0 

are not tracked well. Hence it appears that for the horizontal A/2 dipole close to the ground, the 
quasistatic images are most important, and a relatively crude approximation of the remainder is 
sufficient. Other structures, such as a long horizontal wire or top loaded monopole may put more 
demand on accuracy of the discrete image approximation and will be investigated in the future. 
The result of using the Fresnel plane-wave reflection coefficient is also shown in figure 5 and, as 
expected, is accurate for h/X greater than about 0.1. 

The CPU time for evaluating all field components in equation (6) by the discrete image 
method on a DEC 3000/400 computer was 89 /xs with 3 images for each potential and 283 ßs with 
10 images. For comparison, the time for a single evaluation by the NEC-2 interpolation is 7.2 
/JS. The difference is mainly due to the number of complex exponentials that must be evaluated. 
The time to compute the parameters of the discrete image approximation is proportional to Ns, 
and ranged from 0.04 s with 50 samples to 58 s with 600 samples, while the time to generate the 
NEC-2 interpolation table was 1.3 s. 

4. CONCLUSION 

The discrete image approximation can provide a simple and accurate approximation for 
the field over ground for separations of image and evaluation points in the range of about 0.01 
to several wavelengths. The limit for large distance is most restrictive along the interface where 
surface and lateral waves are significant, but asymptotic approximations can fill the gap to infinity. 
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Accuracy decreases for very small distances due to truncation of the approximation contour, but 
the errors become less significant relative to the quasistatic terms. The approximation contour 
and number of images can be adjusted to optimize the approximation for a given range of distances 
and accuracy. The discrete images provide a simple and highly compact representation for the 
field. The code to obtain the image parameters using the matrix pencil method was about 24,000 
lines using the LAPAC routines, but simpler routines should be available. 

The discrete image approximation can also be used when source and evaluation points are 
on opposite sides of the interface, but its usefulness seems much more limited since the image 
parameters must be recomputed for each new source location, or for each new evaluation point 
[10].   It still might be usable in a moment-method with efficient "bookkeeping" in filling the 
matrix. 
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1. Introduction 
NEC-2 is the well known FORTRAN program for electromagnetic analysis based on the 
method of moment. Because the method is a low frequency method, as the electrical size of 
objects increases, the required computer's memory increases drastically, and the upper limit is 
set by the computer's memory size. NEC-2 has adopted an out-of-core technique in order to 
be applicable beyond the upper limit[l]. That is, the large impedance matrix can be stored to 
the hard disk instead of memory. However, the out-of-core operation is not efficient 
because it uses the several sequential-access files of which each size is equal to the matrix size 
as working space. It is known that this problem can be overcome by using single direct-access 
file[2], and the techniques has already been adopted in NEC-4[3]. Unfortunately, NEC-4 is still 

under the export control[4]. 
In this paper, we modified the out-of-core operation of NEC-2 to use a 

direct-access file based on the referenced], and expanded their method into the symmetrical 
case and the Numerical Green's Function(NGF) optionfl]. Using the modified NEC-2, the 
radiation patterns of the UHF band's monopole antenna mounted on a car model were computed. 
We have investigated the performance of the modified NEC-2 by comparing with the original 
NEC-2 and checked the accuracy by comparing with the radiation patterns using Uniform 
Geometrical Theory of Diffraction(UTD). 

2. Modification 
In order to expand the upper limit of NEC-2, we modified the out-of-core operation. Although 
NEC-2 becomes more efficient by the following modifications, the results by the modified 
NEC-2 are identical with those by the original NEC-2. 

2-1 Out- of-core operation 
(Original NEC- 2)[1] 
If the required storage volume of the impedance matrix [Z] is greater than what a computer's 
memory(core) can provide,   NEC-2 stores [Z] to the sequential-access file 11 block by block 
in subroutine CMSET.   The block size is such that two blocks will fit into the provided memory 

for Gauss elimination. 
In subroutine FACIO, [Z] is factored to a lower and a upper triangular matrices by 
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using four sequential-access files(files 11 ,12 , 13, and 14), of which each size is equal to the 
given matrix size. This is because the sequential-access files only allow appending data blocks 
to the end of the file. File 11 is used to keep the original matrix, and file 12 is to store the final 
factorized matrix. Files 13 and 14 are used for intermediate process. If the matrix is divided 
into Nb blocks, the matrix is factored as follows. Firstly, two of the blocks(blocks 1 and m) are 
read from file 11 into the core memory. 1 the two blocks are adjacent, they are completely 
factored and stored to files 12 and 13. If not, the two blocks are partially factored and stored to 
file 13. These processes are repeated for m=2 ~ Nb. Secondly, for m=3 ~ Nb, two of the 
blocks (blocks 2 and m) are read from file 13, and according as the blocks are adjacent or not, 
they are completely or partially factored and stored to file 12 or 14. In later process, files 13 and 
14 are swapped each other for each process and it is repeated until file 12 is filled with the 
completely factored matrix [Z]. 

Then, in subroutine LUNSCR, file 12 is unscrambled, and is written block by block in 
file 13 in ascending order and in file 14 in descending order for the forward and backward 
substitution in subroutine LTSOLV. 

(Modified NEC-2) 
In the out-of-core operation, the modified NEC-2 firstly opens the direct-access file 31 and 
stores [Z] to the file block by block in subroutine CMSET. 

In subroutine FACIO, [Z] is factored block by block using only file 31 of which size is 
equal to the matrix size. The factored blocks are put back to the same file 31 to replace the 
original blocks, because the direct-access file can be read and written to the arbitrary blocks, 
directly. The factorization process is almost the same as the original NEC-2, except that the 
single direct-access file 31 is used in place of the four sequential-access files. The matrix is 
factored as follows. Two of the blocks (blocks n and m (n<m)) are read from file 31, and 
according as the blocks are adjacent or not, they are completely or partially factored using 
subroutine LFACTR and stored to the same file 31 to replace the original blocks. The same 
procedure is repeated for all combinations of n and m, and file 31 is filled with the completely 
factored [Z]. : 

After the factorization, in LUNSCR subroutine, file 31 is unscrambled, but the 
rearrangement for the forward and backward substitution is not performed because the 
direct-access file 31 is also used in subroutine LTSOLV. 

After all, only single direct- access file of which size is the same volume as the matrix 
size is required as working space, and the required disk volume is only a quarter of that of the 
original NEC-2[2]. 

2- 2 Symmetrical Case 
(Original NEC-2)[1] 
If the number of symmetrical section of the object is K, the impedance matrix [Z] is replaced 

by the set of K submatrices which have been Fourier-transformed. 
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Np 

H[ZilZ2][Z3} ■•■■ [ZK] (1) 

For the out-of-core operation, subroutine CMSET stores the submatrices to file 11 block by 
block in the sequence as shown in left below, and then in subroutine FACTRS, the order is 
changed as shown in right below and stored to file 12. 

column 1 of submatrix 1 
column 1 of submatrix 2 

column 1 of submatrix K 
column 2 of submatrix 1 

column 2 of submatrix K 
column 3 of submatrix 1 

change 

column 1 of submatrix 1 
column 2 of submatrix 1 

column Np of submatrix 1 
column 1 of submatrix 2 

column Np of submatrix 2 
column 1 of submatrix 3 

column Np of submatrix K column Np of submatrix K 

This change of the order requires reading through file 11, K times. 
If the size of each submatrix is also greater than the provided core volume, file 12 is copied to 
file 11 without change, and then file 11 is factored using files 13 and 14 by the same way as 
section 2-1 for each submatrix and store to file 12. 

The total process requires four sequential access files(ll,12,13 and 14) of which each 
has the same volume as the sum of submatrices [Z i ],[Z 2 ],[Z 3 ],-,[Z K ] , as well as the 
non- symmetrical case(section 2-1). 

(Modified NEC-2) 
In the out-of-core operation, subroutine CMSET stores the submatrices to the direct-access 
file 31 block by block in the same sequence as the original NEC-2. In subroutine FACTRS, the 
sequence in file 31 is changed into the following order. 

block 
1 

block 
2 

column 1 of submatrix 1 

column L of submatrix 1 
column 1 of submatrix 2 

column L of submatrix 2 

column L of submatrix K 
column L+l of submatrix 1 

column 2L of submatrix 1 
column L+l of submatrix 2 

column 2L of submatrix K 
column 2L+1 of submatrix 1 

(L is the number of columns per submatrix 
per block) 
The rearrangement of the columns are 
performed only in the block in order not to 
use another scratch files. 

If the size of each submatrix is 
also greater than the provided core volume, 
the submatrices are factored one by one 
using modified subroutine FACIO and then 
solved using modified subroutine LTSOLV. 

The hard disk volume required by 
the total process is the same size as the sum 
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of the submatrices and it is only a quarter of that of the original NEC-2. 

2-3 NGF optionlll 
The NGF option is the method to prevent the unnecessary repetition of matrix calculations, and 
is frequently used for such large structures that the out-of-core operation is needed. 
In the case of the NGF option, the impedance matrix [Z] is divided into four matrices. 

[Z] = 
M [5] 
[C] [Z>] (2) 

[A] is the impedance matrix for NGF object, [D] is that for NEW object, and [B],[C] are those 
for the mutual interaction between the two objects. At the first run, the matrix [A] is computed 
and factored, and then stored to the NGF file. At the subsequent run, [A] is read from the NGF 
file and [B],[C]and [D] are computed. 

(original NEC-2) 
At the first run, if the size of matrix [A] is greater than a half of the provided core volume, [A] 
is factored by using four sequential access files 11,12,13 and 14, and then stored block by block 
to file 13 in normal order and to file 14 in reverse order, as well as section 2-1. If the WG card 
is entered, the contents of the two files are copied to the NGF file 20 as shown below. 

filell      filel2      filel3      fileH 

I file 20   (NGF file) 

So the required hard disk volume is the 6 times as much as the size of [A]. 
At the subsequent run, file 20 is copied to file 13, and then [B],[C] and [D] are computed. 

(modified NEC-2) 
At the first run, if the size of matrix [A] is greater than a half of the provided core volume, [A] 
is factored and stored block by block to the direct-access file 31, as well as section 2-1. File 31 
is not copied to NGF file regardless of entering of the WG card. 
At the subsequent run, file 31 is used as the alternative file of file 13 in the original NEC-2. If 
[B],[C] and [D] can be factored in core memory, the total required hard disk volume is the same 
size as the matrix [A]. This volume is a 1/6 of that required for the original NEC-2 and a half of 
the core memory required for the in- core operation. 
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3. Performance Test of Modified NEC-2 
3-1 Car Model and Computer 
The radiation patterns of a quarter wave monopole antenna mounted on the center of the roof of 
a car model in Fig.l were computed in order to verify the performance of the modified NEC-2. 

Fig.l   Monopole antenna mounted on a car model above earth 

The effects of the earth were included using the Fresnel Reflection Coefficients!!]. The relative 

complex dielectric constant of the earth was set to Sg=10-j0.1 . The windshields, the obstacles 
in the car, and the bottom plate of the car body were neglected. 
The car was modeled by Wire-grid as shown in Fig.2. 

NGF structure NEW structure Total structure 
Fig.2   The Wire-grid models for the car model in Fig! 

In order to make use of the symmetry of the car body about XZ-plane and the NGF option, the 
car model was composed of two structures(NGF structure and NEW structure). At the first run, 
the matrix [A] for NGF structure is computed, factored, and stored to the direct-access file 31. 
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At the subsequent run, the matrices [B],[C] and [D] are computed, factored, and then the total 
matrix is solved. The all segments were set to about 0.1 wavelength in length and about 0.01 
wavelength in radius to assure the numerical accuracy. We computed these structures using the 
following computer resources. 

CPU:       DEC-3000/900 (21064A/275MHz) 
OS:       openVMS/AXP Ver.6.1 
Compiler: DEC-Fortran Ver.6.2 
Physical Memory Quota: 25MByte X Total Memory Quota: 
Virtual Memory Quota: 25MByte / 50MByte 
Hard Disk Quota: 600MByte (SCSI drive) 

The single precision version of NEC-2 was used. In PARAMETER statements in the NEC-2's 
source code, the maximum number of segments(MAXSEG) was set to 14,000, and the maximum 
matrix size which can be in core(MAXMAT) was set to 1,000. In the OPEN statement for the 
direct-access file 31, the record length was set to the maximum(8,190 long words) to minimize 
the number of file- access. 

3- 2 Examination of run- time and storage volume 
The run-time and the storage volume for the Wire-grid model in Fig.2 were compared 
between the original and the modified NEC-2 as shown in Fig.3. Only the first run in the NGF 
option was computed for various frequencies(number of segments). The symmetry about 
XZ-plane and the out-of-core operation were used for both the original and the modified 
NEC-2. The run-time in Fig.3 was defined as the total clock time(elapsed time) to run a input 
file. To avoid the influence of the another user's situation in the computer, PRIORITY was set 
to be higher than the another users'. 

8000 ■ 

5  6000 - 

'S  4000 

—*— modified NEC-2 

-•— original NEC-2 

S'j/ 

600 

o 
55 2oo 

' —*— modified NEC-2 

' -«—originalNEC-2 

• 

/ 

1000  2000  3000  4000  5000  6000 

Number of Segments 
1000  2000  3000  4000  5000  6000  7000 

Number of Segments 

Fig.3   Comparison run-time and storage volume between original and modified NEC-2 

The run-time of the modified NEC-2 was shorter than that of the original NEC-2 because the 
number of I/O operation is much less than that of the original NEC-2. The required disk 
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storage volume was about a 1/6 as written in section 2-3. In the case that the disk quota is 
600MByte, the original NEC-2 could not compute over 4,700 segments, while the modified 
NEC- 2 could compute until about 12,000 segments. 

3-3   Comparison the radiation patterns with UTD results 
The radiation patterns of the car model in Fig.l were computed by the modified NEC-2 for 
various frequencies and compared with the calculated results by Uniform Geometrical Theory of 
Diffraction(UTD) as shown in Fig.4. In the UTD computation, the monopole antenna was divided 
into five small dipoles of which each current amplitude was determined assuming the cosine 
distribution. The car in Fig.l was modeled by seven rectangular plates, and the window-pillars 
were neglected. The included rays were direct rays, reflected rays, diffracted rays, 
diffracted-reflected rays, diffracted-diffracted rays, and diffracted-diffracted-reflected rays. 
The effects of the earth were included by using the Fresnel Reflection Coefficients. 
In Fig.4, the computed patterns by the modified NEC- 2 appear in good agreement with the 
results by UTD. Although the discrepancy between two results is conspicuous in the YZ-plane 
pattern,   this is assumed to be due to the neglect of the window- pillar's effect in UTD. 

4.   Conclusion 
In this paper, NEC-2's out-of-core operation was modified in order to make use of the single 
direct-access file as working space. The required disk volume of the modified NEC-2 was 
about a 1/4 for non-NGF option and about a 1/6 for NGF option as much as the original 
NEC-2's. The run-time was also shorter than the original NEC-2's. Using the modified 
NEC-2, the radiation patterns of UHF band's monopole antenna mounted on a car model were 
computed and compared with UTD results. Both results showed good agreements in spite of 
over 10,000 segments. 
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Fig.4 Radiation patterns of monopole antenna mounted on a car model 
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Abstract 
This paper introduces a tool for creating a standard ascii text based NEC input file. MatNEC is a 

menu driven graphical program built from the popular graphical analysis package of Matlab. 
MatNEC uses the powerful graphical capabilities of the Matlab package to allow for a real time on 
screen development of a valid electromagnetic model for subsequent analysis by a NEC computational 
engine. To achieve complete independence from any computational engine, MatNEC creates a 
standard text file that can subsequently be used as an input file to a NEC program. SuperNEC is an 
enhanced version of NEC-2 based on an object orientated design which is being developed in 
conjunction with MatNEC at Wits University. SuperNEC maintains backward compatibility with 

NEC2. 

1. Background 
There are currently many programs available that serve as development tools for a NEC simulation. 

An extensive collection of these programs can be obtained via ftp transfer from the internet site 
ftp.netcom.com under the /pub/ra/rander/NEC directory. Functionally, these programs offer such 
features as model generation tools and output display tools. Examples of the appearance of some of 
these tools are shown below in figures 1 and 2. In general, these programs are all strong in their 
specific bailiwick and prove very useful.    However, the limitation of these programs is in their 

PHI      = HZ* 
IHETfi = 113* 

q-QUIT 

^^%K ": TOGGLE KEVS <£ "     it&*^ 
D-DISPLAV ftXIS ß';* '..■   '■■ .■■,->!-.:.'..'' 
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p-pRiriT hi*"': - ~-**Z^ 
B-BOTftIIOrt AXIS 
S-SEGKOIT EHDS 
SPflCE - RESET U1EU 

POINTS =      1387 
LINES    =      Z7M 

Figure 1: a model from the WIREGRID program Figure 2: pattern from the NEC-WIN program 

versatility and flexibility. These programs are available as executables and the user has few options if 
they want to add another feature to the program. If source code is available, it must first be 
understood, modified and recompiled to effect any changes. The advantage of building a tool from the 
matlab environment is that any user with a moderate amount of experience with matlab may either 
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modify the source script m-files or create a new script m-file to operate on the variables in the 
workspace to create a new feature or function of MatNEC. The interactive interpreter nature of matlab 
eliminates extensive recompiling and debugging and affords an open flexible workspace environment 
for future data analysis and interface growth. Once a variable is defined in the matlab workspace, it 
may be manipulated and/or displayed via any of the many built in matlab functions, a MatNEC 
function or a user defined function. 

2. Design of MatNEC 
The entire implementation of MatNEC uses version 4.2c. 1 of matlab and has been both developed 

and tested on unix, windows3.1 and win95 operating systems. MatNEC is comprised of two main 
units: a preprocessor and a postprocessor. The preprocessor is used to build the actual electromagnetic 
model and define all the appropriate variables such as operating frequency, ground parameters and 
excitation. The postprocessor is designed to accept a standard ascii text NEC output file and extract all 
the data into the matlab workspace for subsequent display and processing. Presently, the postprocessor 
is not yet completed. Once fully implemented, the postprocessor will offer such features as radiation 
pattern display in 2 or 3 dimensions and graphing of the various model parameters such as impedance 
and efficiency. 

2.1. Model Construction with the Preprocessor 
The initial appearance of the preprocessor is shown in figure 3. As can be seen, the preprocessor is 

comprised of and controlled by a series of matlab windows and control widgets such as pull down 
menus, slider bars and pushbuttons. The main window is labeled as the modeling workspace and is 

where the actual electromagnetic 
model is developed and displayed in 
real time. As the model is defined, the 
electromagnetic structure is shown in 
the modeling workspace. A smaller 
matlab window shown in the lower left 
of figure 3 contains a preview tool for 
controlling the viewpoint and 
perspective of the modeling 
workspace. It is noted here that a 
portion of the source script for the 
preview tool has been scavenged from 
the public domain archives of the 
mathworks ftp repository. The small 
matlab window in the lower right of 
figure 3 contains pushbuttons and 
popups to control several special 
functions and miscellaneous variables. 
Across the top of the modeling 
workspace is a series of pulldown 
menus which are used to launch most 
of the functions that generate and 
define    the    model.        The    matlab 
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command window is not shown in figure 3 but is used in the preprocessor.  A combination of mouse 
clicking on the model and command line prompting is used to gather data for the model. 

2.1.1. Electromagnetic Primitives 
The construction of an electromagnetic model with the MatNEC preprocessor centers around the 

concept of an electromagnetic primitive. All models are composed of one or more electromagnetic 
primitives. By far, the most common electromagnetic primitive is the straight wire segment. NEC2 
introduced 2 additional modeling primitives: the arc and the helix. MatNEC generalizes this concept 
by using the low level line features of the matlab graphics engine to allow any structure that can be 
defined in a specific script m-file to be an electromagnetic modeling primitive. Any structure whose 
features can be exhaustively defined in a single m-file in a specific location will automatically be 
incorporated into the MatNEC preprocessor and offered as a choice as one of the building blocks that 
can be used in the construction of the electromagnetic model. Aside from the primitives previously 
mentioned, MatNEC currently offers a finite wire mesh of variable density as a modeling primitive. 
The source m-files that govern the various electromagnetic primitives are designed to a adhere to a 
standard format. If a MatNEC user can follow the primitive format when designing a new modeling 
primitive, they can then add that function to their preprocessor for future use. This open ended design 
will hopefully encourage the formation of a public domain library of primitive functions as more and 
more users create and share their custom made primitives. 

2.1.2. Menu Options in the Modeling Workspace 
Figure 4 shows a collage of the various menus and sub-menus that can be accessed in the Modeling 

Workspace window of the preprocessor. 
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Figure 4 : a collage of all menu options of the modeling workspace 
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The Workspace menu enables the user to construct a model over multiple sessions by allowing 
them to save a present model or load a previous model. 
The Add Primitive menu is the initial starting point for all new models.   This menu is used to 
spawn a new primitive of the desired type.   As can be seen, there are four primitives currently 
available: the wire, arc, helix and mesh. 
The Primitive Operators menu is used to launch a function that will perform some type of 
operation on a selection of primitives such as rotation or translation/duplication. 
The Excitation submenus allow the selection and definition of any of the three primary source 
types. 
The Program Control Options menu controls frequency and interaction approximation settings. 
The Ground Types menu sets the type of ground that is used in the model. 
The Define Output menu allows the user to set the parameters of the desired output. 
The Loading and Coupling menu allows the user to load the model or create two port networks 
on the model. 

2.1.3. An Example Model 

A simple model will be constructed to 
illustrate some of the features and 
overall feel of the preprocessor. Figure 
5 shows a new modeling workspace 
into which a mesh primitive has been 
spawned. The mesh is defined with a 
10 by 10 density. These density 
features can be modified at any time 
with the edit primitive option of the 
primitive operators menu. Now, a wire 
primitive will be added by using one of 
the special functions options. Since the 
wire segment is essentially the elmers 
glue of all NEC models and is used 
more frequently than other primitives, a 
few special routines have been created 
to speed model construction. The wire 
from one point function lets one end 
point of a wire primitive be defined by 
attaching it to a junction point of an 

existing primitive. Figure 6 shows the nature of this function. The existing primitive is first selected 
by mouse clicking. In this case, the mesh primitive was selected. The function then highlights all the 
junction points of the selected primitive. The desired junction point which will be one of the endpoints 
of the wire primitive is then selected by mouse clicking on it. Figure 7 shows the model with the new 
wire after the other end has been defined by text prompting in the command window. The special 
function of wire between 2 points is similar to the wire from one point function except both ends of the 
wire primitive are attached to the junction points of existing primitives. This new wire primitive will 
now be translated and duplicated.   The translate primitives option of the Primitive Operators menu 

Figure 5 : an new model with a single mesh primitive 
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prompts the user to select one or more primitives to translate 
model once the wire primitive has been selected and duplicated 

Figure 6 : mesh primitive with junction points shown as per the wire 
from 1 point special function 

Figure 7 : model with wire primitive added 

and/or duplicate. Figure 8 shows the 
along the y axis of the mesh primitive. 
This new array of wire primitives is 
then selected for duplication on the 
other y axis of the mesh primitive as 
shown in figure 9. The GW cards 
generated by the preprocessor for the 
model shown in figure 9 are listed in 
figure 10. Approximately 5 minutes 
were needed to create this simple 
example model. 

3. Limitations 
The price paid for a memory 

intensive package such as matlab is 
speed of operation. Since MatNEC is 
layered on top of matlab, it also 
suffers from this lag as the model size 
grows and the complexity of the 
operations increases. Every attempt 
has been made to vectorize the source 
scripts to boost the performance speed 
as much as possible. The very nature 
of the problem makes this difficult 
though since the size of the model is 
not     known     beforehand. The 
inexorable advance of computer 
hardware and speed will alleviate this 
problem to a certain degree but will 
probably never allow for the speed of 
an executable type of tool. 

Another obvious limitation is the 
need to either own or have access of a 
proper version of matlab in which to 
run MatNEC. As personal experience 
shows, matlab enjoys a fairly 
widespread distribution and popularity 
so this is not likely to be a severely 
limiting problem for most users. 

4. Availability 
The source script for MatNEC will 

be posted to the matlab public domain 
repository at the mathworks internet 
site once the remaining design is 
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fully implemented. 

5: Future Work 
The postprocessor is not yet fully 

designed so that it can extract all 
possible data from a NEC output file. 
Also, some of the more 
computationally intensive sections of 
MatNEC may be rewritten as an 
executable mex interface file to 
matlab. This would greatly increase 
the operational speed of the interface. 

Plans are also laid to include 
canonical GTD scattering objects so 
the interface can be used with the 
BSC member of the NEC family. 

Figure 8 : model with initial wire primitive duplicated along the y-axis 
of the mesh primitive 

Figure 9 : model with verfiele wire array duplicated to the oposite side 
of the mesh primitive 
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Figure 10: The GW cards for the sample model shown in 
 figure 9 _=_=^=_= 
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INTRODUCTION 

Validation is a continuous ongoing problem for any computational electromagnetics (CEM) 
simulation code and is particularly difficult for large scale simulations consisting of numerous code 
modules, program paths and options. Differences between computed and measured results are very 
difficult to relate quantitatively, or even qualitatively, to specific shortcomings or limitations within 
the code. It is essential that the range of validity of a simulation be known as accurately as possible in 
order for the code to be useful for the analysis and design of systems. 

For the past two years as part of an in-house CEM research program Rome Laboratory (Rome, NY) 
constructed and performed measurements on a novel test article, the Transformable Scale Aircraft-Like 
Model (TSAM), to serve as a CEM code validation tool for the antenna radiation problem.[l,2]. This first 
generation TSAM consists of an all-metal aircraft-like platform resembling a wide-bodied aircraft on 
which are mounted a set of six simple monopole antennas. The antennas were located on the fuselage 
structure, three on top and three on the bottom. The primary objective of TSAM is to study the effects of 
an aircraft-like platform on the patterns and the isolation of the mounted antennas. TSAM was designed 
to be modular with all components ( including antennas) removable and replaceable at will 
(transformable). As a result measurements can be made on a variety of intermediate structural and 
antenna configurations instead of having to rely on just one static configuration. Initially, TSAM has been 
designed to accurately reflect the geometry modeling capabilities of a number of CEM codes and, as a 
result, it holds great promise for allowing algorithm and modeling limitations embedded within a CEM 
code to be estimated using measurements on the TSAM as a guide. The code then can be adjusted as 
necessary to achieve a given level of code simulation accuracy. TSAM was designed primarily to study 
platform effects on the radiation pattern of a co-located antenna (radiation problem) but also can be used 
to study antenna and platform radar cross sections. 

A large number of antenna measurements have been performed on a number of first generation 
TSAM configurations ranging from a fuselage-only structure to the full-up test article that includes wings, 
horizontal and vertical stabilizers, and four engine nacelles with pylons. Principal plane pattern cuts were 
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measured for all six antennas at 4.5, 6 and 8 GHz. Antenna isolation data has been measured for 
frequencies in the interval 4-8 GHz. A representative set of TSAM antenna isolation measured results can 
be found in [2]. 

In this paper, an overview of the first generation TSAM is given and a representative set of antenna 
pattern results are reported. These results are compared to computations using the General Electromagnetic 
Model for the Analysis of Complex Systems (GEMACS) computer code. To illustrate the effects of 
platform complexity, measured principal plane patterns at a fixed frequency are compared to 
corresponding patterns computed using the GEMACS code for a fuselage-only TSAM configuration. A 
corresponding set of measured and computed TSAM patterns at the same frequency then are compared 
for the fuselage-plus-wings configuration. Finally, current plans at Rome Laboratory are described and 
discussed for designing and building a second generation TSAM. These plans represent a combination 
of current thinking at Rome Laboratory plus suggestions received from a limited number of members of 
the CEM community. 

THE FIRST GENERATION TSAM 

The first generation TSAM design conforms roughly to a 1/20 scale model of a wide-bodied aircraft, 
and consists of modular aluminum components fabricated into canonic shapes to represent wings, fuselage, 
stabilizers, engines and pylons. This design is shown in Figure 1. The fuselage is a hollow elliptical 
cylinder approximately 93 inches long with diameters 8.5 and 7.5 inches respectively. The cylinder is 
capped at both ends forming a blunt nose and tapered end. Two thin flat plates serve as wings with 
rectangular aluminum supporting plates underneath to maintain wings rigidity. The wingspread is 76 
inches. Three thin flat plates form the horizonal and vertical stabilizers. Four capped circular cylinder 
structures represent the engines and are attached to the wing structures by four thin plates acting as pylons. 
All components are hinged and individually removable. Each component geometry can be modeled 
accurately and the metallic structure is assumed perfectly conducting. The thin plates serving as wings are 
hinged in order to vary the wing cant. Fuselage rigidity is maintained by an I-beam positioned inside the 
cylinder. 

Figure 1. First Generation TSAM Configuration 
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Six thin wire monopole antennas are mounted on the TSAM cylindrical fuselage structure, three located 
on top and three on the bottom. Antenna #3 is shown in Figure 1. Because each antenna is 15 mm long, 
antenna #3 is not shown to scale. 

The novelty of the first generation TSAM concept lies in making measurements on a scale aircraft- 
like model that is a duplicate, in both form and substance, of the model in the code. Differences between 
measured and computed results then are attributable to algorithm error since measured and computed 
geometry models coincide. These differences now can point to specific modules within a given CEM code 
where the overall CEM algorithm validity limits now are known from measurements. Currently TSAM 
is composed of components and antennas having a canonic shape and structure that were chosen for 
modeling convenience. Detail and complexity in shape and materials are to be added incrementally to 
allow an assessment to be made of the impact of each change on antenna performance 

FIRST GENERATION TSAM ANTENNA PATTERN MEASUREMENTS 

. All antenna pattern measurements were performed in the large anechoic chamber located in the Rome 
Laboratory Electromagnetic Environmental Effects Research Center. These facilities have been described 
in detail elsewhere [2]. TSAM principal plane (roll, pitch and azimuth) patterns have been measured for 
all six antennas at 4.5, 6 and 8 GHz. for a large number of TSAM configurations. Electromagnetic and 
geometry models for a selected number of TSAM configurations have been constructed using the 
GEMACS code and the computed results compared to the corresponding measured data. GEMACS 
models for other TSAM configurations are currently being developed. Consequently, the patterns reported 
here will be just for antenna #3 at 6 GHz. (see Figure 1) located first on the fuselage-only configuration 
and then on the fuselage-with-wings configuration. 

The principal plane roll, pitch and azimuth pattern cuts for antenna #3 on the fuselage-only 
configuration are shown below in Figures 2-4. A TSAM profile also is included within each figure to 
better define each pattern cut. The thick solid line shows the measured pattern while the thin solid line 
is the GEMACS computed pattern. Note that a complete GEMACS pattern is shown while measured 
patterns that are shown here extend to just below the wings. 

The measured roll pattern is very smooth although is slightly asymmetrical in keeping with the 
small asymmetries that are present on TSAM. The pitch and azimuth measured patterns have a well 
defined global structure but considerable scalloping is present, especially on the pitch pattern. These 
effects represent diffraction at the cylinder end caps. The GEMACS computed patterns follow 
the overall shape of the measured patterns but can deviate considerably in selected regions. The roll 
pattern main lobes contain spikes, which are probably numerical in origin, and is more symmetric which 
probably indicates modeling limitations. The scalloping in the measured pitch pattern is reproduced only 
slightly by GEMACS while the GEMACS azimuth pattern contains numerous spikes. The GEMACS roll 
and pitch cuts also deviate significantly from the measured patterns under the fuselage. 
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Figure 2. Roll Cut for Antenna #3 
Fuselage Only 

Figure 3. Pitch Cut for Antenna #3 
Fuselage Only 

Figure 4. Azimuth Cut for Antenna #3 
Fuselage Only 

The measured roll pattern is very smooth although is slightly asymmetrical in keeping with the 
small asymmetries that are present on TSAM. The pitch and azimuth measured patterns have a well 
defined global structure but considerable scalloping is present, especially on the pitch pattern. These 
effects represent diffraction at the cylinder end caps. The GEMACS computed patterns follow the overall 
shape of the measured patterns but can deviate considerably in selected regions. The roll pattern main 
lobes contain spikes, which are probably numerical in origin, and is more symmetric which probably 
indicates modeling limitations. The scalloping in the measured pitch pattern is reproduced only slightly 
by GEMACS while the GEMACS azimuth pattern contains numerous spikes. The GEMACS roll and pitch 
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cuts also deviate significantly from the measured patterns under the fuselage. 

The changes that occur in the antenna patterns when wings are added to the TSAM configuration 
are shown in Figures 5-7. The wings are flat and parallel to the azimuth plane. The most significant 
changes are in the measured roll pattern in Figure 5 where a complex lobbing structure exists. This was 
expected since antenna #3 is located over the wings. 

_ GEMACS 
_ Measurements 

Roll Cut 
go Fuselage + Wings 

GEMACS 
_ Measurements 

Pitch Cut 
Fuselage + Wings 

Figure 5.   Roll Cut for Antenna #3 
Fuselage with Wings 

Figure 6. Pitch Cut for Antenna #3 
Fuselage with Wings 

Figure 7. Azimuth Cut for Antenna #3 
Fuselage with Wings 

The lobbing is far less pronounced in the GEMACS roll pattern where only the overall pattern structure 

700 



is followed. This difference in measured and computed results appears to indicate a problem in the 
GEMACS electromagnetic model. Validation studies currently are underway to explain and resolve these 
results. The pitch and azimuth patterns in Figures 5 and 6 are very similar to the corresponding patterns 
for the fuselage-only configuration for both measurements and simulation. 

THE SECOND GENERATION TSAM 

A second generation TSAM design currently is being carried out by Rome Laboratory. Such a 
design, in its present form, represents experience and lessons learned by Rome Laboratory from the 
original TSAM as well as commentary from selected members of the CEM community. It is felt that wide 
community input is essential if TSAM is to serve its purpose well as an antenna/platform benchmark. The 
next TSAM will have more realistically shaped components and retain the transformability property that 
is essential to understanding the complex antenna platform electromagnetic environment. A wider range 
of frequency measurements are contemplated to encompass low as well as high frequency methods. Also 
many different antenna types will be mounted on TSAM and other antenna properties besides the pattern 
and isolation will be measured. The current thinking on the new TSAM design is summarized in the 
following paragraphs. 

Fuselage: A new fuselage will be constructed for the next TSAM whose design will be determined by 
a combination of realism, additional structural stability and the need to maximize internal space. Two 
modular antenna panels will be provided along the side, one being forward of the left wing and the other 
aft near the tail structure. The antenna panels will be designed with interfaces that will permit easy 
integration onto the fuselage surface and easy removal and replacement with other antenna panels or with 
just a fuselage panel. Provision also will be made to attach antennas on top and on the bottom of the 
fuselage. The antennas will consist of both individual elements (such as the thin-wire monopoles from 
the first generation TSAM or microstrip or cavity-backed patches) or arrays of elements in a conformal 
or billboard design. The wing attachment slots will be integrated into the structure and will permit the 
attachment of a variety of wing shapes. Wing dihedral angle motion will be restricted to a few angles 
only. A set of nose and tail bulkheads of varying shape and apertures will be provided for a variety of 
experiments. Internal bulkheads will be equipped with fixed RF feedthroughs and the body will contain 
RF cabling. All apertures (holes, panels, wing slots) will be tightly sealed against RF. Current overall 
shapes under consideration range from cylindrical shapes to a real fuselage with a doubly curved surface. 

Wings and Tail Structure: Several sets of wing shapes are under consideration. A very thin wing shape 
will be included similar to the flat plate design of the original TSAM but possibly with curvature. Thin 
structures with near singularities along the edges will stress CEM codes. Other wing designs include 
various 3D structures, including a wing with a triangular taper and one with a smooth taper. Provision will 
be made for mounting antenna structures on the top and bottom of the wings near the forward and trailing 
edges. These antenna panels will have the same ease of placement and removal as the panels on the 
fuselage. Such antenna placement will demonstrate near field edge diffraction effects. Also under 
consideration is the use of nonmetallic panels on the wings in place of the antennas. The tail structure will 
be designed along the same lines as the wings. 

Engine Nacelles and Pylons: Engine pylons will be designed similarly to the wings. The nacelles will 
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be either cylindrical structures or possibly real nacelle shapes. The nacelles will have removable caps 
front and back. Consideration also is being given to designing a nacelle with significant internal engine 
structure for the future. 

Materials: The most probable material to be used will be highly conducting metal for the fuselage and 
possibly a substrate coated with metal for the non loadbearing structures. As noted above nonmetallic 
panels which can replace metal panels are under consideration as are dielectric metals coated metals. 

Antennas and Sources: It is planned that the new TSAM will accomodate a variety of antenna 
structures. The antenna panels proposed for the wings and fuselage will be designed to interface simply to 
the TSAM structure thus permitting easy manufacture of antenna panels. Both individual antenna 
elements and arrays are planned. Individual elements include simple monopoles, rectangular and circular 
patches and cavities and tapered slots. Arrays will have both a conformal and billboard design and will be 
constructed on the standard antenna panels. Antenna properties of interest include the pattern, input 
impedance and the active scan impedance for arrays. In addition, the use of arrays can demonstrate 
scanning technology and experiment with beamforming algorithms to cancel platform scattering. To 
determine antenna properties accurately, especially the imaginary part of the antenna input impedance, the 
feed structure must be designed in such a way as to allow accurate feed modeling. 

CONCLUSIONS: 

A unique test article, TSAM, that appears to hold great promise for the validation of complex 
computational electromagnetics (CEM) codes has been described. A set of measured principal plane 
radiation patterns has been reported at 6 GHz for one of the three antennas mounted on the TSAM upper 
fuselage for two configurations; fuselage-only and fuselage with wings. These results were compared to 
computed results from the GEMACS code. Computations followed measurements overall but differed in 
detail by as much as 4 dB in isolated regions of the pattern. The most significant difference was in the 
roll pattern results with and without wings. Measurements showed a considerable difference in these two 
cases but computations showed a much smaller difference. The reasons for this unexpected result 
currently are under investigation. These findings illustrate the critical role that carefully controlled 
measurements can play in validating complex simulation software. 

The next generation TSAM being planned by Rome Laboratory was described in some detail and 
represents a significant advance over the original TSAM, especially in surface geometry and the antennas 
to be mounted. The new TSAM design is still in its formative stages and suggestions from the CEM 
community on how such a test article should be designed to be of maximum benefit are eagerly sought. 
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Abstract 

This paper presents a package of software for creating a wire-grid model of a helix antenna and its ground cup for 
analysis using the "Numerical Electromagnetics Code"(NEC). The package consist of rogram HELIX which provides the 
user with menus for entering the design of a helix antenna of up to 30 sections, each with its own length, pitch and taper, 
permitting a very general class of helix antennas to be studied. HELIX automatically generates a wire-grid model of the 
ground cup. Program CHECK is used to verify that the resulting model conforms to NEC's requirements. MKSWEEP aids 
in the preparation of input files for NEC at multiple frequencies. GETPARAS computes the helix performance parameters 
such as gain and axial ratio from NEC's output data. This system offers the possibility of rapidly investigating the 
performance of a variety of helix designs to find the optimum design. The accuracy of the computations is assessed in 
comparison with the measured gain and axial ratio for two cylindrical helices and for a broadband helix using sections of 
two different diameters. The good agreement demonstrates the usefulness of the software modeling system. 

1.0 Introduction 
A helix antenna operating against a ground cup, such as that of Fig. 1(a), is commonly used for spacecraft 

applications[l-3]. Kraus[4] provides a discussion of how helix antennas work and some design information. Much more 
extensive design data was derived from measurements by King and Wong[5] for a limited range of pitch angles. 
Sultan et al.[2] investigated further the effect of varying pitch angles and variable pitch on helical antennas. However, 
comprehensive design data permitting the length and weight of a helix antenna to be minimized for a given performance are 
not available. NEC[6] computes the currents flowing on an interconnection of thin wires, and has been used by Wood[3] to 
model a helix antenna, representing the solid surface of the ground cup with a wire grid. This paper presents software for 
generating such a computational model of a helix antenna and ground cup rapidly, for a very general class of helix designs. 
The NEC code can then be used to study a variety of designs to minimize the size and weight of the helix for a given 
application. 

(•) 

'1- Pitch Angle a 

Fig. 1 (a) A tapered helix antenna against a ground cup.        (b) Geometric parameters of the tapered helix and ground cup. 
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2.0 Helix Antenna Geometry 

Figure 1(a) shows a tapered helix antenna with a "cup" configuration for its ground plane. The helix is fed with a 
coaxial bulkhead connector at a radial distance rf from the cup center that is often greater than the radius of the base of the 
helix. A link wire is used to connect the top of the feed to the helix. Fig. 1(b) defines the basic geometric parameters of the 

helix and cup. The helix has an overall length h and tapers from a radius of r0 at the base to rt at the top. The taper 

angle ß is given by 

tanß=fci) 
h 

The helix rises at pitch angle a . If the feed is located on the x axis and the centerline of the helix is on the z-axis, then 
points on the helix (r,(|),z) in cylindrical coordinates are given by 

■(rQ tanoc)<|> and -ztanß 

The ground cup has a circular base of radius a , and a sidewall of top radius b and height C . By making height c equal 
to zero, the helix can be operated against a disc ground plane with no sidewall. 

Figure 1(b) shows a helix with one "section". Fig. 2(a) extends the geometry to a helix made up of four sections 
and the software described below can generate GW cards for a helix with up to 30 sections. Fig. 2(a) represents a 
broadband helix having a large-diameter bottom half and a smaller-diameter top half Section 1 is the bottom half, which 
tapers from radius r0 at the base to r, at the top, and has length hi . Then a short sharply tapered section is used to reduce 
the radius rapidly from tj to r2 in a short distance h2. The top half is section 3 and has length h3 and tapers from radius r2 to 
radius r3. The fourth section tapers sharply from radius r3 to radius r4 in a short distance ru and is a "matching section" 
which terminates the helix in an approximate matched load, so that the current flow on the helix will be principally a 
traveling wave. 

0>) 

Fig. 2 (a) A four-section tapered helix and its parameters.        (b) The geometric parameters of the feed. 

Figure 2(b) shows some details of the feed geometry. The feed connector at radius rf is often farther from the 
center of the ground cup than the base radius r0 of the helix. A link wire is used to connect the feed to the helix. The user 
must specify the angle y that the link wire makes to the y-axis. If a helix antenna is constructed for measurement, then of 
course this angle must be the same in the measurement model and the computer model. If the feed radius is equal to the 
helix base radius then no link wire is required. 
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Measurement models of helices are often wound on a Styrofoam core. The Styrofoam slightly slows down the 
wave on the helix. This can be modeled by introducing additional capacitance between the turns of the helix[3]. However, 
the helices flown on spacecraft do not usually have such a core and so the additional capacitance has not been included in 

the present model. 

3.0 Program HELIX 
Since this project is intended to validate the performance of a great many helix designs, a quick convenient method 

was needed to generate GW cards for input to NEC for each. Program HELIX was developed for this purpose. HELIX 
uses a system of menus to let the user specify: a wire or tape helix; the lengths and radii of up to 30 helix sections; the feed 
radius r, and height h,; and the ground cup geometry. Helices for spacecraft applications often have a metal rod along the 
axis of the helix, which is used to deploy the helix. Program HELIX includes such a rod as an option. 

As the user enters the helix design, program HELIX finds various gross errors, such as a feed radius smaller than 
the base radius of the helix or larger than the ground cup base radius. More subtle errors are also found, such as a feed 
angle Y which is so shallow that the link wire misses the first turn of the helix altogether. Error messages are given and the 
user must modify the input geometry to remove the error. When the user has completely specified the geometry, the user 
instructs program HELIX to generate a set of GW cards modeling the helix and the ground cup. In the flow chart of Fig. 3, 
program HELIX generates GW card file "helix.gw". Also, the program writes a "setup file" called "helix.set" which saves 
the helix geometry, so that next time the user runs HELIX, the program comes up with the geometry previously entered. 
Then the user only needs to change those parameters that are different from their previous values. File "helix.set" is self- 
explanatory and contains a full description of the helix geometric parameters. For documentation, program HELIX 
includes a copy of the "helix.set" file in the comments section of the GW card file. 

L *f       HEUX.SET      \ 

Fig. 3 Flowchart describing the process used to create GW cards for a helix antenna and its ground cup. 

Program HELIX generates a representation of the helix itself in terms of straight wire segments. The helix radii 
are adjusted slightly so that the path length along the helix model is approximately equal to the actual length of the real 

Program HELIX automatically generates a wire-grid model of the ground cup, as illustrated in Fig. 4. The 
program is based on the "wire-grid modeling" guidelines of Ref. [7]. The first step is illustrated in Fig. 4(a). A circle of 
wire segments is generated directly underneath the segments of the first turn of the helix, with the segment boundaries 
aligning with those of the helix. Then a "feed region" is generated, which has a segment directly underneath the link wire 
between the top of the feed and the helix, and has other radial wires from nearby points to the feed point. Then the adjacent 
circles of wires are generated, as in Fig. 4(b), including radial wires joining the three circles. Part (c) shows the center of 
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the ground disc filled with wires, in such a way that the segment length is approximately uniform everywhere. Finally the 

sidewall of the cup is added, as in part (d). When HELIX has completed the model in file "helix.gw", program MODEL can 
be used to display the helix geometry in the format shown in Fig. 5. 

(<0 (d) 

Fig. 4 Building a wire-grid to represent the ground cup. 

(<0 

Fig. 5 Three helix and ground disc designs. 

Figure 5 shows three feed and helix configurations that program HELIX can handle. In part (a), the radius at 

which the feed is located is the same as the base radius of the helix, and HELIX generates a set of eight radial wires 

surrounding the feed point. No link wire is used. In part (b), the ground disc is larger and the radius at which the feed is 

located is greater than the base radius of the helix. Program HELIX uses a link wire to join the feed to the helix. One of 

the eight radials surrounding the feed point lies directly underneath the link wire. Some additional wire segments are 

included in the ground to avoid creating large-area meshes. In part (c), the user has specified a tape helix to be modeled 
with two parallel wires. 

Program HELIX uses a thin radius for the wires of the ground-cup grid. These wires must have their radius chosen 
according to the "equal-area" rule[8]. Equal-area radii are supplied by running programs MESHES and FNDRAD[9]. 

MESHES searches the ground-cup grid for mesh paths, which are written to file helix.msh. Program MESHES generates 

some "LST" files for display with MODEL, which help the user to identify and understand certain errors that sometimes 

occur in wire-grid models. Then program FNDRAD uses the areas of the meshes and the distances around the mesh 

peripheries to compute the "equal-area" wire radius for each of the grid wires, and writes the revised wires to file 

"fndrad.gw". The user usually renames this file. Here it has been called "helixl.gw", to denote the first helix model in a 

series, to be followed by "helix2.gw", "helix3.gw", and so forth as changes are made in the helix geometry and the resulting 
performance is computed. 

To ensure reliable results when NEC is executed to determine the currents and far fields of the helix model, the 

model must conform to NEC's "modeling guidelines". This is verified by running program CHECK[10]. CHECK 
systematically compares all the individual wires, all the wires making up wire junctions, and all the pairs of wires in the 
model to the requirements of the "modeling guidelines" and writes files giving the tag numbers of wires which are in 
violation. These can be examined with MODEL and the helix geometry revised to clear the errors. The feed geometry is 

quite critical for these helices. Often small changes in the feed are required to satisfy the NEC modeling guidelines fully. 

4.0 Computing the Performance Parameters 

The performance of a given helix design must be evaluated over a certain bandwidth, and usually it is desired that 
the helix be solved at 50 or more frequencies to generate smooth curves of the gain, the axial ratio, the 3 dB beamwidth, 

and so forth. Rather than run NEC for one enormous run of 50 frequencies, the computation is usually subdivided into, say, 

706 



10 runs of 5 frequencies each. The required input files are prepared with program MKSWEEP or "make a frequency 
sweep", shown in the flowchart of Fig. 6. MKSWEEP accepts the geometry file "helixl.gw" as input, asks the user for the 
frequencies for each individual run, and generates a set of input files for NEC for specific frequencies, "helixl.li", 
"helixl.2i",..., "helixl.lOi". MKSWEEP prepares a list of the input file names and the corresponding output file names in 
file "helixl.run". This is used by a batch file or script file called NECRUN which runs the NEC program for each input file 
named in "helixl.run". Not shown in Fig. 6 is program STRIP, which reads the output file from NEC, and copies the 
currents on the wire segments and the radiation patterns to compact disc files "helixl.l", "helixl.2",..., "helixl.10", which 
are saved on tape as a permanent record of the runs. 

(^HEUXIII^^      (^HBJXI.G ^\ (^ HEUX1.110  ^ 

Fig. 6 Flowchart describing the process used to compute the performance of one helix design as a function of frequency. 

To graph the gain, axial ratio, beamwidth, and so forth as a function of frequency, we must extract the values of 
these parameters from the radiation patterns computed by NEC. Program GETPARAS ("get parameters") reads each 
output file, and at each frequency find the gain, axial ratio, beamwidths, and other parameters, and write these to an "rplot" 
data file "helixl.rpl". If addition frequency points are desired, MKSWEEP is used to prepare a new set of input files, 
"helixl.l li",..., then NEC is again run, and GETPARAS appends the new data to the "helixl.rpl" file. So that the rpl file 
will be a complete "stand-alone" record of a helix design and its performance, GETPARAS includes a copy of the 
"helix.set" geometry file in the header of the "rpl" file. Then program IMPORTRPL imports these parameters as a function 
of frequency in MSAccess™. Since MSAccess™ for Windows™ is a relational database software, the analysis of the 

results is made easy. 

5.0 Studying Many Helix Designs 
In trying to optimize the design for a given application, the geometry of a variety of different helices is typically 

studied. For example, fifteen different combinations of radius, taper angle, pitch angle and so forth might be examined. 
For each of the 15 cases, program HELIX is run, followed by MESHES and FNDRAD, then CHECK to verify compliance 
to the modeling guidelines. The result is 15 helix models that have slightly different geometry: "helixl.gw", "helix2.gw", 
..., "helixl5.gw". Each of the 15 models must be analyzed at, say, 50 different frequencies. Hence GETPARAS is used to 
obtain 15 files of performance parameters: "helixl.rpl", "helix2.rpl" "helixl5.rpl". To compare the 15 designs, it was 
found convenient to import the data from all the "rpl" files into a single spreadsheet. The spreadsheet software can then 
graph and compare parameters as a function of frequency quickly and conveniently. Further, the database software package 
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MSAcces    can read the same spreadsheet and prepare parametric design graphs such as the gain as a function of the pitch 
angle of the helix. 

It is intended that this software system be used to develop optimum designs for various applications. To be sure 
that the antennas are being modeled correctly and to assess the accuracy of the results being obtained, an extensive set of 
comparisons with measured data are being prepared. The following presents some initial results. 

6.0 Experimental Results to Validate the Software 

In order to validate the modeling software described above, several helix antennas were built and tested at a range 
of frequencies between 600 and 1400 MHz, for a variety of different configurations and parameters: 

Uniform / tapered and combinations of both. 
Single / multiple pitch angles. 
A range of diameters. 
A range of pitch angles. 
A range of helix lengths. 
A range of ground plane configurations. 
Wire / tape radiating elements. 

As an illustration, Fig. 7 shows the results of a uniform helix using a 1/4" diameter copper wire radiating element. 
This was wound with a constant pitch angle a of 10.4°, using a mean helix diameter of 4.694", above a ground plane, in the 
form of an aluminum cup, tapering from 5.5" lower diameter to a 8.48" upper diameter, over a vertical height of 3.44". 

The Boresight Gain (Go) and Axial Ratio (AR) are plotted over a frequency range over which the axial ratio did 
not exceed 2 dB. This is a practical range of axial ratios to consider for useful elliptically polarized antennas. Fig. 7 
demonstrates that the curve predicting the theoretical results of Go vs. frequency, using the modeling software, is validated 
by the experimental results. Fig. 8 validates the modeling software when the helix antenna pitch angle is changed from 
10.4° to 11.8°, with the same antenna as in Fig. 7, with a relatively good fit between theoretical and experimental results. 

Using the same ground cup, a four section helix antenna was tested. As shown in Fig. 2(a), the dimensions were as 
follows: 

r0 = 2.36" Wire Diameter = = 3/16" Total Height = 25.5 
r, = 2.36" a, = 10.04° h, = 10.0" 
r2=1.59" a2 = 10.10° h2=3.1" 
r3=1.59" <x3 = 15.20° h3 = 9.3" 
r4 = 0.35" a, = 14.30° hj = 3.1" 

Figure 9 demonstrates an even better fit between the predicted and measured boresight gain, within a fraction of a 
dB. Although both sets of results show an axial ratio below 1 dB throughout the frequency range, there is less agreement 
between the modeling and the measured AR. This is less important than the accurate fit for the antenna gain values. 

Finally, Fig. 10 compares the modeled gain results for the two pitch angles used: 10.4° and 11.8°. The gain 
response curve shifts up in frequency and slides slowly up in gain, as the pitch angle increases from 10.4° to 11.8°, 
confirming what has already been established experimentally[5]. 
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Conclusion 
This paper has described a software system for modeling helix antennas of complex design. The software rapidly 

generates a computer model for a given helix design, and rapidly supports solving the model with NEC at many 
frequencies, collecting the gain, axial ratio and other parameters into an input file for a database program. The system 
makes easy the comparison of the performance of helices of various designs, to optimize the design for a given application. 

The comparison of computed gain and axial ratio with measured values for three cases was presented. Cylindrical 
helices of two different pitches were examined, with good agreement of the gain and axial ratio with measured data. For a 
more complex design, using a helix with two sections of two different diameters to broaden the bandwidth, the predicted 
gain is in excellent agreement with the measurement, although the agreement of the axial ratio is less good. The computer 
model accurately predicts the changes in the gain as a function of frequency when the pitch is changed for the uniform 
cases. Any improved prediction of antenna gain values, and hence optimization, is of paramount importance. This is 
particularly true for satellite antenna, where there are several constraints of power, mass, size etc.. The modeling software 
described here provides the means for such optimization. 
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EVALUATION OF THE SENSITIVITY OF SCATTERING PREDICTIONS TO 

UNCERTAINTIES IN MATERIAL CHARACTERISTICS! 

G. A. Barnhart, A. J. Terzuoli, Jr., G. C. Gerace 
Air Force Institute of Technology • Dayton, Ohio 45433 

ABSTRACT 
The material characteristics of a dielectric were measured by two separate X-band waveguide 

set-ups. Scattering measurements were then made at normal incidence of the same material backed 
with and without a metal square plate. Scattering predictions were calculated with: (1) reflection 
coefficients and physical optics; and (2) Xpatch, a high frequency scattering prediction code. It was 
found that variations in scattering predictions were proportional to variations of the imaginary part of 
the permittivity. Furthermore, the magnitude of the variations in scattering corresponded to the 
relative magnitude of the reflection coefficient. 

INTRODUCTION 
An important factor in evaluating the accuracy of a scattering prediction is understanding the 

accuracy of the model for the scatterer. If the object's size or shape is erroneous, the resulting 
scattering prediction is faulty, but these can typically be measured quite accurately. This is not true, 
however, when evaluating the accuracy of the object's material composition. Both measurement 
uncertainties and manufacturing tolerances contribute to the variations of the characteristics. At best, a 
material's specifications may provide an estimate of these characteristics under certain frequency and 
temperature conditions. The actual values, however, may vary greatly from these specifications. 

The primary objective of this study was to evaluate the sensitivity of scattering predictions to 
uncertainties in material characteristics. Also, as part of a continuing effort to validate and improve 
Xpatch as an scattering prediction tool [1-4], this study evaluated Xpatch's material coated object 
prediction capabilities by comparing simulation results to scattering measurements. This work was 
limited to commercially available dielectric materials, but provides the fundamentals of scattering 
materials error analysis which can be applied to any material. 

METHODOLOGY 
For this research, the commercially available material evaluated was ECCOSORB VF-60 by 

Emerson & Cuming Incorporated. The VF-60 material is a non-magnetic dispersive, homogeneous, 
conductive plastic dielectric film. To create a semi-Salisbury Screen configuration a 1.5 cm thick 
Styrofoam layer was used for a spacer behind a 0.15 cm thick VF-60 layer. To assess the degree of 
material measurement error, the material characteristics of these materials were measured using 
rectangular waveguides. Two different X-band waveguide set-ups were used limiting measurements to 
8-12 GHz, with data was taken every 0.25 GHz. 

The first rectangular waveguide set-up is designated RQ, with data from this set-up labeled as 
such. This set-up was a reflectometer consisting of a network analyzer containing the material sample 
in port #2 backed by a short. This reflectometer can only measure the Sii parameter. The second 
rectangular waveguide set-up is designated IQ, with data from this set-up labeled as such. The IQ set- 
up was a full two-port configuration which measured both Sn and S21. The material sample was 
placed in a sample holder which is a section of waveguide (of the same thickness as the sample). 

Using the IQ setup, a six inch square slab of VF-60 material, was measured alone (called air 
backed) and then was measured in front of a highly conducting square plate (called PEC backed). 
Scattering predictions were made using two methods. The first method calculated the reflection 
coefficients of the materials and then applied physical optics (PO) theory to predict the scattering. A 
major restriction on PO theory is that it is only accurate for electrically large objects.   Since all 

'This work was supported by the U. S. Air Force Wright Laboratories. 
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measurements were done in X-band and the object was six inches square, the use of PO theory was 
valid. The second scattering prediction method utilized was Xpatch, performing object simulations at 
normal incidence. .   , 

Since there was no identifiable true value associated with the material characteristics, the 
sample mean of the measured material data was adopted as the best estimate of the true value, and the 
sample standard deviation of the replication error provided a measure of the root mean square 
deviation from the sample mean. These two statistical values were used to analyze the scattering 
measurements, theoretical predictions, and Xpatch simulations. 

RESULTS 
The VF-60 material characteristics were measured twenty times with both the RQ and IQ X- 

band waveguide set-ups. The permittivity sample means over 8-12 GHz are shown in Figure 1. The 
VF-60 manufacturer specification for the relative dielectric constant was 37.0 at 8.6 GHz. The RQ 
measurements averaged about 30 and the IQ measurements averaged about 27 at this frequency. Not 
only were there large discrepancies between the material measurements and the specification at 8.6 
GHz, but also between the two measurement techniques themselves. The IQ set-up measured the 
permeability as well as the permittivity. Figure 2 shows that the real part of the relative permeability 
was measured to be about 1.0, and the imaginary part to be about 0.0 which is consistent with the 
expected values for a dielectric. The RMS error of the VF-60 permittivity measurements was 
computed; the average correlation of the permittivity curves with the sample mean curve was 
calculated. In general, the RMS deviation was 10-20% of the materials' permittivities (both real and 
imaginary parts), and the repeated measurements were highly correlated with the sample means. 

The statistics of the scattering predictions and Xpatch simulations based on measured material 
characteristics were compared to scattering measurements performed in the IQ range. Despite 
differences in the permittivity sample means measured by these two set-ups, the RQ and IQ scattering 
predictions were quite similar for both the air backed and PEC backed VF-60. The agreement between 
the predicted and measured scattering for the air backed VF-60 and the low scattering RMS deviations 
indicate that the measured material characteristics were accurate. Figure 3 shows sample means of the 
scattering measurements, predictions, and Xpatch simulations for this case. From PEC plate 
measurements, it was found that a slight vertical plate tilt of 1.05 degrees was inherent in the scattering 
measurements, causing the observed small bias error. For the PEC backed VF-60, a higher average 
RMS deviation and a lower correlation was noticed. In this semi-Salisbury Screen configuration, a 
quarter wavelength null was experienced at about 9.25 GHz. This degradation was associated with the 
inability of the scattering measurements to characterize the deep null. Figure 4 shows the sample 
means of the scattering measurements, scattering predictions, and Xpatch simulations for this situation. 

The evaluation of how the material characteristics variations affected the scattering predictions 
was independent of the accuracy comparisons to scattering measurements. The material characteristics 
measurements, scattering predictions, and Xpatch simulations were statistically evaluated using RMS 
deviation and correlation indicators. It was determined that variations in the imaginary part of the 
permittivity and the magnitude of the reflection coefficient had the largest influences on the scattering 
variations. In general, for both the air backed and PEC backed configurations using both the RQ and 
the IQ material characteristics measurements, there was a fairly high negative correlation between the 
scattering variations and the magnitude of the reflection coefficient. Figures 5 and 6 demonstrate this 
relationship for the PEC backed case using the RQ material characteristics. Clearly, an inversely 
proportional relationship exists. Although not as obvious, there is also a relationship with the 
imaginary part of the relative permittivity. This is more visible in Figures 7 and 8 which show the high 
correlation for the air backed case using the IQ material characteristics. 

CONCLUSIONS 
Examination of all the acquired data indicated two trends. First, the variations in scattering 

predictions were directly proportional to variations in the material's relative permittivity. Second, the 
magnitude of the scattering variations was inversely proportional to the magnitude of the reflection 
coefficient which magnified the effect of the material characteristic variations.   As the reflection 
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coefficient increased, the scattering was less influenced by material variations and vice versa. The 
primary reason for this relationship was that higher reflection coefficients were the result of lower 
electromagnetic absorption of the material. Since the material had a lower effect on the total 
scattering, slight uncertainties in its characteristics caused only slight variations. On the other hand, 
for a highly absorbing material in which the reflection coefficient was low, the material properties 
dominated the electromagnetic scattering mechanisms. In this situation, slight material characteristic 
variations were magnified in the scattering variations. 

The primary objective of this study was to evaluate the sensitivity of scattering predictions to 
uncertainties in measured material characteristics. In general, it was found that the scattering 
variations were most influenced by the relative magnitude of the reflection coefficient. A lower 
reflection coefficient resulted in a larger scattering variation. Also, for a relatively constant reflection 
coefficient across the frequency band, the RMS error of the scattering predictions were seen to be 
directly proportional to the replication error in the imaginary part of the dielectric permittivity. 
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Validation of the PO-based RCS Code SIGMA 
by Using IEM and Experiments 

E. Kemptner, D. Klement, V. Stein 

Institute of Radio Frequency Technology 
German Aerospace Research Establishment (DLR) 

D-82230 Wessling, Germany 

ABSTRACT 

The RCS computer code SIGMA was developed and validated at DLR to predict the monostatic 
radar cross section of complicated objects which are large compared to the wavelength. It is based 
on high frequency methods. 

Recently work has started to investigate the range of application of SIGMA toward lower ratios of 
object dimensions to wavelength. For this purpose a canonical object like an ogival cylinder with 
dimensions 4Jo<2Xx4>. is well suited. In this paper the results of SIGMA are compared with those of 
the computer code NEC-2 and of precise experiments carried out at DLR. 

1. INTRODUCTION 

The computer code SIGMA was developed at DLR in order to calculate the monostatic RCS of 
complex structures. SIGMA is based on the Physical Optics (PO) theory [1] and extended to the 
Physical Theory of Diffraction (PTD) by incorporating the Method of Equivalent Currents (MEC) [2]. 
PO as a high frequency approximation is usually applied for objects which are large compared to 
the wavelength. In the past SIGMA was successfully applied for e.g. a periscope like structure [3] or 
a stealth design [4]. Presently the application of SIGMA for objects with dimensions of only a few 
wavelengths is under investigation. Some different types of cylinders (elliptical, ogival, airfoil-like) 
are chosen for that purpose. In this paper the results of ogival cylinders, which include two vertical 
edges, are presented. In order to validate the results of SIGMA the well-known code NEC-2 [5], 
based'on the Integral Equation Method (IEM), and experiments at 94 GHz are used and presented. 

2. BASIC THEORIES OF SIGMA AND NEC-2 

In order to apply PO to complicated objects several modules have to be combined to a powerful 
computer code. In the past a hidden surface algorithm, a double reflection tool including its ray 
tracing, the already mentioned application of MEC in order to consider edge effects and a module to 
apply Fresnel's reflection coefficients for nonmetallic surfaces have been incorporated into SIGMA. 
In the present work the results of SIGMA for metallic ogival cylinders with and without the 
application of the optional MEC module are shown. 

PO as a high frequency method is only applicable down to a minimum ratio of object dimensions to 
wavelength. This minimum was thought to be several wavelengths. Detailed investigations in the 
last years have shown that for much lower ratios very good results can be achieved. This extension 
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to higher values of the wavelength for a given object is of great importance because the area of 
application of the IEM now joins this of PO and PTD. Therefore the development of a special hybrid 
method for this transition area seems to be unnecessary. 

To achieve reference results by the IEM the well-known computer code NEC-2 was used. In order 
to compare the PO, PTD and IEM results the objects are modeled by flat panels for SIGMA as well 
as for NEC-2. The panel model was chosen for NEC because of the lower CPU time compared to 
that of the wire-grid model and of the possibility to make use of three planes of symmetry for the 
ogival cylinder. The size of the objects compared to the wavelength is already large for the IEM 
(6960 panels, corresponding to a maximal panel size of 0.U) and quite small for PO and PTD. The 
panel model for SIGMA consists of only 288 panels. Here the panel size is not limited by a fraction 
of the wavelength but only by the curvature of the surface, because the contribution of each panel 
is evaluated analytically. 

3. MEASUREMENT FACILITY 

The equipment for the measurements of RCS diagrams works at the frequency of 94 GHz and is 
established in an anechoic chamber. Full polarimetric coherent measurements are possible. The 
setup can also be changed to perform bistatic measurements. The distance between antenna and 
object is 3.2 m and the objects may have a maximum diameter of 64 mm. Absolute calibration 
(trihedral corner reflector) and vacant-room calibration can be carried out for every diagram. The 
lowest RCS which can be measured is -45 dBsm and the dynamic range is 50 dB with an accuracy 
of ±1 dB. 

4. RESULTS 

Calculations and measurements have been carried out on a cylinder with an ogival cross section. 
This basic object (fig 1) is enlarged in 4 steps by 2.5% each in both horizontal dimensions. 

AZ 

Fig. 1 Sketch of one of the ogival cylinders 
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The backscattered signal of an ogival cylinder is caused by the following centers of cross section: 
• specular reflection of the surface, 
• 2 vertical edges, 
• 2 visible horizontal edges, 
• 2 horizontal rear edges at the top surfaces, 
• creeping waves. 

The calculated result of the IEM contains all these contributions. The edge contributions and the 
creeping waves are different for the two polarizations and the relative phases of all contributions 
depend on the object dimensions. The RCS of the ogive is a superposition of all contributions. In 
fig. 2 the results of the IEM calculations are shown for a variation of the horizontal dimensions of 
only 10%, which causes significant changes of the diagram. The CPU time on a CRAY-J916 
required by NEC-2 is 32 minutes for each object. 

The calculated results of the high frequency solutions PO and PTD are shown in fig. 3. PO only 
takes into account the specular reflection and the edge diffraction effect in the high frequency limit. 
The result of PO is independent of the polarization. PTD enhances the result of PO by the MEC for 
the visible edges. The contributions of invisible edges and creeping waves are neglected. The 
validation of the results by IEM and experiments can indicate whether the employed approximations 
are sufficient or which further modules are necessary to improve SIGMA. The CPU time on a IBM- 
3090 is 9 seconds for the PO option and 16 seconds for the PTD option of SIGMA for each object. 
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Fig. 3 Monostatic RCS-results by SIGMA for the fifth object of fig. 2; 
solid line: PO result; dashed line: PTD result (vv-pol.); dotted line: PTD result (hh-pol.). 

In fig. 4 the results of IEM, PTD, and measurement are compared. For the horizontal polarization 
very good agreement between the measurements and both calculations can be observed. However 
for the vertical polarization differences of 1 dB occur. At 55° and 125° measurement and IEM agree 
well while the PTD fails. It is supposed that a creeping wave at the top and bottom surface of the 
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ogive, which is reflected at the horizontal back edge, is responsible for these maxima of the 
diagram. Up to now this effect is not handled by SIGMA. 

In the region around 90° difficulties in the experiments become obvious. The test objects have been 
mounted on a styrene cylinder on a turntable and an interaction between the horizontal styrene 
surface and the side wall of the ogival cylinder occurred at that aspect. The influence of the styrene 
alone is eliminated by vacant-room calibration, but this does not work for interactions between 
object and room or turntable. 
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Fig. 4 Monostatic RCS-results for the fifth object of fig. 2; top: hh-pol., bottom: w-pol.; 
solid line: measurements, dotted line: PTD (SIGMA), dashed line: IEM (NEC-2). 
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5. CONCLUSION AND FUTURE WORK 

For five ogival cylinders the RCS results of the computer code SIGMA have been validated by 
results of NEC-2 and measurements at 94 GHz. Although the five objects vary just about 10% in 
their horizontal dimensions the diagrams are distinctly different. This has been confirmed by all 
three methods. The extension of SIGMA using the equivalent edge currents leads to very good 
results for the test objects. The very short computer times of SIGMA in contrast to NEC-2 have to 
be emphasized. 

One option implemented in SIGMA is the capacity to treat nonmetallic structures. At this time 
however there are no reliable validations. For this purpose not only the theory but also the 
experimental setups to evaluate material parameters have to be completed. As the influence of 
creeping waves is very important for a lot of objects this tool has to be implemented in SIGMA as 
well as multiple reflections in the future. 
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Abstract 

The design of a loaded wire antenna situated on an arbitrary platform is considered. A genetic 
algorithm-based technique is developed for optimizing the design. The analysis of the behavior of the 
loaded antenna on the platform is performed with numerical Green's functions constructed using the 
Method of Moments. Without requiring any preliminary design, the genetic algorithm selects the 
locations and impedances of the antenna loads, as well as the topology and design parameters of the 
matching network. The design of a whip antenna residing on a tank demonstrates the method. To 
evaluate the method, these results are compared with those obtained using simulated annealing 
optimization. 

1.    Introduction 

Though wire antennas have been in use since the inception of electromagnetic theory and the 
experiments of Heinrich Hertz, they continue to be used in a myriad of applications. The radiation from 
these antennas was understood fairly well even in 1897 by Pocklington [1]; today they may be analyzed 
easily with a plethora of computer codes implementing any one of various numerical solution techniques, 
such as the Method of Moments (MoM) [2]. Unfortunately, even though the analysis of radiating wire 
structures is quite well understood, the synthesis of such structures still presents some difficulty, and 
fully automated methods for the design of wire antennas are rare. The optimization of antenna 
characteristics is intrinsically complicated, as necessary goals such as high gain, broad bandwidth and 
low Voltage Standing Wave Ratio (VSWR) often conflict. To further complicate matters, any objective 
function used to compare different antenna designs is likely to be highly multimodal. Thus, as Popovic 
[3] notes, "Although the CAD design of wire antennas is of course desirable, for various reasons it can 
not be implemented in all cases." 

An additional problem in antenna synthesis that is rarely considered in the design procedure is the 
environment in which the antenna radiates. Antennas are usually designed in vacuum or some other 
idealized environment; that is, the realistic platform on which they reside is ignored in their design, so 
they are rarely truly optimized to radiate in the environment in which they will be used. Also, antennas 
are usually designed separately from their matching networks, which inhibits creation of truly integrated 
designs. Thus, in contrast to a previous paper on the design of wire antennas [4], this paper designs the 
antenna for radiating in its intended environment, and is able to fully design the matching network and its 
topology. 

In this study, we design broad-band, loaded wire antennas which are optimized for use on their 
platforms. To overcome the problems of the multimodality and general complexity inherent in any wire 
antenna design, we use Genetic Algorithms (GAs) for optimization.  These algorithms are stochastic 

'This study is an abridged version of a study submitted to the IEEE Transactions on Antennas and Propagation. 
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antenna design, we use Genetic Algorithms (GAs) for optimization. These algorithms are stochastic 
search procedures based on the theory of evolution and survival of the fittest [5]. Unlike gradient-based 
searches and other deterministic techniques, GAs do not tend to settle into the first local optimum they 
discover, but instead consider large populations of designs at a time and combine their traits until a more 
global optimum is found. 

Specifically, the problem we treat with GAs can be stated as follows. We consider a wire antenna, 
typically (but not'necessarily) fed at or near its base, attached to an arbitrarily shaped Perfect Electric 
Conductor (PEC) which may or may not reside on an infinite PEC ground plane (Fig. 1). We use the 
GA to optimize the locations and impedances of parallel RLC loads along the wire, as well as the 
topology and component values for a matching network, so that the resulting antenna has high gain and 
low VSWR across a broad frequency band when radiating in the presence of the platform for which it 
was designed. We do not optimize the shape of the antenna, nor any aspects of the platform. Thus, if 
the antenna is to be used on an automobile, the GA designs the antenna loads and matching network to 
optimize the characteristics of the antenna in the presence of that automobile without moving the antenna 
relative to the automobile or changing the length of the antenna. GAs are perfectly suited to this task 
because of the complexity of the problem and the massive multimodality of the search space. 

2.    Formulation 

In this section, we outline a procedure for applying GAs to the design of loaded wire antennas 
residing on an arbitrary PEC platform. Although the action of the GA itself is quite simple, optimizing 
the design of a complicated physical system using GAs can be rather involved. In Section 2.2, we 
develop a fast MoM-based analysis to efficiently cope with the computational burden inherent in GAs. 
Finally, in Section 2.3, we discuss the problem of crafting the objective function for the GA optimization 
to achieve optimal results. 

2.1.  Genetic Algorithms 

Genetic algorithms are a class of parallel, nonlinear stochastic optimization techniques that attempt 
to locate global optima of a function over a given domain. Based on Charles Darwin's theory of natural 
selection, GAs have been applied to very broad sets of problems ranging from antenna array design and 
optical filter design to classifier systems and neural nets [5]. 

GAs operate with just three basic operators: reproduction, crossover and mutation. In contrast 
to the operators governing more classical optimization procedures, these operators are stochastic in 
nature and are applied simultaneously to an entire population of candidate designs rather than 
deterministically optimizing just one design at a time. Application of these three operators to a 
population of design candidates results in a new population (called the next generation), which will on 
the average consist of better designs due to the evolutionary action of the operators. The GA applies 
these operators iteratively to each new generation until the population contains members that satisfy the 
design specifications or until no further genetic improvement of the members appears feasible. 

To use the three basic operators, the GA requires all design candidates to be specified by a binary 
string, called a chromosome, which describes all of the salient features of a design. For example, our 
chromosomes will contain information which describes the values of the components in the antenna 
loads and their location. The GA starts by generating a randomly selected initial population containing N 
of these chromosomes of length N,. The designs in the initial population are then evaluated by a fitness 
or objective function which allows the GA to compare the performance of the initial designs and 
reproduce the best ones for the next generation. This study employs a scheme known as random 
tournament selection. In random tournament selection, two members of the population are selected 
under a uniform random distribution, and the better one is placed into the next generation. The process 
is continued until the entire next generation population is filled [5]. 
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After selection, the designs exchange traits through the action of the crossover operator. During 
crossover, the selected designs are paired randomly, and crossover is applied to these pairs with some 
predetermined probability pc usually between 0.8 and 1. For each pair that is crossed over, a random 
crossover site is picked between the fctn and fe+ltn bits of each chromosome in the pair. The bits 
between the £+ltn bit and the ft1 bit are then exchanged yielding child chromosomes that are hybrids of 
their parents. Crossover enables the GA to search for better designs by mixing traits of good designs 
[5], 

The mutation operator is applied to maintain the genetic variety in the population and to ensure 
against the loss of beneficial traits which may have been contained in poor designs in early generations, 
but which could later prove beneficial. The mutation operator simply changes the value of a bit in any 
given population member with a predetermined probability pm usually between 0.001 and 0.01 [5]. 

In our GA implementation, the chromosomes describe the wire antenna loading and its matching 
network. The first part of each chromosome describes the positions and component values of the 
antenna loads. Assuming that the antenna carries a fixed number of NA loads, this part of the 
chromosome consists of NA concatenated strings, each describing a single load. The first portion qf 
each string describes the position of a load on the antenna. If a load is permitted to reside on N$ =2Np 

distinct locations along the wire antenna, its position is described by Np bits. Np will naturally depend 
on the MoM discretization used in the evaluation of the antenna's gain and VSWR characteristics—see 
Section 2.2. The remaining part of each string describes the values of the components that compose the 
load. For each of the three component types—R, L, and C—the maximum and minimum values that the 
component can assume are fixed between two values ßraax and Qmin, and the number of bits used for 
modeling the component is fixed at NQ, where Q is either R, L, or C. Then, for each load, component 
values are calculated from their binary representations as using a geometric mapping. 

The second part of the chromosome describes the topology and component values of the 
matching network. We assume that the matching network consists solely of reactive components. 
Though several schemes can be conceived for encoding a topology, a good scheme must ensure that 
similar designs are characterized by similar strings to prevent premature convergence. In this vein we 
assume the matching network consists of an integral number of four component sections as shown in 
Figure 2. The total number of components in the matching network, NM, equals four times the number 
of sections. We then allow the L and C matching network components to take on values in the same 
way as the antenna loads do, i.e., by modeling them in terms of N^ and N" bits. However, the 
matching network components described by these bits are also permitted to take on values of infinity or 
zero in addition to the finite values in between. Infinity and zero are coded in the GA, respectively, as 
the largest or smallest few binary numbers in the binary representation of the component value, and the 
finite values are decoded with a geometric spacing similar to the antenna components. Since capacitors 
with infinite capacitance act like shorts, and capacitors of zero capacitance act like opens (and vice versa 
for inductors), this coding scheme permits the matching network topology to evolve slowly, with similar 
"genotypes" producing similar "phenotypes". The sole disadvantage of this coding scheme is that 
typically the SGA will tend to use all available matching network components. To avoid the use of an 
excessive number of components, and to force the topology to evolve and be optimized, it is necessary 
to add a penalty term into the objective function that avoids the use of too many components. This will 
force the GA to select among all available components and find an optimal topology with a given number 
of elements—see Section 2.3. 

2.2.    Analysis of Candidate Antenna Designs 

The above described GA optimization process typically requires a significant number of objective 
function evaluations. For the purpose of synthesizing loaded wire antennas that reside on an arbitrary 
platform, the objective function incorporates knowledge of the gain and VSWR of the antenna over the 
frequency band of interest—see Section 2.3. Given the antenna and platform geometry, this information 
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can be obtained by standard integral equation based techniques. However, because modeling the 
antenna and platform typically calls for hundreds or even thousands of unknowns, analyzing the 
antenna/platform over the entire frequency band for each design candidate often requires a prohibitive 
amount of computer time. To make the proposed synthesis method practical, the GA must evaluate the 
objective function efficiently. 

A fast algorithm for rapidly computing the gain and VSWR of a design candidate can be devised 
because it is assumed that the shape of the antenna and platform always remain unchanged. For the 
purpose of analyzing the antenna using the MoM, the wire and its platform are approximated by straight 
segments of constant radius and planar triangular facets, respectively. The wire typically is attached to 
the surface at a vertex of a triangle, and is assumed to be excited by Ns voltage sources (we will 
typically assume Ns = 1) located at the nodes connecting two wire sections. Loads can be placed at any 
node except for those nodes occupied by a source or by another load. 

Given this discretization of the wire and its platform, the antenna's electromagnetic response to any 
excitation can be computed using standard MoM techniques, e.g., the RWG method [6], which expands 
the wire and surface current into linear basis functions and models the current near a surface-wire 
junction using a special singular junction basis function. To facilitate the fast analysis of an arbitrarily 
loaded wire, the system's response caused by unit delta gap voltage excitations at every of the Ns + NT 
wire nodes is precomputed. Two different types of vector system response functions are of interest. 
The first set of such functions is I* which contains the current at each of the Ns + NT nodes on the 
antenna due to a delta gap excitation'in the kth node. The second set of vector functions are labeled Efo 
and give the electric field at any far-field location requested for the gain computation due to unit voltage 
excitation in the kth node. Computing lk and E*. k = \,...,NS + N? requires the solution of the MoM 
equations for the unloaded system for multiple excitations. 

Given h and E*, the GA solves for the currents on an arbitrarily loaded antenna and computes its 
far fields as follows. Assume that the Ns sources and NA loads are located in nodes s(i), i = h-,Ns, 
and l(i) i = l,...,NA, respectively. The vector Iwt containing the total current at each wire node 
containing a load is given by 

where Vk signifies the voltage excitation on segment k. Noting that 
Vm=-ZIV)I„Jm (2) 

where Zk is the load impedance on segment k and Itot,k is the total current on segment k, the l(j)th row 
of (1) becomes 

Ns N, 

4>t1(i) = £Vs(i)llUUU) ~'LZIU)If"nj)IIUU(i) (3) 

Collecting all rows l(j) into a matrix equation and then moving all terms involving Itot to the left-hand 
side yields 

(I + Zcfr)Itot = Vs (4) 

where I is the NA x NA identity matrix, /,„,. = I„„m, 

Z,ii: 
= Z,u)i,vwj) P) 

and the components of Vs are given by 

K (6) 
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Solving Equation (4) for lm gives the current through each of the loads. Now using superposition, we 
may calculate the far fields due to the source excitation in combination with the voltages at the loads, 

w.i Hi 
Etot = X H(i)E5(i) - X Zf(i)4%0 EZ(0 (7) 

i=l i=l 

We can also determine the current (and hence impedance) at the input. Thus, using this technique, we 
circumvent inverting the entire MoM matrix for each design, replacing the problem with the inversion of 
a matrix with dimension NAxNA. Given the input impedance of the antenna over the band, the VSWR 
is calculated assuming that the transmitter feed is connected to a transformer which steps up the 
impedance to the average impedance of the antenna-matching network combination over the band. Since 
this may always be done, this makes the matching network design completely independent of the value 
of the impedance of the transmitter (except for the turns ratio in the transformer). The VSWR at each 
frequency can thus be calculated assuming the presence of this transformer. 

2.3    Design of Objective Functions 

Perhaps the most important element in the successful implementation of a GA is the careful design 
of the objective function which can enhance or hinder the algorithms performance. For all of our 
designs, the objective function, Fm; is composed as a sum of two parts: a basic part (Fbas) and a penalty 
part (Fpen). Fbas single-mindedly attempts to improve the gain and the VSWR at every test frequency in 
the band, while Fpen is incorporated to speed convergence, flatten frequency response, and strike a 
judicious balance between the often competing goals of high gain and low VSWR. Fbm is a monotonic 
function of the overall antenna system gain in a desired direction, and thus really represents the whole of 
our concern. F consist of four parts: Designs are punished separately for (i) very low gains, (ii) very 
high VSWRs, for (iii) uneven frequency response, and (iv) for using an excessive number of elements 
in the matching network. The first two penalties aid Fbas directly by ensuring that VSWR is not 
sacrificed for gain or vice-versa. The third penalty helps the code find designs with low VSWRs and the 
last penalty encourages evolution of the network topology. 

3. Numerical Results 

In this section, several results will be presented that illustrate the application of the above described 
algorithm to the design of whip antennas mounted on a tank. 

Finally, to test the GA method on a more realistic problem, we design a monopole antenna for the 
tank of Figure 3 over the 15-60 MHz band. In this example, capacitances were allowed to vary from 10 
to 1110 pF, while inductors varied from 30 to 5000 nH. The upper frequency limit was dictated by the 
dimensions of the MoM matrix describing the tank and the monopole. Also, because we do not expect 
the radiation from the tank monopole to be the same in all directions, we optimized its pattern 
simultaneously in three directions: in front of the gun, behind the gun, and perpendicular to the gun. 
Incorporating more than one angle into the design is trivial; we simply took the average value over the set 
of angles of interest. The resulting matching network is pictured in Figure 4; all load values are given in 
Figure 3. The gain and VSWR of the optimal design are shown in Figure 5. These are compared to a 
result obtained on the same problem using Simulated Annealing (SA) [7], Though SA was allowed 
more function evaluations than the GA, the design it evolves is inferior. 

4. Conclusions 

This study presented a systematic approach to the design of loaded wire antenna/matching network 
systems residing in a realistic environment. The process was made possible via a technique involving a 
precalculation of the response of an unloaded antenna system to excitation at different points along the 
wire and included a method to incorporate the matching network topology into the design process. The 
procedure was then successfully applied to a series of realistic problems with very little tuning of the 
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objective function. In all of these problems, even those radiating on complex structures or with very 
large bandwidths, an acceptable design was arrived at efficiently making this procedure a robust and 
reliable method for the design of wire antennas radiating on a given platform. 
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Figure 2. Generalized topology for matching network design. 
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I. Introduction 

In array pattern synthesis, the main concern is to determine the complex excitation coefficients 
(weights) of radiators to have desired pattern characteristics, such as maximum radiation 
direction, specified beamwidth and sidelobe level. Most of the traditional analytical and 
numerical techniques are not flexible and limited to simple linear or planar arrays; moreover 
the resulting phase and magnitudes of complex excitation coefficients are usually irregular so 
that costly customized components are needed. In this paper, we present a flexible pattern 
synthesis approach based on the genetic algorithm for array pattern synthesis of arbitrary array. 

Genetic Algorithm (GA) [1],[2] is a stochastic search and optimization technique modeled on 
the mechanics of natural evolution and genetics rather than a simulated reasoning processing. 
GAs are randomized but not random, they can efficiently exploit historical information to 
speculate on new search points with expected improved performance. Most of the traditional 
optimization methods are prone to local minima [2], GAs are able to test for solutions outside 
the current minimum due to their random components and large sampling population. 
Although GAs may converge slowly and not suitable for real-time application, they can still be 
very useful and flexible for the design of non-adaptive antennas. 

GAs were introduced to array applications just two or three years ago. Haupt [3] applied GA 
to determine which element should be on in the large thinned linear and planner array in order 
to obtain low sidelobes. Tennant [4] used GA to steer the array nulls precisely to the required 
interference directions and to achieve prescribed null depths by element position perturbations. 
Shimizu [5] used GA to determine the required values for the digital phase shifters so as to 
control the phases of the excitation coefficient. However, these applications [3]-[5] share the 
same approach, in which only binary parameters are used. For examples, Haupt used "1" and 
"0" to switch on and off a radiator respectively, and Shimizu used the binary combination in 
activating the digital phase shifter. 

The approach that we propose treat directly real or complex numbers. This approach can be 
applied not only to pattern synthesis of array factors or simplified total radiation pattern but 
also to optimization for complicated model taking into account the mutual coupling among 
radiators and the effects of environment when used together with a realistic simulator. In 
addition, the phase and/or magnitude values can be restricted to certain discretized (digital) 
values for easy implementation by commercially available digital phase shifters and digital 
attenuators so as to reduce greatly the complexity and cost of array antennas. Examples of 
linear and curved arrays will be shown to demonstrate the effectiveness of this approach. 

734 



II. The Genetic Algorithm 

Genetic Algorithms are search and optimization techniques modeled on the mechanics of 
natural evolution of living beings. Evolution takes place on chromosomes - organic devices for 
encoding the structure of living beings. A living being is created partly through a processing of 
decoding chromosomes. A standard GA can be briefly described using the flow chart in Fig. 1. 

A. Construction of Chromosomes and Initial Population 

In this approach for array pattern synthesis, radiation patterns correspond to living being and a 
set of excitation coefficients corresponds to a chromosome. 

GA was invented to manipulate string of binary coding. Most of the published GA applications 
encode the parameters in binary strings (chromosomes) and perform binary genetic operations. 
In our GA for array pattern synthesis, parameters are encoded in terms of real or complex 
numbers directly, that is, a chromosome c is directly represented by a vector of complex 
numbers (including integers and real numbers) 

c = [c, c,... c„... cN],    c„sC„ (!) 

where c„ known as a genetic material in GA here represents the excitation of the n-th radiator 
and C„ is the set or a subset of all complex numbers, in other words, C„ can be a set of some 
integers or real numbers or complex numbers or their mixed combination. The length of the 
vector is equal to the number of array radiators. This simple encoding explicitly shows the 
relations between chromosomes and array excitations and therefore it is simple, flexible, and 
easy to implement. 

Before starting the GA cycles, the initial population can be prepared by simply selecting 
random and/or approximate (by other simple techniques) and/or any guess (based on 
experience) excitations. 

B. Decimal Genetic Operations 

A simple genetic algorithm is composed of three basic genetic operations: reproduction, 

crossover, and mutation. 

Reproduction is a process in which individual chromosomes are selected for copying according 
to their objective function values. Hence the more highly fit chromosomes have higher 
chances of being selected for producing the child for the succeeding generation. In 
reproduction, two parent chromosomes are selected to produce two new or child 
chromosomes. From the current population, pairs of chromosomes are selected as parents for 
the next reproduction. Ranking Selection is applied to choose the couple according to their 
ranking, i.e., getting the first and the last ones, the second and second last, and so on. 

Crossover is another process that involves partial exchange of information between two 
chromosomes. Crossover recombines parts of the genetic materials in two parent chromosomes 
to make two child chromosomes. Taking one point crossover for example, each parent 
chromosome is split at a crossover point into two portions, a fragment and a remainder. As 
shown in Fig. 2, the fragment or remainder of one parent chromosome is swapped with the 
fragment or remainder of the other parent chromosome to produce two child chromosomes. By 
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Fig. 1. Steps of a Genetic Algorithm. 
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just swapping the fragments of the parents is not good enough for real/complex number coding, 
hence the concept of linear crossover is adopted to provide a more logical approach. For 
example, from two points (genetic materials), p\ and p2, three new points can be generated 
from crossover I: (pi+ p2)l2, crossover II: (p,+3p2)/4, and crossover IH: (ipi+ p2)/4. Crossover I 
gives the (average) midpoint of p{ and p2, and the other two give points shifting ±1 pi-p2\/4 
from the midpoint. If both points, p\ and p2 are identical, the new points will be the same as p\ 
or p2, and no new move is tested for this couple. Fig. 3 shows how the six child chromosomes 
are produced after the linear crossover. In the example shown in Fig. 3, six children are 
produced by two parents, but only two best children will be selected to compete for survival to 
next generation. 

Parent X: 0.83   1.00 
Fragment 

0.94  0.97  0.96 
Remainder 

Child X : 0.79 0.97 0.94  0.97 0.96 

Parent Y: 0.79    0.97 0.91   0.97  0.93 Child Y : 0.83 1.00 0.91   0.97  0.93 

Fig. 2. Example of one point cross over. 

Parent PI : 0.45 0.70 0.82 0.92 1 1.00 1.00 0.95 0.82 0.70 0.45 

Parent P2 0.50 0.50 0.50 0.92 11.00 1.00 0.50 0.50 0.50 0.50 

Child A : 0.48 0.60 0.66 0.92 11.00 1.00 0.95 0.82 0.70 0.45 
crossover I 

Child B : 0.48 0.60 0.66 0.92 11.00 1.00 0.50 0.50 0.50 0.50 

Child C: 0.49 0.55 0.58 0.92 11.00 1.00 0.95 0.82 0.70 0.45 
crossover II 

Child D : 0.49 0.55 0.58 0.92 11.00 1.00 0.50 0.50 0.50 0.50 

Child F : 0.46 0.65 0.74 0.92 11.00 1.00 0.95 0.82 0.70 0.45 
crossover III 

Child F : 0.46 0.65 0.74 0.92 11.00 1.00 0.50 0.50 0.50 0.50 

Fig. 3. Example of one point linear cross over. 

Once the children population is formed and their fitness is evaluated for selection of suitable 
chromosomes for the next new generation. There are a few selection techniques available. In 
our approach, both the children and parent population are ranked together in the ascending 
order (for example, from the lowest sidelobe level to the highest sidelobe level). Then based 
on the principle of survival of the fittest, those producing superior output survive, while those 
producing weak output die off. Please note that the competitors of survival selection include 
both parents and their children so that the members of next generation may include members of 
the previous generation. This guarantee that the newer generation performs better than old 
ones. It also means no oscillation in the optimization convergence curves. 

Mutation plays a secondary role in GA. Reproduction and crossover effectively search and 
recombine extant useful genetic materials and occasionally they may become overzealous and 
lose some of these potential materials. So mutation is needed to protect against such an 
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irrecoverable loss. Mutation is carried out by intentionally altering one or more genetic 
materials in a chromosome. In optimization, it corresponds to prevention of the algorithm of 
being stuck in a local minimum. Mutation is only carried out when a chromosome passes a 
probability check. When it does, one or a few randomly selected genetic materials of the 
chromosome are replaced with other randomly generated genetic materials. Generally, 
mutation does not improve the solution, but it is essential. It should be noted that mutation can 
be done before or after the selection of the next population. 

C. Two Stage GA Optimization for Accurate and Efficient Solution 

For accurate and efficient solution, two-stage GA optimization can be adopted. In stage 1, the 
GA works with a fast approximate pattern evaluation formula based on a simple array antenna 
model. Then, the preliminary results from stage 1 are used as the initial population for stage 2. 

If satisfactory result is not achieved after a certain number of iterations, it is suggested to start 
the optimization again for more effective and efficient solution. In our experience, 100 
generations (iterations) is sufficient for each trial and more iteration will not help much to 
converge. The re-start helps the algorithm to begin with another search direction. Because of 
the randomness, the result will not be identical for each re-start. Thus several trials of a fixed 
number of iterations each may be necessary. 

In stage 2, the GA works with an accurate pattern simulator, based on a more realistic model, 
to fine tune the excitation coefficients. For example, mutual coupling among radiators and 
reflector can be taken into account if NEC [6] is used. Moreover, the initial population for 
stage 1 can be a combination from different fast approximations including simple optimization 
techniques and guesses based on experience. Better initial population will considerably speed 
up an optimization. 

III. Examples 

The GA described above has been successfully applied to various arrays, including 
uniform/nonuniform spaced linear/curved arrays. Two examples are shown here to demonstrate 
the usefulness and flexibility of the approach for array pattern synthesis. 

1. Linear array with main beam at 100" 

A linear array of 30 isotropic elements equally spaced at half wavelength is considered. A 
pattern with the main beam aiming at the angle of 100° from the array axis and with the half 
power beamwidth of 5° and the lowest possible sidelobe level is desired. The initial 
population consists of six sets of complex excitation coefficients generated by the 
Minimization Mean Square Error (MMSE) method. The fitness (sidelobe level) of the initial 
population is ranging from -13.19 dB to -25.32 dB. 10 trials of 100 iterations each are carried 
out for the example. 

After 10 trials, the overall results show that the genetic algorithm works well for this example 
and sidelobe level of about -38 dB can be achieved. The best radiation pattern in the initial 
population and obtained after 10 trials of the GA are shown in Fig. 4 and Fig. 5, respectively. 
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Fig. 4.    Best radiation pattern in the initial population. 

Fig. 5.    Best radiation pattern from 10 trials of the GA. 

2. Cylindrical Arc Array with Digital Phases 

In the second example, we consider a curved phased array consisting of 32 half-wavelength 
dipoles around an electrical conducting cylinder of radius 5 wavelength. At any one time, only 
16 dipoles are activated to form the desired beam. The geometry of the array is shown in Fig. 
6. The desired pattern should have half power beamwidth less than 15° and sidelobe level less 
than -25 dB. Furthermore, the phases of the excitations are required to be equal to values 
suitable for 6-bit digital phase shifters, that is, multiples of 11.25°. 
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The optimization using the GA is done in two stages.  In stage 1, GA works with the simple 
approximated pattern evaluation formula (2) 

£(9,40 = £c„e- jkasinQ cos(§-(n-^)A§) 'A(4>-(«-{-)A4>)  , (2) 

where A(<(>)=0.5(l+cos<t>) is the approximated element pattern, c„ the excitation coefficient of 
the n-th dipole, k wave number, a radius of the circle, and A<(>=TC/32 angular difference between 
adjacent elements. 

The results from stage 1 are then used as the initial population of stage 2 for fine tuning. In 
stage 2, the GA works with the realistic and accurate moment method based EM field 
simulator NEC-2 [6] taking in account of the mutual interaction among dipoles as well as the 
reflective surface of the cylinder. 

Fig. 6.    Geometry of a cylindrical arc array with 32 dipoles but only 
dipoles 1 to 16 are activated. 

The GA helps to determine a set of excitation coefficients for the cylindrical arc array to 
design the desired pattern. Fig. 7 shows the pattern produced from the GA/NEC-2 approach. 
The solutions obtained through the use of GA work well even when the mutual interaction 
effects are taken into account. Again from Table 3, it can be observed that the phases of the 
coefficients are restricted to only in multiples of 11.25°. 

Table 3: Normalized excitation coefficients with "digital" phases. 

Element Excitation coefficients 
1 & 16 0.05 Z-90.00° 
2&15 0.12 Z 33.75" 
3&14 0.18Z-157.500 

4&13 0.19Z45.00" 
5&12 0.29 Z-45.00° 
6&11 0.65 Z-146.250 

7&10 0.89 Z135.000 

8& 9 1.00Z101.250 
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Fig. 7. Radiation pattern of the final GA/NEC-2 results. 

IV. Conclusion 

The GA has been successfully applied in pattern syntheses of linear and curved arrays. The 
algorithm can also be applied to pattern synthesis of arbitrary arrays which are difficult to be 
treated by other analytical or numerical methods. The algorithm is capable of directly treating 
both real and complex data. 

The phase or magnitude values can be confined to certain discretized (digital) values for easier 
and more cost effective implementation by commercially available digital phase shifters and 
digital attenuators. This would greatly reduce the complexity and cost of (phased) array 
antennas. 
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Abstract. 
Numerically optimizing antenna array performance can be time consuming. Genetic algorithms 

have shown great success in finding amplitude and phase tapers for low sidelobe antennas. One way to 
speed convergence of the algorithms is to encode the parameters with a gray code. A gray code 
representation has a hamming distance of one and is less likely to be disturbed during crossover 
operations of the genetic algorithm. This paper explains when the gray code is appropriate to use for 
antenna array optimization, while demonstrating a simple derivation of optimum low sidelobe 
amplitude tapers. 

Introduction. 
The goal of this paper is to optimize the amplitude taper of a linear array in order to minimize the 

maximum sidelobe level. Many analytical methods exist to accomplish this goal, so why use a 
numerical method? There are two reasons. First, the analytical methods do not optimize subject to 
practical constraints, such as scan angles and bandwidth. Second, errors and array alignment problems 
make theory difficult to implement in practice. 

The approach taken in this paper is to use a genetic algorithm to find the optimum amplitude 
weights. A genetic algorithm is a computer program that optimizes the output of a function by 
simulating evolution in nature [1]. Most traditional optimization methods rely on derivative 
information and easily get stuck in local minima. Genetic algorithms efficiently search the very large 
but finite output space to arrive at a "global" minimum. 

Genetic algorithms are beginning to be used for many different applications in electromagnetics. 
In particular, absorber [2],[3] and antenna array designs [3],[4] have been fertile grounds for this 
approach. Their attraction stems from several advantages: They 

1. optimize with discrete parameter, 
2. optimize well with a large number of parameters, 
3. explore a vast portion of the cost surface, 
4. do not require derivative information, and 
5. are ideal for parallel processing. 
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This paper examines the use of a gray code representation of the parameters in a genetic algorithm 
[4]. First, the motivation for the use of gray codes is provided. Then, various examples are presented 
to show when gray codes can enhance genetic algorithm performance. 

Problem Formulation. 
The linear array is modeled by 

ff(0 = 
N 
Iancos[(n-.5)xP] sin<|> 

2Nn=l ~" 
array factor 

^element 

pattern 

where 
an = amplitude weight at element n 
2N = number of elements in the array 
¥ = kd(u-u0) 
k = 27t/wavelength 
d = spacing between elements 
u - u0 = cosij) - cos<|)0 

<|> = angle from x-axis or from the array face 
0O = steering angle 

elements 

Figure 1. Diagram of a linear array. 

A diagram of the array is shown if Figure 1. The elements have a sin<|> element pattern and a symmetric 
amplitude taper. 

The Genetic Algorithm. 
The genetic algorithm encodes the array weights in a binary sequence called a gene and places the 

genes in an array known as a chromosome. The algorithm generates a random matrix of ones and 
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zeros where each row of the matrix is a chromosome. Next, the cost function for each chromosome is 
calculated. Cost is a function of far field pattern features, such as maximum sidelobe level, and is a 
quantity to be minimized. The chromosomes are ranked from the least to the most cost. Mating takes 
place between chromosomes that have small enough costs to be part of the mating pool. Offspring or 
new chromosomes produced from mating contain parts of the two parents. The crossover function 
randomly picks a point in the chromosome. Mating takes place by keeping the binary strings to the left 
of the crossover point for each parent and swapping the binary strings to the right of the crossover 
point. Consider two parent chromosomes (Only one gene in each chromosome and its corresponding 
parameter value is shown.) given by 

chromosome       parameter value 

parent#l = [...10000000...] = [...128...] 
parent #2 = [...01111 111...] =[...127...] 

One gene in the chromosome is split by the crossover operation. The offspring resulting from a 
crossover point between bits three and four are given by 

offspring« = [...10011111...] = [...159...] 
offspring #1 = [...01100000...] = [...96...] 

The fitness of the new offspring are computed. Mutations change a small percentage of the bits from 
"1" to "0" or visa versa. The new list is ranked from best to worst and the process repeated. The 
algorithm stops when an acceptable solution is found or a set number of iterations has lapsed. 

The parameters of the genes that are split by the crossover operation in the above examples have 
decimal representations of 128 and 127. Note that the parameter representations and, most likely, the 
costs are very close, but the binary representations are exactly opposite. Consequently, the offspring 
that result from the parents are quite different. In this case, the parameter values change to 159 and 96. 
The parameter values should be converging, but they are not. This example is an extreme, but not 
unlikely example. Increasing the number of bits in the parameter representation magnifies the 
problem. 

One way to avoid this problem is to encode the parameters using a gray code. Consider the 
previous example using a gray code. A binary representation of 10000000 has a gray code of 
11000000 and mates with a binary representation of 01111111 having a gray code of 01000000. The 
children are given by 01000000 and 01100000, which are the same as the parents! By definition, the 
parents are good solutions. Thus, we would expect the offspring to be good solutions too - which 
occurs when a gray code is used. 

The above argument indicates that gray codes speed convergence time. Speeding convergence of 
antenna optimization problems is very important, because the numerical calculations take a long time. 
The next section compares optimization using a genetic algorithm with and without gray codes. 

Results. 
As an example, consider optimizing the amplitude taper of a 40 element linear array with elements 

spaced .5 wavelengths apart in order to reduce the relative sidelobe levels between u = .6 and u = 1. 
The genetic algorithm started with an initial population of 500. Only 200 chromosomes were kept 
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each iteration and 25% of these were placed in the mating pool. The algorithm stopped after 100 
iterations. 

The first example uses a ten bit encoding of the amplitude weights. Figure 2 is the convergence 
graph for the genetic algorithm without gray coding, and Figure 3 is the convergence graph for the 
genetic algorithm with gray coding. The solid line represents the cost of the best chromosome and the 
dashed line is the average cost of all the chromosomes. Iteration 0 is the cost of a uniform array. In 
general, using the gray code does not work as well as not using a gray code. Figure 4 shows the 
optimized amplitude weights, and Figure 5 shows the resulting far field pattern. 

Increasing the number of bits representing the amplitude parameters significantly changes the 
situation. For instance, using a 20 bit representation of the amplitude weights results in the 
convergence graphs in Figures 6 and 7. In general, gray codes improve genetic algorithm performance 
when many bits are used to represent a parameter. 

The amplitude taper is not smooth in Figure 4. Changing the cost function from the maximum 
sidelobe level to 

cost = max sll in dB - Xa„/(2N) + lOSfo-a^i)2 + 10a, 

where oa is the standard deviation of the weights, improves the smoothness of the amplitude taper. 
Figure 8 shows the optimized amplitude weights, and Figure 9 shows the resulting far field pattern. 
The new cost function lowers the sidelobe level over the specified angles while keeping the amplitude 
taper smooth. 

Conclusions. 
Using a gray code for antenna array optimization is only important when more than ten bits 

represent the parameters. Since many antenna optimization problems do not require this accuracy, the 
gray code can be skipped. 

Genetic algorithms do not always produce desirable results at first, because the cost function is not 
carefully considered. Adding additional smoothing costs produces a more desirable amplitude taper. 
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Figure 2. Convergence of the genetic algorithm without a gray code for a 10 bit representation 
of the amplitude weights. 
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Figure 3. Convergence of the genetic algorithm with a gray code for a 10 bit representation of 
the amplitude weights. 
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Figure 5. Optimized far field pattern from genetic algorithm without a gray code. 
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Figure 6. Convergence of genetic algorithm without a gray code for a 20 bit representation of 
the amplitude weights. 
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Figure 7. Convergence of genetic algorithm with a gray code for a 20 bit representation of the 
amplitude weights. 
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Abstract 

An order-recursive variant of standard LU decomposition has been presented for the efficient 
solution of linear systems arising in the application of method of moments to iterative design 
problems. The method is applied to the iterative design (or tuning) of dual band patch 
antennas, which are of potential interest in mobile communications systems. 

1   Introduction 

Multi-band conformal patch antennas find application in mobile communications systems because of 
their light weight, low profile and ease of fabrication. It is well-known that rectangular microstrip patch 
antennas with reactive stubs placed along the radiating edges exhibit dual frequency operation [1], [2]. 
Electromagnetic (EM) simulation methods such as the method of moments (MoM) and the multiport 
network model facilitate the design and tuning of such elements in a rapid prototyping environment. 

In MoM, the boundary value problem for the unknown current distribution over the surface of the 
conductors is typically formulated as an electrical field integral equation (EFIE). The EFIE is then 
converted into a system of linear algebraic equations (for the current) by the application of suitable basis 
and testing functions. Parameters of interest, such as 5-parameters, radiation and metallization losses, 
can be derived from the computed current distribution. 

The system (or moment) matrix that represents the interactions between the basis and the test elements 
is typically dense. For moderately high-order models (0(200 - 300)), the current distribution may be 
obtained as the solution of a system of linear algebraic equations using LU decomposition and subsequent 
solution of two triangular systems of equations. The computational complexity of the solution of system 
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of equations of order Ar is N3. For several applications, where N is fixed, the use of conventional LU 
decomposition provides an efficient means for solving the linear systems. 

However, in design applications, the order of the linear system to be solved may change from 
N to N + M, where the original (N x N) data matrix becomes a submatrix of the higher-order 
(N + M) x (TV + M) matrix as a result of augmenting the model. This is frequently encountered, for 
example, in the tuning of patch antennas, where the data matrix is recursively augmented with new row 
and column vectors that correspond to shorting pins, stubs, etc. In a CAD environment, the order M of 
augmentation is usually not known a priori. At present, each augmented matrix is treated as a new data 
matrix and the solution of the augmented system of equations is recomputed from scratch. The resulting 
solution procedure becomes computationally inefficient, and, as shown elsewhere [3], the computational 
complexity can become 0((N + M)4). The objective of this paper is to apply an order-recursive variant 
of LU decomposition to develop a solution procedure of computational complexity 0((N + Mf). This 
order of magnitude reduction in computations is clearly very attractive for interactive design tasks. 

There are also situations encountered in design where one iteratively decreases the size or spacing of 
certain elements in a circuit or antenna geometry in order to meet the design specifications. Consider, 
for example, the reduction in stub length in the optimization of a monolithically loaded tunable patch 
antenna, or the reduction in width of a section of a microstrip quarter-wave transformer to compensate 
for dispersion. In these situations, the moment matrix is affected by removal of (or, is decremented by) 
certain row or column vectors associated with the changes in the circuit. As in augmented systems, the 
order of decrementation is not known a priori. At present, the solution of each decremented system 
of equations is recomputed from scratch. We propose an order-recursive solver for decremented MoM 
systems as well, wherein the solution (specifically, the LU-decomposition) at the prior iteration is used 
to efficiently solve the reduced system of equations at the present iteration. The application of efficient 
solvers for augmented and decremented systems to MoM results in a powerful technique, termed as 
the order recursive method of moments (ORMoM), with potential improvement in iterative design of 
complex structures using full-wave simulation. 

The resulting computational efficiency of ORMoM is illustrated by applying the proposed method to 
the iterative design of stub-loaded dual-band patch antennas [2]. 

2   Order Recursive LU Decomposition 

The proposed algorithm assumes that all the leading principal submatrices of the system (or moment) 
matrix A are nonsingular. Therefore, the solution (albeit suboptimal) can always be computed without 
the need of pivoting. Note that in the sequel, when computing LU decomposition, we refer to Crout 
reduction (l's along the diagonal of upper triangular matrix U). Identical results may be stated for 
Doolittle reduction, (l's along the diagonal of lower triangular matrix L). 
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2.1   Augmented Systems 

Assume that the LU decomposition of A (=LU) has been computed. Denote an augmented matrix and 
its LU decomposition as: 

MH an 
= 

[ill 0 [in U12 

»21 Q22 [   12. hl\ 0 1 (1) 

Then, it is readily seen that the unknowns may be computed as: 

U12   =   in ai2 

bl      =     »21^22 

'22     =     «22 — hlUl2- 
(2) 

Of course one must not compute the inverses of matrices as shown in (2). Instead, the unknowns are 
obtained by solution of the triangular system of equations, which is known to be numerically stable. The 
above result is easily extended to the case when the matrix is bordered by several rows and columns. 
Specifically, if 

A:= \ An AS2] 
[A2l A22 . 

in   o [ill ul2' 
0 U22 _ 

(3) 

then, the unknowns may be computed as: 

Un    =    L^An 

in    =    A2lU^ 
L22U22   '■=   A22 — L21U12 

(4) 

where, the last equation in (4) represents an LU decomposition of the matrix on its right-hand side. 

2.2   Decremented Systems 

Next, we consider the update of LU decomposition of a matrix some of whose rows and columns are 
removed. It is, of course, assumed that the LU decomposition of the original higher order matrix is 
available. Consider the following (3 x 3) block matrix: 

A = 
An A12 An' 
A2i A22 A23 = 
A31 A32 Av \ 

in 0 0 1 
Lii L22 0 
I31 L32 A33. 

ill Un ui3] 
0 U22 i23 
0 0 U33. 

(5) 
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To see the effect of decrementing the matrix order by removing some rows and columns, it is instructional 
to consider the (block) LU decomposition of the matrix. Assuming that Au = Infii is known, the 
remaining entries of the decomposition may be computed as follows. 

Un = L^Al2 

£21 = A2iUu
x 

L22U22 := A22 — £21 Un 

ua = irMis 
£31 = A»Uü] 

U23 = L^iAx - LuUn) 

£32 = {An- LMUt2)U22l 

L33U33 := A33 — £31 [/*13 - £32^23 

(6) 

(V) 

where equations (6) and (7) represent LU decomposition of the matrix on the right-hand side. 

The following three possibilities for deletion of block rows and columns exist: 

Casel: Delete (\,\) block row and column. In this case, the entire LU decomposition of the decremented 
matrix 

A:= 
A, 
A2i 

A3, 
A22   A23 

A32   A33 

A22   An 

A32   A33 

must be recomputed.   This is evident from the dependence of the entire decomposition on the LU 
decomposition of A\ \. 

Case 2: Delete (2,2) block row and column. 

A:= 
\An An An] 

A21 A22 A23 

[A3l An A33 J 

Au    An 

An    A33 

Following the operations described in recursive LU decomposition above, it is seen that if 

11 Au] f£iT 0 1 \Ui7 
31 A33J " L £2°!w T   new  I 

iy22    -1 I 0 
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then, the matrices Z,f, I2f, U{f and Ufi" are the same as the matrices Ln, I31, Uu and Ul3, 
respectively. Hence they need not be recomputed. However, I22=w and Uj[" are obtained from the LU 
decomposition of the original matrices A3i - i3I J713 and need to be recomputed. 

Case 3: Delete (3,3) block row and column. 

A:= 
An   An 

Ai\   An 
AM   A 32 

An 
An 
A, 

A„    An 
A21    A22 

Again referring to the relations in recursive decomposition, it is easily seen that for this case, no new 
computations are required since the LU decomposition of the first (2 x 2) block submatrix is independent 
of the third (block) row and column. 

3   Design Example 

The solution procedure described in Section 2 is applied to the iterative design of a coax-fed tunable 
dual-band patch antenna, whose geometry is shown in Fig. 1. The substrate is 0.79 mm thick duroid 
(er =2.17). The current distribution on the structure is computed using an efficient PC-based MoM 
simulator described in [4]. The patch and the stub are gridded into a rectangular mesh which supports 
rooftop basis functions. The resulting moment matrix for the patch alone is of the order 216. The return 
loss of the untuned patch is shown in Fig. 2 and a fundamental resonance is observed at 2.5 GHz. In 
order to provide dual-band operation, an open-circuited A/4 monolithic stub is connected perpendicular 
to a radiating edge (Fig. 1) and its position along the edge or length is varied iteratively. At each 
iteration, instead of solving the linear system of moment equations from scratch, the LU decomposition 
of the patch is efficiently utilized in solving the augmented system created by the addition of the stub. 
Two positions of the 20 mm long stub are simulated: (a) center of the radiating edge, (b) 4 mm above the 
center. In either case, the 216 x 216 system matrix of the patch is augmented by 8 rows and columns. 
Location (a) produces two resonances at 2.31 and 2.635 GHz (Fig. 2) in contrast to the experimentally 
observed values, 2.275 and 2.666 GHz, respectively [2]. The separation of the resonances can be varied 
by moving the stub along the radiating edge. Location (b) produces the resonances at 2.35 and 2.65 
GHz (Fig. 2), clearly demonstrating the tuning nature of the stub. Because of symmetry, a similar band 
separation has been observed when the stub is located 4 mm below the center of the radiating edge. The 
resonances were also varied by changing the length of the stub with its position fixed. 

As an indication of computational efficiency of ORMoM, the conventional MoM implementation of 
solving the currents from scratch at each iteration for the antenna shown in Fig. 1 would have required 
2163+2243 = 21,317,120 operations, whereas ORMoMrequiresonly2163+2x8x2162 = 10,824,192 
operations (savings of about 50%). It is evident that the computational savings would be larger for higher- 
order problems, and for those problems involving many iterations of dimensional changes (e.g., within an 
optimization framework). In general, order-recursive solution of augmented systems is of computational 
complexity 0((N + M)3), an order of magnitude lower than the complexity for solving the currents at 
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Figure 1: Patch antenna geometry. 
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Figure 2: Return loss of the tuned patch antenna. 
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each iteration from scratch. It is recalled that JV is the order of the original matrix and M is the order of 
augmentation. 

4   Conclusions 

An order-recursive variant of conventional LU decomposition has been presented for the efficient 
solution of linear systems arising in an iterative moment method simulation. The method is illustrated by 
application to the interactive design of a tunable dual-band microstrip patch antenna with a monolithic 
stub connected to the radiating edge. The proposed iterative solution method has also been applied to 
the efficient CAD of microwave circuits [3], and is expected to be a valuable CAD tool in EM simulation 
and optimization. For example, a cost-effective simulation technique is to initially employ a coarse grid 
to assess regions of marked parametric variation, and then to re-solve the problem employing a finer grid 
where higher resolution of the field is desired. In the conventional MoM approach, the latter solution 
is recomputed from scratch. With the iterative solvers employed in ORMoM, a significant portion of 
information from the former solution, namely, the LU decomposition of the former system matrix, is 
used in the latter solution to achieve considerable computational savings for large-order problems. Thus, 
besides iterative design tasks necessitated by changes in the geometry, ORMoM is anticipated to be 
useful in improving the solution accuracy and numerical resolution of the simulation. This aspect of 
ORMoM is currently being investigated, and results will be forthcoming. 
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Abstract The demonstration of the discrete sources method is carried out for the problem of 
light scattering from the silicon wafers' defects. There are demonstrated the algorithm principles. 
The examples of numerical calculations are regarded. Results of the light scattering analysis are 
shown as compared with an experimental data from the real world scanning detection systems 

1. Introduction 

At present the numerical analysis of scattering from the obstacle on the boundary of layered half- 
space is a very actual problem due to various practical applications. Control of a contamination 
of silicon wafer surface is of the great significance in semiconductor manufacturing. Advance 
inspection technologies should have a reliable detectors of micro-contamination sizes down to 
0.06 mkm. It is impossible to establish the morphology of micro-contamination without of the 
analysis of a mathematical model and computer simulation. The subject of the main interest of 
the wafer manufacturers are such a defects as "pit" and "bumps", and especially contamination 
from micro-particles. The present inspection systems use the laser beam for scanning the wafer 
surface. So, the calculation of the light scattering from a such defects on wafer surfaces is of 
great interest in simulation, development and calibration of inspecting systems. 

The problem of interest can be formulated as a light scattering problem, where the size of an 
obstacle is about wavelength of laser light source. The stringent mathematical model leads to 
Boundary Value Problem (BVP), including Maxwell equations, transmission conditions at the 
boundaries of permittivity discontinuities, and radiation/attenuation conditions at the infinity. 

When constructing our model we assume some positions. 
• The wafer is simulated as a homogeneous dielectric half-space having a certain complex 

characteristics. 
• The obstacle regarded has an axial symmetry (axis is to be normal to interface surface). 
• We shall suppose the exciting field to be a linear polarized plane wave, propagating with 

certain angle to the wafer surface. 
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2. Formalism 

The main idea of The Discrete Source Method (DSM) is to construct solution of BVP as a finite 
linear combination of EM fields produced by the dipole and muWpole auxiliary sources [1]. The 
location of those sources is to be chosen at the symmetry axis for the sake of simplicity of the 
construction. When investigating the scattering problems we developed a special construction for 
used sources to satisfy the boundary conditions at the half-space surface. So, being an exact 
semi-analytical approach, DSM enables to remove the usual disadvantages of other techniques. 

The main features of our approach are [1]: 
1) AS analytically satisfies the all BVP conditions, including conditions on the half-space 

boundary, except conditions on the obstacle surface that have to be fitted numerically; 
2) orientation of the multipoles used was chosen taking into consideration the polarization of 

exciting plane wave; 
3) there was chosen the special combination for azimuth dependence, due to that it was be able 

to build the numerical scheme separately for the each azimuth harmonics. 

Algorithmization of the problem means to transform the original BVP to the linear algebraic 
system with respect to the complex vector of unknown amplitudes of discrete sources. This 
procedure has been developed as including the following steps: 
1) replacement of the continual boundary conditions at the obstacle surface to the discrete ones 

(set of collocation points); 
2) transition to the Fourier harmonics (with respect to azimuth variable <fi) for the components 

of an exciting field (the representation for the scattered field is itself the trigonometric 
polynomial on azimuth variable); 

3) matching the azimuth harmonics of the scattered field and exciting one at the set of 
collocation points with accordance of point-matching approach. 

The feature of the present BVP is the existence of the half-space (i.e. substrate). Here we 
express the fundamental solution need via Fourier-Hankel transform [2]. The realization of 
algorithm allows to calculate the all need integrals in real time. Algorithm allows to calculate the 
all incident angles of the plane wave and the both polarizations in parallel. It has an internal 
criterion of Ihe posterior evaluation of the results obtained. This evaluation is the mean square 
norm residual of fields at the obstacle surface. 

3. Numerical examples 

Let us consider an example of numerical analysis of the scattering problem for the case when 
scatterer on the wafer surface is spherical particle, hi Fig. 1 the scattered intensities (mkm2) versa 
scattering angle are demonstrated. Here wavelength is 0.488 mkm, incidence is 45° from the 
normal (S polarization). The particle refractive index n = 1.59 (corresponds to the polisterine 
latex calibration spherical particle), for silicon substrate n = 4.5 - 0.4i. Curves 1, 2, 3 mean the 
particle diameter as 0.15 mkm, 0.22 mkm and 0.496 mkm. The markers correspond to the 
experimental data [3]. 
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The integral cross-section (response) R = jl da is the important characteristics of the surface 
a 

scanner. Here Q is the collector surface of the real unit.  The response from polisterine 
calibration spheres is shown in Fig. 2 as function of particle diameter. Markers corresponds to 
the data from WIS-8500 set-up of ADE Optical Systems [3]. The beam incidence is 15°, (he 
wavelength and polarizations are the same as in previous Fig. 

In Fig. 3 the scattered intensity from 0.4 mkm aluminium spheres (n = 0.4 - 4.6i) are 
demonstrated as compared with the model of perfect conducting particle. Here the incident angle 
is 65° from the normal. Graphs 1, 3 correspond to the aluminium particle (P and S cases, 
respectively), and 2, 4 are the perfect conductor model (P, S). 

We can also compare the scattering from the different kinds of inhomoginities. In Fig. 4 the two 
kinds of obstacles are presented: polisterine spherical particle and pit in the wafer. The pit is the 
hole of finite depth in the substrate (actually it has a form of semi-sphere). The P-polarized beam 
incidence is 45°. The both scatterers pit and particle are rather small ones, and their sizes are so. 
that particle and pit surfaces are equal. So, diameter of the particle is 0.07 mkm (curve IX 
corresponding pit is of 0.1 mkm (curve 2). The next pair is particle of 0.14 mkm (curve 3) and 
pit 0.2 mkm (curve 4). 

4.  Conclusions 

The approach used seems to be very attractive for investigation of similar problems. 

• First, this approach is easy. The algorithms used generate the compact codes, moderate of 
computer resources. These codes are fast and available for PCs. 

• This approach is universal. It can be used for various types of particles (both metallic and 
dielectric) and for various types of wafers' defects as well. 

• This approach is reliable. The results predicted via DSM were compared with experimental 
data from real world scanning detection systems and demonstrate a good agreement. Besides, 
the algorithm has an internal criterion of obtained result accuracy. 
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Introduction 

The General Multipole Technique is a relatively new approach to investigate 
electromagnetic Boundary-Value Scattering Problem (BVSP). It may be realized in 
different forms: Multiple Multipole Technique [1], Discrete Sources Method (DSM) [2] or 
Auxiliary Current Technique. The main idea of DSM is to represent a solution of BVSP as 
a finite linear combination of elementary field sources. It satisfies Maxwell equations 
anywhere outside the medium discontinuities and radiation conditions at the infinity. So, 
BVPS solution is reduced to approximation problem of an exciting field by discrete sources 
(DS) fields at the obstacle surface. Point or distributed dipoles and multipoles are usually 
used as the DS. Unknown DS amplitudes are to be determined from a boundary condition 
enforced at the obstacle surface. 

