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Foreword

The International Colloquium on Algorithms, Languages and Programming
(ICALP) is the annual conference of the European Association for Theoretical
Computer Science (EATCS). The conference aims at enabling computer scien-
tists to exchange theoretical ideas and results, as well as at stimulating cooper-
ation between the theoretical and the practical community in computer science.

The main topics of ICALP 97 included computability, automata, formal
languages, new computing paradigms, term rewriting, analysis and design of al-
gorithms, computational geometry, computational complexity, symbolic and al-
gebraic computation, cryptography and security, data types and data structures,
theory of data base and knowledge bases, semantics of programming languages,
program specification and verification, foundations of logic programming, par-
allel and distributed computation, theory of concurrency, theory of robotics,
theory of logical design and layout.

ICALP ’97 was held in Bologna, Italy, July 7-11, 1997. Previous colloquia
took place in Paderborn (1996), Szeged (1995), Jerusalem (1994), Lund (1993),
Wien (1992), Madrid (1991), Warwick (1990), Stresa (1989), Tampere (1988),
Karlsruhe (1987), Rennes {(1986), Nafplion (1985), Antwerpen (1984), Barcelona
(1983), Aarhus (1982), Haifa (1981), Amsterdam (1980), Graz (1979), Udine
(1978), Turku (1977), Edinburgh (1976), Saarbiicken (1974), and Paris (1972).
The next ICALP will be held in Aalborg, Denmark, July 13-17, 1998.

ICALP ’97 came in conjunction with the 25th anniversary of EATCS. The
celebration of the association and of its founders included a historical perspective
on the achievements of the community in the last 25 years with a talk by M.Nivat,
the first EATCS President, and a discussion on the new challenges that EATCS
will face in the future.

ICALP 97 was organised differently than before and accommodated further
events, to react positively to the new challenges that the theoretical science com-
munity faces in the information technology society. Indeed, our community has
developed and now utilizes several approaches and different methodologies that
require increased specialization. As a consequence, there is a growing number
of specialized conferences and workshops, and it is difficult for researchers to
follow the recent developments on specialized research topics. ICALP 97 was
a first step towards having a conference offering a single unifying environment
while leaving room for specialization. In such an event, the computer science
community interested in the development of formal methods and methodolo-
gies can stress the relationships that exist among different branches. The new
organization of ICALP ’97 can be summarized as follows.

Invited talks There were more invited presentations than usual. The eight
talks presented the main developments occurring in a specific area and the
promising new trends.

Plenary and parallel sessions Some papers were presented in plenary ses-
sions. Parallel sessions were organised for the other submitted papers, ac-
cording to the two tracks of the Journal of Theoretical Computer Science;
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this reflects the main division in research topics within the community, while
making evident its unifying aspects.

Satellite workshops Seven satellite workshop were held immediately before
or after the main conference. Their specific topics were often at the inter-
face between theoretical computer science and other information technology
research areas.

Policy of research funding A panel discussion was held, with panelists in-
cluding experts responsible for governmental and industrial research and
development agencies in Europe and the U.S.

The Program Committee selected 73 papers out of 197 submissions, 183 of
which were in electronic format. Their authors are from 30 countries from all over
the world. Each submission has been sent to four Program Committee members,
assisted by their own referees.

The selection meeting took place in Bologna, March 15-16, 1997. To permit
a deeper evaluation of the papers, the Program Committee split in two parts for
a preliminary discussion, according to the division mentioned above. Then, all
the papers were evaluated again and all the decisions were taken altogether.

We would like to warmly thank all the Program Committee members and
their referees for their invaluable contribution.

We are deeply indebted with all the members of the Organizing Committee
for all their time and efforts. A special “grazie” to Vladimiro Sassone for his
excellent automatic system that supported us through all the preparation of the
colloquium, from receiving submissions and referees’ reports to the preparation
of the selection meeting and of the proceedings. “Grazie” also to Chiara Bodet

for her precious help.
Finally, we gratefully acknowledge support from the UE - DG III, UNESCO

Venice Office, Italian National Council of Research (Comitati 01, 07, 12), GNIM-
CNR, IEI-CNR, the Universities of Bologna, Pisa, and Roma “La Sapienza”, the
Regione Emilia-Romagna, TELECOM Italia, and the United States Air Force
European Office of Aerospace Research and Development.

April 1997

Pierpaolo Degano, Roberto Gorrieri, Alberto Marchetti-Spaccamela
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Graphical Calculi for Interaction

Robin Milner

University of Cambridge, UK

Recently there has been great interest in operational models of interactive
systems, and more recently especially in those which capture to some extent the
elusive notion of mobility. The m-calculus [1] is one such model, and has had
some success both in application and in prompting research in abstract models
of interaction. But it can hardly claim to be canonical, and indeed nor can any
of the other operational models.

We might consider that the quest for a canonical model of interaction is no
more likely to succeed than that for a canonical model of computation. (In the
latter case, we have to be content with many models — Turing machines, register
machines, ...— and with translating between them.) Nonetheless, it would be
timid not to seek aspects which are common to many, or even most, models of
interactive behaviour.

In around 1992 I started from the m-calculus and tried to separate what
seemed ad hoc from what seemed more essential. The exact communication
discipline of the w-calculus fell into the ad hoc category; the rest — naming,
restriction, parallel composition — have greater claim to be universal. This was
the origin of action calculi [2]. To present the m-calculus as an action calculus,
one starts from the common basis of action calculi and merely adds two or three
so-called “controls” — for message-passing and replication. It turns out that the
A-calculus, the object calculus of Abadi and Cardelli, and many recent calculi
can be similarly set up — and combined with each other — in the action-calculus
framework. Considerable progress has been made, for example in [3], in the
uniform treatment of models of action calculi.

In the conference lecture I shall emphasize one feature of action calculi: their
graphical presentation. Several examples will be given — including some recent
advances in calculi for representing locality — showing that this graphical element
1s exactly what all action calculi have in common. These examples motivate
further development (which is certainly needed) in the general theory of action
calculi and their models.
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NP-Completeness: A Retrospective

Christos H. Papadimitriou®

University of California, Berkeley, USA

Abstract. For a quarter of a century now, NP-completeness has been
computer science’s favorite paradigm, fad, punching bag, buzzword, alibi,
and intellectual export. This paper is a fragmentary commentary on its
origins, its nature, its impact, and on the attributes that have made it

so pervasive and contagious.

1. A keyword search in Melvyl, the University of California’s on-line library,
reveals that about 6,000 papers each year have the term “NP-complete” on
their title, abstract, or list of keywords. This is more than each of the terms
“compiler,” “database,” “expert,” “peural network,” and “operating system.”
Even more surprising is the diversity of the disciplines with papers referring to
“NP-completeness:” They range from statistics and artificial life to automatic
control and nuclear engineering. What is the nature and extent of the impact of
NP-completeness on theoretical computer science, computer science in general,
computing practice, as well as other domains of the natural sciences, applied sci-
ence, and mathematics? And why did NP-completeness become such a pervasive
and influential concept?

2. One of the reasons of the immense impact of NP-completeness has to be
the appeal and elegance of the class P, that is, of the thesis that “polynomial
worst-case time” is a plausible and productive mathematical surrogate of the
empirical concept of “practically solvable computational problem.” But, obvi-
ously, NP-completeness also draws on the importance of NP, as it rests on the
widely conjectured contradistinction between these two classes. In this regard,
it is crucial that NP captures vast domains of computational, scientific, and
mathematical endeavor, and seems to roughly delimit what mathematicians and
scientists had been aspiring to compute feasibly. True, there are domains, such
as strategic analysis and counting, which have been within our computational
ambitions, and still seem to lie outside NP; but they are the exceptions rather
than the rule. NP-completeness has thus become a valuable intermediary be-
tween the abstraction of computational models and the reality of computational
problems, grounding complexity theory to computational practice.

3. Also crucial for the success of NP-completeness has been its surprising ubiqg-
uity and effectiveness as a classification tool, and the scarcity of problems in

* christos@cs.berkeley.edu. Partially supported by the National Science Foundation.
A version of this talk was given at a meeting in the Fall of 1995 celebrating the 60th
birthday of Richard M. Karp, to whom this paper is also affectionately dedicated.




NP that resist classification as either polynomial-time solvable or NP-complete.
(Ladner’s result on intermediate degrees between P and NP-completeness [12]
had been known almost as soon as NP-completeness was introduced, and thus
theoretically the world could be full of mysterious intermediate problems.) In sev-
eral occasions, extremely broad classes of computational problems in NP have
been dichotomized with surprising accuracy into polynomially solvable and NP-
complete, see [21, 22] for two early examples.

4. The founders of NP-completeness [2, 10, 13] appear to have anticipated its
broad applicability and classification power. Leonid Levin [13] wrote in 1973:
“The method described here clearly provides a means for readily obtaining re-
sults of [this type] for the majority of important sequential search problems.” In
Karp’s paper [10] twenty one problems were proved NP-complete, showing be-
yond any doubt the surprisingly broad applicability of the method. Significantly,
Karp seems annoyed and surprised that three other problems (linear program-
ming, primality, and graph isomorphism) resisted at the time such classification.
Primality and graph isomorphism were also mentioned by Cook [2]. Knuth was
sufficiently convinced about the importance and broad applicability of the new
concept to take early and deliberate action on the terminological front [11].

5. NP-completeness has had tremendous impact even in areas where, in some
sense, it should not have. It is now common knowledge among computer sci-
entists that NP-completeness is largely irrelevant to public-key cryptography,
since in that area one needs sophisticated cryptographic assumptions that go
beyond NP-completeness and worst-case polynomial-time computation [19]; fur-
thermore, cryptographic protocols based on NP-complete problems have been
ill-fated. Fortunately, the founders of modern cryptography did not know this.
Diffie and Hellman base their famous pronouncement “We stand today on the
brink of a revolulion in cryptography” [3] on two facts: (1) Very fast hardware
and software, and (2) novel techniques for proving problems hard (they cite
Karp’s paper [10]).

6. NP-completeness has also exhibited a great amount of versatility, adapting
to contexts and computational aspects beyond its original scope of worst-case
analysis of exact algorithms for decision and optimization problems. For exam-
ple, it was used early on to show that certain optimization problems cannot be
approximated satisfactorily [20], and indeed in a most ingenious and compre-
hensive way more recently [1]. By showing that even less ambitious goals than
worst-case polynomial exact solution are unattainable, NP-completeness is thus
a most useful tool for repeatedly pruning unpromising research directions and
thus redirecting research to new ones (in a manner reminiscent of the struggle
between Hercules and the monster Hydra [16]).

7. Let me illustrate this versatility of NP-completeness by a technical interlude
on an aspect of efficient computation that has interested me recently, namely,
output polynomial time. Certain computational problems require an output f(z)
on input z that is in the worst case exponential in the input. For such problems,
one would like to have algorithms that are polynomialin |z| and |f(z)|. The class



of problems thus solvable can be called output polynomial time. One can use NP-
completeness to prove that certain functions are not in output-polynomial time,
unless P=NP. For example, consider the function MIN which maps a regular
expression to the minimum-state equivalent deterministic finite-state automaton.
MIN can be computed by first designing a nondeterministic automaton M, then
an equivalent deterministic automaton M’, and next minimizing the states of
M’ to obtain the final output; the problem is, of course, that the intermediate
result M’ could be exponential in both the input and the output. It is rather
straightforward to use “traditional” NP-completeness techniques to show the
following:

Theorem 1. Unless P=NP, MIN is not in output polynomial time.

In fact, we cannot even compute incoutput-polynomial time a deterministic au-
tomaton that has at most polynomidlly more states than the minimum —unless,
of course, P=NP.

8. Often the required output f(z) isa.set {y1,...,yx} of strings that are related
to x via an NP mapping; for example, if G is a graph, let AMIS(G) be the set of
all maximal independent sets of GG. AMIS is known to be in output-polynomial
time (see [9] for an exposition and strengthening of this result, and an early
discussion of output polynomial time). For such problems we have an elegant
alternative definition of output polynomial time. A function f : X* 25" is
in output polynomial time if the following problem is solvable in polynomial
time: Given z and y C X2*, either decide that y = f(z), or find a string in
y & f(z). It is easy to see that, if such an algorithm exists, then its iteration
starting with S = 0 gives an output polynomial time algorithm for f; and vice-
versa, if an output polynomial time algorithm exists for f, it can be used to
produce an element of y & f(z). For example, AMIS is in output polynomial
time; its generalization to hypergraphs is open, but was recently shown to be
in output n°'°&" time [6]; see [5] for an extensive discussion of the hypergraph
generalization of AMIS. One can use again “traditional” NP-completeness to
show that the following generalization is not in output polynomial time, unless
P=NP: Given a monotone circuit, compute the set of all minimal (with respect
to the set of true inputs) satisfying truth assignments.

9. But, sometimes, “traditional” NP-completeness techniques do not seem to suf-
fice to bring out the intractability of a problem, because this problem belongs to
a class or computational mode that appears to be “between” P and NP. In such
cases NP-completeness has acted as an open-ended research paradigm, spawn-
ing variants that are appropriate for the computational context being studied;
examples are classes that capture local search [8], the parity argument [14], loga-
rithmic nondeterminism [18], the related concept of fixed-parameter tractability
[4], and approximability [17].

10. Complexity classes introduced this way, as abstractions of natural compu-
tational problems of mysteriously intermediate complexity, are in some precise
sense well-motivated, indeed necessary; they are discovered, not invented, as they

]




have always existed by dint of their natural complete problems. The only way to
make them go away is to collapse them with P or NP —as occasionally happens,
recall [17] and its brilliant follow-up [1].

11. NP-completeness is of course a valuable tool for demonstrating the difficulty
of computational problems. However, NP-completeness is often used “allegori-
cally;” a problem is shown NP-complete that is not, strictly speaking, a natural
computational problem, but an artificial problem created to capture a mathe-
matical concept. NP-completeness in this context suggests that a problem, area,
or approach is mathematically nasty.. Because, if we believe that efficient algo-
rithms are the natural outflow of the mathematical structure of a problem (a view
shared by all computer scientists, with the possible exception of researchers in
“metaphor-based” algorithmic paradigms such as neural nets, in which algorith-
mic behavior is thought to be “emergent”), then, contrapositively, complexity
must be the manifestation of mathematical poverty, lack of structure. See [7] for
an early example of such a use of NP-completeness in the theory of relational
databases.

