REPORT DOCUMENTATION PAGE		Form Approved OMB No. 0704-0188	
gathering and maintaining the data nee collection of information, including woo	and and comparing and renewing the rollersion i	of information. Send comments req	revewing instructions, searching existing data source landing this burden estimate or any other espect of tr or information Operations and Reports, 1215 Jeffersc orect (0704-0188), Weshington, DC 20503.
1. AGENCY USE ONLY (Leave	e blank) 2. REPORT DATE August 11, 1997	3. REPORT TYPE AP 7 Final Techni	ND DATES COVERED cal, 3/1/94 - 2/28/97
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
Total Synthesis of	Buckminsterfullerene (C	60 ^{) and}	G N00014-94-1-0534
Endohedral Metal C	omplexes	••	
. AUTHOR(S)			
Yves F. Rubin			
PERFORMING ORGANIZATIC	N NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION
University of Cali	fornia, Los Angeles		REPORT NUMBER
Department of Chem	istry and Biochemistry		940761-00-A03
405 Hilgard Avenue			
Los Angeles, CA 90		<u></u>	
	AGENCY NAME(S) AND ADDRESS(E		 ,
Office of Naval Re Ballston Centre To	0002011	4	9970825 017
800 North Quincy S			MATORZO VII
Arlington, VA 2221			WAIAAma
1. SUPPLEMENTARY NOTES			
2a. DISTRIBUTION / AVAILABIL	TY STATEMENT		
2a. DISTRIBUTION/AVAILABIL		unlimited.	126. DISTRIBUTION CODE
	TY STATEMENT c release; distribution	unlimited.	126. DISTRIBUTION CODE
Approved for publi	c release; distribution	unlimited.	126. DISTRIBUTION CODE
Approved for publi	c release; distribution		
Approved for publi B. ABSTRACT (Maximum 200 w A summary of o	c release; distribution	of a variety of endohed	ral metal complexes of fullerenes
Approved for publi ABSTRACT (Maximum 200 w A summary of o is presented. The com	c release; distribution rores) ur work aimed at the synthesis apletion of the synthesis of suit	of a variety of endohed able highly unsaturated	ral metal complexes of fullerenes
Approved for publi ABSTRACT (Maximum 200 w A summary of o is presented. The com containing 60 carbon = fullerene framework i	c release; distribution work aimed at the synthesis atoms is described. These com n a process analogous to the ga	of a variety of endohed able highly unsaturated apounds were required t s-phase rearrangement	ral metal complexes of fullerenes macrocyclic precursors to study their rearrangement to a of mono- and polycyclic
Approved for publi ABSTRACT (Maximum 200 w A summary of o is presented. The com containing 60 carbon a fullerene framework i polyynes (acetylenic r	c release; distribution works) ur work aimed at the synthesis appletion of the synthesis of suita atoms is described. These com n a process analogous to the ga ings) in the formation of C ₆₀ and	of a variety of endohed able highly unsaturated pounds were required t s-phase rearrangement nd higher fullerenes. T	Iral metal complexes of fullerenes macrocyclic precursors to study their rearrangement to a of mono- and polycyclic hree types of synthetic acetylenic
Approved for publi ABSTRACT (Maximum 200 w A summary of o is presented. The com containing 60 carbon a fullerene framework is polyynes (acetylenic r precursors were target	c release; distribution work aimed at the synthesis apletion of the synthesis of suita atoms is described. These com n a process analogous to the ga ings) in the formation of C ₆₀ and ted, namely triply-linked bis-be	of a variety of endohed able highly unsaturated pounds were required t s-phase rearrangement nd higher fullerenes. T enzene-cyclophanes wit	Iral metal complexes of fullerenes macrocyclic precursors to study their rearrangement to a of mono- and polycyclic hree types of synthetic acetylenic th octayne linking units, sextuply
Approved for publi ABSTRACT (Maximum 200 w A summary of o is presented. The com containing 60 carbon = fullerene framework i polyynes (acetylenic r precursors were target linked bis-benzene-cy	c release; distribution work aimed at the synthesis apletion of the synthesis of suit atoms is described. These com n a process analogous to the ga ings) in the formation of C_{60} at ted, namely triply-linked bis-be clophanes with tetrayne linkers	of a variety of endohed able highly unsaturated pounds were required t s-phase rearrangement nd higher fullerenes. T enzene-cyclophanes wit , and deca-alkynylated	Iral metal complexes of fullerenes macrocyclic precursors to study their rearrangement to a of mono- and polycyclic hree types of synthetic acetylenic th octayne linking units, sextuply metallocenes which include a
