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Foreword 

The International Colloquium on Algorithms, Languages and Programming 
(ICALP) is the annual conference of the European Association for Theoretical 
Computer Science (EATCS). The conference aims at enabling computer scien- 
tists to exchange theoretical ideas and results, as well as at stimulating cooper- 
ation between the theoretical and the practical community in computer science. 

The main topics of ICALP '97 included computability, automata, formal 
languages, new computing paradigms, term rewriting, analysis and design of al- 
gorithms, computational geometry, computational complexity, symbolic and al- 
gebraic computation, cryptography and security, data types and data structures, 
theory of data base and knowledge bases, semantics of programming languages, 
program specification and verification, foundations of logic programming, par- 
allel and distributed computation, theory of concurrency, theory of robotics, 
theory of logical design and layout. 

ICALP '97 was held in Bologna, Italy, July 7-11, 1997. Previous colloquia 
took place in Paderborn (1996), Szeged (1995), Jerusalem (1994), Lund (1993), 
Wien (1992), Madrid (1991), Warwick (1990), Stresa (1989), Tampere (1988), 
Karlsruhe (1987), Rennes (1986), Nafplion (1985), Antwerpen (1984), Barcelona 
(1983), Aarhus (1982), Haifa (1981), Amsterdam (1980), Graz (1979), Udine 
(1978), Turku (1977), Edinburgh (1976), Saarbücken (1974), and Paris (1972). 
The next ICALP will be held in Aalborg, Denmark, July 13-17, 1998. 

ICALP '97 came in conjunction with the 25th anniversary of EATCS. The 
celebration of the association and of its founders included a historical perspective 
on the achievements of the community in the last 25 years with a talk by M.Nivat, 
the first EATCS President, and a discussion on the new challenges that EATCS 
will face in the future. 

ICALP '97 was organised differently than before and accommodated further 
events, to react positively to the new challenges that the theoretical science com- 
munity faces in the information technology society. Indeed, our community has 
developed and now utilizes several approaches and different methodologies that 
require increased specialization. As a consequence, there is a growing number 
of specialized conferences and workshops, and it is difficult for researchers to 
follow the recent developments on specialized research topics. ICALP '97 was 
a first step towards having a conference offering a single unifying environment 
while leaving room for specialization. In such an event, the computer science 
community interested in the development of formal methods and methodolo- 
gies can stress the relationships that exist among different branches. The new 
organization of ICALP '97 can be summarized as follows. 

Invited talks There were more invited presentations than usual. The eight 
talks presented the main developments occurring in a specific area and the 
promising new trends. 

Plenary and parallel sessions Some papers were presented in plenary ses- 
sions. Parallel sessions were organised for the other submitted papers, ac- 
cording to the two tracks of the Journal of Theoretical Computer Science; 



VI 

this reflects the main division in research topics within the community, while 
making evident its unifying aspects. 

Satellite workshops Seven satellite workshop were held immediately before 
or after the main conference. Their specific topics were often at the inter- 
face between theoretical computer science and other information technology 
research areas. 

Policy of research funding A panel discussion was held, with panelists in- 
cluding experts responsible for governmental and industrial research and 
development agencies in Europe and the U.S. 

The Program Committee selected 73 papers out of 197 submissions, 183 of 
which were in electronic format. Their authors are from 30 countries from all over 
the world. Each submission has been sent to four Program Committee members, 
assisted by their own referees. 

The selection meeting took place in Bologna, March 15-16, 1997. To permit 
a deeper evaluation of the papers, the Program Committee split in two parts for 
a preliminary discussion, according to the division mentioned above. Then, all 
the papers were evaluated again and all the decisions were taken altogether. 

We would like to warmly thank all the Program Committee members and 
their referees for their invaluable contribution. 

We are deeply indebted with all the members of the Organizing Committee 
for all their time and efforts. A special "grazie" to Vladimiro Sassone for his 
excellent automatic system that supported us through all the preparation of the 
colloquium, from receiving submissions and referees' reports to the preparation 
of the selection meeting and of the proceedings. "Grazie" also to Chiara Bodei 
for her precious help. 

Finally, we gratefully acknowledge support from the UE - DG III, UNESCO 
Venice Office, Italian National Council of Research (Comitati 01, 07, 12), GNIM- 
CNR, IEI-CNR, the Universities of Bologna, Pisa, and Roma "La Sapienza", the 
Regione Emilia-Romagna, TELECOM Italia, and the United States Air Force 
European Office of Aerospace Research and Development. 

April 1997 

Pierpaolo Degano, Roberto Gorrieri, Alberto Marchetti-Spaccamela 
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Graphical Calculi for Interaction 

Robin Milner 

University of Cambridge, UK 

Recently there has been great interest in operational models of interactive 
systems, and more recently especially in those which capture to some extent the 
elusive notion of mobility. The 7r-calculus [1] is one such model, and has had 
some success both in application and in prompting research in abstract models 
of interaction. But it can hardly claim to be canonical, and indeed nor can any 
of the other operational models. 

We might consider that the quest for a canonical model of interaction is no 
more likely to succeed than that for a canonical model of computation. (In the 
latter case, we have to be content with many models - Turing machines, register 
machines, ...- and with translating between them.) Nonetheless, it would be 
timid not to seek aspects which are common to many, or even most, models of 
interactive behaviour. 

In around 1992 I started from the 7r-calculus and tried to separate what 
seemed ad hoc from what seemed more essential. The exact communication 
discipline of the 7r-calculus fell into the ad hoc category; the rest - naming, 
restriction, parallel composition - have greater claim to be universal. This was 
the origin of action calculi [2]. To present the 7r-calculus as an action calculus, 
one starts from the common basis of action calculi and merely adds two or three 
so-called "controls" - for message-passing and replication. It turns out that the 
A-calculus, the object calculus of Abadi and Cardelli, and many recent calculi 
can be similarly set up - and combined with each other - in the action-calculus 
framework. Considerable progress has been made, for example in [3], in the 
uniform treatment of models of action calculi. 

In the conference lecture I shall emphasize one feature of action calculi: their 
graphical presentation. Several examples will be given - including some recent 
advances in calculi for representing locality - showing that this graphical element 
is exactly what all action calculi have in common. These examples motivate 
further development (which is certainly needed) in the general theory of action 
calculi and their models. 
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NP-Completeness: A Retrospective 

Christos H. Papadimitriou* 

University of California, Berkeley, USA 

Abstract. For a quarter of a century now, NP-completeness has been 
computer science's favorite paradigm, fad, punching bag, buzzword, alibi, 
and intellectual export. This paper is a fragmentary commentary on its 
origins, its nature, its impact, and on the attributes that have made it 
so pervasive and contagious. 

1. A keyword search in Melvyl, the University of California's on-line library, 
reveals that about 6,000 papers each year have the term "NP-complete" on 
their title abstract, or list of keywords. This is more than each of the terms 
"compiler," "database," "expert," "neural network," and "operating system." 
Even more surprising is the diversity of the disciplines with papers referring to 
"NP-completeness:" They range from statistics and artificial life to automatic 
control and nuclear engineering. What is the nature and extent of the impact of 
NP-completeness on theoretical computer science, computer science in general, 
computing practice, as well as other domains of the natural sciences, applied sci- 
ence, and mathematics? And why did NP-completeness become such a pervasive 

and influential concept? 

2. One of the reasons of the immense impact of NP-completeness has to be 
the appeal and elegance of the class P, that is, of the thesis that "polynomial 
worst-case time" is a plausible and productive mathematical surrogate of the 
empirical concept of "practically solvable computational problem." But, obvi- 
ously, NP-completeness also draws on the importance of NP, as it rests on the 
widely conjectured contradistinction between these two classes. In this regard, 
it is crucial that NP captures vast domains of computational, scientific, and 
mathematical endeavor, and seems to roughly delimit what mathematicians and 
scientists had been aspiring to compute feasibly. True, there are domains, such 
as strategic analysis and counting, which have been within our computational 
ambitions, and still seem to lie outside NP; but they are the exceptions rather 
than the rule. NP-completeness has thus become a valuable intermediary be- 
tween the abstraction of computational models and the reality of computational 
problems, grounding complexity theory to computational practice. 

3. Also crucial for the success of NP-completeness has been its surprising ubiq- 
uity and effectiveness as a classification tool, and the scarcity of problems in 
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NP that resist classification as either polynomial-time solvable or NP-complete. 
(Ladner's result on intermediate degrees between P and NP-completeness [12] 
had been known almost as soon as NP-completeness was introduced, and thus 
theoretically the world could be full of mysterious intermediate problems.) In sev- 
eral occasions, extremely broad classes of computational problems in NP have 
been dichotomized with surprising accuracy into polynomially solvable and NP- 
complete, see [21, 22] for two early examples. 

4. The founders of NP-completeness [2, 10, 13] appear to have anticipated its 
broad applicability and classification power. Leonid Levin [13] wrote in 1973: 
"The method described here clearly provides a means for readily obtaining re- 
sults of [this type] for the majority of important sequential search problems." In 
Karp's paper [10] twenty one problems were proved NP-complete, showing be- 
yond any doubt the surprisingly broad applicability of the method. Significantly, 
Karp seems annoyed and surprised that three other problems (linear program- 
ming, primality, and graph isomorphism) resisted at the time such classification. 
Primality and graph isomorphism were also mentioned by Cook [2]. Knuth was 
sufficiently convinced about the importance and broad applicability of the new 
concept to take early and deliberate action on the terminological front [11]. 

5. NP-completeness has had tremendous impact even in areas where, in some 
sense, it should not have. It is now common knowledge among computer sci- 
entists that NP-completeness is largely irrelevant to public-key cryptography, 
since in that area one needs sophisticated cryptographic assumptions that go 
beyond NP-completeness and worst-case polynomial-time computation [19]; fur- 
thermore, cryptographic protocols based on NP-complete problems have been 
ill-fated. Fortunately, the founders of modern cryptography did not know this. 
Diffie and Hellman base their famous pronouncement "We stand today on the 
brink of a revolution in cryptography" [3] on two facts: (1) Very fast hardware 
and software, and (2) novel techniques for proving problems hard (they cite 
Karp's paper [10]). 

6. NP-completeness has also exhibited a great amount of versatility, adapting 
to contexts and computational aspects beyond its original scope of worst-case 
analysis of exact algorithms for decision and optimization problems. For exam- 
ple, it was used early on to show that certain optimization problems cannot be 
approximated satisfactorily [20], and indeed in a most ingenious and compre- 
hensive way more recently [1]. By showing that even less ambitious goals than 
worst-case polynomial exact solution are unattainable, NP-completeness is thus 
a most useful tool for repeatedly pruning unpromising research directions and 
thus redirecting research to new ones (in a manner reminiscent of the struggle 
between Hercules and the monster Hydra [16]). 

7. Let me illustrate this versatility of NP-completeness by a technical interlude 
on an aspect of efficient computation that has interested me recently, namely, 
output polynomial time. Certain computational problems require an output f(x) 
on input x that is in the worst case exponential in the input. For such problems, 
one would like to have algorithms that are polynomial in \x\ and \f(x)\. The class 



of problems thus solvable can be called output polynomial time. One can use NP- 
completeness to prove that certain functions are not in output-polynomial time, 
unless P=NP. For example, consider the function MIN which maps a regular- 
expression to the minimum-state equivalent deterministic finite-state automaton. 
MIN can be computed by first designing a nondeterministic automaton M, then 
an equivalent deterministic automaton -M', and next minimizing the states of 
M' to obtain the final output; the problem is, of course, that the intermediate 
result M' could be exponential in both the input and the output. It is rather 
straightforward to use "traditional", NP-completeness techniques to show the 

following: 

Theorem 1.   Unless P=NP, MIN is not in output polynomial time. 

In fact, we cannot even compute in'.output-polynomial time a deterministic au- 
tomaton that has at most polynomially more states than the minimum —unless, 

of course, P=NP. 

8. Often the required output f(x) is a.set {yi,...,yk} of strings that are related 
to x via. an NP mapping; for example, if G is a graph, let AMIS(G) be the set of 
all maxima/ independent sets of G. AMIS is known to be in output-polynomial 
time (see [9] for an exposition and strengthening of this result, and an early 
discussion of output polynomial time). For such problems we have an elegant 
alternative definition of output polynomial time. A function / : S* ■-)■ 2" is 
in output polynomial time if the following problem is solvable in polynomial 
time: Given x and y C E*, either decide that y = /(a?), or find a string in 

y 0 f[x). It is easy to see that, if such an algorithm exists, then its iteration 
starting with 5 = 0 gives an output polynomial time algorithm for /; and vice- 
versa, if an output polynomial time algorithm exists for /, it can be used to 
produce an element of y 0 f{x). For example, AMIS is in output polynomial 
time; its generalization to hypergraphs is open, but was recently shown to be 
in output nclogn time [6]; see [5] for an extensive discussion of the hypergraph 
generalization of AMIS. One can use again "traditional" NP-completeness to 
show that the following generalization is not in output polynomial time, unless 
P=NP: Given a monotone circuit, compute the set of all minimal (with respect 
to the set of true inputs) satisfying truth assignments. 

9. But, sometimes, "traditional" NP-completeness techniques do not seem to suf- 
fice to bring out the intractability of a problem, because this problem belongs to 
a class or computational mode that appears to be "between" P and NP. In such 
cases NP-completeness has acted as an open-ended research paradigm, spawn- 
ing variants that are appropriate for the computational context being studied; 
examples are classes that capture local search [8], the parity argument [14], loga- 
rithmic nondeterminism [18], the related concept of fixed-parameter tractability 

[4], and approximability [17]. 

10. Complexity classes introduced this way, as abstractions of natural compu- 
tational problems of mysteriously intermediate complexity, are in some precise 
sense well-motivated, indeed necessary; they are discovered, not invented, as they 



have always existed by dint of their natural complete problems. The only way to 
make them go away is to collapse them with P or NP —as occasionally happens, 
recall [17] and its brilliant follow-up [1]. 

11. NP-completeness is of course a valuable tool for demonstrating the difficulty 
of computational problems. However, NP-completeness is often used "allegori- 
cally;" a problem is shown NP-complete that is not, strictly speaking, a natural 
computational problem, but an artificial problem created to capture a mathe- 
matical concept. NP-completeness in this context suggests that a problem, area, 
or approach is mathematically nasty.. Because, if we believe that efficient algo- 
rithms are the natural outflow of the mathematical structure of a problem (a view 
shared by all computer scientists, with the possible exception of researchers in 
"metaphor-based" algorithmic paradigms such as neural nets, in which algorith- 
mic behavior is thought to be "emergent"), then, contrapositively, complexity 
must be the manifestation of mathematical poverty, lack of structure. See [7] for 
an early example of such a use of NP-completeness in the theory of relational 
databases. 

12. Beyond mathematics, NP-completeness (and complexity in general) can also 
be applied "allegorically" in other disciplines. It can be used as a metaphor 
for chaos in dynamical systems, for unbounded rationality in game theory, for 
unfairness in economics, for integrity of electoral systems in political science, 
for cognitive implausibility in artificial intelligence, for genetic indeterminism in 
genetics, and so on (see [16] for references). 

13. NP-completeness is thus an important "intellectual export" of computer 
science to other disciplines. And it does fill a void in the interdisciplinary intel- 
lectual trade: It seems to me that the concept of lower bounds —and negative 
results in general— is particular to computer science, and has no well-developed 
counterpart in other disciplines. True, one sees isolated results in other sciences 
(such as Heisenberg's uncertainty principle in quantum mechanics, Arrow's im- 
possibility theorem in economics, and Carnot's theorem in thermodynamics) 
which are arguably negative; however, nowhere else in science does one find such 
a comprehensive methodology for obtaining negative results (with the exception 
of complexity's own precursor mathematical logic, with its many incomplete- 
ness, undecidability, and inexpressibility results). NP-completeness is therefore 
valuable for another reason: It is one of the few precious features which give our 
science its special character, which set it apart from the other sciences (see [15] 
for another development of this argument). 

14. In science, successful ideas are those that are pervasive and invasive, are 
invitingly elegant and methodical, are open to extensions and variants, and cap- 
ture an objective necessity, answer a widespread but diffuse sense of dissatisfac- 
tion in the scientific community (in the case of NP-completeness, the widespread 
feeling among computer scientists in the 1960s that automata theory, the previ- 
ous great paradigm, had run its course as a useful abstraction of computation). 
Thinking about the nature and history of NP-completeness could give us useful 



hints about computer science's next great paradigm, which, for all I know, has 
started being articulated somewhere else in this volume. 
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The LEDA Platform 
for 

Combinatorial and Geometric Computing 

Kurt Mehlhorn* and Stefan Näher** and Christian Uhrig*** 

Abstract. We give an overview of the LEDA platform for combinatorial 
and geometric computing and an account of its development. We discuss 
our motivation for building LEDA and to what extent we have reached 
our goals. We also discuss some recent theoretical developments. This 
paper contains no new technical material. It is intended as a guide to 
existing publications about the system. We refer the reader also to our 
web-pages for more information. 

1    What is LEDA? 

LEDA [MN95, MNU96] aims at being a comprehensive software platform for 
combinatorial and geometric computing. It provides a sizable collection of data 
types and algorithms. This collection includes most of the data types and algo- 
rithms described in the text books of the area ([AHU83, Meh84, Tar83, CLR90, 
0'R94, Woo93, Sed91, Kin90, van88, NH93]). In particular, it includes stacks, 
queues, lists, sets, dictionaries, ordered sequences, partitions, priority queues, 
directed, undirected, and planar graphs, lines, points, planes, and polygons, and 
many algorithms in graph and network theory and computational geometry, 
e.g., shortest paths, matchings, maximum flow, min cost flow, planarity testing, 
spanning trees, biconnected and strongly connected components, segment in- 
tersection, convex hulls, Delaunay triangulations, and Voronoi diagrams. LEDA 
supports applications in a broad range of areas. It has already been used in 
such diverse areas as code optimization, VLSI design, graph drawing, graphics, 
robot motion planning, traffic scheduling, machine learning and computational 
biology. 

We discuss different aspects of the LEDA system. 

Ease of Use: The library is easy to use. In fact, only a small fraction of our users 
are algorithms experts and many of our users are not even computer scientists. 
For these users the broad scope of the library, its ease of use, and the correctness 
and efficiency of the algorithms in the library are crucial. 

* Max-Planck-Institut     für     Informatik,     Im     Stadtwald,     66123     Saarbrücken, 
www.mpi-sb.mpg.de/"mehlhorn 
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Weinbergweg 17, 060099 Halle, www.informatik.uni-halle.de/~naeher 

*** LEDA Software GmbH 66123 Saarbrücken, www.mpi-sb.mpg.de/LEDA/leda.html 



The LEDA manual [MNU96] gives precise and readable specifications for 
the data types and algorithms mentioned above. The specifications are short 
(typically not more than a page), general (so as to allow several implementations) 

and abstract (so as to hide all details of the implementation). 

Extendibility: Combinatorial and geometric computing is a diverse area and 
hence it is impossible for a library to provide ready-made solutions for all appli- 
cation problems. For this reason it is important that LEDA is easily extendible 
(see also section 4.4) and can be used as a platform for further software devel- 
opment. In many cases LEDA programs are very close to the typical text book 
presentation of the underlying algorithms. The goal is the equation 

Algorithm + LEDA = Program. 

We give an example. Dijkstra's shortest path algorithm takes a directed graph 
G = (V, E), a node s G V, called the source, and a non-negative cost function on 
the edges cost : E ->• R>0. It computes for each node v £ V the distance from 
s. A typical text book presentation of the algorithm is as follows. 

set dist(s) to 0. 
set dist(v) to infinity for v different from s. 

declare all nodes unreached. 

while there is an unreached node 
{ let u be an unreached node with minimal dist-value. (*) 

declare u reached. 

forall edges e = (u,v) out of u 
set dist(v) = min( dist(v), dist(u) + cost(e) ) 

} 

The text book presentation will then continue to discuss the implementation of 
line (*). It will state that the pairs {(v, dist(v));v unreached} should be stored 
in a priority queue, e.g., a Fibonacci heap, because this will allow the selection 
of an unreached node with minimal distance value in logarithmic time. It will 
probably refer to some other chapter of the book for a discussion of priority 

queues. 
We now give the corresponding LEDA program; it is very similar to the 

presentation above. 

»include <LEDA/graph.h> 
«include <LEDA/node_pq.h> 

void DIJKSTRA(const graph *G, node s,   const edge_array<double>& cost, 
node_array<double>& dist) 

{ node_pq<double> PQ(G); 
node v; 
edge e; 

forall_nodes(v,G) 



{ if (v == s) dist[v] = 0; else dist[v] = MAXDOUBLE; 
PQ.insert (v,dist[v]) ; 

} 
while ( !PQ. empty () ) 
{ node u = PQ.del_min(); 
forall_adj_edges(e,u) 

{ v = target(e) ; 
double c = dist[u] + cost [e] ; 
if ( c < dist[v] ) 
{    PQ.decrease_inf(v,c);     dist[v]  = c;     > 

We start by including the graph and the node priority queue data type. We use 
edge-arrays and node-arrays (arrays indexed by edges and nodes respectively) 
for the functions cost and dist. We declare a priority queue PQ for the nodes of 
graph G. It stores pairs [y, dist[v\) and is empty initially. The f orall jiodes-loop 
initializes dist and PQ. In the main loop we repeatedly select a pair (u, dist[u}) 
with minimal distance value and then scan through all adjacent edges to update 

distance values of neighboring vertices. 

Correctness: We try to make sure that the programs in LEDA are correct. 
We start from correct algorithms, we document our implementations carefully 
(at least recently), we test them extensively, and we have developed program 
checkers (see subsection 4.1) for some of them. We want to emphasize that 
many of the algorithms in LEDA are quite intricate and therefore non-trivial 
to implement. In the combinatorial domain it is frequently possible to obtain 
a correct implementation by sacrificing efficiency, e.g., by using linear search in 
the realization of a dictionary. In the geometric domain it is usually difficult to 
obtain a correct implementation even if efficiency plays no role. This is due to the 
so-called degeneracy and precision problem [MN94]. The geometric algorithms in 
LEDA use exact arithmetic and are therefore free from failures due to rounding 
errors. Moreover, they can handle all degenerate cases. 

Efficiency: LEDA contains the most efficient realizations known for its types. 
For many data types the user may even choose between different implementa- 
tions, e.g., for dictionaries he may choose between afr-trees, S5[a]-trees, dynamic 

perfect hashing, and skip lists. The declarations 

dictionary<string,int> Dl; 
dictionary<string,int,skip_list> D2; 

declare Dl as a dictionary from string to mt with the default implementation 

and select the skip list implementation for D2. 
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Availability and Usage: LEDA is realized in C++ and runs on many different 
platforms (Unix, Windows95, Windows NT, OS/2) with many different compil- 

ers. 
LEDA is now used at more than 1500 academic sites. Academic use is free, see 

http://www.mpi-sb.mpg.de/LEDA/leda.html. A commercial version of LEDA 
is marketed LEDA Software GmbH. There are license holders in the telecommu- 
nication industry (ATR (Japan), Comptel (Finland), E-Plus (Germany), France 
Telecom (France), MCI (USA)), in the graphics industry (Aristo Technolo- 
gies (USA), Cadabra (Canada), Compass Design (USA), Fuji (Japan), Men- 
tor Graphics (USA), MUS (Germany)), in the automotive industrie (Daimler 
Benz (Germany), Ford (USA), Honda (Japan)), in the computer industry (DEC 
(USA), IBM (USA), Siemens AG (Germany), Silicon Graphics (USA), SUN 
(USA)), and other industries (Chevron (USA), CFP (Germany), Dolphin (The 
Netherlands), Howmedica (Germany), Lufthansa (Germany), Neovista (USA), 
Prediction (USA), Sony (Japan), VTT (Finland)). 

History: We started the project in the fall of 1988. We spent the first 6 months 
on specifications and on selecting our implementation language. Our test cases 
were priority queues, dictionaries, partitions, and algorithms for shortest paths 
and minimum spanning trees. We came up with the item concept as an abstrac- 
tion of the notion "pointer into a data structure". It worked successfully for the 
three data types mentioned above and we are now using it for most data, types 
in LEDA. Concurrently with searching for the correct specifications we inves- 
tigated several languages for their suitability as our implementation platform. 
We looked at Smalltalk, Modula, Ada, Eiffel, and C++. We wanted a language 
that supported abstract data types and type parameters (polymorphism) and 
that was widely available. We wrote sample programs in each language. Based 
on our experiences we selected C++ because of its flexibility, expressive power, 
and availability. We are even more convinced now that our choice was the right 

one. 
A first publication about LEDA appeared in MFCS 1989 (Lecture Note in 

Computer Science, Volume 379) and ICALP 1990 (Lecture Notes in Computer 
Science, Volume 443). Stefan Näher became the head of the LEDA project and 
he is the main designer and implementer of LEDA. 

In the second half of 1989 and during 1990 Stefan Näher implemented a 
first version of the combinatorial part (= data structures and graph algorithms) 
of LEDA (Version 1.0). Version 2.0 allowed to use arbitrary data types (not 
only pointer and simple types) as actual type parameters of parameterized data 
types. It included a first implementation of the two-dimensional geometry library 
(libP) and an interface to the X-Window system for graphical input and output 
(data type window). Version 3.0 switched to the template mechanism to real- 
ize parameterized data types (macro substitution was used before), introduced 
implementation parameters that allow to choose between different implementa- 
tions, extended the LEDA memory management system to user-defined classes, 
and further improved the efficiency of many data types and algorithms. Version 
3.1 provided a more efficient graph data type and contained new data types 
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(arbitrary precision number types and basic geometric objects) used for robust 
implementations of geometric algorithms and Versions 3.2 and 3.3 contained 
more geometry and new tools for documentation and manual production. 

LEDA Software GmbH was founded in early 1995. 

2      Why did we build LEDA? 

We had four main reasons: 

1. We had always felt that a significant fraction of the research done in the 
algorithms area was eminently practical. However, only a small part of it 
was actually used. We frequently heard from our former students that the 
effort needed to implement an advanced data structure or algorithm is too 
large to be cost-effective. We concluded that algorithms research must include 
implementation if the field wants to have maximum impact. 

2. Even within our own research group we found different implementations of 
the same balanced tree data structure. Thus there was constant reinvention 
of the wheel even within our own tight group. 

3. Many of our students had implemented algorithms for their master's thesis. 
Work invested by these students was usually lost after the students gradu- 
ated. We had no depository for implementations. 

4. The specifications of advanced data types which we gave in class and which 
we found in text books, including the one written by one of the authors, were 
incomplete and not sufficiently abstract. They contained phrases of the form: 
"Given a pointer to a node in the heap its key can be decreased in constant 
amortized time". This implied that a user of a data structure had to have 
knowledge of its implementation. As a consequence combining implementa- 
tions was a non-trivial task. A case in point is the shortest path problem in 
graphs. We taught priority queues in the early weeks of an algorithm course 
and Dijkstra's algorithm for the shortest path problem in later weeks. Our 
students found it difficult to combine the programs. 

The goal of the LEDA project is to overcome these shortcomings by creating a 
platform for combinatorial and geometric computing. The LEDA library should 
contain the major findings of the algorithms community in a form that makes 
them directly accessible to non-experts having only a limited knowledge in the 
area. In this way we hoped to reduce the gap between research and application. 

3      Did we achieve our goals? 

We believe that we have reached the last goal and have at least partially reached 
the first three goals. 

LEDA was first distributed in the summer of 1990. Its user community has 
grown ever since. LEDA is now used at more than 1500 academic and industrial 
sites in over 50 different countries world-wide. Industrial use started in 1994. 
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Many users of LEDA are outside computer science and only a small fraction of 
our users are from the algorithms community. We therefore believe that we have 
reached our first two goals. The impact of algorithms research has increased and 
there is considerable use of LEDA and hence reuse of implementations. However, 
the gap between algorithms research and algorithms use is still quite large. In 
particular, many of the non-expert users of LEDA complain that a tutorial is 
missing. We hope that the forthcoming LEDAbook [MN] will help. 

We have also partially achieved our third goal. We now do have a depository 
for our students work and we have just introduced the concept of LEDA exten- 
sion packages (LEPs) that will allow a wider community to contribute. We come 

back to LEPs in section 4.4. 
We have achieved our last goal. The specifications of our data types are 

sufficiently abstract and precise so as to allow their combination without any 
knowledge of implementation. We have seen an example in section 1. Many of 
our specifications are based on the so-called item concept which gives an abstract 
treatment of pointers into a data structure. Different components of LEDA can 
be combined without knowledge of the implementation. 

The project also had a number of positive side-effects which we did not fore- 
see. Firstly, LEDA's wide use gives us tremendous satisfaction4. Secondly, our 
experiences with the system suggested many difficult and well motivated prob- 
lems for theoretical algorithms research. We will discuss program checking, run- 
ning time prediction, and theoretical issues in the implementation of geometric 
algorithms below. The system has changed the way we do algorithms research. 

4      Recent developments 

A strength of the LEDA project is its strong theoretical underpinning. We believe 
that only our strong theoretical background allowed us to build LEDA. In the 
last two years we paid particular attention to program checking, running time 
prediction, and the correct implementation of geometric programs. 

4.1     Program checking 

Programming is a notoriously error-prone task; this is even true when program- 
ming is interpreted in a narrow sense: going from a (correct) algorithm to a 
program. The standard way to guard against coding errors is program testing. 
The program is exercised on inputs for which the output is known by other 
means, typically as the output of an alternative program for the same task. 
Program testing has severe limitations: 

- It is usually only done during the testing phase of a program. Also, it is 
difficult to determine the "correct" suite of test inputs. 

We stated above that algorithms research must include implementation to have max- 
imal impact. We might add: without implementation algorithm research is less re- 
warding. 
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- Even if appropriate test inputs are known it is usually difficult to determine 
the correct outputs for these inputs: alternative programs may have different 
input and output conventions or may be too inefficient to solve the test cases. 

Given that program verification, i.e., formal proof of correctness of an imple- 
mentation, will not be available on a practical scale for some years to come, 
program checking has been proposed as an extension to testing [BK89, BLR90]. 
The cited papers explored program checking in the area of algebraic, numerical, 
and combinatorial computing. In [MNS+96, MM95, HMN96] we discuss pro- 
gram checkers for planarity testing and a variety of geometric tasks. We have 
also added program checkers to some of the LEDA programs, e.g., the planarity 
test provides a planar drawing for a planar graph and a Kuratowski subgraph 
for a non-planar graph. A user of the planarity algorithm has thus the possibility 
to verify that the output of the algorithm is correct. 

4.2     Running Time Prediction 

Big-0 analysis of algorithms is concerned with the asymptotic analysis of algo- 
rithms, i.e., with the behavior of algorithms for large inputs. It does not allow 
the prediction of actual running times of real programs on real machines and 
therefore its predictive value is limited. 

- An algorithm with running time 0(n) is faster than an algorithm with run- 
ning time 0(n2) for sufficiently large n. Is n = 106 large enough? Asymptotic 
analysis of algorithms is of little help to answer this question. It is however 
true that a well-trained algorithms person who knows program and analysis 
can make a fairly good guess. 

- For a user of LEDA statements of asymptotic running times are almost 
meaningless as he/she has no way to estimate the constants involved. After 
all, the purpose of LEDA is to hide the implementations from our users. 

The two items above clearly indicate that we need more than asymptotic 
analysis in order to have a theory with predictive value. The ultimate goal of 
analysis of algorithms must be a theory that allows to predict the actual running 
time of an actual program on an actual machine with reasonable precision (say 
within a factor of two). We must aim for the following scenario: When a program 
is installed on a particular machine a certain number of well-chosen tests are 
executed in order to learn about machine parameters relevant for the execution 
of the program. This knowledge about the machine is combined with the analysis 
of the algorithm to predict running time on specific inputs. In the context of an 
algorithms library one could even hope to replace statements about asymptotic 
execution times by statements about actual execution times during installation of 
the library. In [FM97] we show for a small number of programs (Fibonacci heaps, 
Dijkstra's shortest path algorithm, and a maximum weight matching algorithm) 
that running time prediction within a factor of less than two and a wide range 
of machines is feasible. 
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4.3 Implementation of geometric algorithms 

Geometric algorithms are frequently formulated under two unrealistic assump- 
tions: computers are assumed to use exact real arithmetic (in the sense of 
mathematics) and inputs are assumed to be in general position. The naive 
use of floating point arithmetic as an approximation to exact real arith- 
metic very rarely leads to correct implementations. In a sequence of papers 
[BMS94a, See94, MN94, BMS94b, FGK+96, BRMS97] we investigated the de- 
generacy and precision issues and extended LEDA based on our theoretical work. 
LEDA now provides exact geometric kernels for two-dimensional and higher 
dimensional computational geometry [MMN+97] and also correct implementa- 
tions for basic geometric tasks, e.g., two-dimensional convex hulls, Delaunay di- 
agrams, Voronoi diagrams, point location, line segment intersection, and higher- 
dimensional convex hulls and Delaunay diagrams. 

4.4 LEDA Extension Packages 

LEDA extension packages are a new feature of the LEDA project structure. 
Up to two years ago, most of LEDA has been developed by a small group of 
persons under the tight supervision of Stefan Näher; no code went into the system 
that was not thoroughly understood by either Stefan Näher or Christian Uhrig. 
The growing numbers of contributors and the fact that Stefan Näher has new 
responsibilities as a professor has forced us to a change of the project structure. 
We decided to split LEDA into a core system (the actual LEDA version) and to 
shift enhancements into additional software packages. 

LEDA extension packages (LEPs) extend LEDA into particular application 
domains and areas of algorithmics not covered by the core system. LEDA ex- 
tension packages satisfy requirements, which guarantee compatibility with the 
LEDA philosophy. LEPs have a LEDA-style documentation, they are imple- 
mented as platform independent as possible and the installation process allows 
a close integration into the LEDA core library. 

Currently, there are no released LEPs available, but there are several LEP un- 
der construction: PQ-trees (coordinated by Sebastian Leipert, Koeln), dynamic 
graph algorithms (coordinated by David Alberts, Halle), the homogeneous pla- 
nar CG AL geokernel (coordinated by Stefan Schirra, Saarbrücken), a homoge- 
neous rf-dimensional geokernel (coordinated by Michael Seel, Saarbrücken), and 
a library for graph drawing (DFG-project Automatisches Graphenzeichnen). 
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Abstract. We present a unified treatment of the hierarchy defined by 
Klaus Wagner for u-rational sets and also introduced in the more general 
framework of descriptive set theory by William W. Wadge. We show that 
this hierarchy can be defined by syntactic invariants, using the concept 
of an ai-semigroup. 

1     Introduction 

The idea, of a Müller automaton was introduced by David Müller as a variant 
of usual finite automata, well suited for the recognition of infinite sequences. It 
was later proved by McNaughton that any recognizable set of w-words can be 
recognized by a deterministic Midler automaton. 

Klaus Wagner has introduced in 1979 [22] two concepts defined on Müller au- 
tomata: chains and superchains. Together with an operation on automata called 
derivation, he has proved that the maximal lengths of chains and superchains 
(and the ones obtained on the derived automata) are enough to characterize the 
classes of recognizable w-sets up to to the inverse image under a continuous func- 
tion. This classification has also been investigated independently by W. Wadge. 
He has studied the reduction by a continuous function in abstract topological 
spaces, as a refinement of the classical Borel hierarchy. His results are based 
on a particular class of games, now called Wadge games. His classification itself 
is known as the Wadge hierarchy [10]. The connections between both theories 
were first discovered by Pierre Simonnet [19]. The Wagner hierarchy has been 
partially rediscovered several times [2, 9]. The interest in the classification of 
w-rational sets was revived by the studies concerning the logic of distributed 
processing [15]. 

Since then Thomas Wilke [24] has shown how one could use, in the case of 
infinite words, algebraic methods allowing to replace finite automata by finite 
semigroups. This has lead to the notion of an w-semigroup introduced in [17]. 
This approach has the advantage to make easier the definition of a variety along 
the line of Eilenberg's theory. 

Another direction was investigated by Jean-Eric Pin in [18]. He has shown 
that the notion of ordered semigroup could be used to define families of rec- 
ognizable sets that are not closed under complementation. This is especially 
interesting in the case of infinite words since very natural families like the open 
sets are not closed under complementation. 



We would like to show here how Klaus Wagner's ideas fit into the present 
framework using w-semigroups. In particular, we shall see that the definition of 
chains and superchains can be formulated in w-semigroups, providing a clear 
explanation of the fact that they do not depend on the particular automaton 
used to recognize a given set but on the set itself. We shall show how the classes 
of the Wagner hierarchy are defined in topological terms. We will also investigate 
the link between Wagner's notions and that of ordered semigroups. 

The work presented here is based on results obtained, in great part, in the 
first author doctoral thesis [4]. Part of it was presented at a conference held in 
Porto [6]. Those concerning the equivalence of the various definitions of chains 
and superchains will appear soon in [7]. The ones concerning the hierarchy itself 

will be published in a second paper [5]. 

2     Preliminaries 

We assume a familiarity with the basic concepts of w-rational sets and automata. 
For an introduction, we refer the reader to [21] or [16]. A word about notation. 
The alphabet is usually denoted by the symbol A. The set A* (resp. A+) is 
the set of finite words (resp. nonempty finite words) on the alphabet A. The 
set of (one-sided) infinite words on A is denoted by Aw. We consider Aw as a 
topological space with the usual Cantor topology. 

We shall deal often with classes of sets. Since the sets considered are subsets 
of the topological space Au, a class of sets is really a mapping assigning to each 
alphabet A a set of subsets of Aw. The dual class of a class T is formed of the 
complements (within each Au) of the sets in T. It is denoted by T. We say that 

r is ambiguous ii T = T. 
We shall use ordinals to index classes of sets. The symbol u will thus be used 

in two ways, either to denote an ordinal in expressions like u> + 1 or to denote 
an cj-rational set like (a*6)w. We hope that it will not bring confusion. 

We now recall the definition of w-semigroups and Wilke algebras. For a more 
detailed presentation, we refer the reader to [17]. We assume some familiarity 
with the basic notions of semigroup theory. We use the notation of [8] for all 
undefined notions in semigroup theory. We use the traditional notation S to 
denote the semigroup obtained by adding an new neutral element 1 to S. 

An w-semigroup is a pair S = {S+, Su) where S+ is a semigroup and Sw is 
a set with two operations in addition to the semigroup operation of S+: A left 

action of 5+ on Su: 
(s, u) H-> s.u 

and an infinite product 

7T : S+ x 5-1- x S+ x ... ->■ Su 

These operations must satisfy the following axioms: 

1. The action of S+ on 5W is associative: for s,t 6 S+ and u e Su 

s.(t.u) — (st).u 
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2. The infinite product is w-associative, in the sense that for any sequence 
(•Sn)n>o of elements of 5+ and any strictly increasing sequence (n,-),->o °f 
integers with no = 0, one has 

T(SO,SI,S2, • • •) = n(t0,ti,t2 ■ ■ •) 

with U = s„, . . .s„l+1_i 
3. The left action is compatible with the infinite product: for elements s and 

(sn)n>o of S+, one has 

S.K(S0,SI,S2, .. .) = Tr(s:s0,si,s2, ■ ■ .) 

The associativity of the operations allows one to denote all operations by mere 
concatenation, with su instead of s.u and sis2 . . . instead of n(s%, s2, . . .). 

An w-semigroup morphism from S = (S+,SU) into S' = (S'+,S'U) is a pair 
(<p+, <PLO) where <p+ is semigroup morphism from 5+ into S'+ and ipw is a function 
from Sw into S'w which is compatible with the w-semigroup structure, i.e., the 
left action and the infinite product. 

Thus an w-semigroup is not an algebra in the usual sense since one of its 
operations has infinitely many arguments. 

The concepts of rational expression and of w-rational expressions extend to 
w-semigroups in the following way. Let S be a semigroup and X be a subset of S. 
We denote by X+ the subsemigroup generated by X in S. We denote by X* the 
subset of S'1 defined by X* = {1} + X+. In this way, for any s £ S and X C S, 
both subsets sX* and X*s are defined as subsets of 5. Let now S = (S+,SW) be 
an (^-semigroup. For X,Y C 5+, we denote by XYW the set 

XY" = {xyiy2...\x£X>yi£Y} 

We further introduce a variant of w-semigroups which is an algebra in the 
usual sense since all its operations have finite arity and is well suited to describe 
finite cj-semigroups. This concept is due to Wilke [23, 24]. 

A Wilke algebra is a pair S — (S+, Su) where S+ is a semigroup and S^ is a 
set with two operations: A left action of 5+ on Su, and a unary operation from 
51-)- into Sw denoted 

The operation u> must satisfy the following axioms: 

(tn)w =f 

s(ts)u = {st)u 

for all s,t £T and n > 1. 
A Wilke algebra morphism is a pair of functions compatible with the Wilke 

algebra structure. 
A well-known version of Ramsey theorem says that if we define a coloring 

ip : A+ —> S of all words using only a finite number of colors, then each w-word 
has a factorization: 

X = V0ViV2 ■ ■ ■ 
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with all blocks except those involving the first one of the same color, i.e., such 
that ip(vivi+i ...vi+k) = f{vjvj+1 ...Vj+i) for all i,j > 1, k,l > 0. This for- 
mulation holds even if the set of colors is a finite set without a multiplicative 
structure. In the case where 5 is a finite semigroup and ip a semigroup morphism, 
the result implies that for any w-word x there is a pair of an element s G S and 
an idempotent e = e2 G S such that s = se and x G (p~1(s)if~1{e)w. 

The following result is essentially a consequence of Ramsey theorem. It shows 
that a finite w-semigroup and a finite Wilke algebra are essentially the same 

thing. 

Theorem 1. For any finite Wilke algebra S = {S+,SW), there is a unique infi- 
nite product from S+ into Sw making S an w-semigroup such that su — sss . . . 

for all s in S+. 

For a proof, see [24] or [17]. In the sequel, we shall not distinguish between 
finite Wilke algebras and finite w-semigroups. 

We say that a morphism <p : A™ ->• 5 from A°° onto an w-semigroup S = 
(S+,SW) recognizes an w-set X C Aw if X = p_1(P) for some P C Sw. 

The following result extends the classical concept of recognition by a finite 
semigroup for a rational set to w-rational sets. The theorem can really be credited 
to Biichi since he had the original idea of introducing congruences of finite index 

to define rational w-sets. For a proof, see [17]. 

Theorem 2. A set X C Aw is to-rational iff there exists an to-semigroup mor- 
phism from A°° = {A+,AU) onto a finite ^-semigroup S = {S+,SW) recogniz- 

ing X. 

The notion of an w-semigroup has been extended by Nicolas Bedon to count- 
able ordinals in the sense that w-words a replaced by words indexed by a count- 
able ordinal [3]. This generalization has the advantage to give a more uniform 
structure: the operations are defined everywhere. 

3     Chains and superchains 

In this section, we introduce the notions of chains and superchains in automata 

and in w-semigroups. 

3.1     Chains and superchains in Müller automata 

We recall that a Müller automaton is a deterministic finite automaton A = 
(Q, E, i, T) where Q is the state set, E C Q x A x Q is the set of transitions and 
i G Q is the initial state. The table T C 2Q is the set of accepting subsets of Q. 
We moreover suppose a Müller automaton to be complete: for each state q G Q 
and each symbol a £ A, there is a transition from q labeled by a. A set R C Q 
is called positive if R G T and negative otherwise. 
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A subset T of Q is said to be admissible if there is a cycle c in A, accessible 
from the initial state i, such that the set of states encountered on c is exactly T. 
We say that T is the content of c. 

Let A = (Q, E, i, T) be a complete Müller automaton. An A-chain of length m 
is an increasing sequence 

Ro C Ri C ■ • • C Rm 

of m + 1 admissible subsets of Q such that, for 0 < i < m, the Ri are alternately 
in T and outside T. 

We say that the chain is positive if R0 <E T and negative if i?0 £ T. We 
denote by ??)+(^4) (resp. m~ (X)) the maximal length of positive (resp. negative) 
^4-chains and we let m(A) = max.(m+(A), m~ (A)). It is obvious by the defini- 
tion that m(A) is finite for any finite Müller automaton A. One indeed has the 
inequality m(A) < card(Q). 

Wilke and Yoo have shown in [25] that m(A) can be computed in polynomial 
time. This contrasts with the fact the computation of m(X) for an w-rational 
set X given by deterministic Rabin (or Streett) automata is NP-complete [11]. 

Example 1. Consider the set X = (a*b)w of w-words over {a,b} which have an 
infinite number of symbols b. This set X is recognized by the automaton Ai 
represented in Figure 1 with T = {{2}, {1,2}}. The sequence ({1}, {1,2}) is a 
negative chain of length 1. There are no positive chains of length 1 and thus 
m = rn~ = 1. 

Fig. 1. Automaton Ai. 

An A-supercham of length n is a sequence 

Co, Ci,..., Cn 

of n + 1 .4-chains of length m(A) such that: 

(i)  Each d is accessible from Ci+1 for 1 < i < n, i.e., there exists a path from 
some state in Cj_i to some state in C,-. 

(ii) The .4-chains d are alternately positive and negative. 
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We say that the superchain is positive if Co is positive and negative other- 
wise. Wedenote by n+(A) (resp. n~ (A)) the maximal length of positive (resp 
negative) superchains and n(A) = max(n+(.4), n~ {A)). We let n+(A) = -1 
(resp n~{A) = -1) if the set of positive (resp. negative) superchains is empty. 
It is obvious by definition that n(.4) is finite for any finite Müller automaton A. 

One indeed has the inequality n(A) < card(Q). 

b b a,b 

Fig. 2. Automaton Ai- 

Example 2 Consider the set X = b*ahf. It is recognized by the Müller automa- 
ton Ai of Figure 2 with T = {{2}}. All chains are of length 0 and m = m+ = 
m- = 0. The sequence ({1}, {2}, {3}) is a negative superchain of length 2. One 

has n = n~ =2 and n+ = 1. 

3.2     Chains and superchains in w-semigroups 

Let S = {S+,Su) be an w-semigroup and let X be a subset of Sw. Let C - 0", Z) 
be a pair where Y is a non empty subset of S+ and Z = z0,zi,...,zm is a 

sequence of m + 1 elements of S+. Let 

Zi = zo + z\ + ... + Zi 

Wi = YZ*m(Z*zir (!) 

for 0 < i < m. . 
We say that the pair C is an X-chain iff the sets W{ are alternately included 

in X and disjoint from X. 
The number m is called the length of the chain C. It is important to observe 

that m is the number of alternations in the sequence W0,---,Wm rather than 
the length of the sequence Z in the usual sense which would be m + 1. 

We distinguish, among chains, positive and negative ones according to the 
nature of the first element. A positive chain is one such that W0 C X and a 
negative one such that W0C\X = 0. Two positive (resp. negative) chains are said 

to be of the same sign. 
We denote by m+{X) (resp. mT (X)) the maximal length of the positive (resp. 

negative) X-chains and m(X) = max(m+(X),m-(X)). We set m+(X) = -1 
(resp. m.-{X) = -1) if the set of positive (resp. negative) chains is empty and 
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m+(X) = m~ {X) = oo if the lengths of X-chains are unbounded. We shall see 
that. ?77.(.Y) is always finite for an w-rational set X. 

We now come to the definition of a superchain in an w-semigroup. 
Let S = (S+,SW) be an w-semigroup and let X be a subset of Su. An X- 

superchain of length n is a sequence 

Co, Ci,..., Cn 

of „ + i ^'-chains d = {Yi,Zi), all of maximal length m = m(X) such that, 
with Zi = zi0, zu, . . ., zim, we have: 

(i)  Each d is accessible from d-\ for 1  < i < n, i.e., there is an element 

m 6 S+ such that Yi-iZ*_xUi C Yj. 
(ii) The chains C) are alternately positive and negative. 

We say that the superchain is positive if Co is positive and negative other- 
wise. We denote by n+(X) (resp. n~ (X)) the maximal length of positive (resp. 
negative) superchains and n(X) = max(n+(X), n~(X)). We let n+(X) = -1 
(resp. n~pO = -1) if the set of positive (resp. negative) superchains is empty. 
We shall see that n(X) is also finite if X is w-rational. 

3.3     Correspondence between the definitions 

We now come to the fact that the definitions of a chain in automata and in 
w-semigroups are in correspondence. This has two main consequences: first it 
shows that the integers m(X) are finite and computable for any w-regular set X. 
Second, it shows that the integers m(A) do not depend on the automaton but 
only on the set recognized. We have the following theorem. 

Theorem 3. Let X C Aw be an u-rational set recognized by a complete Müller 

automaton A = (Q, E, i, T). The following equalities hold: 

m+ (X) = m+ (A)    and    m~ (X) = m" (A) ■ 

Let ip : S -> S' be a morphism from an w-semigroup S = (S+, Su) onto an u- 
semigroup 5" = {S'+,S'J. Let X C Sw and X' C 5^ be such that X = tp-1{X'). 

The image (Y',Zr) of an X-chain (Y, Z) is an X'-chain of the same length 
and sign and each X'-chain is the image of an X-chain of the same length and 

sign- 
Thus chains can be computed in any cj-semigroup recognizing X, in partic- 

ular in a finite w-semigroup when X is w-rational. We will see in Section 6 that 
chains in finite w-semigroups can be defined differently. 

We now come to the fact that the definitions of a superchain in automata 
and in w-semigroups are also in correspondence. As in the case of chains, this 
has two main consequences: first it shows that the integers n(X) are finite and 
computable for any w-regular set X. Second, it shows that the integers n(A) 
do not depend on the automaton but only on the set recognized. We have the 

following theorem. 
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Theorem 4. Let X C Aw be an uj-rational set recognized by a complete Muller 
automaton A = (Q, E, i, T). The following equalities hold: 

n+(X)=n+{A)    and    n~ {X) = n~ (A). 

4    Wagner's hierarchy 

To a Müller automaton A, one associates another Müller automaton called the 
derived automaton and denoted dA. It is nonempty only when n+ = n~. It is 
then obtained from A by the following transformation: 

1. All states that belong to a maximal positive superchain are collapsed into a 
single state q+ and the set {(?+} is positive. 

2. All states that belong to a negative superchain are collapsed into a single 
state a 5_ and the set {?-} is negative. 

It was shown by Klaus Wagner that the set recognized by A only depends 
on the set X recognized by A and not on the particular Müller automaton used 
to recognize X. It can therefore be denoted dX. 

Fig. 3. Automaton As,. 

Example 3. Consider the automaton „43 of Figure 3 with T = {{!}, {1,2}, {3}}. 
We have for A3 m = m —   m""" m 1 and n = n+ n = 0. The derived 
automaton A4 = dA?, is represented in Figure 4. We then have for A4 m = 

+ — m- — 0, n+ = 0 and n — n" = 1. Since n+ /n",we have 8A4 = 0- m m 

We associate to an w-rational set X two ordinals denoted -y(X) and p(X) 
which are defined as follows. The ordinal f(X) is 

fnpO ifm(X)=0 
71    >      \iom^x\n(X) + 1)  otherwise 
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a,b,c 

Fig. 4. The derived automaton A4 = dAs,. 

For example, we have for the sets X\ and X2 recognized by the automata A\ 

and A2 of the previous examples, 

7(Xi)=w    and    7(X2) = 2. 

The ordinal p{X) is then denned by 

The ordinal y.(X) is an arbitrary ordinal < u>" and moreover, since m(dX) < 
m(X) as soon as m(X) > 1, the decomposition given by the definition ofj(X) 
produces the Cantor normal form of the ordinal f{X). 

Both ordinals *y(X) and fi(X) can be computed from any Müller automaton 
A recognizing the w-set X since the integers m(A) and n(A) only depend on the 

set recognized by A. 
For example, we have for the w-set X3 recognized by the automaton A3 given 

above 

H(X3) = w + 1 

We finally associate to an w-rational set X an information called its sign and 
denoted sign(X). It is an element of the three elements set {a, 5, 7r} defined as 
follows. We first have 

)<r if n~ > n+ 

7T if n~ < n+ 
S if rC = n+ and m = 0 
sign(<9X) otherwise 

It is clear that sign(X) = a iff sign(^w - X) = n and that sign(X)  = Jiff 

sign(ylw - X) = «J. 
We introduce a preorder on the set R[A) of w-rational sets defined by lexi- 

cographically ordering the pair (fJ,{X), signpQ) with the convention that S > a 
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and S > 7T (er and TX being incomparable). The equivalence classes associated 
with the preorder are denoted 

Ea = {X£ R{A) I ii{X) = a.signpf) = cr} 

Aa = {X G i?,(/L) | ^(X) = a,sign(X) = 8} 

na = {X G i?(A) | ^(X) = a, sign(X) = TT} 

For any ordinal a < u)w, the classes Ea and 7Ta are dual of one another and 
the class Aa is ambiguous. The order defined on w-rational sets by Wagner's 
theorem has the familiar shape given by Figure 5. 

S\ "' Ew ■S'w+l '"' Ew.2 £w.2+l 

n0 fix nw n„+1    ■■■      nw.2 nw.2+i 

Fig. 5. The Wagner hierarchy 

It may be useful for a reader used to Wagner's notation to realize that the 
correspondence between Wagner's notation and ours is the following. Our class 
En is his class Cft, our An his EQ and our 77n his DQ. For m > 1 our class U^^.n 
is Wagner's C^-1, our nwm n is his D^1 and our A1^ his E^'1. Moreover if the 
normal form of the ordinal a is 

a = üjmk.nk + ... + tomi.n1 

then Ea is denoted in Wagner's notation 

pnk pn2 s-m-L + l 

The idea of using ordinals instead of sequences of pairs of integers was suggested 
by Jean-Pierre Resseyre (oral communication). 

The order thus defined happens to completely characterize another order 
called the Wadge order and defined in general as follows. Let E, F be topological 
spaces and let X C E, Y C F. We say that X reduces to Y, written X < Y if 
there exists a continuous function / : E —^ F such that X = f~l(Y). 

We can now state Wagner's main theorem. 

Theorem5.  (K. Wagner) Given co-rational sets X, Y, one has the equivalence: 

X <Y     <=>     f(X)<y(Y). 
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The statement implies that for X G R{A), Y G R{B), one has X < Y iff 
there exists a function / : Aw -> Bw such that X = f~1{Y) and which is not 
only continuous but also rational. This is actually the content of the theorem of 
Biichi-Landweber (see [21]). 

The main theorem due to Wadge is the following: in a topological space 
like Aw, the order given by the reduction by a continuous function is a well 
ordering [10]. Thus the classes of the associated equivalence can be indexed by 
ordinals. When restricted to w-rational classes, the order type of the hierarchy 

5     Topological classes 

We shall give here a description in topological terms of the classes of the hierar- 
chy. It allows one to prove Wagner's theorem in one direction since the topological 
characterization gives a definition of the classes invariant under the inverse of a 
continuous function. It is convenient to denote, for an ordinal a < u>u 

ß<a 

and correspondingly for IJ<a and Z\<„. 
We shall see that the classes of the Wagner hierarchy can be described us- 

ing differences, separated unions and biseparated unions, starting from simple 
topological sets. We first describe the simple classes which happen to be classical 
classes of the Borel hierarchy. 

5.1     Simple classes 

The first kind is the class of open sets. We shall denote here by G the class of 
open sets, rational or not (and not by S\ as it is sometimes done in topology). 
The following statement uses a special form of Büchi automata called weak: a 
path is successful if it contains at least one terminal state. 

Theorem 6.   The following conditions are equivalent for an co-rational set X. 

(t) X£E<L 

(ii) X is open. 
(HI) X < a*6(a + 6)w 

(iv) X is recognizable by a weak deterministic Büchi automaton. 

Condition (i) can be formulated as follows: for all x, y,z,t G A+ 

xyu eX^xy*ztuT\X^% 

which precisely expresses that m(X) = 0 and n+ < 0. We shall see later that 
this condition can formulated using an inequality in ordered w-semigroups. 
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The second class is the class of sets which are countable intersections of 
open sets. We denote this class by Gs (and not by 772 as it is done sometimes 
in topology, since it would contradict our use of this notation). Similarly, we 
denote by Fa the class of countable unions of open sets. The following result is 

originally due to H. Landweber [12]. 

Theorem 7.   The following conditions are equivalent for an co-rational set X. 

(i) xes<u. 
(n) xeGs. 

(m) X < {a*b)u 

(iv) X is recognizable by a deterministic Biichi automaton. 

The equivalence between (ii) and (iii) is a general fact of descriptive set the- 
ory, independent of the hypothesis that X is w-rational. A convenient way to 
prove the implications is (i) => (iv) => (iii) =>■ (ii) => (i). The first one is proved 
using a well-known construction building a deterministic Biichi automaton from 
a Müller automaton satisfying m+ < 0. The last one can be done by reformu- 
lating condition (i) as follows: for all x,y,z £ A+ 

x(y + Zyy" CX^x(y*zrnX^® 

which expresses precisely that m+(X) < 0. 

5.2     Boolean combinations of open sets 

In order to describe the boolean combinations of open sets, we introduce the 
notion of a difference of sets. Let F be a class of sets. We denote by D„(F) the 

class of sets A' of the form 

X = Aj — A2 + • • • i Xn 

where the sets A; satisfy Aj 6 F and Ax D A2 D ... D Xn. Such an expression 
of A is called a difference of length n. According to a theorem of Hausdorff, if T 
is closed under finite unions and intersections and contains the empty set, the 
union of all the classes Dn(r) for n > 1 is the boolean closure of F. This means 
that any set in the boolean closure of T is equal to a difference of sets of F. The 
classes Dn(F) define a hierarchy within the boolean closure of T. As we shall 
see, it turns out that, when T is the class E<\ of w-rational open sets or when 
r is the class £<u of w-rational Gs sets, the classes Dn(r) coincide with classes 

of the Wagner hierarchy. 
We consider here the classes Sn, i.e., the classes of sets A such that 7(A) < us 

or equivalently such that m(X) = 0. It is actually equivalent to assume on a con- 
nected MuIIer automaton A = (Q, E, i, T) that m(A) = 0 or that each strongly 
connected component R of A is saturated in the sense that S G T for all admis- 
sible sets S C R or for none of them. Such an automaton is clearly equivalent 
to one of the following kind, that we propose to call a weak Müller automaton. 
It is a finite automaton A = (Q, E, i, T) with a definition of a successful path 
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given by the following rule: a path 7 is successful if the set of states met along 7 

is in T■ 
The following result is originally due to Staiger and Wagner [20]. It means 

that an w-rational set X belongs to the class E<„ iff it is equal to a difference 

of length n of w-rational open sets. 

Theorem 8.   One has for all n < u> 

E<n = D„(E<i) 

Moreover, 
E<U n n<u = \J £n 

and coincides with the boolean closure of the family of rational open sets. 

In the second equality, the inclusion from right to left is obvious since each 
£„ is contained in E<w and in 77<w. The converse is also evident since a set 
X G E<u, n n<w satisfies m+(X) < 0 and m~{X) < 0 and therefore m{X) = 0. 

Theorem 8 is really a counterpart for rational sets of a theorem of Hausdorff 
according to which, one has in a topological space such as Au 

FanGs= U D«(G) 
a<cui 

where the union is on all countable ordinals (see [10] for example). 

5.3     Separated classes and boolean combinations of G,s-sets 

In this section, we describe the classes S<a for a = um.n. We first consider the 
case of a = u>m. The following result is originally due to K. Wagner [22]. 

Proposition 9.  For all m < w, we have the equality 

£<w™ = Dm(S<u) 

We now introduce the notion of a separated union. Let Xi,X2,Y C Aw be 
three w-sets. Suppose furthermore that the three sets satisfy Xx l~l Y = 0 and 
X2 C Y. Following a notation borrowed to Alain Louveau [14], let us denote by 

Sep(Y, X\, X->) the union 
X = X1 + X2 

The picture is shown in Figure 6. 
We say that X is the separated union of Xy and X2 or that X is the union of 

Xi and X2 separated by Y (we actually exchange X\ and X2 in the notation of 
[14]). We also define, for two classes f, A of w-sets, a new class Sep(r, A) as the 
class of all sets of the form X = Sep(Y, Xx, X2) for Y G T, Xi G A and X2 G Ä. 

The following result gives a topological description of the classes E<.um,n. It 

is analogous to a statement given in [22]. 

Theorem 10.  For each m > 1 and n>2, one has 

E<u">.n - Sep(L>n_i(G),I7<u,m) 

and dually 
n<ujm,n =Sep(Dn-i{G),n<ulm). 
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Fig. 6. Separated union of Xi and X2 

5.4     Biseparated classes 

We now relate the definition of the set dX with the topological structure of X. 
We borrow again a notation from Alain Louveau [14] and introduce the no- 
tion of biseparated union. Let Xi,X2,Yx,Y2 and Z be five w-sets satisfying 
Xi C Yu X2 C Y2, Yx n y2 = 0, Z n Y1 = 0 and Z n Y2 = 0. Let us denote 
Bisep(Y!, y2, X\, X2, Z) the union 

X = Xi + X2 + Z 

The picture is shown in Figure 7. We say that X is the biseparated union of Xi, 
Xi and Z. 

Fig. 7. Biseparated union of Xi, X2 and Z. 

If <P, F, A are three classes of w-sets, we denote by 

Bisep(<Z>, r, A) 

the class of sets X = Bisep(Y1; Y2, XUX2, Z) with Ylt Y2 G #, Ij £ f, I2 £ f 
and Z e A. 

The following result expresses that the elements of the class Eui™.n+ß are the 
unions of sets of the same kind (but with opposite signs) separated by disjoint 
open sets plus some set of lower class of the same class. 

Theorem 11. For all m > 1 and n > 1 and ß < com, one has 

£w*.n+ß = Bisep(G, Ew™.n,Eß) 

Aw"*.n+ß = Bisep(G, I7wm.n, Aß) 

nw™.n+ß = Bisep(G, I^m.n, ITß). 
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6     Finite cj-semigroups 

The definition of chains an superchains in finite ^-semigroups uses the Green's 
relations U and H defined as follows. For elements s, t of a semigroup 5, one has 
S>K i its = t ovt e sS <md s >n t if s = t or t e sS and t G Ss. The relation 
>-R is preorder and the restriction of >u to the idempotents also. 

In the case of a subset X of a finite ^-semigroup S — (S+,SU), the definition 
of a chain relative to X can be used in the following form. It is a sequence 

(s, e0, ei,. .., em) of elements of S+ such that: 

(i) For 0 < i < m, the pair (s, e,-) is linked, i.e., set = s and ef = e,-. 
(ii) The sequence of idempotents e0, elt..., em is decreasing for the U order, 

(iii) The elements sef are alternately in X and outside of X. 

We have again the notion of a positive or negative chain according to se% G X or 
not. The definition of a chain in a finite w-semigroup coincides with the definition 
of a chain we gave in a general w-semigroup in the following sense. To any chain 
for the former definition, can be associated another chain for the latter one with 
the same length and same sign, and vice versa. The integers m+(X) and m~ (X) 
do not depend on the definition of a chain considered. 

The notion of a superchain is also adapted to the case of a finite w-semigroup 
to be defined as a sequence u0,ui, ...,«„ of chains u, = (s,-, e^o, en, ■ ■ ■, ejm) of 

length m such that: 

(i) The sequence s,- is decreasing for the U order, i.e. 

so >n si >n ■ ■ ■ >n s„. 

(ii) The chains u,- are alternately positive and negative. 

As for chains, the definition of a superchain in a finite w-semigroup is equiv- 
alent to the definition of superchain we gave in a general w-semigroup. 

The definition of chains and superchains on finite w-semigroups allows one 
to give a characterization of the classes of Wagner's hierarchy. It would be in- 
teresting to extend these ideas to classes defined for finite words. 

7     Ordered cu-semigroups 

An ordered w-semigroup is an w-semigroup S = (5+,5w) with a partial order 
on each of the sets S+ and 5W which are compatible with all operations: for all 

s, t, u, v G S 
s <t =>■ usv < utv, 

s <t,u<v => suw <tvw 

A morphism ip : S ->■ T of ordered w-semigroup is a morphism of w-semigroups 
which is also compatible with the orders: for all s,t G S, s,t G S and s < t imply 
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It has been shown by Jean-Eric Pin [18] that any w-rational set has a finite 
syntactic ordered to-semigroup. The context of finite a word v with respect to an 
w-set X C Aw is the the pair of sets C(u) — (Ci(u), C2(u)) where Ci(u) and 
C^iu) are respectively defined by 

Ci(«) = {(v,x)£A* XA
W
 \vuxeX} 

C2(u) = {(v,w) G A* x A* | »(«!»)" e X}. 

In the same way, the context of an w-word x with respect to the to-set X C Aw 

is the set 
C{x) = {u G A* | ux G X). 

It is well known that if S = (5+, 5W) is the syntactic w-semigroup of X, the 
elements of 5+ (resp. Su) correspond to contexts of finite words (resp. to-words). 
More precisely two finite words u and u' (resp. two w-words x and x') have the 
same image in the syntactic w-semigroup iff they have the same context. This 
allow one to define the context of an element of S. Contexts could also have been 
directly defined in S with respect to the image P of X in Su. An order can be 
defined in S by 

« < < iff C{s) C C(t) 

This order is compatible with the operation of S. The w-semigroup S equipped 
with this order is then an ordered w-semigroup. It is in fact the syntactic ordered 
w-semigroup of X. 

In a finite semigroup, we denote the unique idempotent which is a power of s 
by s*" instead of the usual notation sw since the symbol u has another meaning 
here. 

The following statement gives a characterization of open sets alternative to 
Theorem 6. 

Theorem 12. An to-rational set X is open iff its syntactic ordered u-semigroup 
satisfies the following identity 

W    ^       IT        UJ x   < x yz 

The following result gives a syntactic characterization of the class £<w 

Theorem 13.  An to-rational set X is in 17<w iff its syntactic ordered to-semigroup 
satisfies the following identity 

As a consequence, we obtain the following syntactic characterization, due to 
Thomas Wilke [24], of the sets in £<w D II<w, which are also the boolean com- 
binations of open sets by Theorem 7. 

