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Abstract of Dissertation Presented to the Graduate School 
of the University of Florida in Partial Fulfillment of the 
Requirements for the Degree of Doctor of Philosophy 

EFFECT OF COMPRESSIBILITY ON THE TURBULENCE STRUCTURE 
AND ITS MODELLING 

By 

Venkata Subramanian Krishnamurty 

December 1996 

Chairperson : Dr. Wei Shyy 
Major Department: Aerospace Engineering, Mechanics, and Engineering Science 

The effect of compressibility on the structure of turbulence is an important but difficult 

issue in turbulence modelling. Modelling issues in both the production and dissipation of 

turbulent kinetic energy need to be addressed to account for Mach number effects. 

In the present study, the compressibility effect is investigated in the context of the 

two-equation model, particularly the k-e model. Several models have been proposed in the 

literature, that deal with the dissipative nature of compressibility and the complexities 

arising due to the non-divergent nature of the velocity field. In addition modifications have 

been proposed to address the added time-scale effect that is due to a non-equilibrium between 

the rates of production and dissipation of turbulent kinetic energy in complex flows. These 

modifications are discussed in the context of the two-equation model. The dependence, of 

two-equation modelling approaches on the spatial gradients in density, has been addressed. 

The reduced dependence, of k-oo based models on the spatial gradients in density, has been 

shown to be an artifact of the neglect of cross-diffusion terms in the transport equation for 



CD. Through a systematic study of the exact form of the turbulence transport equations two 

additional source terms that are unique to compressible turbulent flows, namely the enthalpic 

production term and the term representing the baroclinic effect, have been identified. Models 

have been proposed for these two terms. 

The effectiveness of the modifications in predicting flow fields of increased 

complexity needs to be evaluated and a computational analysis of these modelling issues has 

been conducted. The numerical procedure is a finite-volume, multi-stage Runge-Kutta time 

stepping, second-order scheme with either a central difference or an upwind difference 

treatment of the convection terms. Flows characterized by strong streamline curvature and 

inhomogenieties arising due to strong shocks and rapid expansions, in the form of 

supersonic flow past an axi-symmetric afterbody and hypersonic flow past a projectile, have 

been adopted to evaluate the various modelling aspects investigated. 



CHAPTER 1 
INTRODUCTION 

The study into the effects of compressibility on turbulent fluctuations is an important 

but difficult one. An understanding of the effect of compressibility on the turbulent flow field 

is important from the point of view of predicting the turbulent flow field at high speeds. 

These effects become particularly important when considering the aerodynamic 

performance of high speed flight and also the rate of mixing in shear layers, (such as found 

in supersonic combustion). 

Two words in the title to this dissertation need to be defined. From thermodynamics 

(Thompson, 1972) compressibility can be defined as the change in density of a fluid cell, 

brought about by either changes in temperature or changes in pressure. While the former is 

of importance in combustion systems or systems with heat sources or sinks, the latter is 

encountered when there are appreciable variations in the Mach number. The current study 

focuses on changes in the density of a fluid cell brought about by changes in pressure, and 

the effect of compressibility on the turbulent fluctuations. 

Turbulence is a stochastic process, with random fluctuations in time and three spatial 

directions. These fluctuations have finite correlation time and length scales. Turbulence 

structure refers to the various correlations that can be formed between the fluctuating 

quantities and the spectral distribution of these fluctuations. In the case of turbulent flows, 

the effect of fluctuations in pressure on the fluctuations of the volume of a fluid cell are 

referred to as the effects of compressibility (Lele, 1994), and the effect these fluctuations 

have on the turbulence structure is addressed in this dissertation. 



In this dissertation, questions regarding the effect of compressibility on the turbulence 

structure parameters and parameters that quantify this effect is addressed. In particular, the 

focus is on the models that have been proposed in the literature to account for the effect of 

compressibility and the shortcomings of these modifications. Additional aspects of the 

compressibility effect are addressed and modifications are proposed to account for these 

effects. A computational study, to understand the effectiveness and implications, of these 

modifications is presented. These include flowfields characterized by increased complexity 

due to streamline curvature and strong discontinuities, such as shocks. 

Chapter 2 presents a detailed discussion of our current understanding of compressible 

turbulent flows, based on experimental observations and direct numerical simulations 

(DNS). Even with the considerable effort that has gone into improving our understanding 

the effects of compressibility, we do not yet have a clear picture of these effects. Because 

of practical limitations, DNS is restricted to simple flow fields such as mixing layers and 

turbulent boundary layers at low Reynolds numbers. So, some of the observations and results 

gleamed from such simulations are sometimes unsatisfactory in predicting more complex 

flow fields. In fact, in some instances, modelling suggestions based on the observations of 

two-stream mixing layers have proven to be not applicable in the case of wall-bounded shear 

layers. One of the motivations of this research effort is to address the applicability of the 

proposed modifications, in solving problems of direct engineering relevance. 

To address these goals, one needs to resort to closure models by making 

approximations to the transport equations, usually second-order closure models or 

eddy-viscosity based approximations. The two-equation based eddy-viscosity models offer 

the best alternative, (from economy of computation), to solve these flow fields. But there 

are still issues that are unresolved, in eddy-viscosity based modelling of compressible flows. 

Analyses of the two-equation based modelling approach (Chen and Kim, 1987 and Bernard 

and Speziale, 1992) suggest a need for modifications to address non-equilibrium effects and 

other effects that have been hitherto ignored. In the chapters that follow, these effects are 



outlined and the need for modifications to improve the modelling capabilities is addressed, 

including modifications that have been proposed in this research study. A thorough testing 

of these modifications is presented and the results compared against experimental 

observations. 

The organization of this dissertation is as follows: Chapter 2 presents a review of the 

effort that has gone into enhancing our understanding of the effects of compressibility, 

including experimental, computational and analytical observations of such high speed flows. 

The turbulence closure model and the inherent problems of eddy-viscosity based modelling 

approaches are discussed in Chapter 3. Chapter 4, presents a detailed description of the 

numerical algorithm and a validation of the computational procedure used in this study. 

Details regarding the problems with turbulence closure models in modelling compressible, 

turbulent flows will be presented in Chapter 5. Chapter 5, also presents the modifications that 

have been proposed in the literature to address the effect of compressibility on the turbulence 

structure and discusses the shortcomings of these modifications. Additional modifications, 

that have been proposed in this dissertation, are described in Chapter 5. 

In Chapter 6, the focus is on the need for the modifications that have been proposed 

in this study and testing of these modifications against the flow past an axi-symmetric 

afterbody. Extensive comparison against experimental measurements is presented here. 

Chapter 6 also presents an evaluation of the current modifications and other modifications 

that have been proposed, in the literature, for inhomogeneous flow fields. This concerns the 

effectiveness of the modifications in predicting flow fields characterized by the interaction 

of turbulence fluctuations with strong shocks. Chapter 7 presents remarks that can be made 

regarding the outcome of this dissertation and the issues that need to be pursued to further 

our understanding of turbulent flows and effectively model its characteristics. 



CHAPTER 2 
REVIEW OF LITERATURE 

A review of the literature on the study of the effects of compressibility in the case of 

high speed, compressible turbulent flows is presented here, including experimental 

observations, empirical correlations, direct numerical simulation (DNS), results and 

analysis based on order of magnitude analysis and dimensional arguments. Particularly, 

studies into structure of turbulent fluctuations in free shear layers and wall bounded shear 

layers are summarized. In addition, in the following chapters, reviews are presented of the 

research efforts that have gone into improving our understanding of more complicated 

phenomena such as the effect of rapid expansions on a separating turbulent boundary layer 

and the effect of shock-turbulence interactions. 

2.1 Compressible Free Shear Layers 

Perhaps the simplest flowfield to analyze, to understand the effect of compressibility 

on the turbulence structure, is the free shear layer. Free shear layers at high speeds, such as 

turbulent jets, wakes and two-stream mixing layers have been analyzed extensively (Birch 

and Eggers, 1972). There are two important effects that need to be considered in the analysis 

of supersonic shear layers. These are the effects of varying density and varying Mach 

number. Some of the first studies into compressible turbulent shear layers were experimental 

observation of supersonic jets ejecting into a quiescent ambient. Birch and Eggers [1972] 

have reviewed and compiled the experimental observations on the development of these 

shear layers. The experimental data indicated that the growth rates of these shear layers were 

substantially reduced in comparison to their incompressible counterparts. Supersonic jets 

are characterized by high Mach numbers and therefore reduced temperatures and thus 



increased density in comparison with the surrounding fluid. The reduced growth rates were, 

therefore, explained as a result of the increased densities. Brown and Roshko [1974] 

conducted an experimental analysis of incompressible, two-stream, planar mixing layers, 

with different densities in the two streams, as shown in Figure 2.1. 

They compared the growth rate of the mixing layer in their experiments, with the 

results obtained for supersonic shear layers, with similar density ratios. It was observed that 

while the variation in density did cause a reduction in the growth rate of the shear layers, it 

was not sufficient enough to explain the reduced growth rates observed in supersonic shear 

layers. This indicated a Mach number effect on the mixing rates in these shear layers. To 

correlate the observed variations in high speed, free shear layers, with the variations in Mach 

number, Bogdanoff [ 1983], suggested the use of a non-dimensional parameter, M +. Figure 

2.2 below shows a sketch of the two-stream mixing layer. Assuming that the large scale 

structures, that are present in the mixing layer travel at a speed Uc and that the drag on these 

structures was zero, he equated the dynamic pressures in the two streams and defined 

M + = -. r^ where Xu = Uo / Ui , X0 = p? / Qi and Xv = Y?/YI • This value of 



Ui.Ti.Qi ,Mi 

U2, T2, Q2 , M2 

Figure 2.2.   Turbulent shear layer in stationary frame of reference. 

M+ appears to correlate quite successfully the observed reductions in growth rates from 

various experimental studies. 

Papamoschou and Roshko [1988] generalized this definition of the Mach number. If 

Uc is the velocity of the structures, then convective Mach numbers for the two streams can 

be defined.   Accordingly, 

U, - IL1 
Mcl = 

li 

Mö=^ 

(2.1) 

where subscripts 1 and 2 represents the faster and slower streams (of a two-stream mixing 

layer). 

If the shear layer were observed from a frame of reference moving with the structures 

at the velocity Uc, and if the structures vary slowly over the time it takes a fluid cell to travel 

through them then the flow in this reference frame can be thought of as steady. A sketch of 

the streamlines, from Coles [1981], in this frame of reference is shown below in Figure 2.3. 

The sketch shows a saddle point between the two structures, where the two fluid streams 

meet. If we assume that the fluid from each stream decelerates isentropically and meet at the 

saddle point, then the static pressure at this point is equal to the stagnation pressure of the 



two streams. Equating the stagnation pressures at this point* (for equal static pressures) one 

obtains 

Equation 2.2 in conjunction with equation 2.1, gives a speed-of-sound-weighted average for 

the convective velocity UC) 

a2U, + a,U9 u< = a;+a;2 w 
And for specific heat ratios not vastly different, Mcl and MC2 defined by equation 2.1 are 

essentially equal, Mci = Mc2 = Mc (convective Mach number). Through the rest of this 

dissertation we will use Mc to denote the convective Mach number. 

There are several ways to define the lateral extent of the shear layer, and a variety of 

these definitions have been used by experimentalists to define the growth of the shear layer. 

These definitions have been denoted as visual thickness, 8V, pitot thickness, 8p, and 8W, the 

vorticity thickness. The vorticity thickness, sometimes referred to as the maximum slope 

thickness, is defined as 

Since the static pressures of the two streams are equal, this formulation is essentially identical to the 
analysis of Bogdanoff [1983]. 



8"= üb Jl(0ldy  where w = - f (2-4) 
— 00 

where |CDm| is the magnitude of the maximum value of vorticity in the shear layer. 

Samimy et al. [1989], conducted experimental investigations of the mixing of 

compressible free shear layers and investigated the impact of a free shear layer interacting 

with a bow shock (the motivation here was to study the enhancement of mixing due to 

interaction of free shear layers with shock waves). From their results and from the results 

of Papamoschou and Roshko [1988], they observed that if the lateral extent of the shear layer 

is defined using the vorticity thickness, ba, then a plot of ö^ / b^o versus the convective Mach 

number (defined in equation 2.1) can reasonably correlate all the experimental data. 5^ is 

the corresponding thickness of the shear layer at zero convective Mach number, that is 

incompressible flow. The non-dimensionalized value of the vorticity thickness decreases 

with increasing convective Mach number and reaches an asymptotic value for supersonic 

(convective) Mach numbers. The interaction of the bow shock with the free shear layer did 

not, however, produce any significant change in either the turbulence structure parameters, 

or the similarity profile for the mean flow velocity. 

Inviscid stability analysis has been very useful in understanding some of the observed 

effects in the case of free shear layers. Such analyses, have been reported by Gropengeisser 

[1970], Blumen et al. [1975], Ragab and Wu [1989], Jackson and Grosch[1989] and recently 

Sandham and Reynolds [1990] and Morris et al. [1990]. In such analysis the growth of the 

most amplified disturbance is examined as a function of the convective Mach number and 

also its dependence on the velocity, density and temperature ratios. These results have helped 

substantiate the use of Mc as a'correlation parameter. These linearized analyses seem to 

indicate that at convective Mach numbers greater than 1.0, the convective Mach numbers 

Mci and MC2 defined as in equation 2.1, are no longer equal. Strictly, the convective Mach 

numbers, Mci and MC2, need not be equal. It should be pointed out that the definition of 

Papamoschou and Roshko [1988] and Bogdanoff [1983] for the convective Mach number 



is based on two-dimensionality of the structures and the isentropy of the structures. But 

recent results obtained by Papamoschou [ 1991 ] indicate that this definition of the convective 

Mach number is not valid in cases where the speeds of the two streams are highly disparate. 

This has also been shown in the in viscid stability analysis of Ragab and Wu [1990]. In a 

recent study, Poggie and Smits [1996] conducted an experimental analysis of the 

compressible turbulent shear layer at a convective Mach number of 1.1 (Mc = 1.1). They 

observe that the convective velocity defined in equation 2.3 is not a constant and that it varies 

across the mixing layer. 

Ikawa and Kubota [1975] conducted an experimental analysis of the structure of 

turbulence in supersonic free shear layers. They observed that, in addition to reduction in 

growth rates of these shear layers, they were also characterized by a reduction in the 

magnitude of turbulence intensity (in comparison with incompressible shear layers). Elliott 

and Samimy [1990] conducted an analysis of the effect of increasing convective Mach 

number on the turbulence structure. Their experiments, at three convective Mach numbers, 

showed that the magnitudes of the various turbulence correlations were markedly reduced 

in comparison to their incompressible counterparts. Also, the lateral extent of turbulence in 

the shear layer seems to decrease with increase in convective Mach number. They also 

present some interesting results of skewness and flatness profiles of the velocity fluctuations 

and these seem to confirm the previous remark on the lateral extent of turbulence activity 

in the shear layer. 

The results from the inviscid stability analysis of Ragab and Wu [1989] and Sandham 

and Reynolds [1990] indicate that at convective Mach numbers greater than about 0.6 

(Mc>0.6), the large structures that have been experimentally observed may no longer be 

two-dimensional. These studies show that at these convective Mach numbers the most 

amplified disturbances are the oblique ones, indicating three-dimensionality of the 

structures. The measurements by Samimy et al. [1992] of the correlations, also seem to 

suggest a three-dimensionality to the large-scale structures. Recently, Clemens and Mungal 
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[1995] presented a detailed visualization of the coherent structures and their development 

as a function of the convective Mach number. These results show that at convective Mach 

numbers less than 0.6 (Mc < 0.6) the large-scale structures are well organized and indeed 

two-dimensional. With increase in convective Mach number, the large structures seem to be 

less organized and display signs of three-dimensionality. 

To summarize, analysis of two-stream mixing layers indicates the following : 

1. The shear layer displays large coherent structures similar to those observed by 
Brown and Roshko [1974]. However, the organization of these structures seem 
to reduce with increasing Mach numbers. 

2. The growth rate of the shear layer decreases with increase in convective Mach 
number (defined in equation 2.1). This reduction in growth rate, though affected 
to a certain extent by density variations, is presumably due to varying Mach 
numbers. 

3. The convective Mach number seems to be a valid parameter to correlate the 
effects of compressibility on the structure of the turbulent mixing layer. 

4. The peak levels of turbulence structure parameters (correlation coefficients and 
spectrum shapes) also show a decrease with increase in compressibility. 

5. However, for convective Mach numbers greater than unity, the convective 
velocity of the large structures is no longer a constant and shows variation over 
the lateral extent of the shear layer. 

6. Inviscid stability analysis and recent experimental results indicate that the 
coherent structures are two dimensional at low levels of compressibility, (for Mc 

< 0.6). With increasing compressibility there is a distinct three dimensionality to 
the structures. 

All the above mentioned research efforts point to a "stabilizing effect" of 

compressibility on the mixing rate in high speed free shear layers. However, the reasons for 

the strong "stabilizing effect" remains unclear. An explanation from Sandham and Reynolds 

[1990] and Morris et al. [1990], drawing an analogy from the result of linear analysis 

indicates that the growth rate of small disturbances decreases when the convective Mach 

number Mc increases. Jackson and Grosch [ 1989] have shown that the linear analysis results, 

of the maximum growth rate of disturbances for a wide range of values for the free stream 

temperature and density, fall on essentially a single curve that is a function of Mc. The 

similarity between the experimentally observed variations and those predicted by linear 
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stability analysis has prompted the argument that linear analysis explains the effect of 

compressibility on mixing rate. However it is not quite clear why and how a simple linear 

theory can explain a fully turbulent mixing layer. 

Phenomenological suggestions have been made to explain the effect of Mach number 

on the reduction in the rate of mixing in compressible free shear layers. Morkovin [1986] 

suggests that the lack of upstream and transverse propagation of information (in high speed 

shear layers) is responsible for the reduction in growth rates of instabilities. He suggests the 

existence of a zone of influence beyond which there is no propagation of information, 

implying a lack of communication to the extremeties of the shear layer. He also suggests that 

the turbulent structures at high Mach numbers end up in radiating energy out, resulting in 

reduced energies available for entrainment and further development of the shear layer. 

Breidanthal [1992] recently proposed a "sonic-eddy" model to explain the reduced growth 

rates of free shear layers. His hypothesis suggests that turbulent eddies whose rotational 

Mach number exceeds unity, do not participate in the engulfment of fluid. As the relative 

Mach number increases, (for a simple two-dimensional mixing layer with equal densities in 

the two streams the relative Mach number Mr = 2 Mc = 2 {Ui - U2 } / {ai + a2}), the 

proportion of such sonic eddies in the shear layer increases leading to the reduction in growth 

rates with increasing Mach number. A similar hypothesis has been put forth by Kim [1990] 

who suggests the existence of a Mach zone, beyond which information does not propagate 

and that with increase in the relative Mach number the lateral extent of this Mach zone 

reduces, resulting in the reduced communication to the edges of the shear layer leading to 

the reduction in shear layer growth rates. DNS studies have been attempted to provide an 

explanation for the reduction in mixing rate observed in free shear layers. 

Papamoschou and Lele [1993] conducted an analysis of vortex shearing at various 

values of the relative or convective Mach number Mc. They studied the effect of shearing 

on a monopole placed in a stream of uniform shear. With increasing convective Mach 

number, they observe that the extent of the pressure variation is reduced to a narrow region 
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in the streamwise direction, but extending to the extremities of the shear layer. This would 

then negate the hypothesis of Breidenthal [1992] and Kim [1990], who propose a sonic limit 

beyond which communication is lost to the extremities of the shear layer. Another result of 

their simulations is that the streamwise extent of the Reynolds shear stress is also reduced 

with increase in convective Mach number. They propose that this would imply a lack of 

communication in the streamwise direction, and therefore a reduction in the mixing and 

roll-up process (amalgamation of vortices), which is known to be responsible for the growth 

of the shear layer. Due to this reduction in the shear stress, there is a reduction in the rate of 

production of turbulence energy which results in the reduced levels of turbulence observed 

in the experimental studies. 

The transport equation describing the evolution of turbulent kinetic energy for the case 

of decaying compressible turbulence is equation 2.5. 

Q-^- =  - 2[\MfT- + ^\i(ü-j)2 - püij) (2.5) 

In the above equation, q2 represents the fluctuation kinetic energy, q2 = UjUj, where Uj and 

coj are, respectively, the fluctuation velocity and vorticity components defined using a 

mass-weighted Favre average. The overbars denote a Reynolds average, p represents the 

pressure fluctuation with respect to a Reynolds average, and g and u. represent the density 

and molecular viscosity, respectively. Details regarding the averaging techniques can be 

found in Chapter 3. The first term on the right hand side of equation 2.5 represents the 

solenoidal dissipation rate (incompressible) due to the cascade of energy to the small scales 

of turbulence. The second and third terms on the right hand side represent the extra 

dissipation brought in due to the dilatational effects. While the second term on the right hand 

side represents the dilatational dissipation, the third term is referred to as the pressure 

dilatation term. Zeman [1990] concludes, based on the presence of eddy shocklets in 

compressible turbulent flow fields, that the effect of compressibility is a dissipative one, with 

the dilatational turbulent velocities being responsible for this extra dissipation. He derives 
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an expression for this extra dissipation due to dilatational effects. This extra dissipation is 

expressed as a function of the probability density function (pdf) of the turbulent velocity. The 

assumption made here is that the variance for this pdf is equal to a parameter called the 

/2k 
turbulent Mach number, Mt. The turbulent Mach number is defined as Mt = 1-z-, where k 

is the kinetic energy of the turbulent fluctuations and c is the speed of sound. This Mach 

number is indicative of the effectiveness of turbulent fluctuations in propagation of 

information, in comparison with the acoustic transfer. The dilatational dissipation is 

therefore expressed as a function of Mt and the flatness or kurtosis of the velocity 

fluctuations. This expression is given below, 

8d = cdssF{Mt , K} (2.6) 

where K is the kurtosis of the fluctuations in velocity and Cd is an adjustable constant of order 

one. The function F { Mt, K } is given as 

3 

F{Mt,K} = i (H-s 
Mf J I     mi pfm^drnj (2.7) 

where p(mi) is an assumed non-Gaussian pdf. Also ml = -%, where u is the velocity 
ä 

fluctuation ahead of the shocklet, and a* is the sonic speed. This expression is further 

simplified (for computational ease) to give 

F(Mt) = 1 - exp - [(Mt - 0.1)/0.6]2 • 

and (2-8) 

F(Mt) = 0, if Mt< 0.1 

Sarkar et al. [1991], using arguments based on the evolution of turbulence structures 

on an acoustic time scale, also proposed a model for this extra dissipation due to dilatational 

effects. This model is given as 

8d = ttjEsM? (2.9) 
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where ai is an order one constant. To a first order approximation, the two models are 

essentially identical. These modifications initially ignored the effect of pressure dilatation 

and combined it with the dilatational dissipation term. 

More recently, El Baz and Launder [1993] proposed a model for the dilatational 

dissipation effect, which works out to be similar to the models proposed by Sarkar et al. 

[1991] and Zeman [1990], as will be demonstrated in Chapter 5. The El Baz and Launder 

[1993] modification offers to modify one of the constants in the modelled form of the 

transport equation for the rate of dissipation of turbulent kinetic energy. They obtain their 

modifications from an analysis of the rate of decay of compressible isotropic turbulence. 

Based on a more thorough analysis of the evolution of the pressure dilatation 

correlation, Sarkar [1992], Zeman [1993] and El Baz and Launder [1993] have proposed 

models to account for this term. These modifications for the pressure dilatation term will be 

presented in Chapter 5 (where a comparative study, of the modifications that have been 

proposed to account for the effects of compressibility, is offered). Blaisdell et al. [1993] 

conducted a DNS study of both the decaying compressible turbulence and homogeneous 

shear driven turbulence. Their DNS studies confirm the existence of eddy shocklets but 

again the resolution used was not adequate enough to completely resolve these shocklets. 

The DNS studies indicate that the decay of compressible turbulence is very much dependent 

on the initial condition. This would then cast some doubt on the effectiveness of the algebraic 

modifications given above in modelling this decay of compressible turbulence. However, 

in the case of homogeneous shear turbulence, they observed that the ratio of dilatational 

dissipation to the solenoidal dissipation rate does vary as M^. They also note that the Sarkar 

et al. [1991] model for the dilatational dissipation compares better with the results of DNS 

study than the Zeman [1990] model. Zemans' model [1993] for the pressure dilatation term 

compares better with DNS results. A more detailed discussion of these models is presented 

in Chapter 5. 
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2.2 Compressible Boundary Layers 

Compressibility effects in high-speed mixing layers are quite different from those in 

high-speed wall-boundary layers. In wall-bounded turbulent shear layers, with increase in 

Mach number of the free stream there is a small decrease in the skin friction and the growth 

rate of the boundary layer thickness, which can be explained as a direct reflection of density 

variation from its free-stream value. This reduction in density results in a reduction in 

momentum transfer by Reynolds stresses. 

If the root-mean-square fluctuations of the density are small then the effects of 

compressibility can be assumed to be minimal. This is a statement of Morkovins' hypothesis. 

This implies that for free-stream Mach numbers less than about 5.0 for boundary layers and 

jets at Mach numbers less than 1.5, the structure of turbulence is about the same as that of 

incompressible flows. Turbulence structure refers to the dimensionless properties like 

correlation coefficients and spectrum shapes. The skin friction coefficients and other ratios 

of turbulence quantities to mean quantities are greatly affected by density variations (mean 

density changes). The effect of mean density variations in x or y (spatial variation) on the 

turbulence structure is not covered by Morkovins' hypothesis but is often negligible at the 

lower Mach numbers, if the mean pressure gradients are small. Thus assumptions made 

about turbulence structure that give good results for incompressible or constant density flows 

may be applied, with suitable modifications, to compute flows with density variations for 

Moo < 5 (for wall boundary layers) and Mjet < 1.5. Mjet is the Mach number defined based 

on the maximum velocity of the jet stream. 

Fernholz and Finley [1980] offer a correlation of the various experimental 

measurements of compressible turbulent boundary layers and compare it with the theoretical 

curve fits. Overall it seems that for adiabatic walls, the van Driest transformation fits the 

experimental data fairly accurately. In compressible flows (Huang et al. 1994), the mixing 

length hypothesis yields, 
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dU = J_/iwxl/2 

dy-KylQ; 
(2-10) 

QCp(f)    xTy 

where U and T are the velocity and temperature, respectively. tw is the wall shear stress and 

Q is the local value of density. Cp is the specific heat of the fluid at constant pressure and x 

and Kj are constants, q is the heat transfer rate and is given as, q = qw + Utw, where qw 

is the heat transfer rate at the wall. 

fx 
Defining a friction velocity UT =     -^-, equations 2.10 and 2.11 can be integrated to 

yield the velocity and temperature profiles, in the turbulent boundary layer. The velocity 

profile, in a compressible turbulent boundary layer, is therefore written as 

^ = ±ln(y + ) + C (2.12) 

where % is the von Karman constant, C is a constant of integration and y + = I "       j, where 

u. is the coefficient of molecular viscosity. In equation 2.12 Uc is obtaining using the 

transformation 

u 

UC = j(JL)dU (2.13) 

0 

and p— = l-q^). The velocity distribution in the compressible turbulent boundary layer 

can, therefore, be expressed in the functional form of equation 2.14. 

Uxy       Qw       uT = M^ (2.14) vw   ' QwCpUTTw ' aw 

where Ut is the friction velocity, Qw is the wall heat transfer rate, Cp is the specific heat at 

constant pressure and a is the speed of sound. The subscript "w" refers to the conditions at 

the wall. The velocity profile is written as 
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Uc 1 
R 

sin -l te+H) 

where, 

Rl 

(q + R
2
H

2
)
1/2 

ü; " *lnUr 

sm -l RH 

(Cj + R2H2) 
1/2 

(2.15) 

+ C 

R = M* (Y-l)ö^ 2KC 

Br 

1/2 

TT    _        VW       _      

twUT     (Y - 1)M2 

where, x = 0.41 and Ke = 0.41. 

However, this relation is usually replaced or fitted by 

(2.16) 

(2.17) 

(2.18) 

Uc 
uT 

i,JyuO 
= xln V + C + 

n(x) 
* w(t (2.19) 

where II(x) represents the effect of pressure gradients in the outer layer of the boundary layer 

and W(y/6) represents the wake parameter (Sun and Childs, 1971). It should be noted that 

this van Driest transformation for the velocity profile in compressible turbulent boundary 

layers is applicable for flat plate boundary layers only, with no heat transfer at the wall. 

In compressible turbulent flows, the velocity, temperature and density (and in high 

speed flows the pressure) all fluctuate. In analytical work (Kovasznay, 1953), it is more 

convenient to treat the equivalent fluctuations of vorticity, entropy (or total temperature) and 

acoustic pressure. In non-hypersonic boundary layers the acoustic mode is negligible and the 

entropy mode is very small for conventional rates of heat transfer (Bradshaw, 1977). 

p' T " It follows from Morkovins' hypothesis that for 4=r <^ 1 and -^— < 1, 
P T0 

|=-^ = (Y-DM^ (2.20) 

where the primes denote fluctuations with respect to a mean value, with a single prime 

denoting fluctuations with respect to a Reynolds averaged mean and a double prime denoting 
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fluctuations with respect to a Favre averaged mean. Further information regarding the 

Reynolds and Favre averaging techniques and the differences between them can be found 

in Chapter 3. A more rigorous derivation of the above equation can be found in Chapter 5. 