Point-matching approach is preferably employed for DS amplitudes determination. It 
means that it ought to fulfil a boundary condition at a discrete set of the points distributed 
at the obstacle surface. Therefore the resulting equation is automatically a matrix equation. 
It was established that overdetermined linear systems are more proper to provide fast and 
stable numerical scheme. It allows to decrease the number of DS required for the field 
approximation. 

The most appropriate algorithm to get a pseudosolution of overdetermined linear system is 
the Given's algorithm. However if matrix is drastically increase the single way is to 
implement an iterative scheme to get its pseudosoluion. Unfortunately there is no way to 
prove a convergence of any iterative scheme for DSM point-matching matrix. First of all it 
is a consequence that matrix operator transforms SRN into 5RM (N<M). Lately it was 
proposed to employ GMRES [3] for the solution of some BVSP on the basis of boundary 
integral equation approach. The convergence GMRES was ensured by a dissipativity of the 
boundary operator. It allows to investigate the scattering problems on conductive screens or 
resistive shells [4]. 

In this report we are going to extend above approach for DS amplitudes determination. We 
intend to propose to use a dissipative matrix in the frame of DSM and apply GMRES to 
get its pseudosolution. We have justified the convergence of GMRES based on the 
dissipativity of the matrix [5]. 
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1. Acoustic waves scattering 

We will consider the scattering of time-harmonic acoustic waves by local obstacle D in R3 

with impedance boundary condition at the obstacle surface 3D. So, the following BVSP 
for the acoustic velocity potential U holds 

AU + k2U = 0    De = &/D 

(1) 3U + gj=U*     cD 

dUIdr-iW: = *-') 

where k - wavenumber, k>0, Im C>0, £eC(3D), d = d/dv, v- unit outward normal to 3D, 

i®eCl'"'. 13° - functional depends from external excitation.  There exists a single 
solution of BVSP (1). 

Based on DSM we will seek approximate solution of (1) in the following form 

N 
(2) UN(M)=XTn

NYn(M) 
«=1 

here Tn(A/) = exp|/fcRiVÄ/ |/4^?jWM - fundamental solution of Helmholtz equation. 

{^„}n=[ c D. Therefore representation (2) satisfies to Helmholtz equation in De and 

radiation conditions at the infinity. Let us determine the unknown amplitudes of DS T^' 
from the following relations 

(3) j|^/A--r^/Ar-f/0|^>a-=0,     m=\N 
cTD 

where asterisk implies a conjugate value. According to (2) and (3) we obtain a linear 
system for DS amplitudes determination 

N   

n=\ go 

where matrix elements are Dmn = J \d¥nV*m + C^n^m ]d<r 
3D 

Theorem I. For any N there exists a single solution of the linear system (4). 

Proof. We shall show the dissipativity of D-matrix. That is for any fN = [l^l       holds 
' 1 n=\ 

(5) ha.lvTN,TN\>0,   VTN *0 
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vfN,fN) = o,   => fN\ 
and besides 

Let us choose arbitrary fN and construct a function 

N 

n=\ 

It can be directly checked that 

(6)       hn(r>fN.fN) = lm f^v^Ar + Im \&V^da 
a> 3D 

Applying the second Green's theorem to VN and conjugate value VN yields 

(7) Im \afNV*Nda=k]\FN\ da 

where FN - far field pattern of VN field and Q - unite sphere. Since k>0 and ImC>0. 

then from (6)-(7) follows (5). Let now {l)fN!T
N)=0 is valid, then from (6)-(7) we 

obtain FN = 0. From the analytic property of VN follows that VN = 0. Therefore 

accounting that all points M„ are different and by virtue of ¥„ singularities in M„ we can 

conclude that jf^jUo. 

Now we proceed to the proof of a convergence of the approximate solution (2) to the exact 

solution of BVSP (1). From the completeness of the system xn(
p) = \3P + Cf¥n(p) at 

the   obstacle   surfaced    in    Lo(dD)    we   find   that   there   exists   a   function 

N 
VN (M) = X f" ^"iM) such that 

n=\ 

(8)       VK = U+ sN and (<?+ QeN = SN : hN\\ -» 0, under N -» oc 

Then the following result is valid 

Theorem 2. Let approximate solution of BVSP (1) be (2) and DS amplitudes are 
determined from the linear system (3), then UN converges to Ae exact one 

KnPN-U\\L2m=0. 
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Proof. Let us show that UN be uniformly confine for all N. Multiplying (3) by Tm and 
summing yields 

\aJNu"Ndcr+ j(\UN-\ da- jcU°ul-da = 0 
3> 3) 3) 

accounting (7) we can conclude that 

(9)       k\\FNfdco + j'^!lm^UN-U0 fli^lmC^dcT^ j\u°\   /4hnCdcr 

Hence, we have got a uniform boundedness of 6"jV in L2 (<5D) sense. Now we can prove 
the convergence. From (8) it follows 

(10)       j\wN+£VN-U0^dc-= \öNV*mda,      m = jjf 
3)' 3) 

Creating a discrepancy WN = VN - UN then (3) and (10) yield 

or finally 

*JJF^j2rffl»+ \\mCWNfd(j = lm\SN{WN)'da<\sN\ \wN\\ 

From the last relation and uniform boundedness of WN we get the convergence of the 
approximate solution to the exact one. 

Theorem 3. Linear system (3) is correctly solvable for any N. 

Proof. Let us introduce the following notations: 

Bm:= \wnV*mdc 0^:= fo^tr 
3} 3> 

Then Dmn = Bmn + Gmr!. Let us examine B matrix first. Applying the second Green's 

theorem to ¥„ and ¥„, yields 

3> 
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here S^ = smlkRM M \IRM,M„  * real valued sy1™1»61"0 matrix- Rewriting relation 

obtained we find that 

°mw (11) B^^B^+illnS» 

Therefore,    matrix     C = B-;74;rS     is    Hermitian    matrix.    It    implies    that 

1m(cfN, fN ) = 0 for VfN. So, the following holds 

Ln{Bf",f")=l/4;r Re(sf NJN)= s? '^\fNf 

here sf is minimal eigen value of positive determined matrix S. Let us do the same 

transformation with G matrix. It can be easy seen that 

Gmn-G*„„ = 2iEm„   where Emn = Jlm^ Y>cr.    So   E   is   Hermitian   positive 
3D 

determined matrix. Introducing into consideration Hermitian matrix H: //„„ = Gmn - iEmn 

and following the same way as before we obtain 

h*{GfN,fN)=Re(ETN,fN% e^Hj2 

where ej¥ is minimal eigen value of Hermitiam positively determined matrix E. Hence, the 

following relation is valid 

\lBfN,TNf,hn{lifN,TN)>(sl
N/4x+e1

NfNf 

where from correct solvability follows 

JDfiV|>(^/4^ + efV)|fA'|| 

Corollary 1. From the theorem 2 follows that it is possible to employ GMRES for the 
solution of the system (3) for any N. 

Corollary 2. For the cases C=0 (sound-hard) or £=«> (sound-soft) it is easy to prove the 
same results. To do this it is necessary to find ^*0 such that corresponding B VSP gives the 
solution close to original one. 

2. Computer simulation results 

Let us consider computer simulation results relevant to plane wave scattering at sound-soft 
3-axis ellipsoid. Axis relation is 2:1:8. Table 1 contains results comparison received by D- 
matrix approach and normal system using. Matrix columns mean 
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discretes number per wavelength 
total DS number - N 
M/N ratio, where M - matching points number 
number of GMRES iterations completed 
residual value corresponds to D-matrix 
residual value corresponds to normal system 

L N M/N niter resD(%) resN(%) 
8 40 3.2 7 11.3 24.1 
9 50 3.1 7 8.0 16.7 
10 50 3.7 7 5.2 15.4 
11 63 3.4 8 4.6 12.5 
12 78 3.6 8 2.1 11.2 

Table 1. 

Computation has been carried out in the following manner: 

1. Scattering problem was solved by D-matrix approach with the boundary residual in 
matching points less then 5%. 

2. We done the same number of iterations GMRES for the normal system. 

It can be seen that in all cases boundary residual for D-matrix approach less then for the 
normal system. 

Summary 

D-matrix approach has been proposed to use iterative scheme for discrete sources 
amplitudes determination in the frame Discrete Sources Method. Computer simulation 
results showed that D-matrix approach seems to be promising tool. It can be extended on 
penetrable acoustic obstacle or even electromagnetic wave scattering investigation. 
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Abstract: The MMP technique delivers an approx- 
imate field solution which satisfies Maxwell's equa- 
tions exactly inside of homogeneous subdomains, but 
does not satisfy the boundary conditions between sub- 
domains. This so-called mismatching is equivalent 
to non physical field sources on the boundary. The 
paper describes some numerical experiments using a 
technique for compensating the non physical sources 
with additional sources on the boundary. This tech- 
nique works satisfactorily for both electrostatic and 
magnetostatic problems in 2D and in 3D. In the time 
harmonic case as well as in true SD-situations of 
electrostatics the violation of the charge conservation 
principle of the ficticious sources may causes difficul- 
ties. 

1. Introduction 

The MMP-program package [1] is a tool for com- 
putational electromagnetics in frequency domain for 
situations smaller than, say five to ten, wave lengths 
and piecewice homogeneous, linear and isotropic ma- 
terials. More over, a static version of the program is 
available. Solutions of this code may be used in the 
dynamic program for calculating quasistatic situa- 
tions [2]. 

As it is well known, MMP expands the unknown 
electromagnetic field 

fHf"M»(S (i) 

in a series which is different for each homogeneous 

subdomain. Each (gk) is an analytical solution of 

Maxwell's equationsi i.e., the electric field Et and 
the magnetic field fit are exactly coupled through 
Maxwell's equations. However, on the boundaries 
between the subdomains the continuity conditions 
for the fields are satisfied only approximative!^ 
i.e., the boundary conditions are fulfilled in a least 
squares sense. This results in a certain error — the 
so-called 'mismatching' on the boundaries. Though 

the mismatching is not equal to the true error (the 
fields on both sides of the boundary may be wrong 
but still fit in a particular boundary point) it is still 
closely related to the real error: With a vanishing 
mismatching on all the boundaries the true error be- 
comes also zero. To be correct, one must state that 
this is only true for well posed problems, i.e., prob- 
lems with a unique solution. 

2. The Mismatching and its Sources 

In the general case the mismatching has six compo- 
nents in each boundary point and is expressed with 
the difference of the respective field components: 

AEci = 4-E-Ütangl,    AEt2 = Z\-E-5tang2 

AHt2 = AHSUaei,   AHt2 = AH-utmg2,      (2) 

ADn = AD ■ Ü„orm,      ABn = AB ■ «norm- 

Thereby, ütangi,2 are unit vectors tangential to the 
boundary and ü„orm is a normal unit vector, while 
AX stands for the vectorial difference of the vector 
X at both sides of the boundary, e.g., 

AE := -Eleft — bright 

or for the electric displacement density 

AD := £left£|eft — bright-Bright- 

(3) 

(4) 

Similar formulae with the magnetic field H and the 
magnetic induction B = fiH are used, e and ji are 
the possibly complex electric permittivity and mag- 
netic permeability respectively. 

On ideal conductor surfaces the quantities AHti,2 

and ADn are not restricted while on other bound- 
aries all components listed in (2) must vanish. In 
the practical applications they are "small" instead. 
Nonzero parts are equivalent to (or may be consid- 
ered as) certain non physical electric and/or mag- 
netic sources: 

ADn     =       el. surface charge ce 

ABn      =     mag. surface charge ?m 

AHti,2    =      el. surface current <Se 

AE%i2    =   mag. surface current <Jm 
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Note that the vectorial surface current densities are 
rotated by 90° in the tangential plane compared to 
the tangential components of the related mismatch- 
ing quantity. If we define the vectorial tangential 
mismatching 

AEt := {AEti)ntansi + (4£t2)ütang2       (5) 

(similar for AHt) and suppose utangi> ütanS2 and 
ünorra forming a right handed system in this order 
("norm points from the 'right' to the 'left' side of the 
boundary) then we have the equations 

ADn = <re 

AB„ = fm 

(6) 
AHt = Se x u„orm 

AEt = Sm x 5norm 

After performing the MMP calculation the situation 
is as follows: In each subdomain D; we have an (ap- 

proximation of an) electromagnetic field (a') satis- 
fying Maxwell's equations of this particular domain. 
But the fields do not properly match at the bound- 
aries. We seem having a solution of a slightly modi- 
fied problem, namely a problem with additional im- 
pressed sources on the boundaries. However, this is 
only part of the truth. As it is well known sources 
(currents and charges) may not be given arbitrar- 
ily but they must satisfy the continuity equation 
(the charge conservation principle). Since our fic- 
ticious sources are located exclusively on the bound- 
aries these relations are (e~'""-time dependency is 
assumed) 

divSQe = jwce,    divs 5„, = iwcm (7) 

where divs is the surface divergence operator. Note 
that in statics the angular frequency w is zero and 
thus the surface charges are not restricted in this 
case. On the other hand, in the stationary case 
(i.e. time harmonic fields with single angular fre- 
quency w) the surface charge density may be ob- 
tained straightforwardly from the surface current 
density. 

3. The Ficticious Fields 

Suppose B is the boundary of a particular field sub- 
domain filled with a material being described with £ 
and ii, then the electromagnetic field related to the 
current density ae is given by [3] 

#«(»") = -^ ll(SM'") x "*) (>'* 

£e(r) : 

1 \ eikR 

R) -WdS'> 

4xiu>£ 

-dS', 

where r and f' are the position vectors of field point 
and source point respectively, R := r — ?', R = \R\, 
UR := RjR, k — Wy/Jjii is the wavenumber of the 
medium and the current density has been split with 
respect to »«: 

SeR — (ae -URJÜR, a<,T ■= «e - <S<sR-       (9) 

Similarly the magnetic current density has the field 

^m(r) = 4^/(5mr(n X UR) (ik - -0 ^j-rfS', 
B 

R     R' 

We call these fields "ficticious fields" and. use for the 
i-th subdomain the symbols (g") and (a™') respec- 
tively. The ficticious fields may be subtracted from 
the original (approximative) fields leading to a new 
and — hopefully — more accurate solution. 

4. The Time Harmonic Case 

By construction we have at any point in the i-th 
subdomain 

Eriew 

unew Uo,v \£) urJ- 
(ii) 

Let us examine the mismatching of the new field 

(#'»<») 'n a particular boundary point at position 

f0. For this purpose a further splitting of the ficti- 
cious fields is performed by separating a small por- 
tion B° around ?o from the boundary. We may write 
B = B°UB' and decompose the integrals accordingly, 

e-g- 
£e,- = £°-+i?;,- (12) 

(analogous for Heil Emi, Hmi as well as B and £>). 
The primed parts are obtained by integrals only over 
B'. The remaining integrals over B° (a flat circular 
piece of boundary with a supposed constant source 
density on it) may be obtained analytically and yield 
(at r0 = lim/,_o f0 + hii„orm) 

"e — o0^ * "norm 

Em = _2(5r° 

4iwß 

(13) 
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Thereby, ünorm points into the field domain.  Note 
that the normal components become zero which is 
due to the fact that we assumed a constant S on Bo- 

The new tangential mismatchings become 

with the constants 

ßt,left — ßt,rig!K 

=ÄE°U 

- ^et.left + Ea,T ght" ' Ea, left + ^et.rigltt 

=üt ^M,_',ishty 

— ^mt.left + -^mt right "^mt.left + •E'mt,right_ 

(14) 

Zl/lt       — Jl t,left — " t,right 

■H' 

-H' 

t + ■" et.ri ight — ^et.left + "et,right 

■ + ^mt rlffht —■" mt.left + -"m 1 mt,right ' •#mt,left f-"mt,right 

and the normal mismatchings are 

AD"1 

AB» 

- tright-C/n,right 

— £left-£en,left "+" ^right-E'en,right 

— eieft-^mn.left + £right-Emn,right 

> rjold ., rrold 
— ^Ieft-"n,left — bright -nn, right 

(15) 

(16) 

(17) 
— Meft#en,left + /^right^en, right 

— Weftflmn.left + /*right#ir,r.,right 

Thus we can see that the normal mismatching is 
changed not by the local sources on Bo but by the 
sources on B' only. Now we suppose for the moment 
large fields X" and try to compensate the old mis- 
matching with only those fields. In formulae: 

1 1   V  -        . 
 ) + «m X «norm 
right       £left / 

: -7?- )-aeXl   
ilU  Vbright       Weft/ 

This system may be solved' with respect to the sur- 
face currents ae and am: 

AE\ 

ÄH?6 

,old _ ^e_ (_}_ 

(18) 

ÄE°wCm - ÄH?M x Ün 

CeCm " 1 

ÄH?WCe + ÄE?d X unc 

(19) 

1 Cross-multiply the equations with xün0rm and exploit the 
fact 3m x unarm x twm = -3m, then eliminate the vectors 
Oe.m X Snorm- 

\lbJ  fright       Elefty 

cn = -Lp M 
m        ilU   V/'right        «eft/ 

(20) 

Using the sources (19), the new mismatching is op- 
timised in a certain (local) sense but only with re- 
spect to its tangential components. Note that these 
sources are not 'negative equal' to the sources given 

in (6). 
Since no complete correction is possible in a single 

step the given procedure is applied iteratively. Con- 
vergence is not guaranteed in all cases. However, ex- 
perience shows that there are converging situations 
(see examples in sect. 6!). 

5. Special Cases (Statics) 

Let us discuss now some special situations. If either 
the electric or the magnetic properties are the same 
on both sides of a boundary, the respective constant 
Ce or Cm becomes zero and the surface current den- 
sities will reduce to the negative of that given in (6). 

A second case worth to be discussed is the static 
situation. According to (7), the current sources of 
true static fields must be free of divergence while the 
charges are decoupled from the currents. The inte- 
grals (8) and (10) take the charge conservation into 
account: This means that all charges coupled by (7) 
to the currents are taken into account but true static 
charges are not. They can not exist in the time har- 
monic case. For very low frequencies the second in- 
tegrals of (8) and (10) are still true: Either 3 is free 
of divergence — in this case the total integral tends 
faster to zero than u and the associated field van- 
ishes — or divs 5^0 — and the related charges 
increase with decreasing u resulting in an increasing 
field. However, the decomposition (12) should not 
be used in this case since the local and non physical 
fields £° and H°m tend to large values with decreas- 
ing u, in spite of the fact that the sum £° + E'e 

becomes zero. In summary we state that in static 
cases we may take into account charges and currents 
separately using the integrals 

Un = iJJUeivA"""dff, 1_   ffäeTJr') X ÜR JCI 

j?  /pi _ -1   ffS^(r') x ÜR     , 
(21) 

known as Biot-Savart integral in the magnetic case 
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and the well known Coulomb integrals 

(22) 

The local fields (with upper index 0) resulting form 
(21) are equal to those given in (13) while the local 
fields resulting from (22) are simply 

De = -unmm, 

-Dm —    n "norm 

(23) 

points to the side of where the normal vector unaTm 

the field point. 
Using a similar technique discribed in the general 

section 4 with compensating sources according to (6): 

?e = AIT™ 

ae = -Äff°ld : 

Sm = -ÄE?]d > 

(24) 

we may locally compensate both the tangential and 
the normal mismatching. Note that in common 
static applications only one field (either the mag- 
netic fields (B and H) or the electric fields (E and 
D) are used but hardly ever both of them simulta- 
neously. Nevertheless, both types of compensating 
sources are used — either the pair (<Je. Cm) or the 
pair (am,fe). 

6. Examples 

We discuss two examples, one in 2D and one in 3D. 
For both examples, both the electric and the mag- 
netic field is calculated. Figure 1 gives the cross 
section of a two wire line and in fig. 4 a straight 
wire above a non flat ground is shown. Materials are 
either ideal conductors or ideal dielectrics and the 
overall dimensions of the relevant parts are supposed 
to be small compared to the wavelength. This allows 
a quasistatic calculation of both the electric and the 
magnetic field separately. The boundary conditions 
on all the surfaces are: i?tang = Ö in the electric 
case and Bnorm = 0 in the magnetic case. In both 
cases the boundary conditions at the infinity must 
be respected which is done by choosing the starting 
condition and the 'excitation' in a correct way. 

Let us discuss the 2D-example first (see fig. 1). 
For the electrostatic calculation the charge neutral- 
ity (with given charge on one wire) is a sufficient 

condition. It is given by the starting condition — 
the field of two oppositely equally charged thin wires 
placed inside the wires — and may not be altered 
by introducing correcting longitudinal magnetic cur- 
rents since a single magnetic current does not con- 
tribute any charge. Furthermore, the total magnetic 
current in each wire must vanish. This results in 
the condition § E ■ dl = 0 (integral around one wire) 
which is satisfied in our case only in a weak sense: 
The integral vanishes for the final (correct) solution. 
For the magnetostatic calculation the electric current 
neutrality (with currents of equal amount but differ- 
ent sign in both conductors) is necessary. This is 
obtained through the starting condition — the field 
of two thin straight wires leading opposite equal cur- 
rents. The correcting sources are magnetic charges 
which must be of zero amount in total on each con- 
ductor. Again, this is guaranteed in a weak sense 
only: The S-flux integral over the whole surface van- 
ishes for the final (correct) solution. 

&   »  »  o a t? 
^.C;,^ ^  Ü   f?   v 

<^<c=^ %  ft  & <? 

«   <5 C5> cb 

^^^   #   ß    ^  * 

<? c? a a 
=>   e>   <s   <j> 

<s   ft   C>   R>    ^     ft    <?   <?  C»   cC   Q 

^ ö<= \   §    ft   0  <P&^^ 

<^<il 

^ ■*&<=! 

Figure 1:  In the cross section of a two wire line with 
almost square shaped ideally conducting wires the 
electric field (top) and the magnetic field (bottom) 
are computed by means of statics. Two thin wires 
placed in the center of the 'squares' are used to pro- 
duce the starting condition. In the electric case they 
carry opposite equal charge (per unit length) and in 
the magnetic case they lead opposite equal currents. 
See figs 2 and 3 for details of the field. 
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Figure & The (wrong) electrostatic field of only two 
thin wires is corrected nsing magnetic surface cur- 
rents. The picture shows both the starting field and 
(in front of it) the corrected field (6 iterations) which 
stands perpendicular on the surface of the wire. 

AW 

Figure 3: The (wrong) magnetostatic field of only 
two thin wires is corrected using magnetic surface 
charges. The picture shows both the starting field 
and (in front of it) the corrected (6 iterations) field 
which is tangential to the surface of the wire. 

The 3D-example (see fig. 4) is somehow more so- 
phisticated. The most important difference is that 
in the 2D-case the surface divergence of the currents 
vanishes automatically while in the 3D-case this is 
no longer true. It is important to note that the Biot- 

Savart integrals (21) deliver non Maxwellian fields 
in cases where the current density is not free of di- 
vergence. A second difficulty consists of the starting 
condition. Our particular example may be consid- 
ered as a disturbed 2D-situation where the undis- 
turbed problem consists of a thin wire over a flat 
conducting plane. This were a problem to be solved 
using the image principle. The solution of the undis- 
turbed problem is (at least part of) a good starting 
field for the full problem. First of all it satisfies the 
'boundary condition at infinity' and it covers all pos- 
sible problems arrising from the infinite elongation 
of the wire and the ground plane, such as charge 
neutrality and opposite equal currents respectively. 
Since the field domain is essentially a half space (and 
not a full one as we had it in the 2D-example) in 
principal the correcting magnetic current may simu- 
late a net electric charge on the hump (electrostatic 
calculation) and the correcting magnetic charge may 
simulate the field of local electric currents. The only 
remaining difficulty is the surface divergence of the 
correcting magnetic currents in the electrostatic sub- 
problem. Work is in progress to solve this particular 
3D-problem. 

'* * ft 

Figure i: The electrostatic field of a long thin wire 
atop ground. The ground is almost fiat — with a 
hump close to the wire. The correction is done using 
electric surface currents only. The picture shows the 
corrected electric field on two rectangles one perpen- 
dicular to the wire and the other parallel to it. Its 
locations are adjusted to the hump. 
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Figure 5: The corrected magnetostatic field of the 
situation shown in fig. 4. Here, only the field in a 
plane perpendicular to the wire is given. See fig. 6 
for more informations of the field in other places. 

_ . - % ft o 

C^ C^, C5^ C£> i=> =£> t^7 <§^ 

c£ c> c> cc> c=> => Ö ' 

C5 c> c£ t=C> ci> => ö 

effect of the correction field: The ficticious sources 
do not only influence the field at their own location 
(though the strongest effect occurs exactly there) but 
also more fare away from them. Experience shows 
that this problem is not essential in the treated ex- 
amples. 

It has been shown that for particular cases the 
approach is very useful and leads to remarkably im- 
proved approximations. 
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Figure 6: The magnetostatic field has been corrected 
using magnetic surface charges. Note that the field is 
tangetial to all the surfaces. 

7. Summary 

The mismatching on the boundaries may be reduced 
by adding ficticious sources compensating the local 
mismatching. This works perfectly in the 2D-case. 
The major difficulties in applying this technique in 
3D is the fact that the ficticious sources do not nec- 
essarily fulfil the charge conservation principle. 

Further problems may arise through the non local 
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Abstract 

Doubly Curved Reflector Antennas which produce a directional pattern having a shaped 
beam in one plane find wide applications in search radars. The radiation pattern of the 
reflector gets affected by rim diffraction, scattering from supporting struts and due to feed 
blockage. In this paper, a numerical design procedure is presented for predicting the radiation 
pattern of the doubly curved reflector antenna. The procedure is similar to that developed 
for parabolic reflectors, but extended to doubly curved surfaces. Illustrative examples have 
been presented and compared with measured patterns. 

1    Introduction 

Several radar applications need beam shaping. For applications such as surface search by airborne 
antennas, the coverage pattern has a cosecant-squared shape in the elevation plane and a pencil 
beam in the azimuth plane. This type of a shaped beam can be obtained from a Doubly Curved 
Reflector Antenna. The conventional procedures for synthesising such antennas rely on Geomet- 
rical Optics (GO) fields to obtain the shaped vertical sections [1, 2, 3]. The radiation pattern of 
the shaped reflector can be calculated using Physical Optics (PO) techniques [4]. However, for 
an accurate analysis of the complete radiation pattern, it is necessary to take into account the 
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diffraction from the rim of the reflector, aperture blockage due to feed and also the scattering 
from the struts supporting the feed [5]. 
Recent trends in the reflector antenna design have shown the need to combine the advantages 
of Aperture Integration (AI), Geometrical Theory of Diffraction (GTD), PO and the Method 
of Characterstic Moments. This approach which is well documented in the literature has been 
successful in the accurate prediction of the radiation pattern of parabolic reflectors [6]. Lee and 
Ruddock [7] describe AI techniques for computing the main beam and near sidelobes, and Uniform 
GTD [8] techniques for computing the wide-angle sidelobes and backlobes, of parabolic reflectors. 
Aperture blockage by feed is modeled by Physical Optics (PO) model of a rectangular or a circular 
plate [9]. Strut Scattering is modeled by considering that each strut segment scatters in the same 
way as an infinite circular cylinder [10]. The scattering from each segment is calculated using the 
method of characterstic moments and then summed up to obtain the total strut scattering. 
In this paper, a technique that combines the advantages of the above methods is presented for 
an accurate design of a shaped beam doubly curved reflector antenna. Appropriate modifications 
necessary to extend the parabolic reflector analysis to the doubly curved reflector are described. 
With this technique both the co-polarised and cross-polarised fields can be calculated. The de- 
sign procedure has been verified by comparing these theoretical predictions with experimental 
measurements at S-band. The effects of strut scattering and the feed blockage on the radiation 
pattern of the doubly curved reflector are also demonstrated. 
The paper first reviews the reflector synthesis procedure described by Carberry [4]. 

2    Reflector Synthesis 

Figure 1: Geometry of a Doubly Curved Reflector and far-field coordinate system 
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The synthesis procedure described by Carberry [4] is based on Geometrical Optics theory. The first 
consideration is that the central vertical section of the reflector shown in Fig.l must be designed 
to produce the desired far-field elevation plane pattern. The second consideration requires that 
the reflector be properly focused in the transverse planes. This requires that the rays emanating 
from the point source feed reflect from the conducting surface and emerge parallel to the central 
vertical plane. This focusing action requires that the transverse planes of the reflector be parabolic 
with a focal length of 

fW = ftM cos2 f|j (1) 

where,  ß = ip + 6 (ip) 

4> = angle of ray incident on the reflector central section w.r.t z-axis 
9 (ip) = angle of reflected ray w.r.t z-axis 

pc (ip) = distance from origin to reflector central section 

Using the synthesis procedure described in [4], for a given G(ip) (feed illumination function) and 
P(9) (far-field function), pc(ip) and the reflector co-ordinates can be computed. 

3    Reflector Analysis 

The radiation characterstics of the doubly curved reflector antenna can be analysed by Aperture 
Integration Method [11]. In this method, the fields reflected by the surface of the antenna is first 
found out over a plane, which is adjacent to and in front of the reflector and is normal to the axis 
of the reflector. Geometrical Optics (ray tracing) techniques are usually employed to accomplish 
this. The aperture plane is divided into a rectangular grid and equivalent sources are then formed 
over the grid. Fig.2 shows the central vertical section of the reflector with feed at F(0, y£, zs). A 
ray starting from F at an angle ip w.r.t the z-axis gets reflected from point P(0, yT, zr) on the 
reflector surface. The reflected ray passes through the equiphase surface S at P'(0, y', z') making 
an angle 9(ip) w.r.t the horizontal at P. With FP = p and PP' = p', the equiphase surface S 
will be completely in front of the reflector if p + p' > pmax. The electric field at each point on the 
equiphase surface is given by 

E* 
V*?GftM) 

v p + p- 

where G{ip, 9) is the feed illumination function. The coordinates of P' are given by 

y'   =   p sin ip + p' sin 9 

z'   =   po - p cos ip + p' cos 9 

(2) 
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Figure 2: Ray tracing to find the aperture fields 

The electric field at a point Pa(0, ya, za) on the central grid line is given by 

E"   =   E^-jkd>, where,  d=\z'-z*\ (3) 

The x and y components of the aperture field Ea are given by 

El   =   £°cos(r) 
El   =   £°sm(-r) 

where, r, is the feed polarization angle. 
Since the transverse sections of the reflector are parabolic in shape, the electric field at each point 
on the aperture plane can be obtained by multiplying the central vertical section fields with a 
phase factor. 

3.1    Far-field calculation using Aperture Integration 
The far-field of the reflector antenna with its axis coincident with the z-axis and its aperture 
defined in the x^y plane, can be determined by the field distribution on the aperture using the 
relation [7] 

—jkr 

E = ^ff&ES + {FyE«)e—dxdy (4) 
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El and E° are the x and y components of the aperture electric field and r is the distance from 
the aperture point to the observation point. Fx and Fy are the modified vector element patterns 
associated with two Huygen's sources (crossed electric and magnetic dipoles) each having its 
electric field vector parallel to the z-axis and j/-axis respectively. Efficient techniques for carrying 
out the aperture integration have been described in [7]. 

3.2 GTD Analysis 

Uniform GTD is used to compute the wide-angle sidelobes and backlobes [7]. The use of empirical 
corner diffraction solution proposed by Burnside et.al.[12] permits the reflector rim to be modeled 
by piecewise linear segments. Consequently, the GTD analysis of the reflector is similar to that 
of diffraction by flat plate, in that, each rim segment is treated as an edge of a flat plate which is 
tangent to the reflector surface. A suitable criterion for each segment of the reflector rim is that 
it be small enough so that the focus of the reflector lies in the far-field of the rim segment. The 
total diffracted field is obtained by superimposing the edge diffracted field, the slope diffracted 
field and the corner diffracted field from each rim segment. 

3.3 Feed Blockage Calculation 

The blockage effects caused by the feed blocking the aperture fields of the main reflector, reduce 
gain and raise the sidelobe level of the antenna. The effect of the feed blockage is estimated by 
computing the scattered field of a conducting flat plate (rectangular or circular) whose area is 
equal to the maximum cross section of the feed horn structure [9]. The scattered fields caused by 
the feed horn blockage is found by physical optics approach. These forward scattered fields from 
the blockage aperture are then subtracted from the main reflector patterns. 

3.4 Strut Scattering Calculation 

For strut scattering calculation only perfectly conducting strut sections are considered. The strut 
axes are specified as linear with arbitrary locations of strut end-points. The strut scattered fields 
are determined by multiplying the incident field on the strut with diffraction coefficient. The in- 
cident field on the strut is obtained from the reflected field of the main reflector (aperture fields). 
The diffraction coefficients are determined from eigen function solutions of the scattering from a 
circular conducting cylinder [10]. Due to the aperture taper of the reflector, the incident fields 
along a long strut in a reflector system are typically not uniform. Consequently, the long strut 
has to be divided into many small segments and the incident field on each segment is determined. 
The method of equivalent currents is then used to obtain the total scattered field from the long 
strut by integrating the scattered field from each strut segment. 
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4 Computer Results 

The formulations developed in the previous sections were evaluated using numerical techniques. 
Firstly, a doubly curved reflector was synthesised for obtaining a far-field pattern of csc2(0). 
The assumed illumination was a cosine-squared function with a 12-dB taper along the contour 
(<?i-plane). The maximum reflector dimension was 46 wavelengths. Figures 3 to 5 illustrate the 
central vertical section parameters. 
Using the analysis theory described in sec.3, the radiation pattern of the synthesised reflector was 
computed. Fig.6 shows the far-field principal polarised elevation pattern ($ = 0 degrees) com- 
puted with only rim diffracted fields included. No feed blockage or strut scattering is considered. 
These calculations are compared with previously measured pattern [4]. Fig. 7 shows the computed 
principal polarised pattern for $ = —8 degrees and the measured pattern. The compued and the 
measured patterns are in excellent agreement. 
To study the effects of feed blockage and strut scattering a rectangular plate of dimensions 
0.5A x 0.5A was modeled as feed. The diameter of strut was increased from 0.5A to 2A. Fig.8 
shows the effect of strut scattering and feed blockage on the elevation pattern. It can be seen that 
the main lobe and near sidelobes are not affected but the far sidelobe levels increase with increase 
in strut size. This increase is of the order of 1.5dB for the 0.5A strut considered. 

5 Conclusion 

An analysis theory for computing the radiation pattern of a shaped beam doubly curved reflec- 
tor antenna including the effects of rim diffraction, feed blockage and strut scattering has been 
presented. The results obtained by using the analysis theory have been compared with available 
measured patterns. 
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Abstract: A procedure technique to accelerate moment method (MM) or any reaction based codes 
(RBCs) in such a way as to permit rapid parametric studies of a specific class of antennas is 
presented. The class of antennas under consideration in this study are dielectric resonator antennas 
(DRAs) situated on a conducting ground plane and fed by a coaxial probe through the back of the 
ground plane. The specific MM code to which this acceleration technique is applied is based upon a 
surface integral equation formulation for the coupling of a body of revolution (BOR) to a non-BOR 
geometry. For some simple antenna geometries, parametric studies are performed in the traditional 
way, i.e., the computer code is executed for each new set of parameters. The CPU time for these 
studies have compared to the CPU times for the same parametric study using the proposed accelerated 
coding techniques. Significant savings in CPU time can be realized by using the acceleration 
techniques presented in this paper. 

Introduction: The nature and character of antenna design is, in essence, trial and error. That is to 
say, the design process is based upon previous experience and available data. Then comes the hard 
part: design optimization. Typically, in the course of the design procedure, a computer code must 
be repetitively executed, each time with a new set of parameters. This process can be very expensive 
in terms of CPU time. Because of this, a procedure technique to accelerate MM or any RBCs in such 
a way as to permit rapid parametric studies of a specific class of antennas is presented. From a 
computational point of view, the most expensive part of MM techniques is building the moment 
matrix. In the design procedure, rarely is there a need to change every component or "parameter" 
of the antenna during the design cycle. Indeed, for most of the time, a small part of the antenna needs 
to be modified while the major bulk of the antenna remains the same. Therefore by holding this part 
of the antenna constant, i.e., storing the corresponding part of the moment matrix, modifications can 
be made to another part without having to completely refill the moment matrix for each additional 
change. This can result in a significant savings in terms of computational effort. What is to be 
presented in this paper are simple coding techniques for the modification of an existing MM code 
which is capable of analyzing DRAs in such a way as to enable rapid parametric studies of the antenna 

Solution Procedure: The antenna of Fig. la is the specific DRA to be considered in this work. It 
consists of a half-split cylindrical DRA (CDRA) of relative permittivity ex loaded with another half- 
split CDRA of relative permittivity e2- To model the half-split CDRAs as axisymmetric requires 
application of image theory to remove the conducting ground plane. Doing so results in an equivalent 
problem consisting of a dielectric body of revolution (DBOR) excited by a dipole antenna as illustrated 
in Fig. lb. Fig. lc illustrates a section cut through the y-z plane of the equivalent problem of Fig. lb 
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together with its relevant parameters. The DBOR is represented as the cross section of a surface of 
revolution, Sde. The surface Sde has, in essence, been created by the rotation of a simple curve or 
a generating arc about the Z-axis in a right-handed cylindrical coordinate system (the generating arc 
may be thought of as the intersection of a surface of revolution and a plane defined by a constant 
angle * in a cylindrical coordinate system). The region exterior to a particular dielectric region d is 
composed of a homogeneous medium of constituent parameters ee and ft0. The dipoles, which must 
adhere to the constraints of thin wire theory, are represented by S^ and Swe where the subscripts 
"wd" and "we" refer to wire elements interior and exterior to the dielectric region d, respectively. The 
electric and magnetic field vectors are represented by the symbols E and H, respectively. Superscripts 
"dt" and "et" refer to the total field interior and exterior to the region d, respectively. The field 
vectors E and H with superscripts "d" and "e" refer to the fields which arise from the equivalent 
currents which reside on the surfaces in the interior and exterior regions, respectively. The 
superscript "i" refers to the known field, that is, the source field which excites the dipole. The 
equivalent electric and magnetic surface currents which arise from application of the field equivalence 
principle are represented by the symbols I and M, respectively. 

Application of the field equivalence principle [2], together with enforcement of the 
electromagnetic field boundary conditions, results in a system of integro-differential equations from 
which the unknowns Jwd, Jwe (dipole currents), Mde, and J^ (DBOR surface equivalent currents) can 
be determined. This system of equations can be written in operator form as the following: 

SLÄe + Iwe. MJ  «" HLdde^d' MJ  - H«, - I&   on   Sde (2) 

Ee (J   +J   , M. ) = -EJ*       on   Swe 
(3) 

=i3ny:Lde  ^we' —de' —tan wc 

Ed  (L +J  A> M* ) = iji       on   Swd (4> 
=tanv-de  -wd' -:=ae/      -tan ™u 

The above system of equations consists of the electric field integral equation (EFIE) on the 
conductor surface, and both the EFIE and the magnetic field integral equation (MFIE) on the DBOR 
surface. The system of surface integral equations (1-4) are solved using Galerkin's MM procedure 
[3]. The unknown equivalent electric and magnetic currents on the DBOR are modeled asjiarmomc 
(ein*) entire domain basis functions for the circumferential variation, where n is the n Fourier 
azimuthal mode, and as piecewise liner subdomain basis functions for the dependence on axial 
curvature [4]. The unknown equivalent electric current on the dipoles are modeled as piecewise linear 
basis functions [3]. Modelling of the source fields with the extended delta source [5] results in the 
right hand side of equations (3) and (4) being set to zero. 

Upon application of the Galerkin MM procedure, the above system of equations may be 
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expressed in matrix form as 

[BB].ntl 

[WB].n [WB]^+1 

[BB]0 

[WB]0  . 

•       [BW]^ 

0      [BW]_„+1 

[BW]0 

[BB]n-!       .       [BW]n_, 

[BB]n   [BW]n 

[WB]n.!  [WB]n [WW] 

|JM>.n 

|IM>-n*1 

|JM>0 

|JM>«-1 
|JM>n 

|JW> 

rio>] 
|0> 

|0> 

|0> 

|0> 

|vw> 

(5) 

The submatrix [BB] represents the interactions of the DBOR equivalent surface currents with 
themselves, and the submatrices [BW] and [WB] represent the interactions between the DBOR 
equivalent surface currents and the wire currents, and vice versa, respectively. The vector | JM>n 

represent the electric and magnetic current coefficients for the n"1 Fourier mode of the basis functions 
which reside on Sde and are given by 

(6) 

The vector | Jw> represents the current expansion coefficients for the currents that reside on the 
surface Swq, q=d or e, and is given by 

|J„,> 
(7) 

The vector | Vw> represents the impressed electric field at the driven dipole surface. Since the 
final goal is to match the antenna a 50ß line, computation of input impedance and subsequently the 
input reflection coefficient S^ is required. Therefore, the following steps, which are in essence a 
"mode by mode" elimination procedure, can be performed to obtain the solution for the current 
coefficients, Jwq, from which the input impedance can be calculated. 

|JM>n = -[BB]n"1[BW]JJw>, n—N.....N 

These results can be substituted into the last equation system (last row) of (5) to obtain 

(8) 

rWB]_n-[BB]:J.[BW]_n + ... +[WB]0-[BB]0-' 

+[WB]n.pB]n-1-[BW]n-[WW]][Jw>  = -| 

•[BW]0 

V,„> . 
(9) 

786 



Representing the bracketed term containing the matrix products on the left hand side of (9) as 
Z^, results in a matrix equation of the form 

PJlV - -|VW> • <10> 

where [ZJ is an Nwx Nw matrix generated by applying the method of moment on an EFIE on the 
wire surface due to the "numerical" Green's function of the cylindrical dielectric resonator [6]. The 
wire current is easily obtained by inverting [ZJ and multiplying the result by -1 Vw>. 
Acceleration Procedure and Results: For ease of discussion, equation (5), shall be rewritten as 

[BB]   [BW] 
[WB]   [WW] 

1JM> |o> ■ 

-|VW> 
(11) 

The main part of the antenna is that consisting of the dielectric resonator which is numerically 
represented as the matrix [BB] in (11) since it is this part of the antenna which has the desirable 
radiation characteristics. In order to obtain the best 500 match, as well as to excite the desired 
radiating mode, the feed probe position and length must be properly selected. It is not necessary to 
recompute the elements of the matrix [BB] for each new feed probe position in the design procedure 
since this part of the matrix is independent of the feed probe. Hence, the matrix [BB], [BB]n, or 
[BB] _1 can be stored. For the present application, it is more efficient to store [BB]n~ . Also, by 
taking the probe length to be the maximum possible length for a given dielectric region, it is possible 
to analyze the antenna for many different probe lengths. This can be accomplished by first storing 
the matrix [WW] since its elements are independent of the matrix [BB]. Therefore, after initial set 
up, only the matrices [BW] and [WB] require filling for each new probe position. Decreasing the 
length of the feed probe i.e., "cutting" the probe "bit by bit" by eHminating the basis functions on the 
dipole one from the top and its image basis function on the bottom, is equivalent to decreasing the 
order of the matrix [ZJ by two for each "cut." This will require changing the matrix order for each 
cut. However, rather than changing the matrix order, its elements can be manipulated by placing 
zeros everywhere along the matrix rows and columns corresponding to the indices of the eliminated 
basis functions excluding the diagonal elements. The elements of the excitation vector corresponding 
to the index of the basis functions spanning the portion of the dipole which was cut away must be set 
equal to zero. An efficient procedure technique has been described which allows a given feed probe 
to be moved throughout the dielectric part of the antenna, as well as have its length changed, with 
only having to fill the matrices [BW] and [WB]. 

For this study, the following three antennas were analyzed on a CRAY J916 computer. 

hi=39.5mm, a1=24.5mm, 6! = 12.0,    unloaded with a maximum probe length 
22.5mm. 
h,=39.5mm,   a1=24.5mm,   ex = \l.Q,   h2=22.8mm,   a2=14.15mm,   e2=36.0, 
d=9.95mm, probe in region with relative permittivity ej, with a maximum length of 
22.5mm. 
hi=39.5mm,   a1=24.5mm,   e^U.O,   h2=22.8mm,   a2=14.15mm,   e2=36.0, 
d=9.95mm, probe in region with relative permittivity e2, with a maximum length of 
11.0mm. 

Antenna #1 

Antenna #2 

Antenna #3 
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Attention is now called to Fig. 2 which gives actual CPU times for the three antennas for one 
probe position and eight different lengths analyzed in the traditional way, i.e., the program was 
executed for each different probe length. Rather than labeling the horizontal axis as "feed probe 
length," it was labeled as Nw, where Nw is the number of basis functions on the wire, since in the 
rapid study procedure, the length of the feed probe was changed by "cutting" away elements of [ZJ. 
The DBOR surfaces were modelled with 76 basis functions and Fourier modes -3 to +3 were used 
in all cases. The difference in CPU times for the analysis of antennas #1 and #3 is due solely to the 
fact that antenna #3 is loaded; and as such, the DBOR surfaces are modeled with a total of 152 basis 
functions. Furthermore, since the dipole basis functions interact only with 76 DBOR basis functions, 
the increase in CPU time is due mainly to the additional DBOR basis function self interactions. Note 
that the time required to analyze antenna #2, and the rate at which the CPU time increases with 
respect to increasing Nw, is greater than that of either #1 or #3. This is because the dipole basis 
functions interact with all 152 DBOR basis functions since it is located between the free space exterior 
region and the region with relative permittivity €2=36.0. Fig. 3 is a histogram which shows the total 
amount of CPU time required to analyze each antenna in the traditional way together with that of the 
rapid study procedure. The traditional time represents the sum of the individual times shown in Fig. 
2 for each antenna. The rapid study time is for the same antennas except that the dipole was modeled 
at full length, and then cut away two basis functions at a time. As can be seen from the histogram, 
a significant savings in CPU time can be achieved. 

Fig. 4 is a histogram which presents the actual CPU time required for the complete rapid study 
analysis which was performed. The projected CPU times for the traditional method of analysis were 
taken from the data of Fig. 2 and multiplied by the appropriate factors. Antenna #1 was analyzed with 
4 different feed probe positions, 8 probe lengths, and 29 different frequencies. Antenna #2 was 
analyzed with 1 probe position, 8 probe lengths, and at 26 different frequencies. Antenna #3 was 
analyzed using 3 probe positions, 8 probe lengths, and at 26 different frequencies. Again, it is obvious 
that the rapid study procedure technique is quite effective. Finally, attention is called to Fig. 5 which 
gives the return loss, |SJJ| vs. frequency for antenna #1 for the feed probe position of z=7.9mm for 
7 different feed probe lengths. 

Conclusions: A procedure technique to accelerate moment method or any reaction based codes in such 
a way as to permit rapid parametric studies of a specific class of antennas has been presented. The 
specific MM code to which this acceleration technique is applied is based upon a surface integral 
equation formulation for the coupling of a BOR to a non-BOR geometry. The CPU time for these 
studies has been compared to the CPU times for the same parametric study using the proposed 
accelerated coding techniques. Significant savings in CPU time can be realized by using the 
acceleration techniques presented in this paper. In an industrial, or consulting environment, 
generalization of these techniques would definitely give one a competitive edge in the marketplace. 
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Fig. 1 Antenna Geometry, (a) Original problem,  (b) Equivalent imaged problem, 
(c) Y-Z plane section cut. 
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Abstract 

This paper describes a computer simulation of a shipboard high 
frequency direction finding (DF) system. The DF system utilizes a 
correlation interferometry direction finding (CIDF) algorithm. The 
algorithm requires a database which is obtained by calibrating the 
ship to obtain the complex voltages for an array of DF antennas at 
selected azimuth angles at any frequency of interest. The 
direction of arrival (DOA) of an incoming signal is then estimated 
by correlating the measured antenna voltages for the incoming 
signal with the previously stored calibration voltages. 

To implement a computer simulation of a CIDF system, one must 
compute the response of each of the DF system antennas to an 
incoming plane wave which is incremented over 360 degrees in 
azimuth. The primary purpose of this paper is to describe the 
results obtained using NEC 4.1 and a wire grid model of the ship 
and its DF antenna array to compute these responses. The paper 
also describes the results obtained using a brass model of the ship 
and its DF antenna array to obtain measured antenna responses. 
Numerical and experimental results are presented and compared for 
two different ship configurations at several frequencies. 

I. Introduction 

Direction finding from a ship at HF is a challenging problem 
because in this frequency range, an HF antenna may interact 
strongly with the ship's superstructure. As a result, the response 
of an HF antenna aboard a ship may change considerably relative to 
its free space response. Thus, DF techniques which can be used at 
higher frequencies do not work well aboard ship at HF. The problem 
is not insurmountable, however. Saucier and Struckman [1] have 
described a correlation technique which will permit accurate 
bearings to be obtained if a sufficiently robst array is used. The 
correlation technique utilizes a CIDF algorithm which computes the 
correlation between the complex antenna voltages for an incoming 
signal, and complex antenna voltages stored in a data base for 
discrete azimuth angles at the same frequency.  The angle of 
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maximum correlation is used as the bearing estimate. 

Implementation of a CIDF system aboard ship requires that the 
ship be calibrated to create a database of complex voltages. Ships 
are often reconfigured, however, as new equipment is added and old 
equipment is removed or upgraded. Modifications may perturb the 
complex voltages because of the interaction of the array elements 
and the superstructure. If the voltages are perturbed, then 
bearing estimates will likely be in error unless the ship is 
recalibrated. The problem, of course, is that it is difficult to 
predict exactly what effect a particular change in ship 
configuration might have on the accuracy of a CIDF system. 

This paper describes a computer simulation of a shipboard 
correlation interferometry direction finding system operating at 
HF. The simulation was built to determine the feasibility of using 
this approach to predict the effect of topside changes on DF system 
accuracy. The most difficult part of such a simulation is modeling 
the ship and its DF array, and subsequently, computing the response 
of each element of the DF array to an incoming plane wave which is 
incremented over 360 degrees in azimuth. In the following 
sections, wire grid ship models will be described, and computed 
antenna responses will be presented and compared with experimental 
data. 

n. CIDF System Simulation 

Computer simulation of a CIDF system is straightforward in 
principle. Three basic modules are required. The first module 
performs the computation of array antenna element responses. NEC 
4.1 was used for this purpose. Computations were carried out using 
wire grid ship models which are described in more detail below. 
The second module implements the correlation algorithm. This 
module is used to investigate the effect of topside changes by 
cross-correlating the DF array voltages for one ship configuration 
with those for another configuration. The last module displays 
results. The correlation and bearing error processes generate vast 
amounts of data and this module is necessary to enable the user to 
interpret results. It generates three dimensional correlation and 
bearing error surface displays as well as two dimensional displays 
obtained by taking cuts through the three dimensional surfaces. 

m. Wire Grid Ship Models 

Computer simulation of a CIDF system has been investigated 
using two ship models. The first model is a destroyer with an 
anti-submarine rocket (ASROC) launcher located just forward of the 
deckhouse as shown in Figure 1. The second model is the same 
destroyer with the ASROC launcher removed and replaced with a 
vertical launch system (VLS). The VLS is also located just forward 
of the deckhouse but it is nearly flush with the deck and is a much 
less prominent structure than the ASROC launcher. These computer 
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models were developed to replicate, as accurately as possible, a 
1/48th scale brass ship model which was used to obtain experimental 
data for validation of the simulation. 

The ship models have identical, 24 element DF arrays. The 
elements are located around the periphery of the ship. Some are 
mounted on the edge of the deck and some are mounted on bulkheads. 
There are 12 starboard antennas and 12 port antennas in 
approximately mirror image locations. The brass model was built 
with coaxial semi-loop antenna elements, which effectively respond 
to the current flowing on the surface beneath the loop [2]. As a 
simplification, the semi-loop antennas used on the brass model were 
each represented by a single wire in the wire grid computer models. 

The ship wire grid computer models contained approximately 
4000 wires and 7000 segments. In those areas near the DF array 
elements, the grid size was on the order of 1 meter on a side, or 
0.1 wavelengths at 30 MHz. In areas considered less critical, 
fewer wires were used. This approach was used successfully by 
Peng, et al., to compute helicopter antenna patterns [3], and also 
by Givati and Fourie to compute antenna patterns for a fighter 
aircraft [4]. Overall, the fidelity of the models permits their 
use at frequencies up to approximately 30 MHz. 

IV. Computational Considerations 

Determination of the response of each DF array element to an 
incoming plane wave, incremented over 360 degrees, is the most 
computationally intensive task which must be carried out to build 
a computer simulation of a CIDF system. It is this aspect of the 
simulation which is the focus of this paper. 

Numerical computations of antenna responses were carried out 
with NEC 4.1, using the wire grid ship models described above. The 
approach used was to first compute the numerical Green's function; 
then compute antenna responses. The computations reported here 
were carried out using a CRAY EL98, located at the Naval 
Postgraduate School. This is an 8 processor machine with 256 MW (2 
GB) of core memory. On this machine the ship computations were 
carried out in core, using one processor (NEC 4.1 is not configured 
for multiprocessing), and required 108 MW (860 MB) of memory. 
Approximately 8 hours of CPU time was required to compute the 
Green's function, and 1 hour to compute the 24 antenna responses at 
a selected frequency. 

V. Measurement Program 

Experimental data for validation of the DF system simulation 
was collected in a measurement program conducted at the RDT&E 
Division of the Naval Command Control and Ocean Surveillance Center 
(NRaD) in San Diego, CA. The l/48th scale ship models were placed 
on an outdoor groundplane turntable and were illuminated at scaled 
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HF frequencies. The amplitude and phase of the signal received by 
each of the 24 DF antennas were recorded in 1 degree azimuth 
increments as the ship models were rotated. The center of rotation 
was a point halfway between the bow and the stern as measured at 
the waterline. The illuminating signal was theta polarized and at 
an elevation angle of 5 degrees. A sample of the output from the 
signal generator (transmitter) was routed to the receiver and used 
as a phase reference. 

Data were collected for two different ship configurations 
(ASROC and VLS) at 20 different frequencies in the (scaled) HF 
band. For each of these combinations, amplitude and phase data 
were recorded for the 24 DF antennas. 

VI. Numerical and Experimental Results 

At the time of this writing, computations have been carried 
out for the two ship configurations (ASROC and VLS) at frequencies 
of 1.85 MHz, 6.34 MHz, and 9.25 MHz. The ship is approximately one 
wavelength long at 1.85 MHz and five wavelengths long at 9.25 MHz. 
Experimental data have been gathered for the two ship 
configurations at 20 frequencies, including the three above. 

Figure 2a shows the computed, normalized patterns for port 
antenna P-3 and starboard antenna S-3 at a frequency of 1.85 MHz. 
These antennas are mounted on the deckhouse immediately behind the 
ASROC launcher and "look" about 20 degrees to port and starboard of 
the bow, respectively. It can be anticipated that these antennas 
will be most affected by the removal of the ASROC launcher. The 
antenna response for the ASROC configuration is shown by a solid 
line and the response for for the VLS configuration is shown by a 
dashed line. Figure 2b shows the experimental patterns. These 
results show that the numerical patterns agree well with the 
experimental patterns and that there is little difference between 
the patterns for the two configurations at this frequency. 

Figures 3a and 3b show the numerical and experimental phase 
response for antennas S-3 and P-3 at 1.85 Mhz. The phase 
references for the measurements and computations were arbitrary and 
different so the values of phase on the two figures cannot be 
compared directly. Both figures, however, show about the same 
phase change as the source azimuth varies through 360 degrees. The 
phase change at this frequency is almost entirely due to the 
physical displacement of these antennas from the center of the 
ship. Again, there is little difference in the phase responses for 
the two configurations. 

Figures 4a and 4b show the numerical and experimental patterns 
for antennas S-3 and P-3 at a frequency of 9.25 MHz. The agreement 
between the numerical and experimental patterns for these antennas 
is less precise at this higher frequency, but in both cases, it can 
be seen that the removal of the ASROC launcher perturbs the 
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patterns of the antennas. 

As a final example, Figures 5a and 5b show the patterns of 
stern mounted antennas S-12 and P-12 at 6.34 MHz. Numerical and 
experimental results both show these antennas exhibit maximum 
response in the sector around 180 degrees relative bearing and that 
the removal of the ASROC launcher has little effect on the patterns 
of these two antennas. 

VII. Conclusions 

The objective of this work has been to investigate the 
feasibility of using computer simulation to predict the effect of 
topside changes on the performance of a shipboard direction finding 
system. The most challenging problem is computation of the 
responses of the DF array elements. Results obtained thus far are 
very encouraging. 
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DD963: NEC4 Antenna RX Patterns 
Frequency = 1.65 MHz 

Eta = 0 Deg    Theta = 85 Deg    Elevation = 5 Deg 
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Figure 2a. Receiving patterns for DF antennas S-3 and P-3 computed 
using NEC 4.1.  Frequency is 1.85 MHz. 

DD963 Brass Model: Measured Antenna RX Patterns 
Frequency: 1.65 MHz 
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Figure 2b. Receiving patterns for DF antennas S-3 and P-3 measured 
using a l/48th scale brass model of the ship.  Unsealed freauencv 
is 1.85 MHz. 
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DD963: NEC4 Antenna RX Patterns 

Frequency: 1.85 MHz 

Eta = 0 Deg    Theta = 85 Deg    Elevation = S Deg 
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Figure 3a.  Received signal relative phase for DF antennas S-3 and 
P-3 computed using NEC 4.1.  Frequency is 1.85 MHz. 

DD963 Brass Mode!: Measured Antenna RX Patterns 

Frequency: 1.85 MHz 
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Figure 3b. Received signal relative phase for DF antennas S-3 and 
P-3 measured using a l/48th scale brass model of the ship. 
Unsealed frequency is 1.85 MHz. 
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DD963; NEC4 Antenna RX Patterns 
Frequency = 9.25 MHz 

Eta = 0 Deg    Theta = 85 Deg    Elevation = 5 Deg 
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Figure 4a.  Receiving patterns of DF antennas S-3 and P.-3 computed 
using NEC 4.1.  Frequency is 9.25 MHz. 

DD963 Brass Model: Measured Antenna RX Patterns 
Frequency: 9.25 MHz 

Elevation: 5 Deg 
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Figure 4b. Receiving patterns of DF antennas S-3 and P-3 measured 
using a l/48th scale brass model of the ship. Unsealed frequency 
is 9.25 MHz. *    * 
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DD963: NEC4 Antenna RX Patterns 
Frequency = 6.34 MHz 

Eta = D Deg    Theta = 85 Oeg    Elevation = 5 D 
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Figure 5a.  Receiving patterns of stern mounted DF antennas S-12 
and P-12 computed using NEC 4.1.  Frequency is 6.34 MHz. 

DD963 Brass Model: Measured Antenna RX Patterns 
Frequency: 6.34 MHz 
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Figure 5b. Receiving patterns of stern mounted DF antennas S-12 
and P-12 measured using a l/48th scale brass model of the ship. 
Unsealed frequency is 6.34 MHz. 
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ABSTRACT 
This paper presents results of a NEC2 method of moments evaluation of VHF/UHF antennas on a wire grid model of an 

attack helicopter. The study shows that practically useful radiation patterns results can be obtained when the grid model is 

considerably under-segmented in aircraft regions which are electrically far removed from the antennas. Normal modelling 

guide-lines requires approximately 37500 segments for the helicopter grid model at 420 MHz; judicious under-segmentation 

gave useful results using a model comprising about 4500 segments. This reduction in segments reduced computer time by 

a factor of 579 and memory requirements is reduced by a factor of 69. NEC2 radiation patterns are compared to measurements 

on a l/20th scale model which was performed in an anechoic chamber compact range. 

1 INTRODUCTION 
The paper consider a study of radiation patterns from antennas mounted on an attack helicopter. NEC2 [1] computed radiation 

patterns are used for subsequent statistical assessment of link performance for the helicopter during typical mission profiles. 

Wire grids and segments much longer than the recommended [1] 0.1X, were used in areas far removed from the antennas 

to reduce execution time and memory requirements. Measured results, as well as comparison to more densely segmented 

numerical models, were used to ensure that these violations of modelling rules still produced useful values. It may be argued 

that numerical modelling is superfluous when measured results are available, but this is not the case when considering that: 

measurements in only three principle planes were performed and compared to a subset of the computed values; 

the statistical link analysis requires full three dimensional pattern information which is difficult and time consuming 

to obtain by measurement. 

traditional engineering normally argues that measurements constitute the more definitive characterization of a system 

when compared with calculation. This is definitely not always the case with radiation pattern measurements, 

especially on scale models, and many electromagnetics engineers can attest to cases where more confidence can 

be placed on values obtained from calculation or simulation. 

The engineer is hence in a difficult position. He has two methods giving two sets of results - both associated with some 

potentially large errors. On the positive side is the fact that the two sets of results were obtained using two entirely different 

methods, with appropriate techniques used in both cases to minimize errors. Qualitative agreement will definitely demonstrate 

the absence of major blunders in both methods, and engineering judgement and cost will dictate which set of results is 

likely to be more appropriate. 

Valid numerical models, for the purpose of subsequent statistical link analysis, are hence those which show qualitative 

agreement with measured results. Quantitative comparison between the measured and computed radiation patterns is difficult 

and often misleading, because: 

errors may be large when comparing measured and computed values at specific angles, but such errors may only 

be due to a slight offset in the position of a radiation pattern null, for instance. Such small angular offsets are not 

of any concern when performing statistical analysis of communication link performance. 

the existence of significant measurement errors also frustrate efforts to call the deviation from measured values 

"simulation errors". 

It is hence evident that some of the more traditional quantitative measures of agreement between measured and computed 

results will be less useful and often meaningless. It is indeed left to the reader to assess the presented comparisons between 

measured and computed results and decide on their worth for a specific application. The most difficult aspect of the 

comparison, in fact, is the inaccuracies with the measurements themselves; the extent of such inaccuracies can easily be 

gouged by the deviations from symmetry in certain planes, as well as comparing corresponding points where different planes 

intersect. 
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2 SCALE MODEL MEASUREMENTS 
A l/20th scale model of the attack helicopter was constructed from UREAL foam which was covered with polymer sheets. 

The model was then copper-plated to ensure adequate conductivity. The antennas were incorporated into the model by 

internally guiding coaxial cable to the antenna positions and protruding the inner conductors by the appropriate scale measures 

to form the monopoles corresponding to the top-fin and bottom-fin antennas respectively. 

Radiation pattern measurements in the principle planes (azimuth, side and pitch roll) were then performed on the scale 

model using a compact range suitable for the frequency range 2GHz-18GHz. The compact range consists of a 

25 m x 10 m x 10 m anechoic chamber, calibrated feed antenna, offset parabolic reflector and positioner with three axes 

of freedom. The range was calibrated using a vertically polarized, standard gain horn in the frequency range 2 GHz-4 GHz. 

The standard gain antenna was then replaced with the scale model with the mounting bar in the same horizontal position 

as the standard gain antenna and the middle of the model at the same height as the standard gain antenna. The measurement 

system hence measured absolute gain in dB relative to an isotropic source (dBi). The only adjustment to the measured dBi 

values was to compute the losses in the cable leading from the calibrated connector to the antenna and to subtract these 

losses from the measurements in order to obtain the actual gain as measured at the antenna port. 

The following movements were executed with the positioner to measure the pattern in the three principle aircraft planes 

(only the position and movements for the top-fin antenna are given below; the bottom-fin was measured using exact inverse 

positions and positioner movements): 
Azimuth (yaw) plane: The model was mounted horizontally (on its bottom for the Top-Fin antenna and on its top 

for the Bottom-Fin antenna) with its nose pointing towards the receiving antenna. The model was then rotated 

through 360°. 
Roll plane: The model was mounted vertically with its nose pointing downwards, and the top of the rotor pointing 

towards the receiving antenna. The model was then rotated through 360°. 

Pitch plane: The model was mounted horizontally on its side (ie at a 90° bank angle) and the top of the rotor 

pointing towards the receiving antenna. The model was then rotated through 360°. 

It should be noted that only vertically polarized gain was measured, since this is the dominant polarization from both 

antennas and was also the only polarization of interest when performing link assessments. The signal source for measurements 

was also linked to the scale model via a cable which was always routed along the body of the scaled model to ensure that 

the cable enters the model at the opposite side of the model in relation to the antenna position (model mounting upright 

and upside down was possible using the mounting arrangement to facilitate this aim). When HF measurements on scale 

models were performed, a stand alone source was constructed and housed inside the scale model fuselage, because at lower 

frequencies the aircraft electrical dimensions are small in terms of wavelengths, and the cable shield carries substantial 

currents which affect the measurements. At higher frequencies, however, the interaction between an antenna mounted on 

one side of the aircraft with the measurement cable on the opposite side is minimal. A stand alone signal source would 

have been a disadvantage, in the VHF/UHF case where one is interested in absolute gain values, because it would need to 

be custom designed with suitable calibrated characteristics. 

No measurements are error-free, and measurement uncertainty is particularly difficult to ascertain when radiation patterns 

are measured. Using the described measurement set-up the following factors may have been the cause of some of the errors 

(these are more or less listed in order of their severity): 
Inaccuracies in the scale model finish and dimensions. Some of the results presented shows some signs of 

asymmetry which is most likely due to slight errors in curvature on either side of the antenna 

Rotation "wobbles" because the mount in the fuselage is not absolutely perpendicular to the fuselage horizontal 

datum line. 
Angular errors due to certain amount of bending in the perspex mounting bar. 

Errors due to the fact that the protruding monopoles were not always exactly straight. This manifests itself most 

commonly in terms of errors in the position of the natural monopole pattern nulls. 
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No significant errors were caused by source amplitude instability, reflections from the chamber walls and other systematic 

errors associated with the range. The compact range used is professionally constructed and designed for measurements in 

the frequency range of interest. The calibration procedure ensures that equipment error levels are accounted for, and the 

quiet zone associated with the measurements is larger than the maximum movement and model dimensions during the course 

of the measurement manoeuvres. 

3 GENERATION OF THE NUMERICAL MODELS 
In this section, representations of the aircraft grid models, used for the evaluation of the top and bottom fin antennas' 

performance, are shown in Figures 2 through to 8. Different grid models were constructed in order to evaluate the antennas* 

performances at different frequencies. The numerical models used at the higher frequencies, apart from being 

under-segmented at regions which are sufficiently removed from the antenna of interest, were also substantially truncated. 

The numerical models of the aircraft were constructed using the Structure Interpolation and Gridding software package, SIG 

[2], developed by EM-Simu!ations (Pty) Ltd. Hie SIG package generates a three-dimensional grid model from a set of user 

defined cross-sectional cuts at points of abrupt change along the three dimensional structure - as indicated in Figure 1. The 

user-defined cross-sections shown in Figure 1 form the basis for the grid models, shown in Figures 2 through to 8. Wings 

and other features attached to the main fuselage are accommodated, using the SIG package, by tagging curves which 

represents features in a user defined cross section and using corresponding tag numbers in later user defined cross sections. 

In this way, for instance, cross-section 3 in Figure 1 consists of 4 curves with four tag numbers: The first curve represents 

the main fuselage, the second the top extension of the cockpit, the third curve represents the cannon support and the last 

curve in that cross section will just be a single point representing the start of the cannon itself. In the next cross section 

(4 in Figure 1) these four curves are re-defined with the dimensions at that cross sectional point and additional curves 

defining the canopy structure are defined; interpolation between the curves in cross-sections 3 and 4 which have identical 

tag numbers is then performed. The ability of SIG to accommodate appendages to a ftiselage in this fashion is exceedingly 

useful, because the gridding routine ensures that the attached features are connected at all points of the grid. 

The grid models shown in Figures. 2 through to 8 are generated by interpolating the cross-sectional cuts between the user 

defined cross-sections (in Figure 1), at intervals which are not greater than the specified target segment lengths of the 

user-defined cross-sections. The segmentations produced by SIG are mainly quadrilaterals, with the side lengths 

approximately equal to the target segment lengths requested. Some triangular grid elements are also formed when curves 

expand or contract from one cross-section to the next. These triangular grid elements also have edge lengths approximately 

equal to the required segment length. The segment radii are calculated by the SIG package to ensure that the surface area 

of the segments comprising the grid is approximately twice the surface area of the structure which is modelled. When 

structure's symmetry exist SIG automatically generates segments abutting the symmetry plane which are only half the grid 

length to ensure grid size continuity across the symmetry plane. 

The SIG program allows the user to define cutting planes in order to remove parts of the structure. In a similar fashion the 

SIG program also allows the user to specify a specific target segment length for every user defined cross section. This 

target segment length is then used until a new target length is specified in a subsequent user defined cross section. In this 

fashion the structure can be formed using variable grid sizes at different parts of the structure. These features of the SIG 

software were used during this study. 

The use of segment lengths larger than 0.1A, significantly reduces the number of segments used in the numerical model. 

Generally, such a violation of the numerical modelling rules can result in an invalid numerical model. In this paper, it is 

shown that the effect of under-segmentation and structure truncation, in regions which are sufficiently removed from the 

antennas, is negligible on electrically large structures. In return, the reduction in computation time is significantly large. 
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Target 
segment 
length 

Section No. 
Top-Fin 

(220MHz) 

Section No. 
Bottom-Fin 
(220MHz) 

Section No. 
Top-Fin 

(320MHz) 

Section No. 
Bottom-Fin 
(320MHz) 

Section No. 
Top-Fin 

(420MHz) 

Section No.     | 
Bottom-Fin     II 
(420MHz)      || 

O.IOX 12-15 19-21 13-15 19-21 13-15 19-21         | 

0.13X - 18,22 12,16 18,22 12,16 18,22        | 

0.15X 11,16 17,23 11,17 17,23 11,17 17,23 

0.18X 17 16,24 10,18 16,24 10,18 16,24 

0.2X 10 15,25 9,19 15,25 9,19 15,25 

0.23X 18 14,26 8,20 14,26 8,20 14,26 

0.25X 8,9,19 13,27 7,21 13,27 7,21 13,27 

0.28X 7 12,28 6,22 12,28 6,22 12,28 

0.30X 1-6 & 20-28 1-11 1-5 & 23-28 1-11 1-5 & 23-28 1-11 

Total No. of 
Segments 

4481 4012 2729 2339 4501 4037 

Table I: The segmentati 3n schemes used t o generate the gri d models of the h slicopter at 220M1 Eiz, 320MHz 

and 420MHz. 
The numerical model of the helicopter generated at 118MHz comprised of 0.R segments throughout and resulted in 4146 

segments. The segmentation schemes used to generate the numerical models of the aircraft at 220MHz, 320MHz, and 

420MHz, and for which theoretical results are also presented in this paper, are indicated in Table 1. The total number of 

segments used to numerically model the aircraft in its entirety (as indicated in Table 1) are much reduced compared to that 

which would be required if target segments length of 0.U and the entire aircraft structure were used. Specifying a target 

segment length of 0.U would result in approximately 13100 segments for the complete 220MHz grid model, 22700 segments 

for the complete 320MHz grid model and 37500 segments for the complete 420MHz grid model. 

4 CONCLUSION 
The main conclusions and recommendations of this study are listed below: 

Under-segmentation of the aircraft geometry in areas removed from the antennas made the evaluation of antennas 

at UHF frequencies possible; without this technique most available computer resources will be inadequate for such 

an evaluation. 
Limited measurements (with some significant errors in some cases) proved useful in qualitatively assessing the 

merit of the computed results. 
The SIG program [2] proved to be useful for automatic grid generation of the aircraft Particularly due to the 

ability to vary grid size, omit parts of the structure and generate grid models for different frequencies. 

Appreciating the electrical size and geometrical complexity of the aircraft model, the numerically predicted radiation patterns 

are showing good agreement with the measured radiation patterns in Figures 9 to 32. A close examination of the results 

reveals, however, that some disagreement between measured and simulated results do exist; the discussion in Sections 2 

and 3 gave possible reasons for these disagreements. Although comparison of patterns in terms of normalized values, as 

presented in [3, 4 and 5], are based on pattern integration on a complete volumetric data set, including both polarizations 

for both measured and computed patterns, the comparison between measured and theoretical results in this paper is shown 

in terms of absolute gains which are associated with the dominant polarization. 
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Figure 1: The user defined cross-sections used to generate the grid models of the helicopter. 
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Fi;!ure 2= Side, top and perspective views of the helicopter grid model at 118MHz. This model was used for the comparison 

of theoretical to measured radiation patterns of the Top-Fin and the Bottom-Fin antennas. 
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Figure 3: Side view of the helicopter grid model at 220MHz. This model was used for the comparison of theoretical to 

measured radiation patterns of the Top-Fin antenna. 

Figure 4: Side view of the helicopter grid model at 220MHz. This model was used for the comparison of theoretical to 

measured radiation patterns of the Bottom-Fin antenna. 

Figure 5: Side view of the helicopter grid model at 320MHz. This model was used for the comparison of theoretical to 

measured radiation patterns of the Top-Fin antenna. 
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Figure 6: Side view of the helicopter grid model at 320MHz. Tliis model was used for the comparison of theoretical to 

measured radiation patterns of the Bottom-Fin antenna. 

Figure 7: Side view of the helicopter grid model at 420MHz. This model was used for the comparison of theoretical to 

measured radiation patterns of the Top-Fin antenna. 

Figure 8: Side view of the helicopter grid model at 420MHz. This model was used for the comparison of theoretical to 

measured radiation patterns of the Bottom-Fin antenna. 
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Azimutfi-plarw radiafion pattern of Top-Fin antenna at 118 MHz 

Figure 9: Theoretical and measured azimuth radiation patterns of the Top-Fin V/UHF antenna at 118MHz. 
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Figure 10: Theoretical and measured side roll elevation-plane radiation patterns of the Top-Fin V/UHF antenna at 118MHz. 
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Figure 11: Theoretical and measured pitch roll elevation-plane radiation patterns of the Top-Fin V/UHF antenna at 118MHz. 
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Azimuth-plan« radiation pattern of Bottom-Fin antenna at 118 MHz 
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Figure 12= Theoretical and measured azimuth radiation patterns of the Bottom-Fin V/UHF antenna at 118MHz. 
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Fi?ure 13: Theoretical and measured side roll elevation-plane radiation patterns of the Bottom-Fin V/UHF antenna 

118MHz. 

Pitch roll plane radiation pattern of Bottom-Fin antenna at 11B MHz 
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Figure 14: Theoretical and measured pitch roll elevation-plane radiation patterns of the Bottom-Fin V/UHF antenna at 

118MHz. 
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Azimuth-plano radiation patwrn o( Tcp-Fn antwma at 220MHz 
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Figure 15: Theoretical and measured azimuth radiation patterns of the Top-Fin V/UHF antenna at 220MHz. 
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Figure 16: Theoretical and measured side roll elevation-plane radiation patterns of the Top-Fin V/UHF antenna at 220MHz. 
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Figure 17: Theoretical and measured pitch roll elevation-plane radiation patterns of the Top-Fin V/UHF antenna at 220MHz. 
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Azimuih-plane radiation pattern of Bottom-Rn antenna at 220 MHz 
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Figure 18: Theoretical and measured azimuth radiation patterns of the Bottom-Fin V/UHF antenna at 220MHz. 
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Figure 19: Theoretical and measured side roll elevation-plane radiation patterns of the Bottom-Fin V/UHF antenna at 

220MHz. 
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Figure 20: Theoretical and measured pitch roll elevation-plane radiation patterns of the Bottom-Fin V/UHF antenna at 

220MHz. 
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Azimuth-piano radial] on pattern of Tcp-Fin antenna Bt32QMHi 
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Figure 21: Theoretical and measured azimuth radiation patterns of the Top-Fin V/UHF antenna at 320MHz. 
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Figure 22: Theoretical and measured side roll elevation-plane radiation patterns of the Top-Fin V/UHF antenna at 320MHz. 
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Figure 23: Theoretical and measured pitch roll elevation-plane radiation patterns of the Top-Fin V/UHF antenna at 320MHz. 
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Azimuth-plane radiation pattern of Bottom-Fin 
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Fi,,ure 24= Theoretical and measured azimuth radiation patterns of the Bottom-Fin V/UHF antenna at 320MHz. 
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Figure2S= Theoretical and measured side roll elevation-plane radiation patterns of the Bottom-Fin V/UHF antenna 

320MHz. 
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Figure 26= Theoretical and measured pitch roll elevation-plane radiation patterns of the Bottom-Fin V/UHF antenna at 

320MHz. 
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Azimuth-plane radiation pattom of Top-Fin antenna at 430 MHz 
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Figure 27: Theoretical and measured azimuth radiation patterns of the Top-Fin V/UHF antenna at 420MHz. 
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Figure 28: Theoretical and measured side roll elevation-plane radiation patterns of the Top-Fin V/UHF antenna at 420MHz. 
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Figure 29: Theoretical and measured pitch roll elevation-plane radiation patterns of the Top-Fin V/UHF antenna at 420MHz. 
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Azimuth-plane radiation pattern o( Bottom-Fin antenna at 420 MHi 
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Fi?ure 30: Theoretical and measured azimuth radiation patterns of the Bottom-Fin V/UHF antenna at 420MHz. 
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Figure 31: Theoretical and measured side roll elevation-plane radiation patterns of the Bottom-Fin V/UHF antenna at 

420MHz. 
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Figure 32: Theoretical and measured pitch roll elevation-plane radiation patterns of the Bottom-Fin V/UHF antenna at 

420MHz. 
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Abstract: 

Information about an antenna's performance is often given for free-field conditions; however, in most practical situations 
the antenna is mounted on a mast, tower or vehicle of some type. In many cases, a knowledge of how the support structure effects 
the antenna performance is critical in evaluating the obtained measurements. 

In this paper the Numerical Electromagnetic Code (NEC-3) [1] is used to numerically model the electrical characteristics 
of a discone antenna which is suspended at a given height above a ground plane in three configurations; 1) antenna alone, 2) with 
a mast attached, and 3) mounted to a communication van. The model is optimized by correlating the calculated input impedance 
of the antenna (mounted on the van) to measured values. A comparison of the input impedance and far-field antenna patterns 
for these configurations determines how the mast and van effect the antenna performance. From this albeit limited example, a 
few general guidelines for evaluating how a support structure can effect an antenna are proposed. 

Antenna Structure: 

The physical characteristics of the discone antenna [2] are given in Fig. 1. The eight symmetric ground plane wires are 
109 cm in length from hub to tip and form a cone at approximately 30° with respect to the antenna mast. The horizontal wires, 
which form the upper disc, are 34 cm long. The antenna may be physically located on a cube van in order to allow measurements 
to be made at a variety of remote locations. The dimensions of the van, the antenna location and details of the ladder network 
on the back of the van are also included in Fig. 1. 

Measured Results: 

The input impedance of the discone antenna was measured (50 to 250 MHz) when it was mounted on a communication van, 
see Fig. 4. This was done using a Hewlett Packard HP8753 Network Analyzer located inside the van. The antenna was mounted 
on a mast attached to a ladder network on the back of the van. The response of the co-axial cable used to connect the antenna 
to the network analyzer was incorporated into the instrument's calibration and ferrite beads were used to suppress cable coupling. 
A delay factor has been incorporated into the measurements to compensate for the discrepancy between the input connector of 
the antenna and the feed point in the NEC model. 

NEC Model: 

NEC inherently represents a structure as a series of wires and, therefore, is ideal for modelling a wire discone antenna. The 
model was originally generated using commercial CAD software (AutoCAD). This drawing was then exported as a *.DXF 
(Drawing Exchange Format) file which was converted to a NEC file using DIDEC.DREO [3], Fig. 2. 

The overall lengths and diameters of the radial arms in the model are similar to those of the antenna. However, each arm in 
the model is composed of several segments, as depicted in Fig. 3. This is done for two reasons; the first is because the frequency 
range over which the model is valid is determined by the length of the individual segments. The second is because current on 
the structure is only calculated at the center of each segment. Hence, if a complex oscillation is to be represented or resolved along 
a wire length, the wire must be subdivided into many parts. 

The segment lengths, wire spacing and diameters etc. have been carefully chosen according to the rules for model 
construction [1,4 and 5]. In general, the frequency response of a model is established by the segment length with the upper and 
lower frequency corresponding to A/5 and A/1000, respectively. The source segment is the most critical element in the model. 
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In general it should be A/10 which, for the frequency range of interest, would be about 20 cm. However, the separation between 
the ground and excitation wires on the antenna is approximately 4 cm. This length should be subdivided 3 or more times in order 
to have identical segments on both sides of the excited segment [1, Part 1, p. 67 ]. Therefore, the source segment (and those in 
its vicinity) will have to be 1.33 cm or about A/150 in length. Unfortunately, this value exceeds the requirements of the model 
and the segments are too short be efficient radiators particularly at the lower frequencies. This is the most likely reason that the 
model and measured results of Fig. 4 deviate progressively below -75 MHz. To partially compensate for this problem, each 
segment of a radial wire is scaled by 1.25 with respect to its predecessor as the end of the radial is approached [6], see Fig. 3. This 
produces a final length of about 6 cm and allows for more efficient radiation at the frequencies of interest. The antenna mast is 

established using a similar procedure. 

An additional problem exists at the feed point of the antenna. The antenna hub is composed of metal plates and the 
determination of appropriate wire diameters to emulate a solid surface (particularly a small one) is not trivial. In addition, the 
effective separation of the disc and cone section is, unfortunately, critical in determining the antenna impedance [7]. A rule of 
thumb dictates that the circumference of the wire should be the same as the spacing of the wire grid elements used to simulate 
the surface [8]. However, in this problem this rule is difficult to implement since it is not possible to overlap wire segments or 
to join wires with large variations in diameter [1]. As a compromise, the radials are connected at the hub by wires with the same 
diameter as the rest of the model. In general, these diameters should be fixed by their counterparts on the antenna, however, this 
criteria led to difficulties with overlapping. As a result, the diameters were uniformly set to 0.5 cm, half of that on the real 
antenna. Some attempts were made to vary the diameters throughout the model, but this generally did not improve the response. 
It is anticipated that changing from NEC-3 to NEC-4 (which can model wire diameter transitions accurately) may assist with this 
problem, but results are not presently available. 

An additional advantage in increasing the segment size is that the number of segments in the model, n, is inherently reduced. 
Since the CPU time required for the analysis varies as approximately n3, even a small reduction can have a profound effect on 
the run time. The antenna model used in this analysis is composed of approximately 350 segments and each frequency requires 
about 16 seconds of CPU time to execute on a DEC 3000, Model 400 computer. If the antenna is modelled exclusively with 
segments which are 1.33 cm in length (like the source), then there would be about 900 segments and the execution time would 
increase by a factor of about 17 to 4.5 minutes. If the van model is also included (which is represented by a cube composed of 
about 800 patches) then the CPU time changes from 10.6 minutes to [(900 + 800)/(350 + 800)]3 x 10.6 = 34.2 min. per frequency. 

The patches which are used to represent the van in NEC are interpreted differently by the software and the user. Although 
a patch may physically cover a certain area on the model, NEC only considers an average radius and position [1, p. 9). As a result, 
the individual patch geometry used must be square to minimize "gaps" in the structure. A rectangular patch geometry produces 
superfluous spikes in the antenna response. In this model the front and back of the van were composed of a 10 by 10 grid while 

the sides, bottom and top were 10 by 15. 

In order to simulate the impedance of the 50 Q cable attached at the input of the antenna, the segments connecting the ground 
plane wires to the source segments have each been impedance loaded (see Fig. 3). Although the arms of the discone should be 
capacitively coupled and in parallel (hence the resistors should be as well), a comparison (not shown) of the model and 
experimental results indicates that this is not true. As a result, the resistors are treated as though they are in series and a 50Q value, 
rather than 400Q, is used. This is an empirical observation and the truth is probably somewhere between the two extremes. 

Model Verification: 

A means of checking the modelling results is necessary in order to establish confidence in the results. This is accomplished 
by two means; the first is a numerical check on the average power gain of the antenna model and the latter is to compare the 
calculated and measured antenna input impedance. 

i) Numerical 

A means of correcting the antenna input impedance as calculated by NEC is available [ 1, p. 96]. This is done by computing 
the average power gain of the antenna. If there are no ohmic losses in the structure and it is situated over a perfect ground, the 
result should be equal to 2.0 with any discrepancy indicating an inaccuracy in the input impedance. Fortunately, a compensation 
factor, and therefore a more accurate input value, can be established as 
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PR   '   —   GAVG X  Pl        > (1) 

P 
- 2 —i 

- W      ' 
where PR is the radiated power, GAVG is the average gain (in the far-field), P, is the computed input power, R^ is the radiation 
resistance and Is is the source current. The need to correct the data is primarily because of inherent limitations in the model of 
the antenna (for example, excessively small segment lengths, etc.) and secondarily due to minor problems with the way that NEC 
solves the electromagnetic system (for example, NEC-3 cannot numerically tolerate abrupt changes in wire diameter). 

Equations 1 and 2 are only valid when there are no ohmic losses in the antenna, however, there is a 50 ohm cable attached 
to the real antenna which the model must accurately simulate. This difficulty is overcome by using NEC to calculate the response 
of an antenna model which is physically identical to the antenna of interest but is perfectly conducting. By dividing the resistance 
of the antenna established via the NEC output by that determined with Eqn. 2, a compensation factor can be established for each 
frequency of interest in the antenna response. Since this compensation factor is a result of the physical aspects of the model, then 
it should also apply to an impedance loaded structure. By multiplying the antenna impedance obtained from the NEC analysis 
of the impedance loaded structure by the compensation factor, a compensated antenna impedance is established. This result 
should be a reasonable approximation of the result which would be obtained if the calculation could be done directly. For the 
model used, the above compensation factor rarely changes a directly calculated impedance value by more than a few percent. 

ii) Comparison to Measurements 

During the course of the model development several variations of segment length, diameter and interconnecting geometry 
were attempted before an optimal result was achieved. The quality of the results were judged based on the model's ability to 
emulate the measured input impedance of the van-mounted antenna. This type of "fine tuning" emphasizes the need for a pre- 
established response (an analytically determined or measured field pattern, impedance etc.) which can be used as a reference to 
establish the model's validity. The resulting representation can then be used to study circumstances which cannot be easily 
determined by other means. 

A delay factor of 600-700 ps has been incorporated into the measurements to compensate for the discrepancy between the 
feed point of the antenna and the feed point in the NEC model (center of the antenna hub). The difference physically corresponds 
to the length of an N-type connector and half the distance of the antenna hub. The variation in the measured input impedance 
is only significant at the higher frequencies. The antenna feed point often requires some manipulation when comparing 
experimental and modeled results [6]. 

One discrepancy that exists is the fact that the modelled results are over a perfect ground plane while the measured values 
are over real ground. This was done since NEC-3 cannot accurately model patch/ground interaction when the patches are too 
close (~X) to a non-perfect ground [1, p 11.]. The antenna (with no mast or van) was modelled over both ground types and the 
differences were found to be small. 

Results: 

The first step in the analysis is to establish the validity of the NEC model by comparing the calculated input impedance to 
the measured values, Fig. 4. Although the magnitude of the impedance at specific values may deviate, the overall match between 
the two curves is very good. The primary problem is in establishing the correct magnitudes at the high (>230 MHz) and low 
(<75 MHz) frequencies, where the accuracy of the NEC model diminishes, and at strong resonance values (-150 MHz for 
example). However, the overall shape and magnitude of the curves correlate well and the model accurately predicts the resonance 
frequencies in the response. 

Since the model is reasonably accurate in predicting the input impedance (one of the more sensitive parameters to both 
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measure and model), it is reasonable to use it to explore the interaction of the antenna with its support structure. This can be done 
by removing the mast and/or the van from the NEC model, as is done in Fig. 5. From these curves it is determined that the 
response of the antenna alone is relatively smooth. The addition of the 2.65 m mast creates a series of resonances at -55 MHz 
spacing which are superimposed on the original response. These values correspond to the resonance frequencies of the mast. 

Placing the van in the calculation adds an additional resonance to the basic antenna response. The value approximately 
corresponds to the sum of the height and length of the van (i.e. 2 x (2.2 + 3.7m) = 11.8m [-25 MHz]). It appears that the van 
can be interpreted as a "fat" dipole end driven by the antenna and mast. As a test of this idea, the mast and van were replaced by 
an L-shaped wire running from the antenna hub down to the same height as the bottom of the van, then horizontally for the length 
of the van. The NEC simulation (not shown) of this structure produced a reasonable approximation of the resonances in the 
antenna input impedance as calculated above. The advantage of the latter wire simulation is the significant reduction in 

computation time. 

Once the validity of the NEC model has been established, it can be used to compute a variety of antenna properties, 
especially those which are difficult or costly to measure. One parameter that is of particular interest to the author is the azimuthal 
variation in the far-field radiation pattern. Figure 6 depicts the magnitude of the electric field around the van (at ground level and 
160 MHz) for the three configurations described earlier, and is typical of the response at most frequencies. The pattern for the 
antenna alone is very symmetric and uniform, which is not surprising due to the symmetric nature of the antenna. The addition 
of the mast does not alter this condition but does slightly increase the E-field magnitude (input powers were held constant). 
Finally, the van changes both the magnitude and the uniformity of the E-field with variations of typically 1-2 dB. 

The implication of the above results is that, for example, if the antenna were to be used as a receiver, then the addition of 
the mast would change the pick-up slightly. In addition, if the antenna were mounted on a van, then the orientation of the vehicle 
with respect to the source will also alter the signal strength slightly. 

Finally, the L-shaped wire (which was previously used to emulate the antenna/van structure and which produced a reasonable 
approximation of the input impedance) was also used to calculate the far-field pattern (not shown) of the antenna. The additional 
wire failed to produce the variations seen in Fig. 6. It is believed that this is due to the fact that the antenna/van and van/ground 
coupling are drastically underestimated by the wire. Hence, this model simplification is not justified under all circumstances. 

In addition, the elevation profile for the model can be calculated, see Fig. 7. The dashed curve depicts the antenna with no 
mast or van while the solid curve corresponds to the van-mounted antenna. The number of nodes in the response correspond to 
the height of the antenna (relative to X) above the ground and can be varied by changing the height or frequency. The lack of 
a null in the vertical (i.e. 90°) orientation is of interest and it is speculated that this is due to currents flowing in the van structure. 

Conclusions: 

NEC-3 can be used to model a discone antenna but care must be taken when representing the excitation region, which is 
critical in determining the antenna characteristics. A comparison of the predicted and measured input impedance of the antenna 
were necessary to "fine tune" the model. This emphasises the need to have some type of experimental or analytical model 
validation. Once this has been established, then the model can be used to compute a variety of antenna properties, especially those 

which are difficult or costly to measure. 

The calculations were performed for three configurations; 1) antenna alone, 2) with a mast attached, and 3) mounted to a 
communication van. By removing the van and the mast it is possible to investigate how different support structures effect the 
input impedance and far-field | E|. It is concluded that the antenna mast adds a series of resonances to the basic antenna response 
which are equivalent to treating the mast as an end driven dipole. Likewise, the van adds an additional series of resonances which, 
again, are equivalent to treating the van as a "fat" end driven dipole. Operation of the antenna near these resonances will effect 
the input impedance and slightly alter the antenna response. 

It was found to be necessary to include the entire structure in the simulation to accurately predict all the antenna parameters. 
Replacing the van with a wire produced a reasonable approximation of the input impedance but failed to reproduce the far-field 
E-field pattern. It is believed that this is due to the fact that the antenna/van and van/ground coupling are drastically 

underestimated by the wire. 
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The azimuthal variation in the far-field E-field pattern varies typically by 1-2 dB. The implication of the above results is 
that, for example, if the antenna were to be used as a receiver, then the addition of the mast would change the pick-up slightly. 
In addition, if the antenna were mounted on a van, then the orientation of the vehicle with respect to the source will also alter the 
signal strength slightly. 
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Figure 1:   Details of the cube van used to transport the discone antenna to remote locations. The ladder network is slightly 
simplified in the schematic and NEC-3 model. 
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Figure 2: An overview of the NEC-3 model of the discone antenna. The model was created using AutoCAD and then converted 
to a NEC wire grid structure using DIDEC.DREO. The jumpers on the ladder network are used to attach the wire grid 
to the patch modelof the van. Various portions of the structure can be removed to investigate the effect on the antenna response. 
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Figure 3: A schematic representation of the segment distribution on the discone antenna. The wire element joining the disc and 
cone has been divided into 3 segments so that the source element is surrounded by segments of the same length. This practice 
is also extended into the hub area. However, as the far ends of the wires are approached, the segment lengths are gradually 
increased to be more compatible with the radiation wavelengths of interest. 
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Figure 4: A comparison of the NEC-3 calculated input impedance and measured values for the van-mounted discone antenna. The 
correlation is generally very good with the overall shape and resonance frequencies accurately predicted. Difficulties exist in 
calculating the magnitude of the impedance at the high and low frequencies and at strong resonance values. 

100 150 200 

FREQUENCY [MHz] 

Figure 5: Variation in the input impedance with changes in the antenna support structure. The addition of the mast to the antenna 
creates a resonance corresponding to an equivalent length, end-driven dipole. Likewise, the van adds a resonance which is 
equivalent to superimposing an end-driven "fat" dipole. 
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Figure 6: Relative values of the far-field E-field magnitude (azimuthal) at ground level as predicted by NEC-3 for various 
configurations of antenna support. The values correspond to a constant input power and are calculated at f = 160 MHz. The 
addition of a mast to the antenna alters the magnitude of the response but not the symmetry, however, further addition of the van 
to the model creates an angular variation in the response. This causes the antenna characteristics to vary with respect to the 

source/receiver location. 

Figure 7: Relative values of the far-field E-field magnitude (elevation) in the elevation profile. The values correspond to a constant 
input power and are calculated at f = 160 MHz. The lack of a null in the vertical (i.e. 90°) orientation is of interest and it is 
speculated that this is due to currents flowing in the van structure. 
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ABSTRACT 
A technique, based on the Finite-Difference Time-Domain (FD-TD) method, is used for 
the analysis and design of aperture-coupled dielectric-resonator (DR) antennas. 
Computed far-field patterns are presented for a linearly polarised antenna, a circularly 
polarised antenna and a linearly polarised array. They compare well with measured 
patterns. 

INTRODUCTION 
DR antenna is basically a piece of dielectric that resonates at or close to the operating 
frequency. It is not shielded, and hence, radiates electromagnetic waves. DR 
antennas can be designed to have low-profile geometry and, like microstrip antennas, 
they can be integrated with microwave and millimetre-wave circuits. DR antennas 
usually have wider bandwidth than microstrip antennas. In aperture-coupled case, they 
need less dielectric material than microstrip antennas, and therefore cost and weigh 
less. The lack of metal in the radiating element is an additional advantage at 
millimetre-wave frequencies where conductor loss is significant. 

We have implemented a software package for the analysis of aperture-coupled DR and 
similar antennas. Taking advantage of the flexibility of the FD-TD method, and using the 
Macquarie University Cray supercomputer, we have analysed many configurations of 
DR antennas including linearly polarised (LP) rectangular antennas, LP cylindrical 
antennas, circularly polarised (CP) "cross" antennas [1], CP rectangular antennas and 
two-element arrays. Several LP and CP antennas have also been designed through 
iterative analysis. 

METHOD 
Our FD-TD software employs a unique combination of first- and second-order Mur 
absorbing boundary conditions (ABCs), to simulate accurately the substrate that 
extends beyond the FD-TD computational volume (see Figure 1) [2]. Second-order Mur 
ABC was used for most regions of the boundary [3]. However, the normal electric-field 
component is discontinuous at the air-substrate interfaces (due to the normal electric- 
field interface condition, or due to the ground plane), and the lateral extrapolation in 
second-order Mur ABC is not appropriate. Therefore first-order Mur ABC was applied 
around the air-substrate interfaces.    It was also used along the edges of the grid 
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boundary, but in this case the preferred direction of propagation  of the wave was 
assumed to be diagonal to the edge. 

Fictitious 
surface 

Infinite 
ground 
plane 

Dielectric     Apertures 
substrate 

Source  Microstrip        Computational 
line volume 

Figure 1. FD-TD Computational volume and fictitious surface 

The far field of the antenna or array is calculated by applying the Field Equivalence 
Principle directly in the time domain, over a fictitious surface enclosing all radiating 
elements (i.e. DRs and apertures), as shown in Figure 1. For these calculations, an 
infinite ground plane is assumed on the top side of the substrate. At a generic point 
(x'.y'.z") on the fictitious surface, equivalent electric and magnetic currents are given by 

j =hxh (1) 

m = -nxe (2) 

where h is the unit vector normal to the surface in outward direction. The magnetic and 
electric vector potentials generated by the above equivalent currents, at a point {x,y,z) 
outside the surface, are given by 

ll« R^ds' -a(W,t) = ^\\j{x\y\z,t-f)<f 

R^ds' f(x,y,z,t) = -fa!Wx',y',z',t-%)3fc 

(3) 

(4) 

where R is the distance between (x,y,z) and (x',y',z); e0, u.0 and c0 are free-space 

permittivity, permeability and speed of light; and the surface integration is over the 
fictitious surface. The vector potentials generated by the images of the equivalent 
currents (due to the infinite ground plane) are then added to 5 and /. Finally, the two 
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spherical-coordinate components of the radiated electric field at a distant point, where 
far-field conditions can be assumed, are given by 

ee(x,y,z,t) = - da<Y'a) -1" d^x^l) 
at dt 

e<(x,y,z,t) = -fo(W)+     df.{xy,z,t) 
dt dt 

where T|   is the intrinsic impedance of free space. 

(5) 

(6) 

Frequency-domain far fields and other characteristics (eg. radiated power density, axial 
ratio or ellipticity of CP radiation) are obtained using conventional FFT techniques. 

RESULTS 
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Figure 2. H-plane patterns of a low-profile rectangular LP DR antenna 

Rectangular LP DR Antenna 
The rectangular dielectric resonator has dimensions of 15.2 (L) x 7.0 (W) x 2.6 (H) mm, 
and a dielectric constant of 10.8. It is fed by a 50ß microstrip line through a 3.4 x 1.2 
mm aperture in the ground plane. The substrate is approximately 0.64 mm thick and 
has a dielectric constant of 10.5. Figure 2 shows the theoretical and measured far-field 
patterns of this antenna in the H-plane at 11.6 GHz. It should be noted that the antenna 
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is almost perfectly matched to the 50fl input at this frequency, giving an input reflection 
coefficient of 0.013 (-38 dB). The pattern was measured using a spinning linearly 
polarised horn antenna in order to simultaneously obtain the cross-polarisation level. 
Not only does the measured pattern compare extremely well with the theoretical one, 
but also it reveals that the cross-polarisation is at least -15 dB below the co-polarisation 
within the 3dB beamwidth. 

Two-element Array . 
This E-plane array consists of two rectangular DR elements, each having dimensions 
of 15(L) x 3(W) x 7.5(H) mm and a dielectric constant of 10.8. They are fed, in equal 
magnitude and phase, by a 50fi microstrip line through two apertures (6.1 x 1.2 mm 
each) in the ground plane. For comparison, the radiation pattern of the array is also 
computed using Array Theory, neglecting mutual coupling between the two elements. 
The theoretical E-plane pattern of a single DR element, resonating in the 'magnetic- 
dipole' mode, is a half circle [2]. Hence the pattern of the array in the E-plane is directly 
given by the array factor, which for two elements excited in equal magnitude and phase 
is cos (k0s sine 12), where s is the element spacing (centre to centre) and k0 = 27t/X,0. 
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Figure 3. Radiation patterns of the array computed using FD-TD and Array Theory 

Figure 3 shows the computed radiation patterns of the array using the FD-TD method 
and Array Theory, for s=2.14 cm (= XJ2) at 7.27 GHz. The two patterns are significantly 
different- notably the two pattern nulls are at 9=56° and 75°. In previous measurements 
of this array pattern nulls were observed at about -52° and +56° angles at 7.2 GHz [4], 
hence the FD-TD results should be accurate as expected. On the other hand, the array- 
theory results are in error because of the neglect of mutual coupling that seems to be 
significant for this spacing. For a wider spacing of s=3.22 cm (= ZKJA), both computed 
patterns are similar and compare well with the measurements. 
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CP Rectangular Antenna 
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Figure 4. Theoretical and measured patterns of a CP rectangular DR antenna 

This circularly polarised antenna consists of a rectangular 14(L) x 3.7(W) x 2.6(H) mm 

dielectric resonator (er=10.8), placed on the ground-plane side of a dielectnc substrate 

(e=10 5) and fed by a 50fi microstrip line through an aperture. The aperture 

dimensions are 1.2 mm x 2.8 mm; the substrate thickness is approximately 0.64 mm; 
the matching stub length is 0.4 mm from the centre of the aperture. The resonator is 

rotated by 45° with respect to the aperture [5], 

The theoretical and measured patterns at 14.75 GHz, in the elevation plane along the 
Serture are shown in Fig. 4. The measured pattern was obtained by sp.nnmc, a linear- 
polarised horn antenna. The axial ratio can be obtained from this pattern as the 
dtffe ence between an adjacent maximum and minimum. The two theoretical curves 
are the elaive lengths of the major and minor axes of the polarisation ellipse, the gap 
between the two gives the theoretical axial ratio. The theoretical and measured results 

compare very well for directions within ±30° from the boresight. Discrepancies between 

them at higher |6| values are attributed to the finite size of the ground plane in the test 
antenna and to fabrication tolerances. In general, the axial ratio remains close to 3 dB 
over a wide range of angles in this elevation plane. 
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CONCLUSIONS 
The FD-TD method is successfully used for the analysis and design of several 
aperture-coupled dielectric-resonator antennas. Computed radiation patterns of a 
linearly polarised rectangular antenna, a linearly polarised two-element array and a 
circularly polarised rectangular antenna compare well with measurements. The only 
limitation of this approach seems to be the high demand for computer resources. All 
theoretical results presented here were computed using a Cray Y/MP four-processor 
supercomputer with 512 Mbytes of memory, in 64-bit words. 
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A    NUMERICAL    AND    EXPERIMENTAL    INVESTIGATION 
OF   A   SEMI-LOOP   ANTENNA   ON   A   METAL   BOX 

Jeffrey B.   Knorr  and David C.   Jenn 

Department  of Electrical  and Computer  Engineering 
Naval  Postgraduate  School 
Monterey,   CA  93943-5121 

Abstract - This paper presents the results of a numerical and 
experimental investigation of a coaxial semi-loop antenna mounted on 
one face of a 1 foot metal cube which sits on a ground plane. The 
numerically computed far-field amplitude and phase are compared with 
measurements   for the  frequency range   96  to  1440 MHz. 

I. Introduction 

The loop antenna is a structure which has many practical 
applications, one of which is in signal direction finding (DF). The 
investigation reported here was motivated by related work to develop 
a computer simulation of a shipboard correlation interferometry 
direction finding (CIDF) system [1] operating in the high frequency 
(HF) band. An existing, l/48th scale, physical model of the ship 
and its DF system utilized the coaxial semi-loop antenna which is 
the subject of this paper. 

At HF there is strong coupling between a shipboard antenna and 
the surrounding ship superstructure. This interaction must be 
accurately accounted for in a computer simulation. Prior to 
modeling the behavior of an antenna in an environment as complex as 
that of a ship, it seemed judicious to show that it could be 
accurately modeled in a simpler environment. Thus, an investigation 
of a semi-loop antenna mounted on a metal box, as described here, 
was carried out in the scaled frequency range of 96 to 1440 MHz. 
Numerical results were obtained by applying the method of moments to 
wire grid and triangular patch models, and these were compared with 
experimental data. 

II. Physical Model 

The semi-loop antenna is constructed from 0.085 inch diameter, 
semi-rigid coaxial cable. The semi-loop radius is 0.230 inches and 
the feed is a 0.015 inch slit cut in the outer conductor of the coax 
at the center of the semi-loop (highest point above the mounting 
plate) . At one end of the semi-loop, the coax is shorted by the 
mounting plate, and at the other end, the coax passes through the 
mounting plate to provide an output to the feed line. The box is 
one foot on a side, and the antenna is located 4 inches below the 
top of the box, half-way between the sides. 

The semi-loop antenna is electrically small. The loop senses 
the vertical surface current produced by a field incident on the 
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box. The loop will respond to both 0- and 0- polarized incident 
fields. The primary response is to a 0-polarized field, however, 
and only results for this case will be reported here. 

III. Wire Grid Model 

A wire grid model of the loop and metal box, shown in Figure 1, 
„as developed for use with the EM code NEC 4.1. The bottom edges of 
the box are attached to a perfectly conducting ground plane. Since 
the box is 12 inches on a side, a 1 inch grid spacing was chosen to 
give a vertical wire at the center of each side, which was necessary 
to attach the semi-loop. At the highest frequency, 1440 MHz, the 
grid was 0.12A on a side, so each wire consisted of only one 
segment. A wire radius of 0.159 inches was chosen to provide a 1 
inch wire circumference thereby satisfying the equal area guideline 

t2]' To provide for attachment of the semi-loop to the box, 
additional nodes were created at a height of 7.77 inches and 8.23 
inches above the ground plane. The coaxial semi-loop was modeled as 
a 5 segment arc with a radius of 0.23 inches. It was centered on 
one face of the box and the ends of the arc were attached at the 
nodes defined above. The third segment of the 5 segment arc was 
used as the semi-loop antenna feed point. The box consisted of 1512 
wires, each having one segment, and therefore the complete model 
contained a total of 1517 segments. 

Calculations were also performed for a simplified feed model 
consisting of a single vertical wire segment replacing the semi- 
loop The far-field patterns were found to be essentially unchanged 
from the detailed model, which is expected given the small 
electrical size of the loop. 

IV. Patch Model 

The radiation patterns were also computed using PATCH, a method 
of moments code employing triangular subdomains [3] . The faceted 
box is shown in Figure 2. The triangular facet model is built in 
ACAD [4] and a translator is used to generate an input file 
recognized by PATCH. The box is located on a perfectly conducting 
infinite ground plane. , 

Several mesh configurations were generated. The box in Figure 
2 was obtained using the ACAD "Shell Mesh" command. Other models 
were generated in which triangles were aligned in rows and columns, 
but their pattern data exhibited some asymmetry at low levels. Botn 
conductively attached and isolated plates were investigated. 
Isolated plates were simulated by introducing duplicate edges; that 
is, triangles that lie along the box edges are each given their own 
edge, they do not share an edge with their neighbors on the adjacent 
face Thus the number of unknowns (edges) is greater for the 
isolated face model than for the conductively attached face model 
(2738 vs 2815) . For all the PATCH data shown here, the box faces 
are assumed to be insulated from each other. This model gave the 
best agreement with NEC and measured data. 

For the patch model, the semi-loop is simply represented by a 
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thin short slot. This was deemed acceptable because the calculation 
of antenna impedance was not of interest and, NEC results 
demonstrated that variations in the fine detail of the feed did not 
affect the far-field patterns. 

V. Measurement Facility 

Experimental data were obtained from measurements taken at 
NRaD, the RDT&E Division of the Naval Command Control and Ocean 
Surveillance Center, located in San Diego, CA. The antenna and box 
was placed on an outdoor turntable and illuminated with a plane wave 
using both vertical and horizontal polarizations. Data were 
recorded every 1 degree in azimuth over a full 360 degrees. This 
was done for elevation angles of 5, 10, 20, 30, 45, and 60 degrees. 

The signal received by the semi-loop antenna was routed to a 
control room where the amplitude and phase were recorded. The phase 
reference was established by sampling the output from the signal 
source and providing it as an input to the vector receiver. As the 
metal box was rotated in azimuth, the phase of the signal received 
by the semi-loop antenna was compared to this reference signal. 
Thus, the phase reference was arbitrary. Amplitude measurements were 
referenced to the signal level from a quarter wave monopole which 
was recorded prior to taking data using the semi-loop antenna. 

VI. Computational Platforms 

Computations for the wire grid model were carried out using NEC 
4.1 running on a Silicon Graphics (SGI) Indigo Extreme workstation 
with 64MB of RAM. The time to compute the Numerical Green's 
Function at 4 frequencies was about 5 hours. The time to compute 
the amplitude and phase of the feed point current at the same 4 
frequencies using 10 degree azimuth steps was about 30 minutes. 

For PATCH, the execution time for a set of 5 frequencies, 1 
degree increments in pattern angle, took 3 hours and 50 minutes on 
the SGI for the largest number of edges. 

VII. Comparison of Numerical and Experimental Results 

The numerical and experimental patterns for a 0-polarized 
incident plane wave at 96, 480, and 1440 MHz for 10 degrees 
elevation are shown in Figures 3 through 5. The side of the box 
with the semi-loop antenna is 0 degrees azimuth. To simplify 
comparison, all patterns were normalized. It can be seen that the 
wire grid and patch models yield essentially identical results. 
Both agree well with the experimental data in the forward 
hemisphere, but have some differences in the rear hemisphere. 

At the higher frequencies asymmetries appear in the 
experimental patterns, which should ideally be symmetric for a 0- 
polarized incident field. The asymmetries are believed to be due to 
radio frequency interference from the urban San Diego environment 
adjacent to the outdoor measurement facility and scattering from 
support arches that are used to move the transmit antenna in 
elevation. 
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Figures 6 through 8 show the pattern phase as the metal box 
rotated in azimuth.  Each curve is normalized to its value at 180 
degrees azimuth.  This allows comparison of the shape of the phase 
curves   At the higher frequencies the plots show phase= moving in 
the negative direction as the face of the box on which the  op 
mounted moves away from the signal source, as expected.  T  « 
grid and patch models indicate phase changes of about 410 and 460 
degrees, respectively, as the box rotates through 360 degrees in 
azimuth   The measured data indicates 335 degrees of change   The 
difference could be a result of inaccurate &**£»£**£%  ^ 
box on the turntable, but there was no way to check if this might 
possibly havent0eccurrend.t0 ^ ^ ^ ^^      ^ t 

of the semi-loop feed point over 360 degrees of azimuth rotation is 
about 0.5/1 at 480 MHz. Thus, physical displacement accounts for 
only about 180 degrees of the total phase shift which occurs when 
tie box is rotated. At the low frequency the phase vs azimuth does 
not behave as just described for the higher frequencies At this 
frequency the entire box is acting as a radiating structure, and 
thus its phase center does not necessarily correspond to the 
location of the loop [5]. 

VIII.   Conclusions 

Computed and measured far-field patterns for a small semi-loop 
antenna mounted on a box on a ground plane have been presented. The 
pattern magnitudes are within a couple of dB except -the vicinity 
of pattern nulls, and there the difference is attributed to 
extraneous error signals. The agreement m pattern phase is 
generally no? as good as that in magnitude. This may be caused by a 
combination of experimental and co^utational inaccuracxes So^ 
error is inherent in the wire grid representation of the solid box 
walls in the case of the patch model, error may be due to the fact 
that some of the frequencies considered are near the internal 
resonances for a cubic cavity. 

Acknowledgments 

The authors wish to acknowledge the contributions of Mr. Carl 
Firman and Dr. Ashok Das. Carl Firman carried out the measurement 
program at NRaD, and supplied the authors with the experimental 
da?l Ashok Das wrote the software to plot the numerical and 
experimental results. 

References 

m   N.  Saucier and K.  Struckman,  «Direction finding using 
correlation techniques," Proc.  IEEE Symposium on Antennas and 
Propagation, pp. 260-263, Urbana, IL, June 2-4, 1975. 
Propagation, pp        'cal Electromagnetics Code - NEC-4, Method of 
Moments,  Part  I: User's Manual," Lawrence Livermore National 
Laboratory, UCRL-MA-109338, January 1992 , 
[3] W. A. Johnson, D. R. Wilton and R. M. Sharpe, "PATCH Code Users 

835 



Manual," Sandia National Laboratories, SAND87-2 991, May 1988. 
[4] "The ACAD User's Manual," Lockheed Martin Corp., (Lockheed Fort 
Worth Co.), April 1995. 
[5] D. Carter, "Phase Centers of Microwave Antennas," IRE Trans, on 
Antennas and Prop., vol. AP-4, p. 597, Oct. 1956. 

SEMI-LOOP 

Figure 1.  NEC model of the semi-loop antenna on a metal box. 

Figure 2.  PATCH model of the box. 
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On the Suitability of Simple Voltage Source Models for the Study of Mutual Coupling Effects 
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Abstract: This paper addresses the suitability of simple voltage source models as forcing functions 
for the electric field integral equation (EFIE) of thin wire theory. It has been found that under certain 
conditions, delta-gap source models may fail to produce an accurate solution to the EFIE in regions 
far removed from their point of application. This failure is contrary to the common view that accurate 
results are obtained for the current distribution on thin wire antennas with the possible exception of 
the current near the source location. Causes of these solution inaccuracies, and suggested remedies are 
presented together with numerical studies of arrays of cylindrical monopole antennas. 

Introduction: The problem of mutual coupling between elements of an array of thin cylindrical dipole 
antennas has been investigated by numerous researchers [1,2,3,4]. These early theoretical studies 
placed restrictions upon the dipole lengths in addition to the restrictions imposed by thin wire theory. 
To study mutual coupling effects between thin cylindrical dipoles subject only to the constraints 
imposed by thin wire theory, one must turn to modern numerical methods, such as the method of 
moments (MoM), to solve the integral equations associated with thin wire theory. This is necessary 
because the EMF method does not, in general yield results of sufficient accuracy to determine the self 
and mutual impedances [2], since it is in fact merely an integral identity and is not directly related to 
the currents at the driving points of the antenna [1]. 

In an attempt to accelerate the solution convergence, much research has been devoted to 
developing efficient techniques for the accurate evaluation of the elements of the impedance matrix 
associated with MoM as applied to the electric field integral equation (EFIE) of thin wire theory 
[5,6,7]. By comparison, relatively little work has been directed toward the improvement of simple 
voltage source models, such as the recently introduced extended delta source model [8], so the 
traditional delta-gap model is still widely used as a thin wire source. This paper addresses the 
suitability of simple voltage source models as forcing functions for the EFIE of thin wire theory under 
a MoM Galerkin solution procedure. The form of the EFIE to be considered in this work is the so 
called "mixed potential" integral equation [9]. It has been found that under certain conditions, both 
the extended delta and traditional delta-gap source models can cause solution inaccuracies in regions 
far removed from their point of application. Since the delta gap source model is often used as a 
forcing function for antenna arrays composed of parts other than thin wires, the exposure and 
explanation of this problem sheds light upon apparent discrepancies between computed and measured 
multiport network parameters. Another simple source model to be considered, as well as one which 
is suggested as a potential alternative to the existing delta source models, is a modified extended delta 
source model. The modified extended delta source model differs from that of [8] in that it takes into 
consideration the characteristic impedance of the coaxial lines which feed the monopole antennas. It 
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has been found that even the extended delta source model of [8], despite the fact that it offers great 
solution stability when compared to the traditional delta-gap source, may yield input susceptances 
that are unacceptable when monopole antennas are fed by coaxial lines whose characteristic impedances 
Zc are greater than approximately 25H. This finding should come as no great surprise since upon 
increasing the characteristic impedance of the coaxial feed line, the area of the coaxial aperture also 
increases thereby resulting in a decrease in electric field strength tangent to the surface of the driven 
element. To date, all existing delta source models are insensitive to the characteristic impedance of 
the feed line since they do not allow for the modelling of the monopole/feed line junction. The 
consequences of not accurately modelling the coaxial apertures which feed the antenna array elements 
represents the thrust of this paper and will be discussed throughout its body. The fourth model under 
consideration, and by far the most accurate approximate source model to date for the field at the open 
end of a coaxial line operating in the TEM mode is the magnetic frill model [10,11]. This model is 
used as a benchmark for this work. In its most general form, the magnetic frill model may pose 
certain difficulties in implementation since its evaluation relies on techniques based upon numerical 
differentiation and Taylor series expansions. 

Model Description: To analyze a monopole antenna, image theory is commonly invoked to remove 
the ground plane. The monopole is then treated as a dipole in free space, of half length h and radius 
a», as illustrated in Fig. la. In accordance with the MoM procedure, the unknown z-directed current 
J, has been expanded as a series of subdomain basis functions, /,-, as 

4 ■ £ * (1) 

where 

J. = -A-. o) 

The C;'s in (1) are the unknown current coefficients, Tt in (2) is the "triangle function," Nw is the total 
number of basis functions employed, and Tpn (as indicated in Fig. la) is the basis function which spans 
the point of source application. Under a Galerkin MoM procedure, the testing functions are triangles 
whose apexes are located by the coordinate zy The usual procedure is then to form the inner product 

<Jj,LC£ c, J,- ) > = < Jj, fig) >, J=U2,.,NW 
(3) 

i=l 

where J is the testing function, j=l,2,...,N„-l,Nw, L(®) represents the mixed potential operator [12, 
p. 82, eqJ. (5-1)] with the unknown current expanded as per (1), and fig) represents the forcing function. 
Evaluation of (3) results in a matrix equation of the form 
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[ZM]\ c> = | V> (4) 

where [Z„] is the NwxN„ moment matrix, and | V> is the generalized voltage matrix [12], i.e., in 
this case, the "tested" impressed electric field along the dipole surface. The elements of matrix I c>, 
which are the unknown current coefficients, can be easily obtained by forming the matrix product 

[yJI V> = \c> (5) 

where [Yit] is the moment admittance matrix [ZM]\ Given that the matrix [ZM] has been evaluated 
in accordance with the constraints of thin wire theory, it should now become obvious from (5) that the 
solution c; is a function of the matrix [V\ = [<Jp f(g)>] because [YM] is completely determined. 
Furthermore, assuming that we have employed a sufficient number of basis functions to adequately 
represent the current variation, we should note that the quality of our model at this point depends only 
upon our ability to simulate the "natural" or "physical" forces which provide the stimulus for the 
antenna. 

Admittance Calculations: After imaging, the antenna arrays under consideration here consist of 
dipoles that are oriented perpendicular to the x-y plane and equally spaced by a distance d. Fig. lb 
illustrates the i"1 and j01 elements of such an array with the coaxial apertures replaced by the equivalent 
"magnetic frills" of radii b; and bj, respectively. The most direct way to obtain the multiport network 
description of the antenna array from the MoM model is to determine the short-circuit multiport 
admittance matrix [Y]. The elements of the admittance matrix can be determined by driving the q"' 
port with the appropriate voltage source while the remaining elements are treated as scatterers, i.e., 
their input terminals are short circuited. Thus, Ypq = cp/Vq\Vr=0, for r=l,2,...,N, and rtq, where N 
is the number of feed ports, and p, q, and r are port indices (as distinguished from subdomain 
indices). 

Source Models: Four source models have been implemented for this study. The first is the 
"traditional" or "true" delta source model 6 (z) [9,12]. Forming the inner product <Jj,8(z)> for each 
dipole in the usual manner evaluates to a 1 in the generalized voltage matrix of equations (4-5) at the 
position corresponding to Tp„ and zero elsewhere. Hence, the solution for the currents on the dipoles 
is numerically identical to the column of the matrix [YM] whose index corresponds to the basis function 
number at the driven port, which in this case would bepn. Forming the inner product <J-,E G>, 
where EG is the extended delta source whose form is given in [8], results in a generalized voltage 
matrix with non-zero elements corresponding to the indices of the basis functions on the driven dipole, 
and zero elsewhere, since it involves evaluating a "Gaussian pulse" which depends upon the wire 
radius [8] and which never decays to zero (although it may be negligible a few subdomains away from 
the excited port). The matrix | c > obviously cannot be the same as for the case <Jp8(zJ >, since 
it now involves the sum of the products of row elements of [YM] neighboring the driven port with 
the elements of the matrix [<Jj,Eg

G>]. Since part of the magnetic frill source model is needed in 
the implementation of the modified extended delta source model, EM, it shall be discussed presently. 
Forming the inner product <Jj,Ez

F> results in a completely filled generalized voltage matrix. The 
form implemented in this work is based upon the formulation of Tsai and is given as 
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<Jf E:> - -Lj.    /  TM/^i - ±-W ♦ ^K(|«rt* (6) 

27Cln-i-   T4 ° * " 

A. = b*+ p2 + 4 - po* c05*']1'2 (7) 

*4 = [z2 + p2 + fc2 - pb, coscj)'!1'2 W 

*., " & + (P + 'Jfi* (9) 

p2  = 4pai"' (10) 
zVp+O2 

and K( 7t/2, p2) is the complete elliptic integral of the first kind, p and z are the cylindrical coordinate 
variables which locate the testing function (observation points) and A is the length of each segment 
which supports the triangular testing function T(z) whose apex is located by z,, For observation points 
not on the driven dipole, the terms 1/R„ and K( n/2, p2) dealing with the singular part of (6) may be 
omitted. For regions far from the source location, the magnitude of <Jj,Ez

F> may be numerically 
insignificant, depending upon the frequency of operation and the characteristic impedance of the feed 
line. 

Finally, formation of the inner product [<Jj,Eg
M>] also results in a completely filled 

generalized voltage matrix, since it utilizes (6) for observation points not on the driven dipole. Its form 
is given as 

,*C   _ 1 f    ™„   26«     A,   x   BVV. (») <J„ E"> - —J—     f   T(z)e 2~°»   dz + F(z) 
'M 

where 9 is a phase factor and 8M is the artificial gap length both of which were obtained from a linear 
curve fit using magnetic frill data for 0 <Zcj< 125n (although other possibilities exist for determining 
these parameters) and are respectively given as, 

h       h 
e = z7t[-k-i-i)]/28 (I2) 
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2b+5a ■ 5b+2a . 
(«)     6M  =   ~^>       (b)     6M»-V" (13) 

Typically, (13a) is used for feed lines with larger coaxial apertures. For thin monopoles, the phase 
factor (12) may be omitted. The function F(z) accounts for the electric field on the distant scatterers 
and is the part of (6) for the electric field away from the driven monopole. Note that in the limit as 
b,-+aui, £/'->£/ since 5A, -s>Sc->öY„./2,and 9->0. 