Approved for publi ABSTRACT (Maximum 200 w A summary of o is presented. The com containing 60 carbon a fullerene framework is polyynes (acetylenic r precursors were target linked bis-benzene-cy metal in their structure	c release; distribution is oreal ur work aimed at the synthesis appletion of the synthesis of suita atoms is described. These com n a process analogous to the ga ings) in the formation of C_{60} and ted, namely triply-linked bis-be clophanes with tetrayne linkers e early in the synthesis. The real	of a variety of endohed able highly unsaturated pounds were required t s-phase rearrangement nd higher fullerenes. T enzene-cyclophanes wit arrangement to C ₆₀ of t	Iral metal complexes of fullerener macrocyclic precursors to study their rearrangement to a of mono- and polycyclic hree types of synthetic acetylenic th octayne linking units, sextuply metallocenes which include a he first examples of these
Approved for publi ABSTRACT (Maximum 200 w A summary of o is presented. The com containing 60 carbon a fullerene framework i polyynes (acetylenic r precursors were target linked bis-benzene-cy metal in their structure compounds has been a	c release; distribution works) ur work aimed at the synthesis appletion of the synthesis of suita atoms is described. These com n a process analogous to the ga ings) in the formation of C_{60} and ted, namely triply-linked bis-be clophanes with tetrayne linkers e early in the synthesis. The re- studied in the gas phase by LDI	of a variety of endohed able highly unsaturated apounds were required t s-phase rearrangement nd higher fullerenes. T enzene-cyclophanes wit and deca-alkynylated arrangement to C ₆₀ of t MS and in solution by	Iral metal complexes of fullerenes macrocyclic precursors to study their rearrangement to a of mono- and polycyclic hree types of synthetic acetylenic th octayne linking units, sextuply metallocenes which include a he first examples of these various chemical reactions.
Approved for publi ABSTRACT (Maximum 200 w A summary of o is presented. The com containing 60 carbon a fullerene framework i polyynes (acetylenic r precursors were target linked bis-benzene-cy metal in their structure compounds has been a Another aspect of	c release; distribution work aimed at the synthesis appletion of the synthesis of suit atoms is described. These com n a process analogous to the ga ings) in the formation of C_{60} at ted, namely triply-linked bis-be clophanes with tetrayne linkers e early in the synthesis. The rea- studied in the gas phase by LDi of our work was initiated by the	of a variety of endohed able highly unsaturated pounds were required t s-phase rearrangement nd higher fullerenes. T enzene-cyclophanes wit , and deca-alkynylated arrangement to C ₆₀ of t MS and in solution by e successful opening of	Iral metal complexes of fullerene macrocyclic precursors to study their rearrangement to a of mono- and polycyclic hree types of synthetic acetylenic th octayne linking units, sextuply metallocenes which include a he first examples of these various chemical reactions. the largest orifice on the
Approved for publi ABSTRACT (Maximum 200 w A summary of o is presented. The com containing 60 carbon a fullerene framework is polyynes (acetylenic r precursors were target linked bis-benzene-cy metal in their structure compounds has been a Another aspect of framework of C ₆₀ kno	c release; distribution of work aimed at the synthesis opletion of the synthesis of suita atoms is described. These com n a process analogous to the ga ings) in the formation of C_{60} at ted, namely triply-linked bis-be clophanes with tetrayne linkers e early in the synthesis. The re- studied in the gas phase by LDi of our work was initiated by the pown to date in the form of a col	of a variety of endohed able highly unsaturated apounds were required to s-phase rearrangement and higher fullerenes. T enzene-cyclophanes with arrangement to C_{60} of to MS and in solution by e successful opening of balt(III) complex of eth	Iral metal complexes of fullerene macrocyclic precursors to study their rearrangement to a of mono- and polycyclic hree types of synthetic acetylenic th octayne linking units, sextuply metallocenes which include a he first examples of these various chemical reactions. the largest orifice on the enobisfulleroid C ₆₄ H ₄ . This