Since the fractional velocity fluctuation u"/Ü is small, Q'/Q is small as long as 

(Y - l)M2 is not large compared with unity (which can be used as a convenient definition 

of non-hypersonic). Because velocity fluctuations in the outer layer of boundary layer are 

^2 ,'Q 
usually small, -=— is nowhere greater that 0.1 even at Moo = 5.0. At higher Mach numbers 

however, the wall is strongly cooled and Morkovins' hypothesis (assumption of constant 

stagnation temperature) breaks down. But because of wall cooling, the general level of static 

temperature or density fluctuations increases only slowly with Mach number. However, 

72 'P 
—=—increases and the interaction between vorticity and pressure modes (Bradshaw, 1977) 

r 

may significantly alter the turbulence structure. The hypothesis also implies that the 

Vu"2 
correlation between T" and u" is close to -1. In free mixing layers, where ^-z—reaches 

0.3, density fluctuations are larger and limit the validity of the hypothesis. 

The influences of compressibility not addressed by Morkovins' hypothesis 

(Bradshaw, 1977) are the effects of viscosity fluctuations and the effects of spatial gradients 

of mean density. A turbulent eddy is likely to be affected by transverse variations in density 

if the fractional change in density over its width is significant. Therefore, the larger eddies 

that effect the entrainment of free stream fluid may be significantly affected by -rp even at 

Moo < 5 in a boundary layer. * 

While it seems that the reduction in skin friction and turbulence structure parameters 

in the case of high-speed boundary layers can be explained on the basis of variation in 

density, the same arguments cannot be used to explain the reduced mixing rates in the case 
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of free shear layers. A better understanding of the mixing process in the case of free shear 

layers might help in explaining this variation in the two shear layers. 

Table 2-1. Observations on the effect of compressibi] ity in turbulent shear layers. 

Two-stream mixing layers Boundary layers 

Effect of 
compressibility 

Reduced mixing rates : 

a. Reduced growth rate, and 
b. Reduced levels of turbulence. 

Reduced thickness 

a. Reduced skin friction 
b. Increase in extent 

of laminar sub layer 

Key 
parameters Mc, Mt, öwo / 5(o y+, Bq, MT 

Proposed 
Modelling 

options 

i. Sarkar et al., Sarkar   -\^           Modifications for accounting 
ii. Zeman                           Js>        r                    ,.   .     .      , 

y/^           for the extra dissipation due 
iii. El Baz and Launder 

to dilatational effects. 

Effectiveness of 
modifications 

While all three modifications are effective in predicting the reduced 
growth rates and levels of turbulence structure parameters, they fail to 
offer satisfactory predictions in the case of wall boundary layers. 

The turbulence models that have been proposed to parametrize the dissipative effect 

of dilatational velocity fluctuations have had limited success. While they are quite capable 

in predicting the reduced mixing rate in the case of free shear layers (two-stream mixing 

layers), they have not been very successful in predicting the reductions in the case of wall 

boundary layers. As mentioned before, in the case of a wall shear layers, the variations in 

density play a more important role than in the case of free shear layers. The proposed models 

are ineffective in accounting for these density variations (Huang et al, 1992). A more 

rigorous explanation of this deficiency will be given in Chapter 5, where the models are 

evaluated from the point of view of eddy-viscosity based turbulence models. 
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2.3 Summary 

Table 2-1 summarizes the observations on the effect of compressibility on turbulent 

shear layers. The above review, while not an exhaustive one, does provide a picture of the 

effect of compressibility on the turbulence fluctuations. Certain key parameters that can be 

used to characterize and to parametrize the effect of compressibility on the structure of the 

turbulent fluctuations have been identified. The review above has been limited to just free 

shear layers and wall boundary layers. In addition, there are instances where the effects of 

a rapid expansion or an isotropic compression on the turbulent fluctuations need to be 

addressed. These issues are explored in Chapter 6, where the effectiveness of the various 

models have been analyzed in terms of their predictive capabilities. Particulary, Chapter 6 

discusses the reasons for the ineffectiveness of the various modifications that have been 

proposed to model the effect of compressibility in predicting a wider variety of flowfields. 



CHAPTER 3 
EDDY-VISCOSITY MODELS 

In this chapter the equations of motion that govern the flowfield for compressible 

turbulent flows are presented. The issues of scale disparity and the closure of the mean 

equations are discussed. The modelling approximations that will be needed to address the 

closure issues for computing the mean flow are discussed, along with a discussion of the 

advantages and drawbacks of the various approaches. Attention is restricted to the models 

employing the eddy-viscosity concept. 

3.1 Governing Equations 

The governing equations are those expressing the conservation of mass, the rate of 

change of momentum (in the three spatial directions) and the conservation of energy. These 

equations along with the equation of state are solved. The equations in their conservative 

form are given, in tensor notation, as 

Continuity 

Momentum 

t + ä!:teui) = 0 

3(011;) 
at 

ö(QUiUj) 

3Xj 

dp 
dX; aXj 

(3.1) 

Energy 

(3.2) 

a(0E)    *(QUJH)_   d , , 
"IT + -äx— - äx]luiö« " «JJ (33) 
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Equation of State 

p = QRT (3.4) 

where repeated indices indicate summation. 

In the above system of equations, Q, UJ, p, T, E and H are the density, the velocity 

components, the pressure, the temperature, the total energy and the total enthalpy, 

respectively, ay and qj are the viscous stresses and the heat flux. The stress tensor is written 

as 

ay = 2^ + XUkJc (3.5) 

where 

Sjj = i(Uy + Ujj)      ; andX= -|n (3.6) 

dU: 
where Uj j = -TTT-, \i is the molecular viscosity and X is the bulk viscosity. The heat flux 

vector q; is written as qj 
3T 

qj = - k-^r-      where k is the thermal diffusivity. (3.7) 

The total energy E and the total enthalpy H are written as 

E = -2-j- + |Q(U
2
 + v2) (3.8) 

Y 

H = E + | (3.9) 

where y is the ratio of specific heats. In all the computations presented in this dissertation 

the gas is assumed to be air and the y is given the value of 1.4. 

3.2 Turbulence Closure 

Turbulence is a stochastic process, characterized by eddies of varying length and time 

scales. The scales range from the large, energy containing eddies (slow time scale) to the 

small, dissipative eddies (faster time scale). While the large eddies can be of sizes 

comparable to the extent of the viscous layer, the small eddies are of sizes where molecular 

viscosity effects become important. This small scale is usually referred to as the Kolmogorov 
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scale. A complete description of the wide range of length and time scales in turbulent flows 

is given in Tennekes and Lumley [ 1972]. The length scales (or time scales) of the large eddies 

and the small Kolmogorov eddies can be related based on the Reynolds number of the flow. 

This relationship is given as 

| = Re-3/4       where   Re = ^ (3.10) 

where / is the length scale of the large eddies and r\ represents the length scale of the 

Kolmogorov eddies. It is to be noted that the equation 3.10 is strictly valid only when the 

Reynolds number is very large. The reason is that the estimate or relationship dictated by 

equation 3.10 is valid only when there is a distinct inertial sub-range. 

In the above system of equations, all variables are in their instantaneous form. In order 

to completely resolve the turbulent flowfield, the spatial resolution of the computational grid 

has to be of the size of the small-scale or Kolmogorov eddies. Since the spatial resolution 

required to adequately resolve the smallest eddies as well as the energy containing ones 

scales as the Reynolds number (as indicated by equation 3.10), this implies an extremely 

large number of grid points, especially in the case of three-dimensional computations. The 

current restrictions on computing power and storage do not permit us to solve, the governing 

equations in their exact form, for complex turbulent flows. To solve the instantaneous form 

of the governing equations using the direct numerical simulation (DNS) approach, 

inhibitions due to computing power and storage restrict the flow problems to those involving 

simple geometries and relatively low Reynolds and Mach numbers. In order to overcome 

this, use is made of some form of statistical averaging thereby permitting us to solve for the 

"mean flow" parameters, giving us an idea about the average variation of the flow field. 

3.2.1 Averaging Techniques 

There are several ways to define a statistical average (Monin and Yaglom, 1971). Two 

of the most commonly used methods to define the mean are the Reynolds average and the 

Favre average. 
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3.2.1.1 Reynolds average 

The Reynolds average usually refers to a time average. For a variable (j), the mean 1> 

is defined as 

t„ +T 

*=l ((>dt (3.11) 

where T is a sufficiently large period of time such that it completely damps out the 

fluctuations in ()> about the mean. But this time period should not be too large that it subdues 

the variations in the mean. Time averaging can be used only in the case where the mean O 

is independent of t0, that is for a stationary flow field. In cases where 0 is non-stationary, 

an ensemble average is resorted to. An ensemble average is defined as an average of an 

ensemble of measurements. To help understand the meaning of an ensemble average 

consider Figure 3.1. For the "non-stationary" flow the velocity is continually changing. A 

time average is not a meaningful representation of the average in this case. We have to 

account for the long-term and short-term variations separately. In these cases, the only 

n 
O 
OH 

•a 
x 

■4—» a 

$ o o 
2 

Statistically-stationary flow 

Time-average 
velocity 

Instantaneous velocity 
in a given experiment 

Non-stationary flow 
Ensemble-averaged velocity 
(mean of all experiments). 

Time 

Figure 3.1.    Definition of time-average and ensemble-average. 
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possible way to define an average would be to repeat the experiment many times, each time 

taking the measurement at a specific point and at a specific instant from the start of the 

experiment. An ensemble average would then refer to the average of all these measurements. 

Throughout the remainder of this dissertation, the Reynolds average is denoted with 

an overbar and the fluctuations with respect to this mean by a single prime. That is, 

4> = $ + (j)' (3.12) 

where by definition, ()>' = 0. 

3.2.1.2 Favre average 

Favre average (though first suggested by Reynolds, 1895), is amass weighted average. 

The variable (j) is split into its mean and fluctuation components as 

(j) = Ö + (j)" (3.13) 

where 

$ = Y (3-14) 

and 

4>" = - ^-      and Q$" = 0 (3.15) 

where the statement Q<()" = 0 implies that, when (j) represents the velocity components, 

there is no mass flux across the mean streamlines. 

In calculating compressible turbulent flows, the Favre average is usually preferred. If 

the mean of the flow variables are defined using a Reynolds average, then in the case of 

compressible flows one ends up with terms representing the correlations involving 

fluctuations in density. The magnitude of these terms are not negligible and so cannot be 

ignored in the computations arid need to be suitably modelled. Due to the lack of clear 

understanding of the nature of these terms, currently there are no adequate models to account 

for such terms. On the other hand if use is made of the Favre average, the resulting equations 

bear a close resemblance to the incompressible constant density equations. This enables us 

to model the various correlations in compressible turbulent flows using the incompressible 
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form of the turbulence models as a baseline. In most computational studies of compressible 

turbulent flows use is made of a mixed averaging technique. That is, the mean of the velocity 

components and temperature is defined using a Favre average and the mean density and 

pressure are defined using a Reynolds average. 

3.2.1.3 Relationship between Reynolds and Favre averages 

If Favre averaging is used to define the mean velocity components, then in the 

momentum equation (for the viscous stresses) both Favre averaged values and Reynolds 

averaged values appear naturally. The relationship between the definitions based on these 

two averaging techniques is exploited to simplify the equations. These relationships can be 

easily derived. For a variable (j), we denote the Reynolds average by cj> and the fluctuations 

with respect to this mean by (j)'. The Favre average is denoted by <f> and the fluctuations with 

respect to this mean by $". Now based on the definitions, 

4> = <j> + <|>' 

(j) = <j> + (j)" 
(3.16) 

Based on the rules of averaging (defined in Monin and Yaglom, 1971) we have <J>  = 4>. 

Therefore, from equation 3.16 we have 

<>" = 4, - $ = - 01 (3.17) 

Combining equations 3.16 and 3.17 we get 

(j)"=^77+())' (3.18) 

Other relationships between mass weighted Favre averages and Reynolds averages 

can be found in Lele [1993]. In most numerical modelling techniques, these relationships 

(equation 3.17) between the Reynolds and Favre averaged values are ignored. That is, ({T7 

is considered to be a negligible quantity. When (j> represents the components of velocity, this 

term <|>'' is referred to as the turbulent mass flux. In Chapter 5 an expression for this turbulent 

mass flux is derived. 
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3.2.2 Equations of Motion: Averaged Form 

Through the rest of this dissertation, a mixed averaging technique is used. Using a 

Favre averaging technique to define the mean of the velocity components and temperature 

and a Reynolds averaging technique to define the mean of density and pressure, the equations 

governing the mean flow field can be written as given below. The split up of the variables 

into a mean and corresponding fluctuation is given by equation 3.19. 

Q = Q + Q' 

uj = Uj + u/ 

T = t + T" 
p = P + p' 

(3.19) 

where, the overbar denotes a Reynolds averaged quantity and the prime denotes a fluctuation 

with respect to the Reynolds average. The tilde denotes a Favre averaged quantity and the 

double prime denotes a fluctuation with respect to the Favre average. P refers to the Reynolds 

averaged pressure. In terms of these mean and fluctuations, the governing equations are 

written as 

Continuity 

&® + w:(&h0 (3-20) 

Momentum 

l(5°j) + äfe(Wi)=- 
dP     ,       d 
aX;    dxi 

2« + V eu/'Uj' 
(3.21) 

B 

Energy 

at (**)+ äfeN*) = aXj 

CD E F 

- q£ - pu/'h" - QUj'^iu/'Ui") 

G H 

(3.22) 

where 
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Zij - 2|iSg + XÜ^ij ; Sij = I(üg + ÜjJ (3.23) 

V = 2f*Mj + KTAj ^ sü = ^(V + V7) 024) 

Through the rest of this dissertation, we will drop the tilde and the overbar. Upper case letters 

will be used to denote the mean quantities. Mean density will be denoted by Q . 

Before we can solve the equations of motion to obtain the mean flow field, we need 

to account for the various correlations (between the fluctuations). The terms that need to be 

modelled in the above equations are denoted as terms A through I. In most flow fields there 

are regions where molecular properties are more important (Rubesin, 1990). So, we can drop 

terms A, C, E and G. We still need to model the correlations denoted by terms B, D, F, H and 

I. Except for term I, which is a third order correlation, the other terms are second order 

correlations. 

One of the ways to model these correlations is to write transport equations governing 

their variations. The transport equations for the second-order correlations, for example, will 

involve third- and higher-order moments. To account for these higher-order moments, one 

can derive transport equations. But these in turn will involve fourth- and higher-order 

moments. It is impossible to close the system of equations, (when expressing them in their 

mean form). This is the classical closure problem of turbulence. A detailed review of the 

closure problem is given in Tennekes and Lumley [1972]. 

There are several methods that can be employed to solve these averaged equations of 

motion. Large eddy simulations (LES), which occupy the rung below DNS in the ladder of 

turbulent flow simulations, is one such method. For high enough Reynolds numbers the 

small-scale eddies can be thought of as being isotropic. That is, turbulent fluctuations at these 

length scales are identical in the three spatial directions and invariant with respect to 

reflection (of the co-ordinate system). Thus, using simple models these isotropic fluctuations 

can be adequately modelled. In methods using LES techniques, a spatial cut-off is used to 

delineate the length scales that are completely resolved and those that are modelled. Eddies 
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whose characteristic length-scales are above this cut-off length are completely resolved 

while those below this spatial cut-off are modelled. These smaller eddies are usually of the 

order of the Kolmogorov scales. But LES has not yet developed to a level where routine 

calculations can be made of complex flow fields. 

Another method is to model third- and higher-order moments of the correlations and 

solve the transport equations for the second order moments. This form of modelling is 

referred to as the second-order closure. A simplified form of this is the eddy-viscosity based 

modelling. In all the computations presented here, the eddy-viscosity based closure 

approximations are used. A brief description of this closure method is given here. 

3.3 Eddy-Viscosity Based Modelling 

In the above system of equations, terms such as the Reynolds stresses - QUj"u", 

need to be modelled to solve the system of equations for the mean flow parameters. 

Boussinesq (Speziale, 1992), first introduced the concept of modelling the Reynolds stresses 

based on the idea of a turbulent viscosity to close the system of equations (incompressible 

form). However, it was Prandtl (Launder and Spalding, 1972) who introduced the concept 

of a mixing length to compute the eddy-viscosity. The mixing length model makes a direct 

analogy between the transport due to turbulent fluctuations and the molecular transport. 

With further research it was realized that this concept was flawed, because turbulence does 

not have a clear demarcation of length (or time) scales. With this realization Prandtl proposed 

to solve a transport equation for the turbulent kinetic energy (to obtain a characteristic scale 

of turbulence) and use a specified length scale to compute the eddy-viscosity. Models 

(wherein a transport equation is solved to obtain a characteristic scale of turbulence) such 

as these are usually referred to as one-equation models to distinguish from the original 

mixing length model (referred to as the zero-equation model). A brief description of these 

models is given below. 
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3.3.1 Zero- and One-Equation Models 

The simplest form of the eddy-viscosity based model for the Reynolds stresses is the 

zero-equation model. It is termed zero-equation because no extra transport equation need be 

solved in computing the characteristic scales of the turbulent fluctuations. The zero-equation 

model is originally due to Prandtl, where an analogy is drawn between the transport due to 

turbulent fluctuations and molecular transport. It was derived from a consideration of the 

flowfield in a turbulent boundary layer. 

In this method, one relates the eddy-viscosity to the local mean velocity gradients by 

means of a mixing length, /,„ 

au -  ;2 
m Vt  =   /: (3.25) dy 

where vt is the kinematic eddy-viscosity and it has been assumed that y is a direction normal 

to the streamwise development of the shear layer. U is the streamwise velocity component. 

One problem with mixing-length models is that they cannot model history and 

transport effects in a flow. Another drawback is that the length scale used is not universal 

and can vary from one flowfield to another and even within a given flowfield. The mixing 

lengths that have been estimated for predicting a particular flow most often simple boundary 

layers, are not strictly applicable to other flows. Furthermore, it becomes difficult to generate 

the mixing lengths for complex geometries. 

To alleviate some of these problems one-equation models were developed. These use 

a transport equation for determining one of the characteristic scales of turbulence. Usually, 

this is the turbulent kinetic energy (TKE). By introducing such a transport equation, history 

and transport effects are introduced into the flow calculation. The typical modelled form of 

the kinetic energy is given as 

dQk ^w=-^-^4+*)t (3.26) 
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where [xt / ak is introduced to model the turbulent transport, and the pressure diffusion terms. 

To compute the turbulent kinetic energy dissipation rate, 8, one-equation models use a length 

scale model of the form 

E = c»(ffl (3-27) 

The eddy-viscosity is computed using the expression 

7k 
u, = C^ (3.28) 

The length scale L, in one equation models has the same drawbacks and difficulties 

as the length scale lm, in the algebraic mixing-length models. Consequently, one-equation 

models never became generally popular since they required considerably more computer 

time than the simpler zero-equation models, but did not produce significantly better results. 

Both zero- and one-equation models of eddy-viscosity are considered to be incomplete 

because they involve an arbitrary specification of one of the scales used to obtain the 

"turbulent-viscosity". This led to the development of two-equation models where use is 

made of a transport equation for the length-scale also. 

3.4 k-e Model 

Two-equation models are considered to be the first complete model for obtaining the 

eddy viscosity. Rotta [1951], developed the first complete method to obtain turbulence 

closure. In order to compute the Reynolds stresses - QUJ"UJ", Rotta [1951] developed the 

transport equations for the six components of the Reynolds stresses and their rate of 

dissipation. A contraction of the equations for the Reynolds stresses coupled with an 

eddy-viscosity hypothesis gave rise to the k-e models. A similar form of the k-e model was 

first obtained by Hanjalic and Launder [1976]. In these models, k represents the kinetic 

energy of the turbulent fluctuations k = ^"u^'and e represents the rate of dissipation of 

this kinetic energy. Using the velocity scale obtained from solving the transport equation for 
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k and a time scale obtained from a combination of k and the solution to the transport equation 

for s, an expression for the turbulent-viscosity is obtained. 

In the k-8 based models, the characteristic velocity scale is calculated as the square root 

of the TKE and the time scale is calculated using a combination of TKE and the rate of 

dissipation of TKE. 

Now, defining k and E as in equation (3.29), one can derive transport equations for k 

and E. 

"   3,,   " 

k = IUi'V   and   e = v^-^j- (3.29) 

Thus the eddy-viscosity or turbulent-viscosity is defined as 

vt = C^ (3.30) 

where C^ is a constant whose value is prescribed based on empirical observations as 0.09, 

and vt is the eddy-viscosity. 

Using this definition of eddy-viscosity the Reynolds stresses are written as 

- QiV'Uj" = 2^ + XtUyAj - iQköy (3.31) 

where Sy = ^(üy + ÜjJ and \it = pvt ; Xt = - ^|xt and öy is the Kronecker delta. 

Although this definition of eddy-viscosity and the closure of the Reynolds stress terms 

was obtained initially using dimensional analysis and order of magnitude arguments, 

rigorous methods have been developed recently to ratify* (and modify), this formulation of 

the k-E model. In the next few paragraphs a brief description is given of the transport 

equations for k and E and the modelling approximations that have been used to close these 

equations. 

Multiplying the equation describing the rate of change of mean momentum, (equation 

3.21), by Ui one can obtaining a transport equation for the rate of change of mean kinetic 

Shih and Lumley [1993] present a continuum mechanics based procedure to ratify the form of the 
model used to approximate the Reynolds stresses. Speziale [1992] gives a Taylors series method to 
develop the model given by equation 3.31. 
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energy. If we replace the variables, by a mean and a fluctuating component in equation (3.2), 

and subtract from it the equation for the rate of change of mean momentum an equation 

describing the rate of change of fluctuating momentum can be obtained. Multiplying this 

equation by u/' and averaging and subtracting the equation for mean kinetic energy 

(multiplied by u/'), one can obtain the equation for the rate of change of turbulent kinetic 

energy (TKE). This equation (in its Favre averaged form), is given below as : 

Turbulent Kinetic Energy 

im + ^(üüjk) - pk + n - ee + T„ + S^z, (3.32) 

where 

n 

--<xv%-*% (3.33) 

,dU:"                             dU:" 
—  n'       '       ■   nr   -        '    rr   " (3.34) p dx{  ' QC     aXj 

GiJ 

dXj 

/1             \ 
T-- u/'Oy"  - QU/'^U/'U/')  - P U-" J (3.35) 

In the equation above the term Pk represents the production of kinetic energy due to the 

interaction of the turbulent field with the mean flow field. While the first term on the right 

hand side of equation 3.33 represents the production of TKE due to interaction with the mean 

velocity field, the second term represents the production of TKE due to interaction with the 

mean energy field*. The term II represents work done due to simultaneous fluctuations in 

pressure and dilatation (or volume of the fluid cell). It can be either positive or negative. The 

term Tj j represents the transport of TKE due to both molecular transport (first term in 

parenthesis in equation 3.35) and due to turbulent fluctuations. The last term on the right 

As was mentioned before, the turbulent mass flux is considered to be negligible. Consequently, this 
production term, (enthalpic production), is usually ignored in most computational studies of compressible 
turbulent flows. We have derived an expression for the turbulent mass flux, (Chapter 5), and have thus been 
able to include the effect of this term in the evolution of the turbulent kinetic energy. 
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hand side of equation 3.32 represents an inertial effect. Fluid particles with lower inertia will 

respond much quicker to an imposed strain rather than those with larger inertia. 

Rate of Dissipation of TKE 

The rate of dissipation of TKE can be defined using the enstrophy budget. The 

1- enstrophy ofthe turbulent fluctuations is defined as ^C0p"(0p" withe = vcop"top", where 

C0p" is the fluctuation in vorticity. The transport equation for the enstrophy budget is written 

as 

|(Q8) + ^(QUkE) = Pe + D£ + OE - VV2£ + B£ (3.36) 

where 

PF = 2vco ' V-^ + 2Vü)D"CüV"^HE + 2VQJCüO" 
ÖUp 

J
P  

Uk   dx, '* ^  ax. sk   "P    3xb 

ÖUr DE=
 "uk"ä|rK"a)p'') + 2va)p"a)k"^ 

^----wm 
Bf 2v- 

-pqi 

ÖXq
WP     3Xj        OX®*     dX„        WP     dxndx 

> 

(3.37) 

(3.38) 

(3.39) 

(3.40) 
vq -       UAqr- 

where spqi called the alternating tensor, is skew-symmetric (it is +1 if p, q, i are in cyclic 

order, -1 if p, q, i are in anti-cyclic order and 0 if any two of p, q and i are equal). 

In the equations above Pe represents the "production of dissipation", Ds represents the 

"turbulent diffusion of dissipation", 3>£ represents the "destruction of dissipation". B8 

represents the baroclinic term. In B£, the second term represents the "production of 

dissipation" and the third term represents "turbulent diffusion of dissipation". However, in 

most cases (even in compressible flow simulations) this term is ignored. It will be shown in 

Chapter 6 that this term might be important especially in cases where the gradients of 
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pressure and density are not along the same direction. The fourth term in equation 3.36 

represents the viscous dissipation of E. 

In order to solve for k and e, the transport equations 3.32 and 3.36 have to be modelled. 

In solving for compressible flows, the accepted practice is to model the equations similar to 

their incompressible form. In the case of incompressible flows, the term II is equivalently 

zero because of the non-divergent nature of the velocity field. But in the case of compressible 

flows this term is non-zero and represents the work done due to simultaneous fluctuations 

in pressure and dilatation of the velocity fluctuations (or the volume of the fluid cell). So this 

term, which does not appear in the governing equations for incompressible flows, needs to 

be modelled in the case of compressible flows. Certain algebraic modifications have been 

proposed for this term and these will be discussed in Chapter 5. The term Tj j in equation 3.35, 

represents the diffusion of turbulence and is modelled similar to the modelling used for 

incompressible flows. Thus, 

T    =   d .i +M3L (3.41) 

The term representing the enthalpic production of turbulent kinetic energy, is usually 
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considered to be small and is neglected. So is the term u{' -r-A which represents the "inertial 

effect". 

The equation for the rate of dissipation of TKE is quite complicated even in the case 

of incompressible flows. The accepted practice in modelling the transport equation for e is 

an ad hoc one and is usually written as a "regular transport equation", that is, the time rate 

of change of the transported quantity is equal to the rate of production ofthat quantity minus 

the rate at which it is dissipated and diffused away. Thus, this model for e leads to a transport 

equation which is given as 

a(ee) 
at + ^L(QUJ£) = Pe-<De + T8 (3.42) 
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where the three terms on the right hand side are respectively the rate of "production of 

dissipation", the rate of "dissipation of dissipation" and the rate of "diffusion of dissipation". 

These terms are modelled (in comparison with the k equation) based on heuristic arguments 

and dimensional analysis and are given as 

= J_ {^m, (3.43) Pe = C£l|Pk   ;    0)E = C£2e|E   ;   T£ 

The modelling constants are obtained based on empirical information from flat plate 

boundary layers and the rate of decay of grid turbulence. The values for the constants in 

incompressible flows are prescribed as C£i = 1.43 and CE2 = 1.92. 

Thus the modelled form of the transport equations for k and e is given as 

Turbulent Kinetic Energy 

dt + ^(eUik)=-eui"ui" aXj    
0£ + axj ^ + ^)!r (3.44) 

Rate of Dissipation of Turbulent Kinetic Energy 

^ + i(oUE| = c  1 
at   +dx:lQUj£J    ^k 

.aiL _c  2* + J- E2
 k     axj 

(3.45) 

The modelling constants C^ Cei and CE2 are obtained by comparing the predictions 

made by the model for some simple flow scenarios. For the decay of isotropic incompressible 

turbulence, the experimentally observed value for the rate of decay is 1.1. In this case, the 

equations for the transport of TKE and its dissipation rate simplify to, 

dk 
=   - £ 

dt 

ds _  _ r    E2 (3.46) 

dt ~
E2
 k 

These equations can be solved analytically and the decay of TKE with time is obtained as 

k = t"1/^"1) (3.47) 

Since we know from experimental observations that the decay rate of TKE is 1.1, we fix CE2 

to be 1.92 in order to obtain this decay rate. 
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In the case of turbulent boundary layers (incompressible) it is known that the 

turbulence structure parameter, - u'v'/k, is equal to 0.3 in the log region of the boundary 

layer. We therefore, set C^ = 0.09 to match this result. 

In the case of incompressible flows, the velocity in the log region is expressed using 

the "law of the wall" and is written as 

i = Il„(SM)+5, (3.48) 

'Twall. where UT is the friction velocity, Ux =   /T^- and x is the von Karman constant and is equal 
V Vwall 

to 0.41. The constant Cei is obtained based on an argument that in homogeneous shear flows, 

the rate of production of TKE should be equal to the rate of dissipation of TKE. Based on 

this assumption of equilibrium between the rates of production and dissipation of turbulent 

kinetic energy, it can be shown that the turbulence modelling constants C^ CEi and CE2 

should satisfy a relation such as 

K2 = (Ct2-Ctl)J^oE (3.49) 

In order to satisfy this relation the modelling constant cr£ is fit to be equal to 1.3. 