Theorem 14. An to-rational set is a boolean combination of open sets iff its 
syntactic to-semigroup satisfies the identity 

{x-yyx" = {x*yy 
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Actually, the identity given in [24] is the identity 

(x*y*)*xu = (*V)V 

which can be shown to be equivalent to the previous one. 

Conclusion 

It would be interesting to investigate further on in several directions including 
the followings ones. 

7.1 A syntactic definition of the derivative 

Klaus Wagner has introduced the notion of the derivative dX of an w-rational 
set X. It is defined using a Müller automaton recognizing X. We do not know 
how to define the derivative in a finite ^-semigroup in such a way that dX can 
be computed in the syntactic w-semigroup of X. 

7.2 Biinfinite words 

The theory of w-rational sets can be developed for sets of two-sided infinite 
words [16]. Such sets have also been considered in symbolic dynamics [13]. A 
symbolic dynamical system is by definition a set of biinfinite words which is 
topologically closed and invariant under the shift. Let S and T be two symbolic 
dynamical systems. A morphism from S into T is a function / : S —> T which 
is continuous and commutes with the shifts of S and T. As a particular case of 
symbolic dynamical systems, a sofic system is defined by a set of forbidden blocks 
recognized by a finite automaton. As a still more restricted class, a system of 
finite type is a set of biinfinite words defined by a finite set of forbidden blocks. 
If X, Y are symbolic dynamical systems, it is natural to say that X C Az 

reduces to Y C Bz, denoted X < Y, if there exists a morphism/ from Az 

to Bz such that X = /_1(Y). One thus obtains a hierarchy of subsets of Az 

analogous to the Wadge-Wagner hierarchy. The three classes defined previously 
are precisely preserved by inverse morphisms. It would be interesting to know 
the Wadge-Wagner classes of symbolic dynamical systems. 

7.3 Finite words 

It is an open problem to define a hierarchy for finite words analogous to Wagner's 
one. An objective for such a classification could be to obtain a refinement of the 
characterization of some well known classes. For instance, the classes of locally 
testable sets is the boolean closure of the class of strictly locally testable ones. 
The latter are finite unions of sets of the form UA* D A*V \ A'WA* where 
U, V and W are finite sets of words. If S denotes the family of strictly locally 
testable sets, the family Dn(S) of differences of length n of elements of S defines 
a hierarchy within locally testable sets. 
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It is possible to define Müller automata on finite words. Let indeed A = 
(Q,E,T) be a finite automaton where T is a subset of Q x 2Q x Q. A finite 

path 7 : i ^V t in this automaton is successful if the set R of states met along 
the path is such that (i, R, t) G 7". The usual definition of locally testable sets 
actually uses such automata: they are the sets recognized when the underlying 

automaton is the standard local automaton. 
A full parallel with Wagner hierarchy requires a choice of a topology on finite 

words. A possibility would be to consider the profinite topology associated to a 

pseudo-variety of semigroups [1]. 
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"Don't express your ideas too clearly. Most people 
think little of what they understand, and venerate 
what they do not." 

(The Art of Worldly Wisdom, 
Baltasar Gracian, 1647.) 

Abstract.  We show how the constraint propagation process can be nat- 
urally explained by means of chaotic iteration. 

1    Introduction 

1.1     Motivation 

Over the last ten years constraint programming emerged as an interesting and 
viable approach to programming. In this approach the programming process is 
limited to a generation of requirements ("constraints") and a solution of these 
requirements by means of general and domain specific methods. The techniques 
useful for finding solutions to sets of constraints were studied for some twenty 
years in the field of Constraint Satisfaction. One of the most important of them 
is constraint propagation, the elusive process or reducing a constraint satisfaction 
problem to another one that is equivalent but "simpler". 

The algorithms that achieve such a reduction usually aim at reaching some 
"local consistency", which denotes some property approximating in some loose 
sense "global consistency", so the consistency of the whole constraint satisfaction 
problem. (In fact, most of the notions of local consistency are neither implied 
by nor imply global consistency.) 

For some constraint satisfaction problems such an enforcement of local con- 
sistency is already sufficient for finding a solution or for determining that none 
exists. In some other cases this process substantially reduces the size of the search 
space which makes it possible to solve the original problem more efficiently by 
means of some search algorithm. 

The aim of this paper is to show that the constraint propagation algorithms 
can be naturally explained by means of chaotic iteration, a basic technique used 
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for computing limits of iterations of finite sets of functions that originated from 
numerical analysis (see Chazan and Miranker (1969)) and was adapted for com- 
puter science needs by Cousot and Cousot (1977). In fact, several constraint 
propagation algorithms proposed in the literature turn out to be instances of 
generic chaotic iteration algorithms studied here. 

Moreover, by characterizing a given notion of a local consistency as a common 
fixed point of a finite set of monotonic and inflationary functions we can auto- 
matically generate an algorithm achieving this notion of consistency by "feeding" 
these functions into a generic chaotic iteration algorithm. 

1.2     Preliminaries 

Definition 1. Consider a sequence of domains V :— D\,..., Dn. 

— By a scheme (on n) we mean a sequence of different elements from [l..n]. 
— We say that C is a constraint (on V) with scheme i\,..., i; if C C Dil x ■ ■ ■ x 

A,- 
— Let s := Si,...,Sfc be a sequence of schemes. We say that a sequence of 

constraints C\,..., Ck on V is an s-sequence if each C; is with scheme s;. 
— By a Constraint Satisfaction Problem (V;C), in short CSP, we mean a se- 

quence of domains V together with an s-sequence of constraints C on V. We 
call then s the scheme of (T>;C). □ 

Given an n-tuple d := d\,..., dn in D\ x ... x Dn and a scheme s := i\,..., ii 
on n we denote by d[s] the tuple d^,..., dir In particular, for j G [l..n] d[j] is 
the j-th element of d. By a solution to a CSP (T>;C), where V :— Di,..., Dn, 
we mean an n-tuple d G Di x ... x Dn such that for each constraint C in C with 
scheme s we have d[s] G C. 

Consider now a sequence of schemes Si,...,Sfc. By its union, written as 
(si,..., Sfc) we mean the scheme obtained from the sequences si,..., s^ by re- 
moving from each s; the elements present in some Sj, where j < i, and by con- 
catenating the resulting sequences. For example, ((3, 7,2), (4, 3, 7, 5), (3,5, 8)) = 
(3,7,2,4,5,8). Recall that for an s\,..., s^-sequence of constraints Ci,...,Ck 
their join, written as Ci M • ■ ■ M Ck, is defined as the constraint with scheme 
(si,. .., Sfc) and such that 

d G Ci M • • • M Ck iff d[si) G Ci for i G [l..fc]. 

Further, given a constraint C and a subsequence s of its scheme, we denote 
by ns{C) the constraint with scheme s defined by 

ns{C) := {d[s] \deC}, 

and call it the projection of C on s. In particular, for a constraint C with scheme 
s and an element j of s, IIj(C) = {a j 3d G C a = d[j}}. 

Given a CSP (D;C) we denote by Sol((V;C)) the set of all solutions to it. 
If the domains are clear from the context we drop the reference to T> and just 
write Sol{C). The following observation is useful. 
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Note 2.   Consider a CSP (V;C) with V :=Du...,Dn and C :=d,...,Ck and 

with schem.e s. 

(i) Sol((V; C» = d M ■ • • IX Ck Mi6/ Du 

where I := {i £ [l..n] |   i does not appear in s}. 
(ii) For every s-subsequence C ofC and d £ Sol((V; C)) we have d[(s)] G Sol(C). 

D 

Finally, we call two CSP's equivalent if they have the same set of solutions. 
Note that we do not insist that these CSP's have the same sequence of domains 

or the same scheme. 

2    Chaotic Iterations 

As already mentioned in the introduction, one of the corner stones of constraint 
programming is constraint propagation. In general, two basic approaches fall 

under this name: 

- reduce the domains while maintaining equivalence; 
- reduce the constraints while maintaining equivalence. 

In what follows we study these two processes in full generality. 

2.1     Chaotic Iterations on Simple Domains 

In general, chaotic iterations are defined for functions that are projections on 
individual components of a specific function with several arguments. In our ap- 
proach we study a more elementary situation in which the functions are unrelated 
but satisfy certain properties. These functions are defined on specific partial or- 
ders. We need the following concepts. 

Definition 3. We call a partial order (D, C ) an U-po if 

- D contains the least element, denoted by _L, 
- for every increasing sequence 

do  E d\   C ^2 • ■ ■ 

of elements from D, the least upper bound of the set 

{dg, di, d2, ■ ■ ■}, 

denoted by U^Lo ^« an<^ cane^ tne ^™* °f d0,di,..., exists, 
- for all a,b G D the least upper bound of the set {a, b}, denoted by a U b, 

exists. 

Further, we say that 
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— an increasing sequence do   C   di   C   d-i ■ ■ ■ eventually stabilizes at d if for 
some j > 0 we have d{ = d for i > j, 

— a partial order satisfies the finite chain property if every increasing sequence 
of its elements eventually stabilizes. □ 

Definition 4. Consider a set D, an element d G D and a set of functions F :— 

{fi,---,fk} on D. 

— By a run (of the functions /i, • • ■, /fc) we mean an infinite sequence of num- 
bers from [l..k]. 

— A run ii, i2, ■ • ■ is called fair if every i £ [l..fc] appears in it infinitely often. 
— By an iteration of F associated with a run i\,i-2, ■ ■ ■ and starting with d we 

mean an infinite sequence of values d0, d\,... defined inductively by 

do := d, 

dj :=/i3.(dj-i). 

When d is the least element of D in some partial order clear from the context, 
we drop the reference to d and talk about an iteration of F. 

— An iteration of F is called chaotic if it is associated with a fair run. □ 

Definition5. Consider a partial order (D, Q ). A function / on D is called 

— inflationary if x C. f{x) for all x, 
— monotonic if x C. y implies f(x) C. f(y) for all x,y, 

— idempotent if f(f(x)) — f(x) for all x. 

The following observation can be easily distilled from a more general result 
due to Cousot and Cousot (1977). To keep the paper self-contained we provide 
a direct proof. 

Theorem 6 (Chaotic Iteration). Consider an Li-po (D, C. ) and a set of func- 
tions F := {fi, ■ ■ ■, fk} on D. Suppose that all functions in F are inflationary 
and monotonic. Then the limit of every chaotic iteration of F exists and coin- 
cides with 

oo 

U/tj, 
3=0 

where the function f on D is defined by: 

k 

/(*):= [J £(*) 
i=i 

and / ti is an abbreviation for /J'(JL), the j-th fold iteration of f started at _L. 
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Proof. First notice that / is inflationary, so |_J°^0 / t 3 exists. Fix a chaotic 
iteration d0: dy,... of F associated with a fair run i1; i2,.... Since all functions 
/,; are inflationary, |_|°10 dj exists. The result follows directly from the following 
two claims. 

Claim 1 Vj 3m f t j E dm. 

Proof. We proceed by induction on j. 

Base, j = 0. As / | 0 = 1 = d0, the claim is obvious. 

Induction step. Assume that for some j > 0 we have / | i E 4 for some 
m > 0. Since 

k 

/tc? + i) = /(/tj) = U"Wtj), 
i=l 

it suffices to prove 
\/ie[l..k]3mifi(ftJ)Qdmi. (1) 

Indeed, we have then by the fact that di C dj+1 for I > 0 

fc fc 

LJ/<(/tj)E |_K< Ed™' 

where m' := maa;{7nj | i £ [l..k]}. 
So fix i e [l..fc]. By fairness of the considered run h,%2, ■ ■ • , for some m» > m 

we have imi = i. Then dmi = /;(dmi_i). Now dm C rfm;_i, so by the monotonic- 
ity of fi we have 

fi(f t j) E /i(dm) E /i(c/m.-i) = dTO.. 

This proves (1). ^ 

Claim 2 Vm dm E / t ">. 

Proof. The proof is by a straightforward induction on m. Indeed, for m = 0 we 
have d0 — ± = / | 0, so the induction base holds. 

To prove the induction step suppose that for some m > 0 we have dm C / -f 
m. For some i G [l..fc] we have dm+1 = fi(dm), so by the monotonicity of / we 
get 

dm+i = fi(dm) E f(dm) E /(/ t m) = / t (m + 1) 
D 
D 

In many situations some chaotic iteration studied in the Chaotic Iteration 
Theorem 6 eventually stabilizes. This is for example the case when (D, C ) 
satisfies the finite chain property. In such cases the limit of every chaotic iteration 
can be characterized in an alternative way. 
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Corollary 7 (Chaotic Iteration). Suppose that under the assumptions of the 
Chaotic Iteration Theorem 6 some chaotic iteration of F eventually stabilizes. 
Then every chaotic iteration of F eventually stabilizes at the least fixed point of 

/■ 

Proof. It suffices to note that if some chaotic iteration do, d\... of F eventually 
stabilizes at some dm then by Claims 1 and 2 / t rn = dm, so 

u / t J = / t m. (2) 
=o 

Then, again by Claims 1 and 2, every chaotic iteration of F stabilizes at / t m 
and it is easy to see that by virtue of (2) / t m is the least fixed point of /.   D 

2.2     Chaotic Iterations on Compound Domains 

Not much more can be deduced about the process of the chaotic iteration unless 
the structure of the domain D is further known. So assume now that (D, C ) 
is the Cartesian product of the U-po's (£>;, C. t), for i G [l..n], defined in the 
expected way. It is straightforward to check that (D, C ) is then an U-po, as well. 
In what follows we consider a modification of the situation studied in the Chaotic 
Iteration Theorem 6 in which each function /; affects only certain components 

of D. 
Consider the partial orders (£)j, C t), for i G [l..n] and a scheme s := 

i\,..., ii on n. Then by (Ds, C s) we mean the Cartesian product of the partial 
orders (Dtj,  C. ;.), for j G [1..1]. 

Given a function / on Ds we say that / is with scheme s. Instead of defining 
iterations for the case of the functions with schemes, we rather reduce the situ- 
ation to the one studied in the previous subsection. To this end we canonically 
extend each function / on Ds to a function /+ on D as follows. Suppose that 

s = ii,..., ii and 
f{dil,...,dil) = (e-1,...,eij. 

Let for j G [l..n] 
f e'- if j is an element of s 

g .    ■==   /       J 
3        \dj otherwise. 

Then we set 
/+(c?i,...,dn) := (ex,...,en). 

Suppose now that (D, C ) is the Cartesian product of the U-po's (Di, C t), 
for i G [1-n], and F := {/i,..., /&} is a set of functions with schemes that are 
all inflationary and monotonic. Then the following algorithm can be used to 
compute the limit of the chaotic iterations of F+ :— {/+,..., f£}. We say here 
that a function / depends on i if i is an element of its scheme. 
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GENERIC CHAOTIC ITERATION ALGORITHM (Cl) 

rf:=(±,...,-L); 
N „ • 

?7, times 

d' := d; 
G:=F; 
while G # 0 do 

choose g £ G; suppose p is with scheme s; 
G:=G-{g}; 
d'\s} := g(d{s}); 
if d[s] /d'[s] then 

G:=GU{/6F|/ depends on some i in s such that d[i] # d'[t]}; 
d[s] := d'[s] 

fi 
od 

The following observation will be useful in the proof of correctness of this 
algorithm. 

Note 8.  Consider the partial orders (A, E i), for i G [l..n], a sc/ieme s on n 
and a function f with scheme s. Then 

(i) f is inflationary iff f+ is, 
(ii) f is monotonic iff f+ is. 

The following result summarizes the properties of the CI algorithm. 

Theorem 9. 
(i) Every terminating execution of the CI algorithm computes in d the least fixed 

point of the function f on D defined by 

f{x):=\Jf?(x). 
»=i 

(ii) If all (Di,  E i), where i <E [l..n], satisfy the finite chain property, then every 
execution of the CI algorithm terminates. 

Proof. It is simpler to reason about a modified, but equivalent, algorithm in 
which the assignments d'[s] := g(d[s]) and d[s] := d'[s] are respectively replaced 
by d' := g+(d) and d := d! and the test d[s] / d'[s] by d ± d!. 
(i) Note that the formula 

I~VfeF-Gf+(d) = d 

is an invariant of the while loop of the modified algorithm. Thus upon its ter- 
mination 

(G = 0) A / 
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holds, that is 
VfeFf+(d) = d. 

Consequently, some chaotic iteration of F+ eventually stabilizes at d. Hence d 
is the least fixpoint of the function / defined in item (i) because the Chaotic 
Iteration Corollary 7 is applicable here by virtue of Note 8(i) and (ii). 

(ii) Consider the lexicographic order of the partial orders (-D,3) and (N,<), 
defined on the elements of D x N by 

{di,ni) <iex (d2,n2) iff di 3 d2 or (di — d2 and nx < n2). 

We use here the inverse order I] and N denotes the set of natural numbers. 
By Note 8(i) all functions /+ are inflationary, so with each while loop iter- 

ation of the modified algorithm the pair 

(d, card G) 

strictly decreases in this order <lex. Howver, in general the lexicographic order 
(D x N, <iex) is not well-founded and in fact termination is not guaranteed. 
But assume now additionally that each partial order (£>;, C ;) satisfies the fi- 
nite chain property. Then so does their Cartesian product (D, C. ). This means 
that (D, Zl) is well-founded and consequently so is (D x N, <iex) which implies 
termination. n 

When all considered functions /; are also idempotent, we can reverse the 
order of the two assignments to G, that is to put the assignment G :— G — {g} 
after the if-then-fi statement, because after applying an idempotent function 
there is no use in applying it immediately again. Let us denote by CII the 
algorithm resulting from this movement of the assignment G := G — {g}. 

More specialized versions of the CI and CII algorithms can be obtained by 
representing G as a queue. To this end we use the operation enqueue(F, Q) 
which for a set F and a queue Q enqueues in an arbitrary order all the elements 
of F in Q, denote the empty queue by empty, and the head and the tail of a non- 
empty queue Q respectively by head(Q) and tail(Q)- The following algorithm 
is then a counterpart of the CI algorithm. 

GENERIC CHAOTIC ITERATION ALGORITHM WITH A QUEUE (CIQ) 

d:=(±,...,±); 

n times 
d! := d; 
Q := empty; 
enqueue(i?, Q); 
while Q / empty do 

g :— head(Q); suppose g is with scheme s; 
Q := tail(Q); 
d'[s] := g(d[s]); 
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if d[s] ^d'[s] then 
enqueue({/ G F \ f depends on some i in s such that d[i] ^ d'[i]},Q); 

d{s] := d'[s] 
fi 

od 

Denote by CIIQ the modification of the CIQ algorithm that is appropriate for 
the idempotent functions, so the one in which the assignment Q :- tail(Q) is 

performed after the if-then-fi statement. 
It is easy to see that the claims of Theorem 9 also hold for the CII, CIQ and 

CIIQ algorithms. A natural question arises whether for the specialized versions 
CIQ and CIIQ some additional properties can be established. The answer is pos- 
itive. Namely, for these two algorithms the following result holds which shows 
that the nondeterminism present in these algorithms has no bearing on their 

termination. 

Theorem 10. If some execution of the CIQ algorithm terminates, then all the 

executions of the CIQ algorithm terminate. 

Proof. We first establish the following observation. 

Claim 1 If some chaotic iteration of F+ eventually stabilizes, then all the exe- 

cutions of the CIQ algorithm terminate. 

Proof. We prove the contrapositive. Consider an infinite execution of the CIQ al- 
gorithm algorithm. Let iy, i2, ■ ■ ■ be the run associated with it and f := d0, d\,... 
the iteration of F+ associated with this run. By the structure of this algorithm 

£ does not stabilize. (3) 

Let A be the set of the elements of [l..fc] that appear finitely often in the run 
ii,i2,.... For some m > 0 we have ij £ A for j > m. This means by the 
structure of this algorithm that after m iterations of the while loop no function 
fi for i £ A is ever present in the queue Q. 

By virtue of the invariant / used in the proof of Theorem 9 we then have 
f+(dj) = dj for i e A and j > m. This allows us to transform the iteration £ to 
a chaotic one by repeating each element dj for j >m  card A times. 

Assume now that a chaotic iteration of F+ eventually stabilizes. Then by the 
Chaotic Iteration Corollary 7 the just constructed chaotic iteration stabilizes, as 
well. So the original iteration £ also stabilizes which contradicts (3). O 

Construct now a chaotic iteration of F+ the initial prefix of which corre- 
sponds with a terminating execution of the CIQ algorithm. By virtue of the 
invariant i" this iteration eventually stabilizes. This concludes the proof thanks 

to Claim 1. D 

An analogous result holds for the CIIQ algorithm. On the other hand, it is 
easy to see that this result does not hold for the CI and CII algorithms. 
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3    Constraint Propagation 

Let us return now to the study of CSP's. We show here how the results of the 
previous section can be used to explain the constraint propagation process. 

3.1     Domain Reduction 

In this subsection we study the domain reduction process. First we associate 
with each CSP an U-po that "focuses" on the domain reduction. 

Consider a CSP V := (Du .. ., Dn; C). Let for X,YCDi 

X C iY iff X D Y. 

Then for i £ \l..n] {V{D,), E i) is an U-po with U = Dt and X U{ Y = X n Y. 
Consequently, the Cartesian product {DO, C ) of (V{Di), Q t), where i e [l..n], 
is also an U-po. We call {DO, C. ) the domain U-po associated with V. 

As in in Subsection 2.2, for a scheme s := ii,..., i\ we denote by {DOs, C s) 

the Cartesian product of the partial orders {V{Di:j), C »,-). where 3 e I1--']- 
Note that DOs - V{Dil) x • • ■ x V{Dit). Because we want now to use con- 

straints in our analysis and constraint are sets of tuples, we identify DOs with 

the set 
{Xi x • • • x Xt |   XjC Di. for j G [1..1]}. 

In this way we can write the elements of DOs as Cartesian products X± x ■ ■ • x Xt, 
so as (specific) sets of Z-tuples, instead of as {Xi,..., Xi), and similarly with DO. 

Note that because of the use of the inverse subset order D we have for X\ x 

■ • • x Xi £ DOs and Yx x ■ • • x Yt € DOs 

X1 x • • ■ x Xt C sYi x • • ■ x Yi  iff Xi x • • • x Xt 2 Yt x • • • x Yx 

{iftXiDYi forie [1..1]), 

(i1x---xi,)us(y1x.--xy,)=(i1x.-xi,)n(71x---x y,) 
{={x1nY1)x---x(x,nYl)). 

Moreover, D\ x • • • x £>n is the least element of DO. 
So far we have defined an U-po associated with a CSP. Next, we introduce 

functions by means of which chaotic iterations will be generated. These functions 
are associated with constraints. Constraints are arbitrary sets of fc-tuples for 
some k, while the Q s order and the Us operation are defined only on Cartesian 
products. So to define these functions we use the set theoretic counterparts D 
and Pi of  C s and Us which are defined on arbitrary sets. 

Definition 11. Consider a sequence of domains D\,..., Dn and a scheme s on 
n. By a domain reduction function for a constraint C with scheme s we mean a 

function / on DOs such that for all D G DOs 

- D3/(D), 
- CnD = Cn/(D). n 
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The first condition states that / reduces the "current" domains associated 
with the constraint C (so no solution to C is "gained"), while the second condi- 
tion states that during this domain reduction process no solution to C is "lost". 
In particular, the second condition implies that if C C D then C C /(D). 

Note that for the partial order (DOs, C. s) a function / on DOs is inflationary 
iff D D /(D) and / is monotonic iff it is monotonic w.r.t. the set inclusion. 

Example 1. As a simple example of a domain reduction functions consider a 
binary constraint C C Dx x D2. Define now the functions /i and f2 on DOit2 ■= 

V{Di) x P{D2) as follows: 

f1(XxY):=X'xY, 

where X' = {a £ X | 3b £ Y (a, b) £ C}, and 

f2(X xY):=Xx Y', 

where Y' — {b £ Y \ 3a e X (a,b) £ C}. It is straightforward to check that /2 

and f2 are indeed domain reduction functions. Further, these functions are mono- 
tonic w.r.t. the set inclusion and idempotent. d 

Take now a CSP V :— {Dx, ...,Dn;C) and a sequence of domains D'1:...,D'n 

such that D\ C Di for i £ [l..n]. Consider a CSP V obtained from V by replacing 
each domain D\ by D{ and by restricting each constraint in C to these new 
domains. We say then that V is determined by V and D[ X ... x D'n. 

Consider now a CSP V := (D±, ...,£>„;C) and a domain reduction function 
/ for a constraint C of C. Suppose that 

/+(£>! x---xDn) = D[x---xD'r n> 

where /+ is the canonic extension of / to DO defined in Subsection 2.2. We now 
define f{V) to be the CSP determined by V and D[ x ... x D'n. The following 
observation holds. 

Lemma 12. Consider a CSP V and a domain reduction function f. Then V 

and f(V) are equivalent. 

Proof. Suppose that D\,..., Dn are the domains of V and assume that / is a 
domain reduction function for C with scheme i\,..., i\. Let 

f(Dh x---xDil)=D'li x---xD'ir 

Take now a solution d to V. Then d[ii,.. .,ii] £ C, so by the definition of / 
also d[ix,..., ii] £ D[i x ■ • • x D'ir So d is also a solution to f(V). The converse 
implication holds by the definition of a domain reduction function. D 

When dealing with a specific CSP we have in general several domain re- 
duction functions. To study their interaction we can use the Chaotic Iteration 
Theorem 6 in conjunction with the above Note. After translating the relevant 
notions into set theoretic terms we get the following direct consequence of these 
results. (In this translation DOs corresponds to Ds and DO to D.) 



47 

Theorem 13 (Domain Reduction). Consider a CSP V := (Di,..., Dn;C). 
Let F := {fi, ■ ■ ■, fk}, where each fi is a domain reduction function for some 
constraint in C. Suppose that all functions fi are monotonic w.r.t. the set inclu- 

sion. Then 

— the limit of every chaotic iteration of F+ := {/+,.. .,f£} exists; 
— this limit coincides with 

oo 

f]fi(D1x---xDn), 
3=0 

where the function f on DO is defined by: 

/(D):=n/t(D), 
i=l 

— the CSP determined by V and this limit is equivalent to V. □ 

Informally, this theorem states that the order of the applications of the do- 
main reduction functions does not matter, as long as none of them is indefinitely 
neglected. 

Consider now a CSP V and suppose that the domain U-po associated with 
it satisfies the finite chain property. Then we can use the CI, CII, CIQ and 
CIIQ algorithms to compute the limits of the chaotic iterations considered in 
the above Theorem. We shall explain in Subsection 4.1 how by instantiating 
these algorithms with specific domain reduction functions we obtain specific 
algorithms considered in the literature. In each case, by virtue of Theorem 9 and 
its reformulations for the CII, CIQ and CIIQ algorithms, we can conclude that 
these algorithms compute the greatest common fixpoint w.r.t. the set inclusion 
of the functions from F+. 

3.2     Constraint Reduction 

We now study the constraint reduction process. As in the previous subsection 
we begin by associating with each CSP an U-po that "focuses" on the constraint 
reduction. 

Consider a CSP V := (V; d,..., Ck). Let for X,YCd 

X QiY iSXDY. 

Let now (CO, C ) be the Cartesian product of the U-po's (V(Ci), C. t), where 
i 6 [l..n]. We call (CO, C. ) the constraint U-po associated with V. 

Following the notation of the previous subsection, for a scheme s :— i\,..., %i 
on k we denote by (COs, C. s) the Cartesian product of the partial orders 
(ViCij), C ,;.), where j G [1../], and identify COs with the set 

{XjX-.-x^l   Xj<Zd3 for j€[l..Z]}, 

and similarly with CO. 
Next, we define functions that will be used to generate chaotic iterations. 



Definition 14. Consider a CSP (£>; d,..., d) and a scheme s on k. By a con- 
straint reduction function with scheme s we mean a function g on COs such that 

for all C £ COs 

- CDj(C), 
- SoZ(C) = SoZ(s(C)). D 

C is here a Cartesian product of some constraints and in the second condition 
and in the example below we identified it with the sequence of these constraints, 
and similarly with g(C). The first condition states that g reduces the constraints 
Ci, where i is an element of s, while the second condition states that during this 
constraint reduction process no solution to C is lost. 

Example 2. As an example of a constraint reduction function consider the fol- 
lowing function g on some COs: 

g(CxC) :=C"xC, 

where C" = nt{Sol{C, C)) and t is the scheme of C. To see that g is indeed a 
constraint reduction function, first note that by the definition of Sol we have 
C" C C, so C x C D g(C x C). Next, note that for d e Sol(C, C) we have d[t] G 
nt(Sol(C, C)), so d G Sol(C, C). This implies that Sol{C, C) = Sol(g{C, C)). 

Note also that g is monotonic w.r.t. the set inclusion and idempotent.        D 

Example 3. As another example that is of importance for the discussion in Sub- 
section 4.1 consider a CSP (£>i, ...,£>„; C) of binary constraints such that for 
each scheme i,j on n there is exactly one constraint, which we denote by d,j- 

Define now for each scheme k,l,m on n the following function g%t on COs, 
where s is the triple corresponding to the positions of the constraints Ck,i, Ck,m 

and Cmj in C: 

5£)(xM x xKm x xm>l) := (xktl n nk:l(xkim x xro,,)) x xKm x xm,z. 

To prove that the functions g™{ are constraint reduction functions it suffices 
to note that by simple properties of the X operation and by Note 2(i) we have 

xk,i n nk,i(xktm M xm>i) = nKl{xk,i M xk,m N xm,i) 
— nkti(Soi(xkti,xktm,xmj)), 

so these functions are special cases of the functions defined in Example 2.       D 

Take now a CSP V := (X>; d, ■ ■ -, Cfc) and a sequence of constraints C{,..., C'k 

such that C; C d for t G [l..fe]. Let V := (2?; CJ,..., C'k). We say then that V 
is determined by V and C[ x ... x dk. 

Consider now a CSP V := {V; d, ■ ■ ■, d) and a constraint reduction function 
g with scheme s. Suppose that 

g+(dx---xCk)=d1x---xdk, 



49 

where g+ is the canonic extension of g to CO defined in Subsection 2.2. We now 
define 

g(V):=(V;Ci,...,C'k). 

We have the following observation. 

Lemma 15. Consider a CSP V and a constraint reduction function g. Then V 

and g(V) are equivalent. 

Proof. Suppose that s is the scheme of the function g and let C be an element 
of COs. C is a Cartesian product of some constraints. As before we identify it 
with the sequence of these constraints. For some sequence of schemes s, C is 
the s-sequence of the constraints of V. 

Let now d be a solution to V. Then by Note 2(ii) we have d[{s)} £ Sol(C), 
so by the definition of g also d[(s)] £ Sol(g(C)). Hence for every constraint 
C" in g(C) with scheme s' we have d[s'] £ C" since d[(s)][s'] = d[s'\. So d is a 
solution to g(V). The converse implication holds by the definition of a constraint 
reduction function. 

D 
As in the case of the domain reduction we can now apply the results of 

Section 2 to study the outcome of the constraint reduction process. To this 
end it suffices to translate the relevant notions into set theoretic terms. (In this 
translation COs corresponds to Ds and CO to D.) We get then the following 
counterpart of the Domain Reduction Theorem 13. 

Theoreml6 (Constraint Reduction). Consider a CSPV :— (V;Ci,.. .,Ck). 
Let F := {gi,..., gk}, where each gi is a constraint reduction function. Suppose 
that all functions gi are monotonic w.r.t. the set inclusion. Then 

— the limit of every chaotic iteration of F+ :— {gf,..-,gk} exists; 
— this limit coincides with 

oo 

f]gj(C1x---xCk), 
3=0 

where the function g on CO is defined by: 

k 

5(C) := fV(C). 
»=i 

— the CSP determined by V and this limit is equivalent to V. □ 

When the constraint U-po associated with a CSP V satisfied the finite chain 
property, we can use the algorithms discussed in Subsection 2.2 to compute the 
limits of the chaotic iterations considered in the above Theorem. We return to 
this issue in Subsection 4.1. Also here, as in the previous subsection, we can 
conclude by virtue of Theorem 9 that these algorithms compute the greatest 
common fixpoint w.r.t. the set inclusion of the functions from F+. So the limit of 
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the constraint propagation process could be added to the collection of important 
greatest fixpoints presented in Barwise and Moss (1996). 

Next, we show how specific provably correct algorithms for achieving a local 
consistency notion can be automatically derived. As it is difficult to define local 

consistency formally, we illustrate the idea on an example. 

Example 4. We consider here the notion of relational consistency proposed re- 

cently in Dechter and van Beek (1997). 
To define it need to introduce some auxiliary concepts first. Consider a CSP 

(D1,...,Dn;C). Take a scheme t := ii,...,ii on n. We call d e Dh x • • • x Dit a 
tuple of type t and say that d is consistent if for every subsequence s of t and a 
constraint C e C with scheme s we have d[s] G C. 

A CSP V is called relationally m-consistent if for any s-sequence C1;..., Cm 

of different constraints of V and a subsequence t of (s), every consistent tuple of 
type t belongs to IIt(d M • • • M Cm). 

As the first step we characterize this notion as a common fixed point of a 
finite set of monotonic and inflationary functions. 

Consider a CSP V := {Du ..., Dn; Cu ..., Ck). Assume for simplicity that 
for every scheme s on n there is a unique constraint with scheme s. Each CSP 
is trivially equivalent with such a CSP — it suffices to replace for each scheme 
s the set of constraints with scheme s by their intersection and to introduce 
"universal constraints" for the schemes without a constraint. 

Consider now a scheme ii,...,im on k. Let s be such that C^,.. .,Cjm is 
an s-sequence of constraints and let tbea subsequence of (s). Further, let Gio 

be the constraint of V with scheme t. Put s := ((io), (h, ■ ■ -, im))- (Note that 
if t0 does not appear in ilt..., im then s = i0, i±, ...,im and otherwise s is the 
permutation of ilt..., im obtained by transposing iQ with the first element.) 

Define now a function gs on COs by 

gs(Cx C) :=(CnZZt(XC)) x C. 

It is easy to see that if for each function gs of the above form we have 

g+(d x ■ • • x Ck) = d x ■ • • x Cfc, 

then V is relationally m-consistent. (The converse implication is in general not 
true). Note that the functions gs are inflationary and monotonic w.r.t. the inverse 
subset order D and also idempotent. 

Consequently, by virtue of Theorem 9 reformulated for the CII algorithm, 
we can now use the CII algorithm to achieve relational m-consistency for a CSP 
with finite domains by "feeding" into this algorithm the above defined functions. 
The obtained algorithm improves upon the (authors' terminology) brute force 
algorithm proposed in Dechter and van Beek (1997) since the useless constraint 
modifications are avoided. 

As in Example 3, by simple properties of the M operation and by Note 2(i) 
we have 

c n 7it(M c) = nt(c M (M c)) = nt{soi(c, c)). 
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Hence, by virtue of Example 2, the functions gs are all constraint reduction 
functions. Consequently, by the Constraint Reduction Theorem 16 we conclude 
that the CSP computed by the just discussed algorithm is equivalent to the 

original one. 

It is perhaps worthwhile to note that the domain reduction process can be 
seen as a special case of the constraint reduction process. To this end it suffices 
to introduce unary constraints each of which coincides with a different domain 
of the given CSP and replace the reduction of the domains by the reduction of 
these unary constraints followed by the restriction of the other constraints to 
these reduced unary constraints. So the domain reduction functions can be seen 
as special cases of the constraint reduction functions. 

We decided to consider the domain reduction process separately, because, as 
we shall see in the next section, it has been extensively studied, especially in 
the context of CSP's with binary constraints and of interval arithmetic. Con- 
sequently, it is useful to analyze it directly, without any introduction of new 

constraints. 

4    Concluding Remarks 

4.1     Related Work 

It is illuminating see how the attempts of finding general principles behind the 
constraint propagation algorithms repeatedly reoccur in the literature on con- 
straint satisfaction problems spanning the last twenty years. 

As already stated in the introduction, the aim of the constraint propagation 
algorithms is most often to achieve some form of local consistency. As a result 
these algorithms are usually called in the literature "consistency algorithms" or 
"consistency enforcing algorithms". 

To start with, in Mackworth (1977) a unified framework was proposed to ex- 
plain the so-called arc- and path-consistency algorithms. Also the arc-consistency 
algorithm AC-3 and the path-consistency algorithm PC-2 were proposed and the 
latter algorithm was obtained from the former one by pursuing the analogy 

between both notions of consistency. 
The AC-3 consistency algorithm can be obtained by instantiating the CII 

algorithm with the domain reduction functions defined in Example 1, whereas 
the PC-2 algorithm can be obtained by instantating this algorithm with the 
domain reduction functions defined in Example 3. 

In Dechter and Pearl (1988) the notions of arc- and path-consistency were 
modified to directional arc- and path-consistency, versions that take into account 
some total order <d of the domain indices, and the algorithms for achieving 
these forms of consistency were presented. These algorithms can be obtained as 
instances of the CIQ algorithm as follows. 

For the case of directional arc-consistency the queue in this algorithm should 
be instantiated with the set of the domain reduction functions fx of Example 1 
for the constraints the scheme of which is consistent with the <Q order. These 
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functions should be ordered in such a way that the domain reduction functions 
for the constraint with the <d-large second index appear earlier. This order 
has the effect that the enqueue operation within the if-then-fi statement has 
always the empty set as the first argument, so it can be deleted. Consequently, 
the algorithm can be rewritten as a simple for loop that processes the selected 
domain reduction functions /i in the appropriate order. 

For the case of directional path-consistency the constraint reduction functions 
g^ should be used only for k,l <dm and the queue in the CIQ algorithm should 
be initialized in such a way that the functions g^{ with the <Q-large m index 
appear earlier. As in the case of directional arc-consistency this algorithm can 

be rewritten as a simple for loop. 

In Montanari and Rossi (1991) a general study of constraint propagation was 
undertaken by defining the notion of a relaxation rule and by proposing a general 
relaxation algorithm. The notion of a relaxation rule coincides with our notion 
of a constraint propagation function instantiated with the functions defined in 
Example 2 and the general relaxation algorithm is the corresponding instance 
of our CI algorithm. 

In Montanari and Rossi (1991) it was also shown that the notions of arc- 
consistency and path-consistency can be defined by means of relaxation rules 
and that as a result arc-consistency and path-consistency algorithms can be 
obtained by instantiating with these rules their general relaxation algorithm. 

Van Hentenryck, Deville and Teng (1992) presented a generic arc consistency 
algorithm, called AC-5, that can be specialized to the known arc-consistency 
algorithms AC-3 and AC-4 and also to new arc-consistency algorithms for specific 

classes of constraints. 
In Benhamou, McAllester and Hentenryck (1994) and Benhamou and Older 

(1997) specific functions, called narrowing functions, were associated with con- 
straints in the context of interval arithmetic for reals and some properties of 
them were established that in our terminology mean that these are idempo- 
tent domain reduction functions. As a consequence the algorithms proposed in 
these papers, called respectively a fixpoint algorithm and a narrowing algorithm, 
become respectively the instances of our CIIQ algorithm and CII algorithm. 

The importance of fairness for the study of constraint propagation was no- 
ticed in Montanari and Rossi (1991), while the relevance of the chaotic iteration 
was independently noticed in Fages, Fowler and Sola (1996) and van Emden 
(1996). In the latter paper the generic chaotic iteration algorithm CII was formu- 
lated and proved correct for the domain reduction functions defined in Benhamou 
and Older (1997) and it was shown that the limit of the constraint propagation 
process for these functions is their greatest common fixpoint. 

The idea that the meaning of a constraint is a function (on a constraint store) 
with some algebraic properties was put forward in Saraswat, Rinard and Panan- 
gaden (1991), where the properties of being inflationary (called there extensive), 
monotonic and idempotent were singled out. 

It is unrealistic to expect that all constraint propagation algorithms presented 
in the literature can be expressed as direct instances of the algorithms discussed 
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in this paper. For example the AC-4 algorithm of Mohr and Henderson (1986) 
associates with each domain element some information concerning its links with 
the elements of other domains. As a result this algorithm operates on some 
"enhancement" of the original domains. 

We noted, however, that even in this case the analysis here provided can 
be used to explain this algorithm. To this end one needs to reason about the 
translation of the original CSP to a CSP defined on the enhanced domains. This 
analysis allows us to reduce the proof of the correctness of this algorithm to the 
proof that specific functions are monotonic domain reduction functions. 

4.2     Idempotence 

In each of the above papers the (often implicitly) considered semantic, domain 
or constraint reduction functions are idempotent, so we now comment on the 

relevance of this assumption. 
To start with, in our study Apt (1997) of linear constraints on finite integer 

intervals we found that natural domain reduction functions are not idempotent. 
Secondly, as noticed in Older and Vellino (1993), another paper on constraints 
for interval arithmetic on reals, we can always replace each non-idempotent in- 
flationary function / by 

r(x):=\Jf(x). 
i=l 

The following is now straightforward to check. 

Note 17.  Consider an U-po (D, C ) and a function f on D. 

— If f is inflationary, then so is f*. 
— If f is monotonic, then so f*. 
— If f is inflationary and (D, C. ) has the finite chain property, then f* is 

idempotent. 
— If f is idempotent, then f* = f. 
— Suppose that (D, C ) has the finite chain property. Let F :— {/i,..., fk} be 

a set of inflationary, monotonic functions on D and let F* := {/x*,..., /£}. 
Then the limits of all chaotic iterations of F and of F* exist and always 

coincide. n 

Consequently, under the conditions of the last item, every chaotic iteration 
of F* can be modeled by a chaotic iteration of F, though not conversely. In 
fact, the use of F* instead of F can lead to a more limited number of chaotic 
iterations. This may mean that in some specific algorithms some more efficient 
chaotic iterations of F cannot be realized when using F*. 

4.3     Semi-chaotic Iterations 

The results of this paper can be slightly strengthened by considering the following 
generalization of the chaotic iterations. 
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Definition 18. Consider a set of functions F :— {/i,..., fk) on a domain D. 

- We say that an element i 6 [l..fc] is eventually irrelevant for an iteration 

do,di,... of F if 3m > 0 Vj > m fi{dj) = dj. 
- An iteration of F is called semi-chaotic if every i £ [l..k] that appears finitely 

often in its run is eventually irrelevant for this iteration. □ 

So every chaotic iteration is semi-chaotic but not conversely. Now, in all the 
results of this paper chaotic iterations can be replaced by semi-chaotic iterations. 
The reason is that, as shown in the proof of Theorem 10, every semi-chaotic 
iteration f can be transformed into a chaotic iteration f with the same limit 
and such that £ eventually stabilizes at some d iff f' does. The proof of Theorem 
10 also shows that every infinite execution of the CIQ algorithm is associated 
with a semi-chaotic iteration of F+. 

However, the property of being a semi-chaotic iteration cannot be determined 
from the run only. So, for simplicity, we decided to limit our exposition to chaotic 

iterations. 
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1. Introduction 

Ever since Adleman's seminal paper [1] there has been a flood of ideas on how one could use 
DNA to compute. Lipton was the first to show that DNA could be used to solve more than 
just a variation of the famous travelling salesman problem [12]. Since then there have been 
many other papers on using DNA to solve various computational problems. [3,5,4,6,7,15] 

At the top level all these papers are similar: they all attempt to use DNA computation 
to solve some large search problem. Since a liter of water can hold 1022 bases of DNA, there 
is the possibility that one can outperform electronic machines. 

However, this is currently problematic. There are several reasons for this. First, elec- 
tronic machines are very fast; moreover, they are getting faster every day. Second, there are 
many models of how to do DNA computations. Yet, it is unclear if any of these models will 
be practical. The problem is mainly that DNA technology is not perfect. DNA operations 
are not error free. 

Finally, there is the lack of a killer app. A killer app is an application that fits the DNA 
model; cannot be solved by the current or even future electronic machines; and is important. 
The latter is critical: to be a killer app the problem must be one for which people are willing 
to "pay money" for solutions. To date there are no viable candidates for the killer app. 

We propose a new way to use DNA computations. This way allows us to use DNA com- 
putations to solve important and potentially killer applications. The potential applications 
include: 

(1) DNA sequencing; 
(2) DNA fingerprinting; 
(3) DNA mutation detection or population screening; 
(4) Other fundamental operations on DNA. 

The key new idea is to use DNA computation to operate on unknown pieces of DNA. This is 
a fundamental change in the way that we use DNA computation. We call these DNA2DNA 
computations: DNA to DNA computations. This idea was first proposed in [8] and called 
'"analog" DNA computations there. 

The key idea is the following. Suppose that one has a test tube that contains multiple 
copies of some unknown strand X of DNA. By unknown we mean that we do not known 

1 a Burroughs Wellcome Fund New Investigator in Molecular Parasitology. 
2 Supported in part by NSF CCR-9633103 and AFOSR F49620-97-0190. 



57 

the sequence of the strand. Suppose further that we wish to compute some property of X, 
i.e. for some function /() we wish to obtain the value of f{X). The current way to do this 
is: (i) sequence the strand X in the laboratory; (ii) then, determine the value of f(X) on a 
PC. The difficulty with this method is that it requires the sequencing of the strand X. 

Our new idea is to avoid the expensive step of sequencing the strand X. In particular, 
we plan to operate as follows: We will add to the test tube certain known strands of DNA 
and use these to perform a DNA computation on X. The result of this computation will be 

the answer f(X). 
The advantage of this method is that it avoids the sequencing step. Our hope is that 

this direct method of computing with unknown strands of DNA could be the key to finding 

"killer app's". 
There is one huge advantage to our approach: since the problems we are solving are 

not digital, there is no way that electronic machines can compete. It's not that DNA 
based computation is faster, but that there is no way for electronic computers to do the 
the problems at all. One way to say this dramatically is that there is no place on a PC to 
"pour" in the unknown test tube of DNA. Without input, the problem cannot be solved at 

all on a PC. 
Our method is based on a new transformation that allows us to "encode" an unknown 

piece of DNA. All of the DNA computations to date use special redundant codes. It is critical 
that the DNA be redundantly encoded. Without such a coding the computations cannot 
be performed. Indeed the main contributions of [1,12] were the construction of methods for 

creating and managing such codes. 
Of course naturally occuring DNA is not coded in this redundant manner. This is a 

major roadblock: without codes the methods of DNA computation do not apply. However, 
we propose a method that allows us to transform DNA. This transformation causes the 
DNA to be re-coded into any redundant code that we choose. 

There are many advantages to this re-coding. Mainly, it is now possible to apply all of 
the "tricks" of DNA computation to problems that involve unknown DNA. Since the DNA 
is coded the way that we choose we can operate on it much more freely. For example, one 
important application of this method is the following: (Note, the exact theorem statements 

are in section 3.) 

Theorem: Suppose that X and Y are unknown strands in distinct test tubes. Then, it 
zs possible to check whether or not X = Y in 0(log(n)) bio-steps where both strands are at 

most length n. 
Note, we mean that we test exactly whether or not X and Y are equal: the method will 

discover if they differ in even one base. Further, this is only a simple example of a more 

general type of theorem: 

Theorem: Suppose that X(1\ . . ., X(i) are unknown strands of length at most n that 
are in distinct test tubes. Then, in 0(log(n)) bio-steps we can compute the value of 
F{X(i\ ..., Xlk)) where F{) is an NC1 function. 

It is important to point out that our results avoid one of the key difficulties that face 
"classic" DNA computations. By "classic" we mean DNA computations that attempt to do 
purely digitial problems. The advantage is that our results are much more error tolerant. 
The reason is that in classic DNA computations there is often "one" strand that the exper- 
imenter seeks to find. In our new type of DNA computations, there are many many copies. 
Thus, small error rates or partial rates of completion for some of the operations should not 

be a problem. 
We prove these results by combining our re-coding methods with a generalization of 

the pretty simulation method of Ogihara and Ray [13]. Other methods could be used but 
their method is perfect for our needs. Note, in [2] there is a criticism of [13] for using 
an unreaslistic model. We feel that this criticism is interesting but misses the essential 
point. They feel that the cost of the pour operation is not correctly included in [13]. The 
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answer seems to be two-fold: First, even if the methods are linear in "pour" it's so fast that 
essentially the time is still logarithmic. Second, one can imagine using robots so that the 
pours can actually be done all at once. 

2. Model 

In this section we introduce our model of DNA computations. It is related to, but fundamen- 
tally different from, the models used in papers on classic DNA computations [3,5,4,6,7,15]. 
The key point is that in DNA2DNA computations the operations need not work perfectly. 
For example, we will only require assumptions about how selective DNA is when single 
strands anneal/ligate together. This is a major advantage of DNA2DNA computations. Of 
course the hope is that this weakening in the required models will make DNA2DNA com- 
putations really work in the laboratory. (Note, we are just beginning experiments in Laura 
Landweber's laboratory at Princeton University that we hope will show that this is correct.) 

All our computations are described in terms of operations that are performed on test 
tubes. The state of a test tube is, thus, a critical concept. At any time a test tube will contain 
a multi-set of different pieces of DNA. Some pieces will be single strands, some double strands 
and others more complex structures. Clearly, in order to describe mathematically such a 
state, we need to supply the following information: 

(1) The types of pieces of DNA that are in the test tube; 
(2) The total number of pieces that are in the test tube; 
(.?) The number of pieces of each type that are in the test tube. 

We will use string terminolgy to describe single strands of DNA. More precisely, we will 
identify strings S over the alphabet {A, T, C, G} with the single strand of DNA of the form: 

O        J\ , . . . , JJI       o . 

Also by the Watson-Crick complement of 5 we will mean the string that is the reverse of S 
with each element changed into its complement, i.e. "A" with "T" and "C" with "G". 

Suppose that a test tube T only contains single strands of DNA: note, this is an important 
special case. Clearly, its mathematical definition requires that we supply the following: 

(1) A collection of that correspond to the single strands in T, i.e. S^\ ..., S^; 
(2) A integer M that is the total number of strands in T; 
(3) A collection of frequencies qi,..., qk so that the ith strand S^ occurs <j;M times 

where qt + .. . + q^ = 1. 
One of the key insights about DNA2DNA computation is that we can simplify this definition: 
we do not need to supply M. That is we need not worry about the exact number of strands 
that are in the test tube. We need only to keep track of the frequency of each strand. 

This is an important point about the difference between some classic DNA computations 
and DNA2DNA computations. In classic computations the number of types of strands k is 
the same order of magnitude as the total number of strands M. This is because in classic 
computations each strand is performing a separate computation: we need to have both k 
and M as large as possible. 

On the other hand, in DNA2DNA computations k will often be relatively small. For 
example, k = 1, 000 and M — 1015 are quite reasonable parameters. Since M/k is so large we 
can essentially ignore the exact value of M. Of course it is critical for all DNA computations 
that there be enough material available to make the operations feasible. Note, if in some 
situation M became too small, then a standard "trick" is to use PCR to increase the number 
of total strands and thus restore M to a large enough value. 

In summary, for the rest of the paper we will only supply the frequencies of each piece not 
the total number of pieces in describing a test tube.  A common situation is the following: 
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Say that a test tube T contains S{i\ . . ., S(k) in equal amounts provided T contains the 
same number of copies of each the given single strands of DNA. 

Now let us turn to consider the class of operations that we require: (Each is a bw-step 

in our computations.) 
(1) Cut. This operation cuts or cleaves double strands of DNA at a certain pattern. 

This is done by using a restriction enzyme. 
(2) Gel Separate. This operation uses denaturing polyacrylamidegel electrophoresis 

to separate DNA molecules by length. 
(3) Anneal. This operation allows single strands to form double strands based on 

Watson-Crick pairing, i.e. "A" with "T" and "C" with "G". 
As stated earlier we do not assume that each operation works perfectly. Let us now discuss 
the exact error model that we assume. Let r > 0 be a fixed small constant: we expect that 
it will be smaller than lfT3. We will use r to bound the error rate of all the operations 
that we perform. Note, we really have a collection of r's: one for each operation. However, 
to avoid statements that are overly complex we will lump all the error rates together. Of 
course, one can in principle unravel this and get the exact dependence on each error rate, if 

one needs finer resolution. . 
Now let us turn to discuss the error rates of each type of operation. A cut can fail in 

two basic ways. First, a pattern that should be cut may not be cut. Second, some place 
that does not match the pattern may be incorrectly cut. We assume that at least 1/2 of 
the correct sites are cut; we assume that at most r of the incorrect ones are cut. Note, 
the action of most restriction enzymes are usually stated in terms of how long they take to 
cut 1/2 of the population. One can increase this amount by either adding more enzyme or 

increasing the time of incubation. 
Next let us discuss the separation of DNA by length. As in other papers we will arrange 

things so that no separation is ever required to separate strands that are too close m length. 
Further, we will arrange it so that the lengths are quite short. Gel methods work best for 
very short lengths. For lengths below several hundred one can tell i from i+ 1. We will 
assume that at least 1/2 of the strands of the given length are correctly extracted; we also 
assume that at most r strands of the wrong length are also extracted. Note, this means that 
we do not assume that strands are not lost in performing the gel. As long as approximately 

1/2 of the correct strands are not lost the operation fits our model. 
Finally, we must discuss the error model used for annealing. This is the most complex. 

There are two cases. The first case is the "far-apart" case. In this case the single strands ei- 
ther exactly Watson-Crick bond or are such that they agree in at most 1/4 of their positions. 
Furthermore we assume that the length of the match is above a fixed threshold. In this case 
we assume that at least 1/2 of the correct pairs form; we assume that effectively none of the 
incorrect ones form. Note, that we are implicitly asssuming that there are enough of the 
DNA strands for these reactions to actually take place. However, we have already stated 

that there will always be "enough" material. 
The second case is the "near" case. In this case, the correct and incorrect strands agree 

in more than 1/4 of their positions. Now we can no longer assume that incorrect pairs will 
not form. For example, if two strands a and ß are Watson-Crick complements except for 
one position, then they will likely bind each other. This is even more likely if the one place 
they differ is at the end. In this case they will bind almost as well as a perfectly matched 
pair. Thus, in this case we cannot assume that the rates of formation are vastly different 

for the correct and the incorrect case. 
In this case we make the following weak assumption. We assume only that the rate 

or probability for a perfect match is strictly bigger than that of a partial match. This is 
themodynamically reasonable: More matches will be better. We make no assumption about 
the exact difference. However, it is important to make a small assumption that the gap is 

at least 8 > 0 for a fixed small value of 8. 
In summary, the error model is as follows: 
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Operation Correct      Incorrect 

cut 1/2 T 

gel separate 1/2 T 

anneal far-apart 1/2 0 
anneal near Pi Vl 

where all that is claimed is that in each case, p\ is strictly larger than pi by an amount that 
is at least S. This is analogous to a selection coefficient. The big surprise, perhaps, is that 
we can assume so little about annealing accuracy in the near case. It is unclear that such a 
weak assumption is enough to get any results. However, it turns out that it is enough: how 
is the subject of the next section. 

3. Re-Coding of Unknown DNA 

In this section we will show how to re-code an unknown strand of DNA X by one that is 
coded as we wish. Suppose that we have a test tube that contains X. We must show how to 
create a new test tube that contains a re-coded version of the strand X. We will do this in 
two stages. Since our operations are only approximate we will not be able to do this exactly. 
Rather, we will be able to construct a test tube that "approximates" the desired one. 

Definition:     Let test tube T contain the single strands S^\...,S^k^ with frequencies 
3i,..., g* and let T" contain S^\ ..., S^ with frequencies q[,...,q'k.  Then, say that T 

£-approximates T" provided J2i=i I?» — l'i\ < £- 
Next a string definition: 

Definition: A string a is in the string S provided a occurs as a consecutive substring of 
S, i.e. that for some i, 

a = Si,.. .,Si+i 

where / is the length of the string a. A string a is in the strand X provided a is in X. 
There are two "tricks" that allow us to improve the quality of our basic operations. The 

first is that we can repeat a length separation multiple times. Clearly, less "correct" DNA 
is selected but also less "incorrect" DNA gets by. For example, the following is useful: 

Lemma 1: Suppose that test tube T contains equal amounts of S^\ ■ ■., S^ where each 
string is a different length. Then, for any e > 0 and each i we can in logl/T(l/e) bio-steps 

construct a test tube that is an e-approximation to the test tube that only contains S^. 
We do not know in general how to get a similar lemma for cuts. Repeating a cut, for 

example, will cause more correct material to be cut but will also cut more incorrect material. 
However, there is a very important case where we can essentially do this. Suppose that we 
have a test tube T and we plan to first apply a cut step and then a separation step. If all 
the pieces from the cut have the same length then we can apply Lemma 1 after the cut. 
The effect of this will be that incorrectly cut material will be filtered out. In a sense we 
have made the cut appear to have an error rate of e rather than r. 
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Theorem 1: Suppose that a test tube contains the unknown strand X. Also let I = 0(log(n)) 
and let /() be a function that is defined on length I strings. Then, for any e > 0 in 
0(log(n) + log(l/e)) bio-steps we can create a test tube V that is an (-approximation to 
the test tube that contains in equal amounts the strands thai correspond to f(a) where a 

ranges over the length I consecutive substrings of X. 
Thus, we can go from a test tube that contains one string to another that contains re- 

coded versions of all the consecutive pieces of X. This is not enough but is an important 
first step. We describe the complete method elsewhere [8]. (Here we will only sketch the 
proofs of the thorems. The full proofs will be in the final paper.) 

Proof of Theorem 1: Recall that T is a test tube that contains many copies of the strand 
X. Our plan is to add to this test tube additional pieces of DNA. These will be from a 
set we call the probe set. In particular, assume that we have already created the following 
probe set in another test tube. The probe set will contain for each string a of length /, the 
strand that corresponds to the Watson-Crick complement of af(a). We then will anchor 
the strands of the test tube T to a surface of another test tube V. Then, add the probe set 
and allow them to anneal. Now, wash off the excess. Next elute the bound probes from the 
solid support. Then, allow them to re-attach. Repeat these steps, i.e. perform a molecular 
selection procedure and call this collection of probes T". 

The result is that V will contain those probes that survived the repeated washing steps. 
We claim that these will be almost totally the correct ones, i.e. a probe af{a) that survives 

will have with high probability a in X. 
Let us calculate the survival probability in the correct and the incorrect case. In the 

correct case the probability that a probe survives is p™ where m is the number of iterated 
cycles of selection by binding; in the incorrect case it is p™. Here pi> P2 + 6. 

Note, this assumes that only the a part of the probes are available for bonding. We can 
easily arrange this in a number of ways. The simplest is to add additional material that 
block the f(a) part of the probes. We assume that this is done. See [8] for details. 

Since p2 is bounded below px for m = 0(log(n) + log(e)) we will expect that the fraction 
of incorrect probes that survive is at most e. 

Finally, we can arrange the probes so that we can cut away the /(a) part. Then, provided 
we have arranged that the length of the /(a) is much larger than /, a separation yields the 
desired test tube of DNA. In order to the error rate low we use Lemma 1 to repeat the 

separation.   | 
We plan now to use Theorem 1 to allow us to re-code the whole of the unknown X. 

Note, however, that already the transformation is quite useful. For example, in [8] we show 
how it can potentially be used to increase the power of "DNA chips". These chips attempt 

to sequence unknown DNA via hybridization. 
Our plan is to use Theorem 1 to build a special test tube of DNA. It will contain pieces 

for each / consecutive substring of X. Moreover, these pieces will be able to anneal together 
to form the encoding of X. The key is that this method will only work on "reasonable" 
X's. The problem is that Theorem 1 only allows us to work with short parts of X. So that 
we need X to have the property that it's determined by it's short pieces. If X is not, then 
this approach cannot succeed. 

Definition: Say that a string X is I-determined provided that X is uniquely reconstructible 
from its / long subsequences. 

Note, if A' is random then certainly for I about 2 log(n) all the / pieces are likely to be 
unique; in this case A" is trivially /-determined. However, subsequences can be repeated and 
A" can still be /-determined. This notion is already in use in DNA chips [16]. The method of 
sequencing via hybridization only can work for sequences that are /-determined for a small 
value of /. Also, we do not require that it is easy to find X from its pieces, only that it is 

possible. 



62 

Let us fix two functions hr,(ß, i) and hn(,3, i) where ß is a string of length / — 1 and i is 
from 1 ton. These functions are the "re-coding" or "hashing" functions that we will use. 
We assume that they hash values so that distinct values in their range agree in at most 1/4 
of their positions. Thus, one can think of them as assigning a hash to a length / — 1 string 
and an index i. 

Theorem 2: Suppose that T is a test tube with unknown DNA X that is l-determined for 
I = 0(log(n)) where n is Us length. Suppose also that hi() and hn() are hash functions 
as above. Then, for any e > 0 in O(log(n) + log(e)) bio-steps we can form the test tube T" 
that is an (.-approximation to the test tube that contains in equal amounts the strands of the 
form: 

■■■hL{ß[i\,i)hR{ß\i],i+ !)■■■ 

where ß[i] is the ith substring of X of length /— 1. 

Proof of Theorem 2: Again we plan only to sketch the proof. The basic idea is as follows. 
Suppose that ß[i] is the / — 1 long substring of X starting at index i. Then, we plan to put 
into a test tube the following pieces of DNA for each index i in the range 1 to n: 

(J) if i is odd, hL(ß[i\,i)hR{ß[i+l},i+l); 
(2) if i is even, the Watson-Crick complement of hi(ß[i], i)hji(ß[i + 1], i + 1). 

We do this by appealing to Theorem 1. 
If Theorem 1 were perfect, then because we are in the far-apart case only the correct 

strands would form. The key is that as long as X is /-determined one can prove that no 
other strand will form that is of the correct length. Then, we could finish up the proof by 
using Lemma 1 to perform a length separation. 

However, Theorem 1 only creates an approximation to the test that contains the pieces 
according to (1) and (2). Thus, we need to take into account the fact that e of the test tube 
is incorrect. 

Consider how the pieces anneal and ligate together to form the one correct long strand 
of the correct length. If there are errors sometimes incorrect pieces will asemble. Call these 
"miracle steps". The point is that these occur but the frequency is at most e. Thus, the 
expected fraction of ways to assemble 2 correct pieces together with a miracle step is at 
most (")f. In general with / miracle steps it is (")f'- An easy calculation, then shows that 
the fraction of incorrect strands allowing miracle steps is at most 0(ne). Thus, for i small 
enough this will prove the theorem.   | 

Essentially, the proof of this theorem uses the same method Adleman used in his original 
paper [1]. The main difference is that we do not place the pieces explicitly into the test 
tube. Rather they are generated by the action of the molecular selection step of Theorem 
1. Another kev difference is that we allow errors. 

4. Applications 

Once DNA is re-coded the full power of DNA computation can be used to solve many 
interesting problems. In particular, we can now show that any reasonable computation can 
be efficiently performed on unknown DNA. 

Theorem 3: Suppose that X^1', . . .. X^ > are unknown strands of length at most n thai 
are in distinct test tubes. Moreover, assume thai they are 0(\og{n))-deiermined. Then, in 
0(log(n.)) bio-sieps we can compute the value of F(X^\ ..., X^) where FQ is an NCl 

function. 
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Proof of Theorem 3: We will only sketch the main ideas. Our plan is to use Theorem 
2 to construct a test tube that contains the information required by [13] to compute F. 
Think of the input as kn bits and select a coding method as required by [13]. Then, by 
Theorem 2 we can replace each of the test tubes by an approximation to one that contains 
A'(j) as one long strand. Then, we cut this into n pieces: one for each of its bits. We pour 
equal amounts of these k test tubes together. Then, we perform the operations as in [13] to 
compute the value of F. A key point is that while we only have an approximation to the 
test tube, [13] is sufficiently robust that it will still compute correctly.   | 

Note, we needed a new operation here: the ability to take test tubes Ti,...,Tk and 
create a new test tube T that contains equal amounts of material from each test tube. We 
claim that this is a reasonable operation that can be done again with error rate at most r. 

Corollary 4: Suppose that X and Y are unknown strands in distinct test tubes. Moreover 
assume that they are 0(log(n))-determined. Then, it is possible to check whether or not 

X = Y in 0(log(n)) bio-steps where both are at most length n. 

5. Conclusions 

Before discussing whether or not these results are practical, there is a generalization that 
should be mentioned. The main one is the case of partially unknown DNA. In many in- 
teresting situations the DNA in a test tube is not unknown. Rather we know that it is a 
equal to a known X0 except for perhaps a few bases. This occurs in the case of mutation 
detection, for example. In this case the same theorems of section 4 can apply. However, 
now the probe set can be dramatically reduced in size. The full details of this will be in the 

final paper. 
There are a number of issues that must be solved before we can claim that these methods 

are practical. We view them as the start of a new direction for DNA computation. We 
believe that they should be viewed as an "existence" proof. That is our results are not 
going directly into the laboratory. However, the idea of re-coding unknown DNA and then 
directly computing with it, DNA2DNA computations, are potentially important. 

Some of the practical issues are the following: 
(1) How can we build the probe sets? 
(2) Can we weaken the assumption on annealing in the far-apart case? 
(.?) Can we weaken the assumption that the DNA is /-determined? 

Clearly, one cannot use DNA synthesis machines directly to build large probe sets. At least 
two interesting methods seem possible. For one, we may be able to use the same technology 
that is used to create DNA chips. The micro-robotic methods used to create these chips 
might be useful for generating our probe sets. For another, we may be able to exploit 
the structure of the probe sets. The probe sets we need are very regular sets. Indeed the 
following seems to be an important open problem: Given a set of strings what is the cost in 

bio-steps to create a test that contains only those strings? 
Second, an important question is how far can we weaken the assumption of how far- 

apart strands anneal and ligate? One of the most important questions for much of DNA 
computation is to better model annealing and ligation. Obviously, the more realistic we are 
in modelling how strands mis-pair, the more practical our results will be. In particular, can 
we prove Theorem 2 in the case where incorrect annealing/ligations occur but with a low 

probability? 
Finally, there is the problem of the assumption we made that the DNA is /-determined. 