Results: A vast wealth of measured dipole admittances exits for isolated monopole antennas with a 
large range of radii and fed by a coaxial feed lines with a variety of characteristic impedances. To 
verify the new source models presented in this work for the case of an isolated monopole, data 
collected by Holly [13] and Hartig [14], some of which is also available in [15], was used as a base 
of comparison. Attention is now called to Fig. 2 which plots computed and measured input admittances 
for a monopole of radius aw=0.0423X fed by a coaxial line of characteristic impedance Zc=10.27fi 
versus monopole length h/X. As expected, the source model 8(z) does not predict good values for the 
input susceptances, Bin, and as such it is unacceptable. However, as expected, the other three source 
models predict values of Bin which are indeed acceptable when compared to each other and to the 
experimental data. For this case, (13b) was used for E™. Note too that Eg

M, Eg
G, and Ef all yield 

reasonable values for Bin for monopole length to radius ratios as small as 2.36 in accordance with the 
discussion presented in [8]. Fig. 3 plots computed and measured input admittances for monopoles with 
hemispherical caps of radii aw=0.0159X fed by a coaxial line of characteristic impedance Zc=93.0fi 
versus monopole length (h+aw)/X (where the monopole length is taken to be h+aw for consistency 
with Fig. lb). Note that both source models £^Gand b(z) do not predict good values for Bin, whereas 
Ef and Ef do.   For this analysis, (13b) was used. 

Finally, attention is called to Figs. 4a and 4b. These figures plot self and mutual admittances 
for a two element array of quarter-wave monopoles fed by coaxial lines with ZC=125AQ, versus 
separation distance d/X. The driven monopole is of radius awl=0.04X and the passive monopole is 
of radius aw2=0.0U. For this analysis, (13a) was used in (11). It should be mentioned that for this 
antenna array, the phase factor of (12) could not be neglected in implementing Eg", and that (13b) did 
not produce acceptable values for the multiport admittances. As can be seen from these figures, both 
E° and b(z) will yield a multiport admittance matrix which is of little value since both the self and 
mutual admittances exhibit large deviation from those admittances computed using E"and Ef. Also 
note that E° and 5(z) yield results for the mutual admittance at locations far from their point of 
application which are less accurate than those obtained from E" when compared to Ef. No 
experimental data was available to us at this time for the self and mutual admittance of antenna arrays 
fed by coaxial lines with large characteristic impedances; however, judging from the results of Fig. 
4, the source model E" should yield multiport admittance matrices comparable to those obtained by 
measurement since it tracks the admittances obtained from Ef quite well. 

Conclusions: This work introduces a modified extended delta source model which yields results for 
monopole input admittances comparable to those obtained from the magnetic frill source model since 
it takes into consideration the characteristic impedance of the feed line. Furthermore, the modified 
extended delta source model and the magnetic frill source model when used as a forcing function for 
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the EFIE yield comparable results for the multiport-network description of thin cylindrical dipole 
arrays, but the modified extended delta source is much simpler to implement. This work represents a 
preliminary investigation into improvements to, and generalizations of, existing simple voltage source 
models for use as forcing functions. 
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INTRODUCTION 

Numerical modeling of EMI/EMC problems has become more popular over the past few years, 
due to the commercial availability of modeling software and drive to reduce product 
development cycle times. These market forces combined with an increase of the data and clock 
speeds (and associated pulse rise/fall times) and ever increasing pressure on product costs have 
fueled a widespread use of numerical modeling among EMI/EMC engineers in order to remain 
competitive. 

Most of the focus on EMI modeling has been on radiated emissions. Historically the emissions 
problem has had priority over immunity for various reasons. However, immunity issues are 
becoming increasingly important due to the new European EMI requirements, and the increased 
density of electronic devices. This paper presents some techniques for adopting the modeling 
techniques developed for radiated emissions to immunity problems. 

This paper describes both modeling and experimental validation of these techniques on a simple, 
unshielded circuit board with long wires attached. A number of different models were developed 
to determine which components and circuitry were primarily involved in a known immunity 
problem. The model was then altered to study the effectiveness of various solutions such as the 
use of filtering components, power decoupling and signal trace position. 

MEASUREMENT APPROACH 

The technique reported in this study was developed on a set of digital telephone products. The 
analog circuitry in telephones has historically been sensitive to modulated RF fields. The nature 
of these circuits makes them natural demodulators of RF fields. The resulting demodulated noise 
is then transmitted with the intended signal resulting in unwanted interference. The telephone 
which was the subject of this study was demonstrated to have a sensitivity to RF fields in the 500 
MHz region. The designers of this product were experienced engineers who had applied sound 
layout and design techniques to the product. Probing with small probes suggested that the analog 
circuitry associated with the CODEC analog inputs was the most likely point of demodulation. It 
was necessary to determine how the RF was being coupled into this circuitry and which solutions 
would prove effective in resolving the problem. The circuitry in question had been carefully 
contained within a small area to reduce the possibility of RF coupling into this area of known 
sensitivity. Further, the circuit board, which was two sided, had a good ground reference grid on 
one side. However, it was noted that the digital bus coming into the CODEC chip made a "U" 
around the analog circuitry in order to reach the required pins on the chip. The analog circuitry, 
this digital bus and the ground grid became the primary subjects of the investigation. 



Ultimately it was determined that the digital bus was the coupling path used to the sensitive 
circuit area. A minor amount of capacitance placed at the middle of this bus proved effective in 
bring the product into compliance with its specification. The numeric modeling techniques used 
proved very useful in gaining both an in-depth insight into the mechanism of this problem and 
quickly evaluating the likely success of a number of possible solutions. 

MODFXING APPROACH 

The simulation was performed using the Method of Moments (MoM) modeling tool within the 
SETH Corporation's EMIT011 (EMI Toolbox for Modeling). Reciprocity was used to make the 
modeling more straightforward. That is, a source was modeled at the point where the circuit 
sensitivity was known to exist. The calculated radiated field provided a transfer function (across 
the frequency range) for the voltage at the component to the field strength. Furthermore, all 
impinging field angles and polarizations were examined to determine the point of maximum 
sensitivity. By this application of reciprocity all angles of incidents could be investigated 
simultaneously greatly reducing the number of models required. 

The model for this problem contained four major components. These were: the ground grid of 
the PWB, the CODEC analog circuitry, the digital bus and the telephone line coming to the 
product. The addition of the telephone line was important in that its long length made it highly 
likely to be a part of the structure which was receiving the RF field. The model for the PCB 
etches is shown in Figures 1 through 3. Note that the traces that connected to the sensitive 
component, traces connected to the long external wires, and any traces that could act as 
significant fortuitous conductors between the previous two classes of traces were all included in 
the model. All other traces were eliminated from the model to simplify the overall model and to 
achieve faster solution times. 

Several passes were required on the baseline model before the critical elements of the problem 
were identified. It became apparent that it the design of the source needed enhancement. In 
order to provide an accurate model, the source must be designed such that it reciprocates the 
frequency response of the CODEC circuitry. If a generalized source, such as that illustrated, is 
used it will predict susceptibility at higher frequencies than may exist in reality. This is because 
the circuitry may not respond at these frequencies, even though energy is conducted into the 
circuit area. Accordingly, the output impedance of the source is designed to replicate the target 
circuit's frequency response. 

Another issue which must be addressed is that of multiple mechanisms contributing to a given 
immunity issue. The primary peak in this problem was at 500 MHz. However, there is a 
secondary peak in the measured data near 390 MHz. This peak is due to a different mechanism, 
which was verified both experimentally and by modeling. It should be noted that the amplitude 
of this peak did not respond to the solution developed for the primary peak. The models 
developed for the primary peak also did not adequately anticipate this peak. This issue was 
noted but disregarded since this peak was within the product's performance specification limit. 

The simulation was performed with the circuit traces as originally designed, that is, with the 
immunity problem intact. Note that in Figure 4 the measured data clearly shows the 
susceptibility response at 500 MHz, and although the modeled response (Figure 5) is more 
broadbanded, the increase in susceptibility around 500 Mhz is clear also. The model's 
broadband response was expected since all the capacitance and inductance in the circuit (which 
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are likely to cause sharper resonances) has not been modeled (to simplify the model). The model 
was considered accurate, and the search for the proper design change to implement to correct the 
immunity problem was undertaken. 

Once the problem was adequately modeled three lines of investigation were followed. The first 
was to improve the filtering present at the input connector of the telephone line. The second was 
to introduce capacitance onto the bus lines. The third alternative investigated was alternate 
routing for the digital bus lines. 

The input filtering was investigated by bounding the problem at the extremes. A model was run 
with no filtering. Then a model with perfect filtering was run. Perfect filtering was designed as 
a 1 cm gap between the telephone line approaching the board and its connector. One of the 
tremendous strengths of modeling is that this kind of physically impossible structure can be 
investigated in order to gain insight into the problem. It was discovered that while filtering at the 
input was helpful, this problem could not be adequately resolved by filtering alone. In all cases 
frequency regions exist where there is little or no flow of RF current through the filter. As a 
result the filtering components are totally useless at these frequencies. As a result of this 
bounding of the problem this area of investigation was quickly set aside. 

The introduction of capacitance onto the digital lines looked promising as a way of defeating this 
resonant structure. This approach was effective both in the model and experimentally. The 
modeled response predicted an improvement of 12 dB at 500 MHz. The experimental data found 
also found a significant improvement of 12 dB (as can be seen in Figure 4) at 500 MHz. Then 
alternate implementations of this solution were evaluated. Figure 6 shows a number of locations 
where a capacitor was simulated in the model to determine the effect on the immunity response. 
Only one capacitor was installed in the model at a time, so as to determine the effect of each 
potential component location. As can be seen in Figure 5, the location of the capacitor made a 
significant difference in the susceptibility response at 500 Mhz. Note that position #1 was 
selected as the optimum location, and the capacitor physically installed on the PCB. 

Before a final solution was selected alternate routing of the digital lines was investigated. The 
addition of capacitance onto these lines would require a change in the board layout to allow for 
these components. That being the case, if alternate routing was a possibility, that would be the 
optimal solution from a cost standpoint. The strength of this approach to an immunity problem 
is that it allows for quick evaluation of many different solutions. A solution may be bounded at 
the extremes, such as was done with the input filtering. Even though some implementations are 
not physically possible their models have value in that they show at the extreme limit what is 
possible with a given approach. If the absolute limit, such as an open in an input line, is not 
sufficiently effective then a given line of investigation may be quickly abandoned. Alternately, 
solutions which are difficult or time consuming to test experimentally, such as alternate routing 
on very dense, surface mount boards, may be quickly modeled. Thus a high degree of 
confidence may be gained before the expense of implementation is incurred. 
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TECHNIQUE SUMMARY 

The technique described here may be reduced to the following steps. 

1. An immunity problem is selected and measured over a frequency band of interest. 
2. Using small probes or engineering analysis the critical circuit is identified. 
3. The frequency response of the critical circuit is measured. 
4. A baseline model is developed which replicates the product's response 
5. General solution approaches are suggested and bounded by modeling at the extremes to 

investigate feasibility. 
6. Once a promising and practical approach is determined, alternate implementations are ^ 

investigated in order to determine the optimum implementation within a given product's 

cost constraints. 
7. The solution selected in experimentally verified and implemented. 

SUMMARY 

This paper introduces a technique for using applying numeric modeling to immunity problems. 
Modeling can be used to simulate the effects of radiated immunity as well as radiated emissions. 
Second, models eliminate the 'brute force approach' to immunity problems of guessing at the 
source of an immunity mechanism and experimentally trying many possible solutions until an 
effective remedy is found. With modeling, solutions are not considered until the central 
mechanism of the problem is adequately understood. Once an adequate model is developed 
inspection of the RF current flows at the frequencies of primary interest is particularly instructive 
in this regard. Then using well known electromagnetic effects (such as reciprocity), modeling 
can be made much simpler, and effectively extend the usefulness of existing modeling tools. 
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Abstract 
Computer modeling tools for EMC analysis generally fall into one of three categories: numerical 

modeling codes, analytical modeling codes, or design rule checkers. Although these tools can be very 
helpful to the experienced EMC engineer, computer modeling tools are rarely used to analyze or prevent 
EMC problems during the development phase of new products. This paper discusses computer tools that 
are currently available and introduces a new class of EMC modeling software based on an expert system 
approach. 

Introduction 
There are a number of computer modeling codes available to EMC engineers and circuit designers 

today. Computer modeling tools can be used to provide information about a particular design that is not 
readily obtained in any other manner. For example, computer modeling tools can calculate values of 
parasitic inductances and capacitances in a circuit, model the behavior of the radiated fields, determine 
current distributions, calculate crosstalk, evaluate the effectiveness of a shielded enclosure, or locate 
simple design mistakes. 

Generally, software tools for EMC analysis fall into one of three categories: numerical modeling codes, 
analytical modeling codes, or design rule checkers. Numerical modeling codes analyze problems by 
numerically solving Maxwell's equations subject to particular boundary conditions. Analytical modeling 
codes use closed-form equations and/or pre-calculated solutions to analyze EMC problems. Design rule 
checkers scan a printed circuit board or system design for errors or violations of EMC design guidelines 
without attempting to calculate fields or currents. 

Numerical Modeling Codes 
Numerical electromagnetic modeling software is widely viewed as a promising new tool to help EMC 

engineers and circuit designers anticipate electromagnetic compatibility problems. Numerical EM 
modeling codes solve field equations subject to appropriate boundary conditions in order to determine 
the electromagnetic behavior of different source configurations. 

The ability of a numerical modeling code to model a particular geometry is largely dependent on the 
numerical technique employed by the code. Finite element modeling codes (e.g. MSC/ EMAS or AnSoft's 
MAXWELL codes) excel at modeling relatively complex geometries with lossy or even nonlinear 
materials. Codes that employ surface integral techniques (e.g. NEC, COMORAN, HFSS, EM, IE3D, 
COMPLIANCE, MAXSIM-F) are very well suited for modeling relatively large, resonant structures; 
particularly structures with long wires or cables. Finite difference time domain (FDTD) codes (e.g. 
XFDTD, EMA3D, EMIT) are usually the best choice for time domain or broadband modeling. 
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Ansoft, Cadence, Hewlett-Packard, Quad Design, and Quantic Laboratories have packaged numerical 
modeling software with software that automatically extracts printed circuit board geometry data from 
automated board layout tools. These tools make it easier for EMC or signal integrity engineers to take 
advantage of numerical modeling software. INCASES (EMC Workbench) and Seth Corporation (EMIT) 
have developed software environments that bring together a variety of numerical modeling tools with a 
common interface designed specifically for EMC engineers. 

Despite the availability of software that models geometries of interest to EMC engineers with a high 
degree of accuracy, numerical codes have not been widely utilized for EMI modeling. Only a small 
percentage of EMC engineers use numerical modeling codes on a regular basis. One reason for this is 
that numerical codes require well defined sources. Defining the source of an EMC problem is often the 
most difficult step in the solution process. When an EMC engineer can identify the parameters necessary 
to do a numerical analysis (i.e. source location, source amplitude, and antenna geometry), then often the 
problem can be corrected without doing a numerical analysis. Numerical electromagnetic modeling codes 
are sometimes used to analyze specific circuits or structures, but typical printed circuit board configura- 
tions are much too complex to be analyzed in their entirety using strictly numerical methods. 

There is an additional problem with existing numerical EM modeling codes that often prevents them 
from being used, even in cases where relatively simple well-defined model geometries can be identified. 
Existing modeling codes have a fairly steep learning curve. The user must be reasonably well versed in 
the procedures for applying the code as well as the techniques used by the code and their limitations. Few 
EMC engineers can afford to be. an expert user of several EM modeling codes that may or may not be 
occasionally helpful. Numerical EM modeling codes are potentially a very valuable tool for EMC 
problem analysis, but in their present form they require too much expertise on the part of the user to be 
widely used as an EMI modeling tool. 

Analytical Modeling Codes 

Analytical modeling software, which uses relatively simple closed-form expressions to calculate 
parameters such as field strengths or currents tends to be much faster and a little easier to use. Analytical 
methods fit problems to pre-defined geometries with known solutions. IEMCAP is one relatively well 
known example of a code based primarily on analytical techniques. Analytical modeling codes for EMC 
engineers are also marketed by Interference Control Technologies, Kimmel Gerke Associates, CKC 
Laboratories and Atkinson Engineering. Each of these codes is much faster and easier to use than a general 
purpose numerical modeling code, however each code has a limited set of functions that it performs. 

Although analytical modeling codes tend to be easier to use than numerical modeling codes, the user 
must still be aware of assumptions that the code is using and limitations imposed by these assumptions. 
Learning to use the code is not the same as learning how and when to apply the code. 

Like numerical modeling software, analytical modeling codes rely on the user to define sources and 
other critical parameters. Identifying these parameters requires a certain amount of EMC knowledge. 
There is little value in performing a highly accurate analysis of an incorrect model. 

Rule Checking Codes 

EMC rule checking software reads board layout information from automated board layout tools and 
looks for violations of basic EMC design rules. This type of software does not usually attempt to predict 
the electromagnetic behavior of the system, but instead is intended to help designers avoid costly mistakes 
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early in the design stage. Cadence markets an EMC design rule checker under the name DF/EM Control. 
Zuken-Redac has a design rule checker called EMC Adviser. These tools can help board designers to 
locate potential problems with their designs and they can also help experienced EMC engineers to quickly 
identify problems that would otherwise be hard to spot. 

Unlike numerical and analytical modeling software, rule checkers do not require the user to understand 
basic principles of electromagnetic modeling. However, the available rule checking codes do require the 
user to identify critical nets and supply information about the signal parameters. This requires a certain 
amount of expertise on the part of the user, but it is a different kind of expertise. Another difficulty with 
rule checkers is that design rules and their impact on EMC can vary significantly from one design to 
another. Design rule violations that are a major problem for one design may be of little consequence in 
another design. 

Expert System Codes 
Although each of the techniques above can be a very powerful tool in the hands of a knowledgeable 

user, software employing these techniques is not widely used by EMC engineers or circuit designers. The 
learning curve associated with available tools is often too steep. Few engineers have the knowledge and 
experience required to use these tools effectively. 

To circumvent this problem, a new class of EMC software is currently being developed at a number 
of laboratories around the world. This new class of software attempts to emulate the thinking process of 
experienced experts in EMC. EMC engineers rely on design rules, but when a rule is violated, they 
perform a quick analysis of the overall design to evaluate the impact ofthat rule violation. EMC engineers 
may take advantage of numerical and analytical modeling tools, but only after the critical parameters of 
the problem have been identified. Software that works like this is appropriately classified as expert system 
software rather than numerical, analytical, or rule-checking software. 

EMC expert system software seeks information from a variety of sources. By definition, expert system 
software does not assume a high level of expertise on the part of the user. Like an EMC expert, the more 
information the software has about a particular problem, the more effective its analysis will be. 
Nevertheless, even with incomplete information, expert system software attempts to provide a helpful 
and accurate EMC evaluation of a design. 

Conclusion 
There are a number of software tools that can help product developers to meet their EMC requirements. 

Modeling codes that employ numerical, analytical or rule checking techniques can analyze a wide range 
of EMC problem geometries and are readily available. To the experienced user, these codes can be valuable 
EMC design tools. 

EMC expert system codes won't eliminate the need for other types of EM modeling codes, but they 
will play a significant role in the future of EMC engineering. By emulating the thought processes and 
techniques used by EMC engineers, EMC expert system codes will zero in on the most significant features 
of a design from an EMC standpoint. EMC expert system software promises to identify and evaluate 
EMC problems faster and more accurately than existing modeling codes. Also, because expert system 
software does not require any expertise on the part of the user, circuit designers, board layout personnel, 
EMC engineers, technicians and others can use the software to evaluate a product at different stages in 
the design process. 
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Abstract 

The Magellan spacecraft synthetic aperture radar experienced a failure when the receiver protect 
circuitry in the PRF/Timing subsystem failed. The receiver protect circuitry failed due to 
electromagnetic coupling from the ultra stable oscillator/clock generator circuit located on an 
adjacent board. Some ICs in this ultra stable oscillator/clock generator circuit had previously 
become detached from their traces when a thermal test caused the conformal coating to expand. 
The ICs were re-attached to the PCB traces using "small wire loops" which apparently radiated 
significantly to cause the failure of the receiver protect circuits. The analysis which discovered the 
above failure mechanism is discussed. The analysis also includes the use of the method of 
moments to model the radiation from a portion of the noisy board and coupling into the 
susceptible circuits of another board. Only one of such models is discussed herein for brevity. The 
simple solution to the electromagnetic coupling problems is discussed in the conclusion of this 
work. 

1.0 Introduction of Problem: A Failed Synthetic Aperture Radar 

During final functional checkout of the Magellan spacecraft synthetic aperture radar (SAR) at the 
Kennedy Space Center, and two weeks before launch to the planet Venus for mapping its surface, 
the radar experienced a failure in which its PRF/Timing Unit-A was not working. Failure of such 
unit would mean that range, and transmitter signals to the SAR and altimeter (ALT) antennas 
would be corrupted, in essence rendering one half of the redundant (side A and side B)radar 
totally useless. Figure 1 shows a functional block diagram of the sensor subsystem of the SAR. 
Notice the redundancy of all functional blocks. The figure shows the PRF Timing Module being 
fed by the ultra stable oscillator (STALO). The STALO/PRF Timing unit generates all the timing 
and clock signals needed by the radar's subsystems such as the range dispersion units, 
transmitters, receivers, baseband processors, and data formatters. Figure 2 shows a detailed block 
diagram of the STALO and PRF Timing unit. The PRF timing unit consists of a clock generator 
which feeds its clocks (1.13 MHZ, 2.26MHz, and 141.2 KHz) into the SAR, ALT, and 
Radiometer pulse generators. The receiver-protect-circuitry serves as the interface between the 
transmitter and receivers subsystems of the radar and a series of pulses are generated to toggle the 
control between transmitting and receiving bursts. Figure 3 shows a timeline illustration of the 
different bursts in the mapping process. 
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2.0 Finding the Problem 

Approximately six weeks before launch during thermal testing at the system level it was 
discovered that some IC mounted on two PCB within STALO have become detached (or 
displaced from their position) resulting in a loss of contact with PCB traces. The accidental 
positional displacement was attributed to a chemical expansion of the conformal coating in the IC 
during cycles of thermal testing ranging from -20C to 85C. The design and building of new 
boards was not feasible in the scheduled time remaining before launch ( a "window" of 
opportunity for a launch to Venus exists only every 18 months and last only a few days), hence, it 
was decided to fix the problem by connecting "wire loops" between the leads of the chips and the 
PCB traces. The wire loops were made of copper, wire gauge 32 (0.0201 cm), and were about 
0.4 inches long. This procedure was used to attach a total of 8 chips to their respective PCB 
traces in two different boards within STALO. Functional check out of these boards proved the 
solution to have been adequate. Figure 4 shows an illustration of the above fix. 

3.0 Fixing the Problem Created New Ones: this Time of EM Nature 

In the final system level functional check out of the radar, telemetry reading showed a systematic 
failure of the radar in its PRF/Timing Unit-A (in Figure 1). A series of troubleshooting steps were 
performed which isolated the problem to the "receiver-protect-circuitry" located within the 
PRF/Timing module (see Figure 2). When the receiver-protect-circuitry board was removed and 
individually tested for its functionality, no anomalies were observed. However, when installed 
back into the unit, the failure re-occurred (this was done three times). These anomalies consisted 
in the corruption and eventual loss of the "Pre/post PRF" and "pulse-complete" signals from/to 
the receiver-protect-circuitry (see Figure 2). After checking for noise/compatibility problems 
between the different conductive (i.e through cables/connectors) interfaces and observing no 
problems, it became evident quickly that an external "radiated" interference source was at the 
root of the problem and that the main cause of such anomalies was radiated coupling. Next to the 
receiver-protect-circuitry board and separated by only 7 cm were the two STALO boards which 
were previously fixed using wire loops for the attachment of displaced chips. Near field probe 
measurements were made and the results indicated the presence of strong electromagnetic fields 
near the receiver-protect-circuitry board. The use of wire loops in the STALO boards became an 
immediate suspect in the rationale for the strong presence of electromagnetic fields at the 
receiver-protect-circuitry board. The wire loops, specially those attached to the clock outputs of 
chips, can become "complex radiating structures" as shown in Figure 5. This paper deals with the 
displaced chip (and then re-attached using wire loops) containing the 72 MHz clock output. The 
top half of Figure 5 shows a "radiating structure" consisting of: a) a voltage source Vs (frequency 
dependent) located at the clock output (5 volts peak-to-peak, trapezoidal waveform, 50% duty 
cycle, 72 MHz, rise time=fall time of 1.0 nSec) of a chip, b) the wire element structure which is 
composed of a wire loop plus the PCB trace, c) loading effects as represented by the input 
capacitance of chips which receive the clock, and d) a return path through the ground plane of the 
PCB. The bottom half of Figure 5 shows a portion of a "susceptible" circuit located in the 
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receiver-protect-circuitry board. A transmission line representation of such susceptible circuit is 
also shown. 

4.0 The Use of Computational Electromagnetics in this Application 

It was necessary to verify the above model because: a) it was important to determine the source 
of the emissions so that the appropriate corrective actions could be taken, and b) the analysis 
would reveal insights into the failure mechanisms inside the CMOS chips. The Method of 
Moments (MOM) for thin wires [1] was used in the above analysis. Figure 6 illustrate some of the 
details corresponding to the use of the method of moments for modeling the radiating structure in 
Figure 5. Notice that: a) the rectangular shape of PCB microstrip traces were converted to 
equivalent round wires [2] for simplicity, b) the dielectric effects of the PCB were not included in 
the modeling since we had a low loss scenario [3]. Neglecting dielectric effects give reasonable 
results at lower frequencies [4]. Since we were not in pursue of accurate models but rather in the 
positive "identification" of a radiating source the neglect of dielectric was appropriate, and c) the 
ground plane was not modeled (again for simplicity) but instead an "image return" trace 
(converted to its equivalent round wire) was used. Figure 6 also shows details about modeling the 
susceptible circuit using a transmission line approach known as the field-to-wire coupling [5,6]. 
The field-to-wire coupling approach is more simple (though less accurate) than numerically 
calculating the near field wire-to-wire coupling with the help of the method of moments. The 
field-to-wire coupling approach is good for plane waves. However, in this work we developed an 
approximation for near fields. For the sake of simplicity our near field calculations were modified 
in the following matter in order to use the field-to-wire coupling model of Figure 6: 1) the (x,y,z) 
components of the near electric fields were calculated at points PI, P2, and P3 as shown in Figure 
5. These points expand the length of the susceptible circuit (more points can be used if desired). 
Tables la through lc shows the results of near field calculations for the different harmonics of the 
72 MHz clock, 2) an average (of the three points) is obtained for the x, y, and z components so 
that only one set of values for Ex, Ey, and Ez is obtained, and 3) simple equations for field-to- 
wire coupling will be used. For example, equation (1) represents the expression from field-to-wire 
coupling for calculating the induced current on a transmission line for a no-loss, homogeneous 
medium. The wire sits in the x-y plane over a ground plane (similar equations for the x-z and y-z 
plane will be stated in the paper). 
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,—!■ (Ej (X,0,B) dx -i[Z„ CasCpj) . flx Sin (ßj)]  f £x(w>) <k (1) 
D   { D 

where     D - (Z^, . Z0Zt)Cos (pi) • j'(Z„2 . ZlZ^Sm (ßs) 

In equation 1 Z, and Z2 are the capacitive loads in the susceptible circuit of Figure 5 or 6b (in 
CMOS chips input capacitance is the primary impedance, hence Ra=Rb=0 in Figure 5). Zo is the 
characteristic impedance of the trace (35 ohms in Figure 6b) and Ey and Ex are the average field 

863 



values (numerical constants) along the length of the circuit which were already calculated from 
the method of moments. Transmission line equations for current distribution are evaluated for 
each of the 5 sections (see Figure 6) in which the susceptible circuit is divided. The total induced 
current can then be obtained. Transmission line equations of the type shown by equation 1 
become very simple to evaluate leading to simple analytical expressions. Notice that this approach 
is only an approximation but it is feasible and fast for simple susceptible circuits. A more complex 
approach for near field wire-to-wire coupling, based on the method of moments, which is an 
extension of the original work of A.T.Adams [7]. 

The more simple of the above procedures was used to calculate the induced current in the 
susceptible circuits and eventually the calculation of the induced voltages in the capacitive loads 
corresponding to the IC. The susceptible circuit shown in Figures 5 and 6b is the major portion of 
the most prominent susceptible circuit within the receiver-protect-circuitry PCB in the 
PRF/Timing block (three chips and small portions of traces are missing from Figure 6b). When the 
analysis was performed, it was found that the induced load voltages were on the order of 1.43 V 
for the 10.0 pF load and 1.28V for the 3.5 pF load. These induced voltages are much higher than 
the noise margins. Usually noise margins range from 0.2 to 0.5 volts for most CMOS chips. The 
results are that such chips will "latch up" on a give state. A latch up chip will prevent all 
subsequent digital functions from being performed. This scenario is illustrated in Figures 7 and 8. 
Figure 7 shows the timing diagram of some inputs and output signals from the receiver-protect- 
circuitry in Figure 2. In Figure 8 the receiver-protect-command has been interrupted. The 
receiver-protect-command is generated from a circuit within the receiver-protect-circuitry. It is in 
this receiver-protect-command circuit where the coupled noise current was found. A portion of 
the receiver-protect-command circuit is shown in Figure 6b. Once the receiver-protect-command 
is interrupted the Pre/post PRF signal is also interrupted (see Figure 8). The pulse-complete 
command (a feedback from the receiver-protec- circuitry) also goes bad (see Figure 8). The end 

Once the problem was identified and corroborated with the analyses a simple, cheap, and fast 
solution was arrived to: shielding the noise sources. The IC with their "wire loops" were shielded 
and the small shields grounded. To prevent heating problems the IC shields were also connected 
to heat sinks. After the fix the noise coupling problem disappeared. The spacecraft was launched 
on time and it successfully completed its mission almost three years later in October 1994 with the 
radar mapping of Venus entire surface (Venus' surface can not be photographed because if its 
dense C02 atmosphere). 
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I. ABSTRACT 

In this paper, the Finite-Difference Time-Domain (FDTD) method is used to calculate common 
mode cable currents in simplified system structures. The FDTD results correlate very well with mea- 
surements on a canonical structure. The effects of using ferrites to reduce cable currents are investi- 
gated. 

II. INTRODUCTION 

Electromagnetic interference (EMI) from electronic equipments has become an issue of greater 
concern as clock speeds and edge rates continue to go up in today's digital designs. Numerical model- 
ing and simulation of EMI not only help us better understand the problem itself and the effects of differ- 
ent configuration parameters, but also allow early prediction and prevention of potential EMI problems. 
Common mode cable currents have been shown experimentally in many recent publications to be the 
major contributor to system EMI [1,2]. Calculation of radiation from common mode cable currents is 
quite straightforward and will not be discussed here. The challenges in modeling system EMI include 
the identification of the common mode coupling mechanism and the prediction of the induced cable 
currents. This paper is focused on the latter issue. The Finite-Difference Time-Domain (FDTD) method 
[3-5] is used in the analysis of typical system structures with attached cables. 

Full-wave analysis is necessary in modeling common mode cable currents in such structures. 
Other than the FDTD method, the Finite Element method (FE) and the Method of Moment (MoM) have 
also been widely used in numerical studies of radiation problems. We believe the FDTD method is 
more efficient than the other two methods in modeling system EMI problems, in which a broad spec- 
trum is of interest. Being a time domain approach, the pulse based FDTD method can generate results 
over a wide frequency range from one single simulation. The availability of FDTD models for thin 
wires [6,7], small holes and slots, thin dielectric sheets, and etc. alleviates the need of meshing down to 
the dimensions of small structures as required by the FE method. 
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Section III discusses the application the FDTD method in analyzing simplified system structures 
with attached cables. In Section IV, a canonical structure [8] proposed for modeling small table-top 
products is analyzed. The FDTD results are compared with measurements and other published simula- 
tion results [9]. In Section V, the effects of ferrites in reducing common mode currents on cables are 

investigated. Section VI concludes this paper. 

III. THE FDTD METHOD 

In the FDTD method [3-5], the problem space is discretized over a finite 3-D computational 
domain with both space and time derivatives in Maxwell's equations approximated by a second-order 
accurate centered difference scheme. E and H are calculated at alternate half time steps and at different 
positions according to Yee's grid model [3]. The FDTD equations in free space are: 

l .   l 

HT2 = H"-5_A£VxE- (1) 

1 
n + - 

£»+i =£" + ^Vxtf    2 (2) 
e, o 

In the application of the FDTD method the size of a unit cell is first chosen to be smaller than the 
smallest dimension of the structure and a fraction of the shortest wavelength of interest. Then the time 

step is chosen to satisfy Courant stability criterion: 

Af<      ( 2       1 (3) 

The second order Mur's absorbing boundary conditions [10] are used to truncate the computation 
domain. The domain size is chosen such that the open boundary is at least 2 times the longest dimen- 
sion of the structure away from it. This is to make sure that the near field region corresponding to the 
first resonance is contained within the computation domain. 

To avoid meshing down to the typically small cable cross section, the thin wire model discussed in 
[6,7] is used to model cables. The backward Euler formulation is adopted in modeling lump source and 
load in an FDTD cell. A modulated Gaussian pulse which cover the frequency range of interest is used 

as the source. 
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IV. ANALYSIS OF A CANONICAL STRUCTURE 

The two structures with attached cables shown in Fig. 1 were proposed in [8] to model radiation 

from small table-top products. Figs. 1(a) & 1(b) show the straight wire and the bent wire configurations, 

respectively. Other than the thin wire above the thin plate, the two configurations share the same dimen- 

sions as labeled in Fig. 1(b). The wires above and below the thin plate have diameters of 0.2 cm and 0.4 

cm, respectively. The thickness of the thin plate, 0.3 cm, is small enough to be neglected. In the original 

configuration [8], the bottom wire is the shield of a 50 a coaxial cable, which is driven by a 50 a 

matched voltage source at the base. In our FDTD modeling, since the phase relationship between the 

cable current and the voltage source is not of interest, we can model the excitation by an equivalent 50 

Q. voltage source between the top wire and the thin plate as indicated in Fig. 1(a). The FDTD cell sizes 

for (a) and (b) are 42 x 49 x 40 mm and 45 x 49 x 23 mm, respectively. The computational domain for 
(a) and (b) are 132 x 108 x 92 cells and 100 x 88 x 131 cells, respectively. In all our FDTD simulations, 
the time step is chosen to be 0.99 of the Courant stability limit. 

0.2 cm diameter 

0.3 cm" 

50 O source 

0.4 cm diameter 
100 cm 

(a) 
v. 

(b) 

FIGURE 1. (a) The straight wire structure, (b) The bent wire structure. 
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In Figs. 2(a) & 2(b), the FDTD simulated cable currents at the base are compared with measured 
results [8] and the Method of Moment (MoM) results [9]. It is interesting to see that FDTD and MoM 
predict the same resonant frequencies in both cases, while the measured resonances occur at slightly 
higher frequencies. As explained in [9], the difference is probably due to some proximity effect associ- 
ated with the measurement or the surrounding environment of the physical structure. In both cases, the 
FDTD simulated resonance magnitudes are very close to the measured values, while the MoM results 
are about 5 dB lower. 

Frequency (MHz) 

(a) 

Frequency (MHz) 

(b) 

FIGURE 2. Simulated and measured results of the cable current normalized with the source voltage: 
(a) the straight wire structure, (b) the bent wire structure. 

V. USE OF FERRTTES 

In this section, a similar structure with the cable attached to the edge of the thin plate as shown in 
Fig. 3 is analyzed. The thin plate represents the ground plane of a printed circuit board. The common 
mode cable current is driven by a noise voltage at the connection which may correspond to the connec- 
tor ground drop due to its partial inductance. The FDTD cell size is 40 x 40 x 40 mm, and the computa- 
tional domain is 112 x 108 x 75 cells. 

Fig. 4 shows the input impedance of the cable structure from DC to 1 GHz. This plot reveals the 
resonant frequencies around which common mode radiation from the cable may cause problems and 
shows the input impedance values at those resonances. This information can help designers in choosing 
the right ferrite to suppress the common mode current. 

Figs. 5(a) & 5(b) show the normalized cable currents from DC to 200 MHz covering the first two 
resonances. Fig. 5(a) shows the effect with Ferrite 1 added, while Fig. 5(b) shows the effect with Ferrite 
2 added. Ferrite 1 and 2 correspond to Ferrite A and B in Fig. 5 of [11], respectively. As discussed in 
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[11], typical ferrites can be modeled well by an equivalent RLC circuit. In the equivalent circuit of Fer- 

rite 1, R = 90 Q, L = 4.6 U.H, and C = 22 pF. In the equivalent circuit of Ferrite 2, R = 129Q, L = 0.82 

|xH, and C = 0.86 pF. It is observed that both Ferrite 1 and 2 reduce the current at the first resonance by 

about 12 dB. At the second resonance, Ferrite 2 is shown to be much more effective than Ferrite 1. The 

difference between their performance can be easily predicted by simply looking at the input impedance 

of the structure and the ferrite impedance shown in Fig. 6. The ferrite basically increase the input 

impedance of the structure, which results in reduction of common mode currents. For structures with 

high input impedance at resonance, the use of ferrite may not be effective at all. It is interesting to see 

that Ferrite 1 and Ferrite 2 cause a shift in the second and the first resonance, respectively. This is due to 

the large variation of the ferrite impedance Z'(/) at those resonance frequencies. This effect is some- 
times desirable if it shifts the resonance away from major clock harmonics. 

100 cm 

48 cm 

0.4 cm diameter 

/;/;;;;/;/;;/>;/;////;;;//>//;//>/////;///;///, 

FIGURE 3. A thin plate with a cable attached to its edge. 

0 200 400 600 800 1000 

Frequency (MHz) 

FIGURE 4. Input impedance of the structure. 

874 



Frequency (MHz) 

(a) 

Frequency (MHz) 

(b) 

FIGURE 5. Normalized cable current with and without ferrite: (a) Ferrite 1, (b) Ferrite 2. 

50 100 150 

Frequency (MHz) 

FIGURE 6. Impedance magnitude of Ferrite 1 and 2. 

VI. CONCLUSIONS 

In this paper, the FDTD method is used to analyze common mode cable currents in simplified sys- 
tem structures. The FDTD results correlate very well with measured results for a canonical structure. 
The effect of using ferrites on a similar cable structure is investigated. The input impedance obtained 
from the FDTD results can help designers in choosing the right ferrite to suppress common mode cur- 
rents. It is shown that the addition of ferrite not only reduces the cable current at resonance, but may 
also cause a resonance shift due to large ferrite impedance variation around the resonant frequency. 
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STATISTICAL COUPLING OF EM FIELDS TO CABLES IN AN OVERMODED CAVITY 

Richard Holland, Shield Rite, Inc., Box 8250, Albuquerque, NM 87198, 505-842-6018 
Richard St. John, Mission Research Corp., 1720 Randolph Rd., Albuquerque, NM 87106, 

505-768-7655 

ABSTRACT 

This paper describes the statistics of EM fields and power fluxes inside a highly overmoded cavity. 
It explores various combinations of normal, log normal, and chi square (with two and six degrees 
of freedom) distributions. Logarithmic convolution of the two chi square models provides the best 
match with observation. Field models are input as drivers to cable codes representing wiring in an 
aircraft shell. Resulting cable current distributions match observed results within a factor of two, 
which is commensurate with the experimental uncertainty. 

INTRODUCTION 

The current response of cables in a complicated, highly overmoded chamber is not a problem which 
is tractable by deterministic solution of Maxwell's equations. 

Our approach, which is probably the only feasible one, is first to characterize the statistical 
distribution of electromagnetic fields or power flux in the chamber.1'4 This distribution, in general, 
may have frequency or position as the independent variable. Depending on the nature of the 
enclosure (frequency-dependent Q, degree of homogeneity, etc.) the electromagnetic fields have a 
zero-bias normal distribution, a bipolar log-normal distribution, some mix of the two, or some, as 
yet unevaluated, distribution with the property that the associated power-flux distribution/(z) looks 
like a modified Bessel function of the second kind 

f(z) = A2 z tf2(2VÄ7) A = 3 / mean[z] = 3 / u (1) 

A normal field distribution leads to a chi square (with two degrees of freedom) power-flux 
distribution. A bipolar log-normal field distribution leads, at least approximately, to a monopolar 
log-normal power-flux distribution. (This is a novel and unpublished statement.) Formulas relating 
the field distribution parameters to the power flux distribution parameters prove to be quite simple 
for the normal, log-normal, and mixed distributions (see below). This may also prove to be true for 
the modified Bessel distribution, although we have not yet been clever enough to work through the 
requisite modified Bessel function algebra. 

Our goal, then, becomes one of modeling the cavity field or power flux distribution from measured 
samples.' These fields are then applied as drivers to a model of the chamber cables. Lastly, the 
resulting cable currents on the model are compared in statistical distribution to measured cable 
currents. When the driven cable model yields currents with a distribution in good agreement with 
the measured cable current distribution, we consider the simulation to be performing well. 

This work was supported by the Air Force Phillips Laboratory under contract F29601-95-C-0045. 
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COMPARISON OF THEORY AND EMPTAC-BASED DATA 

A typical case to which we have applied this technique is the Air Force Phillips Laboratory 
EMPTAC 720 shell externally illuminated by the ellipticus antenna and swept from 108 Hz to 
109 Hz. The magnetic field squared observed axially in this configuration (Run B050MBHZ) 
essentially has a monopolar log-normal distribution with a mean u of 7.86e-8 (A/m)2 and a 
standard deviation a of 1.28e-7 (A/m)2. These values correspond to a field whose amplitude has 
a standard deviation of 1.7e-4 (A/m). This last value was used to generate a chi-square-model 
driving field ensemble which, after appropriate manipulations to restore bipolarity, has a square 
with a mean u of 5.02e-8 (A/m)2 and a standard deviation a of 1.08e-7 (A/m)2. Applying fields 
thusly characterized to the model of the cable network resulted (Run B0oc2002.3, Fig. 1) in cable 
currents squared with a mean of 3.27e-8 A2 and standard deviation of 10.62e-8 A2. On the other 
hand, measured EMPTAC cable currents (Run B032211Y, Fig. 2), when squared, had a mean of 
2.65e-8 A2, and a standard deviation of 5.91e-8 A2. This result is typical of 20 or so tests we 
have made, and indicates model fidelity well within a factor of 2. (This factor, in turn, is 
probably a fair guess at the repeatability or uncertainty in the measurements—both of cavity fields 
and of cavity cable currents; see Fig. 3.) 

Fig. 1. Model-based cumulative distribution of 
the squared currents on the EMPTAC 
cables (with 90% Kolmogorov-Smirnov 
confidence limits for being log normal). 

Fig. 2. Measured cumulative distribution of the 
squared currents on the EMPTAC cables 
(with 90% Kolmogorov-Smirnov 
confidence limits for being log normal). 
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Fig. 3. The model squared cable current 
distribution (solid line) does not stray 
outside the bounds provided by an 
overlay of three squared cable current 
distributions (various dashed lines) 
which were obtained under slightly 
varied measurement conditions. 

FORMULAS RELATING POWER-FLUX DISTRIBUTION AND FIELD DISTRIBUTION: 
NORMAL AND LOG-NORMAL CASES 

We shall discuss primarily the mixed normal/log-normal field quadrature distribution here, as this 
case encompasses the pure normal and pure log-normal cases by implication. Essentially there 
are three types of quantities for which we require distribution definitions. The first are bipolar 
phase quadrature field components such as Hz sin t> or Hz cos «|>, which we shall generally 
denote as u or v The second are phase quadrature field components squared, which we shall 
generically denote as x or y. Thirdly, we have power fluxes which we shall denote as z, and 
which are the sum of two squares 

(2) 
*y + v 

Conventional wisdom has been that z should have a chi square distribution with two degrees of 
freedom under ideal conditions. In reality, we find it usually is more nearly log-normal in 
distribution.  The pure log-normal distribution density function/(z) is 

fc) 
1 exp(-(ln z -t,)W)) 

V^JT za 
(3) 

and the cumulative probability distribution F(Z) is 

O 

F(Z) =    f    —!— exp{-w2/2) dw =<E> 
-»>     y27E 

lnZ- 

{    o 4 

(4) 

where *( ) is the cumulative normal distribution function.  Thus, if Z is selected to be greater 
than fraction F(Z) = p of the values, we would have 
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Zip) =e <.*"*» (5) 

where <£>"'( ) is the inverse of the cumulative normal distribution function.  This formula tends 
to generate a distribution with an upper tail having unrealistically large values of Z. 

This problem is resolved by mandating that, above some cross-over probability P, the distribution 
density of z shall be chi-square with two degrees of freedom, 

/2(z) =- (6) 

giving a cumulative probability distribution of 

F2(2) =1  -e-ZN (7) 

For F2(Z) = p above P, we thus have 

Zip) =-vln(l  -p) (8) 

In general, T0 and a will be known and P can be guessed at. Also, (5) and (8) must match at P. 
This gives us an equation uniquely determining v 

(9) 
-In(l -P) 

Figure 4 shows F(Z) and F2iZ) joined at P = .9, with the cumulative distribution of EMPTAC 
data set B050MBHZ overlaid.  For this data set, with P = .9 we found (9) to give v = 7.62E-8. 

Figure 4. Hybrid log-normal/chi-square 
distribution (solid line), with measured \HZ\

2 

from Run B050MBHZ overlaid (line in long 
dashes).   Crossover occurs at P = .9. 
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Distribution of the Squares 

In general, the distribution of x = u1 is not very interesting, although we cannot go from the 
distribution of z to the distribution of u (which is needed) without, in the process, finding g(x), 
the distribution of x. If z has a distribution f(z), one can show that x and y have a distribution 
g(x), which, upon being autoconvolved, gives back/(z). In other words, one can obtain g(x) by 
Fourier transforming /(z), taking the square root of the transform, and inverse transforming the 
square root. 

Although we cannot prove it, numerical tests based on the autoconvolution procedure have 
convinced us that the distribution of x must be log-normal if z is log normal. Thus, for p < P 
we have 

1     exp(-(ln*-T:)W)) (10) 
g(x)   = _^  S  

V/2TT xa 

and the cumulative probability distribution of x, G(X), 

In X -xl (11) 
G(X) =* 

To a fairly good approximation we have empirically found that (x0', a') are related to (x0 0) by 

%'. -T.-1. -0.5(0-1.) (12) 

&2 =-A +.2a +1.8o2 

For the region (p > P) where z has a chi square distribution, the transform of/2(z) and the inverse 
transform of the square root can be taken canonically. This manipulation yields a distribution 
density for x 

g2(x) =^—= (13) 
yuxv 

and a cumulative distribution function G2(X) of 

G2(X) = 2 <D(^2X/v  ) - 1 (14) 

at least for p and G2(X) > Vi. If X is selected to be greater than G(X) - p of the values, we have, 
for p < P 
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X(p)  =e< *°*1W (15) 

and for p > P 

X(p) =^l<b-\(p + l)/2))2 (16) 

If Eqs. (12) were exact, (15) and (16) would meet atp=P. In actuality, they will differ slightly 

Re<***v> =v$-'((P +l)/2) (17) 

where R ~ 1 and In R ~ 0. This slight mismatch maybe incorporated into the model by replacing 
x0' with x0' + In R, which is alright as (12) for x0' is only an approximate fit anyway. 

Figure 5 shows G{X) and G2{X) joined at P = .9. 

Figure 5. The cumulative probability distribution 
obtained by joining the log normal, G(x) of (11), 
and the chi square, G2(x) of (14), at P = .9. 
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Distribution of the Bipolar Phase Quadrature Components 

If x = u1 has a monopolar log-normal distribution density g(x) given by (10), u will have a 
bipolar log-normal distribution density s{u) given by 

s(u) 
1     exp(-(21nU-x>(2a'2)) (18) 

and a cumulative probability distribution 
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\2lnU -< 
S(U)   = '/2  +'/2* 

(19) 

at least for U > 0 or S(U) > Vi. Thus, if U is selected to be greater than the fraction S(U) = p 
of the values, we have, for p <P', 

... .       »; +cWp -i))/2 (20) 
U(p) =e 

at least for p = S(U) > Vi or U > 0. We must here note that P', the u crossover probability, 
introduced just above differs from P, the crossover probability of x and z. If we want x and z 
to crossover at P = .90, « must crossover at P' = .05 and .95, as u is bipolar, while x and z were 
monopolar. 

For the regions p > .95 = P' or p < .05, where z has a chi square distribution density, u has a 
normal distribution, 

sJu) (21) 

or 

where a is related to v by 

SJU) =*(C//a) (22) 

v=2o! (23> 

If U is selected to be greater than S2(U) = p of the values, we have for p > P' or p < 1 - />' 

l/(p) =G*>) (24> 

At p = P', (20) and (24) for l/(P') might not match perfectly: 

(,;.C*."<2J>'-I»/2 =CT$^(p/) (25) 

where p = 1. This situation permits two varieties of correction: Gg is related to v, which 
(through (9)) is not a very precisely defined quantity, and may be replaced by o/p. 
Alternatively, T0', which also is not very precise, may be replaced by T0' + 2 In p. 

We do not know if 2 In p = In R, nor does this seem a very important issue, as both are ad hoc 
corrections to heuristic factors. 
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Figure 6 shows S(X) and S2(X) joined at F = .95. 

Figure 6. The cumulative probability distribution 
obtained by joining the log normal, S(u) of (19), 
and the chi square, S,(H) of (22), at F = .95. 
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APPLICATION OF THE HYBRID POWER-FLUX DISTRIBUTION TO CELESTRON 8 
SATELLITE TELESCOPE DATA 

A hybrid normal/log-normal fit to the cumulative distribution of the magnetic field squared was 
also attempted for the Celestron 8 satellite telescope data for frequency swept from 8 GHz to 18 
GHz. In this case, it turns out that a hybrid fit is better made with crossover at p = .875. Figure 
7 shows F(Z) and F2(Z) joined at P = .875, with the cumulative distribution of the Celestron 8 
data set overlaid.  For this data set, with P = .875 we found (9) to give v = 2.104. 

Figure    7. Hybrid    log-normal/chi-square 
distribution (solid line), with measured IHJ2 from 
Celestron 8 8 GHz to 18 Ghz sweep overlaid 
(line in long dashes). Crossover occurs at P = 
.875. This hybrid fit to the data is not so good 
as the EMPTAC data fit appearing in Fig. 4. 
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THE LEHMAN DISTRIBUTION 

Work has recently come to our attention which deduces a somewhat different overmoded 
enclosure power-flux distribution that the simple chi square result.4 This new result shows 
excellent agreement between theory and observation on the upper tail of the distribution, which 
is where harmful effects will occur if they occur at all. While we are not sure just why this 
novel procedure should yield power-flux distributions which agree with the upper tail (as opposed 
to the midpoint, where most models seem to work best, or, for that matter, as opposed to the 
lower tail), we are most impressed with the result. 

This work concurs that the internal cavity response should incorporate the physics which leads 
to a power-flux distribution z, which is chi square with two degrees of freedom. However, a 
hypothesis is additionally put forward that the field external to the cavity can come from any of 
three directions, and thus should result in inward power leakage z2 being chi square with six 
degrees of freedom. These assumptions imply the overall internal cavity response should have 
a power-flux distribution density which is the product of these two variables 

r-7.7. (26) 

In two dimensions, the power flux distribution density thus becomes representable as 

f^fi(z2)dzldz2 
(27) 

where this expression gives the probability that z, is between z, and z, + dzx, while z2 is between 
z2 and z2 + dz2. However, z, z,, and z2are not all independent variables. If (26) holds, the 
probability that z, is between z, and z, + dzv while z is between z and z + dz is obtained from 
the variable transformation 

z2 =z'/zl 

(28) 

The two-dimensional distribution density then becomes 

f^!)f^z''z!)^-dz!dz' 
*       * d{z!,z') 

(29) 

where 

d(zv z2) 

9(ziV) 

9z,/3z,   dz2/dzl 

dzJdz'   dzJdz' 

1 -1/z/2 

0     1/z/ 
= 1/z, (30) 

is the Jacobian of the variable transformation.   We now wish to find the probability that z is 
between z and z + dz regardless of z,'. This ID probability differential is obtained by summing 
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all the 2D probability differentials of ?,' and z' over z,' ; i.e., by integrating (29) over all possible 

f(z')dz' =jfx;(^)f^''z') 
'j,/ ,   dZldz    _ 

<■ o 

' A,l 

f[Xe^)[V(z>/z;?e-^]^l. 

= A2z'K2(2jXP~)dz' 

(31) 

Here, X, y, and A are constants related by 

A =yl (32) 

with A related to the mean power-flux density by (1). 

Figure 8 illustrates the cumulative probability distribution agreement between the Lehman 
distribution and EMPTAC data, while Figure 9 illustrates the agreement for the Celestron 8. We 
do not know, at this time, if the Lehman distribution would apply to the situation where the 
microwave source is actually internal to the cavity, as in the JAYCOR study.3 Also, we do not 
know if the power fluxes external to an open geometry (such as a helicopter) could be 
characterized simply as a chi square distribution with six degrees of freedom. It seems that this 
model somehow manages to ignore the "trend" on power-flux data, and give a correct upper-tail 
representation irrespective of the gross overall shape of the response distribution. This 
accomplishment is a major keystone in the successful representation of cable-driving fields; 
previously, we had no real idea how to insert "trend" effects into the model (other than using a 
log normal representation). The Lehman model, as represented in Figures 8 and 9, provides 
something that Figures 4 and 7 do not: a smooth, data-derived representation for the upper end 
of the distribution which does not require case-by-case tweaking. 

Figure 8. Lehman distribution compared with 
EMPTAC data. Note the remarkable upper end 
match. The Lehman distribution is based on A 
= 3.814e+7 (A/m)"2. 
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Figure 9. Lehman distribution compared with 
Celestron 8 data. Note the remarkable upper end 
match. The Lehman distribution is based on A 
= 1.951 (A/m)-2. 

ABS($/m)**2)  (B0D8018oj 

We should point out, however, that we have not yet discovered how to back the phase-quadrature 
field-component distributions out of the Lehman distribution for the power flux. Taking the 
inverse transform of the square root of the Fourier transform of /(z) m (1) or (31), either 
numerically or canonically, seems formidable. Also, it may occur that we are unable to guess 
what function, when autoconvolved, gives back/(z) of (1) or (31). 

CONCLUSIONS 

EM power flux inside an overmoded cavity can be statistically represented by a log-normal 
distribution or by a logarithmic convolution of a chi square distribution with two degrees of 
freedom upon a chi square distribution with six degrees of freedom. Deducing the distribution 
of electromagnetic fields within the cavity, given the distribution of power flux is not a trivia! 
procedure however. At present, we can perform the deduction for the log-normal, but not for 
the convolved chi square model. It is, however, necessary to have the statistical field distribution 
to model the fields which actually couple to and drive the enclosure cabling. Log-normal 
modeling of the power-flux distribution leads to a field distribution model which is also log 
normal °This procedure for deducing the cable-drive field distribution yields predicted cable 
currents with distributions which lie well within experimental uncertainty and repeatability (i.e., 
well within a factor of two). 
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Power and Ground Plane Modeling and Decoupling in High Speed 
Printed Circuit Board and Multichip Modules 
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1385 Del Norte Road 
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I. INTRODUCTION 

This paper presents the modeling and analysis of power and ground plane effects in printed circuit 
board (PCB) and multichip module (MCM) circuits. Ground noises has been a major source to radia- 
tion EMI problems as well as a significant factor in signal integrity of high speed digital systems [1-6]. 
For the sub-nanosecond rise/fall times and over 100 MHz clock rates used in today's digital designs, the 
signal bandwidth ranges up to 1 to 5 GHz and beyond the first few resonant frequencies of most PCB/ 
MCM power/ground substrates. Simple lumped element models used by digital circuit designers can no 
longer accurately capture the distributed ground effects. Full-wave rigorous electromagnetic field solu- 
tions [7-8], however, become impractical for complex digital circuit simulation due to the extremely 
high computational requirement. It is also difficult to be integrated with the time-domain circuit type of 
simulations used in most digital designs as well as to be understood and utilized easily by digital circuit 
designers. 

Recently, an efficient modeling approach is developed by the author which extracts an equivalent 
circuit model from rigorous integral equation solution for the power/ground plane structures [6]. First, 
the electromagnetic field problem is analyzed by mixed potential integral equation method along with a 
boundary element algorithm where scalar potential is explicitly retained. The solution under specified 
boundary conditions of either fixed port voltages or injected currents gives rise to a frequency domain 
multiport network representation of the system. To avoid repeated solution at every single frequency 
and thus reduce the required computational time, a special quasi-static approximation is introduced to 
simplify the complex frequency dependance of the system, while retaining the important AC character- 
istics. Through a node reduction and decomposition scheme, an equivalent circuit model of the system 
is constructed with frequency independent R, L, C circuit elements. The equivalent circuit model gives 
accurate high frequency characteristics of the system up to certain frequency limit well above most dig- 
ital signal bandwidth, as demonstrated by examples and comparison with measurements and full-wave 
solutions. It can be used as a macromodel for the power/ground planes either alone for ground effect 
simulation, or be combined with an external network such as a signal circuit for system simulation, and 
can be easily integrated with general purpose circuit simulators such as SPICE and other CAD simula- 
tion tools. 

As an alternative approach as well as a verification method, a two-dimensional FDTD modeling 
of power/ground planes is also developed. The 2-D FDTD method is very efficient and simple in imple- 
mentation. It gives direct time domain results in voltage or current wave forms. In our implementation, 

888 



parallel planes are modeled as 2-D structures with TEM wave propagation. This is equivalent to a two 
dimensional R, L, C mesh circuit. Simple drivers/receivers and R,L,C elements can be attached to any 
grid points between the planes. Simulation results show that the FDTD method corresponds very well 
with the equivalent circuit approach. 

Simulation results for several typical and practical examples are discussed in comparison with 
available experimental measurements and well known results. Ground noise figures and the decoupling 
effect are analyzed by examining transient waveforms across power/ground planes with various source/ 
load conditions, and with or without decoupling capacitors. 

II. INTEGRAL EQUATION MODELING AND SOLUTION 

The general interconnects and power/ground substrates in PCB/MCM are modeled as multi-lay- 
ered dielectric structures embedded with arbitrarily shaped conductors. The conductor planes and sig- 
nal traces are connected to each other and to external circuits or power supplies through circuit port, 
vias or ground pins. External currents or voltages are maintained at those ports on the conductors. The 
induced charges and currents produce electromagnetic fields which satisfy boundary conditions on the 
conductor surfaces. Also, the surface charges, surface currents, and the external current flowing into the 
conductors should satisfy the general continuity relation. This system can thus be characterized by the 
following set of mixed potential integral equations (MPIE) which completely describes the potentials, 
current, and charge distributions in the conductor system. 

Zsn x Js(r) - n x icou.Jrfr'GA(r, r') • J(r') + n x V4>(r) = 0 (1) 
s 

V»JS (r) - iaqs (r) - V./ (r)  = 0 (2) 

* (/•) - -jdr'G^ (r, r') qs (/•')  = 0 (3) 
s 

By solving these equations, the voltage and current distributions over the conducting planes can 
be obtained in relation to the injected currents or fixed port potentials for given excitations. Notice that 
the external current is considered as localized source in the above formulation. Notice also that the sca- 
lar potential is retained as a explicit variable in the above MPIE's, unlike in other mixed potential for- 
mulations. If we consider the scalar potential as a close approximation to voltage defined in a static 
sense, the above formulation enables us to obtain an explicit relation between port voltage and injected 
current, and thus a multiport network representation or an equivalent circuit for the substrate system. 

A boundary element approach or method of moment is applied to solve the integral equations. 
The total conductor surface, domain 5, is divided into subdomains (elements) with quadrilateral shapes. 
The charge and current on each element are expanded in term of known basis functions. Following 
point matching method or Galerkin's method, the integral equations become a set of linear equations (in 
matrix notation) as 

(Zs-iaL)I-PV = 0 (4) 

PTI-i(üCV = f (5) 

where Zs> L, P, and C are matrices; vector V represents the potential (voltage) while vector I represents 
the surface currents; J' vector is the externally injected port currents. Depending on the specified 
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boundary (terminal) condition, we can solve for either the unknown port voltages with specified port 
currents, or the unknown port currents with specified port voltages, along with the charge, current and 
potential over the conductor surface. Solution of these equations enables us to obtain an explicit rela- 
tion between port voltages and injected currents, and thus a multiport network representation or an 
equivalent circuit for the system. 

III. QUASI-STATIC APPROXIMATION AND EQUIVALENT CIRCUITS 

The above integral equation/boundary element approach is a rigorous full-wave analysis devel- 
oped in the frequency domain. This formulation of the system, as represented by the matrix equations, 
has complex frequency dependence. The resulting multiport network, though convenient for single fre- 
quency circuit simulation, would have to be updated for every single frequency in wideband or tran- 
sient applications. To simplify the frequency dependance, we make the quasi-static approximation for 
systems satisfying the following relation 

jj- = hfjep. « 1 (6) 

where h is the characteristic dimension of the structure and/is the operating frequency. First, the expo- 
nential retardation factor are neglected in Green's functions. Second, for good conductors, 

Zs-imL = Rs (co-^0) (7) 

Zs - icol = -I'COL (co»0) (8) 

With this assumption, the surface resistance Zs can be considered as the first order low frequency 
approximation for the total resistance. Solving linear equations (4) and (5) under the quasi-static 
approximation with specified port voltages, we obtain the system solution, J-YV, where J' and V are 
the port currents and voltages, respectively, and Y is an admittance matrix representing the system. 
Keeping only the first and second order terms in the frequency expansion of the result, the Y matrix has 
the following form as 

r = io(Lr,-'wC « 
where (L) denotes a matrix with elements equal to the inverse of the corresponding elements of L, 
not the inverse matrix of L. 

From the admittance matrix, an equivalent circuit representing the system can be constructed. In 
fact, the admittance matrix is the same Y matrix in a nodal formulation of the circuit in frequency 
domain, and can be used directly for frequency domain solutions. The equivalent circuit consists of 
branches between every pair of ports. Each branch has an inductance I in series with a resistance R, 
and then in parallel with a capacitance C. The branch admittance between nodes m and n is given by 

Y»>» = R    -'coL    -''mC™ <10> mn inn 

It should be noticed that the quasi-static approximation and therefore the resulting equivalent cir- 
cuits are based on the coupled MPEE's. Therefore the effects of displacement current are not neglected 
completely as in quasi-magnetostatic based inductance or capacitance solvers. It is also important to 
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point out that in extracting the equivalent circuits, additional surface elements can be selected as inter- 
nal nodes in addition to the physical ports. This leads to larger equivalent circuits with more internal 
loops, and therefore gives more complex frequency behavior and higher accuracy. 

Since the equivalent circuit captures the wideband frequency behavior and distributed characteris- 
tics it should correctly predict the wave effects such as propagation delay, resonance, and signal reflec- 
tion on the power/ground plane structure. Numerical examples show that it indeed captures those 
effects correctly. However, it is fundamentally limited by the retardation effect, and does not include 
losses due to radiation effects. 

The equivalent circuits are utilized to simulate transient response of complex interconnect and 
plane structures. External circuits such as driver/receiver or IC die models can be combined with the 
equivalent circuits for system signal simulations. An efficient circuit simulator specifically for the 
equivalent circuit is developed in our simulation program which provides both time-domain and fre- 
quency domain capability. For time-domain transient solution, a modified nodal formulation (MNA) of 
the equivalent circuit eliminates the unnecessary internal inductance nodes and therefore greatly 
reduces the rank of the linear system. Combined with uniform time step for the linear circuit portion, 
this approach gives us very efficient simulation time and thus enables us to do what-if type of analysis 
for realistic circuit boards and designs [9]. Frequency domain simulations are useful for gaming insight 
of high frequency characteristics of the complex systems. Also, in practice, experimental measurements 
and characterization of high-speed/high-frequency system are mostly made in frequency domain in 
terms of S-parameters. It is also useful for verification of the simulation code's accuracy and limitation 
in comparison with experimental measurements and other benchmark results. 

IV. 2-D FDTD MODELING AND SIMULATION 

Power and ground plane structures with large parallelism can be modeled very well as planar cir- 
cuits. The concept of a planar circuit was first introduced by Okoshi [10] as a circuit having one dimen- 
sion very small in comparison with the wavelength and an arbitrary shape in two other dimensions. The 
2-D FDTD method, which has been used successfully to analyze different planar structures [11], is 
adopted here to analyze parallel power and ground plane structures. 

Separation d between power and ground planes is typically much smaller than a wavelength. This 
allows us to neglect tangential E, normal H and the variation of the remaining field components in the 
normal direction. The voltage V = End between planes and the surface currents J = h x H are then 
governed by the following 2-D partial differential equations: 

W = -Lsll-R5J (ID 

V.j = -CsllV-Js(V) (12) 

where Ls = [i0d, Cs = e0£/d, Rs is sheet resistivity, and Js (V) is used to model lump source and 
load elements. In the 2-D FDTD method, these equations are solved numerically using a leapfrog cen- 
ter-difference scheme [11]. At nodes where a lump element is present, (12) is solved as described in 
[12]. Plane boundary conditions are implemented by simply setting Jn zero. 
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V. EXAMPLES AND VERIFICATION 

As the first example, a simple parallel plane structure as shown in Figure 1 is analyzed. In our 
simulation, the planes were discretized into 414 facets and the vias structures were simply modeled as a 
pair of nodes. A 14-node and a 42-node equivalent circuit were extracted from the field solution, and 
the latter was used in frequency domain calculation of S-parameters. Figure 2 shows the comparison of 
simulated and measured results. The measured S21 was given by K. Lee et al in [1], and used in Figure 
2. It is evident that the agreement is quite good up to about 5 GHz, and the simulation captured the 
essential characteristics of the system. Towards higher frequency, however, the simulated result shifted 
away from the measurement in a systematic fashion. This behavior is within our expectation due to the 
limit of quasi-static approximation. But for most current commercial digital applications, as we pointed 
out before, 5 Ghz is a sufficiently high estimate of the signal source bandwidth while the computational 
requirement is practical. A full-wave simulation, though possible under the current framework, would 
be too costly and unnecessary. 

h«— 18 mm 

Jl 

portl 
0 

port2 
SEE 

V 
1 

probing pads 

280 urn 

Figure 1. Test plane structure measured by HP Lab. The planes are made with 16 rmO/sq. tungsten. 
The dielectric is alumina with e of 9.6. 

Frequency (GHz) Frequency (GHz) 

(a) (b) 
Figure 2. Comparison of simulated and measured S-parameters on the test plane structure (a) S12 

and(b)Sll. 
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Figure 3. Comparison of transient waveforms on the test planes by FDTD and by equivalent circuit 
simulations, (a) waveform at Port 2, (b) waveform at Port 3, (c) waveform at Port 4, and (d) 
waveform at Port 5. 

To further study the transient characteristic of the system, and to see the effect of high frequency 
limit on high speed digital signal, time domain simulations using both equivalent RLC circuit and 2-D 
FDTD are carried out on this test structure. A pulse signal of 5 volt magnitude, 0.2 ns rise/fall time, and 
1.0 ns duration is applied at Port 1. All five ports are terminated with 50 ohm load. Transient wave- 
forms are calculated. In the FDTD simulation, a grid size of 1 mm by 1 mm and a time step of 10 ps are 
used. Figure 3(a), (b), (c), and (d) show the voltage waveforms at Port 2, Port 3, Port 4, and Port 5, 
respectively, where solid lines are the results obtained by equivalent RLC circuit while dashed lines are 
FDTD results. Good agreements again are evident and demonstrate the validity of our approaches. 

The second example analyzes the power/ground noises (ground bounce) and the effect of decou- 
pling capacitors in reducing those noises. Figure 4 shows a realistic power/ground substrate in PCB 
board. The size of the power/ground planes is 10 by 10 inch, with a thickness of 10 mil and dielectric 
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constant of 4.5. An active device is connected to the power supply planes at Port 1. When the device 
switches, it draws a transient current from the DC power supply, and thus induces transient ground 
noises across the DC power/ground planes. When many active devices switch simultaneously, large 
transient noises fluctuate DC supply significantly and cause device malfunction. The most common 
practice in digital design to solve those simultaneous switching noise (SSN) or ground bounce prob- 
lems is using decoupling capacitors to decouple the power and ground planes. However, due largely to 
the lack of true distributed, accurate electromagnetic model of power/ground structures, effective uses 
of decoupling capacitors is still mostly based on experiences or try and error instead of rigorous simula- 
tion. In this example we apply the equivalent circuit model to simulate those effects. 
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Figure 4. Parallel power and ground planes 
with switching device at Port 1. 
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Fig ure f . Switching current drawn from power 
supply by the active device. 

The above power/ground planes are modeled by a 32-node equivalent circuit. Figure 5 shows the 
switching current drawn from the power supply for a real device. As a current source to the power/ 
ground circuit, it has a 50 ohm internal resistance, and is applied at Port 1. Figure 6 show the noise 
waveforms at various locations across the planes when the planes are open loaded (no loads). We see 
more than 15 mV noise level due to one switching device. Devices and interconnects such as strip lines 
or microstrip lines on PCB are usually terminated by matching loads. To see the effect of those resistive 
loads, a 50 ohm resistance is placed at each of the 16 ports. Figure 7 shows the noise waveforms with 
the resistive loads. It is clear that resistive terminations have little effect on the ground noise, as shown 
by the simulation results, since the resistance values (-50 ohm) are in most situation much higher than 
the plane impedance. To see the effects of decoupling capacitors, a 10 pF capacitance is placed at each 
the ports. Figure 8 shows that the ground noise level is reduced by more than 60% due to the de-caps. 
When 100 pF decoupling capacitors are used at all the ports, the ground noise level is reduced to less 
than 10% ofthat without de-caps, as shown by Figure 9. It is necessary to point out that the decoupling 
capacitors used in the above simulation are ideal capacitances. In real applications, decoupling capaci- 
tors are frequency dependent devices and lose their decoupling capability significantly towards high 
frequency region due to inductive effects. 
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Figure 6. Ground noise without loads. 
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Figure 8. Ground noise with 10 pf de-caps. 
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Figure 7. Ground noise with resistive loads. 
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Figure 9. Ground noise with 100 pf de-caps. 

VI. CONCLUSION 

In this paper, power and ground plane effects in high speed digital circuits are analyzed using 
integral equation/equivalent circuit method as well as 2-D FDTD method. The simulation results of 
both approaches correlate very well with each other, and compare very well with measured results. In 
particular, ground noises due to active device switching are analyzed. The effectiveness of decoupling 
capacitors in reducing ground noises are examined. The equivalent circuit model from electromagnetic 
solution provides a useful and understandable presentation of complex power/ground structures to digi- 
tal circuit designers in practical design process. It can be easily integrated with other digital simulators 
or CAD tools, and combined with signal networks and device models, for accurate packaging and sys- 
tem level design simulation. 
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SYNTHESIS OF PHASED ARRAY APERTURE DISTRIBUTIONS 

Ross A. Spcciale 

Redondo Beach, California 

ABSTRACT 

A conceptually fundamental new method of electronic beam steering, that is eminently suited for 
application to large, high-directivity, low-sidelobe phased arrays is here described, and analytically 
evaluated. Most remarkably, the new method requires a number of beam-steering controls that is much 
smaller than the very large number of radiating array elements, thus making order-of-magnitude cost 
reductions possible. A non-symmetric, linear beam-forming network is used to connect a very large 
number of radiating array elements to a much smaller number of amplitude-, and phase-controlled 
microwave sources (in transmission), or of receiver front-ends (in reception). The used linear beam- 
forming network is designed to be simultaneously impedance-matched to the large set of array elements, 
on one side, and to the much smaller set of sources (or receivers), on the other, thus totally eliminating 
the notorious array-blindness phenomenon. Further, the network transfer-response is specified, by design, 
so that each of the sources simultaneously feeds all the array elements, and conversely each of the array 
elements is simultaneously fed by all the sources, in transmission. Similarly, each of the array elements 
simultaneously excites all the receiver front-end, and each of the receivers is simultaneously excited by 
all the array elements, in reception. Practically relevant aperture distributions, known to correspond to 
a carefully selected set of specified far-Held patterns, are synthesized as linear combinations of the various 
mutually-complementary, component wave-field patterns, generated by the relatively few controlled 
sources, on the array aperture. Electronic beam steering is then obtained by appropriately selecting the 
relative amplitudes and relative phases of the sources in transmission, or of the receivers in reception, 
as required to match the required complex values of the linear combination weights. An extensive set of 
formal expressions is here given, that states the conditions for the applicability of the new electronic 
beam-steering method, and identifies its largely irrelevant limitations. 

1 - SUMMARY OF PREVIOUS FUNDAMENTAL RESULTS. 

Recently reported, fundamental analytic results have already established a rigorous theoretical basis 
for performing an unusually-advanced design of phased array beam-forming networks [1] . The reported 
new results apply to very general, linear, electrically-large, and non-necessarily reciprocal beam-forming 
networks, used to connect a large number N of array elements, to a much smaller number n of amplitude- 
, and phase-controlled sources, in transmission, or of receiver front-ends, in reception (Figures 1 and 2). 
Such non-symmetric beam-forming networks, that are eminently suited for large, high-directivity, low- 
sidelobe, electronically-steered phased arrays, can be simultaneously impedance-matched, by design, to 
a large set of N array elements on one side, and to a much smaller set of n sources, or receivers on the 
other, simultaneously accounting for the proximity-coupling between the array elements, and for any 
internal cross-coupling between the sources, or between the receivers. 

The attained, simultaneous impedance match is totally independent from the amplitude, and phase 
settings of the sources, in transmission, and from the direction of the incident aperture illumination, in 
reception, thus completely eliminating the notoriously adverse 'army blindness' phenomenon. Further, 
the wave-transfer responses of the considered beam-forming networks, to and from the N array elements, 
can be specified, by design, so that all the required, practical aperture distributions of the array, those 
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distributions that are known to correspond to any given set of desired radiation patterns, can be 
synthesized by appropriately selecting the relative-amplitude, and the relative-phase settings of the n 
sources, in transmission, and of the » receivers, in reception. The new, advanced beam-forming network 
design method, made possible by the recently reported fundamental results, provides thus a significantly 
less expensive, and more reliable alternative to the use of the notoriously unaffordable active aperture 
phased arrays, that require outrageously large numbers of low-efficiency, semiconductor T/R modules, 
distributed across the whole array aperture, at geometrically-constrained, and hardly^erviceable 
locations. The following summary of the most fundamental previous results is included, mainly for the 
reader's convenience, and as a starting point of the ensuing, much expanded discussion of aperture 
distribution synthesis. 

1.1 - THE NON-SYMMETRICALLY PARTITIONED IMPEDANCE MATRIX. 

A non-symmetrical partitioning of the (n+N) x (n+N) impedance matrix Z^^ of the completely 
general, linear beam-forming network shown in figures 1 and 2, has been recognized as a rather obvious 
mathematical expedient, consistent with the physical separation of the ij+Wports in an n-port interface-1, 
and an fl-port interface-2. The chosen block-structure of the impedance matrix Z^m is then : 

-l(n*N) 

-- 4- -■ 

V 
(1) 

The selected matrix partitioning generates the four impedance-matrix blocks Z, (n x n), Z2 (n x N), 
Z3 (iVx n), and Z, (Nx N), where (in agreement with Figures 1 and 2) it is assumed that n <. N, and that 
the impedance matrix Z^+j, is non-necessarily symmetric. 

1J. - THE TWO IMPEDANCE MATRIX TRANSFORMATIONS. 

A first previous fundamental result is given by the two matrix transforms : 

(2) 

Zin2 =  Z4-Z3-(Zi+Zu )"1 • z2 0) 

The first transform expresses the n x n input-impedance matrix Zu , observable at the n ports of 
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interface-1 , with an JV-port load-network L2 , characterized by the N x N impedance matrix Zu , 
connected to the N ports of interface-2, while the second transform expresses the N x N input-impedance 
matrix Zu , observable at the N ports of interface-2, with an it-port load-network L, , characterized by 
the n x n impedance matrix Zu , connected to the n ports of interface-1 . The two impedance-matrix 
transforms (2) and (3) hold for any integer values of u , and N, including s > ti, and the scalar case 
of it = N = 1 that describes impedance transformations through a simple two-port network. 

1J - THE BILATERAL IMPEDANCE-MATCH CONDITION. 

A second, most fundamental previous result defines the necessary and sufficient conditions for 
attaining a simultaneous, multiport impedance match at both beam-forming network interfaces, so that 
an input voltage-wave vector o, incident upon interface-1 fin transmission) only generates an outgoing 
voltage-wave vector i,at interface-2 , with the outgoing interface-1 voltage-wave vector i, being identically 
zero, while similarly an input voltage-wave vector a,-incident upon interface-2 (in reception) only generates 
an outgoing voltage-wave vector *, at interface-1 , with the outgoing interface-2 voltage-wave vector *, 
being identically zero. Obviously, both the input-interface reflections, and the cross-talk between its ports 
are totally suppressed, under the given impedance-match conditions. Clearly, with such simultaneous, 
bilateral impedance match, a very specific beam-forming network (n+N) x (n+N) scattering matrix S 
exists that, when non-symmetrically partitioned as the corresponding impedance matrix Z,.^ , has an 
identically-zero n x n leading block S, , and an identically-zero NxNtrailing block S4 , while the blocks 
S2(nxN) , and S3 (AT x n) are non-zero. Indeed, a major previous fundamental result states that : 

S   =   (Z-Z0)-(Z + Z0)-' (4) 

if, and only if, the wave-normalizing impedance matrix Z„ has the structure : 

ZB   ! 0 

(5) 

where the leading nxn block Za , and the trailing NxN block Zn a) are the only non-zero blocks of the 
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matrix Z„ , b) are non-necessarily diagonal or symmetric, c) are expressed by : 

Zn - (/.-v^-vzfT-*. = c-'.r*. (6) 

zn - (iN-z3-z?-z2-z?f-z4 - (iN-PNf'2-z4 C7) 

and d) represent the Image-impedance matrices' of the (n+N)-port beam-forming network (a conceptual 
extension of the well-known classical scalar concept). 

1.4 - THE TRANSFORMATION PROPERTIES OF THE IMAGE-IMPEDANCE MATRICES. 

The third, previous fundamental result shows the unique transformation properties of the two image- 
impedance matrices ZB , and Zc , regarded as the impedance matrices Zu , and Zu of two very specific, 
multiport load-networks, that are 'totally matched' to the given beam-forming network at its two 
interfaces. Indeed, by substituting Zn for Zu in (2), and Z„ for Zu in (3), we obtain : 

(8) Zn =   ^ - Z2 • ( Z4 + Z,2 )"1 • z3 

ZB =  ZA-Za-(Z,* zn )-1 • z2 
(9) 

Clearly, the two image-impedance matrices Z„ , and Zn , representing totally matched multiport 
load-networks, exhibit the unique characteristic of transforming into one another, through the given 
(h+iV>port beam-forming network. 

1.5 - EXPRESSIONS OF THE IMAGE-MATCHED RESPONSES S2 AND S,. 

The fourth, previous fundamental result defines the forward, and backward voltage-wave transfer 
responses of any given (n+N)-port beam-forming network, under simultaneous bilateral impedance 
match. The two voltage-wave transfer responses S3 , and S3 are expressed by the matrix functions : 

52 = z2-z?-[iN + (i„- z3-z1-
1-z2-z;1)1/2]"1= M.-[IK + (IH-PK] (10) 

s3 - v*M/. + U-v*,-v*.-Tr'- M'.*(w.)wr       (11) 

and independently map the incident voltage-wave vectors a,, and a, to the corresponding output voltage- 
wave vectors bt (in transmission), and b, (in reception) : 

bt = S2-a.      (12) &, = V«;      (13) 
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z, = ( '„- V*3 r l-c. + s2- s3 )• 2« 

*2 = 2 C -v *3 r1- s> ■Zj2 

^3 = 2 ('* -V s2 r1-* •*n 

1.6 - DESIGN OF BEAM-FORMING NETWORKS WITH PRESCRIBED IMPEDANCE-MATCH 
AND VOLTAGE-WAVE TRANSFER RESPONSES. 

The fifth, previous fundamental result establishes a rigorous theoretical basis for performing the 
design of a linear (n+N)-poit beam-forming network, that is required to be simultaneously, and 
bilaterally impedance-matched to a given set of N proximity-coupled array elements, regarded as a load- 
network L2 characterized by the impedance-matrix Zu = Za , and to a given set of n sources Cm 
transmission), or of receivers (in reception), regarded as a load-network L, characterized by the 
impedance matrix Za= Za, while at the same time exhibiting the two prescribed voltage-wave transfer- 
responses S2 , and S3, under simultaneous, bilateral impedance match conditions. 

The rigorous design basis is established by the following matrix functions, expressing the four blocks 
Z; (i = 1, 2, ..., 4) of the beam-forming network impedance matrix Z(,+fl) : 

(14) 

(15) 

(16) 

Z4=(IN-S3-S2 Y
1 -{IN + S3-S2)-ZI2 (17) 

1.7 - THE KEY ROLE OF THE AUXHIARY MATRIX PRODUCTS. 

The four matrix products M. , MN, P, , and PN, appearing in the expressions (6) , (7), (10) , and 
(11) , play a remarkable key role in establishing the functional relations between the four impedance- 
matrix blocks Z, (i = 1, 2, .., 4) and the 'image matrices' Zn,ZB,S2, and S,. 

All four matrix products have the physical dimensions of pure numbers, and different orders, the 
orders being n x N for M, , Nx n forMN,nxn for P. , and NxN for P„, and are defined by : 

Mn   =   Z2Z?      (18) MN   =   Z.Z,1      (19) 

pn =MnMN=   M^-A^-M* (20) 

PN =   MN-Mn=   Mm■ Am- M;* (21) 
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Most remarkably, the matrix product P, is generally of full-rank n (therefore non-singular), save for 
pathological situations, but the rank of the matrix product P„ is always equal to n , so that the matrix 
P„ is always very much singular, having at least N- n zero eigenvalues in its spectral matrix Aw . 

The u non-zero eigenvalues of the matrix P„ are equal to those of the matrix P. , while the 
corresponding eigenvectors are the columns of the matrix product Mw • MA , as proved by : 

PN-(MN-MPn)   =  MN-[Mn-MN)-M^   =  Mx-P^-Mr»   =   (Mw-Mfll)-Aftl (21') 

The full relevance of these results to the design of non-symmetric beam-forming networks becomes 
obvious in the following Section 2.4 . 

2 - SUMMARY OF MAJOR NEW RESULTS. 

The use of a non-symmetric beam-forming network, connecting a large number N of array elements 
to a much smaller number n of sources (or receivers), provides a significantly less expensive alternative 
to the use of the notoriously unaffordable active aperture arrays, that require outrageously large numbers 
of semiconductor T/R modules, physically embedded at geometricaUy-constrained, hardly-serviceable 
locations. An overwhelmingly vast collection of new, fundamental results has been obtained, by analyzing 
the two idealized, cascaded connections of the (n+N)-port beam-forming networks A , and B shown in 
Figures 3, and 4. The new analytic results quantitatively identify the natural transmission wave-modes 
of any (h+JV)-port beam-forming network, and establish a rigorous basis for the determination of the 
required minimum number ft of amplitude-, and phase-controlled sources (or receivers), as function of 
the specified beam-steering performance. 

2.1 - THE TWO IMPEDANCE MATRICES Zc AND ZD . 

The beam-forming networks A , and B in Figures 3, and 4 are mutually identical, save for network 
B being 'flipped' by 180° left-to-right, thus exchanging the relative locations of its two interfaces. The 
resulting 'Type-C' (Fig. 3) , and 'Type-D' (Fig. 4) cascaded connections are both symmetric, and are 
characterized by the 2n x 2n impedance matrix Zc , and by the 2N x 2N impedance matrix ZD , 
respectively, with the four nxn blocks of Zc expressed by : 

V   =   V   =   U2In-PnyZt (22) 

z      _   z      =    lp . z (23) 

while the four NxN blocks of Z„ are expressed by : 

ZlD     =    Z*D     =     T(2/»-P»)-Z< (M) 
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Z2D   =   Z3D   =   \PN   Z4 (25) 

2.2 - THE IMAGE-IMPEDANCE MATRICES Zlc AND Zro . 

The beam-forming networks A and B are mutually impedance-matched at the common interface 
in both the Type-C, and the Type-D connections, so that as a consequence the two (input and output) 
image-impedance matrices are, respectively : 

zic   =   Za   =   {'.-r.F-Zi (26) 

Zw   =   Za   =   [lN-PNr-Z4 (27) 

2.3 - THE SCATTERING MATRICES Sw   ANDSro. 

The auto-normalized scattering matrices 5TC , and Sm of the Type-C, and Type-D connections are 
of orders 2n x 2n , and 2Nx2N, respectively, and have both identically-zero leading, and trailing blocks. 

The two non-zero, nun blocks of the matrix S„, are expressed by : 

S2C     =    S3C     =     SC     =    S2 "   S3     =    MPn '   AsC *   MP* (28) 

while the two non-zero, N x N blocks of the matrix Sw are expressed by : 

S2D     =    S3D     =    SD     =    S3 "   S2     =    ^Ptf "   ^ "   MPN (29) 

Quite remarkably, the modal matrix of the block Sc is the MA modal matrix of the matrix product 
P. , while the modal matrix of the block SD is the MFN modal matrix of the matrix product P„ . The 
corresponding diagonal spectral matrices A^., and A^, are expressed respectively by : 

he = p.-*'.-A*r]-['.*(/.-A*rr1= ^t^]        (30> 

**> = [^-(^-vf]-[^+(^-vrr= i»w[«^»]       öD 

The n columns of the modal matrix Mft identify the n 'natural transmission modes' of the Type-C 
connection. These n modes are obviously linearly independent, and provide thus a basis for the expansion 
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of any arbitrary excitation, as a linear combination of natural modes. The natural logarithms of the n 
XJQ eigenvalues in the Kx spectral matrix are expressed by : 

" Tic.   "   *m -J Via   =   cosh~ =  2 cosh (32) 

and are the corresponding single-mode propagation-constants through the Type-C connection. All the n 
natural modes of the Type-C connection are generally propagating, save for the pathological case of P. 
being singular. It is indeed easy to see that Xsoi = 0 , if X« = 0 . The same discussion applies to the 
n Xsn non-zero eigenvalues in the A^, spectral matrix, while the N - n XOT , corresponding to the 
identically-zero X^« eigenvalues, identify the set of 'natural cut-off modes' of the Type-D connection 
(more about this in the following Section 2.4). 

2.4 - SPECTRAL ANALYSIS OF THE AUTO-NORMALIZED SCATTERING MATRIX S . 

The above-reported new results lead to a very fundamental, symbolic spectral analysis of the block- 
traceless (n +N) x (n + N) auto-normalized scattering matrix S of a non-symmetric beam-forming network, 
defined by the expressions (4), (10), and (11) of Sections 1.3, and 1.5. This diagonalization of the matrix 
S is given by : 

S   =   MJ-AJ-MJ (33) S-Ms   =  MsAs      (33') 

where the modal matrix Ms, and its inverse Ms~' are expressed by : 

Ms 

M„ 

**-"* V 1/2 

-p:m-M-MP 

MB 

(34) 

M; 
M; 

MR 

■MK-P, 

M^-P. -V2. M. 
4- 

-1/2, MP 

(35) 
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while the corresponding spectral matrix As is given by : 

0 

As    = 

.1/2      ! 
Asc     | 

ASD 

(36) 

The expression (33') can be expanded, using (34) and (36), and can be split into the four equivalent 
transforms : 

vK-tfA- Apf) = jfA- A: 1/2 (37) 

v*4w = f^;1'2-^-^)- A: V2 
SB 

(38) 

Mft   =   (Mv-M^ A^2)- Al 1/2 (39) 

vf^-^-iM = ^-A; 1/2 
SD 

(40) 

Most remarkably, the block A» = - A^," includes AT- »identically-zero eigenvalues, that correspond 
to the N - n identically-zero eigenvalues of the spectral matrix Am of the matrix-product P„, while the 
remaining n eigenvalues are equal to those in block AM = A«." , save for a sign change . The 2n non- 
zero eigenvalues in the spectral matrix As , and the corresponding eigenvectors, identify the two sets of 
n 'forward', and n 'backward', 'natural transmission modes' of any given non-symmetric beam-forming 
network, while the N - n eigenvectors, that correspond to the zero-eigenvalues in block A^ , identify its 
'natural cut-off modes' . These are the N - n interface-2 ay voltage-wave vectors, for which the 
corresponding 'received' interface-1 ft, = S2 • ay vectors are identically zero. The so-identified at vectors 
constitute the 'null-space' of the n x N matrix-block S2 , and form the columns of its rank N - a 
'complete right anmhUator' matrix Sx P , 3] . The (ii+A>-port beam-forming network performs, under 
each of these excitations, as a 'multiport hybrid', with the n interface-1 ports being all simultaneously 
totally decoupled' , or (in the terminology of directional couplers) 'vestigial'. 

2.5 - THE TWO RECTANGULAR ABCD-MATRICES K, AND KB . 

Two rectangular ABCD-matrices, that linearly relate the interface-1 (V, , /,) , and the interface-2 
( Vj , Ij) bi-vectors, have been defined, and proved to be fully equivalent to the Z-matrix Zft+W of an 
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(n+N)-poTt beam-forming network. The 2n x 2N 'forward' ABCD-matrix Kp is defined by : 

K„ 

VJ 

-h 

A      I     B 
 I  

C      !     D 

VJ 
(41) 

while the 2Nx2n "backward' ABCD-matrix KB is similarly denned by : 

VJ 
Vi ! Vt 

h 

=   &B- 
~h 

Y ! « 
-h 

(42) 

Two mutually-equivalent expressions of the four n x N blocks A , B , C, D otKF, and of the four 
N x n blocks u,ß ,y ,i of KB have been obtained, by rather convoluted, indirect procedures : 

A     =    U^^C1)-^     =    PnKK (43) 

B  =  -±(in-sc
1)-s2-zI2  = [Iu-Pm)-P?-Mm-Z4 (44) 

C   =   -±zJ-{l„-S?)-S2   =   Zl'-P;1-Mn (45) 

ß   =   \Zn-(ln+Sc1)-S2-ZI2   =   Zf-Pf-Mi-Zt (46) 

^3-K^c')     =    "»-P."1 (47) 
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ß = - jvK-Sc'K, = *„•(/.-p.)-*;1-*i (48) 

Y = -^/-
1-s3-(/)I-sc

1) = z;1 • J»V p;1 
(49) 

*   =   \Zn-S3-(ln+Sc
l)-Zn   =   Z?-MN-P;1-Zl (50) 

The given second form of each of the eight ABCD-matrix blocks proves the matrices KF , and KB 

to be rational functions of the blocks Z, of the Z-matrix Z,.+N) . Further both the K„ , and K„ rectangular 
ABCD-matrices have been proved to be rigorously consistent with the impedance-matrix transforms (2), 
(3), (8), and (9) , and to correctly represent the 2n x 2n ABCD-matrix Kc of the Type-C connection, and 
the 2Nx2N ABCD-matrix KD of the Type-D connection, with the two matrix products : 

C    _   **F ' ^B 

(2In-Pn)- 

2z[*'p;1 

2(1. -)• P. ■ z. 

Zi1-(2Ia-Pn)-P^'Zl 

(51) 

*fH-(2im-pmyp; ■M.  ^_ *MK-{I. -pnyp-2-M,-z4 

2 Z?-MN-P;2-M,       I Z-l-MN-(2IH -/>„)•P;2-MH-Z4 

(52) 

Finally, if n < N, as it is here assumed to be, the 2n x 2N ABCD-matrix KF has a 2n x 2 (N - n) 
complete right annihilator matrix Km with 2 (N- a) columns, that represent interface-2 voltage/current 
excitation bi-vectors that simultaneously generate zero interface-1 voltages, and currents. 

2.« - THE RECTANGULAR T-MATRICES Tf AND T„ . 

Two rectangular, auto-normalized T-matrices, that linearly relate the interface-1 ( b,, a, ), and the 
interface-2 ( a,, *,.) voltage-wave bi-vectors, have been defined, and proved to be fully equivalent to the 
auto-normalized scattering matrix 5 of an (h+2V>port beam-forming network. The 2n x 2N 'forward' 
T-matrix Tr is defined and expressed by : 

*« 
=   T„ 

S2       I        0 

o     I s?-s2 

(53) 
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while the 2Nx2n 'backward' T-matrix TB is similarly defined and expressed by : 

h ai s2 1      0 
1 

a. i 

=   T  • = — — 
1 
1 • — 

aJ *l 0 1 S3 - Sc h 

(54) 

The given auto-normalized T-matrices rigorously represent the 2n x 2n auto-normalized T-matrix Tc 
of the Type-C connection, and the 2N x 2N auto-normalized T-matrix TD of the Type-D connection, with 
the two matrix products : 

*« 
=   T • lc 

ak 

= W 
at 

_ 
Sc 

0 
, 

at 

«, K h 0 Sc1 K 
(55) 

K aJ 
-- = T  ■ 

«* »J 

T„-T„ 
0     ^.-Sc-S, 

(56) 

Quite remarkably, the three-fold matrix product : 

S3 • sc 
(57) 

is a 'semi-inverse' [2] of the matrix-block SD , defined by the expressions (29), and (31), such that: 

Sn  * Sn *  Sn       =      Sr (58) Sn " Sn " On      -     Or 
(59) 

3 - CONCLUSIONS : A rigorous analysis of two idealized, cascaded connections of non-symmetric beam- 
forming networks leads to the identification, and formal definition of the set of linearly independent, 
natural transmission modes. These are represented by a vector-basis spanning the space of all phased 
array aperture distributions that can be exactly synthesized, while many more can be adequately 
approximated by least squares solutions. The given results prove that electronic beam steering can be 
performed with a number of electronic controls much smaller than the number of array elements. 

[1] R. A. Speriale,'Advanced Design of Phased Array Beam-Forming Networks,' Proc of ACES 96. 
[2] J. S. Frame,'Matrix Functions and Applications,' IEEE Spectrum, March-July, 1964. 
P] S. WoIfram,"Mathematica,' pp. 660-662, and 832. 
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NEW RESULTS IN THE SYNTHESIS OF APERTURE-FIELD 

DISTRIBUTIONS FOR ULTRA-HIGH GAIN PHASED ARRAYS. 

Ross A. Spcciale 

Redondo Beach, California 

Renewed analytical and numerical studies of rather unusual aperture-field distributions for ultra- 
high-gain phased arrays have generated interesting new results, and have provided a deeper insight, and 
understanding of the underlaying radiation process. The analyzed aperture-distributions are planar, and 
are synthesized as carefully-weighted linear combinations of TE and TM cylindrical wave-modes of equal 
azimuthal order ' ra ' . The used TE and TM cylindrical modes are mathematically defined as linear 
combinations of W. W. Hansen's M and iVbasis vector-fields, using only Bessel functions of the first kind 
to express the radial dependence of the five TE , and of the five TM field-components . The computed 
analytical expression of the radial component S% of the complex Poynting Vector show that the radial 
energy-flow density of the combined TE and TM aperture-fields b'cimes identically zero, everywhere in 
the half-space above the Z = 0 plane of the aperture, if the two mode-types are linearly combined with 
equal weights. At the same time, however, the axial component S*z of the complex Poynting Vector of the 
combined TE and TM fields is non-zero, and oriented along the positive Z-axis, in the direction of the 
desired ultra-high gain beam. It appears then that the linear combination of TE and TM cylindrical wave- 
modes, with equal order m and weights, results in total cancellation of the radial energy-flow, everywhere 
in the Z > 0 radiation half-space, at all radial, azimuthal, and axial positions. Present analysis efforts 
are being directed towards the determination of an optimum, finite aperture-truncation radius, and of 
an optimum radial 'filtering' (or 'windowing'). As no rigorous procedure is as yet known for determining 
the optimum combination of truncation radius and radial filter evolution, a rather heuristic approach is 
used. Analytical integration of the truncated and filtered aperture-field distributions is being attempted, 
by expanding the used truncation filter in terms of Bessel functions of the first kind. Closed-form 
integration of the radiated far-field of the truncated aperture, in cylindrical coordinates, appears possible. 

The three components of the total electric field, in cylindrical coordinates, are expressed by : 

*, ■ *" + *S 1 + mJ_(K,R) 
K7 

«) J. (*«*) .'«2» (1) 

E   = E™ * E? = e'"» « 9 9 9 D 1 + ^^\mJJK.R\ (***H„.i(*«*) 
i*zz (2) 

£,-*™--«'-.£ ß^fjr,«)  Ja{KRR)e' (3) 
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while the three components of the complex Poynting Vector, in cylindrical coordinates, are given by : 

5"*"2^(l)'l2(I + ßT)(p + 5)mJ"(**ÄHmJ»(***)M**Ä)J"i(***)] 
(4) 

* (i + P*) -^ C ä)a ^-.iC«*) 

= --(-T-( 2T, \R)    K ^ 
1 + + 2 m J2.(K.R) 

(5) 

;2ß-^(^R) J„{KRR) JU^{KKR) 

2i, U K 
\mJ. (K,R) JJK.R) (6) 

The quantity a is an arbitrary amplitude-scaling factor for all the aperture fields, while the 
parameter ß = b I a is the arbitrary ratio of the amplitude factor b of the TM mode field-components to 
the amplitude a of the TE mode components. As the expression (6) clearly shows, the radial component 
S", of the complex Poynting Vector, that expresses the radial energy-flow density, becomes identically 
zero, everywhere in the Z > 0 half-space, for ß = ± 1 , i. e. when the TE , and TM field components 
have equal amplitude factors and phases. In all the given expressions the normalized radial wave-number 
KRIK, is related to the axial wave-number by : 

N i- -^ vT cos Y   =   sin Y 
(7) 

where y is the angle between the propagation-vector K and the Z-axis. 
The results of preliminary computations, with m = 6=a = X, show that the electric-field 

components E„ , BT , and Ez (Figure 1) have a decaying oscillatory radial dependence, while the axial 
component S*z of the complex Poynting Vector is sharply peaked at the center of the circular aperture 
(Figure 2) . The azimuthal component S*, of the complex Poynting Vector is zero a the center of the 
aperture, and has a mostly non-decaying oscillatory radial dependence. The axial ratio p = Er I EK is 
exactly equal to 1, on axis (at the center of the aperture), thus representing pure circular polarization, 
and evolves through many poles and zeros with increasing radius. 
[1] J. A. Stratton, Electromagnetic Theory, Sec. 6.10, p. 371, Eq. (55). 
P] Spcciale R. A. , and Wacker P. F. , "Ultra High Gain Antenna Arrays," 6* Annual Review of 

Progress in Applied Computational Electromagnetics, Naval Postgraduate School, Monterey, 
California, March 19 - 22 ,1990 , pp. 241 - 252. 
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ADVANCED DESIGN OF PHASED ARRAY BEAM-FORMING NETWORKS 

Ross A. Spedale 

Redondo Beach, California 

ABSTRACT 

Recent, very general, and fundamental results, in the theory of electrically large microwave networks, 
lead to new, advanced designs of high-efficiency beam-forming networks, for high-directivity, 
electronically-steered phased arrays. 

On the basis of the rigorous, new results, the beam-forming networks of electronically-steered phased 
arrays can be simultaneously impedance-matched to any given set of radiating elements on one side, and 
to any given set of mutually-coherent, phase- and amplitude-controlled microwave sources on the other. 
Further, the impedance-match attained in transmission, also holds in reception, as long as the used set 
of mutually-coherent receivers has the same internal impedances as the used set of sources. 

The attained impedance-match simultaneously accounts for both the electromagnetic proximity 
coupling between all the radiating array elements, and for any given internal cross-coupling of the set of 
sources, in transmission, or of the set of receivers, in reception. 

The resulting impedance-match is totally independent from the amplitude, and phase settings of the 
sources, in transmission, and from the direction of the incoming beam, in reception, completely 
suppressing the notorious array-blindness effect, for all beam directions. Further, beam-forming networks 
can be designed with, besides prescribed impedance match, also prescribed transmission responses, in 
both the transmission and reception modes, and with a number of beam-steering control components, 
much smaller than the number of array elements. 

1 - WAVE SCATTERING AND IMPEDANCE NORMALIZATION. 

It is generally known that a one-port load, with impedance ZL , connected at the end of a single 
transmission line, with wave-impedance Z„, generates a reflected wave b, that is related to the incident 
wave a by the (single-mode) reflection coefficient: 

r = * = ZL~Z" (i) 

The given expression of the reflection coefficient T is consistent with the definitions of the incident, 
and reflected voltage-waves : 

a=±(V + Z0I)       (2) b = l{V-Z0I)       (3) 
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The scalar wave-impedance Z„ of the used transmission Hue is clearly an essential quantity, m the 
definitions of the inddentana reflected waves a , and b , and of the reflection coefficientT , audit is 
^riousthat the sameone-port load wifttapedanceZ,, woul^ene^atota^^r^^echon 
?', if it were connected at the end of a transmission line with a different wave-impedance Z„ [1] . 

r,   y   zL-z; _r_ 1 ■ -r2 

  Y 
Yr 

where the lower-case symbol y stands for : 

z; - zB v    =     

(4) 

(5) 

K + z0 

The wave-impedance Z„ (or Zj ) of the used transmission line is said to establish a basis for the 
»nrmaliratwn of the waves a, and 6, and of the reflection coefficient T (or r ). 

^^ranT-p^rtload^etwork N, characterized by a (non-necessarfly^onal) » x n impedance 
matrix Z connected to the ends of n transmission lines, each with wave-impedance Z„ (. -I, 2, ..., 
X^es-Soing waves o{, that are related to the corresponding ingoing waves «, by the (smgle- 

mode) scattering matrix : 

s = (zL-z0)-(zL+zoy 

so that: 

&.. = 5 • a, 
(7) 

The given expression of the scattering matrix S is consistent with the definitions of the ingoing, and 
outgoing voltage-waves a-,, and bt: 

a, i(K,+^/f)      (8) *,   =   ^(?i-*-'«)      (9) 

H the used n transmission lines with wave-impedances Z„ are not electromagneticaHy coupled to one 
another, the n x n wave-normalization matrix Z„ is «fcigonaJ : 

\ (10) 
Z0 = Diag ( zol, zo2, ■ • ■, zOT) 

The selected values of the n wave-impedances Z„, of the used transmission lines, must be cogent 
wiftSeS ultimate apphcation of then-port load-network, for the scattermgmatnxS to faithfully 
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represent the actual scattering response, in the intended system environment 
Most frequently, however, the scattering matrix S is only used as an experimental^ accessible 

«presentation of the network scattering response, in an approprL reference «SEZÄSS 
^Jl 7 ™*°**>™» Z^are aU set equal to the nominal, scalar wave-impedance^ of flTusS 
measurement system, as defined by at least one physical calibration standard &41 
^n tins reference case, the normalizing impedance matrix Z„ in expressions (6>(10) becomes a scalar 

Z0 = Diag(z0,z, •o > *-o > ' (10') 

faJÜ * V**J*??' ,b7eVer' ^ ■■ np0rt load-netw°* *, characterized by a non-diagonal 
im,*dance:matrKZl(mdudingmanynon-ze^ y)   ^^ 
a^obe matched ( S = 0) to a set of „ uncoupled transmission hues, or 'any 'other ilÜXEJ 
characterized by an n x n diagonal impedance matrix. 

rfflJÜV8""!^ *"■? " Parti5ular' ^ ** considered "P°rt load-network /Vis physically composed 
ofthe set of B ramatrng elements of a phased array, as defined at the » circuit-ports, where very sJecffic 
sets of mutuaUy^herent, amplitude- and phase-controlled array^dtatio/siguals are mjertTto 
generate the various, desired radiated beams in transmission ^^ •njectea, to 

^J^^T^^H betTeen ^ "* °f" ^ *—*> -^ *» beam-forming network of any 
^ ^ ^^ I*aSed mv' ^ ^«»^-«Jependent topedance^nismatTmat is due to the 
k^TS^Pr°X,m,tyC0UpU,,g betWeeD *" necessariIy closely^paced array elements, is notoriously 

So™ ESfV*? ,maCC?aWe' t0fcd "^ bKndneis' for ^«^ ""g^ beam-pointing «urectaons, bes.des obviously adversely affecting the array efficiency in all beam-poLting dtodtoT 
qnH ^^l r^We conditions for attaining impedance match between the beam-forming network 
and the set of nuhatmg elements on one side, and between the beam-forming network3he^ of 

^S^TT^T °nthf.OÖ,er' — ''»lybeformulatedbymtroducmg the rather unconventional 
rfT£ r non-dmgonalnoruniumgnnpedance matrix Z„,such as the 'characteristic-impedance matrix' 
of a set of mutually-coupled transmission lines. 

2 - CONDITIONS FOR SIMULTANEOUS, BILATERAL IMPEDANCE-MATCH. 

i 7f a5e
i
c?nsidering here a K»*3*' "on-necessarily reciprocal beam-forming network, shown in figures 

1 and 2, that has n ports on its left-side interface-1, connected to a set of n mutually-coherent microwave 

Z^ZTTT011; °Ttoaset 0f » "»taany^oherent receivers, in reception, while the N ports on 
fl» nght-s.de mterfece-2 are connected to the N radiating elements of an elertromcaUy-steered^ed 
array. The considered, «near beam-forming network is characterized by its („ + JV) x (» + N) impedance 
matrix /.(.+!l) , that for n £ Ar can be asymmetricaUy partitioned in the four matrix blocks Z;: 

- t - 

'(n+N) (ID 
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where Z, is n xn , Z2isnxN, Z3is Nxn , and Z4is NxN. 
At the same time, the set of amplitude- and phase-controlled sources (in transmission), or of receivers 

On reception), connected to the n ports of the left-side interface-1, is characterized by the n x n , non- 
diagonal, internal impedance matrix Z„ , while the set of N radiating array dements, connected to the 
right-side interface-2, is characterized by the If x N, non-diagonal internal impedance matrix ZB , that 
includes all the numerous non-zero cross-terms due to the mutual electromagnetic proximity couplings 
between elements. 

Using the non-diagonal impedance matrices Zn , and Zn as the normalizing impedance matrices for 
the interface-1, and interface-2 respectiyely, we define the total normalizing matrix Z„ in the block-matrix 
form: 

"n 

(12) 

This very specific new definition of the normalizing impedance matrix Z„ leads to a re-definition of 
the ingoing, and outgoing voltage-wave vectors o,, and ft, of interface-1 , and a,, and ft, of interface-2 , 
that are now expressed by the vector-matrix relations : 

"i y, 

1 + 
aJ 2 VJ 

bi Vi 

_ 1 

h 2 VJ 

h 
(13) 

(14) 
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that can be expanded, and split in the four equivalent expressions : 

a, 1 (VV^( (15) b, 1 (    V;    -   Zlf   If   ) (16) 

O- J h* j + zD- (17) ■kW-2*'*! (18) 

The voltage-waves a-,, and i; would physically exist and propagate On mutually opposite directions) 
along a set of n coupled transmission lines, with characteristic impedance matrix [5,6] Zol = Z„ , if one 
such set of coupled lines would be inserted, at the physical location of interface-1 , between the beam- 
forming network and the set of sources (in transmission), or the set of receivers (in reception). 

Similarly, the voltage-waves ay , and bj would physically exist and propagate along a second set of iV 
coupled transmission lines, with characteristic impedance matrix Z^ = ZD , if one such set of coupled 
lines would be inserted, at the physical location of interface-2, between the beam-forming network and 
the set of the radiating array elements. 

In both cases, the voltage-waves a;, *,■ would represent the mutually-orthogonal fundamental wave- 
modes (the 'normal modes' !) of the first set of n coupled lines, while the voltage-waves ay , bj would 
similarly represent the orthogonal modes of the second set of N lines. 

A clear understanding of the given physical interpretation of the voltage-wave re-definitions (13)-(18) 
is obviously crucial to the determination of simultaneous, multiport impedance-match conditions for both 
network interfaces. 

The desired conditions for simultaneous impedance match at both beam-forming network interfaces 
are expressed by the very specific block-traceless scattering matrix S , defined as : 

s  = 

0     \ 
 1- 

(19) 

that is consistent with the voltage-wave vector relations: 
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b, = S2 • aj      (20) b. = S3-at      (21) 

It is then quite expedient to rewrite the expression (6) as: 

S-(ZL+Z0)=ZL-Z0 

which, by substituting ZL =  Z(.+N), Z„ from (12) , and S from (19), becomes: 

0   j       sz Zl   + %n    ■                  Z2 Zf - Zn   \            Z2 

h  ]      o 

1 

i 
%         I           Z4 

+ Z12 

1 
1 

= 
Z3         1         Z4 - Zß 

(22) 

The (n + N)x(n + N) matrix expression (22) can be expanded, and split in the four equivalent 
expressions: 

(6') 

s2-zs = z,-za     <23> S2-(Z4 + Z/2)=Z2       (24) 

53-(Z,+Zfl)=^       (25) So'Zo - ZA.     Z jg     z,2 72 (26) 

that, by pliminating the blocks S2 , and S3 , lead to the two simultaneous impedance-match conditions : 

^ - Z2 • ( Z4 + ZI2 )"1 • Z3 (27) ZJJ -   Z]      o2 • Z3 

Zn =   ZA-S3-Z2 =   Z4-Z3-(Z, + Zfl )"1 • z2 

The two non-linear matrix expressions (27), and (28), together with : 

(28) 
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S2 = Z2-(Z4 + Z/2)"1       (24') 5g = ^. (Z) + Zfl)-i       (25') 

deariy relate the four blocks Z, (i = 1, 2, ... , 4) of the (n + N) x (n + N) impedance matrix Zm+N , of 
the beam-forming network N, to the internal impedance matrices Zn , of the set of sources (or of 
receivers), and ZB , of the set of radiating array elements, and to the two rectangular blocks S2(nxN) 
and S3 (N x n) of the uniquely specific scattering matrix S , that is normalized to the (non-diagonal) 
matrices Zn , at interface-1, and Zn , at interface-2 . 

Explicit, closed-form matrix expressions of the four matrix-blocks Zi, as functions of the four matrix- 
blocks Za , Za , S2, and S3 are given in the following Section 4. 

It is, however, conceptually very instructive to first establish the physical significance of the 
expressions (27), and (28), that clearly establish simultaneous conditions for attaining a bilateral 
impedance match between the beam-forming network N, the set of sources (or of receivers), connected 
at interface-1, and the set of array elements, connected at interface-2 . 

3 - PHYSICAL INTERPRETATION OF THE IMPEDANCE-MATCHING CONDITIONS. 

It is fairly easy to prove that the impedance-transformation properties of the beam-forming network 
Not figures 1, and 2, are rigorously represented by the two matrix transforms : 

Zini =   *i  " *2 • ( Z4 
+ Zu V ■ Z* <29> 

Zin2 =   Z4-Z3-(Z,+ ZL1 )"1 • Z2 (30) 

where the nxn matrix Zu , and the iVx N matrix Zu are here assumed to characterize a totally arbitrary 
n-port load-network Lt, and a totally arbitrary Af-port load-network L2, connected in turn to the left-side 
interface-1 , and respectively to the right-side interface-2 , of the beam-forming network N. 

Similarly, the nxn matrix ZM on the left-side of (29) , represents the transformed impedance matrix, 
seen at the left-side 'input' interface-1 , with the iV-port load-network L2 (with impedance matrix ZJ 
connected at the right-side 'output' interface-2 , and the N x N matrix Z^ , on the left-side of (30), 
represents the transformed impedance matrix, seen at the right-side 'input' interface-2 , with the n-port 
load-network L, (with impedance matrix Za) connected at the left-side 'output' interface-1 . 

The physical significance of the simultaneous impedance-match conditions (27) and (28) becomes then 
obvious, by recognizing the formal analogy between those expressions, and the impedance-transformation 
mappings (29), and (30) . 

Clearly, the simultaneous impedance-match conditions (27), and (28) state that the internal impedance 
matrix Za , of the set of radiating array elements must electrically transform, through the beam-forming 
network N (from interface-2 to interface-1) to an 'input' impedance matrix ZM equal to the internal 
impedance matrix Zn of the set of sources (or of receivers), while at the same time the internal impedance 
matrix Zn of the set of sources (or of receivers) must electrically transform (from interface-1 to interface- 
2) to an 'input' impedance matrix Z^ equal to the internal impedance matrix Zn of the set of radiating 
array elements. 
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The simultaneous impedance-match conditions (27), and (28) obviously provide a far-reaching, 
fundamental generalization of the classical concepts of scalar image impedances of two-port networks, to 
the domain of linear, electrically-large, multiport microwave networks. 

4 - CLOSED-FORM EXPRESSIONS OF THE FOUR BLOCKS Z, OF THE MATRIX Z„+M) . 

It is fairly easy to solve the set of four, simultaneous matrix equations (23H26) (Appendix 2 of the 
original, unpublished monograph is available from the author), for the four blocks Z, (i = 1, 2, ..., 4) 
of the impedance matrix Z^+A, of the (« + A/)-port beam-forming network : 

(31) 

(32) 

(33) 

z, =(in-s2-s3y'-(itt + s2-s3)-zn 

Z2 = 2 (/„ - S2-S5y'-S2-Z12 

Z3 = 2 (IN-S3-S2)-'-S3-Zn 

zA = (iN-s3-s2y' • (/w + v*2)■ z 12 
(34) 

The closed-form matrix expressions (31M34) clearly provide a fundamentally rigorous basis for the 
design of an (« + iV>port beam-forming network N, that is simultaneously matched to a given set of 
sources (or of receivers), characterized by an internal impedance matrix Z„ , and connected to the left- 
side interface-1, and at the same time to a given set of radiating array elements, characterized by an 
internal impedance matrix Zn , connected to the right-side interface-2 (figures 1 and 2). 

The matrix expressions (31)-(34) also clearly provide the possibility of specifying, besides the bilateral 
impedance match, both the forward-wave-transmission matrix-block 5, of the beam-forming network N, 
as defined by the expression (21), and the backward-wave-transmission matrix-block S, , as defined by 
the expression (20). 

The matrix-block S3 clearly maps the Hnput' voltage-wave vector a,, generated by the set of mutually- 
coherent, amplitude- and phase-controlled sources fin transmission), to the 'output' voltage-wave vector 
b,, that directly excites the set of radiating array elements, thus generating any of the required, very 
specific, and practically significant aperture distributions. Obviously, only the few, carefully-selected 
aperture-distributions, that result in radiated beams of specified directivity, sidelobe level, and pointing 
direction need to be considered as practically significant. 

Similarly, the matrix S3 clearly maps the 'input' voltage-wave vector a,, generated by the set or 
array elements On reception), under the various space-wave excitations due to beams incident upon the 
array aperture from any of the specified pointing directions, to the 'output' voltage-wave vector b,, that 
directly drives the set of receivers connected to interface-1 . 

The quantitative specification of the forward-, and backward wave-transmission blocks S3 , and S3 

clearly fully determines, in conjunction with the specified impedance matrices Z„ , and ZB , all four 
blocks Z, (i = 1, 2, ... , 4) of the impedance matrix Z.+ff of the beam-forming network N, thus 
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establishing a rigorous basis for the choice of a most appropriate network topology, and for a 
quantitative network synthesis and design. 

It is clear that, in both the transmission and the reception modes, the aperture distributions 
corresponding to given, specified beam characteristics (directivity, sidelobe level, and pointing direction) 
are fully determined, and known, in the form of «-«pace spectra, so that the corresponding voltage-wave 
vectors bt fin transmission), and ay (in reception) can easily be determined by way of inverse Fourier 
transforms. 

A substantial measure of freedom can, however, be exercised in selecting the corresponding interface- 
1 voltage-wave vector a, (in transmission), and *, (in reception). Indeed, each of the mutually-coherent 
sources, in transmission, and each of the receivers, in reception, can easily be phase-controlled through 
a full 36(T range, while the only limitation to the corresponding amplitude control is a practical limit on 
the extent of the amplitude-control dynamic-range. 

Practical limitations on the amplitude-control dynamic-range of the sources depend on source- 
efficiency considerations, while in the case of receivers non-linearity at the upper end of the range, and 
unacceptable signal-to-noise ratio at the lower end of the range are of primary concern. 

Finally, it is very interesting to observe that, in principle, the fundamental beam-forming network 
design expressions (31M34) appear to provide valid solutions even for networks with an interface-1 
number of ports n substantially smaller than the number N of radiating array elements. This rather 
fundamental observation clearly opens the possibility of very substantial, and advantageous reductions 
in the required total number of very expensive, and highly critical beam-steering control components 
(such as digital phase-shifters, and gain-controlled amplifiers), as compared to the notoriously 
unaffordable active-aperture phased array designs. 

5 - CLOSED-FORM EXPRESSIONS OF THE IMAGE-IMPEDANCE MATRICES. 

Closed-Form expressions of the two image-impedance matrices Za , and ZB , of any given beam- 
forming network N, as functions of the matrix blocks Z, (i = 1, 2,..., 4) of the impedance matrix Zu+ln 

can be found by solving the two, simultaneous matrix-Riccati equations (27), and (28) : 

= (in-z2-z4'-z3-z?)V2-Zi <35> 

= {iN-z3-z;'-z2-z;1 )1/2-z4 (36) 

The required solution procedure is rather convoluted, but straightforward. The expressions (35), and 
(36) provide a way to determine which internal-impedance matrices the set of sources (or of receivers), 
and the set of radiating array elements should have, to be bilaterally matched to some given beani^ 
forming network N. 

The expressions (35), and (36) are (not surprisingly) irrational functions of the impedancfrmatrix 
blocks Z,, and it is easy to verify that these expressions reduce to the well-known definitions of the scalar 
image-impedances of a simple two-port network for n = JV = 1 . 

It is of fundamental interest to notice that, for a theoretical, totally lossless beam-forming network 
with purely imaginary impedance matrix Z.+ll, the eigenvalues of the image-impedance matrices Za, and 
Zn are either purely real (resistive), within any given passband, or purely imaginary (reactive), within 
any given stop-band. The eigenvalues of the two image impedance matrices Zn , and ZD express the 

Zn 

Zn 
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common values of impedance of different sets of (n or N) one-port loads, that separately match the beam- 
forming network N, under a finite number of very specific excitation patterns a,, and af 

It is also interesting to observe that an infinite number of different beam-forming networks may all 
share the same image-impedance matrices Z„ , and ZB while all differing in the forward-, and backward 
transmission properties, as specified by the scattering-matrix blocks S2, and S3 . 

6 - CLOSED-FORM EXPRESSIONS OF THE TRANSMISSION MATRICES S2, AND S3 . 

Closed-form expressions of the forward-, and backward-wave-transmission matrices 5,, and S2 can 
be obtained from the expressions (24'), and (250, in the forms : 

= z3 ^•kM'.-vtf-vsTr (37) 

-i. r r    .   / r    -   -7  . v\ 7  . r-1 ^ I"1 (38) 52   =   Z2-Z?-[lN+  [lN- Z3-Z?-Z2-Z?f] 
The expressions (37), and (38) provide the solution to the problem of determining the array-excitation 

voltage-wave vector *; , that corresponds to any given amplitude-, and phase-setting of the n sources 
connected to interface-1, and similarly to the problem of determining the voltage-wave vector *,, reaching 
the set of n receivers connected to interface-1, that corresponds to any given array-aperture space-wave 
excitation, as represented by the voltage-wave vector a, generated, at interface-2, by the set of receiving 
array elements. 

The expressions (37), and (38) hold, under the obvious assumption of the considered beam-forming 
network actually being impedance-matched on both sides, in transmission as well as in reception, as 
specified by the expressions (31M34) , or (35), and (36). 

7 - CONCLUSIONS. 

The formulated, fundamental generalizations of the classical concepts of scalar image impedance, and 
of scalar image transfer-function, originally restricted to the theory of simple two-port networks, to the 
broader domain of electrically-large, linear, multiport microwave networks, provide a rigorous basis for 
the synthesis, and the engineering design of advanced, high-efficiency beam-forming networks for high- 
directivity, Iow-sidelobe, electronically-steered phased arrays. 

High beam-forming-network efficiency, and total elimination of the notorious 'array-blindness' 
phenomenon, are attained by enforcing newly-formulated conditions for simultaneous, bilateral impedance 
match, between the beam-forming network and the set of array radiating elements on one side, and 
between the beam-forming network and the set of mutually-coherent, amplitude-, and phase-controlled 
microwave sources (or receivers). 

The attained impedance match rigorously accounts for both the mutual, electromagnetic proxiiniry- 
coupling between any two array elements, and for any given, internal cross-coupling of the set of 
microwave sources. 

Further, the attained impedance match is totally independent from the specific amplitude, and phase 
settings of the array-excitation sources, in transmission, and from the selected beam-steering direction, 
in both transmission, and reception. 

The newly-formulated analytical results are rigorously valid even for highly non-symmetric beam- 
forming networks, with vastly different numbers of ports on the two interfaces connecting to the set of 
array elements on one side, and to the set of microwave sources, on the other. 
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The new analytical results are also rigorously valid for non-reciprocal networks, such as beam- 
forming networks including non-reciprocal ferrite phase shifters, and active amplifiers, as long as such 
devices can be considered linear, at least below an acceptable maximum power level. 