With the k-8 model for the eddy-viscosity the various correlations that needed to be 

modelled in equations 3.21 and 3.22 can now be approximated as given below : 

Term   B - QUi"Uj" = 2|xtS;j + X^öy - ^okö^ 

Terms   F & I u^oy7 - QU/'^'V') = ^ 

Term   H - ou/'h" = ^-^- 
* J Prt3Xj 

(3.50) 

Based on these modelling approximations, the equations of motion in their averaged 

form are written as 

Continuity 
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dQ ^  d 
at + £M - (3.51) 

Momentum 

Energy 

^(euI) + 4-(ou1uJ)--# + J-a* 
ox;     3Xj   >J 

^) + ^(euJE)-^K-r-qf + rk|t 

Turbulent Kinetic Energy (TKE) 

|(Qk) + ^-(QUjk) = Pk - Q6 + 
ÖX: 

- j9k 

Rate of Dissipation of TKE 

(3.52) 

(3.53) 

(3.54) 

d_ 
at 

^) + iK) = c4Pk-c£2^ + ^ r£ ax.- 

where 

_      2 

(3.55) 

2f = 2!xeffS;j + XefAcAj - feköij   ;   S^ = i(uy + Uj;i) (3.56) 

where [xeff = (xL + [xt   and   Xeff =-^eff and öy is the Kronecker delta, q-   is given as 

< = (^+ K<)£ = 7^1 PrL     Prt 

ÖT 
OX: 

(3.57) 

where the subscript L denotes the molecular or "laminar" values and subscript "t" denotes 

the "turbulent" values. \i denotes the coefficient of viscosity, K denotes the thermal 

diffusivity and Pr the Prandtl number. In most computations P^ and Prt are assumed as 

constants and given the values 1.0 and 0.9 respectively. 

Also in the above equations 

 3U: 
(.58) 

(3.59) 
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where o^ and ae are assumed to be constants, whose values are prescribed to be 1.0 and 1.3, 

respectively. The turbulent-viscosity \it is given as 

M-t = C&T (3.60) 

The constants in the equation for the rate of dissipation of TKE and the definition of 

eddy-viscosity are given as 

Cn = 0.09   ,   Cel = 1.43   and   C£2 = 1.92 (3.61) 

The k-e based modelling described above is essentially the incompressible form. This 

is the form usually adopted to solve for compressible flows. In Chapter 5 we will return to 

the governing equations to investigate the problems with this modelling approach and also 

discuss the proposals that have been made to account for these problems. 

3.4.1 Wall-Function Treatment 

The k-E model that has been discussed above is based on the assumption that the 

relevant Reynolds number is very high. Thus, the form of the model given by equations 3.44 

and 3.45 is strictly not valid in regions where the characteristic Reynolds number is low. One 

such region is that close to a wall boundary. In a turbulent boundary layer, close to the wall, 

there exists a thin region where the molecular effects dominate over the turbulence effects, 

the viscous sub-layer. Here, the turbulent fluctuations are damped out and the high Reynolds 

number form of the k and 8 equations are no longer valid. But in computational studies 

suitable boundary conditions need to be provided at the wall boundary. In order to estimate 

the magnitude of e at the wall boundary, two alternatives are available. These are the 

low-Reynolds number approach and the wall-function approach. In the low-Reynolds 

number approach, suitable damping functions are used to reduce the importance of turbulent 

diffusion. These damping functions are used to modify the modelling constants in the 

equation for eddy-viscosity and the transport equation for E. The modelling functions are 

derived based on empirical observations of flat plate boundary layers. 

In the wall-function approach, suitable values for k, E and the wall shear stress, xwan 

are prescribed. These prescriptions are also based on empirical observations of flat plate 
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boundary layers. The values prescribed in this approach are used at the first grid location in 

the computational domain and serve as boundary conditions for computing the flow field. 

Both the wall-function approach and the low-Reynolds number approach have their merits 

and demerits. There have been several proposals made to prescribe accurate damping 

functions for the k-e model. An extensive review of some of these modifications can be 

found in Patel et al. [1985]. In this dissertation the simpler wall-function treatment has been 

used. A brief description of this technique is given below. More details regarding the 

wall-function treatment for compressible flows can be found in Viegas et al. [1985]. 

3.4.1.1 Wall-function: low Mach number form 

Consider the sketch shown in Figure 3.2. The sketch shows the first grid cell in the 

computational domain at a wall boundary. This is designated as point P and the node at the 

wall is designated as W. Up is the velocity parallel to the wall and yp is the perpendicular 

distance from the wall to the first grid point. 

In the viscous sub-layer of a turbulent boundary layer the turbulent fluctuations are 

damped out and the molecular effects dominate. The velocity profile in this region is given 

as 

\\\\\\\\\\\\\\V^^ 

Figure 3.2 Wall-function treatment. 
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where Up is the velocity component parallel to the wall and yp is the perpendicular distance 

to the first grid point (from the wall) as shown in Figure 3.2. UT is the friction velocity and 

is defined as UT =   /-22». 

In the log-region the turbulence effects dominate over the molecular effects and the 

velocity profile is given by 

U+ . impHp) + C (3.63) 

where x = 0.41 and C = 5.1. 

If we assume there is a critical location in the boundary layer where the linear profile 

(in the viscous sub-layer) meets the logarithmic profile (in the log region), then the 

non-dimensionalized co-ordinate at that point can be obtained from equations 3.62 and 3.63 

(Sondak and Pletcher, 1995). If we denote the critical location by "c", then we get equating 

the expressions for U+ given in equations 3.62 and 3.63 

yc
+ = £ln(yc

+) + C (3.64) 

The critical yc
+ can be then obtained using an iterative method like the Newton iteration 

method. The reason for computing this critical yc
+ is so that we can define if the first grid 

point in the computational domain is in the viscous sub layer or in the log layer. If the 

non-dimensional distance from the wall to the first grid point yp" is less than yc
+ 

(yp~ < Ye")* then this location can be assumed to be in the viscous sub layer, and the values 

of k and 8 and the wall shear stress, twan are given as, 
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ifyP
+ <yc

+ 

wall~yc;k 
k^Ä „.,..„. , _ ciyp (3-65) Ewaii = T~   where   le = 

andci = x(g-3/4   Ret = i& 

if yP
+ 2= yc

+ 

k   --2L Kwall -    /pr- 

£wall       xyp 

(3.66) 

The reason for this choice comes from empirical observations of the variation of 

turbulent kinetic energy and its rate of dissipation. The level of TKE in the boundary layer 

reaches a maximum in the logarithmic layer and the non-dimensionalized value of TKE 

+       k k"*" = —2 reaches a maximum value of 3.33. The wall-function is tuned to pick up this 

maximum value when the first grid point from the wall is in the log layer. Similarly, the level 

of £ is tuned to pick up its maximum value. In the viscous sub-layer, as the wall is 

approached, the value of TKE is an 0(y2) term and £ is an 0(1) term. The values of k and 

£ are curve fit to simulate this variation, when the first grid point is in the viscous sub-layer. 

It should be noted that the above prescriptions for k and £ are based on incompressible flow 

analysis. In the case of compressible flows, the wall-function treatment has to take into 

account the effect of density variations. Also, the wall-function treatment has to be consistent 

with the van Driest transformation for the "law of the wall" given in Chapter 2. 

3.4.1.2 Wall-function: compressible form 

In the case of compressible flows, at high Mach numbers, the variation in density 

across the boundary layer needs to be taken into account. There have been several "fixes" 
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that have been reported in the literature. Aupoix and Viala [1995], present a detailed review 

of these modifications to the wall function treatment. Most of these "fixes" tend to modify 

the definition of the non-dimensional distance, y +, to the first grid point from the wall. Some 

of these definitions, briefly, are 

+     oyUT a>     y vT ...So [1991] 

D) ■  y n  ...van Driest        ,o ^7N 

, (^OQwalJyUt 
C)     y+ = i _J  ...Coakley and Huang [1992] 

From an analysis of the predictions made by each one of these definitions of y + 

Aupoix and Viala [1995], concluded that the definition given by So et al. [1991] is the better 

choice for adiabatic walls, that is where Twall = Taw, (where Twan is the wall temperature 

and Taw is the adiabatic wall temperature, Kays and Crawford, 1980). However, for cold 

T 
walls, that is where -=^ = 0.2, they (Aupoix and Viala 1995) observe that the definition 

1 aw 

given by Coakley and Huang [1993] is a better choice. 

Viegas et al. [1985] conducted a detailed analysis of the wall-function treatment for 

compressible flows and derived the formulation that could be used successfully to compute 

compressible wall-bounded flows. Given below is a brief description of this treatment for 

cases where the first grid point is in the log-layer. For treatments in the viscous sub-layer, 

refer to Viegas et al. [1985]. 

If the velocity is defined using the van Driest transformation, then the law of the wall 

can be written in a form similar to the constant property (incompressible) case. Thus 

u* = jf = lln(y+) + c (3-68> 

where UT =    /-JT— ; y+ = -TJT- and x = 0.41 is the von Karman constant. C is a constant Qw   ' J vw 

whose value is chosen to be 5.2 (Bradshaw, 1977). Uc is the van Driest transformed velocity 

defined by (Bradshaw, 1977) 
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uc = JB sin-ifA±u1_sin_1/A 
D D (3.69) 

where, 

A = 
lwall 

B = 
2CnT px w 

Prt 

(3.70) 

D = /A2 + B 

It should be noted that this derivation of the velocity profile is valid for flat plate boundary 

layers (zero pressure gradient) only. 

Close to a wall boundary the convection terms in the governing equations can be 

neglected in comparison to the viscous terms and the energy equation can be integrated 

(Huang and Coakley, 1993) to give an expression for the total heat flux as, 

q = qw + Uxwall (3.71) 

Equations 3.68 and 3.71 are used to bridge over to the first grid point from the solid 

wall. It is assumed that the first grid point is in the inner layer of the turbulent boundary layer. 

Based on empirical observations the values of TKE and its dissipation rate, kwan and ewan 

respectively, are "curve fit" as 

''wall 
_  Pwall )/fii 

8wall ~ 
I e ) 

3/2 (3.72) 

xy 

It should be pointed out that Q in the above equations is the local value of density. 

In order to implement the "law of the wall" for compressible flows Viegas et al. [ 1985] 

suggest that the y + of the first grid point (in the computational domain) should be between 

20 and 40, with the second grid point at a distance Ay+= 20-40. The following steps have 

been suggested by Huang and Coakley [1993] in implementing the "law of the wall" for 

compressible flows (referring to Figure 3.2): 
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1. Assuming yp
+ initially (or computed from the previous time step), calculate Uctp 

from equation 3.68. 

qw 
2. Assuming -— and Tw initially (or computed from the previous time step), 

uwall 
calculate UCiP from equation 3.69. 

3. Equation 3.68 can be written in terms of a formula for the wall shear stress, 
T-wall 

T    „ = n...TL TTu££ xwall — QwUT   T + 

c,p 

+       Uc,P    1    UP 
twaU " yP ^ Up u +p yp 

This can be used to define an effective turbulent-viscosity connecting the wall and the first 

grid point. That is, 

\k 
_ yP

+^wUc,P 
Wall TT     TT+ (3-74) 

uPuc,p 

4. Substituting equation 3.73 into equation 3.71 and assuming constant Prandtl 
number, Prt, the heat flux at the wall can be obtained : 

»--^p^)-f(S) 
which helps in defining an effective thermal conductivity, u.tCp/ Prt, to be used to bridge 

over to the first grid point. 

5. The Navier-Stokes equations are then solved to obtain Up and Tp. 

6. With these solutions, Twan and qw (or Twan) are updated using equations 3.73 
and 3.75 and yp" is updated. 

Both the level of TKE, kp, and its rate of dissipation, Ep at the first grid point from the wall 

are fixed using the values defined in equation 3.72. 

3.5 Other Two-Equation Models 

The k-e model that has been described above is the most popular turbulence model in 

use today. Coupled with the wall treatment, the k-E model is well behaved and provides 

solutions of reasonable accuracy for most engineering problems. Many important industrial 

applications require the integration of turbulence models directly to a solid boundary, 
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particularly in situations where wall transport properties are needed or where there is flow 

separation. The lack of exact treatment for 8 at the wall and the lack of asymptotic 

consistency in the k-e model has led to formulations for the near wall modelling of the k and 

E equations (Patel et al., 1985). These alternative formulations (low-Reynolds number 

versions), can be numerically stiff and involve a certain degree of empiricism (Speziale et 

al. 1992) and has led to the formulation of alternative forms of two-equation models. Most 

of the two-equation models that have been proposed involve the solutions of transport 

equations for k and some function of k and e. The most notable is the k-co model of Wilcox 

and Traci [1976] and Wilcox [1988]. 

In the k-co model, a modelled form of the transport equations for k and a reciprocal 

time scale co I co = ^-r 1 are solved to define the turbulent-viscosity. There is evidence that 

the k-co model is computationally robust for integration to a solid boundary (Menter, 1994). 

The form of the transport equation for k is identical to the one given by equation 3.54. The 

modelled form of the co equation is given as (Wilcox, 1988) 

3(QCO) 

at   +äl:(euH = c».fpK-c^2 + ^ r   dco 
L<0 dxi 

(3.76) 

where Pk is defined as in equation 3.58 and 

'CO 

The eddy-viscosity is now defined as 

rw = (iL + p- (3.77) 

'\h = T5T <3-78) 

The constants in the above equations are given the values 

5    .   r     = 5 
9    •   So2     6 

C^ = 0.09   ;   Cal = §   ;   Cu2 = §   and   aa = 2 (3.79) 

The above form of the k-co model has been shown to be computationally robust (in 

integrating directly to a solid boundary) for a variety of test cases (Menter, 1992 ; Wilcox, 

1992). However, the k-co model has been shown to predict asymptotically inconsistent 
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values for k near a solid boundary (Wilcox, 1988). It has been shown (Patel et al. 1985) that 

k varies as 0(y2) close to a solid boundary. The k-oo model with the form for the co equation 

given by equation 3.76 predicts the variation ofk to be k - y323 (Wilcox, 1988). The reason 

for this variation is the neglecting of a cross-diffusion term in the equation for co (equation 

3.76). The exact form of the equation for co which is defined as co = r^-r can be derived, 
Cjik 

and is given in Speziale et al. [1992]. The difference between the exact form of the equation 

c 
for GO = ^-j- and equation 3.76 is that there is an additional cross-diffusion term missing 

in equation 3.76. The cross diffusion has been shown to be responsible for the inconsistent 

value of k predicted by the modelled form of the co equation given by equation 3.76 (Speziale 

et al. 1992). Briefly, this can be explained as follows (from Speziale et al. 1992): 

Close to a solid boundary, that is y -> 0, the balance of terms in the co equation reduces 

to (from the exact form of the equation for co = -r^-r). 
C(1k 

~(^äy7+v^yT + C0     ° (3-80) 

The balance of terms gives an asymptotically consistent variation for k close to the 

solid boundary. Whereas, according to the suggested modelled form of co, equation 3.76, 

leads to a balance of terms such as : 

vL^ " C^co2 = 0 (3.81) 

which leads to the asymptotically inconsistent value for k, close to a solid wall (Speziale et 

al. 1992). The asymptotic inconsistency has been dismissed by Menter [1992] as irrelevant 

as long as the model predicts the mean flow variations with reasonable accuracy. However, 

the cross-diffusion term is included in a "blended" form of the k-e and k-co models (Menter, 

1992). 

In addition to the asymptotic inconsistency of the modelled form of the k-co model, 

there exists another problem regarding the freestream dependency of the model. The 
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modelled form of the k-to model given by Wilcox [1992], is highly sensitive to the values 

of k and co prescribed at the free stream boundary (Menter, 1992). Menter [1992], suggests 

the use of a blending function such that the virtues of the k-E and the k-co model could be 

exploited. That is, the k-E model is known to be insensitive to the values for k and E 

prescribed at the free stream boundary. The k-co model, on the other hand, is computationally 

robust in integrating the model equations directly to a solid boundary. The use of the blending 

function helps to switch to the k-co model in regions close to a solid boundary and switch 

to the k-E model in the outer regions of the viscous layer. The blending function treatment 

has had quite a bit of success. 

Other two-equation models or versions of the k-E and k-co models are being 

continuously proposed*. For example, Speziale et al. [1992] have proposed a k-x model 

where x is defined as x = |. They argue that this k-x model is capable of predicting 

asymptotically consistent values and is computationally robust when integrating to a solid 

boundary. But testing of this model has been limited to some simple flowfield simulations 

and needs to be adequately tested for a variety of engineering problems before it becomes 

the model of choice. 

We have briefly touched upon the modelling concepts of eddy-viscosity based models. 

In Chapter 5, we present a more detailed analysis of the k-E model as it applies to 

compressible flows and analyze the reported superiority (Huang et al, 1992) of the k-co 

model over the k-E model (in light of the cross-diffusion term). 

3.6 Summary 

In this chapter, we have presented the equations of motion in their instantaneous form 

and highlighted the need for turbulence closure models. The Reynolds averaging and Favre 

averaging techniques have been discussed. A brief summary of the zero- and one-equation 

For example Menter [1992] proposed a shear stress transport model which is claimed to be superior in 
making predictions of separated flows in comparison with the k-e and k-co models. 
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models of turbulence has been presented with a view to making a case for two-equation 

models of turbulence closure. 

The two-equation k-e model of turbulence has been discussed in detail and the 

empiricism involved in the determination of the constants, that are needed to model the 

eddy-viscosity and the scale-determining equation. The problems associated with the k-e 

model for turbulence in terms of integration to a solid boundary have been discussed and a 

detailed description of the wall-function treatment as it applies to low Mach number flows 

and high speed compressible flows has been provided. Additional forms of the two-equation 

models of turbulence have been presented with a terse description of their virtues and 

drawbacks. 



CHAPTER 4 
COMPUTATIONAL METHOD 

In this chapter details regarding the numerical algorithm are presented. Details 

regarding this scheme as well as the artificial dissipation schemes that are used in 

conjunction with this finite volume scheme are presented. Additionally, an upwind scheme 

that has been used in the calculations is also described. Validation studies of the 

computational code, developed based on this numerical algorithm, against benchmark test 

cases are presented. Drawbacks or weak points of this numerical algorithm are highlighted. 

4.1 Numerical Algorithm 

4.1.1 Governing Equations 

The governing equations are given in Chapter 3, equations 3.51 through 3.61. These 

equations are non-dimensionalized using characteristic variables defined as follows: 

* T * T ■* L TT* /POO * x=L;y=L;t=-J=;U   =   /g-   ;   p   = p< 
ye» 

Q* = Qoo   ;   T* = Too   ;   u.* = u.«. 

(4.1) 

where L is some characteristic length scale of the flow field, x, y and t represent the two 

spatial co-ordinates and time. U, p, Q, T and \i represent, respectively, the x component of 

the velocity, the pressure, the density, temperature and the coefficient of molecular viscosity. 

The subscript <» refers to the free-stream or main-stream conditions. The component of 

velocity in the y direction is non-dimensionalized using the same characteristic velocity U*. 

Using these characteristic variables the governing equations are obtained in their 

non-dimensionalized form. These governing equations in their non-dimensionalized form 

can be cast into a form given below in equation 4.2. 

50 
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Oil + *« + äG» + ,  -n 
dt        dx       dy        'J (4.2) 

where i and j represent the indices of the control volume in the computational grid. A typical 

control volume used is shown in the sketch below in Figure 4.1. 

For the two-dimensional case the terms Wy , Fy and Gy are defined as 

W» = 
ij 

'Q' 

QU 

QV 

QE 

0k 
Q8 

Fij = Fc + Fd   ; Gy = Gc + Gd (4.3) 

where Fc and Gc represent the inviscid fluxes and Fd and Gd represent the viscous or diffusive 

fluxes. The inviscid fluxes are given as 

r QU I r QV 1 
oU2 + p QUV 

Fc = 
QUV 

QUE Gc = 
QV

2
 + p 

QVE 

euk pVk 
pUe QVE 

and the viscous fluxes are given as, 

(4.4) 
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0 
XX 

— G 
XV 

Fd = 

-Uaxx~vaxy   +   qx 

/              UT\ dk (^ + S)« 
/          nT\ de 

°<i = 

0 
- a 
- a 

xy 

yy 

(4.5) 
uaxy ~ vayy + % 

u    + ^1 — 

I uT\ B e 

where k and E denote the turbulent kinetic energy (TKE) and its dissipation rate, respectively. 

The viscous stresses and the heat fluxes are given as 

r)TI 
GXX = 2ueff-^- + Xeff 

°yy = 2(1^ + X. eff 

iU + iX 
dx      dy 

dx      dy 

-fok 

-fok 

°xy    ^ay + ax^ 

dT aT 

where 

4x -        *Vf ax     ,     qy -   ~ -^effäy" 

H-eff = V- + Ht    I     ^eff =   - f M-eff   *"*    Keff = ^-y 

(4.6) 

Pr     Prt 
(4.7) 

where, \i is the molecular viscosity, Pr is the Prandtl number, with subscripts "t" denoting 

turbulent quantities. The turbulent Prandtl number is assumed to be a constant. Pr and Prt 

are specified as 1.0 and 0.9, respectively. The turbulent-viscosity u,t is given as 

^ Qk2 

Cji = 0.09 

The molecular viscosity is computed using a power law, that is 

'      JL = (JL)n 

where the exponent n = 0.75. 

The source term Sy in equation 4.2 is given as 

(4.8) 

(4.9) 
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Sij = 

0 
0 
0 

Pk-QE 

Celtic      C 
Q8^ 

s2" 

(4.10) 

where Pk is the rate of production of TKE and is given as 

Pk = - QU/'U/' 
ÖX; 

(4.11) 

where the indices i and j are indicative of tensor notation, (not computational grid locations). 

The constants in equation 4.10 are specified as, Cei = 1.43 and CE2 = 1.92. 

4.1.2 Numerical Algorithm 

The numerical algorithm is based on the finite volume formulation with a multi-stage 

Runge-Kutta time stepping scheme developed by Jameson et al [1981]. Details of this 

scheme are briefly outlined here. 

Integrating the system of equations given by equation 4.5 over the control volume 

whose area (or in three-dimensions the volume Vy) is given by Ay and making use of the 

divergence theorem, we can write the system of equations as 

dW;; 

dt 
M + Tr2(FkAyk-GkAxk) + Sid. = 0 (4.12) 

'Jk=i 

where k refers to the faces of the control volume. This formulation is essentially a contour 

integration around the boundary of the control volume. The values of the fluxes at the faces 

are calculated as an average of the values at the adjacent cell centers. Considering the control 

volume sketched in Figure 4.1, the second term in equation (4.12) can be written as 

(
F

AB
A

YAB - GABAXAB) + (FBCAyBC - GBCAxBC) + 

(FCDAycD - GCD
AX

CD) + (
F

DA
A

YDA - G
DA

AX
DA) 

Referring to Figure 4.1 again, the first term on the right hand side of equation 4.13 can be 

written as 

[FkAyk - GkAxk] = « K4.13) 
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FAßAyAB - GABAxAB = 0.5 * (FSJ + Fy_,)(yB - yA) - 0.5 * (Oy + Gy_,)(xB - xA) 

(4.14) 

The fluxes on the other three sides can be written in a similar fashion. The viscous 

terms are evaluated in a similar fashion. For example, terms like ^- and 4^ are evaluated 
3x dy 

as follows : For the control volume sketched in Figure 4.1 these terms are written as 

,Jk=l y 'Ok = l 

and an equation similar to 4.14 can be written. For example, for face 2 these work out to be 

UBCAyBC = 0.5*(uiJ + Ui + lj)*(yc-yB) 

UBCAxBC = 0.5 * (Uy + Ui + lj) * (xc - xB) 
(4.16) 

The control volume formulation given above, is essentially a second-order central difference 

scheme and hence suffers from odd-even decoupling. That is, the control volume 

formulation introduces dispersive errors to the solution especially in the case of flow fields 

with strong gradients such as shocks. In order to suppress the oscillations, induced by 

dispersive errors, one can add extra dissipation to the numerical procedure (Hirsch, 1990). 

Alternatively, an upwind type scheme implicitly contains numerical dissipation to suppress 

such undesirable oscillations. 

4.1.3 Artificial Dissipation Schemes 

In order to dampen the amplitude of the oscillations introduced by the "second-order 

central difference scheme" explained above, a dissipation term Djj is added to the fluxes in 

equation 4.12. Dy can be defined in one of two ways. One is a blend of second- and 

fourth-order differences and the-other is a scheme based on TVD schemes. 

4.1.3.1 Blend of second- and fourth-order differences 

In this scheme a blend of second- and fourth-order differences of the vector Wy 

defined by equation 4.3 is used. The basic dissipation scheme, first proposed by Jameson et 
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_Di,j - di+l/2,j-di-l/2,j + di,j+l/2 

al. [1981] has been modified by Swanson and Türkei [1987] and is outlined here. According 

to this scheme the dissipation term, Dy, is written as 

lij-i/2 (4-17) 

Here, the 1/2 locations correspond to the faces of the control volume. The terms dj+i/2,j and 

di-i/2,j together represent the sum of a second-order difference and a fourth-order difference. 

The term dj+i^j is written as 

"ES1/2j(
wi+u-wy)- 

8m/Jj
Wi+2J-3wm,j + 3W1J-Wi_lj)" 

di+l/2,j ~ \+\/2,\ (4.18) 

where 

li+i/2,i-\[h, + h+l, (4.19) 

h = lu^~ Vxd + cJxl + y\ (4-2°) 
where U and V are the cartesian components of the velocity vector and X| and y| are the 

metrics of the grid system and c is the speed of sound. 

Em/2,j = K(2)ma*h . vi+1J] (4.21) 

r(4) 
'i + l/2,j 

V. • 

max 0,(K(
4
>-E(

2
) #   ) 

\ i+l/2j/ 

Pi + lj _2Pi,j +Pi-l,j 

(4.22) 

(4.23) 
Pi+lj + 2Pi,j + Pi-ij 

where py is the pressure at the control volume defined by the index {i,j}. In the above 

equations, X| represents the maximum eigen value in the % direction. ef2)     . and ef4)     . 

are tuned based on the gradients in pressure. When there is strong jump in the pressure, such 

as across a shock, the second-order difference dominates and extra dissipation is added to 

suppress the spurious oscillations that might arise at the shock location. The fourth-order 
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difference is useful in smoothing out minor wiggles that arise in regions where the variations 

are relatively smoother. 

Similar relations hold for the three other terms in equation 4.17. The terms K(2) and 

K(4) are arbitrary constants. The values for these constants range from 0.25 < K(2) < 1.5 

and 1/512 < K(4) < 1/32. Typically used values for K(2) and K(4) are 1/4 and 1/256, 

respectively. 

In equation 4.17, the first term on the right hand side along with a similar term for 

dj_i/2j represents the second-order difference and the second term on the right hand side 

along with a similar term from dj+1/2,j represents the fourth-order difference along the | 

direction. In the absence of strong discontinuities such as shocks, the second-order term is 

almost negligible and the fourth-order term smooths any oscillations that might occur in the 

solution procedure. The second-order difference based term helps in capturing the shock and 

suppress the oscillations that occur at the shock location. 

4.1.3.2 Flux-limited dissipation 

The flux-limited dissipation scheme is based on the scheme developed by Yee [1985]. 

The approach is to construct a scheme with TVD properties. The finite volume TVD scheme 

used here is obtained by constructing flux-limited dissipation terms added to the physical 

flux terms in such a way that the resulting semi-discrete equations have TVD properties, 

provided proper time stepping is used. Details of the scheme are given in Li and Kroll [1988]. 

The formulation used for the dissipation term is briefly outlined here. 

D;, = -i(T..,.$..,. -T.   ,.<&.   ,. + T...<l>     , -T..   ,0)..   ] (4.24) 

where T is the eigenvector matrix of the transformation Jacobian. The dissipation vectors 

<D are constructed in the i and j directions according to their one-dimensional forms. The 

schemes (Yee, 1985), can be classified into upwind and symmetric schemes. The symmetric 

scheme is used and is defined here. For the symmetric scheme, the k* element of the vector 

O denoted by <l>k is written as 
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♦?ij - - W(<* - flü        <4-25> 
The function W is a correction term which is written as 

Ul ft!  > 8 

2o 

where 5 is a small positive number and Xk is the kth eigen value of the Jacobian matrix. Q 

is a limiter function. The limiter function used here is given as 

Q.H. = minmod(a._,. , a.+,.) + minmod(a.+,. , a.+|j) - a.+,. (4.27) 

where the minmod function is defined as 

minmod(x,y) = sgn(x)max{o,min[|x| , ysgn(x)]} (4.28) 

and ak is the kth element of the vector a = ( ai, 0:2, 0:3 , 0:4 )T and 

T_1 is the inverse of the eigen vector matrix T. The values at (i + 1/2, j) or the cell interfaces 

are obtained using the Roe avergaging technique (Roe, 1981). 