12. Beyond mathematics, NP-completeness (and complexity in general) can also
be applied “allegorically” in other disciplines. It can be used as a metaphor
for chaos in dynamical systems, for unbounded rationality in game theory, for
unfairness in economics, for integrity of electoral systems in political science,
for cognitive implausibility in artificial intelligence, for genetic indeterminism in
genetics, and so on (see [16] for references).

13. NP-completeness is thus an important “intellectual export” of computer
science to other disciplines. And it does fill a void in the interdisciplinary intel-
lectual trade: It seems to me that the concept of lower bounds —and negative
results in general— is particular to computer science, and has no well-developed
counterpart in other disciplines. True, one sees isolated results in other sciences
(such as Heisenberg’s uncertainty principle in quantum mechanics, Arrow’s im-
possibility theorem in economics, and Carnot’s theorem in thermodynamics)
which are arguably negative; however, nowhere else in science does one find such
a comprehensive methodology for obtaining negative results (with the exception
of complexity’s own precursor mathematical logic, with its many incomplete-
ness, undecidability, and inexpressibility results). NP-completeness is therefore
valuable for another reason: It is one of the few precious features which give our
science its special character, which set it apart from the other sciences (see [15]
for another development of this argument).

14. In science, successful ideas are those that are pervasive and invasive, are
invitingly elegant and methodical, are open to extensions and variants, and cap-
ture an objective necessity, answer a widespread but diffuse sense of dissatisfac-
tion in the scientific community (in the case of NP-completeness, the widespread
feeling among computer scientists in the 1960s that automata theory, the previ-
ous great paradigm, had run its course as a useful abstraction of computation).
Thinking about the nature and history of NP-completeness could give us useful



hints about computer science’s next great paradigm, which, for all I know, has
started being articulated somewhere else in this volume.
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The LEDA Platform
for
Combinatorial and Geometric Computing

Kurt Mehlhorn* and Stefan Naher** and Christian Uhrig™™

Abstract. We give an overview of the LEDA platform for combinatorial
and geometric computing and an account of its development. We discuss
our motivation for building LEDA and to what extent we have reached
our goals. We also discuss some recent theoretical developments. This
paper contains no new technical material. It is intended as a guide to
existing publications about the system. We refer the reader also to our
web-pages for more information.

1 What is LEDA?

LEDA [MN95, MNU96] aims at being a comprehensive software platform for
combinatorial and geometric computing. It provides a sizable collection of data
types and algorithms. This collection includes most of the data types and algo-
rithms described in the text books of the area ([AHU83, Meh84, Tar83, CLR90,
O'R94, Wo093, Sed91, Kin90, van88, NH93]). In particular, it includes stacks,
queues, lists, sets, dictionaries, ordered sequences, partitions, priority queues,
directed, undirected, and planar graphs, lines, points, planes, and polygons, and
many algorithms in graph and network theory and computational geometry,
e.g., shortest paths, matchings, maximum flow, min cost flow, planarity testing,
spanning trees, biconnected and strongly connected components, segment in-
tersection, convex hulls, Delaunay triangulations, and Voronoi diagrams. LEDA
supports applications in a broad range of areas. It has already been used in
such diverse areas as code optimization, VLSI design, graph drawing, graphics,
robot motion planning, traffic scheduling, machine learning and computational
biology.
We discuss different aspects of the LEDA system.

Ease of Use: The library is easy to use. In fact, only a small fraction of our users
are algorithms experts and many of our users are not even computer scientists.
For these users the broad scope of the library, its ease of use, and the correctness
and efliciency of the algorithms in the library are crucial.

* Max-Planck-Institut  fiir ~Informatik, Im Stadtwald, 66123 Saarbricken,
wWW.mpi-sb.mpg.de/“mehlhorn
** Martin-Luther-Universitat Halle-Wittenberg, FB Mathematik und Informatik,
Weinbergweg 17, 060099 Halle, www.informatik.uni-halle.de/ naeher
*** LEDA Software GmbH 66123 Saarbriicken, www.mpi-sb.mpg.de/LEDA/leda.html




The LEDA manual [MNU96] gives precise and readable specifications for
the data types and algorithms mentioned above. The specifications are short
(typically not more than a page), general (so as to allow several implementations)
and abstract (so as to hide all details of the implementation).

Ertendibility: Combinatorial and geometric computing is a diverse area and
hence it is impossible for a library to provide ready-made solutions for all appli-
cation problems. For this reason it is important that LEDA is easily extendible
(see also section 4.4) and can be used as a platform for further software devel-
opment. In many cases LEDA programs are very close to the typical text book
presentation of the underlying algorithms. The goal is the equation

Algorithm + LEDA = Program.

We give an example. Dijkstra’s shortest path algorithm takes a directed graph
G = (V,E), anode s € V, called the source, and a non-negative cost function on
the edges cost : E = R>g. It computes for each node v € V the distance from
s. A typical text book presentation of the algorithm is as follows.

set dist(s) to O.
set dist(v) to infinity for v different from s.

declare all nodes unreached.

while there is an unreached node
{ let u be an unreached node with minimal dist-value. (*)

declare u reached.
forall edges e = (u,v) out of u

set dist(v) = min( dist(v), dist(u) + cost(e) )
}

The text book presentation will then continue to discuss the implementation of
line (*). It will state that the pairs {(v, dist(v)); v unreached} should be stored
in a priority queue, e.g., a Fibonacci heap, because this will allow the selection
of an unreached node with minimal distance value in logarithmic time. It will
probably refer to some other chapter of the book for a discussion of priority
queues.

We now give the corresponding LEDA program; it is very similar to the
presentation above.

#include <LEDA/graph.h>
#include <LEDA/node_pq.h>
void DIJKSTRA(const graph &G, node s, const edge_array<double>& cost,
node_array<double>& dist)
{ node_pg<double> PQ(G);
node v;
edge e;

forall_nodes(v,G)




{ if (v == s) dist[v] = 0; else dist[v] = MAXDOUBLE;
PQ.insert (v,dist[v]);
}
while ( 'PQ.empty() )
{ node u = PQ.del_min();
forall_adj_edges(e,u)
{ v = target(e);
double c = dist[ul] + cost[el;
if ( ¢ < dist[v])
{ PQ.decrease_inf(v,c); dist[v] = c; }
}
}
}

We start by including the graph and the node priority queue data type. We use
edge_arrays and node_arrays (arrays indexed by edges and nodes respectively)
for the functions cost and dist. We declare a priority queue P@Q for the nodes of
graph G. It stores pairs (v, dist[v]) and is empty initially. The forall nodes-loop
initializes dist and PQ. In the main loop we repeatedly select a pair (u, dist[u])
with minimal distance value and then scan through all adjacent edges to update
distance values of neighboring vertices.

Correctness: We try to make sure that the programs in LEDA are correct.
We start from correct algorithms, we document our implementations carefully
(at least recently), we test them extensively, and we have developed program
checkers (see subsection 4.1) for some of them. We want to emphasize that
many of the algorithms in LEDA are quite intricate and therefore non-trivial
to implement. In the combinatorial domain it is frequently possible to obtain
a correct implementation by sacrificing efficiency, e.g., by using linear search in
the realization of a dictionary. In the geometric domain it is usually difficult to
obtain a correct implementation even if efficiency plays no role. This is due to the
so-called degeneracy and precision problem [MN94]. The geometric algorithms in
LEDA use exact arithmetic and are therefore free from failures due to rounding
errors. Moreover, they can handle all degenerate cases.

Efficiency: LEDA contains the most efficient realizations known for its types.
For many data types the user may even choose between different implementa-
tions, e.g., for dictionaries he may choose between ab-trees, B B[«]-trees, dynamic
perfect hashing, and skip lists. The declarations

dictionary<string,int> D1;
dictionary<string,int,skip_list> D2;

declare DI as a dictionary from string to int with the default implementation
and select the skip list implementation for D2.
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Availability and Usage: LEDA is realized in C++ and runs on many different
platforms (Unix, Windows95, Windows NT, OS/2) with many different compil-
ers.

LEDA is now used at more than 1500 academic sites. Academic use is free, see
http://www.mpi-sb.mpg.de/LEDA/leda.html. A commercial version of LEDA
is marketed LEDA Software GmbH. There are license holders in the telecommu-
nication industry (ATR. (Japan), Comptel (Finland), E-Plus (Germany), France
Télécom (France), MCI (USA)), in the graphics industry (Aristo Technolo--
gies (USA), Cadabra (Canada), Compass Design (USA), Fuji (Japan), Men-
tor Graphics (USA), MUS (Germany)), in the automotive industrie (Daimler
Benz (Germany), Ford (USA), Honda (Japan)), in the computer industry (DEC
(USA), IBM (USA), Siemens AG (Germany), Silicon Graphics (USA), SUN
(USA)), and other industries (Chevron (USA), CFP (Germany), Dolphin (The
Netherlands), Howmedica (Germany), Lufthansa (Germany), Neovista (USA),
Prediction (USA), Sony (Japan), VI'T (Finland)).

History: We started the project in the fall of 1988. We spent the first 6 months
on specifications and on selecting our implementation language. Our test cases
were priority queues, dictionaries, partitions, and algorithms for shortest paths
and minimum spanning trees. We came up with the item concept as an abstrac-
tion of the notion “pointer into a data structure”. It worked successfully for the
three data types mentioned above and we are now using it for most data types
in LEDA. Concurrently with searching for the correct specifications we inves-
tigated several languages for their suitability as our implementation platform.
We looked at Smalltalk, Modula, Ada, Eiffel, and C++. We wanted a language
that supported abstract data types and type parameters (polymorphism) and
that was widely available. We wrote sample programs in each language. Based
on our experiences we selected C++ because of its flexibility, expressive power,
and availability. We are even more convinced now that our choice was the right
one. :
A first publication about LEDA appeared in MFCS 1989 (Lecture Note in
Computer Science, Volume 379) and ICALP 1990 (Lecture Notes in Computer
Science, Volume 443). Stefan Naher became the head of the LEDA project and
he is the main designer and implementer of LEDA.

In the second half of 1989 and during 1990 Stefan Naher implemented a
first version of the combinatorial part (= data structures and graph algorithms)
of LEDA (Version 1.0). Version 2.0 allowed to use arbitrary data types (not
only pointer and simple types) as actual type parameters of parameterized data
types. It included a first implementation of the two-dimensional geometry library
(libP) and an interface to the X-Window system for graphical input and output
(data type window). Version 3.0 switched to the template mechanism to real-
ize parameterized data types (macro substitution was used before), introduced
implementation parameters that allow to choose between different implementa-
tions, extended the LEDA memory management system to user-defined classes,
and further improved the efficiency of many data types and algorithms. Version
3.1 provided a more efficient graph data type and contained new data types
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(arbitrary precision number types and basic geometric objects) used for robust

implementations of geometric algorithms and Versions 3.2 and 3.3 contained

more geometry and new tools for documentation and manual production.
LEDA Software GmbH was founded in early 1995.

2 Why did we build LEDA?

We had four main reasons:

1. We had always felt that a significant fraction of the research done in the
algorithms area was eminently practical. However, only a small part of it
was actually used. We frequently heard from our former students that the
effort needed to implement an advanced data structure or algorithm is too
large to be cost-effective. We concluded that algorithms research must include
implementation if the field wants to have marimum impact.

2. Even within our own research group we found different implementations of
the same balanced tree data structure. Thus there was constant reinvention
of the wheel even within our own tight group.

3. Many of our students had implemented algorithms for their master’s thesis.
Work invested by these students was usually lost after the students gradu-
ated. We had no depository for implementations.

4. The specifications of advanced data types which we gave in class and which
we found in text books, including the one written by one of the authors, were
incomplete and not sufficiently abstract. They contained phrases of the form:
“Giiven a pointer to a node in the heap its key can be decreased in constant
amortized time”. This implied that a user of a data structure had to have
knowledge of its implementation. As a consequence combining implementa-
tions was a non-trivial task. A case in point is the shortest path problem in
graphs. We taught priority queues in the early weeks of an algorithm course
and Dijkstra’s algorithm for the shortest path problem in later weeks. Our
students found it difficult to combine the programs.

The goal of the LEDA project is to overcome these shortcomings by creating a
platform for combinatorial and geometric computing. The LEDA library should
contain the major findings of the algorithms community in a form that makes
them directly accessible to non-experts having only a limited knowledge in the
area. In this way we hoped to reduce the gap between research and application.

3 Did we achieve our goals?

We believe that we have reached the last goal and have at least partially reached
the first three goals.

LEDA was first distributed in the summer of 1990. Its user community has
grown ever since. LEDA is now used at more than 1500 academic and industrial
sites in over 50 different countries world-wide. Industrial use started in 1994.
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Many users of LEDA are outside computer science and only a small fraction of
our users are from the algorithms community. We therefore believe that we have
reached our first two goals. The impact of algorithms research has increased and
there is considerable use of LEDA and hence reuse of implementations. However,
the gap between algorithms research and algorithms use is still quite large. In
particular, many of the non-expert users of LEDA complain that a tutorial is
missing. We hope that the forthcoming LEDAbook [MN] will help.

We have also partially achieved our third goal. We now do have a depository
for our students work and we have just introduced the concept of LEDA exten-
sion packages (LEPs) that will allow a wider community to contribute. We come
back to LEPs in section 4.4.

We have achieved our last goal. The specifications of our data types are
sufficiently abstract and precise so as to allow their combination without any
knowledge of implementation. We have seen an example in section 1. Many of
our specifications are based on the so-called item concept which gives an abstract
treatment of pointers into a data structure. Different components of LEDA can
be combined without knowledge of the implementation.

The project also had a number of positive side-effects which we did not fore-
see. Firstly, LEDA’s wide use gives us tremendous satisfaction®. Secondly, our
experiences with the system suggested many difficult and well motivated prob-
lems for theoretical algorithms research. We will discuss program checking, run-
ning time prediction, and theoretical issues in the implementation of geometric
algorithms below. The system has changed the way we do algorithms research.

4 Recent developments

A strength of the LEDA project is its strong theoretical underpinning. We believe
that only our strong theoretical background allowed us to build LEDA. In the
last two years we paid particular attention to program checking, running time
prediction, and the correct implementation of geometric programs.

4.1 Program checking

Programming is a notoriously error-prone task; this is even true when program-
ming is interpreted in a narrow sense: going from a (correct) algorithm to a
program. The standard way to guard against coding errors is program testing.
The program is exercised on inputs for which the output is known by other
means, typically as the output of an alternative program for the same task.
Program testing has severe limitations:

— Tt is usually only done during the testing phase of a program. Also, it is
difficult to determine the “correct” suite of test inputs.