The fundamental generality of the new analytic results introduces thus the possibility of designing 
high-efficiency beam-forming networks, that include substantially smaller numbers of the very expensive 
beam-steering controls, as compared to the notoriously unaffordable active-aperture designs. 
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I.      Introduction 

Adaptive mesh refinement (AMR) methods have been widely used for the finite element method 
(FEM) within many engineering disciplines [1, 2, 3, 4]. However, with the exception of the static 
case [5, 6], AMR methods are seldom applied to time-varying electromagnetics. One of the reasons 
is that the FEM codes in electromagnetics have only recently reached a mature enough level to 
consider the use of AMR. A second reason is that the traditional mesh refinement techniques are 
not well suited for electromagnetic problems. The traditional AMR methods are based on the 
assumption that the error is local, which means that the error within a given element is caused by 
the meshing of the region bounded by that element. Thus, once an estimate of the error is made 
for the solution, one can refine the regions where the errors occur to obtain a better solution. 
Unfortunately, numerical dispersion error is global, which means that the error in a given element 
is due to error in other elements, possibly far from the given element. Even if we can properly 
predict the error in an element, we do not know where the error comes from. 

In this paper, we present a traditional approach to a posteriori error estimation. Next, we 
discuss in more detail the relationship between the error and the discretization. Finally, we 
propose some ideas to consider for doing AMR for electromagnetics. 

II.      Traditional Approaches to A Posteriori Error Prediction 

Let us assume that FEM is used to solve for the fields in a three-dimensional region Q. The 
differential equation for the region Q is 

Vxf—Vxl]+jw'£ = 0        (x,y,z)eU (1) 
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where the exp(jwt) time harmonic variation has been suppressed and e* = e - ja/w. We can 
apply FEM to each of the elements in the mesh separately and the sum up the contributions for 
each element. The variation expression for the sum of elements is 

J2 j j J    — (V x E) ■ (V x fa) + jtue'E -fa+dv 

= T f I     (nxH)-fadS (2) 
^J JdClm 

where Omegam is the volume in element m and düm is the surface enclosing that element. The 
continuity of tangential E and normal D is enforced directly at the nodes. Assuming that there 
are no surface currents or charges at the inter-element boundaries, the surface integral in (2) 
vanishes everywhere except at the boundary of the mesh. 

Because a polynomial approximation is used to represent the fields within each element, the 
solution contains some error. Let us denote the finite element approximation for the electric field 
to be E. Since the numerical solution is not correct, we can write that tildeE satisfies, 

V x (—V x E | + ju>e'E = rm       (x, y, z) 6 fim (3) 
\juß j 

where rm is the residual due to the error in the FEM solution. This residual is one of two sources 
of error in the solution. The other source of error is caused by the discontinuity in the tangential 
magnetic field at inter-element boundaries. In (2), we assume that the tangential magnetic field is 
continuous in an integral sense and set the surface integral to zero at inter-element boundaries. In 
reality, the numerical solution for the tangential magnetic field, which can be obtained numerically 
from the electric field, is discontinuous. We can define the error vece to be 

e = E-E 

The variational expression for the error is 

f f [ _L (v x e) ■ (V x fa) + jue'e- fa + -. -V • (e'e)(V ■ 

■ (f • fa) dv = y     I      Pmk ■ $i dS 

(4) 

(5) 

where dümk is the surface joining elements m and k and pmk represents the discontinuity of 
the tangential magnetic field. The terms, r and pmk, are known a posteriori from the original 
FEM solution for the electric fields. Thus, we can solve for the error by applying FEM to (5). 
The same shape functions that are used to approximate the fields in (2) can also be used to 
approximate the error in (5). However, it has been found [2] that the dominant term in the error 
is associated with the polynomials which are one order higher than those used to approximate the 
fields. Therefore, a higher order shape function is used to approximate the error. Because of the 
higher order approximation, a direct solution of (5) is not efficient for estimating the error in the 

FEM solution. 
In order to make the error calculation efficient, the error in each element must be decoupled 

from the other elements. To accomplish this decoupling, we must remove the constraint that the 
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fields be continuous at the nodes. In addition, the variable pmk must be decomposed into two 
independent terms, pm and pk, where the first term is associated with the mth element and the 
second is associated with the kth element. The resulting equation for the error in element fim is 

-    (fm ■ $i) dv = jJ      pm- $i dS (6) 

Since the elements are decoupled, the error in each element is found by solving an Ne x Ne matrix 
equation (from (6)) where Ar

e is the number of unknowns associated with the element. The manner 
in which we divide pmk into pm and pk is important in determining how accurately the error is 
approximated. Unfortunately, there does not seem to be a way to split pmk such that the accuracy 
of the error is optimized. In our case, we choose a simple splitting scheme proposed by Ohtsubo 
and Kitamura [4] where the division is based on the relative sizes of neighboring elements. 

This scheme has been implemented in [7], and the results are somewhat mixed. Sometimes 
the error is accurately predicted, and other times it is not. This has also been noted by other 
researchers doing a posteriori error prediction for time varying electromagnetic fields [8]. We 
discuss the causes of this in the next section. 

III.      Relationship Between Error and Discretization 

Discretization error is produced by the incorrect modeling of the field variation within the 
computation domain. The field variation is due to two factors for time-harmonic waves. One is 
the sinusoidal variation of the field due to the frequency of the wave. In finite element methods, 
a polynomial variation is assumed for the field; therefore, an error is expected in modeling the 
sinusoidal variation, with more error as the frequency increases. The error causes the wave to be 
dispersive. This error is commonly called numerical dispersion error [9], and its effect is global, 
which means that the element size in one region may strongly affect the accuracy of the solution 
far away. The second cause of field variation is geometrical discontinuities. For example, the fields 
vary rapidly near perfectly conducting sharp corners and edges as well as material discontinuities. 
Some field components even approach infinity at perfectly conducting corners and edges. It is 
important to choose the discretization to properly model the field behavior near these geometrical 
features. Let us call this error geometric-based error. Geometric-based errors are local, which 
means that the error within a given element is caused the by meshing of the region around that 
element. 

The problems with using a posterior error estimators such as the one presented in the previous 
section is due to the fact that both local and global errors are present. The a posteriori error 
estimators can accurately predict local errors such as the case with electrostatics, but it cannot 
predict global errors very well. 

Even if we can develop an a posteriori method to predict both the local and global errors, it 
is not clear that it would be useful in AMR methods.  As we stated in the introduction. AMR 
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methods assume that the error in a given element can be reduced by refining the grid near the 
region where the error is present. For global errors this cannot work. Consider the one-dimensional 
problem of a plane wave propagating in free space in the +zdirection. Assuming the electric field 
to be x polarized, the solution is 

Ex = t'ikz (7) 

assuming an exp(jwf) time convention. However, if we were to solve this problem using FEM 
with linear elements, we would obtain an approximate solution due to the discretization of the 
field. An analysis [9] can be performed based on the assumption that the mesh is uniform and the 
computation domain is infinite, which in effect removes the boundary condition from consideration. 

The numerical solution is 

where k is given by 

k       1 
— = — arccos 
k      kh 

{khf/3 
1 + {kh)2/6 

(9) 

with h being the grid spacing.  It is clear that the numerical solution is dispersive because k is 
not a linear function of frequency. 

The numerical dispersion error is a phase error (fc - k)z which increases as a function of z. 
One way to view this is that the wave accumulates error as it propagates along the z direction. 
Thus, the rightmost (largest in z) element has the greatest error. If we accurately predict the error 
in the numerical solution and apply the AMR method, we would end up refining the rightmost 
elements of the grid without recognizing the the error is due to all the elements equally. In this 

case AMR methods fail. 

IV.      Development of Adaptive Mesh Refinement Methods for Electromagnetics 

In order to use AMR, we must somehow minimize numerical dispersion error or decouple it from 
geometric-based discretization error. For an optimal solution, we should do both. Since numerical 
dispersion error is a cumulative error, it is convenient to choose an initial mesh distribution which 
is uniform. The relationship between mesh density and numerical dispersion has been the subject 
of numerous studies. Thus, the mesh density can be chosen to obtain an acceptable level of 
numerical dispersion error. Once the numerical dispersion error is minimized, the AMR methods 
can be applied to reduce geometric-based errors. 

At each level of refinement, the associated matrix equation must be solved. For three- 
dimensional geometries, iterative matrix solvers are used. The computation costs are expensive 
because many iterations are required for the matrix solution to converge. One way to reduce 
the computation costs is to find an analogous problem to solve which has the same geometric- 
based errors, but is less expensive to solve.   Let us consider the two-dimensional problem of a 
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TMZ polarized plane wave incident on a square perfectly conducting infinite cylinder with sides of 
length 0.5A. The small cylinder size is chosen so that there is not much numerical dispersion error. 
An analogous problem for this case would be the electrostatic problem of a perfectly conducting 
square cylinder in a constant field. Both these problems have the same geometric-based errors, 
i.e., both numerical solutions have the most errors at the corners of the grid. In Figure 1, we 
plot \Elef - Ez\ all the way around the cylinder at a distance A/20 from the cylinder for the 
time-varying problem. The electric field E, is generated from a uniform grid with a grid spacing 
of A/20. A first order absorbing boundary condition is used to truncate the grid. To determine 
how much error is in our solution, a reference electric field solution ET

:
ef is generated from a finely 

discretized mesh (spacing of A/80). As we expect the errors are greater at the corners of the 
cylinder. To demonstrate that the error is local as well as geometric-based, we use a non-uniform 
mesh with the finer mesh near the corners to try to remove the error there. We observe in Figure 1 
that the error at the corners is reduced. 

For the static problem, we plot the difference of the potential Vref - V with the same grids 
as the time varying case in Figure 2. Again, we use an approximate outer boundary condition 
for electrostatics. The reference solution is obtained from a grid whose spacing is four times as 
fine as the solution associated with V. The error behaves the same way as the time-varying case 
for both the uniform and non-uniform grid. If a relationship can be found between the level of 
errors in the time-varying and electrostatic problems, then we can use the electrostatic solution to 
perform the mesh refinement. The advantages of performing the refinement on the electrostatic- 
problem is that the iterative solver converges much faster for this problem. Once the desired mesh 
is obtained, then a final solution can be obtained for the time-varying case. 

V.      Conclusions 

At this point, much of the research needs to still be done on AMR for electromagnetics. The 
discussion here provides some important concepts which must be kept in mind when developing 
AMR methods. 
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When edge-based, vector functions are developed from linear polynomials and the enforcement of 
Nedelec's constraints, the resulting set of vectors is also divergenceless. This has ed to some confusion 
as to which feature is responsible for how well these functions work as finite element apP™&on 
expansions, the constraints or zero divergence. The set of vectors form a complete bas.s witrespectto 
Nedelec's constraints, but an incomplete basis of divergenceless vectors, prodding an opportunity for 
comparing the two features. Complete basis sets of divergenceless expansion functions for both 2D and 
D Cand quadratic finite element problems are developed.   They are used as vector expansion 

functions for approximating the electric and magnetic field in a finite element analysis of cavity 
Resonance.   Silr analysis is performed using sets of vector expansions consMined by Nedelec 
criteria and the results are compared. The severity of the problems encountered with the d,vergencel s 
expansions supports the conclusion that Nedelec's criteria are the key to developing good veco 
expansion functions. A basic understanding of barycentric coordinate notation used in finite element 

calculations is assumed. 

^meSefinite element method is used to solve the weak form of the reduced Helmholtz wave 
equation, the resulting eigenvalue problem contains solutions which do not conform to MaxweUs 
dLrgence equations. These spurious solutions should be the eigenvectors correspondmg to an 
eigenvalue of zero. Actually, their non-zero eigenvalues are on the same order as the desired true 
solutions Thus spurious solutions increase computational effort, because they must be separated from 
the set of true solutions [1]. They also waste some of a limited number of eigenvalues. 

In an attempt to suppress the spurious modes, zero divergence was enforced on the vec or 
expansion functions themselves.   The 'standard" set of edge-based vector functions was the result. 
ThT&nctions did not suppress the spurious modes, but did appear to calculate them accurately 
enough to make the eigenvalues very nearly zero and thus easy to separate with a single calculation. 

Current research in electromagnetic finite element techniques has switched from advocating vector 
expansion functions with zero divergence to vector functions which satisfy the Nedelec constants for 
the purpose of dealing with spurious solutions. Since any vector field can be expressed as the gradient 
of a potential, the Nedelec constraints require the potential to be approximated with the same 
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polynomial order as the field [2]. It is thought to be the Nedelec-constraints which allow the spurious 
modes to be so accurately calculated and then separated [2], Because the linear, Nedelec-constrained 
expansions resulted in the same 'Standard" set of divergenceless vectors, there has been some confusion 
as to which feature is responsible. Although complete with respect to Nedelec's constraints, this is not 
a complete basis of divergenceless vector functions. 

Problem Formulation. 
The inner product of the curl-curl form of the reduced wave equation and a testing function can be 

put into the 'Weak" form below by removing one of the derivatives from the electric field using Green's 
Theorem. 

(L(E),w) = JJjr(VxE)-(vxW")-<DVE-W"ldx + ^(nx(VxE))-Wds = 0 

By assuming the walls of the cavity problem to be perfect conductors, the surface integral 
component is removed by the boundary conditions, and the equation can be put into eigenvalue form 
with k2 = co2|is as the eigenvalue. 

JJJ(Vxl)-(vxW*)dx = k2JJJE-W* dx 

If the field and testing function are modeled as a finite sum of weighted vector expansions 
defined over triangular or tetrahedral elements, as below, the eigenvalue equation takes the following 
form 

Xcid;JJJ(vxvi).(vx¥;)dx=k2Xc,d;/JJv1-Wdx 
'J i.j 

Choosing the same expansions for the field and testing function sets i=j. After differentiating 
with respect to each of the testing function's weighting factors, the resulting system of equations can be 
put into matrix form. Also, because the vectors are real functions, the complex conjugate operators can 
be ignored. The final form of the eigenvalue equation is given below. 

[B]-'[A][c] = k2[c] (1) 

where Aj; = JJJ(Vxvj7i)-(Vxvi7J)dx (2) 

and B^ =JJJ\j7i-vj7jdx (3) 
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Nedelec-Constrained Expansion Sets. 
The "standard" set of linear expansions conforming to Nedelec's constraints is given by 

J^w^VLj-LjVL.) 

where ij = [12,13,23] for 2D and ij = [12,13,14,23,24,34] for 3D problems. L; is the barycentric 
variable associated with node i, VL; is the gradient of L{, and wä is the edge length between nodes i 
and j. In addition to conforming to Nedelec's constraints, the linear expansions are also divergenceless. 
This set of vectors has also been called zero-order expansions because the component tangent to each 
element edge is always a constant; it is unity along one edge and zero on all the others [3]. 

When a second order polynomial is used to develop a set of Nedelec constrained expansions, 
the resulting vectors are very similar. Two expansions are defined per edge with their tangent 
component varying linearly along that edge, and zero on all others. 

«Piji = WyLiVLj and      ?ij2 = w.^VL, 

Two independent expansions are also defined for each triangular face. These expansions are 
defined such that they have identically zero tangential edge components along all element edges. 

9ijk, = L^LjVL, -I^VLj)     and      ym = L^VL, -L.VLj 

The net result is eight expansions defined per triangular (2D) element or twenty expansions per 
tetrahedron (3D). Simple inspection shows that conforming to Nedelec's constraints is not the same as 
enforcing zero divergence on the expansions. 

Complete Divergenceless Expansion Sets. 
An arbitrary linear vector in 2D and 3D has 6 and 12 degrees of freedom, respectively, as in the 

equations below. 

F = (A+Bx+Cy)x+(D + Ex+Gy)y 

F = (A+Bx + Cy+Dx2+Exy + Gy2)x 

+(H+Ix+Jy + Kx2+Lxy + My2)y 

A quadratic vector has 12 and 30 degrees of freedom. The zero divergence requirement eliminates one 
degree of freedom from each linear case and 3 and 4 degrees of freedom from the quadratic cases. 
Thus, the size of the basis sets of divergenceless vector expansions must be 5 and 11 or 9 and 26, 
respectively, in order to be a complete basis. For example, in the linear, 2D case, the following set of 
five independent vectors are all divergenceless. 

{x,y,yx,xy,xx-yy} 

941 



Five linear, 2D divergenceless vectors were developed by evaluating the tangential component of an 
arbitrary vector at five different points on a triangular element. Setting one value to unity and the rest to 
zero, in turn, produced five independent vectors. When the non-zero value was the component tangent 
to an edge, evaluated at the edge midpoint, the resulting expansion is called an 'edge" expansion. When 
the non-zero value was the component tangent to one of the two dimensional directions, evaluated at 
the center of the triangular element face, it is called a 'face" expansion. The five expansions are 
summarized with the two equations below, where D=2 is the dimension. 

EDGE: viik=^S-[(xs-xj2+z(Li-Lj)VLi] ijk=[231,321,312 ] (4) 

FACE: x|/, =       ^    ''[DX^+ZO-DLjVL,] i=[ 2,3 ] 

where I = £LmVLm Z = V-E^X^, X.-VL.-VL; 

(5) 

The linear, 3D divergenceless vector expansions are developed in a similar manner. However, to get 
eleven independent vectors, eleven evaluation points were used. Three points result from the three 
vector components at the tetrahedron center while the last eight are from the two tangential 
components at the center of each of the four triangular faces. The resulting expressions are three 
dimensional extensions of the linear expansions already derived. When D=3, Equation (1) becomes a 
3D 'face" expansion with ijk = [ 241, 341, 231, 431, 321, 421, 312, 412 ], and Equation (2) becomes a 
3D "interior" expansion with i = [ 2, 3, 4 ]. 

Quadratic divergenceless expansions were also developed. In 2D, the nine expansions were defined 
by evaluating the tangential edge components at the two endpoints and the midpoint of each edge. 
Equation (6) is the expression for the vectors with non-zero values at the nodes, while Equation (7) is 
the expressions with non-zero values at the midpoints. 

VS = w^L^Lj -O + BLJVL, +Li(A + CLi +DLJVL;] (6) 

where A = ^--^-        B = -^        C = -%—^        D = ^L 
2X3,    2Xjt Xfc IX^    2Xjk Xjk 

and X,i=VLl-VLi 

for ij = [12, 21, 13, 31, 23, 32] 
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V8=wa[Lj(E(LJ-l) + PLi)vLi+Li(E(l-Li) + GLj)vLJ] (7) 

;re 
E    2(XÜX,-X^ 

x* 
4X: 

G = v- 
x* 

and ij = [ 12, 13, 23 ] 

In 3D, the three point evaluation of each edge tangential component and two tangential evaluations 
at the center of each triangular face provide the 26 necessary equations to define a complete set of 
divergenceless vectors. 

Results. 
The divergenceless sets of vectors were used as the finite element expansions for calculating the 

resonant frequencies of circular cavities using the matrix development above. The eigenvalues of 
[Br'fA] represent the square of the wavenumbers associated with the resonant frequencies of the 
cavity. Two finite element models of the cavity were used, a simple 13 node, 12 element model and a 
denser 31 node, 42 element model. Both are shown in Figure 1. Tables 1 and 2 compare the 
wavenumbers calculated using linear and quadratic divergenceless expansions and linear Nedelec 
expansions with the exact solutions for TM and TE fields, respectively. 

Several problems were discovered when working with the complete sets of divergenceless 
vectors. The 2D, linear 'face" expansions and 3D, linear 'interior" expansions have zero curl. This 
means that any term of matrix [A] referencing one of these expansions is always zero. If D is the 
dimension of the problem and N the number of elements, then the matrix [A] would have DN columns 

and rows identically zero. This means [B]"'[A] would also have DN columns identically zero. Thus, 
for every i'th column of zeroes, a solution exists with an eigenvalue of zero and an eigenvector with a 
value of unity in the ith term and zeroes everywhere else. Therefore, the linear divergenceless sets are 
inherently creating at least DN spurious solutions. Of the remaining solutions, additional spurious 
solutions also appeared comparable to the number produced by the Nedelec constrained expansion sets. 
Tables 1 and 2 list the total number of unknowns, the number of natural zeroes (spurious solutions), 
and the number of zeroes due to zero curl. All zero solutions are 'Wasted" eigenvalues because they 
could have been used calculating real solutions instead of spurious ones. The use of linear 
divergenceless vectors in these examples is guaranteed to waste at least half of the eigenvalues before 
the first calculation is ever made. 

Additionally, the Nedelec sets provide tangential field continuity along the entire edge and face, 
whereas the "edge" and "face" terms of the linear divergenceless sets only enforce continuity at discrete 
points. This weakening of the tangential boundary condition results in the significant loss of solution 
accuracy also visible in the results in Tables 1 and 2. Continuity was not a problem with the quadratic 
expansions because they are identically zero everywhere across opposite edges and faces. Their 
accuracy is on the same order as the linear Nedelec solutions, but it took three times as many unknowns 
and significantly more complicated calculations to achieve this improvement. 
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The divergenceless quadratic vectors have serious problems of their own. If the finite element 
contains any total right angles, that is two edges perpendicular in 2D or three edges all mutually 
perpendicular in 3D, the expansions become undefined. The result is a non-umque set of solutions to 
the expansion equations (6) and (7). This was not a factor in the two circular cavity models, but as a 
potential expansion for any finite element problem, it needs to be addressed. While this may appear to 
be avoidable with careful geometry discretization, some other difficulties arise. Ever, if the right angles 
are exactly avoided, the resulting element shapes may have to become very distorted to do so On the 
other hand some geometries may have angles which approach, but aren't exactly, right angles. In either 
case, expansion terms will be created with extremely varying magnitudes and this will result in various 
computational difficulties when trying to manipulate the resulting matrices. 

° T^Tmportant features of finite element approximation functions were analyzed by comparing the 
accuracy of the solutions they provided to a simple 2D resonant cavity problem. A complete basis set of 
vectors conforming to Nedelec's constraints were compared with complete basis sets of divergenceless 
vectors with the intent of identifying which feature was responsible for isolating the spurious solutions 
so they could easily be removed from the true solutions. Although both sets provided thus capability, 
the linear divergenceless expansions produced DN additional spurious solutions. They also enforced a 
weakened version of the tangential continuity requirement, leading to less accurate true so utions. The 
quadratic expansions had only the same accuracy of true solutions, using three times the unknowns, and 
produced similar numbers of spurious solutions. Therefore, the use of Nedelec-constrained vectors is 
recommended over complete sets of divergenceless vectors due to their superior performance. 

"R ffPT*Pfl CCS 
ril "Cavity Resonances: EEM Analysis Using the Vector Helmholtz Equation," Electromagnetic 
Analysis Using the Finite Element Method-Education Extension Short Course, Georgia Institute of 

pT Peteran A F "Vector Finite Element Formulation for Scattering from Two-Dimensional 
Heterogeneous Bodies," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 3, pp. 357- 

m Peterson A. F., 'Edge-Based Tangential Vector Expansion Functions for the Numerical Solution of 
the 2D Vector Wave Equation," Electromagnetic Analysis Using the Finite Element Method- 
Education Extension Short Course, Georgia Institute of Technology, Oct 1990. 

Figure 1. Finite Element Model of Circular Cavity with 12 and 32 Triangular Elements 
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TYPE EXACT NEDELEC ZERO DIVERGENCE ZERO DIVERGENCE 

(LINEAR) (LINEAR) (QUADRATIC) 

NODES 13 31 13 31 13 31 

TRIANGLES 12 42 12 42 12 42 

UNKNOWNS 24 72 48 156 72 216 

NATURAL ZEROES 12 30 12 30 37 97 

ZERO-CURL ZEROES 24 84 

SOLUTIONS 2.40B 2.6766 2.4512 1.9692 2.8011 2.4141 2.4060 

3.832 3.5789 3.8685 3.1171 4.2970 4.0511 3.8433 

3.832 3.5789 3.8685 3.4350 4.4849 4.0511 3.8433 

5.136 5.3534 5.0816 4.8784 5.6988 5.3904 5.2203 

S.136 5.3534 5.0816 5.1959 5.8017 5.3904 5.2203 

5.520 6.3450 5.4053 5.7953 6.1414 5.6610 5.6266 

6.380 9.2978 5.8635 14.8092 6.9113 5.6610 5.7115 

6.380 9.2998 6.3161 14.8488 7.0784 6.2488 5.7115 

7.016 9.2998 6.3161 14.8812 7.3084 6.9966 5.7570 

7.016 9.3074 6.4189 15.4506 7.4252 6.9966 5.7570 

7.588 9.3074 7.1323 15.4730 8.0467 7.3583 5.7576 

7.588 9.3163 7.1323 20.4980 8.2065 9.0757 5.8008 

Table 1. Two Dimensional Circular Cavity Resonant Wavenumbers - TM Polarization. 

TYPE EXACT NEDELEC ZERO DIVERGENCE ZERO DIVERGENCE 

(LINEAR) (LINEAR) (QUADRATIC) 

NODES 13 31 13 31 13 31 
TRIANGLES 12 42 12 42 12 42 

UNKNOWNS 12 54 36 138 36 162 

NATURAL ZEROES 1 13 1 13 7 49 

ZERO-CURL ZEROES 24 84 

SOLUTIONS 1.841 1.8594 1.8575 2.3238 2.3999 1.7681 0.4081 

1.841 1.8594 1.8575 2.4539 2.5381 1.7681 1.8318 

3.054 3.3010 3.1013 4.0947 4.1115 1.8080 1.8318 

3.054 3.3010 3.1013 4.1154 4.1444 2.7868 2.6839 

3.832 3.7966 3.8222 4.7852 4.9286 2.7868 2.6839 

4.201 6.1903 4.2754 8.3119 5.5331 3.8928 2.6947 

4.201 6.3569 4.2817 8.4511 5.8787 4.4983 2.7869 

5.318 6.3569 5.2672 8.5721 6.5818 4.4983 2.7869 

5.318 6.9524 5.2672 8.7199 6.7411 4.5202 2.8010 

5.331 6.9524 5.3925 8.8904 7.1386 4.9536 3.1072 

5.331 7.4763 5.3925 9.6215 7.1876 5.3427 3.1072 

Table 2. Two Dimensional Circular Cavity Resonant Wavenumbers - TE Polarization. 
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Abstract—Multi-mode scattering [S] parameters of waveguide structures are computed 
using multiple types of edge-based finite elements. The modes are excited by the fields of 
special "waveguide" 2D+ finite elements. The excited modes propagate through a model 
made of 3D edge finite elements, and are terminated with perfectly matched absorber finite 
elements. Typical computations are shown to agree closely with measurements or theory. 

INTRODUCTION 

Scattering [S] parameters are important in characterizing the behavior of microwave cir- 
cuits, such as waveguide and microstrip filters and junctions. Also, as computer clock speeds 
increase, S-parameters are increasingly being measured on digital circuits. 

Finite elements have been used for many years to analyze microwaves, but S-parameter 
computation presents special challenges. Microwave circuits often contain several modes, so 
"generalized" S-parameters often need to be computed. The modal fields must be computed 
as functions of frequency for use in exciting the ports of the circuit. The 3D microwave circuit 
must be modeled with edge finite elements so that S -parameters can be computed accurately 
for devices with sharp conducting corners [1]. Finally, for the microwave engineer to be able 
to observe wave propagation and reflection, "reflectionless" terminations are needed at the 
ports. 

This paper describes a new method of computing S-parameters using multiple types of edge 
finite elements. 2D+ elements are used to model port cross sections to determine the modal 
fields for port excitation and modal decomposition. Hexahedral, pentahedral, and tetrahedral 
edge finite elements are used to model the 3D microwave circuit. Port terminations of low 
reflection are obtained using perfectly matched absorbers. S-parameter equations are 
derived, and typical results are shown. 

ELEMENTS FOR PORT CROSS SECTIONS 

The modal fields at port cross sections are computed using new 2D + "waveguide" finite ele- 
ments [2]. Quadrilateral and triangular elements are of first or second order. 

To compute the modal fields and propagation constants, we choose the transverse compo- 
nents of the magnetic vector potential A and the electric scalar potential <$> (volts). The electric 
field is then: 

Es -jcoAt-V<|> (1) 
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We transform the potentials as follows, where c0 is the speed of light in vacuum: 

X'x-Ä    .        ♦'-$ (2) 

Substituting (2) in (1), and denoting transverse components by T and the complex propaga- 
tion constant in the longitudinal z direction by y = a + j ß: 

E = - coA\ - CQV^' + Yc0<t>' z ® 

E, = - coA'T - CQV^'   , Ez = YC0<t>' (4) 

Using Faraday's Law, Ampere's Law, and the Galerkin method results in the matrix equa- 

tion: 

[K]f Ä'.4 = v2 [Mil A>1 (5) 
^ 

where [K] and [M] are symmetric indefinite matrices. The eigenvectors of (5) define the modal 
fields. The matrices of (5) have been derived for first order and second order quadrilateral 
and triangular finite elements for the case of real eigenvalues y2. Thus we obtain both propa- 
gating modes where y = j ß and evanescent modes where y = a. Good results have been ob- 
tained for lossless waveguide and microstrip ports [2]. Lossy ports have both their ß and a com- 
puted by means of perturbational techniques, provided that ß > > a. 

3D HEXA, PENTA AND TETRA EDGE ELEMENTS 

The 3D microwave circuit is modeled using hexahedral, pentahedral, and tetrahedral edge 
finite elements [3]. Because a hexahedron must be replaced by at least five tetrahedrons, iso- 
parametric edge hexahedrons and isoparametric edge pentahedrons have greater accuracy 
with far fewer unknowns than do the edge tetrahedrons, and are therefore used as much as 
possible. _ 

The 3D elements have only the three components of the magnetic vector potential A ex- 
pressed through edge vector unknowns. First order element unknowns are A values along all 
element edges. Second order element unknowns include additional A edge and face normal 
projections. Unlike nodal elements, the edge elements have no (nonzero) spurious eigenva- 
lues and are able to accurately model interior conducting corners such as commonly used m 
waveguides and microstrips. 

PERFECTLY MATCHED ABSORBERS AT PORTS 

Ports are terminated using the new perfectly matched absorber method [4] for FEA denoted 
here as PMA to differentiate it from Berenger's perfectly matched layer method for FDTD. 
The advantage of PMA over other methods such as ABCs is that any number of modes can be 
terminated at very low reflection. 

The PMA is automatically created with layers that increase in thickness with layer number 
beyond the port. The complex anisotropic material properties are automatically chosen to ob- 
tain matching to inhomogeneous materials modeled both with first order edge finite elements 
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or with second order edge finite elements. The PMA elements may be either hexahedrons or 
pentahedrons. 

S-PARAMETER COMPUTATION METHOD 

The general representation for electric and magnetic fields in a microwave circuit is: 

E(x,y,z,t) = E,(x,y)e-vze+J<ot z + Ez(x,y)e->'ze+Jrat z (6) 

H(x,y,z,t) = H^x^e-^e+i"" x + Hz(x,y)e-Yze+JMt z (7) 

where x indicates components transverse to the plane of a port and z indicates the longitudinal 
(normal) component. 

In order to compute S-parameters, the transverse components must be known. The trans- 
verse fields can be expressed in terms of forward c+ and backward c~ travelling waves without 
loss of generality (where the sign of c ~ waves is different for E and H fields so that power flows 
in the proper directions): 

(E)T = c+ e(x,y) e~Yz + c~ e(x,y) e+?z 

(H)T = c+ h(x,y) e-v- - c~ h(x,y) e+?z 

(E)t = (c
+e-v2 + c-e+Y2)e(x,y) (1Q) 

(H)T = (c + e-v2-c- e+vz)h(x,y) (11) 

Note that the transverse components can be represented by a complex amplitude and the 
real transverse eigenvector modal fields e and h computed using (5). In general, both trans- 
verse and longitudinal components can exist. For a specific time and at a specific location these 
two components become pure imaginary and pure real respectively. This applies to both the 
electric field and magnetic field of a mode. In the general case these components maintain 
this orthogonality over time and distance. Since the transverse component is the only compo- 
nent of interest, its modal vector field can be represented by a pure real vector field without 
loss of generality or phase information. Hence (10) and (11) can be rewritten as: 

E,e (x,y) = (ae-Yz + be+vz)e(x,y) (12) 

H, h (x,y) = ( a e~Yz - b e+v* ) h fry) (13) 

where a is an incoming port wave and b is an outgoing port wave. 

The modal vector field amplitudes must be normalized, in which case (12) and (13) can be 
shown to yield the familiar S-parameter power flow equation [5]: 

i(aa*-bb*) = P (14) 

To allow for multiple modes, the total fields are expressed as the sum of modal fields em times 
their modal participation factors: 
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N 

Etotal=   Z(E^5m) 
m=l 

where the modes are orthogonal, i. e., 

For m *■ n:       (em • en) ds   = 0 

(15) 

(16) 

Thus: 

|| (l-e„)ds 

EJ    = -& =(ane-vz + b„e+^) (17) 

ds jl (en-e„) 

}j(flS.) ds 

Htn|    =-& =(ane-vz-bne
+vz) (18) 

M (hn • h„) ds 

s„ 

Hence the incoming and outgoing port waves are: 
a=(Et+HT)/2   , b=(ET-HI)/2 (19) 

Subscripts can be put on a and b, where the first subscript represents the port number and the 
second the excited port number. 

With a and b known, the [S] matrix can be derived, here based on a two -port circuit for clar- 
ity and simplicity. This derivation is valid and has been implemented in general for any number 
of ports. 

Assuming a two-port, two evaluations will be required. One has its excitation at port one 
and the other has its excitation at port two. For an N-port, this pattern continues until all N 
ports have been excited individually for each mode of interest, thereby generating multiple 
matrix equations. The S-parameter matrix equations for the two-port are: 

)ining them gives: 

[Sn S12lfau a12] _ |"bu b12] 
[S12 S22J[a2! a22J     [b21 b22J 

(21) 

(22) 

Hence we obtain the expression for the S-parameters: 
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Sll  Si2 
s12 s22 

bll  b12 
b21  b22 

T-l 
"11   "12 
a21   a22 (23) 

A similar relation applies to a multi-mode N-port circuit. 

Since the a's and b's can be calculated for each case separately, (23) shows that a matrix in- 
version and multiplication are the only additional computations required to determine all of 
the S -parameters for any N-port circuit. Sequential application of the port field excitations 
[6] can be accomplished using only one finite element matrix decomposition with multiple for- 
ward and backward substitutions for each frequency. 

EXAMPLES 

The above equations and multiple types of finite elements are used to compute multi-mode 
S-parameters in a new software package MicroWaveLab™[7]. The microwave circuits to be 
analyzed are modeled with 3D edge elements, along with PMA elements and 2D + waveguide 
finite elements at all of its port cross sections. 

The S-parameters are to be computed first for the three-stub waveguide filter of Fig. 1. 
This is a two-port air-filled device with perfectly conducting metal walls. 

Fig. 2 shows the finite element model developed for the filter. Due to symmetry of the geom- 
etry and of the TE10 waveguide excitation to be analyzed, only one half of the filter need be 
modeled. The 3D finite elements are all isoparametric second order edge hexahedrons. 

Tuning Stubs 
T,     „ ^£?^*^ -~_oflength=18.9 Port 2 ^^ *r 5——      6 

Fig. 1. Geometry of three-stub filter to be analyzed. Dimensions are in mm. 

Fig. 2. Hexahedral mesh for one-half model of filter of Fig. 1. Note the mesh biasing 
toward the stub junctions. 
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The computed magnitude of SI 1 versus frequency is graphed in Fig. 3. Note that the notches 
in the computed filter response agree closely with the measured Sll. The computed propagat- 
ing fields are shown in Fig. 4. 

12 13 
f (GHz) 

Fig. 3. S11 of filter of Fig. 1 from 10 to 15 GHz. 

Fig. 4. E field magnitude in filter of Fig. 1 with power input at port 1. 
a), at 13.5 GHz (band stop),  b). at 11.0 GHz (band pass). 

The second example shows different modes at different ports and is the cylindrical-to - 
rectangular air=filled waveguide transition shown in Fig. 5. It is modelled with 3D finite ele- 
ments that are second order edge tetrahedrons. Three PMA layers of total thickness 0.41 mm 
are used on each port. Fig. 5 shows both the real and imaginary contours of electric field, which 
are seen to be displaced from each other, indicating that a traveling wave propagates with small 
reflections. The reflection by the PMA is more than 40 db down. 

Fig. 6 graphs the computed S21 vs. frequency, where port 1 is the cylindrical waveguide oper- 
ated in its vertically polarized TEH mode and port 2 is the rectangular waveguide operated 
in its TE10 mode. The transmission loss is less than -0.015 db over the frequency range, show- 
ing that almost all of the energy input at port 1 reaches port 2. 
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diameter-11.4" 

PMA 

Fig. 5. Geometry and mesh for 1/4 model of cylindrical to rectangular waveguide tran- 
sition, dimensions in mm. a). Contours of real Eat 18.6 GHz, b). Imaginary E. 

|S21|(dB) 
-.008   -. 

-.012   - 

-.013 

18.6    18.7    18.8    18.9    19.0   19.1    19.2    19.3    19.4 

Fig. 6. Computed S21 of transition of Fig. 5. 

The final example shows different modes at the same port. Fig. 7 shows an overmoded air- 
filled cylindrical waveguide of radius 12.7 mm operated at 15 GHz. Table 1 shows that the 
propagation constants computed using (5) agree closely with theoretical values [5]. The com- 
puted modes include a degenerate duo for the fundamental TE11 mode and and a degenerate 
trio for TE01 and TM11 modes, as shown in Fig. 7. 

TABLE 1. Propagation constants (1/m) of cylindrical waveguide of Fig. 7. 

Mode TEH TM01 TE21 TE01 TM11 
Theoretical 278.96 250.94 202.49 88.25 88.25 
Computed 278.96,278.96     250.95     202.48,202.48      88.32 88.31,88.30 

CONCLUSION 

A new method has been derived for computing S-parameters of microwave circuits using 
a variety of edge finite elements. The method allows multiple modes at multiple ports of arbi- 
trary geometry. The computed S11 of a stub filter shows good agreement with measurements. 
The computed S21 for a cylindrical to rectangular mode transition is reasonable. Also, multi- 
ple mode degeneracies in an overmoded cylindrical waveguide are accurately analyzed. 
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Fig. 7. Finite element model and computed 
fields in waveguide of Table 1. 
a) 1 of degenerate TE11 duo, b). degenerate 
trio (E of TE01 and H of TM11 pair) 

REFERENCES 
[111 Bardi O. Biro, R. Dyczij-Edlinger, K. Preis, and K. R. Richter, "On the treatment of sharp corners in 
the FEM analysis of high frequency problems," IEEE Trans. Magnetics, v. 30, Sept. 1994, pp. 3108-3111. 
[21 Jin-Fa Lee Gary Lizalek, and John Brauer, "Finite element analysis of waveguides using edge-based mag- 
netic vector potential and nodal-based electric scalar potential," Proc. Applied Computational Electromagnet- 
ics Society Symposium, Monterey, CA, March 1995, pp. 1054-1061. 
PI J F DeFord and P. Saladin, "Analysis of waveguide components using Hn-curl hexahedral edge elements 
in MSC/EMAS," Digest of IEEE Microwave Theory & Techniques Symposium, Orlando, FL, May 1995, pp. 
1207-1210. 
[4] David M. Kingsland, Zachary S. Sacks, and Jin-Fa Lee, "Perfectly matched ™opic absorbers for finite 
element applications in electromagnetics," Proc. ACES Symposium, Monterey, CA, March 1995, pp. 490-497. 
[5] S. Ramo, J. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, New York: Wiley 
& Sons, 1965, p. 603 and p. 431. 
[6] John R. Brauer and Franz Hirtenfelder, "Surface integrals on 3D and 2D finite element models for skm 
effect excitations and open boundaries," IEEE Trans. Magnetics, v. 28, March 1992, pp. 1659-1662. 
[7] MicroWaveLab is a proprietary product of the MacNeal-Schwendler Corporation, 815 Colorado Boule- 
vard, Los Angeles, CA 90041 USA. 

953 



Characterization of MIMICS Using A Parallelized 
3D FEM Code x 

Jong-Gwan Yook and Linda P. B. Katehi 

Radiation Laboratory 

Department of Electrical Engineering and Computer Science 

The University of Michigan, Ann Arbor, MI 48109-2122, ü. S. A. 

Tel: 313-764-0502, Fax: 313-747-2122, Email: yookjong@engin.umich.edu 

Abstract 

In this paper, two different types of parallelization schemes for the 3D-FEM based on 
distributed memory machine are presented and the performance of each scheme is closely 
examined. According to our study, the task parallelization strategy provides an almost 
linearly scalable FEM code. The parallelized version of the code renders an efficient and 
fast computation of the circuit parameters. Also, using the parallelized 3D-FEM code, 
microwave hermetic transition structures for a microwave package are characterized. With 
the modeling flexibility of the 3D-FEM, the performance of the transitions including the 
parasitic resonances is clearly understood and, based on this results, design guidelines for 
improved transitions may be derived. 

1    Introduction 

The three dimensional finite element method (3D-FEM) is a well established technique which 

has been extensively applied for the characterization of the 2D and 3D circuits which contain 

complicated dielectric and metallic configurations [1, 2]. For the analysis of 3D circuit discon- 

tinuities the 3D FEM is proved to be very accurate, computationally inexpensive and highly 

parallelizable. With the above observation, in this paper, a parallelized version of the edge-based 

vector FEM is developed and applied for the characterization of transitions for microwave and 
millimeter-wave packages. 

In general, packages for low frequency integrated circuits (ICs) have been designed without 

consideration of the high frequency effects and have revealed satisfactory performance. However, 

for microwave and millimeter-wave ICs the package should be designed and manufactured very 

carefully considering all spurious effects [3]-[6]. In this paper, transitions developed for an 

MMIC package operating in 18 to 40 GHz frequency range are fully characterized and even 

further several ways of improving the overall performance are presented. 

Furthermore, using the fact that the FEM is a frequency domain technique the 3D FEM 

Fortran code can be parallelized very effectively utilizing the strategy of task parallelization and 

'This work has been supported by NASA Lewis Research Center and the Army Research Office. 
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the performance of the parallel code optimized on a distributed memory parallel computer (IBM 
SP2) will be discussed. This type of parallelization leads to nearly linear performance improve- 
ment as we increase the number of CPUs. In contrast to the task parallelization, parallelization 
of the linear equation solver, bi-conjugate gradient method (BiCG), is also implemented and its 
performance is compared to that of the task parallelization. 

2    Parallelization strategies 

2.1     Approach 1 : Parallelization of the Linear Equation Solver :  [A][x] = [b] 

From the observation that the most time consumed by the FEM code is for the solution of 
the linear equation, our effort is first focused on the effective parallelization of the iterative 
equation solver. The bi-conjugate gradient method with diagonal preconditioner implemented 
in our FEM code requires one matrix-vector multiplication in every iteration. The FEM matrix 
[A] is computed once in the whole course of iterations but the unknown coefficient vector [x] 
has to be renewed in every iteration. Also, to maximize the usage of the storage space and to 
minimize the number of floating point operations in the conjugate gradient type solver, only 

non-zero matrix entries and its integer coordinates are stored. 
For a parallel matrix-vector multiplication we broadcast the main FEM matrix in the begin- 

ning of the BiCG iteration. Since the matrix [A] is fixed during the iterations, it is only needed 
to be broadcasted once. But in every iteration we need to broadcast a vector [x] which will be 
multiplied by the matrix [A] and will collect the results from the nodes after the multiplications 
are performed. The following shows an example of broadcasting the matrix [A] using message 

passing paradigm. 

CALL MP_BCAST(A,MessageLength,Source,ANGroup) 

When the size of the matrix or message is too large to handle, we can broadcast small part of 

the message separately as shown below: 

IF (TasklD.EQ.O) THEN <- master node 

DO I = l,NumOtTask-l 

Destination = I 

Ntype = I 
CALL MP-SEND(A,MessageLength,Destination,Ntype,MessagelD) 

ENDDO 
ELSEIF(TasklD.NE.O)THEN «- slave nodes 

Source= 0 
CALL MP_BRECV(A,MessageLength,Source,TasklD,MessagelD) 

ENDIF 

Note that to ensure the synchronism between the source (master node) and destination (slave 
nodes), we have used block receive subroutine (MP.BRECV). After we broadcast the [A], the 
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vector [x] is also broadcasted in a similar way in every iteration. Now, each small portion of the 
matrix-vector multiplication is carried out in each node simultaneously and the final results are 
gathered to form the resulting vector. In the following an example of the parallel pseudo-Fortran 
code for matrix-vector multiplication is shown: 

N = ll\IT(MatrixSize/NumberOfTask) 

Nstart = TasklD*l\l + 1 

Nstop = Nstart + N - 1 

DO I = Nstart.Nstop <— matrix-vector multiplication at each node 
VI = Ä-x 

ENDDO 

CALL MP.GATHER(VI,V,BlockLength,Destination,AIIGroup) 

where A and x are part of the original matrix or vector assigned to each CPU. In the above 
example, we could utilized the sparsity of the matrix and as a result we have indirect index 
scheme which would cause inefficient memory/cache access. 

2.2 Approach 2 : Parallelization of the Tasks 

Since the 3D-FEM in our study is a frequency domain technique, the set of Maxwell's curl 
equations at a certain frequency point under given boundary conditions are independent on those 
of the other frequency point. As a result, the set of linear equations at each different frequency 
points can be formed and solved independently and simultaneously to obtain the complete 
spectrum of the scattering parameters over a range of frequency region for a given problem. For 
example, to compute the frequency response of the microwave circuits transitions and package 
over a wide frequency spectrum we need to solve the problem at many different frequency points. 
Due to the nature of the problem, the computational tasks corresponding to different frequency 
points can be distributed equally to each different CPU and performed solution process at the 
same time. This type of parallelization scheme is often called embarrassingly parallelized version 
of the FEM code, since it only requires minimum parallelization skill but can provide perfect 
parallelization. This approach is equivalent to using many separate computers in a fast network 
without requiring any communication between them. This would be considered as not real 
parallelization in a strict sense, but it can be beneficial to the users of the parallel computers 
and provides a truly scalable parallelization strategy. 

2.3 Performance analysis 

To find out the most effective parallelization strategy, we implemented the above two approaches 
and assessed performance improvement in terms of the total amount of time required to solve 
a given problem. First, with the approach 1 we tested two different problem size (M=38109 
and 76709, M is the matrix size). As shown in Fig. 1, for the smaller problem size increasing 
the number of CPUs does not guarantee faster execution time. However, for the larger problem 
size as we increase the number of CPUs the total execution time decreased and increased again 
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slightly as we further increased the number of CPUs. This phenomenon can be explained by 
considering that heavy communication overhead due to the message passing causes performance 
degradation and finally compensates the advantage of using many CPUs. For larger problems, 
the advantage of using many CPUs exceeds the disadvantage of communication overhead up to 
a certain number of CPUs. The optimum number of CPUs and problem size are dependent on 
the capacity of the communication link and the performance of the switch. 

3    Applications 

In this section, we will present several numerical examples including hermetic transitions for 18 
to 40 GHz packages. All of the computations are performed by using the parallelized FEM code 
utilizing the task parallelization with the observation that the approach 2 is superior to the first. 

3.1 Hermetic wall transition 

In this section, the effect of the hermetic wall on top of the microstrip-thru-CPW transition 
with extended vias is investigated. The hermetic wall is formed by a ceramic material bonded 
on top of a metal plate which forms the upper part of the wall. Figure 3 shows the geometrical 
details of the hermetic transition structure with extended via holes. The height of the ceramic 
is equal to the substrate thickness while its relative dielectric constant is chosen to be er2 = 2.3 
in contrast to the 12.5 of the substrate. In Figure 4, the magnitude of the scattering parameters 
obtained using the FEM and FDTD are compared. After placing the hermetic wall on top of 
the CPW section, the overall return loss has increased by 2 to 3 dB while its overall frequency- 
dependency has remained unchanged. In the whole frequency region considered here from 10 to 
25 GHz, the return loss is less than -5 dB. However, in the low end of this frequency region, up 
to 13 GHz, the return loss is less than -10 dB. The effect of the hermetic wall is small as it is 
expected from the field distribution in the CPW structure. A typical problem size (M), number 
of iterations for convergence (Iter), and convergence time (T) are given as follows: 

M ~ 92000, Iter ~ 6000, T ~ 1600 sec. 

3.2 Hermetic bead transition 

As another type of hermetic transition, hermetic bead could be used for effective packaging 
element. In this section, we investigated the effect of the rectangular and circular hermetic bead 
transitions. The radius of the circular ring is chosen as Ht so that the circular ring fits into 
the square hole. As shown in the Figure 5 the performance of circular ring is very similar to 
the square one except at the lower frequency region. The degraded performance of the circular 
ring is mainly due to the effect of the conductor placed closer than the square one. A typical 
problem size (M), number of iterations for convergence (Iter), and convergence time (T) are 

given as follows: 

M cz 81000, Iter ~ 3100, T ~ 600 sec. 
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4    Conclusion 

In this paper, we have investigated two different types of paraUelization schemes and found 

that the second approach (task paraUelization) renders linearly scalable 3D-FEM code. Using 

the above scheme, several different types of packaging elements are carefully characterized and 

compared well with other full-wave technique, such as the FDTD technique. 
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Figure 1: Number of processors vs. execution time for two different size problems. The M is 
the number of unknowns which is equivalent to the matrix size to be solved. 
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Figure 2: Number of processors vs. execution time with the approach 2. The M is the number 
of unknowns which is equivalent to the matrix size to be solved. 
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Figure 3: Geometry of the microstrip-thru-CPW transition with hermetic wall on top of the 
extended PEC via grounding case. The width of the hermetic wall is 1.6 mm. W1 = 0.48 mm, 
W2 = 0.14 mm, W3 = 0.2 mm, W4 = 1.6 mm, Hx = H2 = 0.635 mm, eTl = 12.5, and er2 = 2.3. 
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Figure 4: Comparison of the scattering parameters for the transition with hermetic wall on top 
and extended PEC via under the circuit plane. 
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Figure 5: Geometry of the hermetic bead transition. Wi = 0.55 mm, W2 = 0.21 mm, W3 = 1.27 
mm, W4 = 2.225 mm, Ws = 5.0 mm, Hi = 0.635 mm, H2 = 4.0 mm, Ix = 1.50 mm, L2 = 0.40 
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Figure 6: Comparison of the scattering parameters of the hermetic bead transition with square 

and circular dielectric ring of radius equals H\. 
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ABSTRACT 

A perfectly matched layer (PML) is combined with an absorbing boundary condition 
(ABC) for mesh truncation in the finite element solution of electromagnetic scattering 
problems. It is shown that the combined PML and ABC has less undesired reflection 
than the PML or ABC alone. 

I. INTRODUCTION 

When solving open-region scattering problems using the finite element method (FEM), the 
infinite region exterior to the scatterer must be truncated with an artificial boundary to limit 
the number of unknowns. Consequently, a boundary condition must be introduced at this 
artificial boundary for a unique finite element solution. Such a boundary condition should 
make the boundary appear as transparent as possible to the scattered field, or in other 
words, it should minimize the reflection of the scattered field incident upon the boundary. 
An ideal boundary condition is one that possesses zero reflection for all angles of 
incidence. However, except for those derived from the boundary integral representation or 
the eigenfunction expansion of the scattered field, this ideal condition is unrealizable and its 
approximation is often sought. 

One such approximation is the so-called absorbing boundary conditions (ABCs), which 
are usually derived from differential wave equations [1-3]. The ABCs are applied at the 
artificial boundary directly and, as a result, their use does not introduce additional 
unknowns. However, they do not yield zero reflection for all angles of incidence and thus 
are not exact. To minimize the solution error, they are often applied at some distance away 
from the scatterer, resulting in an extended discretization region. However, the ABCs have 
two advantages in that (i) they do not increase the condition number of the FEM matrix and 
(ii) they can have a perfect absorption at some prescribed angles of incidence. 

Another approximation is to use fictitious absorbers, a good example of which is 
Berenger's perfectly matched layers (PML) [4-7], Since the PML involves several 
parameters, it can be designed to outperform the first- and second-order ABCs. However, 
compared to the ABCs, the PML has several disadvantages when applied to FEM. First, it 
enlarges the discretization region since its volume requires numerical discretization as well. 
Second, it increases the condition number of the FEM matrix, and hence the number of 
iterations when an iterative solver is employed. The PML usually performs best at and 
close to the normal incidence. Although this performance range can also be extended to 
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large angles of incidence by either increasing the PML thickness or the maximum loss 
tangent, doing so will either increase the discretization region or the matrix condition 
number. 

In this paper, we combine the PML and ABC to fully exploit their advantages and 
suppress the disadvantages. We show that the combined PML and ABC can extend its best 
performance to large angles of incidence without increasing its thickness and loss tangent. 
This allows us to keep the number of unknowns to a minimum while improving the 
condition number of the FEM matrix. 

II. FORMULATION 

The PML as a material absorbing boundary was recently introduced by Berenger for 
truncating the mesh in the numerical solution of the partial differential equations for wave 
scattering [4]. Various researchers have sought a different interpretation of this material 
absorbing boundary and extended it to three dimensions [5-7]. In particular, Chew and 
Weedon have interpreted the perfectly matched layers as coordinate stretching in frequency 
domain [5], whereas Sacks et al. have interpreted them as fictitious anisotropic materials 
possessing zero reflection at their interface [7]. By introducing a loss tangent in a PML, the 
wave propagating in the PML will be attenuated in the direction normal to the interface. As 
such, the PML, when backed by a perfectly electrical conductor (PEC), can be used as the 
absorbing boundary for numerical solution of wave scattering. 

Unfortunately, when a PML is backed with a PEC surface, its reflection coefficient is 
no longer zero for all angles of incidence. Since an obliquely incident plane wave has a 
much longer effective wavelength in the direction normal to the interface, it will experience 
less attenuation than the normally incident waves. As a result, the reflection coefficient of a 
PEC-backed PML increases with the angle of incidence and reaches 1 at the grazing 
incidence. Although the reflection within a certain range of incidence angle can be reduced 
by increasing the PML thickness and loss tangent [8], a large thickness will increase the 
volume of discretization and a large loss tangent will increase the condition number of the 
FEM matrix, making the FEM solution less efficient and more problematic. 

On the other hand, a PEC surface is not the only choice for terminating a PML; one can 
choose other surfaces as well, such as impedance surfaces or mathematical surfaces 
described by absorbing boundary conditions. As predicted in [9], such a termination 
should improve the absorption of the fictitious absorbers. In particular, when the first- and 
second-order ABCs are employed, the FEM matrix will retain its original sparsity and 
symmetry. However, we must realize that traditional ABCs are designed to have a zero 
reflection at the normal incidence and this reflection increases with the angle of incidence in 
much the same manner as the PEC-backed PML. Therefore, a combination of the PML 
with such ABCs will not improve its performance significantly. A better choice is to use the 
ABCs whose angle of perfect absorption can be controlled by some parameters. 

In the following, we combine the PML with ABC and investigate the improvement of 
their performance for the FEM solution of wave scattering in frequency domain. The use of 
the combined PML and ABC for wave scattering is illustrated in Fig. 1. The scattered 
electric field satisfies the vector wave equation [5] 

V.xfrjuJ-'^V.xE" )}-#[£,]•£" =Fta (1) 
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where £r and ßr denote the permittivity and permeability, and Finc = 0 within the PML 
and outside the PML, 

F'm = V x {[/ir]-> ■ (V x EiDC)} - kl [er] • Ein 

Also in (1), 

V =x———+•———+--LJL-L 
-fedx^T;      ^Tydy^Ty      JTzdzjrz 

in which ex = ey=ez=l outside the PML, and 

ex = sx'    ey = ez=\ for the PML normal to the x axis 

e
y = sy    ex=ez = \ for *e PML normal to the y axis 

ez=sz>    ex = e,='1 for the PML normal to the z axis 

(2) 

(3) 

In the above, sx,   sy, and  sz are complex numbers. For two-dimensional problems 
(assuming ^-polarization and no variation along the z axis), (1) is reduced to 

1    d 1    d ET 
-Js^ dx\^sxHr dx -^sx ay{n.  By ) + IC°eA     F< 

(4) 

for the PML normal to the x axis. A similar equation can be obtained for the PML normal 
to the y axis. The ABC can be written uniformly as 

"xk"'(vexEsc)] + P(Esc) = 0 (5) 

where P denotes an operator. In particular, for the first-order ABC, it is given by 

P(EK) = jk0 cos Bah x (n x Esc) (6) 

where 0a denotes the angle of perfect absorption. For the second-order ABC, it is given by 

/'(Esc) = yVo"X(«xEsc) + -^{Vx[n-(VxEsc)«] + V,(V-E;c)} (7) 

where p0 and p2 are parameters controlling two angles of perfect absorption. For two- 
dimensional problems, (5)-(7) reduce to 

1 dE[l 

s„   dn 
= -jk0cos6llE°c 

(8) 
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for the first-order ABC, and 

for the second order ABC. 

(9) 

ABC termination 

■■;•■:■ PML '     ■ 

Scatterer 

Figure 1. Illustration of the use of combined PML and ABC for truncating the 
computa-tional domain in wave scattering. 

The boundary-value problem described above can be solved by seeking the stationary 
point of the functional [10] 

F(Esc) = iJJJ{(Ve xE-J-I/U-' -(V. xE*)-fc0
2Esc -[£,]-E"}rfV 

V 

- f fJEsc • Finc dV-±§Esc • P(ESC)dS 
V s 

This variational problem can be discretized and solved using the FEM [11]. 

(10) 
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III. NUMERICAL VERIFICATION 

To evaluate the performance of the combined PML and ABC, we have written one-, two-, 
and three-dimensional FEM programs for some special problems. In all examples that 
follow, we let 

sI=sy=sl=l-j6m(l/Lf (11) 

where 8^ denotes the maximum loss tangent (LTMAX), I is the distance from the 
air/PML interface, and L is the thickness of the PML. 

First, we calculated the reflection coefficient of an ABC-backed PML using one- 
dimensional FEM and compared with those obtained with the PEC-backed PML and ABC. 
Representative results are given in Figs. 2 to 5, where for the first-order ABC we let 
8a = 60 degrees and for the second-order ABC we choose p0 = 1.03597 and 
p2 =-0.76537 so that perfect absorption occurs at 0 = 22.5 and 67.5 degrees, 
respectively [3], As can be seen, the reflection coefficient of the combined PML and ABC 
is reduced significantly over a wide range of incidence angle. 

Then we applied the combined PML and ABC to a parallel-plate waveguide, whose two 
plates are 1 cm apart. Both ends of the waveguide are terminated with the combined PML 
and ABC and the first higher-order mode, whose cutoff frequency is 15 GHz, is launched 
at the center of the waveguide. The reflection coefficient obtained using the two- 
dimensional FEM is shown in Figs. 6 and 7, from which we can see that the combined 
PML and ABC is superior to the PEC-backed PML near the cutoff. At the cutoff, the wave 
is incident on the PML at grazing and hence there is a total reflection. Note that the results 
in Figs. 6 and 7 are consistent with those in Figs. 2 and 4. 

Finally, we applied the combined PML and ABC to a rectangular waveguide whose 
cross-section is 2cmx0.5cm. Again, we terminated both ends of the waveguide with the 
ABC-backed PML and launched the TE10 mode (whose cutoff frequency is 7.5 GHz) at 
the center. The reflection coefficient obtained using the three-dimensional FEM is given in 
Fig. 8 and again the ABC-backed PML outperforms the PEC-backed PML near the cutoff. 

In passing, we note that although the PML has the drawback of total reflection at the 
cutoff for waveguide problems, this drawback does not exist for open-region scattering 
problems since the PML is always placed at some distance away from the scatterer. Since 
the ABC-backed PML has a much smaller reflection than the PEC-backed PML near the 
grazing incidence, it can be placed closer to the scatterer, resulting in a smaller 
computational domain. 

IV. CONCLUSION 

In this paper we combined the PML with ABC for truncating meshes in the FEM solution 
of partial differential equation for wave scattering. We showed that the combined PML and 
ABC has a significantly better performance than the PEC-backed PML or ABC alone. 

Although the PML has achieved great success in time domain analysis, its usefulness in 
frequency domain remains unclear. When we performed computations for three- 
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30 GHz, 10 Layers, Del=0.02 cm, LTMAX=6, Quadratic 
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Figure 2.  Comparison of reflection coefficient of a 10-layer PML, first-order 
ABC, and their combination. 

30 GHz, 10 Layers, Del=0.02 cm, LTMAX=6, Quadratic 
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Figure 3. Comparison of reflection coefficient of a 10-layer PML, second-order 
ABC, and their combination. 
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Figure 4.   Comparison of reflection coefficient of a 20-layer PML first-order 
ABC, and their combination. 
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Figure 6. Reflection coefficient of a parallel-plate waveguide terminated with a 
10-layer PML and a PML combined with the first-order ABC. 
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Figure 7. Reflection coefficient of a parallel-plate waveguide terminated with a 
20-layer PML and a PML combined with the first-order ABC. 
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Figure 8. Reflection coefficient of a rectangular waveguide terminated with a 10- 
layer PML and a PML combined with the first-order ABC. 

dimensional problems using an iterative method, we observed that the inclusion of a PML 
increases substantially the matrix condition number and thus the iteration number for 
convergence. Therefore, unless a better PML is developed, the use of PML in three 
dimensions is limited since it requires the use of a direct method for solving the FEM 
matrix equation. & 
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Abstract 

A combined Finite Element / Moment Method formulation for the analysis of scattering and radia- 
tion from cavity-backed microstrip antennas is reviewed. Edge-based elements are used to discretise the 
functional. A variety of problems encountered during implementation are discussed, and results computed 
compared to published and measured data for two representative problems. 

1 Introduction 

Microstrip antennas are widely used nowadays since they are lightweight, conformal, and relatively easy and 
cheap to fabricate. Indeed, the only major problem of standard designs that on occasions inhibits their use is 
their inherently narrow bandwidth. In the microwave regime, where their limited bandwidth (typically only 
a few percent) is acceptable, they are probably the antenna of first choice for many applications, especially 
aerospace. 

There are several approaches to modelling these antennas: early work used cavity and transmission line 
models, and subsequent work with the Method of Moments (MoM) and the Sommerfeld potentials achieved 
good results. Recently, the Finite Element Method (FEM) has emerged as a powerful tool for microstrip 
antenna analysis. It offers a number of advantages. As implemented in this paper, the actual model is of a 
patch residing in a cavity, which is often a better model of a flush-mounted antenna than the infinite dielectric 
required by the Sommerfeld MoM formulations. Furthermore, inhomogeneous substrate and superstate 
regions can be handled with ease; published work on reducing the radar cross section of microstrip antennas 
indicates that this can be done via lossy partial coatings or shorting pins, which can be incorporated very 
easily within a FEM mesh. 

2 Formulation 

The formulation used here is that originally published by Jin and Volakis [1], and with extensions in [2, 
§9.3-9.4]. We shall briefly summarize the formulation, retaining the original notation. (Other researchers 
intending to implement this formulation should note that there are some errors in the published work; details 
are available from Jin or the present authors). For a source-free cavity, the electric field inside the cavity is 
governed by: 

Vx (— VxEJ -klerE = 0 (1) 

Any solution to this equation must satisfy two different boundary conditions. On the cavity wall, the electric 
field vanishes, therefore: 

h x E = 0 (2) 

At the aperture (cavity opening), the fields in the region above it need to be linked with those directly below. 
An appropriate boundary condition is [2, pp.311-320]: 
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z x  [—V x E(r)],=0- = 2A?z x  / /  [z x E(r')] ■ Go(r,r')rfS' - 2ji0Zo2 x H''"e(r) (3) 
ßr J    -'S. 

S„ is the aperture of the cavity; see Figure 1 for the geometry. There are a variety of approaches for terminating 
the FEM mesh- recently, attention has focused on various absorbing boundary conditions, in particular on 
adapting Berenger's Perfectly Matched Load [3] (derived for the Finite Difference Time Domain Method) to 
the FEM (see, for example, [4]). However, for these cavity-backed structures, the FEM/MoM hybridization 
remains most attractive since the mesh termination is done right at the aperture of the cavity, and the FEM 
mesh is thus only required in the cavity. Using a sparse (not banded) iterative matrix solver, the rather wide 
matrix bandwidth that results is not a major drawback.   Hence we confine this paper to the FEM/MoM 

sen cms. 
Since plane wave illumination is assumed, the excitation field can be written in terms of the incident 

magnetic field H<"° only. The source and observation point coordinates are indicated by primed and unprimed. 
variables, respectively. (In equation (3) both source and observation points lie on the cavity aperture.) 

Go is the free space dyadic Green's function defined as: 

Üo(r,r')=(l-ivV')Go(r,r') (4) 

with 

Go(ry) = ^-| j,- (5) v       '      4-7r|r — r'| 

and - . 
1 = ix + yy + zz v>) 

It can be shown [2, pp.267-277, pp.311-320] that an equivalent variational problem for equation (1) and 

boundary conditions (2) and (3) is: 

SF(E)    =    0 

n x E    =    0      at cavity wall (?) 

where 

F(E)    =    i||^[i(VxE)(VxE)-^rEEJdV 

-kl ff [z x E(r)] ■ U J  [z x E(r')]Go(r,r')<iS'| dS 

+ j f  {V ■ [* x E(r)]} U Js Go(r,r')V • [z x E(r')]dS'| dS 

+2jk0Z„ j j  [zx E(r)] ■ H'"c(r)rfS (8) 

In deriving (8), the second term of (3) has been manipulated to reduce the order of the singularities 
that have to be integrated by two [2, pp.311-320]. Solving the above variational problem (finding a suitable 
stationary point) will vield a solution to (1) subject to the two boundary conditions. 

When a source is present in the cavity, the formulation is modified by the addition of further terms which 
include the volume electric and/or magnetic currents (see [2, §9.4] for details). 

3    Discretisation 
The cavity to be analyzed is rectangular in shape. It was therefore decided to use first order brick elements 
for the discretisation. Edge-based elements were chosen above nodal-based elements because they provide a 
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divergence-free solution within the element, avoiding the possibility of spurious modes [5]. They also give a 
more natural treatment of the electric field at material interfaces, allowing for a jump in the normal component 
of the field at the interface [6]. (The original explanation of the suppression of spurious modes was that the 
elements are divergence free. This is true within the element. However, the basis functions — at least the 
"first" order ones used here — are discontinuous at their edges. More sophisticated analyses have recently been 
published, relating to the improved approximation of the zero-frequency eigenmodes possible with edge-based 
elements [7].) 

In a brick element edge-based formulation, there are twelve unknowns associated with each element, namely 
the tangential electric field along each edge of the brick. The field at any point inside the brick is computed 
by linearly interpolating between these tangential edge fields. Inside the brick the field can thus be written 
as [2, pp.249-250]: 

12 

Ee = ^N,eB| (9) 
j = l 

where 
N? = JVJ,i, N?+4 = jV£s/, N?+g = AT/,.! (10) 

In the above. E? is the tangential electric field at each edge. Nf is the appropriate vector interpolation 
function, consisting of an interpolation function and a unit vector. As an example, the vector interpolation 
function corresponding to the x-directed edge with the lowest y and z coordinates is given — assuming that 
the aperture lies in the x-y plane. (Nj in equation (9)). 

N! = jij(»« + !-y)(*e*+ §-*)* (11) 

y|,z' are the y and z coordinates of the centre of the element, and l'y,l
e

z are the lengths of the element in the 
y and z directions. 

Clearly, the above function is x-directed, and varies linearly from one to zero in the y and z directions 
through the body of the element. Also note that the interpolation function is divergence free (within the 
element). Similar interpolation functions can be constructed for each of the other eleven edges. 

Representing the electric field throughout the cavity as a sum of the fields in all the elements, and substi- 
tuting this into (8), we obtain [2, pp.311-320]: 

,    M M,   M, Mt 

e = l 5 = 1 1 = 1 » = 1 

M is the total number of elements in the cavity, while M, is the number of elements touching the aperture 
of the cavity. { } denotes a vector, { }T denotes a vector transposed, and [ ] denotes a square matrix. E' 
is a vector which, for each element, consists of the twelve unknown edge-fields. E£ is a four element vector, 
consisting of the edges that touch the aperture for those elements having one face that lies in the plane of the 
aperture. 

The elemental submatrices and vector are given by: 

[A'e]    =    JI Jv= [^{V x N=} ■ {V x N'}T - k2
04{N'} ■ {N«}T] dV (13) 

[P"\    =   2jjj\7Ss}Ujw'S<}TGodS'\dS-2k2
0JJ {S'jUf^S'fGodS'XdSiU) 

{6s}    =    -2jk0Z0 f f {S'}-HincdS (15) 

V denotes the volume of an element. S' and S' are the areas (of the faces of a pair of elements) coinciding 
with the aperture. [Ps'] has to be evaluated for every possible combination of such pairs. 

N' is a twelve element vector of interpolation functions, while Ss is a four element vector of interpolation 
functions. S' is a subset of Ne, and consists of those interpolation functions corresponding to the four edges 
lying in the aperture plane, for an element touching the aperture. 
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Introducing a global connected numbering system, which uses the same edge-number for edges shared 
between adjacent elements, the above equation can be written as [2, pp.311-320]: 

F = \{E}T[K]{E} + \{E}T[P]{E} - {Ef{b} (16) 

To minimize this, the derivative is taken separately with respect to each unknown (edge-field), and the 
resultant expression set equal to zero. This produces a system of equations of the form: 

[A]{E] = {6} (") 

In the above [A] is a square matrix which can be assembled from the elemental submatrices as follows: 
The elemental submatrix [A'e] is computed for each element in turn. Using the global numbers of the edges, 
the entries from each elemental matrix are simply added at the right places in the [A] matrix until all the 
elements have been handled. The elemental [P!t] submatrix is computed for each possible pair combination 01 
aperture touching elements, and the entries also added to the [A] matrix using the global numbering system. 

The elemental {b} vector for everv element touching the aperture is computed, and similarly added to the 

All that remains is to impose the boundary condition of equation (2) at any perfectly conducting surfaces. 
This is done by setting the edges that lie along these surfaces (eg. along the cavity walls) to zero. Practically, 
this means removing every row and column in the system of equations (17) that corresponds to an edge lying 
on a perfect conductor. Solving the resulting reduced system of equations yields the electric fields inside the 

CaVTo find the scattered field in the half space above the cavity the following equation can be integrated over 

the aperture of the cavity [8, p.30]: 

H"(r) = ^/7 [ixE(r')].3,(r,rV (18) 

The RCS can then be found from: 

4    Computer implementation 
Although the formulation is readily available, a computer code implementing this was not. The above for- 
mulation was programmed (by the second author) using FORTRAN77. Initial development was done on a 
486DX2 66MHz PC but later memory and speed requirements necessitated a move to a variety of work- 
stations, including a SPARCServer 1000, HP720 and an IBM RS6000. (Problems were encountered porting 
the code especially with the SPARCServer - the problems were eventually traced to subtle compiler dirter- 
ences). A number of problems emerged during the implementation. Details may be found in [8, Chapter 4J, 
the following discussion highlights the most significant aspects. 

A problem was encountered when trying to evaluate equation (14) for the case when the two integration 
surfaces coincide with one another, which required more attention than the literature had indicated. In this 
situation, the Green's function becomes singular. Several possible approaches exist: firstly, the singularity 
can simply be ignored by choosing two sets of non-coincidental integration points for the two surface integrate; 
another possibility, suggested in [2, pp.311-320], is to subtract the singularity, and integrate it analytically. 
The result is then added again after the remaining nonsingular part has been integrated numerically. A third 
approach is to convert the coordinate system to polar coordinates, in which case the singularity vanishes 
and standard numerical integration techniques can be employed. After experimenting with all three, the last 
approach was adopted as it seemed to give the fastest convergence to acceptable accuracy 

A Romberg driver routine using trapezoidal integration was used throughout to speed up the numerical 
integration. Substantial symmetry and repetition also exists which was exploited. Even so, setting up the 
Ml matrix requires a non-trivial amount of time, although a full investigation into the sensitivity of the final 
results on this integration accuracy has not been performed and the integration residual could possibly be 

relaxed. 
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The [A] matrix generated by the above discretisation is very sparse — less then ten percent populated. 
Because the section of the matrix corresponding to edges lying in the plane of the aperture is full, the matrix 
is unfortunately not particularly narrow band. The most efficient storage method is therefore to store only 
the non-zero entries and their indices, which was the approach adopted. Searching the index matrix when the 
structure became large proved surprisingly time-consuming, and a scheme using "bins" to store the non-zero 
entry index information was implemented [8]. A method of conserving both execution time and memory is to 
impose the boundary condition of equation (2) before the [A] matrix and {6} vector are set up. This means 
that any rows and columns that are eventually zeroed do not have their entries computed. 

An attractive feature of the above formulation is that the incident wave only influences the {b} vector. 
Once the [A] matrix has been assembled for a particular structure at a particular frequency, it can be re-used 
every time a new incident wave is specified. Setting up a {6} vector for a new incident wave typically takes 
only a few seconds. 

The code presently has the capability to use Gaussian elimination, conjugate gradient or bi-conjugate 
gradient iteration to solve the resulting system of linear equations. The first is most appropriate for small 
problems with multiple right hand sides (such as a monostatic RCS calculation). The iterative schemes become 
very attractive for large problems, and we have found the bi-conjugate gradient method to converge at least 
four times faster than the conjugate gradient method [8, Chapter 4], This is probably due to the particular 
conjugate gradient algorithm implemented — for a general complex-valued matrix — which by using both the 
matrix and its Hermitian transpose, effectively squares the condition number of the matrix. The well-known 
drawback of the iterative solvers is that the problem must be re-solved for each new right hand side. 

5    Results 
The input impedance, radiation patterns and radar cross section (RCS) of a cavity-backed microstrip struc- 
ture can be found once the electric field in the cavity has been solved using the hybrid FEM/MoM. These 
parameters have been computed using our code for a number of different configurations, and compared with 
both published and measured results. Details are available in [8, Chapter 5]; two representative results are 
shown here. 

To demonstrate the ability of our code to handle lossy materials, a cavity filled with two separate layers 
was analyzed. The top layer consists of dielectric material with €r = 2 — 2j, while the bottom layer is free 
space, as illustrated in Figure 1. Results for this structure are given in Figure 2 and compared to the results 
of other workers. 

In order to confirm the ability of the code to handle more complex structures, and also to provide data that 
can be experimentally verified, a patch antenna was designed, built, and measured in our anechoic chamber. 
The structure is illustrated in Figure 3 and results are given in Table 1. There is a shift in resonant frequency 
which is not unusual with numerical models of resonant structures; the results shown correspond to a mesh size 
(in the horizontal plane) of about 17 elements per wavelength in the dielectric and we have not yet performed 
further convergence checks, which could reduce this discrepancy. The radiation patterns in the principal 
planes have also been measured and computed, and are available in [8. §5.4]. Satisfactory agreement was 
found, except close to grazing incidence, which might be expected since the formulation assumes an infinite 
ground plane, whereas the measured structure had a substantial but finite ground. 

One of the major strengths of the FEM is that the electric and magnetic fields within the cavity are readily 
available. The real (in phase with the driving current) cavity fields for the patch in the stepped cavity with an 
air superstrate are shown in Figure 4, demonstrating the expected modal distribution. Note that because the 
substrate and superstrate are actually very thin, the graph has been scaled by a factor often in the vertical 
direction. 

At the symposium, radiation and scattering results will be presented for other microstrip structures, 
including some novel ones incorporating lossy superstrates that illustrate the power of the FEM as a modelling 
tool for this class of problems. 

Run times are obviously highly computer dependent. The problem shown in Figure 1, using an 8 x 6 x 14 
discretization, running on the IBM RS6000 workstation with the highest possible level of optimisation, required 
around 51 minutes to set up the [A] matrix, around 30 seconds per RCS look-angle, and about 1.9 MBytes of 
RAM (using double precision throughout). (We have benchmarked the RS6000 at around 14.7 MFLOP/s on 
a 300 x 300 LU decomposition using LINPACK routine dgef a with maximum optimisation). The problem in 
Figure 3, with a 12 x 12 x 6 mesh, required about 2 hours and 30 minutes to set up the matrix, 16 MBytes of 
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Air superstrate 

Computed 
Measured 

Impedance (ohms) 
49.29+ 9.86i 
50.24 + 8.73t 

Resonant Frequency (GHz) 
2.911 
3.005 

Taconic superstrate  cr = 2.2 
Impedance (ohms) Resonant Frequency (Orizj 

Computed 
Measured 

46.74 + 9.01t 
46.39 + 8.64i 

2.845 
2.955 

Table 1- Comparison of our code with measured impedance data for the stepped cavity of Figure 3. The feed 
point (a coaxial probe) is offset from the centre by 5.37 mm and 5.00 mm in the «and y directions, and the 
patch was recessed into the cavity to allow various superstates to be fitted above it. 

RAM and around 20 minutes to compute the impedance. Some guidelines on the scaling with problem size 
of both run time and memory requirements may be found in [8, Chapter 4]. 

6    Conclusion 
A combined FEM/MoM formulation suitable for analyzing cavity-backed patch antennas has been reviewed. 
We have implemented the formulation and confirmed the accuracy and power of the method. Several points 
of interest encountered in the computer implementation have been discussed. RCS results for a partially filed 
cavity have been presented, and impedance results for a stepped cavity with both substrate and Superstaates 
presented and compared to measured data for a cavity-backed patch designed specifically to the validate the 
code. Results for the fields inside the cavity have also been shown. Some guidelines on execution times and 

memory requirements have been given. 
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Figure 1: Cavity with lossy layer; er = 2 - 1j 

Figure 2: Comparison of our code with computed RCS results [9, Fig 7(b), p.29] for the structure in Figure 1. 
Azimuthal scan with 6 = 40°. 
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Abstract 

This paper presents a formulation for modeling waveguiding structures uniform in wave propagation 
direction with arbitrary shape in the transverse plane containing materials characterized by arbitrary 
permittivity and permeability tensors. The formulation leads to a quadratic eigenvalue problem of 
dimension N. To reduce appearance of spurious modes and consequently to avoid excessive computational 
time constraint equation is introduced. In general case it is a generalized eigenvalue equation of the first 
order. The proposed method has been validated by analyzing different waveguiding structures. Computed 
solutions show good agreements with previously published results. 

1 Introduction 

Recent technological advances enable the integration of different materials into composite microwave and 
millimeter wave integrated circuits which involve ferrite materials as substrates and superstrates. Moreover, 
dielectric waveguides which employ anisotropic materials play an important role as fundamental components 
of optoelectronic and microwave devices. Consequently, numerous efforts have been devoted to the analysis 
of different transmission lines involving materials characterized by [e] and/or [p] tensors [l]-[5]. Most of such 
cases involve complex transversal shapes. Because of this, they do not have analytical solutions and require 
development of computational methods for modeling structures with nonreciprocal effects. 

The Tangential Vector Finite Element Method (TVFEM) [8] is now a well-established numerical technique 
for the analysis of great variety of electromagnetic problems. In this paper this approach is modified by 
adding a constraint equation that allows to increase convergence of the iterative process of solving generalized 
eigenvalue problem that is a result of formulation. To demonstrate validity of this method, numerical results 
for different structures are presented and compared with published data. 

2 Formulation 

We consider a three dimensional anisotropic waveguide uniform in the z direction with an arbitrary cross 
section ft in the xy plane and assume that the boundary of the ft consists of either perfect electric conductor 
(PEC) or perfect magnetic conductor (PMC). The time harmonic form, with e'wt assumed, of the Maxwell's 
equations reads: 

Vxl = -juiMs^H 

VxS = jueo{e]E 

V-\)i]H = 0 

V-[e]f = 0                                                                                  (1) 
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where [t] and [/i] are the relative permittivity and permeability respectively: 

M = 
txx     txy     ^xz 

€Zx     tz- 
M = 

Pxx t*xy ßxz 

Pyx I'w Pv* 
l*zx     Pzy    Pzz 

(2) 

Note that in the current formulation, we assume both [e] and \ji\ being complex, nonsymmetric tensors, lb 
solve Maxwell's equations, we convert the first-order differential equations involving two field quantities into 
second order differential equations involving scalar and vector potentials defined as 

B   =   Vx A 
E   =   -juÄ—cVip (3) 

However the vector potential Ä defined by (3) is not unique unless a gauge condition is imposed. Instead of 
using the conventional Coulomb or Lorenz gauge we choose Az = 0. This condition will greatly simplify the 
computations. By using equations (l)-(3) and the gauge condition, Maxwell's equations become 

V x MV y.ÄT- k$[e]ÄT +jko[e]Vtp = 0 

-jfcoV • [e]ÄT - V • [e]Vtp = 0 

(4) 

(5) 

where fc„ = w%Mo is the free-space wavenumber and [v] = [M]"
1
 denotes the inverse matrix of H . Taking 

into account that V = Vr - 72, where V, = xd/dx + yd/dy, equations (4)-(5) can be rewritten as 

VT X V»Vr X Ar ~ 7Vr X [v]mZ xlr-7ZX [l/]„Vr X ÄT + ~fz X \v\TZ X &T - 
-k%[e]rÄT + j'*b[e]TVT¥> - jkoll^nf = 0 

Vr X [V]TVr X AT + Vr X [>/]„Vr X ÄT + VT X [u]mVr xÄr- 7Vr X [V]TZ X k\ - 
-k\\(\mÄr + jko[e]m^r<p - }k>7ezztp = 0 

-i*0VT • [t]TA\ + jko-rleUÄr - Vr ■ [c]TVr¥> + r/[e]mVT<p + 7Vr ■ WnV - 72^zV = 0 

where 

(6) 

(7) 

(8) 

(9) 

Equations (6) and (7) represent transversal r and longitudinal z components of the equation (4). Since 
equation (5) can be derived from (4) by taking divergence of (4) and than dividing it by -jfco, only two of 
equations (6) and (8) are independent. 

As it was stated earlier we consider only PEC and PMC boundary conditions. In A, <p formulation this 
conditions could be written as following: 
on PEC s 

[e]       U*x   e*„l    [e]„=[H    [«]„=[«»   Uy] 
I tyx    eyy J L e„j j 

;]    M»=[£]    Mm=["'»   v*v] _ "IX        VXy 

on PMC s 

n x AT = 0 

n x ([i/]V x Ar) = 0 
{[e](jk0ÄT + VV)}-ii = 0 

(10) 

(11) 

where ft is a unit vector in the same plane of ft, normal to the boundary and directed outwards. 
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3    Galerkin's Procedure 
Equations (6),(8) and boundary conditions (10),(11) describe a well defined boundary value problem (BVP) 
and are ready for the application of the finite element method. Galerkin's weighted residual approach [7] has 
been used to construct our finite element formulation and leads to non-symmetric matrices only if either [e] 
or \ji] is nonsymmetric. Application of the Galerkin's method for the current (BVP) results in the following 
bilinear form 

B{v,a)    =     / {(Vr x »r) ■ i/«(VT x aT) - ^ü,[e]rft, + Vri;, ■ [e]rVro: 
Ja 

+     jk>Vr ■ MrVra2 + j'fcoVrfs ■ [t]TST}dü 

+     7 /  {(z X tv) • [l/]„(VT X Or) - (VT X Vr) ■ [v]m{z X ST) 
Ja 

-   jkovT ■ [e]r»aj + jkovz[e]m3-r + vz[e]mVTa2 - VTvz ■ [e]„az}dQ 

~2 / {Vr ■ [V]T3T + tzzvzax}dU (12) 
Jn 

7 

where v, S are the testing and trial fields, respectively. To form the bilinear form, we have employed the 
Green's theorems and set both the testing and trial spaces be the same. Moreover, to facilitate our discussion, 
we have employed a vector notation for the potentials as 

Ä;} M 

In the Galerkin's process, we need to find a complex number 7 and a vector function 5 6 AA, such that 
B{v, a) = 0 for every v in the finite dimensional space Aft, where Ah is our trial function space for v and a. 
In our approach we have chosen the "H}{curl) TVFEM basis functions [8] (shown in Fig.l). 

Wo=SiV^2 W2=£2v£0 w4=50v5i 

5=52vSi W3=^Y32 %=%\Vt,o 
W6=4^2vSo- S0VS2)     W7=4^0v^- ^v5o> 

% = %0{2^-X) V3=4^2 

Vi=Si<2l;r l)        % = *U2 

^        - V2 = ^2(242-l) ¥5 = 4^^ 

Figure 1: Basis functions for the Hl(curl) TVFEM 

In this case each trial function 5 € AÄ can now be written as [5] 

7 5 

aT = "^anWi a. = ]T a.-;V; (14) 
•=o i=0 

where W{ and i>i are basis functions for vector and scalar potentials, respectively, and £; is the Lagrangian 
interpolation polynomial, or simplex coordinates at node : [7]. 
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4    Generalized Eigenmatrix Equation 
Finally, a generalized eigenmatrix equation can be obtained by setting B(v,S) = 0 for every v 

result is 

6 A*. The 

£ U [*1.     [i?]e  \+1[[G]e     [K)c  J 
+T   [     0       [L],  J7  [ &  J 

(15) 

where £ means the summation over the contributions from each element and [ar,&]T are the corresponding 

coefficient vector for the finite element solution of a. The element matrices in equation (15) are given by 

(M.)«    = f {(V x Wp) ■ i/„(V x W-,) - kZWp{t]rW,}<Kl 
Ja. 

([B]e)p<     = f {(z x Wp) • H„(V x #,) - (V x Wp) • M„(5 x Wq)}dQ 
Ja. 

([C].)„     = f {-wp-MrWq}cm 
Ja, 

([D]e)p<     = jko f {Wp ■ [e]ri>q}dü 
Ja. 

([ß]e)p,     = -jk„ f {Wp ■ [i]n4>,}ttl 
Ja, 

an.)« = jko f {V^p • [t\TWq)dn 
Ja, 

([G]e)P,     = jko f {%bUWq}<Kl 
Ja, 

([fl].)OT     = f {VrV>P • HrV^jdn 
Jn, 

(I4)p,  = f {V>P[«]mVrV, - VTV>P • H„Vjd« 

(M«)K    = 
(16) 

Equation (15) could be rewritten in more compact form: 

[>l]ä + 7[ß]ä + 72[C]ä = 0 (17) 

where ö = [aTaj]r anc* 

"-£[[4 aiw-siftBti^i^A] (18) 

5    Constraint Equations 
Solving matrix equation (17) results in the set of eigenpairs < TJ.SJ >. But in addition to the set of physical 
solutions, for which 7 * 0, we also get a set of solutions corresponding to 7 = 0. These nonphysical solutions 
form a vector function space A, where 

^{[S]"-!;'*} (19) 
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One can verify that any vector v € A will be a possible solution of equations (6)-(8) for 7 = 0 and 
thus it is a valid nontrivial solution of the matrix equation (17). Physically these solutions correspond to 
the electric field E = 0. From (19) it can be seen that the number of these nonphysical solutions will be 
equal to the number of free nodes in our discretization. The occurrence of these additional solutions in the 
iterative process will slow down the convergence of the desired eigenpairs in the Lanczos algorithm. Thus the 
elimination of these nonphysical solutions becomes an important task to solve. Based on equations (12),(19) 
one can deduce that for all physical solutions 5 with 7 ^ 0 and for any v € A the following orthogonality 
relation holds 

L { köVr' ^ x ^"VT X ^ + ik°Mm^T + [£]">v^v} <m - 
-7 / \ r-Vr ■ (z x Mrz x Ar) + ezz<p \ dil = 0 

After employing Galerkin's procedure, equation (20) can transforms to the following form 

/ I -r-VTus • (I x [v]„VT x aT) + jh)Vz[t]mST + vz[e]mVTaz I dfi - 

-7 /  \ --r-VrUj • (z x [i/]Tz x ST) + e.zvzaz I df) = 0 

The corresponding matrix equation is 

E([[4     [B]e]+l[[C]e     PI.   ])[£]=<> 

(20) 

(21) 

(22) 

where 

Pl«)pi   =   J   {-^r<P,-{zx[v]nVTxW,)+jko<pp[£]mWq}dSl 

([B]e)Pq   =    f {<Pp[e]mVr<p,}dn 
Ja, 

([C]e)p<,     =      f   {jT^rVp ■ (Z X [v]Tz X Wq)}dü 
Ja,  *o 

(P]e)M   =    / {-e»Vp^,}dfl 
Ja, 

(23) 

In general case condition (22) must be applied during iterative process of solving generalized eigenvalue 
problem of the second order (18). The problem reduces tremendously when permeability and permittivity 
tensors of materials in waveguide have 2-by-2-by-l form 

(24) 

In this case matrices [B] in equation (18) and [Ä]e, [B]e in (22) are equal zero. The resulting equation can 
be written as follows 

XX €*y 0 l*xx \lxy 0 
yx eyy 0 M = Myx Pyy 0 
0 0 ess 0 0 ßz 

with corresponding constraint condition 

[A]ä + 72[C]ä = 0 

-[C]e  \ö]eaT 

(25) 

(26) 
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The eigenvalue problem (25) can be solved easily as described in [5]. The equation (26) can be used as a 
set of additional constraints to restrict the solution space to physical modes. In the first step of the Lanczos 
algorithm the initial vector is constructed in such a way that it satisfies equation (26). Theoretically, this 
choice is sufficient to ensure that our solution becomes orthogonal to the subspace of nonphysical solutions. 
But due to the rounding error in our solution technique, we need to impose condition (26) on each iteration 
step of the Lanczos algorithm. 

6    Numerical Results 
In this section the proposed method is validated with some examples. The comparison of results obtained 
numerically with previously published data is also provided where possible. 

3.0 

1.0 

0.0 

O © Current method (+) 
Q E3 Current method (-) 
ö $ Backward, ref.[l] 

Forward. ref.[l] 

Mo.£o 

< 

£ 
■ 

W-e, 

X 

8.0 10.0 

Frequency, GHz 

14.0 

Figure 2- Normalized propagation constant of the TE0i mode of a rectangular waveguide loaded with a 
ferrite slab. A = 22.86mm, A/W = 3, er = 9, 4TTM, = 2000G, and Ha = 200Oe 

The first example is a rectangular waveguide partially filled with ferrite material with external magnetic 
field in the -x direction (see Fig.2). In this case permeability tensor has the following form: 

W 
1 0       0 ] 
0 A»     Jk 

0 -jk    p. . 

(27) 

where a and k depend on the operating frequency a>, the applied dc magnetic field Ho, and the magnetization 
of the ferrite M,. Namely, p = 1 + ^m/W - w2), k = -<W(V - <"2), <"m = (4*M.S)M,, wo = gH,, 
where g is the electron gyromagnetic ratio. _ 

The results for mode Tfibi for structure with dimensions A = 22.86mm, A/W - S, and er - a, 
4irAf = 2000G and Ha = 200Oe have been obtained numerically and compared with results from [1J tor 
forward and backward propagation (See Fig.2). As evidenced from the figure, good agreements are observed. 

The example field distribution for above structure is shown in Fig. 3. It is evident from the picture 
that for forward direction the region with highest magnitude of electric and magnetic field shifts toward 
the bottom of the structure. On the contrary, for backward direction it shifts up, and higher energy is 
concentrated near the top of the ferrite slab. This behavior will be vice verse for the case with external 
magnetic field directed in +x direction. 
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Figure 3: Distribution of the normalized magnitude of the electric (a) and magnetic (b) fields in rectangu- 
lar waveguide for forward and backward directions versus the distance along the y-axis for the operating 
frequency / = 8GHz 

Figure 4: Normalized propagation constant versus slot width for the finline with single-layered ferrite, 
A = 3mm, h = lmm, d = 1mm, ( = 3mm, t = 70pm, f = 20GHz, ei = 12.5, 4irMs = 5000G, and 
Ho = bOOOe 

Figure 4 displays normalized propagation constant versus slot width for the structure with dimensions 
A = 3mm, h = lmm, d = lmm, I = Zmm, t = 70pm. Operating frequency is 20GHz, magnetization 
AitM, = 5000G, magnetic field Ha = 500Oe, ferrite material has relative permittivity «i = 12.5 

In the table bellow comparison of the number of iterations for discussed above structures is made. From 
the table it is obvious that with employing constraint equation the iterative process converges faster than 
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without it. 

Structure Number of iterations Number of unknowns 
with constr. without constr. 

rectangular waveguide 18 15 2217 

finline 13 9 3741 

Although for relatively simple structure that are used as an example total gain is only several iteratio^iFor 
other more complicated structures with more unknowns savage in computational time could be significant. 

7    Conclusion 
In this paper V}{curl) TVFEM is modified by imposing additional constraint equations This allows to 
avoid appearance of nonphysical solutions and consequently increase convergence of method. This approach 
can be used for modeling waveguiding structures uniform in wave propagation direction with arbitrary shape 
in transverse plane containing materials characterized by arbitrary permittivity and permeability tensors. 
To show the validity of the present method, computations have been carried out for some examples. 
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Extension of Higher-Order 3-D Vector Finite Elements 
to Curved Cells and Open-Region Problems 

J. Scott Savage and Andrew F. Peterson 
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I. INTRODUCTION 

In a previous paper, the finite element implementation of higher-order vector basis functions on 
regular tetrahedra was presented [1]. Two sets of vector functions were introduced. The first set 
consisted of low-order functions with constant tangential, linear normal (CT/LN) components on the 
tetrahedral cell boundaries. The second set included higher-order functions, with linear tangential, 
quadratic normal (LT/QN) components on the cell boundaries. An implementation of both sets 
indicates that higher order basis functions allow for more accurate solutions of three-dimensional 
problems, while retaining the benefit of allowing no spurious modes. Thus, accurate results are 
possible with relatively coarse finite element meshes. However, coarse meshes can present geometry 
modeling errors which eliminate the advantages of using higher-order elements. 

This paper extends the use of these vector basis functions to curved tetrahedra to allow accurate 
modeling of more generic geometries. The details of implementing vector functions on curved cells 
will be presented, including a discussion of numerical integration on triangles and tetrahedra. Results 
for cavity resonators with curved boundaries demonstrate that the advantages of using higher-order 
basis functions on geometries with curved boundaries can be retained. 

Also, the implementation of a local radiation boundary condition (RBC) with higher-order vector 
basis functions will be discussed. Error trends will be presented for both a first and a second order 
RBC. An RBC will extend the application of these finite elements to open region problems including 
scattering analysis. 

II. HIGHER-ORDER VECTOR BASIS FUNCTIONS 

The basis functions used in this paper were first proposed by Nedelec [2]. The basis functions 
impose only tangential field continuity across cell boundaries, and therefore do not allow spurious 
modes. They are also mixed order elements in that they represent normal field components more 
accurately than tangential components. The lowest order vector basis functions have a constant 
tangential component and a linear normal component on tetrahedra boundaries (CT/LN). The higher- 
order basis functions in this paper have a linear tangential component and a quadratic normal 
component on tetrahedra boundaries (LT/QN). These basis functions are summarized in Table 1, 
where they are written in terms of simplex coordinates. 
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Table 1 
3-D Vector Basis Functions on Tetrahedra 

(CT/LN) (LT/QN) 
6 Functions per Cell 20 Functions per Cell 

6 Edse Based 12 Edse Based 

for all i< j, for all i± j, 

L^Lj - L^Lt L,VLj 

8 Face Based 

for all i< j<k, 

ItLjVLt-IiL^Lj 

L^L.-L^VL, 

Element matrices for the basis functions of Table 1 were derived analytically and presented in [1]. 
The basis functions were tested by computing the wavenumbers of a rectangular cavity resonator of 
dimension 1x05x0.75 meters. Six unstructured tetrahedral meshes of varying density were used to 
determine the convergence rates of the two basis function sets. An average error for each basis set on 
each mesh was computed by averaging the error in the lowest eight wavenumbers computed. Fig. 1 
shows the error convergence of both basis sets as a function of the average mesh edge length. An 
exponential curve fit through the data indicates that the CT/LN basis functions offer 0(h2) 
convergence, while LT/QN basis functions offer OQi") convergence, where h is the average edge 
length. Fig. 2 shows the average error of both basis functions as a function of the matrix size. This 
figure demonstrates that higher-order basis functions are more efficient than low-order basis 
functions. 

The greater efficiency of higher-order basis functions allows more accurate solutions to a given 
problem using less-dense meshes. However, when using straight, or linear, tetrahedra, coarse meshes 
can lead to geometry modeling errors which may reduce the advantages of using higher-order 
elements. To demonstrate this problem, a cylindrical cavity was discretized using linear tetrahedra. 
The meshes were scaled so that the total mesh volume matched the volume of the cylinder. The 
cylinder had unit radius and height. The analytical fundamental wavenumber is 2.40483. CT/LN basis 
functions were used on a dense 589 cell mesh with 533 unknowns. The first CT/LN wavenumber is 
2.37160, an error of 1.38%. LT/QN basis functions were used on a coarse 175 cell mesh with 896 
unknowns. The first LT/QN wavenumber is 2.42523, an error of 0.85%. Although the LT/QN 
analysis did give a more accurate prediction, the solution improvement is unsatisfactory considering 
the number of unknowns. The loss of efficiency in the solutions is a result of geometry modeling 
errors. Therefore, the finite element procedure of this paper was extended to curved or quadratic 
tetrahedra. 
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3-D Error Comparison 
Average of First 8 Modes 

Average Edge Length 

Fig. 1. An error comparison between CT/LN and LT/QN basis functions. The exponential behavior of 

the CT/LN curve is 0(h2), while the convergence rate of the LT/QN curve is Olh4). 

3-D Error Comparison 
Average of First 8 Modes 

*^^ 

•     * 

  

•    CT/LN 
■    LT/QN 

,, 

Unknowns 

Fig. 2. An error comparison between CT/LN and LT/QN basis functions.   This figure indicates that 
LT/QN basis functions provide more efficient solutions for a rectangular cavity. 
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III. EXTENSION TO CURVED CELLS 

(i) 

The extension of vector basis functions on tetrahedra to curved cells involves mapping a quadratic 
(curved) tetrahedra to a linear (straight) tetrahedra [3]. A quadratic tetrahedra is defined by 10 nodes, 
one on each of the 4 vertices and one on each of the 6 edge midpoints. The transformation is 
facilitated by the use of the Jacobian matrix. The Jacobian is defined by 

dx    dy_   dz_ 

3Ä  3Z,   9A 
dx    dy_   Bz_ 

dx    dy_   dz_ 
JJZJ"   3L,   dZ-J 

The Jacobian is a function of position within a quadratic 

tetrahedra and the coordinates of the 10 defining nodes [3]. Vectors can be written in a local 
coordinate system which is related to the cartesian coordinate system by 

(2) 

where L, is the i-th simplex coordinate. 

X" \\ 
Vy =JT 

\ 
kJ LVJ 

The basis functions can be transformed to the local coordinate system by observing that 

for i'=l, 2, 3. For example, consider the first LT/QN basis function, 

S,=I,Vi,=[0  L,   Of (4) 
Also, the curl of any basis function can be transformed to local coordinates. Continuing the example, 

let C,. =VxB,.,so 

C,=VxB1=VL1xVL2=VL3=[0 0 if (5) 

The element matrices are then transformed as follows 
1 7=;TTTT7^ (6) 

(7) 

JJ JVxB, -VxTSjdzdydx = IJ jlT^jrC/MLA 
x y z LjZ^Ljl   1 

The integrands on the right hand side of (6) and (7) can easily be computed with knowledge of the 
simplex coordinate location and the defining 10 node locations. The integrals are over the tetrahedron 
defined by the cartesian coordinates (0,0,0), (1,0,0), (0,1,0), (0,0,1). Generally, this integrator.must be 
implemented numerically. In this paper, numerical integration was performed using Gaussian 
quadrature rules developed by Keast [4]. 

While it may seem that using numerical integration for the construction of each element matr x 
might greatly reduce the efficiency of the FEM algorithm, the overall solution time is only slightly 
increased. This is due to the fact that filling the global matrix requires much less time than solving the 
matrix equation, and using quadratic tetrahedra does not add any additional unknowns to the problem. 
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In fact, using numerical integration actually simplifies the implementation of the FEM algorithm. 
Therefore, quadratic tetrahedra retain the benefits of higher-order elements implemented on curved 
geometries. 

Returning to the example at the end of the last section, the two cylindrical cavity meshes were 
altered by converting the tetrahedra on the curved boundary to quadratic tetrahedra. The resulting 
meshes more closely represent the actual cylindrical boundary. Table 2 summarizes the results of each 
of the cases. The quadratic mesh has little effect on the CT/LN results. This is because a relatively 
dense mesh was used, and the difference between the linear and quadratic meshes is quite small. The 
quadratic mesh greatly improves the LT/QN results on a coarse mesh, however. The error in the linear 
mesh is 0.85% while the error in the quadratic mesh is 0.018%. Clearly, the quadratic tetrahedra much 
more closely represent the cylindrical waveguide than the linear tetrahedra in a coarse mesh. 

Table 2 
Cylindrical Cavity, £=2.40483           1 

CT/LN LT/QN 
Linear 2.37160 2.42523 

Quadratic 2.36441 2.40527 

IV. EXTENSION TO OPEN REGIONS 

The weak form of the vector Helmholtz equation over a spherical region, T, is 

J]j—VxT-VxE"" -k2£rT-EM = -JjT-rxVxE"" 
r  f1' sr 

(8) 

where dT is the spherical boundary. The surface integral of (8) requires careful consideration in a 
finite element implementation. In scattering analysis, if the scatterer is completely enclosed by the 
spherical boundary, dT, then the surface integral can be expressed as the sum 

JjT-rxVxE""=J|TrxVxE'"c+JjT fxVxE1 (9) 
sr sr sr 

where Emc is the known incident field and E1 is the scattered field. A local RBC is an approximation 
of the scattered field term of (9). In this paper, the standard first order and an alternative second order 
RBC were chosen [5]. The alternative second order RBC was chosen since it preserves the symmetry 
of the global finite element matrix. The first order RBC is 

sr sr 
and the symmetric second order RBC is 

j\T-rxVxV = jkjJT-E'm 
sr sr 

+/?(r)JJ(r-VxT)(r-VxEs) 
sr 

-^)JJ(V-^J(V-E1) 

(10) 

(11) 
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where 

J8(r) = —4 (12) 

2jk+- 
r 

The first two terms on the right hand side of (11) are identical to the element matrices in a 2-D FEM 
analysis and are easily computed. The third term of (11) involves the surface divergence of the basis 
functions on the spherical boundary. Unfortunately, the surface divergence of Nedelec's curl- 
conforming basis functions is not finite along tetrahedra edges on the boundary. Therefore, the 
singular behavior of the surface divergence of each basis function is approximated by "smearing the 
singularity over a finite domain. This is a 3-D analog to the 2-D procedure of [6], 

To determine the accuracy of the RBC, a single test function on a spherical mesh boundary was 
chosen and the integrals of (10) and (11) were computed using samples of outward propagating 
spherical harmonics. In one example, the radius of the boundary was chosen as 5 wavelengths, the 
first harmonic was used to represent the scattered field, and sampled CT/LN basis functions were used 
to represent the scattered field. The error in (10) and (11) was computed as a function of the size of 
the cells on which the test function lay. Figs. 3 and 4 show the accuracy of the RBC's as a function of 
the length of the edge on which the test function lies. Both error trends converge to theoretical results 

predicted in [5]. 

V. CONCLUSION 

This paper has extended the use of higher-order, 3-D, curl-conforming vector basis functions to 
quadratic tetrahedral cells and to open region problems. These extensions to basic bas.s function 
theory are necessary for efficient finite element modeling of complex three-dimensional 
electromagnetic problems. 
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Fig. 3. An error comparison between the first and second order vector RBC.   Transverse magnetic 
components of the first spherical harmonic were used to represent the scattered field. 
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Fig. 4. An error comparison between the first and second order vector RBC.   Transverse electric 
components of the first spherical harmonic were used to represent the scattered field. 
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Abstract— In this paper, a hybrid finite element method (FEM) and boundary element 
method (BEM) formulation is presented for solution of electromagnetic (EM) scattering 
from 3-dimensional cavity of arbitrary shape and filled with arbitrary inhomogeneous, 
anisotropy, and lossy materials. This formulation is useful to study scattering charac- 
teristics of anisotropic materials for possible design of better radar absorbing materials 
and structures, which are not shared by isotropic materials, in radar cross section re- 
duction (RCSR) and other applications. Numerical examples are given to validate the 
formulation and to compare the scattering effects. 

I. INTRODUCTION 

Modelling electromagnetic scattering from cavity-backed aperture in a ground plane has long 
been an interesting topic of computational electromagnetics. It would also be interesting to 
study scattering from anisotropic material which might be utilized to achieve extraordinary 
radiation and scattering characteristics not shared by isotropic materials in radar cross 
section reduction (RCSR) and other applications. The plane-wave scattering problems of 
microstrip patch antenna in an isotropic thin infinite substrate was treated in [1]. The 
scattering problem for a rectangular microstrip patch on a uniaxial thin infinite substrate 
was later reported in [2]. The scattering and resonance due to a uniaxial anisotropy in thick 

substrates were presented in [3]. 

In the past, the radiation and scattering problems with anisotropic materials have mainly 
been treated by the method of moment (MoM). Using MoM requires the knowledge of the 
Green's function of a cavity. Its application is therefore restricted to some regular shapes 
such as rectangular or cylindrical cavities. MoM is also not suitable to inhomogeneous prob- 
lems Moreover, applying MoM results in dense matrix equations. To solve dense matrix 
equation of order N requires CPU time proportion to 0(N3) and memory proportional to 
0(N2), making MoM not suitable to large complex problems. 

In this paper, a hybrid finite element method (FEM) and boundary element method (BEM) 
formulation is derived to solve electromagnetic scattering from 3-dimensional cavity of ar- 
bitrary shape and filled in with arbitrary inhomogeneous, anisotropy, and lossy materials. 

Hybrid FEM/BEM approach has the advantages of both FEM and BEM [4]. The proposed 
approach employs the FEM for the interior fields within the cavity, whereas the BEM for 
the exterior fields outside the cavity. A complete system of equations can be obtained by 
coupling of the interior and exterior fields on the aperture of cavity according to the fields 
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continuity conditions. The resulting equations are then solved for the solution of interior 
and surface fields. 

We have calibrated the accuracy of the computational scheme by comparing the results 
with examples by other methods. We have also applied this approach to simple rectangular 
cavities with lossy and anisotropic materials to show the effects of anisotropic materials on 
backs cattering. 

II. FORMULATION 

The geometry of a cavity recessed in a ground plane is shown in Fig.l. The cavity is filled 
with material of inhomogeneous,lossy and anisotropic dielectric material. The dielectric ma- 
terial is assumed with (complex) scalar permeability ß and a (complex) tensor permittivity 

li = li   -]ß    =ßoßr, 

t = f ' - ft " = <Tn?r = CO 

(1) 

(2) 

Fig. 1. Geometry of a cavity in a ground plane. 

Assuming a harmonic time dependence of the form exp(jwt), from Maxwell's equations, the 
electric field vector wave equation (3) in source-free anisotropic medium is 

V X (ß~l • V x E) - kpT ■ E = 0. (3) 

Applying the generalized variational principle 

« = 2»,' 1(C4,,K) + ^(4>,CK)-{</>,/) (4) 

where K is any function that satisfies the same boundary condition as <f>, the functional for 
electric fields inside the cavity can be obtained: 

^(E) = \ 11 jv[V x {ß-1 V x E) - fcgf • E] • EdV - jk0Z0 j j E • n x H!nc(r),     (5) 
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where V denotes the volume occupied by the cavity, S the area of the cavity aperture n 
the unit vector normal to the aperture surface and pointing away from the cavity, H (r) 

the incident field. 

On the interface between the cavity and free space, the boundary relationship between the 

tangential electric and magnetic fields is given by 

äz x [V x E(r)]J=„+ = -2ifcZbH*«(r) - 2*fo x / Jjäz x E(r')] • ü0(r,rV5'.     (6) 

For the solution of electric field E, the variation is 

<5.F(E) = 0. (7) 

Applying 3-D finite element method to the volume integral and boundary element to the 
surface integral in (5), the cavity volume V can be discretized into a number of such finite 
voTmesalTetrahedra, and the aperture surface 5 can be discretized into such associated 
finite area as triangles. In each element, the electric field components can be expressed, m 
general, in terms of basis (shape) functions JV? and nodal values Epj as 

Ev = Y,Ne
j{x,y,z)El,j,       p = x,y,z. (8) 

Applying Rayleigh-Ritz procedure to extremize the hybrid FEM/BEM formulation, we can 

obtain the matrix equation 

Kxx + Qxx Kxy + Qxy Kxz 

KyX  + QyX  Kyy  +  Qyy  KyZ 

Kzx Kzy Kzz 

\EX] \BA 
Ey = By 
Ez [Bz\ 

(9) 

where the matrix elements are given by 

[«») -2t' 11, {N')[J Jj>r)Ta°dffidS 

(10) 

(11) 

(12) 

(13) 
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KJ = //;>( d{N*}d{Ne}T     d{Ne}d{Ne}T 

dy        dy     +    dz a~     ' 

~kiexx{N'}{Ne}T}dV, 

lA»J /7V"{ a* ^~+-fe—&-) 
~k2

0en{N'}{N*}T}dV, 

y y A«1 l a*     dx   +   ay     ay   
J 

[*, ■J?J 

p,q = x,y,z,    pj^q. 

,d{N*}d{N'}T      1 
a9     aP   

+ 2 

(14) 

(15) 

(16) 

(17) 

The nodal fields can then be solved after imposing necessary boundary conditions. Once the 
fields on the cavity surface have been found, the far zone scattering field can be computed 
from [5] 

'"  (18) 
Es = W'Ag + fij 

where 

' 2TT //. 
EZcosp + E^smt 
{-E% sin <jf + Et cos f) cos 6{ gjfco sin e<(x cos p+y sin <t>*)^xdy^      /jg\ 

and E% and ££ are the x and y components of the outgoing field on the aperture S. The 
Radar Cross Section (RCS) a can be found by: 

a = Urn 4rrr2 \H*(r)\2 

(20) 

III. NUMERICAL EXPERIMENT 

In all cases, the incident plane wave given by 

Ef = [-pi± + e'7||]e>'*K 

where k' = k0(xsinfl«costf? + ysinö'sin^ + zcos<£!), Jx denotes the amplitude of the 
vertical polarization, and 7,| is the amplitude of the horizontal polarization. 

To verify the formulation and the associated computer program, we first calibrate the 
accuracy of the method to some isotropic examples. Fig. 2 shows the RCS curves of a 
0.4Ax0.4Ax0.25A cavity filled the material of er = 2 - 0.5j and pr = 1.2 - O.lj. The curves 
show good agreement between the computational results and the MoM solutions [6], 

(21) 
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Fig. 2.   Backscattering RCS pattern for a cavity versus incident angle,   e, - 2 - 0.5j, /», - 1.2     0.1 j, 
a = 0.4A, 6 = 0.4A, c = 0.25A, ^ = 0°. 
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Fig. 3. Comparison of the computed and measured backscattering RCS of a cavity, a = 2.89 inch, 6 = 2.10 
inch, c = 0.057 inch, / = 9.2 GHz, 0-polarized, c = 4, /jr = 1. 
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Fig. 3 displays the backscattering RCS of a cavity at 9.2 GHz. The cavity is filled in with 
of material er = 4, ßT = 1. Even with relatively small mesh size, good agreement between 
the computational results and the measured data [7] is observed. 

Figs. 4 and 5 show some experiment of RCS curves with different materials, including 
isotropic and anisotropic materials. For the experiments, the cavity size remains same as 
a = 1.0A, b = 0.25A, c = 0.25A. The parameters of materials are shown in the captions 
of Figs. 4 and 5. In Fig. 4, the anisotropic material is lossy and is charactered by three 
sets of materials. The incident plane wave is ö-polarized, and the incident direction is from 
4>' = 90°. The RCS corresponding to the 3 anisotropic material are about 7 dB, 10 dB, 
and 12dB, respectively. In Fig. 5, the anisotropic material is still lossy and charactered by 
two different parameters. The incident plane wave is 0-polarized, and from the direction 
& = 0°. 

"^    -10 

- 

    isotropic material 

    anisotropic material 

e   =30 
yz ~~~~" ~————___ 

==^\__   40 

50 

 1 1                  '                     '                     i 

8 (degrees) 

Fig. 4. Comparison of backscattering RCS in a cavity filled with the isotropic material and the anisotropic 
materials, respectively. 0-polarized on the plane <t> = 90°. Isotropic case: er = 7.0 - 1.5j, ßr = 1.8 - O.lj; 
Anisotropic case: exx = eyy = ezz = 7.0 — 1.5j, tIy = eyx — ex~ = esx = 0. 

Fig. 6 shows two dispersion curves of backscattering RCS from 2.5 to 6 GHz in a cavity 
filled with the isotropic material and the anisotropic material, respectively. The cavity is of 
size 7.32 cmx5.20 cmx0.158 cm. The incident plane wave is 6-polarized and the incident 
angle is (6",<^)=(45°,20°). Comparing with the isotropic case, 10 to 25 dB reduction can 
be obtained for the anisotropic case. 

Figs. 4 to 6 show that greater reduction of RCS are possible using proper anisotropic 
material compared with using only isotropic materials. Using anisotropic material, there is 
more freedom in designing better radar absorbing materials and structures. 
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IV. CONCLUSIONS 

The hybrid FEM/BEM approach for 3-D scattering from a cavity of arbitrary shape and 
filled in with arbitrary inhomogeneous, anisotropic, and lossy material is formulated and 
implemented. Hybrid FEM/BEM approach has the advantages of both FEM and BEM. 

The proposed approach employs the FEM for the interior fields within the cavity, whereas 
the BEM for the exterior fields outside of the cavity. A complete system of equations can 
be obtained by coupling of the interior and exterior fields on the surface of cavity aperture 
according to the fields continuity conditions. The resulting equations are then solved for 
the solution of interior and surface fields. 

This formulation is useful to study scattering characteristics of anisotropic materials for pos- 
sible design of radar absorbing materials and structures, which are not shared by isotropic 
materials, in radar cross section reduction (RCSR) and other applications. 
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ABSTRACT 

The Finite Difference Time Domain (FDTD) method associated with the Perfectly Matched Layer 
(PML) technique is applied to analyze a dielectric leaky-wave antenna comprising metal strips 
etched on a rectangular dielectric rod. The radiation pattern of the leaky-wave antenna can be 
predicted by using FDTD. Good agreement between FDTD and measurement results is shown. 
Other absorbing boundary conditions (ABC's) such as first order Mur and super-absorbing first 
order Mur are used for comparison. It is shown that by using PML, the absorbing boundaries can be 
placed much closer to the dielectric rod. 

INTRODUCTION 

Open dielectric leaky-wave structures have been found useful as frequency-scannable antennas 
especially for millimeter-wave frequency range [1]. One such class of dielectric waveguides is that 
with metal strips periodically residing on the top of a rectangular dielectric rod [2], as shown in Fig. 
1. Several theoretical works have discussed this type of structure. Most of them analyzed the 
structures using approximate models to simplify the three-dimensional problem to a two- 
dimensional one. Using the effective dielectric constant (EDC) method, a spectral domain approach 
[3] and a transverse equivalent network technique [4] were employed to analyze this periodic 
structure. Another method, using a space-domain approach based on a waveguide model to confine 
the dielectric rod by two side walls, was proposed [5]. 

Being versatile, FDTD can be used to characterize this kind of dielectric leaky-wave structures 
rigorously. However, the major drawback of the FDTD method is that it requires a large amount of 
computational time and storage. The absorbing boundary condition (ABC) used to truncate the 
computational domain of FDTD may provide a solution to this problem. A perfect ABC should be 
able to allow the outgoing wave passing through without causing reflections. Consequently, the 
computational domain can be small as possible by placing absorbing boundaries near to the open 
structure considered. 

A novel ABC, the so-called "Perfectly Matched Layer (PML)", which was recently proposed by 
Berenger [6,7] has been claimed to be more effective than any other type of ABC's in use. 
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Applications of PML for several different structures have been investigated recently. However, up to 
date application of PML to a 3-D dielectric waveguide structure, especially a highly directive leaky- 
wave antenna has not been discussed. 

In this paper it is demonstrated that the radiation characteristics of a dielectric leaky-wave antenna 
can be determined by FDTD. The comparison of the performance of PML ABC with those of the 
first order Mur and super-absorbing first order Mur is also discussed. The FDTD results presented in 
this paper are validated by experimental data. 

METHOD 

The conventional FDTD algorithm is applied to analyze the dielectric leaky-wave structure in Fig. 1. 
A y-polarized electric field is assumed for the dielectric waveguide. Because of cut-off frequency in 
the dielectric waveguide, a modulated Gaussian pulse is used for excitation. The dominant mode E „ 
for the dielectric waveguide is excited by imposing the proper field distribution on the transverse 
cross section of the waveguide. The space steps are chosen such that the maximum step size is less 
than 1/10 of the smallest wavelength of interest and the structural dimensions can be modeled 
accurately A convergence study was conducted by iteratively reducing the space steps by one half 
until no significant change in computed results was observed. Once the space steps are selected, the 
time step can be chosen by satisfying the Courant stability criterion. In addition, calculation of the 
radiation pattern is done by a frequency domain transformation. First, transformation of the near 
field from time domain to frequency domain is made followed by a spatial Fourier transformation to 
obtain the far field. 

The ABC used to terminate the computational domain plays an important role for FDTD simulation 
of open structures. The recent Berenger PML ABC can absorb propagation wave effectively by 
using nonphysical lossy media adjacent to the outer grid boundaries backed by perfectly conducting 
walls. Based on the splitting of the field components into two sub-components, the electric loss a 

and magnetic loss a for a PML medium are specified by satisfying the PML impedance matching 

condition: 

a _ a* 
e      n ' 

where e and \i (=|X<>) are the PML permittivity and permeability. 

Care must be taken while applying PML technique for the dielectric waveguide structures [%]. As 
shown in Fig 2 the dielectric rod must extend to the PML region to ensure the same field 
distribution. The averaging of the tangential permittivities is assumed at the dielectnc-air interfaces. 
To have the same decay for the different dielectric materials inside the PML region, the electric 
losses corresponding to the different materials are assigned by imposing 

(7i _ & 

O":       £j 
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Besides, the losses in the PML region are assumed to increase quadratically with depth and the PML 
region is 6-layer thick. 

RESULTS 

For the periodically metal-strip-loaded dielectric waveguide with the parameters shown in Fig. 1, it 
can be shown that the structure exhibits fast-wave propagation and is suitable for use as a leaky- 
wave antenna. Fig. 3 shows the computed and measured radiation pattern of the leaky-wave antenna. 
Good agreement can be observed in the mainbeam region. The computed and measured mainbeam 
angles are -18.18° and -17.85° respectively. The computed and measured 3 dB beamwidths are 3° 
and 3.4° respectively. However, a lower second mainbeam occurs in the sidelobe region for the 
measurement. This is believed to be attributable to the radiation from the waveguide launcher which 
was not modeled in the FDTD simulation. 

In addition to the application of the PML ABC, the first order Mur ABC and the super-absorbing 
first order Mur ABC are also used for comparison. In the first case, the absorbing boundaries for the 
side walls are placed 20 grid cells (= A.) away from the dielectric waveguide. The computed 
radiation patterns corresponding to the three different ABC's are shown in Fig. 4(a). Only slight 
discrepancy can be seen in the sidelobe region. Next, the absorbing boundaries are placed much 
closer to the dielectric waveguide. A distant of 5 grid cells (< 0.5/1) is used. Fig. 4(b) shows the 
resultant radiation patterns. The computed radiation patterns obtained by using first order Mur ABC 
and super-absorbing first orde/ Mur ABC show discrepancies as compared to previous case. In 
contrast, the pattern corresponding to PML preserves accurately the shape in the mainbeam region. 

CONCLUSION 

In this paper, the capability of FDTD in the characterization of a dielectric leaky-wave antenna has 
been demonstrated. Good agreement between theoretical and experimental results was shown, 
indicating validity of the FDTD algorithm in simulation of the antenna pattern of such structure. 
Because of the superior performance of PML ABC, it can be placed closely to the dielectric 
waveguide from the side walls without significantly effecting the accuracy of the calculated results. 
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Fig. 1 A metal-strip-loaded leaky-wave antenna with the following parameters: 

a = 1.5748mm, b=3 mm, L = 2.5 mm, w =0.5L, e, = 2.33, N =29, Freq. = 80 GHz. 
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Fig. 3 Computed and measured radiation patterns of the leaky-wave antenna in the x-z plane. 
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FDTD ANALYSIS IN CYLINDRICAL COORDINATES 
OF A TEM PYRAMIDAL HORN ANTENNA 

D. Menditto, P. Tognolatti - Electrical Eng. Dept., University of L' Aquila, Italy 
F. Bardati - DISP, "Tor Vergata" University of Rome, Italy 

I- Introduction 
Multi-frequency radiometry is the spectral measurement of the electromagnetic field 

spontaneously irradiated by a lossy body in the microwave frequency range. The spectrum of the 
radiation detected by a radiometer is dependent on the local temperature distribution inside the body. 
It is this dependency that allows multi-frequency radiometry to be used as a tool for thermal 
measurements. In fact, information about interior temperature is contained in radiometric data 
measured externally to the body and can be extracted through a temperature retrieval [1]. 

A major source of system errors or even impracticability of microwave radiometry for body 
temperature measurement is the antenna used to receive thermal radiation. The antenna may be of 
either non-contacting (elliptical reflector, microwave lens) or contacting type, usually a truncated 
waveguide filled with high-permittivity low-loss material to give a good impedance matching 
between the antenna and the body. Antenna losses are additional sources of thermal noise. Other 
drawbacks to contacting antennas exist, namely the disturbance due to the effect of the antenna heat 
capacity on the temperature pattern to be measured and the tissue structure deformation due to the 
pressure exercised by the antenna on the skin surface. The main problem in the design of a non- 
contacting radiometric antenna is the mismatch at the skin-air interface. A way to overcome partially 
the problem is to receive vertically-polarized thermal radiation at the pseudo-Brewster angle [2]. This 
can be accomplished by a broad-band antenna at either focus of an elliptical reflector. 