Approved for publi ABSTRACT (Maximum 200 w A summary of o is presented. The com containing 60 carbon a fullerene framework i polyynes (acetylenic r precursors were target linked bis-benzene-cy metal in their structure compounds has been a Another aspect of framework of C ₆₀ kno strategy is being appli	c release; distribution work aimed at the synthesis appletion of the synthesis of suit atoms is described. These com n a process analogous to the ga ings) in the formation of C_{60} at ted, namely triply-linked bis-be clophanes with tetrayne linkers e early in the synthesis. The rea- studied in the gas phase by LDi of our work was initiated by the	of a variety of endohed able highly unsaturated apounds were required to s-phase rearrangement and higher fullerenes. T enzene-cyclophanes with and deca-alkynylated arrangement to C_{60} of to MS and in solution by e successful opening of balt(III) complex of eth cent sites of the surface	Iral metal complexes of fullerene macrocyclic precursors to study their rearrangement to a of mono- and polycyclic hree types of synthetic acetylenic th octayne linking units, sextuply metallocenes which include a he first examples of these various chemical reactions. the largest orifice on the enobisfulleroid C ₆₄ H ₄ . This
Approved for publi ABSTRACT (Maximum 200 w A summary of o is presented. The com containing 60 carbon is fullerene framework is polyynes (acetylenic r precursors were target linked bis-benzene-cy metal in their structure compounds has been s Another aspect of framework of C ₆₀ kno strategy is being appli opening, aimed at eve	c release; distribution work aimed at the synthesis atoms is described. These common n a process analogous to the gatings) in the formation of C_{60} and ted, namely triply-linked bis-becommon ted, namely terms t	of a variety of endohed able highly unsaturated apounds were required to s-phase rearrangement and higher fullerenes. T enzene-cyclophanes with and deca-alkynylated arrangement to C_{60} of to MS and in solution by e successful opening of balt(III) complex of eth cent sites of the surface	Iral metal complexes of fullerenest macrocyclic precursors to study their rearrangement to a of mono- and polycyclic hree types of synthetic acetylenic th octayne linking units, sextuply metallocenes which include a he first examples of these various chemical reactions. the largest orifice on the enobisfulleroid C ₆₄ H ₄ . This
Approved for publi ABSTRACT (Maximum 200 w A summary of o is presented. The com containing 60 carbon is fullerene framework is polyynes (acetylenic r precursors were target linked bis-benzene-cy metal in their structure compounds has been s Another aspect of framework of C ₆₀ kno strategy is being appli opening, aimed at eve	c release; distribution (work) ur work aimed at the synthesis appletion of the synthesis of suita atoms is described. These commons in a process analogous to the ga- ings) in the formation of C_{60} and ted, namely triply-linked bis-be- clophanes with tetrayne linkers te early in the synthesis. The re- studied in the gas phase by LDD of our work was initiated by the pown to date in the form of a col- ed in a double fashion on adjacentual metal insertion inside the	of a variety of endohed able highly unsaturated apounds were required to s-phase rearrangement and higher fullerenes. T enzene-cyclophanes with arrangement to C_{60} of to MS and in solution by e successful opening of balt(III) complex of eth cent sites of the surface cage.	Iral metal complexes of fullerenest macrocyclic precursors to study their rearrangement to a of mono- and polycyclic hree types of synthetic acetylenic th octayne linking units, sextuply metallocenes which include a he first examples of these various chemical reactions. the largest orifice on the tenobisfulleroid $C_{64}H_4$. This of C_{60} to form an even larger