4 We stated above that algorithms research must include implementation to have max-
imal impact. We might add: without implementation algorithm research is less re-

warding.
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— Even if appropriate test inputs are known it is usually difficult to determine
the correct outputs for these inputs: alternative programs may have different
input and output conventions or may be too inefficient to solve the test cases.

Given that program verification, i.e., formal proof of correctness of an imple-
mentation, will not be available on a practical scale for some years to come,
program checking has been proposed as an extension to testing [BK89, BLR9I0].
The cited papers explored program checking in the area of algebraic, numerical,
and combinatorial computing. In [MNS*96, MM95, HMN96] we discuss pro-
gram checkers for planarity testing and a variety of geometric tasks. We have
also added program checkers to some of the LEDA programs, e.g., the planarity
test provides a planar drawing for a planar graph and a Kuratowski subgraph
for a non-planar graph. A user of the planarity algorithm has thus the possibility
to verify that the output of the algorithm is correct.

4.2 Running Time Prediction

Big-O analysis of algorithms is concerned with the asymptotic analysis of algo-
rithms, i.e., with the behavior of algorithms for large inputs. It does not allow
the prediction of actual running times of real programs on real machines and
therefore its predictive value is limited.

— An algorithm with running time O(n) is faster than an algorithm with run-
ning time O(n?) for sufficiently large n. Is n = 10° large enough? Asymptotic
analysis of algorithms is of little help to answer this question. It is however
true that a well-trained algorithms person who knows program and analysis
can make a fairly good guess.

— For a user of LEDA statements of asymptotic running times are almost
meaningless as he/she has no way to estimate the constants involved. After
all, the purpose of LEDA is to hide the implementations from our users.

The two items above clearly indicate that we need more than asymptotic
analysis in order to have a theory with predictive value. The ullimate goal of
analysis of algorithms must be a theory that allows to predict the actual running
time of an actual program on an actual machine with reasonable precision (say
within a factor of two). We must aim for the following scenario: When a program
is installed on a particular machine a certain number of well-chosen tests are
executed in order to learn about machine parameters relevant for the execution
of the program. This knowledge about the machine is combined with the analysis
of the algorithm to predict running time on specific inputs. In the context of an
algorithms library one could even hope to replace statements about asymptotic
execution times by statements about actual execution times during installation of
the library. In [FM97] we show for a small number of programs (Fibonacci heaps,
Dijkstra’s shortest path algorithm, and a maximum weight matching algorithm)
that running time prediction within a factor of less than two and a wide range
of machines is feasible.




14

4.3 Implementation of geometric algorithms

Geometric algorithms are frequently formulated under two unrealistic assump-
tions: computers are assumed to use exact real arithmetic (in the sense of
mathematics) and inputs are assumed to be in general position. The naive
use of floating point arithmetic as an approximation to exact real arith-
metic very rarely leads to correct implementations. In a sequence of papers
[BMS94a, See94, MN94, BMS94b, FGK+96, BRMS97] we investigated the de-
generacy and precision issues and extended LEDA based on our theoretical work.
LEDA now provides exact geometric kernels for two-dimensional and higher
dimensional computational geometry [MMNT97] and also correct implementa-
tions for basic geometric tasks, e.g., two-dimensional convex hulls, Delaunay di-
agrams, Voronoi diagrams, point location, line segment intersection, and higher-
dimensional convex hulls and Delaunay diagrams.

4.4 LEDA Extension Packages

LEDA extension packages are a new feature of the LEDA project structure.
Up to two years ago, most of LEDA has been developed by a small group of
persons under the tight supervision of Stefan Néher; no code went into the system
that was not thoroughly understood by either Stefan Néher or Christian Uhrig.
The growing numbers of contributors and the fact that Stefan Naher has new
responsibilities as a professor has forced us to a change of the project structure.
We decided to split LEDA into a core system (the actual LEDA version) and to
shift enhancements into additional software packages.

LEDA extension packages (LEPs) extend LEDA into particular application
domains and areas of algorithmics not covered by the core system. LEDA ex-
tension packages satisfy requirements, which guarantee compatibility with the
LEDA philosophy. LEPs have a LEDA-style documentation, they are imple-
mented as platform independent as possible and the installation process allows
a close integration into the LEDA core library.

Currently, there are no released LEPs available, but there are several LEP un-
der construction: PQ-trees (coordinated by Sebastian Leipert, Koeln), dynamic
graph algorithms (coordinated by David Alberts, Halle), the homogeneous pla-
nar CGAL geokernel (coordinated by Stefan Schirra, Saarbriicken), a homoge-
neous d-dimensional geokernel (coordinated by Michael Seel, Saarbriicken), and
a library for graph drawing (DFG-project Automatisches Graphenzeichnen).
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Abstract. We present a unified treatment of the hierarchy defined by
Klaus Wagner for w-rational sets and also introduced in the more general
framework of descriptive set theory by William W. Wadge. We show that
this hierarchy can be defined by syntactic invariants, using the concept
of an w-semigroup.

1 Introduction

The idea of a Muller automaton was introduced by David Muller as a variant
of usual finite automata, well suited for the recognition of infinite sequences. It
was later proved by McNaughton that any recognizable set of w-words can be
recognized by a deterministic Muller automaton.

Klaus Wagner has introduced in 1979 [22] two concepts defined on Muller au-
tomata: chains and superchains. Together with an operation on automata called
derivation, he has proved that the maximal lengths of chains and superchains
(and the ones obtained on the derived automata) are enough to characterize the
classes of recognizable w-sets up to to the inverse image under a continuous func-
tion. This classification has also been investigated independently by W. Wadge.
He has studied the reduction by a continuous function in abstract topological
spaces, as a refinement of the classical Borel hierarchy. His results are based
on a particular class of games, now called Wadge games. His classification itself
is known as the Wadge hierarchy [10]. The connections between both theories
were first discovered by Pierre Simonnet [19]. The Wagner hierarchy has been
partially rediscovered several times [2, 9]. The interest in the classification of
w-rational sets was revived by the studies concerning the logic of distributed
processing [15].

Since then Thomas Wilke [24] has shown how one could use, in the case of
infinite words, algebraic methods allowing to replace finite automata by finite
semigroups. This has lead to the notion of an w-semigroup introduced in [17].
This approach has the advantage to make easier the definition of a variety along
the line of Eilenberg’s theory.

Another direction was investigated by Jean-Eric Pin in [18]. He has shown
that the notion of ordered semigroup could be used to define families of rec-
ognizable sets that are not closed under complementation. This is especially
interesting in the case of infinite words since very natural families like the open
sets are not closed under complementation.
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We would like to show here how Klaus Wagner’s ideas fit into the present
framework using w-semigroups. In particular, we shall see that the definition of
chains and superchains can be formulated in w-semigroups, providing a clear
explanation of the fact that they do not depend on the particular automaton
used to recognize a given set but on the set itself. We shall show how the classes
of the Wagner hierarchy are defined in topological terms. We will also investigate
the link between Wagner’s notions and that of ordered semigroups.

The work presented here is based on results obtained, in great part, in the
first author doctoral thesis [4]. Part of it was presented at a conference held in
Porto [6]. Those concerning the equivalence of the various definitions of chains
and superchains will appear soon in {7]. The ones concerning the hierarchy itself
will be published in a second paper [5].

2 Preliminaries

We assume a familiarity with the basic concepts of w-rational sets and automata.
For an introduction, we refer the reader to [21] or [16]. A word about notation.
The alphabet is usually denoted by the symbol A. The set A* (resp. At) is
the set of finite words (resp. nonempty finite words) on the alphabet A. The
set of (one-sided) infinite words on A is denoted by A”. We consider A“ as a
topological space with the usual Cantor topology.

We shall deal often with classes of sets. Since the sets considered are subsets
of the topological space A“, a class of sets is really a mapping assigning to each
alphabet A a set of subsets of A“. The dual class of a class I is formed of the
complements (within each A%) of the sets in I'. It is denoted by I'. We say that
I is ambiguous if I' = T

We shall use ordinals to index classes of sets. The symbol w will thus be used
in two ways, either to denote an ordinal in expressions like w + 1 or to denote
an w-rational set like (a*b)*. We hope that it will not bring confusion.

We now recall the definition of w-semigroups and Wilke algebras. For a more
detailed presentation, we refer the reader to [17]. We assume some familiarity
with the basic notions of semigroup theory. We use the notation of [8] for all
undefined notions in semigroup theory. We use the traditional notation St to
denote the semigroup obtained by adding an new neutral element 1 to S.

An w-semigroup is a pair S = (S, S.) where Sy is a semigroup and S, is
a set with two operations in addition to the semigroup operation of St A left
action of Sy on S,:

(s,u) — s.u
and an infinite product
7!'.'S+ XS+XS+ X...-—)Sw

These operations must satisfy the following axioms:

1. The action of Sy on S, is associative: for 5, € Sy and u € S,

s.(tu) = (st).u
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2. The infinite product is w-associative, in the sense that for any sequence
(8n)n>0 of clements of Sy and any strictly increasing sequence (n;);»o of
imtegers with ng = 0, one has

71'(80,81,52,...) = Tr(to,tl,tz...)

with t; = sn, ... Sn,,, -1
The left action is compatible with the infinite product: for elements s and
(511‘)1120 of S+, one has

P}

s.m(so, 81, 82, ...) = w(s, S, 81,82, .. .)

The associativity of the operations allows one to denote all operations by mere
concatenation, with su instead of s.u and syss ... instead of 7(sy, s2,...).

An w-semigroup morphism from S = (S;,S,) into S' = (57, 5],) is a pair
(4. ¢w) where ¢, is semigroup morphism from Sy into S’ and ¢, is a function
from S, into S/, which is compatible with the w-semigroup structure, i.c., the
left action and the infinite product.

Thus an w-semigroup is not an algebra in the usual sense since one of its
operations has infinitely many arguments.

The concepts of rational expression and of w-rational expressions extend to
w-semmigroups in the following way. Let .S be a semigroup and X be a subset of S.
We denote by Xt the subsemigroup generated by X in S. We denote by X* the
subset of St defined by X* = {1} + Xt . In this way, for any s € S and X C S,
both subsets s X™* and X*s are defined as subsets of S. Let now S = (S4,.5,) be
an w-semigroup. For XY C Sy, we denote by XY the set

XY ={zny:...|r€ X,y €Y}

We further introduce a variant of w-semigroups which is an algebra in the
usual sense since all its operations have finite arity and is well suited to describe
finite w-semigroups. This concept is due to Wilke [23, 24].

A Wilke algebra is a pair S = (S, S,) where Sy is a semigroup and S, is a
set with two operations: A left action of §; on S, and a unary operation from
St Into S, denoted

[

The operation w must satisfy the following axioms:

s(ts)” = (st)”

for all s, € T"and n > 1.

A Wilke algebra morphism is a pair of functions compatible with the Wilke
algebra structure.

A well-known version of Ramsey theorem says that if we define a coloring
¢ AT — S of all words using only a finite number of colors, then each w-word
has a factorization:

r = VPgU1Vg - -
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with all blocks except those involving the first one of the same color, i.e., such
that ©(vivig1 .. vigx) = ©(Vjvj41 ... v54) for all 4,5 > 1, k,1 > 0. This for-
mulation holds even if the set of colors is a finite set without a multiplicative
structure. In the case where S is a finite semigroup and ¢ a semigroup morphism,
the result implies that for any w-word z there is a pair of an element s € .5 and
an idempotent e = e2 € S such that s = se and z € ¢~ 1(s)p™!(e)*.

The following result is essentially a consequence of Ramsey theorem. It shows
that a finite w-semigroup and a finite Wilke algebra are essentially the same

thing.

Theorem 1. For any finite Wilke algebra S = (S, S.), there is a unique infi-
nite product from Sy into S, making S an w-semigroup such that s* = sss. ..
for all s in Sy.

For a proof, see [24] or [17]. In the sequel, we shall not distinguish between
finite Wilke algebras and finite w-semigroups.

We say that a morphism ¢ : A% — S from A onto an w-semigroup S5 =
(Sy, S.) recognizes an w-set X C A if X = ¢~ 1(P) for some P C S,,.

The following result extends the classical concept of recognition by a finite
semigroup for a rational set to w-rational sets. The theorem can really be credited
to Biichi since he had the original idea of introducing congruences of finite index
to define rational w-sets. For a proof, see [17].

Theorem 2. A set X C A¥ is w-rational iff there exists an w-semigroup mor-
phism from A® = (AT, A¥) onto a finite w-semigroup S = (S4,S.) recogniz-
ing X.

The notion of an w-semigroup has been extended by Nicolas Bedon to count-
able ordinals in the sense that w-words a replaced by words indexed by a count-
able ordinal [3]. This generalization has the advantage to give a more uniform
structure: the operations are defined everywhere.

3 Chains and superchains

In this section, we introduce the notions of chains and superchains in automata
and in w-semigroups.

3.1 Chains and superchains in Muller automata

We recall that a Muller automaton is a deterministic finite automaton A4 =
(@, E,i,T) where Q is the state set, E C @ x A x Q) is the set of transitions and
i € Q is the initial state. The table 7 C 29 is the set of accepting subsets of Q.
We moreover suppose a Muller automaton to be complete: for each state ¢ € @
and each symbol a € A, there is a transition from ¢ labeled by a. A set R C @
is called positive if R € T and negative otherwise.
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A subset T of @ is said to be admissible if there is a cycle ¢ in A, accessible
from the initial state ¢, such that the set of states encountered on ¢ is exactly 7.
We say that T is the content of c.

Let A = (Q, E, 7, T) be a complete Muller automaton. An A-chain of length m
is an increasing sequence

RyCR;C --CRnm

of m+1 admissible subsets of @ such that, for 0 < i < m, the R; are alternately
in 7 and outside 7.

We say that the chain is positive if Ry € T and negative if Ry ¢ T. We
denote by m* (A) (resp. m™ (X)) the maximal length of positive (resp. negative)
A-chains and we let m(A) = max(m™*(A),m™(A)). It is obvious by the defini-
tion that m(A) is finite for any finite Muller automaton .4. One indeed has the
inequality m(A) < card(Q).