We are interested in a TEM pyramidal horn antenna as a possible device to receive thermal 
radiation. Basically, a TEM horn (Fig. 1) consists of two almost triangular plates belonging to planes 
at angle ß (flare angle). The plates are fed through a parallel-plate waveguide supporting only the 
TEM mode. Typical applications of these antennas are for short-pulse radars such as those used in 
ground-penetrating systems and for electromagnetic compatibility measurements. For radiometric 
applications, almost perfectly conducting plates are preferred. Kanda [3] investigated theoretically 
and experimentally the receiving and transmitting transient responses of the TEM horn. In his 
analysis it is assumed that the horn flare angle and the plate widths are chosen in such a way that the 
plates guides only the TEM mode by maintaining a constant characteristic impedance. The far-field is 
computed from the spherical wave that is assumed to exist at the horn open end (antenna aperture). 
For far-field evaluation, the TEM horn antenna is approximated by a V-shaped dipole operating in 
the end-fire mode and radiation is computed so as for travelling-wave antennas [4]. The optimum 
characteristic impedance variation between the horn feed point and the open end is formulated as the 
solution of a first-order Riccati equation. A near-optimum solution due to Hecken [5] has been 
adopted. In [6] the reflection of the waveform impinging on the TEM horn open end is analysed in 
terms of high-order even TM-modes. Theoretical results are compared to observations and the 
optimum taper function between the feed point and the open end is investigated so as to minimise the 
internal reflected waveform. 

In the aforementioned papers it is shown that possible ways to reduce reflections from the 
antenna open end are plate shaping and addition of resistive pads and loading. However, having in 
mind radiometric applications, resistive materials are unpractical since they provide additional noise 
to the receiver. The design of a TEM horn antenna will take advantage from a numerical method that 
is able to solve Maxwell's equations inside a volume including the antenna with appropriate boundary 
conditions on the conducting plates. Let S" be either plate. The second plate, S", is generated by 
rotating 5" of the angle ß around the z-axis, that is the straight line where the planes of the plates 
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have intersection. We consider the class of boundary-value problems that are defined by an electric- 
wall boundary-condition on S' and 5". In this paper a 3-D Finite-Difference Time-Domain (FDTD) 
method is developped in cylindrical coordinates r,cp,z to cope with the geometry of TEM horn 
aTtennaswhh flat plates In fact, being performed on planes, stair-case approximations of plate 
toSTä Xr? accurate than theyVould be in the case of a «g*taegM-g 
Yee cell). Recently, Yee's original, rectilinear, orthogona mesh has beenusedfor he FDTDanalyse 
of some broadband antennas such as resistive monopole [7], conical [8], bow-tie [9], TEM horn 

antennas [10]. ^ ^ ^ encoumered   h    the st   iaIA FDTD method 

is adapted to a cylindrical'frame will be considered^ The method will^^ef d °n a simpje s tmcture 
for which the electromagnetic field can be obtained analytically. In Section III, the methodI wil be 
apptied to a TEM horn antenna and preliminary results will be given. Because of large computer 
time we explored a new method to speed up computations. The method 1S based on multiple time 
step for temporal iteration and will be accounted for, together with some results, in Section IV. 

TT- FDTD in the cylindrical coordinate system ..  , .   . _,.„_ 
 The cuts of the elemental cell obtained with coordinate surfaces of the cylindrical system 

r <p,z are shown in Fig. 2. The location and orientation of each electromagnetic field component 
belonging to the cell are also shown. The spatial finite increments along coordinate lines are Ar, 
rAe>, and Az, respectively, and the time step is At. The approximation of the derivatives in 
Maxwell's curl equations by central differences gives the FDTD scheme in cylindrical coordinates 
reported in the Appendix. The computation domain, Q, is defined as 

ß= {r,<p,z]rmin<r<r0;-(p0<(p^(Po;0<z^z0}. 
In cylindrical coordinates a cell volume is a function of r, because the arc length rA(p. Therefore the 
usual constraint of a spatial increment not larger than 0.05A -0.U {X is the smallest wavelength 
corresponding to electromagnetic propagation in Q) will be enforced auhe upper bond of r. On the 
contrary, Courant stability condition for time step will be enforced for r - rmin. 

The cylindrical FDTD has been tested on a domain for which analytical time-harmonic 
solutions are known. If the boundaries r = rmin,r = r0,<p = +<Po are perfect conductors and the 
structure is filled with a homogeneous lossless dielectric, we obtain an ideal waveguide having 
sectoral cross-section [11]. We assume that only one mode propagates in the sectoral waveguide i.e., 
a TEpq mode for given p,q. Let Zpq be the modal impedance, real in the absence of losses. If the 
waveguide is terminated at z = 0, z = z0 by walls having Zpq as surface impedance no reflections will 
occur. Only the TEpq will propagate in the structure, provided the field source has been designed in 
such a way to excite that mode alone. If Et,Ht are TE„ transverse fields at z, 0 < z < z0, then the 
currents J,M, given by J = z xH, M=-zxE, will radiate a null field for z <z and the selected 
mode for z <z. In the test case, the time-excitation was sin(27rft)\(t), where / is frequency and 
l(t) the step function. Time-harmonic response was recovered after the transient response was 
extinguished at a set of points of ß. To evaluate the time-harmonic response field amplitude, a 
common procedure is that of evaluating the swing of the transient response, then FDTD iterations are 
stopped when swing variation, corresponding to subsequent time periods, is lower than a thresho^ 
Alternatively, the DFT of the transient response can be performed. Field values at given points are 
stored during FDTD time-evolution and are transformed after each time-penod 1// according to the 
following equation (A(r,t) is a component of EOTH): 

2   N^P~1 

A(r)=-±-   I  A(L,nAt)e-^A! 

N 11 step 

1011 



In the above equation, Naep is the number of time-steps in one period, Na = l/(fAt), A is a 
complex number the modulus of which is the magnitude of the field component for time-harmonic 
analysis at frequency /, and j = V-l. 

As a test case, the mode TEn has been considered, for which the transverse eigenvalue, ßr, is 
the first zero of 

where J'm, Y„ are the first derivatives of Bessel functions of first and second kind, respectively, and 
order m,and 

m=pjr/(2<p0), p = \  . 

As an example, results for£r at point rp e Ü are reported in Figs. 3-5. They have been obtained by 
means of cylindrical FDTD when it is used alone or together with DFT. The analytical solution is 
also shown. The relative error between the numerical and analytical solutions is small (a few %). As 
expected, it decreases when DFT is used. It is interesting the comparison between the numerical 
solution, when Er is plotted as a function ofz, and the analytical one (a unitary step at z = z). A 
non-null field for z < F as well as a ripple for z < z can be appreciated from the diagrams. They are 
due to reflections and spurious mode excitation. Indeed, the ratio Er/H9, which equals Zn over the 
waveguide cross-section for the analytical solution, depends on the point where the ratio is evaluated 
for the numerical solution. However, the relative difference is less than 3.5% in our computations (as 
large as 14% if DFT is not used). 

Ill - The TEM pyramidal horn 
The cylindrical FDTD algorithm has been used for field computations in the case of a 

TEM horn antenna. The plate geometry (Fig. 6) is trapezoidal and is cut out from an isosceles 
triangle with apex at (rvex,0,0) and angle a. ra and rb are distances from z-axis of the 
trapezoid smaller and larger basis, respectively. The field source is a voltage, V^, across the 
plate apices. In our mode; -suits in an electric field E^ related to V  by 

ßn 
Vg(t) = -ra  I E9(ra,<p,0,t)dq>     . 

-ßn 

The gap between the plates at the source points is raß (Fig. 7). We assumed 

E9(ra,<P.O,t) = -Vg(t)/(rttß) 

The computation domain ha: ■■■•■en chosen in such a way to take symmetries into account. 
Because of symmetries, the electric field is perpendicular to the plane tp = 0, therefore this 
plane can be considered an electric wall. Moreover, the electric field lies on the plane z = 0 
that can be considered a magnetic wall. In our model, therefore, the computation domain is 
the following cylinder 

QH = [r,<p,z\rmin <r<r0;0<<p< <p0;0 <z <z0} 

In conclusion, the boundary of QH, d&H, is composed by two surfaces, where total 
reflection occurs, and four surfaces through which there is radiation. We use Mur first-order 
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absorbing boundary conditions [12] on these surfaces. According to [9], the voltage has been 
assumed a Gaussian impulse 

t     i      2*2 VJt)=V0—e*e    ' 

where t  = 0.065 xa ,  ra being the time required by the electromagnetic field to propagate 

through the antenna from the apex to the aperture r = rb. 
Time-dependent results are shown in Fig. 8. A grey scale is used, where black is for 

maximum. The impulse propagates within the antenna, reaches the horn front end where a 
partial reflection takes place, and then propagates in the space surrounding the antenna. It is 
interesting to observe that the impulse propagates without appreciable reflections beyond 
dnH. 

TV- The multiple time-step method 
In cylindrical FDTD, the time step, evaluated according to Courant condition, is 

unnecessarily small for cells at r>rmin. This leads to an inefficient use of computer 
resources. A way to counteract this problem is to subdivided intoN annular subdomains 
Qt as 

ß^={r,(p,zl^_1>r>o) ,    i = l,...,N,     rN=rmin 

The Courant stability condition can be written for each subdomain as 

-T + - 
1 

I Ar2 (rtA<j>)2 Azl 

where for simplicity, we assume that u is the maximum phase velocity in ß. If the time- 
step is given according to the above equation, we expect a better use of computer resources. 
However, a problem to face is the continuity of the solution at the boundary between 
adjacent subdomains. Let us consider the interface between üe and £2M. If the following 
equation holds 

(2s + l)Atl+1 = Ate   , 

with s integer, the required field continuity can be easily satisfied. We will consider the 
case s=l,i.e. ~iAti+x = Att. 

Figs. 9 and 10 are of help to understand how field components are computed trom 
field "time history". Boxes are used for time-space samples of £ and// components, as 
they are processed by the FDTD algorithm. Circles are forE-field, squares are for//-field. 
Segments between boxes serve as symbols of difference operators between the 
corresponding field components. An empty box is for a field component to be evaluated, a 
black box is for a field component that has already been obtained by means of the FDTD 
algorithm. Only field behaviour with r and t are considered explicitly. Fig. 9 shows the 
usual scheme by which the field at r = (n + l)Ar is computed from the values at 
t = (n +1/2)Ar and t = n&t, in the case of single time-step. 
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Fig. 10 refers to the case of time steps according to the rule 3Att+l =Att. Assume 
thatr = r is the boundary between subdomains with different time-steps. For r<7 the 
time step is Ar, while for r > 7 the time step is 3Af. Assume now that//! is to be computed 
at r = (n + l/2)Ar (Fig. 10 (a)). From the scheme it results that£3 must be known to perform 
this computation. However £3 (grey box) cannot be achieved by the finite-difference 
scheme. Instead £3 can be obtained by means of extrapolation of previous values of the£- 
field, e.g., from^ and^ £2. At r = (n + l)Ar (Fig. 10 (b)), the electric field is to be 
computed only for r < r. At r the value,£4, is obtained from £3, Hx and#2by means of 
difference operators. It should be noticed that, in this example of multiple time step, one 
third of computations along the line r = f is not performed according to the finite 
difference algorithm. We expect, therefore, some loss of accuracy. 

The multiple time-step technique has been tested on the sectoral domain already 
introduced in Section II for the single-step method. The domain has been divided into two 
subdomains at r = r. Numerical results (Figs. 11-13) have been compared to the analytical 
solution as well as to the results obtained by the single-step technique, when the lower 
time-step has been retained for the whole domain. The differences between the numerical 
and analytical solutions are small, while a lower accuracy can be appreciated in the 
comparison with the single-step results. However, computer time has been reduced by 
about 35%. } 

V- Conclusions 
We have considered the cylindrical FDTD as a tool for the electromagnetic analysis 

of a class of broad-band antennas including common TEM horn antennas. The algorithm 
has been tested on a domain obtained from a sectoral waveguide. Preliminary results have 
been obtained for the geometry obtained by revolution of an almost triangular plate. In a 
cylindrical frame, the time step selected according to Courant stability condition at points 
near thez-axis may result excessively small for field evaluation at points that are far from 
the axis. To speed up computations, therefore, the multiple-step technique has been worked 
out and experimented. 
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Appendix , , ,     _    , . 
Let r = (r,<p,z) be a point of Q. We adopt the following rule for scalars f(r),g(r,t) defined m 

£2:f(i,j,k)=f(iAr + rmin,jA(p,kAz), gn(i,j,k) = g(iAr + rmin,jA(p,kAz,nAt). With reference to the 
elemental cell of Fig. 2 for field component locations, the finite-difference time-domain approximations 
of Maxwell's curl equations in the presence of electric and magnetic current sources, J(r,(p,z,t) and 

M(r,(p,z,t),3ie: 

At      Xthui+hk+v-E'^^i+^v 

 i   ETki,i+u+k)-ETki,hk+{)] AT M*{ij+\,k+$ 
r(i)Ar A<p tl(i,j + hk + 2) 

At rE?Hi + Xj,k + \)-E?HiJ,k + \) 
icg+ufc+*>-":('+*.M+*)+^+iiM+i)[ i~r 

Ef\i + \J,k + \)-EThi + {,hk) At M'H + U* + Ü 
Az ix{i + \,j,k + \) 

(A2) 

H:^+hJ^k)=H:ii^jH^^+hJ+^+^Ar 

E:+Hi+hJ+hk)-E;+Hi+uv [T(0+1]£»4(i-+1J+L,k)      (A3) 
1 Aq> 

+^0^(U+il«,.-^£_Mriö+w+*.« 
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E^(i + hhV = K~i(i + hm 
At H;{i+\,j,k+{)-m{i+{,j,k-\) 

e(i + %,j,k) Az 

n;u+i,j+iM-n;u+i,j-i,k)       At 
[T(!) + i)ArA<p e(i + i,j,k) 

Ata(i + j,j,k) 

•W+i.M) 

e(i + ±J,k) 
-Ep(.i + ±,j,k) 

(A4) 

E";hi,j+\,k)=Ep(ij+i,k) At ff.'0'+£..;+l,*)-fl;a-i.7+|.*) 
£(i,j + hk) 

w;(«,y+i,*+l)-//;(i,y+i.t-|) 
Az ■]—V 

Ar 

Ar 

e(i,j + $,k) 
rjij+hk) (A5) 

E^i.M + i) = £,""(''./'.* + *)■ 
Af tH?(i,j + \,k + ±)-H;(i,j-±,k + \) 

■l- 
e(i,j,k + j) t(i)Ar A<p 

-Mi) + \]H;(i + lJ,k + ^ + [r(i)-\]H;(i-^j,k + ^)}       (A6) 

At -^j-^-^ii:^^-^ £(i,j,k + ±) e{i,j,k + \) 

In the above equations, i,j,k are integers. \i,e,a are permeability, permittivity and conductivity, 
respectively, and are time-independent, i.e., the material filling Q is, generally, inhomogeneous and 

dispersionless. The distance, r, of a point from the z-axis is x{i)Ar where  T(7) = rmiJAr+ i . 

Fig. 1 - TEM pyramidal horn view. 
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Fig. 2 - Cuts of the elemental cell with coordinate surfaces of the cylindrical system. 

005       01       015      0.2 

Fig.3- Er(rP,f,zP) vs. <p,rP =(r0-rmin)/2,zP =z0/2. <rP.ip,zP) a point of the sectoral 
domain. Solid line: analytical solution; dotted/dashed line: FDTD alone; dashed line: 
FDTD+DFT. Er normalized to Er(rP,0,zP). /•„,-„ =0.08, r0=0.l, <p0 = x/16, z0=0.08. 
Excitation at plane z=0.25z0. Lengths in meter. Frequency /=5 GHz. 

\ 
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\X - ^ 
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-^ "v. 

0.09 0.095 0.1 

Fig. 4- Er(r,0,zp) vs. r, zP and other data as in Fig. 3. 

1017 



0 0 01        0 02       0 03        DO*       0.05       0 06       0 07 

Fig. 5- Er(rP,0,i) vs. z, rP and other data as in Fig. 

Fig.  6  -  Geometry of TEM  horn  (/-.z-plane cut).   rmin =0.05, r0 =0.215,a = 60° 
r^„ =0.0825, ra =0.0875, rb =0.2375 . Lengths in meter. 

Fig. 7 - Geometry of TEM horn (r.p-plane cut), ß =10. 
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Fig 8 a - Magnitude of the electric field in a region including the TEM horn antenna. Field on 
the z = 0 plane of symmetry (magnetic wall). Ar = 0.0025m, At = 7.2 -10"1 s. Diagrams at 
t = n'At, n' = l,...,6, At = l00At. V0=1V . 
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Fig. 9 - Scheme for single time-step FDTD algorithm. Segments are for difference operator 
between field components symbolized by boxes. 
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Fig. 10 - Scheme for multiple time-step algorithm. The case of two subdomains and time 

steps given by 34r2 = &h- 
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FlE- 'I - E,(rr,(p,zpj vs. (p for structure and other data as in Fig. 3. Multiple time-step 
technique for two subdomains separated by the surface r = r,r= 0.088 m. 

Fig. 12 - As Fig. 4 and multiple time-step techn 

0 001       0.02       003       0.04       005       0.06       007 

Fig. 13 - As. Fig. 5 and multiple time-step technique. 
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A Modified FDTD (2,4) Scheme for Modeling Electrically 
Large Structures With High Phase Accuracy 

Mohammed F. Hadi 

Kuwait University 

Melinda Piket-May 

Eric T. Thiele 
University of Colorado at Boulder 

The modified FDTD (2,4) scheme (M24 scheme) [1, 2] is a high-order FDTD scheme that ex- 
hibits extremely low phase errors in its field solutions compared to the conventional Yee scheme. 
Unlike other higher-order FDTD schemes proposed in the past the M24 scheme is capable of 
combining with the conventional Yee scheme [3] to produce a stable hybrid algorithm. This 
unique ability allows the M24 scheme to utilize virtually all the available FDTD tools that have 
been developed over the past three decades. Of particular importance, the seamless hybriding of 
the two schemes facilitates the successful modeling of conducting surfaces and absorbing bound- 
ary conditions. Two problems that have posed formidable obstacles to previously proposed 

high-order schemes. 
This paper serves to validate the M24 scheme presented in [1] by using it to solve the problem 

of plane wave propagation through a building. The results of this experiment will demonstrate 
the huge savings in computer resources that can be realized by using the M24 scheme in modeling 

electrically large structures. 
In the remainder of this paper the standard Yee scheme will be referred to as the S22 scheme, 

the standard (2,4) scheme as the S24 scheme and the standard (4,4) scheme as the S44 scheme [4], 
The space and time steps are given by ft and At, the resolution factor or number of FDTD cells 
per wavelength is given by R, and the physical and numerical wave numbers are given by ~n 

and j{. 

1    The Modified (2,4) FDTD Scheme 
The M24 updating equations for the TM Maxwell's equations can be derived using 

[•SU-*[-$]a*4*L**-«-*4*L.  "> 
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Figure 1: The three concentric loops used by the M24 Scheme 

where Ci, C? and C3 are the modified Ampere's loops illustrated in Figure 1: 

dEz Ki I \ 
C ~df   =    3h (^I'J'-t ~~ H*hj+$ + ^»li+fj _ Hy\i-I,j) 

+ !Sl (      ^li-lj-f + #*li+l,;-f - #*li-tj + § - ff*l;+lJ+l   \ 
6A V +-H»l.-+|j-i + -H»l.-+Jj+i--ffsli-§j-i--H'»l.--fj+i ) 

off, Ä! 

Öffj 
3A 
£1 
3A 

(2) 

(3) 

(4) 
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(5) 

The corresponding dispersion relation and stability criterion are given by 

L f !M) [Kl + K, cos{%M + 3(1 -KX- K2)sin (^ 

^lSin(^)+3(l-K0sin(¥)] 

|sin (?M) [*, + K2 cos(7,-,xfc)] + 3(1 - ifi - *») ^n (^) } 

»nd  3h (6) 
A< = 0/^2(3 - 4X0(3 - 4Ki - 2K2) 

where tf, < 0, tf, < § - 2* i ^ *| X- rf K   and ^ 

at S££^^^lS^ Aal dispersion error 

where * is the propagation direction. This error is in turn minimized in terms of K, and K2 

while maintaining reasonable phase accuracy.   In contrast, the S22 scheme requires 
R ~ 200 to achieve the same phase accuracy. 

2    Plane Wave Propagation Through an Electrically Large 

Building Model 
The one major obstacle that stands between the higher-order schemes and1 practical ^e >s their 
mabiTty "model material discontinuities caused by perfect conductors and absorbing boundary 
condtt ons  A stra^htforward approach for the M24 scheme to handle these situat.ons „to use 

M2I.I m™. ... S22 im« « mm«« «1«>~* >««» -> «»*> •""""'"' T" 
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Required Computer Memory in MBytes 

^min 

10' 101 102 

Maximum Domain Dimension, £>max/A<, 

103 

Figure 2: Minimum resolution factors and computer memory requirements for the S22, S44 and 
M24 schemes that will keep the total phase error under 5°. Computer memory values are based 
on 4 bytes per real number and square computational domains that are Omax x Dm„x large. 
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Figure 3: A small building in the path of a plane wave. Unit length is the free space wavelength 

at 900 MHz or 33.3 cm (I„ = 22A«,, Ly = 33A„, er = 2.4, <r = 0) 
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Table 1: Computer costs of the different runs based on a single Cray C-90 processor 

Algorithm and Resolution Executable Size CPU Time 

S22 at R = 100 1.5 GBytes 5.5 hours 

Hybrid M24/S22 at R = 10 29 MBytes 72 seconds 

problem modeled is that of plane wave propagation through the simplified two-dimensional 
building model detailed in Figure 3. The outer dimensions of the building are Lr = 22A0 and 
L„ = 33A„ at / = 900 MHz. The walls are made of concrete with a dielectric constant er = 2.4 [5] 
and conductivity a~0. Due to the relatively large size of the model, special attention must be 
paid when simulating the plane wave source and absorbing boundary conditions (ABCs). These 
special requirements are detailed in [2]. The incident plane wave is injected in the computational 
domain using the total field/scattered field formulation [6] and the ABCs chosen are those 
introduced by Berenger [7], dubbed the PMLs. 

The building model was simulated using both the S22 and hybrid M24/S22 algorithms on 
a Cray C-90 machine. In the hybrid algorithm the S22 contribution was limited to the PMLs 
and a A„/2-thick buffer between the PMLs and the rest of the computational domain. Figure 5 
shows a comparison of the collected Hz magnitudes from the two algorithms. Since an exact 
solution was not available, an S22 run at R = 100 was used as a benchmark for comparison's 
sake. This figure is only a sampling of the simulation results that are presented in [2]. 

Table 1 demonstrates the clear advantage of incorporating the M24 scheme in the building 
model in terms of computer costs. This table lists the computer costs of the different FDTD 
runs that produced Figure 5. By using the M24 scheme in the building model the required 
memory was reduced by a factor of 54:1 and the simulation times by a factor of 274:1 while 
maintaining the reliability of the field solutions to a large degree. The "executable Size" column 
m Table 1 includes all the initialization arrays used to construct the FDTD updating coefficients 
as well as double precision for all real numbers. Removing the coefficient construction process 
to a separate program and opting for single precision format will reduce both listed sizes by 
approximately 68%. 

Although at R = 10 the hybrid M24/S22 results are much better than the S22 results, the fit 
between them and the reference data is not perfect. This is due to the relatively low efficiency 
of the M24 scheme in dealing with dielectric interfaces. In this area the M24 scheme is only as 
good as the S22 scheme. Once this problem is solved, the full potential of the M24 scheme would 
be realized and a better fit with the reference data would be possible with resolution factors 
as low as R = 5. Work is already in progress on a possible technique that, if successful, could 
eliminate this dielectric transition problem or at least reduce its severity. 
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3     Conclusion 

The FDTD method has long suffered from the excessive phase errors accumulated in its field 
solutions. It has been shown in [1, 2] and in this paper that the M24 scheme has effectively solved 
this problem. This accomplishment was made possible by incorporating two tuning parameters, 
(Ki, K2), in the FDTD updating equations. When tuned properly, these parameters help reduce 
the phase errors in the FDTD calculations for R > 5 well below the noise floor caused by the 
available FDTD tools today (source conditions, ABCs, ...etc). Given the high speed computers 
available today, It is now possible to model structures that are thousands of wavelengths large 
with exceptionally low phase errors. 

Work is still needed in improving the various FDTD tools for the M24 scheme to realize its 
full potential. While those tools are quiet adequate for the conventional FDTD scheme, they 
quickly show their flaws once they are used with the highly accurate M24 scheme. For example, 
at R = 10 the overall noise floor of the FDTD algorithm is a relatively high -30 dB due to 
the total field/scattered field source conditions. Another example is the need to enlarge the 
computational domain to twice the size of the relatively small (22A„ x 33A0) building due to 
ABC limitations. At its less than optimal present state, however, the M24 scheme still represents 
a major step forward for the FDTD method in modeling electrically large structures. 
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Application of the FDTD Method to Three-Dimensional Propagation 
in a Magnetized Ferrite 

Joseph Schuster and Raymond Luebbers 
Department of Electrical Engineering 

The Pennsylvania State University 

Abstract This paper extends the FDTD method to include frequency-dependent Anisotropie 
~£ed fenL Jth an arbitrary direction of the biasing magnetic field. The recurve: convolufon 
mSfuS update the u£*c fields inside the ferrite. The addition* -W£j™S 
of three complex numbers per cell is required. This reduces to two when the biasing; field is aligned 
Sh one of the coordinate axes. Both scattered and total field formulat,ons are developed. 

1. Introduction 

The Finite Difference Time Domain (FDTD) method has become increasingly popular for 
application to a wide range of electromagnetic scattering and radiation proble m* In *^an^dJ e 
FOTO algorithm [1], the constitutive parameters e, u and a are assumed to be const ant vtfh:Respect to 
frequency for aÜ media located in the computational space; therefore, modifications to th Ye 
atorithm are required to allow for modeling of propagation in dispersive media. In. [2]| and [3] it was 
SoSed tL, because of the exponential nature of the time domain Wj^jSJ 
Debye and Lorentz materials, the convolution relating the time domain electric field and the electric 
flux density can be performed efficiently using recursion. Their approach has therefore come to be 
known as the recursive convolution (RC) method. . 

The FDTD method was applied to propagation in dispersive, gyrotropic media in [4] and [5] 
using the RC method. This was done for one-dimensional propagation along the direction of the 
äpptd sSc magnetic field using a total field formulation. The four convolutions in the upda e 
Rations require the storage of four complex numbers per cell. The RC «^""* «f*? 

re] to losses ferrites for a two dimensional problem with the biasing field paral el to the z ax^ Th, 
Lppoach requires four convolutions per magnetic field component. Propagation m magnetized ferntes 
hasTc, bS. analyzed with the FDTD method using the Maxwell curl equations and the equation of 
motion ol1SZJZ*** vector [7,8]. Results in these papers were also limited to situations where 
the biasing field was aligned with one of the coordinate axes. 

In this paper an approach for including anisotropic frequency-dependent magnetaed ferntes in 
FDTD cÄL is developed with the RC approach used to include the frequency dependence f 
the ferrite This formulation allows for an arbitrary direction of the biasing field and can be used m 
dtettd and scattered field forms. This approach was specifically developed to be «£*£"£ 
an existing FDTD code using the Yee cell spatial discretization, but it is «^"-JJfS^S 
discretization schemes. Consideration is given to reduce the number of variables added to the FDTD 
caIcutiion for storing the convolution history of the anisotropic ferrite.   Some example results in 

1031 



Section 4 illustrate the accuracy by comparisons with single-frequency calculations. 

2. Susceptibility Tensor 

Using the notation of [9], the permeability tensor for a fully saturated magnetized ferrite with 
the biasing field parallel to the z axis is 

A-M^xJ-Mo 

[H, *I2 

\ 
0 

^21 
l'Xv 0 

i   o 0 ij 
(1) 

where 

X,,(to)-x2dC")- 
(a>.ya>af-u>2 (2) 

Xl2(<0)-X2l(")- 
7ÜXD 

((ö0t/'ü)a)2-ü)2 (3) 

and / is the identity matrix. In (2) and (3), <^- yH0, where % is the magnitude of the static magnetic 
field and y is the gyromagnetic ratio ( y-1 .76*107 radians/sec -oersted in cgs units ); u>m-y 4%M , where 
Mj is the saturation magnetization; and a is the damping factor. 

The non-zero elements of the time domain susceptibility tensor are the inverse Fourier 
transforms of (2) and (3). Each of these elements is a real-valued function, but as shown in [5], the non- 
zero elements of the time-domain susceptibility tensor can be expressed as the real parts of the 
complex-valued functions 

*„(')-X22(0 =**:/) exp 
l*o2 l.«2 <«-/>' (4) 

and 

X,2(0"X21(0--!:!
r(lt/<*)exp 

Ua2 <«-/)' (5) 

where tzO and the carat "A" indicates a complex-valued quantity. Note that both (4) and (5) contain 
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required by the RC method and that the exponentials are the same.  For an 

(  ,      ,      <\ 
Xll    Xl2    Xl3 

X21  X22 X23 

^31    X32    X33, 

(6) 

Where R is the operator for the rotation from the unprimed reference frame in which * *.«. to the 

p^medreference frame where **,-! «* **,** u+W" . 

3. FDTD Formulation for Magnetized Ferrite 
Inthefrequencydoma«iK<o)^(o»)ff((o),butmthetimedomainthecompone„tsof//(Oandß(0 

are related by the convolution 

(8) 

and  Bt(t) at f-(n.l)Af is given by 

™-° mil 

B""1 -ß" 
Subtracting (8) from (9) and using the finite difference approximation -^-- 
for the Maxwell-Faraday curl equation gives 

$*E): 

-AtF*E\. 4 v^) J^-^Aä^ <#" 

(9) 

(10) 

where 
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(m-l)4! 

&'   f X{t)di, bt-Xn-xli (ID 

and 6ft is the symbol for the Kronecker delta defined by 8-1 for i-j, and 
\-0 for itj. 

The elements of % can be easily calculated by first evaluating (11) using the susceptibility 
tensor in (4) and (5) for the H^ -H0£ reference frame, and then applying the transformation of (6). In 
the unprimed frame the non-zero elements of \ given in [5] are 

l.a2 
{ai)At (12) 

and 

GCo>i2-(Xo): »■^f 1-exp 
Uc? 

(a-j)&t (13) 

When the complex-valued expressions in (4) and (5) are used in evaluating (11), it can be shown that 

AXm.i -A£,exp 
La2 

[a-j)M (14) 

where (14) holds in the primed frame as well. Evaluating Ax0 in the unprimed frame gives 

1-exp | —-^-(a-j)At 
l»a2 (15) 

and 

(A^0)i2-(AJt„^, -J- l-exp| —-!L(a-j)ht 
l.a2 (16) 

The summation in (10) represents the convolution of Y(?) with the magnetic field up to time 
step n, and can be written as the real part of the complex vector 

1034 



*;-SWvr. (17) 

where on the Yee grid [1] the components of * are co-located with the corresponding components of 
H. Equation (10) can then be written as 

Equation (18) represents a set of three linear equations which can be solved simultaneously, yielding 

the finite difference equation 

.H'.Rem-^xE^l (19) 
' % J Kx< 

for K\ where t-fatf. Because of the relation in (14) between A£ and C.,, the components 
of "T can be updated recursively at each time step using 

♦."-K^tr'expU-^-^ (20) 

If the fields are spatially discretized using the three-dimensional Yee grid, then co-located 
components transverse to the component being updated must be obtained by averagmg the four neares 
neighbors. For example, in the update equation for Hx\lMa *l/2), the y component of H in (19) 

and (20) would be given by 

fl-;-L[//;(Mfl,J^lfl)<(M/V,M/2)* (21) 

Hy%V2jjc-V2yHy\i-ia,Jjc-ia)} 

with the analogous equations for the y components of % and v*E. At a ^ " P^™^ 
toerface some of these fields may lie inside the conductor. Since the tangent.al magnetic^field is 
dTscontmuous at the surface of a perfect conductor, only the tangential magnetic fields which are 
outs"Lductor should be averaged- This also holds for the components of * and v*E co- 

located with these fields. ...       „,A D.*<vA  „*<«> „„A 
The scattered field formulation follows from making the substitutions Bß -B,  ©.*, ® ana 

Hf.0-HrV)-H?(t) in (9), and recognizing that af® -Mo",**® is always satisfied. Equation (9) then 

becomes 
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I 

B?® -Mofll"tfK/4(t)[H*\t-x)«ff/fr ■«))«* t, (22) 

where #,"*(/) is an analytically specified incident field. The relative simplicity of this equation is due 
in part to ip) being zero in free space. To convert the integral in (22) to a summation as in (10), the 
incident field will also be considered to be piecewise constant over each time step. With this 
approximation the finite difference equation for jf "4 (0 is found to be 

Ä«-'. ?^«-.*e{*;>-££o**"-») I. (#"in. 1)A0, (23) 

where X is given above and X ■ Vx '0 • The scattered field complex accumulator T is updated recursively 
at each time step using 

4J -(A4 ^*\ff> A*}.*r'exp I -££-(« -,)A, j . (24) 

For both the total and scattered field formulations, the additional memory requirements are the 
three components of a complex accumulator T. This reduces to two when the static magnetic is 
parallel to one of the coordinate axes. Thus with this formulation there is only one accumulator for 
each magnetic field component despite the anisotropic nature of the ferrite material and arbitrary 
orientation of the static biasing magnetic field. 

4. Results Obtained for Anisotropic Dispersive Magnetized Ferrites 

The accuracy of the above formulation will be demonstrated by calculating scattering from an 
anisotropic frequency-dependent ferrite sphere with a uniform internal static biasing field. 
Comparisons will be made with a frequency-independent FDTD code, and by changing the direction 
of the static magnetic field so as to change the anisotropic susceptibility tensor. 

Fig. 1 shows the frequency dependence of the real and imaginary parts of the diagonal and off- 
diagonal elements ofthe ferrite permeability tensor with t^-2ux 20GHz, com-2jt*10Gflz, a-O.land 
the static magnetic field is in the z direction. In Fig. 2 the co-polarized and cross-polarized backscatter 
from a magnetized ferrite sphere composed of this material with a permittivity of % was calculated 
using (23) and (24), and compared to results from an FDTD code for magnetized ferrites that does not 
include the frequency dependence ofthe ferrite constant constitutive parameters [10,11]. The 
calculation parameters for both FDTD calculations are: cubical 0.75 mm cells, sphere radius 1.5 cm, 
2000 time steps (although the single-frequency code converged in about 1000 time steps), Gaussian 
pulsed plane wave incidence. For the single frequency FDTD code the time step was at the Courant 
limit. For the dispersive code the time step was reduced to 1/2 ofthe Courant limit time step in order 
to maintain stability.   For the single frequency results the constitutive parameters ofthe ferrite were 
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chanaed for each frequency. The dispersive results were obtained from a single FDTD calculation 
S (23) L aJpUcation of ft* Fourier transformation to the transient backscattered fie d,Fo both 
cSationTthe internal biasing field is assumed to be uniform inside the sphere and para lei to the z- 
!2  It isclear AatThe FDTDcalculations based on (23) agree very well with results obtamed using 

the SintSnSaS Sequent dependence of the ferrite material is significant F^hows 
the cross-polarized backscatter vs frequency calculated using constant constitute parameters evaluated 
19 25GC9 75 GHz For these calculations the transient backscatter was calculated using the 
FDTD SSt SSbdud. the frequency-dependence of the ^^f^^^ 
differ greatly from those in Fig. 2 and it is clear that the frequency dependence JJ-gJ^ 
is important in determining results over a wide frequency band and to a single-frequency 
approximation to the constitutive parameters is not useful for transient calculations. 
app ™^ 
wita the Xe Fig. 4 shows the variation in this component of the backscatter for different incident 

Setv edirectionf (6^ and W and polarizations (p and P^^^KJJ f^ f 
the z-axis Calculations are made with the frequency-dependent FDTD code described in this paper 
MexpTc edtWs component of the backscatter decreases as the angle between the incidence direction 
^S^lgjc field increases, although incident field polarization and shape of the scatterer 

also pby.£t waw d.rection and polarizat.on are ; the same was as in F^e 

4   However the direction of the biasing magnetic field inside the sphere is changed so as to keep the 
same rdarive orientation with respect to the incident field as in Fig. 2. Since the spherical geometry 
stvantL^ rotations the results should be the same. The agreement between these curves> forth 
c~arized backscatter indicates the accuracy of the results produced by the formulation in th,s 
paper when the anisotropic tensor is modified as the biasing field is changed. 
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Figure 1: Relative complex permeability vs. frequency for a magnetized ferrite with the 
static magnetic field parallel to the z axis. 
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Figure 2: Backscatter vs. frequency for an anisotropic magnetized ferrite sphere calcu- 
lated using the frequency-dependent FDTD formulation of this paper compared at specific 
frequencies with results from previous FDTD formulations valid at a single frequency. 

2 
to m 
T3 

2.25 GHz parameters 
9.75 GHz parameters 

6 8 10 
Frequency (GHz) 

Figure 3: Cross-polarized backscatter vs. frequency for anisotropic magnetized ferrite sphere 
calculated using single frequency FDTD code with parameters of 2.25 and 9.75 GHz. Com- 
parison with Fig. 2 shows effect of frequency dependence on scattering results. 
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Figure 4: Cross-polarized backscatter t>s. frequency for anisotropic magnetized ferrite sphere 
for different pulsed plane wave incidence angles and polarizations with the static magnetic 
field aligned with the z axis. 
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Figure 5: Cross-polarized backscatter vs. frequency for anisotropic magnetized ferrite sphere 
for different pulsed plane wave incidence angles and polarizations with the static magnetic 
field alignment rotated along with the incidence angle 
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Symmetry-Aided FDTD Analysis of 
Finite Phased Arrays 

David Crouch 
Advanced Electromagnetic Technologies Center 

Hughes Electronics Corporation 
Rancho Cucamonga, CA 91729 

Abstract 
Reductions of the memory and run-time required for finite- 
difference time-domain (FDTD) analysis of finite phased array are 
realized through the use of symmetry for arrays having one or more 
planes of symmetry. The principle of linear superposition is used to 
calculate the fields radiated by the array for an excitation having an 
arbitrary amplitude and phase or time-delay distribution from the 
fields radiated by the individually-excited array elements. Rather 
than simulating the entire array and calculating the radiation from 
each element in the presence of all of the other elements, however, 
we take advantage of the symmetry of the array in order to reduce 
the size of the problem. The array's symmetry planes are replaced 
with different combinations of electric and magnetic walls, 
eliminating that part of the array opposite the boundary from the 
computational grid. The resulting field patterns are not single- 
element patterns, but are nonetheless a complete set for describing 
the radiated fields for an arbitrary excitation of the array. Results 
are shown for a two-by-two array of wire dipoles and are compared 
with results calculated with the conventional FDTD method and 
with the method of moments. 

,vmmptrv is often used in FDTD analysis to reduce the size of the computational grid.   Consider for example, a 
Symmetry is orten used    .euiu *   y particular mode is symmetric about planes bisecting both the 
rectangular waveguide excited in its TE.o mode.   This ******;„ R        ,.   As long as n0 obstructions 

reduction in the memory and run-time requirements. 
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must be a plane of symmetry with respect to the excitation as well as with respect to the array itself. A symmetry plane 
will be called a plane of positive mirror symmetry if the tangential component of the electric field and the normal 
component of the magnetic field are continuous with zero normal derivative while the normal component of the electric 
field and the tangential component of the magnetic field are zero. A symmetry plane will be called a plane of negative 
mirror symmetry if the tangential component of the electric field and the normal component of the magnetic field are zero 
while the normal component of the electric field and the tangential component of the magnetic field are continuous with 
zero normal derivative. 

If the excitations of the two elements are represented by Vi (t) and V2(t), respectively, then if V2 (t) = -V, (t), AA' is a 
plane of negative mirror symmetry; by replacing AA' with an electric wall and simulating one half of the array only, one 
can calculate the fields radiated by the two-element array when the elements are oppositely excited. If the two elements 
are identically excited, V2 (t) = V, (t) and AA' is a plane of positive mirror symmetry; by replacing AA' with a magnetic 
wall and again simulating one half of the array only, one can calculate the fields radiated by the two-element array when 
the elements are identically excited. The fields radiated by the array when excited with an arbitrary set of amplitudes and 
phases can then be calculated by invoking the principle of linear superposition. By adding the fields calculated with AA' 
replaced with an electric wall to those calculated with AA' replaced with a magnetic wall, one obtains the single-element 
field pattern radiated when element 1 only is excited. Similarly, by subtracting the two field patterns, one obtains the 
single-element pattern radiated when element 2 only is excited. Finally, the pattern for an arbitrary excitation of the array 
can be calculated via superposition after applying the set of amplitudes and phases of interest to the single-element 
patterns. As only one half of the array need be accounted for in the computational grid, its size is reduced by a factor of 
two, which in turn reduces the memory and run-time requirements by the same factor. 

2. Theory 
Consider a two-by-two planar i^ny of radiating elements like that shown in Figure 3. This array has two planes of 
symmetry, labeled AA' and BB'. It ihe excitations of elements 2 and 3 are such that the electric field lines in quadrants 2 
and 3 are positive mirror images of those of elements 1 and 4, respectively, then the plane AA' can be replaced with a 
magnetic wall. If the electric field lines are negative mirror images, however, then the plane AA' can be replaced with an 
electric wall. The same considerations apply to plane BB'; if the excitations of elements 3 and 4 are positive mirror 
images of those of elements 2 and 1, respectively, then the plane can be replaced with a magnetic wall, and if they are 
negative images, BB' can be replaced " '"h an electric wall. 

There are then four possible combinations of boundary conditions with which the symmetry planes can be replaced. We 
will denote the field pattern produced by the array when both AA' and BB' are replaced with magnetic walls by $(+,+), 
since both planes AA' and BB' are planes of positive mirror symmetry. If the magnetic wall at plane BB' is then replaced 
with an electric wall, the electric and magnetic fields in quadrants 3 and 4 change sign relative to those in quadrants 2 
and 1, respectively; we denote the resulting field pattern by <!>(+,-), since plane BB' becomes a plane of negative mirror 
symmetry. Replacing the magnetic wall at AA' with an electric wall changes the signs of the fields in quadrants 2 and 3, 
and the resulting field pattern is represented by *(-,-). Finally, replacing the electric wall at BB' with a magnetic wall 
again changes the signs of the fields in quadrants 3 and 4, producing the field pattern $(-,+). The combinations of 
electric and magnetic wall boundary conditions and the resulting field patterns are illustrated in Fig. 4 and summarized in 
Table 1. 

AA' Boundary Condition BB' Boundary Condition Resulting Field Pattern 
Magnetic Wall Magnetic Wall 4>(+,+) 
Magnetic Wall Electric Wall *(+,-) 
Electric Wall Electric Wall *(-,-) 
Electric Wall Magnetic Wall *(-,+) 

Table 1. 
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The set of excitations described above is a complete set for describing radiation from the array, just as is the: single- 
element set obtained by simulating the entire array and exciting each element individually in the presence of all the other 

elements. One set can easily be obtained from the other; 

*, = - [*(+,+) + <£(+,-) + <&(-,-) + *(-+)], 
4 

*2 = - [<&(+,+) + *(+,-) - *(-,-) - *(-.+)]. 
4 

*   = I [-*(+,+) + *(+,-) - *(".-) + *(-+)] • 
4 

<j,4=i [-*(+,+)+*(+,-)+*(-,-) - *(-.+)! 

where *,«are the single-element field patterns radiated when elements 1-4 are excited individually in the presence of all 
the other elements. Any time- or frequency-domain pattern can now be constructed using time or phase delayed versions 

of *i 4. In the time domain, we have 

where A, 4 and xM are an arbitrary set of amplitudes and time delays, respectively. In the frequency domain we obtain 

4-,,,» = ^» + ^»^ +A3*3(a>yKt> + W«K"4 , 
where «co) is the Fourier transform of *„(t). These same principles can be applied to the analysis of larger arrays. 

The^rindples described in the previous section will be demonstrated by applying them to a two-by-two array of wire 
dipoles The geometry is that shown in Figure 3, with the wire elements aligned vertically, parallel to the symmetry plane 
AA Each wire element is 29.5 cm. in length and 0.005 cm. in radius; the width of the array is 20 cm and the height 
measured from feed to feed is 50 cm. Electric and magnetic walls replace the symmetry planes AA and BB as discussed 
in the previous section. Because the array has front-to-back symmetry, the plane of the array is also a symmetry plane 
and is replaced with a magnetic wall, which in combination with the other symmetry planes reduces the size of the 
computational grid by a factor of eight compared to that required by conventional FDTD using the same cell size. 

A uniform Cartesian grid of size 30 x 60 x 30 is used, with Ax = Ay = Az = 1.0 cm and At = 17.33 ps. A thin-wire sub- 
cell model [3] is used to model the wire antenna. The free-space boundaries are terminated with second-order Liao 
boundary conditions [4]; with the above grid dimensions, the Liao boundaries are 20 and 21 cells away from the array in 
the horizontal and vertical directions, respectively. The array is excited with the time derivative of a Gaussian pulse; 

V(t) = -JTe ^-^- exp[- (t - Stp f/tp], 
p 

where tp = 150 ps and the pulse is normalized to 1 volt at its peak. 

Four FDTD runs were carried out to calculate the symmetric field patterns *(+,+), *(+,-), *(-,+), and *(-,-); for each 
run a frequency-domain near-to-far field transformation was performed to calculate the E- and H-plane gain *V0.5 _0 
and 1 5 GHz The results were then compared to those calculated using the method-of-moments (MoM) code NEC-2 [5J. 
Due to the fact that the FDTD thin-wire approximation does not accurately calculate the fields near the end of a thin wire, 
the physical end of a wire was assumed to lie beyond the last cell in which the thin-wire approximation was used [6]. 
Excellent agreement between the two calculations was obtained when that length was taken to be 3/4 of a cell, which is 
used in the results presented below. The single-element field pattern obtained by exciting element 1 only, *,, was then 
synthesized through linear superposition of the four symmetric field patterns. The results are shown ^Figures 4 5 and 
6 at 0.5, 1.0, and 1.5 GHz, respectively. One sees that there is excellent agreement between the FDTD- and MoM- 

calculated field patterns. 
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In order to validate the use of symmetry and to gauge the memory and run-time savings, the array was also simulated 
using a conventional FDTD code that uses symmetry only in the plane of the array. In order to maintain the same grid 
resolution as the symmetry-based code, the grid was expanded to 60 x 120 x 30. The results were nearly identical for the 
two calculations; the real and imaginary parts of Ee in the far field agree to three or four decimal places. Both sets of 
calculations were carried out on a PC equipped with a 90 MHz Pentium CPU and 56 megabytes of memory. The 
conventional FDTD code requires 28.4 megabytes of memory and 12310 seconds of CPU time for a single run, while the 
symmetry-based code requires only 6.9 megabytes and 2957 seconds of CPU time for a single run. In either case, four 
FDTD runs are required to calculate all four single-element field patterns, to which any desired set of amplitudes and 
phases can be applied; without symmetry, 49240 seconds of CPU are required for such a calculation, while only 11828 
seconds are required when symmetry is used, yielding a memory and run-time ratio of 4:1, as expected. 

4. Conclusions 
The computational resources - memory and CPU time - required for FDTD simulations of finite phased arrays can be 
reduced if the array of interest possesses one or more planes of symmetry. Each plane of symmetry can be replaced by an 
electric or a magnetic wall, eliminating that part of the structure on the opposite side of the wall from the computational 
grid and reducing the memory and run-time requirements by a factor of two. For a planar array having two planes of 
symmetry, a factor of four reduction in memory and run-time requirements is obtained. This technique can also be 
applied to three-dimensional arrays having one or more planes of symmetry. The FDTD analysis of a three-dimensional 
array having three planes of symmetry can be carried out with one-eighth the computational resources required for a 
conventional FDTD analysis. 
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B B' 

A' 
Figure 1. Illustration of use of symmetry in the calculation of fields within a waveguide excited in the TE!0 mode. The 
vertical symmetry plane AA' can be replaced by a magnetic wall, and the horizontal symmetry plane BB' can be replaced 
by an electric wall. 
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A' 

Figure 2   Symmetry plane of a two-element phased-array antenna. If the two elements are symmetric about AA' and are 
either identically or oppositely excited, the plane AA can be replaced by a magnetic or an electric wall, respectively. 

B B' 

A' 

Figure 3 Symmetry planes of a 2x2 phased array. If the array elements themselves are symmetric with respect to the 
Dianes AA and BB', then the symmetry planes can be replaced by one of four possible combinations of electric and 
magnetic walls, depending on the excitations of the individual elements. For example, if all elements are excited in 
phase, the AA' can be replaced by a magnetic wall, and BB' by an electric wall. 
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Figure 4. E- and H-plane gain patterns for 2x2 phased array at 0.5 GHz obtained by linear superposition of the symmetric 
field patterns. At this frequency, the 1 cm. cell size corresponds to a resolution of 60 cells/wavelength. The solid lines in 
(a) and (b) are the results of a symmetry-aided FDTD calculation, and the dotted lines are the method-of-moments results 
(NEC-2). (a) E-Plane gain, (b) Difference between symmetry-aided FDTD and method-of-moments calculations for E- 
Plane gain, (c) H-Plane gain, (d) Difference between symmetry-aided FDTD and MoM calculations for H-Plane gain. 
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Figure 5. E- and H-plane gain patterns for 2x2 phased array at 1.0 GHz obtained by linear superposition of the symmetric 
field patterns. At this frequency, the 1 cm. cell size corresponds to a resolution of 30 cells/wavelength. The solid lmes in 
(a) and (b) are the results of a symmetry-aided FDTD calculation, and the dotted lines are the method-of-moments results 
fNEC-2) (a) E-Plane gain, (b) Difference between symmetry-aided FDTD and method-of-moments calculates for E- 
Plane gain (c) H-Plane gain, (d) Difference between symmetry-aided FDTD and MoM calculations for H-Plane gain. 
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Figure 6. E- and H-pIane gain patterns for 2x2 phased array at 1.5 GHz obtained by linear superposition of symmetric 
field patterns. At this frequency, the 1 cm. cell size corresponds to a resolution of 20 cells/wavelength. The solid lines in 
(a) and (b) are the results of a symmetry-aided FDTD calculation, and the dotted lines are the method-of-moments results 
(NEC-2). (a) E-Plane gain, (b) Difference between symmetry-aided FDTD and method-of-moments calculations for E- 
Plane gain, (c) H-Plane gain, (d) Difference between symmetry-aided FDTD and MoM calculations for H-Plane gain. 
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Conformal FVTD with a Rectangular Grid for PEC Scattering Objects 

K.S.Yee and J.S.Chen 

Lockheed Palo Alto Research Labortory 

Abstract -- In this paper we describe a "conformal" FVTD with a rectangular grid. It is called 

conformal because the boundary condition on the scatterer is fully used to prescribe the 
boundary condition at the boundary nodes of the computational volume. The computational 

volume is a union of FDTD cubes and the inner boundary is no more than one FDTD cube 

away from the scattering surface. Numerical examples demonstrate that this new technique to 

approximate boundary condition is more accurate than the classical FDTD with very little 

extra calculations. The algorithm itself is as simple as the original FDTD. 

I. INTRODUCTION 
Conformal numerical computations in time domain has occupied the attention of many 

researchers [1-28] since the demonstration of the FDTD can be used for a wide varieties of 

applications. Among other difficulties, current progress in 3-D conformal calculations seems 
to be impeded by non availability of good quality three dimensional grids, the search of which 

is under intensive investigation by many researchers. For PEC boundary condition we have 
recently discovered a conformal technique, making use of the original stair casing grid for the 

FDTD. The algorithm we use is FVTD (finite volume time domain) instead of FDTD. The 
interpolation and extrapolation used in this paper has some similarity with the extrapolation of 

the FDTD electric field components used in [6,7,17], but our bookkeeping is much simpler. 

We essentially interpolate or extrapolate along the surface normal whereas the extrapolation 

used in [6,7] are along the direction of the edges of the FDTD cubes. 

H. THE GRID 
The whole space is divided into FDTD cubes (Figure la). We define: 
An FDTD cube is an interior cube if its center is inside the bounding surface of the scatterer 

(Figure lb) 
An FDTD cube is a boundary cube if it intersects the scattering surface (Figure lc). 

The union of the interior cubes and the boundary cubes form a volume and the boundary of 

this volume is to be the interior boundary of our computational volume (Figure Id). The outer 

boundary of the computational volume can be rectangular or it does not have to be. The 

nodes (vertices) of the interior boundary will be boundary nodes (vertices) and we describe 

how to assign the electric vector E in them in the boundary condition simulation. Note that 
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the boundary nodes are exterior of the scattering surface and the maximum distance from the 

scattering surface is V3 Ax away from me surface. 

HI. THE ALGORITHM 

The grid constructed in section II is used for computation. We assign the three rectangular 
components of the electric field at the vertices of the EDTD cubes and assign the three 

components of the magnetic field at the centers of the FDTD cubes. More specifically, we 

call the FDTD cubes electric cubes; and we call the cubes formed by connecting the centers 

of the FDTD cubes magnetic cubes. Thus, at the vertices of the electric cubes we assign the 
electric vector E and at the vertices of the magnetic cubes we assign the magnetic vector H. 

The electric vector and the magnetic vector are updated in time by leapfrogging.   The 

algorithm starts with the volume surface integral form of the Maxwell's equations: 

-lBdv = Lhxida (la) 

jvDdv = j9vnxHda (lb) 

The discretized equations corresponding to (la)-(lb) are 

v 3v 

■jjj(ön+1-Ön)dv=jZxHn+1/2da 

V dv 

(2a) 

dv 

(2b) 
where in equation (2a) we take the volume to be an electric cube and in (2b) we take the 

volume to be a magnetic cube. The discretized equations (2a) and (2b) are very similar to the 

FDTD equations in terms of simplicity and accuracy. The difference is in the convenience of 
simulating "conformal" boundary condition. With FDTD stair casing and for PEC 
boundary condition we assign the total electric field on the boundary edge to be zero ( 

Figure 2a). For our conformal FVTD we will not assign the electric field along a 
boundary edge to be zero. Instead, we make use of the scattering surface and interpolate or 

extrapolate for the electric vector at the boundary electric vertices (Figure 2b). More details 

will be given in the next section on the boundary condition simulation. In our simulation we 

always choose the computation volume to be a union of electric cubes. This means that the 
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inner boundary vertices and the outer boundary vertices are electric vertices. The magnetic 

vertices in our computational volume are always interior vertices. 

IV. THE PEC BOUNDARY CONDITION SIMULATION 
We call the inner boundary electric vertices of the computation volume to be boundary 

vertices. The assignment of the electric vector at these boundary vertices can be 

distinguished into three categories. 
i. The boundary vertex is cloest to the smooth points of the scattering surface where 

two continuous surface tangential directions are given for the neighboring surface points. 
ii The boundary vertex is closest to a smooth edge point where only one direction of 

the surface tangent is known. 
iii. The boundary vertex is closest to a conical surface point where no tangential 

direction is known. 
We will elaborate in more details as we proceed. Our rational for the following 

approximation is that whenever there a sharp edge, we round the edge with a small-radius 

cylindrical surface and whenever there a sharp tip we also round it with a small-radius 

spherical surface. 
For a boundary vertex not on the scattering surface, we assume that our surface is such that it 

is closest to a smooth surface point, an edge point, or a conical point. If this condition is not 

met, other approximation will have to be made. 

a. Approximation near a smooth surface point (Figure 3) 
When a boundary vertex (node) is closest to a smooth surface point an approximate surface 

normal can be assigned to this boundary node (point p). If we approximate the surface locally 

by its tangent plane we can also find the "foot" of the surface normal through a boundary 

vertex. At the foot of the normal (point l)through this boundary vertex we know two 

components, E -n (n -E), of the electric field. The extension of the normal through this 

boundary vertex will intersect an interior FDTD face (a FDTD face is an interior face if all 

the vertices of the face are interior nodes of the computational volume)   At the point of 
intersection (point 2) the electric vector can be interpolated. Making use of the tangential (to 

the scattering surface) components at this point and that at the "foot" of the normal we can 

interpolate for the tangential components of the electric field at this boundary node. The 

"normal" component can be extrapolated. This way we will have the electric field E at a 

boundary vertex approximately . The mathematical steps are: 
i. The electric vector E at the point 2 can be interpolated from the electric vectors 

located at the four vertices of the face where the point 2 lies. 
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ii. The vector E - n (n-E) (tangential componenets) at the point 1 is known; and the 

same vector at the point 2 is now also known. The vector E(p) - n (n»E(p)) at the point p 
can be interpolated. 

iii. Extrapolate to set n«E(p) = n-E(2). 

iv. Approximate E(p) = [ E(p) - n (n-E(p)) ] + n (n-E(p)) 

Potential trouble in term of instability can be expected because of the interpolation and/or the 

extrapolation. The accuracy, while not expected to be as good as the conformal overlapping 

grids, is nevertheless more accurate than the stair casing FDTD where the scattering object 
boundary is approximated by rectilinear boundary. 

b. Approximation near a smooth edge point. 

If the boundary vertex is closest to a smooth boundary edge, we can connect this node with a 

boundary edge point. Let n  be the unit vector along the line joining the boundary node and 

the boundary edge point and let t   be the unit tangent along the boundary edge at the 

boundary edge point and let u ~ t x n be another direction. We assume that the edge is 

rounded that now u  is another surface tangential direction on the surface. For a PEC body 

we take the tangential components along u   and %   to be known and carry out the 
interpolation and extrapolation as in case a. 

c. Approximation near a conical point 

When the boundary vertex is closest to a conical point we connect the line between the 

boundary vertex and the conical point. Let <n  be the unit vector along this line. We assume 

now that the tangent plane to the surface is normal to this unit vector n . The two 

components of the electric vector normal to n  are now assigned and the interpolation and 
extrapolation are carried out as in case a again. 

Alterntives to procedure b and c would be: 

b' With reference to Figure 3 we now suppose that point 1 is a smooth edge point. In this 

case only the tangential component of the electric field along the edge is known at the point 1. 

We interpolate for this component at the point p with data at the points 1 and 2. For the two 

components orthogonal to the edge, we simply extrapolate the data from point 2 to point p. 

c' Again with reference to Figure 3, we now suppose that point 1 is a conical point. In this 

case no tangential component of the electric field at the point 1 is known. We simply 

extrapolate the electric vector E from point 2 to point p. 
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V. NUMERICAL EXAMPLES 
We have performed the RCS calculations (see Figures 4-7) with our method discussed in this 

paper for a PEC sphere, an ellipsoid of revolution, a small cone-sphere, and a flat plat 

triangle-circle. The incident field is a plane Gaussian linearly polarized wave. At 150 MHz 

the spatial discretization length, Ax, is 1/20 of the wavelength. The results show that the 

interpolation-extrapolation near the boundary with just the rectangular grid is not as accurate 

as our FDTD/FVTD conformal technique. Nevertheless, it is an improvement over the stair 

casing FDTD. 

VII CONCLUSION 
By means of interpolation and extrapolation near the boundary, we can make use of only a 

rectangular grid and the exact boundary condition for PEC smooth scatterers. The amount of 

extra calculation over the stair casing FDTD is minimal; but the accuracy is not as good as the 

conformal FDTD/FVTD hybrid. 
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Figure 1a The scatterer and the FDTD cubes 
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Figure 1c The boundary FDTD cubes 

figure 1b The interior FDTD cubes 

Fiqure 1d The inner boundary of the 
computational volume 

Rn„rP2a The inner boundary and the E-component 
F9      locations of the FDTD computational volume 

Figure 2b The inner boundary of the FVTD and 
a its electric field E locations 

:=lfljp 
c 

2 

Figure 3 Interpolation for the electric vector E 
at a point p closest to a smooth surface point 
1. Point 1 is the 'foot' of the surface normal; 
tangential components at p are interpolated 
from data at points 1 and 2; the normal 
component at p is obtained by extrapolation 
from point 2 
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Application of Recent Advances in FDTD Modeling to the 
Problem of Acoustic Propagation in Shallow Water 
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Washington State University **>** "^f^Tf 

Pullman, WA 99164-2752, U.S.A. ^TTHTS fmU K 
scimeid^eecs.wsu.eduandfhastingOeecs.wsu.edu ^J^tTJZriL.^ 

1    Introduction 

Over the past 30 years, the Yee finite-difference time-domain (FDTD) algorithm has been used with S»* ™"" 

foTolvt a multitude of electromagnetics problems. FDTD modeling has been apphed ^J^SÄ 

dosimetry calculations to the analysis and design of circuit inter-connerts. Th^X%ontiutfonJLSbT^ 
has enjoyed can be attributed both to the elegance of the original algonthm and to the contnbutums made by 

numerous researchers who have enhanced the technique. 

Approximately 11 years ago, Jean Virieux published two papers that outlined a staggered-grid finite-difference 
fcne™ the s udy of ttae-domain acoustic propagation [1, 2]. Virieux's papers appeared m the acousfcc 
We Sul and Ste the fact that in certain cases his algorithm is indistinguishable from Yee s, it appear*.that 
hfwas .ma^e of the work that had already been done in the electromagnet!cs commumty V--W>rk has 
served as the foundation for several subsequent publications and is often cted m the acoust.cs hterature. 

Fortunately, recent publications indicate that the acoustics and f^^^.eaa^^^^l 
aware of the other's problems and the "tools" available to solve them. For example at the 1995 ACE£> Syn^osmm 
Maloney and Cummings discussed many of the similarities between acoustic and electromagnetic FDTD modehng 
S Furore, they showed how the Berenger PML ABC could be used in acoustics problems. Another example 
!s thVCrk by Botteldooren who cites several papers in the electromagnetic literature as part of his presentat.on 

of a "quasi-Cartes'an" acoustics FDTD technique [4]. 

In this paper the ultimate goal is accurate modeling of acoustic propagation in shallow water. Although this is an 
acot ics prob em recent advances in FDTD modeling that have been presented in the electromagnet.es hterature 

The used to improve the accuracy and lessen the computational burden needed to ^^g^^Z 
shown in (31 the Berenger absorbing boundary condition (ABC   can be used without modification rf the mart 

is elastic (such as a penetrable solid bottom), the Berenger ABC can be used m a modrfied form to obtam an 

elastic ABC that is superior to those which have been previously used. 

As discussed in Sec. 4, the recently proposed modified conformal path finite-difference time-domain (CPFDTD) 
at"! a!«The applied to tL problem. The CPFDTD algorithm attempts to eUminate -*»"»* «°» 
by cSriing the grid o£ * the vicinity of material boundaries. The modified a^orithm ^h-jf-*°m 

the original CPFDTD algorithm in the way that neighboring nodes are borrowed  ,U, the   nearest neighbor 
approximation») and, hence, does not suffer the stability problems of the ongmal algonthm. 

(This proceedings paper concentrates on presenting some of the ways in which electromagnetic FDTD modeling 
L SbLtLuL modeling. Simulations of acoustic propagation in a shallow water environment will be 

presented at the Symposium.) 
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2    Governing Equations 

Some similarities between FDTD implementations of Maxwell's equations and the acoustic equations are discussed 
in [3] and [5]. These discussions are restricted to materials, such as liquids and gases, that only support compres- 
sional waves. Compressional waves (sometimes called longitudinal, pressure, or P waves) give rise to compression 
or rarefaction of the material in the direction of propagation. However, in general, solids can also support shear 
waves (5 waves) where the particle displacement is transverse to the direction of propagation. A three-dimensional 
(3D) "elastic" FDTD scheme can be constructed to model the propagation of both pressure and shear waves [6]. 
Here, for brevity, we will restrict consideration to two dimensions. In two dimensions, the fields can be separated 
into two independent sets that are somewhat analogous to the TE and TM cases in electromagnetics. One set, 
known as SH, supports the propagation of a shear wave whose orientation is perpendicular to the two-dimensional 
(2D) plane. The other set, known as P-SV, can support both a pressure wave and a shear wave (where the shear 
orientation is parallel to the 2D plane). 

SH Equations 

dVy 
= dx   + 

drzy 

at = 
8Vy 

"-af 
9TZV 

at = dVy 

P-SV Equations 

dz 
dvz 

p~aT 
p~aT 

8T„ 

dx 
dr„ 
dx 

-Zr  =  (* + *« + * at 

at 
drt.. 
at 

3TZZ 

dz 
drzz 

dz 
dvx 

>dvz 

dx 
, dvz 

dz 
dvz 

' dx) 
Despite the potential for confusion, we have retained the usual elastic notation where A and p are the Lame 
coefficients (these are related to the compressibility and rigidity of the material and fi is often referred to as the 
modulus of rigidity), p is the density, v is the velocity, and r is the stress (force per unit area). Suitable unit cells 
for these two sets of equations are shown in Fig. 1 where the velocities and stresses are offset temporally by a half 
time step. 

L. 
© 

O-* 

*B 

ftir.Tz: 

jr 

Vx t%.fe 

Vx 
O* 
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o-+ 

(a) L. 
(b) 

Figure 1: Unit cells showing the location of field evaluation points, (a) SS grid, (b) P-SKgrid. 

Even though two stress components, r„ and T„, are spatially and temporally collocated, developing the code for 
these sets of equations should be straightforward for anyone experienced in writing electromagnetic FDTD code. 
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Furthermore, if therigidity of a material is zero (i.e., „ = 0 as is the case for liquids and S^hear "^e 
supported and the P-SV equations collapse to a form that is completely analogous to the TM case. Intocase 
r« and r„ are equal and can be treated as a single scalar quantity. Thus, the stresses can be equated with he 
negative of the pressure which is itself analogous to the electric field. The velocities are analogous to *e magnetic 
field (albeit with a change of sign and a change in the associated "direction' of the field, e.g., an *-<ürected velocity 

would be equated with a z-directed magnetic field). 

Two boundaries that are common in acoustic modeling are hard and soft boundaries. At a hard boundary the 

Lmal component of velocity is zero, while at a soft boundary (often called a free or P^^^S 
the nressure is zero A typical soft boundary is the air-sea interface as "seen" from within the water. A hard 
boun'd^ ft n assle^when a very rigid material abuts a fluid (for example a rocky ocean boUom wouM 
appeared as seen from the water). A soft boundary can be treated in the same way a PEC:»^treated m TM 
electromagnetic simulations. A hard boundary can be thought of either as a perfect magnetic conductor ma TM 
SS as a PEC in a TE simulation (where now the magnetic field is analogous to pressure and the electric 
fiXlponel are analogous to the components of velocity). These facts permit borr=of^the techniques 
developed in the electromagnetics literature to minimize the impact of a staircase approximation to a material 

interface. 

3    Elastic Perfectly Matched Layer ABC 

Absorbing boundary conditions (ABCs) are enforced at the edges of a computational domain to absorb^outgomg 
waves and thereby model an unbounded region. A number of ABCs have been mtroduced for use m FDTD 

Huntof elastic'wave propagation (see [7] for references). ^>^^~^T&wZ£ 
within restricted ranges of incident angles and frequencies. The Perfectly Matched Layer (PML) ABC^8 has been 
used extensively in electromagnetic FDTD modeling and has been shown to provide excellent -»»£* 
wide range of angles and frequencies. Although the stress-velocity equations are ^^^2 
of this ABC, it is possible to obtain a suitable form using an approach mtroduced by Randal] [6]. ^ ™et^> 
velocities are transformed to potentials that, for the 2D case, satisfy two scalar wave equations. The PML then 

consists of two independent overlapping grids that propagate potentials. 

Figure 2 shows the geometry of a 2D, finite-difference grid with a PML. In the interior the ^"^j 
usel while in the PML the shear and compressional waves are handled separately nsmg potentral. The vel^n y 
potential conversions take place in a one grid-cell wide overlap region. Square grid cells of area A are assumed. 

Velocity is related to potential by [6] 

"_(&      dz>   +(dz + dx)Z 

where * is the compressional potential and * is the y-component of the shear potential. Potentials are computed 

usmg 

a»*    ,(o». + ev. m s^ = <Ä_^) (3) 
-äT = cp(-ä7 + ä7) () w        dz    8x 

where c, = yflX + Wffp is the P-wave velocity, ca = V^~P » «» *"*" velocity. In the overlap region the 
potentials are computed using (2) and (3) while the velocities are computed using (1). The reader is referred to 

[6] for the finite-difference forms of these equations. 

The potentials satisfy the following scalar wave equations 

£-4*. (4) w^2* (5) 

To simulate these equations using a standard leap-frog scheme, each is rewritten as a set of three coupled equations 
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a$      ,. ,, VM. 
+ a*; 

dB, dB, 
dt   =  "(^ + ^7> 

(6) 

(7) °-oT 

dx (8) 

a* 
a* W 

aß» 
"IT 

a$ 
dz 
dl 

Equations (6), (8), and (10) can be decoupled to obtain (4), while (7), (9), and (11) can be used to obtain (5). 
The fictitious fields A and B are introduced as part of a field-dividing process. 

Equations (10) and (11) propagate energy without loss. To simulate an unbounded medium the fields must be 
attenuated. Thus, following Berenger [8], we modify the lossless equations by dividing the potentials and adding 
loss terms to get 

fl& PIA 
^ + (\ + 2riqpx*x    =    (A + 2/i)^ ^± + {\ + 2li)qp,*z    =    (A + 2p)^ 

9A* +.   ■  A a($, + $,) 
dx 

dBz 

dt   + «"*'    =   »dx 

0
dB'4-a"B      -     *(*- + *«) p-bT+q>*B* - —&— 

dA 

at 
d9. 

a(*, + **) 
dz 

dt +«"*'  = "ST 
dB„ a($, + $,) 

r-dT + «"B*  =       dz 
The potentials are divided such that $ = $* + $* and * = *x + *s. The g,j and q*j terms (i =p, s and j = x, 
z) control loss and vary with depth in the PML [7]. As shown in Fig. 2, some loss terms are set to zero within the 
edge portions (as opposed to corner) of the PML. Terms qix are zero for the top and bottom PML, while terms qi, 
are zero for the left and right PML. This dictates that exponential decay occurs only in the direction perpendicular 
to the edge of the PML. In the corners, losses are nonzero in both directions, and the variation of loss with depth 
corresponds to that in the appropriate neighboring PML edge region. The reader is referred to [8] for the finite 
difference implementation of these equations. 

To examine the angular performance of the ABC at a single frequency, reflection coefficients are estimated using 
numerical simulation. Figure 3 shows the test geometry, consisting of two distinct computational domains, fli 
and fi2, which are used to evaluate the ABC. Grid fii is terminated by a PML on the top edge, and grid fi2 is 
made large enough so that reflections from its boundaries do not interfere with the test. A source is placed one 
S-wave wavelength below the PML region in fii and at the corresponding location in £l2. The source is constructed 
such that either a pure P-wave or a pure S-wave can be introduced ("pure" indicating that the other component 
is absent). Waves radiating away from the source in fij will intersect the lower edge of the overlap region with 
an incident angle 8,-. For this example, we use 16 grid spaces per S-wave wavelength, and, for stability, we use 
CpSt/A = 0.707 where St is one time step and A is one spatial step. The compressional and shear wave speeds are 
cp = 5710 m/s and ca = 2930 m/s, respectively, which are typical of basalt (commonly used to model the ocean 
bottom). 

The reflection coefficients are defined as follows 

$n2 *n *n2 

*2i 

where the subscript indicates the grid from which the potential is taken. In this way, Rpp and Rp, measure the 
reflected P and S waves due to an incident P wave, and R„ and R,p measure the reflected S and P waves due to 
an incident S wave. (On both grids the potentials are computed along a line one grid space below the PML.) 

Figure 4 shows Rpp and i?„ as a function of 0,- for a PML depth of 16 grid spaces. Differences between the two 
factors are due to variation in the PML depth and source location relative to the S- and P-wave wavelengths. For 
both factors, reflections remain below 0.1% over the range 0° < 9; < 80°. Although not shown here, Rp, and R,p 

were found to be below —200 dB over all angles, indicating that this type of reflection is negligible. 
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Figure 2: Computational grid with PML absorbing 
boundary. Interior fields are computed with velocity- 
stress formulation, and PML fields are computed using 
potentials. In the overlap region the waves are trans- 
ferred back and forth between velocities and poten- 

tials. 

SOFT BOUNDARY 

Figure 3: Geometry for computing reflection coeffi- 
cients. Domain fii is terminated on the upper edge 
with a PML. The dimensions are such that reflections 
are caused only by the ABC for the duration of the 
simulation. Domain fi2 is large enough so that no re- 

flections occur. 

Figure 4: Reflection factors BpP and R,„ for PML depth £ = 16A. 

(It should be noted that as currently formulated, this ABC can only be used along a homogeneous portion.4: the 
LpuUtional domain. For example, it could be used to «underlie* a basalt bottom m order to make * app^ 
SI However, it could not be used at the basalt-water interface where surface waves may contam coupled 

shear and compressional components.) 
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4    Modified Contour Path FDTD for Hard and Soft Boundaries 

As mentioned previously, hard and soft boundaries appear commonly in acoustics problems and, provided the 
surrounding medium does not support shear waves, can be treated in the same way that perfectly conducting 
surfaces are handled in electromagnetic FDTD code. However, this fact may not be obvious from a direct inspection 
of the linear acoustics equations. These equations for a fluid or gas are typically written as 

f = > (12) *-^V.» (13) 

where c is the speed of sound (since there is no shear wave present, the subscript p has been dropped), p is the 
pressure (the negative of the stress), v and p are still the velocity and density, respectively. Equation (12) is merely 
Newton's law of motion while (13) comes from the underlying continuity equation (i.e., conservation of mass). 
Integrating these yields 

/  "STdv - ~ I  P<?^ ' "dv - ~ 4 pc2£T-ds     (14) /  -£dv = -      -Vpdv - - it -pdS 
Jv <n Jv Js Jv a* Jv P Js P 

(15) 

The usual integral representation of Maxwell's equations contains line and surface integrals that suggest a reinter- 
pretation of the FDTD grid—not only can a node represent the field found at a point, it can also be thought of as 
the flux through a face or the field along a line. Once this "dual" interpretation of nodes is recognized, the integral 
equations provide a convenient way to construct update equations for a distorted grid. In undistorted regions 
the update equations are the same whether obtained using a differential or an integral approach. The CPFDTD 
algorithm uses this fact and distorts the grid only in the vicinity of an interface [9]. It thus maintains the simplicity 
of the usual FDTD scheme in the majority of the computational domain and yet it can provide greater accuracy 
since, unlike the standard approach, it has the ability to "conform" to an interface. Fortunately, it is possible 
to apply the same conformal scheme to acoustics problems where (14) is used to obtain the update equations for 
pressures in the vicinity of a hard boundary and (15) is used to obtain the update equations for velocities in the 
vicinity of a soft boundary. 

Unfortunately, as originally proposed, the CPFDTD algorithm uses a non-reciprocal "nearest neighbor approxima- 
tion" that can lead to unstable behavior. Recently, a modification was presented that corrects this instability by 
making the nearest neighbor approximation reciprocal [10]. The primary objective in introducing this modification 
was to guarantee stable results—in fact, the modified CPFDTD scheme can be used to analyze resonant structures 
that consistently produced unstable results using the original scheme. However, even when the original CPFDTD 
scheme produces stable results, the modified scheme can still provide greater accuracy. (The reader is referred to 
[10] and [11] for details concerning the two- and three-dimensional forms of the modified CPFDTD scheme). 

To illustrate the improved accuracy provided by the modified CPFDTD scheme, consider a wedge illuminated 
by a line source which is located exactly along the line that bisects the wedge. Figure 5 shows a portion of this 
wedge together with the source (the wedge is assumed to extend infinitely far to the right). Since the problem is 
symmetric about the bisecting line, the fields found along two lines that are offset from, but parallel to, the two 
faces of the wedge should be identical. Figure 5 identifies two such lines, the "measurement lines," that originate 
at the source. If the wedge is oriented as shown in Fig. 5, the horizontal (or bottom) face will exactly align with 
the computational grid while the tilted face will not. Because of this misalignment, an FDTD simulation of this 
problem will not produce symmetric fields and the amount of asymmetry provides a measure of the error associated 
with modeling the tilted face (numeric dispersion along the different measurement lines notwithstanding). 

Figure 6 shows the amount of asymmetry produced when the standard FDTD scheme (i.e., a staircase approx- 
imation of the tilted face), and the original and modified forms of the CPFDTD scheme are used to model a 
wedge whose edges form an angle of 3.814° with the bisecting line. The asymmetry was calculated by taking the 
absolute value of the difference between the pressures found along the two measurement lines. The line source 
was a pressure node being driven by a delayed Ricker wavelet and the discretization was such that 20 points per 
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wavelength were used at the frequency corresponding to the centroid of the wavelet's spectral energy (A Rocker 

wavelet is a broadbanded, finite-duration pulse that is often used in the acoust.cs <°™* '°'"™** ~ ^ 
sive» source. See [12] for an example.) The source was approximately 15 cell widths (ISA) from he t p of the 
wedge The measurement was taken 500 time steps after the start of the simulation. The computational domain 
was large enough so that no spurious boundary reflections were present at the time the measurement was taken. 
Measurements along Line #2 were taken directly from the pressure nodes and bivanate uiterpolation was used to 

obtain the pressures at the corresponding locations along Line #1. 

Figure 5: Wedge test geometry. The wedge is acoustically hard. The bottom measurement line and the bottom 
face of the wedge are aligned with the grid. 
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Figure 6: Absolute value of the difference of the fields found along two measurement Unes as obtained using 
uniform FDTD, CPFDTD, and the modified CPFDTD techniques. Results are for a hard wedge with B - 3.814 . 

Figure 6 clearly shows that the amount of asymmetry is reduced significantly by using either one of the conto _ur path 
techniques, with the original CPFDTD technique reducing the difference by approximately 40 dB. An additional 
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reduction in asymmetry (of approximately 7 dB) is realized by using the modified CPFDTD technique. The results 
shown here are consistent with those found using various wedge angles. 

It is worth noting that using the CPFDTD scheme at a soft boundary does not require the nearest neighbor 
approximation; hence, it is stable and does not require modification. 

5    Conclusions 

Many of the enhancements that have found their way into electromagnetic FDTD modeling are also applicable, 
at least indirectly, to acoustic FDTD modeling. The incorporation of these enhancements into acoustic modeling 
has the potential to significantly impact problems ranging from ultrasonic medical imaging to underwater mine 
detection. 
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work. 
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FDTD Analysis of Small Loop Antennas for Partial Exposure 
of Rat Head at 837 MHz 

K.W. Chan, J.A. McDougall, C.K. Chou 
City of Hope National Medical Center, Duarte, CA 91010-3000 

Introduction 

The effects of low-level electromagnetic exposures at cellular telephone frequencies are be ng 
investigated   Rats have been selected to receive microwave energy in one side of the head. Existing 
Jl2 phone antennas are inappropriate for exposing rats because of the difference m *^ ands* 

of at and human heads.  An antenna must be developed to produce the «quired energy distribution 
in the raThead Mostly on one side of the brain similar to that of humans operating cellular phones. 
This Vnl Sie biobgists to investigate any effect that may occur from low-level electromagnetic 

exposures of rats. 

It has been decided that these will be long-term exposure studies at multiple sites involving 
hundreds of animals. The problem of keeping the animals in a free habitat and being able to due 
electromagnetic energy to their heads repeatedly with precision is difficult. There is also me 
ccX3ofpossible changes in experimental end-points due to stress resulting from restraining the 
a^miT Tte isPsue of restraining the animals during exposures remains to be decided by *e biologist . 
A 837 MHz onflicts with existing communication channels are minimized while the.studies are süh 
w thin the frequencies of interest. The goal of this project is to develop antennas suitable for partial 
Csu fo hThead of an average sizem. The FDTD method has been used to simulate exposure 
3 dons produced by different antenna designs and to evaluate energy absorption m the rat head 
nUiaTan ellipsoid vJas used to represent a rat in both the experimental and numerical models o 

detennine the basic design requirements. After the appropriate antennas are identified, the ellipsoid 
Ste replaced wkh c! based rat models to determine the energy distribution inside the ra head. 
The eHipsokI model has allowed the preliminary antenna design and evaluation to be earned out while 
the CT based rat model is being developed. 

Ellipsoid Model 

An ellipsoid was initially used in FDTD models to determine the feasibility of using certain 
tvoes of Ltennas to satisfy the requirements of these exposure studies. The models were simulated 
aU mm reSon because of the'small size of the antennas. The dimensions of this ellipsoid was 
choseTbased on the size of an average rat. It was 20 cm long and had a center diameter^ of 5.6 cm 
The model was composed of brain equivalent tissue covered at one end with a 45 mm long 2^ 
Ik^shaped she'll consisting of bone material. The dielectric V^«^^™^ 
materials at 837 MHz are listed in Table 1. The antennas were positioned in the FDTD models at 
SSifi™, from the tip of the cone shaped shell and 2 - 10 mm from ? surface as^hown 
in Figure 1.   To minimize staircasing errors, the antenna was aligned with the FDTD grid and the 
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Figure 1  The configuration of a loop on a printed circuit board (PCB) located at one end of 
a 20 cm long, 5.6 cm diameter ellipsoid with a 2 mm thick cone shaped shell. 

ellipsoid was tilted approximately 15° from its horizontal position to keep the antenna tangent to the 
surface of the cone shell. This also minimized the amount of staircasing at the surface of the ellipsoid 
where the field intensity was highest. The antenna position around the circumference of the ellipsoid, 
as compared to a rat, is not unique because of rotational symmetry around the ellipsoid. This model 
was used to simulate the partial head exposure of a rat. 

Table 1.  Properties of tissue and circuit board materials used in the FDTD models 

837 MHz Copper Brain Skull PCB 

cr(S/m) 5.9 x 107 0.86 0.33 0.0 

€ 1.0 43.0 21.0 1 - 16 

p(kg/m3) N/A 1000 1500 N/A 

Preliminary Assessments 

A few simple models cr Sort dipoles and small loops located in close proximity to the ellipsoid 
have been simulated to eva; !he effectiveness of these antennas for near field exposures. It is 
found that short dipoles are very inefficient for producing adequate energy deposition in high dielectric 
tissues. The high electric fields near the ends of the dipole also produce power absorption patterns that 
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are inappropriate for the exposure studies. When small loops are properly aligned with the ellipsoid 
rs3i„PFigure 1, the/provide more desirable energy distributions than ^J^JJ^g 
is coupled into the ellipsoid mainly through the magnetic fields of the loop. The undesirabseiectnc 
fields seen with dipoles are also reduced because loops have voltage mimmums located closest to the 

ellipsoid. 

After selecting the small loop as the antenna for the exposure studies the detail requirements 
must be determined before prototype devices can be developed. A peak specific absorption rate (SAR) 
Slut »g in on side of the rat brain is required. The estimated target volume 1S approximate y 
in x 10 x 25 mm3 enclosed by the half-power deposition boundaries. Since hundreds of animals will 
oe tZ^lTJ^s, itVas been decided that the loops should be driven individually by cellular 
phols This will eliminate potential cabling problems associated with using a common power source^ 
The output impedance of typical cellular phones is 50Q with a maximum power output of 0.6 W. In 
STS^SS 10 W/kg of SAR, the source and loop impedances should be matched to provide 
optLlpower transfer. It is also necessary to minimize the loop area to maintain high magnetic field 
streni?or coupling energy into the tissue. But the impedance of a small loop is typically very low 
and hfgher loop" impedance requires longer loop length which results in larger loop area. A 

compromise is necessary. 

As indicated in literature, the radiation patterns produced by rectangular and circular-toqps are 
similar [1]. To better conform to the FDTD grids and to minimize staircasing errors the «ctanguto 
rP was used for all simulations. A number of loops with various aspect ratios and dimensions wer 

modeled to determine the optimal length and width of a loop required to provide adequate coverage 
5£t£SS»« target volume. The sides of the loop that are parallel to the tissue^must be 
leer than 25 mm and the other two sides are adjusted to optimize power deposition in the ellipsoid. 
The resul" indite that a rectangular loop of approximately 30 mm x 10 mm will satisfy the exposure 
reau rements The impedance of this loop is about 10 - 15 O, depending on its distance from the 
ellip oid This problem of impedance variations due to loop movements or placement errors during 
exposurt of fivers has led to'the development of loops on printed circuit boards (PCB) to minimize 

impedance and SAR changes. 

Loop Antenna Development 

If the rat is put in a plastic restraining tube during exposure, it is still very difficult to prevent 
the animal from moving or rotating its head for long durations without enduring extreme stress The 
dea of putün'the loop on PCB is to embed it in a small styrofoam helmet, light enough to be 

mounted oa rat head. With a less stressful restraining system and some animal training, this loop 
Td helmet configuration will have less impact on normal behavior of a rat. Loop placement shou d 
te reSle from day to day for long term exposure studies and small errors m positioning should 
p odu'cetSuificant changes In energy distributions in the tissue. A 31 mm ^nm«^^ 
was implemented on PCB to investigate the effects of loop posmonmg at the rat head The circuit 
board has a 5 mm margin around three sides of the loop and an appropriate spacing on the fourt.side 
to mainfain a fed separation between the ellipsoid and the loop. The circuit board has a thickne 
of Tmm and a dielectric constant of 4.5 simulating fiberglass epoxy materials. The results; indicate 
only TgU increases in impedances with the loop on a PCB. Simulations with 2 mm thick PCB also 

show little improvement. 
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In order better understand the impedance characteristics of loops on PCB, the simulations 
were repeated with dielectric constants of the board material varied from 1 to 16. The thickness of 
the board was maintained at 2 mm while the spacing between the loop and ellipsoid was kept at 4 mm. 
An impedance curve is obtained indicating very steep changes in impedance as the dielectric 
constant of the circuit board material was varied. This impedance curve is similar to those found in 
the literature for loops in free space with sharp peaks at A/2 and return to low impedances at X. 
The computed SAR indicates that it is possible to produce 10 W/kg of peak SAR with 0.6 W of 
maximum input power. But some impedance matching may be required to optimize power 
transfer from the source to the loop. 

The idea of choosing an appropriate dielectric constant for the PCB material to match the real 
part of the loop impedance and compensating the loop inductance with appropriate capacitance is 
appealing. But the 50Q impedance point is located along the lower slope of a sharp peak, similar to 
those in Figure 2. Its influence on impedance and SAR variations due to placement errors must be 
determined. Besides, the exact spacing between the loop and the rat head may vary because of 
movement. There is also the uncertainty of parameter changes when dealing with an actual rat. After 
some literature search on loading loops with dielectric materials [2], several board thickness were 
simulated to determine if this can provide an additional degree of freedom for implementing the loop. 

The possibility of varying the circuit board thickness to gain extra design freedom was 
accomplished by putting identical loops on both sides of the board. In order to maintain a single loop 
configuration and to avoid loop connection problems, the loops were shorted at the four corners and 
on either side of the driving point. The problem of mutual coupling between the loops was also 
reduced with this double-sided single loop configuration. The technique provided a mechanism to vary 
loop impedance with circuit board thickness instead of its dielectric property. 

Intermediate Results 

A series of simulations for 2 or 4 mm thick boards and dielectric constants of 1 - 16 were 
modeled with this double-sided single loop configuration. The loops were located at either 4 mm or 
7 mm from the surface of the ellipsoid where the spacing was maintained by the circuit board. The 
4 curves in Figures 2-4 indicate the impedance and SAR characteristics due to loop placement and 
board thickness changes as a function of the dielectric constant of the board. 

The impedance curves are separated into two groups associated with the thickness of the PCB. 
The curves for the 4 mm thick boards are shifted to the left of the 2 mm boards, and the real part of 
the impedance has a steeper transition towards the X/2 peak. As the spacing between the loop and the 
ellipsoid is widened from 4 mm ,-.. 1 mm, there is a decrease in loop impedance. The normalized peak 
SAR produced in the ellipsoid with one watt of loop input power is shown in Figure 4. 

The loops on 2 mm thick boards produced much higher SAR than the 4 mm boards. For loop 
spacings of 4 and 7 mm from the ellipsoid, the curves in Figure 4 cross each other at dielectric 
constants of 7.6 and 5.4 for the 2 and 4 mm thick boards respectively. Before the curves cross, the 
SAR in the ellipsoid is lower for the 7 mm spacing. But after the crossing, the 7 mm spacing loops 
produce increasingly higher SAR than the 4 mm configurations as dielectric constant is increased. The 
difference in SAR for the loops at 4 and 7 mm from the ellipsoid is much less before the curves cross 
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Figure 2 Real part of loop impedance. Figure 3  Imaginary part of loop impedance. 

each other and widens after the crossing. To 
minimize SAR changes due to loop spacing 
variations, the dielectric constant of the board must 
be less than that indicated by the crossing points of 
the curves for the particular board thickness. At 
the crossing point there is practically no change in 
SAR for 4 and 7 mm spacings. This can be 
explained by the raw data for SAR and input 
power. The relationship with the board dielectric 
constant is linear with SAR, but non-linear with the 
loop input power. These cause the curves to cross 
as SAR is normalized by the input power. 

SAR variations due to loop movement and 
placement errors can be minimized by selecting 
circuit board parameters indicated by the crossing 
points of the appropriate curves. However, if the 
inDUt   power   to   the   loop   is   unstable,   SAR 
fluctuations are still possible. A mismatch between the source and loop impedance because of 
"ions in loop positioning can cause the input power to fluctuate. Therefore impedance matching 
becomes another issue that must be addressed to maintain the stability of power absorption in the rat 

head. 

It has been decided that impedance matching will be limited to simple methods with non-bulky 
devices because of physical and experimental limitations. It is important to maintain a light weight 
Sj aJSiU, and to reduce the possibility of perturbing the fMd**nb^ 
because of nearby objects. Assuming that 4 - 7 mm is the anticipated range of loop spacing J^herea 
part of the loop Impedance can vary from 35 Q to 55 Q and the imaginary part is about 700 Q fo 
both 2 and 4 mm thick boards. The inductive reactance of the loop can be compensated with a small 

Figure 4  Relative Peak SAR in the ellipsoid 
normalized to one watt of loop input power. 
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chip capacitor at the driving point to form a parallel resonance circuit. A high circuit Q can cause 
sharp changes in power transfer due to small variations in reactive inductance of the loop, therefore 
a low to moderate Q is desired. It may also be advantageous or necessary to select circuit boards with 
higher losses to lower the circuit Q. The input power change due to variations in the real part of the 
loop impedance is estimated to be about 3%. The SAR in the ellipsoid is expected to have similar 
variations, which is acceptable by the requirements of the exposure studies. However, if this condition 
is not adequate, impedance matching between the loop and source should be optimized with the 
parameters of the most likely configurations to minimize SAR changes. 

The electric field distribution around the loop and in the ellipsoid is shown in Figure 5 which 
indicates a current maximum and a voltage minimum on the side of the loop closest to the ellipsoid. 
This condition is similar to that reported by Balzano [3], where SAR induced by cellular phones in a 
human head is mostly due to current along the antenna and the effects of electric fields are less 
significant. The length of the distribution can be modified by the loop length, and the width of the 
pattern can be modified to a limited extent by varying the separations between the loops with circuit 
board thickness. The depth of the pattern is mainly controlled by tissue attenuation where only the 
peak SAR is controllable through adjustments of input power to the loop. The spacing between the 
loop and the ellipsoid can cause changes in power requirement, but it has little effect on the 
distribution patterns because of the much larger ellipsoid located in the near field of a small loop. 

llfiffi' 
l.OxlO1 4.2xlOJ 1.8x10'' 7.7x10'' 3.3x10" 1.4x10' 5.9x10' 

100 

20 40 60 80 100        120        140        160        180        200 

Figure 5 Relative electric field distributions of a 31 x 10 mm loop on 2 mm thick PCB of dielectric 
constant 8, at 7 mm from the ellipsoid. 
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Conclusion 

There are two main concerns in maintaining the stability of SAR within the target volume of 
a rat head. The changes in SAR due to loop movement and spacing errors as a results of impedance 
changes are resolved by putting the loops on circuit boards to control the spacing and by selecting 
SUÄSS indicated by the crossing points of the SAR curves, ^e other concern « 
impedance charges resulted from loop spacing errors causing fluctuations in power transfer from the 
ource to the loop. The inductive reactance is compensated with appropnate capacitors to form a 

resonance circuh The resistive part of the impedance can introduce about 3% of SAR changes which 
is acceptable for the present application and extensive matching is not required. 

The results obtained so far for the analysis of small loops in close proximity to an ellipsoid 
tissue model is only the first step in developing antennas for the described exposure studies.  We have 

Tverirthese findmgs experimentally with ellipsoid models and then repeat the numerical s.mulation 
with"iaT rat models obtained from CT images.   Finally the design must be tested on rats before 
implementing the actual exposure studies on hundreds of animals. 
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1    Abstract 

A 3-D explicit finite volume algorithm has been developed to simulate scattering from complex geometries on 
parallel computers using structured body conformal curvilinear grids. Most simulations with realistic 3-D ge- 
ometries require a large number of grid points for adequate spatial resolution making them suitable to parallel 
computation. The simulations have been carried out using a multi-block/zonal approach in the message passing 
paradigm on the SP-2. Each zone is placed on a separate processor and inter-processor communication is carried 
out using the Message Passing Library (MPL). Integration of the Maxwell's equations is performed using the four 
stage Runge-Kutta time integration method on a dual grid. This method of integrating on a staggered grid seems 
to give enhanced dissipative and dispersive characteristics. Results obtained in the past, have shown extremely 
good comparisons for scattering from the sphere and the ogive with the exact solution and standard FDTD type 
algorithms. Comparisons for non-axisymmetric targets like the NASA almond with experimental data has also 
been found to be extremely good. Scattering from complex 3-D bodies like a trapezoidal wing and an engine inlet 
has also been investigated. 

2    Introduction 

Scattering problems in electromagnetics have been numerically modelled since the conception of Yee's leapfrog 
algorithm [1] in 1966. However, the production of staircasing errors [2] coupled with the difficulty in predicting the 
radar return for low RCS geometries encouraged the development of various finite difference [3] [4], finite volume [5] 
[6], and finite element algorithms [7J. The complexity in the shapes of the scatterers being modelled has lead to a 
transition from the use of Cartesian grids. Body-fitted structured grid algorithms are being used because they utilise 
curvilinear orthogonal grids that map the surface of the body exactly by a transformation between the physical and 
the computational domain. However, in the last few years, unstructured grid methodology has become very popular 
mainly due to the relative ease with which unstructured grids can be generated around complex configurations 
[8], [9]. Unstructured grid solvers are replacing structured solvers for steady state aerodynamic problems [10] [11] 
particularly those that need to solve the Euler equations. Since Maxwell's equations can be readily put in the form" 
of the Euler equations unstructured grids seemed to be promising in CEM too. Unstructured grid solvers have 
been found to be very expensive and have been plagued with problems of numerical accuracy. Over the years there 
has also been a tremendous boost in the computational resources available, both in terms of speed and memory 
The onset of parallel computing has made a huge impact on the choice of the algorithm and the type of mesh to 
be considered. In the present paper, we make use of a Runge-Kutta based scheme on a dual structured grid that 
has multi-block capability. The algorithm is easily parallelized and is especially suited to message passing since 
the dual grid requires that only half the total variables be communicated between processors. 
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3    Numerical Model 
Maxwell's equations can be written in the integral form as 

/i/S—//.■- - 
IU&-JL- xH   dS 

(1) 

(2) 

The above equations are solved only for the scattered fields as the analytical solution of the incident field is 
known. A dual grid approach is taken with the electric and magnetic field components being solved on separate 
grids. Time integration is carried out using the four-stage Runge-Kutta time marching method. 

QV* = Q? - 7mArlt;"-1 

qn+l _ Qm=4 

m = 1,2,3,4 

The time step is denoted by n and each stage of the Runge-Kutta method by m, where the coefficients are 
7m = j,|, |,1 respectively. 

\ Hx 1 \ Ex 1 
Hy Q2 = Ey 

[HZ J L E* J 
The residuals Rj are defined as 

Ch = 

Rl = ^7(AF + AG + AK) 

R2 AVd 
(AL + AM + AN) 

(3) 

(4) 

(5) 

where 

AG = I(s< 

j+l j+l/2,*+l/2 X Ei+l,i+l/2,t+l/2       Sij+l/2,*+l/2 X Ei,j+l/2,t+l/2J 

i+l/2,j+l,*+l/2 X Ei+l/2,j+l,)c+l/2      Sl+l/2,j,k+l/2 X Ei+l/2,j,fc+l/2j 

AK 3-, . xEL. +l/2,j+l/2,*+l  X lii+l/2,;+l/2,it-H _ °i+l/2,j+l/2,t A "i+l/2,i+l/2 2,k) 

In the above expressions S«,S",S< represent the projected surface areas of constant £,»?,C faces respectively. It 
should be noted that the electric field points used in the evaluation of the above fluxes lie in the center of the cell 
faces and are not computed directly from the integration process. Instead they are extrapolated from the electric 
field points comprising the corners of the cell faces. 

Most central differencing algorithms require the addition of some sort of explicit artificial dissipation to damp 
out the spurious numerical high frequency waves. However, for a spatially staggered scheme the dissipation 
characteristics with a four stage Runge-Kutta method are quite different. This has been analysed with the help 
of a one-dimensional system of hyperbolic equations in [12]. The low wavenumber components propagate without 
being damped. However, the high frequency components are damped due to the grid induced dissipation caused by 
the staggering of the spatial derivatives. It should be pointed out that the above analysis is for a one-dimensional 
case on a uniformly spaced mesh with perfect staggering. In reality, however, body-fitted grids are usually clustered 
and may have imperfections like skewed cells or cells with high aspect ratios. Also, the staggering used in the 
algorithm is not completely perfect in three dimensions. All the above reasons contribute m the production ol 
spurious diffusion [13] for the high wavenumber components that are not completely damped by the grid induced 
dissipation. Hence the need for explicitly adding artificial dissipation. When required, fourth order dissipation [14] 
is added 

DQ = D(Q + Z>„Q + DcQ (6) 
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where £>{Q, Ö,Q, and ZJCQ are the fourth order dissipation operators in the £, 77 and C directions respectively 
and can be explicitly written as 

D& = di+Uk - dt_Ui        D„Q = diJ+hk - ditj_lk        £>CQ = diJMi - diJtk^ 

where the above di±ijik can be represented as 

The coefficient fl is a constant whose value is 5^ 
Hence inserting the expressions for artificial dissipation in equation 5 and rewriting it 

R.2 = -gy (AL + AM + AN - DQ) (7) 

Boundary conditions have to be defined only for the E-field components since the H-field components are offset 
by half a cell from the boundaries. At the surface of the scatterers the PEC boundary condition has been used 
and at the outer boundary the Liao boundary condition has been utilized [15], [16]. 

The farzone scattered fields are calculated in accordance with the derivation of retarded potentials from scattered 
surface currents in [17]. 

wtr-^/c]^)!^^}       .[t-(^/c]=(£)!{/.M*)*} 

Adaptation of this technique for computing the far-field transformation on curvilinear dual grids has been discussed 
in [16]. 

4    Parallelization Issues and Performance 

The computer that was used for the message passing algorithm is the IBM 9076 Scalable Power parallel system 
(SP-2) which is a tightly clustered group of RISC system/6000 processors. Efficiency in message passing is provided 
by a low latency high bandwith switch. "Latency" is the startup time that is required at the time of communication 
between processors, or in other words, it is the time taken to send a message in the limit as the message size goes 
to zero. "Bandwidth" refers to the message size that is passed per unit time. Communication time is roughly 
equal to the sum total of the time taken for startup and the actual time required to transfer data. The efficiency 
of a message passing algorithm is gauged by its ability to minimize the communication-to-computation ratio and 
to balance the workload effectively by partitioning the data structure evenly. Domain decomposition techniques 
are best suited for structured data problems where partitioning of the computational domain can be easily done. 

4.1    Implementation in MPL 

Since the grid for the algorithm discussed in the previous section consists of the E-field grid and the H-field dual 
grid, a Processor Domain (PD) for our purposes is a combination of the two. Message passing is carried out 
between two adjacent processor domains (PD's) by creating pseudo boundaries or shadow blocks between them. 
As is evident from figure 1 the interior cell values (E-fields in this case) are passed from one processor over to its 
neighbouring processor and they constitute the pseudo boundary conditions for the neighbouring processor and 
vice versa. Parallelization of the algorithm was performed on the SP-2 using the Message Passing Library (MPL). 
MPL uses the Single Program Multiple Data (SPMD) model wherein the same program resides on all processors 
and is executed by each one of the processors. However, each processor has its identifier processor number and 
this permits MPL to have processor based conditional statements. The reason for using a SPMD model is that in 
a distributed memory system, memory and address space is local to each processor and the only way data can be 
shared among processors is by passing messages. Each processor has it's own processor domain to work with. Each 
processor domain is either bounded by pseudo boundaries or a combination of physical and pseudo boundaries. A 
pre-determined processor (with processor ID=0) acts as the control processor and carries out the pre-processing 
tasks involved in setting up the parallel environment and all parameters required for message passing.  It reads 
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in the grid and distributes it to the various processors depending upon the type of domain decomposition. Each 
processor then generates its own dual grid from the information it has about its own grid. The grid and the 
constructed dual grid together constitute the processor domain of the processor. The processor then computes 
the volumes and surface areas of the cells that are located in its processor domain. It also calculates the time 
step required for computation on its own processor domain. This information about the minimum time step on 
each processor domain is then communicated to the processor with ID = 0. The processor with ID = 0 in turn 
determines the minimum time step for the entire computational domain and broadcasts it to all the processors. 

Message passing between processors is carried out by issuing explicit MPL calls. For example 

CALL MP-BSEND(qeast, jmax x kmax x 3 x risize, taskid + 1, msgid) 

will send the array "qeast" of size (jmax x kmax x 3 x risize) to the processor with a processor identification 
number equal to (taskid+1). Similarly, the call 

CALL MP-BRECV(qeast, jmax x kmax x 3 x risize,taskid-l,msgid,nbytes) 

will receive the array "qeast" of size(jmax x kmax x 3 x risize) from the processor with a processor identification 
number equal to (taskid-1). .        . , 

Since the whole simulation is a time dependent process, all processors are forced to be synchronized after each 
Runge-Kutta stage with the MPL call: 

CALL MPJSYNC(allgrp) 

which blocks all execution on all processors until all processors have made the corresponding call. 

4.2    Message Passing Performance 

Performance of a parallel algorithm is gauged on the basis of how well an algorithm scales with the increase in the 
number of processors and its communication to computation ratio. The lower the communication to computation 
ratio the higher is the efficiency of the program. The test case of scattering from the NASA almond for a grid 
size of 225720 grid points was run for 10,000 iterations. The entire computational domain was spread over 7 
processors A first run was made of the code with the far zone integration and the artificial dissipation switched 
off. The communication time listed includes time to perform inter-processor communication and latency time 
including latency time for synchronisation after each time step. 

average communication kwait time _ 
average computational time 

Next the performance of the code was evaluated after switching on artificial dissipation. Fourth order artificial 
dissipation requires that additional message passing be performed since the fourth order derivative stencils require 
that an additional field point be communicated from adjacent domains on either side. In comparison to the 
previous efficiency ratio, it is seen that there is a 5.8 percent increase in the computational time required whereas 
the communication requirement has increased by 10.2 percent. The relative increase in the amount of commumcat 
ion over the computations has lead to a slight deterioration in the efficiency ratio. 

average communication k.wait time _    «»--- 
average computational time 

Lastly, the computer code's performance with the near to far field transformation was analysed In this case, 
the time taken for message passing showed a five-fold increase over the communication time needed with the far 
zone transformation switched off. This increase can be attributed to the message passing involved m passing and 
summing up the potential arrays over all the processors that have a part of the far zone integration surface defined 
in their respective processor domains. 

average communicationk.wait time _ 
average computational time 
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Table 1: Performance of Codes in psecs/node/timestep 

Algorithm Computer psecs/node/timestep 
Serial 
FDTD RS/6000 14.0 
FVTD RS/6000 94.0 

Message Passing 
FVTD SP-2 (4-node) 12.76 
FVTD SP-2 (16-node) 3.99 

4.3    Performance Results 

In this section the performance of the FVTD algorithm will be compared against the FDTD algorithm [4] in terms 
of the computational time required. 

Table 1 shows the time taken per grid point per iteration for both the FVTD and FDTD codes. In the serial 
mode the FDTD algorithm is 6.7 times faster than the FVTD algorithm. This is attributed to the fact that the 
FDTD is run on Cartesian grids whereas the FVTD algorithm is used on curvilinear grids and the additional cost 
of the transformation from the physical to the computational grid is incurred while computing the numerical fluxes. 
Also, the FVTD algorithm has a four-stage time integration process which is a further overhead. The numbers 
in Table 1 can be misleading chiefly because of two reasons: Firstly, the FVTD algorithm requires fewer cells per 
wavelength than the FDTD algorithm [12]. Secondly, the curvilinear nature of the FVTD grid requires far less cells 
in the computational domain than is required by the stair-stepped Cartesian grid needed for the FDTD algorithm. 
Table 2 shows the number of grid points required by the two algorithms to adequately resolve the scattering wave 
patterns for an ogive shaped target [15]. 

Table 2: Grid Point Comparison for the Ogive 

Algorithm Grid Dimensions Total Grid Points 
FDTD 400 x 100 x 100 4 Million 
FVTD 200 x 31 x 32 198,400 

Here, it can be clearly seen that approximately 20 times more grid cells are required by the FDTD algorithm 
over the FVTD algorithm. This shows that even though the FDTD algorithm is much faster than the FVTD 
algorithm , it may not be that attractive in the overall scheme of things. 

5    Results 

One of the most important EMCC benchmark targets is the NASA almond. It is important partly, because of the 
nature of its geometry and, because it remains one of the more difficult bodies for which to procure an accurate 
RCS. Looking at it from a cross-sectional view, it resembles a circular-arc airfoil. However, it has a finite thickness 
that is rapidly varying in the spanwise direction. This makes it rather difficult to grid using a standard grid 
generator. The almond is 9.936 inches long and it's geometrical specifications are defined in [18]. A sinusoidal 
clustering of grid points was used along the rotational direction. The clustering was necessary to avoid getting 
high aspect ratio cells. Since an O-H type grid was desired, an axis of symmetry was added to the almond that 
extended from the leading and trailing edges of the almond to the outer boundaries at both ends (figure 2). Along 
each equiangular curve of surface points a standard grid generator, HYPGEN [19], was used to create a planar 
grid. All the planar grids were then combined to obtain a fully three-dimensional grid (figure 3). Two grids were 
employed for all the cases run for the almond. One of the grids has 198 x 20 x 57 grid points and the other consists 
of 198 x 45 x 57 grid points. One-dimensional domain decomposition was employed in all cases along the longest 
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dimension. The computational domain was spread across 7 processors equally on the IBM SP-2. The far zone 
integration surface was denned six cells away from the surface of the almond. Due to the nature of the gnd used for 
this test case, odd-even decoupling was observed. It was suppressed by adding fourth order artificial dissipation^ 
as previously discussed in Section 3. Scattering from the almond was investigated for all angles of incidence from 
0 degrees to a 180 degrees at intervals of 15 degrees at a frequency of 1.19 GHz        „.,„_..     ,   .    .. 

The monostatic RCS computed was compared to experimental results obtained for Vertical/Vertical polar.zat.on 
bv Woo et al [181. For experimental measurements the metallic almond target was made out of aluminium The 
experimental results have been plotted by sweeping through the rotational tf^direction at 5 degree mte^A 
comparison of the FVTD and experimental results is compared in figure 4. Each FVTD point infigure 4 represent 
a complete FVTD run for the angle of incidence represented by </, on the abcissa scale. The FVTD computational 
results are in very good agreement with the experimental observations and are mostly within a 2 db agreement 
margin at all angles except those at 45 degrees and 135 degrees where the algorithm seems to underpredict and 
overpredict the measured RCS respectively. . . 

The steady state or time harmonic scattered E2 field solution for nose on incidence at 3Ghz is shown m figure 
5 for both planes parallel and perpendicular to the direction of polarization. 

5.1    Scattering from a trapezoidal wing 

One of the main contributors to aircraft RCS is the scattering from the leading edge of wings [20]. The radar 
returns from wings are important for normal and near-normal incidence. In order to gain some qualitative insight 
into the scattering from wings a perfectly conducting wing was chosen as the next target for investigation. The wing 
used in this case is the trapezoidal Lockheed Wing-C [22] with camber and twist. The purpose of this test case was 
three-fold Firstly to demonstrate the ability of the algorithm to tackle realistic three-dimensional configurations. 
Secondly to evaluate the robustness of the dual grid based algorithm in working with different types of grids m 
particular a C-H based grid system with a split line extending from the trailing edge of the wing to the outer 
boundary. Lastly, to get a qualitative perspective into the mechanism of scattering at normal incidence for the 

Wmf he grid pertaining to a single zone of the wing is depicted in figure 6: Ghost points pertaining to the magnetic 
field were introduced to solve for the electric field points that lie on the split line between the trailing edge and 
the outer boundary. The grid consisted of a 109 x 42 x 146 grid points. It was.generated usmg PACMAM 
which is part of the TEAM (Three-Dimensional Euler/Navier-Stokes Aerodynamic Method) [21] Since the gnd is 
designed to simulate steady state aerodynamic problems it has some limitations that restrict its feasibility for time 
dependent electromagnetic problems. The grid cells at the pinch that is introduced to close the grid at the wing 
tip are extremely small, thereby making the time step extremely small. This makes evaluation of RCS at realistic 
frequencies a very time consuming process requiring hundreds of thousands of time steps. However, the grid can 
still be used to obtain qualitative scattered field patterns. 

Domain decomposition is performed along the largest dimension. A wideband Gaussian pulse is mc.dent on 
the leading edge of the wing. The incident field is linearly polarized along the z-direction and the direction of 
propagation is one of forward incidence to the wing. Figure 7 shows the scattered field along various cross-sections 
of a part of the wing. Electric field continuity is maintained along the split line, thereby showing that the dual grid 
did not create any unnecessary problems in treating grid configurations of this type. Figure 8 depicts the intensity 
of the ff„ field component of the magnetic field along the various cross-sections of the dual grid of a section of the 
wing Both figures are indicative of the fact that the primary scattering effects take place normal to the planform 
of the wing as scattered field patterns do not show a significant difference along the afferent planes in the spanwise 
direction. Next a sinusoidal excitation was used with exactly the same polarization and incidence as the Gaussian 
excitation. The scattered field Ez and Hy patterns are shown in figures 9 and 10. 

5.2    Scattering from an engine inlet 

Since the wing, fuselage and engine are important parts of any aircraft configuration the last test case pertatai to 
an aircraft engine. In this case an engine inlet was used as the scatterer. The center body, and the engine cowl 
Z treated as perfectly conducting. The fan section was also treated as a closed PEC boundary This seems to be 
a reasonable approximation when using wavelengths that are large compared to the inner annulus height F^ure 
11 depicts a plaLr slice of the grid [23] that was used in this case. It consists of 242 x 40 x 65 grid points. Since 
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one dimension is considerably larger than the other two dimensions, one-dimensional domain decomposition was 
utilized along the primary direction for parallelization purposes. As is evident outside the cowl this grid is rather 
coarse. This grid has been used in the solution of aeroacoustics and aerodynamic type problems. However, there 
are certain limitations when the grid is used to solve for electromagnetic fields. Low frequency excitations would 
lead to the formations of creeping waves, that would not be captured as the grid does not completely enclose the 
engine. High frequency excitation, on the other hand would be difficult to resolve as one moves away from the 
inlet and the center body. A sinusoidal excitation of 500 Mhz was used in this case. Compared to the diameter of 
the inlet cowl and the grid used, this excitation is to be high frequency. The incident wave travels along the axial 
direction of the engine and is linearly polarized along the transverse direction. Figure 12 shows the scattered Ez 

field pattern along a planar slice of the grid. The scattered field pattern is clearly seen close to the center body and 
around the inlet. Beyond that the grid is very course and the disturbance appears to be damped. There appear 
to be strong interference effects from within the cavity between the center body and the shroud, and within the 
cavity between the center body and the shroud, and currents seem to oscillate back and forth between the center 
body and the fan. 

6    Conclusions and Future Work 

A time domain algorithm has been presented to solve Maxwell's equations over generic body conformal grids for 
three dimensional geometries. The dual nature of Maxwell's equations are well exploited in that the algorithm 
uses a dual mesh. The staggered nature of the algorithm gives it better dispersion and dissipation characteristics. 
With a second order staggered scheme resolution normally provided by fourth order non-staggered schemes can 
be obtained. In most cases, the dissipation provided by the grid staggering precludes the need to explicitly add 
any artificial dissipation. The message passing approach provided more control and flexibility in distributing data 
over the computational resource and load balancing. The far field transformation too, was better suited to a 
message passing environment. The dual nature of the grid aided in parallelization, since only one of the fields had 
to be communicated between processors. Comparisons of results obtained for scattering from the almond are in 
good agreement with experimental observations. Simulations for the engine inlet and the wing demonstrate the 
capability of handling complex configurations. 
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Figure 2   Surface grid for the NASA almond. 
Figure 3   Outer grid for the NASA almond. 
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Figure 4   RCS for the NASA almond - W Polarization. 

Scattered Ez fields along plane parallel to incident polarization 

Scattered F, fields along plane perpendicular to incident polarization 

Figure 5   Scattered Ez fields for the almond at 3 GHz. 
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Figure 6   Grid for the trapezoidal wing. 

Figure 7   Scattered Ez fields for the trapezoidal wing.   Figure 8   Scattered Bv fields for the trapezoidal wing. 

Figure 9   Scattered Ez fields for the trapezoidal wing. 
Figure 10   Scattered Hy fields for the trapezoidal wing. 
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Figure 11   Grid for the Engine Inlet. 
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"Figure 12   Scattered Ez fields for a planar slice of the inlet  
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ABSTRACT 

The Finite Difference Time Domain method (FDTD) has become a valuable tool for analyzing 
practical high frequency devices. However, complex structures often require large computer re- 
sources for the simulations especially when an automatic structure optimization is performed. In 
many cases locally refined meshes can help to reduce the computational cost to acceptable sizes. 
In this paper a subgridding extension is presented where special care .s taken on the stability 
of the numerical algorithm. The accuracy and dispersion of the method are studied by regar- 
ding simple test examples before the practical applicability is demonstrated by computing the 

scattering parameters of a microstrip structure. 

1. INTRODUCTION 

The simulation of high frequency devices by using the Finite Difference Time Domain (FDTD) 
method has become of increasing importance during the last decade [1,4,5]. The major advantage 
of this method in comparison to many other popular ones is the enormous flexibility combined 
with a large numerical efficiency. However, the application of plain FDTD methods shows some 

restrictions arising from limited computer resources. To circumvent these P?ble™ ^ZT^ 
chers have successfully introduced special features into the basic a gonthm m order to make the 
method more applicable to realistic problems (e.g. thin wire models incorporation of static held 

solutions, narrow slot models, lumped circuit element models, etc.) [4-9]. 

Many practical structures, especially those containing small important details still require large 
amounts of mesh cells for accurate discretizations. In many cases the number of cells can be 
reduced by introducing a sequence of locally refined meshes into the base mesh. Some so called 
subgridding schemes have already been presented in the past, but among our knowledge none of 
hese schemes actually keeps all the important properties of the FDTD method namely stabiMy 

and convergence (e.g. [10]). In this paper we will present a consistent subgridding extension where 

convergence and stability can be proven for the discrete system. 

The basis of our formulation is the integral form of the ^f^.M»^!?1^ ^ols 
given by the Finite Integration (FI) method [2,3]. In time domain both FDTD and FI method 
finally lead to the same algorithm although they use different denvations of the fundamental 

equations. 
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Based on the integral formulation, we start with pointing out the important properties of the 
FI method. These properties manifest in the existence of curl and source matrices in grid and 
dual grid which fulfill a set of important relations. Focusing on these properties we then derive 
a consistent subgridding scheme which is fully "compatible" with FDTD. Due to this systematic 
approach, the method can also be applied to a special FI based Finite Difference Frequency 
Domain method. 

After proposing the method for FDTD we study numerical dispersion and stability by regarding 
some simple test examples. Finally we show the application of the scheme to a practical microstrip 
scattering parameter problem by performing a computation involving several subgrids. 

2. THE METHOD 

The Finite Integration Technique (FIT) transforms Maxwells equations and the corresponding 
material relations into discrete matrix equations from an integral oriented point of view. The 
electric voltage and the magnetic flux are both allocated on a grid; the electric flux and magnetic 
voltage are allocated on a dual grid. The correspondence between both grids is given by the 
discrete material relations. In time domain the method finally yields the following system of 
equations [2,3]: 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

where e, d and h, b represent electric and magnetic voltage and flux values in grid and dual grid, 
respectively. The diagonal matrices De and Z>„ contain averaged material properties and mesh 
dimensions. The so called curl and source matrices are describing the topology of grid (S C) and 
dual grid (S, C). 

It can be shown that for the curl and source matrices the following properties hold: 

SC   =   0 (7) 

SC   =   0 (8) 

C   =   CT   . (9) 

These properties are essential for stability (thus energy conservation) and divergence conservation 
of the discrete system. 

When introducing subgrids into the base computation mesh, the common set of equations can 
be applied inside each grid. Modifications are necessary at the transition planes of mesh and 
submesh. Fig.(l) shows the coupling scheme between the field components in base mesh to the 
components in submesh and vice versa. 
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The relation C = CT implies that the coupling factor of a magnetic voltage to an electric flux 
component must be equal to the coupling factor between the corresponding electric voltage.and 
magnetic flux. It can be shown that for this scheme modified source matrices exist which fulfill 

SC = 0 and SC = 0. 

Figure 1- The picture shows the coupling between a base mesh magnetic flux 
component and submesh electric voltage components at the transition plane. We 
use linear interpolation of the tangential magnetic voltage in base mesh to the 
tangential electric flux at submesh boundary. It is essential to use the same 

coupling coefficients for e, b and k, d, respectively. 

The transversal termination of the transition plane between mesh and submesh requires a shift 
of the dual mesh nodes in submesh next to the transition plane onto their n«ghbounng mesh 
nodes inside submesh. Perfect conducting materials crossing the transition plane also require a 
"odmcätion of the coupling scheme. It can be shown that for all these modifiers the scheme 

is still consistent. 

The time integration can be performed by using a modified leap frog scheme [1] Two time steps 
a7e p XrSinside the submesh during one field updating cycle in base mesh The .me step 
wTdtht Umtted by the well known Courant criteria. Due to the modificaüon of the dual mesh at 
The term nation of the transition plane, the time step width has to be reduced once by a factor of 
two whTXids are present. The updating scheme becomes recursive when subgnds contain 

subgrids again. 
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3. EXAMPLES 

The numerical dispersion of the FDTD method due to the finite discretization step width causes 
reflections at the transition of different mesh step sizes. In practical computations the reflections 
can be reduced to sufficiently low values when using about twenty mesh steps per wavelength. In 
the following investigations we will study the reflections by regarding two test structures which 
have been discretized by using quite coarse meshes with about fifteen steps per wavelength. 

The first test structure consist of a rectangular waveguide being fed at one port with the funda- 
mental H10 mode at a frequency of f=6 GHz. The waveguide cross section dimensions are 0.9in 
x 0.4in. The input reflection is calculated by using a high performance open boundary operator 
[12J. 

The second test example is derived from the first one by adding a conductor along the axis of 
the waveguide. This waveguide is fed by a 3.3 GHz TEM mode at one port for which the input 
reflection is computed. 

For each of the test structures three computations are performed by using 1) an uniform mesh, 2) 
a graded mesh with ratio 1:2, 3) a submesh inside the base mesh. Fig.(2) shows the test structures 
and the different discretizations. The results for the input reflection are compared in the following 
table: 

Mode uniform mesh graded mesh (1:2) submesh 
#10 -122 dB -37 dB -34 dB 

TEM -107 dB -37 dB -27 dB 

The reflections for the H10 mode are in the same order of magnitude when using non-uniform 
meshes and submeshes, respectively. The reflections at the mesh to submesh transition are larger 
for the TEM mode than for the H10 mode. This effect is caused by the dependence of the 
transversal mode pattern (and thus wave impedance) on the transversal discretization step width 
around the edges of the inner conductor. Reducing these reflections by using a edge correction 
model is currently under development [9]. 

The numerical stability of the algorithm is tested by performing about 100,000 time steps for a loss 
free resonator structure. The resonator is derived from the second test structure by terminating 
the waveguide at the ports with perfect conducting planes. The fields are excited by a dipole 
stimulation using a very short gaussian pulse. Fig. (3) shows the time signal of an electric field 
component inside the resonator. A violation of the energy conservation would cause an increase 
or decrease of the electric field amplitude versus time. 
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Figure 2: This picture shows the two test structures used for investigating nume- 
rical reßections of the method. For each structure three computations have been 

performed by using different discretizations. 

The next example is given by a practical microstrip phase shifter, see Fig.(4) [13]. There are two 
important areas which require fine discretizations in this structure: 

1) The small widths of the stubs require a fine discretization to properly resolve the field varia- 

tions around the edges. 

2) The transition of strip lines with different widths causes heavy field variations due to the 

behavior of the surface current. 

For this filter the scattering parameters have been computed and the phase of the transition coeffi- 
cient has been compared with measurement. Three different discretizations have been studied: 1) 
a non uniform base mesh, 2) an additional subgrid around the stubs, 3) additional subgrids around 
the stripline transitions. The discretizations are shown in Fig.(5). The results for the phase of the 
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Figure 3: The numerical stability is investigated by calculating the resonant 
fields in a loss free resonant structure. This plot shows a component of the elec- 
tric field versus time for about 100,000 time steps. No unstable high frequency 
oscillations arise. 