As stated earlier, random or even approximately random strings are / = 0(log(n))-determined. 
However, there are two problems with this. First, the size of / may be logarithmic but too 
large for practice.   Second, real DNA is not random.   Can the methods of Theorem 2 be 
improved to handle real DNA? We are currently investigating these questions. 
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Abstract. Quasiperiodic tilings are those tilings in which finite patterns 
appear regularly in the plane. This property is a generalization of the 
periodicity; it was introduced for representing quasicrystals and it is also 
motivated by the study of quasiperiodic words. We prove that if a tile 
set can tile the plane, then it can tile the plane quasiperiodically —a sur- 
prising result that does not hold for periodicity. In order to compare the 
regularity of quasiperiodic tilings, we introduce and study a quasiperi- 
odicity function and prove that it is bounded by x i->- X + c if and only 
if the considered tiling is periodic. At last, we prove that if a tile set can 
be used to form a quasiperiodic tiling which is not periodic, then it can 
form an uncountable number of tilings. 

1     Introduction 

Matching rules in tilings are local constraints. Thus, tile sets have been used 
to model atomic positions in materials denned by short-range interactions. A 
traditional approach is then to focus on the periodicity or quasiperiodicity prop- 
erties of tilings that can be formed. This study has been revived by quasicrystals 
(see [7] for an overview on the subject and pertinent references such as [9]). A 
relation between the quasiperiodicity property and the notion of self-similarity 

is established in [5]. 
In another hand, tilings can be considered as 2-dimensional infinite words 

with a local constraint. For 1-dimensional structures, an overview of results 
concerning infinite words can be found in [12]; bi-infinite words are studied 
in [10, 11], and the problem of quasiperiodicity is strongly related to the study 
of Sturmian words (see for instance [14] — references within). 

We present in this paper three main results. First, a tile set that can tile 
the plane can always be used to form a quasiperiodic tiling of the plane. It is 
surprising because the same property for periodic tilings was conjectured by 
Wang in 1961 (see [15]) and was proved false by his student Berger in 1966 
(see [1]). Furthermore it has been proved that there exists a tile set that can tile 
the plane but although possible tilings are non-recursive. 

To prove this first result (in Section 3), we introduce a preorder between 
tilings of the plane that we call an extraction preorder. We show that quasiperi- 
odic tilings are exactly the minimal elements of this preorder. 

We introduce also a function to measure the regularity of a quasiperiodic 
tiling (Section 4). We prove that a quasiperiodic tiling is periodic if and only if 
this function is of the form x >-> x + c. We present some open problems in this 
field. 
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Our third main result (in Section 5) is that if a tile set can be used to form a. 
strictly quasiperiodic tiling of the plane (i.e. non-periodic), then it can be used 
to form an uncountable number of different tilings. A corollary of this result 
is that if a tile set is aperiodic (i.e. cannot be used to form a periodic tiling) 
then it can form an uncountable number of different tilings. To prove this we 
are inspired by Dolbilin in [4] to introduce a tree representation for tile sets. 

In our last Section, we present a topological approach of tilings. This ap- 
proach allows us to give another point of view on our results of Section 3. We 
have not proved yet any new result using topology but we think that this ap- 

proach may be fruitful. 
Due to the page limit, some proofs are ommited. 

2     Preliminaries 

A tile is a square with color sides. Colors belong to a finite set C. A tile set 
T is a subset of C4. All tiles have the same (unit) size. A configuration is a 
mapping from the plane 1? into the tile set. We call pattern a partial function 
of finite domain from 1? into the tile set. We say that a pattern appears in a 
configuration, if the configuration is an extension of the image of this pattern 
by a shift. A tiling of the plane is a configuration in which all pairs of adjacent, 
sides have the same color. Notice that it is not allowed to turn tiles. 

The tiling problem consists of a tile set as input, and the question is whether 
it can be used to tile the plane. It was formulated by Wang in 1961 [15] for 
some logical purposes: a tile set can be reduced into some formula such that 
the formula is satisfiable if and only if the tile set can tile the plane. This tiling 
problem was conjectured decidable but was proved undecidable by Berger [1] in 
1966; a simplified proof was given in 1971 by Robinson [13] (see also [2] for the 
consequences in logics —Hilbert's well-known Entscheidungsproblem). 

A periodic configuration is formed by the juxtaposition of copies of the same 
rectangle. In other terms a periodic configuration should be periodic with respect 
to both axes. Thus, a periodic tiling is a periodic configuration which is also a 
tiling. This definition is justified by the following result of Wang: if a tile set can 
form a tiling which is periodic in only one direction, then it can form a tiling 
which is periodic. This property was one of the reasons why Wang conjectured 
that the tiling problem was decidable. The other reason was that he did not 
know any aperiodic tile sets, i.e. tile sets that can tile the plane but cannot form 
any periodic tiling. If such aperiodic tile sets did not exist, then one could decide 
the tiling problem by the following algorithm: try to tile a square of size n; if you 
cannot, then halt and answer "no", else if you can tile the square periodically, 
then halt and answer "yes", else add 1 to n and restart the same process. This 
algorithm does not halt if and only if the considered tile set is aperiodic. In the 
proof of Berger's theorem an aperiodic tile set is constructed with more than 
20000 tiles, and in Robinson's simplified proof an aperiodic tile set containing 
approximatively 50 tiles is constructed. The smallest known aperiodic tile set 
contains 13 tiles and is due to Culik and Kari ([3, 8]). 
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The periodic tiling problem consists of a tile set as input, and the question 
is whether it can be used to tile periodically the plane. It has been proved 
undecidable by Gurevich and his student Koriakov in 1972 [6]. They furthermore 
proved that you cannot recursively separate tile sets that cannot tile the plane 
from tile sets that can tile the plane periodically. This result is very important 
because in the previously mentioned reduction, tile sets that can tile the plane 
periodically correspond to formula having a finite model. Such reductions are 
called conservative in [2]. This book contains an appendix by ourself devoted to 
the proof of all these undecidability results. 

It is often convenient to use other notions of tiles sets that differ slightly from 

above: 

- one can use arrows on tiles; a tiling is considered as valid if and only if all 
pairs of adjacent sides have the same color, and if, for each arrow of the 
plane, its head points out on the tail of an arrow in the adjacent cell; 

- one can replace squares by polygons of the plane and ask that two adjacent 

polygons neither overlap nor create holes; 
- one can put a color not only on the sides of the squares put also on their 

corners; four corners in contact should have the same color; 
- one could just assign a state (out of a finite set) to each considered cell and 

fix a neighborhood. The matching condition is replaced by a relation between 
states that should be verified in the neighborhood of each cell. 

It is folklore that all these notions are equivalent: there exist transformations 
of tile set from one notion into another that preserve existence of valid tilings, 
periodicity or non-periodicity, quasiperiodicity, etc. 

We could have considered tilings of the continuous plane M2 by polygons such 
as in the well known Penrose tilings. This notion of tilings is not equivalent to 
Wang tiles because the centers of the considered polygons may not have rational 
coordinates. Anyways, for these tilings, our theorems 6 and 13 are still valid if 
one consider that two tilings (or patterns) are equal if they can be superim- 
posed using translations and rotations. The needed changes in the proofs are 
straightforward. Our study of the regularity of quasiperiodic tilings (Section 4) 
is slightly changed in this case: the size on a pattern — and thus quasiperiodicity 
functions — should be define up to a multiplicative constant. 

3     Extraction and quasiperiodicity 

Before defining quasiperiodic tilings, we introduce a partial preorder relation be- 
tween configurations. We call this preorder the "extraction" preorder and prove 
that it has good properties with respect to the notion of tilings and —later— 
those notions of periodicity and quasiperiodicity. 
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3.1 Extraction 

Definition 1. Let us consider two configurations cx and c2. We say that c\ is 
extracted from c2 if and only if any pattern that appears in cx also appears in 
c2. We denote this relation by c\ -< c2. 

Note that if c\ -< c2, and if c2 is a tiling of the plane, then c\ is also a tiling 
of the plane. In other terms, a configuration which is extracted from a tiling is 
also a tiling: if ci had a defect, then this defect should also appear in c2. 

Let us now define what can be called a diagonal extraction process. We use 

it in order to prove the following proposition. 

Proposition 2. Assume that a sequence of patterns (M;);6H is given, that their 
domains increase (dom(Mi) C dom(Mi+1)), and, that they cover the whole plane 

([ J dom(Mi) = 7L2).  Then there exist a configuration d such that any pattern 

that appears in d also appears in an infinite number of Mi's. If all the Mt 's have 
been chosen in a configuration c, then the obtained configuration d is extracted 
from c (d -< c). Furthermore, if c is a tiling, then d is also a tiling. 

Note that this diagonal extraction process is not effective; it is not an algo- 

rithmic procedure. 

3.2 Quasiperiodicity 

Definition3. A quasiperiodic configuration is a configuration c with the follow- 
ing property: for all pattern M that appears in c, there exists an integer n such 
that M appears in all n x n squares in c. 

A periodic configuration is also quasiperiodic. We call strictly quasiperiodic 
those configurations that are quasiperiodic but not periodic. The quasiperiodicity 
is a regularity property: a patterns that appears somewhere in a quasiperiodic 
configuration must appear regularly. 
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Fig. 1. Quasiperiodic configurations 

If a tiling (resp. a configuration) is not quasiperiodic, then there exists a 
pattern in this tiling that can be associated to an infinite number of growing 
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squares that belong to the tiling, and in which the pattern does not appear. In 
the sequel, we call such a pattern critical for the considered tiling (resp. for the 
configuration). 

Lemma 4. If pattern M is critical for a configuration c, then there exist at least 
one configuration CM extracted from, c in which the pattern M does not appear. 

Proof Consider an infinite sequence of patterns in where M does not appear. 
Then make a diagonal extraction process to obtain a new configuration in which 
M does not appear. As this configuration is obtained by a diagonal extraction, 
then it is extracted from c. 

Note that M is not critical in CM since it does not appear in it. 

Propositions. Quasipemodic tilings (resp. configurations) are exactly the min- 
imal elements for the extraction preorder. More formally, c is quasiperiodic if 
and only if\/d   d -< c => c -< d. 

Proof. Consider a quasiperiodic configuration c. Assume that d -< c; let us prove 
that c -< d i.e. that any pattern of c can be found in d. Let us consider a 
pattern M in c; it can be found in all sufficiently large squares of c because of 
the quasiperiodicity hypothesis. Let us consider a square of the same size in d. 
As d -< c, it appears somewhere in c and thus contains M. Hence M appears in 
d. The converse is straightforward using Lemma 4. 

Theorem 6.  If a tile set admits a tiling, then it admits a quasiperiodic tiling. 

Before proving this theorem, we need to explain why the quasiperiodicity 
property is compatible with the extraction preorder. 

Lemma 7. If a pattern M is critical for a configuration c, and if c is extracted 
from a configuration d, then M is also critical for d. 

Proof Consider d such that c -< d. If M is critical for c, then it appears in c thus 
in d. Furthermore, the infinite family of rectangles in which M does not appear 
can be found in c hence in d. Thus M is critical for d. 

Proof of Theorem. 6. Remember that a tile set is given, that it can be used to 
tile the plane, and that our goal is to prove that one can form a quasiperiodic 
tiling of the plane with it. 

Let t be a tiling of the plane using this tile set. Assume that it is not quasiperi- 
odic. It contains some critical patterns. Among them, we consider the smallest 
pattern M\: it is not difficult to define a total ordering of patterns; first order 
them by the size of their domain (more precisely by the size of the smallest 
square that contains their domain) and then by alphabetic order. Also note that 
the set of all patterns is countable. Using Lemma 4, we can construct a tiling 
t-Mi -< t in which M\ does not appear. Because of Lemma 7, all critical patterns 
of <M, (if any) are also critical for t. 
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lit Mi is not quasiperiodic, then we repeat this process: we choose the smallest 

critical pattern M2 in IM^ and obtain %M2 -< %i -< t- 
If after a finite number of steps of this process, we obtain a quasiperiodic 

tiling, then the theorem is proved. Else, we obtain an infinite sequence of tilings 
(tMk) such that ...tMk -< ...tMl -< t- Let us consider now a 1 x 1-square in 
tMl, a 2 x 2-square in tMa, a k x fc-square in tMk--- With a diagonal extraction 
process, we obtain a tiling d which is extracted from all the *Mfc's: d -< .. -tMk -< 
...tMl -< t. If this tiling had a critical pattern, then this pattern should be 
critical for all the tMk's. But in the pattern ordering, one of the patterns Mk is 
greater than this critical patterns which contradicts our choice of the smallest 
possible pattern. Hence d is quasiperiodic and d -< c. 

Note that this proof is not constructive and uses the axiom of choice. 

4     Quasiperiodicity functions 

In this section, we introduce a quasiperiodicity function in order to measure the 
regularity of a quasiperiodic tiling. 

Let us consider a quasiperiodic configuration. Coming back to the definition 
of quasiperiodicity (Definition 3 and Figure 1), it is natural to consider the func- 
tion that maps a pattern to the smallest integer n such that the pattern appears 
in all squares of size n x n. This function is not defined on those patterns that 
do not appear in the tiling. Since in the sequel we are only interested in upper 
bounds, we can restrict this function to square patterns —other patterns can be 
included in larger squares. Thus we can consider the maximum of this function 
on all patterns of size x: we map x to the minimal size of squares n in which 
one can find all those patterns of size x that appear in the tiling. We call it the 

quasiperiodicity {unction of the tiling. 
Intuitively, if this function grows slowly to infinity, then the quasiperiodic 

tiling is rather regular, but if it grows fast, then the regularity is weak. Using 
this function we can characterize which quasiperiodic tilings are periodic: 

Theorem 8. A quasiperiodic tiling is periodic if and only if its quasiperiodicity 

function is bounded by x >->■ x + c where c is a constant. 

Proof Let us consider a periodic tiling of period a. It is not difficult to prove 
that its quasiperiodicity function is bounded by x H4 X + a. Such a situation is 

illustrated by Figure 2. 
Let us consider now a quasiperiodic tiling of function bounded byi^i + c. 

Let us consider a pattern Px of size xx much larger that c. Let us consider a 
window of size xx + c such that its left border is just 1 cell to the right of the 
left border of Px (see Figure 3). A copy of Pi must appear in this window and 
overlaps Pi. Note that there are at most c2 possible positions for this copy — it 

is essential in the rest of the proof. 
Now let us consider a pattern F2 of size x2 > xi containing Pi. Let us 

consider a window of size x2 + c such that its left border is just 1 cell to the right 
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Fig. 2. The quasiperiodicity function of a periodic tiling 
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Fig. 3. The converse 

of the left border of P2. We find another copy of P2 and there are at most im- 
possible translations from P2 to this copy. Note that such a translation is also 
valid for P\ since P\ is embedded in P2. 

By iteration, we prove that there exist a common translation vector for all 
the (Pi)i£®. Thus the tiling is periodic in at least one dimension. We use the 
same reasoning to find another periodicity vector: the difference is that instead 
of shifting the window to the right, we shift it in a direction which is orthogonal 
to the first periodicity vector. Note that this vector may not point exactly to the 
right: we can just say that it more or less points to the right. 

Quasiperiodicity functions of the form x i-> ex are not difficult to obtain. An 
example is any of the quasiperiodic tilings that can be formed using Robinson's 
aperiodic tile set (see [13] or [2] for the definition). Furthermore all these tilings 
have exactly the same multiplicative constant. For Penrose tilings, the study is a 
little more complicated since Penrose tiles cannot be placed on the vertices of 1?. 
There are several ways to measure sizes of patterns: we can consider the distance 
in E2 or the number of tiles included in it. These distances lead to different 
quasiperiodicity functions but each of them is bounded by a multiplicative non- 
zero constant times the other one. Anyway, all quasiperiodicity functions of 
quasiperiodic Penrose tilings are of the form x >-4 ex. 

Some important questions are still open: what are all quasiperiodicity func- 
tions that can be observed in quasiperiodic tilings? By "observed" we mean that 
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all quasiperiodic tilings that can be formed with the considered tile set should be 
of the desired form. Otherwise it is not difficult to construct such tilings with a 
trivial tile set. Our last open problems are the following: is it possible to observe 
non-recursive quasiperiodicity functions? If a quasiperiodicity function is non- 
recursive and grows faster than any recursive function then the quasiperiodic 

tiling is regular but this regularity cannot be measured... 

5     Counting 

In this section, we introduce two structures: trees associated to tile sets, and 
trees associated to tilings of the plane; we are inspired by [4] to introduce them. 
We then combine these structures with the quasiperiodicity notion in order to 
prove the main result of this section (Theorem 13). 

5.1     Trees 

In the rest of this section, we only consider valid square patterns (the matching 
condition for the edges of the tiles is true inside the pattern). We call ??-pattern 
any 2n x In square pattern and we say that a (n + l)-pattern extends a n-pattern 
if the n-pattern is the center of the (n + l)-pattern. In other words, the (n + 1)- 
pattern is obtained from the n-pattern by putting tiles around its border. Note 
that it is not always possible to do this because the matching condition must 
be true in this new border. A unique 0-pattern exists for all tile sets: it is the 

pattern with the empty domain. 

Defiiiition9. The tree associated to a tile set r is the tree AT such that the 
vertices of AT are n-patterns formed using the tiles of r; the root is the 0- 
pattern; the children of a n-pattern node are those (n+ l)-patterns that extend 

the n-pattern. 

The tree such defined can be finite or infinite. All nodes are of finite degree but 
these degrees may not be bounded. Note that an infinite path in AT corresponds 
to a tiling of the plane with r. Conversely, let us consider a tiling of the plane 
with r, and all n-patterns centered in the cell (0,0). These patterns correspond 

to an infinite path in AT. 
If the height of AT is not bounded, using König's infinity lemma one can 

claim that it contains an infinite path and thus that it is possible to tile the 

plane (see also Proposition 2). 

Definition 10. Let c be a valid tiling for tile set r. The tree associated to the 
tiling c is the tree Ac such that Ac is the restriction of AT containing all n- 

patterns of AT that can be found in c. 

All branches of the tree Ac are infinite since a pattern that appears some- 
where in c can always be extended. Any infinite path of Ac corresponds to a 
tiling that can be extracted from c. Thus we obtain the following proposition: 
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Proposition 11. Let c and d be two tilings of the plane with r. Ac C Ad tf and 
only if c -< d. If c is quasiperiodic, and if there exist d such that Ad C Ac, then 

Ad = Ac. 

Another interpretation of the previous proposition is the following: one can 
restrict Ac into some Ad if and only if c is not quasiperiodic. 

5.2     Periodicity and quasiperiodicity 

Let us now explain the difference between the tree associated to a periodic tiling 
and the tree associated to a strictly quasiperiodic one. Let us call chain of a 
tree an infinite path in the tree in which every node has exactly one child; the 
starting node of the chain is a node of the tree (usually not the root). 

Proposition 12. If c is quasiperiodic and if Ac contains a chain, then c is 

periodic. 

Proof Consider the starting node of the chain —more precisely, the pattern M 
that is associated to it. There is no branching on this node and below hence if the 
pattern M appears in c centered in (0,0) and in (i,j), then (i,j) is a periodicity 
vector of c. As c is quasiperiodic, the pattern c appears in all sufficiently large 
regions of c. Hence we can find 2 periodicity vectors for c of different directions; 
c is periodic. 

Now we can present our main theorem. Its proof is easy with the help of the 

previous properties. 

Theorem 13. // a tile set can be used to form, a strictly quasiperiodic tiling of 
the plane, then it can form an uncountable number of different tilings. 

First remark that this result is unchanged if we consider that two tilings that 
can bo superimposed are equal. In this case, one can transform one of the tilings 
into the other by a translation. The set of translations is countable hence the 

theorem is still valid. 

Proof. Let c be a strictly quasiperiodic tiling of the plane. Ac does not contain 
any chain otherwise c would be periodic (Proposition 11 et 12). Thus Ac contains 
an uncountable number of infinite paths. We can associate to each of these paths 
a tiling if we consider that all the patterns of the path are centered in the origin. 
Two different paths are associated to two different tilings thus the number of 
different tilings that can be formed is not countable. 

Note that the uncountable set of tilings that is obtained in this proof consist 
of quasiperiodic tilings that can be mutually extracted; all these tilings can be 
obtained from c by extraction. 

A corollary of this result is that one cannot separate quasiperiodic tilings with 
any computing device (computing devices usually belong to countable sets). 
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6    Topology 

We present in this section another approach to tiling problems. This approach 
is based on the topological properties of the set of configurations. 

Let. us endow a tile set r with the discrete topology for which all subsets are 
open. A configuration is a mapping of the plane 1? into the tile set. Thus, the 
set of all configurations r^ is a countable product of sets that we endow with 
the product topology: an open subset of rz is a union of finite intersections of 

sets of the form Oita = {c <E T
%
\  c(i) = a}. 

In this topological approach, the notion of patterns is very natural since they 
correspond with basic open sets. More precisely, we can define a basic open set 
associated to a pattern as the set of all configurations equal to the pattern on 

its domain: r 2 1 
Op = [cerz , c |dom,ln(p) =pj. 

Note that Op's (and Oii0's which are special Op's) are both open and closed: 
their complements are finite union of the Ov> where domain (p) = domain(p1) 
and p ^ p'. Any open set U can be written as a union of basic open sets: 

U=    U    0P. 
p   pattern 

Proposition 14. rK   is a compact metric space. 

We shall use very often in the rest of this section the compactness of rK and 
more precisely the compactness of the set of tilings that can be formed using 
T. Let us denote by TT this particular subset of configurations (which can be 

empty). 

Proposition 15. Let T be a tile set. The subset TT of T%
 consisting of tilings 

of the plane by r is compact. 

Furthermore, our process of diagonal extraction (Proposition 2) can be seen 
as a consequence of the compactness and of the shift invariance of TT. 

Now let us interpret our relation of extraction (see Definition 1) in topological 
terms. To do that, let us consider the horizontal and vertical shifts ah and av. 
Let us define T(c) as the topological closure of the set of all images of c by any 
shift. It is natural to construct such a set since we tend to consider that two 
configurations that can be superimposed are the same. In the following formal 
definition, the topological closure is denoted by an over line: 

Proposition 16.  Our relation of extraction corresponds exactly to the inclusion 
of our sets T(c). More formally the following properties are equivalent: 

(a) ci -< c2, 
(b) Cl e r(c2), 
(c) r(Cl)cr(c2). 
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Note that if -T(ci) C F(c2) and if c2 is a tiling then ci is also a tiling. It can 
be interpreted as a monotonicity property of tilings. 

Let us come back now to the quasiperiodicity. We obtain from Section 3.2 
that q is quasiperiodic if and only if F(q) is minimal for the inclusion relation 
among all T(c)'s. Let us come back to our Theorem 6: "if a tile set can tile 
the plane, then it can be used to form a quasiperiodic tiling of the plane". In 
our context, it corresponds to the existence of a minimal r(q) among all -T(c)'s 
corresponding to tiling. Assume that it is possible to tile the plane; then using 
the monotonicity property of tilings and Zorn's lemma, we obtain the existence 
of a quasiperiodic tiling. 

We do not know how to prove our combinatorial theorem (Theorem 13 of 
Section 5), or to interpret quasiperiodicity functions of Section 4 using only topo- 
logical arguments. 
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Abstract. We prove that any IN-rational sequence s = (s„)„>i of non- 
negative integers satisfying the Kraft strict inequality Yln>i s™k~" < 1 
is the enumerative sequence of leaves by height of a rational fc-ary tree. 
Particular cases of this result had been previously proven. We give some 
partial results in the equality case. 

1     Introduction 

This paper is a study of problems linked with coding and symbolic dynamics. 
The results can be considered as an extension of the old results of Huffman, 
Kraft, McMillan and Shannon on source coding. We actually prove results on 
rational sequences of integers that can be realized as the enumerative sequence 
of leaves in a rational tree. 

Let. s be an ISf-rational sequence of nonnegative numbers, that is a sequence 
s = (s„)„>i such that sn is the number of paths of length n going from an initial 
state to a final state in a finite multigraph or a finite automaton. We say that s 
satisfies the Kraft inequality for a positive integer k if J2n>i sn^~n < 1- 

A rational tree is a tree which has only a finite number of non-isomorphic 
subtrees. If s is the enumerative sequence of leaves of a rational k-ary tree, then 
s satisfies Kraft's inequality for the integer k. 

In this paper, we study the converse of the above property. Consider for 

example the series s(z) = 33^?. We have s(l/2) = 1 and we can obtain s as 
the enumerative sequence of the tree of the figure below associated with the 
prefix code X = (aa)*(ab + ba + bb) on the binary alphabet {a,b}. We dont 
know however if the same can be done for the series s(z) = z2{j—^ + t_2z3)- 

Fig. 1. Tree associated to 3z2l 2\ 

Known constructions allow one to obtain a sequence s satisfying Kraft's in- 
equality as the enumerative sequence of leaves of a &-ary tree, or as the enumer- 
ative sequence of leaves of a (perhaps not fc-ary) rational tree. These two con- 
structions lead in a natural way to the problem of building a tree both rational 
and fc-ary. This question was already considered in [9], where it was conjectured 
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that any UN-rational sequence satisfying Kraft's inequality is the enumerative 
sequence of leaves of a k-ary rational tree. 

In this paper, we prove this conjecture in the case where the sequence satisfies 
Kraft's inequality with a strict inequality, and we give some partial results in 
the equality case. For example, we state the following weaker property for such 
a sequence: If s is an IN-rational sequence of nonnegative numbers satisfying 

Kraft's equality, then there is a positive integer m such that ms = J2i<i<mri> 
where each r; is the enumerative sequence of the leaves of a fc-ary rational" tree. 

Proofs and algorithms used to establish the results are based on automata 
theory and symbolic dynamics. In particular, we use the state splitting algorithm 
which has been introduced by R. Adler, D. Coppersmith and M. Hassner in [1] 
to solve coding problems for constrained channels by constructing finite-state 
codes with sliding block decoders. This was partly based on earlier work of B. 

Marcus in [7]. 
A variant of the problem considered here consists in replacing the enumera- 

tive sequence of leaves by the enumerative sequence of all nodes. Soittola ([11]) 
has characterized the series which are the enumerative sequence of nodes in a 
rational tree. The problem of a similar characterization for rational ft-ary trees 
remains open in the general case. 

In [9], a particular case is treated. It allows to solve the problem for the enu- 
merative sequence of leaves in the equality case under the additional assumption 

of a unique pole of minimal modulus. 
The paper is organized as follows. We first give basic definitions and prop- 

erties of rational objects, sequences and trees. We then give some definitions 
coming from the theory of symbolic dynamics. We define the notions of state 
splitting, approximate eigenvector and recall the algorithm of [1]. In section 3, 
we establish the announced results and give examples for the constructions. 

2     Definitions and background 

2.1     Rational sequences of nonnegative numbers 

We denote by G a directed graph with E as its set of edges. We actually use 
multigraphs instead of ordinary graphs in order to be able to have several distinct 
edges with the same origin and end. Formally a multigraph is given by two sets 
E (the edges) and V (the vertices) and two functions from E to V which define 
the origin and the end of an edge. An edge in a multigraph going from p to q 
will be noted (p, x,q) where x £ IN. This is equivalent to number the edges going 
from p to q in order to distinguish them. We shall always say "graph" instead 
of "multigraph". 

In this paper, we consider sequences of nonnegative numbers. Such a sequence 
s — (s„)„>o will be said to be JN-rational if sn is the number of paths of length 
n going from a state in / to a state in F in a finite directed graph G, where / 
and F are two special subsets of states, the initial and final states respectively. 
We say that the triple (G, I, F) is a representation of the sequence s. 
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This definition is usually given for the series J2n>os™z" instead of the se- 
quence s. Any IN-rational sequence s satisfies a recurrence relation with integer 
coefficients. However, it is not true that a sequence of nonnegative integers sat- 
isfying a linear recurrence relation is IN-rational. An example can be found in 

[5] p. 93. 
A well known result in automata theory allows us to use a particular repre- 

sentation of an IN-rational sequence s. One can choose a representation (G, i, F) 

of s with a unique initial state i and such that : 

— no edge is coming in state i 
- no edge is going out of any state of F. 

Such a representation is called a normalized representation. Moreover, it is pos- 
sible to reduce to one state the set of final states (see for example [10] p. 14). 

We now give some basic definitions about trees. A tree T on a set of nodes 
N with a root r is a function T : N - {r} —> N which associates to each node 
distinct from the root its father T(n) in such a way that, for each node n, there 
is a nonnegative integer h such that Th(n) = r. The integer h is the height of the 
node n. A tree is fc-ary if each node has at most k sons. A leaf is a node without 
son. We denote by l(T) the enumerative sequence of its leaves by height, that is 
the sequence of numbers sn, where sn is the number of leaves of T at height n. 
A tree is said to be rational if it admits only a finite number of non isomorphic 
subtrees. If T is a rational tree, the sequence l(T) is an IN-rational sequence. 

The sequence s = 1{T) of a Ar-ary tree is the length distribution of a prefix 

code over a ^-letter alphabet. The associate series s(z) = ]Cn>is«z" satisfies 

then Kraft's inequality : s(l/Ar) < 1. We shall say that Kraft's strict inequality 
is satisfied when s(l/k) < 1. The equality is reached when each node of the tree 
has exactly zero or Ar sons. Conversely, the McMillan construction establishes 
that for any series s satisfying Kraft's inequality, there is a Ar-ary tree such that 
s = l[T). Moreover, if the series satisfies Kraft's equality, then the internal nodes 
will have exactly A- sons. But the tree obtained is not rational in general. 

It is also easy to see that an IN-rational sequence is the enumerative sequence 
of the leaves of a rational tree. A normalized representation can be used to do 
that by "developing" the tree. The root will correspond to the initial state of 
the graph. If a node of the tree at height n corresponds to a state i in the graph 
which has r outgoing edges ending at states ji,j2, • • -Jr, it will admit r sons at 
height n + 1, each of them corresponding respectively to the states j\,J2, ■ ■ -,jr 
of the graph. The leaves of the tree will correspond to the final states of the 
normalized representation. The maximal number of sons of a node we get is 
then equal to the maximal number of edges going out of any state of the graph 
of this representation. 

If s satisfies Kraft's inequality, the above construction does not lead in general 
to a Ar-ary rational tree. The aim of this paper is to get a Ar-ary rational tree T 
such that s = l(T). This result was conjectured in [9]. We solve it for all IN- 
rational sequences satisfying Kraft's strict inequality and give a weaker result 

for the equality case. 
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2.2     Approximate eigenvector and state splitting 

Let s be an IN-rational sequence and let (G, i, F) be a normalized representation 
of s. If we identify the initial state i and all_final states of F in a single state 
still denoted i, we get a new graph denoted G, which is strongly connected. The 
sequence s is then the length distribution of the paths of first returns to state i, 
that is of finite paths going from i to i without_going through state i. Using the 
terminology of symbolic dynamics, the graph G can be seen as an irreducible 
shift of finite type (see, for example, [3], [4] or [6]). _ 

We denote by M the adjacency matrix associated to the graph G, that is the 
matrix M = (niij)i<ij<„, where n is the number of nodes of G and where mtj 
is the number of edges going from state i to state j. By the Perron-Frobenius 
theorem (see [6]), the positive matrix M associated to the strongly connected 
graph G has a positive eigenvalue of maximal modulus denoted by A, also called 
the spectral radius of the matrix. Actually, A only depends on the series s, 1/A 
is the minimal modulus of the poles of y^. The dimension of the eigenspace of 
A is equal to one. There is a positive eigenvector (componentwise) associated to 
A. Moreover, if there is a positive eigenvector associated to an eigenvalue p, then 

p = X. 
When A is an integer , the matrix admits a positive integral eigenvector. When 

A < k, where k is an integer, the matrix admits a k-approximate eigenvector, 
that is, by definition, a positive integral vector v with Mv < kv. 

For example the left side of the figure below gives a representation (G, i, F) 

of the serie s(z) = yr^, ar>d the right side gives the associated graph G. The 

adjacency matrix of G is 

M - 

Its maximal eigenvalue is A = 2. The components of a positive integral eigenvec- 
tor are written on the nodes. 

-0O0 

0O0OO 
Fig. 2. Representation (G, i, F) Fig. 3. Graph G 

Proposition 1. If s satisfies Kraft's inequality s(l/k) < 1, then A < k. In the 
equality case where s(l/k) = 1 we have A = k. 

For a proof, we refer the reader to [3], [4] or [6]. 
We now define the operation of output state splitting in a graph G = (V, E). 

Let q be a vertex of G and let / (resp. O) be the set of edges coming in q (resp. 
going out of q). Let 0 = 0' + O" be a partition of O. The operation of (output) 
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state splitting relative to (0',0") transforms G into the graph G' = {V',E') 
where V = (V \ {q}) U q' U q" is obtained from V by splitting state q into two 
states q' and g", and where E' is defined as follows: 

1. all edges of E that are not incident to q are left unchanged. 
2. the both states q' and q" have the same input edges as q. 
3. the output edges of g are distributed between q' and g" according to the 

partition of O into O' and O". We denote U' and ?7" the sets of output 

edges of q' and q" respectively : 
U' = {(q',x,p) | (q,x,p) € O'} and !7" = {(q",x,p) \ (q,x,p) £ O"}. 

Fig. 4. Graph G Fig. 5. Graph G' 
Let us now assume that v is a fc-approximate eigenvector for the graph G. 

We denote by vp the component of index p of v. All components up are positive 
integers. A state splitting of a state g is said to be admissible according to k, if 
the partition in O' and O" is such that O' and O" are not empty and: 

k divides      y.     vr 
(q,x,r)eO' 

If the state splitting is admissible (according to k), the vector v' defined as 
follows will be a fc-approximate eigenvector for the new graph G'. Up is a state 
distinct from q' and q" then v'p = vp. For states q' and q" we have: 

(g,i,r)eO' 

and 

By the state splitting construction, one can check that M'v' < Arv', where M' 

is the adjacency matrix of G'. 
The state splitting algorithm of [1] ensures that there is a finite number of 

state splittings leading to a /e-ary graph, that is a graph such that at most k 
edges are going out of any state. For the sake of completeness, we briefly recall 
the proof. If there is a state q which admits more than k edges going out of it, 
we choose k of them and denote by ri, r2, ..., rk the sequence of end states of 
these edges. We then choose a subset O' of these k edges such that k divides 

J2< x r)eO' vr ■ T'"13 ^S always possible. Indeed, by considering the k + 1 numbers 
t'n . Wj + v,.2, . . ., vri + i'r2 + ■ • • vrk , we can see that at least two of them are equal 
modulo k, and then their difference is equal to zero modulo k. The partition of 
the output edges of q in O' and O" leads to an admissible state splitting and v'q 

is strictly less than vq. This point ensures that the process stops after a finite 
number of splits, the final number of states being bounded by the sum of the 
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components of the initial approximate eigenvector. The final graph obtained is 
fc-ary. 

We shall compute approximate eigenvectors for the strongly connected graphs 
G associated to normalized representations (G, i, F) of sequences. We shall then 
perform admissible state splittings that can be seen either on the graph G or 
on the graph G. To do that, we shall associate to each node of G a value equal 
to the corresponding component of the approximate eigenvector of the graph G. 
The initial and the final states will have same value since they correspond to the 
same state of G. 

3     The results 

We now state the result in the case of Kraft strict inequality. 

Theorem 2. Let s = (sn)n>i be an JN-rational sequence of nonnegative integers 
et let k be an integer such that J2n>i snk~n < 1. Then there is a k-ary rational 
tree such that s is the enumerative sequence of its leaves. 

In order to prove this result, we first prove one lemma that remains true in the 
equality case. We therefore consider an IN-rational sequence s and an integer k 
such that ^n>1 snk~n < 1. We begin with a normalized representation (G, i, F) 
of the IN-rational sequence s. We denote by M the adjacency matrix of G and by 
A its spectral radius. Then X < k. We then compute a ^-approximate eigenvector 
v = (vi, «2, • • •, vny of the graph G. By definition, we have Mv < kv. Without 
loss of generality, we can assume that state 1 is the initial state in all normalized 
representations. 

Lemma 3. If k divides v\, then there is another normalized representation for 
s and a new corresponding approximate eigenvector v' with v[ = v\ div k. 

Proof. We denote by P the set of states q such that there is in G an edge denoted 
(g, x,f) going from q to a final state t of F. Remark that, as state t is equal to 
state 1 in G, the value of state t is equal to the value of state 1. 

Let us first suppose that the initial state 1 does not belong to the set P. If 
there is in P a state q which admits more than one (say n) outgoing edges, we 
split q in q' and q" according to partition (C, O") where O' = {(q,x,t)}. Since k 
divides v\, this state splitting is admissible and v', — v\ div k. Moreover, in the 
new graph G', q' admits only one outgoing edge (going to t) and q" is either not 
in P or admits less than n outgoing edges. By successive state splittings of all 
states in P having more than one outgoing edges, we will get, in a finite number 
of steps, a representation such that all states with one outgoing edge ending in 
F have no other outgoing edges. Under the hypothesis that state 1 does not 
belong to P, the initial state has not been split during this processand so each 
new computed graph is still a normalized representation of the sequence. We 
denote again by (G, 1, F) the final representation obtained for s and by Piast the 
set of states having one outgoing edge ending in F in this graph. Remark that 
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the values of states of Piast are greater than or equal to v\ div k. We turn all 
values of states of Piast greater than vi div k into vi div k; the vector v remains 
a ^-approximate eigenvector. 

We then transform the representation (G,l,F) in a new one, (H,i,Piast), 
where H is the graph obtained from G by adding a state i, an edge from i to 
1 and by removing all edges of G going out of a state of Piast- If we look at 
paths in G going from 1 to F, we have just cut the last edge and added one 
at the beginning. We assign to state i the value v\ div k, and the values of all 
states correspond now to a new fc-approximate eigenvector for H. We call this 
tranformation the "shift" transformation. 

Let us now suppose that the initial state 1 belongs to P. We first split, as 
explained above, all states of P having more that one outgoing edge. In this 
case, state 1 may have been split. We denote by l(i), 1(2), 1(3), • • • l(r) the copies 
of state 1 obtained by successive state splittings of the initial state 1. We still 
denote by G the graph obtained by this transformation and by Piast the set of 
states having one outgoing edge ending in F in this graph. We then transform 
the representation (G,1,F) into a new one, (H,i,Piast), where H is the graph 
obtained from G by adding a state i, an edge from i to each l(j), 1 < j < r and 
by removing all edges of G going out of a state of Piast- Remark that (r - 1) 
states among 1(1), 1(2), 1(3), • • • l(r) belong to Piast. We again assign to the state 
?' the value v\ div k, and the values of all states correspond now to a new k- 

approximate eigenvector for H. 

Corollary 4. If vi is a power of k, then there is another normalized represen- 
tation and a new corresponding approximate eigenvector v' with v[ = 1. 

Proof. If vi = km, we iterate the construction given in previous lemma and get 
v1 = 1 in m steps. 

Example 
Let s be the following series: 

s(z)=2z3 + 2z2(z2(z2r)* 

Here, k = 2 and s(l/2) = 1. 
In the following pictures, the nodes are 
labeled with their value. 

Fig. 6. Initial normalized 
representation 
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First step 

Fig. 7. First state splitting 

Second step 

Fig. 8. First "shift" 

Fig. 10. Second "shift" Fig. 9. Other state splittings 

The last step is described in the proof of 
Theorem 2. 
It corresponds here to a state splitting of 
all states of the graph of value different 
from 1. 

Fig. 11. Last representation 

We now prove another lemma which is true only in the case of Kraft strict 

inequality. 

Lemma 5. Let M be a nonnegative integral matrix. If its spectral radius is 
strictly less than k, then there is a k-approximate eigenvector w of M such 

that Wi is a power of k. 
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Proof. Let A (A < k) be the positive real eigenvalue of maximal modulus of M 
and let v be an eigenvector associated to A. We denote by P the set of positive 
vectors w such that Mw < kw. The set P is an open set and v belongs to 
P. By dividing all components of v par v1: we can assume that vi is equal 
to 1. As P is open, there is a positive real e such that B(v,e) C P, where 
B(v, f) = {w | V, - e < Wi < Vi + c}. Let us now choose an integer m such that 
\/km < e. As B(v, l/km) C P, we have {fcmw | w G B{v, l/km)} C P. This set 
is {w | kmVi - 1 < Wi < kmVi + 1} and contains w where wt = \kmVi]. This 
vector is a positive integer vector w with Mw < kw : it is a ^-approximate 

eigenvector. Moreover wi = km. 

Proof. (Theorem 2) We begin with a normalized representation of s and com- 
pute, by Lemma 5, a ^-approximate eigenvector whose component for the initial 
state is a power of k. We then compute, by Corollary 4, a normalized representa- 
tion (G, l,F) of s which admits a ^-approximate eigenvector of component 1 for 
the initial state. Finally, we apply to G the state splitting algorithm described 
in the previous section to obtain a fc-ary graph. As the component of the ap- 
proximate eigenvector on the initial state is 1 and as the state splittings have to 
be admissible, this state will never be split during the process. A state splitting 
of a state of G different from state 1 leads by construction to a graph G' still 
representing the same sequence. The result follows then from the fact that the 
final normalized representation has a fc-ary graph. 

We can apply the construction given above to the case of Kraft equality when 
it is possible to find a representation of s which admits a ^-eigenvector with a 
power of k as component on the initial state. This may perhaps not always be 

the case. We do not know, for example, if the series s(z) = jjzr^) + (i-5z3) 
(communicated to us by Christophe Reutenauer) has such a representation for 

k = 2: 
As a consequence of the previous result, we get the following proposition in 

the equality case, where an ultimately fc-ary tree is a tree where all nodes but a 

finite number have at most k sons. 

Proposition6. Let s = (sn)n>i be an JN-rational sequence of nonnegative in- 
tegers and let k be an integer such that J2n>i snk~n = 1- Then there is an ulti- 
mately k-ary rational tree such that s is the enumerative sequence of its leaves. 

Proof. If we remove one term of the sequence, the remainder satisfies Kraft's 
strict inequality and is still IN-rational. This proves that one can construct a 
rational tree T for s which will be &-ary for all nodes except the root which will 

have k + 1 sons. 

We now state another result for the equality case which is weaker than the 
previous theorem. We show that if s is an IN-rational sequence of nonnegative 
integers satisfying Kraft's equality for an integer k, then there is an integer m 
such that ms is the sum of in enumerative sequences of leaves of m fe-ary rational 

trees. 
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Theorem 7. Let s be a an JN-rational sequence satisfying J2n>is"^ n = 1- 
There is a positive integer m and m k-ary rational trees T\,. . ., Tm such that 

ms = l{T1) + --- + l{Tm). 

Proof. We begin with a normalized represention of s : (G, 1,F). Let v be a posi- 
tive integral eigenvector associated to the spectral radius k of the adjacency ma- 
trix of G. The component vj on the initial state 1 is denoted by m. If m — krm', 
where m' and k are relatively prime, we compute, by Corollary 4, a normalized 
represention of s such that v\ = m! in order to get a smaller integer m. After 
this step, m and k are relatively prime. If m = 1, we finish by the same proof as 
the proof of Theorem 2. 

Otherwise, we denote by r the positive integer such that kr~1 < m. < kr 

and x = kr - m. We define a new graph H by adding to G (r + 1) new states 
ii, i2, . ■ ■, ir and j, and with the following new edges : 

h —> h —> ■ ■ ■ ir —► 1 

and x edges (in the multigraph) going from ir to j : 

ir —> j (x edges) 

We assign to state i; the value kl~l and to state j the value 1 (state 1 has value 
m). For each state t in F we make the following transformation. We replace t by 
m copies of this state and we duplicate each edge entering t in m edges entering 
the m copies oft. We give to all copies oft the value 1. We denote by g the new 
sequence which admits as normalized representation (H,i\,F\J {j}). Note that 
the values of states of H correspond now to a k-integer eigenvector of H which 
admits 1 as component on the initial state i\. Using the series notations, one 
can verify that 

g(z) = ^2 9nZn = xzr + mzrs(z), 
n>l 

and by construction: g(l/k) = 1. 
Since the representation of g has an eigenvector of component 1 at the initial 

state, g is the height distribution of leaves of a k-ary rational tree (by applying 
the construction of theorem 1 in the case where the value of the initial state is 
1). The series g is either equal to 1 or to zg1 + zg2-\ h zgk, where gi are again 
series of this type (gi is the height distribution of the leaves of the subtree rooted 
by a son of the root of the tree representing g). By iterating this decomposition 

for each gi, we can write 

g(z) = zr(h(z) + f2(z) + ■■■ + fkr(z)) = xzr + mzrs{z), 

where /; are height distributions of leaves of fc-ary rational trees, which we 

simplify into: 
/i + h + \- fkr = x + ms 

As all ft have nonnegative integer coefficients and satisfy fi(l/k) — 1, this implies 
that x series among /i, /2,..., fk<- are equal to 1. The m remainding series that 
we renumber f\, f2, ■ ■ ■, fm verify the equality : f\ + /2 + h fm = ms, which 
is the announced result. 
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Example Let s be the following series: 

~2 2z2 

s(z) = 
1 

+ 
2z3 

We get that 3s = /A + /B+/C, where fx 

is the height distribution of the leaves of 
the tree rooted by the node X in the last 
picture. 

Fig. 13. The sequence g 

Fig. 14. The sequence g after state 
splittings 
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Abstract. We show that any rational code with bounded synchroniza- 
tion delay is included in a rational maximal code with bounded synchro- 
nization delay. 

1     Introduction 

The theory of codes is originated from Shannon's works on information theory. 
It is now a well-developed branch of theoretical computer science. We refer to 
[7, 31] for a systematic exposition of the topic, to [6, 21] for application of codes 
in symbolic dynamics and coding for constrained channels, and to [17] for a 
survey on codes used in the context of information transmission systems. 

A lot of beautiful properties provide a good understanding of the structure of 
codes. Nevertheless, several problems on codes remain unsolved despite the effort 
of researchers [8, 9]. In this paper, we are interested in the following problem : 
given a code A' with some property V, find (if it exists) an effective procedure to 
embed X into a maximal code Y with the same property V. Effective embedding 
procedures exist for rational codes [14], rational codes with bounded deciphering 
delay [10, 3], rational biprefix codes [23, 33]. The case of finite codes is particular : 
there exist finite codes included in no finite maximal codes [27, 19]. One of the 
main open problems on codes is whether the inclusion of a finite code in a finite 
maximal code is decidable. 

We here show that any rational code with bounded synchronization delay is 
effectively embeddable into a rational maximal code again with bounded syn- 
chronization delay. Codes with bounded synchronization delay [16] are part of 
the family of circular codes, i.e., codes defining a unique factorization of words 
written on a circle [20] or of biinfinite words [12]. Circular codes and codes with 
bounded synchronization delay have numerous interesting properties. For in- 
stance, sequences of integers which are the length distribution of a circular code 
are completely characterized [30, 28, 4]; codes appearing in factorizations of free 
monoids are necessarily circular [29] (see also [32, 18, 13] for the description of 
circular codes used in finite factorizations); codes with bounded synchronization 
delay satisfy the commutative equivalence conjecture [24]; encoding digital data 
for transmission through constrained channels involve circular codes [15, 1, 5]; 
recently a set of codons constituting a circular code has been identified in the 
study of the repartition of trinucleotides in the protein of coding genes [2]. 
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2    Codes with bounded synchronization delay 

For the notions given in this section and the next one, we refer to [7] and [6]. 
Given a finite alphabet A, a code X C A* is a set of words such that for all 

x-i, ■ ■ -,xn,yi, ...,ymeX, 

x\---xn=yi---ym     =»     n = m, xt = y, V«. 

This definition means that any coded message x\ ■ ■ -xn is uniquely decoded into 
the code-words x\,..., xn. 

We are here interested in codes with bounded synchronization delay. Such 
codes allow to easily localize a position into a coded message through which the 
decoding must pass, and thus to decode the two parts separately. Formally, a 
code has a bounded synchronization delay if there exists a > 0 such that (see 
Figure 1) 

uxyv E. X*, with x, y £ X"     =>     ux,yv £ X*. (1) 

The smallest integer u satisfying (1) is called the synchronization delay of the 
code X. 

Fig. 1. Synchronization delay a. Fig. 2.   Synchronization    delay   a   when 
counting with letters. 

Example 1. The code X = a*b has synchronization delay 1, since the letter b only 
occurs at the end of the code-words. On the opposite, the code X = ab*cL)b has 
no bounded synchronization delay, because b2a is factor of the word ab2ac of X, 
for any cr. 

There is another way to define the synchronization delay of codes. Instead 
of counting with words as done in Definition (1), one can count with letters as 
follows. We denote by P(X*) the set of the prefixes of the words of X*, and by 
Pa(X*) the set P(X*)r\A°'. For suffixes we use the notations S(X*) and Sa{X*). 
A code X C A* has a bounded letter-synchronization delay if there exists a > 0 
such that (see Figure 2) 

uxyveX*, vrithxeSa{X*),y€Pa(X*)     =>     ux,yv£X*. (2) 

The smallest integer <r satisfying (2) is called the letter-synchronization delay of 
the code X. 

For finite codes, both synchronization delays (on words or on letters) are 
bounded simultaneously. This is no longer true for infinite codes. 
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Example 2. Let A = {a, b, c] and X C A* equal to a*böca*ba*b.The code A" has a 
synchronization delay 2 if counting with words, but no bounded synchronization 

delay if counting with letters. 

The family of codes of bounded synchronization delay or bounded letter- 
synchronization delay is included in the one of circular codes. We recall that a 

code is circular if 

■V = 2/1 • • -Dm,    Xi rn, v = 1, Xi = yt Vi. 

In the case of finite codes X C A*, the concepts of circular code, code with 
bounded synchronization delay, code with bounded letter-synchronization delay 
coincide. Moreover, these code properties are equivalent to : 

X* = PU (CM* DA*V\ A*WA*) 

with P, U, V, W finite subsets of A*. 
However for rational codes (that is, codes recognized by a finite automaton), 

there exist circular codes with an infinite synchronization delay, as the code 
X = ab*c U b mentioned in Example 1. As a matter of fact, a rational circular 
code has a bounded synchronization delay if and only if 3p, X D A*Xp A* — 0. 

Remark. Any code X C A* with synchronization delay 0 (on words or on letters) 
is necessarily included in the alphabet A. From now on, we suppose that a > 1 
in a way to discard such trivial codes. 

3     Completion's problem 

In this paper, we solve Problem 8 of [9] about the completion of codes with 
bounded synchronization delay. 

Recall that complete codes X C A* are codes such that any word over A is 
factor of a coded message : 

Vu-G/T,     A*wA*DX* ^9. 

It is well-known [7] that for rational codes, this combinatorial property is equiv- 
alent to the extremal property of being a maximal code (with respect to the 

inclusion). 
We here prove that codes with bounded synchronization delay (on words or 

on letters) can be embedded into a complete one. The case of bounded letter- 
synchronisation delay is solved separately, since the two notions of delay differ 

for infinite codes (see Example 2). 

Theorem 1. Let X C A* be a code with synchronization delay a. Then X can 
be embedded into a complete code Y C A* with synchronization delay a' < 2a. 
Moreover if X is rational, then Y is also rational. 
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Theorem 2. Let X C A* be a code with letter-synchronization delay a. Then X 
can be embedded into a complete code Y C A* with letter-synchronization delay 
cr' < 3<T — 2. Moreover if X is rational, then Y is also rational. 

The method given in [14] for embedding a rational code X into a rational 
maximal code Y, also works for rational circular codes [11, 4]. Hence any rational 
circular code is included in a maximal one. However this method is not able to 
keep the bounded synchronization delay from X to Y. 

The proofs of Theorems 1 and 2 are given below in the next two sections. 
They are based on the following propositions which state a simple combinatorial 
property of complete codes with a bounded synchronization (letter-synchronization 
resp.) delay. 

Propositions. Let X C A* be a code. Then X is a complete code with syn- 
chronization delay < a if and only if X° A*X" C X*. O 

Proposition 4. Let X C A* be a code. Then X is a complete code with letter- 
synchronization delay < a if and only if Pa(X*)A* Sa(X*) C X*. □ 

The next example shows that the bound 2<r of Theorem 1 is tight. The bound 
3<r - 2 of Theorem 2 is also tight, but the example, more elaborated, is omitted. 

Examples. Consider the alphabet A = {a,b, c, d) and an integer a > 1. The 
set X = {a,ca2cr~lb,ba2a~1d, cb4a~2d} is a code over A with synchronization 
delay a. Assume that X can be included in a complete code Y C A* with a 
synchronization delay a' < 2<r - 1. By Proposition 3, one has Y° A*Ya CY*. 
Then 

aa'ca2°-1 er,     a2a-lda°  G Y*. 
The word a"'ca2a~1ba2<7~1daa' decomposes into words of Y* as indicated in 
Figure 3. As Y is a code, b must belong to Y. But b2a' is factor of the word 
cbAa~2d of Y, in contradiction with the synchronization delay a' of Y. 

Fig. 3. The bound 2<r is tight. Fig. 4. z is not factor of x. 

4    Embedding when counting with words 

In this section, X is a given code over the alphabet A with a bounded synchro- 
nization delay a. The way to embed X into the code Y mentioned in Theorem 1 
is done in two steps : construct 

M = {X2aA* n A*X2a) U X*, 

Y = Base(M) = (M \ 1) \ (M\ l)2. (3) 
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In addition of X*, the monoid M contains all the words beginning and ending 
with markers z £ X2a. The use of markers already appears in the method of 
[14] : one marker only is used, given by an unbordered word which is factor of 

no word of X* . 
The following simple lemmas, together with Proposition 3 lead to a proof of 

Theorem 1 : Lemmas 5 and 6 show that Y is a code containing X. This code is 
proved to be complete with synchronization delay a' < 2<r thanks to Lemma 7 
and Proposition 3. Clearly if X is rational, so is Y. 

Lemma 5. Y is a code. 

Proof. To prove that Y is a code, we show that the monoid M is stable (see [7]) : 
if u, wv, uw, v £ M, then w G M. Assume that this is not the case, and consider 

a word uwv of minimal length such that 

u, wv, uw, v £ M    but    w £ M. (4) 

We begin with three claims concerning u and wv. Symmetrically they hold 

for v and uw. 
Claim 1. If u - rz with z £ X2" and uw = sx with x £ X*, then z is not 

factor of x (see Figure 4). 
If z is factor of x, then due to the synchronization delay a of X, we get z = zxz2, 
x = xxx2 with zx,z2 e Xer, xi,x2 G X* and rzx = sxu z2wv = x2v. The 
second equality links shorter words satisfying a relation similar to (4). This is 

impossible. 
Claim 2. If wv = zr with z G X2° and uw = sx, v = x's' with x,x' G X*, 

then z is not factor of xx' (see Figure 5). 

Fig. 5. z is not factor of xx'. Fig. 6. w is a proper prefix of z. 

Assume that z is factor of xx' and let z = zxz2 with z\, z2 G Xa. If w is prefix 
of 2i, we get the same contradiction as done in Claim 1. So zx is prefix of w. 
By the synchronization delay a of X, we have x = X\x2 with xi,x2 G X* and 
uzi = sxi. It follows that w = zxx2 belongs to X*, a contradiction with (4). 

Claim 3. If wv = zr with z G X2°, then w is a proper prefix of z (see 

Figure 6). 
Assume the contrary, i.e., z is prefix of w. By Claim 2, uw belongs to M \ X*. 
Moreover any suffix z' G X2a of uw is a proper suffix of w, again by Claim 2. It 
follows that w G X2aA* n A*X2" C M, a contradiction with (4). 

We now end the proof. In (4), at least one of the words u, wv, uw and v is in 

M \X* since X is a code. 
Assume that u G M \ X* and let u = rz with z G X2°. It follows by Claim 1 

that uw £ M\ X*. Let uw = r'z' with z' G X2a. Again by Claim 1, we get 
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\r\ < \r'\. Consider now the word tow. It must belong to M \ X* by Claim 2 
applied to uw. Let wv = z"r" with z" £ X2°. Then \z"\ > \w\ by Claim 3. But 
this is in contradiction with Claim 2 applied to uw. 

Assume that u £ X* and wv £ M \ X*. Then wv = zr with z £ X2° and 
\z\ > \w\ by Claim 3. Claim 2 applied to uw shows that uw £ X*. It follows that 
v € M\X* again by Claim 2 applied to tut;. Let v — z'r' with z' £ X2<7. Claim 1 
applied to v leads to z being factor of «wz' 6 X*. This is in contradiction with 
Claim 2. 

The other cases are symmetrical. Therefore, assumption (4) is false, w £ M 
showing that Y is a code. D 

Lemm,a 6. X CY. 

Proof. Assume the contrary, that is, some word x £ X factorizes as yi ■ ■ -y„ 
with n > 2 and t/i,..., yn £ Y. At least one of these words, say yi, belongs to 
Y\X since X is a code. As j/,- £ X2<M* r\A*X2a and j/,- is factor of a;, this leads 
to a contradiction with the synchronization delay a of X. G 

Lemma 7. y2(7A*Y2a C Y*. 

P?w/. By (3), we have Y2aA*Y2a C X2cM*X2<T C M = Y*. D 

5    Embedding when counting with letters 

In this section, X C A* is a code with letter-synchronization delay <r. We show 
how to construct the complete code Y of Theorem 2 and we prove the correctness 
of the construction. We denote by r the constant 3cr — 2. 

The algorithm uses a particular operation Z{M) defined by (see Figure 7) 

Z[M)=     {w£ A*\X* \w = zu = u'z',with 
zePT(M),z' eST(M)} 

U {w £ A* \ X* | there exist u £ S(M), u' £ P{M) with 
z = wu' e PT(M),z' = MW £ 5T(M)}. 

Notice that Z(M) D X* — $ and that Z(M) is the union of two sets, one with 
words of length greater than or equal to r, the other with words of length less 
than or equal to r. As done above in Section 4, the operation Z uses markers z 
in PT{M) or ST{M) (instead of X2a). 

Fig. 7. Operation Z. 

The algorithm works as follows : 
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M = X* 
Repeat 

M' = M 
M = (Z(M)UM)* 

until M - M' 
Y = Base(M) 

The proof of Theorem 2 is done in a similar way as for Theorem 1. We begin 

with a technical lemma. 

Lemma 8. M \ X* C Pa{X*)A* n A*Sa{X*). 

Proof. We are going to prove the next four statements. Lemma 8 is a corollary 

of (4) since la — 1 > a. 

1. Let w G Z[M) with length \w\ < r and u G S{M), u' G P(M) such that 
z = wu' G PT{M) and z' = ww G ST(M). Then uimi' has no factor in 
5CT(X*)PCT(X*). 

2. Any w E Z(M) has length at least equal to 2a - 1. 
3. For any w G Z(M), let 2 = iu if \w\ < T, let 2 be the prefix of length r of w 

otherwise. Then either z G P(X*) or z has a proper prefix in X*(Z(M) f) 

P[X*)). 
Symmetrically, let z' = w if |io| < r, let z' be the suffix of length r of w 
otherwise. Then either z' G S(X*) or z' has a proper suffix in (Z(M) (~1 

5(A"*))X*. 
4. For any w G M \ A'*, u> has a prefix (resp. suffix) with length 2<r - 1 in 

P(X*) (resp. S(X*)). 

The four statements are proved by induction on the passes through the repeat 
instruction of the previous algorithm. We denote by M,- the value of M at the 
beginning of the repeat instruction at pass i. Initially Mi = A*. Notice that 

Mi C Mi+i Vf. 

• Pass 1. At this stage, consider Z(M\) = Z(X*). 

(1) As A has letter-synchronization delay a and r > a, we have |w|, |u'| < cr 
otherwise w G A*. Assume that uwu1 has a factor in 5CT(A*)PCT(A*), i.e., 

uwv! = ra;ia;2r'    with x\ G 5t7(A*),a;2 G PcrfA*). 

Then \u\ < \rx\\, \u'\ < |x2r'|. Let w = W1W2 such that uwi — rxi, w2u' — x2r'. 
By the letter-synchronization delay a of A, we get Wi,iv2 G A*, a contradiction 

with w £ X*. 
(2) The statement holds for words w of Z(X*) with length |u>| > r. For the 
other words we use the notations of (1). We already know that \u\, \u'\ < a. As 
|MW)| = \wu'\ = T, it follows that |w| > la — 1. 

(3) Clearly z G P(X*) (resp. z' G S(X*)). 

(4) Asaconsequenceof(2)and(3),anywordof(2:(Mi)UM1)*\A* = M2\A* 
has a prefix in P2CT-I(A*) and a suffix in 52CT_i(A*). 
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• Pass i, with i > 1. We suppose that Z(Mi-i) satisfies (l)-(3) and (Z(Mi_i)U 
Mj_i)* = M{ satisfies (4). Let us consider Z(M,-). 

(1)      Let u e S{Mi), u' G P{M{) such that z = wv! G PT(M,-) and z' = «to G 

5T(Af,-). 
Assume that uwu' has a factor in Sa(X*)Pa(X*), i.e., 

www.' = rx\x2r'    with xj G Sa(X*),x2 G Pff(X*). 

To get a contradiction, the idea is the following. We first suppose that \u\ < \rxi\ 
and |w'[ < |a;2r'|. Let w = w\w2 such that uu>i = rx\ and w2u' = x2r'. We will 

prove that 
wi,w2 G X* 

showing that w G X*, which is impossible. If |w| > \rxi\ or |w'| > |a;2r'|, the 
contradiction is obtained in the same way. Indeed, suppose that |M| > \rx\\ > a. 
Let x[ (resp. x'2) be the suffix of u (resp. prefix of z) with length <r. By induction 
hypothesis (4), x[ G 5ff(A"*), a:'2 G Pa{X*). We then replace a;ia;2 by x[x2 and 
we repeat the situation just described, showing that w £ X*. 

So, consider that |u| < |ra;i| and |«'| < \x2r'\. Let us show that wx G X* 
(a symmetrical argument shows that w2 G X*). Since \x2\ = cr and |z| = r, we 

have 
jrt?i | <2a - 1. 

Let w" = u if |w| < (T, let u" be the suffix of u with length <r otherwise. Then 

u" eS(X*) 

by induction hypothesis (4). This situation is summarized in Figure 8. 

r r' 

"""*/    ; ^~ 
u" wl   : w2 u' 

Fig. 8. Case \u\ < \rxi\,  \u'\ < \x2r'\. 

If z G P(X*) = P(Mi), then nu is factor of u"z G S(X*)P(X*). By the 
letter-synchronization delay a of X, it follows that W\ E X*. 

If z £ P(X*), let z = arw's such that x G X*, w' G 2(M,-_i) and s G P(M,-). 
By induction hypothesis (1), w' has no factor in Sa(X*)Pa{X*). Hence either 

|r| < \ux\ or |wa;w'| < |ra?iar2|- 
Consider the first case. We know that w' has a prefix p of length 2cr — 1 

in P(X*) by induction hypothesis (4). Therefore, we have done as just before 
because x\x2 (of length 2a) is factor of the word u"xp G S(X*)P(X*). 

Suppose now that 

\ux\ < \r\ and |ua;u/| < |ra;ia;2| 
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and let us show that this case cannot occur (see Figure 9). By induction hypoth- 
esis (2), we have \w'\ > 2<r - 1 and then |s| < <r. Thus \rxx\ < \uxw'\ because 
lu'il < 2<r - 1. 

Fig. 9. Case |«a;| < \r\, \uxw'\ < |ra7ia721- 
Fig. 10. Construction of w'. 

By induction hypothesis (4), w' - ty with y G S2a-i(X*). Similarly, s G 
P{X*) since \s\ < a. Therefore xxx2 is factor of ys E S{X*)P(X*). By the 
letter-synchronization delay a of X, it follows that y = yxy2 with uxtyx = rxx, 
y2s = x2r' and y2 £ X*. 

As w' E Z(Mi-i) and \w'\ < r, 

vw' E ST(Mi-i)    and    w'v' E PT(M,-_i) 

for some v G ^(Mi-i), «' G P(Mj_i) (see Figure 10). 
We have a < \tyi\ < 2<r — 1 because X\ is factor of yi and \w\\ < 2a - 1. 

Hence <r < |«/2w'| < 2<r - 1 since \y2v'\ = |U)'D'| - It^l, and v' E P(X*) by 
induction hypothesis (4). It follows that ty\ has a suffix xi E Scr(X*) and j/2^' 
has a prefix in PCT(J^*). This is impossible with respect to induction hypothesis 
(1) applied to vw'v'. 

This concludes the proof. 

(2) We only have to give the proof for words w of Z(M,-) with length \w\ < T. 

Let u E S(Mi), u' E P(MS) such that z = wu' E PT{Mi) and z' = uw E ST(Mi). 
Assume that \w\ < 2<r- 1, then \u\, \u'\ > a. By induction hypothesis (4), z' has 
a suffix in Sa{X*) and u' has a prefix in Pa{X*). This is impossible by (1). 

(3) Either z E P(MX) = P{X*) or z = xw's with x E X*, w' E Z{Mi^l) and 
s E P(Mt). By induction hypothesis (3), w' is either in P{X*) or has a proper 
prefix in X*{Z(Mi-2)C\P{X*)). 

(4) Consequence of (2) and (3). D 

Lemma 9. Y is a code. 

Proof. We show that the monoid M constructed by the algorithm is stable. 
Let u,wv,uw,v E M. If \wv\, \uw\ > r, then w E Z(M) C M. Otherwise, we 
obtain the same conclusion with the word w'uwvw' such that w' E M has length 
\w'\ >T. □ 

Lemma 10. X C Y. 
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Proof. By construction, X CM. Assume that some x EX belongs to Y+, i.e., 

x = y\---yn    with  yi, • • ■, yn G Y and n > 2. 