Approved for publi ABSTRACT (Maximum 200 w A summary of o is presented. The com containing 60 carbon is fullerene framework is polyynes (acetylenic r precursors were target linked bis-benzene-cy metal in their structure compounds has been s Another aspect of framework of C ₆₀ kno strategy is being appli opening, aimed at eve	c release; distribution work aimed at the synthesis atoms is described. These common n a process analogous to the gatings) in the formation of C_{60} and ted, namely triply-linked bis-becommon ted, namely terms t	of a variety of endohed able highly unsaturated apounds were required to s-phase rearrangement and higher fullerenes. T enzene-cyclophanes with arrangement to C_{60} of to MS and in solution by e successful opening of balt(III) complex of eth cent sites of the surface cage.	Iral metal complexes of fullereness macrocyclic precursors to study their rearrangement to a of mono- and polycyclic hree types of synthetic acetylenic th octayne linking units, sextuply- metallocenes which include a he first examples of these various chemical reactions. the largest orifice on the tenobisfulleroid $C_{64}H_4$. This of C_{60} to form an even larger
Approved for publi ABSTRACT (Maximum 200 w A summary of o is presented. The com containing 60 carbon a fullerene framework i polyynes (acetylenic r precursors were target linked bis-benzene-cy metal in their structure compounds has been a Another aspect of framework of C ₆₀ kno strategy is being appli opening, aimed at eve SUBJECT TERMS Fullerene, endohedral	c release; distribution (rows) ur work aimed at the synthesis apletion of the synthesis of suita atoms is described. These commons n a process analogous to the ga- ings) in the formation of C_{60} and ted, namely triply-linked bis-be- clophanes with tetrayne linkers e early in the synthesis. The re- studied in the gas phase by LDD of our work was initiated by the bown to date in the form of a col- ed in a double fashion on adjacentual metal insertion inside the metallofullerene, cyclophane,	of a variety of endohed able highly unsaturated apounds were required to s-phase rearrangement and higher fullerenes. The enzene-cyclophanes with and deca-alkynylated arrangement to C_{60} of to MS and in solution by the successful opening of balt(III) complex of eth cent sites of the surface cage.	Iral metal complexes of fullereness macrocyclic precursors to study their rearrangement to a of mono- and polycyclic hree types of synthetic acetylenic th octayne linking units, sextuply- metallocenes which include a he first examples of these various chemical reactions. the largest orifice on the enobisfulleroid C ₆₄ H ₄ . This of C ₆₀ to form an even larger 15. NUMBER OF PAGES 5 16. PRICE CODE
Approved for publi ABSTRACT (Maximum 200 w A summary of o is presented. The com containing 60 carbon is fullerene framework is polyynes (acetylenic r precursors were target linked bis-benzene-cy metal in their structure compounds has been s Another aspect of framework of C ₆₀ kno strategy is being appli opening, aimed at eve SUBJECT TERMS Fullerene, endohedral	c release; distribution (rows) ur work aimed at the synthesis apletion of the synthesis of suita atoms is described. These commons n a process analogous to the ga- ings) in the formation of C_{60} and ted, namely triply-linked bis-be- clophanes with tetrayne linkers e early in the synthesis. The re- studied in the gas phase by LDD of our work was initiated by the bown to date in the form of a col- ed in a double fashion on adjacentual metal insertion inside the metallofullerene, cyclophane,	of a variety of endohed able highly unsaturated apounds were required to s-phase rearrangement and higher fullerenes. The enzene-cyclophanes with and deca-alkynylated arrangement to C_{60} of to MS and in solution by the successful opening of balt(III) complex of eth cent sites of the surface cage.	Iral metal complexes of fullereness macrocyclic precursors to study their rearrangement to a of mono- and polycyclic hree types of synthetic acetylenic th octayne linking units, sextuply- metallocenes which include a he first examples of these various chemical reactions. the largest orifice on the enobisfulleroid C ₆₄ H ₄ . This of C ₆₀ to form an even larger 15. NUMBER OF PAGES 5 16. PRICE CODE