Figure 4: The microstrip phase shifter consists of a stripline transition with two 
stubs. One stub is open ended, the other one is terminated by a via interconnect 
structure. The scattering parameters are computed and the phase of the transi- 
tion coefficient is compared with measurement. 

transition coefficient are compared in Tab.(l). It turns out that a very good agreement between 
measurement and simulation can be achieved by encapsulating all important structure details in 
subgrids. The computation time increases from about 15 minutes on a SUN-SPARCSTATION 20 
without subgrids to 40 minutes with subgrid 1 up to 60 minutes with all subgrids. 
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Figure 5: The filter structure has been discretized by using up to three subgrids 
inside the base mesh. Important areas in this structure are tie stubs and the 
transitions of strip lines with different widths. 

Frequency / GHz base mesh subgrid 1 subgrid 1-3 measured 

6 -64.33 -65.34 -63.82 -63.54 

9 -127.09 -127.248 -125.57 -124.28 

12 -184.17 -183.86 -181.48 -179.76 

15 -241.55 -239.79 -237.49 -237.29 

18 -312.79 -305.39 -301.35 -301.22 

Table 1: The table shows a comparison of the transmission coefficient phase in de- 
grees obtained for different discretizations and measurement [13]. The agreement 
between simulation and measurement becomes better when important structure 
details are encapsulated in subgrids. 

4. CONCLUSIONS 

In this paper a consistent subgridding extension for the FDTD method has been presented. It has 
been shown that numerical reflections at the transition planes between mesh and submesh are m 
the same order of magnitude as those which arise from using non uniform grids. The practical 
application of the proposed scheme has been demonstrated by calculating the scattering parame- 
ters for a typical microstrip structure. The computed results for the phase of the transmission 
coefficient are in very good agreement with measurement. 
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Abstract- Code validation compares computed results against reference data, such as measurements, to 
demonstrate the degree of agreement obtainable for a given problem with a particular computational 
electromagnetics code. By solving many problems we can explore and document the code's strengths 
and limitations. The result is "modeling guidelines" for constructing input geometries which the code 
can solve accurately, and specifying restrictions on input geometry to avoid cases that the code cannot 
solve reliably. Such guidelines advise the user on how to wield the code effectively and on what pitfalls 
to avoid. The user of a computational electromagnetics code may want to review the code-validation 
studies supporting the code, both to assess the code's accuracy and to learn how to construct good 
input geometries. However, those studies may not be readily available in the manuals or in the 
literature. 

The David Florida Laboratory RCS Data Base is at present an extensive collection of measured 
RCS data available on the world-wide web for code-validation purposes. The purpose of this paper is 
to extend the data base by adding computations done with various computer codes, for comparison 
with the measured data. Code developers and those using computational electromagnetics codes are 
invited to contribute computations to the data base. The data base can serve as a library of code- 
validation problems solved with a given code. Further if one problem is solved with several codes, then- 
accuracy can be compared readily. The data base may thus become a rich source of information about 
the capabilities of the various computer codes available today. 

Introduction 

Code validation is the testing of a computational electromagnetics(CEM) computer code to 
assess the accuracy to which the code solves reference problems which have reliably-known 
solutions[l,2]. When a new CEM code is written or an existing code is modified for better 
performance, the developer solves reference problems to demonstrate the accuracy of the new code and 
compares it with other methods in computational electromagnetics. The code developer builds a 
modest "experience base" of problems solved with the new code, and in doing so inevitably formulates 
rules, called "modeling guidelines" for using the code effectively. The developer publishes a "user's 
guide" which states the modeling guidelines, and gives input data and results for simple problems, to 
serve as a tutorial in using the code[3,4]. In addition the developer may publish one or more papers 
describing how the code performs for more complex problems. The code is then released into the 
community. 

To solve a new problem with the CEM code, the user must construct a discretization of the 
geometry, called a "computer model" or simply a "model". For example, in surface patch modeling[3] a 
continuously-curved surface must be replaced by planar triangular patches leading to a faceted 
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discretization. A new user of a CEM code must learn to construct good discretizations. This often 
starts with "running" the sample problems in the "user's guide", as a confidence check both tha the 
code is implemented correctly on the user's hardware, and that the user understands the details of 
supplying input geometry data to the code. The next step the user takes often consists of carrying out 
his own "code validation" for the CEM code. This consists of solving some problems of special interest 
in his area of application, for which he has reliable reference data. This is the user's first exercise in 
constructing discretizations for problems not in the user's guide. The user judges the accuracy of the 
CEM code in comparison his reference results, either measured or computed by other methods. Now 
the user is ready to try to wield the code as a tool to solve new problems. 

A community of users who carry out code validation for a CEM code for their own purposes 
greatly expands the "experience base" of validation problems that have been solved with code. But this 
"experience base" is not collected in a single location and so is not readily accessible because it is 
distributed among many individuals. Some of these applications are published as conference papers or 
journal articles, and then contribute to the published experience base, available to all. The aggregate ot 
everyone's experiences testing a given code, that is, the community's experience base, is always much 
larger than the published experience base. 

The purpose of this paper is to introduce a means of sharing code validation studies freely by 
taking advantage of the world-wide web(WWW). At the David Florida Laboratory of the Canadian 
Space Agency, a series of measurements were carried out for the purpose of code validaüon[5L In 
order to make this extensive collection of measured RCS data available to the community, the TJFL 
Code-Validation RCS Data Base"[6] was set up to permit users on the web to browse through a list ot 
the available results and to copy those of interest to them. This paper extends the DEL RCS Data Base 
to become a hub for the posting and exchange of code validation results, both measured and computed. 
This paper describes the various purposes of the DFL RCS Data Base, and how it can serve various 
needs of the user community. We will review the purposes of "code validation" and the nature of the 
certification it bestows on a CEM code. The paper will describe how the DFL RCS Data Base might 
improve the community's confidence in the available CEM methods. 

The Purposes of Code Validation 
All methods in CEM make simplifying assumptions in their formulation, and none satisfy their 

boundary conditions exactly. Hence none provide an exact solution to a given problem. Though some 
methods can display the error incurred in satisfying the boundary conditions point-by-point on the 
surface this is not easily correlated with the error in, for example, the radar cross-section. Few 
method's provide an estimate of the overall accuracy expected of the results. The user must be ableto 
assess the accuracy of the approximate solution that the code generates for the problem at hand. The 
first purpose of code validation is to document the code's accuracy by comparing results for specific 
problems with measured or other reference data to display the degree of agreement. This "certifies the 
code's accuracy for the classes of problem for which it has been tested. 

All CEM codes require that the actual geometry be simplified to obtain a "model" of the 
geometry which the code is capable of solving. The model determines how the code will enforce the 
boundary conditions. Finite-difference or finite-element methods subdivide three-dimensional space 
into elements and assign material types to the elements; changes in material type from element to 
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element determine the location of the surfaces of the object hence determine where the boundary 
conditions will be enforced. Moment methods usually determine current flow or equivalent current 
flow on the surfaces of the object; hence the surface is directly subdivided into elements. All 
discretizations are limited in bandwidth, specified as rules governing the element size compared to the 
wavelength. 

Few codes can solve any arbitrary collection of elements that the user might assemble. 
Knowing the assumptions, both mathematical and numerical, that were made in formulating the code 
suggests possible limitations. The code developer must explore and document geometrical limitations 
on the model, required to ensure the validity of assumptions , approximations, and simplifications made 
in formulating the code. The second purpose of code validation is to convey this information to the 
user, in the form of "modeling guidelines" to aid in the construction of discretizations for solution by 
the code. These must include guidelines for good practice in building a model that does not infringe on 
the code's limitations, and specific rules for identifying constructions that do violate these limitations 
and so may not be solved accurately by the code. 

Modeling Guidelines 

Modeling guidelines are the result of solving a variety of problems with the code to explore the 
code's limitations. A given discretization might be solved over a considerable bandwidth, seeking the 
frequency limitations of the code. A geometry might be discretized in various ways and the results 
compared, to identify the best practice in assembling a model. Modeling guidelines have two purposes, 
namely to identify good practices in constructing discretizations, and to identify bad discretizations that 
the code cannot solve accurately. Modeling guidelines should provide "rules-of-thumb" for the user to 
follow in subdividing the geometry into elements leading to a model that does not infringe on the code's 
limitations. Conversely, modeling guidelines must explicitly identify constructions of elements which do 
infringe on the code's shortcomings and which are not expected to be accurately solved. When a 
code's modeling guidelines ignore limitations, the naive user may be misled into believing that the code 
can solve any geometry at all. 

Modeling guidelines that identify specific constructions of elements that the CEM code cannot 
solve accurately can be built into an "integrity checker" program. An "integrity checker" first looks for 
gross errors in a model, such as duplicated elements, or elements that cross or overlap in ways not 
intended by the code developers. Then the integrity checker sorts through the model, and 
systematically verifies that the discretization complies with the "modeling guideline" limitations. For 
example, in wire-grid modeling using the "Numerical Electromagnetics Code"(NEC)[4], the modeling 
guidelines identify a variety of limitations. For example: the length of "segments" must be at least 
twice the wire radius; the ratio of the lengths of segments making up wire junctions must not greater 
than five; the ratio of the radii of segments at wire junctions should be less than ten; and so forth. 
These have been built into program CHECK[7] which identifies all transgressions of the modeling 
guidelines and allows the user to repair them before proceeding to run the NEC code to solve the 
problem. Systematic integrity checking improves the quality of the results obtained with the NEC code 
and would be useful for all CEM codes. 

For an inexperienced user, clearly-written, informative modeling guidelines greatly increase the 
usefulness of a CEM code, providing rules for the construction of a good model, and spelling out the 
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limitations to help avoid buüding a bad model. Modeling guidelines are akin to necessary conditions 
that must be satisfied by the input geometry if it is to be correctly solved by the CEM code. However, 
modeling guidelines are not "sufficient" conditions that guarantee that the CEM code will solve the 

problem to a preset accuracy. 

Reference Data for Code Validation 
The Mie series[8] is an exact solution to the problem of scattering from a perfectly-conducting 

sphere or dielectric sphere and is frequently used generate reference data fort testing scattering codes. 
But few other geometries in three-dimensional radiation or scattering have a mathemancally-exact 
solution. Approximate analytic solutions, such as those of King and Harrison for dipole antennas and 
crossed wires[9], are sometimes used to generate reference data for comparison with numerical 
computations, but when there is disagreement there is doubt about which solution is the correct one. 
Computed data obtained from a very different computational method is sometimes used as reference 
data for code validation.  Most often measured data is used. 

Measured data can never be regarded as "exact". The physical limitations of the measurement 
setup lead to measurement error. "Measurement validation"[2] is usually necessary to ensure that the 
data from the available measurement setup is sufficiently accurate to be useful for code validation. For 
example, RCS measurements for a standard target such as a metal cube might be compared with 
measurements done at other facilities. Good correspondence lends us confidence in the measured data 
from the same setup for other, similar targets. Another source of "measurement yahdation data is 
computations. Agreement between measured data and results computed with a well-established CEM 
code lends considerable confidence to the measurement setup. An awareness that the measured data is 
not the "exact" solution is essential in assessing code validation comparisons. 

Model Validation 
Given a new problem in radiation or scattering, the engineer selects a suitable computational 

method discretizes the geometry according to the modeling guidelines and restrictions, and computes 
the desired results. The engineer must assess the degree of confidence that can be placed in those 
results Is the computed RCS accurate to within 3 dB or 1 dB? Is the resonant frequency accurate to 
one percent or one-tenth of one percent? CEM codes do not inherently provide a guarantee of the 
accuracy of a computation. 

Recall that the first objective of code validation is to assess the accuracy of the code in solving 
standard geometries. The first axiom of "code validation" is that the accuracy attained in solving a new 
problem will be comparable to that for similar problems solved in the past. Thus our engineer should 
be able to consult the code validation results supporting the code, looking for a similar problem 
previously solved. But such code-validation studies are not often published comprehensively. 

If no published code-validation comparison for a similar problem can be found, then "model 
validation" may be required to assess the accuracy of the computations. Also, because the accuracy of 
results with most CEM codes is dependent upon the details of the discretization, the sponsor may wish 
to carry out "model validation" to increase confidence in the accuracy of the results. A measurement 
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program is set up, in which a suitable physical model is built and measured data are acquired, and 
compared with the computations. Often, both the details of the discretization and the details of the 
measurement procedure can be adjusted to iron out shortcomings. Good agreement between 
computations and messurements greatly increases the confidence that can be placed in both. Once 
model validation is done for, say, an aircraft with certain HF wire antennas, then the computer model 
can be used with confidence for other configurations of wire antennas, without further model validation. 
If another, similar aircraft must be studied, we would expect a similar discretization to obtain 
comparable accuracy, and so model validation might not be required for the new aircraft type. 

Model validation is in fact further code validation carried out independently by the user 
community, and broadens the experience base for that CEM code. Regrettably, such applications are 
rarely published, either because the results are proprietary or classified, or because they are thought to 
be of no interest to the community. More and better-documented case studies add to the confidence 
that can be placed in a given CEM code. 

Traceable Code Validation 

Ideally, we should be able to examine the evidence supporting the claim that a given CEM code 
is a useful tool. We might consider that comparisons of the results obtained with the code with exact 
mathematical results to be the best evidence, and with measured results to be almost as good. These 
are "primary standards". Comparing computed results with those obtained by from another CEM code 
is a "secondary standard" because we are relying on the accuracy of that code, presumably established 
against primary standards in the past. In practice it is difficult to obtain comprehensive code-validation 
information for any CEM code. Hence the need of users to do their own "code validation" and "model- 
validation" studies, to establish for their own purposes the accuracy that can be expected of a given 
CEM code. It is especially frustrating to try to obtain the numerical values of measured data that has 
been published in a code-validation study, only to be told that the data is no longer available, because it 
has be lost when some individual left the organization, or is written on a tape for a computer no longer 
operational. 

The DFL RCS Data Base 

The DEL RCS Data Base[6] is intended to streamline the process of establishing confidence in a 
given CEM code. The data base contains measured RCS data for a great many targets, from very 
simple strips and rods, to much more complex objects such as simplified aircraft and ship geometries. 
Users can download the numerical values of the measured data as needed. Code-developers thus have 
ready access to a library of measured RCS data for various targets for use in establishing the accuracy 
of a new code and in testing its limitations. Code users wishing to establish confidence in a given CEM 
code can obtain measured data for comparison with their own discretizations and computations using 
that code. 

Further, users and developers are invited to contribute their computations and measurements to 
the data base. The intention is that a user wishing to examine the evidence supporting the accuracy of a 
certain CEM code can look into the DFL RCS Data Base and find computations with that code 
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compared with measurements for various targets, including me details of the discretization. This,may 
save new users of a given CEM code the expense of extensive code-validation studies of their own as 
such studies are readily available on the DFL RCS Data Base. Further, a new user can examine the 
details of the discretizations available on the data base to learn to build his own models effectively. 

Another objective is to allow a user to compare the performance of various codes to choose the 
one most suitable for a given application. Thus, if a given target has been solved using a number of 
different CEM codes, the user can examine the RCS predicted by the various codes in relation to one 
another and to the measured RCS. If such comparisons are available for a variety of targets, the user 
has quick access to a comprehensive comparison of the performance of the various computational 

techniques available for that problem. 
Those developing a CEM code may wish to use the DFL RCS Data Base to demonstrate their 

code's performance relative to other codes. By contributing data to the DFL RCS Data Base computed 
with their code for various problems, the capabilities of the code are exhibited, relative to other 
methods. Potential users shopping for a code can evaluate various codes one against the other. 

Data Required for Each Problem 
The DFL RCS Data Base[6] consists of a collection of target geometries, and the RCS for each 

as a function of frequency, for one, several or many angles of incidence The RCS has been measured 
for most targets in a 6 by 6 by 6 m anechoic chamber by the method described in Ref. [5]. For each 
target a description of the geometry is given in sufficient detail to allow the user to construct a 
discretization for computation. RCS data for one or a few angles of incidence is given ir,an rplot ffle_ 
RCS data for many angles of incidence is given in the form of a "table" file. A detailed description of 
these file formats is available on the database itself. The RCS data base provides graphing programs 
which can be downloaded to be executed on a PC computer . Program RPLOT is used to compare the 
measured and computed RCS as a function of frequency for a single angle of incidence Program 
CPLOT is used to display the RCS as a color contour map as a function of frequency and incidence 
angle in a rectangular-axis format. Program POLPLOT displays RCS as a polar-format color contour 
map with the radial axis proportional to the frequency and the angle axis corresponding to the angle of 
incidence[10]. The polar format reveals intriguing patterns related to scattering centers such as edges 

andtips[ll]. 

Contributing to the Data Base 
A contribution to the DFL RCS Data Base has four parts: identification, problem, method and 

data The contributor must identify himself or herself, with name, title, organization, and email address. 
The problem being addressed must be clearly identified, either as one already on the data base or as a 
new problem. The method used for solving the problem must be fully described. For computations^ 
contributor must identify which CEM technique and code was used, including references to the.code, s 
manuals, if available, and to the literature. The discretization of the target should be included in the 
submission so that users can examine it to learn how to create models for that code. Information about 
the computer resources that are required should include the disc space needed, the memory 
requirements, and the running time on a specific processor. Or, measured data can be submitted to the 
data base, including a description of the measurement facility and the instrumentation and methods 
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used. The target RCS must be supplied over the required frequency range in either "rplot" format for 
individual angles of incidence, or "table" format if many incidence angles have been computed to permit 
plotting a contour map. Detailed instructions for submission can be found on the data base itself. The 
user may not actually submit data to the DFL site, but instead might submit a pointer to his own 
computer on the web site where the data can be found as required by other users. 

Users are invited to post new problems to the data base. It is our intention to expand the data 
base to include other catagories of problems than radar cross-section, and so new problems are not 
restricted to RCS computations. The problem geometry must be described in detail, including a 
drawing if required for clarity. Measured data is desirable if the problem is to be used as a reference for 
code validation, although computations alone can be posted as an invitation to others to solve the 
geometry with their code and compare with the results already posted. 

Contributors to the DFL RCS Data Base are asked to agree to permit users to publish their data 
in comparison to other data for code validation purposes. Users of data from the DFL RCS Data Base 
are asked to acknowledge in their publications both the data base and the originator of data. 

Conclusion 

Although the community has a great deal of experience with certain techniques and computer 
codes in computational electromagnetics, specific comparisons between computed results and 
measurements for code validation are not readily available. Code manuals give few such comparisons 
and the user must search the literature for more. Most such comparisons are not published. The user 
wishing to assess the accuracy of a CEM code often carries out his own code-validation study. The 
DFL RCS Data Base is intended to make measured data for code validation readily available to all. 
Further, users are invited to contribute computations to the data base. Then at one central site, the user 
will find comparisons of measured results with computations by various CEM methods, and also 
comparisons for a given CEM method for various targets. 

Those developing a new computational method may wish to post their results to the data base 
to arouse the community's interest, showing both the types of problem that the code can solve, and the 
accuracy of the results compared to other codes. For commercially-available codes there may be an 
advantage in displaying the code's capabilities in an open forum. Code users can search the data base 
to examine the community's experience base with a given CEM code, to discover its capabilities and 
limitations, and can look for problems similar to the one at hand to find suitable solution methods and 
assess the accuracy likely to be achieved. 

If the community shows an interest in contributing to the DFL RCS Data Base, then in time the 
data base will provide a useful forum for comparing the relative performance of various computer codes 
for standard problems. The user looking for a code to solve a given problem can examine results 
obtained with various codes to > ientify that most suitable. The user looking for validation studies for a 
given code will find various problems solved with that code, and can assess the accuracy of that code, 
and perhaps compare his own computations for his discretization with those posted on the data base. 
The data base can thus serve as a valuable exchange for information about methods in computational 
electromagnetics. The DFL RCS Data Base can be found on the world wide web, at 
http://lucas.incen.doc.ca/rcs.html. 
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Abstract 

The order of an electromagnetics algorithm or code is defined by the rate at which the CPU time, Ccpu = 0(/"), 
and memory, Cm = 0(fß), requirements grow with frequency. Knowledge of this information helps in the pre- 
diction of computer run times and memory requirements for problems of interest. This paper presents a 
methodology for determining the computational and memory orders of a code. These results are presented for a 
finite-volume time domain (FVTD) code and a methods-of-moment (MoM) code. Computer resource require- 
ments are plotted for computer runs that calculate the bistatic radar cross section (RCS) for spheres of different 
electrical sizes within a set error level from the Mie-series solution. These plots are used to calculate the com- 
putational and memory orders of the codes. 

Introduction 

An important characteristic of an electromagnetics code is the rate at which the computational and memory 
requirements grow with the size of the electrical problem. Codes have often been characterized in terms of how 
the resources scale with the number of unknowns. Although this information is useful for comparing certain 
codes, the number of unknowns does not have a consistent meaning among various algorithms. Therefore, a 
scaling of resources based on frequency is more physically meaningful. The frequency or target size can be rep- 
resented in many ways. We have chosen to use the ratio of the sphere radius and the wavelength. 

This paper presents a method to determine the scaling of resources required to run different codes and shows the 
results of the application of this method to two electromagnetic codes. It describes some alternative scaling 
methods, but does not present an exhaustive study of all possible methods. The codes were only evaluated in 
the range for which computer resources were available. It can be argued that the results would have been differ- 
ent had the investigated range of the solutions, the computer codes representing the algorithms, or the computers 
been changed. 

It is not our intent to compare different algorithms or codes. Neither of the codes presented here was com- 
pletely optimized for the machine on which it was run, and the codes were run on different machines. 

Description 

Target selection 

An ideal target is characterized by a known solution, and is easily modeled. It is important to have an indis- 
putable reference solution in accuracy comparisons. We selected a perfectly electrically conducting (PEC) 
sphere as our reference for this paper because (1) it has an exact series solution and (2) meshes and grids can be 
easily generated for it 

Accuracy Criteria 

In order to maintain consistent quality of solutions across a range of target sizes, we required each solution to 
meet a defined accuracy criterion. Without this criterion, scaling orders are often skewed. For example, if the 
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small-target solutions are highly accurate and the large-target solutions have poor accuracy, the order of the 
algorithm would appear to be less than if the same accuracy was present in the solutions for all target sizes. For 
this study, the accuracy criterion used was 1 dB root-mean-square (RMS) for bistatic angles from 0 to 180 in 
increments of 0.1°. The RMS error is calculated as follows: 

ERRORRMS 
; i.jXCRCS^.d) 

n |,=i 
- RCSc«fc(0): 

where the radar cross section (RCS) is in dB. We believe that this method, of the several we tried, yielded 
results that are most likely to satisfy engineering requirements. 

As an example of the RMS error criteria, the series solution and calculated bistatic RCS solution for a 
5-A-radius sphere is shown in Figure 1 for HH polarization. The calculated solution has an RMS error of 097 
dB The computed solution was generated by ARCCEM, a NASA Ames finite-volume time domain (FVTD) 
code based on the Rockwell Science Center algorithm [1,2] and implemented on a Thinking Machines Corpora- 
tion CM-5 massively parallel computer. 

CO 

'  0 20 40 60 80 100 120 140 160 180 
Azimuth (degrees) 

Figure 1. Series solution versus calculated solution for HH sphere; radius/wavelength = 5;ka = 31.4. 

The difference between the ARCCEM solution and the exact series solution (or error) has a maximum value of 
8 dB at an azimuthal angle of 154° due to a 0.25° angular shift of the null location. One of the error characteri- 
zation methods that was ruled out was the use of the maximum deviation as the criterion. Many solutions 
looked good but had high maximum errors resulting from slight angular shifts near null locations. Most engi- 
neering environments have requirements that are satisfied by the RMS error over the maximum error criterion. 
In related work, Hamilton et al. [3] used a measure of error to show that higher-order methods such as their fast 
multipole method (FMM) are capable of providing accurate solutions at lower cost than that for a flat-patch 
method-of-moment (MoM) code. 

Scaling Results 
The central processing unit (CPU) and memory scaling of electromagnetic codes has been a topic of much 
debate. In this section, scaling results from an FVTD code and an MoM code are presented. They show some 
interesting and surprising results. 
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ARCCEM FVTD Scaling Results 

The ARCCEM FVTD code was used to calculate results within 1.0 dB RMS of the Mie-series solution for 
spheres with radius/wavelength ratios from 1 to 10 on the CM-5 massively parallel computer. Error data for the 
FVTD code were obtained by selecting a particular sphere size and then searching by trial and error to find the 
most cost effective grid with respect to memory and CPU requirements. 
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1 2 3     4    5   6 7 8 910 
Radius/wavelength 

Figure 2. Memory use for ARCCEM code on HE sphere with 1-dB RMS accuracy. 

Figure 2 shows the memory use on a log-log plot for 32-, 64-, and 128-node runs. The CM-5 can be run only in 
configurations with 2" nodes. The NASA Ames machine is configured to support runs with 32, 64, and 128 
nodes. As expected, the memory required to run the different sizes of spheres is only a weak function of the 
number of nodes and a strong function of the sphere size. For each sphere size, the same grid was used on all 
three machine configurations. The required memory varied with the number of nodes because of how the com- 
puter distributed the variables across the nodes. For example, an array of length 160 might require 5 memory 
locations on each of 32 nodes, 3 memory locations on each of 64 nodes, and 2 memory locations on each of 128 
nodes. This allocation results in a 100% efficient utilization of the memory on 32 nodes, 83% on 64 nodes, and 
63% on 128 nodes. The CM-5 software tries to distribute the variables to provide optimum balance between 
memory use, computational efficiency, and communication costs. The memory utilization for the 128 node case 
started at 35% for the \-X sphere and increased to 99% for the 10-A sphere. 

It has been argued that the memory requirement for FVTD codes should scale with target size at an order of 2 to 
3 or more. For example, an order of 2 is predicted if the number of grid points varies with the surface area and 
the number of grid points to the outer boundary remains constant. Similarly, an order of 3 is predicted if the 
number of grid points to the outer boundary also scales with the problem size. In addition, the order would be 
greater than 3 if the grid point density per wavelength increased with problem size as a result of dissipation and 
dispersive phase errors. 

The order of the memory requirement varies from 1.0 to 2.0 for the case shown in Figure 2. The grid require- 
ments for a 1-A-radius sphere are driven by the need to resolve the sphere surface more than by the need to 
resolve the electromagnetic wave. The results show that grid density on the surface of the sphere in grid points 
per wavelength decreases from 10.8 to 8.5 as the sphere size increases from 1 X to 3 X in radius. The density 
then slowly increases from 8.5 to 10.0 as the size of the sphere increases from 3 X to 10 X. The number of grid 
points from the sphere surface to the outer boundary is six for each run. The slopes of the memory-use lines in 
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Figure 2 would be higher if not for the increases in the fraction of the ^*«°^«£, ^S 
slere size increases The decrease in the surface grid density relative to X from toe \-X sphere to the 3-j sphere 
Sortie for toe change in slope of toe lines at toe 3-X sphere in Figure 2. These results show that for the 
laSSetsizes, the memory requirement is a strong function of toe surface area and toe gnddens.tyreqmred 

to define toe field waves. 

It has been debated that toe CPU requirements for FVTD codes should scale wito toe target size at an order of 
between 2 and 4. A value of 2 is predicted if toe grid scales wito toe surface area alone and a value of 3 is pre 
dTcTedTf in addition toe grid scales with the frequency between toe surface and toe outer boundary. If toe code 
muTbe mnCa longer period of time to allow fields to propagate along toe full length of toe target «en the 
S wil^ incLsel from 2 to 3 or from 3 to 4. If toe grid-points-per-wavelengto density must be mcrea, d 
TtoeTarget size increases, «hen the order may be even higher. Each of these mechanisms may play a role m 

determining the scaling. 

Rgure 3 shows that toe required CPU resources grow wito frequency to toe power of 2.3 for toe larger^sphere^ 
Thfslope from toe 1-A-sphere case to toe 3-A-sphere case is 0.5 and increases to 2.3 for toe^large sphere^ Thi 
chanae^due to sphere geometry resolution requirements and to increases in computational efficiency. There is 
aSon^l work aTsociaL wito toe 1-X sphere as a result of the grid density required *J^£g£& 
toe inefficient memory use. As bigger sphere cases are run, toe gnddmg is governed by the grid den *y 
required to define toe incident field wavelength. Thus, for toe 3-A sphere there are approximately 8.5 grid paints 
per X and for toe 10-A sphere there are approximately 10 grid points per X 
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Figure 3. CPU run times for ARCCEM code on HH sphere with 1-dB RMS accuracy. 

The 128-node, 1-A-sphere run time was higher than expected because toe CM-5 spent 49 seconds of the 80-sec- 
ond run writing the RCS contour data to the parallel-disk input/output (I/O) system. Analysis of the tirning data 
shows that toe longer I/O times correlate wito a low fraction of allocated memory used. The 128-r.ode 
1-A-sphere case has a very poor fraction of allocated memory used. In short, toe 1-A-sphere case is so small that 
the CM-5 has trouble mnning it efficiently. This should not be considered a defect of toe machine or of toe 

FVTD code. 

On the CM-5, there is insufficient work to keep all toe CPUs loaded for toe small sphere. As the sphere size 
increases, toe work per CPU increases for a fixed machine size. As toe sphere size increases.from UDlOJ 
toe computational rate for each CPU increases from 68 to 1409 points per second for toe 128 node cases. 
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Increases in computation rate, as the sphere size increases, cause the slopes of the lines in Figure 3 to be lower. 

Another way to measure the run time of a time domain code is to look at the distance the incident sine wave 
radiation is propagated in terms of wavelengths. The results show that the code run time in terms of 
wavelengths, varies linearly with the size of the sphere. Thus, in the end, for ARCCEM, Ccpu = 0(/2 3) and 
Cm - 0(f ■ ), because the grid scales with the surface area and the density required to define X, the run time 
scales with the target's electrical size, and the computational efficiency increases as the computer becomes more 
fully loaded with increasing problem size. 

ParaMoM Scaling Results 

The ParaMoM code [4-6] was used to calculate results within 1.0-dB RMS error of the Mie-series solution for 
spheres with radius/wavelength ratios from 0.8 to 3.1 on 32 nodes of a Intel Paragon massively parallel com- 
puter. ParaMoM is an advanced MoM code that uses higher-order surface patches to obtain more accuracy with 
fewer unknowns. The workstation version of ParaMoM includes a grid generator. The ParaMoM grid generator 
was used with an IGES (initial graphics exchange specification) surface definition of a 1-m-radius sphere and 
different maximum grid edge lengths as inputs to generate the various grids that were used in this study. 

ParaMoM was run with each grid at multiple frequencies until the lowest frequency was identified at which the 
results failed to satisfy a 1-dB RMS error level. The minimum sphere size at which a 1-dB RMS error criterion 
is exceeded is controlled by resonant sphere sizes. For this reason, a maximum sphere size is also defined It is 
defined as the largest sphere siz« that satisfied the 1-dB RMS error criterion while ignoring the resonant solution 
spikes For example, Figure 4 shows that for the 0.17-m-grid case the minimum-sphere-size solution is the 
0.9SM radius sphere and the maximum-sphere-size solution is the 1.9-A-radius sphere. ParaMoM was run with 
the electric field integral equation (EFTE) formulation for all cases. A limited series of tests showed that even 
with the resonant solution spikes, the EFIE formulation was more cost effective than the magnetic (MFTE) or 
combined (CFTE) field integral formulations. 
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Figure 4.      Minimum and maximum sphere size solutions for 0.17-m grid on a sphere. 

The maximum-sphere-size data set is more representative of the scaling that would be found with geometries 
that have fewer resonant sizes. Figure 5 shows the grid edge lengths used versus the electrical sphere size for 
both the minimum- and maximum-sphere-size solutions for a 1-m-radius sphere. 
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Grid edge lengths required to satisfy 1-dB RMS error criterion for ParaMoM code on HH 1-m- 
radius sphere. 

Figure 6 shows that the memory use has a slope of 4.0 at the higher frequencies for the maximum sphere-size 
STmeSe of 4.0 was obtained from a least squares regression of the last five data points. ParaMoM s 
SLSWte" * (N + RHS) * 8 where N is the number of unknowns, RHS is the number of right-hand 
SÄSto t£ number of bytes required to store a complex number. Since only one surface current sdution 
Si» calculate the bistatic RCS, RHS = 1. For a constant number of unknowns per wavelength^ N 
gro^n proportion to the sphere area. Since the area grows with the square of the sphere size, the, the«*«* 
stoeShould be 4 which agrees with the measured value in Figure 6. A slope greater than 4 would show that 
Safa^oM code Suiref more nodes per wavelength at higher frequencies than at lower frequencies A 
STSstoni^S show the reverse trend. Hie results show that the nodes per waveiength is almost con- 
stant at 3.2 for the last 5 points of the maximum-sphere-size data set. 
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Figure 6.     Memory use for ParaMoM code on HH sphere with 1-dB RMS accuracy. 
ParaMoM has two code sections that consume a vast majority of the computer time: the dens*, matm: filland 
matrix LU factor sections. CPU times for these sections and the total run time are shown m Figure 7 for the 
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maximum-sphere-size solutions. Only the LU decomposition was optimized on this machine. The matrix fill 
even though lower order than the matrix LU factor, took the largest fraction of the total run time Had the 
matrix fill been optimized, it would most likely have taken a much smaller fraction of the total run time but 
maintained the same scaling. 
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CPU times as a function of maximum sphere size for ParaMoM on HH sphere with 1-dB RMS 
accuracy. 

The matrix fill section is an N2 operation and the matrix LU factor is an JV3 operation. Theoretically the two 
should scale as the 4th and 6th power of the sphere size, respectively. The total run time should scale at some 
intermediate value depending on the amount of time that is spent in each section. Again, a least squares regres- 
sion is used to determine line slopes. The total run time scales as the sphere size to the power of 3 9 for the last 
rive points of the maximum-sphere-size solution. The matrix fill and LU factor lines have slopes of 3 9 and 5 6 
respectively, for the last five points of the maximum-sphere-size case. These values are lower than the theoreti- 
cal slopes because as the problem size grows, the computer runs more efficiently. 

In the end, using the maximum-sphere-size data set for ParaMoM, C™, = 0(/39) and C = 0( f40) ParaMoM 
has these slopes because the grid scales with the surface area, and the grid density required to define X is nearly 
constant with sphere size. It is also apparent that the iV3 matrix LU factor operation with O(f) computational 

!Z"Ten? wi" e;enhfy overwhelm the N2 operations and the Ccpu order will approach and possibly 
exceed a value of 6 depending on the grid density requirements. 

Conclusion 

The quality of the grid used in a computation directly influences the run time and solution accuracy For many 
codes, it is easy to generate a quick grid, run the code, and get an answer. It is much more difficult to get an 
accurate answer with a grid that uses the least amount of memory and CPU time. The optimization effort 
required to determine the ideal grid adds significantly to the time required to generate the order of a code. 

It is also important to understand the influence of the computer used in the calculations The TMC CM-5's Der 
formance had a large impact on the ARCCEM scaling results. This is underscored by the fact that foe 
M-radius sphere was so small that the CM-5 computational rate for for the 10-A-radius sphere was 20 times 
fcatrf the 1-A-radius sphere. Likewise, the Paragon performance reduced Ccpu by reducing the JV3 operation to 
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We explicitly avoided using scaling that is based on the number of unknowns and instead used scaling based on 
target size. This allows the direct comparison of the scaling of different algorithms and avoids the challenge of 
understanding how unknowns are used in different algorithms. 

We have not addressed the issue of the number of runs required of each code to fill a frequency and monostatic 
RCS matrix The bistaüc case is optimal for both the FVTD code and the MoM code in that only one run is 
required However, for a matrix of solutions, the FVTD code will require separate runs for multiple incident 
fields and frequencies. The number of frequency runs can be reduced by using a pulse rather than a cosine wave 
as an incident field, and the number of runs required to fill a view angle matrix can be significantly reduced by 
using the monostatic/bistatic approximation [7]. The MoM code will have to be run at multiple frequencies and 
will have a small additional cost for the multiple look angles. It is easy to see that a run matrix could be defined 
that would favor one approach over another; the skewing of results to favor one run code or algorithm over 
another by the selection of a specific run matrix has been avoided entirely by comparing bistatic results. 

We encourage others to benchmark their codes using the procedure outlined in this paper. We encourage the 
presentation of both the scaling figures and supporting information describing why the code ran with the mea- 
sured scaling. This information will help a project manager best determine which code will be most cost effec- 
tive in filling his run matrix. 
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I.      Introduction 

In partial differential equation (PDE) methods, the choice of discretization is usually the most 
critical consideration for the accuracy and efficiency of the method. Too coarse a discretization can 
produce substantial errors in the solution, while too fine a discretization can be computationally 
expensive. The optimal discretization is the coarsest one in which we meet the desired error 
criteria. Thus, it is important to understand discretization error as thoroughly as possible. 

Discretization error is produced by the incorrect modeling of the field variation within the 
computation domain. The field variation is due to two factors for time-harmonic waves. One is 
the sinusoidal variation of the field due to the frequency of the wave. In finite difference and finite 
element methods, a polynomial variation is assumed for the field; therefore, an error is expected 
in modeling the sinusoidal variation, with more error as the frequency increases. As we show later 
in this paper, the error causes the wave to be dispersive. This error is commonly called numerical 
dispersion error. There has been a great deal of literature on finding the dispersion relation for 
various finite elements and finite difference schemes. Although the numerical dispersion error was 
recognized as a source of error, people did not realize that this error grows with the size of the 
computation domain and is therefore dominant for electrically large geometries. Bayliss et al. [1] 
are the first to demonstrate the relationship between the dispersion analysis and the growth of 
the error as a function of computation domain size for wave problems. Since then, much work has 
been done to analyze this growth in both the frequency and the time domain [2-9]. 

The second cause of field variation is geometrical discontinuities. For example, the fields vary 
rapidly near perfectly conducting sharp corners and edges as well as material discontinuities. 
Some field components even approach infinity at perfectly conducting corners and edges. It is 
important to choose the discretization to properly model the field behavior near these geometrical 
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features- however, the purpose of this paper is to address the numerical dispersion error Tc.this 
nd we plan to analyze the finite element method (FEM) in the frequency domain and the finite 

difference time domain (FDTD) method for numerical dispersion error in computation domains 
cfmposd of free space. We show the reduction of numerical dispersion error through the use o 
higher order elements. We also demonstrate the effect of numerical dispersion on the accuracy of 

absorbing boundary conditions (ABC's). 

II.      One-Dimensional Analysis of Numerical Dispersion 

Let us consider the problem of a +,-propagating plane wave in free space where the electric 
field is polarized in the x direction. In performing the numerical dispersion analysis,   he gnd i 
assumed to be uniform. Also, the grid is assumed to be infinite, so that the boundary conditions 
do not enter  nto the analysis. In the following sections a plane wave propagating m free spac 
tmoLleTwith FEM m the frequency domain and FDTD in order to determine the numerical 

dispersion error. 

A.    Finite elements frequency domain 

The plane wave satisfies the one-dimensional Helmholtz equation, 

where k is the wave number given by k = ^ (in this case it is the free space wave number). 

The solution to this trivial problem is 

*-.-*■ (2) 

assuming an exp(jU) time convention. However, if we were to solve this problem using FEM 
STear elements, we would obtain an approximate solution due to the discretization o he 
fid i analysis [4] can be performed based on the assumption that the mesh is uniform and the 
computation domain is infinite, which in effect removes the boundary condition from consideration. 

The numerical solution is 

4-.-* (3> 

l-{khf/3 

where k is given by 

k       1   
- = TT arccos      ,2;-. 
k      kh [1 + {kh) /6 

witn h being the grid spacing.  It ™ —-   ., 
not a linear function of frequency. The error in the numerical solution is a phase error (k 

(4) 

with K being the grid spacing.  It is^clear that the_nun^c^ solution is «J^^-_ * j 
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which increases as a function of z. In the table below, we present the amount of phase error in 
the plane wave solution for various grid spacings after the wave has traveled one wavelength 

h/X k/k Phase Error 
per A (°) 

1/10 0.9845 5.58 
1/15 0.9928 2.59 
1/20 0.9959 1.48 
1/25 0.9974 0.94 

The wave accumulates error as it propagates through the grid. For a uniform grid, the solution 
at the largest value of z has the largest error, and its error is due equally to all the elements in 
the grid. 

B. Finite difference time domain 

To study numerical dispersion in the time domain, we first study the solution for a time- 
harmonic solution. The FDTD solution for the electric field of a time-harmonic plane wave is 

Ex = e**"-*--) 
(5) 

where the numerical wave number k is not only a function of the grid spacing h but also a function 
of the time step At. It is given by [2] 

k       2 
7 = — arcsin 
k      kh 

h    .   fuAt\ 
—— sin     
cAt       V   2   J (6) 

where c is the speed of light. Let us define the variable p to be p = cAt/h Then the FDTD 
method is numerically stable for p < 1 and unstable otherwise. A table is given below for sample 
grid spacings and values of p. 

Phase Error 
h/X V k/k per A (°) 
1/10 0.25 1.0161 5.81 
1/20 0.25 1.0039 1.40 
1/10 0.50 1.0129 4.64 
1/20 0.50 1.0031 1.12 
1/10 0.75 1.0075 2.70 
1/20 0.75 1.0018 0.65 
Any 1.00 1 1.0000 0.00 

Lnhke the frequency domain case, k is always greater that k. Also, it is interesting to 
note that as p increases, the solution becomes more accurate. In fact, for p = 1 the wave is 
dispersionless since the errors due to the spatial discretization exactly cancels the error due to the 
time discretization. 
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Usually the FDTD excitation is not time-harmonic. Instead, the time behavior is usually a 
pulse such as one in a Gaussian form. The effect of numerical dispersion is to cause distortions in 
the pulse shape as the wave propagates. 

III.      Use of Higher Order Formulations 

It is obvious that the use of higher order elements for FEM or the use of higher order difference 
schemes in FDTD can reduce the numerical dispersion error. What is more important is whether 
going to a higher order formulation is more computationally efficient than reducing the grid 
spacing In the following sections, we present the equations associated with the numerical wave 
number for the quadratic elements in FEM and compare its computation costs to the linear 
elements. Also, we compare the computation costs of the traditional FDTD method and an 
FDTD scheme which is fourth order accurate in space and second order accurate in time. 

A.    Higher order elements in FEM in the frequency 

A standard dispersion analysis of the one-dimensional Helmholtz equation in (1) with quadratic 

elements produces the following equation, 

k       1 
k = khC0S 

2{khf - U{kh)'- + 15 
\|   (fc/i)4 + i{khf + 15 

(7) 

A simple study of the expression under the radical reveals that for frequencies below cutoff 
(kh < TT) the numerical solution does not exhibit artificial damping, except for a cutoff region 

given by VTE < kh < \/3. 
The phase error per wavelength for various grid spacings is shown below: 

h/X k/k Phase Error 
per A (•) 

1/10 0.9984 0.57 

1/15 0.9997 0.12 

1/20 0.9999 0.03 

1/25 0.99996 0.016 

Comparing the table above to the results for the first order element, we observe the the 
quadratic elements produce a solution with considerably smaller phase errors for a given grid 
spacing The above table provides a good approximation for the phase errors m two and three 
dimensional problems. In [4], it is demonstrated by numerical examples on two-dimensional 
geometries that the quadratic elements are much more computationally efficient than linear 
elements for a given accuracy. The comparisons are based on the use of a banded matrix solver. 
Let us consider the case for an iterative solver such as the conjugate gradient method the 
major computation cost is the matrix-vector multiply. For a two dimensional problem with linear 
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quadrilateral elements, each row contains approximately 9 nonzero terms, while for quadrilateral 
elements with quadratic variations, the average number of nonzero terms per row is 19. Thus, the 
matrix-vector multiply contains 9Ar multiplications for linear elements and 19N multiplications 
for quadratic elements where A-' is the number of nodes in the grid. 

To determine which element is more computationally expensive for an electrically large 
geometry, let us consider a 10A by 10A region of space. If we specify that the largest phase 
error allowable is 5°, then we should choose a grid spacing such that there is only 0.5° of phase 
error per wavelength. For linear elements, this requires a grid spacing of approximately A/35, while 
for quadratic elements, the spacing is approximately A/11. Thus, the numbers of nodes in the grid 
with linear and quadratic elements are 123,201 and 12,321, respectively. For this geometry, the 
quadratic elements are clearly more efficient (234099 multiplications per matrix-vector multiply 
versus 1,108809 multiplications for the linear element). It is expected that the quadratic elements 
will perform even better for larger geometries and not quite as well for smaller geometries. 

For three-dimensional geometries with nodal elements, the contrasts are even greater. For a 
cube region with 10A on a side and 3 unknowns per node, the matrix vector multiply requires 8L'Y 
multiplications for linear elements and 244Ar for quadrilateral elements. The numbers of nodes 
in a grid composed of linear and quadratic elements are 43 million and 1.37 million, respectively. 
Compared to the two-dimensional case, we see that the quadratic elements are even more efficient 
relative to the linear elements (334 million multiplications to 3.5 billion multiplications). 

IV.      Higher order FDTD schemes 

The use of higher order accuracy FDTD schemes have been proposed [2] to reduce numerical 
dispersion. We expect that the numerical dispersion should be reduced by a higher order accurate 
finite difference method, but again, the critical question is whether the gain in accuracy overcomes 
the added computation costs associated with the higher order scheme. Such an analysis [5] has 
been done comparing the regular FDTD method which is second order accurate in space and time 
to a higher order FDTD method which is fourth order accurate in space but second order accurate 
in time. 

In [5], it is shown that the number of floating point operations A'22 for the regular FDTD 
method is 

-   ,\  1.6m 
d i 

A'22 = 6(4m)Ar
0A

r
tl-j (8) 

where Ar
0 is the number of floating point operations associated with one of the unknowns per 

time step in the regular FDTD method, Nt is the number of time steps required for the regular 
FDTD method, and m is the dimension of the problem. The length d represents the characteristic 
dimension of the domain. 

For the FDTD scheme which is fourth order accurate in space and second order accurate in 
time, the number of floating point operations N2i is 
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fd\16m (9) 
jV24 = 6(2.5m+1)iWV((jj 

*       w and W  we see that Ni2 * Ar
24 for two dimensional problems, so there does not 

provide potential improvements in accuracy and efficiency. 

V.      Coupling Between Numerical Dispersion Error and the Outer Boundary 
Condition 

first boundary condition is Dinchlet with 

(10) 
Ex{Q) = 1,        ^x(a) = e"; 

The numerical solution & can be derived analytically and is given by 

generalized Neumann boundary conditions. Mathematically, we set 

The analytically derived numerical solution is given by 
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\{k/k) - ll e-fc 
Ex(z)=e 3k! + j-jj-      J sin kz (13) 

(k/k) cos ka + j sm ka 

Let us consider the second term in (13), which represents the interaction between the numerical 
dispersion and the boundary condition. We can assume that .95 < k/k < 1 for common choices 
of grid densities. Since k/k is close to one, the magnitude of the denominator in the second term 
is almost constant with respect to ka, and also the numerator is small; therefore, the numerical 
error is relatively insensitive to the size of the computation domain. 

The differences between the two boundary conditions illustrate the point that one must 
consider the effect of the interaction between numerical dispersion and the boundary condition in 
choosing the optimal boundary condition. We must not only look at the accuracy and efficiency 
but also the sensitivity of the boundary condition to numerical dispersion. One must also be 
careful in drawing conclusions based on numerical results for electrically small geometries. One 
boundary condition may be better than another a low frequencies, but worse at a higher frequency. 
A more detailed discussion, including a two-dimensional analysis is given in [10] 

VI.      Conclusions 

This papers is intended to provide an overview of the effect of numerical dispersion error on the 
overall solution. We demonstrate that this type of error is the same, whether we are considering 
the frequency or the time domain. We show that it is desirable to use higher order elements 
or differencing schemes to reduce the numerical dispersion. The coupling between the errors in 
absorbing boundary conditions and the numerical dispersion error is often ignored. We show that 
this error may be dominant for many simulations. Finally, we wish to emphasize that with a 
better understanding of numerical dispersion, we can develop methods to minimize this error. 
One such approach is given in [11], where an element has been developed which produces almost 
no numerical dispersion. 
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1. Introduction 

Although numerical solution procedures for dynamic electromagnetic field problems are well- 
established, systematic techniques for estimating the error associated with the numerical results they 
produce are not. This paper explores some simple procedures for estimating the discretization error 
levels in MoM and FEM results. Primarily, we review predictable trends in the behavior of 
discretization error and discuss ways of extrapolating approximate error levels from numerical results. 
Preliminary results were presented in [1]; this presentation will extend these examples and discuss some 
of the limitations of the extrapolation procedure. 

2. Classification of Various Sources of Error 

Assuming that the computer code under consideration is performing correctly (i.e., no "bugs"), 
there remain a number of independent sources of error associated with a particular MoM or FEM result! 
These can be grouped according to the following designations: 

Approximations used to simplify the mathematical formulation prior to discretization 
(examples include the thin-wire kernel used in wire antenna modeling, local RBCs 
used in FEM modeling, etc.) 

Geometrical and material approximations (the infinite conductivity assumption often 
used with conducting structures, the assumption of a uniform and/or lossless 
permittivity, the use of flat facets to represent a curved surface, etc.) 

Discretization errors (the use of a finite number of basis functions, basis functions 
that do not incorporate edge singularities, etc.) 

Numerical errors (finite precision arithmetic, limited precision for special function 
calculations, accuracy of numerical quadrature rules, etc.). 

In practice, any of these errors may dominate in a particular situation. In the following, we focus only 
on estimating the discretization error. Generally, the user would like an estimate of the error as a 
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function of the number of basis and testing functions or the density of functions per wavelength, since 
that is the primary user-controlled input once a code is created. 

3.    Predictable trends associated with polynomial interpolation error 

If a linear combination of the basis functions used in a discretization can exactly represent the 
solution, the method-of-moments process will adjust the coefficients to produce the exact solution. If 
the basis functions can not exactly represent the solution, even the best possible choice of coefficients 
leaves some residual error, known as interpolation error. Interpolation error is the difference between 
the true result and the approximation provided by the basis functions, assuming that the best possible 
coefficients are found for the basis functions. [This definition of interpolation error excludes additional 
error arising from suboptimal coefficients for the basis functions, as might be expected in a typical 
MoM or FEM procedure, and thus should be a lower bound on the overall discretization error. 
However, it should lead to the correct error trend as the cell size vanishes.] If the basis functions are 
piecewise polynomials that are complete to polynomial order p, the interpolation error associated with 
the representation is relatively easy to characterize [2]. The following example illustrates the analysis. 

Consider the quadratic function 

f(x) = a + bx + cx2 (D 

Suppose f(x) is approximated on the interval (-A/2 < x < A/2) using two piecewise-linear interpolation 
functions (subsectional triangle functions), i.e., 

f(x) s fap(x) = f(-A/2) Bi(x) + f(A/2) B2(x) (2) 

where Bi and B2 are defined throughout the interval by 

B2(x) = i + f (4) 

By direct substitution, the function fap can be expressed in the form 

fap(x) = a + bx + c(A/2)2 (5) 

The piecewise-linear approximation captures the correct constant and linear dependence, but obviously 
can not represent the quadratic term. In this case, the error between f and fap reaches a maximum at 
x=0 and has the peak value 

|error|=^ (6) 
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As the interval size shrinks to zero, the peak error decreases as 0(A2). In other words, a 50% decrease 
in A causes a 75% decrease in the error. The same result holds if f(x) is an arbitrary polynomial and a 
piecewise-linear basis is employed. 

This result is easily generalized to other polynomial orders, with the result that a representation 
of polynomial degree p results in an interpolation error of order A1*1 as A-»0 [2]. In a situation where 
variable-sized cells are employed, the error estimate is valid as long as A corresponds to the largest cell 
in the discretization. A similar behavior is obtained for polynomial representations in two or three 
dimensions. 

4.    Trends obtained from plane-wave dispersion analysis 

An alternate way of investigating the error trends associated with a particular representation is to 
consider the distortion that a plane wave solution undergoes as it propagates across the computational 
domain. Consider the one-dimensional scalar Helmholtz equation 

d2E, 

dx^ 
■ + k2E7(x) = 0 (7) 

and the use of piecewise-linear basis and testing functions. In addition, we assume that the mesh is 
uniform and large in extent, and ignore boundaries. Under these conditions, the m-th finite element 
equation can be written 

2Em - Em_1 - Em+1 - k2A2 (§ E,,, + | Em_, + I Em+1) = 0 (8) 

where A is the cell size and En,.], Em, and E„,+i are the basis function coefficients for E2(x) at xm-A, 
xm, and xm+A, respectively. 

Equation (7) has a traveling wave solution Ez(x) = Eo e±jkx, while (8) has the solution 

Ez(xm) = Eoe±j^ (9) 

where 

ß = j cos '■ 
1- 

(kA)2 ' 
3 

1 + 
(kA)2 

6 

(10) 

Consequently, Equations (9) and (10) are the numerical solutions that would be obtained for waves on 
an infinite, uniform mesh. 
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The phase eiror (kA - ßA) across a single cell is easily tabulated as a function of A from 
Equation (10), and is summarized in Table 1. It is easily discerned that the error decreases as 0(A ) as 
A->0, in agreement with the theoretical interpolation error associated with piecewise-linear basis 
functions. 

Table 1 

Predicted phase error per wavelength as a function of cell 
size A for linear basis functions, from Equation (10), and 

the total solution error per wavelength. 

A phase error per X % error per X 

0.2 X 20.103° 34.9 % 
0.1 5.670 9.9 
0.05 1.464 2.6 
0.025 0.369 0.64 
0.0125 0.0925 0.16 
0.00625 0.0226 0.04 

A number of authors have carried out dispersion analyses for scalar and vector volumetric 
representations in one, two, and three dimensions [3-5]. Dispersion analysis is somewhat less general 
than the polynomial interpolation analysis of the previous section, since it usually requires a uniform 
mesh and a uniform plane wave excitation. In some cases, the dispersion analysis predicts a different 
behavior (an error decreasing at a greater power of A as A-*0) than that predicted by interpolation 
analysis. For example, Warren has shown that mixed-order edge elements of the curl-conforming 
Nedelec variety (which are only complete to order p-1) produce a plane-wave error that appears to 
behave as 0(AP+1) as A->0, like scalar representations that are complete to polynomial degree p [5]. In 
other situations, the error at special locations within the mesh may behave as 0(A p) as A->0 [4-6]. 
This behavior is known as superconvergence. Although neither interpolation analysis nor dispersion 
analysis is likely to predict the correct error behavior for every numerical result, the CXA1* ) trends are 
observed in many actual electromagnetic simulations [1]. 

5.    Error level estimation from successive results 

Knowledge of error trends can be used to provide simple error estimates from two successive 
results, as previously described [1]. Suppose that two results are obtained using a different cell sizes, 
and it is known that the error behaves as as 0(AP+1) as A->0. If we denote the result obtained with N 
cells (each of dimension AN) as RN, for small enough cells we have 
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RM S Rexact+K(AM)P+1 (U) 

RN S ReM + KCANf1 (12) 

where "K" and "R««" represent unknown quantities, and AN < AM. By treating (11) and (12) as 
equalities and solving the linear equations simultaneously, we obtain an error estimate 

ErrorN = K(AN)i>fl (13) 

as well as an improved estimate R„act of the exact result. Examples of this procedure for MoM and 
FEM calculations are presented in [1]. 

This error estimate is not useful in practice unless discretization error is the dominant error 
associated with the results. Unfortunately, in practice there are often approximations incorporated into 
electromagnetic modeling codes that dominate the error at some point, such as the so-called "thin-wire" 
kernel often used in wire antenna modeling (where the source currents are replaced by a filament on the 
axis of the wire) or the use of a local RBC within FEM codes [1]. In these cases, an error estimate 
such as (13) may still be a valid indication of the discretization accuracy, but not of the overall accuracy 
of the numerical result. In any event, the validity of the error estimation process is enhanced if the 
underlying formulation on which the computer code is based avoids approximations that do not 
improve as A-»0. 

A more difficult issue is the treatment of a comer or edge where the unknown quantity is known 
to be singular; if the basis functions do not incorporate the proper singularity the results may appear to 
converge (to the wrong solution) or in some cases may diverge as the number of basis functions is 
increased. 

6.   An alternate approach: Error estimation using residual computations 

A procedure sometimes employed for adaptive grid refinement algorithms in FEM codes is to 
compute the residual of the equation being solved on a finer grid than the solution. This provides a 
relative error estimate that may suggest which region of the mesh supports the most error. By means of 
defining a suitable error measure or norm, such a calculation can be used to quantitatively measure the 
error. If "calibrated" with known solutions, such an error calculation could provide useful insight into 
the overall accuracy of a particular numerical result. This approach is independent of trends in the error 
and represents an alternate means of estimating error levels. 

Qualitative calculations of this sort were illustrated for wire antenna problems two decades ago 
[7], and were investigated (also more than a decade ago) by the present author in the context of volume 
integral equation formulations for dielectric scatterers [8]. However, they apparently have never been 
used for quantitative error estimation. One reason may be that relatively few problems can be found 
that are suitable for calibrating these error levels. It is hoped that benchmark problem libraries continue 
to proliferate so that suitable standard solutions are available. 
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7.    Conclusions 

In many electromagnetic field modeling situations, predictable trends in the behavior of 
discretization error can be used to provide simple estimates of the overall error levels. These estimates 
are not mathematically rigorous bounds, and will occasionally be incorrect, but they represent an 
improvement over the present practice of reporting no error estimates with numerical results. The 
primary cost of the process is the need to solve a problem twice at different discretization densities. The 
primary conceptual drawback to the approach is that it will not correctly estimate errors other than the 
discretization errors, and might therefore systematically underestimate the actual error levels present if 
poorly-understood approximations built into the code are actually the limiting factors. 

Even without a belief that the procedure will provide valid error estimates, however, one should 
have difficulty objecting to the premise that it is good computational engineering to solve a problem 
twice with different cell densities and compare the results. Of course, once the problem is solved twice, 
the error estimates can be obtained with minimal effort. 

Although the ideas expressed in this paper are hardly new, they have not been adapted to any 
significant degree in computational electromagnetics. It is hoped that the users of electromagnetic 
modeling software request features such as these in codes of the future, developers provide them, and 
the research community continues to explore these ideas. The rationale for including error estimates 
with numerical results is clear, the means for obtaining accurate overall error estimates remains elusive. 
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Comparisons of Staggered and Non-staggered 
Schemes for Maxwell's Equations * 
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Abstract 

We present here a comparison of the efficiency of staggered vs. non-staggered methods 
for the numerical solution of the one dimensional Maxwell's equations. 

The total work needed to achieve a certain accuracy for different schemes is estimated by 
considering the stability condition and phase error of staggered and non-staggered schemes. 
Our conclusion is that staggered grid methods are much better than non-staggered schemes 
for low order accuracy schemes, but their advantage decreases as the order of accuracy 
increases. In particular, fourth order compact schemes are almost equivalent. 

We also introduce spectral staggered grid methods and demonstrate that there is no 
advantage in using staggered grid spectral methods. Numerical results verifying our claims 
are presented. 

1    Introduction 

We consider, in this paper, the numerical solution of the fundamental time dependent Maxwell's 
curl equations. The standard scheme in FD-TD methods is the Yee scheme [2]. This scheme is 
second order accurate scheme both in space and time and the unknowns E and H are given in a 
staggered set of grid points. It had been argued that the staggering is one of the most important 
features of this scheme. Recently, Petropoulos [4] gave a convincing evidence for the superiority 
of fourth order schemes over second order schemes. It has been also suggested (see [2]) that it 
may be necessary to convert second-order accurate FD-TD algorithms to those having fourth- 
order accuracy. The same type of analysis indicates that spectral methods might be of value as 
a possible alternative to finite differences for the solution of the Maxwell's equations. In fact, 
since polynomial spectral methods require only 7r points to resolve a wave, one can minimize the 
amount of total work needed for computations. 

This note is addressing the question whether staggering is also necessary for high accuracy 
schemes as fourth order methods and spectral methods. In particular we consider second or- 
der schemes (staggered and non-staggered), fourth order explicit schemes (staggered and non- 
staggered), fourth order compact schemes (S and NS) as well as spectral polynomial methods (S 
and NS). All of those schemes were applied to the one dimensional Maxwell's equations. 

•Research was supported by Air Force Grant AFOSR-95-0074. 
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To answer the above question we define the concept of the total work W(e) needed to achieve 
a giv n"curacy e for th2 phase of a wave solution for the Maxwell's equation B^ica lywe kk 
at the number of points N required to achieve a certain accuracy m the phase and the time step 

At, allowable by the scheme. The work W then is defined as 

N (1) 
At 

We then compute the work required for the various schemes. 

The results can be summarized as follows 

. For second order schemes the staggered scheme requires half of the work of the non- 

staggered scheme. This explains the success of the Yee scheme. 

. The fourth order staggered explicit schemes is more efficient than the non-staggered   How- 
ever the improvement is not that dramatic in fact we can expect an movement of about 

36%. 

. The staggered and non-staggered compact schemes are equivalent. 

. The compact fourth order schemes are preferable to the explicit schemes. 

. Within spectral polynomial schemes there is no difference between staggered and non stag- 

gered schemes. 

It seems that the attractiveness of the staggered grid method diminish as the order of accuracy 

illC The" main advantage of non-staggered grids, in our opinion, is the ^^£^J 
Mt«m« Tn the staggered grid approximation one can impose the boundary conditions only 

ZTZ^lT^lL on the boundary points. Thus boundary conditions in terms of 
cLttSt va iaUes are not easily implemented. It is our opinion that characteristic boundary 
tZlZi:eZvm^ in the numerical solutions of the Maxwell's equations, especially for 

^p^if.£S5 in the following way: In Section 2 we present the equations and 
the finite difference schemes considered. We also introduce the comparison methods used m 
this paper In Section 3 we analyze the results of the comparisons. In Section 4 we construct a 
version ofSpectral method for non-staggered scheme and finally Section 5 contains the numerical 

confirmation of the theory. 

2    The Equations and Schemes 

Consider the free space 1-D Maxwell's equations: 

ÖE IdH 

dt e dx ,9> 

dt ~~    it dx 
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where E is the electric field vector and H is the magnetic field vector, e is the permitivity, and 
u is the permeability. 

Denote the speed of the wave by 

c=-^ (3) 

and assume the initial condition 

f £(z,0) = e2!r,'™: 

1 (4) 
[H{x,0) = y/Ze™*, 

The solution of the system is then given by 

r E(x, t) = e2*M*-<*) 

I r- (5) (   H(X, t) = JIe2™{*-ct) 

We discretize now (5) in space by several different finite difference approximations: 
Consider the differencing and averaging operators, respectively, 

<?*?.■ = 9,-+i - <?,_|, ßxq{ = -(qi+,_ + 9>._i) (6) 

Then the second order difference operators for the staggered and non-staggered second order 
schemes are given by: 
I. Second-order Staggered: 

J|. = ^M. + 0(Ax2) (7) 

II.   Second-order Non-staggered: 

du 1 
3-|.-=^«««|.- + 0(A**) (8) 

The fourth order explicit schemes are given by; 
III. Fourth-order Explicit Staggered: 

tx^-L-J^-k6*^*0^ (9) 
IV . Fourth-order Explicit Non-staggered: 

du, 1 1 
Tx\i = ^x{I--Jl)u\i + 0{^) (10) 
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And finally the fourth order compact schemes are given by 
V . Fourth-order Compact Staggered: 

c+s«)|i-s^'+0^ (11) 

VI . Fourth-order Compact Non-staggered: 

(^^4x^-ts^+0M (12) 

Our analysis is based on the following considerations: 1. The total amount of work is pro- 
portional to the number of grid points N and the number of time steps n ~ (At)-1. 2. The 
number of operations needed per time step is the same for staggered and non-staggered schemes. 

We therefore define 
Definition 1: The total Work to achieve an accuracy e for the phase is defined as 

W(e)   =   m (13) 

Thus the work depends on two factors. First the time step At is restricted by the stability 
condition of the scheme. Secondly the number of grid points should be enough to resolve the 

different wave scales of the problem. 

We first consider the CFL condition for the schemes I - VI. We assume that the discretization 
in time is the same for the various schemes, i.e second order for second order schemes, and 
fourth order for the fourth order schemes. Clearly the time step is inversely proportional to the 
maximum of the magnitude of the symbol F{z) where z = sin{k*f) can range between -1 and 

1. We list the symbols and there maximum in the following: 

Fi   =   Izi (14) 

Fn   =   2z%/l - zH (15) 

Fm   =   2z(l+1-z*)i (16) 

Fiv   =   2zVT^(l + \z2)i (17) 

2zy/l - Z2 . f,n| 
^VI     = ,2,2    ' (19) 

1       3Z 

If we denote now the number of points by N ~ (Ai)"1 we get the following estimation for 

the allowable time steps: 

cAtjNi   ~   .5 (20) 
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cAtijNu ~ 1. (2i) 

cAtmNni ~ -4286 (22) 

cAtjyNiv ~ .7287 (23) 

cAtvNv ~ .4167 (24) 

cAtviNvi ~ .5774 (25) 

It is clear that non-staggered methods allow larger time steps than the staggered methods, 
however this will be compensated by the better accuracy of the staggered scheme. This allows 
coarser grids and therefore smaller number of grid points to achieve the same accuracy. 

We consider now the number of points required for a certain limit on the phase error. Assume 
the following solutions for the finite difference equations 

C £(x,i) = e2'"M"W 

1 (26) 
( H(x,t) = J^e2"^x-^W 

The Phase Error is defined by 

e(u,t) = \2viwt(c-c(u))\ (27) 

See [8]. 

We also define j = ujct to be the number of periods in time and p = ^ to be the number 
of grid points per wave length. We get the following formulae for the phase f : errors 

stn(- 
ei(p,i)   =   2*-i[l--^] (28) 

p 

en   =   2;r?[l ^-] (29) 
p 

27sin(=) - sinful 
«in   =   2^i[l ^ iii] (30) 

p 

8sm(^) - sinfü) 
eIV   =   2TJ[1 " ^      l" ;] (31) 

p 
sin(£) 

SZTlf      ^ 

-  -  ^l-y,,,^,»! (33) 

If we replace the sm(-) by its power series and retain only the terms of the lowest order, we 
get the leading order estimates for the phase error. Now to attain the same level of error,' we 
know approximately how many grid points we need per wave length (Nppm). 

NX   =   2*(!)i(^)* 

1126 

(34) 



Nu   =   M\)H^ (35) 

=   2<±.)\iÜ.)\ (36) 

NTV - *<£>*<?>* (") 
Nv   -   M^?)*- (38) 

iVvr   =   M^)* (39) 

Non-staggered schemes have a larger time step limit. But staggered schemes need less num- 
ber of grid points per wave length. In order to determine which method is better, the most 
appropriate way is to look at the total Work. 

3    Comparisons 
To this end, we are able to give the total Work (W(e) see (13)) for different schemes to attain 
the same level of phase error: 

Wi   ~   82.68(i) (4°) 

Wn   ~   165.37(^) (41) 

Wm   ~   15.81(^)' (42) 
e 

Wiv   ~   24.79(^)* (43) 

WV   ~   12.90(-)* (44) 
e 

Wvi   ~   12.77(^)* (45) 
e 

An immediate observation is that if j is large then the fourth order schemes are always 
superior Thus, if long time integration is needed or high accuracy is required then fourth order 
are better. The aim of this paper though is to compare staggered and non-staggered schemes. 
To see this, we give the factors between the total Work in the following: 

™n   =   2 (46) 
Wi 

W™.   =   1.5682 (4T) 
Win 

W™   =   0.9901. (48) 

Note that in the case of second order schemes the improvement is dramatic. For fourth order 
explicit schemes the staggered scheme is still better, but the improvement is less than that in 
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the second order case. It is interesting to notice that the non-staggered compact fourth order 
scheme is even faster than the staggered one. In the next section we will show that the there is 
no improvement for spectral methods. Thus staggered mesh methods lose the superiority when 
the order of accuracy increases. 

Remark 3.1 We haven't considered discretization error in time in our analysis. However, nu- 
merical experiments of fourth order schemes with fourth order Runge-Kutta scheme in time show 
that the factors in (46)-(48) still hold approximately when we consider the computation work 
needed for non-staggered and staggered schemes to attain the same level of accuracy. 

4    Staggered Chebyshev Collocation Method 

For staggered Chebyshev collocation method, we impose boundary condition on H: 

f#(U) = M0 ,,Q. 
\H{-l,t) = h.l{t) (49J 

Consider the staggered mesh: 

Gauss — Lobatto points :  i,- = COS(IT/N), i = 0,..., iV 

for the discretization of H(x,t) and 

Gauss points :  y, = cos((j + -)ir/N),j = 0,..., JV - 1 

for the discretization of E(x,t). 
Then the Chebyshev collocation method for the staggered mesh is given by: 

dEN-i(yj,t)        l8HN(x,t) 
 dt  "      dx      '*=« '        J = °,-,JV-1 (50) 

and 

dHN{xj,t) =     ldEN-ifat) 

dt n        dx        ir=r( ' 

HN(l,t) = h^t) (51) 

#Ar(-l,/) = A_i(f) 

where EN_-i(x,t) is the approximating Chebyshev polynomial of degree N - 1 and HN(x,t) 
is the approximating Chebyshev polynomial of degree N. Numerical computations of staggered 
Chebyshev collocation method don't show any advantage of staggered method over non-staggered 
method. 
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Error History lor H(x.T=0.1). CFL*=0.7 

N: Number of Grid Points 
Figure 1: Error History of Staggered and Non-staggered Schemes 

5    Examples 
Example 1 In this experiment, we use leap-frog scheme in time for second order schemes and 
fourth order Runge-Kutta method in time for the fourth order schemes. The time step is chosen 
according to the conditions in section 2 with the same scaling. We plot their error history for 

different number of grid points, see figure 1. 

Example 2 In this experiment, we verifies the ratios of the N'^s needed for staggered and 
non-staggered schemes. Leap-frog scheme is used in time for second order schemes and fourth 
order Runge-Kutta scheme is used in time for fourth order schemes. We choose the time steps 
according to the conditions in section 2 and we got the N needed for staggered and non-staggered 

schemes to attain the same level of accuracy. 

The factors between N's and the factors between work of staggered and non-staggered 
schemes in section 2 and 3 are verified here. See table (l)-(3). Note that the scale we took 
for estimated Work is the same in the same table. So the ratios of Work do reflect the relat,ve 

efficiency of staggered and non-staggered schemes. 

Example 3 The error history of staggered and non-staggered Ckebyshev methods is compared. 
For the comparison to be meaningful, we fix H in boundary treatment in both methods. See figure 
(2) There is no gain in accuracy for non-staggered method. We also experimented with the 
largest time step we can choose for the two methods and no difference was observed. 
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Table 1: Number of Grid Points Needed for Second Order Schemes to Attain the Same Level of 
Error 

error 8e-5 4e-5 2e-5 le-5 
Non-staggered(JV • Work) 394 • 77618 592 • 175232 793 • 314425 996 ■ 496008 

Staggered (N ■ Work) 197 • 38809 296 • 87616 397•157609 498 • 248004 

ratio 2.-2. 2.-2. 2.-2. 2. -2. 

Table 2: Number of Grid Points Needed for Fourth Order Non-compact Schemes to Attain the 
Same Level of Error (CFL ss 0.9) 

error 8e-6 4e-6 2e-6 le-6 
Non-staggered(Ar • Work) 183 • 45957 217-64621 259 • 92056 308 •130183 

Staggered(Ar ■ Work) 112-29267 133-41272 158 • 58245 188 - 82464 

ratio 1.634 • 1.570 1.632 • 1.566 1.639 ■ 1.581 1.638 • 1.579 

Table 3: Number of Grid Points Needed for Fourth Order Compact Schemes to Attain the Same 
Level of Error {CFL « 0.7) 

error 8e-6 4e-6 2e-6 le-6 
Non-staggered (JV • Work) 116 • 23304 138 • 32982 164 • 46581 195 • 65856 

Staggered (JV • Work) 99 ■ 23521 117 - 32851 139 • 46367 166 • 66129 

ratio 1.172-0.991 1.180-1.004 1.180-1.005 1.175 • 0.996 

k 7 Rio"7 

Error History (or H(x,T=10) of 1-D Maxwell Equation 

: CC with B 

SCC Method 

100 150 200 
NUMBER OF GRID POINTS 

Figure 2:   Error History:   Staggered and Non Staggered Chebyshev Method (B: fixing H for 
boundary treatment) 
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NEEDED TO REPRESENT A TRANSFER FUNCTION USING 

ADAPTIVE SAMPLING 

E. K. Miller 
3225 Calle Celestial, Santa Fe, NM 87501-9613 

505-820-7371, emiller@esa.lanl.gov 

0.0  ABSTRACT 
One of the most commonly encountered problems in wave-equation applications such as arise in acous- 
tics and electromagnetics is that of estimating transfer functions from discrete frequency samples of a 
first-principles, or generating model (GM) such as NEC, FERM, E-PATCH, etc. Thi's problem has 
been approached in a mostly ad hoc way wherein the GM samples are spaced uniformly and closely- 
enough such that linear interpolation yields a reasonably smooth graphical representation of the continu- 
ous response. Often, additional sampling between the original ones is done subsequently to improve the 
result, a process that may be repeated several times until an apparently satisfactory outcome is obtained. 
This approach will usually result in substantial oversampling, with a concomitant increase in the associ- 
ated cost, while offering no assurance that important details of the true GM transfer function have not 
been missed. At the same time, there is no quantitative measure of how much the linearly interpolated 
estimate might differ from the actual response between the sampled values. The procedure described 
here uses model-based parameter estimation with rational-function, overlapping fitting models (FMs) to 
automatically determine where the GM needs to be sampled to reduce the mismatch between the FM and 
GM below a specified value. 

1.0   A SUMMARY OF THE BASIC IDEA 
As demonstrated elsewhere [Miller (1995), (1996)], hereafter referred to as RI and RII respectively, a 
rational function, as a generalization of a pole series, is a good choice for approximating an electromag- 
netic frequency response. The possibility of exploiting that idea to automate sampling of a first- 
principles, or generating model (GM) subject to a specified estimation error was also considered; a de- 
tailed description of one approach is given here. The basic idea is to use a series of rational-function fit- 
ting models (FMs), Mj(nj,dj), of index number i and numerator and denominator polynomial orders n; 
anddj respectively, i= 1, . . ., N, where some of the GM samples for each Mj are shared by FMs Mj.j 
and Mj+j, etc. A small number of GM samples are computed across the bandwidth of interest to begin 
the process with a different subset of these samples assigned to each of the initial, low-order FMs em- 
ployed. A sequence of more closely spaced FM estimates is then generated from each FM. In the fre- 
quency range where two (or more) FMs overlap, the differences between their estimates are computed. 
The minimum match in digits, Ej, is then determined for each FM. If any of these is less than a speci- 
fied estimation error,  EE,  a new  GM sample  is computed at the  frequency where MEj  = 
min[Ei,E2 EJ^J] occurs.   The FMs that contain the new GM sample are then increased by one in 
order (alternating between increasing n and d as new GM samples are added). In order to avoid ill- 
conditioning, when the order of one or more of the affected FMs reaches some specified maximum 
value, it may be split into two lower-order, overlapping, new FMs.   New Ej's are computed over the 
bandwidth spanned by the FMs thus affected and ME2 is determined. This process continues with 
ME3, ME4, etc. until all Ej's exceed EE. A final GM sample density of about 3 per resonance can be 

achieved without initial knowledge of where these resonances are located for an EE of 10"^. 
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2.0   RATIONALE'FOR USING ^^^»^S^S^S^S^i»^ 
The above-described procedure is ^^^-J«? P^STÄ? issue to consider is what 
ing using MBPE for el^omagneüc^ « ^^2S>V^E ta baäcally a curve-fitting proce- 
FMs might be appropnate. Unless a FMis P"^'? notentiallv much more powerful when the prob- 
dure. While curve fitting can be a useful tool, »«QS described as "smart" curve fit- 
tan physics are explicitly involved ,n the V^^^^^^S^Uys in EM, and thus 
ting As discussed in RI and RII, exponential and P°^"/?^SvuKd domains for formulating 
provide obvious choices for FMs. Furthermore ^ ™ST» well are *e time domain (TD) 
and solving EM problem^ and f«!^SjSby exponential and pole series re- 
and frequency domain (FD), for which generic d^^are gtven oy    g       ^ ^^ ^ 
spectively, which together form a ^^^^w^S^expoi«Wal and pole series (see 
tionship exists between ^^^^^S^S^äS^S^)^ "spectral domain" (SD) respec- 
Tablel of RI). Thus, we use the te^/^v™e°°T"ri^and pole series, as a generalization of 
tively, for phenomena to, are ^^^f^^"^^ not fully describe anelec- 
their more specific and familiar TD and h^0™*; V'"'5 ^ that response and provide a concise way 
tromagnetic transfer function, it can be a J^^^^SSttemmiWof samples of EM 

5S5S tZZ^££RE^£ not have to be exact so long as it leads to an 
acceptably accurate and parsimonious representation. 

The generic WD and SD FMs can be expressed as 

f(x) = fp(x) + fnp(x) = 2Raexp(sax) + fnp(x), a = 1, . . -,P ™ 

^     F(X),Fp(X)+Fnp(X) = SRa/(X-sa) + Fnp(X),a=l,...,P & 

where "x" represents the WD independent^^^^^V^lZ^^S^y 
the time-frequency transform pair, x would 1h' ^^™j^X frquency jo.  The exponential or 

Si the "resonant" response, with the non-pole part denoted by f (xand Fnp(*: The FM p*ame 
ters the complex resonances (or poles), "sa," and «he modal amplitudes (or rescues    <R      (o rta 

JS?TWW -SrFM^s 2tt^5£= pSfa^Ä 
^cl ä physiiy Lghtfu. way to chastize ^«romagnetic and other wave-equation phenome- 
na Subsequent attention is here limited to the spectral domain. 

samples denoted by 
F5 = F(Xi) = 2Ra/(Xi - sa) + Fnp(X;), a = 1, . ■ -,P " 

where in contrast to waveform sampling, there is no requirement that the samples X[ be umformly 

I^*). However^^ 

t0r%T^ee^L^£X SAM» effect of representing Fnp by a 
llnTwSPwhe^ —L the rational function results in equal numerator and denominator 
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orders. If Fnp is represented by a constant and a term linear in X, this has the effect of making the nu- 
merator order one greater than the denominator. Thus, by varying the relative orders of the polynomials 
which comprise the FM, various approximations of the non-pole, SD contribution are included. 

Therefore, in general we use a SD FM given by 

F(X) = N(X)/D(X) (4a) 

where the numerator and denominator polynomials N(X) and D(X) are given by 

N(X) = N0 + N2X + N2X
2 + • • • + NnX

n and D(X) = D0 + D,X + D2X
2 + • ■ ■ + DdX

d.(4b) 

The coefficients of the SD FM can be obtained from sampled values of the response, or from function 
sampling. How this is done is easy to see by rewriting Eq. (4) as 

FiDi=Ni,i = 0, ...,D-1 (5a) 
with    Fj = F(Xj) the function samples and (5b) 

Dl = D0 + DjX; + D2(X;)
2 + • • • + Dd(Xi)d. Nj = N0 + NjXj + N2(X;)2 + • • • + Nn(X;)n.(5c) 

There are d + n + 2 unknown coefficients in the set of homogeneous equations given by (5a), requiring 
a constraint or additional condition to make the sampled equations solvable. As discussed in RI, there is 
no unique choice for this constraint, but if we set Dd = 1, then the following equations result: 

F0D0 + XOFQDJ + . . . + F0(X0)d-1Dd.1 - N0 - XQNJ - . .. - (XQ)nNn = - (Xo)dF0 

F,D0 + XJFJDJ + . . . + T>lCX.l)^
lDdA - N0 - X^ - ... - (X^N,, = - (X^ 

Fd-Po + Xd-iF^Pi + . . . + Fd.1(Xd.1)d-lDd.1 - N0 - X^ -... - (Xd_i)nNn 

= -(Xd.i)
dFd.! (g) 

where D>n + d + lis required for a solution. Note that the matrix coefficients are comprised of a pro- 
duct of a data sample and the the frequency at which the sample is taken raised to a power. The expo- 
nentiation of the sampling frequencies suggests that large dynamic numerical ranges in the matrix coeffi- 
cients may result if d and n are very large. One way to avoid this is to scale the frequency, so that, for 
example, if the sampling range is centered at 1 GHz, a scaling of 1CP in the frequencies leads to nominal 
scaled values near unity.  It is also possible to center the SD model about a frequency in the interval of 
interest so that terms like (Xs - Xref)n result. Combing scaling and translation similarly produces terms 

hke[(Xs-Xref)/Xref]n. 

An over-sampled system, i.e., one where D>n + d+l, canbe handled in various ways, one of which 
is to employ a pseudo inverse for the solution, but which has the disadvantage of approximately squar- 
ing the condition number. Another approach would be to employ overlapping windows of different data 
sets to compare performance of their respective, lower-order FMs. 

Besides quantifying the FM using function sampling, derivatives of the response can also be used, as 
can various combinations of function and derivative sampling. One result using derivatives is that the 
samples can then be spaced more widely in frequency than using function sampling alone. A more im- 
portant consideration is that in some circumstances a derivative sample can be obtained for a computa- 
tion operation count that is of order 1/XS of the first function sample alone. If a derivative provides in- 
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formation concerning the response from it is obtained that is equivalent to that provided by a function 
SHSimputation advantage is achieved. Using derivative sampling m the context of a 
Senc^domain nS equation is discussed more fully in RII. Thus, a given FM, whether an ex- 
SSseriesör apole series, can be quantified by a variety of data and also by using vanous ap- 
Sies Alfoough determining the time or frequency derivatives of some response may not be an ob- 
v[ÄeÄfn computational electromagnetics (CEM) and such derivatives are unlikely to be mea- 
surable, they can be obtained from computation. 

4 0   ADAPTING AND OPTIMIZING SAMPLING OF THE FPM 
A major advantege of MBPE, and a prime motivating factor for its use, is its potential for mmimimg the 
o^raSrcount needed for computing various EM (and other wave-equation phenomena) responses. 
5 es^ly telas? r„ce?ning8me time-frequency domain transform pair, where toe >s more 
flexibility^ respect to sample placement and model order in frequency than in time. As noted in M 
S ™ttoTwulCvefonnPsair.pling, it's necessary that a polynomial represenMion of the sampled 
SatedevdopT which leads to a need for uniform sample spacing. Actually, this reqmrement is not 
SsterffioTmost time-domain computations are performed where equd time steps are ma*- 
oto used throughout the time interval for which the model is run. However, .t also means tha f sub- 
orn evaluation of the time response shows that it was undersampled, it's not very practical to add 
nTslS to fte oririnal result; instead, the model computation must be entirely repeated w.th a new 
IZ steT TMs i'notte case for all WD models, however, as is demonstrated by samphng ftefar 
ndds of a source distribution (model 4 in Table I of RI), where new observation angles can be: addedto 
^existing set without repeating any previous computation. This advantage is always true in the FD, 
whereSg oS or S lew function or derivative samples to an existing set can be done while 
fully retaining the benefit of whatever samples have already been obtained. 

Ideallv the goal of minimizing the operation count required to obtain an EM transfer function would in- 
volSchSnT^npte lotions andderivative orders (if used) such that the new information.provided 
bv each new sample is the maximum that can be provided over the range of interest relativeto *e cost of 
obSnfthaSple. If this goal were to be realized for each of the samples ultimate y needed for com- 
pSg ÄlZneters while satisfying a specified error criterion then *e overall cost should be a 
minirnum for thTchosen error measure. This idea is illustrated conceptually in Fig. 1 below. 

There seems to be no obvious or unique approach for achieving this goal, since n and d, the number of 
Juries rT^d ml fwcy range they s£an, are all free parameters in developing a FM. This means 
aS^JSi^^SÄi wül usually be required to determine suitable numerical values for 
tor[ A feTcrf the several sampling strategies that seem worth considering are discussed immediately 
below, followed by a discussion of possible error measures. 

idaptiÄpUnfSS ES for much numerical analysis. Three possibilities that 
might be applicable to transfer-function representation are listed below. 

n A stratesv similar to one found useful for adaptive numerical quadrature based on Romberg's 
method (RMffier (1970)] might be adapted to the spectral-estimation problem. It involves choosing 
™£5Sover whichfive successive uniformly spaced samp es of an '"tegrand are deyd- 
oÄ^n which RM is applied to the three trapezoidal-rule quadrature values that^are obtained samptes 
TradTl ~ 5 and all five samples). An error estimate provided by the RM shows whether new 
saSS a«TrSredlneither half of me original subinterval. If this is the case, new samples are added 
wteKcated half way between the original ones and the process is successively rented. On the 
other ha^dif^e initial error is smaller thali specified, the process is repeated while doubling the sub in- 
terval size' This kind of adaption handles sharply peaked integrands, yielding maximum-to-mimmum 
sample spacings of 106, but it may not be as well-suited to spectral estimation since for many EM apph- 
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cations, the resonances are relatively uniformly spaced. 

2) The first two samples could be taken at the endpoints of the variable range with additional 
samples subsequently developed by evenly subdividing this range into subintervals until the error criteri- 
on has been satisfied over all subintervals that are thus formed. 

3) If an error measure is available as a continuous function of the independent variable over the 
range of interest, then placing a new sample wherever that measure is a maximum seems to be an obvi- 
ous choice as a way to achieve the greatest amount of additional information from a single additional 
sample. This approach is used for the procedure implemented here. 

Figure 1. Conceptual diagram to illustrate opti- 
mal placement of frequency samples in develop- 
ing a fitting-model representation of a transfer 
function T(f). Since there is no computational 
penalty in doing so, we can expect that the 
samples would generally be non-uniformly 
spaced as a means of maximizing the informa- 
tion provided by each. 

4 timat       . .1 Error or Uncertainty 
An adaptive process can be only as effective as the error measure used for estimating the degree 

to which the FM (or its equivalent) differs from the GM (or whatever process whose results the FM is to 
approximate). This observation is a general one that applies to all manner of numerical processes having 
the goal to minimize the number of accurate samples that are needed as a means of reducing the cost of 
developing a sampled repress - ;i on of some process over a specified range of independent variable(s). 
For an SD application, it appears desirable to use lower-order FMs over subintervals of the spectral 
range to be covered to avoid possible ill-conditioning. It then follows that two or more FM's will be 
needed to span the spectral range of interest, leading to the situation illustrated in Fig. 2. By using over- 
lapping FM's which share common data, their differences, or mismatch errors, can then be used to esti- 
mate FM uncertainty as a function of frequency. The minimum match (maximum error), AMM, j(f) = 
max{[Mj(f) - Mj(f)l]/[IMi(f)l + Mj(f)l]} is then computed for each pair of overlapping models as a func- 
tion of frequency. Subsequent sample placement and type would then be chosen to maximize the infor- 
mation acquired from each sample by adding each new sample at the frequency where the minimum 
match, MEj, for all FMs occurs. Sampling of the GM would be concluded when the specified error cri- 
terion is satisfied. Also note that, alternatively, an exact error measure results from comparing a FM re- 
sult with a GM sample G(fk), using the measure AGMjk » [IG(fj) - Mk(fi)l]/[IG(fj) + Mk(fj)l]. 
However, doing this potentially would require more GM samples with a consequent increased computer 
time, while providing, in addition, only a pointwise error measure in f. Thus, AMM,j(f) requires less 
computation and yields a global, but approximate, error measure while AGMik requires more computa- 
tion and yields a pointwise, but exact, error measure. 

There at least three kinds of errors that the FM might produce relative to GM results: 
1) Non-physical results, e.g., negative conductance or resistance; 
2) Amplitude shifts in transfer functions; and 
3) Resonance shifts between transfer functions; 
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with the latter two occurring either between two (or more) FM's or between a FM and the GM result 
MdI for which different sampling decisions might be made. For non-physical errors, an additional GM 
sample at the peak in negative conductance would seem most appropriate For baseline-shift errors, an 
Sonal sam^Tcould be placed at the location of the maximum error if it exceeds the specified error 
criterion. For resonance-shift errors, an additional sample could be put between the response peaks, 
again if the shift exceeds the specified error criterion. 

Figure 2. The possibility of developing a FM- 
representation of a transfer function over a wide fre- 
quency interval by employing a number of subinterval, 
lower-order Fitting Models, Mj, is illustrated here. 
Each FM represents the response over a frequency 
interval Fj = Fj u - Fj (where the adjacent FM's share 
some frequency samples and the difference between 
them, AMMjj(f) = [ IMj(f) - Mj(f)l]/[IMj(f)l + Mß] 
provides a normalized, mutual-error estimate between 
FM's i and j. By evaluating AMMjj(f) as a function of 
frequency, new samples, either function or derivative, 
can be placed where AMMjß exhibits values that ex- 
ceed a specified amount and where, therefore, the 
corresponding FM results are most uncertain. 

To summarize, for a FM having numerator and denominator polynomials of order n and d, respectively 
n + d + 1 samples of the GM are needed, which can range, on the one hand from using n. + d + 1 dif- 
ferent frequencies to, on the other hand, using one function sample and n + d derivatives a a single fre- 
quency The "best" approach would be that which minimizes the GM operation count required to 
achieve some specified accuracy or uncertainty in the transfer function being estimated, using an appro- 
priate mix of function and derivative samples. By varying the n and d parameters of *e rational- 
function FM the effects of non-pole contributions and poles that he outside the frequency interval of in- 
terest can be approximated, although it's worth considering other approaches to this problem. 

4.3   Adaptive Sampling of a Simulated Transfer Function 
A pole series provides a good test for an adaptive sampling strategy because many actual EM 

transfer fractions exhibit a marked resonance structure and its properties are controltaMe. A 20-pole se- 
ries having poles at S; = Vi/20 + j*i, i = 1,2,...,20 was used as a GM. The initial GM samples were 
nlared at 0 5 intervals from s = i*3.5 to = j*ll, numbered from 1 to 16. Six FMs were employed 
Ssp^ned GM^rnumbirs 1-6, 1-8, 5-10, 7-12, 9-16and 11-16, respectively Thus, four o 
me six FMs (1,3,4,6) were initially of order 6, using n = 3 and d = 2, while two (2 and 5) were of order 
8 usine n =3 and d = 4. The latter two FMs are arranged to include the endpoints so that there are a 
rninimum of two overlapping FMs across the entire frequency range of interest. The estimation error, 
EE, was set at 10"2, or, when measured in digits, EE = 2. Some results for applying the adaptive pro- 
cedure outlined above are shown in Figs. 3-5. 

Thereat part of the final fitting model is shown in Fig. 3. on wWc^h are also indicated the original and 
additional GM samples, whose values in order of sampling are 6.2, 7.2, 9.2, 5.3, 8^,»■£, 4.13, 
6 25 5 05 1 05 8 3 7 05 4 2 and 10.95. It's also of interest to observe the behavior of the 
minimum-match values for each of'the FMs, Ej, as the process of model modification continues, a result 
that is shown in Fig. 4. Also shown is ME;, the minimum-match value for all six FMs, as a function of 
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model iteration number. An Ej can remain constant for several iterations if none of the added GM sam- 
ples is contained in its frequency span and its Ej is unchanged as well. Although this behavior is not 
guaranteed, MEj can be see in this example to exhibit a monotonic increase. Finally, it's significant to 
note, as demonstrated by Fig. 5, that the FM-FM and FM-GM mismatch errors are well-correlated, with 
the former being generally somewhat greater than the latter, for the individual GM samples [part (a)] and 
where the frequency averages of these quantities are plotted for each model iteration [part (b)]. This re- 
sult indicates that the FM mismatch is a reliable indicator of the error between the FMs and the GM they 
are intended to approximate. 

E 
IK 0.61 

E 
<C02 
OL 

s 
= 0.0 

O   ORIGINAL GM SAMPLES 
.    ADDITIONAL GM SAMPLES 

0 

AVERAGE FINAL REAL FM & GM 

FREQUENCY 

Figure 3. Result obtained from adaptive sampling 
of the pole-series GM described in the text. The 
original 16 samples of the real part of the GM are 
indicated by the o's and the additional 14 samples 
needed to obtain a 0.01 normalized match be- 
tween overlapping FMs across the 3.5 to 11 fre- 
quency range are shown as •. The final FM, ob- 
tained from averaging the individual FMs in their re- 
:;    v. of overlap, is shown by the solid line. The 
liaal FM-GM match is also better than 0.01 (see Fig. 
5 for further discussion). 

MODEL ITERATION NUMBER 

Figure 4. An illustration of how the FM parameter 
ME|< can vary with model iteration number k. The Ej 

curve for each FM is indicated by FM(i), where the 
initial set of FMs is number 1 on the horizontal axis. 
For this particular case, ME increases monotonical- 
fy, from less than 0 for the first several models (indi- 
cating that the normalized errors are greater than 
unity) to the two-digit specified estimation error at k 
= 15. 

A result for the same GM as above, but with an added pole at s = -J/V20 +j*7.5 using 16 initial GM 
samples spaced at 0.5 intervals beginning at 3.75 is shown in Fig. 6, again using an EE of 0.01. An 
additional 16 GM samples were required for this example, 2 more than previously because of the added 
pole. Although the locations of the initial GM samples are shifted relative to the poles in this case com- 
pared with the previous example, and there is an added pole in the frequency range covered by the FMs, 
the final performance is comparably good, indicating the robustness of the adpative-sampling approach. 

6.0    CONCLUDING DISCUSSION 
This discussion has illustrate adaptive sampling of a pole-based transfer function like those that 
arise in EM frequency respos using model-based parameter estimation (MBPE). A useful fitting 
model (FM) for this purpose, the "model-based" part of MBPE, is a rational function which serves as a 
generalization of a pole series that characterizes the resonance behavior of EM observables. The 
"parameter-estimation" part of MBPE is the process of obtaining numerical values for the coefficients of 
the FM by matching them to sampled values of the EM observable of interest 
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AFM provides a reduced-order representation of the results obtained from a f rst-pnnc.ples or general 
in^model GM) based directly on Maxwell's equations or from experimental measurements. It öftere 
Z So reducingtoe sampling required of the GM when using it to develop a response such as 
aLSand tranrfer function This is particularly the case where the response contains details that 
m^ht te misS Ae GMSamples are tcTwidely space. Adaptive sampling of the GM is made poss.- 
Ä usin^etST low oZ^erlapping FMs tot share initial GM samples chosen to cover a given 
freWencvInge The FM results are compared at other frequencies within their shared bandwidths and 
S GMSles are addedtherever the FM differences exceed a specified level. A final set of FMsis 
foul develoZ fortiieGM samples that provides a continuous representation over a given frequency 
™«awhile meetins a desired-accuracy, or uncertainty, specification. Such adapüve sampling can not 
™y gStly SVe numter of GM^ples that would otherwise normally be used but also ensures 
that fine details of the response are not missed. 

s 
° A •a    4 

** */ 
• 

•     / 
/ *   * 

• 

• 
* • / • 

4"- 

(a) 1 2 3 
AVERAGE MATCH BETWEEN 
FITTING MODELS (DIGITS) ~2 3 4 5 

Figure 5 The arer^S^ between the FMs and GM datasamples for the116*imodel iteration 

both cases the FM-FM minimum match is seen to be generally less than the FM-GM value, showing that the termer 
is a conservative error estimate of the accuracy achieved by the FMs. 

ADDITIONAL GM SAMPLES 
ORIGINAL GM SAMPLES 

Fiqure6. Results for the real component of the 20-poleGM 
used above but with an added pole at s=-j/v20 +J7.5 and using 
initial GM samples shifted by 0.25 in frequency. Shown is the 
average final FM for a 0.01 specified estimation error as obtained 
at the 16th additional GM sample. 
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Matlab NEC Toolbox: 
the Cross Platform GUI Pre- and Post-processing Tool 

for NEC Applications 

Yilong Lu 

School of Electrical and Electronic Engineering 
Nanyang Technological University 

Singapore 639798 

I. Introduction 

The Numerical Electromagnetics Code (NEC) [1] has been widely used for realistic 
modeling of the electromagnetic response of wire antennas and other metal structures. 
NEC itself is not user friendly and requires extensive knowledge, experience, and time 
to be used correctly and effectively. Without a proper tool, it is very tedious and error 
prone process to establish a proper NEC geometry model and input file required by 
NEC execution, especially for large and complex problems. Although there are some 
NEC tools available, such as IGUANA, WIREGRID, EZNEC, EAM:NEC, NEC-WIN, 
most of them are for PCs and their geometry inputs are still not efficient and they are 
only convenient to use for small or medium size problems. For large problems, the 
NEC computations have to be ran on a workstation or a supercomputer, it is therefore 
highly desirable to have a set of user friendly and efficient NEC pre- and post- 
processing tools available for multi-platform including workstations and PCs (mainly 
for pre-processing^ 

The lack of cro^s pi ,..omi user friendly pre- and post-processors for NEC application 
motivates us to develop a NEC Toolbox that could be portable to different platforms. It 
has been found that Matlab [2] is a very powerful computing tool as well as an 
environment able to handle complex computations and graphics as well as graphical 
user interface (GUI). Matlab is available for most platforms, including PCs, 
workstations, and supercomputers. To develop the NEC pre- and post-processing 
toolbox using Matlab allows portability across different platforms. Another major 
reason for selecting Matlab as the developing software is that it is an engineer oriented 
software, numerous tools and functions have been built in the software, hence time 
would not be wasted in developing auxiliary functions which are readily available. 
Moreover, Matlab m-file and script programming allow creation, modification, and 
assembly from parts for complex structures by only simple script programming. 
Matlab's ASCII m-file and script file structure allows user to add other customized 
functions to the Toolbox very easily. 

This Matlab NEC Toolbox contains both pre- and post-processing tools. The 
preprocessing tools have the features of text editing, graphical editing, script creation, 
automatic conversion, and a number of library component m-files. The post-processing 
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tools including three modules freplot, patplot and necplot, allowing user to view, save, 
and print more than 23 different plots from NEC output files. All plots from the toolbox 
can be easily saved in many different formats, including PostScript, for future use or for 

printing. 

II. Pre-Processing Modules 

The preprocessing tools have the features of text editing, graphical editing, script 
creation, automatic conversion, and a number of utility and library component m-files. 

A. NEC Card Editor 

The GUI NEC Card Editor enables users to create a new NEC input data file or 
alternatively, to edit an existing NEC input data file. The user can also invoke the 
Graphical Editor which shall be capable of converting geometry input into geometry 
data cards. During card entry, the template shall automatically recommend default 
values for applicable data fields, provide guidance for correct data entry and carry out 
comprehensive error checking before accepting the user's input. The on-line help on all 
cards is also implemented so users do not need additional user guide. 

Fig. 1. An NEC Card Editor window with Control Cards selection activated. 

The Deck frame consists of three editable text boxes which are the Comment Deck, the 
Geometry Deck and the Control Deck respectively, as shown in Fig. 1. The console 
frame on the right contains two popup menu and two command pushbuttons. The 
popup menu labeled as Geometry Cards is for selecting a geometry data cardtype 
while the Control Cards menu is for selecting a program control cardtype. The 
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Graphic popup menu or pushbutton is for invoking the Graphic Editor. Select a 
program control cardtype from the Control Cards popup menu is also illustrated in 
Fig. 1. A template for the selected cardtype is shown in Fig. 2. And the on-line help of a 
card is illustrated in Fig. 3. 

file   Edit   Mndows   Help 

Fig. 2. A Card Template Window making data entry easier. 

L|                  NEC Cdltor Help Window ^.i=N 
| file    Edit    Windows    Help 

SBB PURPOSE: To specify pattern sampling parameters 
j^Bj   and to cause program execution. 

[BB 11 - Select the node of calculation fot the 
BH       isolated field.  Option* are: 
j^BE    0 ' normal node.   Space-wave fields aie computed. 
jBB        An infinite ground plane is included if it 
BB        has been specified previously on a GN card: 
BB        otherwise, antenna is in free space. 
BB   1 - surface wave along ground is added to the 
BB        normal space wave.  Cylindrical coordinates 
BB        aie used  Ground parameters must have been 
BB        input on a GN card. 
BB   2 - miear cliff with antenna above upper level. 
BB        Lower medium parameters are as specified fot 
BB        the 2nd medrum on the GN or GD card. 
BB   3 - circular cuff centered at the origin of 
BB         coordinate system with antenna above upper 
BB        leveL  Lower medium parameters are as 
BB        specified on the GN or GD card. 

B   4 - ladial wire ground screen centred at origin. 
BB   5 - radial wire ground screen and linear cuff. 
BB   6 - radial wire ground screen and circular cliff. 

B p*g*' Bl 

B p*s'z 1 

Br^***31 

B p*°"* BJ 

Fig. 3. A NEC Editor Help Window displaying information for data entry. 

B. Graphic Editor 

Users can also invoke the GUI Graphic Editor to create, view, and edit a 3-D 
representation of an antenna structure for conversion to a standard NEC Geometry data 
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format Using this graphical editor, one can create a desired structure by inputting and 
transforming (scaling, rotation, translation), assembling (adding and deleting) library 
components. The graphical editor also allows input of structure files in 3DV format (a 
popular 3-dimensional wire-grid modeling format). 

Fig. 4. A Graphic Editor window. 

The graphic editor provides editing utilities for line model, patch model, and line-patch 
mixed model, as shown in Figs. 4 and 5. User can locate, a node or a line or a patch to 
perform various editing functions. 

Fig. 5. A Line Edit Window with Find option activated. 
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Fig. 6. A Patch Edit Window with Edit option activated. 

IBM 
Line 
Patch 

Rotate 
Translate 
Centre 
Normalise |    To 3DV    \ 

(a) edit (b) transform (c) convert 

Fig. 7. Some of the options of the graphic editor. 

Tools         I 
Tools Ü Toblsj 

Find l-i 
JFind i Edit * 
ISTT^^H Edit                    1 

Delete                I 
Insert                1 

l?nM 
(Edit 
(Delete 

Delete 
Insert                 1 

(a) for node (b) for line (c) for patch 

Fig. 8.  Options for node, line, and patch editing. 

C. Script Programming Creation 

Creation of a wireframe model or NEC input file can be easily and efficiently done by 
simple Script Programming making use of the utility functions and library component 
m-files as well as plenty of Matlab mathematics functions. These utilities with matrix 
representation of variables in Matlab allow creation of such basic components as a line, 
a circle, a ellipse, a helix, a rectangular plane, a polygon with desired topology and 
segment size be done with one line coding from the least necessary information. 
Complex  model   can  be  created  by   assembling   simpler  components   in   script 
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programming. Any structure coded in script can be considered as a library component 
which can be easily modified or transformed for other uses. 

III. Post-Processing Modules 

The post-processing tools including freplot, patplot, and necplot for plotting 9 
different frequency related curves, 9 various radiation patterns either in polar or x-y 
plot and wire frame model, segment model and 3 color current intensity distributions. 
All plots from the toolbox can be easily saved in all the formats Matlab allows, 
including color PostScript, for future use or for printing. 

A. Freplot 

The GUI frequency related plotting tool freplot allows user to view, save, and print 
nine different curves (Smithchart, VSWR, IZI, R, X, IYI, G, B, and Power) by just 
pressing buttons from the freplot window as shown in Fig. 9. The VSWR, IZI, R, X, IYI, 
G, B, and Power curves are in x-y plot. 

nqurc No 1 Ireplot 

Eile   fdit   WJndows   Help 

X=1 

DIP11.FAT 

Fig. 9. A freplot window with SMITH option activated. 

B. Patplot 

The GUI radiation pattern plotting tool patplot allows user to view, save, and print, 
either in poplar or x-y plot, nine different types of radiation patterns (Vertical-Gain, 
Horizontal-Gain, Total-Gain, magnitude {E9}, phase{Ee}, magnitude {E„}, and 
phase{E*}) by just pressing buttons from the patplot window as shown in Figs. 10 and 
11. Automatic scaling is done to make the scaling is always best suitable to a curve. 
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The information of curve type, pattern cutting plane, frequency, and maximum value of 
a curve are also displayed. 

HS^^ m 
nie    Edit   Windows    Help 

Total Gain (dB) (Range : -40 to 20) 
0 

70 

180 
PHI (lheta=90) 

Freq = 1200 MHz , max=16.23 

30-^7 C-^330 

60/ goo 

12CK 240 

150"  —-^210 

Fig. 9 A patplot window with Total Gain activated and X-Y plot disabled. 

File    fdit    Windows    Help 

Freq = 1200 MHz , max=16.23 

(5 
CD 
£-20 
I- 

-30 

40L 

-180 

XYpkH 

-90 0 90 
PHI (l(l<5ta=90) 

1801 
ipagsg 

Fig. 10. A patplot window with Total Gain activated and X-Y plot enabled. 

C. Necplot 

The GUI wire structure model and current Intensity Distribution Plotting Tool necplot 
allows user to view, save, and print 5 different types of the wire structure mode (wire 
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frame model, segment model, color Realfl}, Imag{I}, and magnitude^} intensity 
distribution models with color bar indicating the intensity-color mapping. User can also 
change viewing angle by dragging the "Azimuth" or "Elevation" sliders using mouse or 
set the viewing angle values after pressing the "View Angle" button. Fig. 11 shows the 
necplot window with button "Abs(I)" is activated. 

Fig. 11. A necplot window with Abs(I) option activated. 

IV. Conclusion 

A Matlab NEC Toolbox has been developed for pre- and post-processing of NEC 
applications Matlab is widely available able to handle complex computations and 
graphics with GUI on a variety of major platforms, including PCs, Macintosh, 
workstations, and supercomputers. This Matlab NEC toolbox is portable across 
different platforms. Moreover, Matlab m-file and script programming allow creation, 
modification, and assembly from parts for complex structures by only simple script 
programming. Matlab's ASCII m-file and script file structure allows user to add other 
functions to the Toolbox very easily. 
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COMPUTATION AND GRAPHIC VISUALIZATION OF PLANE-WAVE 

K^PACE SPECTRA AND FAR MELD PATTERNS WITH MATLAB 4.0 

Ross A. Speciale 

Redondo Beach, California 

A very simple and highly practical computation procedure has been recently developed, coded, tested, 
validated, and intensively used to generate, and graphically visualize the plane-wave i-space spectra of 
given aperture-field distributions, and the corresponding far-field patterns. The complex, planar input 
aperture-field distributions to be processed can be either defined analytically or read-in as files of 
numerical data. The new, highly-efficient procedure has been developed and coded using the very concise, 
and powerful high-level programming language of MATLAB 4.0 . The MATLAB 4.0 numerical 
computation and graphic visualization system, that runs on both IBM-type PC's under Windows 3.1, and 
on many different work-stations under UNIX, is eminently suited to rapid prototyping, development, and 
debugging of even rather sophisticated algorithms of applied computational electromagnetics. 

The developed MATLAB 4.0 codes accept both analytical and numerical definitions of the input 
planar aperture-field distributions, represented by complex, square matrices with typical dimensions in 
the range between 64 x 64 up to 512 x 512. Rectangular, circular, elliptic, and any other arbitrary 
aperture shape can be evaluated by truncating' the given field-distributions at the aperture perimeter 
(setting it to zero beyond it). Any arbitrary type of amplitude and phase taper can be represented and 
processed, enabling thus comparative evaluations in terms of directivity, side-lobe level and structure, and 
in terms of the evolution of the far-field pattern under electronic beam steering. Beam steering is 
simulated by introducing an appropriate phase-slope, in the desired beam-steering direction, prior to 
computing the i-space spectrum and the far-field pattern. The plane-wave i-space spectra are computed 
using the MATLAB 4.0 built-in 2D FFT function, that includes essentially unlimited zero-padding 
capability, thus providing increased i-space, and far-field angular resolutions. 

The input amplitude and phase distributions, the i-space spectra, and the far-field patterns are 
visualized in great detail, and in color, in a vast variety of 2D, and 3D graphic presentation formats, 
including 3D isometric projections of the amplitudes of the plane-wave components (expressed in dB) of 
the i-space spectra, 2D azimuth and elevation cuts through the far-field patterns, and 2D contour 
displays of the main beam and side-lobe cross-sections. A vast collection of processing-time bench-marks 
has been obtained on different PC models and on various work-stations. 

Two MATLAB 4.0 'scripts' have been coded, to test the computation and visualization procedure. 
The hsn.m script defines the radial dependence of the aperture-field amplitude-distribution as a Hansen's 
'One Parameter Distribution for Circular Apertures' [1] , with the 'edge taper' , and with the 
corresponding first-sidelobe dB-Ievel controlled by the well-known parameter B (for Hansen !) . 

This radial dependence, normalized to unity at the circular aperture center, is expressed by : 

A   =   g(p)   =   IQ[HSIT? -p2) IIQ(Hn) (1) 

where the variable/» is defined as a linear function of the normalized radius r/R : 

=   2nL 
R (2) 
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Similarly, the shx.m script uses a 'Separable Hansen' amplitude distribution, defined on a square 
aperture, computed as the product of mutually-identical X-axis, and Y-axis amplitude tapers, equal to 
the radial amplitude taper in (1) , and expressed by : 

A-  8(Px,Py)-   /0(tf/"^^)-/oW*2-^)/'o(**) (3) 

where the variables px , and p, are linear functions of the normalized X , and Y coordinates: 

px   =   2 it £       (4) Py   =   2 it 2       (5) 

In both the fcii.m , and the shx.m scripts the given amplitude distributions are combined with the 
'phase-taper', required for the beam-steering angles «> = 0*,±45,,±90*,and 0* £ 8 £ 70*, 
by performing an element-by-element matrix multiplication of the amplitude-distribution matrix A , by 
a 'phase-rotation' matrix-exponential E =  eJFB , where the total-phase matrix PH is expressed by : 

PH   =   it  sin0 [ (46 - JC) cos (p + (46 - y) sin<p ] «0 

The aperture coordinates x , and y are here measured in lattice-units from position (1,1) , and the 
MATLAB-unique element-by-element matrix product is coded as " AC = A .* E 

The real matrices A , and PH , and the complex matrices E, and AC are all of size 91 x 91 in both 
hsn.m , and shx.m , but the rows and columns of these matrices, located outside the central 61 x 61 
regions are set to zero, and so are the elements of the matrix A in hsn.m , that are located beyond the 
maximum aperture radius of 30 lattice units from the central A(46,46) element. 

The i-space spectrum is computed by using the built-in MATLAB 4.0 2D FFT function P], after 
zero padding the complex matrix AC from size 91 x 91 to 512 x 512 , to increase both the i-space, and 
the far-field angular resolution. The It-space spectrum, and the fl-plane cuts through the far-field patterns 
are computed assuming the lattice unit to be exactly equal to A/2, so that the spectrum just exactly covers 
the \isjble space', and all the grating lobes are out of it. Further, the given aperture distributions are 
assumed to have single polarization, and to be continuous, singularity-free functions of position. 

Figures 1-6 show typical examples of the generated graphic displays, unfortunately without the very 
appealing, high-quality color-effects. 
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THE INTELLIGENT COMPUTATIONAL ELECTROMAGNETICS 
EXPERT SYSTEM 

(ICEMES) 

Andrew L.S. Drozd' 
Timothy W. Blocher2 

Victor K.C. Choo3 

Kenneth R. Siarkiewicz2 

1.0       INTRODUCTIC 

This paper reviews the results of research and development to establish a prototype Artificial Intelligence/Expert 
System (AI/ES) based preprocessor capability for Computational Electromagnetics (CEM) codes. The AI/ES-enhanced 
pre-processor capability, called the Intelligent Computational Electromagnetics Expert System (ICEMES), makes use of a 
commercially-available AI/ES tool and an existing government-developed CEM code. Specifically, the present version was 
designed using Gensym Corporation's G2 Real Time Expert System and built for the US Air Force's General 
Electromagnetic Model for the Analysis of Complex Systems (GEMACS) program. 

The initial capability is intended to alleviate usage difficulties associated with individual CEM codes applied to 
complex system electromagnetics modeling, simulation, and analyses. It combines advanced knowledge/rule-base modeling 
and simulation technologies with conventional CEM software codes and user support utilities to provide a new, powerful, 
intelligence-driven pre-processor system. The intelligent pre-processor concept is aimed at (a) significantly enhancing the 
analyst's efficiency in the development of complex system geometry models where burdensome modeling tasks are assigned 
to the intelligent engine; (b) facilitating the automatic selection of the most appropriate physics formalisms and solution 
techniques within the constraints of select CEM tools, methods, and algorithms applied to electromagnetics problem- 
solving (i.e., CEM modeling optimization and validation); and (c) assisting the analyst in implementing effective CEM 
assessment methodologies for the development of valid simulation models. 

Inherent in the overall concept and approach is the demonstrated ability of the ICEMES to read and convert 
available Computer-Aided Design/Manufacturing/Engmeering (CAD/CAM/CAE) data for the automatic generation of 
corresponding CEM geometry models. In particular, the AI/ES -enhanced pre-processor would generate these models within 
the restriction andmodelmg constraints of the GEMACS code, and would also create relevant command stream inputs in 
accordance with the code's required syntaxes and formats. The CAD/CAM/CAE data types of interest include facet and 
IGES. Such are provided in CAD and CEM analysis programs such as ACAD, AutoCAD, ProEngineer, BRL-CAD, 
CADRA, SDRC I-DEAS, and Apatch. Considerations are also given to mathematical library functions for B-sptines, 
NURBS, interpolations, smoothing, etc. available from a number of sources including Netlib, IMSL, and DT_NURBS. 

Demonstrations have focused on generating a complete complex system structure model (e.g., an aircraft 
comprised of hybrid, canonical geometry elements such as GTD cylinders and plates, and MoM mesh structures), and on 
CEM-to-CEM conversions (e.g., MoM-to-GTD or vice versa) for select portions of the geometry. Although fundamental 
geometry modeling knowledge for GEMACS is presently embedded within ICEMES' knowledge-base (KB), its architecture 
and rule-base structure is sufficiently flexible and modular to accommodate the inclusion of other CEM knowledge, 
formalisms/codes, and software support functions. The latter includes but, is not limited to input/output data managers, 
network communications, and visualization tools. 

'ANDRO Consulting Services, P.O. Box 543, Rome, NY 13442-0543 
^ome Laboratory/ERST, 525 Brooks Road, Rome, NY 13441^505 
3Kaman Sciences Corporation, 258 Genesee Street, Utica, NY 13502 
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The results of the ICEMES development and demonstration discussed in this paper are based on Phase I "**arch 
perfornX^a^u^^AirFoTStraet No. F30602-9«:...*,, sponsc^dmrferthe DoD Small Busmess 

Novation Research (SBIR) Program, Topic AF-055 entitled, "AI/ES Pre-processor for CEM. 

1.1       Objectives 

The objectives of the Phase I effort focused on defining the general softwaredesign of an AI/ES pre-processor, 
devdopiiapreLinarymlebase, a^ddetnomtraling its funciotudityusmg a select CEM tool. This involved: 

• Adapting a commercial AI/ES tool for the CEM-based pre-processor. •„„,;,„   PFM 
• Develop  a flexible,   modular   architecture   to   encompass   vanous   government   and  universrty   CEM 

• ^nTtinTtowledge to automatically generate ootimized (vahd) CEM structure modds (and abated 
command stiLns) from system architectinal ffles, ma. are consistent with «he CEM tool modehng constramts, 

input syntaxes and formats. , „_.,      ., 
. EstablishmganddenKratratmgacapabffitytovaü^ . 
. Automatically having the expert system determine the most appropriate phys.es/solution techniques) and define 

the most accurate/efficient simulation approach, for a user-defined analys.s scenano. 
• Providing an interactive front-end to aid novice as well as CEM experts. 

2.0  BACKGROUND 

In the present context CEM modeling, simulation, and analyses are necessitated by the government's mission 
reouirin* the as^ed l£lcle performance, desired operability, and long-term survivability of nuhtary systems m 
SÜÄ^* boü, intentional as well as nnin.en.iona.. Whereas CEM <"£*«£?"£ 
To^Zns of assessing such performance early on in the life-cycle of systems, such codesmay present <*rtamu^ge 
dlfStT^ tifelviceornon-C^l analyst and may re«>re a signtfean, degree of user proficrency£*£** of 
"assessment methodologies. These factors can make CEM modeling, sunulation, and analysts daunting tasks. 

As it continues to mature, ICEMES is expected to resolve many of these potential drawbacks. It will consist of 
advanced tow^rule-based simulation technologies "wrapped around" conventional CEM engmeenng wisdom and 
£S£T£2faslsment methodologies, and certam code-specific constraints that coUecnvely ^en, core CEM 
SrfgJ^eenvironmentforcapmrmgthiscoUectiveknowled^ 

In me evolution of ICEMES, a wealth of knowledge related to various CEM codes (e.g GEMACS^NEC-MOM 
NEC BSC CARWS-?D and others , formalisms, and modeling tasks will be embodied withm the KB «*^ 
SM fo^^of urteres. indude but, are not limited to: Method of Moments <MoM), <%£££% f 
ttffaction (GTD), Uniform Theory of Diffraction (UTD), Shooting and Bouncing W^J^J* 
r?<r H^;P^J^ Ontics fSBR/PTD/PO) Finite Element Analysis/Modeling (FEA/M), and hybnds thereof. The 
nSgteSotg^st^™^ wimin ICEMES* knowledge base are drive, by^ (a) gene^wUd^ 
^S* crLX^Xerience, and assessment practice; and (b) specific knowledge mat pertams to the 
^dfnglSo" constiaints aid gSnes associated with individual codes and their inherent physics formahsms. 

To facilitate access to this knowledge in order to automatically generate complex systemCEM f^J^8' 

oZ^to^S tiTmS u^tilte modifications, anTdynamicaUy translate any such changes to .he «I-« 
Sl^eL damfiles including CAD and CEM model Ubraries, CEM Dato Dictionaries, Relational DatoBase 

Management System (RDBMS), and flat/text files. 

On a broader levd the ICEMES capability could be considered a potential component of other, more general 

compnJ^e^nitandsyste^ ^ 
aspect is further discussed later. 
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The availability of a mature ICEMES capability is expected to effectively address the government's needs with 
regard to assuring desired electromagnetic properties (i.e., compatible performance, operation, and functionality) of advanced 
system procurements and existing assets. It is also expected to similarly benefit the commercial/private sector and a variety 
of civilian applications which include but, are not limited to: commercial aircraft and satellite designs, consumer 
electronics, wireless telecommunications systems, Intelligent Transportation System (ITS) communications items, medical 
equipment, power utility systems, and automobile design/manufacturing. 

3.0 WHY ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEMS   FOR CEM? 

There are several important reasons for selecting AI/ES/KB technologies for the CEM pre-processor concept 
design. To begin, the fusion of software is facilitated with the use of an expert system. Depending upon the specific 
expert system, a "common" simulation environment can be provided mat readily permits the integration of various CEM 
codes, physics/solution methods, and processing algorithms. This environment employs rule-based and procedural 
techniques for knowledge incorporation, for establishing relationships among components or "objects" of the KB, and for 
defining inherited properties which can be used to share information and data among various objects of the KB environment 
Such information and data associated with objects and any of their "clones" (implying a parent-child relationship) are 
characterized as attributes consisting of: parameters, variables, constants, formulas, boundary constraints, and other 
descriptors. In this way, lite characteristics of various codes, algorithms, or solution methods can be identified and 'linked" 
to provide a vehicle for item-to-item or object-to-object communications and data sharing. 

For certain expert systems, programming and entity description, modification, and manipulation are based on an 
object-oriented structure and approach. This helps to facilitate problem definition and rapid prototyping of the KB, which 
in turn, expedites the development of a mature simulation capability. G2 is an example of this type of expert system. 

G2 also performs automated rule-based logic inferencing and deductive reasoning using a combination of backward 
chaining, forward chaining, and dynamic code/KB/rule modification or reconfiguration. In essence, the system has the 
ability to "leam" based on what it "observes", and to optimize certain aspects of the rule base and its functionality. This 
becomes important when establishing the design of a system that can be used by a novice, a non-CEM analyst, or a CEM 
expert. For example, the expert system can learn about its user(s) and develop corresponding user profiles. 

Expert systems like G2 make use of procedures which like subroutines in FORTRAN or PASCAL contain and 
execute a series of rules for a specific purpose. Special functions can also be developed using tailored procedures in 
conjunction with external control rules. 

Another very important aspect of most expert systems is their ability to accommodate or contain both general and 
specific knowledge for a given domain application. In this way generic, common, or universal aspects of a problem can be 
assigned to all objects and items of the KB, as appropriate; also, specific rules or knowledge including tailored attributes 
can be selectively defined for certain objects or items. For CEM, general knowledge expressed as rules, procedures, and 
object attributes may refer to CEM theory, practical experience, or conventional practice. Specific knowledge, on the other 
hand, expressed similarly, may refer to certain aspects of codes and their unique formalisms. 

Expert systems therefore provide an environment to perform automated inferencing, reasoning, and decision- 
making; in this case, to assist the analyst in implementing effective CEM simulation/assessment methodologies, and step- 
by-step modeling procedures for generating "optimized" CEM models using the most appropriate physics/solution methods. 

While this concept has been demonstrated to be advantageous for CEM pre-processing applications, its utility can 
be extended to establish an effective means of performing intelligent post-processing of computed CEM results. This topic 
will be the subject of future papers as the technology and developments progress for the present application. 

3.1 Definitions 

The following keywords and definitions are applicable to AI/ES/KB technologies and applications. These are 
provided to assist the reader in understanding certain key AI/ES/KB concepts and how these apply to the present topic. 
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. Aerial Intelligence (AT) - Captured "human" knowledge or intelligence manifested as computer hardware or 

software systems that perform reasomng/inferencing and decision making. WM<i„„ 
. ^System (ES) - A computer program application of AI that emulates the behavior of a human expert m a 

well-bounded domain of knowledge (a vehicle for captured knowledge consisting of dralog structure, mference 

engine, and knowledge/rule base). . 
• Trnmvl^-M-.ftipineering - Development of a (concept-oriented) rule-based ES for a domain task. 
• S^te^A set of facts (captured knowledge) andrules-of-thnmb (heuristics) on the domain task 
. Knowledge Encoding - Implementing domain knowledge using an ES  applications development/modeling 

. ^w^RenrL^tion - Hierarchical rules (IF-THEN-ELSE), proc«tas (collections of rules), functions, 

relations, and object-classes with associated attributes (parameters, variables, constants, ete). 
. rw^n VnnwlVinomain Expert  -  Knowledge derived from  a  general  "source    and/or from  human 

expertise/experience, respectively. 