At least one of these words, say y», is in Y \ X since X is a code. 
Suppose that i # 1. By Lemma 8, y,- has a prefix in P„{X*). Take y e X* such 

that lyj/! ••■y,-_i| > o". Either yyi ••■y!_i G X* or yyi---yi-i G A*(Y\X)X*. 
In both cases, this word has a suffix in S<j(X*) (Lemma 8). Then the word yx 
of X* has a factor in S^X^P^X*). Due to the letter-synchronization delay a 

of X, it follows i£l+. This is impossible. 
The case i = 1 is solved in a similar way, by working with y;+i • • • y„ instead 

of yi •••y;-i. D 

lemma 11. PT(Y*)4*ST(Y*) C Y*. 

Proof. Immediate since PT(Y*)A*ST{Y*) C 2(M) C M = Y*. D 

Lemmas 9, 10 and 11 together with Proposition 4 show that Y is a complete 
code with letter-synchronization delay < r. The property that Y is rational if 
X is rational is proved below. Consequently, Theorem 2 is proved. 

Lemma 12. If X is rational, then Y is rational. 

Proof. It is enough to show that Z(M) is rational, and the execution of the 
algorithm needs a finite number of passes trough the repeat instruction. 

The set Z(M) is composed of two subsets. The first one equals PT(M)A* f) 
A*ST(M)\X* which is rational since PT(M) and ST(M) are finite. The second 
one is composed of some words with length less or equal to T. It is therefore 

rational. 
Inside the repeat instruction, we have M' ^ M if the operation Z gives new 

words of length less than r. Such words are in finite number, showing that the 
repeat instruction is executed finitely many times. □ 
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Abstract. Classically, several properties and relations of words, such 
as "being a power of a same word", can be expressed by using word 
equations. This paper is devoted to study in general the expressive power 
of word equations. As main results we prove theorems which allow us to 
show that certain properties of words are not expressible as components 
of solutions of word equations. In particular, "the prirnitiveness" and 
"the equal length" are such properties, as well as being "any word over 
a proper subalphabet". 

1    Introduction 

Several authors in the existing literature, cf. [16], used word equations in order 
to describe properties and relations of words, but, to our knowledge no attempt 
to synthesis or of a systematization of this topic has been done. This was em- 
phasized also in a recent survey [6] where some results of the field were collected. 

Classical relations on words that are characterized as solutions sets of word 
equations are for instance, "two words X and Y are powers of a same word" 
if and only if they constitute a solution of the equation XY — YX, and "two 
words X and Y are conjugates" if and only if they constitute a solution of the 
equation XZ = ZY. In the first case we need no extra variables, while in the 
second case an additional variable seems to be needed. As above we identify 
names of variables and particular solutions of an equation. 

Motivated by above, we say that a property of words - either a language 
£ C E* or a ß-ary relation TZ C (S*)k - is expressible by a word equation, if 
there exists an equation e with t > k variables over £ such that 
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£ coincides with the values of a fixed component of all solutions of e, 

- 1Z coincides with the values of k fixed components of all solutions of e. 

Obviously, languages are fc-ary relations with k = 1, but, due to the impor- 
tance of this particular case, we have chosen to define those separately. We allow 
e to contain constants from E. An important feature here is also that t can be 
larger than k, i.e. additional variables are allowed. This increases essentially the 
expressive power of equations, and in particular makes it much easier to express 
certain properties by equations. 

As an illustration we recall the following. The union of solution sets of two 
equations can be expressed as a solution set of one equation, as was shown in [4] 
using 4 additional variables, and later improved to require only 2 additional ones 
by [8], cf. also [6]. Similarly, the inequality, that is the set of ^-tuples of words 
which does not satisfy a given equation e with t variables, can be expressed as 
a union of the solution sets of a finitely many equations each of those using 3 
extra variables, cf. e.g. [6], and consequently the inequality is expressible by one 
equation if additional variables are allowed. 

This way of expressing relations on words using word equations is very nat- 
ural and resembles the way of expressing enumerable relations on integers by 
diophantine equations. However, the expressive power of our method is weaker. 
Namely, while diophantine equations can express all recursively enumerable sets 
(of integers), cf. [18], the word equations can express only recursive relations on 
words due to Makanin's result, cf. [17]. And actually our results show that not 
even all of those can be expressed. 

A central problem in the study of the expressive power of word equations is 
to show that some relations are not expressible. A similar situation - a need to 
show that certain languages are not generated by a certain type of devices - was 
encountered at the early stages of the formal language theory. By now there are 
a lot of tools for the latter problem, while there seems to be none for the former. 

As the main contribution of this paper we introduce such tools for word 
equations. More precisely, we prove theorems resembling pumping lemmas of 
formal languages, which allow to prove the nonexpressibility. Very intuitively, 
we show that if a given equation defines a certain language, or, in fact, just a 
certain word of it via a variable X, then X actually contains some "unfixed parts" 
which can be filled arbitrarily, and thus leads outside the considered language. 

The contents of this paper are summarized as follows. In the next section we 
state several properties of words which are expressible by equations, including 
some closure properties of expressible languages, such as the closure under cate- 
nation, union and Kleene star of a word. Most of the material in this section can 
be considered as a folklore, although we have at least one new proof. 

Then in Section 4 we prove our main results, namely tools for showing the 
nonexpressibility. In Section 5 we use our theorems to show that particular lan- 
guages or relations, such as "the set of primitive words", "the language (o U b)* 
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over {a,6,c}" or "the relation equal length", are not expressible. As a conse- 
quence we conclude that expressible languages are not closed under operations 
of Kleene star, complementation or shuffle. In Section 6 we compare the family 
of expressible languages to a few much studied families, and finally, in Section 7 

we state several open problems. 
Due to a limited space all proofs are omitted; a complete version of the paper 

can be found in http://www.tucs.abo.fi/publications/techreports. 

2     On the power of expressibility 

In this section we give — without trying to be exhaustive — several examples 
of properties of words which are expressible as solutions of word equations and 
some closure properties of languages and relations. All results presented here are 
either very simple or presented before, however, some of those seem to be not 
very generally known, and moreover we seem to have a simplified proof. 

Let E be an alphabet of constants and 0 be an alphabet of variables. We 
assume that these alphabets are disjoint. We use the convention that lower case 
letters represent constants and capital letters represent variables. 

A word equation is a pair of words (u,v) £(£U 0)* x (E U 0)* usually 
denoted by u = v. A size of an equation is the sum of lengths of u and v. A 
solution of a. word equation u = v is a morphism h : (E U 0)* —► E* such that 
h(a) - a, for a £ E, and h(u) = h(v). We say that a language L is expressible, 

if there is an equation e and a variable X such that 

L = {h(X) : h is a solution of e}. 

Similarly, we say that a property 11 G (E*)k is expressible by an equation e if 
there are variables X\, . . ., Xk such that 

H = {(h(Xi),..., h(Xk)) : h is a solution of e}. 

The property of the expressibility depends on the sizes of the alphabets E and 0. 
In this paper we concentrate to the case when the alphabet E is finite. We also 
assume that \E\ > 2. In the case of a unary alphabet all expressible languages 
are trivially regular. Denote by C(E) the family of expressible languages over 
the alphabet E. 

Example 1. The properties: 

- W is not square-free, and 
- those words W in {a, b, c}* which contain a letter c 

are expressible. Indeed, the former is obtained from the equation W = XUUY 
under the extra condition U ^ e, so that, by Theorem 2, the whole property 
can be encoded into one equation. The latter one is expressed by the equation 

W = XcY. 
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Example 2. Every finite and co-finite language over a finite alphabet £ is ex- 
pressible. Indeed, for L = {u>i,..., wt} C S*, L and S* - L are expressed by 
the formulae 

* 

(    \/     x = w)ov(   V   x = wy), 

where TV = max{|u;;| : i = 1, ...,<}. As above Theorem 2 makes it possible to 
express these formulae using only one equation. 

Example 3. The properties 

- W is imprimitive, and 
- W is not minimal in its conjugacy class with respect to the lexicographic 

ordering -< 

are expressible, too. This follows, as above, from the formula 

WZ = ZW and Z = WT and T ^ 1 

and 
W = UV and W' = VU and W <W 

after the observation that the relation W -< W is expressible by the formula 

\J{W = RaT and W = RbT'). 

After these examples we formulate several closure properties of expressible 
languages and relations. Our first result is very easy. 

Theorem 1.   The family of expressible languages is closed under the following 
operations: catenation, cyclic closure, and Klenee star of a single word. 

Our second result, which we have already used several times, deals with the 
closure properties under Boolean operations. 

Theorem 2.   Let e : u = v and e' : u' = v1 be two equations. Then 

1. A property expressible by e and e' is expressible by a single equation without 
any additional variables. 

2. A property expressible by e or e' is expressible by a single equation using hvo 
additional variables. 

3. The relation satisfying u ^ v is expressible by a single equation using a finite 
number of additional variables. 
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Theorem 2 deserves a few comments. First, we have a new proof of case 2 
which is a simplification of the proof presented in [6] which, in turn, was based 
on ideas of S. Grigorieff [8]. Second, it clearly gives more closure properties of 
expressible languages and relations, such as 

Corollary 3. Any language or relation of words expressible by a formula built 
on word equations using operations of conjunction, disjunction and negation is 

expressible by a single equation. 

Third, with the case 3 one has to be carefull. It says that the complement of 
the relation defined by an equation u = v using all variables of the equation 
is expressible by a single equation (using additional variables). This, however, 
does not mean that expressible languages are closed under the complementation. 
In fact, they are not, as we shall show in Section 5. Of course, in some special 
cases, such a closure might hold. 

We conclude this section by stating two more closure properties of the family 
of expressible languages. 

Theorem 4.   The expressible languages are closed under 

1. finite intersections, and 
2. finite unions. 

3    Expressibility of languages by equations with two 
variables 

In this section we introduce technical tools and apply those to languages ex- 
pressible using only two variables. First, given a vector z of natural numbers, we 
define an equivalence relation 1ZZ on positions in words determined by solutions 
specified by a vector z of lengths of words constituting a solution of an equation. 
The intuition behind the definition of Tlz is as follows. Consider a fixed equa- 
tion u = v, and fix the lengths of the components of a solution by the vector 
z. This fixes the lengths of both sides of h(u) = h(v). But this is an identity in 
S+ so that corresponding positions on both sides must be filled with the same 
letter. This induces via TZZ the equivalence classes X above. These classes may 
contain constants, i.e. pairs of the form (I, a) with a € 17, or unfixed parts of 
the variables, i.e. pairs of the form (i,X) corresponding to the i-th letter of X. 
Of course, in a concrete solution the second components of an equivalence class 
must coincide. 

Assume that an equation e contains t variables X\, X2, •■■ Xt and z = 
(zi,..., zt) is a vector oft natural numbers. We say that h is a z-solution of e if 
h is a solution of e and \h(Xj)\ = Zj, for 1 < j < t. For a vector z = (z\,..., zt) 

we define a function | • |z : (0 U 17)* —»• N by 

{zm if u = xm e 0, 
1 if «e 17, 

Ylk=i \Uk lz   if u = aifl2 • • • a«   with aj G 0 U S. 
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In other words \w\z is the length of the word h(w) if h is a z-solution of some 

equation. 
Now, assume that we are given an equation ui . ..Uk = v\ ...vs over t vari- 

ables and a vector z G N* such that \u\z = \v\z- We define a function leftz: 

{1,..., |u|z} —»■ iV x (0 U E) in the following way: 

leftz(j) = (r,x) iff 
|ui . . .up\z < j < |«i ...up+i\z and r = j - \ui .. .up\z and wp+i = x 

Similarly, we define the function rightz '■ 

rightz(j) = (r,x) iff 

\vi .. -vp\z < j <\vi .. • Vl-ilz and r = i_ K ■••V
PIZ and vp+i = a; 

An equivalence relation Hz on positions {1... |u|z} is the transitive closure 
of the relation TZ'Z defined by 

iJl'zi iff leftz(i) = rightz{j) or leftz(i) = leftz(j) or   rightz(i) = rightz(j). 

We say that a position i belongs to a variable A if either leftz(i) = (j,A) or 
rightz(i) = (j, A'), for some j. Let ^f be an equivalence class of the relation 7?-z- 
We say that X corresponds to a constant a if there is a position i in X such that 
either leftz(i) — (I, a) or rightz(i) = (I, a). 

Example 4- Consider an equation e : aXiX^bXi = A3A4A3. Let z = (2,4,5,0). 
Then the values of the functions leftz and rightz are listed below. 

1 2 3 4 5 
leftz 
rightz 

(l,a) 
(2, A3) 

(2,*i) 
(3, A3) 

(i.*0 
(4, A3) 

(2^2) 
(5, A3) 

6 7 8 9 10 
leftz 
rightz 

(3,A2) 
U.*3) 

(4,A2) 
(2, A3) 

(1.6) 
(3, A3) 

(l.*i) 
(4, A3) 

(2,A0 
(5, A3) 

Then the equivalence classes of 7£z are X = {1,6}, y = {3,5,8,10} and 
Z — {2, 4, 7, 9}. The equivalence classes X and ^ correspond to the constants a 
and b since leftz(l) = (1, a) and leftz(8) = (1,6), respectively. The equivalence 
class -Z does not correspond to any constant. Hence, the positions in Z can be 
filled with any letter and, by case 4 of Lemma 5, they can be replaced by any 
word as well. This gives the following family of solutions of the equation e: 

Ai = ßa, A2 = ßbaß, A3 = aßbßb, A4 = s, 

where ß can be replaced by any word. 
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The above procedure, illustrated in Example 4, can be seen as a method of 
filling the positions of the variables in an equation. This simple method, which 
was first used in [15], can be used, for example, to give a very illustrative proof 
for the periodicity theorem of Fine and Wilf, cf. e.g. [6]. 

Now the following lemma is obvious. Denote by w[i] the i-th letter of the 

word w. 

Lemma 5. Let C be an equivalence class of the relation TZz connected to an 
equation e : u = v. Then the following conditions are satisfied: 

1. For any two positions i, j G C and a z-solution h of e, h(u)[i] = h(u)[j]. 
2. If C corresponds to a constant a, then for each z-solution h of e, h(u)[i] = a. 
3. If C corresponds to two different constants a and b, then the equation e has 

no z-solution. 
If. If C does not correspond to any constant and e has a z-solution, then replac- 

ing the positions in C by any word produces a new solution of e. 

Note, that in case 4 the new solutions obtained need not be z-solutions any- 
more. 

Ina formulation of our results we need a notion of a pattern language from [2], 
cf. also [11]. A pattern is a word over the alphabet 0 U E. A pattern language 
generated by a pattern w is the set of all words which are morphic images of 
■w under all morphisms h : (0 U E)* —► E* satisfing h(a) — a, for a in E. In 
particular, it is natural to denote by p((E*)k) the pattern language generated 
by a pattern p(X\, X2,. . ., Xk) containing k variables X\, X2, . . ., Xu- We have 
an obvious connection: 

Example 5. Each pattern language is expressible. Let u be a pattern and Z be 
a variable which does not occur in u. A variable Z in equation Z = u expresses 
the pattern language generated by u. 

We also need an auxilary lemma which follows rather straightforwardly from 
Lemma 5 and which holds for any number of variables. 

Lemma 6. Let L be an expressible language via a variable X in an equation e. 
Suppose that there is no one variable pattern p(Y) such that p(2J*) C L. Then 
for each vector z there is a word w 6 L such that for each z-solution h of e 
h(X) = w. 

Now denoting by #L(W) the number of words of length n in the langauge L, 
we are ready to prove the main result of this section. 

Theorem 7. Let L be an expressible language by an equation on two variables. 
Then either #i(n) = 0{n) or there is a pattern p(Y) with one variable such 

thaip(E*) C L. 

As a straightforward consequence of Theorem 7 we obtain a gap theorem for 
possible complexities of the function #L(TI). Note here that for each language L 
wehave#L(n) = 2°(n). 

Corollary 8. Let L be expressible by an equation with two variables. Then either 
#i(n) = O(n) or #L(an + b) = 2n(n\ for some constants a, b. 
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4    Main results 

This section is devoted to prove some pumping-like properties of expressible lan- 
guages. These are achieved by using the tools of the previous section, and, more 
importantly, by considernig special types of factorizations of words to generalize 
a technique in [5], cf. also [14], which was used to prove an upper bound for an 
index of the periodicity of a minimal solution of a word equation. 

We recall that an F-factorization of a word w is any sequence wi, ..., Wk of 
words from a language F such that w = w\ .. .wu- We generalize it as follows. 
Let T be a property of sequences of words. We say that a sequence w\, ..., wu 
is an /-factorization of w if w = wi ... wk and the sequence w\, ..., Wk satisfies 
/. The factors w\ and Wk are called outer factors of w and the other factors are 
called inner factors of w. Further we say that a property / defines synchronizing 
factorizations, or briefly that T is synchronizing, if the following holds: 

1. Each word admits a unique /-factorization. 
2. If a word w admits an /-factorization v\,...,Vk then, for each symbol a 

in E the word aw admits either an /-factorization u, v, V2, ■ ■ ■, v*, where 
uv = av\, or an /-factorization avx,..., Vk, and the word wa admits either 
an ^-factorization v\,..., Vk-i,u, v, where uv = v^a or an /"-factorization 

vu...,vka. 

Note that our notion of an /-factorization is connected to but not the same as 
that of a factorization of a free monoid, cf. [3, 16]. These factorizations are used to 
decompose free monoids, while in our considerations a focus is on factorizations 
of a single word. Note also that the above conditions (1) and (2) could be named 
separately: factorizations satisfying (1) could be called uniquely deciphering and 
those satisfying (2) synchronizing. We prefered the chosen terminology since all 
factorizations considered here satisfy (1). Finally note that conditions (1) and 
(2) could be defined with respect to a language L: each word of L should satisfy 
these conditions. 

With the above notions we have the following obvious lemma. 

Lemma 9. Assume that a property T defines a synchronizing factorization and 
that xi, X2,...,Xk and y\, y2,...,yi are T-factorizations of words x and y, 
respectively. Then, if y is a subword of x and the factor y\ of y ends inside 
factor xi of x and factor y\ starts inside a factor Xj, then j — i = I — 1  and 

2/2 = xi+i, 2/3 = xi+2, ■ ■., yi-\ — Xj_i. 

We say that an /"-factorization is synchronizing with a finite delay, if there 
are numbers q, r such that for each word x with an /-factorization x\, ..., x^ 
and each subword y of x with an /-factorization y\, ..., y\ if the factor y\ of 
y ends in factor X{ of x and the factor y\ starts in Xj, then y% is a suffix of 

xmax{i-g,i} ■■■Xi and yi is a prefix of Xj .. .a:min{j+r,jfc}- 
Let w\, ..., u>k be a factorization of w. We say that this factorization of 

w synchronizes with a pattern p iff p — u\U-2 ...«<, where, for all i, either w,; 
is a variable or «; = »,-. Let njr(w) be the number of different words in the 
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factorization of w. For a language L, denote nyr(L) = max{n^(io) : w G L}. 
Now we formulate the first tool to show the nonexpressibility. 

Theorem 10. Let. L be an expressible language and T a property definining 
finite delay synchronizing factorizations. Then there exists a number k such that 
for each w 6 L satisfying n^(w) > k there is a pattern p(Xi,...,X„) with 
s = n?(w)-k variables synchronizing with a T-factorization ofw and satisfying 

p({S*Y)CL. 

Next we define, for each primitive word P, particular factorizations which 
turns out to be synchronizing. Let P be a primitive word. Then, as is well-known, 
each word w can be uniquely written in the form w = w1P

Xlw2 ■ ■ ■ PXk~1wk, 

where 

- iui does not contain P2 as a subword, 
- P is a proper prefix of W{, for 1 < i < k, 
- P is a proper suffix of W{, for 1 < i < k, 
- Xi > 0, for 1 < i < k- 1. 

These conditions clearly defines an instance of an ^"-factorization, we call it Tp- 
factorization. Moreover, as is straightforward to see it is synchronizing and with 

a finite delay. Next we set 

T(w) — {xi : Px' is a factor in a P-factorization of w} 

and define the index of w with respect to P, by the formula 

expp(w) = max{a:; : a;,- G T(w)}. 

Now we formulate our second tool to show the nonexpressibility. 

Theorem 11. Let L be an expressible language and P be a primitive word. 
Then there exists a natural number k such that for each word u in L satisfy- 
ing expp(u) > k there is a word w in L with expp(w) < k and which is obtained 

from u by removing some occurrences of P. 

Theorem 11 can be used to prove the following characterization of expressible 

relations concerning lengths of variables. 
Let / be a function f :Nr ^ N.We say that a property /(|Xi |,..., \Xr |) = 0 

is expressible, if the relation 

{(Wl,...,wr) :/(K|,...,K|) = 0} 

is expressible. 

Corollary 12.  Let Xlt X2, ■ ■ ■, Xr be r different variables. If a property 

f{\X1\,\X2\,...,\Xr\) = Q 

is expressible, then there is a constant k such that if f{i\,i2, ■ ■ ■ ,ir) = 0, for 

some ?'i,.. ., ir, and is > k then also 

f(ii,i2,...,i,-i,P,i,+i,---,ir) = 0, for some p< k. 
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5     Applications of main results 

In this section we apply our results of the last section to achieve our original 
goal: to prove that several very natural properties of words are not expressible. 
We recall that to our knowledge no such result is known in litterature except for 
the property "X being a prefix of Y" that cannot be expressed without using 

additional unknowns, cf. [19]. 

Example 6. The language L\ = {anbn : n > 1} is not expressible. We prove it 
by a contradiction applying Theorem 11, for P = a. Let He a constant from 
Theorem 11. Take a word w = ak+1bk+1. Since w £ L2 and expa(w) > k there 
is a word u in Ii, which is obtained from w by removing some occurrences of 
the word a. A contradiction. 

Example 7. The property "w is primitive" is not expressible. Now we can apply 
Theorem 10. Let T be a factorization defined by dividing word into blocks of the 
same letters. Clearly, T has the synchronizing property. Assume the property "tu 
is primitive" is expressible and let He a constant from Theorem 10. Consider 
a word tu = ak+1bakb.. .ab which admits the factorization ak+1, b, ak, b, ..., 6, 
a, b. Since nyr(w) = k+ 2, by Theorem 10, there is a pattern with two variables 
and one of them corresponds to a factor of w of the form a'. Since each factor 
of this form occurs in w exactly once, the variable occurs exactly once in the 
pattern. The results now follows from the fact that the word wiXw2 is a square 
if X = w2w\. 

Example 8. The language L2 = (aUb)* over three-letter alphabet S = {a, b, c} is 
not expressible. In the same way as in the previous example we prove that if L2 

is expressible, then there is a pattern p(X) such that p{S*) C L2- Substituting 
X = c we obtain a contradiction. 

Example 9. The relation "x and y are of equal length", i.e. 

T = {(x,y)eS*xS* : M-|2/l = 0} 

is not expressible. This is due to Corollary 12. Observe here, that the relation T 
is expressible if \S\ = 1. 

As a consequence of the above examples we easily obtain. 

Theorem 13. The family of expressible languages is not closed under the oper- 
ations of complementation, morphic image, inverse morphic image and shuffle. 

We conclude this section by emphasizing that the combination of closure 
and nonclosure properties of expressible languages, especially closure under in- 
tersection and union and nonclosure under complementation and morphic image, 
makes the family quite different from usually considered families of formal lan- 
guages. 
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6 Comparisons with other families of languages 

We already pointed out that the nonclosure and closure properties of C(S) 
makes this family different from most of the usually studied families of languages. 
We further emphasize this fact by the following theorem which is proved by 
considering particular languages. 

Theorem 14.    1. C(E) is a proper subset of the family of recursive languages 

over S. 
2. C(E) is incomparable with the families of DOL, regular and context-free lan- 

guages. 

7 Concluding remarks 

As a major contribution of this paper we introduced - according to our knowl- 
edge - first tools to show that certain properties of words are not expressible as 
solutions of word equations, or more precisely as values of some components of 
solutions of word equations. Our tools were based on special factorizations of 

words, which we called synchronizing. 
As applications of our results several concrete properties of words were shown 

to be nonexpressible by word equations, as well as several nonclosure properties 
of expressible languages were obtained. 

On the other hand, we also stated many known closure properties of express- 
ible languages, and in particular gave a shorter proof for the fact that expressible 
properties are closed under disjunction. 

Finally, it is worth mentioning that there remains a lot of research to be 
done on this interesting and fundamental field. We point out here just a few 
open problems: 

- Problem 1. Is the relation "u is a sparse subword (subsequence) of v" 
expressible? 

- Problem 2. Are the properties "w is square-free" and "w is a Fibonacci 
word" expressible? Recall, that Fibonacci words are defined by recurrence 
formulae w0 — a, wi = b, w„+2 = wn+iwn, for n > 2. 

- Problem 3. When is the complement of an expressible language expressible? 
- Problem 4. Is our gap theorem true for languages expressible by word 

equations with more than two variables? 
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Finite Loops Recognize Exactly the Regular Open 
Languages* 

Martin Beaudryf        Frangois Lemieux4        Denis Therien§ 

Abstract 

In this paper, we characterize exactly the class of languages that are 
recognizable by finite loops, i.e. by cancellative binary algebras with an 
identity. This turns out to be the well-studied class of regular open lan- 
guages. Our proof technique is interesting in itself: we generalize the 
operation of block product of monoids, which is so useful in the associative 
case, to the situation where the left factor in the product is non-associative. 

1    Introduction 
The algebraic approach in the study of regular languages, based on consider- 
ing finite monoids as language recognizers, certainly is the most powerful tool 
available for understanding computations realized by finite-state automata. It has 
developed into a rich and coherent framework to relate combinatorial descriptions 
of regular languages and algebraic properties of their recognizers [10, 16]. An 
early example of such relationship is the famous theorem of Schiitzenberger [24]: 
a subset of A* is star-free (i.e. can be obtained from finite sets using Boolean 
operations and concatenation) iff it can be recognized by a group-free monoid 
(i.e. in which no subset forms a non-trivial group). 

In much the same way that monoids can be used to recognize languages, 
one may also consider other types of algebras and study their computational 
power. For example, non-associative binary algebras, usually called groupoids, 
are exactly the recognizers needed for context-free languages: this relationship 
has been well-known in theory of tree automata (see [12]) and can be traced 
back to the paper of Mezei and Wright [15]. It has also been used in complexity 
theoretic work (e.g. see [26, 5]). In view of this connection, it is natural to 
try to characterize the languages recognized by various specific subclasses of 
finite groupoids.  One such class, that has been extensively studied in the past 
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[7, 8, 1, 6], consists of loops, i.e. groupoids with an identity and for which every 
row and every column of the multiplication table contains every element. In [9] it 
was proved that any language recognized by a finite loop must be regular. The 
main result of our paper gives an exact characterization of which languages can 
be recognized by loops. 

The answer is surprizing and elegant: a language L C A* can be recognized 
by a finite loop iff L is regular and open in the group topology on A*. This 
topology, introduced by [21, 22], is the smallest one such that every morphism 
from A* onto a. finite group is continuous; investigations of its properties were 
motivated early on by several deep connections with important questions about 
finite monoids [17, 18]. Our result thus adds on a new perspective to a class of 
languages which already has a significant history. 

The paper is organized as follows: in section 2, we introduce most of the 
relevant definitions that will be needed. In section 3, we present some tools 
that are useful in constructing loops to recognize languages. In section 4, we 
show that loops recognize only regular open languages. In section 5, we prove 
that every regular open language is recognizable by a finite loop. We derive some 
consequences of this theorem in the last section where we also present some ideas 
for further applications of our techniques. 

2    Preliminaries 

In this section, we introduce our notation and review some elementary facts about 
monoids and groupoids. 

Let A be a finite set: we write A* for the free monoid generated by A, 
i.e. for the set of all words of finite length over the alphabet A, concatenation 
being the associative operation. The length of a word x is denoted by \x\ and e 
stands for the unique word of length 0, which is the identity element of the free 
monoid. A congruence on A* is an equivalence relation a that is compatible with 
concatenation, i.e. x\ a j/i and x-i a x/2 imply x\X2 a j/ij/2- The quotient A*/a 
is then an yl-generated monoid, and every A-generated monoid is of this form. 
A language L C A* is recognized by the monoid M iff there exist a morphism 
<t> : A* ->■ M and a subset F of M such that L = {x £ A* : <j>{x) G F}\ 
equivalently we can view the morphism as going from A* to M*, transforming 
a word x into a string of monoid elements which is then evaluated in M; in 
this point of view, only alphabetical morphisms need to be considered, that is 
morphisms mapping letters to letters. We observe that when L is recognized 
by M, <p(A*) is a submonoid of M isomorphic to A*/a for some congruence a 
and L is a union of a-classes. It is well-known that a language is regular iff it 
can be recognized by a finite monoid, i.e. iff it is a union of a-classes for some 
congruence a of finite index. We will say that L C A* is a group language iff L 
can be recognized by a finite group. 

The notions above have natural counterparts in the non-associative world. 
A groupoid is given by a set and a binary operation: we will assume here that 
every groupoid contains a 2-sided identity element. The free groupoid generated 
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by A will be denoted by Aw. It will be convenient to think of an element in 
A(t) as a pair (t,x) where i is a word in the free monoid and t is a rooted 
binary tree with \x\ leaves; in particular, the identity of the free groupoid is then 
(0,e). The product of (tuxi) with {t2,x2) is then the pair (tlt2,xlx2) where 
i1t2 - ti if t2 is empty, t1t2 = t2 if ti is empty, and otherwise txt2 = t is the 
tree obtained by joining the root of U and the root of t2 to a new node, which 
becomes the root of t. If g G A^ is identified in this way with a pair (t,x) 
we define Tree (g) = t and Yield (g) = x. We say that gX)g2 G ^4(*J are yield- 
equivalent if Yield (gi) = Yield (#2)- We can view each row and each column in 
the multiplication table of the groupoid G as defining a mapping from G to G. 
The closure of these mappings under the operation of composition is called the 

multiplicative monoid of G, denoted by M(G). 
Congruences on A^ are defined in the same way as in the associative case. If 

a is a congruence on A^*\ the quotient A^/a is an A-generated groupoid, and 
every ^-generated groupoid arises in this way. A loop G is a groupoid whose 
multiplication table contains every element in each row and in each column; 
clearly, this will be the case iff M(G) is a group. Equivalently, a loop is a 
groupoid that is left and right cancellative, i.e. ab = ac implies b = c and 

ba = ca implies b = c, for any a, b, c G G. 
We now wish to use groupoids to recognize subsets of ^4*; note that if G 

is not associative, the notion of a morphism from A* to G is not well-defined. 
We say that the language L C A* is recognized by the groupoid G if there 
exist an alphabetic morphism <j> : A* ->• G* and a subset F of G such that 
L = {x G A* : G((j>{x)) D F ^ 0}, where G(0(a:)) is the set of elements of G 
obtained by evaluating the string <j>{x) of G* in all possible ways. Note that if 
G is associative, there is only one way of evaluating <f>(x) and we are back to the 
definition given for monoids. We will say that L C A* is a loop language iff L can 
be recognized by a loop. In terms of congruences, the groupoid G recognizes the 
language L iff there exist an ^-generated subgroupoid of G isomorphic to A^/a 
and a subset F of this subgroupoid such that x G L iff there is some tree t such 
that [(t, x)]a is in F. One pleasant feature of this notion of language recognition 

is 

Lemma 2.1 [5] L is recognizable by a finite groupoid iff L is context-free. 

The finite group topology on A* is the smallest topology such that every 
morphism from A* onto a finite group is continuous. It is equivalent to say 
that, the group languages form a basis for this topology. It was first introduced 
by Hall [13] for the free group, and by Reutenauer for the free monoid [21, 22]. 
Connections were soon discovered between some classical problems about finite 
monoids and computing the closure of a given regular language for this topology 
[17, 18]; it thus became an important question to characterize which regular 
languages are open or closed. A sequence of deep results [2, 3] finally led to the 
following combinatorial characterization for the regular open sets [19]. 

Lemma 2.2 A regular language is open iff it is a finite union of languages of the 

form Laa-iLi ... akLk where the at 's are letters and the Lt 's are group languages. 
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3    Recognizing languages with loops 

The aim ofthis section is to prove that any language of the form B'aYB' ■ ■ ■ B'akB", 
where B is a finite alphabet and a; G B, can be recognized by a finite loop. This 

result will be of great help in proving Theorem 5.3. 
In general, it is not an easy task to construct directly a loop B that recognizes 

a given language L. What can be done instead, is to construct a partially defined 
loop G that recognizes L, and then, embed G into a loop B. This motivates the 

following definition. 
A groupoid G with an absorbing element, denoted 0, is weakly cancellative if 

for any a,x,y <EG, the two properties (ax = ay ^ 0) => (x = y) and (xa = ya ^ 
0) => (x = y) are satisfied. 

The Cayley table of a weakly cancellative groupoid is such that in each row 
and each column no nonzero element appears twice. Hence, the nonzero elements 
of such a groupoid form a partially defined groupoid which we call an incomplete 

loop. This terminology is justified by the following lemma. 

Lemma 3.1 ([11]) An incomplete loop containing n elements can be embedded 

in a loop containing t elements, for any t >2n. n 

Recall that if Q is a loop and w G Q+ then Q(w) is the set of elements that 
result from evaluating w using all possible bracketings. 

Lemma 3.2 Let Q be a loop and let u,v,w G Q+■    Then,  the cardinality of 

Q(uwv) is at least as large as that of Q(w). 

Weakly cancellative groupoids will be useful to prove that a language can be 
recognized by a loop. This is a consequence of the following lemma. 

Lemma 3.3 Any language recognized by a weakly cancellative groupoid, with 0 
in the accepting set, is also recognized by a loop. 

Proof. Let G be a weakly cancellative groupoid, and let L C G* be a 
language recognized by G. Assume that 0 belongs to the accepting set. Let 
B - G - {0}, let ßW be the free groupoid over the set B, and let ß be the 
cardinality of B. We also denote by B the incomplete loop induced by the 

elements of B in G. 
We will define a sequence of incomplete loops Bit for i > 0. Let B0 = B and 

define Bi+i from B, as follows. All products defined in Bt are defined identically 
in Bi+i. Moreover, for any undefined product a ■ b in Bt, we define a ■ b = (ab) 

in Bi+1 

Remark. Observe that for any a,b G B, if the product ab is not defined in 
Bk, then c = ab is a new element in Bk+1. Moreover, for any d G Bk+i, the 
products cd and dc are not defined in Bk+\. Those products generate two new 
elements in Bk+2, and so on. This and Lemma 3.2 imply that for any u,v G B* 
such that k = |u| + |u|, Bk+i(uabv) contains at least k elements. 
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Let k = ß+2 and let Bk be embedded in a finite loop H. We will argue that 
L is recognized by H with the accepting set containing all nonzero elements of 
the accepting set of G plus all elements not in B. 

If«) G B* can be evaluated to a nonzero element in G, then w can be evaluated 
to the same element in H using the same parenthesization. This shows that if 
«; G B* cannot be evaluated to 0 in G, then w is accepted by G if and only if it 

is accepted by H. 
Suppose that w can be evaluated to 0 in G. Then, there exists a segment u 

of w of minimal length that can be evaluated to 0, i.e. w = sut, 0 G G(u) and 
for any strict segment v of u, 0 £ G(u). So, there exist «i, «2 G 5+ and a, b G 5 
such that M = «i«2l a G G(ui), 6 G G(w2) and ab = 0 in G, but a^O and 
6^0. This implies that w can be partially evaluated to sabt both in G and in 
H. Now, there are two possibilities. First, if \s\ + \t\< k, then s(ab)t can only be 
evaluated, in H, to an element in B^ — B: in this case H accepts w. Otherwise, 
by the above remark, H(w) contains at least ß + 1 different elements, and so, at 
least one of them is not in B. Thus, H accepts w if and only if G accepts w.   □ 

As an example of application of Lemma 3.3, we can show that any cofinite 
language is recognized by a finite loop. Since it is easy to see that no finite 
language can be recognized by a finite loop, the class of loop languages is not 
closed under complement. 

Loops can also recognize languages that are not cofinite and are not recog- 
nized by a group. A simple example is the set OR C {0,1}*, composed of all 
words that contain at least one 1. This language is recognized by U\, the mon- 
oid defined by 00 = 0 and 01 = 10 = 11 = 1. Here, 0 is an identity and 1 
is absorbing. Since U\ is a weakly cancellative groupoid, the language OR can 
be recognized by a finite loop. It is easy to verify that the complement of OR 
cannot be recognized by any finite loop. 

We close this section with a lemma that will play an important role in the 

proof of Theorem 5.3. 

Lemma 3.4 Let A be a finite alphabet and let a\,...,ak be elements of A (k > 
0).  Then Lk = A* ax A* ■ ■ -A* ak A* is recognized by a finite loop. 

Proof. The proof is by induction on k. Observe first that L\ = A*a\A* 
can be recognized by the weakly cancellative groupoid U\ discussed above. By 
Lemma 3.3, L\ can also be recognized by a finite loop. 

Let k = i+j, where i,j > 0. Then, there exists a finite loop Qi that recognizes 
Li = A* ax A* ■ ■ ■ A*atA* with the accepting set F, C Qi and there exists a 
finite loop Qj that recognizes Lj = A*ai+XA* ■ ■ ■ A*akA* with the accepting set 

FjQQj- 
Consider the weakly cancellative groupoid Q defined as the loop Qi x Qj 

except that (a,b)(c,d) = 0 whenever a £ Fi and d G Fj.   Then, Q recognizes 
the language Lk  = A*a\A* ■ ■ ■ A*akA* with 0 as the accepting element.   By 
Lemma 3.3, L is also recognized by a finite loop. □ 
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4    Finite loops recognize only open regular lan- 
guages 

In [9], it is shown that finite loops only recognize regular languages. In this 
section we refine this result by showing that only open regular languages can be 
recognized by such algebras. The following can be observed. 

Lemma 4.1 Any language L C A* of the form L0 ■ ■ -Lk, where Li is recognized 

by a finite group, is open. 

To prove the next theorem, we will use the following definition. Let A be an 
alphabet and S a set of variables. A special tree t over A with variables in S is 
a binary tree where each element of S appears exactly once as a label of a leaf. 
We will use special trees in two particular situations: when S contains a single 
variable A"; and when each leaf of t is labeled with a variable in S. In this last 
case we say that t = t(xlt . . ., xn) is a special tree with n leaves. 

Let t be a special tree over A with the variable X and let t' be any tree. We 
denote by t ■ t' the tree obtained when the leaf in t labeled with X is replaced by 
t'. Observe that when t' is also a special tree with variable X, the result is still 

a special tree with variable X. 
Observe also that • is an associative operation. Hence, for any special trees 

*i,..., tk over Q with variable X, the expression ti-t2 tk defines the same 
special tree no matter which parenthesization is used.  This will be denoted by 

Similarly, if s(xi,..., xn) is a special tree with n leaves and t\,...tn are 
arbitrary trees, then s(ti, ...,tn) is the tree obtained by substituting the tree U 

for the leaf labeled with Xi, for all i. 

Theorem 4.2 Finite loops recognize only open regular languages. 

Proof. We will use the technique of [9]. 
Let Q be a finite loop. We define a comb over Q recursively as follows. Any 

a G Q U {e} is a comb. If a G Q and u G Q^ is a comb then w = (au) is also a 
comb. No other element of QW is a comb. Hence, a comb c E Q^ corresponds 
to the left-to-right bracketing of Yield (c). 

Any t G Q^ can be decomposed into t = s(t\,... ,t„), where n > 1, 
s(x\,. . ., xn) is a special tree with n leaves, and t{ is a comb over Q. Let 
comb(i) be the smallest n for which such a decomposition exists. 

We will show that, for any tree t G Q^ , there exists a yield-equivalent tree 
s G Q'*) evaluating to the same element and such that comb(s) is bounded by a 
constant. By Lemma 4.1, this will prove the theorem because the set of words in 
Q* that left-to-right evaluate to a given element forms a language recognized by 
the multiplication group of Q. 

More precisely, we will show that for any tree t G Q^ such that comb(i) > 89, 
where q is the order of Q, we can find a yield-equivalent tree t' G Q^ evaluating 
to the same element as t and such that comb(i') < comb(i). 
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Suppose that t G Q^ is such that comb(t) = n > 8q, and let t = s(ti,..., tn) 
be decomposed as explained above. Since s has more than 8q leaves, it must 
possess a path of length k > 3g. Let the nodes on this path be d0,di,... ,dk, 

where do is the root of s and <f!+i is a child of ds-. 
For 0 < i < q, let s,- be the tree rooted at d3i. Moreover, for 0 < i < q, 

let in be the special tree constructed from s,- by substituting the variable X for 
Sj+i. Hence, for each Vj there exist four indices 1 < a; < /?; < 7,- < 4' < « 
such that the leaves at the left of X in v, are labeled with xai,..., xßi and those 
on its right are labeled with xlit..., £<5,. Moreover, the leaves of sq are labeled 

with £„,,••■, xPq for some 1 < aq < ßq < n. We have s = (UlZo v') ' s<3- where 

t;; = viP(xai,...,xßi,X,xli,...,xsi), and sq = sq(xaq,..., xßq). 

We can thus write: t = (üfco ^')'zg' where zt- = Vi{tai,..., tßt, X,tlit..., tgt) 
and [zq = Sq(taq,...,tßq). 

Let Wi = Yield (U) and define Z,- to be the comb whose yield is wai ■ ■ ■ wßi, and 
r; the comb whose yield is wlv ■■•wsi. Then £,• = ((/j-X)r,-) is yield equivalent to 
Zi. Using the fact that our loop is both cancellative and finite, it is easily verified 
(Lemma 7 of [9]) that there exist two integers a and b such that t and t' evaluate to 

<?• the same element, where t' is defined as t' = (Y\i=o Zi) • (Hi=a **)' (Il»=6+i z>)'z< 
We observe that comb(zi) > 3 while comb(i,-) < 2. This implies that comb(t') < 
comb(tf), proving the theorem. 

D 

5    Every regular open language is recognized by 
a finite loop 

In this section, we will conclude the proof of our main result by establishing the 
converse of Theorem 4.2. In order to do so, we will introduce the block product of a 
monoid with a groupoid. If the second operand is also a monoid, our construction 
reduces to the known notion of block product applied to associative structures 
[23, 25], which have proved itself to be extremely useful as a decomposition 
tool for finite monoids. Note that the block product is a two-sided version of 
the classical notion of wreath product: our construction below can be trivially 
modified to define the wreath product of a monoid with a groupoid. Actually, 
the wreath product is sufficient to prove our main result. We choose to give the 
more general construction as the potential for future applications seems more 
important. 

Let a be a finite-index congruence on A*, let B be the finite alphabet A*/a x 
A x A* /a and let ß be a finite-index congruence on the free groupoid B^*>. 
For any u,v in A*, we define the mapping 0U|„ : A* -¥ B* by 6U)V{e) — e and 
9u,v{a\ . . .a.n) = 6i . . .&„, where bt — ([uai . . .aj_i]a,a,-, [a,-+i . . .anv]a). 

We now define a binary relation on A1-*'; 
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(t,x) ßOa {s,y)    iff    1) x a y  and 

2) (t,eUiV(x))ß{s,9u,v(y))   (orallu,veA* 

Lemma 5.1 ßO a is a congruence of finite index on A^*>. 

Proof. That it is an equivalence of finite index is easily checked. Suppose 
now that. (*i,zi) ßUa (si,yi) and (t2,x2) ß^a (s2,y2); we want to show that 

{t\U,xix2) ß^a (sis2,j/ij/2)- 
Since a is a congruence, we have that xix2ayiy2. Fix now u and v arbitrarily 

in .4*; we have 

(t1t2,Ou,v(XiX2))     =     {ti,0u,X2v(xi)){t2,0UXl>v{x2)) 

-      {tl,du,y2v{xi)){t2,euyuV(x2)) 

ß    (si,8Uiy2V{yi))(s2,6UyuV(y2)) 

=    (sis2,9UtV(yiy2))- 

The next lemma says that the cancellation properties are preserved by the 

block product. 

Lemma 5.2 If A*/a is a group and B^/ß is a loop, then A^/ßDa is a loop. 

Proof. It is clear that the /?Ga-class containing the identity of A^ is 
an identity for the groupoid A^/ßOa. We next show that ßUa is a left- 
cancellative congruence, i.e. (t,x)(s, y)ßOa (t, x){q, z) implies (s, y)ßOa (g, z). 

The hypothesis says that (ts, xy) ß G a (tq, xz); hence xy a xz and because a 
is a group congruence, hence left-cancellative, we deduce y a z. 

Consider some arbitrary u and v in A*: we now need to show that 
{s,0u,v{y))ß{q,Qu,v{z))- Choose w e A* suchthat wxau (such w exists since a is 
a group congruence). The hypothesis implies that [ts,9WiV(xy)) ß (tq,9WtV(xz)), 
hence (t,0w,yv{x)){s,ßwx,v(y)) ß {t,9WiZV(x)){q,9WX}V(z)). Since y and z are a- 
congruent, we have {t,9w>yv(x)) = (t,9WtZV{x)). Since ß is a left cancellative 
congruence, we infer (s,9WXjV(y)) ß (q,9WXtV(z)), i.e. (s,9UiV(y)) ß (g,0U|„(z)). 

Hence (s,y) /?□ a (q, z). 
By symmetry, we get that ß □ a is right cancellative as well, so that A^*'/ß □ a 

is a loop. E 

We are now ready to complete the proof of our main result. 

Theorem 5.3  If L C A*  is a regular open language,  then L can be recognized 

by a finite loop. 
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Proof. Suppose that L is an open regular language; by Theorem 2.2, L is a 
finite union of languages of the form L0axLi .. .akLk, where each Li is recognized 
by a group. Using the classical construction for the associative case, it is readily 
verified that the class of loop languages is closed under union, so it suffices to 
prove that any language of the above form is recognized by a loop. If k = 0, the 

claim is clearly true. 
Let now k > 1; without loss of generality we can assume that all L, 's are 

recognized by the same group G, e.g. by taking the direct product of the syntactic 
monoid of each language Lt. Let G = A* /a, so that each £,,- is a union of a- 
classes; since concatenation distributes over union, and using once more closure 
under union, it suffices to consider the case where each U is a single class of the 
congruence, i.e. L; = [«,-]„ for some u{ in A*. Let B = A*/a x A x A*/a and 
H = B^/ß be the loop recognizing the language B*biB* . ..B*bkB*, as given 

by lemma 3.4, where 6; = ([M0«I«I ••■ «i-i]o, ai, Kas+iu;+i ■• •«*]<*)■ We claim 
that L is recognized by the loop A^/ßOa; in fact we will show that x G L iff 
there is some tree t with \x\ leaves such that [(t, 9eiC(x))]ß is an accepting element 

of H. 
Let first x be in L; thus x = x0aixi . . .akxk, with x{ a u, for each i. Thus 

6c,e{x) is in B*biB* . ..bkB*, hence for some tree t, [(t, 6iti(x)))ß is an accepting 

element of H. 
Conversely, suppose x G A* is such that, for some tree t, [(t,0eie(x))]p is an 

accepting element of if. Thus (t,0et£(x)) = j/o&ij/i • --hyk, where 
bj = ([«oaiui •. .Wj_i]a, a,-, [wiai+iu,-+i . ..«*;]«). Therefore x = x0ai*i • ■ -akxk) 

where a;0aia;i .. .xt-i a u0ai«i • • -«fc-i for i = 1,..., fc, and also xk a uk. Using 
the fact that a is a group congruence, we deduce xt a u,- for each i, so that a- is 

in L. D 

6     Conclusion 

Our characterization has a number of consequences, from the point of view of 
algebra, language theory and computational complexity. 

First, we get a new combinatorial description of the regular open languages. 

Corollary 6.1  Any regular open language is a finite union of languages of the 
form L\ . . .Lk, where each Li is a group language. 

Proof. By the proof of theorem 4.2, every loop language is of this form, 
hence by Theorem 5.3, this is also true for regular open languages. □ 

It is also appropriate to note the following structural representation that we 
get for loops. By the proof of theorem 4.2, we see that a loop G recognizes 
only regular open languages where the group languages that are needed are 
recognizable by the multiplication group of G. By the proof of theorem 5.3, any 
language of the form L0aiLi ... akLk, where each L{ is recognized by the group 
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M{G), can be recognized by a loop of the form A^/ßOa, where A*/a ~ M{G) 
and ß is the loop congruence induced by the construction of Lemma 3.4. Thus, 
in some sense, computing over the loop G is similar to computing over the group 
M(G), the non-associativity being taken care of by the very simple loops given 
in 3.4. It would be very interesting to see to what extent this phenomenon holds 

for groupoids in general. 
Another consequence of this work is that the computational complexity of 

testing membership in a language recognized by a loop G can be infered from the 
algebraic structure of its multiplication group M(G). Any language L recognized 
by G is a finite union of languages of the form LiL2---Lk where the Li's are 
recognized by M(G). When M{G) is solvable, each of these languages is in 
ACC° ([4]), where ACC° is the class of languages that are recognized by a 
family polynomial-size constant-depth Boolean circuits using NOT, AND, OR, 
and modular gates. In such a case, it is easy to see that L is also in ACC . This 
shows the following corollary. 

Corollary 6.2 Any language recognized by a loop whose multiplication group is 

solvable belongs to ACC . 

Note that when G is a group, it can be shown that M{G) is solvable precisely 
when G is solvable. Hence, the above result naturally fits in the structural com- 
plexity framework of [4]. 

It is remarkable that non-associative algebras such as loops could be related 
to such natural class of languages as the regular open languages. Our generaliz- 
ation of the block product yields a loop decomposition that shows that absence 
of associativity does not necessarily imply absence of structure. This is also 
confirmed by other recent works, such as [6]. We strongly believe that a better 
understanding of non-associative algebras, in particular finite groupoids, could 
have important consequences in language theory and computational complexity. 
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Abstract. We present a PCF-like calculus having real numbers as a 
basic data type. The calculus is defined by its denotational semantics. 
We prove the universality of the calculus (i.e. every computable element 
is definable). We address the general problem of providing an operational 
semantics to calculi for the real numbers. We present a possible solution 
based on a new representation for the real numbers. 
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operational semantics, abstract data types. 

1    Introduction 

The aim of this work is to relate two different approaches to computability on 
real numbers: a practical approach based on programming languages, and a more 
theoretical one based on domain theory. Several implementations of exact com- 
putations on real numbers have been proposed so far ([BC90], [MM], [Vui88]). 
In these works, real numbers are represented by programs generating sequences 
of discrete elements, e.g. digits. On the other hand, different theoretical works 
on computability on real numbers are based on domain theory: [Lac59,ML70], 
[EE96], [DG96]. In all these works domains of approximations for the real num- 
bers are considered. A point in these domains represents either a real number or 
the approximation of a real number. Approximated reals are normally described 
by intervals of the real line. 

The relation existing between the two approaches is described in several steps. 
First we present a domain of approximations which is directly derived from a 
representation for the real number used in some implementations of the exact 
real number computation ([BC90,MM]). From this domain of approximations we 
derive a calculus for the real numbers. The calculus we present is an extension 
of PCF having the real numbers as ground type. We call it Cr. We define Cr 

giving its denotational semantics. 
The next natural step consists in giving an operational semantics to the cal- 

culus, possibly using the representation for the real numbers we start with. If 
this would be possible, we will have established a close connection between the 

* Work partially supported by an EPSRC grant: "Techniques of Real Number Com- 
putation" at Imperial College of Science, Technology and Medicine, London and by 
EEC/HCM Network "Lambda Calcul Type". 
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domain of approximations for the real numbers and the implementations. We will 
have a calculus that is for many aspect similar to the calculi used in the imple- 
mentations and whose terms can be directly interpreted in the approximations 
domain. Unfortunately we prove that it is impossible to define the operational 
semantics in this way. We prove this negative result in a general manner, the im- 
possibility holds not only if we consider the particular representation for the real 
numbers we chose, the domain of approximations obtained from it and the cal- 
culus Cr. The negative result holds for a large class of representations, domains, 
and calculi. 

Finally we define an operational semantics for Cr. In order to do this how- 
ever we need to introduce a new representation for the real numbers. This new 
representation is quite different from the classical ones, in it real numbers can 
be represented also by sequences of digits undefined on some elements. In order 
to compute with this new representation is absolutely necessary to use parallel 
operators. The use of parallel operators is the price we need to pay to have a 
faithful calculus for the real numbers. 

Acknowledgements: I would like to thank Abbas Edalat, Martin Escardo, 
Peter Potts and Michael Smith for several discussions on the subject. 

2    Real Number Computation in PCF 

We consider the following representation for real numbers: 

Definition 1. A real number x is represented by a computable sequence of 
integers (so, • • ■, Sj,...) such that: 

(i)  Vn . 2sn - 1 < sn+i < 2sn + 1 

[ii) x = [ |nSN I   ™2n    > ~°2n    I 

In this representation a sequence of integers is used to describe a sequence of 
rational intervals. The intervals in the sequence are contained one into the other. 
For practical purposes this representation is quite convenient. It allows to reduce 
exact real number computation to computation on integers. In this way it is 
possible to exploit the implementation of integer arithmetic already available on 
computers. In [BCR086] and [MM] a similar representation has been used to 
develop quite efficient algorithms for the arithmetic operations. 

We refer to [Plo77] for a definition of PCF. In order to represent real numbers 
in PCF it is sufficient to translate in PCF the representation of Definition 1. In 
the following, given a type a, Ca

PA+3 indicates the set of closed terms in £PA+3 

having type a. 

Definition 2. A partial representation function Evaljj : £-PA+3 —*" IR is defined 
by: EvalR(Mt_>1) = x if there exists a sequence of integers s such that: 
(i) VneN.Eval(M(^tn)) = s„; 
(ii) Vn. 2sn - 1 < sn+i < 2sn + 1 

A real number x is said C-computable, if belongs to the image of the Eval«. 
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We indicate with ffi/ the set of the /^-computable real numbers. The definition 
of computability can be extended to functions on real numbers. 

Definition 3. The function EvalR : £^+3+('~K) ~" (^ ~+ ^) is defined by: 

EvalR(M) = / iff 
Vi G Ki .VW G ££X+3 . EvalR(W) = a; => EvalR(MW) = /(i). 
A function / : !/ -> 1; is said C-computable if belongs to the image of EvalR. 

It is worthwhile to observe that the sequential operators are sufficient to define 
every computable function. That is every ^-computable function on reals can be 
defined by a term not containing the parallel test or the existential quantifier. 
The form of computation presented in this section, is very similar to the one used 
in implementations of exact real number computation and described in [BC90] 
and in [MM]. 

3    A Domain of Approximations for Real Numbers 

In the literature there are several approaches to computability on real numbers 
which use of domain theory. Early works in this ambit are [Lac59], [ML70], 
and [Sco70]. In all these approaches the real line is embedded in a space of 
approximations where a notion of computability can be defined in a natural way. 
Many results concerning the computability theory on real numbers are given in 
these contexts. Here we are going to present a space of approximations that is 
similar in many respects to the ones mentioned above but has two important 
differences. First, we base our construction on the representation of Definition 1. 
As result our space has less approximation points and is more closely related to 
the computation describe in [BC90] and [MM]. A second important difference 
is the following: our space of approximations turns out to be a Scott-domain. 
The other approaches use spaces of approximations that are continuous but not 
algebraic epos. The space of approximations presented here has been extensively 
studied in [DG96]. Here we resume the main results without giving the proofs. 

The domain of approximations defined next is called Reals Domain (RD). We 
present a construction of RD starting with the integer sequence representation 
for real numbers. Let (sj)ieN be a sequence of integers defining a real number x 
according to Definition 1 and let (si)i<n be an initial subsequence. (si)i<n gives 
partial information about the value x. Examining (si)i<n we can deduce that 
the value x is contained in an interval of real numbers. 

Definition 4. Let S be the subset of sequences of integers defined by: 

S = {(si)i<n | Vi < n - 1. 2Si - 1 < si+i < 2Si + 1}. 

The function <j> from S to the set of rational intervals is defined by: 

0((so, si,.. ■, sn)) = [ "2n    ,   "2„    ]) 
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The set S contains the "valid" sequences of integers. The function <f> associates to 
any finite sequence {s{)i<n the interval [a, b] containing the real numbers that can 
be represented by sequences having as initial subsequence (si)i<n. The interval 
[a,b] represents the information contained in the sequence (si)i<n. 

Let (DI, C) denote the partial order formed by the set of rational intervals in 
the image of the function <f>. The order relation C. on DI is the superset relation, 
that is [a, b] C [a',b'] if [a1, b'] C [a,b] (if [a'b'} is a more precise approximation 
of a real number that [a, b]). The set DI forms the base of the domain RD. 

Definition 5. Let RD be the cpo obtained by the ideal completion of {DI, C). 

Proposition 6. RD is a consistently complete oj-algebraic cpo (Scott-domain). 
RD is an effective Scott-domain when we consider the following enumeration of 
finite elements: 
er(0) = ±     er(((n1,n2),n3) + 1) =4- [(m - "2 - l)/2"3, (nx - n2 + l)/2n"]. 
Where ( ) is an effective coding function for pairs of natural numbers. 

The elements of RD can be thought as equivalence classes of (partial) sequences 
of integers. Each equivalence class is composed by sequences containing identical 
information about the real value they approximate. The relationship existing 
between the real line and the infinite elements of RD can be clarified by means 
of following functions: 

Definition 7. A function q-p : RD ->■ V(R) is defined by: 

qp(d)=    f|   [a, b] 
[a,b]ed 

Conversely, three functions e,e~,e+ : K —> RD are defined by: 
e(x) = {[a,b] £ DI \x £ (a, b)} 
e~(x) = {[a, b]eDI\xe (a, 6]}   e+(x) = {[a, b] £ DI | x £ [a, b)} 
where (a, b) indicates the open interval from a to b and (a, b] and [a, b) indicate 
the obvious part open, part closed intervals. 

Proposition 8.   The following statements hold: 
i) for every infinite element d £ RD there exists a real number x such that 
q-p(d) = {x} 
ii) for every real number x, {x} = q-p o e{x) = q-p o e~(x) = qv ° e~(x), 
Hi) for every non-dyadic number x £ E/D, e{x) = e~(x) = e+(x), 
iv) for every dyadic number x £ D, e(x) C e~(x), e(x) c e+(x) and e~(x) is 
not consistent with e+(x), 
v) e(E) U e~(E) U e+(E) is equal to the set of infinite elements of RD. 

We can say that the infinite elements of RD are a close representation of the 
real line, the set of infinite elements in RD looks like the real line except that 
each dyadic number is triplicated. 

In [DG96] it is shown how to solve the problem of multiple representations 
by means of a retract construction. 
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■(0)     e+(0) 

Fig. 1. The diagram representing RD. 

4    PCF Extended with Real Numbers 

In this section we use the domain RD introduced above, to define an extension 
of the language PCF having a ground type for the real numbers. We call Lr 

this extension. We will prove that any computable function on RD is definable 
by a suitable expression in Cr. A programming language similar to Cr has been 
introduced in [DG93]. An extension of PCF based on a different domain of 
approximation for the real numbers has been presented in [Esc96]. 

Compared with the real computation described in Section 2, the real com- 
putation in Cr has several advantages. Given a closed term M G £('-►<■)-►(<■-►<•) 
the value Eva^M)1 can be undefined for several reasons. For example: 
(i) there can be a term N representing a real number such that the sequence of 
((MiV)O),..., ((MN)n),.. . does not define a real number, 
(ii) there can be two terms Ni and N2 defining the same real number and such 
that (MiVi) and {MN2) define different real numbers. 

The language £r is free from these inadequacies. Terms of type r in £r can 
always be interpreted as an (approximated) real and more importantly terms 
of type r -> r preserve the equivalence between different representations of the 
same real number. We can say that £r defines an abstract data type for real 
numbers. It defines a collection of primitive functions on reals which generate 
any other computable function. 

The types of £r are the PCF types extended with a new ground r. The set 
T of type expressions is defined by the grammar: 

a := i\ o a —► r 
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The terms of Cr are the terms of CPA+3 extended with the new constants: 

(-1),   (+1),   (x2),   (-=-2),   PR  : r-+r, 
(< 0)   : r -> o pifr   :  o —> r —^ r —> r, 

We define £r giving its denotational semantics. To this end we use the set of 
Scott-domains, UD = {Da \a £T}, where DL = Z±, D0 = {tt,ff}x, Dr = RD 
and Dfj-^r = [Da —> DT]. 

The denotation of the new constants is the following: 
the constants (+1), (—1), (x2), (-r2) realize the corresponding functions on reals. 

l(+l)Ud) = {[a+l,b+l]\[a,b]ed} 
[{-l)Ud) = {[a-l,b-l]\[a,b]ed} 
[(x2)jp(d) = {[a x 2,6 x 2] | [a,b] Ed A [a x 2,b x 2} e RI} 
[(-2)]p(d)=UM]ed;[a-2,6-2] 

The constant (< 0) tests if a number is smaller or larger than 0. 

{tt if it exists [a, b] £ d, b<0 
ff if it exists [a, b] £ d, 0 < a 
J_  otherwise 

The constant PR defines a kind of projection on the interval [—1,1]. 

{dU I [—1,1]  if d is consistent with J, [—1,1] 
e+(-l) if3[o,6]6d.6<-l 
e-(l) if 3[a, b] £ d.a > 1 

The constant pifr defines a parallel test. 

{d if e = tt 
d'        if e = ff 
dud1  if e = ± 

If the boolean argument is undefined the function [pifr]p gives as output the 
most precise approximation of the second and third argument. 

It is not difficult to prove that for every closed expression M" and environ- 
ment p, lMaJp is a computable element of Da. Next we prove the universality 
of Cr, that is, we prove that every computable functions on RD is definable 
by a suitable term in Cr. In order to do this we present a generalisation of the 
universality theorem for PCF [Plo77, Theorem 5.1]. The generalisation applies 
to any extension of PCF where ground types are denoted by coherent domains. 
The proof in [Plo77] works only for flats domains. An equivalent generalisation 
has already been given in [Str94]. In that work the proof is based on categorical 
arguments and uses as a lemma the original result in [Plo77]. Our proof follows 
the line of the original proof and it is more direct. Some definitions and lemmata 
are necessary here. 
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Definition 9. A subset A of a partial order P is coherent if any pair of elements 
has an upper bound. A coherent domain is a Scott-domain for which any coherent 
subset has an upper bound. 

Coherent domains are closed for many semantics functors. In particular if A 
and D2 are coherent domains then [A ->• D2] is a coherent domain. Moreover 
the domain RD is coherent. 

A fundamental step in the proof of universality consists in showing that for 
every type a it is possible to define three functions, namely, ca, pa and #a. 
Where ca and pa are respectively a test and a projection function for the types 
a, while #a(n){d) cheeks if the element d is inconsistent with the finite element 
ea(n) (where ea is the effective enumeration of the finite elements of the domain 
Da ([Plo77, page 249])). Formally: 

Definition 10. A partial function / : An ->■ ... Dan ->■ AT is definable in 
Cr if there exists a closed term M such that for all di G Ar, ...dn G Ar„ if 
f[di).. • (d„) is defined then [M]p(di)... (d„) = /(di)... (dn). 

Definition 11. Given a coherent-domain Da the function 
cCT : J3j_ -» Dff ->■ £>(,-)■ AT, and the partial functions #CT : Zi -> AT -^ B±, 
Pc : 7Ly_ -T AT -^ Ar are defined by: 

[dx        ifb = tt 

c,(6)(d1)(d2) = { d2 i/6 = fF 
I di n d2 i/ 6 = ± 

#a(n)(d) = <^ 

f ff if n e N, ea (n) C d 
tt if n G N, e0" (n) and d are inconsistent 
undefined if n is a negative number 
J_ otherwise 

J d U e17 (n)    if n G N, d, ea (n) are consistent 
PCT(«)(d) - | uncjefined   otherwise 

Lemma 12. //, in a language extending CPA+3 with new ground types, for every 
ground type r the function cT,pT, #r are definable by some terms pifr ,PT,TT then 
for any other type a the functions ca,pa,ta are definable by some suitable terms 

pif<r, Pa,Ta. 

Lemma 13. // in an extension of the language C for a type a the function p„ 
is definable then every computable element in Da is definable. 

Theorem 14. For every computable element d in Da there exists a closed ex- 
pression M in Cr such that: [M]p = d. 
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5    Operational Semantics, a First Attempt 

In this section we discuss the problem of defining an operational semantics for 
Cr In Section 3 the elements of RD are constructed as equivalence classes of 
partial sequences of integers. One can use functions in [Zx —> Zx] to represent 
sequences of integers and hence elements in RD. Following this approach one 
can use higher order function of [Zj_ —>■ Zx] to represent functions on RD. The 
construction is the following. Let S" be the subset of [Zx —> Zx] defined by, 
S' = {s | Vi e N. ( s{i +1) ^ ± => ( s(0 # ± A 2s(i) -1 < s(i +1) < 2(t) +1 ))} 
the elements of 5" define the partial sequences of digits representing elements in 
RD. Let <£':£"-» i?D be the function, 

Given a function g on #£>, for example, g : RD -» i?D —>■ ÜLD, we say that g is 
represented by a function / : [Zx -» Z J -> [Z± -> ZJ -»■ [Zx -> Zx] if for all 
Sl,*2 6 5', fi(0'(*l))(^(S2)) = 0'(/(*i)(s2)). 

The above representation for functions on .R.D suggests the following ap- 
proach to operational semantics: for each new constant c in Cr one try to find a 
computable function fc on [Zx -> Zx] representing the function [cj. If the func- 
tions /c would exist then a set of closed £p^+g-terms Mc such that ffMcJp = fc, 
would define an operational semantics for £r. The operational semantics would 
be given by the reductions rules c —> Mc. In fact the operational behaviour of Mc 

is in accordance with the denotational semantics of c. Unfortunately this natural 
approach is doomed to failure. In fact the function [pifr]p cannot be represented 
by any functional on integers. We state this negative result in a more general 
setting, considering not only the real number representation of Definition 1 and 
the corresponding domain RD but a large class of real number representations 
and domains of approximations. 

In almost all the representations considered in the literature a real number 
is represented by a sequence of elements of a countable set C. For example C 
can be a set of digits, the set of integers, the set of p-adic rational numbers, the 
set of rational numbers, the set of rational intervals. 