Wilke and Yoo have shown in [25] that m(.A4) can be computed in polynomial
time. This contrasts with the fact the computation of m(X) for an w-rational
set X given by deterministic Rabin (or Streett) automata is NP-complete [11].

Ezample 1. Consider the set X = (a*b)* of w-words over {a,b} which have an
infinite number of symbols b. This set X is recognized by the automaton .4;
represented in Figure 1 with 7" = {{2},{1,2}}. The sequence ({1},{1,2}) is a
negative chain of length 1. There are no positive chains of length 1 and thus
m=1m" = 1.

aC /_\@Db

a

Fig. 1. Automaton A;.

An A-superchain of length n is a sequence
CO)Cly"')Cn
of n 4+ 1 A-chains of length m(A) such that:

(i) Each Cj is accessible from C;y1 for 1 < i < n, i.e., there exists a path from
some state In C;_; to some state in C;.
(i1) The A-chains Cj are alternately positive and negative.




22

We say that the superchain is positive if C is positive and negative other-
wise. We denote by n* (A) (resp. n~(A)) the maximal length of positive (resp.
negative) superchains and n(A) = max(nt(A),n"(A)). We let nt(A) = —1
(resp. n~(A) = —1) if the set of positive (resp. negative) superchains is empty.
It is obvious by definition that n(A) is finite for any finite Muller automaton A.
One indeed has the inequality n(A) < card(@).

a.b

ﬂ:aQ :

Fig. 2. Automaton As.

Example 2. Consider the set X = b*ab® . It is recognized by the Muller automa-
ton As of Figure 2 with 7 = {{2}}. All chains are of length 0 and m = mt =
m~ = 0. The sequence ({1},{2},{3}) is a negative superchain of length 2. One
hasn=n"=2and nt =1.

3.2 Chains and superchains in w-semigroups

Let S = (S4,S,) be an w-semigroup and let X be a subset of S,,. Let C = (Y, Z)
be a pair where Y is a non empty subset of Sy and Z = z0,%1,.--,%m Is a
sequence of m + 1 elements of St. Let

Zi=zpta+...+u
Wi =Y Z5,(2] %) (1)

for0<e<m.

We say that the pair C'is an X-chain iff the sets W; are alternately included
in X and disjoint from X.

The number m is called the length of the chain C. It is important to observe
that m is the number of alternations in the sequence Wo, ..., W, rather than
the length of the sequence Z in the usual sense which would be m + 1.

We distinguish, among chains, positive and negative ones according to the
nature of the first element. A positive chain is one such that Wo C X and a
negative one such that WoN X = (). Two positive (resp. negative) chains are said
to be of the same sign.

We denote by m* (X) (resp. m~ (X)) the maximallength of the positive (resp.
negative) X-chains and m(X) = max(m*(X),m™ (X)). We set mt(X) = -1
(resp. m~ (X) = —1) if the set of positive (resp. negative) chains is empty and
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m*T(X) = m~(X) = oo if the lengths of X-chains are unbounded. We shall see
that m(Y) is always finite for an w-rational set X.

We now come to the definition of a superchain in an w-semigroup.

Let S = (S4,5.,) be an w-semigroup and let X be a subset of S5,. An X-
superchain of length n is a sequence

CO;Cla"‘)Cn

of n + 1 X-chains C; = (V;, Z;), all of maximal length m = m(X) such that,
with Z; = zi0, 2i1, - - -, Zim, We have:

(i) Bach C; is accessible from Cj_; for 1 < i < n, 1.e., there is an element
u; € S; such that Y;_1Z7 ju; C Vi,
(ii) The chains C; are alternately positive and negative.

We say that the superchain is positive if Cy is positive and negative other-
wise. We denote by nt(X) (resp. n~ (X)) the maximal length of positive (resp.
negative) superchains and n(X) = max(n*(X),n™(X)). We let nt(X) = -1
(resp. n~(X) = —1) if the set of positive (resp. negative) superchains is empty.
We shall see that n(X) is also finite if X is w-rational.

3.3 Correspondence between the definitions

We now come to the fact that the definitions of a chain in automata and in
w-semigroups are in correspondence. This has two main consequences: first 1t
shows that the integers m(X) are finite and computable for any w-regular set X.
Second, it shows that the integers m(A) do not depend on the automaton but
only on the set recognized. We have the following theorem.

Theorem 3. Let X C AY be an w-rational set recognized by a complete Muller
automaton A = (Q, E,1,T). The following equalities hold:

mH(X)=m*(A) and m™(X)=m"(A).

Let ¢ : S — S’ be a morphism from an w-semigroup S = (54, S,) onto an w-
semigroup S = (S%, S,). Let X C S, and X’ C S, be such that X = ™ HXT).

The image (Y', Z’') of an X-chain (Y, Z) is an X'-chain of the same length
and sign and each X’-chain is the image of an X-chain of the same length and
sign.

Thus chains can be computed in any w-semigroup recognizing X, in partic-
ular in a finite w-semigroup when X is w-rational. We will see in Section 6 that
chains in finite w-semigroups can be defined differently.

We now come to the fact that the definitions of a superchain in automata
and in w-semigroups are also in correspondence. As in the case of chains, this
has two main consequences: first it shows that the integers n(X) are finite and
computable for any w-regular set X. Second, it shows that the integers n(A)
do not depend on the automaton but only on the set recognized. We have the
following theorem.
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Theorem 4. Let X C A be an w-rational set recognized by a complete Muller
automaton A = (Q, E,i,T). The following equalities hold:

nt(X)=nt(A) and n~(X)=n"(A).

4 Wagner’s hierarchy

To a Muller automaton A, one associates another Muller automaton called the
derived automaton and denoted 8.A. It is nonempty only when nt = n~. It is
then obtained from 4 by the following transformation:

1. All states that belong to a maximal positive superchain are collapsed into a
single state ¢4 and the set {g4} is positive.

2. All states that belong to a negative superchain are collapsed into a single
state a ¢ and the set {g_} is negative.

It was shown by Klaus Wagner that the set recognized by A only depends
on the set X recognized by A and not on the particular Muller automaton used
to recognize X. It can therefore be denoted 8X.

a
a

N
RN

, a,c

3

Fig. 3. Automaton As.

Erample 3. Consider the automaton As of Figure 3 with 7 = {{1}, {1, 2}, {3}}.

We have for A3 m = m* = m~ = 1 and n = nt = n~ = 0. The derived
automaton A, = 8Ajz is represented in Figure 4. We then have for Ay m =
mt=m~ =0,nt =0and n=n" = 1. Since nt # n~, we have 944 = §.

We associate to an w-rational set X two ordinals denoted ¥(X) and p(X)
which are defined as follows. The ordinal y(X) is

(X):{n(X) ifm(X)=0

7 wmX)(n(X) 41) otherwise
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a,b,c

ko

Fig. 4. The derived automaton A4 = 9As.

a,b,c

For example, we have for the sets X1 and X, recognized by the automata A;
and A, of the previous examples,

7(X1) =w and y(X3)=2.
The ordinal p(X) is then defined by
#(X) = 7(X) + p(0X).

The ordinal x(X) is an arbitrary ordinal < w* and moreover, since m(6X) <
m(X) as soon as m(X) > 1, the decomposition given by the definition of v(X)
produces the Cantor normal form of the ordinal y(X).

Both ordinals y(X) and p(X) can be computed from any Muller automaton
A recognizing the w-set X since the integers m(A) and n(A) only depend on the
set recognized by A.

For example, we have for the w-set X35 recognized by the automaton Az given
above

p(Xs) =w+1

We finally associate to an w-rational set X an information called its sign and
denoted sign(X). It is an element of the three elements set {c,d, 7} defined as
follows. We first have

o ifn~ >nt
. I ifn™ <nt
sign(X) = %) ifn=nTand m=0

sign(9X) otherwise

It is clear that sign(X) = o iff sign(4¥ — X) = = and that sign(X) = ¢ iff
sign(AY — X) = 6.

We introduce a preorder on the set R(A) of w-rational sets defined by lexi-
cographically ordering the pair (p(X),sign(X)) with the convention that § > ¢
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and § > 7 (¢ and 7 being incomparable). The equivalence classes associated
with the preorder are denoted

Ta = {X € R(4) | 4(X) = a,sign(X) = o}
e = {X € R(A) | u(X) = a,sign(X) = 3}
I, = {X € R(A) | u(X) = a,sign(X) =}

For any ordinal a < w¥, the classes X, and I, are dual of one another and

the class A, is ambiguous. The order defined on w-rational sets by Wagner’s
theorem has the familiar shape given by Figure 5.

NN N
SUNCON N NN

Fig.5. The Wagner hierarchy

It may be useful for a reader used to Wagner’s notation to realize that the
correspondence between Wagner’s notation and ours is the following. Our class
X, is his class C, our A, his Ef and our T, his D§. For m > 1 our class Zym
is Wagner’s C,’;‘l, our IT,m 5 18 his D,’ﬁz—l and our A7 his E,’}d‘l. Moreover if the
normal form of the ordinal « is

mi

a=w™n+.. . +w™n

then X, is denoted in Wagner’s notation
Tk ny ma+1l
Epk . ER2CH

The idea of using ordinals instead of sequences of pairs of integers was suggested
by Jean-Pierre Resseyre (oral communication).

The order thus defined happens to completely characterize another order
called the Wadge order and defined in general as follows. Let £, F' be topological
spaces and let X C E, Y C F. We say that X reduces to Y, written X < Y if
there exists a continuous function f : £ — F such that X = f=1(Y).

We can now state Wagner’s main theorem.

Theorem 5. (K. Wagner} Given w-rational sets X, Y, one has the equivalence:

X<Y <= ~(X)<~Y).
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The statement implies that for X € R(A), Y € R(B), one has X <Y iff
there exists a function f : AY — B“ such that X = f~!(Y) and which is not
only continuous but also rational. This is actually the content of the theorem of
Biichi-Landweber (see [21]).

The main theorem due to Wadge is the following: in a topological space
like A%, the order given by the reduction by a continuous function is a well
ordering [10]. Thus the classes of the associated equivalence can be indexed by
ordinals. When restricted to w-rational classes, the order type of the hierarchy
s w*.

5 Topological classes

We shall give here a description in topological terms of the classes of the hierar-
chy. It allows one to prove Wagner’s theorem in one direction since the topological
characterization gives a definition of the classes invariant under the inverse of a
continuous function. It is convenient to denote, for an ordinal o < w*

Yea = U 2s
Bla

and correspondingly for Il<, and Ac,.

We shall see that the classes of the Wagner hierarchy can be described us-
ing differences, separated unions and biseparated unions, starting from simple
topological sets. We first describe the simple classes which happen to be classical
classes of the Borel hierarchy.

5.1 Simple classes

The first kind is the class of open sets. We shall denote here by G the class of
open sets, rational or not (and not by X as it is sometimes done in topology).
The following statement uses a special form of Blichi automata called weak: a
path is successful if it contains at least one terminal state.

Theorem 6. The following conditions are equivalent for an w-rational set X .

(i) X € Xy,
(ii) X is open.
(iii) X < a*b(a+b)¥

(iv) X is recognizable by a weak deterministic Bichi automaton.
Condition (i) can be formulated as follows: for all z,y, z,t € At
s e X Sy NX £

which precisely expresses that m(X) = 0 and nt < 0. We shall see later that
this condition can formulated using an inequality in ordered w-semigroups.
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The second class is the class of sets which are countable intersections of
open sets. We denote this class by Gs (and not by Il as it is done sometimes
in topology, since it would contradict our use of this notation). Similarly, we
denote by F, the class of countable unions of open sets. The following result is
originally due to H. Landweber [12].

Theorem 7. The following conditions are equivalent for an w-rational set X.

(1) X € Xey.
(i) X € Gs.
(iii) X < (a*b)*
(iv) X is recognizable by a deterministic Biichi automaton.

The equivalence between (ii) and (iii) is a general fact of descriptive set the-
ory, independent of the hypothesis that X is w-rational. A convenlent way to
prove the implications is (i) = (iv) = (iii) = (ii) = (i). The first one is proved
using a well-known construction building a deterministic Bichi automaton from
a Muller automaton satisfying m* < 0. The last one can be done by reformu-
lating condition (i) as follows: for all z,y,z € At

ely+2)'y CX =y z)’ NX #0

which expresses precisely that m*(X) < 0.

5.2 Boolean combinations of open sets

In order to describe the boolean combinations of open sets, we introduce the
notion of a difference of sets. Let I" be a class of sets. We denote by D, (I") the
class of sets X of the form

X:Xl—Xz—l-...:tXn

where the sets X; satisfy X; € I’ and X; D X2 O ... D X,. Such an expression
of X is called a difference of length n. According to a theorem of Hausdorft, if I”
is closed under finite unions and intersections and contains the empty set, the
union of all the classes D, (I") for n > 1 is the boolean closure of I". This means
that any set in the boolean closure of I is equal to a difference of sets of I". The
classes D, (I") define a hierarchy within the boolean closure of I'. As we shall
see, it turns out that, when I' is the class Z<q of w-rational open sets or when
I is the class X<, of w-rational G5 sets, the classes Dy, (I") coincide with classes
of the Wagner hierarchy.

We consider here the classes X, i.e., the classes of sets X such that v(X) < w
or equivalently such that m(X) = 0. It is actually equivalent to assume on a con-
nected Muller automaton A = (Q, E, i, T) that m(A) = 0 or that each strongly
connected component R of A is saturated in the sense that S € 7 for all admis-
sible sets S C R or for none of them. Such an automaton is clearly equivalent
to one of the following kind, that we propose to call a weak Muller automaton.
It is a finite automaton A = (@, E,4,7T) with a definition of a successful path
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given by the following rule: a path v is successful if the set of states met along «
isin 7.

The following result is originally due to Staiger and Wagner [20]. It means
that an w-rational set X belongs to the class Y<, iff it is equal to a difference
of length n of w-rational open sets.

Theorem 8. One has for alln < w

Den = Dn(Z<1)

Moreover,
SewNllcw =) Zn
n<w

and coincides with the boolean closure of the family of rational open sets.
In the second equality, the inclusion from right to left is obvious since each
L, is contained in X<, and in <y The converse is also evident since a set
X € Ye, N1g, satisfies m*(X) <0 and m™ (X) < 0 and therefore m(X) = 0.

Theorem § is really a counterpart for rational sets of a theorem of Hausdorff
according to which, one has in a topological space such as A

F,0Gs = ] DalG)
a<wy

where the union is on all countable ordinals (see [10] for example).