Adding the dissipation terms to equation 4.12 we can rewrite it as 

dWn 

"dT + QiJ ~ DU = ° <4-30) 

where 

4 
Qij = A"SMyk - GkAxk) + Sy (4.31) 

4.1.4 Time Stepping 

An explicit five-step, mo'dified Runge-Kutta time stepping scheme is used in the 

present set of calculations. Details of this time stepping can be found in Hirsch [1990]. A 

brief outline is presented here. The regular Runge-Kutta scheme is fourth-order accurate. By 

sacrificing some of the accuracy an increase in stability of the scheme is obtained (see 
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Jameson et al., 1981). The result is a second-order accurate scheme, which allows the use 

of larger time steps. Rewriting equation with the dissipation term added, we get 

dW; 

dt % + Py = 0    where Py = Qy - Dy (4.32) 

The five stages of the time-stepping scheme are given in the equation below, where 

superscripts have been used to denote the stages of the time-stepping scheme. Superscript 

(n) refers to the values of the Wy vector from the previous time step, and (n+1 j refers to the 

time step for which calculations are being made. Also At denotes the size of the time step 

used for the temporal marching. 

w(0) = w(n) 
ij ij 

WW = W<9 - Ct,AtP(°) 

W<?> = W<9 - cuAtP™ 
IJ ij        l     ij 

W<?> = W<0) - a,AtPf2> 
IJ IJ        J      ij 

W?4> = Wf9 - a4Atp(3> 

W^5> = W<9 - a.AtpW 
id id        3      id 

W(n+1) _ W(5) 
id «d 

where ai = 1/4, a2 = 1/6, a3 = 3/8, a4 = 1/2 and a5 = 1.0. The time step size At is dictated 

by the stability condition and is determined as follows : 

The permitted time step At is defined as the harmonic mean of the time steps allowed 

in the | and r\ directions. These time steps are dictated by the CFL condition. Thus, 

(4.33) 

-L--L + -I 
At     Atfc     At 

A-- A-• 
Att = CFL-r^     and    At« = CFL^1 

(4.34) 

(4.35) 
X§ AT, 

where, X§ and X^, are the maximum eigen values in the % and r) directions respectively and 

are given as 
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Xr, = |-UXT, + VyT1| + cyx2 + y2 

In evaluating the term Py in equation 4.33 it is not necessary to evaluate the dissipation 

term D, j at every stage of the time-stepping, in fact, it is sufficient if they are evaluated at 

the first two stages of the time-stepping. The value of the dissipation that is obtained at the 

end of this second stage is used throughout the rest of the stages. Similarly, the viscous fluxes 

need to be evaluated only at the first stage of the time-stepping. These helping in reducing 

the computational cost. There are other ways of reducing the computational cost. Two such 

ways have been employed in the computational procedure used in this dissertation. 

4.1.5 Convergence Acceleration 

Two convergence acceleration techniques have been employed in the computational 

procedure used here. These are the local time-stepping procedure and the residual averaging 

method. 

In most computational procedures, the time step size is dictated by the stability of the 

scheme employed. In calculations of transient flow fields, the time step size is determined 

as the minimum of the time steps permitted in all the control volumes of the computational 

domain. In computing steady-state solutions it is not necessary to use the same time step size 

over all the control volumes in the computational domain. In fact, in most computational 

cases, there are regions in the flow field where the temporal variation of the flow field is 

almost negligible and would therefore permit the use of a larger time step. In the local 

time-stepping technique, each control volume is stepped in time based on the requirements 

of stability at that control volume (local stability requirements). Therefore, each control 

volume is marched to a different time level at each iteration. Since all control volumes are 

marching towards a steady state the local time-stepping scheme, helps in accelerating the rate 

of convergence of the solution. 
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Another way of accelerating the convergence rate is by using the residual averaging 

technique. This is essentially a residue smoothing procedure and more details can be found 

in Türkei [1984]. A diffusion equation is solved in a manner similar to the ADI (Alternating 

Direction Implicit) method. If Py is the residue from a stage of the time-stepping scheme, 

then the smoothed out value of the residue at this stage is obtained by solving 

(l " ßiöxx)(l " ßlöyy)p*j = p-T (4.37) 

where, 5XX and 8yy are central difference operators and ßx and ßy are terms defined based 

on the largest eigen values in the | and r\ directions respectively. The value of Py is obtained 

by sweeping over the control volumes in the £ direction first and then in the T] direction. That 

is, equation 4.37 is solved to obtain an intermediate value of Py- by sweeping in the | 

direction and then the same is done in the r\ direction. The sweeping can be done either 

explicitly or implicitly. If explicit methods are used, the equations reduce to a solution of 

- ePflij + (1.0 + 2e)P** - ePr+ij = Py" (4.38) 

and, 

- ePfj-i + (1.0 + 2s)Py - ePij + i = Py (4.39) 

where, e is constant and a typically used value is 0.2 for schemes using the blend of second- 

and fourth-order differences based dissipation terms and is 2.0 for schemes using the TVD 

type dissipation scheme. 

4.1.6 Second-Order Upwind Scheme 

As was mentioned earlier, the dissipation terms used in this finite volume scheme work 

to reduce the amplitude of the oscillations about a discontinuity and do not completely 

dissipate them. As a result, in cases with a strong shock* these extra dissipation terms are 

not sufficient. Also, from an analysis of the results obtained for the axi-symmetric afterbody 

flowfield it was observed that the second-order scheme as described above allows the 

*In one of the test cases to be presented later, the projectile forebody problem at Mach 6.06, the bow shock 
formed ahead of the forebody is extremely strong that the dissipation added to inviscid fluxes is not 
sufficient to adequately suppress the oscillations. Therefore, results could not be obtained using the 
"second-order-central-difference" based treatment of the convection terms. 
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upstream propagation of information for supersonic flow fields. Therefore, in these cases 

a second order upwind scheme is used, which is based on the flux-vector-splitting technique 

of Steger and Warming (Shuen, 1992). The fluxes at the interfaces of the control volumes 

were calculated using a MUSCL extrapolation with a min-mod limiter. Brief details of this 

convection treatment are given below : 

Equation 4.12 can be rewritten to separate the inviscid and viscous contribution to the 

fluxes at the cell faces and is now written as 

dW;.       1     *  , 
-ir + Ä~. ZlMy* - GkAx

k)inviscid + Myk - GkAxk)viscous 
1J k = 1 

+   Sy   =   0 

(4.40) 

Defining two new fluxes, Qy and Q^ representing the inviscid and viscous contributions 
# 

respectively, the inviscid fluxes QC: are evaluated as 

Qij = Fc ll + i/2j " 
Fc li-i/2,j + Go l,J + 1/2 " Gc l,._1/2 (4.41) 

where Fc and Gc are defined in equation 4.4. There is no change in the evaluation procedure 

for the viscous fluxes. The viscous fluxes are evaluated in the same manner that was outlined 

previously. 

The terms in equation 4.41, represent the inviscid fluxes at the control volume interfaces. 

These are defined as 

Fc U/2,j = F + (QP+1/2j) + F~(Q?+1/2.) (4.42) 

°~H- l/2,j md Qf+ l/2j ** defmed ^ 

Qh-i/2j = Qy + 4>i + i/2j (4.43) 

<t>f+i/2,j = yminmod[AQy , AQ + ] (4.44) 

where ljj represents the length of the cell and the min-mod limiter has been defined earlier 

in equation 4.28. The terms inside the parenthesis are written as 
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-_2(Qio-Qi-ij) 
AQij = 

AQij = 

'ij + 'i-u 
2(Qi+1J - QUj) 

iy + ^ij 

(4.45) 

The term Qf+l/2 ,• is defined in a similar way and is given as 

Qi + l/2j ~ Qi + lj      ^1+1/2,] 

AQi++Ij , AQr+1j] ^i+l/20 = ^Y^minm0d 

(4.46) 

(4.47) 

With the Q vectors along the left and right running characteristics, defined as above, the 

F+ and F"vectors are defined as 

F+ = Xj-% + X2
+K2 + X3

+K3 

F     = Ai Kj + A2 K2 + A.3 K3 (4.48) 

where vectors Kj, K2 and K3 are written as 

Ki = 
Y-l 

Q 

QU 

QV 

Qht- 
Y 

Qk 

K2~27 

Q(U + kxc) 

o(v + kyC) 

e(ht + ekc) 
ok 
oe 

K3"27 

Q 

e(u - kxc) 

e(v - kyc) 

e(ht - ekc) 
Ok 

Q6 

(4.49) 

where 

kx and kv = ivki — *y ~ m where lVkl = A*+ k' (4-50) 

Depending on the fluxes being evaluated, that is if F + and F ~ are being evaluated then k 

represents the | coordinate and if G + and G ~ are being evaluated then k represents the r\ 

direction. Also, the A's are evaluated as 

^n  = iftn ± \K\ ] where n = 1, 2 or 3 (4.51) 

and 
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^1 = ßk 
l2 = ßk + clVkl 

X3 = ßk - clVkl 
(4.52) 

ßk = Ukx + Vky   and   6k = Ukx + Vky (4.53) 

Again depending on the flux being evaluated the values of the metrics kx and ky  are 

evaluated. A similar procedure is used to define the fluxes G + and G ~. 

4.2 Code Validation 

With the numerical algorithm described above a computational code was developed 

to conduct studies of compressible flow fields. But before any studies can be done, the 

computational code has to be tested and validated for computational accuracy. Such tests 

were conducted of both internal as well as external flowfields. For the external flow field 

case, tests were conducted of flow past two different aerofoil configurations. One was the 

symmetric NACA-0012 aerofoil and the other was the high lift RAE-2822 aerofoil. The 

computational results obtained from these test cases were compared against experimental 

data. The internal flow field that was tested is the flow through a converging-diverging 

nozzle configuration. Three different area ratios were tested and compared against 

experimental data. These test cases are described below and comparisons presented against 

experimental data. 

4.2.1 Aerofoil Flow-Field Computations 

Before presenting the results obtained from the computations, the details regarding the 

computations, such as, boundary conditions are presented below. 

For this set of computations, a conventional C-grid system was used. The grids were 

generated using a grid generation program described in Rizzi [1981]. The physical domain 

used in the computations is shown in Figure 4.2 along with the boundaries of the domain. 

Thus, there are outflow or far-field boundaries, wall boundary and symmetry boundaries. 

The co-ordinate cut represents a symmetry boundary. Conditions have to be specified at 

these boundaries. 
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Outflow boundary 

Figure 4.2 Computational domain for typical aerofoil flow field calculations. 

Boundary conditions are prescribed, in this finite-volume formulation, using a set of 

dummy cells along each boundary. To understand the application of the boundary conditions 

in the computational method, consider the sketch shown in Figure 4.3 which shows the 

computational domain. The locations marked correspond to similar locations in the physical 

plane shown in Figure 4.2. The outer set of dashed lines depict the dummy cells used to store 

the information regarding the boundary condition. To be more precise, let us consider the 

g 

*1 
A 

Aerofoil 

Cut wvvu^uv Cut 

L !  
bl Id' e' 

I 

Figure 4.3 Computational plane. 
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boundary "ab" and the boundary "ed". These boundaries denote the co-ordinate cut. The 

cells bounded by abb'a' get their information from the first set of cells just above "ed" and 

the cells bounded by edd'e' get their information from the first set of cells just above "ab". 

Thus in Figure 4.4, the information for the boundary conditions for the cells at the location 

j=jb are stored in j=jb—1. For the boundary defined by i=ib-l to i=itel and by i=iteu to i=il, 

the following methodology is used. If Wy is the variable whose boundary condition is being 

prescribed, then 

for i = ib to itel 
Wijb-1 = wirJb (4.54) 

where ir = il — i + 1 

and a similar boundary condition can be prescribed for i = iteu to il. 

The wall boundary is modelled as a no-slip boundary in viscous computations with the 

wall shear stresses and the turbulent kinetic energy and its dissipation rate being prescribed 

using the wall function technique described in Chapter 3. In the case of inviscid 

computations, the computational method uses a method prescribed by Rizzi [1978]. Since 

the wall boundary is no longer a no-slip boundary, it is characterized by zero mass flux into 

J 
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the wall. Using this and the momentum equation, a pressure boundary condition can be easily 

derived. At the far-field the effect of the solid boundary has to be taken into account. That 

is, in reality the far-field extends out to infinity. But in numerical calculations, because of 

practical limitations, the extent of the far-field boundary is truncated and so the conditions 

at this boundary, in the numerical domain, are not really free-stream conditions. Physically, 

the control volumes at this boundary location may be expected to feel the impact of the 

aerofoil. Usually far-field corrections are employed to taken into account the impact of the 

aerofoil on the free-stream. More details regarding the far-field correction can be found in 

Thomas and Salas [1986]. 

4.2.1.1 Inviscid computation 

With the specification of the boundary conditions given above, computations were 

made to evaluate the shock-capturing capabilities of the computational code. In order to test 

this, we made computations of the flow over a NACA-0012 aerofoil. Figure 4.5 shows an 

illustrative picture of the grid that was used in these computations. Only a portion of the grid 

used is shown in this picture. The computational domain extended about 5 chord lengths fore 

and aft of the aerofoil and 7 chord lengths in the lateral direction. The grid has 100 grid points 

on the aerofoil surface with 20 points in the wake region. The lateral direction was covered 

using 21 grid points. 

The freestream Mach number is M„ = 0.85 and the angle of attack is a = 1.0 (deg). 

The surface pressure distribution that was obtained from the computations is compared with 

the benchmark data for this flow field (Yoshihara and Sacher, 1985). This comparison and 

the pressure distribution contours (close to the aerofoil) is shown in Figure 4.6. In this figure, 

the pressure coefficient Cp, is defined as Cp = y-—*y-, where p is the surface pressure and 

the subscripts oo refer to the free-stream conditions. It should be mentioned that the 

benchmark data was obtained with 300 grid points on the aerofoil surface and a grid of size 



67 

Figure 4.5 Computational grid used for the inviscid computations of flow over a 
NACA-0012 aerofoil. 

512 x 256. Considering this the computational capabilities of the code (developed in this 

research effort) are quite good. 

4.2.1.2 Laminar computation 

To test the computational capability of the code in predicting simple viscous flows, 

computations were made of the laminar flow over the NACA-0012 aerofoil. This 

computation was intended as a test of the numerical discretization of the viscous terms as 

well as to test the validity of the code in predicting symmetric flowfields. The boundary 

conditions used in this computational study were, a no-slip boundary for the velocity 

components and an adiabatic wall boundary for the temperature field. At the far-field, 

corrections prescribed by Thomas and Salas [1986] (for the finiteness of the computational 

domain) were employed. 
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Figure 4.6 Surface pressure distribution and pressure distribution for inviscid flow over 
a NACA-0012 aerofoil. M«, = 0.85, a = 1.0. 
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The computational domain extended 5 chord lengths fore and aft of the aerofoil (from 

the leading and trailing edges, respectively) and 7 chord lengths in the lateral direction. The 

grid points were clustered close to the aerofoil surface in order to capture the viscous effects. 

The first grid point from the wall (aerofoil surface) was at a Ay = 0.005c (where c is the chord 

length of the aerofoil =1.0). The computational grid had 120 grid points on the aerofoil 

surface and 40 points in the wake region. The grid size used in these computations was 

201x61. The free-stream conditions for this laminar flow were a Mach number of 0.5 and 

a Reynolds number of 5000 at an angle of attack of 0°. The results obtained help to validate 

two aspects of the computational code. One is the symmetry of the solution and the other is 

the accuracy of the coding (in terms of the viscous fluxes). The contour plots of the pressure 

distribution and the surface pressure distribution are shown in Figure 4.7. The Cp profile 

shown in Figure 4.7 has been compared against similar computations made by Swanson and 

Türkei [1987]. The pressure coefficient is defined as indicated above (in the section on 

inviscid computations). The agreement with the results of Swanson and Türkei [1987] is 

very good. 

4.2.1.3 Turbulent flow computations 

The code was next validated to determine the accuracy of coding in terms of 

discretization of the turbulent fluxes and the accuracy in implementation of the wall-function 

treatment. The same grid from the laminar computations was used for this set of calculations 

as well. The non-dimensional distance of the first grid point, away from the aerofoil surface, 

was at a y + ^ 40. The free-stream conditions for this case were a Mach number = 0.5 and 

a Reynolds number =2.89 x 106 at an angle of attack of 0°. The low Mach number form 

of the wall-function treatment, described in Chapter 3, was used here. Results from this 

computation were compared against experimental measurements (Thibert et al., 1979). The 

comparison of surface pressure distribution and a contour plot of the pressure distribution 

in the flow field is presented in Figure 4.8. The agreement with the experimental 

measurements is excellent. 
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Figure 4.7 Validation of computational code for laminar flow past a NACA0012 aerofoil. 
Mo, = 0.5, Re = 5000, a = 0.0 degrees. 
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Surface pressure distribution for flow over a NACA 0012 aerofoil 
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Figure 4.8 Validation of computational code for turbulent flow past a NACAOO12 aerofoil. 
Moo = 0.5 , Re = 2.89 x 106, a = 0.0 degrees. 
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To further validate the code for turbulent flow computations a test, of the 

computational capability in predicting a sub-critical flow past the high lift RAE-2822 

aerofoil, was conducted. The grid used for these computations had 221 grid points in the 

i-direction and 61 points in the j direction. The non-dimensional distance of the first grid 

point, away from the aerofoil surface, was about y+^ 40. The free-stream conditions were 

a Mach number Moo = 0.676 and a Reynolds number Re«,=5.7 x 106 at an angle of attack 

of a = 2.40. The results from this computation were compared with experimental data. The 

comparison indicates that the accuracy of the computations are indeed quite good. The 

surface pressure distribution and the pressure distribution for this case are shown in Figure 

4.9. 

4.2.2 Nozzle Flow Computations 

With the code validated for external flow field computations, we proceeded to validate 

the code for a set of internal flow computations. For this case, we chose the flow through 

a converging-diverging nozzle. This flowfield is characterized by multiple shock reflections 

and interactions between the compression waves and the viscous shear layer. The 

computations were compared against experimental measurements. Three different area 

ratios were tested to ascertain the computational validity of the code. A brief description of 

the boundary conditions used for this set of calculations and the computational grid used is 

given below. 

The nozzle geometry is sketched in figure 4.10 below. There are essentially an inflow 

boundary, an outflow boundary and a solid boundary at the top and bottom of the nozzle wall. 

At the inflow boundary the inlet Mach number, the total pressure and the total temperature 

were held constant. The angle of attack at the inflow is specified to be 0°. At the outflow 

boundary, since the flow is supersonic, the variables are extrapolated. At the solid boundary, 

the no-slip condition is specified and also there is no heat transfer at the walls. 

The nozzle area-ratio is defined as the ratio of the nozzle exit plane area to the area at 

the throat.. For a two-dimensional nozzle this works out to be, for unit depth into the paper, 
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Figure 4.9 Computation of turbulent flow past a RAE 2822 aerofoil: 
Moo = 0.676 , Re = 5.7 x 106, a = 2.4 
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Figure 4.10. Sketch of nozzle geometry used for code validation. 
Ae / A* = 1.09, Md = 1.35, NPRd = 2.97 (Mason et al., 1980). 

the ratio of the height at the exit plane to the height at the throat, that is (with reference to 

Figure 4.10), the area ratio = Aexit / A*. For this validation study, three different area ratios 

were tested. One was for an area ratio of 1.3 and the other for an area ratio of 3.5. The inflow 

Mach number is 0.3 and the inflow Reynolds number is 5.807 x 106. 

To validate the computational predictions against experimental data, another set of 

computations were done of the flow through the converging-diverging nozzle geometry 

sketched in Figure 4.10. Figure 4.10 shows a sketch of the nozzle geometry used in the code 

validation study. The experimental data for this study is available in Mason et al. [ 1980]. The 

pressure distribution on the upper wall of the nozzle is shown in Figure 4.11. The comparison 

between experimental measurements and computational predictions is quite good. Contours 

of static pressure distribution in the nozzle flow field are also shown in Figure 4.11. 
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Figure 4.11. Computation of flow through a converging-diverging nozzle, 
Md= 1.36, NPRd = 2.97. 
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4.3 Summary 

In this chapter, we have presented the numerical algorithm that was used in the 

computational study. A brief description of the finite-volume scheme, the time-stepping and 

the artificial-dissipation schemes used in the computations is presented. The drawbacks of 

the artificial-dissipation schemes have been highlighted. The results from a code validation 

study, of this numerical algorithm, for a variety of test cases has been given. The results 

indicate the accuracy of the code and validate the use of this computational procedure in 

calculating other flow fields to be presented in the following chapters. 

Additionally, grid independency tests (to be presented in Chapter 5) have been 

performed for the axi-symmetric afterbody flowfield have been performed. In that case the 

predictions made by the second-order, "artificial-dissipation" schemes were compared 

against those made using the second-order upwind scheme. The study indicated that for the 

afterbody flowfield, the seond-order upwind scheme offers an improvement (in terms of 

solution accuracy) over the artificial-dissipation schemes. With this in mind, all the 

computational results to be presented in the following chapters have been obtained using the 

upwind scheme. 



CHAPTER 5 
k-E BASED MODELLING OF COMPRESSIBLE TURBULENT FLOWS 

The effect of compressibility on the turbulence structure is an important but difficult 

issue in turbulence modelling. Modelling issues in both the production and dissipation of 

turbulent kinetic energy need to be addressed to account for Mach number effects. Several 

proposed treatments dealing with the dilatation dissipation and the pressure dilatation 

correlation are discussed in the context of the two-equation model. Two new modifications 

are investigated, to account for the extra source terms that appear in the turbulence transport 

equations for compressible flows. Additionally, the effectiveness of proposed modifications 

to allow the dissipation rate to respond to the mean strain rate more effectively, are analyzed. 

5.1 Introduction 

Compressibility refers to the fluctuations in the volume of the fluid cell corresponding 

to the fluctuations in pressure. The effect compressibility has on the turbulence structure 

(i.e., the various correlation coefficients and energy spectrum etc.) is of importance in the 

accurate modelling of compressible flows. Compressible turbulent shear layers are 

characterized by a marked reduction in growth rates (in comparison to incompressible shear 

layers) but retain the structure of their incompressible counterparts (see Chapter 2 for a 

review of compressibility effects on turbulent shear layers). 

Direct Numerical Simulation (DNS) results obtained have helped in understanding 

some of the effects that compressibility has on the turbulence structure (Lele, 1994). But 

DNS is still not a feasible method in computing flow fields of engineering interest. DNS 

results have, however, helped in identifying a parameter that could be used to characterize 

the importance of compressibility on the turbulent fluctuations. This is the turbulent Mach 
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number, defined as the ratio of a characteristic speed of turbulence to the wave speed. Thus, 

72k Mt = — . where k is the Turbulent Kinetic Energy and a is the speed of sound. Mt is a 

non-dimensional parameter, a field variable representing the propagation of information by 

turbulent fluctuations in comparison to the acoustic propagation. DNS results have also 

helped in the formulation of modifications to account for the observed effects of 

compressibility as a function of the turbulent Mach number. These will be presented in the 

subsequent sections of this chapter. In computing flowfields involving a certain degree of 

complexity the two-equation models offer a viable alternative in terms of computational ease 

(Speziale, 1992). A review of the predictive capabilities of two-equation based closures is 

given in Chapter 3. Here the k-E model is used to achieve turbulence closure. 

5.2 Governing Equations 

In the solution of turbulent flow fields the variables are usually split into a mean and 

a fluctuating part. The mean can be defined in one of two ways: 1) Reynolds average, or 2) 

Favre average. In solving for compressible flows, the use of Reynolds average introduces 

correlations involving density fluctuations and the modelling of these correlations is 

difficult. In order to overcome this a combination of Reynolds and mass weighted Favre 

average is used. The advantage in doing this is that the governing equations bear a close 

resemblance to their incompressible counterparts. Therefore incompressible methodologies 

can, with little modifications, be used in solving for compressible turbulent flows. Modelling 

of the correlations can be accomplished in a variety of ways. The exact form of the governing 

equations in their averaged form was presented in Chapter 3. These equations are repeated 

here for convenience. Additionally, terms that are important for compressible turbulent 

flows (as different from incompressible flows) are identified and the modelling of these 

terms is discussed. 

The governing equations are the equations representing conservation of mass, 

momentum and energy. The averaged form of the equations are given below, where density 

and pressure are Reynolds averaged while Favre averaging is used to define the mean of the 
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velocity components and temperature. A tilde denotes a Favre averaged quantity and a (") 

denotes fluctuations with respect to the Favre mean. An overbar denotes a Reynolds average 

and a (') denotes fluctuations with respect to it. The variables are split up into their mean and 

fluctuating part as given below in equation 5.1: 

Q = Q + Q' 

u, = ÜJ + u," 

T = T + T" 
p = P + p' 

(5.1) 

where Q, UJ, T, and p refer to the instantaneous density, velocity, temperature and pressure 

respectively. P refers to the Reynolds averaged pressure. The exact form of the governing 

equations, using the mixed averaging technique, is given as follows : 

Continuity 

äfe>+^N = ° (5.2) 

Momentum 

l(e°j) + ^(Wi) ■ " § + jth + V " e»TV]       <«> 
Energy 

at (^) + äfe(eüjö)=äx- 

'üjfci + <>«" - eui"uj") + <*a + W - % 

- qj"  - Ou/'h"  - QUj"(lui"u1") 

(5.4) 

Turbulent Kinetic Energy (TKE) 

a /«, ftim + ^M = - ivv§ - srf + v%+ 
ax: W  - QU/'^U/V') " P'Uj" + p ix" " ~^T ij 

(5.5) 
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where 

(5.6) Zy = 2|xSy + XUk,köy ; Sg = ±(Üy + Üj 

W7 = 2^sü + H^ij > sij = jfiT + V7) (5-7) 

Following the assumption that there are regions in the flow field where molecular 

properties are more important, terms such as öy" , q." , u;"2y and U;"-^, in the above 

equations are neglected. Rewriting the modified governing equations, we have 

Continuity 

Momentum 

l® + i-N = o 

U^)+^(m) = -^^ 2y   -   QUi"Uj" 

(5.8) 

(5.9) 

Energy 

IM + äfe^ÜjH) = dXj 

U,.| 

B 

-QUi"Uj") 

c 
+   U/'Oy"   -  qj 

D 

- Qu/'^Ui'VJ - euj"h" - 

Turbulent Kinetic Energy 

|(ek) + ^(w) - - iv^^i - ^iP - *i". - 
ax,    Hiläx;     ax; 

ay   + 
M M _ 

H I 

ÖXJ 
Ui"ay" - QU/'^U/'U/') - p'uj" + P 

,du{ 
dX: 

K 

(5.10) 

(5.11) 

where k represents the turbulent kinetic energy and is equal to k = 
QUj   u/ 



In the above equations, the terms that need to be modelled are indicated by an 

underscore and are denoted as terms A through K. The current modelling procedure (of these 

terms) based on the k-E model is given below. 

Terms A. C and G : These are the Reynolds stress terms. They are modelled as 

ouj-u/' - 2mSa + Xf^öjj - fQköy (5.12) 

_      2, where Sy- is defined in equation 5.6. [xt is the eddy viscosity and Xt = - ^u,t. Throughout 

the rest of this dissertation we will use capitalized notation to indicate averaged quantities 

(except for density, where Q will denote the average value). Implicit in the notation used is 

that the pressure and density are Reynolds averaged while the velocity components and 

temperature are Favre averaged. 

Terms D. F and J : These terms represents the diffusion of energy due to turbulent 

fluctuations and are modelled as 

u/'oy - QU/'^U/V) « ^ (5.13) 

The effect of the term p'Uj" on the rate of change of TKE is not explicity accounted for and 

is included in the model for the diffusion terms given in equation 5.13. 

Term E : This represents the turbulent heat flux and using the Reynolds' analogy 

(Schlichting, 1968) this term is modelled as 

Ht dT - K'h" - wt^ <5-14> 
where Prt is the turbulent Prandtl number and is usually specified to be equal to 0.9. 

Term I : This term represents the rate of dissipation of turbulent kinetic energy due to 

molecular effects and is solved for via a transport equation. That is, 

du/' 
it"0*/' = Q£ (5.15) 

We will return to this definition of 8 when we discuss the dissipative effects of 

compressibility. 
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In the k-e based modelling, transport equations for k and s are solved. With these a 

characteristic velocity scale and a length scale can be identified resulting in the following 

definition for eddy-viscosity. 

ok2 

Ht = C^ where C^ = 0.09 (5.16) 

5.3 Modelling of Compressibility Effects 

In the equations governing the compressible turbulent flow field, terms can be 

identified which are of relevance and different from those of incompressible flows (see Table 

5-1). From the governing equations given above, the terms that are unique to compressible 

turbulent   flows    (and    not   accounted   for   in    "incompressible"    models)    are: 

>i"    „...TTTTdP 
°[i" ' V~dx~ and Ui"dx~'m addition to the dilatational effects on the rate of dissipation 

of TKE. ay" is purely a result of Favre averaging and at low Mach numbers it does not 

represent compressibility effects (Lele, 1994). Therefore, in order to close the system of 

equations we need to suitably account for V'~T~ ^ ü^f^- We wil1 refer> henceforth, 

to the first term as the pressure dilatation term and the second term as the enthalpic 

production term. Before we discuss the  modifications that have been proposed for the 

pressure dilatation term, let us consider the effects of compressibility on the rate of 

dissipation of TKE, E. 

5.3.1 Dilatation Dissipation 

From a DNS analysis of compressible flows Sarkar et al. [1991] and Zeman [1990], 

concluded that the effect of compressibility on the turbulence structure was a dissipative one. 

Compressibility introduces an extra amount of dissipation (of the turbulent fluctuations) due 

to the non-divergent nature of the velocity fluctuations, as can be seen by examining the 

definition of the rate of dissipation of TKE. Following the definition of e given above in 

equation 5.15, we get (Zeman, 1990 and Sarkar et al., 1991): 
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Table 5-1. Terms representing the effect of compressibility on the structure of turbulence. 

Terms Proposed Modifications Advantages / Drawbacks 

1. Dilatation 
Dissipation 
(Ed) 

(a) Sarkar et al. [1991] 
- (Eqn. 5.30) 

(b) Zeman [1990] 
- (Eqn. 5.27) 

(c) El Baz and Launder 
[1993]   -(Eqn. 5.31) 

Zemans' modification requires information 
regarding the kurtosis of the fluctuations, 
which is not available in general. Both models 
do a good job in predicting the growth rates of 
mixing layers, but fail to predict the correct 
variations in skin friction coefficient in the 
case of wall boundary layers, (Wilcox, 1992). 