Definition 15. A sequence representation for the real numbers is given by a 
countable set C, a subset S of N —> C and a representation function v : S —> K. 
The set S is the subset of sequences defining real numbers. 

Repeating the construction of Section 3 we map finite sequences to subsets of 
reals. 

Definition 16. Given a sequence representation v : S —> E, its extension to 
partial sequences v : [N —>■ C±] —> V(M), is defined by, 

v(s) = {v(t) \teS,sQt}. 

Given a sequence s and a natural number n we indicate with s \n the partial 
sequence containing the first n elements of s: s\n (m) = s(m) if m < n, 
s\n (m) = X otherwise. In [Wei87, pages 479-482] it has been introduced the 
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notion of admissible representation for real numbers. That definition can be 
reformulated as follows. 

Definition 17. A sequence representation (S,v) is admissible if it satisfies the 
following conditions, 
(i) VsG5.VtGl.3ng N.U(s|n) is contained in an interval having width e, 
(ii) For each real number x there exists a sequence s such that for each n, x is 
contained in the interior of v(s\n). 

Condition (i) states that the function v : S ->• K is continuous, w.r.t. the Cantor 
topology on S and the Euclidean topology on E. Almost all the representation 
functions used in computable analysis are admissible. 

Any sequence representation induces an information order on partial se- 
quences: s is below t in the information order iiv(s) 3 v(t). We have the following 
negative result. 

Theorem 18. For any admissible representation v, and there is no continuous 
functional g : [N ->• Cx] -> [N -» Cj_] -» [N -> C_L] swcft tAat; 
(%) 5 implements addition, that is: for all s,t in S, v(g(s)(t)) = u(s) + u(t)) 
(ii) g respects the induced order relation on partial functions that is: for all 
s,s',t,t' in [N ->  Cx], v(s)  D ü(s')  and v{t)  D v(t')  implies v(g(s){t))  2 
tJ(5(S)(t)). 

The previous theorem implies that, if we use an admissible then the operational 
semantics of Cr cannot be given in terms of computations on sequences. This 
result generalises to any domain derived from an admissible representation and 
to any calculus define on the derived domain. There are two possible solutions 
to this problem. The first one consists in introducing non deterministic or inten- 
sional operators in the language. The second one consists in using representations 
that are not admissible, but that are suitable for real number computations. The 
first approach has been followed in [Esc96], there the operational semantics of a 
language similar to Cr is given using a non deterministic operator. Here we will 
follow the second approach. 

6    An Operational Semantics 

The notations considered so far in the literature represent real numbers using 
sequences that are completely defined. It is possible to represent real numbers 
using sequences that are undefined on some elements. An example is the follow- 
ing. 

Definition 19. A real number x in the interval [-1,1] is represented by a se- 
quence s of digits —1,1 such that: x = Yl,ieN Ilo<j<i sife 

This notation is similar to the binary digit notation. The main differences con- 
sist in the use of the digit -1 instead of the digit 0 and in the fact that in 
this notation the value of a digit affects the weights of all the consecutive dig- 
its. In this notation the real number 0 has two representations: the sequence 
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(-1, -1,1,1,1...) and the sequence (1, -1,1,1,1...). The two representations 
differ just for the first digit. Hence 0 can also be represented by the sequence 
(±,-1,1,1,1...) undefined on the first element. Moreover examining the finite 
initial parts of the incomplete sequence it is possible to determine the number 
represented by it with an arbitrary precision. Similar considerations hold for 
any other dyadic rational number. Every real number that is not rational dyadic 
has exactly one representation. If we allow as possible representations for the 
dyadic rational numbers also the sequences undefined on one element we obtain 
a representation suitable for the real number computation. 

In order to represent the whole real line we consider the following notation. 

Definition 20. A representation function v : (N -> {-1,1}) -► K is defined by: 

v(s) = 8(0) x (k + J2  n   *Ü)/2) 
i>kk<j<i 

where k = min{i \ i > 0, s(i) = —1} 

This is a sort "sign, integer part, mantissa" notation for the real numbers. 
The first digit gives the sign, the next consecutive positive digits determine the 
integer part, the remaining part of the sequence is the mantissa. Also in this case 
every dyadic rational number is represented by two functions that differ just for 
one element and every real number that is not rational dyadic has exactly one 
representation. 

Definition 21. The extension of v to partial functions is the function 
v : (N -> {-1,1}±) -> V(R) defined by: 

v(s) = {v(t) | t:N->{-l,l},»Ct}. 

The set v(s) is an interval if and only if 

Vn.(s(n)t As(n + 1)4,) 
=>Vm< n.s(m)l A s(n + 1) = -1 A Vm > n + l.(s(m)t V s(m) = 1). 

Let S°° denote the set of partial functions s such that v(s) is an interval. S°° 
is a complete partial order. If we repeat the construction of Section 3, with the 
representation v and the set S°° of partial elements we obtained a new domain 
for real numbers. We call the new domain RD'. In this case no pair of elements 
in S°° contain the same information. It follows that S°° and RD' are isomorphic. 
The structures of RD and RD' are quite similar. The main difference consists 
in the fact that RD' contains for each natural number n the intervals [—oo, — n] 
and [n, +oo] and, as a consequence, the infinite points —oo and +oo. 

Proposition 22. There exists an effective embedding-projection pair (e,p) from 
500 to [N -> {-1, 1}JJ, p : [N -> {-1, 1}JJ -> S°° is defined by: 

p(s) = \J{s' e S°° | s' r s} 

e : S°° -> [N ->•{-!, l}j_] ->• S°° is the identity functions. 
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It follows that there exists an effective embedding-projection pair (er,pr) from 
RD' to [Z± -» {tt, ff}±]. The embedding-projection can be extended to the 
functions spaces. 

e<7->r(/) = eTo f oqa 

Qa^rif) =qT°f°ea 

Repeating the considerations presented in Section 5, it is possible to represent 
elements in RD' by theirs embeddings in [Z± -> {tt,ff}j_] and functions on RD' 
(S°°) by the corresponding embeddings on functions spaces of [Z± -» {tt,ff}_ij. 
Let C be the set of the new constants in Cr, for each ca £ C let Mc° be a term in 
CpA+3 defining the function eCT([c<r]p). By the universality of CPA+3 the terms 
Mc« exists. An operational semantics for Cr can be given adding to the set 
single-step reduction rules for CPA+S the new set of rules {c ->• Mc \ c € C). 
For lack of space we do not present the actual set of rules. 
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Abstract. In the 1980's, Bennett introduced computational depth as a 
formal measure of the amount of computational history that is evident 
in an object's structure. In particular, Bennett identified the classes of 
weakly deep and strongly deep sequences, and showed that the halting 
problem is strongly deep. Juedes, Lathrop, and Lutz subsequently ex- 
tended this result by defining the class of weakly useful sequences, and 
proving that every weakly useful sequence is strongly deep. 
The present paper investigates refinements of Bennett's notions of weak 
and strong depth, called recursively weak depth (introduced by Fenner, 
Lutz and Mayordomo) and recursively strong depth (introduced here). It 
is argued that these refinements naturally capture Bennett's idea that 
deep objects are those which "contain internal evidence of a nontrivial 
causal history." The fundamental properties of recursive computational 
depth are developed, and it is shown that the recursively weakly (re- 
spectively, strongly) deep sequences form a proper subclass of the class 
of weakly (respectively, strongly) deep sequences. The above-mentioned 
theorem of Juedes, Lathrop, and Lutz is then strengthened by proving 
that every weakly useful sequence is recursively strongly deep. It follows 
from these results that not every strongly deep sequence is weakly useful, 
thereby answering a question posed by Juedes. 

1    Introduction 

Computational depth was introduced by Bennett [2,3] as a formal measure of 
the amount of computational history that is evident in the structure of a com- 
putational, physical, or biological object. Roughly speaking, if x is an object 
(such as a computer program, a point in a phase space, or a DNA sequence) 
that can be encoded in binary in a natural way — in which case we identify x 
with its encoding — then the computational depth of x is the amount of time 
required for a computation to derive x from its shortest binary description. Like 
Solomonoff [13], Bennett regards a description of z as a formal analog of a sci- 
entific explanation of x. By Occam's razor, then, the shortest description of x 

* This research was supported in part by National Science Foundation Grant CCR- 
9157382, with matching funds from Rockwell, Microware Systems Corporation, and 
Amoco Foundation. 
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is the most plausible explanation of x, and the computational depth of x is the 
amount of time required for an effective process to generate x from its most 
plausible explanation. Bennett thus says that a deep object is "one whose most 
plausible origin, via an effective process, entails a lengthy computation," and, 
more succinctly, that a deep object is one that contains "internal evidence of a 
nontrivial causal history" [3]. 

In order to avoid undue sensitivity to the underlying computational model, 
Bennett's definition of depth refers not only to an object's shortest description, 
but to all descriptions of the object that have nearly minimal length. This is 
achieved by adding a significance parameter to the definition. Specifically, for 
c € N, the computational depth of an object x at significance level c is the time 
required for a computation to derive x from a binary description w that is itself 
compressible by no more than c bits. (That is, every description of 7r consists of 
at least |-7r| — c bits.) 

For (infinite, binary) sequences, Bennett [2,3] introduced two interesting 
depth conditions, strong depth and weak depth. A sequence S is strongly deep if, 
for every computable time bound t: N -» N and every constant c £ N, for all but 
finitely many n 6 N, the ra-bit prefix S[0..n - 1] of S has depth greater than t(n) 
at significance level c. If we regard a description TT from which S[0..n - 1] can be 
derived in at most t(n) computation steps as a t(n)-compression of S[0..n - 1], 
then this says that, for all computable time bounds t and constants c, for all but 
finitely many n, every t(n)-compression of S[0..n - 1] is itself compressible by 
more than c bits. Thus a sequence is strongly deep if no computable time bound 
suffices to compress infinitely many of its prefixes to within a constant number 
of bits of the optimal compression. 

To put the matter more fancifully, no matter how (computably) much time is 
spent looking for inner structure (i.e., basis for compression) in a strongly deep 
sequence, an unbounded quantity of such inner structure remains undiscovered. 
A strongly deep sequence is thus analogous to a great work of literature for which 
no number of readings suffices to exhaust its value. 

It was shown by Bennett [3] (and also in [7]) that no sequence that is either 
decidable or random (i.e., algorithmically random in the sense of Martin-Löf [10]) 
can be strongly deep. However, strongly deep sequences do exist. For example, 
Bennett [3] noted that K, the diagonal halting problem, is strongly deep. This 
is because K, unlike a decidable or random sequence, can be used (as an oracle) 
to decide any decidable sequence within a computable (in fact, polynomial) time 
bound that does not depend on the sequence. 

This relationship between depth and usefulness (as an oracle) was investi- 
gated more explicitly and generally by Juedes, Lathrop, and Lutz [7], who defined 
strong and weak usefulness conditions for sequences. A sequence S is strongly 
useful if there is a fixed computable time bound t : N -» N such that the set 
DTIMES(£), consisting of all sequences that can be decided in t(n) time using 
the oracle S, contains every decidable sequence, i.e., REC C DTIMEs(i), where 
REC is the set of all decidable sequences. A sequence S is weakly useful if there 
is a fixed computable time bound t: N -» N such that the set DTIMEs(i) does 
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not have measure 0 in REC, i.e., DTIME5(£) f~l REC is a nonnegligible subset of 
REC in the sense of the recursive case of the resource-bounded measure theory 
developed by Lutz [9]. That is, S is weakly useful if a nonnegligible set of decid- 
able sequences can be decided within a computable time bound that may depend 
on S but does not depend on the sequence being decided. By the above remark, 
K is strongly useful. It is evident that every strongly useful sequence is weakly 
useful, and Fenner, Lutz, and Mayordomo [4] have shown that the converse does 
not hold, so the set of strongly useful sequences is properly contained in the set 
of weakly useful sequences. 

Juedes, Lathrop, and Lutz [7] proved that every weakly useful sequence is 
strongly deep. This generalized Bennett's observation that K is strongly deep 
and gave formal support to Bennett's informal arguments relating depth and 
usefulness. Strong depth is a necessary condition for weak usefulness. Juedes 
[6] subsequently asked whether the converse is true, i.e., whether strong depth 
actually characterizes weak usefulness. 

In this paper, we show that weakly useful sequences have a strictly stronger 
depth property than strong depth, thereby answering Juedes's question nega- 
tively. In fact, this stronger depth property, a constructive refinement of strong 
depth called recursively strong depth, is the main topic of this paper. 

In the terminology used above to describe strong depth, a sequence S is 
recursively strongly deep (briefly, rec-strongly deep) if, for every computable time 
bound t and constant c, there exists a computable time bound I such that, 
for all but finitely many n, every i(n)-compression of S[0..n - 1] is itself l(n)- 
compressible by more than c bits. It is the existence of this computable time 
bound I that distinguishes rec-strong depth from strong depth. Returning to the 
more fanciful language used earlier, no matter how (computably) much time is 
spent looking for inner structure in a rec-strongly deep sequence, and no matter 
now much additional structure (any constant number of bits) one wishes to find, 
there is always a greater (computable) amount of time that suffices to find that 
much more structure. A rec-strongly deep sequence is thus analogous to a great 
work of literature with the property that, no matter how many times it has 
been read, there is a greater number of readings from which one can derive 
significantly more value. 

In this paper, we establish the existence of sequences that are strongly deep 
but not rec-strongly deep. Such a sequence S must have the following two prop- 
erties. 

(i) There exist a fixed computable time bound t0 : N ->• N and a fixed constant 
Co £ N such that, for every computable time bound I : N —> N, there are 
infinitely many prefixes S[0..n - 1] of S that have £0(«^-compressions that 
are not ^(n)-compressible by Co or more bits. 

(ii) For every constant c e N (no matter now much larger than Co), for all but 
finitely many prefixes S[0..n - 1] of S, every £o(™)-compression of S[0..n - 1] 
is itself compressible by more than c bits. 

By (i), none of the additional compression (beyond c0 bits) promised in (ii) can be 
realized within any computable time bound. Once again comparing a sequence 
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to a work of literature and taking a number of readings as an analogy for a 
computable time bound, a sequence that is strongly deep but not rec-strongly 
deep is analogous to a work of literature for which no number of readings exhausts 
its value, but some number of readings does exhaust all the value that can be 
exhausted by any number of readings. 

Using Bennett's terminology, a rec-strongly deep sequence S shows evidence 
of a nontrivial causal (computational) history in the constructive, incremental 
sense that every explanation of S that can be realized by an effective process of 
computable duration is significantly less plausible than some other explanation 
of S that can also be realized by an effective process of some greater computable 
duration. In contrast, a sequence that is strongly deep but not rec-strongly deep 
has an explanation that (i) can be realized by an effective process of computable 
duration, and (ii) is as plausible as any other explanation that can be realized 
by an effective process of computable duration. Although such a sequence does 
have a more plausible explanation, there is no constructive evidence of this fact. 

None of the above should be taken to imply that rec-strong depth is a better 
(or worse) notion than strong depth. Both notions merit further investigation. 
In the case of rec-strong depth, there are several reasons for this. First, as noted 
above, rec-strongly deep sequences show evidence of a "nontrivial causal his- 
tory" in a natural, constructive, incremental sense. Second, as we show in this 
paper, rec-strong depth enjoys the same useful slow-growth property (and con- 
sequent upward closure under truth-table reductions) that Bennett [3] proved 
for strong depth. Third, as we show in this paper, rec-strong depth can be used 
to separate weak usefulness from strong depth, thereby answering Juedes's ques- 
tion. Fourth, as developed below, rec-strong depth is based on a recursive depth 
function (with an additional latency parameter), and therefore provide a use- 
ful model for the design and analysis of implementable depth measures such as 
the compression depth introduced by Lathrop [8]. Fifth, and perhaps most com- 
pelling, we show that the relationships among rec-strong depth, the notion of 
rec-weak depth introduced by Fenner, Lutz and Mayordomo [4], and the notion 
of rec-randomness that has been investigated by Schnorr [11,12], van Lambal- 
gen [14], Lutz [9], Wang [15], and others correspond closely to the relationships 
among strong depth, weak depth and algorithmic randomness. 

This paper is largely self-contained. It can be read independently of [3,7], 
but we assume that [7] is at hand for reference. At the end of this section, we 
introduce a small amount of terminology and notation. Section 2, the main sec- 
tion of this paper, presents rec-strong depth, rec-weak depth, and our results on 
these notions. Section 2 is divided into a preamble and four (sub-)sections. In the 
preamble, we develop the above-mentioned recursive depth function, depthc(w). 
In section 2.1 we use this function to introduce rec-strong depth. In section 2.2 
we prove the deterministic slow growth law for recursive computational depth 
and establish the basic inclusion relations among the weak, strong, rec-weak, 
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and rec-strong depth classes, namely, 

rec-wkDEEP 

rec-strDEEP wkDEEP. 

strDEEP 
<* 

In section 2.3 we prove that all these inclusions are proper by proving that the 
classes rec-wkDEEP and strDEEP are incomparable. Both directions of the in- 
comparability proof are nontrivial. One direction yields the stronger fact that 
rec-random sequences can be strongly deep, while the other direction uses the 
recursive version of the first Borel-Cantelli lemma [9] in a Baire category argu- 
ment. In section 2.4 we prove that every weakly useful sequence is rec-strongly 
deep, thereby answering Juedes's question. Proofs of our results appear in the 
full version of this paper. 

We work in the Cantor space C, consisting of all (infinite, binary) sequences. 
A string w G {0,1}* is a prefix of a sequence S G C, and we write w C. S if there 
is a sequence A G C such that S = wA. For S 6 C and n G N, we write S[n] for 
the nth bit of S and S[0..n - 1] for the n-bit prefix of S. The complement of a 
set X C C is the set Xc = C - X. 

We write REC for the set of all decidable sequences in C and rec for the set 
of all computable (total) functions from {0,1}* to {0,1}*. Identifying strings sn 

with their indices n in the standard enumeration of {0,1}*, we also write rec for 
the set of all computable functions from N to N. 

2    Recursive Computational Depth 

As noted by Bennett [3], the value depthc(w) - the computational depth of a 
string w at significance level c - is not computable from w and c. The following 
definition remedies this at the expense of introducing an additional variable. 

Definition. For w G {0,1}* and c, / G N, the recursive computational depth of 
w at significance level c with latency I is 

depth'c(w) = min h G N   (3?r G PROG*(w)) |TT| < Kl(ir) + cj . 

That is, depth^.(w) is the minimum amount of time required to obtain w from 
a program 7r that cannot itself be obtained in time / from a program that is c 
or more bits shorter than 7r. It is clear that depth'c(w;) is computable from w, 
c, and I; this is why it is called the recursive computational depth. Two other 
properties of depthj.(w;) are immediately evident. For each w G {0,1}* and c£N, 
depthl

c(w) is nondecreasing in I, and lim/_>.oo depthl
c(w) = depthc(w). For each 

w G {0,1}* and I G N, the value depth'c(w) is, like depthc(w), nonincreasing in 
c. 
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2.1     Recursive Depth Classes 

We begin by defining the recursive analogs of the depth classes D* (n) and Dl
g 

introduced in [7]. 

Definition. For t,g,l : N -> N and n G N, define the sets 

D^'(n) = {S G C | depth^(5[0..n - 1]) > t(n)} 

and 

CXI oo 

Ds'=U   flD^(n) = {5GC   (V°°n)5eD^(n)}. 
771=0 n=m 

Note that 

Bl
g' 

l(n) = {S G C I (VTT G PROG'(S[0..n - 1])) #/(n)(7r) < |vr| - </(n)} . 

(It is crucial here that the left-hand side of the inequality is K1^ (IT) , not Kl(ir), 
i.e., that the time bound is l(n), not /(|TT|).) 

Definition. Let t,g : N -> N. A sequence 5 € C is recursively t-deep at sig- 
nificance level g, and we write S G D^rec, if there is a computable function 
I :N->Nsuch that S G D*-'. 

It is clear that, for a\\t,g,l:N^N with I computable, D*-' C D*-rec C D*. 
To define recursively strong depth, we substitute D*>rec for D* in the definition 
of strong depth. 

Definition. A sequence 5 G C is recursively strongly deep (or, briefly, rec- 
strongly deep), and we write S G rec-strDEEP, if for every computable time 
bound t : N -> N and every constant c G N, S G D*'rec. 

We note that every rec-strongly deep sequence is strongly deep. Since REC l~l 
strDEEP = 0 [3] (see also [7]), it follows immediately that no recursive sequence 
can be rec-strongly deep. 

Recall that a sequence S is strongly deep if, for every computable time bound 
t and constant c, all but finitely many prefixes of S can be described at least 
c bits more succinctly without a time bound than with the time bound t. In 
contrast, a sequence S is rec-strongly deep if, for every computable time bound t 
and constant c, there exists a computable time bound / such that all but finitely 
many prefixes of S can be described at least c bits more succinctly with the time 
bound I than with the time bound t. Very informally, a sequence is strongly deep if 
it has more regularity than can be explained by a causal (computational) history 
of any computable duration. For a sequence to be rec-strongly deep, it must also 
be the case that, for every computable duration t there is a larger computable 
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duration I such that more of the sequence's regularity can be explained by a 
causal history of duration I than can be explained by a causal history of duration 
t. 

Our next result states that rec-strongly deep sequences cannot be rec-random. 

Theorem 1. RAND(rec) l~l rec-strDEEP — 0. In fact, there exist a computable 
function t{n) = O(nlogn) and a constant c £ N such that RAND(rec)nD*'rec = 

0. 

Recursively weak depth was introduced by Fenner, Lutz, and Mayordomo 
[4]. We write rec-wkDEEP for the class of all rec-weakly deep sequences. 

2.2     Class Inclusions 

In this section, we establish the basic inclusion relations that hold among the 
weak and strong depth classes defined in [7] and section 2.1. For this and later 
purposes, we need a technical lemma. This result, called the deterministic slow- 
growth law for recursive computational depth, places a quantitative upper bound 
on the ability of a time-bounded oracle Turing machine to amplify the depth of 
its oracle. Details appear in the full version of this paper. 

An easy consequence of the Slow Growth Lemma is the fact that the class 
of rec-strongly deep sequences is (like the class of strongly deep sequences [7]) 
closed upwards under tt-reductions. 

Theorem 2. Let A,B £ C. If B <tt A and B is rec-strongly deep, then A is 
rec-strongly deep. 

We now come to the main result of section 2.2. The following theorem gives 
the inclusion relations that hold among the weak, strong, rec-weak, and rec- 
strong depth classes. 

Theorem 3.   The following diagram of inclusions holds. 

rec-wkDEEP 

rec-strDEEP wkDEEP 

strDEEP 
<* 

2.3     Class Separations 

We now show that all four inclusions in Theorem 3 are proper. It is most efficient 
(and most informative) to prove this by proving the two non-inclusions 

strDEEP g rec-wkDEEP 
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and 

rec-wkDEEP g strDEEP. 

We prove these in succession. 
We prove that strDEEP C rec-wkDEEP by proving the much stronger fact 

that strongly deep sequences can be recursively random. We do this by examining 
the Kolmogorov and the time-bounded Kolmogorov complexities of recursively 
random sequences. 

We first prove that rec-random sequences have very high time-bounded Kol- 
mogorov complexities. 

Theorem 4. Assume that S is rec-random and that t, g : N -> N are computable 
functions with g nondecreasing and unbounded. Then, for all but finitely many 
neN, 

if*(S[0..n - 1]) >n-g(n). 

The function g above may be very slowly growing, e.g., an inverse Acker- 
mann function. Theorem 4 thus says that, for every rec-random sequence S 
and computable time bound t, all but finitely many of the prefixes of S have 
/^-complexities that are nearly as large as their lengths. 

We next show that the situation is very different in the absence of the time 
bound t. 

Definition. A sequence S £ C is ultracompressible if, for every computable, 
nondecreasing, unbounded function g : N -> N, there exists ng e N such that, 
for all n >ng, 

K(S[0..n-l])<K(n)+g(n). (1) 

It is clear that every n-bit string w must satisfy K(w) > K(n) — 0(1). A 
sequence S is thus ultracompressible if, for every computable, nondecreasing, 
unbounded (but perhaps very slowly growing) function g, for all but finitely 
many n, the n-bit prefix of S has if-complexity that is within g(n) bits of the 
minimum possible X-complexity for an n-bit string. 

We now show that a rec-random sequence can be ultracompressible. Simi- 
lar results have been proven by Wang [15] and Ambos-Spies and Wang [1] for 
the monotone Kolmogorov complexities of rec-random sequences. The present 
result is slightly stronger than these results in that it gives a single rec-random se- 
quence S that has property (1) for every computable, nondecreasing, unbounded 
function g. The proof is based in part on a simpler, unpublished construction 
by Gasarch and Lutz [5] of a rec-random sequence that is not algorithmically 
random. 

Theorem 5.   There is a rec-random sequence that is ultracompressible. 
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We now note that rec-random sequences can be strongly deep. 

Theorem 6.  There is a rec-random sequence that is strongly deep. 

Theorem 6 contrasts sharply with Theorem 1 and the fact that RAND n 
strDEEP = 0. There is of course nothing paradoxical in this contrast. It is 
merely a consequence of the strong, quantitative separation of RAND(rec) from 
RAND given by Theorem 5. 

We now have the first of the desired noninclusions. 

Corollary 7. strDEEP £ rec-wkDEEP. 

The following known theorem says that the set of strongly deep sequences is 
small in the sense of Baire category. 

Theorem 8 (Juedes, Lathrop, and Lutz [7]).   The class strDEEP is mea- 
ger. 

We show that rec-wkDEEP £ strDEEP by showing that rec-wkDEEP is 
comeager. Our proof of this fact is somewhat more involved than the proof by 
Juedes, Lathrop, and Lutz [7] that wkDEEP is comeager. 

Theorem 9. For each uniform reducibility F, the class rec-F-deep is rec-comeager, 
hence comeager in REC. 

Theorem 10.   The class rec-wkDEEP is comeager. 

Corollary 11. rec-wkDEEP <£ strDEEP. 

We now have the main result of section 2.3. 

Theorem 12.   The following diagram of proper inclusions holds. 

rec-wkDEEP 

■df" & 

rec-strDEEP wkDEEP 

strDEEP 

By Theorem 12, there exist sequences that are strongly deep, but not rec- 
strongly deep. Let S be such a sequence. Since S is not rec-strongly deep, there 
exist a fixed computable time bound t0 : N ->■ N and a fixed constant c0 G N 
such that, for every computable time bound I : N -> N, there are infinitely many 
prefixes of S that cannot be described c0 bits more succinctly with the time 
bound I than with the time bound to- Nevertheless, since S is strongly deep, it 
must be the case that, for every constant c G N (even when c is much greater 
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than co), all but finitely many prefixes of S can be described at least c bits more 
succinctly without a time bound than with the time bound t0- None of this 
additional succinctness (beyond c0 bits) can be realized within any computable 
time bound; all of it requires greater-than-computable running time. The depth 
of such a sequence S appears not to come from so much from a nontrivial causal 
(computational) history as from something utterly noncomputational. 

If F is a uniform reducibility that is (like all standard reducibilities) reflexive, 
then the measure and category of the class rec-F-DEEP are of some interest. 
First, rec-F-DEEP must be disjoint from RAND(rec), so rec-F-DEEP must be 
a measure 0 subset of C. Also, by Theorem 9, rec-F-DEEP must be comeager. 
Thus, the class rec-F-DEEP is small in the sense of measure, but large in the 
sense of Baire category. This state of affairs is not unusual and would not be 
worth mention, were it not for the fact that the situation changes when we look 
at the measure and category of rec-F-DEEP in REC. By [4] and Theorem 9, 
rec-F-DEEP is large in REC in the senses of both measure and category. The 
class rec-F-DEEP is thus one concerning which measure and category agree in 
REC, but disagree in C. 

2.4    Weakly Useful Sequences 

Juedes, Lathrop, and Lutz [7] defined the class of weakly useful sequences and 
proved that every weakly useful sequence is strongly deep. Fenner, Lutz, and 
Mayordomo [4] subsequently proved that every weakly useful sequence is rec- 
weakly deep. In this section, we strengthen both these results by proving that 
every weakly useful sequence is rec-strongly deep. Our argument closely follows 
that of [7]. 

Definition (Juedes, Lathrop, and Lutz [7]). A sequence A e C is strongly useful, 
and we write A e strUSEFUL, if there is a computable time bound s : N -» N 
such that REC C DTIMEj4(s). A sequence A £ C is weakly useful, and we write 
A € wkUSEFUL, if there is a computable time bound s : N -> N such that 
DTIMEyl(s) does not have measure 0 in REC. 

Thus a sequence is strongly useful if it enables one to solve all decidable 
sequences in some fixed, computable amount of time. A sequence is weakly useful 
if it enables one to solve all elements of a nonnegligible set of decidable sequences 
in some fixed, computable amount of time. 

Recall that the diagonal halting problem is the sequence K whose nth bit is 

K[n) = {Mn{n) halts], 

where M0,Mi,... is a standard enumeration of all deterministic Turing ma- 
chines. It is well-known that K is polynomial-time many-one complete for the 
set of all recursively enumerable subsets of N, so K is strongly useful. 

It is clear that every strongly useful sequence is weakly useful. Fenner, Lutz, 
and Mayordomo [4] used martingale diagonalization to construct a sequence that 
is weakly useful but not strongly useful, so strUSEFUL C wkUSEFUL. 
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We now establish the rec-strong depth of weakly useful sequences. 

Theorem 13. Every weakly useful sequence is rec-strongly deep. 

Juedes [6] asked whether every strongly deep sequence is weakly useful. We 

now answer this question negatively. 

Corollary 14. wkUSEFUL C strDEEP 
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Abstract. We study the computational power of Piecewise Constant 
Derivative (PCD) systems. PCD systems are dynamical systems denned 
by a piecewise constant differential equation and can be considered as 
computational machines working on a continuous space with a continu- 
ous time. We show that the computation time of these machines can be 
measured either as a discrete value, called discrete time, or as a continu- 
ous value, called continuous time. We prove that the languages recognized 
by PCD systems in dimension d in finite continuous time are precisely 
the languages of the d — 2th level of the arithmetical hierarchy. Hence we 
provide a precise characterization of the computational power of purely 
rational PCD systems in continuous time according to their dimension 
and we solve a problem left open by [2]. 

1     Introduction 

There has been recently an increasing interest in the community of control and 
verification theory about hybrid systems. A hybrid system is a system that com- 
bines discrete and continuous dynamics. Hybrid systems can be also be consid- 
ered as computational machines: they can be seen either as machines working on 
a continuous space with a discrete time or as machines working on a continuous 
space with a continuous time. 

The first point of view has been investigated in [1, 2, 4, 5]. In particular, in 
[1, 2, 3] the attention is focused on a very simple type of hybrid systems: Piece- 
wise Constant Derivative Systems (PCD systems) are dynamical systems defined 
by a piecewise constant differential equation. It is shown that the reachability 
problem for PCD systems is decidable in dimension d = 2 and undecidable in 
dimension d > 3 [1, 3] . In [4], the computational power of Piecewise Constant 
Derivative systems is characterized as P/poly in polynomial discrete time, and 
as unbounded in exponential discrete time. 

This paper deals with the second point of view that considers hybrid systems 
as machines that work on a continuous space with a continuous time. The study 
of computational machines that work in a continuous time is only beginning: in 
[6], Moore proposed a recursion theory for computations on the reals in contin- 
uous time. Recently, Asarin and Maler [2] showed, using Zeno's paradox, that 
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every set of the arithmetical hierarchy can be recognized in finite continuous 
time and in finite dimension by a PCD system: every set of the arithmetical 
hierarchy in Ek U /Ifc can be recognized by a rational PCD system in dimension 
5k 4- 1. Unfortunately, no precise characterization of the PCD recognizable sets 
was given in [2]. In this paper, we improve the results of Asarin and Maler and 
we provide a full characterization of the sets recognized by purely rational PCD 
systems: we show that the sets that are recognized by purely rational PCD sys- 
tems in dimension d are precisely the sets of the d - 2th level of the arithmetical 

hierarchy. 
Section 2 is devoted to some general definitions: PCD systems, computations 

on PCD systems, discrete and continuous time. In section 3, we improve 5 times 
the result of Asarin and Maler: any arithmetical set in Ek can be recognized 
in dimension 2 + k. In section 4 we prove that this bound is optimal for purely 
rational PCD systems: no other set can be recognized in that dimension. 

2    Definitions 

A convex polyhedron of Md is any finite intersection of open or closed half spaces 
of Rd. A polyhedron of Md is a finite union of convex polyhedral of M.d. In 
particular, a polyhedron may be unbounded or flat. For V C ffirf, we denote by 
V the topological closure of V. We denote by d the Euclidean distance of Md. A 
rational point of Md is a point of Md with rational coordinates. 

Definition 1 PCD System [1, 2]. A Piecewise Constant Derivative (PCD) 
system, of dimension d is a couple U = {X, f) with X = M.d, f : X -> X, where 
the range of / is a finite set C C X, such that for any c e C (c is called a slope) 
/_1(c) is a finite union of convex polyhedral sets (called regions). A trajectory 
of 7i starting from x0 is a continuous solution to the differential equation id = 
f(x), with initial condition x0, where id denotes the right derivative: that is 
^ : D C K+ ->■ X where D is an interval of 1R+ containing 0, #(0) = x0, and 
W G D,Sd(t) — f($(t)). Trajectory # is said to   continue for ever if D = M+. 

In other words a PCD system consists of partionning the space into convex 
polyhedral regions, and assigning a constant derivative c, called slope, to all the 
points sharing the same region. The trajectories of such systems are broken lines 
with the breakpoints occuring on the boundaries of the regions [2]. See figure 1. 
The signature of a trajectory is the sequence of the regions that are crossed by 
the trajectory. 

Definition2 Rational, purely rational PCD systems. - A PCD system 
is called rational if all the slopes as well as all the polyhedral regions can 
be described using only rational coefficients. 

- A PCD system is called purely rational, if in addition, for all trajectory 
<P starting from a rational point, each time # enters a region in a. point x, 
necessarily x has rational coordinates. 
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Fig. 1. A PCD system in dimension 2. 

Some comments are in order: one must understand that a trajectory $ can 
enter a region either by a discrete transition or by converging to a point of the 
region: see figure 2. Thus, in other words, in a purely rational PCD system any 
converging process converges towards a point with rational coordinates. Note 
that one can construct a rational PCD system of dimension 5 that is not purely 
rational. 

We can say some words on the existence of trajectories in a PCD system: let 
xo G X. We say that x0 is trajectory well-defined if there exists a e > 0 such 
that f(x) = f(x0) for all x G [x0, x0 + e * f(x0)]. It is clear that, for any x0 G X, 
there exists a trajectory starting from xo iff x0 is trajectory well-defined. Given 
a rational PCD system ri, one can effectively compute the set N oEvolution(ri) 
of the points of X that are not trajectory well-defined. See that a trajectory can 
continue for ever iff it does not reach NoEvolution(7i). 

Definitions Computation [2]. - Let ri = (X,f) be a PCD system of di- 
mension d. Let I — [0,1] and let r : N ->■ / be an injective coding func- 
tion, let x1,x° be two distinct points of Rd. A computation of system H = 
(Md, /, 7-, /, xl,x°) on entry n G N is a trajectory that can continue forever 
(defined on all M+) of % = (X, f) starting from (r(n), 0,..., 0). The compu- 
tation is accepting if the trajectory eventually reaches a;1, and refusing if it 
reaches x°. It is assumed that the derivatives at x1 and x° are zero. 

- Language L C N is semi-recognized by H if, for every n G K, there is a 
computation on entry n and the computation is accepting iff n G L. L is 
said to be (fully-)recognized by H when, in addition, this trajectory reaches 
X° iff 77. £L. 

Definition4 Continuous and Discrete time. Let <Pn : M+ —> X be an ac- 
cepting computation on entry n G N. 

- The continuous time Tc(n) of the computation is T = minj^ G M.+/0n(t) = 

- Let T„ = {t/<Pn(t) crosses a boundary of a region at time t}. It is easy to see 
that Tn is a well ordered set. The discrete time Td(n) of the computation is 
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defined as the order type of well ordered set Tn (= the ordinal corresponding 

to Tn). 

Note that Zeno's paradox appears: to a continuous finite time can correspond 

a transfinite discrete time: see figure 2. 

(-1,1) (-1,1/2) 

/ x/ >                  "»V. 

•it/2    x 

\ / 
(1,-1) (1,1) 

Fig. 2. Zeno's paradox: at finite continuous time 5a; = 2.5(a; + x/2 + x/4 + ...) the 
trajectory is in (0,0), but it takes a transfinite discrete time u to reach this point. 

We recall the following definition: 

Definition5 Arithmetical hierarchy [8, 7]. The classes Ek,nk,Ak, for k G 

N, are defined inductively by: 

- E0 is the class of the languages that are recursive. 
- For k > 1, Ek is the class of the languages that are recursively enumerable 

in a set in Ek-i (that is semi-recognized by a Turing machine with an oracle 

in Ek-i) 
- For k G N, Ilk is defined as the class of languages whose complement are in 

Ek, and Ak is defined as Ak = IIkC\Ek. 

Several characterizations of the sets of the arithmetical hierarchy are known: 
see [7, 8]. In particular we will assume the reader familiar with Tarski-Kuratowski 
computations: assume a first order formula F, over some recursive predicates, 
characterizing the elements of a set 5 C N, is given. Then S is in the arithmetical 
hierarchy and the Tarski-Kuratowski algorithm on formula F returns a level of 
the arithmetical hierarchy containing S: see [7, 8] for the full details. 

3    PCD Systems can Recognize Arithmetical Sets 

It was shown in [2] that every set of the arithmetical hierarchy can be recognized 
in finite continuous time: more precisely, it is shown that L £ Ek U IIk can be 
recognized by a PCD system of dimension 5k + 1. Therefore, five dimensions 
are used in [2] to climb each level of the arithmetical hierarchy: one for a timer, 
one used for the divisions by 2, one used to do the homogenization, and two 
dimensions used to go from quantifier elimination to semi-recognition. We show 
here that only one dimension is needed (the one used to do the homogenization), 
and that the construction only requires purely rational PCD systems. 
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Theorem 6.     - Any language L of Uk is semi-recognized by a purely rational 

PCD system, in dimension 2 + k. 
- Any language L of Ak is fully-recognized by a purely rational PCD system 

in dimension 2 + k. 

The proof is rather technical: timers are suppressed by using machines that 
cross a given hyper-plane at regular time, divisions by two are done by reusing 
the variables defining the machines, and the two variables used in [2] to go 
from quantifier elimination to semi-recognition are suppressed by storing some 
information in the variable used to do the homogenization. 

4    PCD Systems Cannot Recognize Any Other Set 

4.1     Local dimension 

We define: 

Fig. 3. From left to right: x* is of local dimension 1+, 2+, 3 in a PCD system of dimen- 
sion 3. 

Definition 7 Local dimension. Let % = {X, /) be a PCD system in dimen- 
sion d. Let x* be a point of X. Let A be a polyhedral subset A C X of maximal 
dimension d - d! (1 < d' < d) such that there exists an open convex polyhedron 
V C X, with x* e A n V, and such that, for any region F of %, F n V / 0 
implies A C F (F is the topological closure of F). 

If d' < d then x* is said to be of local dimension d'+. If d! - d then x* is 
said to be of local dimension dl and we can always_choose V small enough such 
that x* is the only point of local dimension d' in V: see figure 3. 

Note that given a rational PCD system U = (X, /) and k = d' or k = d'+ 

one can effectively compute LocDim{'H, k) defined as the set of the points iEl 
that have a local dimension equals to k. 

The main idea behind definition 7 is given by the following lemma: see figure 

4. 



148 

PCD system H PCD system W 

Fig. 4. Proposition 8: if x* is of local dimension 2+ in a PCD system % of dimension 
3, the projections on P of the trajectories of H in neighborhood V of x* are precisely 
the trajectories of some PCD system %' of dimension 2. 

Proposition 8. Let rt = (X, /) be a PCD system in dimension d. Let x* be a 
point of local dimension (d')+ with d' < d. Call P the affine variety of dimension 
d1 which is the orthogonal of A in x*. It is possible to construct a PCD system 
%' — (X' = Rd',f) in dimension d! such that the trajectories of rt' are the 
orthogonal projections on P of the trajectories ofH in V. 

For any point x*, the corresponding V is denoted by 14«. %', A are respec- 
tively denoted by rix> and Ax>. If d' < d we denote by px- and qx* the functions 
that map all point x £ X onto its orthogonal projection on P and onto its 
orthogonal projection on A respectively. If d' = d, we define px> and qx> as 
respectively the identity function and the null function. We assume the natural 
order 1< 1+ < 2 < 2+ < .... 

Lemma 9. Let % = (X, f) be a PCD system of dimension d. Let $ be a tra- 
jectory of 71 that reaches x* at finite continuous time Tc. Assume that x* is 
of local dimension k = d' or k = (d')+. For any I, denote by Si the set of the 
points x £ X that are reached by <P at some time 0 < t < Tc and that have local 
dimension I. Assume Si = 0, for all I > k. 

- Sk is a finite set. 
- Assume Sk = 0- Fix the origin in x*. Then either S(#-!)+ 2S a finite set 

or there exist y\, y-± G X that are reached by <£, there exists 0 < A < 1 
such thatpx'ivi) = ^Px'ivi) and such that, for all n > 1, <? reaches at a 
time tn < Tc the point yn defined by px*{yn) = ^nPx'(yi) and qx>{yn) = 

?*• (yi) + E"=i Ai(^*(2/2) - ix-(2/1))- 

Proof. Let m < k. We prove first that if Sm is not a finite set, then # reaches 
a point of local dimension > m at some time < Tc: assume that Sm is not a 
finite set. Tm = {t\<P(t) G Sm} is a well ordered set. Denote its elements by 
t'l\q\...,t™,.... Take i£ = supi€Nt?. We have i£ < Tc. Consider 3™ = 
<P(t™). By continuity of <2>, there exists tm < t™ such that t G [*m,C] => ^(0 G 
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Vxm . Take t G [tm,?£>] n ^m- From considerations of dimensions about point 
$(t) of local dimension m in 14S, we get that the local dimension d" of ,-r™ is 
> m. From the definition of i™, we get d" / m. Hence d" > m and our claim is 
proved: if Sm is not a finite set then <2> reaches some x™ of local dimension > m. 

The first assertion of the lemma is an easy consequence of this claim with 

»n. = k. 

For the second assertion, take m = (d' — 1) + , and assume that 5(d-_i)+ is 
not a finite set. From Sk = 0, we must have x™ = x* and <™ = Tc- K k < d 
denote W = 'Ux> else take W = U. Define 0' as ?*.(#). From time im up to 
time Tc> <P' is a trajectory of %' = {X', f) (apply proposition 8 for k < d), 
reaching px- (x*) at time Tc. Let £ be the set of the one-dimensional regions of 
%' that intersect Vx. = px. (Vx>). We claim that each time $' reaches a point of 
,S(d/_!)+, <P' reaches an element of C: if 0' reaches some point x*' € -f of local 
dimension (d - 1)+ at some time t G [tm, Tc], then px> {Ax») is an element of C 

and contains x* . See figure 5. 

L 

Trajectory 

Fig. 5. Proof of lemma 9: here d = d' = 3. £ defined as the set of the one dimensional 
regions that intersect px' (Vx-). C is made of a finite number of segments. Each time 
the trajectory reaches a point of local dimension 2+, it reaches £. If the trajectory 
reaches two times C in a same segment then the trajectory is ultimately cycling. 

Since <P' converges to px> (a;*), since £ is a finite set, since 5(<j/_i)+ is infinite, 
pX'(<P) reaches two times the same element of C in pX'{y\) and pX'{y'i) with 
px.(y2) — Xpx'(yi) for some 0 < A < 1, at some times tyi,ty3 with tm < tVl < 
tyn < Tc. Now see that by definition of Vx. all the regions of?/' intersecting Vx. 
contain px*(x*) in their topological closure. Hence we have f'(x) = f'(px), for 
all x £ Vx.,p G (0,1]. If $'(t) is solution to differential equation xd = f'(x), 
&'(t) — \$'(t/\) is also solution. As a consequence trajectory <£' must reach 
Xlpx> (j/i) for all ??.. From the definition of %' this implies that $ reaches the yn 

of the lemma for all n : see figure 5. 
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4.2     Problems Reach and Conv 

Define the following problems: 

Definition 10 Problems Reachd', Reachd,+ . Let k be either of type k = d' or 
of type k = dl+, where d' is an integer. 

- Instance: A purely rational PCD system % = (X, f) of dimension d, a poly- 
hedral convex subset V C X, a rational polygon a;1 C X, a rational number 
iä«p € Q, a rational number *,-„/ G Q, a rational point ar0 G X. 
Question «Reachk(H,V,XQ,xl ,tinl ,tsup)": "Do all the following conditions 

hold simultaneously: 
• trajectory $ starting from a;0 reaches a:1 at some finite continuous time 

Tc 

• for any 0 < t < Tc, x = $(t) is in V and is of local dimension < k." 
~ Instance: A purely rational PCD system ri - (X, f) of dimension d, a poly- 

hedral convex subset V C X, a rational point x* £ X, a rational number 
tsup G Qi a rational number t,-„/ G Q, a rational point x0 <E X. 
Question "Convk(H,V,x0,x*,tinf,tiup)": "Do all the following conditions 
hold simultaneously: 

• the trajectory <L> starting from x0 reaches point x* at some finite contin- 

uous time Tc 

• x* is of local dimension k and is in V 

• tinf ^ -*■ c S: ^sup 
• for any 0 < t < Tc, x = <t>(t) is in V and is of local dimension < Ar." 

4.3     Case d - 3 

Using topological considerations (the sphere of K3 verifies Jordan Theorem and 

the arguments of [3]) we prove: 

Lemma 11. Let % = (X, f) be a PCD system of dimension d. Let <P be a 
trajectory ofrl of finite continuous time Tc and discrete time Td > OJ converging 
towards x* = <£(TC). Assume that x* is of local dimension < 3+. Then necessarily 
the signature of' $ is ultimately cyclic. 

Lemma 12.   The following problem is decidable: 
Instance: a rational PCD system ri = (X, f) of dimension d, a finite sequence 

of distinct regions (F0, F\,..., Fj) of %, a rational point x0 G X. 
Question: "Does the trajectory <P starting from x0 have a periodic signature 

of type (F0,Fi,..., Fj)w and then reach some point x* G X of local dimension 
< 3+ at some finite continuous time t* " 

Moreover, given a positive instance, one can effectively compute t* and x* as 

a function of the coordinates ofxo. 

With these lemmas, we prove: 
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Theorem 13.   The problems Reach3 and Reach3+ are in Si. 

Proof (sketch). We prove the assertion by providing a Turing machine algorithm 
that (semi-)computes the predicates: to reply to Reach3+(7i, V,x0, x

1, tinf,tsup), 
the general idea is the following: we simulate step by step the evolution of the 
trajectory $ starting from x0. Simultaneously, if we detect that <P crosses for 
the second time a given region, we use lemma 12 to see if the signature of # is 
entering or not an infinite cycle. If it is so, still by lemma 12, we compute directly 
the limit of the cycle x* and the corresponding time t* and the simulation goes 
on directly from new position x* and time t*. We stop if we reach x1 or the 
complement of V, or if the time reaches a value greater than tsup. From lemma 
9, we know that every point of local dimension k = 3 or k = 3+ can only be 
reached using a. finite number of points of local dimension k. From lemma 11 
each such point x of local dimension k is reached by a cyclic signature and is 

dropped by the algorithm. 

4.4     Case d > 4 

We generalize theorem 13 to higher dimensions. We prove first: 

Lemma 14. Let d' > 4. Assume that Reach(d'-i)+ G %P and that Reach(di_2)+ G 
Sq for some integers p,q. Then 

- ConVd'  G Emax{p,q+2)- 
- Convd>+ G 5m(1I(Pi9+2). 

Proof Denote by B(x*, 1/ni) the ball of radius 1/ni centered in x* for the norm 
of the maximum. For a subset U C X, denote its complement by Uc. Let k = d' 

or k = d    . We claim: 

ConvkCH, V,x0,x*,tinf,tsup) 
O     x* G LocDim.(7i,k)  A x* G V A tinj < tsup 

A3j/i eQd3t.i,t2 GQ 2/1 G Vx-   A  Reach{d,_1)+(U,V,x0,yi,ti,t2) 

32/2 GQd3i3,<4GQ 3AGM+ 
( Reach(d,_!)+(%, V C\VX>, j/i, y2,t3, U) 

Px'{V2) - *Px>(yi) 
x< 1 

t'2 + /Ji = i  "^4 5: ^sup 
lfe*(yi) + Efci *''(?*• (2/2) - ix-{yi)) = ?*••'*" 

A   < 

Wni GN -Reac/).(d,_2)+(^,l/,2/i,5(a:*,l/ni),^n/-ii,/ sup h) 

Assume that we have a positive instance to formula Conv^: use the notations 
of definition 10. Denote by S the set of the points that are reached by <P before 
time Tc and that have local dimension (d' - 1)+. Since <P converges to x*, there 
must exist an j/i = ${tyi) G Vx*, tyi < Tc that is reached by <P, and such that 
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<P stays in Vx> between time tVl and time Tc. y\ is reached using points of local 
dimension < (d' - 1)+. If S is not a finite set, by lemma 9 the first clause of the 
disjunction is true. Assume now that S is a finite set: we can assume that tyi is 
chosen big enough such that # does not reach any point of S between time tyi 

and time Tc. For all n\ G N we get that the trajectory starting from j/i reaches 
B(xt, 1/ni) using only points of local dimension < (d' - 2)+. Hence the second 
clause of the disjunction is true. 

Conversely, assume that the right hand side of the formula is true. If the first 
clause of the disjunction is true, the trajectory is cycling and the formula Convk 

should be true. Assume now that the second clause is true. For all «i G N, we get 
that there exists tni such that $(tni) G B(x*, l/«i). Denote Tc = sup„l€Ntni. 
From the continuity of 0 we get that1 #(TC) = x*. Hence # reaches x* of local 

dimension k and formula Convk must be true. 
The result is now immediate by applying the Tarski-Kuratowski algorithm 

on the formula [8]. 

We also prove in a similar way: 

Lemma 15. Let d' > 4. Assume Reach(di_1)+ G Ep for some integer p. Then 

Convd' G Sp+i- 

Proof (sketch). For a point x* G X of local dimension d, define Outx. as the 
set of the points x G X such that the trajectory starting from x intersects the 
complement of Vx> at a discrete time less or equal to one. We prove that, now, 
the following formula holds: 

Convd'CH, V,x0,x*,tinf,tsup) 
<£>     x* G LocDim{%,k)  A x* G V A tinf < tsup  A dimension{%) = a" 

A 3t/! eQd 3ti,t2 eQyi e Vx-   A Reach(d,_l)+{U,V,xa,yi,ti,t2) 
Reach^d,_^+{H,X,yi,X,tinf -ti,tinf - ti + 1) 

, -<Reach{dl_i)+{'H, X, yi,VcL) NoEvolution(n) U Outx., 0,) 
^Reach^d,^i)+CH,X,yi,X,tSUp — t2,tSuP — h + 1) 

tsup) 

We get: 

Theorem 16. Let d1 > 3. 

- Reachji is in £d'-2- 
- Reachdi+ is in Ed'-i if d' is even. 
- Reachdi+ is in Ed'-2 if d' is odd. 

Proof The assertion is proved by recurrence over d' using theorem 13, lemmas 
15 and 14, by Tarski-Kuratowski and the fact that we have for k = d' or k = d!   : 

1 Note that if function $ is not defined on value Tc, since $ is continuous with a 
bounded right derivative, # can always be extended to a continuous functions defined 
on value Tc. 
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ReachkCH, V,x0, x
1 ,ti„f,tsup) 

<£>     fieac/i(d/_i)+('H, V,xo,x1,tinf,tSUp) 
V 3?7, € N 3 < x*0, x\, x*2,..., i* >£ Qd 3 < t0, ■ ■ ■, K > 

3 < t0,..., tn > 
' x*0 = x0 

VO < i < n Convk{U,V,x*^x*^,^^) 
<   Reachid,_l)+{'H,V,x*n,x

l,tn,tl
n) 

to + ti + ... + tn> tinf 

([l + ^ + '-'+'n  — '■sup 

By Tarski-Kuratowski on formula n Gio3<iGN Reachd(7i,X, r{n), a:1, 0, ii), 

we get the main result of this section: 

Corollary 17.     - If L is semi-recognized by a purely rational PCD system of 

dimension d, then L £ Sd-2- 
- If L is recognized by a purely rational PCD system of dimension d, then 

L £ <4d-2- 

And by using theorem 6: 

Corollary 18. - The languages that are semi-recognized by purely rational 
PCD systems of dimension d in finite continuous time are precisely the lan- 

guages of Sd-2 
- The languages that are recognized by purely rational PCD systems of dimen- 

sion d in finite continuous time are precisely the languages of Ad-2 

References 

1. Eugene Asarin and Oded Maler. On some Relations between Dynamical Systems 
and Transition Systems. In Proceedings of ICALP, pages 59-72, 1994. Lecture 
Notes in Computer Science, 820. 

2. Eugene Asarin and Oded Maler. Achilles and the Tortoise Climbing Up the Arith- 
metical Hierarchy. In Proceedings of FSTTCS, pages 471-483, 1995. Lecture Notes 
in Computer Science, 1026. 

3. Eugene Asarin, Oded Maler, and Amir Pnueli. Reachability analysis of dynami- 
cal systems having piecewise-constant derivatives. Theoretical Computer Science, 

138:33-65, 1995. 
4. Olivier Bournez and Michel Cosnard. On the computational power of hybrid and 

dynamical systems.   Theoretical Computer Science, 168(2):417-459, 1996. 
5. Michael S. Branicky. Universal computation and other capabilities of hybrid and 

continuous dynamical systems.  Theoretical Computer Science, 138:67-100, 1995. 
6. Cristopher Moore. Recursion theory on the reals and continuous-time computation. 

Theoretical Computer Science, 162:23-44, 1996. 
7. P. Odifreddi. Classical Recursion Theory, volume 125 of Studies in Logic and the 

foundations of mathematics. Elsevier, 1992. 
8. H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw- 

Hill, 1967. 



Monadic Simultaneous Rigid 22-Unification and 
Related Problems 

Yuri Gurevich1* and Andrei Voronkov2** 

1 EECS Department 
University of Michigan 

Ann Arbor, MI, 48109-2122, USA 
2 Computing Science Department, Uppsala University 

Box 311, S-751 05 Uppsala, Sweden 

Abstract. We study the monadic case of a decision problem know as 
simultaneous rigid ^-unification. We show its equivalence to an exten- 
sion of word equations. We prove decidability and complexity results for 
special cases of this problem. 

1    Introduction 

Simultaneous rigid .©-unification is a combinatorial problem in equational logic 
which is closely connected with some formulations of the Herbrand theorem and 
with automated theorem proving by the tableau method and the connection 
(or mating) method. In this section we define simultaneous rigid ©-unification, 
discuss its connection with several decision problems in logic and survey some 
known results. 

We shall consider equational logic, i.e. logic whose only predicate is the equal- 
ity predicate ~. Let si,ti,... ,sn,tn,s,t be terms. All atomic formulas in equa- 
tional logic are equations, i.e. expressions of the form s ~ t. We do not distinguish 
an equation s ~ t from the equation t ~ s. We write si ~(i,...,sn~f„hs~t 
to denote that the formula V(si~£i A.. .Asn~tn D s~t) is true, i.e. it is provable 
in first-order (classical or intuitionistic) logic. Equivalently, we can say that s 
and t lie in the same class of the congruence induced by {si~£i,..., s„~in}. 

A rigid equation is an expression £ r~v sat, where £ is a finite set of equations. 
The set £ is called the left-hand side of this rigid equation, and the equation s ~ t 
— its right-hand side. A solution to a rigid equation {si~ii,... ,sn~tn} l-y S—t 
is any substitution 6 such that s\6 ~ t\9,... ,sn6 ~ tn6 h sO ~ tö. A system 
of rigid equations is a finite set of rigid equations. A solution to a system of 
rigid equations TZ is any substitution that is a solution to every rigid equation in 
7?-. The problem of solvability of rigid equations is known as rigid E-unification. 
The problem of solvability of systems of rigid equations is known as simultaneous 
rigid E-unification, in the sequel abbreviated as SREU. 

Partially supported by grants from NSF, ONR and the Faculty of Science and Tech- 
nology of Uppsala University. 

** Supported by a TFR grant. 



155 

We shall denote sets of equations by £, systems of rigid equations by 11 and 
rigid equations by R. We shall sometimes write the left-hand side of a rigid 
equation as a sequence of equations, for example x~a hv g(x)~x instead of 
{z~a} hv g{x)~x. 

In [2] it is shown that the decidability of SREU is equivalent to the decid- 
ability of some other fundamental problems, for example the decidability of the 
prenex fragment of intuitionistic logic with equality. We refer to [2, 6] for the 
discussion of these problems. 

Best known (un) decidability results on SREU are the following: (i) SREU 
with ground left-hand sides, two variables and three rigid equation is undecidable 
(Veanes [16]); (ii) SREU with one variable is DEXPTIME-complete (Degtyarev, 
Gurevich, Narendran, Veanes and Voronkov [3]). The last two results imply a 
complete classification of decidable prenex fragments of intuitionistic predicate 
calculus with equality: the 33 fragment is undecidable and the V*3V* fragment 
is decidable. All the above mentioned undecidability results require that the 
signature contain a function symbol of arity > 2. 

The special case of SREU when all function symbols have arity < 1, is called 
monadic SREU. The decidability of monadic SREU is an open problem. The 
following facts are known about monadic SREU (Degtyarev, Matiyasevich and 
Voronkov [4]). 

• The word equation problem is effectively reducible to monadic SREU. (This 
fact shows that if this problem is decidable, its decidability should be uneasy 
to prove.) 

• Monadic SREU with one function symbol is decidable (this fact has a non- 
elementary proof). 

• Monadic SREU is decidable if and only if it is decidable in the signature 
with two function symbols. 

This paper studies monadic SREU. Although the general case remains an 
open problem, we prove its equivalence to a combinatorial problem of words 
defined in Section 5. This problem is defined in terms of ideals on the set of 
pairs of words and called the ideal equation problem. We prove 

Theorem 4 Monadic SREU is decidable if and only if the ideal equation prob- 
lem is decidable. 

We also prove the decidability of some special cases of monadic SREU. In 
Section 4 we prove a result similar to the main result of [3]: 

Theorem 3 Monadic SREU with one variable is PSPACE-complete. 

Plaisted [13] proved that SREU with ground left-hand sides is undecidable. 
The corresponding monadic case is shown to be decidable in Section 3: 

Theorem 2 Monadic SREU with ground left-hand sides is decidable. 
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The complexity of monadic SREU with ground left-hand sides is not known. 
We prove 

Theorem 1 Monadic SREU with one variable and ground left-hand sides is 
PSPACE-hard. 

2    Preliminaries 

In this section we introduce basic definitions concerning terms, equations, words, 
word equations, automata and rewrite rules. We have to define so many concepts 
since it is unreasonable to expect the reader to know everything. We also assert 
some statements proved elsewhere and prove some properties of the introduced 
notions which will be used in subsequent sections. 

The symbol ^ means "equal by definition". 

Terms and equations. The set of all variables of a term t is denoted var{t). A 
term is ground iff it has no variables, i.e. var(t) = 0. The symbol h denotes prov- 
ability in first-order logic. When we write ip\,..., ipn h ip, where ipi,... ,ipn, <p 
are formulas, it means provability of the formula tp1 A... A ipn D ip. Substitutions 
of terms ti,... ,tn for variables x\,... ,xn are denoted {h/xi,... ,tn/xn}. The 
application of such a substitution 0 to a term t, is the operation of simultane- 
ous replacement of all occurrences of Xi by ti. The result of the application is 
the term denoted tB. We shall also apply substitutions to equations and sets of 
equations and use the same notation for the result of the application. 

For any expression E (for example, term, or a set of equations), we denote 
by E^ the expressions obtained from E by the replacement of all occurrences of 
the constant c by a term t. We write s[t] to denote a particular occurrence of a 
subterm t of a term s. 

In this paper, we shall only consider monadic signatures consisting of a finite 
set T of unary function symbols and a finite set C of constants. Such signatures 
are denoted (J7, C). The set of ground terms of this signature is denoted by T^,c) ■ 
We always assume C ^ 0 and hence T(T,C) ¥" $■ F°r anv set of equations £ we de- 
note by T(£) the set of all terms occurring in £ and their subterms. For example, 
if £ = {f(x)~g(c),c~g(f(x))}, then T{£) = {x,f(x),c,g(c),g(f(x))}. 

We shall denote variables by x,y,z, constants by a,b,c,d, function symbols 
by /, g, h, terms by r, s, t and substitutions by 6. 

We shall use the following statement proved in Kozen [9] or Shostak [15]. 

Lemma 1 (Derivability of equations is in PTIME) There is a polynomi- 
al-time algorithm checking, by a given finite set of equations £ and terms s, t, 
whether £ h s ~ t. 

We write £' h £ iff for any equation (s ~ t) 6 £ we have £' h s ~ t. In the 
sequel we shall use the following lemma whose proof is standard. 

Lemma 2 (Lemma on constants) Let £ and £' be sets of equations. For any 
constant c and term t, if £V £', then £\ h £'c. 
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Words and finite automata. This section defines words and finite automata. 
We shall also introduce a notation for monadic terms which allows us to easily 
come from terms to words and back. 

Let T be a finite non-empty set, called the alphabet. Its elements are called 
letters. Words are finite sequences of letters. We denote words by a juxtaposition 
of its letters, as W = axa2 ■ ■ .a„. The natural number n is called the length of 
the word W and denoted \W\. We denote by e the empty word, which is the 
unique word of length zero. The set of all words with letters in T is denoted by 
T*. 

It will be convenient for us to use the alphabet T also as the set of unary 
function symbols of a monadic signature (T, C). Every term s in such a signature 
has the form /i(/2(- ■ • /„(<) • • ■)) where n > °. /i> ■•■./« are unaiT function 
symbols and t is a constant or a variable. We shall denote such a term s in the 
reversed Polish notation, i.e. as tfn... hh- Thus, every term can be represented 
in the form tW, where t is a constant or a variable and W is a word. Similarly, 
any term of the form /i(/2(- ■ ■ /«(*) • • •))> where l is an arbitrary term, will be 
written as tfn.. ■ fif\- 

A finite automaton A on the alphabet T is a quadruple (Q,I,T,E), where 
Q is a finite set, called the set of states, I and T are distinguished subsets of Q, 
called the sets of initial and terminal states, respectively. The setECQxFxQ 

is i/ie sei 0/ edges of A. An edge (p, /, g) is also denoted p -)■ 7. The automaton 
is deterministic iff whenever (p,f,qi) € E and (p,/,^) £ £. then gi = <?2- 

A word fi.-.fn is recognized by an automaton (Q,I,T,E) iff there is a 
/. 

sequence of states q0...qn such that q0 e I, qn e T and ft-i  -V ^ for all 
i e {1,. ■ • ,n}. A set of words is reffwiar iff it is the set of words recognized by 
some automaton. 

The intersection nonemptyness of deterministic finite automata problem is 
the following decision problem. Given any finite set {Ai,..., An} of deterministic 
finite automata, is there a word recognized by each automaton in this set. The 
following statement is proved in Kozen [10]: 

Lemma 3 The intersection nonemptyness of deterministic finite automata prob- 
lem is PSPACE-complete. 

Word equations. In addition to the alphabet T, we shall also consider a count- 
able set V of word variables, denoted u,v,w. A word equation is any expression 
of the form V ~ W, where V, W G {T U V)*. A word substitution is any expres- 
sion a = {Vi/t»i, • • •, Vn/vn), where vt are word variables and Vi are words in 
T*. Its domain, denoted dom(a) is the set {vi,.. .,vn}- The application of such 
a word substitution 9 to a word W € (T U V)*, is the operation of simultaneous 
replacement of all occurrences of Vi by Vi. The result of the application is the 
word denoted Wa. A word substitution a is a solution to a word equation U ~ V 
iff all variables in U, V belong to dom{a) and we have Ua = Va. A system of 
word equations is any finite set of word equations, its solution is any substitu- 
tion solving all equations in the system. Words will be denoted by U,V,W, word 
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variables by u,v,w and word substitutions by p,a,T. 
Makanin [11] proved that word equations are decidable. Analyzing Makanin's 

algorithm, Schultz [14] proves the following result. 

Lemma 4 (Decidability of word equations with regular constraints) 
The problem of solvability of word equations where every word variable U{ ranges 

over a regular set Si, is decidable. 

It is known that the problem of solvability of word equations is NP-hard. No 
good upper bound for the complexity of this problem has been obtained so far, 
it is only known that the problem is in 3-NEXP (Koscielski and Pacholski [7, 8]). 

Equational logic and rigid equations. Let TZ be a system of rigid equations. 
The signature of TZ is defined as the signature consisting of all constants and 
function symbols occurring in TZ; and in addition a fixed constant if TZ contains 
no constants. A solution 9 to TZ is called grounding for TZ iff for every variable x 
occurring in TZ the term x6 is ground. A substitution 6 is called relevant for TZ 
iff for every variable x the term x9 is in the signature of TZ. 

In the sequel, we shall need the following technical property of systems of 
rigid equations. 

Lemma 5 (Existence of relevant grounding solutions) Let TZ be a solv- 
able system of rigid equations. Then there exists a solution 6 toTZ that is ground- 
ing and relevant for TZ. 