5.3 Separated classes and boolean combinations of Gs-sets

In this section, we describe the classes <, for a = w™.n. We first consider the
case of & = w™. The following result is originally due to K. Wagner [22].

Proposition9. For all m < w, we have the equality
ngm = Dm(ZSw)

We now introduce the notion of a separated union. Let X1, X»,Y C AY be
three w-sets. Suppose furthermore that the three sets satisfy X1 NY = { and
X, C Y. Following a notation borrowed to Alain Louveau [14], let us denote by
Sep(Y, X1, X>) the union

X =X+ X>
The picture is shown in Figure 6.

We say that X is the separated union of X; and X3 or that X is the union of
X, and X, separated by Y (we actually exchange X; and X3 in the notation of
[14]). We also define, for two classes I', A of w-sets, a new class Sep([", A) as the
class of all sets of the form X = Sep(Y, X1, Xy) forY € I', X1 € A and X5 € A.

The following result gives a topological description of the classes Ycym . It
is analogous to a statement given in [22]. -

Theorem 10. For each m > 1 and n > 2, one has
ewmn = Sep(Dn—1(G), Z<wm)

and dually
ng”hn = Sep(Dn—l(G); ngm)-
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) (®

)/
Fig. 6. Separated union of X; and X5.

5.4 Biseparated classes

We now relate the definition of the set §.X with the topological structure of X.
We borrow again a notation from Alain Louveau [14] and introduce the no-
tion of biseparated union. Let X1, X5,Y7,Ys and Z be five w-sets satisfying
X1CY, XoCYo,iNYe =0, ZNnY, =0 and ZNY, = §. Let us denote
Bisep(Y7, Ya, X1, X, Z) the union

X=X1+Xe+72
The picture is shown in Figure 7. We say that X is the biseparated union of X1,

o) (e
OIC

Fig. 7. Biseparated union of X, X and Z.

If @, I', A are three classes of w-sets, we denote by
Bisep(®, I, A)

the class of sets X = Bisep(Y1,Y2, X1, X2, Z) with V1,Y, €®, X1 €', Xo € T
and Z € A.

The following result expresses that the elements of the class Zwm nip are the
unions of sets of the same kind (but with opposite signs) separated by disjoint
open sets plus some set of lower class of the same class.

Theorem 11. Forallm > 1 and n > 1 and f < w™, one has
Ywm ntp = Bisep(G, Eym n, Lg)
Aym ntp = Bisep(G, Zym 5, Ag)
Iym nyp = Bisep(G, Zym n, Ig).
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6 Finite w-semigroups

The definition of chains an superchains in finite w-semigroups uses the Green’s
relations H and R defined as follows. For elements s,t of a semigroup S, one has
s>gt ifs=tortcsSands >y tifs=tortesSandt € Ss. The relation
>r is preorder and the restriction of >4 to the idempotents also.

In the case of a subset X of a finite w-semigroup S = (S4, Su), the definition
of a chain relative to X can be used in the following form. It is a sequence
(5,€0,€1,- -, €m) of elements of Sy such that:

(i) For 0 < i < m, the pair (s,e;) is linked, 1.e., se; = s and e? = ¢;.
(ii) The sequence of idempotents e, €1, .. ., €n 18 decreasing for the # order.
(iii) The elements se;’ are alternately in X and outside of X.

We have again the notion of a positive or negative chain according to seg € X or
not. The definition of a chain in a finite w-semigroup coincides with the definition
of a chain we gave in a general w-semigroup in the following sense. 'To any chain
for the former definition, can bé associated another chain for the latter one with
the same length and same sign, and vice versa. The integers m* (X)) and m~ (X)
do not depend on the definition of a chain considered.

The notion of a superchain is also adapted to the case of a finite w-semigroup
to be defined as a sequence ug, ui, . . ., U, of chains u; = (si, €0, €1, - - -, eim) of
length m such that:

(i) The sequence s; is decreasing for the R order, z.e.
S50 2R S1 2R ** 2R Sn-
(ii) The chains u; are alternately positive and negative.

As for chains, the definition of a superchain in a finite w-semigroup is equiv-
alent to the definition of superchain we gave in a general w-semigroup.

The definition of chains and superchains on finite w-semigroups allows one
to give a characterization of the classes of Wagner’s hierarchy. It would be in-
teresting to extend these ideas to classes defined for finite words.

7 Ordered w-semigroups

An ordered w-semigroup is an w-semigroup S = (S3,S.) with a partial order
on each of the sets Sy and S, which are compatible with all operations: for all
s,¢t,bu,ve S

s <1= usv < utv,

s<tu<v=su <t

A morphism ¢ : S — T of ordered w-semigroup is a morphism of w-semigroups
which is also compatible with the orders: for all s,¢ € S, s,t € S and s < ¢ imply
p(s) < p(t). ‘
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It has been shown by Jean-Eric Pin [18] that any w-rational set has a finite
syntactic ordered w-semigroup. The context of finite a word v with respect to an
w-set X C AY is the the pair of sets C'(u) = (C1(u), Ca(u)) where C;(u) and
Ca(u) are respectively defined by

Ci(u) = {(v,z) € A" x AY | vuz € X}
Co(u) = {(v,w) € A" x A* | v(uw)® € X}.

In the same way, the context of an w-word & with respect to the w-set X C A%
is the set
Cla)y={ue A" Juz € X}.

It is well known that if S = (55, S,,) is the syntactic w-semigroup of X, the
elements of S; (resp. S,) correspond to contexts of finite words (resp. w-words).
More precisely two finite words u and «’ (resp. two w-words z and ') have the
same image in the syntactic w-semigroup iff they have the same context. This
allow one to define the context of an element of S. Contexts could also have been
directly defined in S with respect to the image P of X in S,. An order can be
defined in S by

s<tiff C(s) C C(2)
This order is compatible with the operation of S. The w-semigroup S equipped
with this order is then an ordered w-semigroup. It is in fact the syntactic ordered
w-semigroup of X.

In a finite semigroup, we denote the unique idempotent which is a power of s
by s™ instead of the usual notation s* since the symbol w has another meaning

here.
The following statement gives a characterization of open sets alternative to

Theorem 6.

Theorem 12. An w-rational set X is open iff its syntactic ordered w-semigroup
satisfies the following identity

The following result gives a syntactic characterization of the class X<,

Theorem 13. Anw-rational set X is in X<, iff its syntactic ordered w-semigroup
satisfies the following identity

(xﬂ'y)’ﬂ'a:w S (:Eﬂ'y)w

As a consequence, we obtain the following syntactic characterization, due to
Thomas Wilke [24], of the sets in X<, N IT<,,, which are also the boolean com-
binations of open sets by Theorem 7.

Theorem 14. An w-rational set is a boolean combination of open sets iff its
syntactic w-semigroup satisfies the identity

(xﬂ'y)ﬂ'mw — (xwy)w

]
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Actually, the identity given in [24] is the identity
(xﬂ'yﬂ‘)ﬂ'zw —_ (x'lTyﬂ')Wyw

which can be shown to be equivalent to the previous one.

Conclusion

It would be interesting to investigate further on in several directions including
the followings ones.

7.1 A syntactic definition of the derivative

Klaus Wagner has introduced the notion of the derivative X of an w-rational
set X. It is defined using a Muller automaton recognizing X. We do not know
how to define the derivative in a finite w-semigroup in such a way that X can
be computed in the syntactic w-semigroup of X.

7.2 Biinfinite words

The theory of w-rational sets can be developed for sets of two-sided infinite
words [16]. Such sets have also been considered in symbolic dynamics [13]. A
symbolic dynamical system 1s by definition a set of biinfinite words which is
topologically closed and invariant under the shift. Let S and T be two symbolic
dynamical systems. A morphism from S into T is a function f : § — T which
is continuous and commutes with the shifts of S and T'. As a particular case of
symbolic dynamical systems, a sofic system is defined by a set of forbidden blocks
recognized by a finite automaton. As a still more restricted class, a system of
finite type is a set of biinfinite words defined by a finite set of forbidden blocks.
If X, Y are symbolic dynamical systems, it is natural to say that X C AZ
reduces to Y C BZ, denoted X < Y, if there exists a morphism f from A%
to BZ such that X = f~1(Y). One thus obtains a hierarchy of subsets of 4%
analogous to the Wadge-Wagner hierarchy. The three classes defined previously
are precisely preserved by inverse morphisms. It would be interesting to know
the Wadge-Wagner classes of symbolic dynamical systems.

7.3 Finite words

It is an open problem to define a hierarchy for finite words analogous to Wagner’s
one. An objective for such a classification could be to obtain a refinement of the
characterization of some well known classes. For instance, the classes of locally
testable sets is the boolean closure of the class of strictly locally testable ones.
The latter are finite unions of sets of the form UA* N A*V \ A*W A" where
U,V and W are finite sets of words. If S denotes the family of strictly locally
testable sets, the family D, (S) of differences of length n of elements of .S defines
a hierarchy within locally testable sets.
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It is possible to define Muller automata on finite words. Let indeed A =
(Q,E,T) be a finite automaton where 7 is a subset of Q x 29 x Q. A finite
path v : 7 % ¢ in this automaton is successful if the set R of states met along
the path is such that (¢, R,t) € 7. The usual definition of locally testable sets
actually uses such automata: they are the sets recognized when the underlying
automaton is the standard local automaton.

A full parallel with Wagner hierarchy requires a choice of a topology on finite
words. A possibility would be to consider the profinite topology associated to a
pseudo-variety of semigroups [1].
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“Don’t express your ideas too clearly. Most people
think little of what they understand, and venerate
what they do not.”

(The Art of Worldly Wisdom,
Baltasar Gracidn, 1647.)

Abstract. We show how the constraint propagation process can be nat-
urally explained by means of chaotic iteration.

1 Introduction

1.1 Motivation

Over the last ten years constraint programming emerged as an interesting and
viable approach to programming. In this approach the programming process is
limited to a generation of requirements (“constraints”) and a solution of these
requirements by means of general and domain specific methods. The techniques
useful for finding solutions to sets of constraints were studied for some twenty
years in the field of Constraint Satisfaction. One of the most important of them
is constraint propagation, the elusive process or reducing a constraint satisfaction
problem to another one that is equivalent but “simpler”.

The algorithms that achieve such a reduction usually aim at reaching some
“local consistency”, which denotes some property approximating in some loose
sense “global consistency”, so the consistency of the whole constraint satisfaction
problem. (In fact, most of the notions of local consistency are neither implied
by nor imply global consistency.)

For some constraint satisfaction problems such an enforcement of local con-
sistency is already sufficient for finding a solution or for determining that none
exists. In some other cases this process substantially reduces the size of the search
space which makes it possible to solve the original problem more efficiently by
means of some search algorithm.

The aim of this paper is to show that the constraint propagation algorithms
can be naturally explained by means of chaotic iteration, a basic technique used
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for computing limits of iterations of finite sets of functions that originated from
numerical analysis (see Chazan and Miranker (1969)) and was adapted for com-
puter science needs by Cousot and Cousot (1977). In fact, several constraint
propagation algorithms proposed in the literature turn out to be instances of
generic chaotic iteration algorithms studied here.

Moreover, by characterizing a given notion of a local consistency as a common
fixed point of a finite set of monotonic and inflationary functions we can auto-
matically generate an algorithm achieving this notion of consistency by “feeding”
these functions into a generic chaotic iteration algorithm.

1.2 Preliminaries
Definition 1. Consider a sequence of domains D := Dy, ..., D,.

— By a scheme (on n) we mean a sequence of different elements from [1..n].

— We say that C is a constraint (on D) with scheme iy,..., i, if C C D; x---x
Dy,

— Let s := s1,...,5; be a sequence of schemes. We say that a sequence of
constraints C1,...,Cx on D is an s-sequence if each C; is with scheme s;.

— By a Constraint Satisfaction Problem (D;C), in short CSP, we mean a se-
quence of domains D together with an s-sequence of constraints C on D. We
call then s the scheme of (D;C). O

Given an n-tuple d := dy,...,d, in Dy X ... X D, and a scheme s :=141,...,%
on n we denote by d[s] the tuple d;,,...,d;,. In particular, for j € [1..n] d[j] is
the j-th element of d. By a solution to a CSP (D;C), where D := Dy,..., Dy,
we mean an n-tuple d € Dy X ... X D, such that for each constraint C in C with
scheme s we have d[s] € C.

Consider now a sequence of schemes si,...,s¢. By its union, written as
(s1,--.,8k) we mean the scheme obtained from the sequences si,...,s; by re-
moving from each s; the elements present in some s;, where j < 4, and by con-
catenating the resulting sequences. For example, ((3,7,2),(4,3,7,5),(3,5,8)) =
(3,7,2,4,5,8). Recall that for an sy,..., sg-sequence of constraints Cy,...,Cy
their join, written as C; M --- X Cy, is defined as the constraint with scheme
{s1,...,8x) and such that

de Ci K- M Cyg 1ﬂ“d[sl] eC;forie [1k]

Further, given a constraint C' and a subsequence s of its scheme, we denote
by II;(C) the constraint with scheme s defined by

I1,(C) :={d[s] | d € C},

and call it the projection of C on s. In particular, for a constraint C with scheme
s and an element j of s, II;(C) = {a | 3d € C a = d[j]}.

Given a CSP (D;C) we denote by Sol((D;C)) the set of all solutions to it.
If the domains are clear from the context we drop the reference to D and just
write Sol(C). The following observation is useful.
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Note 2. Consider a CSP (D;C) with D := Dy,...,D, and C :=C4,...,Cy and

with scheme s.
(t) Sol({D;C)) = Cy M -+ N Cg Mier D,

where I := {i € [L..n] | i does not appear in s}.

(ii) For everys-subsequence C of C and d € Sol((D;C)) we have d[(s)] € Sol(C).
0

Finally, we call two CSP’s equivalent if they have the same set of solutions.
Note that we do not insist that these CSP’s have the same sequence of domains
or the same scheme.

2 Chaotic Iterations

As already mentioned in the introduction, one of the corner stones of constraint
programming is constraint propagation. In general, two basic approaches fall
under this name:

— reduce the domains while maintaining equivalence;
— reduce the constraints while maintaining equivalence.

In what follows we study these two processes in full generality.

2.1 Chaotic Iterations on Simple Domains

In general, chaotic iterations are defined for functions that are projections on
individual components of a specific function with several arguments. In our ap-
proach we study a more elementary situation in which the functions are unrelated
but satisfy certain properties. These functions are defined on specific partial or-
ders. We need the following concepts.