4.0       PROTOTYPE SYSTEM 

An Architecture design has been developed establishing a flexible framework to accommodate the inclusion of new 
features anS toZTat üTelcEMES continuTto evolve. At the heart of the architecture is the expert system which 
uSrataDat^ The ES Data Server stores and routes 

S£Z££Z to^ch of its linked components. While the Data Server can be an entirely separate software program, 
Us^uondity and purpose has presently been incorporated as part of the expert system, as a separate knowledge base. 

The ICEMES design based on the Expert System Server configuration consists of a series of interlinked KBs, with 

a main or mast^ performing certain overhead functions. Separate KBs are laed to ^^CS^C « 
interfaces required for each specific formalism or process, and respective software package (e.g., GEMACS NEC, geometry 
mc^r Äat are intend within it. Slice each of these KBs share the same basic structure, mey can easily be 
ZcS^duStedto accommodate new analysis capabilities, including individual CEM formaUsms and unique CEM 
oS^ng ccZaints. Using tins approach, the end-user is not required to have all of «he modules or analyse 
P^graTfnZZI operate tire system. Ik knowledge is incorporated into the KBs via objects, rules, procedures, and 

relations. 

The layered elements of the architecture consist of: 

• GUI Plug-in Layer (User Control Panel) 
• Core AI/ES Server/Module (Control Kernel) 
• AI/ES Modeling Environment 
• N-Partitioned KB Sets to Accommodate individual CEM Formalisms 
• Data Translation and Storage Environment 
. Intermodule Communications Interfaces „„..,,,, 
. External CAD Files (CAD Engine Interface), System Files and Storage Files for CEM Models 

• Geometry Modeler 
• CEM Data Dictionary Interface 
• External CEM Codes, Display Programs andDataFiles. 

In the future, the expert system will function as a separate component in order to enhance modularity, Portability 
maintenan«TLd future expansion The modified concept is illustrated in Figure 1. The modularized design offe e end 

aZSgTs over the server layout. In particular.it allows the many system^^.^ ^^Z^TulltZ 
to be performed by more traditional Cor FORTRAN programs. These functions include: user !ff^ °°™* 
systemTobject storage, data translation, and software interfacing. Tnis allows «he expert system to focus oL ti*band 
funcTns to require «he use of its inference engine. The modified approach wUl also limit the number of d^ect hnks 
bXeTtheexjStsystem and external programs. These interfaces may, for some expert systems, become a bottle neck 

thereby slowing system performance. 
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Figure 1.   ICEMES Configuration 

Further, each module will now be a separate program, including the expert system. The ICEMES' primary 
application module serves as the main controller for the entire system. The main application is typically coded in C and 
C++. The flexibility and portability of C/C++ enables the main application to communicate with the GUIs, Expert 
System Module, the Graphics Module as well as virtually any other C, FORTRAN or PASCAL programs. The main 
program performs a number of house-keeping functions such as identifying authorized users, loading user profiles, storing 
data, and calling the various modules. This application also performs many of the normal simulation functions that do not 
require the expert system's reasoning/inferencing capability. 

This modified approach allows the individual modules to be maintained and upgraded independently of each other. 
In addition, the linking process does not fix the design to operate with a single version of any one of the components. The 
use of Application Program Interfaces (APIs) also simplifies the incorporation of additional tools as the system grows. 

4.1 ICEMES KB Structure 

A block diagram of the ICEMES Core Structure Hierarchy is illustrated in Figure 2. This diagram provides details 
on the individual nature of the internal KB partitions and their purpose. The block diagram emphasizes the partitioning of 
knowledge first as a function of the CEM formalism (i.e., "general" knowledge) then by individual CEM codes and their 
peculiar modeling constraints (i.e., "specific" knowledge). This approach supports modularity, portability, and expansion 
to include other formalisms and code constraints. 

4.2 User Modeling Scenario 

The User Modeling Scenario (UMS) is a methodology or roadmap which describes the general procedures involved 
in a typical ICEMES model development session. The methodology, with the GUI as its infrastructure, is illustrated in 
Figure 3. The current methodology is based on the feasibility demonstration for GEMACS, however, the approach is 
generally applicable to other CEM formalisms and codes. The figure implies that a fairly comprehensive query-response 
system exists and a significant degree of user interaction is possible (depending on the analyst's CEM domain expertise). 

The analyst has the option of using a standard set of pull-down menus, tool bars, or an automated Assistant to 
navigate through the system during a modeling session.   The Assistant consists of menus that lead the operator through 
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each step of the modeling task, and provides recommendations along the way regarding the use of various modeling 
parameters as requested by the user or as determined by ICEMES 

ICEMES-Miin KB 

CEM-Modekf 

Lern Moduli     GuidWL'ÜI  |        GTP      |      MOM     |      Hybrid     | 

|      BSC      I   CARLOS   I 

IGES       I WinGAUGE I      F«cet 

NEC      I GEMACS Q[ 
L—^n 

lynem Module I   Guide/Uü 

Figure 2.    ICEMES KB Construction 
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Figure 3.   ICEMES Operations Flow 

Also, ICEMES exhibits three levels of user interaction capability for error detection and validation. These include 
automatic, interactive, and none (or No Corrections mode). 

In the automatic mode, the ICEMES wUl implement corrections and use the methods that it logically determines 
to be MbiS, optimum CEM geometry models; in this mode, Ore CEM model is genera^I wtthou ™ »- 
™ny significant degree. The user has the option of changing the CEM model one « ts generated by the ICEMES. 

In the interactive mode, the ICEMES identifies problem areas and recommends possible solutions in the processiof 
model develol^^e ICEMES flashes messages describing any errors that are deterted as well as suggesüng methods 
Ä£2«£' TTe user has the option of ignoring the problem, fixing the problem, or extttng the vahdatton mode. 
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The user must acknowledge the queries before the program proceeds to the next step in the modeling task. Alternative!)', 
ICEMES posts warning messages in a scroll bar such that the user can view all issued messages at once rather than having 
to continually respond to a series of system prompts. 

Finally, in the no corrections mode ICEMES performs a straight-forward conversion between the CAD and CEM 
models without checking for possible errors or performing any type of optimization or validation. 

5.0       ICEMES FUNCTIONAL FLOW 

For a given modeling task, ICEMES is designed to perform the following functions, in order parse CAD files; 
generate the CEM structure model; validate or optimize it for the specified electromagnetic conditions; support graphical 
viewing of the model for user inspection and verification; and output a final data set that is compatible with the CEM code 
(GEMACS) for subsequent processing and analysis. 

Regarding CAD file parsing, the present version of ICEMES accepts IGES and facet-based CAD inputs. In the 
future, the list of file types and formats will expand to include various CEM as well as CAD model data 

ICEMES converts input data, whether CAD geometry or CEM, into a set of generic CEM objects in order to 
maximize the applicability of its inherent knowledge. This is illustrated in Figure 4. Generic objects are intended to 
represent the basic building blocks that can be combined to form complex CEM geometries. The generic CEM objects 
considered in the Phase I design include points, wires, plates, and cylinders. The generic CEM components permit the 
analyst to perform a number of data manipulations prior to selecting the analysis code or formalism type. This approach 
also provides a convenient method of sharing input data sets among CEM codes. 

CADMbdds 

IGES E 
DXF 

- | FK et 

CEM I 

ICEMES       I r-1 
CEMModeb    ^ rfebl  ^ 

~pEMAC! 

CartoTf 

Figure 4.   Generic CEM Object Definition 

The ICEMES model validation and correction measures eventually act upon the generic CEM objects. Thus, any 
size adjustments, position changes, connectivity modifications, etc. are applied directly to the generic CEM model 
components. Ultimately, the ICEMES will enable the operator to also incorporate the changes into the CAD geometry. 

Other validations that are performed during the model generation and optimization process include: finite-element 
resizing (plate sizing), connectivity checking (MoM wire segments-to-GTD objects and GTD plates-to-GTD cylinder), 
incomplete definitions, and MoM element sizing and connection angles. Each of these validations is based upon assessing 
the relevant electromagnetic conditions and "physical" parameters defined for the given problem, such as: frequency, object 
dimensions, relative location of source(s) with respect to the system geometry, specified observables (e.g., field points, 
wire currents, patch current densities, etc.), and any specified accuracy constraints. 
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The CEM modd is displayed using the WinGAUGE or XGAUGE vrsuahzation tools. Boft ofthe*W» 
were exdusivdv developed to dSplay and manipulate GEMACS input geometry models as well ~^<**™f? 
cTi^TtPUteIcSffiS «Sta « of these codes by first writing a GEMACS^atible data file from the generic 

the option of modifying it and re-assessing impacts or tradeoffs with ICEMES. 

Once the geometry complies with «he basic CEM rules, it P^^^-^7" te ^^^ °* 
selected. This filter converts the generic parameters into a specific format required by the CEM code. 

«.0       SAMPLE PROBLEM DEMONSTRATIONS 

Several test cases were developed to demonstrate ICEMES' initial capabilities, particularly, its: ability ^radin 
^^^^^ZJ^U^^^.enCAD^inlo.^CEM^^-, detect.-omahes »d.recommend 

A series of demonstrations was performed to show ICEMES' ability to detect and correct for anomalous conditions 
such as- mXfmed geoTLs based on aiscormected or misaligned objects (as defined in the CAD data or by the user m 
I CIM rnodTand mounting MoM wire segments too close to a GTD object (i.e., cyhnderor phue),*"£» 
*£*L^*Uto It was also demonstrated with these test cases that depending upon the facpetKyand the location of 
m^r«S pl- of me structure mode, ate subject to CEM-toCEM conversion <*£<™££^ ™ 
versa) Other test^ses focused on demonstrating ICEMES' abU.ty to detect non-planar conAtions for faceted wmg 
I™ or daTentities, and to recent these accordingly in the GEMACS model. Mated conversions mvolved the 

^rcIeTonofasing^^ 
Each of the cases successfully demonstratedlCEMES' abUity to effectivdy address tte d»ve types of valid*ions 

forGEMACS. The details and results of the sample problem variations will be the subject of a future paper. 

7.0       CONCLUSIONS/FUTURE  DIRECTIONS 

The ICEMES capability is considered an innovative, significant step forward in the ™^**^™JZ\ 

dsote XT* ICEMES' architecture and functionality. These will include, database »W**"»^,^ 
SiSLu». to provideiequinrfCEM «^.«^--Ä.--^ 8«^ «»*»■* -1 
visuaUzation tools, and tailored graphical user interfaces (GUIs). 

Since ICEMES' architectural design emphasizes a stand-alone capability which is "loosely,«njtaT to the 

individuaS^ 
to its inherent modularity and ability to communicate with other codes <**£*»»- «^f £ t£TE£rf 

Forc^ Microwave and Millimeter-Wave Advanced Computation* ^™^J^^^£^£°*V 
desim is eeneraUy in conformance with architectural and functional features of ICE/REF, EMSES, an°j^^f™* 
SÄ-. AppUcations Program Interface (API) routines, CAD file d*a extraction, hbrary structmes 
generated via database managers, and the CEM Data Dictionary 

<KR SiariaewicB Hantman, et. al.. "Computational HectromagneticsUsing the Research and peering Framework 
«BSSS-^ Hectromagnetics Society Newsletter, Vol. 10, No. 3, November 1995. 
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ABSTRACT - The new graphical user interface NECSHELL has been developed for the NEC81 
Numerical Electromagnetic Code (PC-version of the NEC-2 code). The program works on IBM PC 
under Microsoft Windows 3.1 operating system. 

INTRODUCTION 

The NECSHELL is a graphical user interface for user-friendly input and output for the NEC81 
Numerical Electromagnetic Code. The program has been designed for "intuitive" user interaction with 
easy-to-learn procedures, thus allowing a user to rapidly provide usable results in a "learn as you go" 
environment. 

The NECSHELL makes it possible to perform the following functions: 
- to prepare an input deck for the NEC81 program (pre-processor); 
- to run NEC81 executable module; 
- to visualize the output ' ■ s (post-processor). 

The main system requirements are as follows: 80386 or later processor, math co-processor, 4 MB 
RAM, 3 MB of hard disk space, VGA monitor. The software has been written in Microsoft Visual 
C/C++. The NEC81 source code has been compiled using Microsoft FORTRAN PowerStation 
compiler ver. 1.0. 

PRE-PROCESSOR FU? CTIONS 

The NECSHELL pre-processor functions are as follows: 
- creation of a new input deck; 
- reading of an existing input deck in the "standard" and "free" NEC input data formats; 
- visualization of an antenna described in the input deck with several functions (rotation, scaling, etc.); 
- modification of the input deck; 
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- print out the antenna image. 

A user can create a new NEC input deck or can open an existing NEC input deck file The deck must 
c^S a description of a single antenna only. However, it is possible to open several NEC .nput decks 

simultaneously in different windows. 

During the reading of an existing NEC input deck file the NECSHELL prop am ch ecks a format 
validüy of all the cards and gives proper warning messages if any errors have been found. A correct 
order of the cards in a deck is also checked. 

A NEC input deck could be opened as a Deck window or as a simple text window. The typical view of 
theNECSHELL pre-processor windows is shown in Fig. 1, where there are two mdependent Deck 
wind^fwifh the mPLIX.NEC and the CORNER2.NEC input data sets, and two text wmdows w,th 
the DIPOLE.NEC input data set and the HELIX.OUT output data set. 

CO 207 : 
GB  208 1 
GO 209 1 
GB zio        : 
GB  211 3 
GB 212 1 
GB 213 : 
GB 214 
GB  215 
GEO 
PT-1,1,1,1 
L»0,2,l,l,D.,0.,1.001e-01 
EX0,1, 1,1,1.,t 
rRO,1,0,0,925.,I. 
RPO, 91,1,1000,-180.,0.,1 
RPO,1,91,1000,90.,0.,0., 

GWH, 11,0.02, -0.03 «,0.07,0 
GH15,11,0.03,-0.044,0.07,0 
GU16,11,D.04,-0.OS«,0.D7.0 
GH17,11,0.05,-0.061,0.07,0 
CB18,11,0.06,-0.071,0.07,0 
GH19,11,0.07,-0.061,0.07,0 
GB21,11,0.011,0.,0.038,0.0' 
GB22,11,0.07,0.,0.031,0.07, 
GEO 
EX0,21,6,l,l.,0.,0.,O.,0.,E 
TRO,1,0,0,1710.,1. 
RPO,361,1,1000,-180. 
RPO,361,1,1000,-180.,90.,.1 
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Figure I. NECSHELL pre-processor windows. 
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There is a tool bar at the bottom of the main NECSHELL window with the 6 functional groups of the 
buttons. The first group (4 buttons) is used for an editing of an opened input NEC deck. The second 
group (next 3 buttons) makes it possible to jump immediately to a first comment card, first geometry 
card or a first control card, respectively. The next button ("a hand pressing a key" icon) starts the 
NEC81 executable. The next group (4 buttons marked as 0+, 0-, (p+, <p-) is used for an antenna image 
rotation. The next group (3 buttons marked as +, -, and an empty circle) makes it possible to zoom 
in/out an image. The last group (4 buttons) is used for a quick change of an antenna image orientation. 
All the tool bar functions are also available from the main menu. 

A Deck window is divided into two parts by a vertical splitter line. The ASCII deck presentation 
appears in the left part of the window, and the graphical presentation (3-dimensional view of an 
antenna) appears in the right part. The current position of the splitter line could be easily changed by its 
clicking-and-drugging. 

An antenna image can be rotated and zoomed. These functions could be performed from the main 
menu as well as by clicking a proper button from the tool bar. An antenna image orientation is specified 
by the 0 and cp angles. Act :'!y, t^    specify a position of the observer's point of view on the antenna. 

Using the "Image Parameters" dialog box (Fig.2) accessible from the main menu it is possible to specify 
any desired 0 and cp angles, their increments, zoom factor and the coordinate axes presentation 
options. 

"nielo (deg) 

Phi (deg) 

Theta increment (deg) 

Phi inclement (deg) 

Zoom (actor 

Coordinate axes presentation- 

[Visibility  
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O ON (nan marked) 
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® Origin 

O Structure center 

GW: Wire Specif icattion 

Number o) segments 

Coordinates of firs) po 

X 

Y 

Z 

1"    1 

6.8-002            j 

-?.*e-ÜÜ2        | 

7.O-002           | 

Wife radius 

Card feil: 

Coordinates 

X 

Y 

Z 

ol second poinl  

[s.a-002           [ 

|-7.4e-0Q2        | 

I-7.B-0D2          | 

|GW18.T1.0.0S,-0.D74.0.B7.0.06.-D-07V0. | 

3   C 

Figure 2. Image Parameters dialog box. Figure 3. GW-card dialog box. 

1168 



An opened NEC input deck can be edited. It is possible to modify any existing card, to delete it, or to 

insert a new card. 

Any card could be chosen by a mouse or by a keyboard from the left part of the Deck window, or just 
by a clicking at the desired element of the antenna image from the nght part. The currently chosen card 
is highlighted. A corresponding element of an antenna image is shown in red color. 

Every currently chosen card could be modified. To activate the modification it is necessary just to 
double-click at the card. Then a proper dialog box is opening. Most of the cards have their own 
customized dialog boxes. As an example, the GW-card dialog box is shown m Fig 3. Every dialog box 
has several data fields, and the text field at the bottom part of the d.alog box where it is possible to 
enter the whole card string as a text. The program checks a validity of an input data (where poss.ble), 
and if the entered data is not correct, a proper error message will be displayed. 

It is possible to remove an existing card from a deck and to insert a new card into the deck. These 
operations could be made in the several alternative ways (from the main menu, from the tool bar or by 

pressing a proper "hot" key). 

If an insert operation has been requested, the proper Insert Card dialog box is opening (Fig^ 4), where 
the names of the available new cards are listed. The contents of the list is dependent on the previous 

choice of the current card: 
- the comments cards are available only, if the current card is a comment card; 
- the geometry cards are available only (Fig. 4a), if the current card is a geometry card; 
- the control cards are available only (Fig. 4b), if the current card is a control card. 
A user can choose a desired card and click "OK" button. Then a proper dialog box for this card will be 

opened. 

GH: Helot-Spiral Specification 
GM: Coordinate Trenelormation 
GR: Generate Cylindrical Structure 
GS: Scale Structure Dimensions 
GW:Wire Specificnttian 
OX: Reflection in Coordinate Planes 
SM: Multiple Patch Surface 
SP: Surface Poich 
??: General Card (as text] 
GC: Addilional Wire Data 

]        |       Cancel       | 

■l'.M..I'I..U.H,ll,L-l 
EK: Extended Thin-Wire Kernel 
EX Excitation 
FFt Frequenry 
KH: Interaction Approximation Range 
NE: Near Electric Field 
NH: Near Magnetic Field 
7?: General Control Card 
??: General Card (as text) 

~J        |       Cancel 

a) b) 

Figure 4. Insert Card dialog box. 
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Any window could be printed out from the main menu. The print preview option is also available. It is 
possible to assign a desired font for every window. 

An electromagnetic analysis could be run for an opened input NEC deck. The NECSHELL program 
runs the NEC81 executable module in the DOS window. The DOS session is running in the 
background mode. This makes it possible to continue the work with the NECSHELL during the run. It 
is possible to start several NEC81 runs simultaneously. 

There is an option accessible from the main menu, which specifies a behavior of the DOS NEC-run 
window on the completion the NEC81 run. A user can choose an auto-close option (which is the most 
convenient one), or a manual close. The manual close is very useful, if the NEC81 executable module 
prints error messages. 

POST-PROCESSOR FUNCTIONS 

The NECSHELL post-processor capabilities are under construction at the moment of a submission of 
the present report (January, 1996). 

The NECSHELL post-processor functions are as follows: 
- reading of a standard ASCII NEC output file; 
- visualization of any far-zone radiation patterns asrectangular and polar plots, contour maps and 3D 

surfaces; 
- visualization of the current distributions along any wires (as rectangular plots) and for the whole 

structure (using pseudo-colors on a 3D view of an antenna image); 
- visualization of the frequency characteristics (input impedances/admittances only) as rectangular 

plots; 
- spreadsheet presentation of any tabular data available from an output NEC file; 
- print out any available plots. 

A NEC output file could be opened as a simple text window (Fig. 1) or as a special NEC Output 
window. The typical view of the NECSHELL post-processor windows is shown in Fig. 5, where the 
NEC Output window is opened for the HELIX.OUT data set. 

An Output window is divided into two parts by a vertical splitter line. The structure of the output NEC 
file is displayed in the left part of the window as the subdirectory-tree structure. A user can go up and 
down on this structure by clicking any desired item. The right part of the window immediately shows 
an output data sub-set for the chosen active item. 

The output data sub-sets could be shown as text or as the graphical plots for the radiation patterns and 
for the current distributions. The SAMPLEl.OUT, SAMPLE2.0UT and SAMPLE3.0UT windows 
(Fig. 5) show the typical presentations of the calculated radiation patterns. The current position of the 
splitter line could be easily changed by its clicking-and-drugging. There is a Graphic parameters dialog 
box, accessible from the main menu where it is possible to enter all the necessary settings for the plots. 
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1    Introduction 

A substantial portion of the effort involved in any finite element (FEM) analysis is devoted 
to mesh generation. Unstructured tetrahedral meshes are a popular choice because of their 
superb geometrical fidelity and fail-safe nature. However, tetrahedral mesh generation is very 
demanding in terms of CPU time and requires high level user expertise. Partly structured 
meshes, on the other hand, are easy to generate and applicable to a wide range of geometries 
such as smooth scatterers and conformal antennas. In this paper, we employ prismatic meshes to 
model microstrip antennas for resonance behavior analysis and non-canonical three dimensional 
objects for scattering analysis. These meshes are structured in the third dimension and this 
leads to substantial simplification in mesh generation. 

Another important task involved in the FEM implementation is the termination of the mesh. 
The most accurate approach is the use of a Green's function to relate the tangential electric 
and magnetic fields over the boundary. Unfortunately, for large targets the Green's function 
approach requires storage of a large matrix which is partially full. Therefore, it is useful to 
find a termination scheme which preserves the sparsity of the finite element matrix without 
comprimising accuracy. One such technique is the use of an absorbing boundary condition 
(ABC) at a surface close to the scatterer or radiator, and a review of available ABCs has 
been given by Senior and Volakis [1]. However, ABCs are limited in their ability to conform 
to the surface of the scatterer and they may also require a priori knowledge of the wave's 
properties. Also in an FEM solution, they generally reduce the rate of convergence. Another 
way of terminating the mesh is to use a metal-backed layer of isotropic or anisotropic absorbing 
material [2]-[5], and such layers are often referred to as artificial absorbers since their material 
parameters may be physically unrealizable. In this paper, we employ an isotropic absorber for 
terminating the mesh. The efficiency of this absorber has already been demonstrated in [3]. 

In the sections to follow, we explore the details of the prismatic mesh generation and the 
artificial absorber termination scheme, and provide numerical data on antenna and scattering 
analysis. 
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2    Prismatic mesh and artificial absorber termination 

The prismatic mesh generation starts with the tessellation of the antenna or the scatterer 
surface using a triangular grid. The volume mesh is then grown along the surface normal by 
repeating the same surface grid at successive layers. The building block of the resulting mesh 
is the distorted triangular prism and for our analysis Whitney-1 type edge-based vector shape 
functions are employed [6]. The accuracy of these shape functions has been extensively verified 
in [7]. If desired, prismatic elements can be easily subdivided into tetrahedrals for use m codes 
which have not been converted to recognize the prismatic elements and the almond results 
presented in the next section have been obtained through this procedure. 

The simplicity of the prismatic mesh generation stems from the fact that the unstructured 
mesh (grid) is only needed over the surface and that an unstructured surface mesh is much 
easier to generate than an unstructured volume mesh. Having generated the surface grid, the 
prismatic mesh can be grown using a variety of available packages. Figure 1 shows a sample view 
of the graphical user interface (GUI) of the mesh generator PRISM [8], The mesh generator 
PRISM grows the volume mesh by specifying the number of layers, thickness per layer, and the 
order of the numbering of the surface triangle nodes (for defining surface normal). Figure 2 
shows the volume mesh generated for a sphere with the inner spherical surface exposed. 

For scattering analysis, the entire scatterer surface must be modeled but for antenna analysis 
the mesh needs to be defined only over the aperture and its vicinity. The antenna resonance be- 
havior is predominantly dictated by its near field configuration and thus it suffices to only model 
the immediate neighborhood of the antenna (see Figure 5c). The volume mesh is still grown 
along the surface normal but care must be taken when terminating the substrate/superstrate 
layers (see Figure 3). The artificial absorber used to terminate the mesh is a metal-backed lossy 
dielectric layer whose material parameters are chosen to match wave impedances on both sides 
of the air-absorber or substrate/superstrate-absorber interface. This guarantees zero reflection 
from the interface at normal incidence and once the wave is inside the absorbing layer, it un- 
dergoes attenuation so that its energy is greatly reduced by the time it re-exits the layer. This 
way. while the metallic boundary on the back of the layer enables us to terminate the mesh, 
its lossy dielectric lining absorbs the incoming electromagnetic energy and thereby simulates a 
transparent boundary. To assess the performance of this termination technique, we take a look 
at the planar absorbing layer shown in Figure 4a. Its E and H polarized planewave reflection 
coefficients are plotted with dashed lines in Figure 4b for both real (sin^ <1) and imaginary 
(sin<p >1) incidence angles <j> with <j> = 0 corresponding to normal incidence [9]. A substantially 
better performance can be obtained however by using a uniaxial anisotropic absorber as shown 
in the same figure with solid line [4]. Particularly noticeable is the improvement for angles 
away from normal and for complex incidence angles. The latter are significant for illumination 
due to sources in the near zone. That is, the absorber's performance for complex angles of 
incidence determines how close the absorber can be placed to the scattering surface. 

An important feature of the artificial absorber termination is that it can be applied con- 
formally, and this minimizes the computational domain and hence the problem size. In the 
next section, we present results for antenna and scattering analysis using the isotropic absorber 
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for truncating the mesh. At the conference, we will also present results obtained by using the 
anisotropic absorber. 

3    Numerical Results 

To illustrate the applicability of the proposed technique, two examples are considered, one 
dealing with antenna analysis and the other with scattering by a non-canonical structure. For 
simplicity both cases employed a simple version of a homogeneous artificial absorber consisting 
of three layers each 0.05Ao thick with constitutive parameters er = /ir=l-j2.7 (see Figure 3). 

Of particular interest in antenna analysis is the computation of the resonant frequency which 
is a rather sensitive quantity and its accurate computation provides a good test of the proposed 
method. Figure 5 shows the results for a sectoral patch antenna mounted on the conical surface 
illustrated in the figure. The patch resides on a substrate having er = 2.32 and a thickness 
h = 0.114cm. Its dimensions are given in Figure 5a and on the basis of the approximate cavity 
model it resonates at 3.2GHz. From the computed input impedance plot, it is seen that the 
resonance frequency predicted by the FEM code is Z.115GHz (for 0=35°), which is within 3 
percent of the cavity model. The plot shows that the resonance frequency drops with the cone 
angle 0. The FEM computations were carried out using prismatic edge elements [7]. A total of 
2358 prisms were used for this analysis resulting in 3790 degrees of freedom. 

As a scattering example we consider the radar cross section of the 9.936 inch long NASA 
metallic almond [10]. Our finite element code FEMATS [11] was used to model the almond illu- 
minated with a plane wave at a frequency 1.19GHz. This code employs edge-based tetrahedral 
elements and the mesh was again terminated using the aforementioned 3-layer homogeneous 
artificial absorber. For ease of mesh generation, a structured prismatic mesh was first generated 
conformal to the almond's surface and consisted of nine 0.05A layers with the outer three layers 
occupied by the artificial absorber. Figure 6a shows the mesh with the inner almond surface 
exposed. The structured prismatic mesh was then turned into a tetrahedral mesh (by dividing 
each prism into five tetrahedra) resulting in a total of 46,878 edges. Figure 6b displays the 
radar cross section (RCS) computations compared with measured data for both polarizations 
of incidence [10]. The patterns are taken in the plane most parallel to the flat side of the 
almond (non-symmetric plane), with zero degrees corresponding to incidence tip-on. As seen, 
the calculations are in good agreement with the measured data except at near 90 degrees for 
HH polarization. However, other reference calculations based on a moment method code are 
in agreement with the FEMATS data, suggesting that the discrepancy may be due to minor 
alignment errors in the measurement. 

4    Conclusion 

In this paper we investigated the application of prismatic elements to FEM analysis along with 
artificial absorbers for mesh truncation. The ease of generating the prismatic volume mesh 
combined with the accuracy and conformal applicability of the artificial absorber termination 
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scheme provides us with an efficient analysis tool for antenna and scattering applications. As 
was seen in the above examples (the patch antenna and the NASA almond), results were in 
good agreement with the reference data. Uniaxial anisotropic absorber promises even more 
accurate results and results based on mesh truncation using this new absorber will be also 

presented at the conference. 
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ABSTRACT 

The finite element-boundary integral method is a powerful technique for dealing with 
scattering and radiation problems involving complex geometries and inhomogeneous 
media. The capability of the technique is limited mainly by the full matrix generated 
by the discretization of the boundary integrals involving the Green's function. In this 
paper, this limitation is lifted using the fast multipole method, which evaluates the 
boundary integrals at a reduced complexity. The resulting new technique is applied to 
the problem of electromagnetic scattering by cavity-backed apertures and microstrip 
antennas. Numerical results are presented to demonstrate its validity and capability. 

I. INTRODUCTION 

The finite element and boundary integral methods represent two powerful numerical 
techniques for solving boundary-value problems in electromagnetics. However, these two 
methods differ from each other with respect to their advantages and disadvantages. For 
example, the finite element method is especially suitable for dealing with complex 
inhomogeneous media because of its relatively simple formulation, and is efficient for large 
problems because it yields a sparse and banded matrix. However, this method is not well 
suited for solving open-region problems because it does not incorporate radiation 
conditions into its formulation. On the other hand, because of the use of Green's function, 
the boundary integral method automatically incorporates the radiation conditions into its 
formulation and, thus, is very efficient in dealing with open-region problems. However, 
since the Green's function is usually unavailable for complex inhomogeneous media, the 
method is only applicable to problems involving homogeneous media. 

To eliminate the disadvantages of the finite element and boundary integral methods, 
while retaining their advantages, a hybrid technique has been developed for solving open- 
region electromagnetic problems. This technique divides an open-region problem into 
interior and exterior problems and employs the finite element method to deal with the 
interior problem. The exterior problem is formulated using the boundary integral method, 
which, when coupled with the interior fields, provides an efficient solution to the original 
problem. This technique, often referred to as the finite element-boundary integral (FE-BI) 
method or the finite element-moment method (FE-MM), has been applied to a variety of 
electromagnetic problems with remarkable success. 
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Although the FE-BI method is remarkably more powerful than the finite element and 
boundary integral methods alone, it still has a bottleneck, which is the full matrix generated 
by the boundary integral formulation. This bottleneck effect becomes obvious if we 
consider a general three-dimensional volumetric problem whose linear dimension is L. The 
total number of discrete unknowns is proportional to L\ and the total number of surface 
unknowns is proportional to L2. Therefore, the memory requirement and computing time 
per iteration (assuming that an iterative solver is used) for the finite element matrix are 
proportional to L\ whereas those for the boundary integral matrix are proportional to L4, 
thus limiting the capability of the FE-BI method. In our previous work, this problem was 
circumvented by using structured elements (brick elements) and an iterative solver. With 
brick elements, the boundary integrals can be cast into the form of a discrete Fourier 
transform, which can be evaluated efficiently using the fast Fourier transform (FFT). This, 
however, limits the applicability of the method to certain geometries and results in a 
staircase approximation for curved boundaries. To model general geometries accurately, 
unstructured meshes must be used, which, however, will prohibit the use of the FFT. 

In this work, we develop a scheme to efficiently evaluate the boundary integrals using 
the recently developed fast multipole method (FMM). Since the application of the FMM 
does not depend on the choice of the elements, we can use more general elements, such as 
tetrahedral and triangular prisms, to model arbitrary geometries more accurately. The low 
operation count of the FMM (proportional to Ü), coupled to the sparseness of the FEM 
matrix results in a more efficient method for our problems. In this paper, we describe this 
general method by applying it to the problem of scattering by cavity-backed apertures and 
microstrip antennas in a ground plane. 

II. FORMULATION 

Consider the problem of electromagnetic scattering by a cavity-backed aperture in a ground 
plane. As shown in [1], the electric field inside the cavity and at the aperture can be 
calculated by seeking the stationary point of the functional given by 

™~JJJ —(VxE)-(VxE)-fc0
2£rE-E dV 

jJV-M(r) [[G0(r,r')V'-M(r')<iS' dS 

-fc0
2jjM(r)-  J]G0(r,r')M(rVS' 

s L s 

-2jfc0Z0JJM(r)-Hi"c(r)rfS 

(1) 
dS 

where V denotes the volume of the cavity and S denotes the aperture of the cavity. Also, 
Hinc(r) denotes the incident magnetic field, M = E x n is the equivalent magnetic current 
over the aperture, and G0(r,r') denotes the free-space Green's function. 
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The functional in (1) can be discretized by first subdividing the volume of the cavity 
into small elements and then representing the field as 

E = X*,N, (2) 

where N, denotes the vector basis function, Ei denotes the expansion coefficient, and N 
denotes the total number of expansion terms. At the cavity's aperture, the magnetic current 
can be expanded as 

M = Exn = '^E°Si (3) 

where S,- is the vector basis function, E° is the expansion coefficient, and Ns is the total 
number of expansion terms. Note that the numbering of coefficients in (3) is different from 
that in (2) and a superscript "a" is used to emphasize this difference. 

Substituting (2) and (3) into (1), we obtain the discretized functional 

1    N    N *   N,   N, H 

where 

■ ;=i j= 2i ;=i j=i 

*H\\ A (VxNjMVxN^-^N.-N, dV 

P|=2jJ(V-S,.)JJ(V'.S;)G0(r,r')^' 

-2k2
0jjSr jjspciryw 

dS 

dS 

b° = 2jk0Z0jjSrn™(r)dS 

(4) 

(5) 

(6) 

(7) 

Taking the partial derivative of F in (4) with respect to each Ei and setting the resultant 
expression to zero, we obtain a set of linear algebraic equations (a matrix equation), which 
can be solved using either a direct method or iterative method. 

When an iterative solver is employed to solve the resultant matrix equation, we have to 
compute a matrix-vector multiplication in each iteration. For this problem, the matrix-vector 
multiplication consists of two parts. One is contributed by the finite element discretization 
and is given by 
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1W (8) 
j=i 

Since [K] is a sparse matrix whose sparsity is independent of N, the operation count for 
calculating (8) is proportional to O(N). The other part is contributed by the boundary 
integral and is given by 

fp;z° (9) 

Since [Pa ] is a full matrix, the operation count for calculating (9) is proportional to 0(N2). 
Therefore, this calculation is very time consuming, especially for shallow cavities with a 
large aperture. In the following, we describe a procedure for evaluating (9) efficiently using 
the fast multipole method (FMM). 

The FMM, as originally developed in [2]-[6], is designed to speed up the matrix-vector 
multiplication required in iterative solvers. To describe the FMM, we start with the addition 
theorem [7] 

-JkoJLi-n'W + mk0d)h!2\k0r)P,(d ■ f) (10) 
Ir + d 

where j, is a spherical Bessel function of the first kind, h\2) is a spherical Hankel function 
of the second kind, P, is a Legendre polynomial, and d < r. Employing the elementary 
identity [8] 

4TT(-./)'./,(MW<* • f) = §e-ßdPl(k ■ r)d2k (11) 

where the integral is over a unit sphere, we obtain 

e~A'"d' = -&<Ke-*d f (-j)'(2l + l)hl2\kQr)P,(.k ■ f)d2k (12) 
|r + d|        An"        f» 

Truncating the infinite summation and denoting 

TL(k ■ r) = X(-J)'(2Z + m2)(k0r)P,(k ■ r) (13) 

Equation (12) can be approximated as 

|r + d|        4^J 
e-**TL(k-r)d2k (14) 
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To use the FMM, we first divide the area of the cavity's aperture into several groups 
denoted by Gm (m = 1,2 M). Now, let r, be the field point in a group Gm centered at 
rm> and rj be the field point in another group Gm, centered at r .. It is not difficult to see 

"r, = (r, -r J + (r„ -r„.)-(iv - r„.) 

= r;„+r   ,-r,.„, (15) 

Substituting this into (14), we have 

-Ah 
'—Age-A*..-v \{k-fmm.)d^ (16) 

When this is substituted into (6), we obtain 

pij = ^[*o §U„W ■ TL(k ■ rmm.)Vm, (k)d2k 
(17) 

where 

Um,(*) = JJe-Jk-"-S,(rta)dS (18) 

Vm,(k) = jje-*«"V-Si(r:JdS (19) 
s 

Using (17), we can rewrite the matrix-vector multiplication as 

iw=ziw+Ä 
m'eS/n jeGm- %K2 tiftU^k)- ^TL(k-rmm.) ZK,(k)d2k 

m'eB,r_ j&G . 

(20) 

-ß^MXr^oSXctV* 
J'eGm. 

i'eG„ 

where Bm denotes the neighboring groups of group Gm including Gm itself. Therefore, the 
first term in (20) is the contribution from nearby groups (including the self-group) and is 
calculated directly. The second term is the far interaction to be calculated by the FMM. 

Obviously, in the FMM, the addition theorem is used to translate the scattered field of 
different elements within a group into a single center. The field scattered by all the other 
group centers is first received by the group center and then redistributed to the elements 
within the group. It has been proven [6] that the operation count for calculating (20) is 
proportional to 0{N]5). This complexity can be reduced further using a multilevel FMM 
[9]. For example, in the two-level FMM implemented in this work, the aperture of the 
cavity is divided into two sets of groups with different group sizes. When the observation 
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and integration points are far apart, the FMM is performed on larger groups, and when 
those points are not very far apart, the FMM is performed on smaller groups. As a result, 
the complexity is reduced to 0(N]33). 

III. NUMERICAL RESULTS 

Based on the formulation described above, a computer program was written to examine the 
validity and capability of the proposed technique. In this program, triangular prisms were 
used to discretize the volume of the cavity; consequently, the aperture of the cavity was 
divided into triangular patches. The divergenceless edge-based basis functions were 
developed and used to discretize the electric field. The FEM matrix was stored in a compact 
two-dimensional array A(N,K), where K denotes the maximum number of nonzero 
elements in a row of the array; typically, K < 30. For the implementation of the FMM, the 
number of groups was chosen to be M ~ -JWS and the infinite summation in (13) is 
truncated at L = k0D + ln(K + k0D), where D is the maximum diameter of a group. The 
biconjugate gradient method was employed to solve the system of equations. 

One of examples considered is the scattering by a 16.256A long, 0.2A wide, and 
0 85/1 deep rectangular crack in a ground plane. The bistatic radar cross section (RCS) in 
the plane parallel to the longer dimension of the crack is shown in Fig. 1 for the incidence 
angle 0 = 20°. The incident electric field is <j) polarized (horizontally polarized). The result 
obtained using the triangular prism elements is compared to that obtained using the brick 
elements and the agreement is good. 

The performance of the two-level FMM is shown in Fig. 2, from which we see that the 
computational complexity is very close to O(N^). The problem for this case is a cavity- 
backed square aperture with one layer of elements. 

IV. CONCLUSION 

A new technique was described in which the fast multipole method (FMM) is employed to 
evaluate efficiently the boundary integrals in the finite element-boundary integral (FE-Bp 
solution of three-dimensional scattering problems. As was shown numerically, this 
technique has a computational complexity of 0(N!

S
5) with a one-level scheme and 

0(JV,',33) with a two-level scheme. The technique was validated by numerical results for 
scattering by cavity-backed apertures and microstrip antennas on a ground plane. 
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Figure 1. Bistatic RCS of a 16.256A long, 0.2A wide, and 0.85A deep 
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the crack for the incidence angle 0 = 20°. The incident electric field is 0 -polarized. 
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Use of Perfectly-Matched Absorber Boundaries in Finite Element 
Analysis of Patch Antennas 

J. F. DeFord and G. C. Lizalek 
MacNeal-Schwendler Corporation 

Milwaukee, Wl 53223 

Introduction 

Efficient and effective radiation boundary conditions are critical to the accurate computation of 
antenna near-fields in finite-element analysis. Recently, a new method of terminating outgoing 
radiation on a finite-element mesh was developed by P. Simon and K. Mclnturff [1 ], and indepen- 
dently by Kingsland, et al. [2]. This method, dubbed as the perfectly-matched absorber (PMA) 
approach, is similar in spirit to the perfectly-matched layer introduced by Berenger [3], but avoids 
the use of non-Maxwellian media. A PMA is a layer composed of an orthotropic material that 
has the following properties: 

(1) 

where ejes = (x^jni = e/e2 = iijfi2 = K, with €,and /i,the permittivity and permeability of the 
media abutting the PMA, respectively. The constant K = K' - JK" determines the propagation 
constant ßz (z is the direction normal to the PMA surface) in the PMA layer, i.e., 

ßz = /CKCOSö, (2) 

where k = w Jefij is the propagation constant in the media abutting the PMA, and 0, is the inci- 
dent angle of the plane wave, as measured from the surface normal. A PMA will damp both TE 
(to z) and TM polarized plane waves equally, and theoretically is perfectly matched at the PMA 
surface when the layer is infinitely thick. In practice, of course, the layer has a finite thickness 
and is terminated in some fashion, which leads to a finite reflection. In the subsequent discus- 
sion we will assume the PMA is terminated by a perfect electric conductor, which yields an over- 
all reflection coefficient T for the layer that is dependent on the layer thickness and is given by 

-Pßzw 

"ei  0   0' 'ft,   0   0' 
0E,  0 ,   ßr = 0 ß1   0 
0   0 e2 0   0 fi2 

r=e~ (3) 

where w\s the layer thickness. Examination of Eqns. (2) and (3) reveals that when K" > 0 a 
PMA will yield minimal ID for normally incident radiation, with the thickness necessary to pro- 
duce a given in increasing as the incident angle increases, or the frequency decreases. 

Note also that kQ cos 6, = kz is the zcomponent of the propagation vector for the incident plane 
wave. For evanescent incident fields, that is, when kz is imaginary, the roles of K' and K" are 
reversed. Thus, for evanescent fields, the rate of attenuation in the PMA is determined by the 
real part of K, which is an important constraint in choosing the PMA material properties for ap- 
plication to general purpose analysis. 
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Construction of PMA in Practical Analysis Problems 
We can use Eqns. (2) and (3) to determine the overall thickness of the PMA based on our fre- 
quency range of operation, and the spread in incident angles we expect to see in the radiated 
fields. However, there are several practical complexities that must be considered when using 
PMA with patch antennas, and also in more general applications: 

• Effect of material inhomogeneities at PMA boundary. When a material boundary 
intersects the PMA, such as happens when analyzing a patch antenna on a dielectric 
substrate covering an infinite ground plane, we will (without further justification) simply 
modify the material1 properties in the PMA adjacent to the dielectric region as 
indicated in Eqn. (1). 

• PMA material properties at corners and edges, since surface normal becomes 
ill-defined. There are several methods for dealing with this problem, but we will avoid 
it altogether by using a portion of a sphere for PMA boundary for the example 
discussed herein. 

• Optimization of performance when both propagating and evanescent modes are 
present. This issue is alluded to above, and imposes the requirement that K' = K". 

• PMA meshing requirements. The remainder of the discussion will focus on this issue. 

PMA meshing considerations are listed below: 
(i)   Spectrum of incident angles, or equivalent^, the frequency range. 

(ii) Maximum allowable reflection coefficient, 

(iii) Minimum number of element layers for desired performance. 

In practice, the reflection coefficient produced by the PMA is a function not only of the overall 
thickness of the PMA, but also of the depth of the individual element layers that make up the 
mesh in the PMA. This is because a minimum field sampling density must be maintained in order 
to obtain accurate results with finite elements. The required sampling density is a function of 
the nature of the basis functions and the variation of the fields, but as a rule of thumb there should 
be at least 5 elements per wavelength for 2nd-order (mid-noded) elements in propagating fields, 
and approximately 1 element per 1/e distance in evanescent fields. If the PMA mesh layers are 
thicker than these bounds, then numerical errors begin to dominate the performance, and I/I 
will rise above what is predicted by Eqn. (3). 
In the following discussion we assume only propagating modes are present (the analysis for 
evanescent modes is similar). The 1/e distance in the PMA will be smallest for normal incidence 
and highest frequency, and therefore the thickness for each layer A-, must each obey the 
constraint 

n^K" * min(/cc^) ' (4) 

where ng is the number of elements per 1/e distance. However, the thickness f of the PMA is 
determined by the required performance at large incident angles/low frequencies, i.e., 

in ury 
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Therefore if we require that all elements in the PMA have a thickness that satisfies Eqn. (4) (ap- 
plying the equality), and we want a reflection coefficient of \T0\ at largest incident angle and low- 
est frequency, then the mesh will be uniform in the z direction, and the number of element layers 
is given by 

_ neein^r0| 
nuniform ZTÖ—   ' W 

where ß is the effective operating bandwidth of the PMA given by 

max(/ccos0;l 
B 

mmikcosdl 
(7) 

For example, if we use ne = 1 (mid-noded elements), the desired |T0| is -50dB, a frequency 
range of 10% is needed, and the expected spectrum of incident angles of +- 30°, then 
Nuniform = 4' These same requirements but for a frequency range of an octave yields 
Nuniform = 7< and a factor of 10 in frequency yields Nunjform = 33. Conversely, a substantial 
spread in incident angles, which is more often the problem in patch antenna analysis, will also 
drive up the layer count. The linear relationship between the bandwidth of kcos 0,. is the cause 
of the problem. 

To avoid the inefficiencies of the uniform mesh, we have relaxed the constraint imposed by Eqn. 
(4) at the back (or terminated end) of the PMA. The rationale for this approach is that for values 
of kcos 0, near the maximum of the design range the fields will be damped out in the layers near- 
est the surface of the PMA, whereas for minimal kcos 0,. the full PMA thickness is needed. The 
layers at the back of the PMA can have a larger thickness because the fields are only significant 
in these layers for relatively small values of /ccos0,. We have implemented in the commercial 
finite-element analysis software product MicroWaveLab1" a PMA meshing scheme that takes 
advantage of the observation noted above with an element layer thickness given by 

Ai = A0iir+1)1-'1    /= 1, 2  (8) 

where ris a constant, and A0 is the width of the first layer (index 0). Each succeeding element 
layer has a thickness that is a fixed multiple rof the total preceeding mesh thickness. A 0 is cho- 
sen to satisfy Eqn. (4), and the number of layers is determined using the relation 

T3i + 1=]
nK^+1 

"graded ~   |n(r+1)   + 1 "   |n(/-H)   + 1   ' (9) 

Thus for large bandwidth problems, where the bandwidth may come from either a spread in k 
or in incident angles, the graded mesh yields a number of layers that grows only as the logarithm 
of the uniform case. 

The best value of rwill generally depend on ne. Via numerical experimentation in a waveguide 
terminated with 2 layers of Hrcurl elements, we achieved minimal reflection coefficients around 
-55dB when r = 2, and this is the value that is used for the numerical results presented herein. 
As a comparison with the uniform mesh, for the case listed above that yielded Nunjfom = 33, 
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the equivalent PMA using the graded scheme has Ngraöed = 5. This meshing technique yields 
a relatively large bandwidth PMA with minimal element count. For most situations, only 3 layers 
are needed, which gives good performance over a total bandwidth of B « 2.9 when r = 2, 
ne= 1,and F0 = - 60dB. 

Patch Antenna Example 

The geometry for the patch antenna we investigate is shown in Fig. 1. This patch has been ana- 
lyzed in detail J. T. Aberle [4], providing both method-of-moments (MoM) solutions and mea- 
surement data. The mesh we used for this geometry is shown in Fig. 2. The PMA is not shown, 
as it is automatically generated within the MicroWaveLab™ solver. The mesh in the model as 
shown is composed of tetrahedra. The PMA mesh is extruded from the outer sphencal surface, 
and thus is composed of prism elements with a radial size variation given by Eqn. (8). There 
are a total of three layers of elements in the PMA. The first layer thickness, A 0, is chosen to be 
the average size (height) of all tetrahedra touching the PMA boundary, K" = K' is chosen using 
Eqn. (4), with T0 = - 60dBandne = 1, and max(/c cose,) = 2^fmaxye"r/c0,whereeris the di- 
electric constant in the material adjacent to the PMA. 

Results for the fundamental mode on this patch are shown in Fig. 3. For the relatively coarse 
mesh used in this example, the results are quite good, with the computed resonance of 2.41 GHz 
within 2% of the measured value. The problem was run on an HP9000/735-125, taking approxi- 
mately 20 min. per frequency, and requiring 18MB RAM and 270MB of disk. 

Conclusion 

We have presented a method of meshing the PMA layer that achieves high bandwidth perfor- 
mance with minimal element count. The proposed meshing scheme uses an element layer 
thickness that increases geometrically within the PMA. Results are included for a circular patch 
that show good agreement with MoM and measured data. 
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Sphere PMA 
r = 4.6 cm 

Subslrate 
h = .71 cm 
d.c. = 2.33 

Coaxial feed (50 £2) 
(air-filled) 
Rinner = -045 cm 
Router = .1035 cm 

Ground plane 

Probe feed 
Offset from center = .92 cm 

Figure 1: Circular patch problem geometry. 

Figure 2: Mesh of circular patch. Some of mesh in coax is not shown. Visible mesh is com- 
posed entirely of tetrahedra, and the PMA (not shown) is composed of prisms. 
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SCATTER ING-MIRIX vs. FREgUENCY 

2.60 GHz 

— MicroWaveLab'" 
■ Experiment 
AMoM 

Figure 3: Smith chart of results for fine mesh. Length of coax has been de-embedded. Ex- 
perimental and MoM data taken from Ref. [4]. 
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Abstract: This paper describes a configuration of a high-field permanent-magnet synchronous machine which may save 
expensive permanent-magnet materials. The alrgap field was Investigated and the steady state stator core loss was calculated 
by means of finite element analysis. Tests were made to verify the analyses. 

I. INTRODUCTION 

Permanent-magnet AC machines are becoming increasingly significant for drive systems. There are many 
applications for which permanent-magnet machines have definite advantages over other machines. The simple replace- 
ment of an induction-machine rotor by one of the field-enhancing permanent-magnet designs will produce a machine 
which has a higher efficiency than that of the induction motor since its steady state operation is at synchronous speed 
thereby eliminating all steady state rotor conductor losses, and since the existence of the permanent magnets reduces the 
requirement of armature magnetizing current therefore eliminating associated stator copper loss [3]. However, such 
permanent-magnet machines generally have higher cost because they use expensive rare earth permanent-magnet 
materials. In addition, such a machine will produce a rotor field which is seriously distorted, and therefore will cause 
more stator core losses than induction motors. 

This paper describes a configuration of a high-field machine which uses a combination of two different types of 
permanent-magnet materials in the design of its rotor. This machine will have lower cost compared to those currently 
used [1] because one of the two types of permanent-magnet materials has much lower market price than the commonly 
used rare earth materials. Finite element method was employed to analyze the magnetic field in the permanent-magnet 
machines. The stator back EMFs were calculated based on FFT analysis for airgap flux densities at no load. The steady 
state stator core losses considering both eddy and hysteresis effects were calculated at rated load. Experiments were made 
to compare with the computed results. 

IL DESIGN CONSIDERATION 

The configuration of the new design is shown in Fig. 1. The rectangular magnets are made from rare earth materials 
(e.g. Neodymium iron boron) which has high level of magnetic energy. The arc magnets consist of common magnetic 
materials such as iron oxide which have inferior magnetic properties. The amount of rare earth materials may be reduced 
due to the use of iron oxide which has much lower market price, thus the total cost of the permanent magnets will be 
decreased while airgap field distributions are maintained. The relative dimensions of the two types of magnets are not 
unique. An optimal combination of dimensions and distributions between the two may be obtained. The rotor cage 
winding is designed for self-starting use. The design of parameters of rotor cage windings not only affects the start 
performance of motors but also determines if motors can be pulled in synchronous operation. 

in. ANALYSIS OF AIR-GAP FIELD 

A 2-D finite element program was developed by the authors to analyze the steady-state performance of the machine. 
The representation of the permanent magnets made use of an equivalent surface current model. The nonlinearity of the 
laminated core was taken into account. Computations were made for the new model machines of the configurations 
shown in Fig. 1 (model 1) and a model machine (model 2) of a similar configuration described in [1]. The models are 
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series of high order harmonics other than the fundamental. 

a. magnet NdFeB 
b. magnet FejCh 
c. stator lamination 
d. rotor lamination 
e. rotor cage bar 
f. nonmagnetic material 

Rg.l Configuration of the PM synchronous machine 

Table 2 shows the amplitudes of the fundamental, 3rd, and 5th order components of the airgap flu* « f°* 
modeU aid mS 2 Svely. These results were obtained from FFT analysis for the correspond radtai atrgap 

flux density waves. 

It may be seen mat the new design produces a fundament airgap fit«.density very cto to that of Uhe earlier design 

model 2[1], while the ratios of its 3rd and 5th harmonics to the fundamental are süll acceptable. 

from 

B"-jP E2 (1) 

where: 
Nv is the number of the harmonics 
Eptv is the magnitude of the vth harmonic phase back EMF. 

According to the winding theory of AC electric machines, E,*, is given by 

■Jl 
E.M=:L-<üNpkkmlcT.pB„ 

Where: 
to is the electrical angle speed of the rotor 

(2) 
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Npt is the number of series turns per phase 
kav is the harmonic winding factors 
L. is the effective axial Stator length 
Tp is the pole pitch at midgap 

B„ is the magnitude of the vth radial airgap flux density harmonics. B„ was obtained from FFT analysis for the airgap 
flux density distribution wave shown in Fig. 2. 

0» 

0.6 HA       A/ 1 
a4 '  ' M <i 
02 - 

-02 I 1 \ 
■0.4 
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■V1 

ww JW i 
electrical degrees 

Fig.2 Airgap flux density distribution at no load 

Table 1. Data of the model machines 

number of phases 
number of poles 
speed 
rotor diameter 
rotor magnets 

3 
4 
1500 rpm 
189 mm 

Neodymium iron boron, iron oxide. 

rated voltage 
rated power 
airgap length 
stator core length 

380 V (line 
15 kw 
0.5 mm 
165 mm 

-line 

Table 2. Radial aiigap flux density harmonics 

Modell 
Model 2 

(Fig.l) 
B,i (Gauss) 

7408 
7759 

Bd (Gauss) 
2789 
2721 

Btf (Gauss) 
1014 
1023 

For the model of the configuration similar to that described in [1] (model 2), the measured phase back EMF is 239 V, 
the computed value from (1) and (2) is 234 V. This very good consistency between the two values verifies that the 
program developed for the analysis is correct. For the model shown in Fig. 1 (model 1) the computed phase back EMF 
from (1) and (2) is 225 V, the computed fundamental back EMF from (2) is 223 V. 

The back EMF is an important design consideration. For a given stator supply voltage, the value of the bxk EMF 
determines whether a machine runs at leading or lagging power factor. The rated imposed supply voltage for the model 
machine is 220 V (phase value), so the machine will run at leading power factor. Fig. 3 shows the computed flux 
distribution for the model shown in Fig. 1 at no load. It may be seen that the flux due to high-energy magnets composes 
the main part of the airgap flux, as expected. 

IV. CALCULATION OF STATOR CORE LOSS 

The distorted rotor magnet field contains high order harmonics. The airgap harmonic fields penetrate into the stator 
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Fig.3 Flux distribution in one pole at no load 

core thereby causing an increase of stator core losses including eddy and hysteresis losses. A very important design 
consideration is evaluation of the stator core losses caused by the distorted akgap fields. The 9?™^***?°° * 
the stator core losses requires detailed knowledge of the distribution of the fields in all parts of the stator core. In flu 
paper, a 2-D finite element method was used to obtain the flux density distribution within one pole over a complete cycle 
of the stator current thus determining the stator core losses at rated load. 

Steady state operation condition was assumed, and the harmonic currents in the stator windings were ^glected. 
Thus the rotor was considered to rotate at constant synchronous speed while the stator currents vary sinusoidally with a 
fundamental frequency of ® radians/second. The field distribution at several time instants in the complete rundamenül 
current cycle is obtained by simultaneous rotation of the rotor grid and phase shift of the stator currents [3]. The sfctor 
grid was generated by repeating the finite element pattern over each phase zone so that each element m one phase zone 
will have the same shape and area as the element in the corresponding position in the other two phase zones. 

Starting with a fixed rotor rotation position for which time instant ox=0 was assumed and an initial phase angle of 
one of three stator phase currents equals to 6» which was determined by the shaft load, one finite elementsolutiori ui.one 
pole was obtained for the particular rotor position and the instantaneous stator currents. Another finite element soluüon 
was obtained for the rotor position which was reached by rotating rotor K/15 electrical degrees from the previous position 
and for the stator currents at a»=*/15. Following this procedure, five finite element solutions were obtained for the time 
instants at toti=(i-l)n/15 (i=l A...5) and five equally spaced rotor rotation positions over zero to */3 electrical degrees. 

According to the symmetry of the three stator windings and currents, and the assumption of steady state operation, 
the field solutions corresponding to c*=*/3+(i-l)n/15 and a*=2,r/3+(i-l)*/15 (i=l 5) can be obtained by shifting the 
field solutions at at=(i-l)]r/15 (i=l, ...5) among the phase zones. 

In each stator core element the radial and circumferential flux density was obtained at the fifteen time instants 
fflt=(i-lW3+(i-l)K/15 0=1, ...3, j=l, ...5) in a half cycle. The fifteen symmetry counterparts in another half cycle can be 

flux density waveforms in three different stator core elements. These waveforms were plotted using the thirty values 

above. 
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The element flux density time waveforms were approximately expressed as the sum of the fundamental and the high 
order harmonics as follows (for element k): 

AT, 

^W = Xß*cos(VC0'+e*) (3) 
v=l 

Bdi(t) = Z.BdHeos(yau+9db,) (4) 

where: 
Nv is the number of the harmonics 
Biv and B^tv are the magnitudes of the vth radial and circumferential flux density components in element k, 
respectively. 
8iv and 9^ are the initial phase angles of them, respectively. They were determined by the FFT analysis for the kth 
element's flux density •     eforms similar to those shown in Fig. 4^6. 
The kth element's flux density vector in the finite element solution plane is given by 

where 

Bt(r) = B*(t)r° +Bck(m" = £Bb (0 

B*v (0 = S* cos(voof+6^)^ +Bctt cos(vcof+ectv)<t>° 

(5) 

(6) 

and the r° and $ are the unit vectors along the radial and circumferential directions, respectively. 

The distorted rotation field in the solution plane given by (5) was decomposed into two translational components by 
projecting Bt(t) onto the major and minor axis associated with the ellipse determined by Bu(t), the kth element's 
fundamental flux density vector. Fig. 7 shows the major and minor translational flux density waveforms associated with a 
Stator tooth element. 

The total core loss for element k was calculated as the sum of the loss associated with the two translational fields 
[3], [4]. The core loss associated with the major and minor axis element translational flux density was calculated using 
the expressions derived in [4], except that the eddy current loss factor and hysteresis loss factor for a fundamental 
component flux density used the data for the lamination material used in the model machines, and for standard frequency 
of50Hz. 

   radial 
. circumferential 

electrical degrees electrical degrees 

Fig.4 Flux density distribution in a Stator tooth tip at rated load        Fig.5 Flux density distribution in a stator tooth stem at rated load 
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Fig.6 Flux density distribution in the stator yoke at rated load 
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Fig.7 Translational flux density wavefoims 

The total stator core loss was obtained by adding the computed core loss in all stator elements. Table 3 hsfcs toe 
stator core losses calculated for the two model machines at rated load using this method. Ex^nments were made wiAitta 
mc^l machine (model 2). The measured Stator core loss at rated load is also listed in Table 3. Good consistency is shown 
between the calculated and measured stator core losses. This shows that the calculation is effective and practical. 

Table 3. 

Model 2 
424 
457 

Model 1 
413 

Induction motor 

285 Calculated (W) 
Measured (W)   

From the computed results the stator core losses of the two configurations differ very little. This may be ***** 
their similar field distributions. Table 3 also lists the stator core loss of the prototype induction motor 6«tehte two 
Dermanent-magnet synchronous machines were made. It seems that the induction motor has much lower stator core loss 
CrlsSTous motors, but the efficiency of the former is onlyabout 88% while the ^iency of tite^er nw 
reach (92-93)%. This is because the field-enhancing permanent-magnet synchronous motors eliminate all steady state 
rotor conductor losses and some stator copper loss, as mentioned earlier. 

V. CONCLUSION 

A permanent-magnet synchronous machine configuration capable of saving expensive permanent-magnet materials 
has been developed wim the aid of computer software and is shown to be an taportant design ****^«™*£ 
it can provide therequired airgap field distribution and produces an acceptable stator core loss comparable to the earlier 
developed configurations. 
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Investigation of ABC Behavior 
in Axisymmetric Electrostatic Finite Element Analysis 

A. Konrad and Lin Han 

Department of Electrical and Computer Engineering, University of Toronto 

Toronto, Ontario, CANADA M5S 3G4 

Abstract—Procedures using first and second order asymptotic boundary conditions (ABC-s) on circular and arbitrary 
boundaries are presented. Both exact and approximate ABC-s for arbitrary boundaries are derived. Different formula- 
tions of ABC are applied to the finite element solution of unbounded axisymmetric electrostatic problems. Results for cir- 
cular and elliptic boundaries are obtained and compared with analytical solutions. 

I. INTRODUCTION 

There are numerous procedures for solving open boundary problems by the finite element method (FEM). Absorb- 
ing and asymptotic boundary conditions are the most efficient methods and perhaps better choice for open boundary 
problems than other techniques. This is due to the fact that they preserve the sparsity of the finite element coefficient 
matrix, and do not introduce other numerical calculations except the line (surface for 3D) integration on the bound- 
aries having absorbing or asymptotic boundary conditions. 

Asymptotic and absorbing boundary conditions are derived based on cylindrical or spherical harmonic expansions, 
and need a circular (2D) or spherical (3D) truncated boundary. Only by using this kind of boundary, can asymptotic 
and absorbing boundary conditions be imposed on the system of equations produced by FEM. When solving prob- 
lems with large aspect ratios, it would be useful to be able to impose ABC on an arbitrary boundary because this can 
save computer memory and make it easier to generate a finite element mesh. 

In this paper, exact and approximate formulations for first and second order ABC-s on circular and arbitrary bound- 
aries are presented. The behavior of these ABC-s are investigated by solving some axisymmetric electrostatic prob- 
lems with truncated circular and elliptic boundaries. 

II. THEORY AND FORMULATIONS 

A. ABC on a Circular Truncated Boundary 

In the spherical coordinate system (r,9,<|>), the m-th order operator for ABC is given by [1] 

n= 1 r 

For axisymmetric problems in the cylindrical coordinate system (p, (|>, z), the potential <P is independent of the angle 
<j>. The first and second order ABC-s are obtained by substituting m=l, 2 into (1) [2], [3] 

a*  <P 
a7+7=° (2) 

dr      r       2r 39     2rae2 

where r denotes 

a*  o   cotea*   i a3rj> 

= Jp2 + Z (4) 

1202 



B. ABC on an Arbitrary Truncated Boundary 

If the positive directions of 9, n and r for an arbitrary boundary are as shown in Fig. 1, then using vector algebra we 

can express the normal and tangential derivatives of <D as follows: 

3* 3* 

Tr° 
13* 

736 s 
(5) 

3<D     3* 13* 
+_   = _ sina + -™cosa 

dt       dr rdQ 
(6) 

where the ± corresponds to two cases. Case 1: the positive direction of t is as shown in Fig. 1; Case 2: the positive 
direction of (is the opposite ofthat shown in Fig. 1. After eliminating the second term m (5) and (6), we have 

1   3*     1   3$    3*, . 1       ±      -—  = TT- (tanoc + cota) 
sina3n   cosa3r      or 

(V) 

Considering the ABC-s given by (2) and (3), we obtain expressions for the first and second order ABC-s on the arbi- 

trary boundary as (8) and (9), respectively. 

(8) 3*       1 3* _ + —L_ <J>±tanav   =0 
dn    rcosa at 

3d)       i    (4>    cot63<J>     1 3^t>V        3*     . 
i     * ttancfc-   =0 

dn     cosa^r      1r 38    2r^J dt 

The sign of the third term in (8) and (9) depends on the assumed positive direction of t. 

(9) 

Fig. 1. Arbitrary boundary type 1 Fig. 2. Arbitrary boundary type 2 

If the positive directions of 6, n and r for an arbitrary boundary are as shown in Fig. 2, then using a similar deriva- 
tion as above, we obtain again (8) and (9) as the ABC-s on the arbitrary boundary. As before, the sign of the third 
term in (8) and (9) corresponds to two cases. Case 1: the positive direction oft is as shown in Fig. 2; Case 2: the pos- 

itive direction off is the opposite ofthat shown in Fig. 2. 

C. Approximate ABC Formulation 

In the local orthogonal coordinate system (är, a^) shown in Fig. 1, we can write the gradient of* as 

grad<b = 5^ar + 
3<I>_     l3*_ 

r38 

Ifr is sufficiently large, then the second term in (10) can be neglected and we have 

3#_ 

(10) 

(11) 

In any local orthogonal coordinate system such as („„, a,) shown in Fig. 1, the gradient of* can be expressed as 
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Then, from (11) and (12) we have 

which yields 

grad**^*,,^*, (12) 

3<I>_    3<t>_    3<1>_ 
^-a=^ran + ^- a. (13) 

3*    3<t>_     . 
(14) 

From (14), we can see that the normal derivative of <J> on the arbitrary boundary is the projection of 3<t>/3r along the 
normal direction to the boundary (Figs.l and 2). By using (2) and (3), we obtain the first and second order approxi- 
mate ABC-s on the arbitrary boundary as (15) and (16), respectively: 

3*     * 
_ = — cosa (15) 
cm        r 

3*    (   *    cot63<J>     l d%\ 
^   - i ■ -^—=^T ■ s *   cosa (16) 3«     {    r       2r 39     2r^tf-) K    ' 

In the next section, the FEM implementation of the above ABC-s will be presented. 

III. VARIATIONAL FEM IMPLEMENTATION 

A. General Neumann Boundary Condition 

For 2D axisymmetric Laplace's equation problems, the functional corresponding to the general Neumann bound- 
ary condition is given by [4] 

f2(0) = Je(I/,*2-/2<E>)prf/ 
L    2 

(17) 

where e is the permittivity of the material and L is the boundary with the general Neumann boundary condition. The 
latter can be described as follows 

3<J> 
^+/l*=/2 (18) 

where/, and/2 are coefficients which may be constant, a function of position, or an operator of O. If/, is an operator 
of <& and is self-adjoint, the functional corresponding to (18) is given by 

F2(<S»  =\z(l-<f>fl<S>-f2<S>)pdl (19) 

From (2) to (16), we can see that all ABC-s include an operator of 4>. It can be shown that the operators appearing in 
(8) and (9) are not self-adjoint because the operator jL is not self-adjoint. Consequently, results obtained with (8) and 
(9) are not satisfactory. This will be shown in the next section. 

B. Asymptotic Boundary Condition 

It is clear from (2), that when we choose a circular (2D) boundary, we can use (17) directly because (2) can be 
interpreted as a general Neumann boundary condition. As for (3), we can interpret it with /, = 0, then use (19). The 

functionals corresponding to the first and second order ABC-s on circular boundaries are given by (20) and (21): 
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.F2(<J>)=5Je{*2>7<" (20) 

F2m-\[^-W^Vl (21) 

By discretization, we obtain an expression for the unknown <t> in a finite element, say element e, in following form 

i£ =  £ A**? =  [Ne]T[<t>e] = [*e]r[We] (22) 

where n is the number of nodes in the element, 4>e is the value of * at node; of element e, and N] is an interpolation 
function of element e. The superscript T denotes transpose. Substituting (22) into (20) and (21), then differentiating 

the resulting functional, we obtain 

^- =  \e{lN,][N,]T}^dl[<tt] (23) 

ao    L> 

where F? is the functional for element e, and U denotes the edges of element e with ABC. From (23) and (24), we 
obtain the local coefficient matrix associated with the first and the second order ABC-s for element e as (25) and (26), 

respectively: 

[Ke
ABC]  = \t{{Ne][Ne]T}Ul (25) 

V 

L" 

[if    ] is the contribution to the global finite element coefficient matrix by element e due to an ABC on one or 

more of its edges. 
Using a similar procedure, we can obtain the local coefficient matrices associated with the exact arbitrary ABL-s 

(8) and°9) as (27) and (28), respectively, and the approximate arbitrary ABC-s (15) and (16) as (29) and (30), respec- 

tively: 

L' 

l^fld  = J6^] [A^Vosa^/ (29) 
V 

V 
It should be noted that the derivation of (27) and (28) is based on the assumption that (8) and (9) can be used in the 

form of (19). 

(27) 

^[N'fypdl       (28) 
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IV. RESULTS 

In order to test the above formulations, we use them to solve the following problems having ABC-s on circular and 
elliptic boundaries. 

A. Half Sphere Above Ground 

The half sphere's potential is V0=l V, its radius is R0=0.5m. The analytical solution of the potential along the z-axis 
is given by [3]: 

*(z) = V 
(z2-R2

Q) 
(31) 

ZJZ
2
 + R] 

A small gap (0.01m) with a homogeneous Neumann boundary condition separates the ground (z=0) from the 
sphere. 

(1) Solution with ABC for Circular Boundary 
When we choose the circular truncated boundary (r=1.0m) and use (25) and (26), the equipotential lines are as 

shown in Fig. 3. The potential distributions along the z-axis compared with the analytical solution are shown in Fig. 
4. Both results in Fig. 3 and Fig. 4 are computed using first order elements. The total number of nodes and elements 
are 121 and 100, respectively. Table 1 shows the error for different orders of element and ABC. 

P (m> p (m) 
Fig. 3. Equipotential lines, 1st order ABC (A), 2nd order ABC (B) 

ooo : z-Axis of ABC 

—: Analytical 
000 : z-Axis of ABC 

 : Analytical 

z (m) z (m) 

Fig. 4. Potential along the z axis, 1st order ABC (A), 2nd order ABC (B) 

(2) Solution with Exact ABC for Arbitrary Boundary 
For different order ABC-s, the nuipotential lines are shown in Fig. 5. The potential distributions along the z-axis 

compared with the analytical *sU:. re shown in Fig. 6. Table 2 shows the error corresponding to different orders 
of ABC. 
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p(m) 
P(m) 

Fig. 5. Equipotential lines, 1st order ABC (A), 2nd order ABC (B) 

ooo : z-Axis of ABC 

—: Analytical 

z(m) 
z(m) 

Fig. 6. Potential along the z axis, 1st order ABC (A), 2nd order ABC (B) 

Circular Boundary (R=1.0) 

1st Order Element and 1st Order ABC (121 Nodes, 100 Elements) 

1st Order Element and 2nd Order ABC (121 Nodes, 100 Elements) 

2nd Order Element and 1st Order ABC (441 Nodes, 100 Elements) 

2nd Order Element and 2nd Order ABC (441 Nodes, 100 Elements) 

Average Error (%) 

17.68 

2.85 

15.4 

0.88 

Maximum Error (%) 

39.2 

5.61 

30.6 

2.34 

Table 1: Error for the different orders of element and ABC 

Elliptic Boundary (Rx=2.0, Ry=1.0) 

1st Order Element and 1st Order ABC (121 Nodes, 100 Elements) 

1st Order Element and 2nd Order ABC (121 Nodes, 100 Elements) 

Average Error (%) 

2.44 

3.56 

Table 2: Error for the different orders of element and ABC 

Maximum Error (%) 

5.14 

(3) Solution with Approximate ABC for Arbitrary Boundary 
For different order ABC-s, the equipotential lines are shown in Fig. 7. The potential distributes along the 2-ax,s 

compared with the analytical solution are shown in Fig. 8. Table 3 shows the error corresponding to different orders 

of ABC.   

Elliptic Boundary (Rx=2.0, Ry=1.0) 

1st Order Element and 1st Order ABC (121 Nodes, 100 Elements) 

1st Order Element and 2nd Order ABC (121 Nodes, 100 Elements) 

Average Error (%) 

13.57 

2.44 

Table 3: Error for the different orders of element and ABC 

Maximum Error ( 

31.67 

9.68 
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p (m) p (m) 

Fig. 7. Equipotential lines, 1st order ABC (A), 2nd order ABC (B) 

ooo : z-Axis of ABC 

—: Analytical 

ooo : z-Axis of ABC 

—: Analytical 

z (m) z (m) 

Fig. 8. Potential along the z axis, 1st order ABC (A), 2nd order ABC (B) 

B. Insulator With Large Aspect Ratio 

The meshes for circular and non-circular boundaries are shown in Fig. 9. The comparison of equipotential lines of 
ABC and Dirichlet boundary condition are shown in Fig. 10. The result with Dirichlet boundary condition is obtained 
by choosing a truncated circular Dirichlet boundary at R=59.984m. The results with ABC are obtained by using (26) 
and (28). From Fig. 10, we can see that for this kind of problem with large aspect ratio, using arbitrary boundary with 
ABC can save computer memory, although its accuracy is not as good as the circular boundary with ABC, the result 
near the object is still almost the same as the result with a Dirichlet boundary condition very far away. 

CONCLUSIONS 

We can draw the following conclusions from the numerical results: 
A. The 2nd order ABC on a circular boundary combined with 2nd order elements will yield very satisfactory results 
compared with analytic solutions and it is the recommended procedure to treat open boundary problems. 
B. ABC on an arbitrary boundary is less accurate compared with ABC on a circular boundary but its near field accu- 
racy is still satisfactory; It saves more computer memory than the circular boundary with ABC and is more flexible 
for the generation of FEM mesh. 

C. When the arbitrary boundary is far enough, the simpler approximate ABC may be used without significant loss of 
accuracy compared with the exact ABC. 
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AN EFFICIENT SCHEME FOR FINITE ELEMENT 

ANALYSIS IN THE FREQUENCY DOMAIN 

M. Kuzuoglu   and R. Mittra J. Brauer and G. Lizalek 
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I.        Introduction 

It is well known that an FEM formulation of electromagnetic boundary value problems over a 
closed spatial domain, yields a matrix equation of the form 

[A0+Aico + A2co2]x = f (1) 

where the nxn matrices Ag, A, and A2 have complex entries (n is the number of unknowns), co is the 
angular frequency, x is the n x 1 vector whose entries represent the unknown field components at 
particular nodes and / is the n x 1 excitation vector. Equation (1) is typically solved for the unknown 
vector x, by using a matrix solver that takes advantage of the sparsity of the three matrices appearing in 

Typically, it is desirable to obtain the unknown vector x{co) over a band of frequencies, i.e., for 
CO in a certain interval I = [co,,coh], where CO, and coh are the lowest and highest frequencies in the 
interval of interest. The most straightforward way to deal with this problem is to define a set of 
frequencies {«,}", suchthat CO, <CO[ <-<coN <cok, and solve (1) at these frequencies to yield x(co,), 
i = 1,2,...,7V. The value of x(co) at any arbitrary frequency co e / can be determined by using a suitable 
interpolation method, such as piecewise linear, piecewise quadratic or spline approximations. However, 
the interpolation technique requires that (1) should be solved N times, and this can be quite time- 
consuming owing to the fact that JV has to be chosen sufficiently large to reduce the approximation 
error. In the next section, an alternative method based on a power series expansion will be presented and 
it will be shown how the solution vector x(co) can be derived over the desired frequency band by 
solving (1) at a relatively small number of frequencies, viz., co,, i = l,2,...,M, where M is much 
smaller than N. 

II.       Power Series Representation of the Solution of the FEM Equation 

Consider an arbitrary frequency co0 in / = [ß),,ü)J. Let the solution vector x(co) be expressed in 
terms of a power series expansion about co0 as follows: 

Supported by the Turkish Scientific and Technical Research Council as a NATO B2 Scholar 
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x(a) = x0 + x, (a - a0) + x2 (a - <B„ )2 + • • (2) 

The radius of convergence of this series is finite, and is determined by the singularities of x(s) in the 
complex frequency plane s = a + ja. For instance, if the closest singularity to jco0 is / = a + ja', 

then the radius of convergence of the series is R = |/ - ja0\. It is not possible, in general, to locate a 
priori the singularities of x(s) for a particular problem and, hence, it is quite difficult to determine the 
radius of convergence of the power series in (2) for an arbitrary value of a. Nonetheless, as we show 
below, it is possible to derive an upper bound for the range u = \a - a0\ such that (2) is convergent. 

Let the system matrix in (1) be denoted by A(a) given by 

A(a) = A0+AICO + A2a
2 (3) 

and let A(a) be also expressed in the form 

A(a) = Ä0 + Äl(a-a0) + A2(a-a0f (4) 

Here, once again, Ä,, Ä, and A, are n x n complex matrices, which can be derived by equating (3) and 

(4) to get 

Ä0=/10+Al©()+A2ö)0
2 (5) 

Ä1=A1+2A2a0. (ß) 

Ä2 = A1 0) 

It is important to note that the new matrices Ä,, I, and Ä\ are obtained via simple matrix additions and 
scalar multiplications of the original ones. 

Equation (1) can now be replaced by 

[Ä0 + Ä,((ü-ß)0) + Ä2((a-o0)
2]x = / (8) 

To analyze the conditions for the existence of_a convergent power series representation of the solution of 

equation (8), we first multiply both sides by V't0 yield 

[7 + \-%(a -a0) + \%{a - a0f]x = V'/ (9a) 

~A{a)x=~Atf (9t>) 

A power series representation of x in terms of the powers of (a-a0) can now be obtained by 

considering the power series expansion of the inverse of the matrix A(a). given in (9b). At this point, 
we observe that for any matrix A we can write [1] 
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(I + A)'1 = £(-l)'Ay      provided that      CT(A)<1 (10) 

where o(A) represents the spectral radius of the matrix A, defined as a{A) = max I A,. I, X- denoting the 

ith eigenvalue of A. Using this result, we deduce that 

Ä-\co) = fj(-iy[Ä\-'Ä,(m-co0) + Ä0-'Ä2(co-co0)
2]J (11) 

provided that 

GiÄ^-'I^co - (Oa) + A\-%(m - co0)
2} < 1 (12) 

For an arbitrary matrix A, a(A) < |A||, where ||. || denotes any matrix norm. Hence, if ||A|| < c, where c 
is an arbitrary constant, then tr(A) is automatically less than c. Therefore, (13) can be replaced by the 
inequality 

||V
I
ä;((U-£ö0)+ä;-

I
ä;(»-O0)

2
|<I 03) 

Using the triangle inequality and letting u = \co - co0\, we can write 

IV'ä; (a - <o0)+Är'Ä,(ö} - co0f\\ < |ÄV'| HAI«+lÄT'l l^ll"2 < i (i4) 

This, in turn, leads us to the inequality 

INI"2+IA|«-J^T|<O (is) 

where we should recognize that u > 0. 

The quadratic function f(u) = flA^«2 + ||A,||M -,,_ ^,. has the roots: 
IIA) I 

,=- .    ft- "1,2 

•l|A||± jBAf+4, 

(16) 
2|NI 

It is clear that one of the roots is strictly positive, provided that both IAO"
1
! and IAJ are different from 

V 
zero. If ue(0,u ), where u =    ,._,, -, the conditions «>0 and f(u)<0 are both 
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satisfied and the power series (11) is convergent. For any u e (0,u), we can evaluate the coefficients in 
the power series of x((0) by following the procedure given below. We begin with the expression 

X(CO) = X0 + X, (CO - co0) + x2(co - co0)
2 + ■ ■ ■ 

= [/- V'ÄCö) - w0) - V'^(« - wo)2 + (V'Ä)2(ffl - wo)2 

+(V'^)2(ö-ffl0)
4+-]V1[/o+^('0-Ö'o) + /2(®-Ö>o)2+-] <17> 

where /„ + fx(CO-COa) +f2(CO-CO0f +■•■ denotes the power series expansion of the excitation vector / 
at CO = CO0. Next, we equate both sides of (17), term by term, to obtain the following expressions of first 

three coefficients of x(co): 

*o = V'/o (18) 

*, = v'/i - V'ÄV'/o = A,"'/ - V'Vo (19) 

*2 = V'/2 - V'Ä[ V'/ - Ä>"'Ä*b] - V'Vo 
= V,/2-V

1Ä*,-V,Vo (20) 

The higher order coefficients can be evaluated in a similar manner. It is important to note that only a 
single inverse, viz., V1,is needed in the iterationprocedure, and if an LU decomposition of A, has 
already been carried out, successive applications of V' would be little time-consuming. In addition, the 

LU  decomposition  also enables  us to estimate the condition  number of  A,,  defined by 

"■(A,)=|Ä,| IMI (see appendix A) and> °bviously>this eciualitymay be used t0 estimate the norm of 

v'. 
Finally, let us discuss how this power series representation can be used to approximate x(ca) in a 

given interval / = [©„©„]. The procedure can be outlined as follows: 

Step 0: Choose an arbitrary CO0 in the interval / = [ö)„ö)»] and form the matrices \, A, and A\ 

(equations 5-7). It is important to notice that these matrices depend on co0 Choose any matrix norm ||. | 

-Ki+.Eir+4S 
and find the interval for «=>-fflo| as (0,«*) where u = ^ •   «*>) can be 

determined from its power series expansion (17) for any CO satisfying \co - co0\ < u . 

Step 1: For any CO, e /, i > 0, find the corresponding «,* as explained in step 0. The power series for 

x(co) in powers of (o - CO,) converges for CO satisfying \co - a><\ < u-,. 
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Step 2: Check whether [J(©,• - u*,&>, + H*) covers the set / = [<o,, coh]. If the answer is positive, then let 

M-i (maximum number of points coi in the interval) and refrain from choosing additional points. 
Otherwise, choose the next point coM and go to step 1. 

The important consideration in choosing fi),.'s is that we aim to cover I = \(o,,mh] with the 

smallest possible number of ii: .Is centered about o/s. Of course, the magnitudes of u''s play an 
important role in this procedure. However, it is clear that this analysis, which yields estimates for the 
radius of convergence of the power series expansion, provides us a tool for choosing centers of 
expansion of x in the frequency range of interest. 

III.     Numerical Results 

To test the validity of the theory presented in this paper, the following example is considered 

d2x(z) 
dz 

x(0) = 0 

+ *2x(z) = /(z) 

X'{K) = 0 

(21) 

(22) 

It is clear that x(z) satisfies the one-dimensional Helmholtz equation over the interval [0,;r] with 

the boundary conditions given in (22). The wavenumber k is defined as k = a/ where c is the speed of 
light in vacuum. This boundary value problem can be solved by the finite element method by a uniform 
mesh discretization with nodes at z(. = ih, i = 0,1,..., N where h = K/N, employing the usual piece wise 
linear   shape   functions.   The   singularities   of   this   problem   lie   on   the   jco    axis    at 

fi)„=± c,   n = 0,l,2,... 

The matrix A(co) given by (3) is obtained as A{co) = A0+ A^a1 where [2] 

and 

^o=- 

2-10 

V 
6c2 

0 
- 1    2 -1 ...   o 
0   -1 2 -1 ...   o 

0   0 -1 2    - 
0   0 0 -1     1 

"4    1 0 ...   o" 
1    4 1 ...   o 
0   1 4 1 ...   o 

0   0 1 4    1 

0   0 0 1    2 
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Let ca0 be an arbitrary frequency in the interval / = (0.5c,1.5c), and A(co) can also be expressed 

as Am = Ä0 + ÄI(a>-(O0) + Ä2((O-0}0)
2 where Ä, = A0+Ala

2
0, Ä =2^ and A2=A2. After some 

manipulations, w* is obtained as 

u = -©„ + CO, 

K 
1 + - 

ollV 
(23) 

The table given below demonstrates the values of u, [a>0 - u,(O0 + u] and ||V|| for different 

values of CD0 with N = 80. 

<B0 u \co0-u,co0 + u lÄT'l 
3e8 0.67e8 F2.33e8,3.67e8 50.9 

2.5e8 0.52e8 fl.98e8,3.02e8 79.4 
2e8 0.3 le8 F1.69e8,2.31e8 173.2 

1.75e8 0.17e8 |T.58e8,1.92e8 367.2 
1.6e8 0.07e8 [1.53e8,1.67e8 955.6 

1.55e8 0.04e8 [1.51e8,1.59e8 1937.5 
1.52e8 0.015e8 ri.505e8,1.535e8J 4866.6 

It is clear that as 0)0 tends to 0.5c, the matrix A, almost becomes singular and the radius of 
convergence of the power series becomes gradually smaller. 

Next we are going to discuss the rate of convergence of the power series expansion, and derive 
some a priori bounds for the norms of differences of any arbitrary iterate and the unknown exact 
solution. , 

The iteration formula which yields the coefficients of the power series expansion of x{a) can be 
written 

:Ar'L/*-<Wr ' ™2Xk- 
(24) 

Let xm =Xo + Xl(co-co0) + --- + xk(co-co0f,a.nd let x be the exact solution of (9a). Then we 

have (for details, see appendix B): 

-x< P."' -COJ + -x\\ \co-co„ 
(25) 

+ 1^11/-lf0+f,(co-co0) + - + fk(co-co0f}\\ 

The above equation is helpful for estimating, a priori, the convergence of the iterates. We will now 
illustrate its usage for the example characterized by (21) and (22), with N = 200 and co0 = 3e8. In the 

following tables, we present the results for the upper bounds of \\xw-x\\, i.e., the norm of the 
difference between an iterate and the exact solution for different iteration numbers k. These results are 
helpful for estimating the order of error in the solution before initiating the computations. 
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(i) co = 2.9e8 

k 1 2 3 4 5 

xm-x\\ 4.69e-2 6.95e-3 1.03e-3 1.53e-4 2.27e-5 

(ii) CO = 2.8<?8 

k 1 2 3 4 5 

lxW HI 0.227 6.74e-2 1.99e-2 5.93e-3 1.76e-3 

(iü ) co = 2.7e8 

k 1 2 3 4 5 

xm-x\\ 0.648 0.288 0.128 5.71e-3 2.54e-3 

(iv co = 2.5e8 

k 1 2 3 4 5 

xm-x 1 - ■'■ 

2.86 2.12      • 1.57 1.16 

IV.     Conclusions and Future Work 

The solution to the FEM matrix equation (1) can be derived in an interval 7 = [(0/,(»/1] of co, 
either by directly solving (1) at a set of frequencies and then interpolating for the intermediate values, or 
by choosing a set of frequencies around which x(co) can be obtained by means of a power series 
expansion. Typically, the series approach is computationally more efficient than the direct interpolation 
scheme, because the former requires the LU decomposition of a large matrix at a relatively small number 
of frequencies. Issues pertaining to the rate of convergence of the series expansion and the estimation of 
the number of operations needed in each iteration step are currently being investigated. Additional 
numerical experiments that test and validate the theory presented in this paper for more general problems 
will be carried out in the future. Techniques related to increasing the frequency interval via rational 
function approximation [3], will also be extended to this case. 

Appendix A 

In this appendix we show how we can estimate the condition number K„(A) of a matrix A, with 
respect to the infinity norm, which is defined as [4] 

K.(A) = \ lU-ll 

It is relatively straightforward to compute ||A|L, however, we need to calculate A~' to determine the 
other factor, which is obviously difficult. Nevertheless it is possible to estimate the condition number 
K^(A) in a manner described below. We begin with the equation 

Ay = d    =»   |U-'|   >ji 
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The idea behind the estimator is to choose d such that the norm of the solution y is large and then set 

Consider, for instance, the case when A = T is upper triangular. The relation between d and y is 
completely specified by the "back-substitution" formula 

p.:=0   (i = l,2,...n) 

For   k = n,n-l,...l ,^^ 

P^P.+^t      (i = U,..*-l) 

Normally this algorithm is used to solve a given triangular system Ty = d. However, we are free to 
choose the r.h.s. vector d, subject to the constraint that y is large relative to d. One way to encourage 
the growth in y is to choose d„ from the set {-1.+1} depending upon whether (l-Pt)/ta or 

(_! _ Pt)/tkk  is larger in magnitude. Since d  is a vector in the form d = (±l,...,±Dr, we obtain the 

estimator Km(T) = ptli.- .     ,        , .    . 
We can now use these ideas to estimate the condition number of a square nonsmgular matrix A 

whose PA = LU decomposition is known, by proceeding as follows 

(i) Apply the lower triangular version of algorithm (A.l) to UT to obtain a solution of UTy = d 
that has alarge norm. 

(ii) Solve the triangular systems 

LTr = y 

Lw = Pr 

Uz = w 

(iii)K.(A) = |A|LS- 

The important point here is that if A is ill-conditioned, and PA = LU, then the matrix^ U is also ill- 
condtoned wLeas the matrix L tends to be fairly well-conditioned. Thus it is more advantageous to 
apply algorithm (A.l) to U rather than to L. 

Appendix B 

In this appendix we provide the error estimates of the higher order approximations of the solution 
x, generated by the power series representation.1^ begin by writing (9a) in the form 

X=-[äO-
,ä(öJ-ü)0)+ä0-

Iä;(ö)-Cö0)
2^+ä)-7 (B.I) 
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The solution of this equation is 

x = [I + Ä0-
lÄ]((O-(O0) + Ä0-

,Ä2(CO-(O0fr
]\',f (B.2) 

which implies that 

W~ ,    fe-ll/llTlll       '  I   IITIII iTnll^'llll/ll CB.3) ^(K l{IKll«-»ol+|4|||«-«ol}) 

Now, consider 

x-x0=-[I0-
,Äl(co-a)0) + Ä0-

]Ä2(CD-a)0)
2]x + Ä<1-'(f-f0) 

Using the triangle inequality and (B.3), we obtain 

||Ä "'lIlÄl \m -fo0| + ||X|| \m- cof) 

'"^ =ri     fax11      i ITii       ni/i+V il/-/°K (B-4) Hi   rjA||ö-öol+Kill«-«ol| 

Let xm = x0 + x^co - co0) where xt = iV'/i - A^'AjXg. Then 

* - xm = ^"'A, (ö) - <a0)O - *0) - ^„"'^((a - coQf x 

+ To"'(/-/o-yi(«-«o)) 

which implies that 

|*<» -x\ < HA,"1![lÄl \\x0 -x\\ \a> - m.l + m 1*| \co -co0~ 

+ W\\f-{fo + m-(o0)}\ 

Similarly for xm = x0 + *,(&) - 0)0) + x2(co - 6)0)
2, we derive the result 

+ \\\-<\\\\f-{f()+fl(co-a}0) + f2(ü)-co0)
1}\\ 

Finally, for k > 2, this result can be generalized to yield 

p-J<|ai|[R||^-''-J|«-«0|+ 

(B.5) 

(B.6) 

+ \\A0-'\\\\f-lf0+fl((O-CO0) + - + fk(CO-(O0)
k}\\ 

which serves to provide us the desired estimate for the kf/z order approximation to the desired solution. 

(B.7) 
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Finite Element Modeling of Head Coils for High-Frequency 
Magnetic Resonance Imaging Applications1, 

J. G. Harrison, Department, of Physics, University of Alabama at Birmingham, 
J. T. Vaughan, NMR Center, Massachusetts General Hospital 

I. Introduction 

Very high-resolution magnetic resonance imaging which exceeds current state-of-the-art 
capabilities in other medical imaging modalities such as PET and CAT is now possible with 
magnets operating at 4.1 T. A National Resource Facility for imaging at 4.1 T has been estab- 
lished at the University of Alabama at Birmingham where clinical and computational studies 
have been ongoing for the last five years. One part of the research effort has been to use 
computational modeling to address three principal issues: 1) surface and head coil design, 
2) safety issues related to RF power deposition in tissues, and 3) modeling the effect of elec- 
trical and chemical changes in the area to be imaged on the resulting MR image. In this paper 
we will summarize our results in the first two of those areas and defer remarks about the third 
area, which is still in its very early stages, to the conclusion. 

The organization of this paper is as follows. We will begin with some background informa- 
tion regarding the safety issues addressed in our work. Then we will outline the finite-element 
modeling of the RF and thermal components of our problem and discuss the hardware and 
software tools employed in our lab. Representative results for our modeling will also be pre- 
sented and discussed. Finally, we will outline some our plans for improving our modeling 
efforts and discuss some of the exciting new areas in MRI which may also point to new areas 
of research using our modeling tools. 

One further remark in regard to organization. In order to provide a more informative view of 
some of the figures in this paper, we have placed color gif files on the world wide web that can 
be viewed with a web browser. Simply point your browser to ftp://ftp.phy.uab.edu/pub/ 
aces_12. The file names will correspond to the figures as numbered in this paper. 

II. Safety Issues in Imaging at 4.1 T 

A. Magnetic Resonance Imaging 

The basic relationships in magnetic resonance (MR) work will be introduced here strictly for 
purposes of establishing notation; there are a number of very good monographs on MR and 
MRI that may be consulted for a more thorough introduction to the field. We may use a proton 
(hydrogen) as our prototype nucleus and recall that the Zeeman splitting resulting from the 

interaction of the proton's nuclear magnetic moment (ji) with an applied field § may be writ- 
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ten as ^    ^ 
U =-fl»(Bo + B1) 

where we have split B into a static part B0 associated with the ,'TAE 

4.1 T magnet in our case and a time-varying part B^ associated s   x  
with the head coil. The energy splitting, AE, is related to the RF 
field frequency for resonant absorption as 

V=   * (2) 
where h is Planck's constant. For protons, this resonant frequency is about 174.5 MHz for a 
B0 of 4.1 T. One of the reasons for interest in operating at 4.1 T as opposed to the more com- 
mon clinical value 1.5 T is a scaling law which predicts better signal-to-noise ratios for imaging 
at higher B fields. The associated RF wavelengths are also shorter leading to better resolu- 
tion. Preliminary work at 6.0 T is underway at several labs and a few proposals for operating 
at 15 T have been made in the past. 

B. Energy Deposition and Local Heating 

Although clinical precautions are always taken in regard to MRI, we should note some 
aspects of operating at higher fields and higher RF frequencies that prompted the safety stud- 

c 
ies that we are engaged in. First, the wavelengths involved are given by X = —■= where e is 

the (relative) permittivity of the tissue. For muscle at these frequencies, e has a value of about 
60 resulting in a wavelength of about 22 cm, comparable to some anatomical dimensions. 
This suggests the possibility of structural resonances which could lead to otherwise unex- 
pected nonlocal deposition of RF energy. Anecdotal reports of such effects have been found 
in work at considerably higher frequencies in hyperthermia treatment for cancer. Given the 
extensive use of MRI in brain and heart imaging, the possibility of nonlocal heating in the 
vicinity of sensitive anatomical structures can not be overlooked. While specific absorption 
rate (SAR) safety standards have been in place for a number of years, they are global stan- 
dards based on whole-body or large-structure dosing. Local heating might well exceed such 
global standards on a small scale. Ideally we would like to develop conservative, yet useful 
local standards based on computer modeling of local-heating at these frequencies and 
assuming an effective cw heating mode. By using a cw standard we take a more conservative 
approach in light of the fact that the usual mode of operation is pulsed. Finally, we should 
note that the dielectric materials we are dealing with here (tissues) are quite lossy and thus 
another mode of energy deposition is via dielectric losses. Since displacement currents 
increase with increasing frequency, we expect larger contributions to that heating mechanism 
with higher B fields (i.e. higher RF frequencies). 

Ill Finite Element Modelina of RF anH Thermal Problems 

In the course of our work in this area we have employed two software packages to address 
the problems of RF energy deposition in tissues and the resultant heat-flow problem.  In our 
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initial efforts we high-symmetry models which allowed us to reduce the full three-dimensional 
problem to effective two-dimensional ones. We have since expanded to full three-dimen- 
sional capability allowing for more detailed and realistic models of cranial and thoracic 
regions. 

A. Finite-element modeling of RF problem 

For this type of problem we, of course, can no longer rely on Biot-Savart type of treatment 
of the fields since eddy currents and displacement currents are a key part of the problem. In 
order to incorporate a full Maxwell-equation treatment of the problem we have a number of 
options as to how to proceed. Because of the longer-term goal of dealing with low-symmetry 
structures with considerable substructure, we chose to use a finite-element approach to the 
problem as being the most adaptive to a progressively more involved problem definition. To 
that end, we first employed the Mawell® suite of programs which we were able to run on a rel- 
atively modest platform consisting of a Gateway 386/33 pc with 8 Mb of memory and 80 Mb of 
disk space. In this package the problem reduces to solving the Maxwell-Ampere equation in 

terms of the vector potential, A: 

ZxfivxÄ - (o + iea) O'coA + V<1>) (3) 

Using the geometric modeling module we constructed 2-d systems as well as 3-d problems 
with axial symmetry. One such system was a composite cylinder made up of layers of fat and 
muscle and a single-loop coil positioned near the surface to simulate a simple model of a sur- 
face coil. The loop current was adjusted to correspond to power levels of 3 and 6 watts. 
Typical models employed about 4000 finite elements. 

For more complex systems we employ the MSC/EMAS® suite of programs together with 
MSC/Aries® to construct 3-d models. One such system is illustrated in Fig. 2 as an 8-element 
head coil with a simple two-layer cylindrical load with dielectric parameters appropriate to fat 
and brain. The system was "tuned" by adjusting the grounded capacitors on each element to 
achieve resonance at 174.5 MHz with a total power of 3 watts. Typical models employed 
about 25000 elements. The platform needed for this work was thus much bigger and con- 
sisted of an HP 735 workstation with 208 Mb memory and 2 Gb of disk space. 

For both types of problems one of the most troublesome part of the problem definition was 
that of finding acceptable dielectric parameters. The most useful compendium of dielectric 
permittivity and electrical conductivity values for muscle, fat, and brain was that of Duck3 but 
there still remains a lack of experimental values for more specific tissue types and other fre- 
quencies. Table I contains the values we used in both the 2-d and 3-d work. More extensive 
discussion of work on these models may be found in Ref. 1 and 2. 

B. Finite element modeling of steady-state heating. 

In order to deal with this part of the problem we employed a standard approximation in 
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dealing with passive heating of vascularized tissue known as the bioheat equation4: 

V»(-KTVT)+ß(T-Tb)  = P (4) 

where ß = 
RPP*C6 

K* 

R   = blood perfusion rate 
p, pb = tissue and blood density, respectively 

Tb = blood temperature 
cb = specific heat of blood 

p, pb = tissue and blood thermal conductivity, respectively 

and P = — f |3|2d3r is the power density associated with the eddy currents. 

With the Maxwell suite, we used the Electrostatic Solver module (Poisson's Equation) to solve 
equation (4) iteratively. Fig 1 summarizes the thermal heating results for our simple mutiple- 
layer cylinder. In spite of the obvious crudeness of that model, we found surprisingly good 
agreement with the experiments on porcine tissue5. For the full 3-d problems we used the 
the Heat Flow module in the MSC/Nastran® suite of programs. As yet we have not incorpo- 
rated the bioheat term in this latter work. 

IV. Conclusion 

We have been able to apply finite element modeling techniques to the RF heating problem 
and have found reasonably good agreement with experiments Our current efforts are 
focussed on construction of more realistic and detailed model of the head. To that end we are 
using the wealth of digitized data available through the National Library of Medicine's 'Visible 
Human" project to constructed digitized slices for use in the MSC/Aries module for model con- 
struction. 

Some the most exciting applications of the high-resolution images from MRI include a vari- 
ety of "functional imaging" projects in which one tries to correlate changes in images (related 
to electrochemical changes) resulting from selected stimuli. These may give greater insight 
into the process of learning, neurological problems associated with epilepsy, Parkinson's dis- 
ease and even attention-deficit disorder. The third part of research efforts will be to try to 
model the correlation between image and electrochemical change. With such a tool one can 
carry out computer simulations of drug effects and side effects. The potential in that area is 
obviously very exciting. 
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Table I. Dielectric and Bioheat Parameters for Tissues 

fat skin muscle freq. 

e = 12     o = 0.06 e = 60     o = 0.33 e = 83     a = 0.9 71 MHz 

e = 6     a = 0.1 6 = 50     o = 0.53 e = 57     o = 1.0 175 MHz 

ß = 2.3x103 ß = 7.6x103 ß = 1.9x103 W/m3/°C 

Perfused at 37°C     Ambient Temp 22°C 
-t-1 t i i i | i i -i ■ i i i ■! * i i * ■"» » ' i ' » ■ ' r' * ' * i ' * 

0 1 2345678 

Depth (cm) 

Fig. 1 Temperature Elevation for Cylinder Model 
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Y 

Figure 2. 8-element Head Coil Model X 
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Uncurl) TVFEM in Conjunction with PML 
for Modeling 3D Waveguide Discontinuities. 

Sergey G. Perepelitsa, Romanus Dyczij-Edlinger, Jin-Fa Lee Member, IEEE 
Department of Electrical and Computer Engineering, Worcester Polytechnic Institute. 

Higher order vector finite element methods of- 
fer the possibility of using a coarse grid to obtain 
accurate solutions of Maxwell's equations while at 
the same time, retaining the geometric flexibility 
of finite element methods. As early as 1980, Ned- 
elec introduced a family of mixed finite elements 
in R3 [1] that is unisolvent as well as conforming 
in H(curl) . In this paper we discuss the applica- 
tion of the Uncurl) TVFEM [2] for the analysis 
of waveguide discontinuities. This is a higher or- 
der scheme which is incomplete to second-order for 
the vector field E, but is complete to first-order in 
the range of the curl operator, i.e. the magnetic 
field H. The discussion in this paper is based on 
the J-field formulation, however, a straightforward 
modification can be made for the ff-field formula- 
tion. For a general anisotropic medium, the bilinear 
form obtained from applying Galerkin method is 

B(W,E) :/{(Vx 
Ja 

W) ■ (M^V x E) - 

Metered Bend 
Return Loss vs. Frequency 

- —Heuer ( 
  Reiter (theory) 
 «Htieuf» TVFEM a. PMt 

10.2 11.2 
Frequency (GHz) 

Figure 1: 
Metered Bend: Si].-parameter vs. freq. 
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l - / {W X ([lUr]"1^ x E} ds 

Where W and E are expanded using the V.\ (curl) 
vector finite elements. The newly developed fre- 
quency domain PLM [3] has been also incorporated 
into the current formulation for truncating waveg- 
uide ports. The resulting matrix equation is solved 
using bi-conjugate gradient method with diagonal 
preconditioner. The field distribution and S-parame- 
ters are obtained from the results of the computed 
total electric field. Various examples have been 
studied and corresponding results are presented as 
verification of the method. 
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GLOBAL FOURIER-SERIES BASIS FUNCTIONS FOR EM SCATTERING 

M. H. Smith, 
Georgia Tech Research Institute, 
Georgia Institute of Technology 

A. F. Peterson, 
School of Electrical and Computer Engineering, 

Georgia Institute of Technology 

Abstract — Previous results reported for global Fourier/FFT basis functions applied 
to integral equation formulations of EM scattering problems have indicated 
significant^ efficiencies to be obtained over the use of conventional finite-domain 
basis functions. Some limitations were also reported, however. These included slow 
convergence in the region of discontinuous derivatives (edges) in the TE formulation, 
and the inability to extract actual current values from the product of current times 
a Jacobian at points where the Jacobian is zero. In the present work, formulations 
for global Fourier-series basis functions are developed for TM and TE electric field, 
and TE magnetic field, integral equations. Rather than relying solely on FFT 
approximations of integrands, these formulations combine Fourier representation of 
integrands with analytical integrals to handle singularities. Also included is a 
second-order correction, accounting for surface curvature, to the usual approximation 
of the self-term in the TE magnetic field case. Solutions are obtained directly for 
surface currents. 2D results for circular and square cylinders are compared with 
exact and conventional moment-method results. Good accuracy is obtained with a 4:1 
reduction in the number of unknowns from the conventional moment-method formulations. 
The extension of global basis functions to 3D surfaces is discussed. 

I.  INTRODUCTION 

In this paper we present a formulation for the calculation of electromagnetic 
scattering by integral equations using global Fourier-series basis functions. This 
is developed in some detail for the 2-D problem of scattering from infinite 
conducting cylinders of arbitrary cross section. Basis functions and the approach 
for describing the problem geometry are descibed in Section II. In Sections III, IV 
and V, the Transverse Magnetic Electric-Field Integral Equation (TM EFIE), Transverse 
Electric Magnetic-Field Integral Equation (TE MFIE) and the Transverse Electric 
Electric-Field Integral Equation (TE EFIE) formulations are treated. Global Basis 
Function (GBF) results for circular cylinders are compared with exact solutions, and 
with results obtained with finite-domain Pulse Basis Function (PBF) integral 
equations. GBF results for cylinders with square cross section are compared with 
reference results in Section VI. The extension of this GBF approach to 3-D closed 
surface problems is currently being investigated. A brief outline of our approach 
is presented in Section VII. 

II.  DESCRIPTION OF GEOMETRY AND BASIS FUNCTIONS 

In the same manner as is discussed in James1 1994 paper [1], a 2-D contour in the X-Y 
plane is mapped onto a unit circle, parameterized by 8. Discrete points, spaced -non- 
uniformly on the contour, are assigned to points spaced uniformly in 9 around the 
circle. Points on the contour are spaced more closely in regions of high curvature 
and near edges. The distribution of points on a segment bounded by two edges can be 
described with a cosine function, to obtain smooth functions in the 8 domain. For 
a segment between lj and 12, let a be sampled evenly on [0,JI) and define the sample 
points on the segment by 

1230 



V-Zi   ia-ii cos(a) . 

For a total of N points around the complete contour, the corresponding points in the 
theta domain are 6„ = 2im/N, n = 0,1,...,N-1. 

We next describe x and y in terms of Fourier series. The coefficients for the 
Fourier series can be obtained via FFTs if the FFT coefficients are rotated to 
associate the n = 0 FFT term with zero frequency. For an even number of points N, 
an extra coefficient must be generated by dividing the n = N/2 term by 2, and 
replicating it so that it winds up at the maximum positive and negative frequencies. 
The result! are Fourier exponential series which yield real results for any value of 
theta. Spatial derivatives can then be computed by appropriately modifying the 
Fourier coefficients. We have series of the form, 

M 

xW = Y, lmexp{jivß) 
m—M 

and 

The Jacobian is 

dl 
dd ■WÜ 

The basis functions are interpolation functions, each of them unit value at one 
sample point and zero at all other sample points.  They are 

h   -  1 i*H^) 
■43") 

+ COS N- 
.e-er , Neven 

and 

h   - 1 4?) , N odd 
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We wish to solve 

where 

II. TM EFIE FORMULATION 

i da 

G=±H0
i2) (££(6, 60) 

and R(8,8') is the distance between the two points on the original contour 
corresponding to 6 and 6'.  From the series expansion given in [2], 

H™ (Z)   - l-j2[ln(|) +Y1, 2-0 , 

where y =  0.57721567 (Euler's constant).  Since R - dl/d8 [0—0*| as 6 - 6', 

H0
(2) (ja) - i-j2[mM+in(*^)n], e-e'. 

We define 

^[j2sin(Ae)ln(sinMi)],5(Ae), 

obtaining 

S(A6)=j- 
....  sin(A0)cos^ 

cos (A6) In sin-lM^) + 1„ 
2 

2 /        A0 1 sin-^ 
.(smlMl). 

S(A8) is a periodic function with a singularity at A8 = 0, and obviously has an anti- 
derivative. At 8' = 8 we have the finite limit 

H0
(2) (kR)  +5(6-6') - i-j2hn/ic^)+Y-l|, 6'-6 . 

Hence the singularity in the integral can be removed by replacing H„l!l (kR) with 
H„12' (kR) - S(48), leaving a quantity which can be integrated numerically (by simply 
summing its values at all sample points and dividing by 2j[) . This leaves an integral 
with S(48) in the integrand. This remaining integral can be integrated by parts, 
since S(A8) has an exact anti-derivative, and derivatives of all other terms can be 
calculated. 

To get a quick feel for the accuracy of the resulting method, we consider a perfectly 
conducting circular cylinder, with a circumference of 1 A„, centered at the origin. 
For an incident plane wave travelling in the $ "= 0 direction, the magnitude of the 
current at $ = it can be calculated exactly to be .006237. [3], Table 1 compares 
results for GBF with results for PBF [3] for different numbers of unknowns. 
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Table 1 .  Comparison of GBF and PBF results for TM EFIE 

Number of 
Unknowns 

Magnitude of Current, GBF Magnitude of Current, PBF 

16 .006232 .006302         1 

32 .006236 .006271         1 

64 .006237 .006254         | 

III.  TE MFIE FORMULATION 

For the TE MFIE case we wish to solve 

Hi -JT 
bAy_ &AX 

~6x~ by s* 

where J, indicates tangential current, and S* indicates evaluation at an infinitesimal 
distance e outside the contour.  The vector potential A  is given by 

dl A(6) =Jf{d')JT{Q"lG{6,e/)-^idÖl 

where T-hat is a unit tangent vector.  The quantity in brackets (curl A) is then 

It can be shown [3] that the contribution to (curl A) of the current right_at the 
point of singularity reduces to 1/2 JT. This can be accomplished by projecting the 
problem in the vicinity of the singularity onto normal and tangential coordinates, 
using H ,2> (Z) - j2/itZ [2], and letting the observation point be distance € outside the 
contour. The integrand so obtained submits to a simple trig substitution, after 
which the limit may be taken as e approaches zero. This value of 1/2 JT is often used 
bv itself for the diagonal terms of the MFIE matrix. However, it is possible to 
obtain a correction to this by considering the limit of the integrand as 8 -B with 
£ s 0, thus picking up the contribution of of all points up to the singularity. 
Writing Taylor series approximations of the form 

d2x, x(6') =x(6)+^(e'-e)+^-§-f (6'-6) 
do 2!  do2 

and 

* = -§le/-el+l7S|e/-e|2' 
find that the integrand has limit at 9 = 8' of 
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dy d2x_ dx d2y 
_ de de2  dQ de2 

HM 
This is proportional to curvature at the observation point. The diagonal terms of the 
matrix then become -1/2 - 2nL/N. 

For H. of unit magnitude traveling in the cj> = 0 direction, the current at $ = it can 
be calculated exactly to be 1.7071 [3]. A 10 - cell PBF model using quadrature 
integration for the off-diagonal terms yields 1.749 [3]. An 8 - unknown GBF 
formulation yields 1.7098, and 16 unknowns yield 1.7074. With 32 unknowns, but no 
curvature correction, the result is 1.7436, as opposed to 1.7071 when curvature 
correction is restored. 

IV.  TE EFIE FORMULATION 

For the TE EFIE problem, we must consider the complete expression for lasa function 
of vector potential A.  If B 2 V X A, then 

-    VV-A+k2A 
joie 

The principal differences between the TE EFIE problem and the TM EFIE problem are 
that we must account for the divergence of A, which was zero for the TM problem, and 
we must account for the vector direction of JT. From the usual development of the 
wave equation for A using the Lorentz gauge, it can be seen that 

V-A=f(V-J) G{r,z')dV . 

From the derivatives of the basis functions, the divergence of J, is known, and V"A 
can be calculated in the same manner as Ez was in the TM EFIE problem. Once V"A is 
known at all the sample points around the contour, its gradient can be calculated 
using the derivatives of the underlying basis functions. The tangential component 
of A is found from 

2n 
dl ATm = ffm-f(e')jT(e

/)G{d,d')-d±d6/ 

dQ' 

We find for this integrand that a sampling problem exists when it is evaluated only 
at the original sample points (assuming one basis function per sample point). Using 
the Fourier series definitions of the various quantities of interest, it is a simple 
matter to increase the density of sample points for the integration. Otherwise, the 
development of this case follows naturally from the previous two cases. 

To absolutely guarantee that no undersampling occurs, it would be necessary to 
increase the sampling density by a factor of four. Experience shows that factors 
from 1.2 to 2.0 suffice. Table 2 shows results for different combinations of number 
of basis functions and up-sampling ratio. The problem is the same as that for 
Section III; the exact answer is 1.7071. 
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Up-Sampling Ratios 

Number of 
Basis 

Functions 

1.2 

1.6877 

1.5 2.0 

8 1.6962 1.7022 

16 1.7060 1.7066 

32 1.7068 1.7069 1.7070 

V.     Results  for Square Cross  Section Cylinder 

Scattering was calculated for the problem of a plane wave    with unitmagnetic field, 

Wangle "to X VSA.?* "l^^f^iS^t^^'m^fo-^tlan  « 

r^Scel4dVtaT„La^odmenVhfe Ä? "tT^S  formulation  with  the 
reference data was  excellent. 

TM EFIE (.) v» Reference 

60 80 100        120 
Azimuth Angle (deg) 

Figure 1.  Comparison to Reference Data of TM EFIE GBF Results Generated with 160 
Unknowns and an Up-Sampling Ratio of 1.8. 
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TE MF!E {.) v« Reference 

AAAJ /    V'        v       up 
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- 
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£• 
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■F    1 _ 
fc 
3 
Ü 

0.5 

— --1        iiii,., 

0 20 40 60 80 100 120        140 160 180 
Azimuth Angle (deg) 

Figure 2.  Comparison to Reference Data of TE MFIE GBF Results Generated with 160 
Unknowns and No Up-Sampling. 

TE EFIE (.) vs Reference 

20 40 60 80 100        120        140        160        180 
Azimuth Angle (deg) 

Figure  3.     Comparison  to  Reference  Data  of TE  EFIE GBF Results  Generated with  160 
Unknowns  and Up-Sampling Ratio of 1.8. 
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VI.  Extension to Three Dimensional Surfaces 

we are currently investigating the extension of a similar GBF approach to three 

functions A curvature correction for the TE MFIE diagonal matrix elements has been 
derived in a manner similar to that discussed in Section III. We are.experimenting 
with an alterative method of handling singularities, that of performing coordinate 
transformations to place the pole of a new sphere at each observation point allowing 
the sin(6) term in the integration over the new sphere to kill off the singularity. 
It is expectedttat results will be available in time for the presentation of this 

work. 
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Abstract - An implicit time domain model for the analysis of wires and conducting surfaces is 
presented. The model is based on the method of moments numerical technique using Lagrange 
second order time domain basis functions which plays an important role on the road to stability. 
With this type of formulation, the method of moments can finally be utilized for the analysis of 
fast transients directly in the time domain for structures including wires and surfaces. The 
model's stability and accuracy are presented for a complex systems including conducting 
surfaces, transmission lines and non-linear loads. 

l. INTRODUCTION 

The aim of this paper is to present a numerically stable technique able to calculate transient 
currents and fields associate "ire and surface structures including junctions between wires and 
surfaces. This numerical teii^i.^ue will be able to analyze the electromagnetic response of three- 
dimensional objects to an impinging field and/or to a conducted source (voltage or current source). It is 
very well suited to the analysis of antennas, circuits as well as field penetration/coupling onto various 
structures (satellites, air planes, equipment,...). 

The formulation is an integro-differential equation technique for time domain analysis of thin 
wire/surface structures. Through the use of the method of moments (MOM), the integral equation, 
defining the time-dependent current distribution on a wire/surface structures, is reduced to a system of 
equations to be solved simultaneously for each time steps as an initial valued problem. 

The first development in this area is due to Miller and Burke in the 70's. They developed a 
transient scattering model [1] solving directly in time, via the MOM, the scattering of thin wire structure. 
This was the first time that the E.F.I.E. (Electric Field Integral Equation) was solved using the MOM in 
the time domain. The scatterer was defined as a collection of interconnected wires. Kirchoffs law was 
not strictly applied at multiple wire-node junction locations, since the current was expanded at the center 
of each segment as second order Legendre polynomial in both time and space. Except for an extension 
of the Miller model to surfaces [2] (continuity of currents on the edges wasn't forced), there was no 
significant progress during the next two decades. 

Recently, with the new capabilities of the modern digital computers, advances in electromagnetic 
computational methods have been made possible. Rao [3] presented an equivalent solver for surfaces 
only, which uses edge functions and first order expansion in time. The algorithm is of first order 
accuracy in time with edge functions, leading to an iterative explicit algorithm, a marching-on-in-time 
solution. Unfortunately, instabilities appear very early . For this reason, it is not applicable to large 
structures such as satellites. Furthermore, the addition of wire is not reported. 

In the following section the theory behind the model will be presented. We will start with a 
general overview of the field equations. Then we present the boundary conditions followed by the 
critical selection of the basis function. These theories will lead us to the E.F.I.E. formulations on which 
the MOM shall be applied. 
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2. THE THEORY BEHIND THE MODEL 

The type of formulation used is based on the E.F.I.E. for which three-dimensional objects may 
be represented by electrically small elements where the current information is concentrated in one plane. 
Within wire structures, the total current on the wire is concentrated at its center, therefore when applying 
the tangential electric field boundary condition on the surface of the wire, no singularities occur at the 
field evaluation points. For the case of surface structures, the total inside and outside surface currents are 
concentrated on an infinitely thin surface, therefore eliminating instability that would be induced by the 
very small discretisation of the metal thickness. 

2.1. THE GENERAL FIELD EQUATION 

Starting with Maxwell's equations, we first derive Faraday's equation. In Faraday's equation, the 
electric field E is expressed in terms of the scalar potential $ and the magnetic vector potential A as 
follows: 

E(r,t) = -V*-^ (1> 

where the magnetic vector potential, A, is defined via the current distribution vector, J: 

and the scalar potential, <j>, via the charge density scalar, p: 

^ ''    WV    R 

(2a) 

(2b) 

ig medium, V 
) is the distance between the observation point r and the 
time. By introducing some basic assumptions with respect 

s: 
• The radial component of the current is uniform 
• The currents are localized on the external surface of the — ^__„. 

and surface: 
• The internal and external surface currents are concentrated on a mathematically thin surface, 

the volume integrals may be reduced to contour integrals for wires and surface integrals for patches 
Thus Faraday's equation may then be re-written as an integro-differential equation, referred to in th< 
literature as E.F.I.E.: 

• Wires 

g(Ft)—Uf    ^ds-^f    I£^«u K'J      4n8   cJc(r')2ra-R 4jt.atJc(r')2jca-R 
• Patches 

i(Ft)=__Lvf     fi^drf-^f    ^ds' K''      4ns   W)    R 43tatJS(r')    R 
where a is the radius of the wire. 

(3a) 

(3b) 
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Equation (3) presents an important disadvantage, there are two unknowns (I & X. for wires and J 
& p for patches) to solve which, in computer terms, translates into twice the memory requirements and 
a fourfold increase in CPU time. We may get rid of one unknown through the use of the equation of 
continuity: 

Vc-l(r,t)--^&! (4) 
St 

At this point we introduce a new quantity, i|>, which is the time derivative of the scalar potential <j>: 
• Wires 

t(F,,)Ä..J-f     ?c-r(P,x)dtf (5a) 
at 4ro:Jc(r')    2jia-R 

• Patches 

dt 4^EJV       R 

By taking the time derivative of equation (3) and introducing equation (5) we derive the following basic 
equations for the models: 

*l£iL+J-vr   ^ili^)d,_JLilf   KLi)d!, (6a) 
at 4jte   cJC(r')    2ita-R 4at at2Jc(r')2na-R 

ies 
dlM=±vf    ^lLids,_JLiir    ]££., (6b) 

at 4jlS    VS(r') R 4jtdt2Js(r')      R 

> Wires 

• Patches 

2.2. THE BOUNDARY CONDITIONS 

Applying the boundary conditions characterizing the problem at hand we are able to derive the 
appropriate formulation. For this application we know that the total tangential electric fields on the 
surface of a perfectly conducting metal is zero, 

'-•II       c,ll + E-ll I 

1E
T
-AE'+AE^

=0 ™ at "~at "   a "j 

where T denotes the total electric fields, I the incident fields and S the scattered fields. Distributed and 
lumped equivalent electric components may also be introduced by imposing the total tangential electric 
fields on the surface to 

E*-Z(t)-J„ 

in which Z(t) represents the electrical condition imposed on the surface of the object (and/or at the node 
of a wire segment). 
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Substituting the boundary condition for perfectly conducting surface, equation (7) into the 
electric field integral equation (6) we obtain, by projecting the electric field onto the surface, the 
following integro-differential equation in the time domain: 

• Wires 
aBj,(r,t)       l  - .    %-T,,{f,x) 

dt 4ne ' cJC(r')    2m ■ R 4« dt2 JC(r') 2jta • R 

_J_vf   ZM^a + JL^r   hmdä at 431E    SJs(r') R 4lt3t2Js(r')       R 

where I/;(r',x) & J/yCr'.x) are the current at the source point r' and at retarded time x. 

• Patches 
aE},(r.t) 

(9a) 

(9b) 

2.3. THE BASIS FUNCTIONS 

The definition of an appropriate basis function is the most important part of the model 
development The function must be able to follow the wire current variations as closely as possible 
while remaining as simple as possible. A complex function will lead to an non-derivable formulation or 
a formulation involving complex, time consuming numerical integration. 

The temporal approximation should be of the second order since their is a double time derivative 
of the unknown (a first order function is possible but lead to less accurate results, finite difference would 
be required). As for the spatial approximation, a first order function shall limit the complexity of the 
formulation while still representing the wire current fairly accurately. 