We shall introduce one particular kind of rigid equations that will be used as 
a technical tool for proofs in this paper. For any monadic signature (!F,C), any 
variable x and any constant c € C introduce the following rigid equation: 

Gr{Tfi)(x) ^ {d ~ c | d £ C} U {cf ~ c | / <= F} hv x ~ c 

We shall use the following obvious lemma: 

Lemma 6 A substitution 6 is a solution to Gr^ß) (x) iff xB £ T^,c) ■ 

As a consequence, we have 

Lemma 7 For any system TZ of rigid equations there is a system TZ' of rigid 
equations such that for any substitution 9, 9 is a solution to TZ1 if and only if 9 
is a grounding relevant solution to TZ. In addition, TZ' can be found by TZ using 
a polynomial-time algorithm; and TZ' has ground left-hand sides ifTZ has ground 
left-hand sides. 

Proof. Let ii,...,i„ be all variables in 72 and (T,C) be the signature of 72.. Define 
TZ' ^ 72. U {Gr(^riC)(xi) | i £ {1,... ,n}}. Then apply Lemma 6. 
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Rewrite rules. This section introduces a technique standard in the theory of 
ground systems of rewrite rules. However, we shall use ordinary equations instead 
of rewrite rules. 

Introduce an ordering y on terms in T^fi) in the following way. Let > be 
any total ordering on TU C and s = c/i... fm, t = dgi... gn- Then s y t iff one 
of the following conditions is true: 

1. m > n; 
2. m = n and the string c/i... fm is greater than dgi ... gn in the lexicographic 

ordering induced by >. 

The ordering >- is total, noetherian and can be extended to a simplification 
ordering [1]. Some properties of the ordering formulated below are simple con- 
sequence of standard statements in the theory of rewrite systems. Their proofs 
may be found in e.g. [1]. Note that the ordering y depends on the ordering of 
>. In the definitions below we assume that we have chosen a fixed ordering > 
on T U C, and hence y is also fixed. 

Let £,£' be finite sets of ground equations and £ contains distinct equations 
s ~ t and r[s] ~ u. We say that £' is obtained from £ by simplification from 
s ~ t into r[s] ~ u, denoted £ —> £' iff 

£' = {£\ {r[s\ ~ «}) U {r[t] ~ u} 

The reflexive and transitive closure of the relation -> on sets of ground equations 
is denoted by -»*. A set of equations £ is called irreducible iff there exists no £' 
such that £—►£'. 

Let £ be an irreducible set of ground equations. We write t -»£■ t' if there 
exists an equation (r ~ s) E £ such that r y s, and t' is obtained from t by the 
replacement of one occurrence of the subterm r by s. The relation ->■£ is the 
reflexive and transitive closure of ->•£. A term t is called irreducible with respect 
to £ iff there is no term s such that t -t£ s. The normal form of a term t w.r.t. 
£, denoted t \.£, is the term s such that t -*•£ s and s is irreducible w.r.t £. 
The normal form of any term exists and is unique. We shall use the following 
statements which are easy to prove. 

Lemma 8 Let £ be an irreducible set of ground equations and s, t be terms. Then 
£ h s ~ £ if and only if s \.£— t \.£. 

Mixing words and rigid equations. We call a word term, or simply w-term, 
in the signature (T, C) any expression of the form cW such that c € C and 
W E (JFU V)*. A w-equation is any expression cV ~ dW, where cV and dW 
are w-terms. A rigid w-equation is any expression of the form W r-y cV ~ dW, 
where W is a finite set of w-equations, cV and dW are w-terms. A system of 
rigid w-equations is any finite set of rigid w-equations. The signature of a system 
of rigid w-equations is defined similar to that of a system of rigid equations. Sets 
of w-equations will be denoted by W, and sets of rigid w-equations by S. 
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A solution to a rigid w-equation W hy cV ~ dW is any word substitution a 
whose domain contains all word variables in W, V, W such that Wer h cVa ~ 
dWa. A solution to a system S of rigid w-equations is any word substitution 
that is a solution to every rigid w-equation in S. 

Note that a ground w-equation is also an ordinary equation. 
In Lemma 9 below we show that one can consider systems of rigid w-equations 

instead of systems of rigid equations. The following technical lemma is proved 

in [6]: 

Lemma 9 The problem of solvability of systems of rigid w-equations is polyno- 
mial-time reducible to monadic SREU. Monadic SREU is effectively reducible to 
the problem of solvability of systems of rigid w-equations. 

3    Ground left-hand sides 

In this section we prove that monadic SREU with ground left-hand sides is 
decidable and PSPACE-hard. 

SREU with ground left-hand sides is PSPACE-hard. 

Lemma 10 Let A = (Q,I,T,E) be a deterministic finite automaton over T. 
There exists a system TZ of two monadic rigid equations of one variable x with 
the following properties: 

1. TL has ground left-hand sides; 
2. for every solution 9 to TZ we have x6 = cW, where W £ T* and c is a fixed 

constant; 
3. for any word W € T, the substitution {cW/x} is a solution to TZ if and only 

if W is recognized by A. 

In addition, TZ can be effectively constructed from A using a polynomial-time 
algorithm. 

Proof. Without loss of generality we can assume that / consists of one state (see e.g. 
[12]). By renaming states, we can assume that I = {c}. Let F be a unary function 
symbol fresh for T and d be a constant fresh for Q. Define TZ as {Ri, R2}, where 

fii = {pf ~ q I (p 4 q) e E} U {rF ~ d | r 6 T} hv xF ~ d 
R-2 = Gr(T<{c)){x) 

Consider any substitution 8 = {t/x}. By Lemma 6, 9 is a solution to -R2 if and only 
if t has the form cW such that W € T*. Consider when such substitution {cW/x} is 
also a solution to R\. By definition, this means 

{pf ~ q I (p -4 q) 6 E} U {rF ~ d | r € T} I- cWF ~ d (1) 

Since the automaton is deterministic, the left-hand side of (1) is irreducible. Using 
Lemma 8, one can see that (1) holds if and only if W is recognizable by A. Evidently, 
TZ is constructed by A in polynomial time. 
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Lemma 11 The intersection nonemptyness of deterministic finite automata 
■problem is polynomial-time reducible to monadic SREU with one variable and 

ground left-hand sides. 

Proof. Let Ai,...,An be deterministic finite automata. Let Hi, where i G {1,... ,n} 
be the system of rigid equations constructed by A, as in Lemma 10. Define 1Z = 
\Jn

=1 Hi. By Lemma 10, every solution to H has the form {cW/x} and any substitution 
{cW/x} is a solution to H if and only if W is recognized by each Ai. Hence, H is solvable 
if and only if there is a word recognizable by all Ai. Evidently, H is constructed by 
Ai,.. . , An in polynomial time. 

Combining Lemmas 3 and 11 we obtain 

Theorem 1 Monadic SREU with one variable and ground left-hand sides is 

PSPACE-hard. 

Monadic SREU with ground left-hand sides is decidable. A finite set £ 

of equations is in the automaton form iff 

1. every equation in £ has the form cf ~ d; 
2. for every two w-equations cf ~ d\ and cf ~ d2 in £ we have d\ = d2; 

Note that any set of equations in the automaton form is irreducible. The 

following statement is proved in [6]: 

Lemma 12 Given any rigid w-equation S with ground left-hand side, one can 
effectively find in polynomial time a rigid w-equation S' with ground left-hand 

side such that 

1. S and S' have the same solutions; 
2. the left-hand side of S" is in the automaton form. 

Let £ be a set of equations in the automaton form and c, d be any constants. 
Denote by A(£, c, d) the following automaton (Q, I, T, E). Its alphabet is the set 
of function symbols occurring in £. The set of states Q is the set of all constants 
occurring in £,c,d. The sets of initial states and terminal states are defined by 
7" # {c} and T ^ {d}. Finally, the set of edges is defined by 

E ^ {a 4- b | (of ~ b) 6 £}. 

Lemma 13 A word W is recognized by A(£, c, d) if and only if £ h cW ~ d. 

Proof.  Immediate by Lemma 8. 

Lemma 14 Let £ be a set of equations in the automaton form, W, W £ T* and 
c, c' be constants. Then £ h cW ~ c'W if and only if there is a constant d and 
words U, U', V such that W = UV, W = U'V, U is recognized by A(£, c, d) and 

U' is recognized by A(£,c',d). 
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Proof. 

;=>) We have £ V- cW ~ c'W. By Lemma 8 we have cW U= c'W' U- Choose d and V 
such that cW U= dV. Define U and U' such that W = UV and W = U'V. We 
have £ h cU ~ d and 5 h c'C' ~ d. By Lemma 13 words £/ and 17' are recognized 
by -4(£,c, d) and .4(£,c',d), respectively. 

;<=) We have W = C/V, W = U'V, U is recognized by A(S,c,d) and [/' is recognized 
by A(£,c',d). By Lemma 13 we have £ h c!7 ~ d and £ h c'(7' ~ d. Hence, 
f h cf/F ~ dV and f h c't/'F ~ dV. Then £T h cUV ~ c'C/'K, i.e. £hcW~ c'W. 

D 

Lemma 15 T/ie problem of solvability of systems of rigid w-equations with gro- 
und left-hand sides effectively reduces to word equations with regular constraints. 

Proof. Let S — {Si,... ,Sn] be such a system of rigid w-equations. By Lemma 12 
we can assume that the left-hand sides of all Si are in the automaton form. Let Si = 
(£, hv CiW, ~ c'iW'i), for all i£{l,...,n}. Let m,... ,un, vi,... ,vn and «i, ...,«'„ be 
word variables fresh for S. By Lemma 14, the system 5 is solvable if and only if there 
are constants d; occurring in Si, for all i € {1,... ,n} such that the following system 
of word equations and regular constraints is solvable: 

W\ ~ u\V\        «i is recognized by A{£\,c\,d\) 

Wn — unvn       «n is recognized by A{£n,cn,dn) 
W[ ~ u'ivi       u'i is recognized by A(£i,c[,di) 

Wn ~ u'nvn      u'n is recognized by A(£n,c'n,d„) 

To conclude the proof we note that there is only a finite number of choices for d;. 

Theorem 2 Monadic SREU with ground left-hand sides is decidable. 

Proof. By Lemma 9 monadic SREU with ground left-hand sides is effectively reducible 
to the problem of solvability of systems of rigid w-equations. By Lemma 15 the latter 
problem is effectively reducible to word equations with regular constraints. Then apply 
Lemma 4. 

4    One-variable case 

In this section we consider rigid equations with one variable x. We shall write 
£(x) to denote all occurrences of a variable x in £, and write £{t) to denote the 
set of equations obtained from £ by replacement of all occurrences of x by t. 
We shall use similar notation for terms, for example s(x). Using this notation, 
we can write any rigid equation of one variable x as £(x) hy s(x) ~ t(x). The 
following statement is proved in [6]: 

Lemma 16 Let £{x) be a finite set of equations of one variable x and s{x),t{x) 
be terms of one variable x such that £{x) \f s(x) ~ t(x). Let c be a constant fresh 
for £(x),s(x),t(x) and r be a ground term such that c does not occur in r. If 
£{r) h s(r) ~ t(r), then there exists a ground term r' £ T(£(c) U {s(c) ~ t(c)}) 

such that £{c) h r ~ r'. 
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Lemma 17 Let £(x) hv s(x) ~ t(x) be a rigid equation of one variable x, c be a 
constant fresh for this rigid equation, r be a ground term in which c does not occur 
and £{x) \f s(x) ~ t{x). Then the substitution 9 = {r/x} is a solution to this 
rigid equation if and only if there is a ground term r' G T{S{c) U {s(cj ~ t(c)}) 
such that £{c),£(r') h s(r') ~ t(r') and 9 is a solution to £(c) hv r' ~ x. 

Proof. 

=4- We have that 6 is a solution to 5(x) hv s{x) ~ t(x). Then £(r) h s(r) ~ <(r). By 
Lemma 16 there is a term r   € T{£(c) U {s{c) ~ t(c)}) such that £(c) h r ~ r'. 
Then 5(r),5(c) hs(r')~((r'), 

<= We have 5(c), 5(r') h s(r') ~ i(r') and 5(c) hv r' ~ r. Then 5(c), 5(r) h s(r) ~ 
i(r). By Lemma 2 we can substitute r for c obtaining 5(r) h s(r) ~ t(r). D 

Lemmas 16 and 17 also hold for non-monadic signatures [3]. 

Lemma 18 Monadic SREU with one variable is in PSPACE. 

Proof. We shall give a non-deterministic algorithm reducing monadic SREU with one 
variable to the intersection nonemptyness of deterministic finite automata problem. 

Let V, be a system of rigid equations of one variable x whose signature is (T, C). It 
has the form 

£\ r-v si(x) ~ ti{x)       ■■■       £n r-v s„(x) ~ t„(x) 

By Lemma 5 we can restrict ourselves to relevant grounding solutions 9 = {r/x} only. 
Let c be a variable fresh for {T,C). By Lemma 17 0 is a solution to ft if and only if 
there are ground terms r\ € T(£i(c) U {s;(c) ~ £i(c)}), where i€{l,...,n} such that 
5(c), £(r') h s(r') ~ f(r') and 6 is a solution to the system 

5i(c) r-v ri ~ x        •••        5n(c)r-vr^~x 

Nondeterministically select such ri,..., r'n and verify the condition £(c),£(r') h s(r') ~ 
t(r') (it can be checked in polynomial time using Lemma 1). 

Such 6 is a solution to this system of rigid equations if and only if there is a constant 
d 6 C such that the following system of rigid w-equations is solvable: 

£i (c) hv r[ ~ dx        ■■■        £n(c) r-v r'n ~ dx 

Nondeterministically select such d. By Lemma 12 we can equivalently replace this sys- 
tem with a system 

£[ hv ci ~ d\x       ■ ■ ■       £'n hv c„ ~ dnx 

where 5- are in the automaton form. By Lemma 13, this system is solvable if and only 
if the intersection of automata A{£[, d\, c\),..., A{£'„, dn, c„) is non-empty. 

We have given a non-deterministic algorithm reducing monadic SREU with one 
variable to the intersection nonemptyness of deterministic finite automata problem. 
On each branch, the algorithm makes polynomially many steps. Applying Lemma 3 
on the complexity of the intersection nonemptyness of deterministic finite automata 
problem we get that monadic SREU with one variable is in NPSPACE, and hence in 
PSPACE. 

Combining Theorem 1 and Lemma 18, we obtain 

Theorem 3 Monadic SREU with one variable is PSPACE-complete. 
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5    General case 

Denote by W the set of pairs of words on T. Introduce on W a binary function 
*, a unary function r and a binary relation < in the following way: 

m   Tr\    ,T/  T/^J(EW, ^2) if ^i has the formtfi W 
(t/i, U2) *{V1,V2)r\ (K} y2)     otherwise 

(Ui, U2) <(V1:V2) ^ there is a word W such that (Vi, V2) = {UXW, U2W) 

An ideal on W is any set of pairs containing (e,e) and closed under *, r and 
upward closed under <. The ideal generated by a set of pairs S, denoted ideal (S) 
is defined as the least ideal containing 5. 

An ideal equation is an expression 

(U,V) e ideal{{{UuVl),...,{Un,Vn)}), 

wheren > 0 and U, V, Uu ... ,Un,Vi,..., Vn £ (fUV)*. A solution to such ideal 
equation is any word substitution a such that 

1. words Ua, Va, Uia,..., Una, Via,..., Vna are words over T; 
2. the word (Ua, Va) belongs to the ideal generated by 

{(U1<r,V1a),...,(Una,Vna)}. 

A system of ideal equations is any finite set of ideal equations. Solutions to 
a system of ideal equations are substitutions that solve each equation in the 
system. The ideal equations problem is the decision problem of solvability of 
systems of ideal equations. The aim of this section is to show that monadic 
SREU is equivalent to the ideal equations problem. 

The following lemma proved in [6] is the main reason for introducing the 
notion of an ideal. 

Lemma 19 Let Uu ... ,Un,Vi,... ,Vn,U,V be words on T and a be any con- 
stant. Then alii ~ aV1:...,aUn ~ aVn h all ~ aV if and only if (U,V) G 
ideal({(U1,V1),...,(yn,Vn)}). 

Theorem 4 Monadic SREU is decidable if and only if the ideal equation problem 
is decidable. 

Proof.  See [6]. 

Technical report [6] discusses ideal equations in more detail. In particular, it 
is shown that ideal equations are decidable if and only if word equations extended 
by a family of predicates behaving like a greatest common divisor on word are 
decidable. In addition, the following statement is proved: 

Lemma 20 Ideal equations are decidable if and only if ideal equations with reg- 
ular constraints and the inequality constraints U ^ V are decidable. 
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Abstract. While computability theory on many countable sets is well 
established and for computability on the real numbers several (mutually 
non-equivalent) definitions are applied, for most other uncountable sets, 
in particular for measures, no generally accepted computability concepts 
at, all have been available until now. In this contribution we introduce 
computability on the set M of probability measures on the Borel sub- 
sets of the unit interval [0; 1]. Its main purpose is to demonstrate that 
this concept of computability is not merely an ad hoc definition but has 
very natural properties. Although the definitions and many results can 
of course be transferred to more general spaces of measures, we restrict 
our attention to M in order to keep the technical details simple and con- 
centrate on the central ideas. In particular, we show that simple obvious 
reqirements exclude a number of similar definitions, that the definition 
leads to the expected computability results, that there are other nat- 
ural definitions inducing the same computability theory and that the 
theory is embedded smoothly into classical measure theory. As back- 
ground we consider TTE, Type 2 Theory of Effectivity [KW84, KW85], 
which provides a frame for very realistic computability definitions. In 
this approach, computability is defined on finite and infinite sequences 
of symbols explicitly by Turing machines and on other sets by means 
of notations and representations. Canonical representations are derived 
from information structures [Wei97] . We introduce a standard represen- 
tation 8m :C E" —► M via some natural information structure defined 
by a subbase a (the atomic properties) of some topology r on M and 
a standard notation of er. While several modifications of 8m suggesting 
themselves at first glance, violate simple and obvious requirements, 8m 

has several very natural properties and hence should induce an impor- 
tant computability theory. Many interesting functions on measures turn 
out to be computable, in particular linear combination, integration of 
continuous functions and any transformation defined by a computable 
iterated function system with probabilities. Some other natural repre- 
sentations of M are introduced, among them a Cauchy representation 
associated with the Hutchinson metric, and proved to be equivalent to 
<§,„. As a corollary, the final topology r of Sm is the well known weak 
topology on M. 
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1     Introduction 

Measure and integration is a central branch of mathematics pervading almost 
all parts of abstract analysis. Several authors have already considered ques- 
tions of effectivity, constructivity, computability or computational complexity 
in measure or integration theory. Kushner [Kus85] studies computability and 
Ko [Ko91] computational complexity of integration. Bishop and Bridges [BB85] 
present constructive measure theory extensively. Although they do not consider 
computability, certainly many of their concepts and results have computational 
counterparts. Edalat gives a domain theoretic approach to effective integration 
[Eda95, Eda96]. He also does not consider computability, but it should be pos- 
sible to extend his topological approach by computability concepts. Traub et al. 
[TWW88] investigate the computational complexity of numerical algorithms for 
integration in the real number model of computation. However, this model is 
unrealistic in many situations and therefore not generally accepted. A system- 
atic study of computability in integration and measure theory does not yet exist. 
In this paper we introduce a very natural and realistic computability theory on 
probability measures. We achieve this by extending TTE, Type 2 Theory of Ef- 
fectivity, to measure theory. TTE has been introduced by Kreitz and Weihrauch 
[KW84, KW85] as a general framework for studying effectivity, i.e. continuity, 
computability and computational complexity, in Analysis. For details the reader 
is referred to the introduction [Wei95] and a recent short survey [Wei97] con- 
taining most of the notations we shall use in this paper. More details can be 
found in [KW85, Wei87]. Since this paper is a first attempt, we consider only 
the space of probability measures on the Borel subsets of the real unit interval. 

By / :C A —► B we denote a partial function, i.e. a function from a subset 
of A to B. Throughout this paper let E be a sufficiently large finite alphabet. 
Let E* be the set of finite and Ew = {p \ p : u —► E] the set of "e^a-words 
over E. On E* we consider the discrete topology and on Ew the cantor topol- 
ogy defined by the basis {wEu \ w <E E*}. For Y0, Yu ..., Yk G {£*,£"}, a 
function / :C Y\ x ... x Yk —► Yo is called computable, iff it is computed 
by a Turing machine with a one-way output tape. Every computable function 
is continuous. The basic idea of TTE is to use finite or infinite sequences as 
names of "abstract" objects. As naming systems we consider notations, i.e. sur- 
jections v :C E* —► S, and representations, i.e. surjections 6 :C Eu —► M. 
Continuity and computability concepts are transferred from E* and Ew via no- 
tations and representations, respectively, to the named sets straightforwardly, 
see [KW85, Wei87, Wei95, Wei97]. Mainly notations or representations which 
are compatible with some relevant structure on the set under consideration are 
of practical interest. We do not discuss this for notations (see [RW80, Wei87] and 
Appendix C in [Wei95]), but we will introduce "effective" notations explicitly 
whenever necessary. In particular, for the rational numbers let VQ :C E*  ► Q 
be the standard representation via fractions of integers in binary notation. We 
shall abbreviate VQ(W) by w. Standard notations of the natural numbers, pairs 
of rational numbers etc. will be used without further definitions. For uncount- 
able sets M we shall consider mainly representations derived from "information 
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structures" (M,a,v), where a is a countable subset of 2M of "atomic proper- 
ties" which identifies points, and v is a notation of a [Wei97]. It is assumed that 
a. computer (Turing machine) manipulates //-names of atomic properties. As a 
name of an object x G M we consider any infinite list of all properties i£ff 
which hold for x. Concretely, the standard representation 8V :C Sw —► M is 

defined by 
6„(p) - x <^> p = w0$w4 ... and {ivt \ i G LO} = {w \ x G v(w)}. 

Every finite prefix of a <5„-name p of x contains finitely many atomic properties 
of x which "approximate" x. Mathematically, this kind of approximation is de- 
scribed by the topology ra on M, which has a- as a subbase. Computability on a 
and via. 8V on M are fixed by the notation v which expresses how atomic prop- 
erties can be handled concretely. Thus, for any information structure (M,a,v), 
a characterizes approximation and v computability on M. The topology r„ and 
the standard representation 8V are closely related: iGr, «=^ K X is open in 
dom{bv) (for all X C M), i.e. ra is the final topology of S„. Let 8 :C 2* —> M 
and 5' :C S* —> M' be representations and let / :C M —► M' be a function. 
An element x e M is called ^-computable, iff S(p) = x for some computable 
sequence p £ T. By definition, 6 <t 6' (6 < 8'), iff 8 = 8'g for some con- 
tinuous (computable) function g :C S* —- S*, and / is (8, «')-continuous 
(-computable), iff f8 = 6'fif for some continuous (computable) function g :C 
JP*  ,  r;*. (Accordingly for functions with two or more arguments.) By the 
"main theorem for admissible representations" [KW85] a function is continuous 
relative to standard representations, iff it is continuous w.r.t. the associated final 
topologies in the usual sense. For more details see [KW85, Wei87, Wei95, Wei97]. 
For the real numbers, we need three representations p<,p>,p -Q £"" —> HI, 
derived from information structures. They can be defined explicitly as follows 

[Wei87, Wei97]: 

p<(p) =x : <=> p = iüoNi|t... with {wi \ i E u} = {w \ w < x}, 

p>(p) = x :<=^ p = wo$wx$... with {to,- | i G w} = {w | w > x}, 
p(p) -x    : <=> p = volwoMwi ... with {(vi,Wi) \ i £w} = {(v, w) | v < x < w}. 

The final topologies are r< = {(j/;oo) | y G M} U {IR}, r> = {(-oo;y) | y G 
IR}U{IR} and the set TJR, of ordinary open subsets of IR, respectively. Notice that 
p induces the standard computability theory on the real line. The translatabihty 

or reducibility properties [Wei87, Wei97] p < p<, P < P>, P< & P, P> it P, 

P< it P> > P> it P< can be proved easily. 

In Section 2 we introduce a standard representation 8m of the set M of 
probability measures on the Borel sets of the interval [0; 1] by a very natural 
information structure. We prove a stability theorem for this definition. We dis- 
cuss some further modifications of the definition and show that that they have 
undesirable properties. The results indicate that the computability theory on M 
induced by the representation 8m is indeed very natural. In Section 3 we prove 
computability of several interesting functions on measures, in particular linear 
combination and integration of continuous functions. Also the measure trans- 
formation induced by a computable iterated function system with probabilities 
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[HutSl, Bar93] is computable. Finally in Section 4, we introduce representations 
based on other natural information structures and a Cauchy representation for 
the Hutchinson metric [Hut81, Bar93] . We prove that all these representations 
are equivalent and that their final topology is the well known weak topology 

[Bau74]. 

2     The standard representation of measures 

In this section we introduce the standard representation 6m of the probability 
measures and show that it induces a very natural computability theory. Let 
Int := {(a;6),[0;a),(6;l],[0;l] | a, b £ Q, 0 < a < b < 1} be the set of open 
subintervals of [0; 1] with rational boundaries, and let / :C E* —► Int be some 
standard notation of Int with dom(I) C (£"\{fr, jj})*. We write Iw for I(w). By B 
we denote the set of Borel subsets of [0; 1], i.e. the smallest cr-algebra containing 
Int. By M we denote the set of probability measures ß : B —> IR on the 
space ([0; 1],B). By a basic theorem of measure theory [Bau74], every measure 
ß £ M is defined uniquely by its values on the generating set Int. We introduce 
a standard representation of M via an information structure. The informations 
available from some standard name of a measure pi shall be all (r, J) with r £ (Q 
and J £ Int such that r < /z(J). 

Definitionl. Define an information structure (M,<r, v) by a := range (v) , 
where /.< £ v(u£v) : <^=> ü < ß(Iv) for all u £ dom(vq), v £ dom(I) and 
fi £ M. Let Tm be the topology on M with subbase a and let 6m be the standard 
representation of M derived form v. 

It remains to show that a identifies the points of M. Consider measures fi, // £ M 
such that r < pt(J) <^> r < pt'(J) for all r £ Q and J £ Int. Then obviously, 
n(J) = p'(J) for all J £ Int, i.e. \x = //. The definition of the representation 6m 

looks somewhat arbitrary. By the next stability lemma, we obtain an equivalent 
representation, if we replace VQ and / by adequate other notations. For any 
X C IR let cls(X) be the closure of X. 

Lemma 2.   (stability of6m) Let v,s -Q -S1*  y S be a notation of a set S which is 

dense in IR such that {(u,v) \ vs(u) < '/Q(^)} end {(u,v) | VQ{U) < vs{v)} are 
r.e. . Let D be a countable dense subset o/[0, 1] and let I1 be a notation of Int' := 
{(o;6),[0;a)(a;l],[0;l] | a, b £ D, 0 < a < b < 1} such that {(u,v) \ cls(I'u) C 
/„} and {(u,v) | cls(Iu) C I'v} are r.e. Define r,'n and S'm by substituting vs for 
VQ and I1 for I in Definition 1. 
Then T'm - T,„ and 6'm = 6m. 

If we replace, for example, rational numbers by finite binary fractions or by finite 
decimal fractions in the definition of the set Int and in Definition 1, we obtain 
an equivalent representation with the same final topology. 
If we replace the relation "<" in Definition 1 by "<", ">" or ">", we obtain 
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rerpesentations which violate Lemma 2. Remember that by definition, the topol- 
ogy Tm has the subbase a = {Ur<j \ r G Q and J G Int} where UTtj = {p G 
M | r < p(J)} . We prepare the proof of the theorem by two lemmas. First, we 
consider the cases "r < //(J)", "r > yu(J)". 

Lemma 3.  For Q CM let T(Q) be the topology on M generated by the subbase 

a(Q) := {UrJ\reQ,J€ Int}, where UrJ = {p G M | r < p(J)}. 
Then T{P) % r(Q), ift£P\Q for some t G (0; 1) (for all P, Q C M). 
The statement holds accordingly, if "<" is replaced by ">". 

The next lemma considers the case "r > v{J)" ■ 

Lemma4. For D C (0; 1) let Int(D) := {(a; 6), [0; a), (a; 1], [0; 1] | a, 6 G D, 0 < 
a < b < 1}. Zetf 7"(-D) *e Me topology on M generated by the subbase a(D) := 
{£4,J | '• G Q, J G Int (D)} where Ur,j = {/< G M | r > p(J)}. Then 

D C E <=> r(£>) C r(£) (/or all D,EC (0; 1) ). 

Theorems. If in Definition 1 the relation "ü < p(Iv)" is replaced by "ü > 
p(Iv)", "ü > p(Iv)" or "ü < p(Iv)", the resulting representations 8m violate the 

stability lemma 2. 

By Definition 1 and Lemmata 3 and 4, many different more or less natural 
representations and hence computability theories for the set M of probability 
measures on ([0;1],B) can be introduced. The "user" has to decide, which of 
them is adequate for his application. The stable representation 8m from Defini- 
tion 1 is certainly the most important one, since its computability theory will 
occur most frequently. We shall study it in the following exclusively. 
As a simple consequence of Definition 1, all rational lower bounds of p(J) can 
be obtained from any <5m-name of p. and any /-name of J. This property char- 
acterizes the representation 8m except for equivalence: The representation 8m is 
<-complete in the set of all representations 6 of M, for which (p, J) >->■ p(J) is 

(8,1, p< )-computab!e. 

Theorem 6. For any representation 8 ofM: 8 < 8m -<=» (,V,J) ^ v{J) is 

(8, I, p^-compxdable. 

Notice, that in particular (p, J) H-> p(J) is (b~m, /./^-computable. Computing 
only lower rational bounds does not seem to be satisfactory. We would like to 
compute also arbitrarily close upper bounds of p(Iv). We prove a negative and 
a positive answer. For any x G [0; 1] define px G M by px(A) := (1 if x G A,0 
otherwise). For any good and useful representation 8 of M it should be possible 
to determine a 5-name of the measure px effectively from a name of x. Let 

M':={tix\xe[0;l]}. 

Theorem 7. For any representation 8 o/M, for which x i—<■ px is (p, 8)-coniinuous 
on (0; 1), p H-> ^[0; 1/2) is not (8,p>)-continuous on M'. 6m is such a represen- 

tation. 



171 

Therefore, for reasonable representations 8 of M, in particular for our stan- 
dard representation 8m, arbitrarily close rational upper bounds of measures 
of open intervals cannot be computed. Although this contradicts intuition at 
first glance, it has to be accepted as a matter of fact. Notice, that for prov- 
ing Lemma 3, Lemma 4 and Theorem 7 we have used measures p £ M with 
p{x) > 0 for some x £ IR. Since the arguments have been purely topological 
without reference to computability, we have also shown that the final topology 
rm of the representation 8m, which formalizes a concept of "approximation" 
on the set M of measures, is quite natural. If we exclude measures p with 
//{a:} > 0 for some x £ [0;1], (p,J) >->• p(J) becomes (<5m, 7, ^-computable. 
Let M° := {p £ M | \/x £ [0; l].p{x) = 0} 

Theorem 8. The function (p,J) >-* p(J) is (8m, I, p)-computable for J £ Int 

and p £ M°. 

3     Computable Functions on Measures 

In this section we prove computability of some interesting functions on prob- 
ability measures. By the next theorem, the linear combination of measures is 
computable in all variables. 

Theorem9. The function (a, p, p') \—*• ap+(l —a)fi' is (p,6m,6m,6m)-computable 
for 0 < a < 1 

By Theorem 6, (ft, J) >-> p(J) is (8m, J,p<)-computable on M x Int. We extend 
this result to TM = {U n [0; 1] | U £ m.}, the set of all open subsets of [0; 1]. 
First we need a representation of this topology. For the set TR of open subsets of 
IR, the following information structure (TJR,<T,I') and its derived representation 
S0 and topology r0 are natural (see [Wei97]): For any U E TU and u,v £ E* 
let U £ i/(u£v) iff [ü;v] C U. Consequently, 60(p) — U iff p is a list of all 
closed intervals with rational boundaries contained in U. We define our standard 
representation of TM accordingly: 8'0(p) = U : <==? p is a list of all w £ S* with 
cls(Iw) C U (p £ S^,U £ Tj^). Let pi £ M be the Lebesgue measure on 

([0;1],B). 

Theorem 10. (1) (p,U) i-+ p(U) for p, £ M and U £ TM IS (5m,^,p<)- 
computable. (2) (p,U) >—>■ fi(U) for p = pL and U £ TM IS not (6m,S'0, />>)- 
continuous. 

For uniform formulations in the next theorems we need a standard representation 
6-r  of the set C[0; 1] of continuous functions / :  [0; 1]  > IR. We define 8^ 
and the corresponding final topology T^ by the following information structure 
(C'[0;l],o-,i/): / £ v{umw) : <=> ü < f(clslv) < w for all / £ C[0; 1] 
and u,v,w £ S*. Properties of 8^ are discussed in [Wei87, Wei95, Wei97]. In 
particular, r_» is the compact-open topology on C[0; 1], which is also generated 
by the metric d(f, g) := max{|/(a;)—ff(s;)||0 < x < 1} on C[0; 1]. For any measure 
p. £ M and any continuous function / : [0; 1] —► [0; 1] define the measure Tj{p) 
by Tj{p){A) := pf~l{A) for every Borel set A C [0; 1] (see [Bau74], page 42). 
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Theorem 11. The function (/, p) i-+ Tf(p) for continuous f : [0; 1] -► [0; 1] and 

p G M is (6-n 6m, Sm)-computable. 

We apply this theorem to iterated function systems with probabilities [Hut81, 
Bai-93]. An interated function system (IFS) on [0; 1] with probabilities is a tuple 

S = ([0; 1], /i,.. •, A,Pi, • • • ,Pk) where A, ...,/*: [0; 1] —+ [0; 1] are continuous 
functions and pi, ■ ■ ■ ,pk are positive real numbers with pi + ■■■ + pt = 1- With 

k 

S one associates the function Ts : M —► M defined by Tg(/i) := £ PiT}t{p) 
i = \ 

Corollary 12. Let S = ([0; 1], /i, . . ., fk,Pi, ■ ■ ■ ,Pk) be an IFS with probabilities 
such that fi,...,fk are 5^-computable and p\,...,Pk are p-computable. Then 
Xg : M —> M is (6m,6m)-computable. 

Therefore, for any computable iterated function system S with probabilities, the 
associated measure transformation Tg : M —► M is a (<5m, <5m )-computable 
function. We shall show below (Theorem 23) that its unique fixed point ^g G M 
is ^„-computable, if the system S is hyperbolic [Hut81]. We shall show that in- 
tegration of continuous functions is computable in both arguments. The integral 
of a continuous function can be defined via summations over finite partitions. 
Consider y € M and / G C[0;1]. Let Part be the set of all finite partitions 
Z of [0; 1] into intervals with rational boundaries (remember: \]Z — [0; 1] and 
1 n .7 = for I,J £ Z). For Z £ Part define s+(Z) :=   J2 KJ) ' sup/(a;) and 

J£Z x£j 

s„(Z) :-   Y, P(J) ' inf/(a:). Since / is continuous, we have    sup   s-(Z) = 
j aZ ar€^ ZfzPart 

inf    s+(Z) =: f fdß. The following lemma is the key to the next proof. 
Z£Part 

Lemma 13. For any ß, 7 > 0 there are a finite set T C Int of (pairwise disjoint) 
open intervals and a finite set L of closed intervals such that T U L G Part, 
length(.J) < 7 for every J G T and p([jL) < ß. (L can be chosen, such that 

each J G L has length 0.) 

Theorem 14. The function (f,n) ^ J fdp. for f G C[0; 1] and y G M is 

(6^, Sm, p)-computable. 

Proof: For any T C Int let s_(T) := Ei/^C-7) ' inf f(J) I J e T>- Consider 
/ G C[0; 1] and e > 0. By uniform continuity of / there is some 7 > 0 such 
that \x - y| < 7 =>• \fx - fy\ < e/4. Let M := max{|/(a:)||0 < x < 1}, choose 
ß := t/(4(l + M)). By Lemma 13 there is some set T C Int of pairwise disjoint 
intervals such that 1 - ß < p\jT < 1 and VJ G T.length(J) < 7. Furthermore, 
there are z3 G Q such that zj < y{J) for J G T and 1 -/? < £{zj U G T} < 1. 
We describe a procedure for determining from (p, q, n) a number r £ JJ with 
\r - J fdfi\ < 2~n where 8^(p) = / and Sm(q) = /i. 

- Fromp and n determine some k G u such that \x-y\ < 2~k =^> |/a; —/y| < 
2-»-2 [Wei95, Wei97]. 

- From p determine some integer upper bound m of M. 
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- Let/?:=2-"-2/(l + m). 
- By systematic search find a finite set T C Int of pairwise disjoint intervals 

and rational numbers zj (J G T) with length(J) < 2~k and zj < //(J) for 
J £ T and 1-/?<^{ZJ | /GT}. 

- Determine some r G Q such that | £{zj ' inf f(J) | J G T} - r| < 2" 

The existence of T and the numbers zj has already been shown. We prove 
|r _ J fdfi\ < 2-". Let L be the set from Lemma 13 and let T" := T U L. We 
have: 

|//V//,-S_(T')| <|s+(T')-s-Cni 
<IE{A*(J)(sup/(J)-inf/(J))||JGT'} 
<E{/-W-2- 2|JGT'} 
^- n —n —2 

|s_(T') - s_(T)| < ZML) -inf /(J)|J € £} 
< p (J L • m 
< /? ■ m 

r^ —n — 2 

l*-(r) - £{*■/ ■ inf/(J)|J e r}| < E{(M<0 - */)inf/(./) U e T} 
< ß ■ m 
< 2-n~2 

By the triangle inequality we obtain | / fdp — r\ < 2~n. 
There is a computable procedure for determing r, i.e. there is some computable 
function g :C Ew x £*" x E* —> E* such that for / = MP)> A« = M?) and 
n = ü we have |ü - / /dp| < 1~n where u = g(p, q, u). Using a machine for g 
one can define easily a machine for a function h :C Ew x Ew —> Ew such that 
J 6^(p)d6m(q) = ph(p, q) for all p G dom(S^) and 5 G dom(Sm). 
D 
As a corollary of Theorem 7, Theorem 14 cannot be extended from C[0; 1] to 
the measurable functions, not even to step functions. 

Corollary 15. Let f : [0; 1] —> IR &e the characteristic function of [0; 1/2). 
TAen p >-► //dp is not (6m,p>)-continuous on M. 

4    Further Representations of Measures 

In Definition 1 we have used atomic properties r < p(J) with r G Q and J G 
7?ii for identifying measures. By Theorem 14, (/, p.) H^ //dp is (<$_., <5m,/>)- 
computable for continuous functions. In the following we indentify measures p 
by atomic properties r < J tdp or r < j tdp < s, where r, s G Q and * is from a 
set of simple continuous "test functions". 

Definition 16. For n G w and 0 < m < 2" define the triangle function tnm G 
C[0; 1] by 

(x-(m- l)2"n   if (m - 1)2-" < x < m ■ 2~n 

tnm(x) := < (m + l)2"n - x  if m • 2"n < x < (m + 1) ■ 2"n 

I 0 otherwise. 
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Let 6'm and 6'^ be the standard representartion of M induced by the informa- 
tion structures (M, <r',;/) and (M, <r", J/"), respectively, defined as follows: y, G 
i/'(0"tOmtu) : <=> ü < Jtnmdß, p G z/"(OntOmt«tv) : <=> ü < /<nmd/i < ö 
for all // G M, n G w, 0 < m < 2" and u, v G dom(vQ). 

We have not yet shown, that the systems <r' and a" from Definition 16 identify 
points, i.e. 6'm and 5," may still be representations of partitions of M which are 

coarser than {{//} [ \i G M}. 

Theorem 17. 6'm and 6'^ are representations ofM such that Sm = 6'm = 6'^. 

By definition, the weak topology TW on the set M of probability measures on 
([0;1],B) is the coarsest, i.e. smallest, topology r, such that ß >-+ J fdp is 
(r, T]R)-continuous for every / G C[0; 1] [Bau74]. As a corollary of Theorem 

17 we obtain: 

Corollary 18. The weak topology TW IS the final topology Tm of the representa- 

tion <">,„,. 

The weak topology TW on ([0; 1],B) can be generated by a metric [Bau74]. 

Definition 19. (Hutchinson metric) Let Lip := {/ G C[0; 1] | f(x) = 0 and 
\/x,y.\f(x) - f(y)\ < \x- y\}. Define dH : M x M —> IR by dH(n,fi') := 

sup{|//dA*-//d/i'||/G Lip}. 

The metric dH is called the Hutchinson metric [Hut81, Bar93]. 

Lemma20. dH is a metric on M. 

Theorem21. dH : M x M —> IR is (5m,6m, p)-computable. 

By Lemma. 2.1 from [Wei93], the metric space (M,^) has a countable dense 
subset. By Corollary 45.4 from [Bau74], the discrete measures are dense. We shall 
use the discrete measures determined by rational numbers as a dense subset. Let 
MQ. be the set of all probability measures /IEM such that there are a finite set 
A" and rational numbers rk,sk G [0; 1] for all k G K such that Y^isk \ k E K} = 1 
and fi = Yl skPrk, where nx{A) = (1 if x G A, 0 otherwise). Let vd be a standard 
notation of M„. A computable metric space is a quadruple (M,d,A,v) such 
that (M, d) is a metric space, A is a dense countable subset and v is a notation 
v :C S* —► A of A such that the set {(u,v,w,x) | ü < d(v(v),v{w)) < x} is 
r.e. [Wei93]. This definition is somewhat stronger than that in [Wei87]. For a 
computable metric space (M,d,A,v), the Cauchy rerpesentation 6C [Wei97] is 
defined as follows (we assume w.l.o.g. dom(v) C (S \ {jj})* ) : b~c(p) = x : <=> 
p = woth'itt • ■ • such that Vi > k   d(v(ui), v(uk)) < 2_i and x = lim i/(«j). 

Theorem 22. (1) vd < 6m (2) (M, dH, Md, vd) is a computable metric space. 
(3) The Cauchy representation 6^ for this space is equivalent to Sm. 



175 

Since 6m = S'm = <*>," = 6^, these four representations of the probability mea- 
sures M on the space ([0; 1],B) induce the same computability theory and in 
particular have the same final topology, which is the topology r generated by the 
Hutchinson-metric. As a consequence, for a hyperbolic [Hut81] computable IFS 
with probabilities as in Corollary 12 the unique invariant measure is computable 
w.r.t. any of these representations. For a domain-theoretic approach see [Eda96]. 

Theorem 23. Let S = ([0; 1], fu ..., fk,Pi, ■ ■ ■ ,Pk) be a hyperbolic IFS with 
probabilities such that fi, ■ ■ ■, fk &rz 6^-computable and pi,.. ..pk are p-computable. 
Then the unique fixed point pg   of the  operator T§   :  M   —►  M   defined by 

k 

Ts(p)(A) ■= Y. Vif-Ur1 (A)) is 6m-computable. 
8 = 1 

In measure theory not only probability measures but arbitrary measures \i : 
B —► IR U {oo} are studied. Let Mb be the set of all measures fi : B —► Ht, 
i.e. all bounded measures on ([0;1],B). Let 6< be the representation of Mb 

obtained from Definition 1, where M is replaced by Mb. While 5m(p)[0; 1] = 1, 
6<(p)[0\ 1] may be any non-negative real number. An easy proof shows that p, >—^ 
//[0; 1] is only (6<, p<)-computable and not (6<, p)-continuous. This means, that 
informations about upper bounds of 6<(p)[0; 1] are not available from prefixes of 
p. As a consequence, Theorem 14 on integration fails for 6<. Only the following 
weak version can be proved: (f,fi) ^ / fdp for non-negative / € C[0; 1] and 
H G M'' is (6-,, 5<,p<)-computable. We can, however, include informations 
about upper bounds of /x[0; 1] in the names. Let 6b be the representation of 
M4 defined by the following notation v of atomic pieces of information: \i £ 
v{u\.v\:.w) <^^> ü < t-i(Iv) and /x[0; 1] < w. Then the theorems we have proved 
for Sm hold accordingly for 6h, in particular Theorem 14 on integration. The 
connection to 6m is given by the following lemma. 

Lemma 24. The function ß >-► /i[0; 1] on Mb is (6b, p)-computable, and the 
function fi i-s- p/fi[0; 1] is (b~b, 6m)-computable for fi £ Mb, //[0; 1] ^ 0. 

5     Conclusion 

In this paper we have introduced and discussed a very natural and canonical com- 
putability theory on the set M of probability measures on the Borel subsets of 
the unit interval [0; 1]. In particular, we have shown that simple obvious require- 
ments exclude a number of similar definitions, that the definition leads to the 
expected computability results, that there are other natural definitions induc- 
ing the same computability theory and that the theory is embedded smoothly 
into classical measure theory. Although we have only stated the existence of 
computable functions throughout the paper, all the proofs provide algorithms, 
which can be realized by programs from some common programming language 
like PASCAL or C. Of course the basic definitions and many results can be 
transferred from the space M to more general spaces of measures. 
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Abstract. Up to know, the known derandomization methods have been 
derived assuming average-case hardness conditions. In this paper we in- 
stead present the first worst-case hardness conditions sufficient to obtain 
P = BPP. 
Our conditions refer to the worst-case circuit complexity of Boolean op- 
erators computable in time exponential in the input size. Such results 
are achieved by a new method that departs significantly from the usual 
known methods based on pseudo-random generators. 
Our method also gives a worst-case hardness condition for the circuit 
complexity of Boolean operators computable in NC (with respect to their 
output size) to obtain NC = BPNC. 

1    Introduction 

1.1 Motivations and previous results. A major goal in complexity the- 
ory is the study of the real power of randomized algorithms, that is algorithms 
that make decisions based on the output of a random source of bits. To this aim, 
several recent works have been focused on the design of general methods that de- 
crease (or remove) the amount of random bits used by these algorithms. A central 
question in this area is the relationship between the existence of computationally- 
hard functions and the existence of efficient derandomization methods. Yao [12], 
and Blum and Micali [5] introduced the concept of Pseudo-Random Genera- 

tor (PSRG), any Boolean operator G = {Gn : {0, l}k(n) -> {0,1}", n > 0}, 
(denoted by G : k(n) ->■ n) that, for a.e. n and for any Boolean function 
/ : {0,1}" -> {0,1} whose circuit complexity L(f) is at most n, satisfies: 
|Pr (/(y) = 1)- Pr (/(Gn(x)) = 1)| < 1/n (where y is chosen uniformly at ran- 

dom from {0,1}", and x from {0,l}fc(n)). The output sets of PSRG are also 
called discrepancy sets for circuits of linear size. 

According to the definition used in [10], a Boolean operator Op : k{n) -» n 
is quick if it can be computed in time polynomial in n (note in passing that 
if k(n) = O(logn) then the "quick" condition is equivalent to assume that Op 
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belongs to EXP). It is not hard to show [10] that the existence of a quick PSRG 
G : k(n) -*■ n with k(n) = O(logn) implies P = BPP. Nisan and Wigderson [10] 
showed a method to construct quick PSRG based on the existence of Boolean 
functions in EXP that have exponential hardness [10]. The hardness condition 
used by Nisan and Wigderson requires the existence of a function in EXP that 
not only has a hard worst-case circuit complexity4 but also a hard average-case 
circuit complexity. More formally, a function / : {0,1}" —> {0,1} is (e,L)-hard 
if, for any circuit C of size at most L, |Pr (C(x) = /(x)) - 1/2| < e/2. Given 
a Boolean function F = {Fn : {0,1}™ -> {0,1}, n > 0}, the hardness at n of 
F (denoted as Hpiji)) is defined as the maximum integer hn such that Fn is 
(l/hn, /in)-hard. Then, F has exponential hardness if Hp{n) > 2n(-n\ Nisan and 
Wigderson showed a fundamental "Hardness vs Randomness" result. 

Theorem 1. [10] If a Boolean function F exists such that i) F 6 EXP, and 
ii) F has exponential hardness, then there exists a quick PSRG G : k(n) -4 n 
where k{n) = O(logn), and consequently P = BPP. 

The hardness required by Nisan and Wigderson's construction of quick PSRG 
thus refers to average-case complexity. Then a consequent and natural question 
is the following: Does any "worst-case" hardness assumption on the circuit com- 
plexity of Boolean functions computable in time exponential in the input size 
exist which allows to derive an efficient derandomization method (in particular, 
to obtain P = BPP)? 

We give two answers to this question. Both answers make use of a new method 
(informally described in Section 1.3) that relies on a particular class of Boolean 
operators (different from PSRG), denoted as Hitting Set Generators, which have 
been recently introduced in [3]. Let L(f) denote the circuit complexity of a finite 
function / : {0,1}™ ->• {0,1} and, given any positive number dp, the term Ldp{f) 
denotes the minimum size of circuits of depth dp which are able to compute /. 

Definition2. Let e(n), ß(n), and 7(71) be polynomial-time computable func- 
tions such that for any n > 1: 0 < e(n) < 1, n < ß(n) < 2n, and 7(71) > logn. 
Then, a Boolean operator H : k{n) —> n is an (e(n), ß(n), j(n))-Hitting Set Gen- 
erator (in short, (e(n), ß(n), j(n))-HSG) if, for any Boolean function / such that 
L7(n)(/) < ß(n) and Pr (/ = 1) > e(n), H is required to provide one "example" 

y for which /(y) = 1, i.e., there exists a 6 {0,1} (n' such that f(Hn(a)) = 1. 
When no depth constraint 7(71) is imposed, we will use notation (e(n),ß(n))- 
HSG. 

By making a simple comparison between the definition of discrepancy sets 
and that of hitting sets it should be clear that HSG satisfy a property signifi- 
cantly weaker than that of PSRG. Nevertheless, Andreev et al [3] proved that, 
given any ßPP-algorithm A, the output of any quick HSG can be transformed 
into an ad hoc discrepancy set for A by means of a deterministic polynomial-time 
algorithm. 
4 As circuit complexity of a finite Boolean function /, we will always mean the size of 

the smallest circuit that computes /. 
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Theorem 3. [3] Let k(n) = O(logn) and let e be any constant such that 0 < 
6 < 1. If there exists a quick (e,n)-HSG H : k(n) -» n then P - BPP. 

As we will describe in Section 1.3, the polynomial-time algorithm in [3] is 
of independent interest and it is used in this paper to obtain Theorem 5. On 
the other hand, more recently (after the submission of our paper), a different 
algorithmic proof of Theorem 3 has been given in [4]. This algorithm is simpler 
and runs in NC1. 
1.2 Our results. We give two worst-case hardness conditions which are suffi- 
cient to construct quick HSG that satisfy Theorem 3 thus obtaining P = BPP. 
The circuit complexity of a Boolean operator H will be denoted as Lop(H). 
Observe that if Lop(k,n) denotes the worst-case circuit complexity of Boolean 
operators H : k{n) ->■ n, then it is known [9, 11] that, for any logn < k < n, 
L°p(k,n) = (1 + o(l))(2kn)/(k + logn). Furthermore, for a.e. Boolean opera- 
tor H : k -> n, we have Lop{H) = 6((2kn)/(k + logn)). The first condition 
deals with the worst-case circuit-complexity of characteristic functions of sets 
generated by Boolean operators. 

Theorem4. Let S be such that 0 < S < 1/2, and let k{n) = (1 + 0(1)) logn. If 
there exists a quick operator H : k(n) -> n such that the characteristic function 
of its output sets FH = {F? : {0,1}" ->■ {0,1} , where F? (x) = 1 »/ 3 y £ 

{0, l}k{n) s.t. Hn(y) = x, n > 0} satisfies 

L(F?) > (1/2 + S)(2k^n)/(k(n) + logn), 

then it is possible to construct a quick operator H1 : fc'(n) -> n where k'(n) - 
0(logn) such that H' is an (e,n)-HSG for some constant 0 < e < 1, thus 
P = BPP. 

Another way to state the above theorem is the following. Assume that there 
exists a sparse language S = {Sn C {0,1}", n > 0} that can be generated by 
an uniform algorithm which runs in time polynomial in n, and such that the 
worst-case circuit complexity of deciding S is not smaller (up to some constant 
factor) than the worst-case circuit complexity of generating languages S' having 
the same sparsity factor of S. Then P = BPP. 

The second sufficient condition to obtain a quick HSG refers directly to the 
worst-case circuit complexity of Boolean operators instead of the characteristic 
functions of their output sets. 

Theorem5. Let k(n) = 6(logn). Let H : k(n) -5> n fee a quick operator such 
that for a.e. n, 

L°p(Hn) > Lop(k,n) - (2k^)/(k(nf). 

Then, for any constant 0 < e < 1, and for any positive integer q, it is possible to 
construct a quick (1 - e,nQ)-HSG H' : k'(n) ->• n, where k'(n) = ©(logn), thus 
obtaining P = BPP. 
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Furthermore, using the new "parallel" proof of Theorem 3, we provide here 
a worst-case hardness condition for Boolean operators sufficient to derandomize 
any BPNC algorithm (i.e. to obtain BPNC = NC). 

Theorem 6. A constant 0 < Co < 1 exists such that if an operator H : k(n) —> n 
with k(n) = O(logn) exists such that 1) H is an NC operator5, and 2) for any 
d > 1 there exists a constant c with 0 < Co < c < 1 such that the characteristic 
function FH of its output sets satisfies LXogdn{F") > c(2fc(")n)/(A;(n) + logn), 
then NC = BPNC. 

1.3 Our method and further connections with other works. All of our 
proofs share a common method based on the following fact. There is a precise 
trade-off between the worst-case circuit complexity of partial Boolean functions 
and the number of l's in their outputs. In particular, we formalize the intuitive 
fact that a partial Boolean function having a hard worst-case circuit complexity 
cannot return 0 for a "large" number of inputs. This property is used to construct 
the preliminary versions of our HSG which are then combined with a convenient 
use of the properties of expanders graphs [2] (to obtain Theorem 4) and with 
a new analysis of the performances of the already mentioned Andreev et al's 
algorithm [3] (to obtain Theorem 5). 

Finally, we remark that hardness vs randomness results similar to those ob- 
tained in our paper have been obtained, independently from our work, by Im- 
pagliazzo and Wigderson in [6]. Their method (based on the derandomization 
of the XOR-lemma) achieves a trade-off which is stronger than ours in the case 
of sequential algorithms (i.e. BPP algorithms). However it is not clear, to our 
present knowledge, whether their method can be applied to obtain trade-offs 
for parallel computation (like ours) since they use, in a rather envolved way, 
expander walks which seem to be hard to parallelize. 

Due to the lack of space, proofs will be given in the full version of this paper. 

2 Preliminary results on the circuit complexity of partial 
Boolean functions 

Let T(n, N, m) be the set of all partial Boolean functions /(xi,..., xn) defined 
on N < 2" inputs and assuming 1 on m < N inputs. Furthermore, L(n,N,m) 
denotes the worst-case circuit complexity of functions from F{n,N, m), and 
Ldepth(n,N,m) denotes the maximum value Ldepth(f) among all functions / 
from J-(n, N, m). Lupanov [9] obtained the asymptotical bounds result for the 
case of total Boolean functions. 

However, in order to construct quick HSG we need that Lupanov's results 
hold also for partial Boolean functions. In particular, the generalization of the 
upper bounds cannot be derived directly from the proofs in [9]. Then we give a 

5 With "NC operator", we will always mean an operator which is computable in NC 
with respect to the size of its output 
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reduction from general Boolean functions to the restricted case of total Boolean 
functions which is based on a probabilistic construction of suitable linear oper- 
ators. 

Theorem 7. 

L(n,N,m)  =  (1+ o(l)) (log (^)) / (loglog (£[))+O(n) . 

Furthermore a constant c > 0 exists such that 

Lclogn(n,N,m)  =  (1+ o(l)) (log (*))/(loglog (£[))+O(n) . 

3    Hard characteristic functions and HSG 

The following theorem provides a first trade-offs between the hardness of char- 
acteristic functions of Boolean subsets and their hitting properties6. 

Theorem8. Let 0 < C2 < 1 be a constant [and d > 1], and let Sn C {0,1} 
be any subset such that \Sn\  <  bn, where bn = ne^. Suppose that for the 
characteristic function Fn of Sn we have 

»   L(K)   *   ^log^+logn    [V)   L^n(Fn)   >   C2logfen
&n;iogJ- 

Then, for any constant cx, such that 0 < cx < c2, for any Boolean function 
f{x\,... ,xn) such that 

ii) Pr (/ = 1) > 1 - 2(C1"1)T\   and   in) L(f) < bn   [ iii') L]ogan(f) < bn ], 

there exists a € Sn for which /(a) = 1. 

Sketch of the proof. Suppose, by contradiction, that / satisfies conditions ii) and 
iii) but for any a e S„ we have /(a) = 0. Let Z C {0,1}" be the subset of 
all inputs on which / = 0. Clearly, we have Sn C Z C {0,1}". Then consider 
the partial Boolean function g(xi ,...,xn) defined as follows: g(a) = 1 if a £ Sn, 
g(a) = 0iiaeZ\Sn, and g(a) is not defined if a £ {0,1}"\Z. Since \Z\ < T^n 

and \Sn\   <  bn, from Theorem 7, we have 

L(g)   <   (1 + o(l)) (log (2^")) / (loglog (2^)) + 0(n) 

<   (l + o(l))ci(6„n)/(login + logn) . 

From Sn C Z, it is easy to prove that, given any a, Fn(a) can be computed as 
g(a) A ->/(a). Hence 

6 Each result will be given in both sequential and "parallel" version. The latter will 
be included in square brackets. 
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b   72 
L(Fn)<L(g) + L(f) + 0(l)   <   (1 + o(l))Cl ^^ ^ + bn + 0(1)   < 

<   (l + o(l))ci- 
" log &„ +logn 

For sufficiently large n, this last upper bound is in contradiction with hypothe- 
sis (i) of our theorem. The "parallel" version of the theorem can be easily derived 
using the same contradiction argument. □ 

In which follows, we will consider HSG which always have a monotone func- 
tion prize k(n) such that, for any n > 0, k(n+l)-k(n) < 1 and na > k(n) > logn 
where 0 < a < 1. Let H : k(n) -> n be a Boolean operator with k{n) = 0(logn), 
and let FH = {F£ : {0,1}" ->■ {0,1}, n > 0} be the corresponding family of 
the characteristic functions. 

Corollary 9. Suppose that a quick [NC] operator H : k(n) -* n exists such that 
k(n) = (1 + 0(1)) logn and a constant 0 < c2 < 1 exists such that, for a.e. n, 
L{F») > c2(2k^n)/(k(n)+\ogn) [ Llog,+1 n(F*) > c2(2k^n)/(k(n) + logn) 
for some d > 1]. Then, for any positive constant q and for any constant C\ such 
that 0 < ci < c2, it is possible to construct a quick [NC] operator H1 : k'(n) -4- n 
with k'(n) = ©(logn) and such that H' is an {l-2^-Vn,nq)-HSG [ H1 is an 
(1 _ 2(Cl-1)n,n«,logdn)-iJ5(?]. 

3.1     Improved HSG using expanders 

Corollary 9 gives a quick HSG for the class of polynomial size circuits (functions) 
C that have a very large fraction of l's, i.e. Pr (C = 1) > 1 - 2~cn for some 
positive constant smaller than 1. However, this hitting property does not suffice 
to derandomize BPP-algorithms (see Theorem 3). It is in fact required to hit all 
linear-size circuits having "only" a constant fraction of l's. To this aim, we will 
combine the HSG in Corollary 9 with a random walk on expanders, a tool that 
has been often used in decreasing randomness in probabilistic algorithms. 

An undirected graph G(V, E) is a (d, c)-expander if the maximum degree of a 
vertex is d, and for every set W C V of cardinality \W\ < \V\/2, the inequality 
\N(W) — W\> c\W\ holds, where N(W) denotes the set of all vertices adjacent 
to some vertex in W. The expanding properties of a graph can be established by 
determining the value of its second largest eigenvalue. Indeed, if A is an upper 
bound on the second largest eigenvalue of any <i-regular graph G(V,E), then 
G is a (d,c)-expander for c = (d — X)/2d. Expander graphs have the following 
important "hitting" property proved by Ajtai et al [1]. 

Theorem 10. Let G(V,E) be a d-regular graph, and assume that its second 
largest eigenvalue is at most A > 0. Given any subset W CV such that \W\ = an 
(a < 1). Then, for every t > 0, the number of walks of length t in G that avoid 
W is at most n(l - a)1/2((l - a)d2 + A2)4/2. 
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In [7], a polynomial-time algorithm is presented that, given n > 0, and d < n, 
constructs a d'-regular expanders G such that d' = 0(d), \V\ = 0(n), and its 
second largest eigenvalues A > 0 is such that A < 2y/d-l (such graphs are 
called Ramanujan graphs). 

For any n > 0, consider a d-regular Ramanujan expander EPn = (Vn,Xn) 
where 2n < \Vn\ < 2n+1 [7]. Observe that the Boolean strings with last compo- 
nent equal 0 correspond to the input set of the function we want to hit. This as- 
sumption is required when EPn cannot be constructed on vertex sets whose size 
is exactly a power of 2. Let I = [log d]. We suppose that d is a large but constant 

value. Then, we consider the operator EPRntt ■ {0,1}" ->■ {0, l}n, 
such that 

£PiZnit(a,u1)...,u2«_1)s) , a €{0,1}", u* G {0,1}' , s G {0,1}* , 

are the first n components of the 0(s)-th vertex of the £Pn-walk of length 2* 
which starts from vertex (a, 0) and is uniquely determined by the sequence of 
edge choices in the neighborhood of each vertex: </>(ui),... ,</>(u2t_i). Observe 
that if t = 0(logn), the operator EPRn:t can be computed in time polynomial 
in n. Consider now a Boolean function g(xi ,...,xn), and the operator EPRg

nt : 

{0, \}n+l2t ->. {0,1} that performs the OR among the values of g computed on 
the input points visited by a fixed £Pn-walk of length 2', i.e., 

PPJR»>t(a,u1,...,U2<)   =      V     3 (PPPn.t (a, ui,...,u2<_i,s))  .      (1) 

s6{0,l}' 

As consequence of Theorem 10, we can prove the following bound. 

Lemma 11. I/Pr(5 = 0) <c<\, then Pr (PPP£,t = 0) < (c + $ 
2i -2 

Theorem 12. Assume that there exists a quick operator H : k(n) -> n, such 
that k(n) = (1 + 0(1)) log n and the characteristic functions of its output sets 
SQ/tisflGS 

L(F") > ((log(4A)/(logd) + 6)(2k^n)/(k(n) + logn) 

for some constant 6 > 0. Then it is possible to construct a quick operator H" : 
k"{n) -> n with k"(n) = 0(logn) and such that H" is an (1 - e,n)-HSG for 
some constant 0 < e < 1, thus P = BPP. 

4    Hitting Set Generators for BPNC 

Ramanujan's graphs cannot be used to derive NC Hitting Set Generators since 
no efficient parallel method to perform random walks on such graphs is presently 
available. However, Zuckermann [13] recently introduced an NC construction of 
samplers [13] which can replace the role of expanders in our construction. In 
particular, we can use the following result. 
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Theorem 13. [13] Any BPNC algorithm that uses n random bits and has error 
probability bounded by 1/3 can be simulated by a BPNC algorithm that uses 
r(n) = 0(n) random bits and has error probability bounded by (1/2)™. 

Informally speaking, this result allows us to consider only "parallel" circuits 
having a fraction of l's not smaller than 1 - 2~cn for some fixed constant 0 < 
c < 1. By using the same method of Section 3.1, we can combine Corollary 9 
and Theorem 13 to obtain the following result 

Theorem 14. A constant 0 < cz < 1 exists such that the following holds. As- 
sume that there exists an NC operator H : k(n) -» n with k(n) = (1 + 0(1)) logn 
and such that, for any constant d > 1, the characteristic functions of its out- 
put sets satisfy LXogd+in{F") > 6(2k^n/(k(n) + logn), for some constant 
6 > cz. Then it is possible to construct an NC operator H' : fc'(n) —>• n with 
fc'(n) = 0(logn) and such that H' is an (1 - e,n,logdn)-HSG for any constant 
0 < e < 1 and d>\. 

In the next corollary, the above HSG is combined with the new "parallel" 
proof of Theorem 3 given in [4]. 

Corollary 15. A constant 0 < cz < 1 exists such that if an NC operator H : 
fc(n) —> n exists that satisfies the same conditions of Theorem 14 then NC = 
BPNC. 

Note. In the previous version of this paper (when the new proof of Theorem 3 
was still unknown) we were able to provide only sufficient hardness conditons 
to obtain ZNC = BPNC. The proof of this weaker result is of independent 
interest and has been used in [4] to obtain some results in the context of weak 
random sources. A new version of this proof can be found in [4]. 