2. Pressure 
Dilatation 
fp'd") 

(a) Sarkar [1992] 
- (Eqn. 5.38) 

(b) Zeman [1992] 
- (Eqn. 5.44) 

(c) El Baz and Launder 
[1993] - (Eqn. 5.46) 

(d) Current [1992] 
- (Eqn. 5.63) 

(e)Rubesin[1991] 

Models (a) and (c) were intended for the 
mixing layer. When applied to boundary 
layers, they yield reduced levels of TKE 
which is an undesirable outcome, (Huang et 
al. 1994). Model (b) improves the prediction 
of log-law profiles. Model (e) makes the 
system of equations very stiff and difficult to 
solve, (Huang et al. 1994). 

3. Turbulent 
Mass Flux 
(Ui"j 

(a) Rubesin [1991] 

(b) Ristorcelli [1993] 

(c) Current (Eqn. 5.56) 

Model (a) introduces an ad hoc assumption 
regarding the fluctuating enthalpy and 
requires prescription of a polytropic constant. 
Model (b) has not been tested. 

4. Enthalpie 
Production 
(VdP/dxi) 

Current Work Model for u," enables us to compute this 
production term, but the model still needs to 
be validated, in particular for a flowfield 
where compressibility is an important issue. 

Q£ 3Ui"o," 
dXj   y 

(5.17) 

The fluctuating component of the viscous stresses o{:", is defined as in equation 5.7. 

Assuming the fluctuations in molecular viscosity are negligible we can write 

(5.18) Q8 = 2lx(sijsij)-|fi(ukk"uk>k") 
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where the comma is used to denote a derivative. Denoting the dilatation of the velocity 

flu " 
fluctuations as d" = -r^- we can write 

3xk 

Q£ = (x(2s^-|d"2) (5.19) 

where u. represents the coefficient of molecular viscosity. If we define the fluctuating 

vorticity vector as, cop" = (ui;j" - u,/') we can obtain the relationship, 

1- >/,., " _i  ,,   //,,   // SijSg = £©p"a>p" + uy"Ujii" (5.20) 

Substituting this relationship into equation 5.19, we obtain 

Qe = (i(t0p"cop" + 2uiJ"uj>i" - Id771) (5.21) 

The second term on the right hand side in equation 5.21 satisfies the following relation 

(Sarkar et al., 1991) 

W = (W)fij " ^u'V),; + uu"UjJ" (5.22) 

For homogeneous turbulent flows, this relationship reduces to 

W = V'ujj" = d"2 (5.23) 

Combining this with equation 5.21, we obtain 

Q8 = |i(tüp"(öp" - Id772] (5.24) 

The dissipation rate (of TKE) in compressible turbulent flows can be, therefore, written as 

a sum of a "solenoidal" dissipation rate (the first term on the right hand side of equation 5.24) 

and a "dilatational dissipation" rate. Thus, 

.      Q£ = Q(ES + ed) (5.25) 

where 

Q8S = n(cop"(op")   ;   Q£d = l^id772 (5.26) 

The solenoidal dissipation rate can be thought of as the dissipation due to the regular 

process of cascading of energy to the smaller scales and in the absence of dilatational effects 
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it can be considered to be equivalent to the "incompressible" dissipation rate. The 

dilatational dissipation (also referred to as compressible dissipation) is due to the 

non-divergent nature of the velocity fluctuations. 

5.3.1.1 Zeman modification 

Zeman [1990], assumed the presence of eddy shocklets in the compressible turbulent 

flow field (Passot and Pouquet, 1987) and that these eddy shocklets directly affected the 

dilatational dissipation rate, ed, but not the solenoidal dissipation rate. Proceeding to model 

this dissipation rate as a function of a probability density function of the fluctuations in 

velocity he assumed that the variance of these fluctuations was equal to a non-dimensional 

/2k parameter called the turbulent Mach number, Mt, which is defined as Mt = ^-. The 

turbulent Mach number is a field quantity and represents a ratio of the propagation of 

information by turbulence to acoustic propagation, with the turbulent kinetic energy 

providing a characteristic velocity scale at which turbulent fluctuations transfer information. 

The model proposed by Zeman [1990], for the dilatational dissipation rate is given below: 

sd = cdesF{Mt , K} (5.27) 

where Cd is an adjustable constant of order one and K is the kurtosis of the fluctuations. The 

function F f Mt, K } is given as, 

3 

P(ml)dml FMt,K  = LI I"1?"1 

Mt    \     mi 
l 

(5.28) 

where p(m!) is an assumed non-Gaussian pdf. Also, mt = -^ , where u is the velocity 

fluctuation ahead of the shocklet, and a* is the sonic speed. This expression was further 

approximated, (for computational ease), as 

F(Mt) = 1 - expj- [(Mt - 0.1)/0.6]2| 

and (5-29) 

F(Mt) = 0, if Mt < 0.1 
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5.3.1.2 Sarkar et al. modification 

Sarkar et al. [1991] considered the evolution of the turbulence fluctuations on an 

acoustic time scale. They considered the effect of varying compressibility, based on the 

turbulent Mach number, Mt, on the rate of dissipation of TKE e. Analysis of decaying 

compressible turbulence indicated that the impact of varying compressibility on the 

solenoidal component of the dissipation rate, (es) was negligible in comparison with the 

effect on the dilatational component, (ed). They also observed, that the ratio of dilatational 

dissipation rate to the solenoidal dissipation rate, that is, I x = -jr) varied directly as the 

72k 
square of the turbulent Mach number, Mt = 1-^-. Based on an analysis of the evolution of 

the fluctuations on an acoustic time scale, they proposed a model for the dilatational 

dissipation rate, which is given as, 

ed = a,EsM? (5.30) 

where cci is an arbitrary constant of 0(1). The constant a\ is determined from an analysis 

of the predictions made of decaying compressible turbulence. 

5.3.1.3 El Baz modification 

We will refer to the modification proposed by El Baz andLaunder[1993] as the El Baz 

modification, through the rest of this dissertation. El Baz and Launder[1993] proposed a 

modification to account for this extra rate of dissipation due to compressibility effects. They 

chose to model one of the constants in the modelled form of the transport equation for es. 

The transport equation in its modelled form is given in Chapter 3, equation 3.45. In Chapter 

3, we have discussed the estimation of the constant CE2. El Baz and Launder [1993] chose 

to modify the constant CE2 to match the observed decay rate of compressible isotropic 

turbulence. Based on this observation, they modified this constant as 

C£2' = 1 +
C

3
£22M2 Where Mt = TT <5-31) 
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and used Q2' instead of Q2 in the modelled form of the transport equation for e, given in 

equation 3.45. 

5.3.1.4 Comparison of dilatation dissipation modifications 

All the modifications presented above are not very much different from one another. 

Recently Blaisdell et al. [1993], compared the predictive capabilities of the Sarkar et al. 

[1991] model and the model proposed by Zeman [1990]. From their study they concluded 

that the Sarkar et al. [ 1991 ] modification was marginally superior to that proposed by Zeman 

[1990]. Furthermore, they also raised the question regarding the applicability of both 

modifications in computing decaying compressible turbulence, because the decay rate they 

observed was very much dependent on the initial conditions. 

To compare the modifications due to Sarkar et al. [1991] and El Baz and Launder 

[1993], we conducted numerical simulations of decaying compressible turbulence at three 

values of initial turbulent Mach number, Mt0. In the case of decaying isotropic compressible 

turbulence, the equations reduce to 

Sarkar modification. (Sarkar et al., 1991): 

~ = - es(l.O + c^M2) (5.32) 

IT -" C4 <5"33> 
4Mt) e2       / Nr i 
"IT = " "k ^l1 + aiM?Il + °-5^ - IK] (5-34) 

El Baz modification. (El Baz and Launder, 1993) 

dk 
dt = - ss (5.35) 

dt I 1 + 3.2M2 I k 
(5.36) 

d(M2) 
_V_1Z =   _ ^M4[! + 05y{y _ 1)M2] (537) 

E2 



The above equations describe the evolution of the turbulence field. These equations 

were solved using a second-order Runge-Kutta scheme for various values of the initial Mach 

number, Mt,0 . The model coefficient Ce2, was chosen to be 1.83, in order to reproduce the 

. observed decay rate in the case of high Reynolds number incompressible turbulence. 

The decay of TKE is shown in Figure 5.1. In the figure, ko and (es)0 refer to the initial 

values of TKE and the solenoidal dissipation rate, respectively. As Sarkar et al. [ 1991 ] point 

out, these computed values should not be compared with DNS simulations but just used to 

evaluate the decay rate of the TKE predicted by the two different modifications. For the 

lower Mach number cases, the two modifications predict the same initial decay rate. But at 

a later time, the El Baz and Launder [1993] modification does seem to predict a slightly 

greater reduction in the TKE. There are, however, distinct differences between the 

modifications for the initial turbulent Mach number of 0.5, which in free shear layers 

corresponds to a free stream Mach number of 10. 

5.3.2 Pressure Dilatation 

The pressure dilatation p'd" where, d" = -^-, is one of the terms that appears 

explicitly in the governing equations, in the case of compressible turbulent flows, due to the 

non-divergent fluctuating velocity field. The pressure dilatation refers to the work done due 

to simultaneous fluctuations in the volume of the fluid cell corresponding to the fluctuations 

in pressure. It can be either positive or negative and when negative represents an extra 

dissipation. 

Modifications have been proposed by Sarkar [1993], Zeman [1992] and El Baz and 

Launder [1993] to model the effect of this dilatational term. 

5.3.2.1 Sarkar modification 

Sarkar [1992] conducted an analysis of the evolution of the pressure dilatation 

correlation in both decaying compressible turbulence and homogeneous shear turbulence. 

Writing a Poisson equation for the pressure fluctuations, the evolution of the incompressible 
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Computations of the decay of isotropic turbulence with the model of compressible dissipation 

Mt,0 = 0.3 

— = Sarkar et al. modification 

 = ElBaz modification 
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— = Sarkar et al. modification 

 = El Baz modification 
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Computations of the decay of isotropic turbulence with the model of compressible dissipation 

Mt)0 = 0.5 

— = Sarkar et al. modification 

— = El Baz modification 
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(es)ot/ko 

2.5 

Figure 5.1     Computed decay of isotropic compressible turbulence using two different 
modifications for dilatational dissipation. 
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part and the compressible part of the pressure fluctuations was considered*. Denoting the 

incompressible part of the pressure fluctuations as pj' and the compressible part of the 

pressure fluctuations as pc', they considered the evolution of pj'd" and pc'd''. These studies 

seem to indicate that the pj'd" component of the pressure dilatation term was affected to a 

greater extent by compressibility than pc'd" (for both decaying and homogeneous shear 

turbulence). From an analysis of pT'd" (based on a decomposition of the pressure 

fluctuations into a rapid part and a slowly evolving part) they present modifications for the 

pressure dilatation term. The analysis did not take into account the contribution from pc'd" 

and was restricted by the assumption of homogeneity in the fluctuations, that is, spatial 

gradient of fluctuation correlations is equivalently zero. Borrowing ideas from the modelling 

of the pressure-strain correlations in incompressible turbulent flows the model for the 

pressure dilatation term is derived. 

jTd77 = - a3PkM2 + a4oesM2 (5.38) 

72k 
where a3 = 0.4 , a4 = 0.2 and Mt = 1-^-. In addition cti in equation 5.30 is set equal to 

0.5. The constants are obtained from a curve fit of the model with DNS simulations. 

5.3.2.2 Zeman modification : 

The model due to Zeman [1992] is based on the balance of the transport equation for 

the pressure fluctuation variance. That is, 

iDp'2 , ,ÖUj"       -^aU:       0 do 
YW = ~ ea p it" ~ YP li ~ a p'uj"äf:+ m^er order terms (5-39) 

ft 

Making an assumption that the variance in pressure fluctuations was small, Zeman [1992] 

neglected the second term on the right hand side. And assuming that the temporal variation 

of the pressure variance was negligible, he obtains a functional form for the pressure 

dilatation term. 

* 
Writing the Poisson equation for the pressure fluctuations, two groups of terms can be identified. The 

split up is based on the assumption that the mean density variations contribute to the evolution of the 
incompressible part of pressure fluctuations and the fluctuations in density and its gradients contribute 
to the evolution of the compressible part. 
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p'^-'l-^l <™» 
Using the equation of state the pressure velocity correlation can be expressed as (Lele, 1994): 

p^u/7 = l^uT7 + IrV (5.41) 

With the model for the turbulent mass flux (first term on the right hand side of equation 5.41) 

and the model for the turbulent heat flux (second term on the right hand side of equation 5.41) 

he derives a model for the pressure dilatation term. The steps in this derivation are: 

From Sarkar and Lakshmanan [1991] 

Ty^j = _ Jh^dQ_ 
y   J QO-QdXj V"Z) 

where o*e = 0.7 

From the model for correlation between fluctuations in temperature and velocity 

T-u/' = - &±£L      where Prt = 0.9 (5.43) 

Substituting these two models into equation 5.41 and curve-fitting the model to DNS results 

(and invoking boundary layer assumptions) they obtain the final form of the pressure 

dilatation term as 

pd = g[y 

where g = 0.2 

where, Mt a * 

5.3.2.3 El Baz modification 

1_exp[-äö2- (5.45) 

The modification proposed by El Baz and Launder [1993] is referred to as the El Baz 

modification. The modification is largely based on the modelling of the pressure-strain 

correlation term in incompressibe flows. Identifying (in a manner similar to the analysis of 

Sarkar, 1992) a rapid and a slowly evolving part of the pressure fluctuations, El Baz and 
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Launder [1993], proposed to model only the rapid evolution part (that is contribution to the 

evolution of the pressure fluctuations comes only from the mean strain). El Baz and Launder 

[1993] use a method similar to that prescribed by Launder, Reece and Rodi [1975] for 

modelling this term (for incompressible flows). The variation for compressibility comes via 

the introduction of a constant which is considered to be an intrinsic function of 

compressibility which vanishes in the incompressible limit. From a contraction of the model 

for the rapid part of the pressure-strain correlation they obtain a model for the pressure 

dilatation term as 

,dU;" 8   , dUk 
(5.46) 

where F is the constant which is considered to be an intrinsic function of compressibility. 

This function F is assumed to be a function of the turbulent Mach number, that is, 

Ik 
F = ßM?   ;       where Mt = *± (5.47) 

where ß is an arbitrary constant whose value is prescribed to be 1.5 

5.3.3 Proposed Modifications 

The methodology predominantly used in computing compressible flow fields is to use 

Favre averages for velocity components and temperature and Reynolds average for pressure 

and density. The stress tensor and the heat flux vector are computed using Reynolds 

averages. The implicit assumption here is that the turbulence is homogeneous and therefore 

the turbulent mass flux and the fluctuating stress tensor are negligible. But as shown by 

Ristorcelli [1993]*, this could be erroneous in the case of high supersonic and hypersonic 

flow fields. In order to accurately model the exact form of the governing equations (except 

for the dissipation rate transport-equation) account must be made of the turbulent mass flux 

term. In what follows an expression is derived for the turbulent mass flux term. Two new 

* 
Ristorcelli [1993], refers to a DNS study of hypersonic boundary layer to show that the turbulent mass 

flux terms are quite substantial in comparison with the mean flow velocity components. 
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modifications are proposed to account for the enthalpic production term and a term to 

account for the effect of the baroclinic torque on the turbulent fluctuations. 

5.3.3.1 Estimation of turbulent mass flux 

The total enthalpy, H, in its instantaneous form can be written as : 

H = h + iUiUi (5.48) 

where h is the static enthalpy and Uj are the components of the velocity vector. Both h and 

Ui are in their instantaneous form. Using Favre averages, equation 5.48 can be written in 

terms of mean and fluctuating quantities. The equation is then written as 

H + H" = h + h" + i(U; + Ui")(Ui + uj") (5.49) 

Expanding the third term on the right hand side and rewriting the above equation, we get 

H + H" = Ü + lUiUj + iuj'V + [h" + Ui"Uj (5.50) 

In most modelling procedures, the average value of stagnation enthalpy, H, is associated 

with the first group of terms on the right hand side of equation 5.50. Fluctuations in 

stagnation enthalpy are associated with the second group of terms on the right hand side of 

equation 5.50. Making an assumption of constant stagnation enthalpy, an expression can be 

derived to relate the fluctuations in enthalpy to the turbulence intensity. From their 

experimental measurements of the flow past an axi-symmetric afterbody (at an inflow Mach 

number of 2.3) Gaviglio et al. [1977] observed that the assumption of constant total enthalpy 

was indeed valid. Therefore, assuming constant enthalpy the second term on the right hand 

side of equation 5.50 can be equated to zero. Thus, 

h" = - Ui"Ui (5.51) 

Assuming that the fluctuations are isobaric, the relationship between the fluctuations in 

density and temperature can be expressed as 

^ = - ^ (5.52) 
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The assumption of isobaricity has been confirmed by the experimental observations of 

Gaviglio et al. [1977]. If we assume constant specific heats, then equation 5.52 can be used 

to relate the fluctuations in density and enthalpy. Thus, 

&_ _ _ T" _ h" 
~Q  = ~ ~f~ - ~~~ (5.53) 

The above equation coupled with equation 5.51 gives a relationship between the fluctuations 

in density, temperature and velocity as given by equation 5.54. 

From definition, 

,.'., / 

Ui"=-^r (5.55) 

Multiplying equation 5.54 throughout by Uj' and averaging we can set up a functional 

relationship expressing the dependence of the turbulent mass flux on the gradients in 

temperature and the Reynolds stresses. The functional relationship is expressed in the form 

given by equation 5.56. 

Uj" = ci< 
VtCpVv - i \ at + (Y - 1)  

Qa2 J (5.56) 
Prt )\ ga.2 j ^ 

where Ci is an arbitrary constant and Cp is the specific heat at constant pressure. Comparing 

this expression with that of Ristorcelli [1993] we get 

„ 2Mt       .       AT      J2k 
Cl = T~^Mt 

Where Mt =   a (5-57) 

It is to be noted that equation 5.56 expresses the functional dependence of the turbulent 

mass flux on the thermal gradients and the intensity of the velocity fluctuations. The 

assumption was used as a starting point for modelling the turbulent mass flux. It does not 

imply that the fluctuations are isobaric and if we make the assumption of isobaricity of the 

fluctuations, then the terms inside the parenthesis in equation 5.56 cancel each other out. 
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5.3.3.2 Estimation of pressure dilatation 

The estimate for the pressure dilatation term* follows closely the derivation for the 

corresponding term by Rubesin [1990]. 

From the continuity equation we get the transport equation for the fluctuating density 

dQ' l + irK + eV' = 0 (5.58) 

Multiplying by (Q ') and rearranging the equations and neglecting the triple correlation term, 

we get 

,3U, du,, 

TM2) + ^i-M2)+ 2^+ *<■§;+ 2^"it" °  (159) 

Averaging and rearranging, we get 

.,*v 
dxh 2Q M*2) + *>ik[*: o'2 \ ÖU dQ 

tf-löu    u*'ät   (5-60) 

Defining a new variable ß where 

ß = m »'2 

Q 
;or  ^=ß^ (5.61) 

Making the assumption that the intensity of pressure fluctuations are directly proportional 

to the intensity of density fluctuations and writing 

P      Q 
(5.62) 

We can therefore, making a change of variables to ß2, derive a relationship for the pressure 

dilatation correlation as 

du," 
dxv 

= P i^-ÜT7 - l 
Qd\k 

k      2 |(ß2) + okät(ß
2) 

i 

(5.63) 

To estimate ß2 we use the empirical observations of Gaviglio et al. [1977] and obtain, 

The derivation for the pressure dilatation term is presented here to indicate that the term 
can be calculated using the modification derived above for the turbulent mass flux. In 
the computational study given in Chapter 6 the modifications for pressure dilatation 
derived in this section were not used. 
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ß2=!^=[(Y-l)M2f(^| (5.64) 
O2 

It should be noted that this derivation for the pressure dilatation correlation is strictly 

applicable for cases where the fluctuations cannot be considered to be isobaric. 

5.3.3.3 Effect of baroclinic torque 

The modelling of the transport equation for es usually follows the incompressible form 

and ignores the effect of the baroclinic torque. ss is usually defined as the correlation between 

the vorticity fluctuations, that is, es = vco/'cOj" where v is the kinematic viscosity. The 

assumption made in the proposal for the algebraic modification for the dilatational 

dissipation is that the solenoidal dissipation rate is relatively unaffected in the case of 

compressible flows. DNS studies (Zeman, 1990 and Sarkar, 1991) of decaying isotropic 

turbulence and homogeneous free shear layers at low Reynolds numbers seem to warrant this 

assumption. But the validity of such an assumption in the case of high Reynolds number 

flows and flow fields of increased complexity is open to question. The solenoidal part of the 

rate of dissipation of TKE cannot be assumed to be independent of compressibility effects. 

A look at the exact form of the governing equation for es will reveal this. 

The exact form of the governing equation for the solenoidal dissipation rate, £s, is 

written as (e, in the equations that follow, is used to denote the solenoidal dissipation rate 

es): 

jffee) + 7>ffeUke) = PE + DE + <DE - VV
2

E + B£ (5.65) 

where 

"777T~77        P 9Qn rrdUo _    / .. dUr 
PE = - 2vcop"uk"1^ + 2vcop"cok"-^ + 2vQk| Op"-^ I        (5-66) 

De = " uk"ärH-"«?") + 2vü)p"cok"-^- (5.67) 

*■ - -*2bt Mr (568) 
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R    _ 7v
emi\dQ       „dp'       dp dQ' „dQ'dp' £     V{^ p ^   ^ p ^     p äE^J (5.69) 

Term 1 Term 2 Term 3 

In the equations above, PE represents the "production of dissipation", D£ represents 

the "turbulent diffusion of dissipation", 3>E represents the "destruction of dissipation". The 

fourth term in equation 5.65 represents the viscous dissipation of 8. 

BE (equation 5.65), represents the baroclinic term and arises due to differences in 

direction between the gradients of pressure and density, i.e., the term arising due to 

^)X(VP) In the case of the mean flow, the baroclinic term represents a production of 

vorticity due to the interaction of the pressure and density gradients. We, therefore, assume 

that this term represents a production of fluctuations in vorticity. To evaluate and to suitably 

account for the effect of this term we conducted an order of magnitude analysis comparison 

of the three terms. 

A characteristic length scale, Ld is chosen as representing the spatial extent of the 

distortion. AQ and AU are chosen to represent variations in Q and Uj respectively. The 

gradient in mean pressure is assumed to be of the order of (QUAU / LJ and the fluctuations 

in vorticity are assumed to be of the order of e/k, where the reciprocal represents a 

characteristic time scale of the turbulent fluctuations (in second-order eddy-viscosity 

models). With these the order of magnitude of the terms in the expression for B8 work out 

tobe : 

Term 1 = 
_ AQe/Ap'' 

Term2 — iPto"-^ 
OX;    p    dXq 

. = /QUAUWAQ'^ 
A Ld MLd, 

Term 3   = CO 
„dQ'dv' 

p    öXq dXj 

.  =E/V\/Ap^ 
klLdj\Ld> 

(5.70) 

(5.71) 

(5.72) 
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Comparing the orders of magnitude of terms 1 and 2 we get 

Terml/ Term2 = 

AQ E Ap' 
Ldk Ld 

QUAU E AQ' 

Ld   k Ld 

" iKüAü) ^    « 1 <"3> 

where it has been assumed that (Ap'j and (AQ') are of the same order. 

Comparing the orders of magnitude of terms 2 and 3 we get 

"QUAU E AQ' 

Term2 / Term3 = 
L,   k L, 

E Ao' Ap' 
k Ld  Ld 

QUAU      , y > 1 (5.74) 
Ap' 

where we have assumed that the fluctuations in pressure are of the order of magnitude 

n'2 
(suggested by Lele, 1994) ^ = y2M2M2, where M = | and M? = -^ where S is 

r- c cl 

representative of the mean flow time scale, / is a characteristic length scale of the turbulent 

eddies, c is the speed of sound and q = u/'u;". It should be pointed out that the order of 

magnitude analysis is just a first order estimate and the orders of magnitude used can be 

debated. Additionally, it has also been assumed that the fluctuations in vorticity and the 

gradient of fluctuations in pressure and density are well correlated. However, due to a lack 

of information to provide us a better estimate of the orders of magnitude, we will use these 

estimates to obtain a modification for the term representing the effect of the baroclinic term. 

Thus from the order of magnitude analysis it turns out that the second term in equation 

5.69 is the more dominant term in comparison with the other two terms that make up Be. 

Comparing this term with the transport equation for TKE it is modelled as - C^u^7^-. 

We chose to model the second term in equation 5.69 as a production term because we know 

that for the mean flow the baroclinic term acts as a production of vorticity. The constant is 

based on conventional modelling of the "production of dissipation" term in the e equation. 

There is no experimental or DNS data to guide our choice of this constant. Future 

experimental observations or DNS studies may help us in making a better estimate of the 

constant. 
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Therefore the modelled form of the transport equations representing the evolution of 

k and 8 are given as 

and 

U + -ÜS. ii - ui s;+ P "ST   (5J5) 

im + i-M - c.,f (pk - u,-^) - ca5f+JL *+m, (5.76) 

5.3.3.4 Comment on proposed modifications 

The advantages of the current modifications are : 

a) A representation for the turbulent mass flux term, using experimentally validated 

assumptions. The representation for the turbulent mass flux proposed by Rubesin [1990] has 

the inherent problem of an arbitrary parameter in terms of the polytropic coefficient. Also, 

Rubesins' modification (Rubesin, 1990) will predict no turbulent mass flux when there is 

no heat flux. 

b) A representation for the enthalpic production, which tends to be an important term 

when considering flows involving strong expansions and compressions. This representation, 

again, avoids the use of an arbitrary polytropic coefficient. Also, the entire modification 

proposed by Rubesin [1991] is based on an ad hoc hypothesis. 

c) A representation for the effect of the baroclinic term on the dissipation rate ofTKE. 

The necessity for modelling this term in highly compressible or stratified flows is clear and 

in fact this will become abundantly clear when we look at the solutions to the flow past the 

axi-symmetric afterbody. 

These representations help solve the exact form of the transport equations, albeit in a 

modelled form. Huang et al. [1992], have shown that in the case of wall boundary layers the 

k-E form of modelling show a strong dependence on the density gradients. It remains to be 

seen whether the modifications presented here for the E equation may help in offsetting this 
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dependence. A more detailed analysis, particularly of the e equation, needs to be conducted 

to clarify this issue. 

It should also be pointed out that the effectiveness of such modifications in the case 

of reacting flows and also hypersonic flowfields with strong wall cooling is in question. 

Further tests are needed to validate and/or to improve the modifications for such flowfields. 

5.3.4 Additional Issues 

The modifications given by equations 5.27 through 5.47 were intended for mixing 

layers. Consequently, they have been shown to be successful in predicting the reduction in 

the growth rates of free shear layers (Zeman, 1990 and Zeman, 1991; Sarkar and 

Lakshmanan, 1991; Sarkar, 1992; El Baz and Launder, 1993 andWilcox, 1992). 

From their DNS study of homogeneous shear layers, Blaisdell et. al. [1993] conclude 

that the S arkar et al. [ 1991 ] model gave a better estimate of ed than the model proposed by 

Zeman [1990]. However the validity of these algebraic modifications in predictions made 

of time dependent flow fields is in question. For turbulent boundary layers (Wilcox, 1992) 

they predict reduced levels of TKE thereby aggravating the model deficiencies in predicting 

skin friction coefficient and wall heat transfer rates. All these modifications have not been 

adequately tested to infer their applicability for more complex flow fields which is one of 

the issues being addressed in this dissertation. 

For incompressible flows, equilibrium in the logarithmic region yields the following 

relation between the coefficients in the dissipation rate equation. 

x2 = (CE2-Cel)yc7a8 (5.77) 

where x is the von Karman constant and is 0.41. It follows from Huang et al. [1992] that 

if the model satisfies the above equation then in the case of compressible flows there is a 

balance of terms expressing a dependence on the spatial gradients in density. None of the 

proposed compressibility modifications address this issue. This balance of terms is 

responsible for the deficiencies seen in the computations made of turbulent wall layers. 

Huang et al. [1992] also indicate that the k-co model is dependent on the spatial gradients of 
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density to a lesser extent than the k-e model. The dependence of the modelling procedure 

on the spatial gradients of density can be shown as follows. 

We will first address the dependence of the s equation on the spatial gradients in 

density and next address the same in the GO equation. The k-co model in its current form 

indicates that it is dependent on the density gradients to a lesser degree. But this is mainly 

because of the neglecting of cross-diffusion terms in the co equation. We intend to show this 

in the next few paragraphs. 

Consider the region in the log layer of a flat plate boundary layer. The equations for 

k and e reduce to : 

k equation 

3y \okdy = Pk - Q8 (5.78) 

e equation 

-^fe|)=CsiefPk-Ce2QY (5-79) 
£2 

where 

* = C^   ;   Pk = - Qu"v"|^ (5.80) 

and the constants, C^ = 0.09 , Cei = 1.43, Ce2 = 1.92, ok = 1.0 and oE = 1.3. 

Since in the log layer we can assume an equilibrium between the rate of production 

of TKE and the rate of dissipation of TKE, that is, Pk = e (Huang et al., 1992). Following 

Huang et al. [1992] and using the compressible form of the wall function method the values 

of k, E and Pk can be prescribed as : 

k = $r)lk ; £ = ftrfv = Pk (5-81) 

Substituting these assumptions into equation 5.79 and after mathematical manipulations we 

get 
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X2 a.(Cö-C„)=1+3(l)2(|)2-^(0)+Z| (5,2) 

For the k-co model the equations reduce to 

k equation 

co equation 

~ sK^f)=p* - ec*fflk (583) 

-#fef)=C»ief^-C«.Ä»2 (5.84) 

and the eddy viscosity is defined as 

V-t = I (5.85) 

where C^ = 0.09. Cwi, Cro2 and aw are modelling constants. The exact values of these 

constants are not important for our analysis, they can be found in Wilcox [1992]. 