Definition 3. We call a partial order (D, T ) an U-po if

— D contains the least element, denoted by L,
— for every increasing sequence

dy C dy E da...
of elements from D, the least upper bound of the set
{dOa dla dZa .o '}a

denoted by | |°7; d» and called the limit of do,dx, ..., exists,
— for all a,b € D the least upper bound of the set {a,b}, denoted by a U b,
exists.

Further, we say that
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— an increasing sequence do £ d; T da ... eventually stabilizes at d if for
some j > 0 we have d; = d for 7 > j,

— a partial order satisfies the finite chain property if every increasing sequence
of its elements eventually stabilizes. |

Definition 4. Consider a set D, an element d € D and a set of functions F' :=

{fi,-- fx}on D.

— By a run (of the functions fi,..., fx) we mean an infinite sequence of num-
bers from [1..k].

— A run 43,1, ... is called fair if every ¢ € [1..k] appears in it infinitely often.

— By an iteration of F associated with a run i1,%2,... and starting with d we
mean an infinite sequence of values dy, d1, ... defined inductively by

do = d,

dj := fi;(dj-1).

When d is the least element of D in some partial order clear from the context,
we drop the reference to d and talk about an iteration of F.
— An iteration of F' is called chaotic if it is associated with a fair run. a

Definition 5. Consider a partial order (D, C ). A function f on D is called

— anflationary if z C f(z) for all z,
— monotonic if x C y implies f(z) C f(y) for all z,y,
— idempotent if f(f(z)) = f(z) for all z.
O

The following observation can be easily distilled from a more general result
due to Cousot and Cousot (1977). To keep the paper self-contained we provide
a direct proof.

Theorem 6 (Chaotic Iteration). Consider anU-po (D, C ) and a set of func-

tions F := {f1,..., fr} on D. Suppose that all functions in F' are inflationary
and monotonic. Then the limit of every chaotic iteration of F exists and coin-

cides with
|| f13,
=0

where the function f on D is defined by:

and f 1 7 is an abbreviation for fi(.L), the j-th fold iteration of f started at L.
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Proof. First notice that f is inflationary, so U;io f T 7 exists. Fix a chaotic
iteration dg, dy, ... of F associated with a fair run 4,4, .... Since all functions
fi are inflationary, U;io d; exists. The result follows directly from the following

two claims.

Claim 1 Vj3Im f 17 C d,,.

Proof. We proceed by induction on j.

Base. 1 = 0. As f 11 0 = L = dp, the claim is obvious.

Induction step. Assume that for some j > 0 we have f 1 j £ dp, for some
m > 0. Since
k

FrE+0=ff1a) =] £ 1),
i=1
it suffices to prove ,
Vi € [L..k] 3m; fi(f 1) T dm,- (1)
Indeed, we have then by the fact that d; © dj4q for 1 > 0
k k
|| £:(£ 15 C || dm: C dmw
i=1 i=1

where m’ := maz{m; | i € [1..k]}.

So fix i € [1..k]. By fairness of the considered run 4y, 4z, .. ., for some m; > m
we have i,,, = i. Then d,,, = fi(dm;—1). Now d;, € dpm;—1, 50 by the monotonic-
ity of f; we have

fz(f T]) C f'i(dm) c fi(dmi—l) = dmi'
This proves (1). O

Claim 2 Vmd,, C ftm.

Proof. The proof is by a straightforward induction on m. Indeed, for m = 0 we
have dy = L = f 1 0, so the induction base holds.

To prove the induction step suppose that for some m > 0 we have d, C f 1
m. For some i € [1..k] we have dp,4+1 = fi(dm), so by the monotonicity of f we
get

dm+1 = fz(dm) cC f(dm) C f(me) = fT (m+1)
0O
O

In many situations some chaotic iteration studied in the Chaotic Iteration
Theorem 6 eventually stabilizes. This is for example the case when (D, C)
satisfies the finite chain property. In such cases the limit of every chaotic iteration
can be characterized in an alternative way.
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Corollary 7 (Chaotic Iteration). Suppose that under the assumptions of the
Chaotic Iteration Theorem 6 some chaotic iteration of F' eventually stabilizes.
Then every chaotic iteration of F eventually stabilizes at the least fized point of

f.

Proof. It suffices to note that if some chaotic iteration dp, d;. .. of F eventually
stabilizes at some d,,, then by Claims 1 and 2 f 1+ m = dp,, so

|| fti=ftm (2)
i=0
Then, again by Claims 1 and 2, every chaotic iteration of F' stabilizes at f T m
and it is easy to see that by virtue of (2) f 1 m is the least fixed point of f. O

2.2 Chaotic Iterations on Compound Domains

Not much more can be deduced about the process of the chaotic iteration unless
the structure of the domain D is further known. So assume now that (D, C )
is the Cartesian product of the L-po’s (D;, C ;), for ¢ € [1..n], defined in the
expected way. It is straightforward to check that (D, C ) is then an U-po, as well.
In what follows we consider a modification of the situation studied in the Chaotic
Iteration Theorem 6 in which each function f; affects only certain components
of D.

Consider the partial orders (D;, C;), for ¢ € [1..n] and a scheme s :=
i1,..-, %4 on n. Then by (D;, C ,) we mean the Cartesian product of the partial
orders (D;;, E ;,), for j € [1..1].

Given a function f on D, we say that f is with scheme s. Instead of defining
iterations for the case of the functions with schemes, we rather reduce the situ-
ation to the one studied in the previous subsection. To this end we canonically
extend each function f on D, to a function fT on D as follows. Suppose that
8§ =11,...,1; and

f(dil, cey dil) = (6;1, .. .,e;l).
Let for j € [1..n]

J

o e’ if j is an element of s,
77 | dj otherwise.

Then we set
frdy, .. dn) = (e1,. - en)

Suppose now that (D, C ) is the Cartesian product of the L-po’s (D;, C ),
for i € [1.n], and F := {f1,..., fx} is a set of functions with schemes that are
all inflationary and monotonic. Then the following algorithm can be used to
compute the limit of the chaotic iterations of F* := {f},..., ff}. We say here
that a function f depends on ¢ if i is an element of its scheme.
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GENERIC CHAOTIC ITERATION ALGORITHM (CI)

d:i=(L1,..,1);
e ——
n times
d = d,
G .= F,

while G # 0 do
choose g € G; suppose g is with scheme s;
G:=G-{g};
d'(s] == g(dls]);
if d[s] # d'[s] then
GU{f € F| f depends on some 7 in s such that d[i] # d'[]};

d'[s]

]

G =

d[s] :
fi

od

The following observation will be useful in the proof of correctness of this

algorithm.

Note 8. Consider the partial orders (D;, T ), for i € [1..n], a scheme s onn
and a function f with scheme s. Then

(i) f is inflationary iff f is,

(i) f is monotonic iff ft is.

The following result summarizes the properties of the CI algorithm.

Theorem 9.
(i) Every terminating execution of the CI algorithm computes in d the least fived
point of the function f on D defined by

k
:Uﬁ@

(i) If all (D;, T ;), where i € [1..n], satisfy the finite chain property, then every
execution of the CI algorithm terminates.

Proof. It is simpler to reason about a modified, but equivalent, algorithm in
which the assignments d'[s] := g(d[s]) and d[s] := d'[s] are respectively replaced
by d' := g+(d) and d := d' and the test d[s] # d'[s] by d # d'.

(1) Note that the formula

[ :=VfeF-Gff(d)=d

is an invariant of the while loop of the modified algorithm. Thus upon its ter-
mination

(G=0)AI
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holds, that is
VfeF ft(d)=d.

Consequently, some chaotic iteration of F'* eventually stabilizes at d. Hence d
is the least fixpoint of the function f defined in item (¢) because the Chaotic
Tteration Corollary 7 is applicable here by virtue of Note 8(i) and (ii).

(i4) Consider the lexicographic order of the partial orders (D,3) and (N, <),
defined on the elements of D x N by

(dl,nl) Slez (dQ,nz) lff d1 Q d2 or (dl = dz and KAl S le).

We use here the inverse order 1 and N denotes the set of natural numbers.
By Note 8(i) all functions f;" are inflationary, so with each while loop iter-
ation of the modified algorithm the pair

(d, card G)

strictly decreases in this order <j.,. Howver, in general the lexicographic order
(D X N,<ez) is not well-founded and in fact termination is not guaranteed.
But assume now additionally that each partial order (D;, C ;) satisfies the fi-
nite chain property. Then so does their Cartesian product (D, C ). This means
that (D, 3) is well-founded and consequently so is (D x N, <jez) which implies
termination. O

When all considered functions f; are also idempotent, we can reverse the
order of the two assignments to G, that is to put the assignment G := G — {g}
after the if-then-fi statement, because after applying an idempotent function
there is no use in applying it immediately again. Let us denote by CII the
algorithm resulting from this movement of the assignment G := G — {g}.

More specialized versions of the CI and CII algorithms can be obtained by
representing G as a queue. To this end we use the operation enqueue(F, Q)
which for a set F and a queue ) enqueues in an arbitrary order all the elements
of F in Q, denote the empty queue by empty, and the head and the tail of a non-
empty queue @ respectively by head(Q) and tail(Q). The following algorithm
is then a counterpart of the CI algorithm.

GENERIC CHAOTIC ITERATION ALGORITHM WITH A QUEUE (CIQ)

d:=(L,...,1L1)
| S
n times
d =d;
Q := empty;

enqueue(F, Q);

while @ # empty do
g := head(Q); suppose g is with scheme s;
Q := tail(Q);
d'[s] := g(d[s]);
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if d[s] # d'[s] then
enqueue({f € F | f depends on some i in s such that d[i] # d'[i]}, Q);
d[s] := d'[s]
fi
od

Denote by CIIQ the modification of the CIQ algorithm that is appropriate for
the idempotent functions, so the one in which the assignment Q := tail(@) is
performed after the if-then-fi statement.

It is easy to see that the claims of Theorem 9 also hold for the CII, CIQ and
CIIQ algorithms. A natural question arises whether for the specialized versions
CIQ and CIIQ some additional properties can be established. The answer is pos-
itive. Namely, for these two algorithms the following result holds which shows
that the nondeterminism present in these algorithms has no bearing on their
termination.

Theorem 10. If some ezecution of the CIQ algorithm terminates, then all the
executions of the CIQ algorithm terminate.

Proof. We first establish the following observation.

Claim 1 If some chaotic iteration of Ft eventually stabilizes, then all the exe-
cutions of the CIQ algorithm terminate.

Proof. We prove the contrapositive. Consider an infinite execution of the CIQ al-
gorithm algorithm. Let i1, i2, ... be the run associated with it and £ :=dg,dy, ...
the iteration of F'* associated with this run. By the structure of this algorithm

£ does not stabilize. (3)

Let A be the set of the elements of [1..k] that appear finitely often in the run
i1,%n,.... For some m > 0 we have i; ¢ A for j > m. This means by the
structure of this algorithm that after m iterations of the while loop no function
fi for i € A is ever present in the queue Q.

By virtue of the invariant I used in the proof of Theorem 9 we then have
f(d;) = d; for i € A and j > m. This allows us to transform the iteration £ to
a chaotic one by repeating each element d; for j > m card A times.

Assume now that a chaotic iteration of F'™ eventually stabilizes. Then by the
Chaotic Iteration Corollary 7 the just constructed chaotic iteration stabilizes, as
well. So the original iteration ¢ also stabilizes which contradicts (3). O

Construct now a chaotic iteration of F'T the initial prefix of which corre-
sponds with a terminating execution of the CIQ algorithm. By virtue of the
invariant I this iteration eventually stabilizes. This concludes the proof thanks
to Claim 1. a

An analogous result holds for the CIIQ algorithm. On the other hand, it is
easy to see that this result does not hold for the CI and CII algorithms.
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3 Constraint Propagation

Let us return now to the study of CSP’s. We show here how the results of the
previous section can be used to explain the constraint propagation process.

3.1 Domain Reduction

In this subsection we study the domain reduction process. First we associate
with each CSP an U-po that “focuses” on the domain reduction.
Consider a CSP P := (Dy,...,Dy;C). Let for X, Y C D;

XC,Yif XDV

Then for i € [1..n] (P(D;), C ;) is an U-po with 1; = D; and X L; Y = X NnY.
Consequently, the Cartesian product (DO, T ) of (P(D;), C ;), where i € [1..n],
is also an L-po. We call (DO, C ) the domain U-po associated with P.

As in in Subsection 2.2, for a scheme s := iy, .. .,4; we denote by (DO, C ;)
the Cartesian product of the partial orders (P(D;,), T ;;), where j € [1..].

Note that DO, = P(D;,) X - - x P(D;,). Because we want now to use con-
straints in our analysis and constraint are sets of tuples, we identify DO with
the set

{Xl X oo X X t Xj (_iDij for y € [11]}

In this way we can write the elements of DO, as Cartesian products X; x---x Xy,
so as (specific) sets of I-tuples, instead of as (X1, .. ., X;), and similarly with DO.

Note that because of the use of the inverse subset order O we have for X; x
e x X, €D0O;and Yy x -+ x Y, € DO,

Xix - xXCx--xY il Xy x---xX; 2y x-- XY
Gff X; DY for i € [1..1]),

(Xlx..-xXl)Us(le...xy'l) :(Xlx...xXl)m(ylx,_.XY'l)
(= (X1NY1) x - x (X, NY)).

Moreover, D X --- x D, is the least element of DO.

So far we have defined an U-po associated with a CSP. Next, we introduce
functions by means of which chaotic iterations will be generated. These functions
are associated with constraints. Constraints are arbitrary sets of k-tuples for
some k, while the T , order and the U, operation are defined only on Cartesian
products. So to define these functions we use the set theoretic counterparts 2
and Nof T , and U, which are defined on arbitrary sets.

Definition 11. Consider a sequence of domains Dy, ..., D, and a scheme s on
n. By a domain reduction function for a constraint C' with scheme s we mean a
function f on DO; such that for all D € DO,

- DQf(D),
- CND=Cn f(D). O
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The first condition states that f reduces the “current” domains associated
with the constraint C (so no solution to C is “gained”), while the second condi-
tion states that during this domain reduction process no solution to C' is “lost”.
In particular, the second condition implies that if C C D then C C f(D).