5    Hitting sets from hard Boolean operators 

The construction of an efficient HSG from a Boolean operator which has hard 
circuit-complexity is based on the following "contradiction" argument. Suppose 
that a Boolean operator T : {0, l}m —> {0, l}n is not a HSG for a certain class 
of circuits defined by the parameters e(n) and ß{n) (see Def. 2). Roughly speak- 
ing, this negative fact implies that the output sequence of T can be represented 
by a new binary sequence which contains a "large" number of 0's (this number 
depends on e(n) and ß(n)). Then, using Andreev et a/'s technique shown in [3], 
it is possible to compress this new binary sequence in order to prove an upper 
bound on the circuit complexity of T. This bound is obtained by a new analysis 
of the compression rate achieved by this technique and by applying the upper 
bound for the Shannon function L(n,N,m) in Theorem 7. If T is supposed to 
have a hard circuit complexity, we get a contradiction. 
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5.1     Compressing Boolean operators 

Let T : {0, l}m -> {0,1}" and C(xi,..., xn) be a circuit with n inputs. Given 
a e {0, l}n, consider the function Med{f,T,a) = 2~m Eue{o,i}m C(T(U) © a) 
(as in the proof of Corollary 15). It is easy to prove that E (Med(C,T,a)) = 
Pr {C{xi,..., xn) = 1) where the expected value is computed with respect to a. 
We briefly describe here the Andreev et al's technique introduced in [3]. Let ax 

and a2 be two different elements in {0,1}". Define dx = Med{C, T, aj) and d2 = 
Med{C, T, a2) and assume that D = d2 -dx > 0. The j-th component of a will be 
denoted as [a]J'. Since we are considering the case in which D > 0, we can assume 
that there exists an index s for which [QI]

S
 ^ [a2]s■ Consider the operator 

T# ■ {0; x}™ _> {o, l}n defined as follows T#(u) = T(u) © ([T(u)]s • (aj © a2)) 
where the operation "•" is the standard scalar product. The s-th component of 
T*(u) satisfies the following equations: 

[T*(u)]s = [T(u)Y © ([T(u)]s ■ ([«i]s © [a2]s)) = [T(u)]» © [T(u)]s -1  = 0 . (2) 

Observe also that the set {T#(u) © ai,T#(u) © a2} is equal to the set 
(T(u)ffiai , T(u)ffia2}. Let 

N {a, fa, fa) = |{u : iT(u-)Y = °, C(r(u)eai) = fa and C(T(u)©a2) = fa}\ . 
(3) 

We can now introduce the function which approximates the s-th component 
of T(u). Consider the function Q defined as follows: 

QN(<T,<f,u4>i)(xiy) — 

' x if x / y 
lifx = 2/ = 0 and  JV(1,0,0) > JV(0,0,0) 
0ifx = y = 0 and  N(1,0,0) < N{0,0,0) 
li{x = y = l and  N(l, 1,1) > JV(0,1,1) 
Q]fx = y = l and  N{1,1,1) > iV(0,1,1) 

In which follows we will consider the function N as a fixed parameter, and 
thus we will omit the index N(a, fa, fa) in the definition of Q. Then the approxi- 
mation function for the s-th bit of T(u) is Z(u) = <5(C(T#(u)©a1),C(T#(u)ffi 
a2))5 i = 1,..., m. Our next goal is to estimate the number of errors generated 
by Z(u). Let ND(a,fa,fa) be the number of inputs u such that the follow- 
ing conditions are satisfied: i) [T(u)]s © Z(u) = 1 (i.e. there is an error); ii) 
[T(u)Y = a; Hi) C(T(u) © ax) = fa; iv) C(T(u) © a2) = fa. 

The following Lemma gives an upper bound on the number of errors in ap- 
proximating the s-th bit of T(u). 

Lemma 16. [3] £(,,^2)e{o,i}3 ND(a, fa, fa) < m (f - ^)   . 
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Some new hardness-compression trade-offs Using Lemma 16, we are now 
able to give an useful bound on the circuit complexity of T. Observe that function 
U(u) = [T(u)]s © Z(u) with u G {0, l}m, singles out the positions in T for which 
an error occurs. 

Lemma 17.   L(T)   <  L°?(m,n - 1) + L{U) +0{L(C)) + 0(n) . 

Lemma 18. If for some constant c\ we have that D > c\, then there exists a 
constant c2 < 1 such that L(U)   <  C2(2m/m). 

5.2     The Hitting Set Generator 

In order to derive our HSG, we will make use of the following result given by 
Lupanov (see also [11]). Let Lop(k,n) denote the worst-case circuit complexity 
of Boolean operators having k variables and n outputs. Then L°p(k,n) = (1 + 
o(l)) (2* n)/(k + log n). 

Theorem 19. Assume that a quick operator H : k(n) —> n exists such that 
k{n) = (1 + 0(1)) log n, andfora.e.nL°r(Hn) > L(k(n),n) - (2k^)/(k(n)2). 
Then, it is possible to construct a (l/2,n)-HSG H' : k'(n) -» n such that 
jfc'(n) = <9(logn). Hence, P = BPP. 

Acknowledgements. We are grateful to Luca Trevisan for several interesting discus- 
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Abstract. We construct an oracle relative to which NP has p-measure 
0 but Dp has measure 1 in EXP. This gives a strong relativized negative 
answer to a question posed by Lutz [Lut96]. Secondly, we give strong 
evidence that BPP is small. We show that BPP has p-measure 0 unless 
EXP = MA and thus the polynomial-time hierarchy collapses. This con- 
trasts with the work of Regan et. al. [RSC95], where it is shown that 
P'i'poly does not have p-measure 0 if exponentially strong pseudorandom 
generators exist. 

1    Introduction 

Since the introduction of resource-bounded measure by Lutz [Lut92], many re- 
searchers investigated the size (measure) of complexity classes in exponential 
time (EXP). A particular point of interest is the hypothesis that NP does not 
have p-measure 0. Recent results have shown that many reasonable conjectures 
in computational complexity theory follow from the hypothesis that NP is not 
small (i.e., //P(NP) ^ 0), and hence it seems to be a plausible scientific hypoth- 

esis [LM96, Lut96]. 
In [Lut96], Lutz shows that if yup(NP) ^ 0 then BPP is low for A%. He shows 

that this even follows from the seemingly weaker hypothesis that nP{A%) / 0. 
He asks whether the latter assumption is weaker or equivalent to ^P(NP) ^ 0. 
In this paper we show that, relative to some oracle, the two assumptions are not 

equivalent. 
We show a relativized world where Dp = EXP whereas NP has no P-bi- 

immune sets. This immediately implies, via a result of Mayordomo [May94a], 
that in this relativized world, NP has p-measure 0 and Dp, and hence Z\f, has 
measure 1 in EXP, and thus does not have p-measure 0, or even p2-measure 0. 
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This shows in a very strong way that relativized measure for NP and PNP 

differ: /ip(NP) = 0 whereas /iP(PNP[2]) ± 0- Here PNPI2l is the class of sets 
recognized by polynomial time Turing machines that are allowed two queries to 
an NP oracle. We show that our results cannot be improved to PNPM. 

Secondly, we investigate the possibility that BPP does not have p-measure 
0. Intuitively BPP is a feasible complexity class close to P and therefore it 
should be the case that BPP is small. We give very strong evidence supporting 
this intuition. We show that /JP(BPP) = 0 unless EXP = MA and thus the 
polynomial-time hierarchy collapses. 

Since BPP C P/poly our result contrasts with the one by Regan, Sivakumar 
and Cai [RSC95], where it is shown that pp(P/poly) ^ 0, unless exponentially 
strong pseudorandom generators do not exist. 

2    Preliminaries 

We let £ = {0,1} and identify strings in £* with natural numbers via the 
usual binary representation. We fix Nx, N2, ■ ■ . to be a standard enumeration of 
all nondeterministic polynomial-time oracle Turing machines (NOTMs), where 
for each i and input of length n, Ni runs in time n* for all oracles. All our 
machines run using symbols 0, 1 and blanks. Fix a deterministic oracle TM M 
which accepts some standard ^-complete language for EXP for all A C £*. 
We may assume that M runs in time 2". We let (•, •) be the standard pairing 
function, and we note that x,y < (x, y) for all x,y £ £*. A set is in Dp if it can 
be expressed as the difference of two sets in NP. 

The notations H, Q, TZ+ and Q+ denote the real numbers, the rational num- 
bers, the positive real numbers and the positive rational numbers respectively. 

2.1     Resource Bounded Measure 

Classical Lebesque measure is an unusable tool in complexity classes. As these 
classes are all countable, everything we define in such a class has measure 0. Yet, 
we might wish to have a notion of "abundance" and "randomness" in complexity 
classes. Lutz [Lut87, Lut90] introduced the notion of resource bounded measure, 
and gave a tool to talk about these notions inside complexity classes. 

Definition 1. A martingale d is a function from £* to 1Z+ with the property 
that d(w0) + d(wl) = 2d(w) for every w £ £*. 

Definition 2. A p-martingale is a martingale d : £* >->• Q+ that is polynomial 
time computable. 

Definition3. A martingale d succeeds on a language A if 

lim sup d(xA [0 ... n - 1]) = +00 
nt-4-oo 

We write S°°[d] = {A | d succeeds on A} 
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Definition 4. Let X be a class of languages. 

- X has p-measure 0 (ßp{X) = 0) iff there exists a p-martingale d such that 
X C S°°[d]. _ 

- X has p-measure 1 (fip(X) = 1) iff fip(X) = 0 
- X has p-measure 0 in EXP {nP(X\EXP) = 0) iff fip(Xn EXP) = 0 
- A- has p-measure 1 in EXP (ßp(X\EXP) = 1) iff ßp(X n EXP) = 0 

One often defines measure in EXP using p2-measure where the martingale 
can use 2Iog      n time. All of our results also hold in this weaker model. 

3    Measure of NP versus Measure of PNP 

In this section we concentrate on the question posed by Lutz [Lut96]. We show 
that relative to some oracle pp(NP) = 0 does not imply that /ip(P

NP) = 0. We 
do this in a very strong way by constructing an oracle such that NP does not 
contain P-bi-immune sets and Dp = EXP. 

Theorem 5. There exists an oracle A such that, relative to A, NP has no 
P'-bi-im.mv.ne sets and Dp = EXP. 

Proof. We will code EXP into Dp on one "side" of the oracle and prevent P-bi- 
immunity on the other, i.e., strings in E*0 = {x0 \ x £ E*} will be used to code 
EXP into Dp, while strings in 17*1 = {xl | x £ E*} will code the information to 
find an infinite subset of each NP set or its complement. Some diagonalization 
will also be necessary to force certain NP computations. 

To mix coding with diagonalization, we employ a simplified version of the 
trick used to construct an oracle for PNP = NEXP [BT94, FF95]. For each x, we 
reserve two potential regions—left and right—in which to code MA{x), only one 
of which will actually be used. To code correctly in a region we must let exactly 
one string in the region enter A. We will code in the left region unless we have 
to diagonalize against some NP machine, which may necessitate adding several 
strings of the left region to A. If this happens, we scrap the left region and code 
in the right region, but we can do this only if our diagonalization hasn't already 
put strings of the right region into A. 

We now proceed with the formal treatment. For every x £ E* with \x\ = n 
and b S E, we call s an (x,b,left)-coding string (respectively, an (x,b,right)- 
coding string) if s = xybOO (respectively, s = xyblO) for some y £ E* of length 
3n. We identify left and right with 0 and 1, respectively. We build the oracle A 
in stages, each successive stage extending a finite portion of A's characteristic 
function. If a: E* —> E is some partial characteristic function, iV an oracle 
machine, and x G E*, then the computation Na(x) is defined as usual, except 
that when TV makes any query outside domain(a), it is answered negatively. As 
is customary, we regard a as a set of ordered pairs. If ß is another characteristic 
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function, we write ß >; a to mean that ß extends a. Finally, define the "tower 
of 2's" function t(n) for n > 0 by 

*(0) = 1 
t(n + l) = 2*<n>. 

Stage — 1. 
a_i:=0. 
£W Stage. 

Stage n > 0. 
We are given a„_i. Set a:=a„_i. 

1.  (Forcing an NP computation) Yinj^ t(k) for any fc, then set 

' right if a(s) = 1 for some (x, b, left)-coding string s with \x\ = n, 
"'    "* left   otherwise, 

and go to step 2. Otherwise, let n = t(k) for some k = (i,j). If there exists 
a minimal /3 >^ a such that both 
(a) JVf (0n) has an accepting path in which all queries are in domain(/3), and 
(b) for no a; with |x| > n and no (x,6,right)-coding string s does /3(s) = 1, 
then set a:=ßU {(0n' 1,1)} and set dn:=right (note that ß is only defined on 
strings no longer than nl). Otherwise, set a:=aU{(0n*l,0)} and set dn:=left. 

2. (Preserving computations of M) For all x of length n, run Ma(z), and ex- 
tend a with just enough 0's to "cover" all queries made by Ma(x) not in 
domain(a). 

3. (Coding computations of M) For all x £ S* of length n, let y £ £* be the 
lexicographically least string (if one exists) such that \y\ = 3n and neither 
the (z,0,dn)-coding string nor the (x, l,dn)-coding string corresponding to 
y is in domain(a). If Ma accepts, set a:=a U {(xyldn0,1)}; otherwise, set 
a:=aU{(xy0dn0,l)}. 

4. Set an to be a extended with just enough 0's to cover all remaining (x, b, d)- 
coding strings for all b € E, d £ {left,right}, and x of length n. 

End Stage. 

Let A be such that \A extends an for all n  (XA(X) = 0 for any x £ \Jn an). 
For any B C £*, define the language LB by 

{if either B contains an (x, l,right)-coding string, or 
B contains no (a;,0,d)-coding strings for any d G {left, right}, 

0 otherwise. 

Clearly, LB G coDp'B. We now show that LA(x) = MA(x) for all x G S*, and 
hence coW>A = EXPA = W'A. 

Pick an n large enough, and fix an input x of length n. In Step 3 of Stage 
n, such a y must exist: there are at most 2" • (2n+1 - 1)   (x, b, d)-coding strings 
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queried by M on inputs of length < n, because of the running time of M, and 
less than n ■ nlog*n < 2(logn)2 total strings queried by the AT, in Step 1 of Stages 
0 through n. Thus there are less than 23n   (x,b,d)-coding strings in domain(a) 
at Step 3 of Stage n. 

The fact that 

MA(x)=LA{x) (1) 

is now easily seen: first we observe that no (x, b, right)-coding string (for any 
b G E) gets into A in Steps 1 or 2 of any stage. Thus we have two cases: 

dn = left: For any b G E and d G {left,right}, the only (x, b, <i)-coding string 
that ever enters A does so in Step 3 of Stage n. This unique string is an 
(x, l,left)-coding string if MA(x) accepts, and is otherwise an (x, 0, left)- 
coding string; thus, (1) is satisfied. 

dn = right: Exactly one (x, 6, right)-coding string enters A. It is an (x, 1, right)- 
coding string iff MA(x) accepts. Again, (1) is satisfied. 

It remains to show that NP"4 has no PA-bi-immune sets. This will be done if 
we can show that for any L G NPA, there exist PA sets Q and R with Q infinite, 
such that L n Q = R (or at least the symmetric difference of L n Q and R is 
finite). Let L = L(NA) for some fixed i. Let 

Q = {0n\(3j)n = t((i,j))}, 

i? = Qn{0n|0nil £A}. 

The sets Q and R are clearly in PA. Pick n = t((i,j)) for j large enough so that 
t((i,j) + 1) = 2" > n\ and consider Step 1 of Stage n. If ß exists, then Nf{0n) 
accepts and 0"' 1 G A, so 0" G Ä. If no such /3 exists, then 0" ^ Ü. To see that 
NA(0n) rejects, we simply observe that dn = dn+\ = • • • = dn;_i — dni — left, so 
no (x, b, right)-coding strings enter A in any of the stages n through nl. Therefore, 
A preserves our conditions on the nonexistence of ß, and so NA(0n) rejects. 

Corollary 6. There exists an oracle relative to which NP has p-measure 0 and 
Dp = EXP (and thus has p-measure 1 in E and in EXPj. 

We actually get something more from the construction above: relative to A, 
we have EXP C (NP n coNP)/l. That is, EXP can be computed in NP n coNP 
with one bit of advice for strings of length n, namely dn. On input x of length n, 
an NP"4 machine accepting L(MA) (respectively L{MA)) simply checks if there 
is some (x, l,dn)-coding string (respectively, some (a;, 0, d„)-coding string) in A. 

A natural question is whether Theorem 5 and Corollary 6 are tight. It could 
still happen that /zp(NP) = 0 and /zp(P

NPM) / 0. The next theorem discards 
this possibility. 

Theorem 7. //pp(PNPW) ^ 0 then /ip(NP) ^ 0. 



193 

Proof. nP(PNPW) ^ 0 implies that SAT is weakly ^„-complete for EXP. Ambos- 
Spies, Mayordomo, and Zheng [ASMZ96] have shown that the weakly <\tt- 
completeness notion coincides with weakly ^-completeness for EXP. Hence 
SAT is weakly ^-complete for EXP and thus /zp(NP) ^ 0. 

Corollary 8. Relative to the oracle constructed in Theorem 5 it holds that Dp — 
CODP^PNP[I] 

4    BPP likely has measure 0 

In this section we investigate the consequences of BPP not having p-measure 
0. We will see that this is unlikely since it would collapse the polynomial-time 
hierarchy. Hence we provide strong evidence that /JP(BPP) = 0. 

Theorem9. 7//xp(BPP) ^ 0 then EXP = MA. 

Since MA G Zp
2 n JIf [BM89], EXP = MA implies that PH = S?2. 

We use the following Theorem from Babai, Fortnow, Nisan and Wigder- 
son [BFNW93] stating that if EXP ^ MA then BPP can be simulated in subex- 
ponential time for infinitely many input lengths. 

Theorem 10 [BFNW93]. If EXP ^ MA then for all L G BPP, and for all e 
there exists a set V G DTIME(2n') such that for infinitely many n, Lf\En = 
L'nsn. 

We will see that if BPP can be simulated in subexponential time for in- 
finitely many input lengths, then it has p-measure 0. Taking this together with 
Theorem 10 yields that EXP ^ MA implies that /ip(BPP) = 0, which proves 
Theorem 9. 

Theorem 11. If for all languages L G BPP there exists an e < 1 and a set 
V G DTIME(2n') such that for infinitely many n, L n Sn = V n En, then 
^P(BPP) = 0. 

Proof. (Sketch) We will construct a martingale that succeeds on all sets in BPP 
that runs in time nk for some fixed k. Let L G BPP and let My be the machine 
that runs in subexponential time and accepts V. If we are betting on strings of 
length n such that L n Sn = V n Un then we can use ML> to predict exactly 
the next bit, and hence we win 2" times. The problem however is that we do 
not know for which n, My is going to be correct. We overcome this problem by 
the following strategy. 

Assume that our initial capital is 1. We reserve 2~n to bet against the strings 
of length n, using ML> to predict the next bit (i.e. whether the next string of 
length n is in V). We bet everything won so far on the strings of length n to 
the outcome of My. At the last string of length n we set aside what (if any) we 
have won betting on the strings of length n. 
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Observe that if n is a length such that LC\En = L'f)En then we win 22" *2~n 

and this is greater than n. So for infinitely many n we add n to our capital and 
hence the lim-inf of this martingale goes to infinity. 

To make the construction work uniformly for all L € BPP we simulate all 
the DTIME(2n) machines with a single DTIME(22n) machine allocating 2-i of 
our initial capital to machine i (see [Lut92, May94b]). 
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Abstract.  In [3] we exhibited a simple boolean functions /„ in n vari- 
ables such that: 
1) /„ can be computed by polynomial size randomized ordered read-once 
branching program with one sided small error; 
2) any nondeterministic ordered read-once branching program that com- 
putes fn has exponential size. 
In this paper we present a simple boolean function gn in n variables such 
that: 
1) gn can be computed by polynomial size nondeterministic ordered read- 
once branching program; 
2) any two-sided error randomized ordered read-once branching program 
that computes /„ has exponential size. 
These mean that BPP and NP are incomparable in the context of or- 
dered read-once branching program. 

1    Preliminaries 

Branching programs is well known model of computation for discrete functions 
[14]. Many types of restricted branching programs have been investigated as 
important theoretical model of computations [9]. Ordered read-once branching 
program or ordered binary decision diagrams (OBDD) [4, 15] also important for 
practical computer science. They are used in circuits verifications. But many 
important functions cannot be computed by determinsitc read-once branching 
programs of polynomial size [4, 13, 8]. 

In [2] we introduced the model of randomized branching programs and showed 
that randomized ordered read-once branching programs can be more effective 
than determinstic ones. In [3] we defined exclusive boolean function fn in n 
variables which can be computed by polynomial size randomized ordered read- 
once branching program, but any nondeterminstic ordered read-once branching 
program needs exponetial size to compute fn. Martin Sauerhoff [10] considered 
function from theorem 3 [6]. He proved that this function needs (also as in the 
deterministic case) exponetial size randomized read-once branching programs for 
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one-sided error. In this paper we presented exclusive function gn which is "sim- 
ple" for nondeterminstic ordered read-once branching programs, but is "hard" 
for randomized read-once branching programs with two-sided error of computa- 
tion. 

Together with the result from [3] this proves that complexity classes BPP and 
NP are incomparable in the context of ordered read-once branching programs. 

Note that the results of the paper for ordered read-once branching programs 
are true for a more common model — weak-ordered branching program that 
we define in the paper. Informaly speaking weak-ordered property for branching 
program P means existence of partition of its set {xx,x2, ■ ■ ■ ,x„} of variables 
into two parts X1 and X2, X1f]X2^ 0, such that for any computation path of 
P the following is true. If a variable from X2 is tested then no variable from Xx 

can be tested in the rest part of this path. 
A deterministic branching program P for computing a function g : {0, l}n ->■ 

{0,1} is a directed acyclic multi-graph with a distinguished source node s and a 
distinguished sink node t. The out degree of of each non-sink node is exactly 2 and 
the two outgoing edges are labeled by xt = 0 and Xj = 1 for variable Xj associated 
with the node. Call such node an x,-node. The label axt = 5" indicates that only 
inputs satisfying xt = 6 may follow this edge in the computation. The branching 
program P computes function g in the obvious way: for each a 6 {0, l}n we let 
/(cr) = 1 iff there is a directed s - t path starting in the source s and leading to 
to the accepting node t such that all labels x; = en along this path are consistent 
with a — ai,a2,... ,an. 

The branching program becomes nondeterministic [5] if we allow "guessing 
nodes" that is nodes with two outgoing edges being unlabeled. Unlabeled edges 
allow all inputs to produced. A nondeterministic branching program P computes 
a function g, in the obvious way; that is, g{a) = 1 iff there exists (at least one) 
computation on a starting in the source node s and leading to the accepting 
node t. 

Define a randomized branching program [2] as a one which has in addition to 
its standard inputs specially designated inputs called "random inputs". When 
values of these "random inputs" are chosen from the uniform distribution, the 
output of the branching program is a random variable. 

Say that a randomized branching program (a, 6)-computes a boolean function 
/ if it outputs 1 with probability at most a for input a such that /(ex) =0 and 
outputs 1 with probability at least b for inputs a such that f(a) = 1. 

As usual for a branching program P (deterministic or random), we define 
size(P) (complexity of the branching program P) as the number of internal 
nodes in P. Define, following [5], the size(P) of the nondeterminstic branching 
program P as the number of internal nodes in P minus the number of guessing 
nodes. 

Read-once branching programs is branching program in which for each path 
each variable is tested no more than once. An ordered read-once branching pro- 
gram is a read-once branching program which respects a fixed ordering 7r of 
the variables, i.e. if an edge leads from an Xj-node to an Xj-node, the condition 
Tt(i) < -K(J) has to be fulfilled. 
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2    Results 

We specify a boolean function fn of n = 41 variables as follows. For a sequence 
a G {0, l}4' call odd bits a "type" bits and even bits a "value" bits. Say that 
even bit at G a, i G {2,4,..., 4Z}, has type 0 (1) if corresponding odd bit CTJ_I is 
0 (1). For a sequence a G {0, l}4' denote <r° (cr1) subsequence of a that consists 
of all even bits of type 0 (1). 

For every a G {0,1}" boolean function /„ : {0,l}n ->■ {0,1} is defined as 
fn(<T) = litioa = <r1. 

Definition 1. Call branching program a n-weak-ordered branching program if 
its respects a partition n of variables {xx, x2, ■ ■ ■, xn} into two parts Xi and X2 

such that if an edge leads from an £;-node to an £j-node, where Xi G Xt and 
Xj G Xm, then the condition t < m has to be fulfilled. 

Call branching program P an weak-ordered if it is 7r-weak-ordered for some 
partition ir of the set of variables of P into two sets. 

Clearly that ordered read-once branching program is also weak-ordered. We 
proved the following result in [3] (we use here a restrictive variant of this result). 

Theorem 2. For the function fn the following is true: 
1. fn can be (e{n), 1)-computed by randomized ordered read-once branching 

program of the size 

_ /   n6    ,    2    
n 

0    ^- log2 

e3(n) e(n) 

2. Any nondeterministic ordered read-once branching program that computes 
function fn has the size no less than 2ra'4_1. 

Now define function gn which is "hard" for randomized computation but is 
"simple" for nondeterminstic computation for our model of branching program. 
This boolean function presented in [11]. Let n be an integer and let p[n] be the 
smallest prime greater or equal to n. Then, for every integer s, let uin(s) be 
defined as follows. Let j be the unique integer satisfying j = s mod p[n] and 
1 < j < P[n}- Then, wn(s) = j, if 1 < j < n, and w„(s) = 1 otherwise. 

For every n, the boolean function gn : {0,1}" ->■ {0,1} is defined as gn(a) = 
o-j, where j = w„(^"=1 io-t). 

We will use the following notations in the rest part of the paper. Let h : 
{0,1}™ -» {0,1} be a boolean function. Consider a partition 7r of variables 
{xi,xo, ...,xn} into two parts Xi = {xt : i G /} and X2 = {XJ : j G J}, where 
/ C {1, 2,..., n}, \I\ = I and J = {1,2,... ,n}\/}, \J\ = t. 

Denote L, R sets of binary sequences of length I and t with indexes from / 
and J respectively. For u G L and w G R let (u, w) mean the sequence a from 
{0,1}" in wich bits with indexes from / respectively J have the same values as 
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in u respectively w. We will also use the notation h(u,w) instead of h(a) where 
it will be convenient. 

Consider one-way randomized communication computation. We use the fol- 
lowing standard model of one-way randomized communication computation for 
function h. Two players A and B receive respectively u e L and w e R- In the 
randomized one-way model, A sends the messages ßi,ß2,...,ßd with probabilities 
Pi,P2, —,Pd respectively {Yfi=iPi = 1)- B, on the receipt of ßt, outputs 1 with 
probability qt and 0 with probability l-qt- The probability distribution on the 
set of messages sent by A is entirely determined by the input at A alone, and 
is not influenced by the input at B. Similarly, the probabilities qt at B depend 
only on its input and the message ßi received. 

In the computation T^(u,w), the probability of outputting the bit 6=1 is 

T,Li Pi(u)Qi(w) and the bit 6 = 0 is 1 - Efci Pi(u)qi(w). 
Let p = | + £ for 0 < e < 1/2. Say that the probabilistic protocol 4> p- 

computes a function h if for every input a = (u, w) it holds that h(a) = b iff the 
probability of outputting the bit b in the computation T^,(u,w) is no less than 

P- 
Let a set U C {0,1}" be such that U = L x R. The randomized communi- 

cation complexity C{4>) of the probabilistic protocol cj> on the inputs from U is 
[log | M (0)| ], where M{<j>) is the set of messages used by 4> during computations 
on inputs from U. For p € [1/2,1] the randomized communication complexity 
PCpn (h) of a boolean function h is 

min{C(0) :  protocol (f> p-computes h for the partion 7r of inputs from U}. 

The proof of following lemma is based on simulation technique of weak- 
ordered branching program by communication protocol and is similar to simu- 
lation technique from [1] (lemma 6.1). 

Lemma3. Let e £ [0,1/2], p = 1/2 +e. Let randomized IT -weak-ordered branch- 
ing program P (l—p,p)-computes function h : {0,1}" -> {0,1}. Let U C {0, l}n 

be such that U = L x R, where L and R are defined in according to partition TX 

of inputs. Then 

size(P)>2pc?-W-1. 

Proof. Describe the following communication protocol #, which p-computes 
function h for the partion 7r of inputs. 

Let a e U be a valuation of x, a = (u,w), u e L, w £ R. Players A and B 
receive respectively u and w in according to partition IT of inputs. Let vi,...,Vd 
be all internal nodes of P that are reachable during paths of computation on the 
part u of input a with non zero probabilities Pi(u),... ,Pd(u). 

During the computation on the input u, player A sends node Vi with prob- 
ability pi(u) to player B. Player B on obtaining message vt from A starts its 
computation (simulation of the branching program P) from the node vt on the 
part w of the nput a. 
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From the definition of the protocol $ results the statement of the lemma.   | 

We use the lower bound for probabilistic one-way complexity from [1] in the 
proof of the theorem 6 below. Recall notations and the statement we need from 
[1] in the convinient for us form. 

For U — L x R with a boolean function h we associate a \L\ x \R\ communica- 
tion matrix CM whose (u, w)-th entry, CM[u, w] is h(u, w) for all (u, w) G LxR. 
As it is mentioned in [16] the one-way deterministic communication complex- 
ity DC^(h) for partition -K of inputs from U of a boolean function h is easily 
seen to be \\og(nrow(CM))], where nrow(CM) is the number of distinct rows 
of communication matrix CM of the function h. 

Consider w.l.g. the case when all rows of CM are different, nrowiCM) = \L\. 
Choose a Y C R such that for an arbitrary two words u,u' G L there exists 

a word y £Y such that h(u, y) ^ h(u', y). The set Y is called the control set for 
the matrix CM. 

Denote 

ts(CM) = min{|y| : Y is a control set for CM}. 

It is evident that [log nrow{CM)] < ts(CM) < nrow(CM). 

For number p G [1/2,1], define pccu
p{h) = l08^

(f^M)g(p), where H(p) = 
-p\ogp-(l-p) log(l-p) is the Shannon entropy. Call pcc^(/i) the ^-probabilistic 
communication characteristic of the function h. 

Theorem4. [1] Let e G [0,1/2], p = 1/2 + e. Let U C {0,1}" be such that 
U = L x R, where L and R are defined in according to partition TT of inputs of 
function h : {0,1}" -> {0,1}. Then 

PC^(h) > DCV{h)(l-pccu
v{h)) - 1. 

In the proof of the theorem 6 below we use the following result from number 
theory (see [7] and [12] for additional citation). 

For every natural number n let p(n) be the smalest prime greater or equal 
than n. Consider Zp(„) the field of the residue classes modulo p. 

Lemma 5. For every n large enough, the following is true. If A C Zp^ and 
\A\ > 2>y/n, then, for every t G Zp(n), there is a subset B C A such that the sum 
of the elements of B is equal to t. 

Theorem 6. Let e G [0,1/2], p = 1/2 + e. Then for arbitrary S > 0 for every n 
large enough it holds that any randomized ordered read-once branching program 
that (1 — p,p)-computes function gn has the size no less than 

1/4    ——- 
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Proof. Let P be a randomized ordered read-once branching program with an 
ordering r of variables which computes function gn. For ordering r = {ii,i2, ■ ■ • >»n} 
consider the partition 7r of variables x of gn into two parts X\ = {x^ ,...,£;,} 
and X2 = {xil+1 ,...,xin}, where I = n - \Sy/n\■ Denote t = [3^/"]• 

Describe below a subset C7 C {0,1}" in the form U = Lx R where |L| = I, 
\R\=t. 

Denote by I and J sets of indexes of variables from sets Xi and X2 respec- 
tively. For s e {1, • • •, n} denote Ls a subset of binary sequences of length I with 
indexes from I such that Ls = {u : un(Y,i€i iui) = sl- Denote L a maximum 
among sets Li,...,Ln. 

\L\ =    max    {\LS\}. 
*6{l,...,n} 

Clearly that 

\L\>   

Let L = Ls. Then denote R = {w : Un(Y,jej3wj +s) = k,k€ I}. From the 
definition of it! we have the following properties: 

l)|Ä|=i; 
2) for arbitrary u and v! from L there exists w G R such that gn{u,w) ^ 

gn(u',w). 
We will prove the second property (the first one is evident). Let i e I be 

an index such that i-th bits in sequences u and u' are different, ut ^ u[. From 
the lemma 5 it follows that for every n large enough, for our number s and the 
number i there exists a sequence w £ R such that s + Y^jej Jwj = i modp(n). 
Then from the definition of gn it follows that gn(u, w) ^ gn(u', w). 

Now define set U as U = L x R. From the above it follows that for the set U 
\L\ x \R\ communication matrix CM of gn has the following properties: 

1) nrow{CM) = \L\; 
2) the set R is the control set for CM. 

This means that DCu(gn) - log |L| and that for ^-probabilistic communication 
characteristic of pcc^(gn) of function gn it is true that 

pccu
p{gn) = (l/\og\L\)H(p) < ((n-\3y/ü\)/(n-{3y/K\-logn))H(p). 

From this it follows that for arbitrary S > 0 for every n large enough it holds 
that 

pc$(gn)<(l + 8)H(n). 

From the above property and the theorem 4 it follows that for every n large 
enough the following is true 

PC%(gn) >(n- fSv^ - logn)(l - (1 + S)H(p)) - 1. 
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From this and the lemma 3 the lower bound for size(P) results. | 

Note that in the proof of the theorem 6 from the property of P that it 
is ordered read-once we use only the following fact. Set x of variables of P 
can be partition into two parts Xi and X2 such that |Xi| = n — \S^/n\ and 
|X2| = [3^/^! • The cardinality of X2 is essential for application of lemma 5. 
This means that the following statement is true. 

Theorem 7. Lets £ [0,1/2], p = l/2+£. Let P be a randomized i\-weak-ordered 
branching program that (1 - p,p)-computes function gn. Let % be a partition of 
x in two two parts X\, X2 such that \X2\ = t > \2>y/n\ and \XX\ = I = n - t. 
Then for arbitrary S > 0 for every n large enough it holds that 

size(P) > 1/4 
2(X l-(l+ö)H(p) 

n 

Theorem 8.   There is polynomial size nondeterministic ordered read-once branch- 

ing program that computes function gn. 

Proof. The proof is simple. For arbitrary input a nondeterministic ordered 
read-once branching program P that computes function gn works as follows. 
On the first (nondeterminstic) phase P nondeterministicaly selects number s £ 
{l,...,n}. Then on the second (deterministic) phase P reads inputs in the 
order xi,...,xn. During computation path on input a P 1) counts number 

a = Lon(Y,7i=i i°i) and 2) store s-ths bit as. If a — s then P ouputs bit as of the 
input a else P outputs 0. Clearly, that P has polynomial size. | 
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Abstract. In this paper we show how to construct efficient checkers 
for programs that supposedly compute properties of polynomials. The 
properties we consider are roots, norms, and other analytic/algebraic 
functions of polynomials. In our model, both the program H and the 
polynomial p are available to the checker each as a black box. We show 
how to check programs that compute a specific root (e.g., the largest) or 
a subset of roots of the given polynomial. 
The checkers, in addition to never computing the root(s) themselves, 
strive to minimize both the running time (preferably o(deg2p)) and the 
number of black box evaluations of p (preferably o(degp)). We obtain de- 
terministic checkers when a separation bound between the roots is known 
and probabilistic checkers when the roots can be arbitrarily close. We 
then extend the checkers to handle the situations when the program II 
returns an approximation to the root and when the evaluation of the 
polynomial p is approximate. Our results translate into efficient check- 
ers for matrix spectra computations both in the exact and approximate 
settings, operating in the library model of [BLR93]. Next we show that 
the usual characterization of norms using the triangle inequality is not 
suited for self-testing in the exact case, but surprisingly, could be used 
in the approximate case. 
Our results are complementary to most of the existing results on test- 
ing polynomials. The testers in the latter have the goal of determining 
whether a program computes a polynomial of given degree, whereas we 
are interested in checking the properties of a given polynomial. 

1     Introduction 

The paradigm of program checking and its extensions, self-testing, and self- 
correcting, have received considerable attention (e.g., [Blu88, BK89, BLR93, 
Lip91, GLR+91, RS96, ABC+93, GGR96, EKR96].) The results in this field 

This work was done while the first, second, and fourth authors were visiting Sandia 
National Labs. The second and fourth authors are also supported by the NSF Career 
Award CCR-9624552, the Alfred P. Sloan Research Award, and the NSF grant DMI- 
91157199. 
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have practical value as tools for efficient, verification of the correctness of pro- 
grams. Furthermore, they have been applied to develop efficient probabilistically 
checkable proofs [ALM+92]. 

In this paper we investigate the problem of checking and testing (both in 
the exact and approximate cases) programs that compute properties (i.e., func- 
tions or relations) of polynomials. The properties we consider include the set 
of all roots, the largest root, the smallest root, norms, multiplication, differen- 
tiation, resultants, etc. Our checkers for root-finding problems only assume an 
oracle access to the polynomial p. Note that this is a weaker requirement than 
the availability of an explicit representation of p. This model lets us view the 
checkers for matrix spectra computations in the library setting of [BLR93]. In 
this framework, checkers call already tested programs in the library, counting 
each call as a unit time call. Such calls naturally correspond to the evaluation 
of the polynomial in our model. Consequently, it is imperative that the number 
of evaluations of p be minimized. 

Our approach is complementary to previous work on checking and testing 
polynomials. The main difference is the following. Most of the existing results are 
concerned with checking/testing programs purportedly evaluating polynomials. 
In this paper we are interested in checking programs that take a polynomial as 
an input and compute its properties. 

Our Results. We describe efficient checkers for programs that compute one, 
few, all, or specific roots (e.g., the largest) of a polynomial p. We address at 
length the checking of programs computing the largest root. For this problem, we 
construct some checkers that run in time o(deg2 p) and make only o(degp) calls to 
p (thus ruling out an explicit interpolation) using powerful tools from analysis. 
This translates into more efficient checkers than ones offered by several other 
methods that use explicit interpolation. We obtain deterministic checkers when a 
separation bound between the roots is known and probabilistic checkers when the 
roots can be arbitrarily close (Section 3). We also consider the situations where 
(i) the program 77(p) is computing an approximation to the root(s) of polynomial 
p and (ii) the oracle returns an approximate evaluation of the polynomial p 
(Section 4). In these cases, we provide checkers for some of the problems. 

Next we consider programs that claim to compute some (unspecified) norm 
on the domain (Section 5). There are several norms for polynomials (see [Z93]); 
the goal is to test whether there exists a norm that agrees with the program on 
most inputs. We show that the standard characterization of norms (using trian- 
gle inequality) cannot be used to construct exact testers. I.e., there are extremely 
"bad" programs (those that do not agree with any one norm for any non-trivial 
fraction of the inputs) that still pass the test. The same test, however, can be 
used to verify that the program approximates some norm for a non-trivial frac- 
tion of the domain. Our result, which applies to norms defined on any domain, is 
intriguing because most of the current techniques for testing use an exact char- 
acterization to build an exact tester and an approximate characterization (where 
the equalities are relaxed to approximations, see [ABC+93, EKR96] for further 
exposition) to build an approximate tester. The exact characterization for norms 
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is too lenient to lead to an exact tester, however, surprisingly, is strong enough 
for an approximate one (even without resorting to an approximate characteri- 
zation). Additionally, this is the first instance where an unbounded inequality 
(i.e., an inequality of the form \h(-)\ > 0, where h is an expression) has been 
addressed in testing. 

The nature of these properties entails the use of techniques from several 
disciplines (like numerical and complex analysis, geometry, and in particular, 
geometry of polynomials) that are new to checking. 

Applications. We show how to check programs that perform matrix spectra 
computations, which are fundamental in scientific computing (Section 6). We 
exploit the fact that the. eigenvalues of a matrix are the roots of its characteristic 
polynomial. The characteristic polynomial is evaluated using a library program 
for the determinant that has been tested, for instance using the exact checker 
of [Kan90] or the approximate checker of [ABC+93]. Several vital parameters 
in control theory (e.g., stability of a system) are related to the location of the 
roots of certain polynomials. Programs that compute these parameters are very 
common in practice [BCL82]; our checkers could be used to check such programs. 
Another application of property testing of polynomials is in verifying parts of 
computational algebra systems. We have taken an initial step in this direction 
but many interesting questions remain. 

Previous and Related Work. The problem of testing root-finding programs is 
considered as early as 1975 in [JT75]. Here, the authors lay down some concrete 
requirements for an efficient testing of such programs. The setting proposed, 
however, is very different from ours and is mostly heuristic and informal. 

A number of papers deal with testing whether a program is computing a low- 
degree polynomial in the exact [GLR+91, AS92, GLR+91, RS96] and approx- 
imate [EKR96] settings. Testing certain polynomial functions like polynomial 
multiplication and FFT is investigated in [BLR93, Erg95]. Checkers for several 
linear algebra computations like matrix rank, determinant, matrix multiplica- 
tion are given in [Fre79, BK89, Kan90, BLR93]. Approximate testers for several 
linear algebra computations can be found in [ABC+93]. Testing graph properties 
is considered in [GGR96]. 

2    Preliminaries 

Our Model. We consider properties / of polynomials p. In this context, we 
assume that properties are relations such as those binding p to one or more of 
its roots. For shorthand, we sometimes use af(p)" to denote one of the values 
to which / binds p. 

Although checkers are defined for properties and are otherwise independent 
of the programs that they check, we sometimes refer to a checker for a program 
II. Implicit in these references is that the checker is for the property / that U 
purports to compute, i.e. that the checker verifies that II(x) £ f(x) for the input 
x in question. 
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Definition 1. Let II be a program that purports to compute a property /. Let 
ß > 0 be a security parameter. Then, a (q(n),t(n);e1,e2)-checker for / is a 
(probabilistic) oracle program Tn'p that has oracle access to both II and p such 
that it 

1. makes 0(q(n)) oracle accesses to p (i.e., it evaluates p at 0(q{n)) points) 
2. runs in time 0(t(n)), counting oracle calls as one unit of time 
3. if 3y £ f[p) : \ü(p) - y\ < t\, outputs "PASS" with probability > 1 - ß 
4. if Vy £ f\p) : \n{p) -y\> «2, outputs "FAIL" with probability > 1 - ß. 

To simplify notation, we adopt the following conventions: (i) if q(n) = t{n), we 
omit one of them, (ii) if ei = e2, we omit one of them, and (iii) if ex = e2 = 0, 
we omit both from the checker's parameters. 

Note that the above model is more general than the standard checking model 
in that p is available as an oracle rather than in an explicit form. (It is often un- 
realistic or less efficient to assume that an explicit representation of p is available 
to T.) We will see that this model (i) captures the library setting of [BLR93] 
and helps us build efficient checkers, (ii) is useful in our applications to check- 
ing matrix spectra computations, and (iii) elegantly extends our checkers to the 
approximate setting. 

Variations of the Model. Our model permits the following variations and 
their combinations: (i) The program purports to return an approximation to /. 
In this case, the program is denoted by II. (ii) Each oracle call to evaluate p 
returns an approximation. In this case, the oracle is denoted by p. and (iii) p is 
"close" to a polynomial (as in the PCP setting). We will address the first and 
second variations. They make the problem more appealing since in practice we 
are seldom guaranteed an exact answer to any numerical question. In this paper, 
we will call a checker for the second scenario an approximate checker. 

Self-Testing, Self-Correcting, Checking, and Libraries. Self-testing en- 
sures that II equals the target function / (from a function family F) on most 
inputs. A self-tester usually has two stages [BLR93]: (i) testing if II is a mem- 
ber of F (the property test) and (ii) testing if FI is the specific member, i.e., / 
(the equality test). Self-correction involves taking a FI that is correct on most 
inputs and converting it into a program that is correct on all inputs. A self- 
tester together with a self-corrector gives a result-checker. In the library setting, 
a collection of previously checked programs is used to build checkers for new 
functions. For details see [BLR93]. 

Mathematical Notation. We consider polynomials over a field T. Let R de- 
note the real numbers and C denote the complex numbers. 

Let Tn[x) denote the ring of polynomials of degree < n with coefficients 
from T. Let p(-) be a degree n polynomial (i.e., p £ Tn[x\). Assuming p factors 
completely in JF, let the roots of p be |Ai | > • • • > |A„|. When T = R, we call p a 
real polynomial and if all the roots of p are real, we call p a real-root polynomial. 

For any a £ C, let ä e C denote its complex conjugate. For any curve (line 
segment, interval) C, let \C\ denote its length and intC its interior. For x,y e R2, 
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let xy denote the line segment between x and y. A convex curve in R2 is called 
a contour if it encloses the origin. A curve C : [0,2n) —> R2 is called star-shaped 
if it is an injective closed curve. 

Let p(x) = Yli=1(x - A;) = E"=oaiX'>a™ — 1- Then, it easily follows that 

P'(z) = Er=ilW(*-A;)- 
g(x): We will use g(x) to denotep'(x)/p(x) = E™=i l/(z-A;) = d\n\p(x)\/dx. 
Ainf, Amax: Cauchy's inequality [BCL82] gives bounds on the roots of p as A;nf 

= |an|/(|an| +maxilla;!}) < |Amin| < |Amax| < 1+ max?=1{|ai|}/|a0| = Asup. 
6: A separation bound between the roots of p is given by [BCL82] as 6 — 

minA^Aj |Ai-A;-| > v
/37j,-("+1)/2||p||1-n

v/disc(p), where the discriminant disc(p) 
= lliw(A< - A;)| = |res(p,p')| and ||p||2 = £?=0 M

2 [Z93]. Here, resultant 

res(p, q) = IIi=giP <?(Ai) where A; is a root of p. Some of our checkers assume that 
a lower bound on 6 is known. 

Problem Definitions. Let 77 be a program that purports to compute one or 
more roots of p and let {m} be the value(s) computed by 77. Let {A;} be the 
actual root(s) that 77 should have output. (Thus for instance, 7Tmax, which pur- 
ports to compute Amax, outputs /imax to be the largest root.) Given a polynomial 
p of degree n, let: 

- H\(p) be a relation mapping p to any one of its roots. We refer to programs 
that purport to compute a value 7£i(p) as 77i. 

- Hr(p) be a relation mapping p to any r of its roots. We refer to programs 
that purport to compute a set lZr(p) as 77,.. 

~ T^{k){p) be the feth largest root of p in absolute value (i.e., A*,). 77(fe) refers 
to a program that purports to compute TZ(k)- 

- Rmai = Tl(\),Tlm\n = ^(n> and 77max, 77min refer to programs that suppos- 
edly compute TZmax,Tlmin. 

In general, we use a tilde to denote programs that purport to return approxima- 
tions to the corresponding exact relation (e.g., 77max). 

3    Checking Roots: Exact Setting 

Checkers for TZi,TZr,TZn,TZmax. 

Theorem 2. Let \T\ > n + Q{n). There is: 

1. a {!)-checker for 1Zi(p), 
2. a (1, n)-checker for 1Zn(p), and 
3. a (min{r,n — r},max{r,n — r})-checker for 1Zr(p). 

In the exact setting, given /imax, it is trivial to verify that it is a root of p. It is 
non-trivial to verify the maximality claim. Theorem 3 below states a checker for 
nmax{p)- In the next section, we will show more efficient checkers (that avoid 
explicit interpolation) for 77max(p). 
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Theorem 3. Ve > 0, there is an (n, n2;e)-checker for 1lm-m{p). Ifp is a real-root 
polynomial, Ve > 0, there is an (n,n2;e)-checker for TZmax(p). 

A checker for i7max is constructed from a checker for i7min in an obvious manner 
by observing that 1/A, are the roots of xnp(l/x). Note that the checkers given 
by Theorem 3 can also be used to check 77(fc). 

Improved Checkers for fcmax: S known. For the rest of this section, we will 
take either T = C or T = R. We use the following theorems from complex 
analysis (see [Con78]). Let n(C\ z) be the number of times C "winds" around the 
point z £ C. 

Theorem 4 Cauchy's Residue Theorem. Let G be an open subset of the 
plane and f : G -> C an analytic function. If C is a closed rectifiable (fi- 
nite length) curve in G such that n(C; z) = 0 Vz € C\G, then for A € G\C, 
2wif(\)n(C;\) = fcf(z)/(z-\)dz. 

Corollary 5. Let G be an open subset of the plane and f be an analytic func- 
tion on G with zeros Ai,...,A„ (repeated according to multiplicity). If C is a 
closed rectifiable curve in G which does not pass through any point \k, and 
n(C;z) = 0,Vz € C\G, then fcf'(z)/f{z) dz = 27ri£"=1 TI(C; A;) counts (with 
multiplicities) the number of roots of f(z) within C. 

Theorem6.  There is a {{\ßmax\/S)3/2;S/2)-checker for Tlma.x(p). 

Proof. If C is a circle, then by Corollary 5, Jcp'(z)/p{z)dz computes 2wi times 
the number of zeros of p that are within C (noting that C winds once around 
each root). So, our goal is to check that Jcp'(z)/p(z)dz = 2irn, where C(t) = 
(|/Wx| + «5/2)6**. Recall that g(z) = p'(z)/p{z). We compute an approximation 
5 to Jc g{z)dz, which must satisfy \S - 2im\ < IT. If we use trapezoidal rule, 

we have   fc g(z)dz - £?=1 atg(zi)   < (\C\3/N2) max*eC \g"{z)\, where a;'s are 

constants and N is the number of points of evaluation. 
Since we can only approximate p' (z), we actually en 

(g(zi) + fj). Therefore, we can evaluate the overall error as 

g(z)dz -^Tai(g(zi) + e 

Since we can only approximate p'(z), we actually end up computing S.=i ai 

I' \C\3 

where ci is a small constant and e = maxi |e;|. Our goal is to find conditions 
under which (\C\3/N2) maxz \g"{z)\ + ciel^maxj < *, such that rounding always 
gives the correct value. We first find a bound on e for which cie|/imax| < 7r/2. lip' 
is approximated by finite differences, then e = maxc \(p(( + A) -p(())/(Ap(()) - 
g{()\ < Ap'^(C,')/p{Cj, for some C' £ (C,C + A)- An uPPer bound on A is 

dictated by these conditions. Now, we have Pmax(C')MC) = E;^(C - Ai)_1(C - 

^■)"1IIfe^Ij(C' - xk)/{( - Afc) < enA/6{n2/62). Thus, A must satisfy A < 
(c2^

2)/(ra2|/timax|), where c<i is a small constant. 
The other error term (|C|3/7V2)maxz \g"(z)\, can now be upper bounded as 

(|C|3/Ar2)maxz \g"(z)\ < (c3|/imax|
3)/(Ar2(53), from which the number of evalua- 

tion points N = 0(|Mmax|/<5)3/2- 
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For real-root polynomials, the number of oracle calls to p can be reduced by 
stronger bounds on maxz |#"(<z)|- The proof is omitted. 

Corollary 7. If p is a real-root polynomial, then there exists a (V^lMmaxI + 
(l/5)i/2+o(i). s/2)-checker for ftmax(p). 

If 6 — 0(11n), then the above corollary yields asymptotically better checkers 
than those given by Theorems 3 and 6. We also give a different checker (proof 
omitted) that can be extended to work in the approximate setting. 

Theorem8. There is a ({\lnp-\ßmeLx\2)/(85/2e);6/'2)-checker forTZm!iX{p) where 
e<l/\p"{x)\,Vx. 

Improved Checkers for 7£max: 6 unknown. We obtain the following checkers 
for the case when 6 is not known. The proofs of the theorems are omitted. 

Theorem 9. Letp be a real-root polynomial. Ve,/3 > 0, there is a (^/n\og3'2(n/e) 
log(l//3); e/2,e)-checker for TZma,x(p) that is correct with probability >l-ß. 

The above theorem can be extended to the case when the roots are complex. The 
checker is still attractive in terms of its running time, but has more evaluations 
of p. 

Corollary 10. Ve,/3 > 0, there is an (n3/2/e\og(l/ß);e/'2, e)-checker for 7£max(p) 
that is correct with probability > 1 — ß. 

The checkers in this section can be extended to check i7<fc). 

4    Checking Roots: Approximate Setting 

So far, we have been using the assumption that the programs being checked 
should return the exact root(s) and the oracle returns the exact value. As we 
stated in the description of our model, we have two variants - II and p. The 
former turns out to be easier than the latter. 

Case I: II. Suppose Öi(p) returns an e-approximation (i.e., it claims |/z, - A;| < 
e < 6). When p is real-root, with two oracle calls to p we can check if there is 
a sign-change in [m - e, m + e]. For lin(p) (resp. Ür(p)), we can extend the 
above checker with 2n (resp. 2r) calls to p. Since we do not have a nice analog 
of Rolle's theorem in complex analysis, the problem becomes harder when p is 
not real-root. 

All our checkers for 7£max in Section 3 can be extended to this approximate 
setting. This can be done as follows: (i) first we check if /xmax is an approximate 
root and (ii) then we check if it is indeed the maximum root. The former is 
accomplished by checking if there is a root inside a small circle around ßmax 

(see previous paragraph) and the latter is accomplished by selecting two curves 
separated by e and then performing the numerical integration twice. Thus, we 
obtain the following theorem: 
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Theoremll. Ve,/3 > 0, there is (i) a ((\fJ,max\[6)3/2;6/2)-checker for Üm&x(p) 
and (ii) an (n3/2/elog(l//3); e/'2, e)-checker for ^.max(p) <Äa< « correci with prob- 
ability > 1-/3- I/j> is a real-root polynomial, Ve, /3 > 0, i/iere is a (%) (v/"'|/Wx| + 
(l/<5}1/2+e;(5/2)-cÄecÄ;er/or7lmax(p), ^;(v^log3/2(n/e)log(l//?);e/2,e)-c/iecfer 
/or ^max(p) ^a< is correct with probability > 1 — ß- 

Case II: p. Theorem 8 can be extended to the case when we have only p (i.e., 
the evaluation of p is approximate). The proof is omitted. 

Corollary 12. There is a ((A2
up - \fJ,ma.x\2)/(S5^e);S/2)-approximate checker 

forlii(p). 

The checkers in Section 3 are not directly usable in this case because of the 
instability of numerical derivative computation in the presence of errors. 

5    Testing Norms 

A function / : V(T) -> K+, where V is a vector space over T, is called a norm 
if it satisfies: (i) /(x) = 0 <^> x = 0, (ii) Vx e V, k € T, f(kx) = kf(x) 
(scalability), and (iii) Vx,y 6 V,/(x + y) < /(x) +/(y) (triangle inequality). 

In this section we investigate the problem of checking whether the function 
computed by a program nnoTm is close to a norm (i.e., there is a norm that agrees 
with IInorm on most inputs). In the specific case of vector p-norms on E™, which 
are of the form |x|p = (E"=i x^)1/p> tne problem reduces to the well-studied 
problem of multivariate degree-testing [AS92, RS96]. In fact, matrix spectral 
norms can be checked using our techniques in Section 3 and Section 4. In the 
more general case of checking whether the function is close to any norm, we 
show that the properties characterizing a norm are not usable for exact self- 
testing. This result is already interesting in that our tests are almost exactly 
the same as the standard linearity test except for an inequality in the second 
test. This, however, makes a big difference in the validity of the test, which leads 
us to believe that inequalities in general do not lead to (exact) self-testers. In a 
striking contrast, we show that these properties characterizing norms can lead to 
approximate self-testers. The following discussion is for IR2 and can be extended 
to Kn. 

Exact Testing. To check scalability of nnoim, note that along a vector x, 
scalability defines the same set of functions as linearity. Checking iTnorm(ax) + 
nn0tm(bx) = nnoTm((a + b)x) for x, |x| = 1 will determine if 77norm is scalable 
along x (this is the linearity test of [BLR93]). By performing this test at many 
x, we can ensure that i7norm 1S scalable for many x. Therefore, for the rest 
of this discussion, we can assume that i7norm is scalable. Vi € E, define the 
"concentric" contours d = {x | iInorm(x) = i}. We first show that checking 
the triangle inequality is equivalent to checking the convexity of C{ in E2 for any 
ieR. 
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Lemma 13. Let f be a scalable function, i.e., /(fex) = fc/(x). Then, 3a, b e V, 
sucÄ that /(a + b) > /(a) + /(b) «=*> Vi, tte i-ift contour d is not convex (the 
non-convexity occurs along a + b.j 

We show in Theorem 14 that random sampling of condition 3 does not work: 
there are extremely "bad" programs that pass it. 

Theorem 14. VO < 6 < I, there exists a scalable i7norm that is at least 6 away 
from, the nearest convex function g, i.e., PrfC[i7norm(a;) ^ g(x)] > 6, but i7norm 

passes the test for condition 3 with arbitrarily high probability. 

Approximate Testing. In contrast to exact testing, we show that the proper- 
ties characterizing norms can be used to test if a program approximately com- 
putes a norm at a non-trivial fraction of the inputs. 

For a given star-shaped C, let the diameter be diam C = supi2)<2{|C(£i) - 
C(t2)\}. Given two curves Ci,C2, let the distance between them be |Ci - C2| = 
supt{|Ci(t) - C2{t)\}. For two contours Ci,C2 and for any other star-shaped C, 
let the deviation measure be devCl,c2(C) = Prt[C(i) > C1(t),C2(t) or C{t) < 
Ci{t),C2(t)\. This measures the fraction of C not lying between d and C2. For a 
star-shaped C, let A = A{C) = Pr^^-^^[z £ C UintC]. In other words, A 
is the probability that, if we pick random s,t e C and a random point z on the 
line joining them, then z lies outside C . Testing condition 3 on random x,y, we 
can estimate A corresponding to the contour defined by LTnoTm (assuming it is 
star-shaped, which is easy to check). 

Theorem 15. Given p > 0, 3e = t{p) < 1,7 = l{e) > 0 such that for any 
star-shaped C with diam C < 1, if A(C) < 7 then there is a contour C such that 
Pvt[\C(t) - C{t)\ > p] < e. 

6    Some Applications: Matrix Computations 

In this section, we show applications of our checkers for polynomial roots to 
matrix spectra computations. Let the eigenvalues of A e Tn*n be vl(a) = {A; | 
1 < i < n] with |Amax = Ai| > • ■ • > |An|. It is easy to find an upper bound Asup 

on Amax (e.g., set Asup = ||A||oo). We denote by 8 a separation bound between 
the eigenvalues of A. Let DET be a correct program available in the library for 
computing the determinant of a matrix. DET corresponds to the oracle p in our 
model. 

Eigenvalues in the Exact Setting. All the checkers in Section 3 and Section 
4 translate to checkers for eigenvalues. We now illustrate more efficient checkers 
for some special cases which are of interest in practice: 

Lemma 16. Let A £ Knxn with A = AT. There is an (n)-checker for program 
computing the largest eigenvalue of A. If A is tridiagonal, there is an (n)-checker 
for a program computing the k-th largest eigenvalue of A. 
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These checkers can be used to check programs designed for computing the second 
largest eigenvalue of a regular graph (or the largest eigenvalue of its Laplacian), 
which is related to the expansion of the graph. Another natural application of 
these checkers is to check programs that decide whether a matrix is positive 
definite. 

Eigenvalues in the Approximate Setting. All of our approximate checkers 
for roots can be used in this case. We consider an interesting special case of this 
problem. Let (A,x) be an exact eigenvalue-eigenvector pair of A with ||z|| = 1. 
Let Tii be a relation that binds matrix A to pairs (j*,x) with \p - A| < ei and 
||x - x|| < €2. Let Hi be a program that, on input A, purports to compute a 
{fjb, x) e Üi (A). The most natural way of checking 7li would be by checking that 
11 Ax - /ixj| < e, for a certain threshold e, and passing fl\ if the above inequality 
is satisfied. Unfortunately, from perturbation theory [GV89] we have that the 
value of e above can be small, but \fi - A| be as large as e/|yffx|, where yH is 
a unit length left eigenvector of A (yHA = Xy11), assuming A to be a simple 
eigenvalue. Thus, we might need to set e to a very small value if we want to 
make sure that |/J - A| < ei for a reasonably small value t\. Note however that 
for normal matrices , ly^xl = 1 so that ||A/z - z/i\\ < e =^ |A - fi\ < e. Thus, we 
have the following lemma: 

Lemma 17. TZi(A) can be approximately checked when A is normal. 

In general, if we do not make assumptions on the problem condition, the ap- 
proximate checker may yield very poor bounds. This is because the determinant 
of a matrix can be very close to zero (e.g., 1/2") despite all eigenvalues being 
well-separated from zero (e.g., A^ = 1/2). 

Singular Values. Suppose MULT is a correct library program for matrix mul- 
tiplication. If ITsing is a program that purports to compute the singular values 
(Ti,... ,an of A, construct a checker for using as follows: (i) check if a > 0,1 < 
i < n, (ii) compute the matrix ATA e jmxn us;ng MULT, and (iii) use the 
checkers for eigenvalues to verify if {of,... ,a„} = yl(ATA). The correctness of 
this construction is from the definition of singular values (see [GV89]). 

7    Further Work 

All of our checkers are assumed to perform exact arithmetic. This assumption 
is not always true in practice. It will be interesting to design checkers when the 
checker's numerical errors are critical. Many issues are still unresolved in the 
case of p. Are there efficient checkers for programs that compute Gröbner bases, 
programs that solve Diophantine problems and lattice problems? Such checkers 
would find numerous applications in computational algebra systems. Can we 
get efficient checkers for sparse-matrix computations? 
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Abstract. In 1876, Lewis Carroll proposed a voting system in which the winner 
is the candidate who with the fewest changes in voters' preferences becomes 
a Condorcet winner—a candidate who beats all other candidates in pairwise 
majority-rule elections. Bartholdi, Tovey, and Trick provided a lower bound—NP- 
hardness—on the computational complexity of determining the election winner 
in Carroll's system. We provide a stronger lower bound and an upper bound 
that matches our lower bound. In particular, determining the winner in Carroll's 
system is complete for parallel access to NP, i.e., it is complete for Q\, for which it 
becomes the most natural complete problem known. It follows that determining the 
winner in Carroll's elections is not NP-complete unless the polynomial hierarchy 
collapses. 

1    Introduction 

The Condorcet criterion is that an election is won by any candidate who defeats 
all others in pairwise majority-rule elections ([Con85], see [Bla58]). The Condorcet 
Paradox, dating from 1785 [Con85], notes that not only is it not always the case that 
Condorcet winners exist but, far worse, when there are more than two candidates, 
pairwise majority-rule elections may yield strict cycles in the aggregate preference even 
if each voter has non-cyclic preferences.4 This is a widely discussed and troubling 
feature of majority rule (see, e.g., the discussion in [Mue89]). 

In 1876, Charles Lutwidge Dodgson—more commonly referred to today by his pen 
name, Lewis Carroll—proposed an election system that is inspired by the Condorcet 

* A full version of this paper, including all proofs, can be found at http://www.cs.rochester.edu/trs 
as UR-CS-TR-96-640. Supported in part by grants NSF-CCR-9322513 and NSF-INT-9513368/ 
DA AD-315-PRO-fo-ab, and a University of Rochester Bridging Fellowship. 

** edith@bamboo.lemoyne.edu. Work done in part while visiting Friedrich-Schiller- 
Universität Jena and the University of Amsterdam. 

*** lane@cs.rochester.edu. Work done in part while visiting Friedrich-Schiller-Universität 
Jena and the University of Amsterdam. 

f rothe@informatik.uni-jena.de. Work done in part while visiting Le Moyne College. 
4 The standard example is an election over candidates a, b, and c in which 1/3 of the voters have 

preference {a < b < c), 1/3 of the voters have preference (6 < c < a), and 1/3 of the voters 
have preference (c < a < b). In this case, though each voter individually has well-ordered 
preferences, the aggregate preference of the electorate is that b trounces a, c trounces 6, and 
a trounces c. In short, individually well-ordered preferences do not necessarily aggregate to a 
well-ordered societal preference. 
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criterion,5 yet that sidesteps the abovementioned problem [Dod76]. In particular, a 
Condorcet winner is a candidate who defeats each other candidate in pairwise majority- 
rule elections. In Carroll's system, an election is won by the candidate who is "closest" 
to being a Condorcet winner. In particular, each candidate is given a score that is the 
smallest number of exchanges of adjacent preferences in the voters' preference orders 
needed to make the candidate a Condorcet winner with respect to the resulting preference 
orders. Whatever candidate (or candidates, in the case of a tie) has the lowest score is 
the winner. This system admits ties but, as each candidate is assigned an integer score, 
no strict-preference cycles are possible. 

Bartholdi, Tovey, and Trick, in their paper "Voting Schemes for which It Can Be 
Difficult to Tell Who Won the Election" [BTT89], raise a difficulty regarding Car- 
roll's election system. Though the notion of winner(s) in Carroll's election system is 
mathematically well-defined, Bartholdi et al. raise the issue of what the computational 
complexity is of determining who is the winner. Though most natural election schemes 
admit obvious polynomial-time algorithms for determining who won, in sharp contrast 
Bartholdi et al. prove that Carroll's election scheme has the disturbing property that it 
is NP-hard to determine whether a given candidate has won a given election (a prob- 
lem they dub CarrollWinner—they use the name "Dodgson" throughout, but we 
treat this as if they had written the equivalent "Carroll"), and that it is NP-hard even 
to determine whether a given candidate has tied-or-defeated another given candidate (a 
problem they dub CarrollRanking). 

Bartholdi, Tovey, and Trick's NP-hardness results establish lower bounds for the 
complexity of Carrol lRanking and Carrol lWinner. We optimally improve their 
two complexity lower bounds by proving that both problems are hard for Q\, the class 
of problems that can be solved via parallel access to NP, and we provide matching 
upper bounds. Thus, we establish that both problems are Q\-complete. Bartholdi et 
al. explicitly leave open the issue of whether Carrol lRanking is NP-complete: 
"...Thus Carrol lRanking is as hard as an NP-complete problem, but since we do not 
know whether Carrol lRanking is in NP, we can say only that it is NP-hard" [BTT89, 
p. 161]. From our optimal lower bounds, it follows that neither Carrol lWinner nor 
Carrol lRanking is NP-complete unless the polynomial hierarchy collapses. 

As to our proof method, in order to raise the known lower bound on the complexity of 
Carroll elections, we first study the ways in which feasible algorithms can control Carroll 
elections. In particular, we establish a series of lemmas showing how polynomial-time 
algorithms can control oddness and evenness of election scores, "sum" over election 
scores, and merge elections. These lemmas then lead to our hardness results. 