August 11, 1997

. .

OFFICE OF NAVAL RESEARCH

Final Technical Report for Grant Period 3/1/94 - 2/28/97 Grant No. N00014-94-1-0534

Summary of Goals: In view of the important properties displayed by empty C_{60} and its compounds (superconductivity, ferromagnetism, nonlinear optical activity), it is important to develop an approach to fullerene structures filled with any one of the numerous transition metals. The highly variable electronic properties of transition metal complexes undoubtedly will lead to a rich array of physical properties when they are associated with fullerenes. Because C_{60} 's high symmetry plays an important role in its unique physical properties compared to larger fullerenes (C_{70} , C_{76} , C_{84} , etc.), we are aiming at the synthesis of endohedral metal complexes of C_{60} (M@C₆₀). The endohedrals of C_{60} are presently not known in pure form, but some of the lanthanide complexes in the higher series (e.g. La@C₇₆, La@C₇₈, Ln@C₈₂ (Ln = La, Y, Sc, Gd, Tm), Sc₂@C₈₄, Sc₃@C₈₂) have been isolated in very limited quantities. There is every indication that endohedral metallofullerenes will provide as rich and diverse a chemistry as the empty fullerenes. Thus, an efficient approach to endohedral complexes on a significant scale is highly desirable, and synthesis seems to be one of the most promising ways to achieve this versatility.

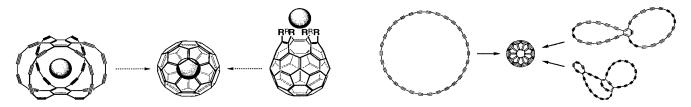
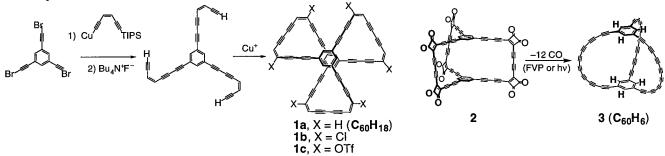
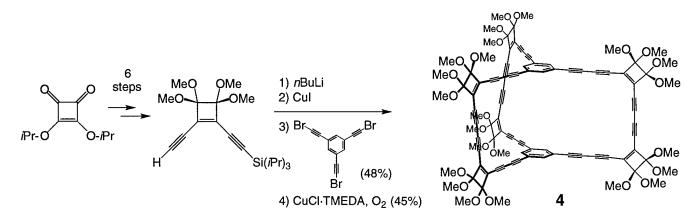


Figure 1. Synthetic approaches to endohedral metallofullerenes. Figure 2. Gas-phase coalescence of polyynes to C₆₀.

We have been investigating two main approaches to the synthesis of endohedral metallofullerenes (Fig. 1): (a) One approach aims at the synthesis of spherically-shaped acetylenic macrocycles which are expected to rearrange to endohedral metal complexes of fullerenes in a controlled process analogous to the gas-phase coalescence of mono- and polycyclic polyynes during fullerene formation by the graphite evaporation method (Fig. 2). (b) The second approach considers chemical transformations to open an orifice on the framework of C_{60} . From our functionalization studies on C_{60} , a recent achievement was the formation of a cobalt complex having the metal attached right on top of the opening. More recently, we have been pursuing this approach by combining this methodology to form two adjacent modification sites on C_{60} , thus greatly enhancing the potential size of the cavity.

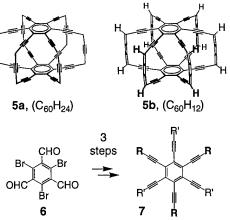

August 11, 1997

۰.