Note that for the partial order (DO,, C ,) afunction f on DO, is inflationary
iff D D f(D) and f is monotonic iff it is monotonic w.r.t. the set inclusion.

Example 1. As a simple example of a domain reduction functions consider a
binary constraint C C D; x Ds. Define now the functions f; and fz on DO 2 :=
P(D;) x P(D,) as follows:

A(XXY) =X xY,
where X’ = {a € X | 3b€Y (a,b) € C}, and
fAX XY)=XxY',

where Y/ = {b€ Y | Ja € X (a,b) € C}. It is straightforward to check that f;
and f, are indeed domain reduction functions. Further, these functions are mono-
tonic w.r.t. the set inclusion and idempotent. O

Take now a CSP P := (Dy, ..., Dp;C) and a sequence of domains Dy, ..., Dy,
such that D} C D, for ¢ € [1..n]. Consider a CSP P’ obtained from P by replacing
each domain D} by D; and by restricting each constraint in C to these new
domains. We say then that P’ is determined by P and D} x ... x D;,.

Consider now a CSP P := (Dy,...,Dy;C) and a domain reduction function

f for a constraint C of C. Suppose that
fH(Dix--xDp)=Dy %+ xDp,
where fT is the canonic extension of f to DO defined in Subsection 2.2. We now

define f(P) to be the CSP determined by P and Dj x ... x D;,. The following
observation holds.

Lemmal12. Consider a CSP P and a domain reduction function f. Then P
and f(P) are equivalent.

Proof. Suppose that Dy, ..., D, are the domains of P and assume that f is a
domain reduction function for C with scheme 71, ...,¢. Let

f(Di, x -+ xD;)=Dj x---xDj.

Take now a solution d to P. Then d[is,..., 4] € C, so by the definition of f
also d[iy,..., 4] € D} x ---x Dj. So d is also a solution to f(P). The converse
implication holds by the definition of a domain reduction function. O

When dealing with a specific CSP we have in general several domain re-
duction functions. To study their interaction we can use the Chaotic Iteration
Theorem 6 in conjunction with the above Note. After translating the relevant
notions into set theoretic terms we get the following direct consequence of these
results. (In this translation DO, corresponds to Dy and DO to D.)
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Theorem 13 (Domain Reduction). Consider a CSP P := (Dy,...,Dy;C).
Let F = {f1,..., fr}, where each f; is a domain reduction function for some
constraint in C. Suppose that all functions f; are monotonic w.r.t. the set inclu-
sion. Then

— the limit of every chaotic iteration of FT = {f1+, R f:} ezists;
— this limit coincides with

ﬂfJ(Dl X ...XDn)’

j=0
where the function f on DO is defined by:

k
f(D) = (D),
=1

— the CSP determined by P and this limit is equivalent to P. O

Informally, this theorem states that the order of the applications of the do-
main reduction functions does not matter, as long as none of them is indefinitely
neglected.

Consider now a CSP P and suppose that the domain Li-po associated with
it satisfles the finite chain property. Then we can use the CI, CII, CIQ and
CIIQ algorithms to compute the limits of the chaotic iterations considered in
the above Theorem. We shall explain in Subsection 4.1 how by instantiating
these algorithms with specific domain reduction functions we obtain specific
algorithms considered in the literature. In each case, by virtue of Theorem 9 and
its reformulations for the CII, CIQ and CIIQ algorithms, we can conclude that
these algorithms compute the greatest common fixpoint w.r.t. the set inclusion
of the functions from Ft.

3.2 Constraint Reduction

We now study the constraint reduction process. As in the previous subsection
we begin by associating with each CSP an Li-po that “focuses” on the constraint

reduction.
Consider a CSP P := (D;C4,...,Ck). Let for X, Y C C;

XC,Yif X2V
Let now (CO, C ) be the Cartesian product of the L-po’s (P(C;), C ;), where
i € [1.n]. We call (CO, C ) the constraint U-po associated with P.

Following the notation of the previous subsection, for a scheme s :=11,...,%
on k we denote by (COj, C ;) the Cartesian product of the partial orders
(P(Ci,), C i), where j € [1..]], and identify CO; with the set

{Xl X oo X X | Xj - Cz']- for j € [1”},
and similarly with CO.
Next, we define functions that will be used to generate chaotic iterations.
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Definition 14. Consider a CSP (D;Cy,...,Ck) and a scheme s on k. By a con-
straint reduction function with scheme s we mean a function g on CO; such that

for all C € CO;

- C 2 g(C)7
— Sol(C) = Sol(g(C)). O

C is here a Cartesian product of some constraints and in the second condition
and in the example below we identified it with the sequence of these constraints,
and similarly with g(C). The first condition states that g reduces the constraints
C;, where 7 is an element of s, while the second condition states that during this
constraint reduction process no solution to C is lost.

Ezample 2. As an example of a constraint reduction function consider the fol-
lowing function g on some COq:

g(Cx C):=C"xC,

where C' = II;(Sol(C, C)) and t is the scheme of C. To see that g is indeed a
constraint reduction function, first note that by the definition of Sol we have
C' C C,s0 C x C 2 g(C x C). Next, note that for d € Sol(C, C) we have d[t] €
I1,(S0l(C, C)), so d € Sol(C’,C). This implies that Sol(C, C) = Sol(g(C, C)).
Note also that g is monotonic w.r.t. the set inclusion and idempotent. O

Ezample 3. As another example that is of importance for the discussion in Sub-
section 4.1 consider a CSP (Dy,...,Dp;C) of binary constraints such that for
each scheme 7, j on n there is exactly one constraint, which we denote by Cj, ;.

Define now for each scheme k,I, m on n the following function gj%; on COs,
where s is the triple corresponding to the positions of the constraintsYC'k,l, Crm
and C,,; in C:

981 (Xky X Xy X X)) = (Xat N Iy (Xiem X X)) X Xigm X X 1.

To prove that the functions g;; are constraint reduction functions it suffices
to note that by simple properties of the X operation and by Note 2(i) we have

X1 N e (Xgoym M Xonyt) = Mot (Xt X X m M X 1)
= g 1 (Sol(Xk.1, Xieyms Xm,1)),

so these functions are special cases of the functions defined in Example 2. a

Take now a CSP P := (D; Cy, .. ., Cx) and a sequence of constraints Cj, . . ., Cj,
such that C} C C; for i € [1..k]. Let P’ := (D;Cy,...,C}). We say then that P’
is determined by P and C] x ... x C}.

Consider now a CSP P := (D; C4,. .., Cy) and a constraint reduction function

g with scheme s. Suppose that
9T (Cy x -+ xC)=Cp x -+ x Cy,
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where g% is the canonic extension of g to CO defined in Subsection 2.2. We now
define
g(P) = (D; C1,..., Cy)-

We have the following observation.

Lemma15. Consider a CSP P and a constraint reduction function g. Then P
and g(P) are equivalent.

Proof. Suppose that s is the scheme of the function g and let C be an element
of CO,. C is a Cartesian product of some constraints. As before we identify it
with the sequence of these constraints. For some sequence of schemes s, C is
the s-sequence of the constraints of P.

Let now d be a solution to P. Then by Note 2(ii) we have d[(s)] € Sol(C),
so by the definition of g also d[(s}] € Sol(g(C)). Hence for every constraint
C' in g(C) with scheme s’ we have d[s'] € C’ since d[(s)][s'] = d[s']. So d is a
solution to g(P). The converse implication holds by the definition of a constraint
reduction function.

O

As in the case of the domain reduction we can now apply the results of
Section 2 to study the outcome of the constraint reduction process. To this
end it suffices to translate the relevant notions into set theoretic terms. (In this
translation CO, corresponds to D, and CO to D.) We get then the following
counterpart of the Domain Reduction Theorem 13.

Theorem 16 (Constraint Reduction). Consider a CSPP := (D;Cy,...,Ck).
Let F := {g1,..., 9%}, where each g; is a constraint reduction function. Suppose
that all functions g; are monotonic w.r.t. the set inclusion. Then

— the limit of every chaotic iteration of F+ := {g7,.. .,gg’} erists;
— this limit coincides with

gj(Clxmek),

5

0

1l

J

where the function g on CO 1is defined by:

k
9(C) == ﬂ g (C),

— the CSP determined by P and this limit is equivalent to P. a

When the constraint U-po associated with a CSP P satisfied the finite chain
property, we can use the algorithms discussed in Subsection 2.2 to compute the
limits of the chaotic iterations considered in the above Theorem. We return to
this issue in Subsection 4.1. Also here, as in the previous subsection, we can
conclude by virtue of Theorem 9 that these algorithms compute the greatest
common fixpoint w.r.t. the set inclusion of the functions from F*. So the limit of
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the constraint propagation process could be added to the collection of important
greatest fixpoints presented in Barwise and Moss (1996).

Next, we show how specific provably correct algorithms for achieving a local
consistency notion can be automatically derived. As it is difficult to define local
consistency formally, we illustrate the idea on an example.

Ezample 4. We consider here the notion of relational consistency proposed re-
cently in Dechter and van Beek (1997).

To define it need to introduce some auxiliary concepts first. Consider a CSP
(Dy,...,Dy;C). Take a scheme t :=iy,...,5p onn. Wecalld € D;; x---x D; a
tuple of type t and say that d is consistent if for every subsequence s of ¢ and a
constraint C' € C with scheme s we have d[s] € C.

A CSP P is called relationally m-consistent if for any s-sequence Cy,...,Cp,
of different constraints of P and a subsequence t of (s), every consistent tuple of
type t belongs to IT;(Cy M -+ X Cp,).

As the first step we characterize this notion as a common fixed point of a
finite set of monotonic and inflationary functions.

Consider a CSP P := (D1,...,Dpn;C1,...,Ck). Assume for simplicity that
for every scheme s on n there is a unique constraint with scheme s. Each CSP
is trivially equivalent with such a CSP — it suffices to replace for each scheme
s the set of constraints with scheme s by their intersection and to introduce
“universal constraints” for the schemes without a constraint.

Consider now a scheme iq,...,4, on k. Let s be such that C;,,...,C;,, is
an s-sequence of constraints and let ¢ be a subsequence of (s). Further, let Cj,
be the constraint of P with scheme t. Put s := ((%0), (1,---,%m)). (Note that
if ig does not appear in i, ..., 4, then s = ig,11,...,i, and otherwise s is the
permutation of 7y,...,%,, obtained by transposing i with the first element.)

Define now a function gs on CO; by

g:(C x C):=(CNI;(XC)) x C.
It is easy to see that if for each function gs of the above form we have
gF(Cy x - x Cy)=C1 X -+ X Ch,

then P is relationally m-consistent. (The converse implication is in general not
true). Note that the functions g, are inflationary and monotonic w.r.t. the inverse
subset order O and also idempotent.

Consequently, by virtue of Theorem 9 reformulated for the CII algorithm,
we can now use the CIT algorithm to achieve relational m-consistency for a CSP
with finite domains by “feeding” into this algorithm the above defined functions.
The obtained algorithm improves upon the (authors’ terminology) brute force
algorithm proposed in Dechter and van Beek (1997) since the useless constraint
modifications are avoided.

As in Example 3, by simple properties of the X operation and by Note 2(i)
we have

C NI, (M C) = IT,(C X (X C)) = II(s0l(C, C)).
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Hence, by virtue of Example 2, the functions g, are all constraint reduction
functions. Consequently, by the Constraint Reduction Theorem 16 we conclude
that the CSP computed by the just discussed algorithm is equivalent to the
original one. 0

It is perhaps worthwhile to note that the domain reduction process can be
seen as a special case of the constraint reduction process. To this end it suffices
to introduce unary constraints each of which coincides with a different domain
of the given CSP and replace the reduction of the domains by the reduction of
these unary constraints followed by the restriction of the other constraints to
these reduced unary constraints. So the domain reduction functions can be seen
as special cases of the constraint reduction functions.

We decided to consider the domain reduction process separately, because, as
we shall see in the next section, it has been extensively studied, especially in
the context of CSP’s with binary constraints and of interval arithmetic. Con-
sequently, it is useful to analyze it directly, without any introduction of new
constraints.

4 Concluding Remarks

4.1 Related Work

It is illuminating see how the attempts of finding general principles behind the
constraint propagation algorithms repeatedly reoccur in the literature on con-
straint satisfaction problems spanning the last twenty years.

As already stated in the introduction, the aim of the constraint propagation
algorithms is most often to achieve some form of local consistency. As a result
these algorithms are usually called in the literature “consistency algorithms” or
“consistency enforcing algorithms”.

To start with, in Mackworth (1977) a unified framework was proposed to ex-
plain the so-called arc- and path-consistency algorithms. Also the arc-consistency
algorithm AC-3 and the path-consistency algorithm PC-2 were proposed and the
latter algorithm was obtained from the former one by pursuing the analogy
between both notions of consistency.

The AC-3 consistency algorithm can be obtained by instantiating the CII
algorithm with the domain reduction functions defined in Example 1, whereas
the PC-2 algorithm can be obtained by instantating this algorithm with the
domain reduction functions defined in Example 3.

In Dechter and Pearl (1988) the notions of arc- and path-consistency were
modified to directional arc- and path-consistency, versions that take into account
some total order <4 of the domain indices, and the algorithms for achieving
these forms of consistency were presented. These algorithms can be obtained as
instances of the CIQ algorithm as follows.

For the case of directional arc-consistency the queue in this algorithm should
be instantiated with the set of the domain reduction functions f; of Example 1
for the constraints the scheme of which is consistent with the <4 order. These
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functions should be ordered in such a way that the domain reduction functions
for the constraint with the <4-large second index appear earlier. This order
has the effect that the enqueue operation within the if-then-fi statement has
always the empty set as the first argument, so it can be deleted. Consequently,
the algorithm can be rewritten as a simple for loop that processes the selected
domain reduction functions f; in the appropriate order.

For the case of directional path-consistency the constraint reduction functions
g, should be used only for k,I <q m and the queue in the CIQ algorithm should
be initialized in such a way that the functions Irn with the <y4-large m index
appear earlier. As in the case of directional arc-consistency this algorithm can
be rewritten as a simple for loop.

In Montanari and Rossi (1991) a general study of constraint propagation was
undertaken by defining the notion of a relaxation rule and by proposing a general
relaxation algorithm. The notion of a relaxation rule coincides with our notion
of a constraint propagation function instantiated with the functions defined in
Example 2 and the general relaxation algorithm is the corresponding instance
of our CI algorithm.