The reciprocal time scale variable co is defined as co = -=TT;. Conducting an analysis similar 
Cjjc 

to the one above for the k-s model with co = (-7p) ^ü~r= m tne loS region and 
\       /       yC|x 

substituting the values for k and Pk from equations 5.81 and the value of co given above, we 

get 

#ott(c„2-cJ=>4(§)2g)2-i£(g) (5,6) 

Comparing equations 5.82 and 5.86, we see that the k-co model depends to a lesser extent 

on the spatial gradients in density than the k-e model. This is the analysis used by Huang et 

al. [1992]. However, they have not included the effect of the cross-diffusion term in their 

analysis. As Speziale et al. [1992] point out, the cross-diffusion term needs to be included 

in the co equation to get asymptotically consistent values for k (as we approach the wall). The 
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cross-diffusion term is written as Trl^p)(4p )• If we conduct the same analysis on this 

cross-diffusion term we end up with 

jWakVaaA = (xwaii)     1 
k\dy)[dyj *      Jc 

!/2 f/        \  ,_   ,2 

,e3y)W + U2y2)3y (5.87) 

The cross-diffusion term in essence adds extra terms which when taken along with the 

terms for the equation for CD considered by Huang et al. [1992] would lead to an equivalent 

dependence on the spatial gradients in density. Therefore, the k-(D model in the form given 

by Wilcox [1992] while dependent to a lesser extent on the spatial gradients in density will 

not produce asymptotically consistent values for k, in regions close to wall boundary. When 

the cross-diffusion term is added to the to equation to achieve this asymptotic consistency, 

we have to pay the price of increased dependence on the spatial gradients in density. 

5.4 Summary 

In this Chapter, we have considered the exact form of the governing equations and 

identified terms that are unique to compressible turbulent flows. We have discussed the 

modifications that have been proposed to address the extra dissipation introduced by the 

non-divergent velocity field. Additional effects of this non-divergent field have also been 

addressed in the context of the pressure dilatation correlation. Modelling options for this 

correlation have also been addressed. The deficiencies associated with the models for the 

dilatational dissipation term and the pressure dilatation term have been highlighted. 

The drawbacks in the current modelling procedure, in terms of solving the exact form 

of the governing equations, has been our main focus. Modifications have been proposed for 

the turbulent mass flux (and hence the enthalpic production term) and for the effect of the 

baroclinic term. Also, the issue regarding the increased dependence of the k-e model on the 

spatial gradients in density in comparison with the k-co model has been addressed. 



CHAPTER 6 
COMPUTATIONAL ANALYSIS OF COMPRESSIBILITY MODIFICATIONS 

Compressibility modifications have been proposed in the literature to address the 

effect of compressibility on the growth of turbulent shear layers. In addition two new 

modifications have been proposed in Chapter 5 to help solve the governing equations in their 

exact form, albeit in a modelled manner. The effectiveness of these modifications in 

predicting flow fields of increased complexity is addressed in this chapter. Particularly, the 

capabilities of these modifications have been evaluated for the flow past an axi-symmetric 

afterbody and for the flow past a projectile forebody. Additionally, modifications that have 

been proposed to address the added time scale introduced due to non-equilibrium effects are 

analyzed. 

6.1 Introduction 

The effects of compressibility on the growth of a turbulent shear layer has been 

addressed in Chapter 2. DNS studies of Zeman [1990] and Sarkar et al. [1991] seem to 

indicate that the effect of compressibility on both decaying compressible turbulence and 

homogeneous shear turbulence is a dissipative one. Models have been proposed to address 

this extra dissipation (due to the non-divergent nature of the velocity field). Models have also 

been proposed to account for the pressure dilatation correlation. The modifications for the 

extra dissipation due to dilatational effects and the pressure dilatation correlation have been 

successful in predicting the reduction in growth rate and reduction in magnitudes of 

turbulence correlation coefficients of free shear layers (Sarkar and Lakshmanan, 1991). But 

these modifications have been shown to aggravate the deficiencies of the eddy viscosity 

104 
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models in predicting the growth of turbulent wall shear layers (Wilcox, 1992 ; Huang et al., 

1994). 

In Chapter 5, we have looked at the exact form of the governing equations and 

identified additional terms (unique to compressible turbulent flows) that have not been 

suitably accounted for. These are the turbulent mass flux term (and hence the enthalpic 

production) and the effect of the baroclinic term. Modifications have been proposed to 

account for these terms with the aim of solving the governing equations in their exact form. 

In addition, modifications have been proposed (Chen and Kim, 1987 and Thakur et 

al. 1996) to suitably modify the constants in the transport equation for the rate of dissipation 

of TKE. These modifications have been proposed to address turbulent flow fields where the 

rate of production of TKE and the rate of dissipation of TKE are not in equilibrium (this is 

an implicit assumption in the eddy viscosity based models). 

Table 6-1 Modifications to be evaluated. 

Modifications. Details Author(s) 

1. Non-equilibrium 
modification. 

Modification for 
a) imbalance between production of 
TKE and its dissipation rate. 
b) added time scale 

Chen and Kim [1987] 
Thakur et al. [1996] 

2. Sarkar et al. 
Modifications 

Modification for 
a) dilatational dissipation and 
b) pressure dilatation terms. 

Sarkaretal. [1991] 
and 
Sarkar [1992] 

3. El Baz 
Modification 

Modifications for 
a) compressibility effects and 
b) pressure dilatation term. 

El Baz and Launder 
[1993] 

4. Current 
Modification 

Modifications for 
a) Turbulent Mass Flux 
b) Enthalpic Production 

Current work 

All these modifications have been tested to analyze their effectiveness in predicting 

simple turbulent flows. The issue of their applicability in predicting more complicated flows 

is being addressed in this chapter. The modifications that are being tested, in this dissertation 

are listed in Table 6-1. 
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Three flow fields with complex flow features are computed here with an aim to 

understand the applicability of such modifications. These are the flow past an axi-symmetric 

afterbody and the flow field in the forebody region of a projectile. 

6.2 Base Flowfield 

The accuracy of the various modifications in predicting the flow past an axi-symmetric 

afterbody is being tested here. In particular, the compressibility modifications of Sarkar et 

al. [1991], Sarkar [1992] and the modifications of El Baz and Launder [1993] and the two 

additional modifications for the turbulent mass flux term (thereby a representation for the 

enthalpic production) and the baroclinic term are tested in this paper and a comparative study 

is presented. 

6.2.1 Description of the Base Flowfield 

Figure 6.1, shows a sketch of the flow past an axi-symmetric afterbody. The flow field is 

characterized by, 

1. An incoming turbulent boundary layer which undergoes separation at the base edge, 

2. a rapid expansion region, 

3. a mixing layer region where the shear layer interacts with the recirculating region 

Moo =2.46 Rapid Expansion 

Recirculation region 

Figure 6.1. Sketch of the axi-symmetric afterbody flowfield. 
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behind the base, 

4. a recompression region and 

5. a trailing wake region. 

In what follows, abrief description is given of the individual regions of the flow field 

(highlighting some of the drawbacks with reference to eddy-viscosity based two-equation 

models, in particular the k-e model). 

6.2.1.1 Turbulent wall boundary layer 

Some of the main problems in k-£ models are : 

i) asymptotic consistency in approaching the wall: This refers to the problem of prescribing 

the correct variation in k and e in the region close to the wall. As y+ -> 0 , k ~ 0 (y2) and 

E ~ 0 (1). Currently this variation in k and s is obtained by either wall functions or by using 

a low Reynolds number form of the modelling equations. In this study, the wall function 

treatment is being used. Viegas et al. [1985] and Huang and Coakley [1993] have, from their 

computational studies, concluded that the wall function treatment can be used to obtain a 

reasonably accurate prediction of the wall quantities as long as the first grid point (adjacent 

to a wall), is located in the log layer. That is, as long as the computed value of y + = ^-^ 

is > 20, where y is the perpendicular distance of the first grid point from the wall, UT is the 

friction velocity (defined in attached wall layers as UT =    /-7p   ), vL is the laminar 

viscosity at the wall and xwall is the shear stress at the wall. The formulation of the wall 

function is modified to account for the variation of density within the boundary layer. Here 

use is made of the van Driest transformation for compressible turbulent boundary layers, 

ii) the correct prescription of-E at the wall: Currently, curve fits based on empirical 

observations are used to prescribe the value of E at the wall. Unfortunately, these values 

provide accurate values for E at the wall only in the case of attached boundary layers. In the 

case of separated flows, the accuracy of these prescriptions is open to question. 
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iii) Additional deficiencies: In addition to these deficiencies in the two-equation based 

modelling approach there is the issue regarding the dependence of the k-e modelling 

approach on the density gradients which results in incorrect prediction of the skin friction 

coefficient and the heat transfer rates at the wall. However, for the freestream Mach numbers 

that are encountered in this study, the wall function based treatment outlined in Viegas et al. 

[1985] is quite reliable and makes satisfactory predictions regarding the wall shear and the 

value of 8 at the wall as long as the first grid location is well inside the log layer. In the 

computations presented in this article care has been taken to ensure that the first grid location 

is at a y+ of about 40. 

6.2.1.2 Rapid expansion region 

This region is characteristic of a shear layer undergoing a rapid distortion. The 

streamlines in this region are flattened. As pointed out by Gaviglio et al. [1977], this region 

is also characterized by reduced levels of production. 

The rate of production of TKE is expressed as : 

■ 3U — dP 

where the first term on the right hand side of equation 6.1 is called the kinetic production 

rate and the second term is referred to as the enthalpic production rate. The kinetic production 

rate is therefore written as 

 dÜ, 
Pkinetic = - QUi'VlT <6-2> 

The kinetic part of the rate of production of TKE can be split into a dilatational part 

(Pkdj and an iso-volumetric part (?\^y). These are given as 

P« - (lÖSTV7)^ (6.3) 

^kiv ~~ ^i"Uj" - igu.'V'Ö^S^ - Iük>k5y) 

The enthalpic part of the rate of production of TKE is given as 

(6.4) 
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^enthalpic ~~       Ui"dx~ ($.5) 

The split up is useful in understanding the effect of a rapid distortion, such as an 

expansion or compression, on the evolution of the turbulent flow field. As the turbulent shear 

layer moves through the rapid expansion region at the base corner it undergoes a streamwise 

acceleration (resulting in flattened streamlines). The three parts of the production term, 

given by equations 6.3,6.4 and 6.5, are of the same order of magnitude. Since the dilatational 

part, Pkd, varies in direct proportion to the density changes it introduces a negative 

contribution as does the enthalpic production. In fact, for a strong expansion the production 

can be negative (Gaviglio et al. 1977). The dissipation rate and diffusion terms do not affect 

the intensity of the fluctuations because of the relatively small time period over which the 

flow passes through the expansion. In fact, the distortion time scale is roughly l/3rd of the 

integral time scale (Gaviglio et al. 1977). Dawson and Samimy [1994] show that the rapid 

expansions quench the small scale turbulence in supersonic turbulent boundary layers while 

enhancing the turbulence energy in the large scale structures. To a lesser degree, the 

stabilizing streamline curvature also contributes to a decrease in the Reynolds stresses. 

6.2.1.3 Mixing region 

This is the region where the inner region from the incoming turbulent boundary layer 

interacts with the recirculating region. The production of TKE in this region is mainly due 

to the entrainment of the recirculating fluid. The compressibility effects are minimal here. 

Experimental observations (Gaviglio et al. 1977) indicate that the peak shear stress value 

increases by about 4-6 times the value in the incoming boundary layer. The increase in shear 

stress is attributed to an increase in the Reynolds shear stress - u"v". Since it is also 

observed that there is a reduction in ^-, a gradient transport hypothesis representation for 

the Reynolds stresses could be erroneous. The standard k-e model is based on the assumption 

of equilibrium between the production and dissipation of TKE. Studies, (Chen and Kim, 

1987) have shown that this kind of flowfield is characterized by strong non-equilibrium 
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effects. This is the motivation behind the need to test the predictive capabilities of the 

non-equilibrium modifications of Chen and Kim [1987]. 

6.2.1.4 Recompression region 

The recompression takes place over a distance several times larger than the thickness 

of the shear layer. Consequently, -^ < —. Gaviglio et al. [1977], suggest that a practical 

model for the production term in this region would be Pt = -u-V^U 
dy 

. This model 

predicts a rate of increase of TKE that is much greater than what is actually observed. 

Currently, there is no single model that can successfully account for all the observed 

variations in this flowfield. 

6.2.2 Overview of Prior Computational Efforts 

There have been several computational studies of the base flow field. These are well 

documented in the report of Herrin and Dutton [1993]. Of particular relevance to this study 

are the results obtained by Childs and Caruso [1987], Peace [1990] and Tucker and Shyy 

[1993]. Extensive work has also been done by Sahu and co-workers (Sahu et al. 1985 and 

Sahu, 1994). In the following paragraph a brief description of the computational efforts to 

predict this axi-symmetric flowfield are presented. 

Childs and Caruso [1988], performed a computational study to evaluate the adequacy 

of grid resolution and the errors associated with the turbulence model in modelling this 

complex flowfield. Though not a comprehensive study, they concluded from their 

computations that the inadequacy of grid resolution could act to cancel out the errors in the 

modeling of the turbulence structure. In fact their results seemed to indicate that the standard 

k-e model, with its inability to accurately model Mach number effects on the turbulence 

structure, was more accurate in capturing the mean flow variations than a model which was 

modified to account for the Mach number effects. Peace [1990] conducted a comparative 

study to evaluate the predictions made by zero-equation models against two-equation 

models. The computations were made using the thin-layer form of the Navier-Stokes 
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equations. The thin-layer form is valid over the attached boundary layer upstream of the base 

corner but in the recirculating downstream of the base and in fact over the expansion region, 

the use of a thin-layer form of the Navier-Stokes equations is highly questionable. The results 

obtained indicate that the zero equation and the two equation models of turbulence are very 

accurate as long as the flow is attached, i.e., upstream of the base corner. But there is a severe 

loss of accuracy in the recirculating region. However, inaccuracies in the predictions made 

of the "turbulence" quantities do not or have a negligible impact on the predictions made of 

the pressure distribution over the base of the afterbody. More recently, Sahu [1994] 

conducted a computational comparison of the predictions made by zero-equation models 

with those made by a low-Reynolds number form of the k-e model. The results do show the 

expected trend in the predictive capabilities of these models. The k-s model did seem to 

display a superior predictive capability in comparison with the zero-equation models. While 

both Peace [1990] and Sahu [1994] used the low-Reynolds number model of Chien [1982] 

the only difference between their calculations was the form of the Navier-Stokes equations. 

The calculations of Peace [ 1991 ] were made using the thin-layer form of the equations, while 

those presented by Sahu [1994] were made using the full form of the equations. 

Tucker and Shyy [1993] conducted a study on the predictions made of this 

axi-symmetric flowfield. Their studies parallel the current study in the sense that they 

compared the effectiveness of the non-equilibrium modification of Chen and Kim [1988] 

and other modifications that have been proposed to address the effect of Mach number 

variations on the turbulent flowfield. They also used the low-Reynolds number model of 

Chien [1982]. One of the outcomes of their study was that the standard form of the k-e model 

modified using the non-equilibrium modification for the 8 equation and the compressibility 

correction for ec proposed by Sarkar et al. [1991], yielded a better prediction of the flowfield 

including the "turbulence" quantities. Results of their study will be frequently alluded to in 

a later section of this chapter. In a more recent report, Chuang and Chieng [1996] present 

a comparison between the predictions made using a Reynolds Stress Closure model, a hybrid 
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model (using both Algebraic Reynolds Closure and k-e model) and the k-e model. Their 

studies indicate that the Reynolds Stress Closure model yields the better prediction, however 

suffering from inaccuracies of its own. Their computations do not address the Mach number 

dependency of the turbulent fluctuations. Furthermore, they do not present enough 

information within the recirculating zone, making it difficult to assess the overall 

performance of the turbulence models investigated. 

All of the computational efforts that have been expended in computing this particular 

flowfield have provided evidence for the need to adequately model the physics of the 

flowfield (particularly turbulence modelling) and also the need for adequate grid resolution. 

But as will be shown in this article there is a definite dependence of the solution on the 

discretization of the convection terms. In fact, it has been observed in this study that grid 

independence of the solution does not necessarily imply adequate resolution of the flowfield. 

The order and nature of the differencing used in the discretization of the convection terms 

does have a definite impact on the solution accuracy. 

6.2.3 Present Computational Study 

The computational domain with the boundary conditions used is shown in Figure 6.2. 

The domain extends from slightly upstream of the base corner to 6 diameters downstream 

of the base. The far field extends 2 diameters from the top of the base. The freestream 

conditions are an inlet Mach number, M <» = 2.46 and an inlet Reynolds number Re «, = 52.1 

x 106 /m. The inflow boundary conditions are obtained from the experimental measurements 

of Herrin and Dutton [1993]. The inlet boundary layer profile is obtained using the curve 

fit of Sun and Childs [ 1973] and the inlet TKE distribution is obtained using an interpolation 

of the measured data. Extrapolation is used to obtain the boundary conditions at the far field 

and at the outflow. At the symmetry boundary, the boundary condition used is 

~{Q, u ,T, k ande} = 0 and v = 0 (6.6) 

The pressure is assumed to be constant over the inlet wall boundary layer and the 

temperature is computed using constant stagnation temperature conditions at the inlet. The 
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Extrapolation 

Inflow boundary 

Wall boundary 

7 
Outflow: Extrapolation 

^\ Symmetry boundary 

Figure 6.2. Sketch of computational domain 

recovery factor, r=0.89 is used to compute the wall temperature. The density in the incoming 

boundary layer is computed from the equation of state. Wall functions (Viegas et al., 1985) 

are used to prescribe the boundary conditions at the wall for k and 8. Computations were 

made using the multi-stage, Runge-Kutta time stepping, finite volume scheme based on the 

one developed by Jameson et al. [1981] with a TVD type dissipation scheme (Yee, 1985). 

But, as will be pointed out later in this chapter, this artificial dissipation scheme introduced 

excessive amounts of numerical dissipation that we had to switch to a second-order upwind 

scheme for the convective fluxes. The chief issues addressed in this article are listed in Table 

6-1. 

Figures 6.3(a) through (c) and Figure 6.4(a) show representative contours of density, 

pressure, temperature and Mach number. The main regions of the base flowfield are clearly 

discernible. The incoming turbulent boundary layer undergoes a rapid expansion at the base 

corner. The separated boundary layer interacts with the recirculating fluid downstream of 

the base resulting in an increase in the production of TKE. As the flow continues downstream 

it tends to realign itself with the symmetry boundary (or centreline) which results in the 

recompression region. A portion of the trailing wake region is also evident. 
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a) Density contours, computed using the unmodified model. 
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b) Pressure contours, computed using the unmodified model. 
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x , j-j     ^^       c) Temperature contours computed using the unmodified model 

Figure 6.3. Representative contour plots of density, pressure and temperature. 
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a) Mach Number Contours Computed using the Ekel Model. 
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b) Turbulent kinetic energy contours computed using the Ekel Model. 
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,   > x/D    c) Compressibility correction (1.0+Mt
2) contours computed using the Ekel Model. 

Figure 6.4. Representative contours of Mach number, TKE and Turbulent Mach number, 
computed using the Ekel model. 
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The freestream is essentially inviscid. The free shear layer separating the inviscid 

region from the recirculating region is marked by sharp velocity gradients. One of the 

interesting things to note in these contour plots is the direction of the gradients in density and 

pressure. While the density gradients are along a direction perpendicular to the shear layer, 

the pressure gradients are along a direction parallel to the flow in the shear layer. Since the 

gradients are almost perpendicular to each other, the baroclinic torque could be an important 

factor in defining the development of the turbulent flow field thereby justifying our concerns 

regarding the need to model the effect of this torque on the fluctuations. 

Figures 6.4(b) and (c) show representative contour plots of TKE levels and the 

compressibility modification (l.O + M?). The maximum value of turbulent Mach number 

predicted is seen to be about 0.4. This value will be relevant when we consider the effect of 

the compressibility modifications that have been proposed (as functions of this Mach 

number). Table 6-2 presents a summary of the comparison between experimental data and 

the computational cases in terms of a few select quantities such as the maximum level of 

TKE, the peak reverse velocity along the centreline, reattachment length and the average 

coefficient of base pressure. 

The average flow turning angle presented in Table 6-2 is computed as an average of 

the angles computed over a distance from x/R = 0.5 to x/R = 2.5, at the midpoint location 

of the shear layer. In the table, the following definitions apply : 

SkE = Standard k-8 model; ed modification = modification due to Sarkar et al. [1991], 

i.e., Ed = esM^; Cei modification = non-equilibrium modification due to Chen and Kim 

[1987], where the constant Cei in the standard k-s model is changed to ( 1.15 + 0.25-^); 

EkEl = Standard k-£ model extended using the above mentioned modifications for Ed and 

C£i; Eks2 = Standard k-E model extended using the modifications for E^ Cei and Ce2; C£2 

modification (Thakur et al., 1996) refers to the modification where Ce2 in the unmodified 
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k-8 model is changed to I 1.45 + 0.45-^ 1. ed + p'd" = Compressibility modifications for 

the dilatational dissipation and pressure dilatation due Sarkar et al. [ 1991 ] and Sarkar [ 1992], 

respectively. El Baz = refers to the modifications to account for compressibility that have 

been proposed by El Baz and Launder [1993], for the effects of increased dissipation due to 

dilatational effects and pressure dilatation. ed and-uj"dP/dxi refers to the modification for 

compressibility due to Sarkar et al. [1991] and enthalpic production term. 

Table 6-2 Comparison of some representative mean quantities. 

No. Model 
Ave. 

Turning 
Angle 

M?,base 

Reattachment 
length 
x/Ro 

Maximum TKE 
Level 

Peak Reverse 
Velocity 

1. Experiment -15.1 -0.102 2.67 0.044 
(At x/R0 = 2.2) 

0.27 
(Atx/R0= 1.5) 

2. Ske -15.19 -0.116 2.61 0.049 
(At x/R0 =2.24) 

0.34 
(Atx/Ro=1.02) 

3. 
Ed 

Modification 
only 

-13.68 -0.105 3.06 0.034 
(Atx/R0=2.41) 

0.37 
(Atx/R0=1.14) 

4. modification 
only 

-13.04 -0.102 3.06 0.037 
(At x/Ro =2.47) 

0.31 
(Atx/R0=1.28) 

5. Ekel -12.17 -0.096 3.43 0.028 
(At x/R0 = 2.6) 

0.34 
(Atx/R0=1.4) 

6. Eks2 -14.42 -0.110 2.93 0.038 
(At x/Ro =2.24) 

0.39 
(Atx/Ro=1.02) 

7. Ed + p'd" -12.9 -0.1 3.3 0.028 
(At X/RQ =2.54) 

0.37 
(Atx/R0=1.24) 

8. El Baz. -10.24 -0.078 4.49 0.013 
(Atx/R0=3.18) 

0.41 
(Atx/R0=1.48) 

9. Ed 
-Ui"dP/dxi 

-13.56 -0.105 3.3 0.033 
(At X/RQ =2.36) 

0.36 
(Atx/R0=1.2) 

6.2.3.1 Grid independence 

In order to ascertain the grid independence of the computations, calculations were 

made of the flow field using three different grid sizes. These computations made use of the 



118 

standard form of the k-e model. The results obtained using two grids with 361 x 201 mesh 

points and 251 x 111 mesh points are compared in Figure 6.5. The mean flow field as 

represented by the axial and radial velocity components prove that grid independence is 

indeed achieved using the 251 x 111 grid. The TKE profiles show minimal differences 

between the two solutions. Solutions presented throughout the rest of this article have been 

obtained using the 251 x 111 grid. 

6.2.3.2 Treatment of convective fluxes 

In the study of Tucker and Shyy [1993] the extensions to the unmodified k-e model, 

based on the modifications suggested by Chen and Kim [1987] and the modification for 

compressible dissipation (ed) due to Sarkar et al. [ 1991 ] gave a better accounting of the flow 

field development than the unmodified model which was in sharp contrast to the results that 

were seen in some of our earlier calculations using the finite volume algorithm developed 

by Jameson et al. [1981] (with the TVD type artificial dissipation scheme) described in 

Chapter 4. One of the differences between these calculations and the study of Tucker and 

Shyy [1993] is the treatment of the convection terms. In that study the computations were 

made using a second-order central difference scheme while those of Tucker and Shyy [1993] 

used a weighted higher and first order upwind schemes for the convection terms in the mean 

flow equations and a first order upwind scheme for the k and e equations. 

To clarify this issue, regarding the convection schemes, a set of computations were 

made using the second order upwind scheme based on the Steger-Warming flux-splitting 

approach (described in Chapter 4). The variables at the interfaces where extrapolated based 

on a MUSCL extrapolation technique (Shuen, 1992). Definite differences between the 

results of the two computations i.e., the second-order upwinding and the second-order 

central differencing of the convection terms were seen and some of these representative 

quantities are presented in Table 6-3. 

Results obtained using the upwind method are presented in figures 6.6 (a), (b) and (c). 

These figures show profiles of the axial and radial velocity components and the Reynolds 
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Figure 6.5. Grid Independence test: Comparison of u, v and 
Standard k-E Model. 
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a) Computed axial velocity component. 
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b) Computed radial velocity component. 
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Figure 6.6. Comparison of convection schemes, using the unmodified k-e model. 
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shear stress. A comparison is presented between the predictions made, using the second order 

central difference scheme and the second order upwind scheme, with the unmodified k-e 

model. The differencing scheme used seems to have very little impact on the standard k-e 

model based computations. Computations made using the Eke 1 model showed considerable 

differences between the two convection treatments. These are shown in Figures 6.7 (a), (b) 

and (c) where a comparison is presented between the predictions made of the axial and radial 

velocity components and the Reynolds shear stress. 

Table 6-3. Comparison between convection schemes. 

No. Model 
Ave. 

Turning 
Angle 

Cp.base 

Reattachment 
length 

x/Ro 

Maximum 
TKE Level 

Peak 
Reverse 
Velocity 

Scheme 

1. Experiment -15.1 -0.102 2.67 
0.044 

(At x/R0 = 
2.2) 

0.27 
(At x/R0 = 

1.5) 
- 

2. Sks -14.73 -0.112 2.715 
0.047 

(Atx/Ro = 
2.3) 

0.35 
(Atx/Ro = 

1.21) 

2nd 
order 

Central 

3. Ske -15.19 -0.116 2.61 
0.049 

(Atx/Ro = 
2.24) 

0.34 
(At x/R0 = 

1.02) 

2nd 
order 

Upwind 

4. Ekel -10.65 -0.085 3.786 
0.025 

(Atx/Ro = 
3.06) 

0.35 
(Atx/Ro = 

1.98) 

2nd 
order 

Central 

5. Eksl -12.17 -0.096 3.43 
0.028 

(Atx/R0 = 
2.6) 

0.34 
(Atx/Ro = 

1.4) 

2nd 
order 

Upwind 

The comparison between the predictions made using the extended model (Ekel) and 

the standard model (Ske) with the 2nd order upwind differencing are shown in figures 6.8 

(a), (b) and (c). The results shown here are very similar to the ones presented in Tucker and 

Shyy [1993]. However, there is still the question of the apparent difference between the 

second-order central difference and the second-order upwind difference solutions. In order 

to probe this a little, we zoomed into the region close to base corner. Profiles are presented 

at locations just upstream and immediately downstream of the base corner. These figures, 
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also help to clarify to a certain extent the problems associated with the eddy-viscosity based 

k-e model. 

Figure 6.9 shows the computed values of TKE and Figure 6.10 shows the computed 

values of the rate of dissipation of TKE. At the first cell upstream of the base corner, the 

central differencing scheme does show some influence of the expansion at the base, possibly 

contributing to the differences seen in the results obtained with the central difference scheme 

and the results presented by Tucker and Shyy [1993]. At the first cell downstream of the base 

corner, it can be seen quite clearly that there is marked reduction in the magnitude of TKE 

due to the decreased production rates as the flow goes through the expansion region. All the 

computations show a reduction in the rate of dissipation of TKE as well, in direct contrast 

to experimental observations. 

In order to explain the observed discrepancies between the different convection 

schemes, it is worthwhile to look at the flow angles at locations downstream and upstream 

of the base. This is shown in figure 6.11. The upstream influence of the rapid expansion is 

seen in the profiles upstream of the base corner, in the case of the central differencing based 

treatment of the convection terms. This influence is not seen in the second-order upwinding 

based treatment of the inviscid fluxes. Also, at locations upstream of the base corner the flow 

angle should be expected to be close to zero. This is not the case in the finite volume 

algorithm with the artificial dissipation added to it. This is the effect of the addition of 

artificial dissipation and has been reported recently by McNeil [1996]. The second-order 

upwinding based calculations, on the other hand, display pretty much the correct behaviour 

at locations upstream of the base corner. With this in mind we decided to use the 2nd order 

upwind differencing of the inviscid fluxes for all our comparisons. All the comparisons that 

are given throughout the rest of this article are based on computations which used the 2nd 

order upwind differencing technique to discretize the convection terms. Also the same 

treatment was used for the mean flow equations as well as equations governing the transport 

of TKE and its dissipation rate. 
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6.2.3.3 Non-equilibrium modifications 

The mixing region, where the separated shear layer interacts with the recirculating 

fluid downstream of the base, has been documented to be strongly influenced by 

non-equilibrium effects. Several modifications have been proposed in order to extend the 

applicability of the k-e model. These are algebraic modifications with an intent to modify 

one or more of the constants used in the e equation and the definition of the eddy-viscosity. 