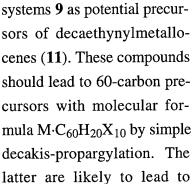

• -

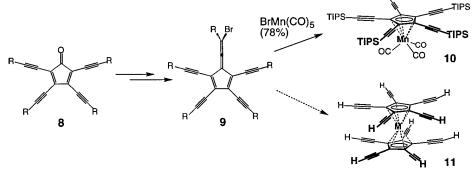
Research Progress During Funding Period

1. Total Synthesis of Endohedral Metallofullerenes: (a) Trialkynylbenzene Precursors: In the last 3 years, we have prepared the first members of a series of highly-unsaturated cyclophanes designed to rearrange to the C_{60} framework by a series of thermodynamically favorable reactions. Macrocycle 1a ($C_{60}H_{18}$), the parent compound of this series, was studied by several mass spectroscopic techniques (MALDI TOF, APCI), showing little propensity to lose hydrogen. Since this is somewhat surprising in view of the expected chemistry of the enediyne moieties within these systems (which should undergo Bergman cyclization to benzene-1,4-diradicals), we have recently started a collaboration with the group of Martin Jarrold at Northwestern University, suspecting that the laser desorption conditions used in the initial study were too mild. The Jarrold group is currently studying the thermal behavior of 1a using their very successful drift-tube technique allowing precise control of the kinetic energy injected into these systems.



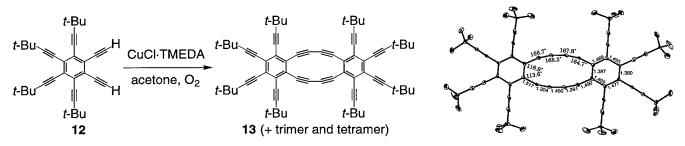
On our side, we have worked on the synthesis of precursors of cyclophane $3 (C_{60}H_6)$. This system lacks all but six hydrogens on the way to C_{60} , and should be much better suited for rearrangement to the fullerene than 1a. Since 3 will be most likely rather unstable, we have investigated three routes to more stable precursors, i.e. compounds 1b, 1c, and 2. Our synthetic efforts on the synthesis of suitable enediynes leading to both 1b and 1c have not yet come to fruition, we have concentrated our efforts on the preparation of 2 in the past 6 months. Thus, the synthesis of macrocycle 4 has recently been successfully completed. We envisage no problem in the final acid-catalyzed deprotection to form 2.


LD-MS experiments on 2 will be performed immediately in house and in collaboration with Stephen McElvany (NRL). We are quite confident that system 2 will finally provide an answer to our question regarding the rearrangement of macrocyclic precursors to buckminsterfullerene.


(b) Hexaalkynylbenzene Precursors: The synthesis of hexalinked cyclophanes such as 5a and 5b is one of the ultimate goals in this approach because such compact precursors would permit the complexation of an array of transition metals in their preorganized cavity. Toward this goal, we have developed a remarkably straightforward methodology to prepare 1,3,5/2,4,6differentially functionalized hexaalkynylbenzenes (7) derived from tribromotrialdehyde 6 (5 steps from mesitylene). Current progress on this project is as far along as preparing the half

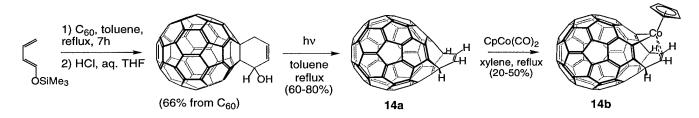
molecule ($R = SiEt_3$, $R' = CH_2-C=C-CH_2OTBS$ units at 1,3,5-positions) required for ultimate one-step cyclization to **5a**. We are very excited about this project because availability of **5a** would permit interesting metal complexation studies independently of the rearrangement studies to endohedral metallofullerenes, should the latter prove difficult.