In Montanari and Rossi (1991) it was also shown that the notions of arc-
consistency and path-consistency can be defined by means of relaxation rules
and that as a result arc-consistency and path-consistency algorithms can be
obtained by instantiating with these rules their general relaxation algorithm.

Van Hentenryck, Deville and Teng (1992) presented a generic arc consistency
algorithm, called AC-5, that can be specialized to the known arc-consistency
algorithms AC-3 and AC-4 and also to new arc-consistency algorithms for specific
classes of constraints.

In Benhamou, McAllester and Hentenryck (1994) and Benhamou and Older
(1997) specific functions, called narrowing functions, were associated with con-
straints in the context of interval arithmetic for reals and some properties of
them were established that in our terminology mean that these are idempo-
tent domain reduction functions. As a consequence the algorithms proposed in
these papers, called respectively a fixpoint algorithm and a narrowing algorithm,
become respectively the instances of our CIIQ algorithm and CII algorithm.

The importance of fairness for the study of constraint propagation was no-
ticed in Montanari and Rossi (1991), while the relevance of the chaotic iteration
was independently noticed in Fages, Fowler and Sola (1996) and van Emden
(1996). In the latter paper the generic chaotic iteration algorithm CIT was formu-
lated and proved correct for the domain reduction functions defined in Benhamou
and Older (1997) and it was shown that the limit of the constraint propagation
process for these functions is their greatest common fixpoint.

The idea that the meaning of a constraint is a function (on a constraint store)
with some algebraic properties was put forward in Saraswat, Rinard and Panan-
gaden (1991), where the properties of being inflationary (called there extensive),
monotonic and idempotent were singled out.

It is unrealistic to expect that all constraint propagation algorithms presented
in the literature can be expressed as direct instances of the algorithms discussed
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in this paper. For example the AC-4 algorithm of Mohr and Henderson (1986)
associates with each domain element some information concerning its links with
the elements of other domains. As a result this algorithm operates on some
“enhancement” of the original domains.

We noted, however, that even in this case the analysis here provided can
be used to explain this algorithm. To this end one needs to reason about the
translation of the original CSP to a CSP defined on the enhanced domains. This
analysis allows us to reduce the proof of the correctness of this algorithm to the
proof that specific functions are monotonic domain reduction functions.

4.2 Idempotence

In cach of the above papers the (often implicitly) considered semantic, domain
or constraint reduction functions are idempotent, so we now comment on the
relevance of this assumption.

To start with, in our study Apt (1997) of linear constraints on finite integer
intervals we found that natural domain reduction functions are not idempotent.
Secondly, as noticed in Older and Vellino (1993), another paper on constraints
for interval arithmetic on reals, we can always replace each non-idempotent in-
flationary function f by

Fr@) =] Fi(@).
i=1
The following is now straightforward to check.

Note 17. Consider an U-po (D, C ) and a function f on D.

— If f is inflationary, then so is f*.

— If f is monotonic, then so f*.

— If f is inflationary and (D, T ) has the finite chain property, then f* is
idempotent.

— If f is idempotent, then f* = f.

— Suppose that (D, T ) has the finite chain property. Let F := {fi,..., fx} be

a set of inflationary, monotonic functions on D and let F* := {f{,..., fi}.
Then the limits of all chaotic iterations of F' and of F* exist and always
coincide. a

Consequently, under the conditions of the last item, every chaotic iteration
of F* can be modeled by a chaotic iteration of F', though not conversely. In
fact, the use of F* instead of F' can lead to a more limited number of chaotic
iterations. This may mean that in some specific algorithms some more eflicient
chaotic iterations of F' cannot be realized when using F*.

4.3 Semi-chaotic Iterations

The results of this paper can be slightly strengthened by considering the following
generalization of the chaotic iterations.
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Definition 18. Consider a set of functions F := {fi,..., fr} on a domain D.

— We say that an element 7 € [1..k] is eventually irrelevant for an iteration
do,dy,... of F if 3m > 0Vj > m fi(d;) = d;.

— An iteration of F is called semi-chaotic if every i € [1..k] that appears finitely
often in its run is eventually irrelevant for this iteration. |

So every chaotic iteration is semi-chaotic but not conversely. Now, in all the
results of this paper chaotic iterations can be replaced by semi-chaotic iterations.
The reason is that, as shown in the proof of Theorem 10, every semi-chaotic
iteration £ can be transformed into a chaotic iteration ¢’ with the same limit
and such that & eventually stabilizes at some d iff ¢’ does. The proof of Theorem
10 also shows that every infinite execution of the CIQ algorithm is assoclated
with a semi-chaotic iteration of F'T.

However, the property of being a semi-chaotic iteration cannot be determined
from the run only. So, for simplicity, we decided to limit our exposition to chaotic

iterations.
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1. Introduction

Ever since Adleman’s seminal paper [1] there has been a flood of ideas on how one could use
DNA to compute. Lipton was the first to show that DNA could be used to solve more than
just a variation of the famous travelling salesman problem [12]. Since then there have been
many other papers on using DNA to solve various computational problems. [3,5,4,6,7,15]

At the top level all these papers are similar: they all attempt to use DNA computation
to solve some large search problem. Since a liter of water can hold 10?* bases of DNA, there
is the possibility that one can outperform electronic machines.

However, this is currently problematic. There are several reasons for this. First, elec-
tronic machines are very fast; moreover, they are getting faster every day. Second, there are
many models of how to do DNA computations. Yet, it is unclear if any of these models will
be practical. The problem is mainly that DNA technology is not perfect. DNA operations
are not error free.

Finally, there is the lack of a killer app. A killer app is an application that fits the DNA
model; cannot be solved by the current or even future electronic machines; and is important.
The latter is critical: to be a killer app the problem must be one for which people are willing
to “pay money” for solutions. To date there are no viable candidates for the killer app.

We propose a new way to use DNA computations. This way allows us to use DNA com-
putations to solve important and potentially killer applications. The potential applications
include:

(1) DNA sequencing;

(2) DNA fingerprinting;

(3) DNA mutation detection or population screening;

(4) Other fundamental operations on DNA.

The key new idea is to use DNA computation to operate on unknown pieces of DNA. This is
a fundamental change in the way that we use DNA computation. We call these DN A*DN A
computations: DNA to DNA computations. This idea was first proposed in [8] and called
“analog” DNA computations there.

The kev idea is the following. Suppose that one has a test tube that contains multiple
copies of some unknown strand X of DNA. By unknown we mean that we do not known

! a Burroughs Wellcome Fund New Investigator in Molecular Parasitology.
2 Supported in part by NSF CCR-9633103 and AFOSR F49620-97-0190.
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the sequence of the strand. Suppose further that we wish to compute some property of X,
i.e. for some function f() we wish to obtain the value of f(X). The current way to do this
is: (i) sequence the strand X in the laboratory; (ii) then, determine the value of f(X) on a
PC. The difficulty with this method is that it requires the sequencing of the strand .X.

Our new idea is to avoid the expensive step of sequencing the strand X. In particular,
we plan to operate as follows: We will add to the test tube certain known strands of DNA
and use these to perform a DNA computation on X. The result of this computation will be
the answer f(X).

The advantage of this method is that it avoids the sequencing step. Our hope is that
this direct method of computing with unknown strands of DNA could be the key to finding
“killer app’s”.

There is one huge advantage to our approach: since the problems we are solving are
not digital, there is no way that electronic machines can compete. It’s not that DNA
based computation is faster, but that there is no way for electronic computers to do the
the problems at all. One way to say this dramatically is that there is no place on a PC to
“pour” in the unknown test tube of DNA. Without input, the problem cannot be solved at
all on a PC.

Our method is based on a new transformation that allows us to “encode” an unknown
piece of DNA. All of the DNA computations to date use special redundant codes. It is critical
that the DNA be redundantly encoded. Without such a coding the computations cannot
be performed. Indeed the main contributions of [1,12] were the construction of methods for
creating and managing such codes.

Of course naturally occuring DNA is not coded in this redundant manner. This is a
major roadblock: without codes the methods of DNA computation do not apply. However,
we propose a method that allows us to transform DNA. This transformation causes the
DNA to be re-coded into any redundant code that we choose.

There are many advantages to this re-coding. Mainly, it is now possible to apply all of
the “tricks” of DNA computation to problems that involve unknown DNA. Since the DNA
is coded the way that we choose we can operate on it much more freely. For example, one
important application of this method is the following: {Note, the ezact theorem statements
are in section 3.}

Theorem: Suppose that X and Y are unknown sirands in distinct test tubes. Then, it
is possible to check whether or not X =Y in O(log(n)) bio-steps where both strands are at
most length n.

Note, we mean that we test ezactly whether or not X and Y are equal: the method will
discover if they differ in even one base. Further, this is only a simple example of a more
general type of theorem:

Theorem: Suppose that XM X% gre unknown strands of length at most n that
are in distinct test tubes. Then, in O(log(n)) bio-steps we can compute the value of
F(XM, ..., X¥)) where F() is an NC* function.

It is important to point out that our results avoid one of the key difficulties that face
“classic” DNA computations. By “classic” we mean DNA computations that attempt to do
purely digitial problems. The advantage is that our results are much more error tolerant.
The reason is that in classic DNA computations there is often “one” strand that the exper-
imenter seeks to find. In our new type of DNA computations, there are many many copies.
Thus, small error rates or partial rates of completion for some of the operations should not
be a problem.

We prove these results by combining our re-coding methods with a generalization of
the pretty simulation method of Ogihara and Ray [13]. Other methods could be used but
their method is perfect for our needs. Note, in [2] there is a criticism of [13] for using
an unreaslistic model. We feel that this criticism is interesting but misses the essential
point. They feel that the cost of the pour operation is not correctly included in [13]. The



58

answer seems to be two-fold: First, even if the methods are linear in *pour” it’s so fast that
essentially the time is still logarithmic. Second, one can imagine using robots so that the

pours can actually be done all at once.

2. Model

In this section we introduce our model of DNA computations. It is related to, but fundamen-
tally different from, the models used in papers on classic DNA computations [3,5,4,6,7,15].
The key point is that in DNA®’DNA computations the operations need not work perfectly.
For example, we will only require assumptions about how selective DNA is when single
strands anneal/ligate together. This is a major advantage of DNA?DNA computations. Of
course the hope is that this weakening in the required models will make DNA?DNA com-
putations really work in the laboratory. (Note, we are just beginning experiments in Laura
Landweber’s laboratory at Princeton University that we hope will show that this is correct.)

All our computations are described in terms of operations that are performed on fest
tubes. The state of a test tube is, thus, a critical concept. At any time a test tube will contain
a multi-set of different pieces of DNA. Some pieces will be single strands, some double strands
and others more complex structures. Clearly, in order to describe mathematically such a
state, we need to supply the following information:

(1) The types of pieces of DNA that are in the test tube;

(2) The total number of pieces that are in the test tube;

(3) The number of pieces of each type that are in the test tube.
We will use string terminolgy to describe single strands of DNA. More precisely, we will
identify strings S over the alphabet {4, T, C, G} with the single strand of DNA of the form:

5~ 81,8, =3

Also by the Watson-Crick complement of S we will mean the string that is the reverse of S
with each element changed into its complement, i.e. “A” with “T” and “C” with “G”.

Suppose that a test tube T only contains single strands of DNA: note, this is an important
special case. Clearly, its mathematical definition requires that we supply the following:

(1) A collection of that correspond to the single strands in T, i.e. SV, ..., S(%);

(2) A integer M that is the total number of strands in T}

(3) A collection of frequencies gy, .. ., g so that the #** strand S®) occurs ¢; M times

where ¢ + ... +¢qx = 1.
One of the key insights about DNAZDNA computation is that we can simplify this definition:
we do not need to supply M. That is we need not worry about the exact number of strands
that are in the test tube. We need only to keep track of the frequency of each strand.

This 1s an important point about the difference between some classic DNA computations
and DNA?DNA computations. In classic computations the number of types of strands k is
the same order of magnitude as the total number of strands M. This is because in classic
computations each strand is performing a separate computation: we need to have both %
and M as large as possible.

On the other hand, in DNA2DNA computations k will often be relatively small. For
example, k = 1,000 and M = 105 are quite reasonable parameters. Since M/k is so large we
can essentially ignore the exact value of M. Of course it is critical for all DNA computations
that there be enough material available to make the operations feasible. Note, if in some
situation 3 became too small, then a standard “trick” is to use PCR to increase the number
of total strands and thus restore M to a large enough value.

In summary, for the rest of the paper we will only supply the frequencies of each piece not
the total number of pieces in describing a test tube. A common situation is the following:
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Say that a test tube T' contains SW .. 8% in equal amounts provided T contains the
same number of copies of each the given single strands of DNA.

Now let us turn to consider the class of operations that we require: (Each is a bio-step
in our computations.)

(1) Cut. This operation cuts or cleaves double strands of DNA at a certain pattern.

This is done by using a restriction enzyme.
(2) Gel Separate. This operation uses denaturing polyacrylamide gel electrophoresis
to separate DNA molecules by length.
(3) Anneal. This operation allows single strands to form double strands based on
Watson-Crick pairing, i.e. “A” with “I” and “C” with “G”.
As stated earlier we do not assume that each operation works perfectly. Let us now discuss
the exact error model that we assume. Let 7 > 0 be a fixed small constant: we expect that
it will be smaller than 10~3. We will use 7 to bound the error rate of all the operations
that we perform. Note, we really have a collection of 7's: one for each operation. However,
to avoid statements that are overly complex we will lump all the error rates together. Of
course, one can in principle unravel this and get the exact dependence on each error rate, if
one needs finer resolution.

Now let us turn to discuss the error rates of each type of operation. A cut can fail in
two basic ways. First, a pattern that should be cut may not be cut. Second, some place
that does not match the pattern may be incorrectly cut. We assume that at least 1/2 of
the correct sites are cut; we assume that at most 7 of the incorrect ones are cut. Note,
the action of most restriction enzymes are usually stated in terms of how long they take to
cut 1/2 of the population. One can increase this amount by either adding more enzyme or
increasing the time of incubation.

Next let us discuss the separation of DNA by length. As in other papers we will arrange
things so that no separation is ever required to separate strands that are too close in length.
Further, we will arrange it so that the lengths are quite short. Gel methods work best for
very short lengths. For lengths below several hundred cne can tell i from i+ 1. We will
assume that at least 1/2 of the strands of the given length are correctly extracted; we also
assume that at most 7 strands of the wrong