In this section we address two such modifications, one proposed for Cei (Chen and Kim, 

1987) and the other proposed to modify CE2 (Thakur et al., 1996). 

The non-equilibrium modification due to Chen and Kim [1987], alters the coefficient 

Cei in the incompressible form of thee equation to I 1.15 + 0.25-^ J.Chen and Kim [1987] 

observe that this alteration of the coefficient, allows e to respond faster to the variations in 

the mean strain rate. It works to enhance the development of £ when the mean strain is strong 

(or large production rate) and to reduce it when the mean strain is weak (or small production 

rate). 

The non-equilibrium modification due to Thakur et al. [1996] alters the constant CE2 

in the £ equation to I 1.45 + 0.45—1. The modification has been proposed to be used in 

conjunction with Cei, because of observations (Thakur et al., 1996) made from the 

computational studies of flow past a backward facing step and the hill flow inside a channel. 

The C£i modification reportedly overpredicts the length of the recirculating flow due to 

increased levels of the "production of dissipation" term. Further tests (Thakur et al. 1996) 

conducted using this modification seem to indicate an improvement over the 

non-equilibrium modification due to Chen and Kim [1987]. The standard model in its 

unmodified form indicates that there is an equilibrium between the production and 

dissipation of TKE. The C£2 modification has the effect of an added time scale. The time 

scale may be thought of as representing the relaxation time required for any imbalance 
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between production and dissipation rates of TKE to return back to an equilibrium situation. 

However, the modification in this form will tend to overpredict the rate of decay of TKE in 

the case of decaying isotropic turbulence. To avoid this, some form of a limiter needs to be 

applied to enable the modification to predict experimentally observed decay rates. One 

modification, albeit not an elegant one, could be « max 1.92,(1.45 + 0.45^ kThis 

is just suggested as a temporary fix to the problem. It should be noted here, that previous 

studies on homogeneous shear flows (Bernard and Speziale, 1992) have shown that there is 

definitely a need for a "relaxation time-scale" based modification. 

Before we analyze the effect of such modifications it might be informative to consider 

the development of the shear layer from its point of inception, i.e., as a separated boundary 

layer at the base corner. Using an order of magnitude analysis, Gaviglio et al. [1977] showed 

that through the expansion there is a reduction in the rate of production of TKE while the 

rate of dissipation of TKE is relatively unaffected which is due to the short time duration that 

a volume of fluid spends in the expansion region. Referring to the experimental analysis of 

Herrin and Dutton [1993], the strength of the expansion at the base corner decreases with 

increasing distance from the wall. Consequently, fluid particles in the viscous region 

experience a more sudden expansion than the particles farther away from the wall resulting 

in a larger discontinuity in the velocity profile immediately downstream of the expansion, 

displaying a larger peak mean velocity gradient downstream of the expansion. Hence, for 

only moderate changes in the mean shear stress there is an increase in the primary turbulent 

kinetic energy production rate. This is experimentally observed in the higher turbulence 

levels downstream, as the shear layer develops. Thus, there are regions in the flowfield where 

higher production rates do not necessarily imply an increase in the rate of dissipation of TKE. 

Whether such non-equilibrium modifications are indeed consistent with the flow physics is 

debatable. These modifications are curve fits to the empirically observed details of the flow 

field. From an engineering perspective it does, however, offer a "quick fix" solution to the 
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problem. In the remainder of truV section comparisons will be presented between the 

predictions made using the unmodified k-e model (referred to as the standard model and 

designated as Sks) and the non-equilibrium based extensions to the standard model. 

Throughout the rest of this chapter, the standard model modified using the CEi modification 

(Chen and Kim, 1987) and the compressibility modification for Ed due to Sarkar et al. [ 1991] 

will be designated as Eks 1 and the standard model modified using both the Cei and the CE2 

modifications and the compressibility modification for Ed due to Sarkar et al. [1992] will be 

designated as Ek£2. 

To evaluate the effectiveness of these non-equilibrium modifications, comparisons are 

presented of the predictions made using the modified models with the standard model. 

Profiles are presented at three representative locations. These represent a location close to 

the base of the afterbody (x/R = 0.079); a location that is midway to the experimentally 

observed reattachment point (x/R = 1.26) and a location that is at the experimentally 

observed reattachment point (x/R = 2.67). Profiles of the mean velocity components and the 

TKE at these three locations are presented in Figures 6.12 (a), (b) and (c), respectively. At 

the x/R = 0.079 location, close to the base region, very minor differences are seen in the 

predictions made using the two models. While the mean flow profiles show next to negligible 

differences, the predictions of TKE show some observable differences. In the predictions 

made of the TKE the location of the peak value is picked up but all three models grossly 

underpredict the magnitude of this peak, possibly due to the inherent assumption of isotropy 

in eddy-viscosity based models. Marked differences in the predictions made using the two 

models can be seen in the profiles at the downstream locations. At both the downstream 

locations presented in this figure, the standard model (unmodified k-E model) seems to make 

the better prediction in terms of the mean velocity components. At the x/R = 1.26 location 

it is clearly seen that there is some kind of a lateral shift in the predictions made of the axial 

and radial velocity components, using the EkE 1 model. However, the TKE seems to be better 

represented by the EkEl model. The standard model predicts increased levels of TKE as 
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compared to the experimentally observed levels, obviously a result of an increased rate of 

production of TKE which is clearly seen in the computed values of rate of production of 

TKE, presented in Figure 6.13 (b). The Eke2 model predictions of the mean velocity 

components seems much closer to the the predictions of the standard model while its 

predictions of the turbulent kinetic energy is about midway between the predictions made 

using the Ske and the Eke 1 model. This trend is continued in the comparisons presented in 

Figures 6.13 (a), (b) and (c). 

Figures 6.13 (a), (b) and (c) show profiles of the primary Reynolds shear stress, the 

primary rate of production of TKE and the total rate of dissipation of TKE. The rate of 

dissipation profiles show the magnitude of the dissipation rate used in the transport equation 

for TKE. Therefore, if 6 is the solenoidal component of the rate of dissipation of TKE used 

in the unmodified model, then for the Eke 1 and Eke2 models the profile shows the sum total 

of the solenoidal dissipation rate and the compressible dissipation rate, i.e., ef 1.0 + 0.5Mn. 

The profiles of the Reynolds shear stress follow the same trends observed in the predicted 

values of TKE with the Ekel model offering a better representation of the variation 

compared to the standard model and the Eke2 predicting a variation which can be thought 

of as an average of these two predictions. Profiles of production and dissipation rates show 

that the standard or unmodified model predicts increased levels of production and 

dissipation. At what can be thought of as the interface between the shear layer and the 

recirculating fluid, the production and dissipation rates are not in equilibrium (clearly 

indicative of the non-equilibrium effects). A key feature to note in the profiles of production 

and dissipation rates are the location of the peak values. The peak location refers to the point 

where the inner edge of the shear layer interacts with the recirculating fluid and results in 

increased production rates. This location is relevant in interpreting the results when 

comparing the predictions made using the standard model and the extended models. From 

the figures the radial shift in the peak locations is very evident. As will be shown later, this 

is due to the reduced turning angle of the shear layer computed using the Eke 1 model. 
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To better understand the predictive capabilities of the models, profiles of the velocity 

components and the TKE are shown in Figures 6.14 (a), (b) and (c) at locations far 

downstream of reattachment. Again it is interesting to observe that while the 

non-equilibrium based modifications predict more accurately the turbulence structure 

parameters, the standard model does a better job in terms of the mean velocity profiles. 

Clearly, two different flow structures most directly influence the predictive capabilities 

namely the free shear layer and the recirculating zone. The mean angle through which the 

shear layer turns following its separation at the base corner, dictates the development of the 

mean velocity components. The non-equilibrium between the rate of production of TKE and 

its dissipation rate in the recirculating region, is better represented by the non-equilibrium 

modification to C£ i. This is observed in the better agreement of the predicted values of the 

mean turbulence quantities, such as the TKE and Reynolds shear stress, with the 

experimental values. 

Details regarding the development of the shear layer were calculated. These details 

help in getting a better insight into the relative capabilities of the various modifications tested 

here. There is a difference between the way the extent of the shear layer is currently 

computed to the way Herrin and Dutton [1993] define the extent of the shear layer. The mean 

turning angle in the shear layer is computed in exactly the same way as described in Herrin 

and Dutton [1993]. The flowfield is then rotated by this mean angle and the velocity vector 

parallel to the streamwise direction, in the shear layer, is computed. The experimental 

measurements indicate that the streamwise velocity component reaches a constant value at 

a certain location. These constant velocity values are used to define the faster and slower 

streams of the two-dimensional mixing layer. Let us designate the fast and slow streams of 

the mixing layers as Uj' and U2' respectively. A reference velocity is defined as 

AU' = Uj' — U2' and the variation of the streamwise velocity component is computed. 

The 10% velocity line is defined as the location where U' = U2' + 0.1 AU', where U' is 

the streamwise velocity component. The 90% velocity line and the 50% velocity lines are 
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defined in a similar way. The thickness of the shear layer, "b", is defined as the distance 

between the radial location of the 90% velocity line and the 10% velocity line. 

In the computations made using the eddy-viscosity models after computing the 

streamwise velocity component it was observed that the velocity does not reach a constant 

value. Therefore, the location of U2' had to be defined in an alternate way. The location of 

U2' is defined in the computational case as follows: The location where the streamwise 

velocity component changes sign from positive to negative is computed on the numerical 

grid. The streamwise velocity component just below this location on the numerical grid was 

chosen to define the magnitude of U2'. The location of Uj' was relatively easy to define 

because it is dictated chiefly by the inviscid flow development. Therefore, there are 

significant differences in the definition of the slow stream side of the shear layer. The plots 

presented are not meant as a measure of the relative accuracy of the prediction methods 

(though the apparent difference between the definitions does indicate to a certain extent the 

inaccuracies of eddy viscosity models in predicting flow fields with an increased degree of 

complexity). These plots are presented here because they help in understanding the 

differences between the various modifications. 

Figures 6.15 through 6.16 (a), (b) and (c) show computed details of the shear layer 

downstream of the base. In all these figures it may be noticed that the shear layer locations 

do not start at x/R = 0 (denoting the comer of the base), because of difficulties in computing 

the exact locations and sharp gradients in the mean velocity field. Figure 6.15 (a) shows the 

locus of flow reversal for the computed flow field. The locus of flow reversal is defined as 

the location where the axial component of the velocity vector changes sign. The figure shows 

that the Ske model does seem to present a better estimate of the recirculation length 

(experimentally observed to be extending out to x/R = 2.67). Figure 6.15 (b) shows the 

growth of the shear layer in the axial direction. The standard model predicts a thicker shear 

layer in comparison to the Ekel model and Eke2 model which is to be expected because of 

the modification for compressibility effects that goes into the definition of the Ekel and 
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Shear layer development downstream of afterbody; 90% Velocity line 
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Shear layer development downstream of afterbody; 10% Velocity line 
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Figure 6.16 (Contd). Development of the shear layer downstream of the afterbody. 

Eke2 models. Figures 6.16 (a), (b) and (c) show the computed locations of the 90%, 50% 

and the 10% velocity lines. As mentioned before, these plots are presented to compare the 

various modifications tested in this article and not necessarily as a comparison with the 

experimental data. However, these plots show that the unmodified model offers a better 

representation of the development of the shear layer. 

' The reason for the apparent inability of the Ekel model in accurately predicting this 

flow field can be explained as follows. The angle through which the incoming boundary 

layer turns while passing through the expansion seems to dictate to a fairly great extent the 

development of the flow downstream of the base. The shear layer predicted using the Ekel 

model seems to show a shift in the radial direction as compared to the standard k-e model. 

This is also reflected in the plots of production of TKE and the rate of dissipation of TKE, 



140 

which indicate a radial shift in the~focations of the peak values (for the extended model in 

comparison with the standard model). A comparison was made between the predictions 

made by the standard model, the standard model with only the compressibility modification, 

the standard model with the non-equilibrium modification only and the Eke 1 model. The 

average flow turning angles are documented in Table 6-2. There is a distinct gradation in 

the predictions made leading to the increased inaccuracy of the extended model. 

The flow turning angle at locations slightly upstream and downstream of the base are 

compared in Figure 6.17. The u and v components denoted in Figure 6.17 are the axial and 

radial velocity components respectively. The figure shows clearly that upstream of the base 

corner there is very little change in the turning angles computed. But almost immediately 

downstream of the base corner there is a significant difference between each one of the 

models. The difference in the turning angle of the shear layer leads to the inaccuracies seen 

in the predictions made of the flow field. Figure 6.18 shows plots of the 90% velocity line 

and the 10% velocity line, for the same four cases compared above in Figure 6.17. From this 

plot it can be seen that the impact of the various modifications are seen on the lower edge 

of the shear layer rather on the upper edge. This is understandable because the development 

of the shear layer is chiefly governed by the interaction of the separated shear layer with the 

recirculating fluid. Thus any artificial modification to the rate of dissipation of TKE in this 

region seems to inhibit the true development of the shear layer. 

6.2.3.4 Compressibility modifications 

In Chapter 5, a comparison has been made between the compressibility modifications 

of Sarkar et al. [ 1991] and those of El Baz and Launder [1993] for the simple case of decaying 

isotropic turbulence. It can be seen that the impact of both these modifications are essentially 

the same, with those of El Baz and Launder [1993] predicting a slightly increased level of 

rate of dissipation. Comparison of the predictions made using the modification proposed by 

Sarkar et al. [1991] for the dilatation dissipation term and modification proposed by Sarkar 

[1992] for the pressure dilatation term, El Baz and Launder [1993] modifications and the 
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Shear layer development downstream of afterbody; 90% velocity line 
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current modifications are presented here. It should be noted that the current modifications 

are not meant as a substitute for the afore-mentioned modifications but to be used in 

conjunction with these modifications. In the predictions made with the current modifications 

for the turbulent mass flux and the enthalpic production terms, the Sarkar et al. [1991] 

modification for Ed has been used. In all the figures presented here, the "current" 

modification refers to the results obtained using the modifications proposed here and the 

modification for ej, "Sarkar" refers to the results obtained using the modifications due to 

Sarkar et al. [1991] and Sarkar [1992] and "El Baz" refers to the results obtained using the 

modifications proposed by El Baz and Launder [1993]. 

Figures 6.19 (a), (b) and (c) present profiles of the axial and radial velocity 

components and the TKE at the three locations downstream of the base. At the location close 

to the base there is very little difference between the three cases. At this location there is 

considerable difference in the computed values of the radial velocity component and the 

TKE with the modification due to El Baz and Launder [1993] predicting the lowest levels 

of TKE. This is possibly due to the increased dissipation rate, implied by this modification 

(also borne out in the comparisons made of the total dissipation rate). At locations 

downstream, all models suffer from inaccuracies with the errors associated with the El Baz 

and Launder [1993] modification being the largest. The modifications proposed here for the 

turbulent mass flux and the modification to the enthalpic production rate show a positive 

impact on the computations, albeit a small one. 

Figures 6.20 (a), (b) and (c) show plots of the primary Reynolds shear stress 

component, the TKE production rates used in these modifications and the total dissipation 

rate of TKE. In terms of the predictions made of the Reynolds shear stress component, the 

trend that is observed in Figures 6.19 (a), (b) and (c) seem to continue. The El Baz and 

Launder [1993] modification does seem to predict the largest dissipation rate. The level of 

dissipation rate predicted in the computations made using the current modifications are 

essentially identical to those predicted by the modifications of Sarkar et al. [ 1991 ] and Sarkar 
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[1992]. This is to be expected, because the modification for £d proposed by Sarkar et al. 

[ 1991] has been used in conjunction with the modifications for the enthalpic production rate. 

Again note the location of the peaks in the rate of production of TKE. A common theme 

seems to be evident in all the computations presented in this article. The amount of 

turbulence dissipation added to the flow field results in a reduction in the angle through 

which the separated shear layer turns and consequently in an overprediction of the variation 

of the velocity components and overprediction of the reattachment length. 

In order to analyze the effect of the modifications for compressibility, profiles were 

made of the skin friction (upstream of the base corner) the eddy-viscosity, the TKE level and 

its dissipation rate 8. These profiles were computed at locations slightly upstream of the base 

and immediately downstream of the base. Comparisons were made of the predictions made 

using the three compressibility modifications tested in this article and the predictions made 

using the standard k-e model. The quantities compared did not show any glaring differences, 

both upstream and immediately downstream of the base corner. One of the comparisons 

made is shown in Figure 6.21. The figure shows the predicted level of TKE. The various 

modifications yield virtually identical results. What this implies is that the compressibility 

modification has very little impact on the incoming boundary layer. But at the freestream 

Mach number of 2.46 the effects of compressibility are almost negligible. An important 

outcome of this comparison, shown in Figure 6.21, is that it reduces the number of factors 

that could be held accountable for the observed changes on the flow turning angle. Where 

the compressibility modifications seem to breakdown is when they start artificially reducing 

the level of TKE. That situation is very evident in this study. The increase in TKE level and 

its production rate, observed in experiments, is due to the interaction of the separated 

boundary layer with the recirculating fluid downstream of the base. Part of the apparent 

inability of the compressibility modifications (that model the extra dissipation due to 

dilatational effects) could be due to enforcement of extra dissipation. This is very clearly 
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seen in the predictions made of the'TKE levels and the Reynolds shear stress at the x/R = 

1.26 location which is at about the centre of the recirculation region. 

Figure 6.22 (a) shows a comparison of the locus of flow reversal computed using the 

three modifications. The current modifications seem to make the better prediction in terms 

of the extent of the recirculation region. Figures 6.22 (b) through 6.23 present computed 

details of the shear layer for the three modifications. Again as observed in the previous set 

of comparisons, the modifications seem to reduce the turning angle of the flow through the 

expansion region, thereby resulting in a lateral shift in the locations of the shear layer. All 

the modifications have the maximum impact on the lower extent of the shear layer rather than 

on the upper edge. This is to be expected because (as mentioned before) the lower edge of 

the shear layer is responsible for the growth of the shear layer. 

Figure 6.24(a), shows a comparison between the Sarkar [1992] modifications for the 

pressure dilatation term and those due to El Baz and Launder [1993]. It is very evident from 

this figure that the modifications proposed by El Baz and Launder [1993] do result in much 

larger dissipation rates. The magnitudes of pressure dilatation predicted by the computations 

are about l/10th of the magnitude of the solenoidal dissipation rates, similar to the 

observations in DNS studies. Figure 6.24(b) shows a comparison between the current 

modification for the enthalpic production term and the primary rate of production of TKE. 

The enthalpic production rate is almost negligible in comparison to the primary production 

rate. A explanation for the reduced magnitude of enthalpic production rate could be that the 

fluctuations are isobaric (or at least, not far from it). Of course, we could have tweaked the 

constants in the modification for the enthalpic production term. But, due to lack of 

experimental evidence or DNS results this was not feasible. Also, the intent is to bring out 

the need for modelling this term and to show that the compressibility effects should not be 

modelled by just increasing the rate of dissipation of TKE. Compressibility does affect the 

rate of production of TKE as is evidenced by some of the recent studies of compressible 

turbulent flows (Sarkar, 1994 and Huang et al., 1995). Figure 6.24(c) shows the predicted 
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Shear layer development downstream of afterbody; 90% Velocity line 
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Figure 6.23 (Contd.) Development of the shear layer downstream of the afterbody. 

values of the averaged values of the Favre fluctuation velocity components. The predicted 

values showed the correct trends based on qualitative comparisons with the experimental 

observations of Gaviglio et al. [1977]. 

Figures 6.25 (a), (b) and (c) show the computed values of the axial velocity and radial 

velocity components and the level of TKE in the trailing wake region. The modifications due 

to El Baz and Launder [ 1993] and those due to Sarkar et al. [ 1991 ] and Sarkar [ 1992], predict 

essentially the same thickness *of the shear layer. The thickness predicted using these 

modifications is considerably less than that predicted by the standard model which is to be 

expected, because of the effect of compressibility on free shear layers. The standard model 

predictions, in terms of the velocity components seem to match the experimentally observed 

values. However, the compressibility modifications seem to predict the turbulent kinetic 
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energy values much better tharrthe unmodified model. In a recent article, Clemens and 

Mungal [1995] note that jets and wakes develop similar to their incompressible counterparts, 

in sharp contrast to the development of the two stream mixing layer. This is certainly 

observed in the current modifications. 

6.3 Summary 

Based on the computational cases presented here, the following observations can be 

made: 

1) The treatment of the convection term has a strong impact on the results obtained. This 

seems to be important especially when dealing with flows with strong pressure gradients or 

streamline curvature. Of course, with proper tuning of the artificial dissipation terms, the 

upstream impact of the rapid expansion at the base corner could have been reduce but that 

may not be robust. 

2) The non-equilibrium based modifications to C£i are not sufficient to make reasonable 

predictions of the flow field and from the current set of computations, of the three models, 

i.e., Ske, Ekel and Ek£2, the Eke2 model seems to offer the optimum set of predictions in 

terms of the mean flow quantities as well as the turbulence structure. 

3) The compressibility modifications due to Sarkar et al. [1991] for Ed and those due to El 

Baz and Launder [1993] for CE2, appear to be different in functional form, but in essence 

produce the same effect. Of the two compressibility modifications tested here, the 

modifications due to Sarkar et al. [1991] and Sarkar [1992] offer the better prediction. The 

modifications of El Baz and Launder [1993] are overly dissipative and result in 

unsatisfactory predictions, at least for the flow field tested here. 

4) Conceptually, addressing the compressibility effects as a dissipative one or modelling 

compressibility based on the turbulent Mach number does not offer a complete description 

of the physics. Recent research (Sarkar, 1994) has indicated that another parameter the 

gradient Mach number may be an important parameter. 
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5) The current modifications show a positive impact on the predictions made. These 

predictions indicate that there is a need to account for the enthalpic production term and the 

term representing the baroclinic torque. These terms were hitherto considered negligible and 

have not been accounted for in the modelling of compressible turbulent flows. But the impact 

of the current models on the mean flow field is not strong in this test case. However in terms 

of the extent of the recirculation region, the current modifications are definitely a step in the 

right direction. Further study into the modelling of these terms is necessary to improve the 

predictive capabilities for quantities such as TKE and to ascertain their role in determining 

the mean flow field. 

6.4 Projectile Forebody Flowfield 

The computational study of the flow past an axi-symmetric afterbody indicated that 

the impact of the current modifications were minor. Possible reasons for this observation 

could be that these terms (for which modifications have been proposed in this dissertation) 

are of an order of magnitude smaller than the other terms (in the respective transport 

equation) or the compressibility effects are not really a major factor in the development of 

these shear layers. The latter reason could have played a more important role in the results 

obtained for the axi-symmetric afterbody flowfield. The flow field (the baseflow) is at an 

inlet Mach number of 2.46, relatively low for compressibility effects to play a major role in 

the development of the shear layer. In addition, as was pointed in the earlier section, two 

different flow structures seem to determine the evolution of the shear layer downstream of 

the afterbody. These are the recirculating region and the free shear layer. The interaction of 

the developing free shear layer with the recirculating, low speed fluid, makes a major 

contribution to the production of energy for the turbulent fluctuations. This is not really a 

compressibility effect, which would explain the reason for the inadequacy of the models 

addressing the dissipative effect of compressibility. The modifications proposed in this 

dissertation are intended to address the terms that are unaccounted for in the exact form of 
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the governing equations (for compressible turbulent flows). Also, we chose to address the 

issue of reduced production in compressible turbulent shear layers. 

In order to clarify the issues raised by our observations of the predictions made of the 

axi-symmetric afterbody flow field we decided to compute a flow field at hypersonic speeds. 

One such flow field is that past a projectile travelling at hypersonic speeds. Recently, 

Huebner et al. [1995], conducted experimental studies of the flow past a 

hemisphere-cylinder at a Mach number M» = 6.06. They made measurements of the 

pressure and temperature distribution on the surface of the projectile. A sketch of this flow 

field is given in Figure 6.26. The strong shock ahead of the dome of the projectile causes a 

huge jump in the pressure and also the temperature on the surface of the hemispherical dome. 

These cause, in addition to the increased drag on the projectile, adverse conditions for the 

optical and other sensing equipment typically mounted in the dome of the projectile (due to 

the excessive heating of the dome surface). The experiments conducted by Huebner et al. 

[1996] were intended to investigate the effect of a long slender spike and an aerodisk 

combination. A sketch of this flow structure is given in Figure 6.27. The recirculating 

regions upstream of the dome drastically reduce the pressures and to a certain extent the 

temperature on the dome surface. 

Bow shock / Expansion fans 
/   / 

Recirculating regi 

Figure 6.26. Sketch of the projectile forebody problem 
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Flow separation shock 
Bow Shock 

Aerodisk 

M = 6.06 

Aerospike  
Post Disk 
Compression Recircuiation regions 

Figure 6.27. Schematic of aerospike induced flowfield. 

Body 

Through the rest of this section details are presented of the computational study 

conducted to: a) address the effectiveness of the various modifications that were tested for 

the afterbody flowfield, in predicting this flow field with the involved complex flow physics 

and b) address the effectiveness of the spike-aerodisk assembly in reducing the heating of 

the dome surface. 

The relevant flow structure of the turbulent flow field we are considering in this case 

is the interaction of the isotropic turbulence with the bow shock ahead of the dome of the 

projectile. Additionally, effects of the turbulent wall layer that separates upstream of the 

shoulder (the shoulder formed at the junction of the dome and the cylinder) and the 

expansion fan (Figure 6.26) need to be considered in the analysis of the flowfield. We have 

addressed the impact of a rapid expansion on a turbulent shear layer earlier when we 

considered the afterbody flowfield. We will concentrate (in the next few paragraphs) on the 

physics of shock-turbulence interaction. 
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6.4.1 Shock-Turbulence Interaction 

Using a linear analysis of the equations of motion, Kovasznay [1953] showed that 

compressible turbulence can be split up into modes which act independently (to first order) 

of one another. Consider the inviscid form of the equations of motion with the mean velocity 

set to zero. Assuming that the fluctuations of density, pressure and temperature are small 

with respect to their mean values and also that the magnitude of the fluctuating velocities 

are small (that is, low turbulent Mach number) and keeping only the linear terms we can 

obtain the linearized inviscid equations. From these the equations for vorticity, pressure and 

entropy can be derived. These equations are written as (following Kovasznay, 1953) 

d(ü:" 

IT = ° (6-7> 
d2p'      , d2p' -£-c2^kr° (6-8) 

^ = 0 (6.9) 

where coj" , p' , s' are the fluctuations in vorticity, pressure and entropy respectively, c 

is the speed of sound. These represent the three modes (Kovasznay, 1953) and are referred 

to as the vorticity mode, acoustic mode and entropy mode. To a first order, (with no mean 

velocity gradients) the equations 6.7,6.8 and 6.9 show that the three modes are independent 

of one another. Also, the vorticity and entropy modes are frozen. If one accounts for 

viscosity, a diffusion equation is obtained for the vorticity mode. That is, 

3(0:"       a2«/' 

-£- -^ (6-10) 

The vorticity mode is still decoupled from the entropy and pressure modes. While the 

concept of splitting modes is a useful concept for understanding the physics of compressible 

turbulence, a general turbulent flow field cannot be decomposed into independent modes. 

But this split up is useful in understanding the physics of the interaction of an isotropic 

turbulent flow field with the bow shock (ahead of the projectile dome). 
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To a first order, the three modes of vorticity, pressure and entropy are independent of 

one another. But when any one of them interacts with a strong shock wave, it can result in 

the generation of three modes (Ribner, 1954). Ribner [1954] considered the interaction of 

a homogeneous turbulent flow with a shock wave. The turbulent flow field is expressed as 

the sum of Fourier components and linearized Rankine-Hugoniot jump conditions are 

imposed across the shock (Ribner, 1954). The amplification of the turbulence intensities, 

downstream of the shock, are then computed as a function of the upstream statistics. 

Predictions based on such linearized analysis have been confirmed by numerical simulations 

(Lee et al. 1993, Rotman 1991). Linearized analysis method to estimate the turbulence 

corrections, to the shock jump relations and the shock speed, have been reported in Lele 

[1992]. 

When the intensities of the turbulent pressure fluctuations are small compared to the 

pressure rise across the shock, the shock front is weakly distorted and the linearization of the 

Rankine-Hugoniot jump conditions is justified (Lele, 1994). However when the intensities 

of the incident (on the shock) pressure fluctuations are stronger, the shock front is 

considerably modified and from Lee et al. [1993] the pressure rise is no longer monotonic. 

Lele [1994] proposes a condition based on the turbulent Mach number, to restrict the use of 

linearized analysis. This is given as M^ < O.lfM^ - 1 j which implies that as long as the 

q 
turbulent Mach number, Mt = ^-(whereq = u^'u/'and eis the speed ofsound) is less than 

0.33 (Mt < 0.33) the linearized analysis can be used with reasonable justification. Recent 

numerical simulations of Lee et al. [1993] and Jacquin et al. [1991] also confirm that the 

linearized analysis predicts the jump in vorticity fluctuations across the shock accurately. 

Due to the amplification of the vorticity fluctuations across the shock the rate of dissipation 

of TKE, 8, is also increased. 