(c) Decaalkynylmetallocene Precursors: Last year, we reported the synthesis of the halogenated

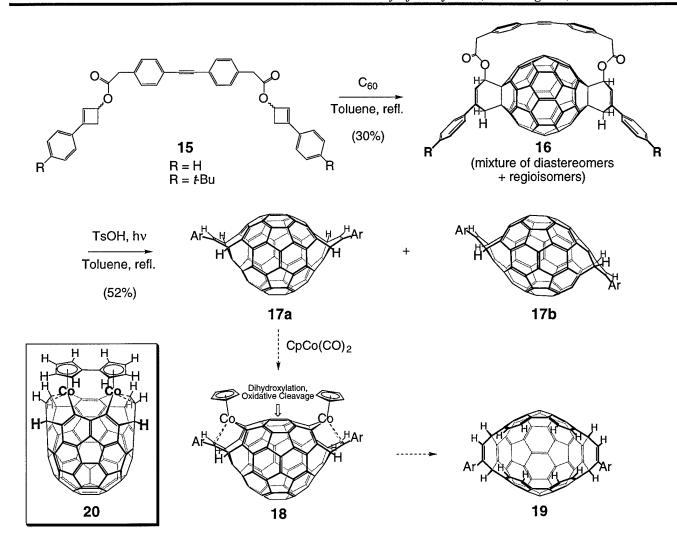

endohedral metallofullerenes (M@C₆₀) in flash vacuum pyrolytic or even in solution-phase rearrangements induced by metal catalysis or radical or ionic processes. We have verified the validity of this approach by forming the half-sandwich complex **10** in good yield. Since the bulk of the TIPS-groups prevents the formation of the corresponding metallocenes, we have started repeating this work with smaller protecting groups.

The preparation of *planar* fragments of 2-dimensional carbon allotropes in which the graphitic texture is extended by acetylene or butadiyne units (graphynes) has recently become possible by application of the methodology leading to cyclopentadienones 8. The preparation of differentially protected hexaalkynylbenzenes (HEBs, e.g. 12), which are otherwise not accessible by other methods, has allowed the synthesis of the interesting and stable graphyne fragment 13 showing unusual bond elongations in the crystal. We are now pursuing this work toward the synthesis of larger pieces of

August 11, 1997


~ .

graphynes (*via* the trimers of differentially protected HEBs) to relate the properties of such soluble, extended molecules to those of the 2D-polymeric sheets, which are unattainable with present methodology.



2. Functionalization of Fullerenes. Towards Metal Insertion into Fullerenes.

We have been exploring the possibility of opening a temporary orifice within a fullerene framework to form endohedral complexes by metal insertion. We have discovered the unprecedented formation of the cobalt(III) complex **14b** from bis-fulleroid **14a**. The opening within this molecule is still the largest created so far on a fullerene. However, simple attempts (heating, high pressure) to force the metal inside have not yet been successful. The main reason behind this lies in the fact that the cavity is restrained by the C_4H_4 bridge (2.4 Å between the carbons attached to Co), and the Cp ligand on cobalt is too strongly attached to the metal. For this reason, we have invested a major effort in the synthesis of systems with much larger cavities, as well as started exploring the chemistry of different ligands on cobalt and other transition metals.

An exciting prospect lies in the opening of an entire seam on the surface of C_{60} by a two-fold application of the sequence of reactions that lead to the cobalt complex **14b**. We have prepared the rearranged product **17a**, although as a presently inseparable mixture with its diastereomer **17b**. Once pure samples of **17a** can be obtained (by preparative HPLC), the bis-cobalt complex **18** will be formed. We anticipate that the C=C bond separating the two 15-atom openings in **18** can be dihydroxylated and cleaved to a dicarbonyl product, which may be further transformed to the open system **19** or a similar wide-open "clam-shell" compound. An alternative way to open a larger cavity is concomitantly being explored (complex **20**). Both routes utilize *challenging* regioselective bis-functionalizations of C₆₀ and much effort has been invested in the computational design and synthetic work leading to these bis-adducts.

Our main goal is to obtain endohedral metallofullerenes, which we believe will lead to an extremely rich array of chemical and physical investigations. The results obtained under this grant have been extremely fruitful and have led to important results. We are pursuing this work with currentl funding from NSF and a renewal grant from ONR.