In order to follow the wire current variations, the object is discretised into sub-sections. Within 
each sub-section the current is approximated by the chosen basis function leading to a system of 
equations. This system of equations is defined by the inter-relationship of each sub-section unknown 

The unknown wire current is approximated on each segments/patches by a function (the basis 
function), it is defined as follows: 

J(?.t')-  2 2jij(?-Fp'-tj)-u(?-riHf-tj) 
(10) 

where N , Nw & NT are respectively the number of edges, wire nodes and time steps. This summation 
allows us'to have a general expression defining all the currents on the objects. The functions U and V 
are pulse functions defined below, 

fl       ;   Pe(sf.Tf) 
U(F-r,) = u(ri)=   0       .   ^^ 

v(t._tj)=v(t;)=. 
0       ;   |t'-tj|>fiJ/2 

(11) 

(12) 
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The unknown wire/surface currents are approximated on each segments/patches by the following 
basis function: 

fi"lB"K)-ÄSW)-J.j«i     ; ^ ?e(s?.Tf) 
Ji.j(Fi>lj)= 

if  ?£(sf,Tf) 

where Si± and Tj± refer respectively to the segments and patches (the ± sign refers to a convention 
determining the segment/patch connected to node/edge i), Ais(r;") is the spatial basis function for both 
segments and patches as defined in the report by Hwu and Wilton [4], s takes on the + or - sign 
convention and the temporal basis function, Bjm, the second order Lagrange polynomial: 

1±? ti+t:-t 

q-n     lJ+m      lj+ q-n     lJ+m 
q*m 

j+q 

q 
(14) 

The variable n in the previous summation is chosen in such a way as to force the temporal interpolation 
into the past and present time. Interpolation into the future would cause erroneous results because of the 
causal nature of the phenomena, it is not allowed. Thus, 

for F^Sf.Tf)   &   t]s5j/2wehave     n = 
-2   if   LzlU.5 

c-6 

-1   if    J^!>0.5' 
c-6 

The spatial basis function, Ais(ri"), is defined as follows: 
• Wires 

r±/_M      ±   Pi* fa) 

we include the radius in the wire spatial basis function since the radius 
may be varying between segments. 

• Patches 

in which a* J+1   if   r-?i|esf 
1    [-I  if F-FiMrf 

The vector representation of the spatial basis function is shown in figure 1. 
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Sivv      Pi 

i Nodei 

Figure 1. Vector representation of the spatial basis functions. 

2.4. APPLYING THE MOM TECHNIQUE 

The technique of moments enables us to solve an integro-differential system by transforming the 
problem into a linear system. The linear system is obtained by applying the boundary conditions 
coupled with a testing procedure. The weighting functions chosen for the present application are Dirac 
functions for the temporal content and a Galerkin type for the spatial content: 

»spatial weighting functions 
• Temporal weighting functions 

=> 
=> 

basis functions 
Dirac functions 

The weighting functions are defined on an observation node, u, common to the observation segments 

SU
+&SU- : 

where 
> Wires 

• Patches 

giv=Ä±
u(r;)-ö(t-tv.) 

Wu)- 

^„(rü)- 

...  P»1fü) 
2nau-hu 

0 

±Put?u) 
K 
0 

if   Pobs - ru| eS* 

if   |robs-ru|£S* 

if    |?obs-?uleTu 

if   iFobs-rul^Tu 

(16) 

(17a) 

(17b) 

and5(t-tv): 
if   t = tv 

0       if   t*t„' 

The testing procedure consist of taking the inner product of the E.F.I.E. with the weighting 
functions: 

&*)~fc*-H$*) (18) 
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where the inner product is defined as 

(f,g).jgrf-gds (19) 
f being the E.F.I.E. operator. 

The final system of equations is obtained by separating the wire current contributions previously 
calculated (t < tv) from the unknown node/edge currents at time tv. This will result in an iterative 
numerical solution of a matrix Z multiplying the unknown vector J of which the product equals the 
source vector (impinging fields, current and/or voltage sources and the radiated wire/patch current 
contributions). 

3. NUMERICAL RESULTS 

The case studies presented in this section aim to present the good correlation between this model 
and available data in the literature, the stability of the simulations as well as the possibility of analyzing 
complex structures including wire-to surface junctions, non-linear components and time-delayed 
controlled sources. Analyzed are illuminated dipole antennas and surface plate, the radiation from an 
electrostatic discharge and two transmission lines over a finite ground plane with non-linear elements. 

3.1. ILLUMINATED DIPOLE ANTENNA 

As a first analysis, we present the current calculated at the center of a 1 meter dipole antenna 
illuminated by an electric field impinging at a 45 degree angle to the antenna. The source is a gaussian 
type defined as Ei(t) = A*exp(-a2*(tc-t)2) with A=2340V/m, a=3.63E09 and tc=2.5ns. The time 
signature of the dipole's center current has the same form as found in the literature [5], the level vary 
slightly due to the fact that the field strength and the dipole wire radius were not made available. 

0.80r 

21 24 27 6 9        12       15       18 
time (ns) 

Figure 2. Current at the center of a gaussian illuminated lm dipole antenna. 
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3.1. ILLUMINATED SURFACE PLATE 

Next we present the current calculated at the edge of a 2 meter by 2 meter conducting plate. The 
plate is illuminated by an electric field impinging at a 90 degree angle to the plate with a gaussian time 
signature centered at 80ns and an a constant of 5.0E07. In previous time-domain MOM models, [3] & 
[6] high instabilities where encountered early in the analysis ([6] remedies the problem with the use ot 
FIR filters). The results from our model shows a very stable analysis partially due to the temporal basis 
function. 

0.20i 
-gO.16 
3 0.12 
"T0.08 
g0.04 

0.00 
•0.04 
-0.08 
-0.12 
-0.16 
-0.20 

■2m- 

20   40"'6Ö' 80   100 120 140 160 180 200 
time (ns) 

Figure 3. Current at the edge of a gaussian illuminated plate. Figure 4. The geometry of the plate. 

3.3. ESD RADIATED FIELD 

From available ESD current measurements the radiated electric field were calculated assuming a 
dipole as the current carrier and thus the radiator. The current signature, see the inset graph in Figure 6, 
was defined with the use of an ESD and a rounded step functions, it's peak amplitude is 11 A with a Ins 
rise time The electric field was calculated at 1.5m away in broadband. Shown in Figure 5 are the result 
of the measurements and the dipole model presented by Ma [7], and in Figure 6 the result of the MOM 
model The difference between the experiment and the models is due to simplicity of the chosen dipole 
radiator, nevertheless the results between the experiment and the MOM model are very similar. 

100, , 1 ^JOOr- 

time(ns) 10 

Figure 5. ESD radiated field measurements and 
model from Ma. 

time (ns) 
Figure 6. ESD radiate field calculated from MOM, 

on the inset graph the ESD current time signature. 
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3.4. TRANSMISSION LINES OVER FINITE GROUND PLANE 

A validation of the model for a complex system is presented in figures 7 through 9. The system 
analyzed consist of a 10x4cm plate discretised into triangular patches onto which is connected two 
transmission lines represented by wires of 1mm diameter and 2cm long. The transmission lines are 
coupled by induction as well as through a voltage controlled voltage source with a time delay, VL(t) = 
10000*Rs*Is(t-160ns); the source resistance, Rs, is set to lmQ; the load resistance, RL, is set to 100Q- 
the voltage source is a pulse with a rise and fall time of 10ns and a pulse width of 30ns centered at 35ns: 

and the non-linear inductance is a step function starting at 20nH with a fall time of 30ns centered at 
100ns (the intrinsic inductance of the transmission lines is also 20nH). The stability of the time domain 
method of moment model is well demonstrated by the analysis of this system. 

2. 

^g 
V 

V ^ 

:J. .x-4 

^ 

z: 
*-i * I i i > i | i n..«. 

0  40 80 120 160 200 240 280 320 360 400 
Time (ns) 

Figure 7. Transmission line structure. Figure 8. Currents on the patch discretized ground plane. 
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Figure 9. Currents on the source and load transmission lines (TLs), on the inset graph is shown the 
induced current on the load TL due to the current of the source TL. 
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4. CONCLUSION 

In the above discussion, a new numerical time domain boundary integral method is presented. 
The method is implicit and demonstrates very stable results. We demonstrated its utility with a survey 
of various applications. Basic examples were chosen to validate the MOM model They also 
demonstrated the accuracy, convergence and stability properties of the method. A complex structure 
was analyzed to present the versatility of the model. . 

This type of formulation is very well suited for the analysis of antennas for which their response 
to transient electromagnetic excitation are still not well understood. Moreover with this method the 
analysis of antennas or circuits loaded with discrete elements (linear or time-dependent) is readily 
obtained. Previous method solving such time-domain problems were analyzed via a frequency domain 
type of formulation along with the inverse Fourier transform. This yields a tedious and time consuming 
simulation for non-harmonic excitations or elements. The direct technique offers greater efficiency than 
transformation techniques (FFT and FFT-1), the ability to treat non-linearities, the convenience of wide 
broad-band information from a single calculation and the resonnances of complex objects 

As opposed to other methods, finite difference and finite elements, for which the total region 
needs to be discretised, the method of moments is a numerical technique that is well adapted to three- 
dimensional geometries. 

[1] 

[5] 

[6] 

REFERENCES 

Miller E.K., A.J. Poggio and G.J. Burke, "An integro-differential equation technique for the 
time domain - Analysis of thin wire structures," Journal of computational physics, no. 12, 
pp.24-18, 1973. 

[2]      BeneguelX, "Etude de la forme temporelle se l'equation integrale du champ electrique. 
Application aux antennes," Annales des telecommunications, Mai-juin, 1983. 

[3]      Rao, S.M. and D.R. Wilton, "Transient scattering by conducting surfaces of arbitrary shape," 
IEEE Trans, on Antennas Propagation, vol. AP-39, no. 1, Jan.1991. 

[4]       Hwu, S.-U. and D.R. Wilton, Electromagnetic Scattering and Radiation by Arbitrary 
Configurations of Conducting Bodies and Wires. Technical Report Number 87-17, 
Department of Electrical Engineering, University of Houston, Texas, May 1988. 

Landt JA   EK Miller and F.J. Deadrick, Time-Domain Computer Models of Thin-Wire 
Antennas and Scatterers, Technical Report Number UCRL-74848, Lawrence Livermore 
Laboratory, Livermorek, CA, Nov. 1973. 

Sadigh, A. and E. Arvas, "Treating the instabilities in marching-on-in-time method from a 
different perspective," IEEE Trans, on Antennas Propagation, vol. AP-41, no. 12, 
pp. 1695-1702, Dec. 1993. 

[7]      Ma, M.T., "How high is the level of electromagnetic fields radiated by an ESD?," 
in Proc. 8th Int. EMC Symp. (Zurich, Switzerland), pp. 361-365, March 1989. 

1247 



Method of Moments Analysis of the Celestron-8 Telescope 
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Background 
This paper describes numerical analyses on a Celestron-8 telescope (Figure 1) in order to determine its susceptibility to 
high power microwaves. Beginning with analysis at low frequencies, the initial approach was to model the telescope's 
outer most shell as an open ended cylinder. Even though there is an aperture for the eyepiece, it is sufficiently small at 
low frequencies to ignore. We modeled the resulting open ended cylinder using Mathematica [1], and analyzed that 
model using CARLOS-3D [2] (Code for Analysis of Radiators on Lossy Surfaces) over a frequency range of 0.7 GHz - 3.0 
GHz. We then proceeded to create a model which included the interior geometry of the telescope which consisted of two 
interior cylinders and the aperture for the eyepiece. The interior cylinders (Figure 1) are at the center of the large 
aperture, where a convex reflecting mirror resides (the short plastic cylinder) and at the eyepiece (the long metal 
cylinder). The two reflecting mirrors are not shown in Figure 1. The CARLOS-3D model (Figure 2) was analyzed over a 
frequency range of 0.5 GHz to 3.0 GHz. Each of the models, the open cylinder and that shown in Figure 2, were 
discretized with triangular cells, each having sides no longer than 1/10 of a wavelength (X) in length corresponding to a 
frequency of 1.0 GHz.  The models are illuminated at incidence angles 6 and $ (see Figure 2) both equaling 45°. 

Also of interest was the verification and validation of the results using different discretization techniques. We therefore 
discretized the model in Figure 2 for cell side lengths of X/5 at 1.0 GHz. We analyzed this model for a frequency range of 
0.5 GHz -3.0 GHz and compared the results for Quality Factor (Q), total energy, and exiting power for the X/5 discretized 
model to those of W10 model. We noticed pronounced differences in the results over this frequency range. These results, 
other problems encountered while using CARLOS-3D, and methods for rectification of these problems are discussed in 
the following. 

1 ra fWf 

Figure 1. The Celestron-8 telescope. 
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Figure 2. The CARL0S-3D model for the telescope. 

Preliminary Observations , „ ~. ,    .».,  Tinii ^J 
The interior of the model of figure 2 was divided into cubes of side length 1.5 cm (W10 at 2.0 GH* A total of 3717 gnd 
points were created. These grid points are the locations of the field points calculated by CARLOS-3D. Using the 
fundamental equations describing the electric and magnetic energies along with power exiting the cavity, we calculated O. 
[3, 4] for the cavity given by 

u       p 
where oo is the operating angular frequency, U is the total energy in the cavity and P is the power exiting the cavity. In 
order to investigate mesh sizes, we discretized the model of Figure 2 to X/5 and W10 at 1.0 GHz and analyzed that model 
over frequency range of 0.5 GHz up to 3.0 GHz. Figure 3 shows that the results for these models are profoundly 
different. 

S.OOE.08   7.00E»08   9.00E-08   1.10E.09   1.30E-09   1.50E.09    1.70E-09   1.90E-09 

Frequency 

Figure 3. Telescope model quality factors, 6 polarization, W5 and V10 models. 
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These discrepancies led us to further investigate meshes using only the open cylinder model with two different 
discretization schemes, W10 and V18 at 1.0 GHz. We analyzed these models for a frequency range of 0.1 GHz to 2.0 
GHz. Again the results were very different. At this point it was clear that we had to investigate fully the problems with 
CARLOS-3D that lead to different results for different meshes. This final report addresses five areas of study: (1) the 
field calculations in CARLOS-3D, (2) non-uniform meshing schemes, (3) the matrix solution in CARLOS-3D and how it 
might be improved using iterative refinement and improved Gaussian Quadrature, (4) High Frequency Structure 
Simulator (HFSS) models and results, and (5) testing results. 

Field Calculation Method and Results 
We first approached the meshing problem by comparing the field quantities for the open cylinder models (V10 and 
W18). Doing this, we realized that there were large differences in field values near the cylinder walls compared to those 
field values more towards the center of the cylinder. During conversations with the creators of CARLOS-3D, we 
discovered that even though the currents throughout each cell are known, CARLOS-3D calculates near fields using values 
of currents at the centroid of each triangular cell. In this scenario, each current source will now act similar to an 
infinitesimal dipole. Therefore, the field quantities are calculated using [5 ] 

N   „-I*, 

E2{x,y,z)^Ya "TTT cos(#) J,. kr- 
(2) 

where k is the propagation constant, J„ is the ««, surface current, and /-„ is the distance from the «,j, surface current to the 
field point. This model differs significantly from one that can be used with takes advantage of the current distributions 
that are known. In that case the distance r from the field point varies according to where the current is calculated on the 
surface. The distance r is a very critical quantity since for small r, the inverse cubic variation will have a large effect on 
the field calculations. Figures 4, 5 and 6 show the percent difference between the W10 and X/18 models in the electric 
field quantities along the x-axis at the end cap, the center, and at the aperture. It is evident in Figures 4, 5 and 6 that the 
biggest differences are close to the cavity boundary. This error is caused by the crude approximation used to calculate the 
near fields. A more suitable approach would be to use a solution technique which considers the changes in r along with 
changes in the current density. This solution is given by [6] 

Es(r) = -^Jjs(r1)£(7-,r,>fc 

+ Vf—V-J,(r')g(r,r')ds' 
l.Jwe 

(3) 

-I.29&OI     $JX£Q2. - -6.006-02 " -3:0C&02      0.00^00 
\ -100 

"35[ 

-300 

-«0 ■ 
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-600 

-700 

Dtatanc* (x-«i«) at th« Bid Cap 

Figure 4. Percent difference in the electric field quantities for both models, end cap. 
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Octane« (x-axis) In the Center 

Figure 5. Percent difference in the electric field quantities for both models, center. 

Balance (x-axla) In the Aperture 

Figure 6. Percent difference in the electric field quantities for both models, at the aperture. 

where gfrrl is the free space Green's Function, co is the angular operating frequency, s and n are the permittivity and 
permeability of free space, respectively. The functional dependence of J,(r) is determined by the basis functions which 
are linear. 

Meshing Methods And Results ,_ ,.       • ..-   i„, „,„„„„, 
In the neighborhood of a conducting edge, electric and magnetic field components behave in a particular manner 
dependent on the wedge angle $„ [7]. The electric field is given by 

where 

Eccpy sin(v^)       J, oc p" 

n 

(5) 

(6) 
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At the open edge of the open cylinder, <{'o=27i, and at the end cap <t>0=3it/2. For our geometry then, at the top edge J^p'"2 

and at the bottom edge J^xp'23. A program was written to vary the width of the triangular cells to accurately model the 
edge currents. A constant current was maintained through each cell edge corresponding to its distance from the edge. In 
this way the cell widths can be determined. Figure 7 shows some results for this meshing scheme. 

c nncn-7     

5.0OE-02 

4.0QE-02 

1 
J    3.00S-02 

*>     2.00E-02 

1.C0E-02 ■ / 

0.00 =♦00 5.00&02 1.00E-01         1.50E-01         2.0OE-01 2.50E-01 3.00E-01          3.50 =•01 

Z-C»n1ro?d 

I ,,             Jrho Jphi  -*l 

Figure 7. Surface currents using a non-uniform meshing scheme: 
polarization, f = 500 MHz. 

X/18 model, incidence angle is 6 = 90°, 4> = 0°, <j> 

At this point, we decided to do another frequency sweep for the V10 and W18 models. The results for Q were still very 
different. The results for power exiting the cavity and energy for the 6 polarization (results are similar for the $ 
polarization) are given in Figures 8 and 9. The energy calculations for the two meshes are much better, but the differences 
in the power calculations are pronounced. We can see now that the major contributors to different Qs for different 
meshes are the power differences in the aperture. Graphs of the differences of the power calculations over the aperture for 
the case of Figures 8 and 9 for the $ polarization are shown in Figure 10. These differences can be explained by the fact 
that our power calculations are at 177 points in the aperture and are vector calculations giving positive and negative 

5.00EO7 

_ 
0 4.00E07 

1 3.OOE07 

*.    2.00EO7 

E 
ä     1.00&07 
0. '".   -    '.     ; '•/    • ■' v '-./ 

5.00 =»08   7.00&O3    9.00&O8   1.10BO9    1.30&09    1.50&O9    1.70&O9 1.90&09 

Frequency 

| J/1S J/10| 

Figure 8. Power for the non-uniform meshes. 
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Figure 9. Energy for the non-uniform meshes. 

(a) 6 polarization" (b) * polarization. 
Figure 10. % difference in aperture power magnitude for the non-uniform meshes. 

results which are summed over the area of the aperture. This process is inherently prone to more error than the energy 
calculations which are calculations of field magnitudes (all positive values) over 3717 points that represent the volume of 

the cavity 

High matrix condition number and numerical Integration of the matrix elements 
Other numerical difficulties resulting from using CARLOS-3D, may be due to the large condition j^r of ^ 
impedance matrix for large models and the accuracy of the matrix elements. A standard iterative refinement techmque 
waSemented to overcome the high matrix condition number for the large W18 model, butno«gntfcam,ctoges^n 
the results occurred However, at higher frequencies or for the full telescope model, this could be a factor The integrals 
JÄÄ, are calculated" using^Gaussian Quadrature. The option exists in CARLOS^D to chang=hst 
variables to improve the Gaussian Quadrature integrations. Figures 11-16 present the percent dtference^ current^n 
the cylinder (the primary calculation for this MOM code) for iterative refinement versus iterative refinement and 
improved Gaussian Quadrature. Note that the differences are greater for currents near the rectangular edge at the end 

cap. 
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Figure 11. Percent difference in currents for the cylinder side at the end cap for the Wl 8 mesh, 
f = 500 MHz, 6 = 90° and cji = 0°. 
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Figure 12. Percent difference in currents for the cylinder side at the center for the X/18 mesh, 
f = 500 MHz, 6 = 90° and i, = 0". 

Figure 13. Percent difference in currents for the cylinder side at the aperture for the 1/18 mesh, 
f = 500 MHz, 6 = 90° and $ = 0°. 
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Figure 14. Percent difference in currents for the cylinder end cap near the edge for the V18 mesh, 

f = 500 MHz, 9 = 90" and <(> = 0°. 

Figure 15. Percent difference in currents for the cylinder end cap at the center for the X/18 mesh, 

f = 500 MHz, 6 = 90° and <|> = 0°. 
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Figure 16. Percent difference in currents for the cylinder side along the z axis at * = 3° for the */18 mesh, 

f = 500 MHz, 9 = 90° and t = 0° 
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CARL0S-3D field results 

Figures 17 shows the electric field distribution for the open-ended cylindrical cavity at operating frequencies of 1.8 GHz 
and 1.35 GHz as given by CARLOS-3D. These frequencies are near the resonance frequencies (1.36 GHz and 1.822 
GHz) for the TE2n andTE3n modes for a closed cylindrical cavity of the dimensions of our open cavity. It is evident that 
the results obtained from CARLOS-3D show these modes and agree with results from the High Frequency Structure 
Simulator (HFSS)[8]. The HFSS results have proven to be accurate as compared with the physical testing. This indicates 
that CARLOS-3D is functioning properly but does not provide the accuracy which is required for calculation of Q. 
However, implementing the accurate procedure outlined above for calculating the near fields will most likely provide the 
desired results. 

-0.15     -0.1     -0.05       0       0.05      0.1       0.15 

a) 1.35 GHz 

2.1 
2 

%  1.9 

-0.15     -0.1      -0.05 0.05       0.1       0.15 
0.3 

0.2 

b) 1.80 GHz 

Figure 17. Magnitude of the Electric Field, c(>=0°, 6=180°, z=16.4 cm 

Conclusions 
We implemented the method of iterative refinement in order restore full machine precision and to lower the condition 
number of the impedance matrix generated by MOM but did not make noticeable improvements in the near field 
calculations. However, all the methods in this report were applied to an empty open-ended cylindrical cavity. Therefore, 
we may or may not see different responses to the method of iterative refinement related to changes in the internal 
geometry. Certainly the trend is for higher condition numbers and larger meshes. A full up model of this telescope may 
result in improvement of the solution using iterative refinement. Improved Gaussian Quadrature did make substantial 
differences in the results. However, in many situations one does not have the luxury to invest large amount of time to 
search for suitable quadrature values. Therefore, an adaptive method is necessary in order to avoid comprehensive 
analysis trying to find the appropriate order of the Gaussian Quadrature. 

Non-uniform meshing schemes made substantial improvements in the energy calculations. However, the same 
improvement was not noticed for the power calculation. The crude approximation for calculating the near fields severely 
affects the result of these calculations and until the appropriate formulation for calculating the near fields, to include the 
variations of current over individual triangular cells and of distance to the field point is implemented in CARLOS-3D, 
adequate accuracy of near fields can not be obtained. CARLOS-3D calculations for this paper were done for an empty 
open-ended cylindrical cavity. This was done solely to understand the effect of the formulations implemented in 
CARLOS-3D along with avoiding computationally intensive problem. Once the necessary modifications of CARLOS-3D 
have been made, the true model of the telescope will be implemented and analyzed. 
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I. INTRODUCTION 

Several new shapes of transmission lines structures have been introduced recently Txx-xxl 
These new configuration are proposed to give further flexibility to the design of transmission media 
Sm*T cha?ctensücs

u
that «" °**™*« difficult to obtain using traditional microstrip and 

other sünctures Amongst these new configuration is the V transmission line, shown in Fig 1 The 
V hne line: ui characterized by the angle a, the width of the signal line, and the thickness and com- 
position of the dielectric substrate. These geometrical parameters can give added degrees of free- 
dom to design transmission lines that meet specific requirements. For instance by varying the an- 
gle a, the characteristic impedance of the line can be affected while maintaining a fixed Substrate 
tiuctaess. Also, the closer proxnnity of the ground plane to the signal conductor reduces the elec- 

h?r^HC CTP^S "nd ^CTOSStalk bCtWeen adjacent Mes- lt is **> plated that the V line 
have additional advantage from an EMC/EM perspective since it has the potetial of lower radia- 

These new transmission lines configurations, and especially the V line, have thus far 
been analyzed through the use of conformal mapping techniques which are based on pure-TEM 
propagation and zero dispersion, or on the use of graphical approximation [1,2]. However under 
die assumption of pure-TEM or even quasi-static propagation, the dispersive nature of these struc- 
tures and otiier propagation features can be overlooked In this work, we employ the Finite Differ- 
ence Time Domain (FDTD) method to analyze the V line. The strength of the FDTD method I- 
first, it can comfortably model the intricate irregular geometries involved such as bends; second, it 
gives a full-wave analysis which the quasi-static study cannot achieve; and third, it gives the re- 
sponse of the transmission line to a very wide band of frequencies in one single computer run 
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H. FDTD FORMULATION 

The FDTD method has been successfully applied to the analysis of microstrip transmission 
line structures and has proven a reliable and robust technique for these problems. (There are many 
excellent papers on the use of FDTD in transmission line structures; see [3,4] for example.) When 
adapting the FDTD method to the study of the V line, careful considerations have to be given to its 
non-rectangular geometry. For this, we employ two techniques: The first uses the classical stair- 
case approximation to the slanted metallic sections of the ground plane, and the second employs a 
recently introduced simple formulation which uses a more accurate polygonal approximation [5]. 

Let us consider a V line having a cross section in the x-y plane and propagation in the z- 
direction. Using the polygonal approximation in [5], the H2 component is updated in the FDTD 
scheme according to the formula: 

0 A 1 

What is noticeable is that this new formulation does not involve any extra calculation than 
the standard FDTD staircase approximation would require, and it can be directly incorporated into 
an FDTD code. The only limitation is that the cell size needs to be considered in advance to allow 
for proper fitting of the metallic boundary in its proper physical location. Nevertheless, this is a 
minor drawback compared to the implementation effort and cost that other techniques require 
[6,7]. 

ID. NUMERICAL RESULTS 

The authors are not aware of any published results showing either measurement on the V line 
or any results based on numerical or analytical techniques. Therefore, to allow a measure of cor- 
roboration, we considered a V line that was analyzed for its quasi-static behavior in the work of 
Schutt-Aine [1]. 

The parameters of the line used in this work are: 

1. Width of signal line: 3.18mm. 
2. Thickness of the signal line is zero (i.e., the tangential fields of the cells adjacent to the line are 
set to zero.) 
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3. Height of substrate: 6.10mm. 
4. Dielectric constant of substrate: 2.55 
5. a = 60 degrees. 

The dimensions of the FDTD cells were chosen as follows: A = 05545mm A = A = 
0318mm. The time step is set to A, = 0.278 picosecond. The excitation pulse is Gaussian with a 
width of 40A,, sufficient enough for predicting the frequency response up to 15GHz The pulse is 
toned on at. 150A, to eliminate any unwanted high frequency errors. The size of the computational 
domain is (40,42,200). An Absorbing Boundary Condition (ABC) was applied at all the bounda- 
ries except for the ground plane. For the excitation of the line, we positioned an x-directed cur- 
rent source 10 cells from one end of the line such that the reflection caused from this end due to the 
ABC can be considered as an integral part of the incident wave form. This does not pose any haz- 
ard since the interest of this analysis is to study the characteristic impedance and effective dielectric 
constant of the line which equire the dominant mode traveling in only one direction along the line. 

As explained in Uj, from a topological perspective, having part of the ground plane close to 
the signal conductor can significantly alter the field distribution in the proximity of the line from 
that of a simple microstrip structure. A series of simulations showed that to observe the dominant 
mode, the observation point has to be placed at a distance farther than would be required in a 
microstrip line case, thus, making the analysis of the V line more memory intensive It is pre- 
mature to make a definite conclusion here since further effects need to be studied in more detail to 
reach a more thorough understanding of the full-wave behavior. 

Two important characteristics of transmission lines were analyzed in this study: The charac- 
teristic impedance of the line and the effective relative permittivity. In Fig. 2, we show the charac- 
teristic impedance for the line having the parameters given above. The characteristic impedance 
was calculated by taking the ratio of the Fourier transforms of the voltage and current We observe 
a monotomc increase in the impedance that is similar to the behavior observed in microstrip trans- 
mission lines. Figure 3 gives the effective relative permittivity which was calculated using the 
procedure detailed in [3]. As mentioned earlier, presently there is no measured or computed data to 
compare to however, the values for the lower end of the spectrum are close to what was obtained 
by schutt-Aine [1]. Our calculation for the impedance at 1GHz resulted in 71 Ohms where that 
obtained in [1] was 76 Ohms, using measurements, and 78 Ohms using conformal mapping We 
note here that the conformal mapping technique used in [1] did not take into account the ground 
plane extensions (which are on the same plane as the signal conductor) [8]. For the effective rela- 
tive permimviy, however, the FDTD method gave a value of 1.95 at 1GHz which compares very 
favorably with 1.957, which was measured in [1]. This gives us an indication of the validity of the 
FDTD results computed in this work. 

Finally, we observe that the staircase approximation has an effect on the FDTD results as the 
higher end of the spectrum is approached. This is an expected outcome since staircase approxima- 
tions give an increasing error as the wavelength becomes smaller. For critical applications it is 
recommended that the polygonal approximation be used. 

T^^™^ 
±e P^ygon*1 approximation has proven its effectiveness, the modification of the 

FDTD time-marching scheme can lead to instability, and this puts a stricter limit on the time-step 
allowable to guarantee stability [5]. The experience of these authors is that the time step for the 
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polygonal approximation scheme needs to be scaled down by at least 30-60% to guarantee stability. 
However, this is an empirical observation and further work is forthcoming [9]. 

IV. SUMMARY 

In this work, a dynamic analysis of the V transmission line is presented. To the knowledge of the 
authors, no previous analysis existed. The FDTD method was used in conjunction with a recently 
introduced formulation to accurately model the curved boundaries introduced by the V line. Nu- 
merical results were obtained for the characteristic impedance of the line and its relative effective 
permittivity. Since no measurements appeared in the literature for the frequencies considered in 
this work, we compared the behavior over the lower end of the spectrum and found good agree- 
ment with quasi-static analysis. 
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Fig. 1. Cross section of the V line. W: width of signal conductor, H, height 
substrate, and a is the characteristic angle. 
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Abstract 

This paper presents the synthesis of an absorbing boundary condition for the Finite-Difference 
Time-Domain method based on the technique of digital filter design. The field components 
on the truncated boundary are updated by representing the relationship between the interior 
field and the boundary field as an infinite impulse response filter. This approach is applied 
to a highly dispersive rectangular waveguide and a microstrip line. The results are validated 
by reflection coefficient calculation. 

1    Introduction 

On the application of using the Finite-Difference Time-Domain ( FDTD ) method to the 
analysis of waveguiding structures, the computation domain in the modeling of the structures 
is truncated to be as small as possible because of the computer memory limitation and 
computing time reduction. A special algorithm known as the absorbing boundary condition 
( ABC ) on the truncated boundary is required in order to reduce spurious reflection from the 
boundary. A good ABC implementation can minimize the reflection over a wide frequency 
range without giving up too much computing cost. 

Many ABC realizations have been developed. One popular approach, based on Mur's 
ABC [1], applies cascaded one-wave equations by recognizing that the fields near the bound- 
ary are outgoing in the waveguided direction [2, 3]. Since the wave velocities are matched 
at certain frequencies only, wideband absorption cannot be easily obtained in highly dis- 
persive structures. A different approach places layers of non-physical absorbers called the 
perfectly matched layers ( PML ) on the boundary [4, 5, 6]. This ABC realization can 
perform well absorption over a wide frequency range in dispersive structures. An extension 
has been derived to adequately absorb evanescent waves [7]. Another approach utilizes the 
diakoptic technique which applies time-domain Green's function and takes time convolutions 
[8, 9, 10]. Usually the numerical cost of time convolutions is significantly larger than that of 
the wave-equation approach. 

An alternative approach realizes the ABC based on the technique of digital filter 
design by using an allpass digital filter to implement the relationship between the interior 
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field, which is the input signal, and the boundary field, which is the output signal [11]. 
This realization provides wideband absorption and requires little computing effort as well as 
memory burden. In this paper, the filter approach is generalized by using infinite impulse 
response (IIR) filters for efficient absorption of propagating and evanescent waves. The 
stability of the ABC is studied by the poles of the filter. 

2    Formulation 

Consider an ABC boundary where the wave is outgoing in the +z direction. Since field 
components near the boundary satisfy the one-wave equation, the .E-field can be expressed 
as 

E{z) = E0e^ut~'!^z\ (1) 

where 7, which equals to ß — ja, denotes the complex propagation constant and is frequency 
dependent. Therefore, the value of the tangential field EM on the boundary can be updated 
from the value of the interior field EU-\ by 

EM = EM^e-^^z, (2) 

where the exponential factor indicates the property of wave propagation, including propa- 
gating and evanescent waves. 

To combine with the FDTD algorithm, Eq. (2) is transformed into a finite difference 
form by designing a digital system, in which the system function is defined as 

G(n)=SäSSse"r(n)A' (3) 

where Q. is the normalized frequency. With this equation, T(Q.) matches 7(01) over the 
frequency range in interest, Actually, the digital system is an ATth-order IIR filter, which 
input signal and output signal are EM-i and EM, respectively. The implementation is 
illustrated in Fig. 1. On the entire boundary the same IIR filter is applied to update boundary 
fields, since the phase of the guided wave follows Eq. (1) not only in a certain grid but also 
over the entire boundary. 

The choice of filter coefficients an and bn involves a procedure of complex curve-fitting. 
In practical optimization, if T(ti) is not well-matched with j(u), the discrepancy causes 
wave reflection. Consequently, the objective of the filter design is to minimize the reflection 
coefficient. According to the continuity condition on the boundary, the reflection coefficient 
R can be derived from the ratio G{u) between the total fields EM and EM-i, which includes 
the reflected wave, and is expressed as 

e-j(.T—,)Az _ j 
R = l_e-;(r+7)A*- (4) 
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3    Results and discussions 

The first case is to consider the absorption of the dominant mode in a highly dispersive 
rectangular waveguide with a second-order IIR filter. The cross-section dimensions of the 
waveguide are 3 cm x 1.5 cm.  To optimize the coefficients of the filter, the structure is 
pre-simulated by T£10-mode excitation to obtain the complex propagation constant.  The 
E-fields at two neighboring points are recorded, and the ratio leads to the calculation of the 
normalized attenuation and phase constants as plotted in Fig. 2 (a) and (b). The frequency 
dispersion can be observed in the curve of the phase constant. Subsequently, the coefficients 
are optimized as a, = -1.4074665, a2 = 0.40844664, b0 = -0.35247524, h = 1.2957203 and 
bo = -0 94269684   The optimized curves are also plotted in the same figure. The poles ot 
the filter are at zx = 0.99834113 and z2 = 0.40912533, as shown in Fig. 2(c), which are both 
inside the unit circle.  The solution to optimize the set of coefficients is not unique   The 
condition is not only to reduce the reflection coefficient but also to obtain poles inside the 
unit circle for a stable ABC scheme. The numerical calculation of the reflection corffcient 
based on Eq. (4) is shown in Fig. 2(d), which is validated by the FDTD simulation. With the 
complex propagating constant known, the performance of the ABC is available m advance. 

The second structure is a microstrip line which is an open structure. The width of the 
microstrip line is 9.6 mil and the thickness of the substrate, which has a dielectric constant 
of 9 9 is 10 mil. The complex propagation constant is also obtained by a pre-simulation of 
the döminant-mode excitation. The normalized attenuation and phase constants are plotted 
in Fie 3(a) and (b).  The coefficients of the optimized second-order IIR filter are ax - - 
1 9805548, a2 = 0.98423582, b0 = -0.95873958, h = -1.9185786, and 62 = 0.96352007. The 
positions of poles are at z, = 0.99027738 + jO.059887608 and z* = 0.99027738- jO.059887608, 
as shown in Fig. 3(c). Since this structure is not highly dispersive, the reflection coefficient 
can be reduced less than -60 dB over a wide frequency range from 0 to 20 GHz. The reflection 
coefficients of the numerical theory and FDTD simulation are plotted in Fig. 3(d). 

4 Conclusion 

An absorbing boundary condition for the FDTD method is realized using the concept of 
digital filter design to obtain well absorption of probating and evanescent waves over a wide 
frequency range. Based on the complex propagating constant, this technique is very suitable 
for waveguiding structures. In the analysis of discontinuity problems, the ABC boundary 
can be placed near the discontinuity without causing a significant influence to the results, 
and, therefore, the numerical cost can be greatly reduced. 
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Abstract 

The FD-TD method and the Berenger Perfectly Matched Layer (PML) absorbing condition are 
applied to the modeling of a 32-element patch array. Numerical results for the return loss at the array 
feed are presented and compared to measured results for the purpose of model validation. 

1    Introduction 
The Finite Difference Time Domain (FDTD) algorithm developed by Yee [1] has found widespread use 
in electromagnetic analysis. The ability of FDTD to provide in a single run the broadband response 
of a structure is attractive for microwave/millimeter-wave component analysis, antenna design, and the 
prediction of radiated emissions from packaged electronic components and systems. The nature of the 
algorithm makes it ideally suited for implementation on massively parallel computers, facilitating analysis 
at the system rather than component level. With recent advances in desktop computing, the method 
has gained popularity for problems traditionaUy analyzed using frequency domain techniques [2]. 

However the method is not without its limitations. One of the fundamental complications in using 
the method,'which is of relevance to this paper, has been the proper truncation of the grid for outgoing 
waves One of the more popular techniques used to address this problem has been one-way wave equations 
(or annihilators), such as the first and second order Mur [3] algorithms. Unfortunately, this approach 
tends to be narrow band and directional. Another approach has been to introduce absorbing media to 
cause the decay of the fields. However, reflections from the absorbing material have limited the use oi 
this approach. Recently Berenger proposed the Perfectly Matched Layer (PML) [4] which overcomes this 
problem by matching the phase velocity and impedance of the absorber to the physical medium. 
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In this paper we apply the FDTD method with the PML absorbing boundary condition to a 32- 
element patch antenna array. While integral equations techniques are well-suited for the analysis of 
such radiators, recent advances in portable electronics call for novel antenna designs which can benefit 
from the modeling versatility of the FDTD method. More specifically, active antennas are recently 
being considered for use in smart id cards, miniature GPS receivers, personnel sensors, and highway 
automation applications. The increased effective length, increased bandwidth, improved noise factor, 
and reduced mutual coupling in array applications are some of the attributes of active antennas that 
explain the interest in their use in small form factor transceiver designs [5]. The presence of non-linear 
devices within the antenna structure necessitates the use of a non-linear electromagnetic solver for the 
modeling of electromagnetic radiation from the antenna. FDTD has been demonstrated as the method 
of choice for such modeling [6]. 

In the next section we discuss the issues relating to the excitation and characterization of the patch 
antenna array with respect to the FDTD algorithm. Also, we will provide a brief overview of the PML. 
In Section 3, we provide numerical results for the return loss of the array. 

2    Theory 

2.1 FDTD 

Because the Finite-Difference Time-Domain method is well known [1], [7], we will focus our discussion 
on the issues specific to the structure under consideration. 

2.1.1    Excitation and Characterization Techniques 

The feed for the patch array consists of a short section of coaxial line, modeled with a stair step approx- 
imation, representing the coaxial feed. The inner conductor of the coaxial fine extends to the microstrip 
line connected to the feed network of the patch array. A port plane is then defined at some chosen refer- 
ence plane. In the port plane we solve Laplace's equation to find the quasi-TEM transverse electric field 
distribution. This field is imposed on the boundary as an incident field. Assuming TEM propagation, 
with an appropriately averaged cell velocity, the incident and reflected fields are separated. A Mur type 
one-way wave equation is then applied to the reflected field at the port plane. 

To compute the return loss for the coaxial line-driven patch antennas, a separate simulation of the 
uniform section of the coaxial line, defined in the port plane, is performed to determine the incident field 
waveform (voltage, current, or Poynting flux) in the reference plane and to characterize the coaxial line. 
The incident waveform from the port simulation is then used to determine the reflected waveform in the 
simulation of the patch antenna. An FFT of the ratio of the incident and reflected waveforms provides 
the return loss as a function of frequency. To reduce the computation time, the late time response can 
be computed efficiently using either Prony's Method [8] or the Matrix Pencil Method [9]. 

2.2 Berenger PML 
The Berenger PML [4] splits the field into sub-components and introduces electric and magnetic con- 
ductivities to cause the decay of propagating fields. The values of the PML conductivities are assigned 
directly at the corresponding field locations on the grid. The conductivities are chosen to satisfy the 
matching condition 

?-? w 
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where i indicates the direction (z, y, or z) and a' represents magnetic losses, which enforces the continuity 
of the wave impedance and phase velocity independent of frequency. Alternatively, the PML can be 
interpreted in terms of stretched coordinates [10]. To reduce the numerical reflections from the PML 
interface, a gradual spatial variation of the conductivities is used 

(Ji(Xi) = <7i,max ( ~J ) (2) 

where L is the length of the PML and cri>max is the maximum conductivity value. The PML region is 
terminated with a PEC. The apparent reflectivity from the PML region is given by [4] 

R = e   <o< {■>) 

where (a{) denotes the spatially integrated conductivity value. For the aforementioned parabolic profile 

it is (<7;) = CT,-,moi/3- ,,,,,/        r i • -f 
We have implemented the PML in a code [11] which supports multiple blocks (conformal regions oi 

space with separate meshes) as a new type of block using the PML field update equations. The PML 
and standard blocks are connected by forcing the losses to be zero over the ceUs in the connection plane 
of the PML block, thereby allowing the total field to be decomposed into the partial field components. 
This configuration reduces the total overhead in the problem by incurring the overhead of the PML only 
where needed. It should be noted that because of conductor masking [11] the PML absorbing boundary 
condition results in additional field solve regions which avoid the issues associated with implementing 
boundary conditions on massively parallel architectures. 

3    Numerical Results 
In Figure 1 the geometry of a section of a coaxial transmission line-fed microstrip patch array is shown. 
The entire array consists of 192 patches and is formed by six of the sub-sections shown in Figure 1 aligned 
side by side and driven in phase. The grounded dielectric substrate is 0.031 inches thick with a dielectric 

constant of 2.2. 
Exploiting the symmetry in Figure 1, we simulated only the lower 16 patches and the associated 

feed network A smaU ten element long stair-step approximation to the coaxial transmission fine was 
used to drive the antenna. A nearly uniform grid with 148 by 103 cells in the plane of the antenna and 
10 cells in the transverse direction (4 cells in the substrate) was used. This grid resulted in a coarse 
discretization of the geometry. The inset-fed patch feed lines and gaps were each modeled as being one 
cell wide. The serpentine line used to feed clusters of eight patches was separated by only 1-2 cells from 
itself and adjacent patches in some locations. 

PML blocks were located at 3 ceUs from the edge of feed line on the right side and 5 cells from the 
edge of the patches on the left side with <7,-,mM = 10.7 S. On the lower side a PML block was also placed 
5 ceUs from the edge of the patches with ffi,m« = 10.5 S. A PML block with *,„„ = 20.2 S was placed 
6 cells above the plane of the patches. The PML parameters were based on m = 2 and q as 4. The PML 
blocks were chosen to be 8 cells thick. Of the 423236 cells in the simulation 55% of them were located 

in PML blocks. . 
The total CPU time required on an HP 9000/735 workstation was approximately 11 hours lor 

17700 time steps. In Figure 2 we show the computed and measured return loss. The measured re- 
turn loss curve was derived from a VSWR measurement of the first array sub-section with the other five 
sections left open (no difference was noted from the case of match terminating the other five sections). 
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The array was designed to work at 17 ± 0.3 GHz with a thin dielectric coating, however the measure- 
ments were made without the coating present. The poor agreement is most likely due to the inadequate 
resolution of the power splitting network. At the time this paper was written further studies were under 
way to comprehend the reasons for these discrepancies. 
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Figure 1: A subsection of a microstrip patch array antenna (in units of inches). 
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Abstract 
The properties of parallel coupled microstrip 
patch   resonators   on   ferrite   substrates   are 
investigated. A fullwave analysis is used in the 
spectral domain, by using a combination of the     ~T 
Green's functions technique and the moment   d=^_ 
method ( Galerkin ). Curves are presented for 
the even and odd resonn*r mose frequencies  d' j_ il"'s'2     ^ 
versus   the   Structural   parameters   and/or   the      Fig. I - Coupled Resonators with ferrimagnetic substrates 
magnitude of the applied d.c. magnetic field. 

Introduction 
A growing interest in the development of microstrip devices on ferrimagnetic materials has been 
observed, lately [l]-[4]. This is particularly due to the fact that the characteristics of these devices can 
be altered by varying the intensity and/or direction of the applied d.c. magnetic field. 

Analyses of microstrip patch resonators and antennas on magnetized layers were presented by several 
authors [l]-[3]. Nevertheless, these works were performed for a single conducting patch on a single 
ferrimagnetic layer. 

In this work, a fullwave analysis is used to investigate the properties of two parallel coupled microstrip 
patch resonators on a two layer substrate, where the grounded one is a dielectric material and the other 
one is ferrite. It is assumed that the ferrimagnetic layer is normally biased [4]-[6]. 

This analysis is developed in two steps. In the first one, the Green's functions, or impedance matrix, 
for the structure considered is obtained [7]. In the second one, the Galerkin method is used to obtain 
the characteristic equations for the even and odd resonant modes, from which the resonant frequencies 
are determined as functions of the structural parameters and of the magnitude of the applied d c 
magnetic field [8]]-[9]. 

Curves are presented for the resonant frequency of the even and odd resonant modes as function of the 
geometry parameters, as well as of the normalized magnitude of the d.c. magnetic field. Results for the 
particular case of a single microstrip patch resonator on two layers substrate are presented, also. In this 
case the numerical results were obtained by increasing the conducting patches spacing. 

Note that a good agreement was observed when the results of this work were compared to those 
available in the literature for the particular case of: a) single microstrip patches on single ferrite 
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Substrate [2] and b ) coupled microstrip patches on double dielectric layers [10]. 

Theory 
The structure considered is shown in Fig. 1. Region 2 is assumed to be filled with a ferrimagnetic 
material and regions 1 and 3 are filled with dielectric materials. Particularly, region 3 is air. The 
externally applied magnetic field is considered to be along the y direction. Then, in the region 2, the 
permeability tensor is given by [4]-[6]. 

H2 = ^0 

ur    0   -jkr 

0     1      0 

Jkr   0     (ir . 

(1) 

with 

Hr = l" 
YH0)(Y47IMS) 

y47tMsf 

(2) 

(3) 

-Kr 
where y is the gyromagnetic ratio, 4JIMS is the magnetization saturation, Ho is the magnitude of the 
external applied magnetic field, f is the operation frequency, and Ho is the free space permeability. 

The analysis is developed by using a combination of the Hertz vector potentials, to determine the 
Green's functions for the structure considered, and Galerkin method [4]-[9]. 

The Hertz vector potentials are assumed to be along the y direction, which is the same for Ho, so that 
the electric, fL and the magnetic, fihi are given, respectively, by 

n hi 

= ne,ay 
= nhiäy 

(i = l,2,3) 

(i = l,2,3) 

(4) 

(5) 

The Hertz vector potentials, nei and nhi,in region 2, should satisfy, respectively, the wave equations 
given by 

Vzrie2 +cozEr2e0u0' 
r„2_v?i Kr  ITT irie2 = 0 
k     ^r     ) 

■>- 9 - fur-lV2TTh2 
v2nh2 +coz6r2e0u0nh2 - -

1—I—— = 0 

(6) 

(7) 
Mr   )   dyA 

From Maxwell's equations, the electric and magnetic field components in the ferrimagnetic layer 
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( region 2 ), is obtained as 

-7 <V-k2 

E2=-Jcon0UrVxnh2+co sr2E0n0     r   2  ' ne2+— vv-ne2 (8) 

rM2_k2N>=_]   _ _ 
H2 = j(o£r2E0n0^ r^2 

r jn)    vxne2+co2Er2Eon0nrnh2+vv.nh2 (9) 

For regions 1 and 3, equations^) to (9) are still valid, considering that u, = 1 and kr = 0. Then, the 
wave equations for risi and nhi are obtained in the spectral domain, for each dielectric region i 
(i = 1, 2, 3 ) in Fig. 1. The Fourier transformation is defined by [2] 

*(a,ß) = PJ^(x,z)J^ + f^dxdz (10) 

4>(x,z) = -Lj!0
ooro04>(a,ß)e-J(ax+ ßz)dadß (j,) 

(2JI) 

where f(x,z) is a generic function. 

By using (10) and (11), the wave equations for flej and fthj for dielectric region 1 (j = 1, in Fig. 1 ) 
are obtained as 

<32fl 

"^""Tl2fiel=0 02) 

52 f\,  hi        7fi        „ 
"^2— yinhl=° 03) 

where 

Y,2=a2+ß2-ö)2(J080Err (14) 

for region 3 (in Fig. 1), they are derived as 

d2fi 

-tf — T02fie3=° (15) 

s2fiu, 

~^2— Vnh3=0 (16) 

where 
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Y02=a2 + ß2-ö>2no8(), 

and, for the ferrimagnetic region 2 (Fig. 1 ) they are given by 

(17) 

82h „ e2 

ey2 -^e22fte2=0 

d2U,^ h2 

ay2 -?h22ft„2=° 

where 

(18) 

(19) 

(,,2-v^ Hr ye22=a2
+P   -a W^    ^     j (20) 

and 

Hr(a   +ß j-«0 ^r80sr2 
(21) 

rh2 

Solving the boundary value problem by imposing the boundary conditions, in the Fourier domain, the 
transformed electric field components at the interface air / ferrimagnetic ( y - d, + d2 in Fig. 1) are 
expressed as functions of the transformed surface current density components, as 

Fr - Resonant Frequency ( GHz) 

(1)-Sx = 2w 

\2 
(2)-& = w 
 even mode 

1^  odd mode 

1 X\\ 
2 XN 

: 2VYJY +^X7-'5 

E7  = Z7y Jv + Z77J5 

(22) 

(23) 

Using the Galerkin method and Parseval's theorem[2], the 
determinantal equation is obtained to determine the 
resonant frequency. In this analysis even and odd resonant 
modes are considered, allowing the determination of their 
resonant frequencies. 

Results 
Fig. 2 shows the numerical results obtained for coupled 

, microstrip resonators on a ferrimagnetic layer, for ss = w 
1       1.2      1.4      1.6     and 2w, where s* is the distance between the coupled 

L, cm 1 conducting patches. 

^V^WZL £SÜÄ AS expected the results obtained in this work, when sx 

Er2 = 15 2 H„ = 5024.0 Oe, y = 2.8 MHz/Oe, increases, approach those for a single microstnp patch. 
47tM,= 1.200 G. ' Furthermore,   when   the   magnitude   Ho   increases   the 
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resonant frequencies approach those for coupled resonators on a dielectric layer with s, = 15.2. 

4.4 

4.2 

3.8 

3.6 

3.4 
2 

Fig. 3 
w = 
d2 = 0 
y = 2,8 

Resonant Frequency (GHz ) Resonant Frequency (GFIz) 

1 - even mode. sx = w 
2 - even mode, s* = 2\v 
3 - odd mode,   s* = 2w 
4 - odd mode.   s* = \v 

5.5 

4.5 

3.5 1 

1 - even mode, sx = \v 
2 - even mode, s.\ = 2\v 
3 - odd mode,   s* = 2\v 
4 - odd mode.   sx = w 

6 10 8 
HO/4TCMS 

- Resonant frequency versus Ho/4inMs 

0.2   cm,   L  =   1.0  cm,   d,   =  0.0, 
127 cm, er2 = 15.2, 4TIMR = 1200 G, 
MHz/Oe. 

0 0.05 0.1 0.15 
di (cm ) 

Fig. 4 - Resonant frequency versus d: - 
w = 0.2 cm, L = 1.0 cm, d2 = 0.127 cm, 
Sr2 = 15.2,4;tMs = 1200 G, y = 2,8 MHz/Oe, 
Ho = 5024 Oe 

The behavior of the resonant frequencies of two parallel coupled resonators versus the normalized 
magnitude of the applied d.c. magnetic field is shown in Fig. 3. Note that when Ho/47tMs increases the 
resonant frequencies approaches those results for the resonant frequency of coupled resonators on a 
dielectric substrate with s, = 15.2, once that in (2) and (3), & and kr approaches 1 and 0, respectively 

Resonant frequency (GHz) 
b.b 

' j 

i 

■ 

6 

5.5 
"~~~~~ 
—                        3 

5.0 

4.5 ■ 

4.0 ■ 
i 

3.5  i 

3- 

J 
(1)-L = 0.8cm 
(2)-L = 0,9cm          J 
(3)-L=I,0cm 
(4)-L=l,lcm 

0 0.5 1 1.5 
di (cm) 

Fig. 5 - Resonant frequency versus di for an 
isolated   patch   -   w   =   0.4   cm,   s,,   =   1.0, 
8,2 = 15.2, d2 = 0.127 cm, Ho = 5024.0 Oe, 
47tM, = 1200 G. 
■ - Ref. [2] 

Fig. 4 shows the dependence of the resonant frequencies 
versus the thickness of the grounded layer, di, which is 
air-filled. Observe that for higher values of d, the 
resonant frequencies remain constants. 

Results for a single suspended microstrip patch resonator 
are shown in Fig. 5, which depicts the resonant frequency 
versus the thickness of the grounded layer. Dielectric 
region 1 is air-filled. Results are shown for several values 
of the patch length, L. Note that the results for small 
values of d] approach those for microstrip resonator on a 
single ferrimagnetic layer, studied in [2]. 

Conclusion 
A fullwave analysis of parallel coupled microstrip 
resonators on ferrite substrates was performed in the 
spectral domain. The dyadic Green's functions, for the 
even and odd resonant modes, for the structure 
considered were obtained by using Hertz vector 
potentials. Numerical results were obtained showing the 
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effect of the externally applied d.c. magnetic field. Agreement with results available in the literature 
was observed for several particular cases. The technique which is quite general and accurate can be 
used to investigate other planar structures with other substrates, such as semiconductors and 
anisotropic dielectric materials. 
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ABSTRACT 
A full wave analysis of conductor backed cylindrical slotlines is presented. These structures are 
suitable for the development of microwave integrated circuits to be mounted on curved surfaces. This 
analysis is performed in the Fourier domain, by combining Hertz vector potentials and Galerkin 
method, to determine the propagating modes characteristics. In the analysis, lossless and lossy 
dielectric regions were considered. Agreement was observed, for several particular cases, with the 
results available in the literature. This technique can be used to analyze those obtained by coupling 
two lines or by replacing the dielectric substrate region by a anisotropic one. 

INTRODUCTION 
The study of circular cylindrical slotted lines (Fig. 1) has been 
performed by several authors [l]-[5]. Quasi-static and fullwave analyses 
were used to investigate the transmission line characteristics. In these 
analyses, which are basically performed for a slotted coaxial cable, small 
values for r,, r, and r, - r,, (Fig. 1) were considered. 

In this work, the analysis of a conductor backed cylindrical slotline, as 
shown in Fig. 2, is presented. Note that for this structure large values are 
assumed for r, and r,, while very small values for r, -r, are considered. 
Also, note that if r„ increases the structure of Fig. 2, which is a 
conductor backed slotline, approaches that of a conductor backed 
slotline (Fig. 3). 

<(> =0°      <f> == c 

Fig. 1 - Cross sectional view of 
a slotted coaxial cable. The slotline structures shown in Figs. 2 and 3 are suitable for the 

development of several (monolithic) microwave integrated circuits [6]-[ll], requiring the study of 
their properties. 

The technique that combines Hertz vector potentials and moment method has proven to be accurate 
and efficient in the analysis of planar transmission lines, in the spectral domain [6]. Thus, it was 
chosen to investigate the properties of non-planar transmission lines. 

Therefore, the main objective of this work is to analyze the structure shown in Fig. 2, in the spectral 
domain, by using Hertz vector potentials [12] and Galerkin method [13]. 
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In this work, it was observed that the numerical results obtained for ®_Jw=2ia|<- 
the particular cases of a a) circular slotted coaxial cable, and b) p-—■—- ! "~**^.r 

(planar) slotline and conductor backed slotline, showed agreement ■■'{$'t £,    ! 

with the results presented in the literature [7]-[l 1]. V^' ■        -■.-. ^ 

THEORY Fig. 2 - Geometry of a conductor 
To analyze the structure shown in Fig. 1, the electric and magnetic   backed cylindrical slotline. 
fields are expressed as functions of the Hertz vector potentials in 
each dielectric region i (i=l,2) in Fig. 2. These potentials are considered to be oriented along   är, 
giving 

se=7teär (1) 
nh=nhiT (2) 

The non-planar structures considered in this work are assumed to be uniform along z direction and the 
time dependence is harmonic. 

From Maxwell's equations, the electric and magnetic fields are obtained as functions of ne and it^, 

for dielectric region i (i=l,2), in Fig. 2, as 

E = -JQHQVXä, (3) 

B = j OJJ.Q s VxÄe (4) 

where co is the operating frequency (co = 2« f), n0  is the free space magnetic permeability and E is 
the electric permittivity. 

The wave equations for the Hertz potentials are derived as 

V27te + a2 H0 E 7te = 0 (5) 

V2rc,   + co2 nnE7t, =0 (6) 

To solve the boundary value problem in the Fourier domain, the following transformation is used [14] 

Ö (r,m) = JS.Q (r,<>) exp(-jm<t>) d<j> (7) 

m=co _ 
Q(r,(|))=    S_   Q(r,m)exp(jm(()) (8) 

where ~ means the transformed function. Fjg 3 . Cross section of a conductor 

backed slotline. 
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From (8), (5) and (6), the transformed wave equations are obtained as 

p-Tfa(r,m) + i-7teh(r3m)-Cfffeh(r,m) = 0 (9) 

with 

and 

Cf =yf-(m/r)2 

Y2=k2_p2 

(10) 

(11) 

where ys and  k; are the propagation constant and the wave number, in region i (i=l,2 in Fig. 1), 
respectively, and ß is the line phase constant. 

To solve the boundary value problem, in the spectral domain, the surface current density components, 
at r = r2, are expressed as functions of the electric field components in the slot as 

I T LJZ. 

[Y<M> Y«t>z 
"L?z6    YZ2 LEZ 

(12) 

where Yw, Y4z, Y7i/ and YZ2 are the dyadic Green's function components for the structure considered 

HO]- 

w = 0.100 cm 
h = 0.100 cm 
R = 0.900 
s = 12.0 

o = 2.5 S/cm 

0 = 0.25 S/cm 

2 4 6 8 

Frequency (GHz) 

By using the moment method [9],[13], the characteristics 
equation for the propagation constant is determined [10], 
for the dominant and higher order modes. Therefore, the 
effective permittivity for the structure considered is 
obtained. 

RESULTS 
Numerical results are presented for several cases, 
including conductor backed cylindrical slotlines and 
(planar) slotlines. 

Fig. 4 shows the frequency dependence for the 
normalized phase constant of conductor backed 
cylindrical slotlines with lossy dielectric regions. For this 
structure (Fig. 2 ),  R = ^ / r2 and h = r2 - ri. 

Fig. 4 - Normalized phase constant versus Fig. 5 shows the numerical results obtained in this work 
frequency for conductor backed cylindrical for a conductor backed cylindrical slotline and those for 
slotlines with lossy dielectric. R = r, / r2. a (planar) slotline available in the literature [11]. 
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     Theoretical [11] 
****   Experimental [11] 
       This work (R=0.98) 

—MS 

0.44| 

0.43: 

0.421 

0.41 i 

w = 0.16 cm 
h = 0.16 cm 
sr=16.3 

0.4 ! 275 3 3.5 4 
Frequency (Ghz) 

Fig. 5 - Normalized wavelength versus 
frequency for a conductor backed 
cylindrical slotline (---), with R=0.98, 
and a (planar) slotline. 

CONCLUSION 
The analysis of conductor backed cylindrical slotlines 
was performed, in the spectral domain, by using a 
Green's function technique and the moment (Galerkin) 
method. 

Numerical results were presented for the normalized 
phase constant and wavelength as functions of 
frequency, for the dominant mode. 

For some particular cases, agreement was observed 
between our results and those presented in the 
literature. As expected the results obtained for the 
conductor backed cylindrical slotline structure 
approach those obtained for the planar structure, when 
the conducting surface radius, rL, in Fig. 1, increases. 

This technique is quite general and can be used to 
analyze, for instance, the cases of coupled slotlines and 
slotlines with anisotropic dielectric regions. 
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PROPERTIES OF TAPERED MICROSTRIP LINES ON DIELECTRIC AND MAGNETIZED 
FERRIMAGNETIC LAYERS 
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Department of Electrical Engineering 

Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil 

Abstract 

An investigation on the properties of tapered microstrip lines on dielectric and magnetized 
ferrimagnetic layers is presented. The effects produced on the properties of tapered microstrip 
transmission lines by variations on their structural parameters, including the properties of the 
substrates, were investigated. The variations on the substrate properties were obtained for microstrip 
lines on ferrites, by varying the magnitude of the applied dc magnetic field. For these structures, a 
linear variation of the conducting strip width was considered, while the substrate thickness was kept 
constant. The analysis was developed in the spectral domain, by using a combination of the 
segmentation, Hertz vector potentials, and Galerkin methods. In the analysis, the Hertz vector 
potentials were assumed to be oriented along the applied d.c. magnetic field. Results are shown for 
tapered microstrip lines, for the input impedance, reflection coefficient, and VSWR. Agreement was 
observed with the results available in the literature for tapered lines on dielectric substrates. 

Introduction 

The interest on microwave devices using microstrip transmission lines on ferrimagnetic layers has 
increased [l]-[4], lately. Mainly, this is due to the possibility of altering the performance of these 
devices by changing the properties of their ferrimagnetic substrates, according to the magnitude and 
direction of the applied d.c. magnetic field [4],[6]. 

Therefore, the characteristics of microstrip circuits, such as antennas [1],[2] and couplers [4], may be 
varied by altering the ferrimagnetic layer properties, according to a variation on the intensity or 
direction of the externally applied d.c. magnetic field. 

In this work, the analysis of microstrip line tapers on ferrimagnetic layers is developed. This analysis 
is performed in the Fourier domain, by considering a simplified model for the tapered line section, and 
using the Green's function technique and the Galerkin method [1],[4],[6]. The analysis is developed 
for the dominant mode and it is assumed that a uniform external magnetic field H, is applied along the 
microstrip longitudinal direction (direction z, in Fig. 1). 

Results were obtained for the input impedance and reflection coefficient for both the taper on ferrites 
and on isotropic dielectric substrates. It should be mentioned that the results for the taper on isotropic 
dielectric substrates were obtained as a particular case of the analysis developed for tapers on ferrites. 
Furthermore, a good agreement was observed, for this particular structure, when the results of this 
work were compared to those available in the literature. 
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Theory 

The structure considered in this work is shown 
in Fig. 1. It is a tapered microstrip transmission 
line section on a magnetized ferrimagnetic 
layer. Region 1 is ferrite and since that the bias 
is applied along z direction, the permeability 
tensor £L of the ferrimagnetic substrate is given 

by [1],[3] 

u     ik    0 

-ik    u    0 

0     0    u0 

Fig. 1 - Tapered microstrip line section on femte. 

(1) 

with/^ and k given by 

k 

,Y2H04^MS 

co2-(yH0)
2 

y47iMs 

Ho     <D2-(YH0)' 

(2) 

(3) 

where 4nMs is the saturation magnetization, y is the gyromagnetic ratio, m is the operating 

frequency, and u0 is the permeability of free-space. 

Furthermore, region 2, in Fig. 1, is air filled and a linear variation of the conducting strip width, W(z), 
is considered, while the substrate thickness, h, is kept constant. 

In the first step of this analysis, the tapered microstrip transmission line section is divided into N 
subsections, and, in the second step, it is modeled as a cascaded combination of uniform microstrip 
subsections' Then, to analyze each of these microstrip subsection, the Green's function technique and 
Galerkin method are used. 

To determine the dyadic Green's function for each microstrip subsection, Hertz vector potentials along 
z direction (Fig. 1) are assumed, so that 

*h=v 
These electric and magnetic Hertz potentials should satisfy the following wave equations 

2          2^-k2) n Vz%t + coz L£Jte = 0 

(4) 
(5) 

(6) 
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From Maxwell's equations, the expressions for the electric, E, and magnetic, H, fields are obtained as 

— _        ?    'ii^-k^' u 
E = -jrauVx jrh +o/u0  2—je«e +—VV.jie (8) 

H = jcDu0 2 SW    VxAe+o^nEJij^ + VV.«. (9) 

To solve the boundary value problem, the transformation given by [4] 

ß(a,y) = tn(x,y)e~-ixadx (10) 

fXx,y) = ^tn(a,y)eJaxda {11) 

is used, where ~ means the transformed function. 

Furthermore, the wave equations for ne and jih, as well as the expressions for the electric and 
magnetic fields components, were obtained, after some algebraic manipulation, in the Fourier domain. 

Then, by imposing the boundary conditions for the structure considered (Fig. 1), the final expressions 
for 7te and 7th , in the ferrite substrate (region 1) and dielectric layer (region 2), were obtained, from 
which the transformed electric and magnetic fields expressions were derived. 

Therefore, for each uniform microstrip subsection, at y = h (Fig. 1), the transformed electric field 
components are expressed as functions of the transformed surface current density components as 
given by 

Ex(a) = Zxx(a,ß)jx(a)+Zxz(a,ß)Tz(a) (12) 

Ez(a) = Zzx(a,ß)jx(a)+Zzz(a,ß)J2(a) (13) 

where Z^.Z^^, and Z^ are the dyadic Green's function components for the microstrip 
structure considered. 

After the determination of the impedance matrix [2], Galerkin method and Parseval's theorem are 
used to derive the determinantal equation for the propagation constant and effective permittivity[4], 

To determine the characteristic impedance for each uniform microstrip subsection, a power-current 
definition is used [4] 

Z   -^ Z0 - p (14) 
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with 

and 

P = |-ReJf(ExHy-EyHx)dydx 

I = E,J (x)dx 

(15) 

(16) 

Note that this analysis gives numerical results for tapered microstrip lines on dielectric substrates as a 
particular case, which is obtained by imposing k = 0 and n = 1 in the derived equations. 

In order to obtain the vswr and the input impedance and reflection coefficient, the values for the 
characteristic impedance and effective permittivity are determined for the N microstrip subsections, 
taking into account that a linear variation was considered for the strip width along the taper (Fig. 1). 
After that the transmission line theory is used to determine the taper input parameters from given 
values for'the load impedance (ZL), input W ) and output (W2) conducting strip width, frequency (f), 
microstrip substrate height (h), and ferrimagnetic material parameters. Finally, an interactive 
procedure is used to study the cascaded combination of the uniform microstrip subsections. 

Therefore, the determination of several parameters of the 
Ir I microstrip taper, or tapered microstrip line, on ferrites 
I   in I ,• ■ c A 

and their circuits, such as impedance transformers and 
antennas, is achieved. 

0.6  

0.5 j- 

0.4 7 

0.3 - 

0.2 r\ 

0.1 [   \ 

4 4.1 4.2 4.3 4.4 

Ho (kOe) 
Fig.   3   -   Input   impedance   reflection 
coefficient versus Ho. H0 is in z direction. 

Results 

Results for the vswr and input impedance and reflection 
coefficient are presented for microstrip lines on both 
ferrimagnetic and dielectric substrates. Fig. 2 shows the 
results obtained for the vswr as function of the 
magnitude of the applied d.c. magnetic field, H» , for 
different values of the load impedance, ZL. 

In Fig. 3, the results obtained for the magnitude of the 
input reflection coefficient are shown versus the 
magnitude of Ho, for the same values of ZL considered 
in Fig. 2. 

Fig. 4 depicts the results obtained for the input 
impedance of the tapered microstrip line section on 
ferrite substrate considered in Fig. 2. 

Note, from Figs. 2 to 4, that the variation of Ho allows to change the properties of microstrip tapers 
on ferrites, showing a magnetic impedance matching possibility, for instance. 

Finally, the numerical results obtained for the particular case (p. = 1 and k = 0) of tapers on dielectric 
substrates are in agreement with the results available in the literature [7]. 
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VSWR 

Fig. 2 - VSWR versus H0. F = 9 GHz, 
W, = 0.1519 cm, W2 = 0.4807 cm, 
h = 0.1150 cm, L = 0.15 cm, e, = 16.6, 
4itMs = 2300 G, and y = 2,86 MHz/Oe. Load 
impedance, ZL, values: a) 10 - jl fi and 
b) 15 + jl5 Q H0 is in z direction (Fig. 1). 

z„(n) 

60- 

40-' 

20^ 

Oh 

-20L 

4.1 4.2 4.3 4.4 

Fig. 4 - Input inpedance versus H). Rin (- 
and  X<„ ( ). Ho is in z direction. 

Conclusion 

The analysis of microstrip tapered lines on ferrites was 
developed. The variation of the conducting strip width 
was assumed. A combination of Hertz potentials and 
Galerkin method was used to analyze the microstrip 
subsections in a model based on a segmentation of the 
considered structure. It was observed that the analysis 
developed in this work is accurate and can be used to 
investigate others planar structures properties. Also, a 
magnetic impedance matching possibility for microstrip 
circuits was observed. 
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ABSTRACT 

The computation of S-parameters for microwave structures is of increasing importance for 
many technical applications. It requires the simulation of infinitely long waveguides connected 
to the port planes by appropriate open waveguide boundary conditions. Within electromagnetic 
field-computation using the Finite Integration Technique (FIT), a broadband waveguide boundary 
operator is available, which allows the calculation of S-parameters over a wide frequency range 
from only one time domain-computation, if the simulated waveguide is homogeneously filled and 

lossfrcc. 
In this paper we present a new formulation of this operator, which is also applicable to fre- 

quency domain calculations using FIT. Starting with the solution of the two dimensional eigen- 
value problem given by the waveguide to be simulated, this algorithm yields a large system of 
equations with a non-symmetric complex system matrix, which can be solved by modern Krylov 

subspace-type methods. 
After giving a short introduction to the method, we derive the open waveguide boundary 

operator as well as its implementation in time and fequency domain algorithms. Finally we 
present two realistic examples of microwave structures to demonstrate the applicability of the 

operator to both approaches. 

INTRODUCTION 

A well-known discretization approach in the computation of electromagnetic fields is the so- 
called Finite Integration Technique (FIT, cf. [8, 9]). Similar to Finite Difference approaches 
(cf. [10]), the electric and magnetic fields within FIT are represented as discrete vectors on a grid 
doublet, consisting of the normal grid G and its dual grid G. Starting from Maxwell's equations in 
their integral form, the analytical operators curl and div can be transformed in matrix operators 
C and S (respectively C and S on the dual grid), yielding algebraic equations 

Ce =   -b 

<5h =   j + d 

5b =   0 

~SA =   q. (1) 
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In these so-called Maxwell's Grid Equations (MGE's), the vectors e and h represent the electric 
and magnetic voltages along grid lines, and d and h are electric resp. magnetic flux quantities 
through grid faces. C, C, S and S are topological matrices, consisting only of {—1,0,1}. 

The electric and magnetic material equations in grid space are 

d = D(e 

j = Ace 

b   =   AA (2) 

where Dt, DK and Dß are diagonal matrices for cartesian (and some other) grids. For more details 
see references [1, 8, 9]. 

THE WAVEGUIDE BOUNDARY OPERATOR 

Derived from evaluated line integrals around grid faces, the discretized curl-operator C is 
a large sparse 3Np x 3Np matrix (Np =number of grid points), connecting only neighbouring 
components of the discrete field vector e. Thus the introduction of any boundary condition 
only requires the correction of those entries in C refering to the tangential ^-components at the 
boundary plane. 

In the following we consider the waveguide termination shown in Fig.l. 

1 2 

h- 

Oi- ■o2 

'L 

Figure 1: Coefficients of an incoming, respectively, outgoing wave at a waveguide boundary. 

To obtain the tangential £-field at the boundary plane 2, a modal expansion at plane 1 is 
performed, one grid step in front of the termination. 

As a first step, the eigenmodes in the infinitely long waveguide have to be determined. Applying 
MGE's in frequency domain to the calculation of lossless waveguides with arbitrary shaped cross- 
sections (cf. [6, 8]) yields an algebraic eigenvalue problem 

AID ■ e, - u2D,ei = k2
ziD2fn, (3) 

where A2D is the 2N2o X
 2N2D sparse system-matrix, e,- is the discrete zth eigenmode, and kzj is 

its propagation constant at a given frequency u>. The magnetic fields of the eigenmodes can be 
obtained in frequency domain by 

hi = -±-D;lC2Dei. (4) 

The eigenmodes in a waveguide satisfy the analytical orthogonality relation 

(%!,)xi/*(i,!,))-rf/l = ^ (5) W 
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Within FIT, one can find an exact discrete analogon of this equation: 

(euhj) := eiKhj = hi (6) 

with a topological matrix K (cf. [1]).  The tangential field in plane 1 can now be written as a 
superposition of all these modes 

oo 

l 

expanding the (2-dimensional) vectors e, and h, to full 3D-length where necessary. The coefficients 

a; are given in gridspace by 
a; = (e(zi),h,). (8) 

Each of these coefficients a; can be split up into two parts propagating along indirection, 
named h and Ox as shown in Fig.l. In frequency domain representation the coefficients of a single 

mode at planes 1 and 2 satisfy 

a, = /! + (?!   ,   a2 = I2 + 02 (9) 

From this we get the following algorithm to obtain the tangential ^-components at plane 2: 

1. Compute (some of) the discrete 2D-eigenmodes (including their propagation constants) of 
the infinitely long waveguide by solving the eigenvalue problem (3). 

2. Perform a modal expansion of the tangential electric field at plane 1, yielding coefficients a; 

for a number of modes. 

3. For each mode, compute a2 = h + 02 at plane 2, where h, representing a wave coming from 
outside the structure, is known a priori. From (9) we have 

a2 = /2(l-e-2AA') + aie-
ÄA2. (10) 

4. Compute the tangential electrical field at plane 2 from (7). 

The final computation of the desired S-parameters is quite a simple task, since the amplitudes 
of the outgoing waves 02 at the boundary plane (respectively their power O,) just have to be 
normalized to the power of the exciting mode (Jf). 

TIME DOMAIN IMPLEMENTATION 

To implement the open waveguide boundary operator in a leap-frog type time-domain scheme 
(cf. [1]), equations (9) have to be transformed from the frequency domain representation above 
(with kit = fc2,(u>)) into a time domain formulation. 

If we restrict the waveguide to be homogeneously filled (and still lossless), the eigenvectors of 
eq (3) and thus the transversal electric mode fields are not frequency dependent. The propagation 
constant kz<i and the frequency « are then correlated by the discrete dispersion relation 

(sin(u&t/2)\2 _ (sin(wAtß)Y ,  ( sin(kz,jAz/2)\2 (n) 

{    cAt/2    )   - \     cAt/2     )   + \      Az/2      )  ' 
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where At is the timestep, and u;c is the cutoff frequency of the mode. 
In [2] a one dimensional discrete transmission line model is derived, which allows to simulate 

this dispersive behaviour of the waveguide over a wide frequency range. The additional reflection 
caused by this model can be adjusted a priori by means of the length of the transmission line, 
and can be limited down to the dimensions of numerical noise. Comparisons with monochromatic 
calculations show the excellent accuracy of the broadband simulation (cf. [2]). 

A remarkable feature of this boundary operator is, that the maximum stable timestep for the 
field computation is not affected by the open waveguide simulation. 

FREQUENCY DOMAIN IMPLEMENTATION 

Transforming Maxwell's Grid Equations into the frequency domain yields 

Ce   =   -jwb (12) 
CD~lh   =   ju-Ae+j (13) 

Inserting (12) in (13) we get the so-called curl-curl-equation (cf. [4]) 

CD;1Ce-u2Dce=-juj, (14) 

corresponding to the analytical form 

curl ^_1curl E - oAE = -jwJ. (15) 

The system matrix of (14) 
Al = CDliC-J2Dl (16) 

is complex symmetric in the general lossy case and real symmetric in the loss-free case having real 
material coefficients e and fi. 

To implement the open waveguide boundary operator, the algorithm above has to be trans- 
formed in a matrix-equation conforming to (14). The tangential field at the boundary plane is 
(considering only one eigenmode) 

e(z2)   =   a2e{ 

=   [J2(l - e-«*--A*) + aie-''**'A*] e,- 

with 

aie,-   =   (e(2i),h,-)e,- 

=   (e,-hf K) e(2l). 

Including this formula in the matrix-equation (14), we get a new linear system 

A2e = pj, (17) 

with the extended system matrix 

A2 = Ax + u,2A £(e-^a*e,hf K), (18) 
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where the summation has to be performed over all modes considered in the modal expansion. 
The excitation by the incoming wave(s) with coefficients Iu is included m the right hand S1de 

r2 = _jwj - JDC £ 7W(1 - e-**-'*')*. (19) 
i 

The new system matrix is 

• complex due to the propagating term e^*"*' and 

. nonsymmetric due to the fact, that the modal expansion is performed in plane 1, but its 

results are applied in plane 2. 

To solve (17), some modern Krylov subspace-type algorithms are applied, among which are the 
BiCG-algorithm of Jacobs [5] and the stabilized approach TFQMR (Transpose-free Quasi-Minimal 

Residual) by Freund [3], which is closely related to the CGS-solver by Sonneveld [7] 
The performance of all these algorithms strongly depends on the spectrum of the system 

matrix, which makes a preconditioning of the system matrix almost always mandatory to improve 

the distribution of its eigenvalues in the complex plane. 
Applying preconditioning on complex, nonsymmetric matrices is not yet completely under- 

stood and still requires a large amount of numerical experience. In our case we apply a memory- 
efficient SSOR left-preconditioning with the preconditioning matrix 

M = (A-L)A-1(A-t^), (2°) 

where A is the diagonal, L the strictly lower and U the strictly upper part only of the symmetric 
part A1 of the system matrix A3. This seems to be a reasonable approach, since the non-symmetric 
'perturbation' of A1 by the waveguide boundary operator gets smaller, when the number of grid 
points is increased. This assumption is confirmed by the numerical results shown below. 

EXAMPLES 

In the first example the S-Parameters of a waveguide coupler (cf. Fig.2) are calculated. The 
structure is discretized with 53 x 2 x 128 = 13568 grid points, yielding a system of 40704 complex 

linear equations for the frequency domain approach. 
In time domain, the infinetly long waveguides at the boundary ports can be simulated ,n one 

single broadband computation within a few minutes of CPU time on a SUN Sparc 20. Approx- 
imately the same computation time is needed for each frequency domain calculation at a fixed 
frequency. Thus the time domain approach must be considered to be superior, as long as only the 

S-Parameters are to be determined. . 
If also the field patterns in the structure are of interest, m time domain a monochromatic 

calculation has to be performed, requiring approximately as much computational cost as the 

frequency domain algorithm. , . 
The results for the reflection coefficient 5„ at one of the ports is shown in Fig.3 
Fig 4 shows some typical convergence curves for the equation-solver process in he ^quency 

domäm calculation. The application of the PSSOR (Partial SSOR)-preconditionmg described 

above significantly reduces the number of iterations needed. 
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Figure 2: Real part of the electrical field Re{E} in a waveguide coupler. Result from frequency 
domain calculation. 

Time Domain Solution 
Frequency Domain Solutions 

10.0 11.0 12.0 13.0 14.0 15.0 

frequency (GHz) 

Figure 3:   Reflection coefficient Sn of the waveguide coupler.   The results from the frequency 
domain computation show excellent agreement with the time domain solution. 

The second example shown in Fig.5 is a piece of a chip consisting of two microstrip ports and 
two thin wires connecting them with resistive blocks on the ground material. The conductivity of 
the resistive blocks is K = 13000 S/m, the substrat has the permittivity er = 9.0. The geometrical 
extensions are about 700/iro x 300/j.m. The structure is discretized with 71 x 20 x 85 = 120700 grid 
points. The task here was to determine the cross-talk from one wire to the other at a frequency 
of about 5-20 GHz. 

Having inhomogeneous waveguide ports here, their two-dimensional eigenmodes are frequency- 
dependent, and thus the time domain simulation by the transmission line model is only accurate 
in a relatively small frequency range. Fig.6 shows the results from several time domain computa- 
tions optimized for different middle frequencies, versus the results from some frequency domain 
calculations. Even at the very low cross-talk rates below 50 db, the agreement is very good. 

The computation time on a SUN Sparc 20 is about 3-5 hours for one time domain computation, 
and about 8-12 hours for one frequency domain run. Applying the preconditioned TFQMR-solver 
in double precision, the storage requirement for the frequency domain computation with 362,100 
complex unknowns is about 80 MByte. 

Due to the large amount of time steps needed, monochromatic calculations in the time domain 
are too expensive at frequencies lower than 20 GHz.  To obtain field patterns in this frequency 
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Figure 4: Frequency domain calculation of the waveguide coupler: Convergence curves of PSSOR 
preconditioned CGS and TFQMR methods versus the CGS method without preconditioning. 

Figure 5: Real part of the magnetic flux density Re{B} in a microstrip structure at / = 5 GHz. 
Result from frequency domain calculation. 

range, the frequency domain approach proves to be superior here. 

CONCLUSION 

In this paper we presented the calculation of S-parameters using an open waveguide boundary 
operator, which is applicable to both broadband time domain and frequency domain calculations 
with the Finite Integration Technique (FIT). 

In frequency domain, this operator leads to a system of linear equations with a large, sparse, 
complex and non-symmetric system matrix. To solve this system, modern Krylov subspace-type 
methods like CGS and TFQMR, combined with a partial SSOR preconditioning, are applied. Two 
realistic examples with up to 362,100 complex unknowns demonstrate the good performance of 
these solvers. The agreement with the time domain solutions is excellent. 

Applying the time domain algorithm yields the S-parameters within a wide frequency range 
from a single computation, as long as the waveguide ports are lossless and homogeneously filled. 

If one is interested in field patterns at very low frequencies, or if inhomogeneous waveguides 
have to be simulated, the frequency domain approach becomes competitive due to the large 
amount of time steps needed for monochromatic time domain calculations. 
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Abstract 

The application of the method of moments directly to Maxwell's equations results in new 
time domain schemes with properties determined by the choice of the basis functions. In 
particular, expanding the unknown fields in scaling functions results in new multiresolution 
time domain (MRTD) schemes with highly linear dispersion characteristics. In comparison 
to Yee's FDTD scheme, these properties allow for a reduction of the mesh size by a factor 

of five per dimension. 

I Introduction 
As shown in recent publications on the foundations of the TLM method [1,2], the method of 
moments represents a general approach for the discretization of partial differential equations. 
The application of the method of moments directly to Maxwell's equations yields time domain 
schemes with properties determined by the choice of the basis functions. While the TLM and 
FDTD methods are based on the expansion of the unknown fields in subdomain basis functions, 
multiresolution time domain (MRTD) schemes are derived using scaling and wavelet functions as 
a complete set of orthonormal basis functions. The dispersion of the MRTD schemes compared 
to the conventional Yee FDTD scheme shows an excellent capability to approximate the exact 
solution with negligible error for sampling rates approaching the Nyquist limit [3]. Furthermore, 
the combination of scaling functions and wavelets leads to a variable mesh grading for regions 
characterized by strong field variations or field singularities. 

For the MRTD schemes presented in this paper, the unknown fields are expanded in pulse 
functions with respect to time and in a series of Battle-Lemarie scaling functions [4] with respect 
to space. The Battle-Lemarie scaling functions do not have compact support, thus the MRTD 
schemes have to be truncated with respect to space. However, this disadvantage is_ offset by 
the low-pass and band-pass characteristics in spectral domain, allowing for an apriori estimate 
of the number of resolution levels necessary for a correct field modeling. Furthermore, for this 
type of scaling function, the evaluation of the moment method integrals is simplified due to the 
existence of closed form expressions in spectral domain and simple representations in terms of 

cubic spline functions in space domain. 
We denote the MRTD schemes based on scaling functions only by the S-MRTD scheme. Nu- 

merical examples of the S-MRTD scheme are given in this paper for the analysis of transmission 

lines and resonator structures with dielectric materials. 

II Derivation of the S-MRTD scheme 

The derivation of the S-MRTD scheme is similar to that of Yee's FDTD scheme which uses the 
method of moments with pulse functions as expansion and test functions [2]. For the derivation 
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of S-MRTD, the field components are represented by a series of scaling functions in space and 
and pulse functions in time. Furthermore, as for Yee's FDTD scheme, the field expansions of the 
magnetic field components are shifted by half a discretization interval in space and time with 
respect to the field expansions of the electric field components. 

Maxwell's first vector equation, 

VxH = 4       , (1) 

for a homogeneous medium with the permittivity e may be written in the form of three scalar 
cartesian equations as 

dy     dz   ~    at (Z> 

dz    dx   ~ e at w 

dHl_dH1 _   a^ 
dx     dy   ~ £ at      • w 

In the same way, the second Maxwell's vector equation for a homogeneous medium with the 
permeability /i, 

v * E = ^~bT    ' (5) 

can be split into three scalar equations similar to eqs. (2), (3) and (4). We consider the dis- 
cretization of eq. (2) in order to demonstrate the principles of the approach. The other remaining 
five equations may be discretized in the same way. 

The electric and magnetic field components incorporated in eq. (2) are expanded as follows: 

klllm,n——oo 

+oo 
Hv(r,t)    = J2       *+l/2#;+i/2,ro,„+i/2   hk+lp(t) <l>l+i/t(x) <j>m(y) <t>n+i/i{z) 

k,l,m,n=—oo 

+co 

Hz(r,t)    = J2       *+l/2-S^i/j,m+i/2,B   h+l/2(t) <f>i+iß(x) <f>m+i/2(y) Mz)     . (6) 

where *.£;,* f„, *#;,„,„ an<^ >=^i,m,n are tne coefficients for the field expansions in terms of scaling 
functions. The indices /, m, n and k are the discrete space and time indices related to the space 
and time coordinates via x = /Ax, y = mAy, z = nAz and t = kAt, where Ax, Ay, Az and At 
represent the space and time discretization intervals in i-, y-, z- and i-direction. The function 
hm(x) is defined as 

hm(x) = h(-^-m) (7) 

with the rectangular pulse function 

f    1       for \x\ < 1/2 
h(x) = \  1/2     for |z| = 1/2 . (8) 

[   0       for \x\ > 1/2 
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The function <j>m{x) is defined as 

«^^-"•l       , (9) 

where 4>{x) represents the cubic spline Battle-Lemarie scaling functions [4]. 
We insert the field expansions in eq. (2) and sample the equation using pulse functions as 

test functions in time and scaling functions as test functions in space. For the sampling with 

respect to time, we need the following integrals [2], 

+00 

J hm{x) hm.(x) dx = Sm<m. Ax       , (10) 
—00 

where <5m,m/ represents the kronecker symbol 

for m^m' 
j  1      for m = m' /-|,\ 

*m,m' = \   Q        I L —1 > \lL> 

and 
+fhm(x) dh*^ dx = *m,m. - 6m,m,+1       . (12) 

— CO 

For the sampling with respect to space, we use the orthogonality relation for the scaling func- 

tions [4], 
+00 

/ <t>mi?) K'{x) dx = 6m,m. Ax       . (13) 
— CO 

To calculate the integral corresponding to eq. (12) for scaling functions, we make use of the 
closed form expression of the scaling function in spectral domain [4]. According to Galerkin's 
method [5], for complex basis functions, one has to choose the complex conjugant of the basis 

functions as test functions. We then obtain 

yMx)^^Mdx = lJ^{X)\2 \sm\(m'-m + l/2)d\       , (14) 

-co 0 

where </i(A) is the scaling function in spectral domain given in [4]. This integral may be evaluated 

numerically resulting in 

7K(x) a&»wi(«) dx = g a{i) Sm+.m,     . (is) 
-•co 9X 

The coefficients a(i) for 0 < i < 8 are shown in table 1, the coefficients a(i) for i < 0 are given 
by the symmetry relation <z(-l - i) = -a(i). The Battle-Lemarie scaling function does not 
have compact but only exponential decaying support and thus, the coefficients a(i) for i > 8 
are not zero. However, these coefficients are negligible, since they affect the accuracy of the field 
computation only for very low values of the wave vector. We therefore use the approximation 

d<W*) &<af   a(i)W do) /^)^f^^«E^)^>' 
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i «(0 
0 1.2918462 
1 -0.1560761 
2 0.0596391 
3 -0.0293099 
4 0.0153716 
5 -0.0081892 
6 0.0043788 
7 -0.0023433 
8 0.0012542 

Table 1: The coefficients a(i) 

in order to obtain a MRTD scheme useful for practical applications. 
As an example, we consider the sampling of the first term on the left hand side in eq. (2) 

8H:/dy, in space and time. We obtain 

//// 
dH 
-g1 <t>i+i/i(x) <t>m{y) 0n{z) hk+1/2(t) dx dy dz dt 

+oo / +8 

J2 *'+l/2#*+l/2,m'+l/2,7.'  hi' Sn,n'  h,V j   j]    a(0 <W.\m' ) Ax Az At 
k',I',m',n'=—oo \i=—9 

(   E     Q(0 *+l/2^l+l/2,m+.-+l/2,n ] Ax Az At (17) 

Proceeding in the same way with the two other terms yields a difference equation for a homoge- 
neous medium with the permittivity e, 

^ (t+l-E;+I/2,m,„ - *-E/+l/2,m,nj 
1        +8 

1     +8 

*+l/2-ffl+l/2,m+.'+l/2,n    -    ^    E    C(0 >=+l/^l+l/2,m,n+i+l/2  " (18) 

III    Numerical examples 

The S-MRTD scheme is applied in the two-dimensional analysis of transmission lines and in the 
three-dimensional analysis of resonator structures with dielectric materials. Various examples 
demonstrate the advantages of MRTD over FDTD, in particular, it is shown that the minimum 
discretization for accurate MRTD results is close to only two points per wavelength representing 
the Nyquist limit. 

The derivation of the two-dimensional(2D) MRTD scheme applied to transmission lines is 
discussed in detail in [6]. The 2D-MRTD scheme is applied to the analysis of the membrane 
stripline of Fig. 1 for the first two propagating modes. The analysis for the higher order propa- 
gating modes is straightforward. For simplicity in the simulation and without loss of accuracy, 
we approximate this geometry with the rectangular shielded stripline of Fig. 2. For the analysis 
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Mode TEM Shield TEW 

Analytic values 1.4324 GHz 3.4615 GHz 

4x2 MRTD 1.4325 GHz 3.4648 GHz 
Rel.Error 0.007% 0.095% 

4x4 MRTD 1.4325 GHz 3.4641 GHz 
Rel.Error 0.007% 0.075% 

8x4 MRTD 1.4325 GHz 3.4633 GHz 
Rel.Error 0.007% 0.052% 

20x10 FDTD 1.4322 GHz 3.4585 GHz 
Rel.Error -0.014% -0.087% 

Table 2: Propagating mode frequencies 

using Yee's FDTD scheme, a 20 x 10 mesh was used resulting in a total number of 200 grid 
points. When the structure was analyzed with the 2D-MRTD scheme, a 4 x 2 mesh (8 grid 
points) was chosen reducing the total number of grid points by a factor of 25. In addition, the 
execution time for the analysis was reduced by a factor of 4 to 5. The time discretization interval 
was chosen to be identical for both schemes and equal to the 1/5 of the 2D-MRTD maximum 
Ar. For the analysis we have chosen ß = 30 and 8,000 time-steps [6]. 

From Table 2 it can be observed that the calculated frequencies of the two first propagating 
modes from 2D-MRTD scheme are very close to the theoretical values. The use of non-localized 
basis functions in the 2D-MRTD scheme causes significant effects. It is impossible to implement 
localized boundary conditions using the MRTD scheme, so the perfect electric boundary condi- 
tions are modelled by use of the image principle in a generic way. This implementation of the 
image theory is performed automatically for any number of PEC, PMC boundaries. 

To calculate the characteristic impedance Z0 for the TEM mode of the stripline, we use the 

following equation: Z = - = *c"   " , (19) 
I       §CcHdl 

where the integration paths C„ and Cc are shown in Fig.2. Since both of the schemes used in 
the analysis are discrete in space-domain, the above integrals are transformed to summations. It 
can be observed from Table 3 that the accuracy of the calculation of the Z0 by use of the MRTD 
is much better than that of the Yee's FDTD scheme with a 20x10 mesh (relative error -3.06%). 
The oscillating values of Z0 within 0.5O by use of the MRTD are due to the fact that the very 
small relative error is not determined by the discretization any more, but by the numerical errors 

of the MRTD code. 
To model anisotropic dielectric material we separate Maxwell's first vector equation in: 

VxH = 
dt 

(20) 

and 
D = e(r,t)E (21) 
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Z0   (fl) Relative   error 
Analyt. Value  [6] 61.03 0.0% 

4x2 MRTD 61.17 +0.23% 
4x4 MRTD 61.44 +0.67% 
8x4 MRTD 61.22 +0.31% 

20x10 FDTD 59.16 -3.06% 

Table 3: Z0 calculated by 2D-MRTD 

Analytical Values (MHz) 27.290 37.136 42.343 
FDTD (10 x 20 x 15 )(MHz) 27.250 37.000 42.200 

FDTD Relative Error -0.146% -0.366% -0.337% 
S-MRTD (2 x 6 x 3)(MHz) 27.370 37.370 42.420 

S-MRTD Relative Error 0.292% 0.599% 0.299% 
S-MRTD (2 x 5 x 3)(MHz) 27.700 38.300 43.970 

S-MRTD Relative Error 1.480% 3.040% 3.700% 
S-MRTD (2 x 4 x 3)(MHz) 29.400 41.900 48.600 

S-MRTD Relative Error 7.170% 11.360% 12.870% 
Table 4: 
material 

Resonant Frequency data for a cavity one-quarter filled with dielectric 

where D represents the electric flux vector and e(r, t) the space- and time-dependent permit- 
tivity tensor. These equations can be discretized using scaling and pulse functions in space and 
time domain as expansion factors in the method of moments [7]. The derivation of the three- 
dimensional MRTD scheme used to analyze resonant structures with dielectric materials is given 
in detail in [8]. The structure analyzed is a resonant cavity that is filled one-quarter with a 
dielectric material(see Fig. 3). The cavity has the dimensions lm x 2m x 1.5m, and the dielec- 
tric material has a relative dielectric constant equal to 64. The MRTD method applied to the 
structure in Figure 1 at a discretization of 2 x 6 x 3 proved to be the closest approximation to 
analytic values. This is due to the fact that a discretization of 2 x 4 x 3 is exactly the Nyquist 
limit for this structure, while a discretization of 2 x 5 x 3 is very close to the Nyquist limit and 
will generate appreciable errors. The MRTD scheme is compared to analytical values and the 
Yee's FDTD scheme in Table 4. The time discretization interval At = 0.9 • 10_los is identical 
for both schemes. This time discretization interval was chosen to maximize the linear properties 
of the MRTD dispersion relation [7]. Both cases were run at 35,000 time steps. For the analysis 
using Yee's FDTD scheme, a mesh with Al = 0.1m was used resulting in a total number of 
3000 grid points. In the 2x6x3 analysis, a total number of 36 grid points was used, resulting 
in a factor of 83 memory improvement for MRTD. Additionally a factor of 10 improvement in 
computation time was found for the MRTD method. 

IV    Conclusion 

The MRTD schemes based on orthonormal wavelet expansions exhibit highly linear dispersion 
characteristics which result in the capability of providing excellent accuracy for a discretization 
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close to two points per wavelength and close to the Nyquist sampling limit, respectively. Since 
the minimum discretization for accurate FDTD results is usually about ten points per wave- 
length, results for FDTD and MRTD exhibit about the same accuracy using a MRTD mesh 
with five times less grid points per dimension. For a three-dimensional time analysis, this results 
in computer savings of one order of magnitude with respect to execution time and two orders of 
magnitude with respect to memory requirements. 
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Figure 1: Membrane Stripline. 
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Figure 2: Stripline Geometry. 
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Figure 3: Quarter-Filled Dielectric Resonator 
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Abstract. A non-orthogonal finite-difference approximation of Maxwell's curl equations 
in the frequency domain is proposed for the dispersive analysis of inhomogeneous, lossy, 
waveguiding structures. The occurence of spurious modes is avoided by the direct en- 
forcement of Gauss's law in the development of the matrix eigenvalue problem. Perfectly 
matched layers, constructed using coordinate stretching are used to effect grid truncation 
for the case of unshielded waveguides. Calculated w-ß diagrams for both shielded and 
unshielded waveguides are in excellent agreement with published results obtained using 

analytic or finite element techniques. 

1.   INTRODUCTION 

Over the past several years, a variety of finite element formulations have been pre- 
sented for the electromagnetic characterization of uniform waveguides with arbitrary cross- 
sectional geometries. For nodal-based formulations, the occurence of spurious modes is 
avoided either through the use of penalty terms in the finite element approximation of the 
vector eigenvalue problem, or by the elimination of the longitudinal component of the field 
through the use of the relevant differential form of Gauss's law (e.g., [1]). For waveguiding 
structures that contain metallic regions (e.g., microstrip, coplanar waveguide, etc.), finite 
element formulations using edge elements are found to be more convenient since they elim- 
inate the need for special treatment of the field singularities occuring at the conducting 

edges [2]. 
An alternative to the finite element approximation of such eigenvalue problems is 

the use of a non-orthogonal finite-difference frequency-domain (FD-FD) technique. The 
orthogonal FD-FD method has been used with success in the past for the electromagnetic 
analysis of two- and three-dimensional structures [3]. Its extension to non-orthogonal grids 
with specific application to the dispersive characterization of lossy waveguides is the theme 

of this paper. 
First, the discretization of Maxwell's equations using the nonorthogonal, unite «in- 

ference frequency-domain method and the covariant and contravariant components of the 
fields is discussed. The emphasis is on the specific modifications required to render the 
formulation free from spurious modes. Next, specific applications of the proposed method 
to the analysis of shielded and unshielded waveguides are presented to demonstrate the 

validity of the method. 
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2.   THEORY 

The proposed method is based on the numerical discretization of the integral form 
of Maxwell's curl equations in the frequency domain. The electric field E and the mag- 
netic field H are written in terms of their covariant components e; and hi, (i = 1,2,3), 
respectively, or their contravariant components e3 and h3', (j = 1,2,3), 

3 3 

3 3 

B = Y, hiai = J2h^ (16) 

The details of the use of covariant and contravariant and the approximation of Maxwell's 
equations on non-orthogonal grids can be found in [4]-[5]. On a non-rectangular cell the 
covariant components of the electric field are placed along the edges, while the contravariant 
components of the magnetic flux density are placed along the normals at the centers of 
the edges. The axis of the waveguides is parallel to the z axis, which coincides with the 
u3 axis. Since cell edges coincide with material interfaces, the aforementioned placement 
of the vector fields ensures the continuity of tangential electric field and normal magnetic 
flux density at material interfaces. In addition, this placement facilitates the enforcement 
of boundary conditions on conductor surfaces. 

Faraday's law is approximated by choosing the surface for the calculation of the mag- 
netic flux to be each of the faces of the grid cell and the contour for the calculation of the 
circulation of the electric field to be the corresponding bounding contour formed by cell 
edges. In a dual fashion, Ampere's law is approximated by choosing the surface for the 
calculation of the electric flux and current flow to be each of the faces of the dual grid 
cells and the contour for the calculation of the circulation of the magnetic field to be the 
corresponding bounding contour formed by cell edges. 

For propagating modes, the field variation in z is of the form exp(— jfz), where 7 = ß— 
ja is the complex propagation constant. In view of the fact that exp(—jjAz) ~ 1 — jfAz, 
Az —> 0, and introducing also the normalized covariant and contravariant components of 
the fields, we obtain the discrete forms of Maxwell's equations as folows 

jue0 (erVd/gnE1) + (a^g/gnE1) 

^3,»+l/2j+l/2 — ^3,i+l/2,j-l/2 — J7^2,;+l/2,j (2) 

-jupo (VffTffn-ff1). = e3,»,j+i - e3,i,j - jye2iij+1/2 (3) 

-JUßO (V9H3)i+1/2,j+l/2 - e2,»+l J+l/2 - e2,t,y+l/2 ~ ei,i+l/2,j+l + el,:+l/2,i        (4) 

where er is the relative dielectric constant and a the conductivity. 
The development of the eigenvalue equation for the complex propagation constant 

involves the elimination of either the electric or the magnetic field. The resulting eigenvalue 
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eauation will involve the contravariant components of the selected field quantity.  Thus, 
the cÖwilnt components need be transformed to the contravariant ones. For example, 

el,i+l/2,j = (V9uE  )i+l/2,j + 

I (»*) (E?,+1/2 + Ef+1J+U2 + El^ + &WJ.lft) (5) 

Notice that interpolation is necessary since the component B?+1/2j. does not actually 

aPPT oldtYolhltte^spuLs modes, the discrete integral form of Gauss's law is 
used to expreß the longitudinal component of the electric field in terms of the transverse 
components. The discrete form of the equation is 

(^^,J+1/2-(^*%_1/2 
(6) 

Elimination of the magnetic flux vector from the resulting system of discrete equations 
yields the following generalized matrix eigenvalue problem 

[A]{Ei} = (7)2[B]{Ei) (7> 

where {E>} is the vector containing the transverse contravariant components of the electric 

field. 

3.   NUMERICAL RESULTS 

To demonstrate the accuracy of the computer implementation ol: the W^*™£ 

ously in [2] using a finite element *~^^£?^^^ 
in a square, perfect y ™^?.^™™iZ  ubstrlte was 0.25 mm. The relative 
its thickness was 0.05 mm, and the thickness oi me * ,      Th   structure 
dielectric constant of the substrate was 9.0 and its conductivrty^0.05 JgJJ 
modeled using the proposed non-orthogonal, frequency-domain finite-difference (N* 1«   ) 
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was enclosed in a rectangular box of width 1.5 mm and height 1.0 mm. Thus, for our 
simulations the side and top walls of the box were moved closer to the strip by 0.5 mm 
and 1.5 mm, respectively, compared to the structure studied in [2]. 

The phase constant and attenuation constant versus frequency for this smaller struc- 
ture are indicated with the dashed lines in Figs. 4 and 5, respectively. While the differences 
in the phase constant are slight, differences in the attenuation constant as large as ~ 0.6 
dB/m are observed. Notice that for the case of the phase constant the discrepancy between 
the FEM results for the larger structure and the NFDFD results for the smaller structure is 
larger at the lower frequencies, as expected. As frequency increases, the fields concentrate 
in the substrate, and thus the impact of the distance of the shield walls from the strip on 
the phase constant becomes negligible. 

In order to effect an unshielded microstrip geometry, an absorber was introduced over 
the four cells next to the perfectly conducting walls of the shield used above. The absorber 
was constructed using coordinate stretching according to the theory presented in [6]. The 
stretching coefficient was increased quadratically from a value of 1 to a maximum value of 
11 over the four absorber cells. The phase constant and attenuation constant calculated 
for this structure are depicted by the solid lines in Figs. 4 and 5, respectively. As expected, 
the phase constant is in excellent agreement with that obtained by the FEM analysis for 
the case of the larger shield. Also, there is now better agreement between the attenuation 
constants calculated by the two methods. The values obtained by the NFDFD method are 
~ Q.ZdB/m larger than those obtained in [2] over the entire frequency range used for the 
comparison. 

4.   SUMMARY 

In summary, a frequency-domain finite-difference algorithm for the discretization of 
Maxwell's equations on non-orthogonal grids has been developed for the dispersive analysis 
of lossy waveguides. Spurious modes are avoided by the direct enforcement of Gauss' law in 
the development of the discrete eigenvalue problem. The method has been applied to the 
calulation of the propagation characteristics of coaxial-type and planar waveguides with 
lossy insulators. Comparisons of the results obtained by the proposed method with results 
calculated either analytically or by finite element techniques have been used to support 
the validity of the proposed methodology and its computer implementation. 
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Fig. 1: Grid used for the discretization of the coaxial line. 
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Fig. 2: Phase constant versus frequency for TEM mode propagation in the coaxial, lossy 
line. 

Fig. 3: Attenuation constant versus frequency for TEM mode propagation in the coaxial, 
lossy line. 
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Fig.   4:   Phase constant versus frequency for the fundamental mode of the microstrip 
structure with a lossy substrate. 
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Fig. 5: Attenuation constant versus frequency for the fundamental mode of the microstrip 
structure with a lossy substrate. 
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Abstract 

The Impedance Cardiography (IC) is a well known investigation technique used in monitoring 
the cardiac cycle and in the evaluation of specific biological parameters such as the cardiac output. 
The dynamic impedance (an electric signal) that is produced by this procedure helps in interpreting the 
sources for the changes (e.g. heart malfunction) that might occur with respect to the normal cardiac 
activity. Although the impedance cardiography is widely used and trusted, it is still a matter of debate 
how to detect the sources for specific modifications in the impedance diagram. The present work 
reports preliminary results obtained in using the modal (eigenvalue) analysis related to the boundary 
element method (applied in modelling the transcutaneous pacing) for the interpretation of the spectral 
shiftings produced throughout the cardiac cycle. This technique, that we labelled Eigenvalue 
Cardiography (EVC), when applied in monitoring the cardiac cycle leads to a more detailed output 
that complement the IC picture of the cardiac activity. 

Introduction 

The Impedance Cardiography is widely recognised (Wang, X. et al., 1995) as a noninvasive, 
cost effective, easy to use and capable of long term continuous monitoring medical technique. 
Kubicek, W.G., (1970, 1993) and Patterson, R.P. (1965, 1985) initially introduced it through the 
thorax-model by using two sets of circumferential band electrodes. An AC current (100 KHz and 4 
mA) is passed through one pair of electrodes while a voltage is picked-up by the second pair of 
electrodes. The transfer impedance, Z, defined by the ratio voltage-to-current, and its first order time 
derivative, dZ/dt, are quantities of interest used in two main research areas that emerged: (i) the 
investigation and modelling of physiological mechanisms aimed at interpreting the impedance wave- 
forms and (ii) the signal processing of the impedance wave-forms. It is worth noting that although, 
starting with the Minnesota Impedance device [Kubicek, W.G. (1970)], the hardware and software 
developed for implementing the IC have been continuously refined, their outputs are still focusing the 
researchers' attention [e.g. Kim, D.W. et al. (1988), Woo, E.J. et al. (1988), Mohamed, O.A et al. 
(1990), Sepulveda, N.G., etal. (1990)]. 

A novel technique, conceptually different from the IC, that reveals specific and significant 
insights of the cardiac cycle - the Eigenvalue Cardiography (EVC). - is introduced in our approach 
through the transcutaneous pacing modelling. However, the EVC may be seen as a fully stand-alone 
procedure, complementary to the IC. It is then useful to first briefly introduce the optimal pacing 
concept and model that led to the EVC idea and then the EVC itself. 
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The optimal transcutaneous pacing origins of the EVC 

The transcutaneous cardiac pacing is a **£^^S£^Jg!^ 
intensive care, etc.). Usuallytwo electrodes are P^^^Sher in the chest wall than in 
stimulus. The pacing threshold is reached for current^ensmes „* g intervention 
Z heart wall. Among to factors that ^^S^Sebster J.G. (1987)]  the 
and in the reduction of its side-effec s (pain  JfT-TS 1989, Panescu D. et al. (1994)]. 
electrodes locations play » «"P^f M «SlS^fa' ^Sd ross-sectional domain through a Our 2-D analysis [Morep^.M et al(lW5)iior a aeuu hni       reCognised to be 
human torso was based on the boundary element.™thod (°bMj, i       4 considered the 
Jocularly effective in approaching complex 8« ^tift M*t and Neumann 
steady  electrokinetic regime as described ^y ^ace equauon ^ ^ tQ 

Tte, u*d sever«! «»"*. ~ntTtoSf.cS S »5S.S Sri digitised and used « 

approach in the preceding f^8^'^f "^Ä^fourth order, Gauss-Legendre), method of 
iSTS KÄTii^^ by the optimal position for the 

electrodes) and definition of sub-domains: 

Ax = b. 

This system is eventually solved for thesolution * (Je ^tentia. and *™*£Z*££^ 
interfaces and boundaries of the model l«^^?^»««, its shifting in 
investigate the eigenvalues spectium of ^ **f^L£5^„ ^ SUch as for several instants 
response to the modifications of the «j^ÄrÄC,£^pSÄ and, conceivably, used to 

hence, worth stressing that a domain method (such as tor insianucue rfaces . m information 
eigenvalues spectra that are related to the domain (°;S^J™n f^\ ^context it is a matter 

its eigenvalues spectra - access to the EVC. 

Numerical results 

In order to test the EVC effectiveness we used a simplified structure of the torso based on the 
MRI reported by Wang L. et al. (1995) (fig. 1), 
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V = 120 V 

V = OV 

Figure 1. The (simplified) model used in the EVC analysis: 1. lungs; 2. heart; 3. interstitial fluid.. 

The electric resistivities of these (linear) anatomic media are listed in Table 1, 

Table 1. Electrical resistivities of the anatomic media 

Model 1 Model 2 Model 3 Model 4 
Pheart [ß-cm] 325 500 325 500 
Plung [fl-cm] 1,348 1,348 1,325 1,325 
Pfluid [ß-cm] 150 150 150 150 

Figure 2. The BEM discretization mesh. 

The domain Q was split in homogeneous sub-domains (fig. 2). Constant elements and the 4- 
points Gauss-Legendre quadrature [Morega, Al.M. et al., (1992)] were used. The geometry and 
ma.te^l,?r0perties were input (on a 286 rc compatible) to our home-made code (TURBO PASCAL 
and BORLAND C) that assembled the BEM matrices and solved this (reduced) problem 

1322 



1.5 

0.2 

0.1 

-0.2 
55 

30 40 50  b. 
Nodes Identifiers (Left Lung) 

60 65 70 75      c. 
Nodes Identifiers  (Right Long) 

Figure 3. The Eigenvalues displacement w.r.t. the reference state (end-diastole) 

The grid-independence for this problem was attained for 212 elements. This phase was hosted 
by the 286 MS-DOS-machine. The eigenvalues spectra for the stiffness matrix A were independently 
comDuted (FORTRAN) on an IBM RISC 6000 workstation. C°mpU pour model? account for the modifications in shape and electric properties experienced by 
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lungs and heart between the end-systole and end-diastole phases of the cardiac cycle. The end-diastole 
phase (the heart is relaxed and its chambers are filled with blood) is the first model, taken as reference 
case. In the second model the heart has the shape and electric conductivity corresponding to the end- 
systolic contraction: the blood being ejected, the volume of the heart is smaller and its electric 
resistivity is higher. The third model accounts for the right and left lung changes at the end-systolic 
phase: although filled with blood, their volumes do not change significantly, hence only their electric 
resistivity is modified (decreased). Model four accounts for the changes in heart and lungs 
simultaneously. 

These simple cases evidenced the changes in shapes and (electric) properties of each particular 
organ through their "modal-signature": for each case we built the stiffness (BEM) matrix A and 
computed the eigenvalues spectrum [Press W.H. et al. (1989) and SSL-IBM]. In fig. 3 we report the 
relative changes m the eigenvalues modules experienced by the mesh nodes on the heart surface (fig. 
3a) on the left lung surface (fig. 3b) and on the right lung surface (fig. 3c) in the end-systole (fourth) 
model w.r.t. the end-diastole (first) model. 

Conclusions 

These preliminary results show that the modal sensitivity of the stiffness matrix (the EVC) may 
be used to investigate the cardiac cycle. Whereas in the IC it is difficult to identify the sources of 
changes and their trace in a single quantity, the electric impedance Z [Wang X et al. (1995), Wang L et 
al. (1995)], the EVC may use (theoretically) as many degrees of freedom (eigenvalues) as needed. 
Using computational and scanning resources that are currently available, these quantities are 
obtainable in real time. 

At this preliminary stage it is worth noting that some difficulties have to be circumvented. The 
EVC is sensitive to factors such as the element type (first order, second order, etc.) and mesh 
adaptiveness in time. Hence, the most appropriate mesh to use for describing successive phases of the 
cardiac cycle, how to correlate the same patient's EVCardiograms in time to record some meaningful 
anatomical and physiological modifications, the optimal EVC number and position of the electrodes 
(we used the optimal pacing position) are some of the aspects to be addressed by further numerical 
experiments. 

From a practical point of view, the EVC may rely on the MRI - a modern monitoring procedure 
used recently in the optimal pacing [Wang L. et al. (1995)] - and on a software that may be in fact an 
appropriate extension of the one used in the BEM pacing optimisation. 
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Abstract 

The transcutaneous pacing is one of the basic medical procedures applied in cardiac emergencies 
such as fibrillation, cardiac stop, etc. Its application is accompanied by negative side-effects (pains, 
tissue necrosis, etc.) that need to be reduced if not suppressed and factors such as the electrodes 
positions, shapes, areas are known to contribute to their reduction. 

The present work focusses on the detection of the optimal (electrical) position for the electrodes 
that minimises the current density in the chest wall (that causes pain) while still preserving the current 
density in the heart wall above the stimulating threshold. 

A cross-sectional (2-D) view through a human torso was considered. Specific boundary 
conditions (Dirichlet and Neumann) and interface conditions closed the electrokinetic associated problem. 
We used the boundary element method to find the voltage and current density distributions throughout 
the computational domain and, further on, to evaluate quantities relevant for the optimal pacing study. 

Although the detailed 2-D cross-sectional domain is somewhat remote to the real-life case, it 
enables an insightful analysis of the process and is relevant in uncovering the (electrical) optimum of the 
procedure. 

Introduction 

The transcutaneous cardiac pacing is one of the basic procedures used in medical emergencies 
(defibrillation, intensive care, etc.). Usually, two electrodes placed on the thorax are used to apply an 
electric stimulus. Most available pacemakers deliver stimuli with a 20...40 msec duration, currents of 
order 60... 150 mA for applied voltages in the range 100... 1000 V and electrode pads with areas of 
80... 100 cm2- The pacing threshold is reached for specific values of the current densities, typically 
higher in the chest wall than in the heart wall and, hence, negative side-effects (such as pain, tissues 
necrosis, etc.) accompany the pacing. Uniform current density electrodes, high-impedance gels, the 
duration of the stimulating pulse, the sizes of the electrodes [Bocka, J.J. (1989)] are reported factors that 
may play a significant role in decreasing the pain. The position of the electrodes is particularly important 
in further increasing the pacing efficacy [Flack, R.H. et al. (1986)]. Both experimental [Geddes, L.A. et 
al., (1984, 1989)] and computational efforts [Pilkington, T.C. et al. (1985) Mohamed, O.A. et al, 
(1990), Sepulveda, N.G. et al., (1990), Fahy, J.B. et al., (1987)] were devoted to finding the optimum 
placing of the electrodes. 2-D, 3-D finite differences, finite element studies led to the conclusion that the 
negative (receiving) electrode should be placed on the left lateral chest wall. 

Panescu et al. (1994) formulated a detailed 2-D model and used a commercial FEA code [Klein, 
S.A. et al. (1989)] to solve an electrokinetic problem. They computed the efficacy index, R, defined 
through the ratio between the maximal current density in the chest wall (that causes pain) and tie 
maximal current density in the heart wall (that causes the capture). 
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Our approach is based on the boundary element ^^.^vÄ^hfÄSch^ 
narticularlv effective in the analysis of complex geometries [Brebbia, C A. (1984)]. The code wnicn we 
developed hfsdoma\n mesh-generation capabilities that enable a fast, accurate Pressing phase 
Sf A?M etlu (19995)] We consider the steady electrokinetic regime as descnbed by Laplace 
[JSwMÄtS« homogeneous boundary conditions and invested the influence 
of the electrodes placement upon the ratio R, for electrodes size of 70 cm2. 

The numerical model 

The 2-D BEM model for a specific cross-section that passes through the middle of the eight 
thoracic vertebra ftrough the fourth costar cartilage at its sternal end and through a series of nbs 
Scu D et kl (Ä Plonsey, R. (1988)] is shown in fig. 1. The main organs that were 
SI arethe che^wall includ ng the fat layer), the thoracic muscles and the dorsals, the sternum 
Ä rib cartilS totubs, the backbone, the intercostal muscles, the oesophagus the lungs the heart 
Äarta Md veKs) and the interstitial fluid between the internal organs. The biological tissues are 
slen afcontinuousmaterials and their electrical conductivities are averaged over a volume containing 
mSylerEad. domain is considered linear, time-independent, isotropic and without sources. 

The related electrokinetic problem is defined through, 

div J=0,       (steady state form of the electric charge continuity law) 

J=oE, (Ohm's law) 

E = -grad V,  (steady state consequence of Faraday's law) 

or consequently, AV = 0 (Laplace, scalar problem). Here J is the current density, a is the electric 
conductivity, E is the electric field strength and V is the electrokinetic potential. 

Fisnre 1. The anatomic model for the optimal pacing study: 1. thoracic wall (skin, fat, thoracic muscles and 
dorsals); 2. ribs; 3. backbone; 4. intercostal muscles; 5. oesophagus; 6. lungs; 7. heart; 8. mterstmal 
fluid; 9. blood that fills atria and ventricle. 
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The boundary conditions are (fig. 2): (1) Dirichlet (V specified on some parts of the thorax 
outline, namely at the electrodes level); (2) Neumann, homogeneous (Jn = 0, or dV/dn = 0 on the rest 
of the thorax outline) - no current is emerging throughout the structure, except for the areas covered by 
the electrodes.   On the interfaces between the organs standard conditions (Vi = V2,   Jin = J2n, or 
aidV\!dn = oiSWildn) were used. 

V = 120V 

v = ov 

Figure 2. The boundary conditions. 

The associated integral equation is: 

fu(x,y) = , _,     . ,   ,.du(x',y')      ,,   ,.dG(xry\x',y' 
G{x,y\x,y)^-l±-u(x,y)      ^ 

JQ 

[G (x,y lxi,ya) F (x\,y{) ] dx1dy1 

where: 

ap = - lit 
f dG(x,y\x',y')Jr, J s 

dr 

0,/or  P(x,y)e Exterior (Q) 

G(x,y\x',y') = ±-ln,   1     =^ln 
2jr     \r-r'\   2*     4(x-x'T + (y-y'f 

Q is the domain, T is the boundary, G(x,y\x\y') is Green's function in the 2-D problem and 
F(x,y\x\y') is the interior source term (zero for Laplace equation). 
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Resistivity [ß -cm] 

heart wall 
lungs 
ribs and backbone 

thoracic wall 
intercostal muscles 

oesophagus 
interstitial fluid   , 
blood 

500 
1,100 
16,600 
2,300 
1,000 
150 
2,300 
150 
150 

(longitudinal) 
(transversal) 

D1UUU 
Xab.el.ElectricresisüvityfordifferentorgansandüssuesIafterPanescuD.etal.C^)]. 

S the longitudinal resistivity for the ™f muscles adjacent to the electrodes.   Fo 
S,,Tnallvf and the average resistivity for temw» * J.. d .   homogeneous subdo 

2, 5) ana cou»uu mmoatible) to our home-made 
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Figure 5.   Left: lines of constant voltage; Right: current density distribution. 

Results 

We evaluated the ratio R for different electrodes locations to monitor the pacing efficacy. In the 
first stage of the analysis (the optimal position) electrodes of 70 cm? were considered. The negative 
electrode (0 V) was centred at the cardiac apex. The positive electrode (120 V) was shifted in the interval 

84.24...219.55° until a first minimum, R^, was obtained, then the negative electrode was shifted in the 

interval-60...60°. 

a. The sensitivity ofR with respect to the positive electrode position (fig. 6, left) 
The negative electrode was centred at the cardiac apex. A first minimum for R (1.01) was found 

for a « 114°, i.e. at the right scapula, in the vicinity of the fourth rib. Other positions are almost as good 

(e.g. a » 158°). The optimal pacing arrangement for the electrodes is not that sensitive w.r.t. the 
positive electrode position as it is w.r.t. the negative electrode position. The ratio R is smaller when the 
electrode is centred on the rib rather than on the intercostal muscle. Further more, the peak current 
densities registered in the thoracic wall was in the range 8. ..19 A/cm2. 

Pozitive Electrode 
_i—i ■ i ■ 

a 240 

Figure  6. The optimal position (left) for the positive electrodes (the negative electrode is at the heart 
apex) and (right) for the negative electrode (the positive electrode is at the right scapula) 
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was shifted around the thorax outline. The (final) minimum value, Rmi„ = 1.0178, was found 

60-, what means at the cardiac apex. The peak current density was in the interval 4... 18 A/cm . 

200 

Area [cm2] 

Figure 7. The optimal position for the negative electrode (the positive electrode is at the right scapula) 

c. The sensitivity with respect to the electrode size (fig. 7) 
Five different electrode sizes (13...160 cm*) led to the conclusion that Rmin (1.0178 ) is obtained 

for a size of 72 cm* (fig. 7), when the optimal position for the electrodes is adopted. 

Conclusions 

Through our simplified 2-D BEM electrokinetic, linear analysis we found that: 
1) the bestplacementforthe electrodes is at a * 114° for the positive electrode and ato« 60 forthe 

TEffift SÄX^ than on the positive electrode 

4  the largest density current value recorded is in the interstitial fluid. 
■ft the smallest current density value is in the nbs/ backbone; 
6) £^LofttoeleLfai.72atf; higher values do not significantly influence R. 
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