Linear analysis of Jacquin et al. [1993] indicate a rise in TKE across the shock. DNS 

simulations also indicate a rise in TKE across the shock (Lee et al., 1992). They also indicate 

that in addition to the increase in TKE at the shock there is an increase in TKE downstream 
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of the shock (Lee et al., 1992). This increase in TKE, downstream of the shock, has been 

attributed to an exchange of energy between the potential energy and kinetic energy (Lele, 

1994). The increase in potential energy (amplification of acoustic mode) decays downstream 

of the shock, if the flow downstream of the shock is subsonic. Since the total energy in the 

fluctuations is conserved, the decay of potential energy results in an increase in the TKE of 

the fluctuations. The increase in TKE downstream of the shock has been attributed to 

pressure dilatation effects (Lele, 1994). Jacquin et al. [1992] also note that the rise in TKE 

across the shock is a function of the isotropy of the incident turbulent field. For an upstream 

Mach number of M=1.4, Jacquin et al. [1992] report no significant rise in the level of TKE 

across the shock which is in direct contrast to the experimental observations of Honkan and 

Andreopoulos [1992]. Jacquin et al. [1992] also note a significant increase in the level of 

TKE if the upstream turbulence is anisotropic. Recent calculations based on rapid distortion 

theory (RDT) by Mahesh et al. [1993] confirm the linear theory estimates of Jacquin et al. 

[1992]. 

The linearized theory estimates of Ribner [1954] and the DNS results of Lee et al. 

[1993] indicate a reduction in the characteristic length scales of the turbulent eddies. These 

include longitudinal and lateral correlation length scales. Honkan and Andreopoulos [1992], 

from their measurements of velocity correlations, observe an increase in the Taylor 

-3/2" 

micro-scale T     _(U"2) across the shock where u" are the fluctuations in the 

streamwise velocity components and 8 is the rate of dissipation of TKE. Similar 

measurements of density fluctuations by Keller and Merzkirch [1990] and velocity 

fluctuations by Barre et al. [1996] suggest an amplification of length scales across the shock. 

It should be noted that DNS simulations are limited to low Mach numbers and the interaction 

of turbulence with weak shocks. This apparent conflict between experimental measurements 

and DNS studies has not been resolved (Lele, 1994). 
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6.4.2 Experimental Studies of Projectile Flowfield 

Several experimental studies have been conducted to investigate the projectile 

forebody flowfield. Most of these studies, in the 1950's, concentrated on the issues of strong 

pressures and heating rates at the dome of the projectile and means to reduce it. Stalder and 

Nielsen [1954] conducted experiments on a simple hemisphere-cylinder configuration 

similar to the one shown in Figure 6.28 at Mach numbers of 1.75, 2.67 and 5.0. Their 

experiments indicated a reduction in the pressure (consequently the drag) on the surface of 

the dome, with the addition of the spike. It did not, however, show a reduction in the 

temperature on the nose of the projectile. In fact, it showed an increase in heat transfer rates 

with the addition of the spike (in comparison with the "un-spiked" case). They explain the 

increase in heat transfer rates as a result of the separated turbulent boundary layer (upstream 

of the nose) periodically impinging on the outer region of the boundary layer on the nose of 

the hemisphere. 

Bogdonoff and Vas [1959] conducted experimental investigations on the variations in 

pressure at the nose of the projectile forebody as a function of the spike length. These 

investigations showed an initial drop in the pressure at the nose of the forebody with increase 

in spike length (upto about an L/D = 3) but asymptotes with any further increase in the spike 

a) hemisphere-cylinder 

spike 

b) hemisphere-cylinder with spike 

Figure 6.28. Sketch of projectile configurations investigated by Stalder and Nielsen, 
[1954]. 
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length. The experimental investigation of Crawford [1959] was chiefly concerned with the 

phenomena of flow transition (from laminar to turbulent). 

More recently, Huebner et al. [1995] investigated the projectile flow field. They 

conducted experimental measurements of the pressure and temperature at the nose of the 

projectile and the effect of the aerospike and aerodisk assembly (sketches of the flow field 

investigated are given in Figures 6.26 and 6.27) at various angles of attack. They observe 

that at moderate angles of attack (a < 15°) the spike and aerodisk assembly was very useful 

in reducing the pressure and temperature distributions on the surface of the dome. But at 

higher angles of attack the combination aggravates the situation at the dome surface with the 

shock impinging directly on the boundary layer on the dome surface. 

6.5 Projectile Flowfield Computations 

Computations have been performed to investigate the capabilities of the 

non-equilibrium modifications (Chen and Kim, 1987 and Thakur et al., 1996) and the 

compressibility modifications (discussed in Chapter 5). The compressibility modifications 

proposed by Sarkar et al. [1991] and Sarkar [1992] (for the compressible dissipation rate and 

the pressure dilatation correlation) the modifications proposed by El Baz and Launder 

[1993] (for Ce2 and the pressure dilatation correlation) and our modifications for the 

turbulent mass flux (hence the enthalpic production) and the baroclinic term are being 

investigated. 

In the remainder of this dissertation we will refer to the projectile forebody problem 

as the spike-off case and the problem with the spike and aerodisk assembly as the spike-on 

case. Unless specified otherwise all spatial locations presented in this section are in inches. 

From the results of Crawford [1959] we know that the inflow conditions are such that the 

flowfield can be expected to be turbulent. The measurements of Huebner et al. [1996] (used 

in comparing computational predictions) were not concerned with the nature of the flow 

field. 
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6.5.1 Spike-off Case 

A sketch of the computational domain (for the spike-off case) is shown in Figure 6.29. 

The geometry of the projectile is obtained from the experimental study of Huebner et al. 

[1996]. The diameter of the hemisphere is 3.0 inches and the diameter of the cylinder is 4.0 

inches. The length of the cylinder is 4.0 inches. The dome is offset from the cylindrical body 

with a 0.25 inches long, 3.0 inches diameter cylindrical extension. The outer boundary of 

the computational domain extends out to 6.0 inches from the cylinder surface. 

The boundary conditions at the far field were fixed at the experimental inflow 

conditions. A freestream turbulence intensity of 0.3% was used to prescribe the turbulent 

kinetic energy and the dissipation rate, 8, in the freestream. This value is consistent with 

intensities of turbulence observed in most supersonic wind tunnels. At the outflow boundary 

a simple extrapolation procedure was used because the flow is supersonic at this boundary. 

At the wall boundary, the compressible form of the wall function technique (described in 

Chapter 3) has been used. 

Far field boundary 

M = 6.06 

Re = 8xl06 Outflow boundary 

Figure 6.29. Sketch of computational domain with inflow conditions 
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Computations were initially conducted using the artificial dissipation schemes 

discussed in Chapter 4. As mentioned in Chapter 4 the artificial dissipation schemes tend to 

dampen the amplitude of the dispersive errors introduced by the "central difference" scheme. 

They do not suppress the oscillations about the shock discontinuity. In the case of the 

projectile flow field calculations we found the artificial dissipation schemes inadequate, to 

obtain a solution. We had to resort to the second order upwind scheme based on the 

Steger-Warming flux-vector splitting technique (Shuen, 1991). All the results presented 

here have been computed using this second order upwind scheme. The fluxes at the cell faces 

are computed using a MUSCL extrapolation method (Shuen, 1991). 

6.5.1.1 Non-equilibrium modifications 

Computations made with the unmodified form of the k-e model will be denoted as Sks. 

The computations made using the non-equilibrium modification of Chen and Kim [1987], 

wherein the constant Cei is modified to I 1.15 + 0.25-JT    in conjunction with the 

compressibility modification due to Sarkar et al. [1991] for the extra dissipation due to 

compressibility (that is 8 = es + £d = eil + Mt
2) ) will be referred to as Ekel. The 

computations made using the CEi modification of Chen and Kim [1987] and the C£2 

modification   of Thakur   et   al.   [1996]  where  the  constant   CE2   is   modified  to 

I 1.45 + 0.45 -^ J and the compressibility modification due to Sarkar et al. [1991] is 

referred to as the Eke2. 

Figure 6.30, shows plots of the static pressure variation and the Reynolds shear stress 

variation along the stagnation line. The shock is at a distance of about 0.22 inches ahead of 

the nose of the projectile. There is a slight increase in the pressure downstream of the shock 

but the magnitude of the jump (across the shock) is comparable to that predicted by 

one-dimensional gas dynamics. The plot of the Reynolds shear stress variation is to indicate 
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the symmetry in the predicted solutions. No differences between the various modifications 

need be expected here. 

Figure 6.31 shows a comparison between the computed values of TKE along the 

stagnation line. The unmodified model predicts a much higher value of TKE compared to 

the modified models, Ekel and Eke2. Figure 6.32 shows a comparison between the 

predictions made by the unmodified model and the models modified to take into account the 

non-equilibrium effects. The rate of production and rate of dissipation show a similar trend 

as far as the peak levels in Pk and s are concerned. However, the level of production and 

dissipation predicted by the unmodified model is much larger than that predicted by the 

modified models and the predictions made by the modified models (Ekel and Eke2) are 

virtually identical. Let us consider the predictions made by the unmodified model at a given 
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Figure 6.31. Computed variation of TKE for the spike-off case. 
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instant in time. The rate of production is about three times the rate of dissipation and so 

results in a substantial increase in the rate of "production of dissipation" term in the s 

equation (using the CEi modification). The result is an increase in the predicted value of 

dissipation rate and when this magnitude of dissipation rate is added to the k equation it 

results in a decrease in the predicted value of k and the eddy viscosity. The reduction in eddy 

viscosity leads, in turn, to a reduction in viscous stresses and thereby a reduction in the 

production rate. As the flow evolves it results in substantially reduced values of TKE, E and 

Pk- In Figure 6.32, the location of the peak levels indicate that the peak in the dissipation rate 

is displaced one cell downstream from the peak in the production rate. It is difficult to explain 

the reason for this behaviour. 

Figure 6.33 shows a plot of the pressure distribution on the surface of the projectile 

and a comparison of the predicted values with experimental data. The predictions made by 

the various models are very much identical to one another, which could be expected, because 

there is an equilibrium between the production and dissipation in the log-layer of the 

boundary layer on the surface of the projectile. The compressibility modification does not 

play a major role because the flow is almost subsonic downstream of the shock. A possible 

difference between the predictions made by the models could be expected in the region 

where the boundary layer separates. But the differences seen in the predictions made are very 

minimal. 

In the figure, a region of discrepancy between the experimental measurements and the 

computational predictions has been highlighted. The jump in pressure is because of the 

separation of the boundary layer on the dome surface. To accommodate this separation the 

flow goes through a weak compression wave. The shadowgraphs and Schlieren pictures of 

the flow field clearly indicate this weak compression wave. But the pressure taps on the dome 

of the hemispherical surface fail to pick up this jump. The experimentalists, Huebner et al. 

[1995], confirmed that there is a weak compression wave but could not account for the 
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Figure 6.33. Comparison of computed values of pressure with experimental data 

experimentally observed pressure distribution. Other computational studies have also 

confirmed the jump in pressure (private communication from L. Huebner). 

6.5.1.2 Compressibility modifications 

Computations using the compressibility modifications, of Sarkar et al. [1991] and 

Sarkar [1992] and El Baz and Launder [1993] for the extra dissipation due to compressibility 

effects and the pressure dilatation correlation and the compressibility modifications for the 

turbulent mass flux and the baroclinic term (proposed in this dissertation), were performed 

to compare and contrast their effectiveness and applicability. It was observed in the 

computational study of the base flow field that the compressibility modifications of El Baz 

and Launder [1993] were overly dissipative resulting in unsatisfactory predictions of the 

afterbody flow field. 
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Figure 6.34 presents a comparison of the predicted variation of static pressure and 

Reynolds shear stress, along the stagnation line. There is no difference between the values 

predicted by the various models that address the effect of compressibility. The plot of the 

Reynolds shear stress confirms the symmetry in the solutions obtained. The lack of 

differences seen in the predicted values of static pressure along the stagnation line could be 

because the jump across the shock is dominated by "inviscid" effects. Also, as was pointed 

out earlier, as long as the intensity of the turbulent field upstream of the shock is not large 

the Rankine-Hugoniot jump conditions can be expected to hold true. 

Figure 6.35, presents a plot of the predicted values of turbulent kinetic energy along 

the stagnation line. The comparison, between the various compressibility modifications, 

does not show any distinct difference between the various modifications but the El Baz and 

Launder [1993] modification does seem to predict consistently lower levels of TKE (see 

section on afterbody flow field computations). 

Figure 6.36 presents a comparative plot of the predicted values of rate of production 

and dissipation of TKE along the stagnation line. The values predicted by the current 

modifications and that predicted by the Sarkar et al. [1991] and Sarkar [1992] models are 

virtually identical. The reason for this can be seen from a plot of the enthalpic production 

rate compared with the dilatational component of the production rate and the iso-volumetric 

part of the production rate (equations 6.3, 6.4 and 6.5), as shown in figure 6.37. The figure 

shows that the enthalpic production rate as predicted by the current modification is not of 

the same order of magnitude as the other two parts of the production which explains the 

minor impact of the current modifications on the mean flow solution. 

Figure 6.38 presents a comparison (between the various compressibility modifications) of 

the predicted value of pressure on the surface of the projectile with experimental data. There 

is no appreciable difference seen in the predictions made by the various models that address 

the effect of compressibility on the turbulent flowfield. 
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Figure 6.34. Computed variations of static pressure and Reynolds shear stress along the 
stagnation line for the spike-off case. 
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Figure 6.35. Computed variation of TKE for the spike-off case. 
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6.5.2 Spike-on Case 

Figure 6.39 shows a sketch of the computational domain used in the calculations. The 

geometry of the spike and the projectile are obtained from the experimental study of Huebner 

et al. [1995]. The domain extends out about 6 inches from the top of the cylinder surface. 

The geometry of the projectile is the same as the one described in the previous sub-section. 

The length of the spike-aerodisk assembly is 12.00 inches and the inflow boundary is at a 

distance 3.00 inches from the aerodisk surface. The diameter of the aerodisk is 1.156 inches 

and the diameter of the spike is 0.375 inches. The computational domain had to be split into 

four blocks to achieve a reasonable distribution of grid points. The blocks have continuous 

grid lines and so there was no need for any special interface treatment excepting the 

conservation of fluxes at interfaces. 
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Figure 6.37. Variation of the three parts of production of TKE, along the stagnation line. 

At the inflow boundary the inflow Mach number and Reynolds number were specified 

and the pressure and temperature were held constant. The inflow Mach number and 

Reynolds numbers are respectively, 6.06 and 8.0 x 106. The Reynolds number is based on 

the projectile diameter. At the far field boundary and at the outflow boundary a simple 

variable extrapolation was used. At the wall boundary the compressible form of the wall 

function technique has been used. At the symmetry boundary the gradients, of axial 

component of velocity, temperature, density, TKE and 8, in the radial direction and the radial 

component of the velocity were^set to zero. 

Figure 6.40, shows representative contour plots of density, pressure and temperature. 

As the flow behind the bow shock expands around the aerodisk a weak compression is 

formed at its base. The wake flow caused by the aerodisk and the nearly stagnant flow near 

the dome creates the conically shaped recirculation region. The region is separated from the 
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Figure 6.38. Comparison of computed values of pressure with experimental data. 

inviscid flow by a flow separation shock. It is expected that this shock will isolate the 

recirculation region thereby enabling the reduction of pressure and heating rates on the dome 

surface. Additional pockets of recirculation region are created at the shoulder region 

between the hemispherical dome and the cylindrical body of a larger diameter. 

Figure 6.41 presents a comparison between the pressure distributions on the dome 

surface, with and without the spike and aerodisk combination. The results presented here are 

those obtained with the modifications (proposed in this dissertation) for enthalpic production 

and baroclinic torque and dilatational dissipation rate. It is quite clear from this plot that the 

spike-disk combination certainly helps in reducing the pressure on the projectile surface. The 

decrease in pressure is almost ten times the value obtained in the spike-off case. The 

distribution of temperature on the surface of the projectile, with and without the spike, is 

shown in Figure 6.42. Even though the drop in temperature at the dome surface is not as 
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Figure 6.39. Sketch of the computational domain for the spike-on case. 

dramatic as the pressure drop there is definitely an appreciable drop in temperature, which 

justifies the use of the spike-aerodisk combination. Also, the temperature on the dome of the 

projectile remains fairly constant in comparison for the spike-on case. However, it should 

be noted that the current computations were restricted to an angle of attack of zero degrees. 

Huebner et al. [ 1996] have reported that there is a limited range (in terms of angle of attack), 

of application of the spike-aerodisk combination. 

6.5.2.1 Non-equilibrium modifications 

Computational studies of the afterbody flowfield indicated that the non-equilibrium 

modification of Thakur et al. [1996] when used in conjunction with the non-equilibrium 

modification of Chen and Kim [1987] and the compressibility modification of Sarkar et al. 

[1991] resulted in an "optimum" prediction. The predictions in the afterbody case gave 

reasonable predictions of the both the mean flow quantities as well as the turbulence 

quantities, such as the turbulent kinetic energy and the Reynolds shear stress. With this in 

mind, we decided to compare only this combination of non-equilibrium modifications (with 
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Figure 6.41. Comparison of the pressure distributions on the projectile surface, with 
and without the spike. Computed with the "current" model. 
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Comparison of spike-off Vs. spike-on surface temperature distributions. 
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Figure 6.42. Comparison of the temperature distributions on the projectile surface, with 
and without the spike. Computed with the "current" model. 

the compressibility modification of Sarkar et al., 1991) against the predictions made by the 

unmodified model. 

Figure 6.43 presents a comparison of the predictions made of the pressure and 

temperature distributions along the surface of the spike. The axial location starts from the 

tip of the aerodisk and extends to the nose of the dome surface. The axial location is given 

in inches. The distinct regions of the flowfield that is the postdisk compression at the base 

of the aerodisk and the compression through the separation shock are clearly seen in these 

plots. Since there are no experimental data along the spike these comparisons can only be 

qualitative. The location of the jump in temperature, across the separation shock, indicates 

the location of the separation shock and hence a rough estimate of the extent of the 

recirculation region. The extent of the recirculation region predicted by the extended model 
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is much larger than that predicted by the unmodified model which is possibly a reflection 

of the extra dissipation of turbulent kinetic energy introduced by the non-equilibrium 

modifications. Due to the extra dissipation rate, the eddy-viscosity is reduced with the 

consequent reduction in the magnitudes of the viscous stresses. The velocity profiles tend 

to be smoothed out resulting in larger recirculation lengths and a shift in the location of peak 

values, very similar to the observations made for the axi-symmetric afterbody flowfield. 

Figure 6.44 presents a comparison between the predictions made, of the pressure 

distribution on the surface of the projectile. There is a distinct difference between the 

predictions made by the eddy-viscosity models and the experimental data, which could be 

expected, because the variations in pressure on the surface are dictated largely by the 

Pressure variation along the surface of the projectile 
71 1 i r 

2 3 4 5 
Distance along the surface, "s" inches 

Figure 6.44. Pressure distribution along the surface of the projectile. 
Comparison of non-equilibrium modification with unmodified model. 
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mechanism at play in the recirculating region. The pressure distributions on the dome surface 

show distinct differences between the two models with the unmodified model predicting a 

much higher values of pressure on the surface of the projectile and the extended model 

predicting a lower value of pressure. 

To compare the effectiveness of the modifications in predicting the mean flow field 

comparisons were made at three select locations along the spike. These locations are at an 

x/D = -2.25, and x/D = -1.50 and x/D = -0.90. The x/D = -2.25 location corresponds to a 

location just outside the conical recirculation region. The x/D = -0.90 location corresponds 

to about the midway point of the recirculation region. Profile plots of the components of 

velocity and the turbulent kinetic energy are presented in Figure 6.45. The plots show a 

lateral shift in the peak locations very similar to the shift seen in the predictions made of the 

afterbody flow field. However, in the afterbody flow field case the combination of 

non-equilibrium modifications yielded a prediction comparable to the prediction made using 

the unmodified model. The non-equilibrium based modification of Chen and Kim [1987] 

revealed marked shifts in the location peak values (in comparison with the unmodified 

model). The reason for the lateral shift seen in these computations is presumably due to the 

dominating influence of the CEi modification. 

Figure 6.45 shows profile plots of the axial and radial velocity components and the 

level of TKE, at the three locations mentioned above. There is no difference in the 

predictions made using the two models at the x/D = -2.25 location. There are substantial 

differences seen at the other two locations with the standard model predicting a much higher 

level of TKE due to the larger rate of production of TKE predicted by the standard model. 

Again, due to the lack of experimental information, these comparisons are purely qualitative. 

6.5.2.2 Compressibility modifications 

The modifications of Sarkar et al. [1991] and El Baz and Launder [1993] (for the extra 

dissipation due to dilatational effects) and the modifications of Sarkar [1992] and El Baz and 

Launder [1993] (for the pressure dilatation correlation) and the modifications proposed in 
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this dissertation (that is, the modifications for the enthalpic production term and the 

baroclinic term) are being compared in this sub-section. In the plots shown below, the 

modifications due to Sarkar et al. [1991] and Sarkar [1992] is denoted as "Sarkar". The 

modifications due to El Baz and Launder [1993] is being denoted as "El Baz". The term 

"current" has been used to denote the computations made using the modifications proposed 

in this dissertation. It should be noted that the current modifications are used in conjunction 

with the modification for compressible dissipation rate proposed by Sarkar et al. [1991]. 

Figure 6.46 shows a comparative plot of the pressure and temperature distributions 

along the surface of the spike. The rise in pressure at about x/D = -11.5 is due to the 

"post-disk compression" (see Figure 6.27). All three models predict identical variations in 

pressure and temperature upto this location (from the tip of the aerodisk), but the level of 

pressure jump across this compression predicted by the El Baz and Launder (El Baz and 

Launder, 1993) modification is considerably lesser than that predicted by the "Sarkar" 

modifications and the "current" model. Downstream of this location the pressure and 

temperature variations predicted by the three models are about the same. The "El Baz" 

modification predicts a smaller recirculation zone in comparison with the other the two 

models. Inside the recirculation zone all three models predict considerable variations in the 

pressure and temperature distribution. It is difficult to provide a reasonable explanation for 

this variation due to a lack of experimental data in this region. 

Figure 6.47 shows a comparison between the predictions made, using the 

compressibility modifications, of the pressure distribution along the surface of the projectile. 

The current modifications offer a slight improvement over the other two modifications with 

the possible implication that the current modifications are a step in the right direction (albeit 

a small step). 

Figure 6.48 presents profile comparisons, of the compressibility modifications, at the 

three locations along the spike, mentioned earlier. The El Baz modification (El Baz and 

Launder, 1993) predicts the lowest level of TKE in the flow field. The current modifications 
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Figure 6.47. Comparison of the compressibility modifications : Pressure distribution 
along the projectile surface. 

predict an increased level of TKE which is again very similar to our observations for the 

afterbody flowfield. The reduced level of TKE predicted by the modifications due to El Baz 

and Launder [ 1993] is largely due to the increased dissipation rates predicted by that model. 

The lateral shift in the location peak values is observed in the computations made using the 

El Baz model. 

6.6 Summary 

Modifications that have been proposed to address the issue of non-equilibrium 

between the rate of production and dissipation have been tested for the projectile forebody 

flow field. Due to the lack of sufficient experimental measurements of this flow field the 

comparisons had to qualitative. The standard model predicts higher rates of production of 

TKE, across the shock wave, in comparison with the non-equilibrium models. There are still 
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some unresolved issues and conflicting observations (between experiment and DNS). With 

more insight into the phenomena of shock-turbulence interaction, the validity of the 

predictions made by the various models can be ascertained. 

The modifications that have been proposed to address the effect of compressibility on 

the turbulent flow field have been tested to evaluate their effectiveness and capability. In 

terms of the pressure distributions, on the projectile forebody surface, there are no marked 

differences between the various models. However the El Baz modification (El Baz and 

Launder, 1993) does consistently overpredict the rate of dissipation. 

The use of the spike-aerodisk assembly, in front of the projectile, does reduce the 

pressure at the projectile surface (by almost a factor of 10). The temperature distributions 

on the projectile surface do not display such a dramatic reduction, However, the drop in 

temperature at the nose of the projectile is considerable with a significant rise in temperature 

at the separation-shock location. 

For the spike-on case, the extended model (combination of the modifications for C£i, 

C£2 and compressible dissipation Ed) predicts a longer recirculating region. The current 

modifications do not make a significant impact on the mean flow field predictions. However 

it does predict a pressure distribution that is marginally closer to the experimental data. The 

modifications also predict higher values of TKE in comparison with the modifications of 

Sarkar et al. [1991] and Sarkar [1992]. The modifications proposed by El Baz and Launder 

[1993] predict the lowest levels of TKE, indicative of the overly dissipative nature of these 

modifications. 



CHAPTER 7 
CONCLUDING REMARKS 

Conceptually, addressing the compressibility effects as a dissipative one or modelling 

compressibility effects based on the turbulent Mach number does not seem to offer a 

complete description of the physics. Compressibility modifications that have been proposed 

to address the extra dissipation due to the dilatational velocity field have been analyzed to 

contrast their predictive capabilities (of decaying compressible turbulence). The study 

indicated that these modifications were similar in nature, save a constant. 

From an analysis of the exact form of the governing equations, additional terms have 

been identified which are unique to compressible turbulent flows and have been hitherto 

ignored. These are the terms representing the enthalpic production rate and the term 

representing the effect of the baroclinic effect. Modifications have been derived to model 

these terms via a model for the turbulent mass flux. 

Additional modifications that have been proposed to address the added time scale 

effects arising due to the non-equilibrium between the rates of production and dissipation 

of turbulent kinetic energy have been considered. Suggestions have been made, for possible 

improvements that could be made to the modification for Ce2 

The various modifications have been evaluated in terms of their predictive 

capabilities, through computational analysis of flow fields of increased complexity. These 

are the flow past an axi-symmetric afterbody at supersonic Mach number, the flow past a 

projectile forebody at hypersonic speeds and the flow past the projectile forebody with a drag 

reduction spike. A computational procedure using a finite volume, cell-centered scheme 

with second-order multi-stage Runge-Kutta time stepping has been used in this study. The 
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artificial dissipation scheme has been found to be unsatisfactory in terms of maintaining the 

integrity of the flow physics (at least, for the afterbody flow field). The artificial dissipation 

scheme is also unsatisfactory in predicting flowfields with strong gradients, such as shocks. 

The added dissipation is not sufficient enough to suppress the spurious oscillations at a 

discontinuity, such as a shock. 

The results of the afterbody flow field indicated that the non-equilibrium based 

modification to Cel is not sufficient to make reasonable predictions of the flow field and the 

modification to C£2, when used in conjunction with the Cel modification, offers a more 

satisfactory set of predictions in terms of the mean flow quantities as well as the turbulence 

structure. 

Of the two compressibility modifications to the compressible dissipation rate and the 

pressure dilatation correlation, the modifications of El Baz and Launder [1993] are overly 

dissipative, at least for the flow fields tested in this dissertation. The current modifications 

show a positive impact on the predictions made. These predictions indicate that there is a 

need to account for the enthalpic production term and the term representing the baroclinic 

effect. But the impact of the current model on the mean flow field is not strong for the test 

cases considered here. However, in terms of the extent of the recirculation region (in the case 

of the afterbody flow field) or the distribution of pressure on the surface of the projectile, 

the current modifications are definitely a step in the right direction. Further study into the 

precise nature of the enthalpic production term and the baroclinic effects may be needed to 

improve the predictive capabilities of quantities such as the turbulent kinetic energy and to 

ascertain their role in determining the mean flow field. 

The issue regarding the reduced sensitivity of k-(0 models to spatial gradients in 

density has been studied. It has been shown that this is an artifact of the neglect of 

cross-diffusion terms in the transport equation for w. 

To further the understanding of the effects of compressibility on the turbulence 

structure the following suggestions can be made. The afterbody flow field that has been 
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investigated in this dissertation has been extensively studied, experimentally. However, the 

measurements are at a relatively low Mach number with the effects of compressibility 

playing a relatively minor role in the development of the flow field. Investigations of the 

flow structure at higher Mach numbers are needed to improve our understanding and to study 

the impact of the various modifications. 

From the point of view of evaluating the model that has been proposed for the turbulent 

mass flux, measurements of the fluctuating velocity components based on Reynolds and 

Favre averages would be very useful to evaluate the need to account for the turbulent mass 

flux. Detailed measurements of high Mach number flow fields would be helpful in 

evaluating the orders of magnitude of the various terms that appear in the exact form of the 

governing equations and to fine tune the coefficients used in the models. A detailed study, 

either experimental or DNS, would be very helpful in addressing the baroclinic effect. 

There is still no consistency in the definition of the non-dimensional distance, y +, 

from the wall. A computational study of the impact of the various definitions of y + would 

prove to be an useful exercise to improve the near wall modelling of turbulent flows. The 

dependence of the two-equation based models on the spatial gradients in density has been 

briefly considered in this dissertation. A more thorough study of the effect of the 

cross-diffusion term (in the k-to model) should be conducted and the differences between 

the predictive capabilities of the k-e and k-o) models should be studied. 

Very little information is available of the high velocity projectile flow field. For the 

particular case that we have considered in this dissertation there are discrepancies between 

the flow visualization results and the measurements made of the pressure distribution which 

renders a detailed analysis of the models of compressibility incomplete. The discrepancies 

need to be resolved and measurements of the mean velocity and temperature field need to 

be made to help evaluate the models of turbulence and understand the effect of 

compressibility in flow fields characterized by an interaction between complicated flow 

structures. Additionally, a resolution of the discrepancies between DNS studies and 
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experimental measurements regarding the interaction of turbulent field with a shock will 

help further our understanding of compressibility effects. 
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