We remark that it is somewhat curious finding "parallel access to NP"-complete 
(i.e., 0?-complete) problems that were introduced almost one hundred years before 
complexity theory itself existed. In addition, CarrollWinner, which we prove com- 
plete for this class, is extremely natural when compared with previously known com- 
plete problems for this class, essentially all of which have quite convoluted forms, 
e.g., asking whether a given list of boolean formulas has the property that the number 
of formulas in the list that are satisfiable is itself an odd number (see the discussion 

5 Carroll did not use this term. Indeed, Black has shown that Carroll "almost beyond a doubt" 
was unfamiliar with Condorcet's work [Bla58, p. 193-194]. 
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in [Wag87]). In contrast, the class NP, which is contained in ©\, has countless natu- 
ral complete problems. Also, we mention that Papadimitriou [Pap84] has shown that 
UniqueOptimalTravelingSalesperson is complete for PNP, which contains 
el 

2   Preliminaries 

In this section, we introduce some standard concepts and notations from com- 
putational complexity theory [Pap94,BC93]. NP is the class of languages solvable 
in nondeterministic polynomial time. The polynomial hierarchy, PH, is defined as 

PH = P U NP U NPNP U NPNpNP U • • • where, for any class C, NPC = [Jcec NpC> 
and NPC is the class of all languages that can be accepted by some NP machine that is 
given a black box that in unit time answers membership queries to C. The polynomial 
hierarchy is said to collapse if for some k the kth term in the preceding infinite union 
equals the entire infinite union. Computer scientists strongly suspect that the polynomial 
hierarchy does not collapse, though proving (or disproving) this remains a major open 
research issue. 

The polynomial hierarchy has a number of intermediate levels. Of particular interest 
to us will be the level Q\. Q\ is the class of all languages that can be solved via 
D{\og n) queries to some NP set (see [Wag90]). Equivalently, and more to the point for 
the purposes of this paper, ©\ equals the class of problems that can be solved via parallel 
access to NP, as explained formally below. Q\ falls between the first and second levels 
of the polynomial hierarchy: NP C 6P

2 C PNP C NPNP. Kadin [Kad89] has proven that 
if NP has a sparse Turing-complete set then the polynomial hierarchy collapses to Q\, 
Wagner [Wag90] has shown that the definition of ©\ is extremely robust, and Jenner 
and Torän [JT95] have shown that the robustness of the class ©\ seems to fail for its 
function analogs. 

Problems are encoded as languages of strings over some fixed alphabet 2 having 
at least two letters. 2* denotes the set of all strings over 2. For any string x E 2*, 
let \x\ denote the length of x. For any set A C 2*, let A denote 2* \ A. For any set 
A C 2*, let ||v4|| denote the cardinality of A. For any multiset A, \\A\\ will denote 
the cardinality of A. For example, if A is the multiset containing one occurrence of 
the preference order (w < x < y) and seventeen occurrences of the preference order 
(u> < y < x), then \\A\\ = 18. As is standard, for each language A C 2* we use XA 

to denote the characteristic function of A, i.e., XA{X) = 1 if a: € .A and XA(%) = 0 
if x £ A. Let (• • •) be any standard, multi-arity, easily computable, easily invertible 
pairing function. We will also use the notation (• • •) to denote preference orders, e.g., 
(w < x < y). Which use is intended will be clear from context. 

In computational complexity theory, reductions are used to relate the complexity of 
problems. Very informally, if A reduces to B that means that, given B, one can solve 
A. For any a and b such that <b

a is a defined reduction type, and any complexity class 
C, let Rb

a(C) denote {L | (3C E C) [L <b
aC]}. We refer readers to the standard source, 

Ladner, Lynch, and Selman [LLS75], for definitions and discussion of the standard 
reductions. However, we briefly and informally present to the reader the definitions 
of the reductions to be used in this paper. A <p

m  B ("A polynomial-time many- 
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one reduces to B") if there is a polynomial-time computable function / such that 
(V.X- e E*)[x G A ^=> f(x) € B]. A <p

tt B {"A polynomial-time truth-table 
reduces to B") if there is a polynomial-time Turing machine that, on input x, computes 
a query that itself consists of a list of strings and, given that the machine after writing 
the query is then given as its answer a list telling which of the listed strings are in 
B, the machine then correctly determines whether a; is in A (this is not the original 
Ladner-Lynch-Selman definition, as we have merged their querying machine and their 
evaluation machine, however this formulation is common and equivalent). Since a <T

U- 
reducing machine, on a given input, asks all its questions in a parallel (also called 
non-adaptive) manner, the informal statement above that 0\ captures the complexity 
of "parallel access to NP" can now be expressed formally as the claim Q\ = R?t(NP), 
which is known to hold [KSW87,Hem89]. 

As has become the norm, we always use hardness to denote hardness with respect 
to <v

m reductions. That is, for any class C and any problem A, we say that A is C-hard if 
(VC* G C)[C <p

m A].¥or any class C and any problem A, we say that A is C-complete if 
A is C-hard and A&C. Completeness results are the standard method in computational 
complexity theory of categorizing the complexity of a problem, as a C-complete problem 
A is both in C, and is the hardest problem in C (in the sense that every problem in C can 
be easily solved using A). 

3    The Complexity of Carroll Elections 

Lewis Carroll's voting system ([Dod76], see also [NR76.BTT89]) works as follows. 
Each voter has strict preferences over the candidates. Each candidate is assigned a score, 
namely, the smallest number of sequential exchanges of two adjacent candidates in the 
voters' preference orders (henceforward called "switches") needed to make the given 
candidate a Condorcet winner. We say that a candidate c ties-or-defeats a candidate d if 
the score of d is not less than that of c. (Bartholdi et al. [BTT89] use the term "defeats" to 
denote what we, for clarity, denote by ties-or-defeats; though the notations are different, 
the sets being defined by Bartholdi et al. and in this paper are identical.) A candidate 
c is said to win the Carroll-type election if c ties-or-defeats all other candidates. Of 
course, due to ties it is possible for two candidates to tie-or-defeat each other, and so it 
is possible for more than one candidate to be a winner of the election. 

Recall that all preferences are assumed to be strict. A candidate c is a Condorcet 
winner (with respect to a given collection of voter preferences) if c defeats (i.e., is 
preferred by strictly more than half of the voters) each other candidate in pairwise 
majority-rule elections. Of course, Condorcet winners do not necessarily exist for a 
given set of preferences, but if a Condorcet winner does exist, it is unique. 

We now return to Carroll's scoring notion to clarify what is meant by the sequential 
nature of the switches, and to clarify by example that one switch changes only one voter's 
preferences. The {Carroll) score of any Condorcet winner is 0. If a candidate is not a 
Condorcet winner, but one switch (recall that a switch is an exchange of two adjacent 
preferences in the preference order of one voter) would make the candidate a Condorcet 
wi nner, then the candidate has a score of 1. If a candidate does not have a score of 0 or 1, 
but two switches would make the candidate a Condorcet winner, then the candidate has 
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a score of 2. Note that the two switches could both be in the same voter's preferences, or 
could be one in one voter's preferences and one in another voter's preferences. Note also 
that switches are sequential. For example, with two switches, one could change a single 
voter's preferences from (a < b < c < d) to (c < a < b < d), where e < f will denote 
the preference: "/ is strictly preferred to e." With two switches, one could also change a 
single voter's preferences from {a < b < c < d) to (6 < a < d < c). With two switches 
(not one), one could also change two voters with initial preferences of {a < b < c < d) 
and (a. < b < c < d) to the new preferences (b < a < c < d) and (b < a < c < d). As 
noted earlier in this section, Carroll scores of 3,4, etc., are defined analogously, i.e., the 
Carroll score of a candidate is the smallest number of sequential switches needed to make 
the given candidate a Condorcet winner. (We note in passing that Carroll was before his 
time in more ways than one. His definition is closely related to an important concept 
that is now known in computer science as "edit-distance"—the minimum number of 
operations (from some specified set of operations) required to transform one string into 
another. Though Carroll's single "switch" operation is not the richer set of operations 
most commonly used today when doing string-to-string editing (see, e.g., [SK83]), it 
does form a valid basis operation for transforming between permutations, which after 
all are what preferences are.) 

Bartholdi et al. [BTT89] define a number of decision problems related to Carroll's 
system. They prove that given preference lists, and a candidate, and a number k, it is 
NP-complete to determine whether the candidate's score is at most k in the election 
specified by the preference lists (they call this problem CarrollScore). They define 
the problem CarrolIRanking to be the problem of determining, given preference 
lists and the names of two voters, c and d, whether c ties-or-defeats d. They prove that 
this problem is NP-hard. They also prove that, given a candidate and preference lists, it 
is NP-hard to determine whether the candidate is a winner of the election. 

For the formal definitions of these three decision problems, a preference order is 
strict (i.e., irreflexive and antisymmetric), transitive, and complete. Since we will freely 
identify voters with their preference orders, and two different voters can have the same 
preference order, we define a set of voters as a multiset of preference orders. 

We will say that (C, c, V) is a Carroll triple if C is a set of candidates, c is a 
member of C, and V is a multiset of preference orders on C. Throughout this paper, 
we assume that, as inputs, multisets are coded as lists, i.e., if there are m voters in the 
voter set then V = (P\, Pj,..., Pm), where P, is the preference order of the ith voter. 
Score((C, c, V)) will denote the Carroll score of c in the vote specified by C and V. 

Decision Problem:   CarrollScore 

Instance:   A Carroll triple (C, c, V); a positive integer k. 

Question:   Is Score({C, c, V)), the Carroll score of candidate c in the election specified 
by (C, V), less than or equal to kl 

Decision Problem:   CarrollRanking 

Instance:   A set of candidates C; two distinguished members of C, c and d; a multiset 
V of preference orders on C (encoded as a list, as discussed above). 
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Question:   Does c tie-or-defeat d in the election? That is, is Score({C, c, V))   < 
Score{(C,d,V))l 

Decision Problem:   CarrollWinner 

Instance:   A Carroll triple (C, c, V). 

Question:   Is c a winner of the election? That is, does c tie-or-defeat all other candidates 
in the election? 

We now state the complexity of Carrol lRanking. 

Theorem 1. Carrol lRanking is Q\-complete. 

It follows immediately—since (a) G\ = NP => PH = NP, and (b) R£,(NP) = 
NP—that Carrol lRanking, though known to be NP-hard [BTT89], cannot be NP- 
complete unless the polynomial hierarchy collapses quite dramatically. 

Corollary 2. //CarrollRanking is NF-complete, then PH = NP. 

Wagner has provided a useful tool for proving ©£-hardness, and we state his result 
below a°s Lemma 3. However, to be able to exploit this tool we must explore the structure 
of Carroll elections. In particular, we have to learn how to control oddness and evenness 
of election scores, how to add election scores, and how to merge elections. We do so as 
Lemmas 4, 5, and 7, respectively. On our way towards establishing Theorem 1, using 
Lemmas 3^ 4, and 5 we will first establish 0f-hardness of a special problem that is 
closely related to Carrol lRanking. This result is stated as Lemma 6 below. It is 
not hard to prove Theorem 1 using Lemma 6 and Lemma 7. Note that Lemma 7 gives 
more than is needed merely to establish Theorem 1. In fact, the way this lemma is stated 
even suffices to provide—jointly with Lemma 6—a direct proof of the &\-hardness of 
CarrollWinner. 

Lemma 3. [Wag87] Let A be some NP-complete set, and let B be any set. If there 
exists a polynomial-time computable function g such that, for all k > 1 and all strings 
xu..., x2k e E* satisfying XA (a?i) > XA (X2) > ■ ■ ■ > XA («2fc)> it holds that 

\\{i\xi EA}\\isodd <=> g(x],...,x2k) G B, 

then B is&\-hard. 

Lemma 4. There exists an NF'-complete set A and a polynomial-time computable func- 
tion f that reduces A to CarrollScore in such a way that, for every x G S*, 
f(x) = {{C,c,V),k) is an instance of CarrollScore with an odd number 
of voters and (1) if x G A then Score{(C, c, V)) = k, and (2) if x £ A then 
Score{(C,c,V)) = k+\. 

Proof of Lemma 4. Bartholdi et al. [BTT89] prove the NP-hardness of 
CarrollScore by reducing ExactCoverByThreeSets to it. However, 
their reduction doesn't have the additional properties that we need in this 
lemma. We will construct a reduction from the standard NP-complete problem 
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ThreeDimensionalMatching (3DM) to CarrollScore that does have the ad- 
ditional properties we need. Let us first give the definition of 3DM: 

Decision Problem:   ThreeDimensionalMatching (3DM) 

Instance:   Sets M, W, X, and Y, where M C W x X x Y and W, X, and Y are 
disjoint, nonempty sets having the same number of elements. 

Question:   Does M contain a matching, i.e., a subset M' C M such that ||M'|| = ||W|| 
and no two elements of M' agree in any coordinate? 

We now describe a polynomial-time reduction / (from 3DM to CarrollScore) 
having the desired properties. Our reduction is defined by f(x) = f'(f"(x)), where /' 
and /" are as described below. Informally, /" turns all inputs into a standard format 
(instances of 3DM having ||M|| > 1), and /' assumes its input has this format and 
implements the actual reduction. 

Let /" be a polynomial-time function that has the following properties. 

1. If a; is not an instance of 3DM or is an instance of 3DM having ||M|| < 1, then/"(a:) 
will output an instance y of 3DM for which \\M\\ > 1 and, furthermore, it will hold 
that y e 3DM «=>■  x 6 3DM. 

2. If x is an instance of 3DM having ||M|| > 1, then f"(x) = x. 

It is clear that such functions exist. In particular, for concreteness, let f"(x) 
be ({(d,e,p),(d,e,p')},{d,d'},{e,e'},{p,p'}) if x is not an instance of 3DM or 
both x g 3DM and a; is an instance of 3DM having ||M|| < 1; let f"(x) be 
({(d,e,p),(d',e',p')},{d,d'},{e,e'},{p,p'}) if x is an instance of 3DM having 
\\M|| < 1 and such that x G 3DM; let f"(x) be x otherwise. 

We now describe /'. Let x be our input. If x is not an instance of 3DM for which 
||M|| > 1 then f'(x) = 0; this is just for definiteness, as due to /", the only actions 
of /' that matter are when the input is an instance of 3DM for which ||M|| > 1. So, 
supposes; = (M, W, X, Y) is an instance of 3DM for which ||M|| > 1. Let q = \\W\\. 
Define f'{(M, W, X, Y)) = ((C, c, V), 2>q) as follows: Let c, s, and t be elements not 
in W U X UY.LetC=WUX\jYU {c, s, t} and let V consist of the following two 
subparts: 

1. Voters simulating elements of M. Suppose the elements of M are enumerated as 
{(wi,Xi,yi) | 1 < i < ||M||}.(TheWj are not intended to be an enumeration of W. 
Rather, they take on values from W as specified by M. In particular, WJ may equal 
Wk even if j ^ k. The analogous comments apply to the a;,- and j/,- variables.) For 
every triple (u>i, a:,, y,-) in M, we will create a voter. If i is odd, we create the voter 
(s < c < Wi < Xi < yi <t < ■ ■ •), where the elements after t are the elements of 
C \ {s, c, wt:, Xi, yi, t) in arbitrary order. If i is even, we do the same, except that we 
exchange s and t. That is, we create the voter (t < c < Wi < xt < yi < s < ■ ■ •), 
where the elements after s are the elements of C \ {s, c, Wi,Xi, yi,t} in arbitrary 
order. 

2.  11M11 - 1 voters who prefer c to all other candidates. 
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We will now show that / has the desired properties. It is immediately clear that /" 
and /', and thus /, are polynomial-time computable. It is also clear from our construction 
that, for each x, f(x) is an instance of CarrollScore having an odd number of voters 
since, for every instance (M,W,X,Y) of 3DM with ||M|| > 1, f'((M, W,X, Y)) is 
an instance of CarrollScore with ||M|| + (||M|| - 1) voters, and since /" always 
outputs instances of this form. It remains to show that, for every instance (M, W, X, Y) 
of 3DMwith ||M|| > 1: 

(a) if M contains a matching, then Score({C, c, V)) = 3q, and 

(b) if M does not contain a matching, then Score((C, c, V)) = 3q + 1. 

Note that if we prove this, it is clear that/has the properties (l)and (2)ofLemma 4, in 
light of the properties of /". Note that, recalling that we may now assume that \\M\\> 1, 
by construction c is preferred to s and t by more than half of the voters, and is preferred 
to all other candidates by ||M|| - 1 of the2||M|| - 1 voters. 

Now suppose that M contains a matching M'. Then ||M'|| = g, and every el- 
ement in W U X U Y occurs in M'. 3q switches turn c into a Condorcet winner 
as follows. For every element (wi,Xi,yi) G M', switch c upwards 3 times in the 
voter corresponding to (w{, xt, yi). For example, if i is odd, this voter changes from 
(s<c< Wi < Xi < y, < t < • • •) to (s < Wi < Xi < yi < c < t < ■ ■ ■). Let z be an 
arbitrary element of W U X U Y. Since z occurs in M', c has gained one vote over z. 
Thus, c is preferred to z by ||M|| of the 2||M|| - 1 voters. Since z was arbitrary, c is a 
Condorcet winner. 

On the other hand, c's Carroll score can never be less than 3q, because to turn c into 
a Condorcet winner, c needs to gain one vote over z for every z eW UX UY. Since c 
can gain only one vote over one candidate for each switch, we need at least 3q switches 
to turn c into a Condorcet winner. This proves condition (a). 

To prove condition (b), first note that there is a "trivial" way to turn c into a Condorcet 
winner with 3q + 1 switches: Just switch c to the top of the preference order of the first 
voter. The first voter was of the form (s < c < w\ < xt < y] <t < ■■■), where the 
elements after t are exactly all elements in W U X U Y \ {wi, x\, y\}, in arbitrary order. 
Switching c upwards 3q + 1 times moves c to the top of the preference order for this 
voter, and gains one vote for c over all candidates inWLiX öY, which turns c into a 
Condorcet winner. This shows that Score(C, c, V) < 3q + 1, regardless of whether M 
has a matching or not. 

Finally, note that a Carroll score of 3q implies that M has a matching. As before, 
every switch has to involve c and an element of W U X U Y. (This is because c must gain 
a vote over 3q other candidates—W U X U Y—and so any switch involving s or t would 
ensure that at most 3q - 1 switches were available for gaining against the 3q members 
of^Uluy, thus ensuring failure.) Thus, for every voter, c switches at most three 
times to become a Condorcet winner. Since c has to gain one vote in particular over 
each element in Y, and to "reach" an element in Y it must hold that c first switches over 
the elements of W and X that due to our construction fall between it and the nearest 
y element (among the ||M|| voters simulating elements of M—it is clear that if any 
switch involves at least one of the ||M|| - 1 dummy voters this could never lead to a 
Carroll score of 3q for c), it must be the case that c switches upwards exactly three times 
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for exactly q voters corresponding to elements of M. This implies that the q elements of 
M that correspond to these q voters form a matching, thus proving condition (b).   | 

Lemma 5. There exists a polynomial-time computable function CarrollSum such that, 
for all k and for all (C,, c,, V,), <C*2, c2, V2), .. , {Ck,ck, Vk) satisfying (Vj)[||V} II 
is odd], it holds that CarrollSum(( (C\, c\, V\), (C2, c2, V2), • • • , (Ck, ck, Vk))) is a 
Carroll triple having an odd number of voters and such that J2 ,• Score((Cj ,Cj,Vj)) = 
Score(CarrollSum( ((C,, c\, V\), (C2, c2, V2), ■ ■. , (Ck, ck, Vk)))). 

Lemma 3, Lemma 4, and Lemma 5 together establish the Q\-hardness of a spe- 
cial problem that is closely related to the problems that we are interested in, 
CarrolIRanking and CarrollWinner. Let us define the decision problem 
TwoElectionRanking (2ER). 

Decision Problem:   TwoElectionRanking (2ER) 

Instance:   A pair of Carroll triples ((C, c, V), (D, d, W)) both having an odd number 
of voters and such that c ^ d. 

Question:   Is Score((C, c, V)) < Score((D, d, W))l 

Lemma6. TwoElectionRanking is Q\-hard. 

We note in passing that 2 ER clearly is in Rft(NP), and so from the fact that Q\ = 
Rff (NP), it is clear that 2ER is in Qv

2. Thus, in light of Lemma 6, 2ER is Q\ -complete. 
We also note in passing that, since one can trivially rename candidates, 2 ER remains Q\- 
complete in the variant in which "and such that c ^ d" is removed from the problem's 
definition. 

In order to make the results obtained so far applicable to Carrol IRanking 
and Carrol lWinner, we need the following lemma that tells us how to merge two 
elections into a single election in a controlled manner. 

Lemma 7. There exist polynomial-time computable functions Merge and Merge' such 
that, for all Carroll triples (C, c, V) and (D, d, W)for which c/ d and both V and W 
represent odd numbers of voters, there exist C and V such that 

(i) Merge((C,c,V),(D,d,W))    is    an    instance    of   CarrollRanking    and 
Merge''((C, c, V), (D, d, W)) is an instance o/CarrollWinner, 

(ii) Merge{(C, c, V), (D, d, W)) = (C, c, d, V) and 
Merge1 ({C, c, V), (D, d, W)) = (C, c, V), 

(iii) Score((C, c, V)) = Score((C, c, V)) + 1, 

(iv) Score((C, d, V)) = Score((D, d, W)) + 1, and 

(v) for each e£C\ {c, d}, Score((C', c, V)) < Score((C, e, V)). 
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The results we now have established suffice to prove both Theorem 1 above and 
Theorem 8 below—which states that CarrollWinner is Q\-complete, the main 
result of this paper. Full proofs of the results in this paper can be found in the full 

version [HHR96].6 

Theorem 8. Carrol lWinner is O^-complete. 

Corollary 9. //CarrollWinner is NP-complete, then PH = NP. 
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Game Theoretic Analysis 
of Call-by-Value Computation 

KOHEI HONDA NOBUKO YOSHIDA 

ABSTRACT. We present a general semantic universe of call-by-value computation 
based on elements of game semantics, and validate its appropriateness as a semantic 
universe by the full abstraction result for call-by-value PCF, a generic typed pro- 
gramming language with call-by-value evaluation. The key idea is to consider the 
distinction between cal!-by-name and call-by-value as that of the structure of in- 
formation flow, which determines the basic form of games. In this way call-by-name 
computation and call-by-value computation arise as two independent instances of 
sequential functional computation with distinct algebraic structures. We elucidate 
the type structures of the universe following the standard categorical framework de- 
veloped in the context of domain theory. Mutual relationship between the presented 
category of games and the corresponding call-by-name universe is also clarified. 

1. INTRODUCTION 

The call-by-value is a mode of calling procedures widely used in imperative and functional 
programming languages, e.g. [1, 30], in which one evaluates arguments before applying 
them to a concerned procedure. The semantics of higher-order computation based on 
call-by-value evaluation has been widely studied by many researchers in the context of 
domain theory, cf. [35, 23, 32, 12, 40, 11], through which it has become clear that the 
semantic framework for the call-by-value computation has a basic difference from the one 
for call-by-name computation (see [15, 42] for introduction to the topic). The difference 
between the semantics of call-by-value and that of call-by-name in this context may 
roughly be captured as the difference in the classes of involved functions: in call-by- 
name, we take any continuous functions between pointed epos, while, in call-by-value, 
one takes strict continuous functions. The latter is also equivalently presentable as 
partial continuous functions between (possibly bottomless) epos. This distinction leads 
to a basic algebraic difference of the induced categorical universes, cf.[ll, 12]. 

The present paper offers a semantic analysis of call-by-value computation from a 
different angle, based on elements of game semantics. In game semantics, computation 
is modelled as specific classes of interacting processes (called strategies), which, together 
with a suitable notion of composition, form a categorical universe with appropriate type 
structures. One may compare this approach to Böhm trees or to sequential algorithms [6, 
22], in both of which computation is modelled not by set-theoretic functions of a certain 
kind but by objects with internal structures which reflect computational behaviour of 
the concerned class of computation. Game semantics has its origin in Logics [7, 10] 
and has been used for the semantic analysis of programming languages, especially for 
characterising the notion of sequentiality [8, 34]. By concentrating on specific forms of 
interaction which obey a few basic constraints, the approach makes it possible to extract 
desired classes of interacting processes at a high-level of abstraction, offering suitable 
semantic universes for varied calculi and programming languages, cf. [2, 3. 4, 19, 20, 24]. 
The forms of interaction in these universes are however inherently call-by-name: it has 

LFCS, Department of Computer Science, University of Edinburgh,   e-mail:   kohei@dcs.ed.ac.uk. 
,• Odcs.ed.ac.uk. Supported in part by EPSRC Fellowships and JSPS Research Fellowships. 
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not. been clear how the call-by-value computation can be captured in the setting of game 
semantics, in spite of its equally significant status as a mode of computation. 

f 

CBN | 
nat =i> nat nat =* nat 

^^OQ-~ OA(n) 
PQ ^PA(2n). 

OA(n). 
PA(2n)- 

(a) (b) 

Figure 1 

In the present work it will be shown that a general semantic universe of the call- 
by-value higher-order computation can indeed be simply constructed, employing basic 
elements of the foregoing game semantics, but with a key difference in the structures 
of interaction. More specifically, we find that the distinction between call-by-name and 
call-by-value in game semantics arises as the one in the form of the flow of information. 
Let us illustrate this point by simple examples. Figure 1 (a) depicts how a function 
which doubles a given natural number is modelled in the foregoing game semantics ("O" 
for Opponent, "P" for Player, "A" for Answer, and "Q" for Question). Computation 
starts when Opponent asks a question on the right, requesting an answer: then Player 
(the function) asks what the argument is on the left, from which the number is received, 
and finally it returns to the right to answer the initial question by the double of the 
received number. In Figure 1 (b), the same function is modelled in the call-by-value 
game. This time the flow starts at the left component, which already carries a value: 
then the function just returns the answer on the right. One may notice that this means 
the interaction should start from an answer, which might be regarded as an anomaly in 
the preceding convention in game semantics. However, it turns out that this parameter 
of games — whether one initiates a game by answers or by questions — is orthogonal 
to other basic elements of the game semantics, leading to a simple construction of a 
categorical universe in which representative functional calculi based on call-by-value 
evaluation can be faithfully interpreted. The independence of the parameter suggests 
we may obtain a suitable universe to model, say, imperative call-by-value computation 
by simply altering other parameters, cf. [4, 21]. We also note that the possibility to 
model "data-driven computation" in contrast to "demand-driven computation" as games 
is discussed in an early paper on game semantics by Abramsky and Jagadeesan [2]. 

The main technical contribution of the present work is the validation of the semantic 
exactness with which the induced universe captures the call-by-value sequential higher- 
order computation through the full abstraction result for the call-by-value version of 
PCF [35, 40], a paradigmatic functional calculus. The result seems the first one in this 
context1 and is easily extendable to other languages as we shall indicate in Section 
6. We also clarify the relationship between the present universe of games and the 
corresponding call-by-name universe by showing they are faithfully embeddable to each 
other. These results indicate, together with the preceding results on call-by-name PCF 
[3. 19]. that the two basic notions of calling procedures in higher-order computation are 
representable in the game-based semantic framework in an exact way, and that they 

1 Independently and concurrently Riecke and Sandholm [38] obtained a similar result, see Section 6. 
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arise as two independent, though mutually related, semantic universes with equal status 
(which parallels the findings in domain theory, cf. [11]). It is also notable that, as we 
clarify later, the universe of call-by-value games assumes basic type structures which 
have arisen through the categorical analysis of domain-theoretic universes for call-by- 
value, or partial, computation, cf.[ll, 12, 23, 31, 32, 36, 39], though with a strong 
intensional flavour. This suggests an abstract notion of "call-by-value computation'" 
may be delineated apart from the standard domain theoretic constructions, cf. [11, 12]. 

The structure of games we shall use is a conservative extension of the construction 
by Hyland and Ong [19]. The relationship is detailed in [18]. 

This is an extended abstract of [18]. The reader may refer to [18] for proofs and 
detailed technical discussions. In the remainder, Section 2 introduces the basic notion of 
games and strategies. Sections 3 and 4 outline the algebraic structures of the category 
of games and its extensional quotient. Section 5 establishes the main result of the paper, 
the inequational full abstraction for call-by-value PCF. Section 6 discusses further results 
and remaining topics. Appendix briefly reviews call-by-value PCF. 

2. GAMES AND STRATEGIES 

This section introduces the basic construction of games and strategies which are to 
become objects and morphisms in the categorical universe. We start from sorting (the 
terminology is from [29]), from which call-by-value types arise as its specific subclass. 

2.1. Sorting and Type. 
(i)  (sorting)  A sorting § is a triple of: (1) §, which is a collection of mutually disjoint 

non-empty sets ranged over by S, S',... each called a sort, (2) A : § -» { [, (, ], ) }. 
a labelling function and (3) Obs:§ —¥ 2-, the justification relation (if 5"' € Obs(S) 
we say S justifies S'), where 5' € Obs(S) implies: 

. A(S) = [ then A(S') €{(,]}•   Dually X(S)  = (  then A(S') €{[,)}• 
• \(S) = ]  then A(S') = [ always. Dually A(5) = )  then A(S') = ( always. 

Elements of a sort are called actions, denoted x,y,..., writing e.g. i5 when x £ S. 
The set of initial sorts, denoted init(S), is given as {S | for no 5' 6|.5€ Obs(S')}. 

(ii) (type)   A cbv-type, or simply a type, is a sorting such that all initial sorts are 
labelled by "]" and any of its sorts is reachable from some initial sort, where 
reachability is understood regarding sortings as graphs (nodes are sorts, directed 
edges are given by 06s). Types are denoted by A,B,C, — 

An action of a sort labelled by each of ~ (,[,],)" is called, respectively, Player Question. 
Opponent Question, Player Answer, and  Opponent Answer, the first two collectively 
Question, the last two Answer, the first and third P-action, and the second and fourth 
O-action.  Answers of initial sorts are often called signals.  On labels we define a self- 
inverse function (•), giving the dual of a label, satisfying:   [ = (  and ] =). 

2.2. Examples, (sorting) 

(i) 0 is the empty sorting, which is a type. 1 is a sorting whose unique ]-labelled sort 
is a singleton, which is again a type, nat is made as 1 replacing a singleton with 
LJ (the set of natural numbers), similarly bool with {true, false}. 

(ii) Given S, write S for the sorting which is the result of changing labels by (■). So 
nat is the sorting with the same sort as nat which is however labelled by ")". Next, 
given Si and §2: let Si t+l S2 denote their disjoint union, i.e. the sorts are the 
disjoint union of Si and §2, inheriting labelling and justification. Then nat W nat 
is the sorting with two copies of JJ labelled by ")" and "]". 
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(Hi) We define nat^nat as a type with three sorts, one is a singleton written ]na na , 

another a copy of u written [nat. and the third again a copy of w written ]na , 
for which labels are given as these notations indicate. The justification is given so 

that ]nat^nat only justifies [nat, which in turn only justifies ]nat. 

By a sequence from, a set X we mean a partial function from w to X defined for a finite 

initial segment of u (called indices) and undefined for the rest. As an example, abc has 
{0.1, 2} as its indices. We often confuse elements and their occurrences in a sequence. 
£ denotes the empty sequence. We are interested in sequences of actions representing a 

certain kind of interaction between an agent (Player) and the outside (Opponent). 

2.3. Action Sequence. Given a sorting S, an action sequence in S or often simply a 
sequence in S is a sequence from actions in § (let is be x0xi...xn_i), together with the 

relation on its indices denoted i-¥ (writing x; i-+ Xj for i i-» j), satisfying: 

(consistency) (1) x,- i-> Xj => i < j,    (2) (x,- n- xk   A   Xj M- xk) => i = j,    (3) 

x? i-> x£' => S' £ Obs{S),   (4) -a**. Xi H+ xj => S initial (then XJ occurs free), 

(linearity in answers)   (5) (x,- ►-»• xj  A x,- H-» xk  A xk an answer)   =>■  j = k,   (6) A 
free O-answer (resp. a free P-answer) occurs at most once, and: 

(strict alternation)   (7) If x,- is a P-action (resp. O-action), then x;+x is an O-action 

(resp. P-action) for 0 < i < n — 2. 

s, s',... range over action sequences, often leaving the associated >->■ implicit. We say x,- 
justifies Xj when x,- ►-*■ XJ. On action sequences we define two functions, rsn, the P-view 
of s, and LSJ, the O-view of s, as, inheriting i->- whenever possible:    (pvO) rsn = e, 
(pvl) rsx;"1 = Xi when xt- is a free O-action,    (pv2) rs0x,siXj"1 = rs0'

tXiXj when 
x,- i-j- Xj and xj is an O-action, and   (pv3) rs0xi~

[ = rs0~[xi if x,- is a P-action; LSJ is 
defined dually, i.e. by exchanging "O-action" and "P-action" throughout. We then say: 

(i)  s is well-bracketed when: ifs0XiSiXj is a prefix of s such that (1) x,- is a question 
(2) XJ is an answer and (3) either XJ occurs free or XJ is justified by a question in 

s0, then x; justifies an answer in s\. 

(ii) s satisfies the visibility condition when, in any of its prefix s0X{ where x; is a P- 
action (resp. O-action) which is %• s.t. yj H-J- XJ always occurs in rs0"1 (resp. LS0J). 

An action sequence is legal when it is well-bracketed and satisfies the visibility condition. 

Legal action sequences are sometimes called legal positions. We can verify the set of legal 
sequences of any sorting is closed under prefix and view constructions. 

We are now ready to give the main definition of this section, which determines the 
class of interacting processes we are concerned with in the present study. 

2.4. Definition, (strategy) An innocent strategy from A to B, or simply a strategy 

from. A to B, is a prefix-closed set a of legal positions in A ttl B, such that: 

(O-initial) s £ o~ implies the initial action of s (if any) is an O-action. 

(contingency completeness) s £ a and sx; is legal for an O-action x; imply sx; £ <r. 

(innocence) If sxx, s2 £ cr, x is a P-action and rsi"1 = rs2"1, then s2y £ cr such that (1) 
rs1x

n = rs2y^ and (2) s2z £ cr   =>   s2z = s2y. 

We write a : A ->■ B when a is a strategy from .4 to B. fa denotes the partial function 
determined by <r, mapping even-length P-views to next actions (if any) with justification. 

Given a,r : A-^-B, we set cr < r when cr C r, equivalently when fa C fT- 

Using the function representation, it is easy to see the set of strategies from .4 to B forms 
a dl-domain under <, where compact elements are those with finite graphs.   Further, 



229 

given sxjA'i+i 6 er : A —>• B, if X{ and i'I + i come from different types then z;+i is 
necessarily a P-action (switching condition). Also the projection of s G <r : Aj. —)■ A2 
onto .4,- (i = 1,2), written s f .4,-, is always legal in .4;. 

2.5. Examples, (strategies) 

(i) (undefined) For each A and B, there is a strategy from .4 to B which is totally 
undefined, so that it is least w.r.t. the ordering <. We write this strategy LA-+B- 

(ii) (first-order function) The set of strategies from nat to nat precisely correspond to 
the set of partial functions from w to u>. 

(iii) (higher-order function) We describe a strategy a : nat^nat —► nat which corres- 
ponds to the behaviour of an open call-by-value PCF-term, x : 1 —¥ i>succ(;r3) : t. 
After receiving a signal on the left, which is a function, <r asks the result of ap- 
plying 3 to that function, and, on receiving the answer, returns its successor to 
the right. Except the last free answer, each action is justified by the preceding one. 

Strategies denote a certain kind of deterministic processes, and are, as such, precisely 
representable as (name passing) synchronisation trees, see [18]. The presentation is 
often useful for describing, and reasoning about, strategies: indeed the full abstraction 
result was originally obtained in this setting [17]. The following inductive definition of 
composition of strategies is suggested by such representation. 

2.6. Definition,   (composition) Given a : A—>B and r : B-+C, we set: 

{s\\ s2 \ si e a, s2 e T, si \ B = s2 \ B} 

where s\;s2 with «x and s2 as above is given: (1) e;e = £, (2) sixB;s2x
B — s\\s2 

(xB is the corresponding dual action of a;5), and (3) s\xA\s2 = (si;s2)x
A, Si;s2x

c = 
(s\; s2)x

c, in each case inheriting the justification relation from the original pair. 

(3) above is well-defined since two cases are always disjoint due to the switching condi- 
tion. We can also verify: (i) a; r is a strategy from A to C, (ii) ; is associative with 
identity given by the copy-cat strategy, i.e. that which exactly copies actions between 
A and A, and   (iii) ; is bi-continuous with respect to <. Thus we define: 

2.7. Definition. CBV denotes the category of cbv-types and innocent strategies. 

By the preceding discussions, CBV is enriched over CPO, the category of possibly bot- 
tomless epos and continuous functions. Each homset has a least element J. for which 
the composition is left strict, that is X; a = ± always. 

3. INTENSIONAL UNIVERSE 

Type structures of a semantic universe offer the basic articulation of its algebraic struc- 
tures needed, for example, for interpreting various programming languages in it. This 
section clarifies the basic type structure of CBV in the light of the distinction between 
total and partial maps. We first introduce the notion of totality, cf. [13]. 

3.1.  Definition, a is total when r; a = JL implies r = _L. We write a J). when a is total. 

The totality of a : A —► B is equivalent to any one of: (1) Vr : 1 —► .4. r Jj. => r; a -IJ-. 
(2) the square (0 —>• .4 —> B, 0 —>■ 0 —> B) is a weak pullback (notice 0 is initial and 
weakly terminal), and (3) cr immediately emits the P-signal for each initial O-signal. (1) 
relates to a familiar idea of totality. (2) is a categorically basic one, and (3) gives the 
behavioural characterisation, clarifying the dynamic aspect of totality. 
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3.2.  Examples, (total maps) 
(i) The unique arrow _L from 0 to any type is total, by definition. All isomorphisms 

are total. Also, there is no total map to 0. except from itself, 

(ii) There is a unique total map !A : A-*l for each A. It reacts to the initial signal 
(if any) by the unique P-signal at 1, and no more action is possible, 

cr : nat-+nat is total iff the underlying number-theoretic function is total. in 

Let us denote CBVt for the category of types and total strategies. Since totality is closed 
upwards w.r.t. <, CBVt again CPO-enriches. It has finite products: 3.2 (ii) above shows 
1 is terminal, while the product of A and B is given by a type A®B whose sorts are the 
disjoint union of non-initial sorts of A and B together with, for each pair of 5 € init(.4) 
and S' e init(B). a sort ]s'5' = S x S' (the set theoretic product), which justifies what 
5 and S' justify in A and B, the rest as in A and B (A ® 0 and 0 ® A are set as 0). 
Projection maps are evidently given. ® is often denoted x in CBVt- We also note that 
CBVt has arbitrary (small) products and co-products, but we do not need them here. 

The relationship between total maps and usual (often called partial) maps is clarified 
by the notion of lifting. Write A± for the type given by adding two singleton sorts to A. 
one initial which justifies the other one, the latter justifying all S £ init(A), the rest as 
in A. Then we can see the set of total arrows from 1 to Ax is order-isomorphic to the set 
of partial arrows from 1 to A. These two are mediated by two copy-cat like strategies. 
Up : _4->-,4J_ and dn : A± -* A, with obvious behaviours (up reacts to an initial action at 
A by going though two added actions at A± then does the copy-cat: dn just does the 
dual). In a familiar way this induces the adjoint situation as described below. 

3.3. Proposition. 
(i) Let F be the inclusion functor from CBVt to CBV. Then F has the right adjoint T, 

with T(A) = A±, the unit rjA = up, and the co-unit € = dn, which CPO-enriches. 
The monad <T, 77,1, T(dn)) is denoted T, which has a tensorial strength   stA,B 

and  a co-strength (in the sense of [37]) st'^^. 

(ii) The Kleisli category of T on CBVt is isomorphic to CBV.    We write <rt for 
up; T(a) : A -» B±. where cr : A -»■ B is partial, and <rt for cr; dn : A -¥ B where 
cr : A—*B± is total. 

Using the monad T, we can now present the basic type structures of CBV. In (iii) below 
A-=±B is a type whose sorts are the disjoint union of those of A and B together with 
new ]A=^B which is a singleton, with the label of each 5 € imt(A) changed into [ and 
those of A's non-initial sorts dualised. Justification is as in A and B, with the addition 
of ]A=^B justifying what were in 'imt(A), each of which in turn justifying what were in 
init(ß) (0-^B is set as 1). Notice the similarity with the construction of .4 ö B. 

3.4. Definition and Proposition. 

(i) (partial pairing [32]) Given <rx : C ->• A and cr2 : C -¥ B, their left pairing. 
<<o-i, <r2))i ■ C-> A ® B, and the right paring, ((cru cr2))r : C ->■ -4 S B are given 

as: {{<Ji,<r2))l = (M, <T\)\4>A,B)I _and {(cru cr2))r = {(cr\, a\):vA,B)\ where 
ipAiB = st'4 rB;T(st,4,B;dn) and WA,B = stAtTB',T(st'AB;dn). 

(ii) (premonoidal tensor [37]) Given .4. we define A® and ®A by: (i) .4 S -B = A® B 

and B ■ ®A = B ® A, and (ii) A® a d= «-x, TT2; a)), and a® A d= {{~i\<r, TC2)} 

where 7r, denote projections.     Then A® and ®A both define functors on CBV 
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which CPO-enrich. We then define, for a : A^B and r : C —>• D: (i) a Qi r = 
(a © C); (B ® r) and (ii) <x ®r r = (.4 ® cr); (r ® C). 

(iii) (partial exponential [23]) The functor :® .4 : CBVt ->CBV has the right adjoint 
A^>- : CSV ->CSVt, which CPO-enriches. Equivalently, there exists an arrow 
ev : (A-=±B) 0 A —>• B such that, for any a : C ® A-+ B, there is a unique total 
arrow pA(cr) : C->B satisfying (pA(<r)®id); ev = cr, and pX is a continuous operator. 

An outstanding fact on partial pairing is that the right and left pairings of the same 
tuple do not coincide in general. This exhibits a strongly intensional character of CBV, 
substantiating Moggi's remark that ((<Ti, (T2)); and ((o-j, er2))r reflect the "order of evalu- 
ation" [32]. This also implies the tensor in CBV does not give a bifunctor, cf. Corollary 
4.3 of [37]. We write ((0^, o-2)) when two versions coincide (as when either is total). 

The final structure we need is recursion, here presented as an operator on each homset. 
[18] gives an alternative presentation as constants. Below we say A is pointed when it 
has a unique initial sort which is a singleton, equivalently when hom(l, .4) in CBVt is 
a pointed cpo. For such A, dn'A : TA —>• A denotes the unique total map such that 
up^dn'^, = id^. Pointed types are precisely objects in the category of Eilenberg-Moore 
algebra of the monad T. Also, any type of form A-=±B is pointed. 

3.5. Proposition. Let A be pointed and cr : C x A —¥ A. Then there is a strategy 
rec(<r) : C—>A which satisfies: (i) r; rec(<r) = r;((idc, rec(<r)));<7 for r : 1—J-C (if <r 
is total we can take off r from the equation), (ii) rec(r ® id^; cr) = r;rec(<r) for each 
T : B-+C, and: (iii) Given r : 1 —> C, if {pt : l->A},£u, is defined as: (1) po = -L, (2) 
pi+1 = ({r, pj;dn'));cr, then {p,} is an increasing aj-chain such that Up,- = r;rec(o-). 

4.   EXTENSIONAL  UNIVERSE 

CBV represents an abstract notion of execution of call-by-value computation. For the 
interpretation of programming languages at the same abstraction level as in the standard 
semantic universe like the category of domains, we may need a more abstract universe, 
which we construct from CBV by a simple quotient construction. The universe is also 
useful for understanding the behaviour of arrows in CBV in an abstract way. Below we 
briefly outline the basic structure of this universe, leaving details to [18]. We start from 
the following ordering (cf. [36, 11]): 

crx<cr2     
A4     VC, C", r-.C^-A, T':B->C. r; <TI; r'JJ.    =>   r;cr2;r'|L. 

Immediately ^ is a preorder for which the composition is monotone (thus the quotient is 
well-defined), and <C^. We now define CBV as the category of types and ^-equivalence 
classes of strategies. f,g,... range over arrows in CBV. The induced partial order is still 
denoted ^. CBV is enriched over Poset, the category of posets with monotone maps, 
since monotonicity carries over from CBV. Observing 0 is the zero object in CBV (i.e. 
both terminal and initial), we define -L : A—±B as the unique map that factors through 
0, cf. [13]. Then ± is indeed the least element in each homset, and the composition 
is strict at both sides.  We can then define total maps as before:    / JJ- when g; f = J_ 

implies g = A. for each g, equivalently when the square (0 —¥ A -+ B, 0 -> 0 —» B) 
is a pullback, from which all properties of total maps as in CBV follow. Notice also 
/ Jj. <=> Vu G /. <j |L <» 3a £ f. a JJ-- We write CBVt for the subcategory of total maps. 

We can then show CBVt is well-pointed, with finite products (indeed all small products 
and co-products) inducing Poset-enriched bi-functors, all inheriting from CBVt. Again 
as in CBV. the inclusion functor from CBV\ to CBV has the right adjoint inheriting 
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constructions from T, which we write again T, which Poset-enriches. The corresponding 
monad, again denoted T, has strengths and is now commutative, i.e. yA,B - PA,B in 3.4 
(i). Again the Kleisli category of T on CBVt isjsomorphic to CBV. Using the monad, 
we can now clarify the basic type structures^ CBV. Thus, again from the general result 
by Power and Robinson [37], we know CBV is a Poset-enriched symmetric monoidal 
category, which has all type structures as given in Proposition 3.4 (i)(ii)(iii) inheriting 
the constructions from CBV, wherejeft and right pairings are identified. Finally the 
recursion in CBV carries over to CBV, though all r : 1->• C in 3.5 can be replaced with 
idc. We also note that CBV allows the treatment of recursive types for a large class of 
functors, but we do not use them in the present paper. 

5. INTERPRETATION OF PCFV 

PCFV[35, 36] is a typed programming language based on call-by-value evaluation. The 
syntax and evaluation rules can be found in the standard literature, cf.[15, 42, 40], which 
are briefly reviewed in Appendix (following [15] except the recursion is only defined for 
function types, cf.[42, 40]). CBV and its extensional quotient are conceived to represent 
call-by-value, or partial, higher-order functional computation. Moreover it has a type 
structure which does include that of PCFV. Thus we may seek to represent PCFv-terms 
and its computation in these universes. We primarily consider the interpretation in CBV, 
and only move to CBV at the last step. The interpretation follows. 

5.1. Definition. First we define the mapping from the set of types and environments of 

PCFv to objects in CBV as: [»] =f nat, [o] d= bool, [a => ßj = [a]^[/3], [s] = 1 and 

[r, x : a] =f [r] ® [a]. Then the mapping from PCFv-terms to arrows in CBV is given 
inductively as follows, assuming either of the left/right pairings is selected uniformly. 

(i)  [F, x : a, At> x : aj d=   ?r: [r] ® [a] ® [A], where TT is an appropriate projection. 

(ii) [F > Xxa.M :a^ß\   =  p\{<r) : [T] -+ [/?], where [T, * : a > M : ß[ = er. 

(iii) [T > MN : 0\ = <(<ri, 0-2»; ev : [T] -»• \ß\, where [T > M : a => 0\ = <TI and 
[F > N : a] = <r2. 

(iv) [F > fixa.M : a] d= rec(<r) : [r] -+ [a], where [F, x : a > M : a] = a 

(v) [r>cond L Nh M2 : a] ^ («r, {{<r\, 4)»);7T(M))t = P1">W where IF > L : 

o] = r, [r o A/i : a] = au \T > M2 : a] = <r2 and 7A : bool ® ^1 ® A -)■ yl is a 
strategy with an appropriate behaviour. 

(vi) For a constant c of type a, we set: [r > c : a] =f ![r]; c : [F] ->■ 1 -)• [a] where 
c : 1 —> [a] is given as a strategy with obvious behaviour for each c. 

The descriptions of 7 and c for each c are given in [18]. As basic properties of the 
mapping, we know {T>V : a} is always total, where V denotes a value, i.e. an abstraction 
or a non-fi constant; [T>M{V/x}:ßJ = ((id[r], r});<r : JT]-*■[/?] for any r = [V>V : 
a] and a = {T. x : a > M : ßj; and that T > M Ü-V implies [Af] = [Vj. We can then 
verify the following key properties of the interpretation. 

5.2. Proposition. 

(i)  (computational adequacy) [AfJ ^ J- iff 3V". M JJ. V for a closed M. 

(ii) (adequacy) [A/] ^ [yV] implies A/ ^ Ar for closed Af, N of the same type. 
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Given the adequacy result, if we show its converse, i.e. <0b, implies < via the inter- 
pretation, then we obtain the full abstraction. For the purpose it suffices to prove all 
compact elements of appropriate types are PCFv-definable, cf.[25, 35]. The definability 
argument is carried out using a subset of PCFv-terms defined as follows. 

5.3. Definition. Finite canonical forms (FCFs for short) are inductively given as: 

(i)  r > Q : a  and   V > n : i   are FCF's. 

(ii) T>\ya.M :a-s-/3  is a FCF if T,y:a>M:ß  is. 

(iii) T>letya = :VmN :ß  is a FCF if (1)   T,y: a>N:ß  is a FCF,   (2)   z has a 
type  ß => a  in T, and   (3)   T > V : ß  is a FCF (which is also a value), 

(iv)  T > (case x of nx: Mi [ "2 : A/2 Q..[| nk : Mk ) ■ a   is a FCF if  x : L e T   and, for 
each /,   F > Mi : a  is a FCF. 

where, in (iii),  let ya = zM in N stands for (\ya.N)[zM), and, in (iv),   case y of n^ 
Mi\\..\\nk:Mk   stands for cond (y = m) A/i(...(cond (y = nk) Mk 0.)..) , the latter 
assuming the equality check is suitably encoded in PCFv- 

FCFs faithfully capture the behaviour of compact strategies of PCF-types: 

(i) 0. denotes ±. m : i immediately returns m after an initial O-signal. 

(ii) \xa.M : a => ß   represents a strategy which, after an initial O-signal, does a 
sequence of actions   ]aT=^ [a (here an annotated label denotes an action of that 
kind)   where ]a^" i-»- [a, then behaves as M. 

(iii) T, Xi : 7i => 72, A>let ya — XiM in N : ß first interacts at x,- by (7\ then Oppon- 
ent may ask at M (when 71 is a higher-order type) which, after some interactions, 
will be answered by Player, followed by an Opponent Answer )72. Then the ac- 
tions move to N. Here the "let" construct is used to make the order of evaluation 
explicit (see [32] for a similar use of the construct in a different context), 

(iv) The case statement corresponds to the situation when a strategy acts according 
to the received ground values (here natural numbers).  A vector of values can be 
handled by nesting the construct. 

Using FCFs we can prove: 

5.4. Theorem, (definability) For each compact element a : 1 -> [a] for any PCFv-type 
Q in CBV, there is a FCF F : a such that \F : a\ = a. Conversely, the interpretation 
of any FCF is a compact element in the respective type. 

The proof is by induction on the cardinality of compact elements, translating the beha- 
viour of strategies into the corresponding FCFs based on the correspondence between 
actions and strategies we illustrated above. We note that, like FCFs themselves, the 
argument is much simpler than the corresponding one in call-by-name PCF. cf.[19]. See 
[18] for details. Write [F > M : a}e for [[T> M : a]]-j. From the definability result we 
can now conclude: 

5.5. Theorem, (full abstraction) For closed PCFv-terms M : a and A* : a, we have 
M : a <obs Af : Q iff [M : a]e £ [A/ : a]e. 

6. DISCUSSIONS 

6.1. Further Results. First we briefly outline how call-by-name universe and the call- 
by-value universe are mutually embeddable. as in the context of domains. Let cbn-types 
be sortings in which (1) initial sorts are all opponent questions and (2) each sort is 
reachable from some initial sort.   The strategies are then as in Definition 2.4 with an 
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added condition which ensures the switching condition. The composition of strategies is 
just as in Section 2, based on which we obtain the category of cbn-types and innocent 
strategies which is cartesian-closed and is enriched over CPO, which we denote CBN. 
There is a full embedding of CA of [19] in CBN and its extensional quotient allows 
interpretation of call-by-name FPC as in the category in [24]. Now we say a CBN' type 
is pointed when it has a unique initial sort which is a singleton, just as in CBV. Let us 
also say a strategy in CBN is linear when, after the initial question at the codomain, it 
immediately asks the question at the domain, and never asks an initial question at the 
domain again. Writing CBN\ for the subcategory of CBN of pointed types and linear 
strategies, the embedding result says (i) CBN is isomorphic to the full subcategory of 
CBVt of pointed types, and (ii) CBV is isomorphic to the full subcategory of CBNi of 
pointed types whose initial questions justify no questions. The proof is by the translation 
of information flow. See [18] for details. 

Next we discuss how we would extend the full abstraction result in Section 5 to 
other call-by-value programming languages. Firstly it is straightforward to extend the 
argument in Section 5 to PCFV with sums and products or to the untyped call-by-value 
A-calculus. Recursively typed languages such as FPC [15] can also be handled (though 
the premonoidal tensor in CBV poses a problem), as observed by Fiore and as will be 
reported elsewhere. For the interpretation of imperative constructs, we would consider, 
as noted in Introduction, variants of the present universe by changing parameters of 
games following [4, 21], which does lead to coherent semantic universes. One interesting 
topic in this context would be whether one needs refined type structures as in [4] for 
the interpretation of the impure constructs: indeed a much simpler, and more direct, 
approach seems possible in the present setting. Some results on these topics will be 
reported elsewhere. 

6.2. Related works. After completing the full version of this paper [18], the authors 
were informed of an independent (and essentially concurrent) work by Riecke and Sand- 
holm [38] in which they obtained a full abstraction for call-by-value FPC (which easily 
implies that of PCFV). The construction is based on Kripke logical relations on pCPO, 
and is thus quite different from the present one. No quotienting is necessary to reach 
the semantic universe, while the construction of the universe itself is substantially more 
complicated. In a brief comparison, one may say that their approach would give better 
insights for understanding why some (continuous) function is not sequential; while their 
construction does not directly model the dynamic aspects of sequential call-by-value 
computation, thus may not lead to the insights in that context. Thus tw^o methods 
would play different roles in semantic analysis. 

In game semantics, Abramsky and McCusker are working on game semantics on call- 
by-value languages, based on McCusker's early idea and also suggested by the present 
work, which tries to extract call-by-value strategies from the universes of call-by-name 
games in [24, 4] (personal communication).2 In another vein, Harmer and Malacaria 
are working on game semantics for call-by-value computation based on games originally 
introduced in [3]. [16] gives a preliminary study in this direction. 

6.3. Intensionality and relationship with process theories. The strongly inten- 
sional character of CBV is not at the same level of abstraction as, say, pCPO. The same 
can be said about its call-by-name counterpart and other categories of games, in the sense 

2At the final stage of preparation of this camera-ready version, we obtained their typescript [5]. 
which exploits the type structures of the original universe in [4] to interpret a functional language 
with a certain imperative feature. Detailed discussions, especially the comparison with an approach we 
mentioned in 6.1. should be left for a future occasion. 
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that they reflect some notion of execution, albeit abstractly, cf. [9, 19]. From the view- 
point that the primary purpose of semantic representation of programming languages 
lies in giving (in)equations over programs as general as possible, this feature may be con- 
sidered as a drawback. However we can take a different perspective, and ask whether 
this novel way of representing programs can be put to a significant use, especially once 
given the full abstraction result as the semantic justification of the representation. As 
a first such step, one may exploit the representation for the development of abstract 
theory of execution, including the formal optimisation techniques. Type structures as 
we studied in Section 4 may be put to an effective use in this context. One interest in 
this regard is that our interpretation of PCFV in CBV already gives a concise abstract 
implementation of the language in the form name passing processes. The representation 
is comparable to Milner's direct encoding in [27], performing the /3„-reduction by three 
name passing interactions. Such a "physical" character of the abstract universe suggests 
we may study the execution of, say, call-by-value programming languages from a new 
level of mathematical abstraction (this is in line with Girard's studies on the semantics 
of cut elimination [14]). Relatedly the induced encodings also suggest the possibility of 
relating game semantics and process theories at the fundamental level. The study of 
behavioural types by Milner [28] may suggest possible directions (from which the present 
study actually started). 
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APPENDIX: PCFV 

We give a brief review of syntax and operational semantics of the call-by-value PCF 
[15, 42. 40]: our treatment is nearest to [15]. Given an infinite set of variables, ranged 
over by x, y, z,..., the syntax of the language is given as follows. 

a ::= t | o | a => ß     M ::= x \ Xxa.M | MM | cond L M1 M2 \ px^P.M | c 

where c is a constant. An environment is a list of pairs of a variable and a type, where 
all variables are distinct, ranged over by T, A,... The typing rules of PCFv is given as: 

c is a constant of type a        V > M : a => ß   T > N : a 
T,x : a,T > x : a         =          r    .,Wl 0 

T > c : a 1 > MIS : p 

r, x : a > M : ß T>L:o    T > M : a    T > N : a        T,x : a => ß> M : a => ß 
T>\xa.M :a=>ß T > cond L M N : a T> px.M : a => ß 

As a set of constants, we assume: n : 1 for each numeral n, Q : a for each a, succ : 1 =>■ t, 
and zero? : 1 => o. Terms of form >M : a (often written M : a) are called closed terms. 
Abstractions and constants except Q are called values. 

On the set of terms we define an evaluation relation JJ- in the style of natural semantics. 

M Ü- Xx.Mo N JJ- V Mo{V/x} I), U     M{fxx.M/x} ij. V M#n 
V 4 V MN 4 U fix.M !)■ V succ M JJ- n + 1 

A/JJ.0 MJJ.n + 1 L JJ. true    M, IJ. V X JJ false   M2$U 
zero?A/ JJ true zero?M JJ false cond L Mi M2 JJ V cond L Mi M2 JJ U 

Finally an observational preorder on closed terms is defined as follows: M ^0bs N iff, 
for any well-typed context of a program type C'[-], we have C[M] JJ n iff C[N] JJ n. We 
note that this is the same thing as considering convergence at all types, a situation quite 
different from the case of call-by-name evaluation. 
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Abstract. We prove that confluence and strong normalisation are both modular properties for the addi- 
tion of algebraic term rewriting systems to Girard's F" equipped with either /3-equality or /3rj-equality. 
The key innovation is the use of ^-expansions over the more traditional ^-contractions. 

We then discuss the difficulties encountered in generalising these results to type theories with dependent 
types. Here confluence remains modular, but results concerning strong normalisation await further basic 
research into the use of ^-expansions in dependent type theory. 

1    Introduction 

A property P is modular for the combination of rewrite systems 71 and 72 iff whenever both 7i 
and T2 satisfy P, then so does the combined rewrite system 7i U %. This paper studies the modu- 
larity of confluence and strong normalization for combinations of higher order lambda calculi and 
algebraic term rewriting systems. That is, does the addition of a confluent algebraic TRS to a higher 
order lambda calculus (with or without rewrite rules for 77-conversion) produce a system which is 
still confluent? Similarly, is the combination of a strongly normalising algebraic TRS and a higher 
order lambda calculus (again, with or without rewrite rules for 77-conversion) still SN? And do 
these results generalise to dependent type theories such as the Calculus of Constructions? These 
questions are important from both a theoretical point of view, where one looks for general results 
on combination of rewriting systems, and from a practical point of view, when one develops higher 
order semi-unification algorithms, or establishes the formal properties of algebraic-functional lan- 
guages. 

Tannen [9] showed that strong normalization and confluence are both moldular properties for 
the combination of algebraic TRS's with the simply typed lambda calculus equipped with ß- 
reduction. Gallier and Tannen [10, 11] extended these results to System F. Although strong nor- 
malisation remains modular in these type theories if we work with both ß- and ^-reductions, con- 
fluence is no longer a modular property. For example, if s is a base type with constants / : s -> s 
and * : s and with a rewrite rule fx =$> *, then =>■ is confluent. However, the combination of 
=>• with the contractive 77-rewrite rule fails to be confluent: \x.* 4= Xx.fx => /. Because 
of these problems with ^-contractions, later research was restricted to adding more expressive 
TRSs to systems equipped only with /3-reduction. In particular, translations into intersection type- 
assignment systems [3,29,26,6,5,7,4] were used to prove the modularity of strong normalisation 
and completeness, i.e. the property of strong normalisation and confluence together, with conflu- 
ence following from strong normalisation by Newman's lemma. As far as the authors are aware, 
modularity of confluence alone was not pursued any further and no attempts were made to study 
modularity results for calculi equipped with /377-equality. 

This paper extends the works of Tannen and Gallier in several ways. Firstly, we shall consider 
more expressive calculi such as Girard's Fu and Coquand and Huet's Calculus of Constructions, 
henceforth denoted CoC We show that confluence is modular for the combination of algebraic 
TRS's with these calculi (without ^-conversion). As mentioned earlier, these results are surpris- 
ingly missing in the literature. Our second contribution is to extend these modularity results to 
calculi equipped with /3r/-equality. This is done by replacing the problematic interpretation of 77- 
conversion as a contractive rewrite relation with its more recent interpretation as an expansionary 
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rewrite rule. Eta-expansions in the simply typed A-calculus were first studied in the 70's but only 
recently they made the object of accurate study in a number of papers [1, 16, 13, 19, 27, 17] (for 
an up-to-date survey, the interested reader can refer to [15]). This paper relies on Ghani's recent 
results on ^-expansions in Fu [23] and CoC [22]. 

2    Extensional and Non-extensional Fw 

We use the standard notions of substitutions, reduction, normal form, confluence, normalization, 
etc., from the theory of A-calculus and rewriting systems [8, 14]. Tht free variables of a term M 
are denoted FV{M) and we write M6 for the result of applying a substitution 6 to the term M. 
The domain of a substitution 9 is denoted dom(ö). If K is a rewrite relation with unique normal 
forms, then reduction to ft-normal form is denoted Tl \, and the unique ft-normal form of t is 
denoted Tl{t). Finally, a relation R commutes with S iff (R*)~u, 5* C 5*; (A*)-1 where ; is 
the usual composition of relations. If two confluent relations commute, then their union is also 
confluent. 

In this section, two versions of Fu will be defined. Extensional Fu uses /^-equality for type 
conversion while non-extensional Fu has only ,0-equality for type conversion — our presentation 
is based on Gallier's [21]. Formally, let * be a distinguished symbol and let TVar and Var be 
disjoint sets of type variables and term variables. These variables are used to define the kinds, 
types (also called type constructors) and terms of Fu as follows: 

{Kinds) K := *\K -*• K 

(Types) T := t\T-+T\Vt: K.T\\t : K.T\TT 

[Terms) M := x\\x : T.M\MM\At: K.M\M[T] 

where t € TVar is a type variable and x 6 Var is a term variable. A term is called an abstraction 
iff it is of the form \x : T.M or At: K.M. In order to ensure that types inhabit unique kinds, we 
assign to each type variable t a unique kind and denote the set of type variables having kind K as 
TVar (if). This kinding information is used to define the kinding judgements of Fu as follows 

iGTVar(i<:)     s : K2    t € TVar(Ä"i) t : Kx -> K2    s : Kx 

t:K (At : Kx.s) :Kl^-K2 ts : K2 

t e TVar(K)    s : * t: *    s : * 

Vt : K.s : * t-*s : * 

In order to give the typing judgements of extensional Fu we define the usual ß^-equality relation 
on well-kinded types; if two types t and s are ßrj-equal, we denote this by writing t =ßn s. The 
following lemma is proved in [23] 

Lemma 1. ßr]-eqitality over types can be generated by a confluent, strongly normalizing reduction 
relation containing ß reduction and restricted ^-expansions. The unique normal form of a type A 
is its long ßn-normal form and is denoted NF(A). 

The typing judgements of extensional Fw are defined by the following rules, while the typing 
judgements of non-extensional Fu use only /3-equality for type conversion. 

x:T e dom(r) F\- M:t    t =0TI s    s : K 

rv-x-.T r\-M:s 

r,x:h\- M :t2 r\-M:ti-^t2    F \-N : h 

Fh (Xx-.h.M) :ti-±t2 FhMN:t2 
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.-r,ti:K\-M:t2 r \- M : Vtj : K.t2    r h s : K 

rV ylfj : A-.M : V*i : Ä\i2 ^ I" M[s] : t2[s/h] 

In the rest of this paper, we confine our attention to only those types that kind check and those 
terms that type check. In addition, we increase legibility by dropping all reference to the context 
in which a typing judgement occurs whenever there is no danger of confusion arising. 

2.1    Eta-expansions in Fu 

As argued in the introduction, any robust result concerning the modularity of confluence in the 
presence of 77-conversion requires its interpretation as an expansion. In the simply typed A-calculus, 
one permits an expansion t => Ax : A.tx providing that t is neither a A-abstraction nor applied to 
another term. This restricted expansion relation is SN, confluent and its reflexive, symmetric and 
transitive closure is /^-equality. Thus /377-equality can be decided by reduction to normal form in 
this restricted fragment. 

However, defining 77-expansion in Fu requires further care so as to avoid pitfalls caused by 
the presence of multiple typings for terms. For instance, if an expansion M n s Xx : A.Mx 
is permitted providing M : A -» B, then 77-expansion alone is not even confluent as there are 
rewrites 

Ax : A'.Mx -JL- M -JL~^ \x : A.Mx 

where we only know that A =ßTj A' in the type-conversion relation. Worse, 77-expansion defined 
this way does not have unique normal forms and hence the usual strategy for computing long 
normal forms (first contract ß redexes and then perform all remaining expansions) would no longer 
be valid. For these reasons we define a type normalised form of 77-expansion as follows 

{x fresh 
M : A-+C, with A-tC in type normal form 
M is not a A-abstraction 
M is not applied 

Note that the existence of type normal forms is assured by lemma 1. There is no need for a type- 
normalised form of the higher order 77-rewrite rule because if a term inhabits the types Vt : K.A 
and Vt : K'.A', then we must have K = K'. Hence our higher order 77-expansion is: 

t fresh 
M:(\/t: K.A) 
M is not a polymorphic A-abstraction 

M -*-*■ {At: K.M[t\) if < 

M is not applied 

Definition 2. Let ß be the rewrite relation consisting of all /3-reductions on types and term. Also, 
let 77 be the rewrite relation consiting of all restricted expansions on types and those expansions 
given in rules 1 and 2. The relation 77 is defined by ommiting the restriction to type normal forms 
in rule 1. Finally define ßfj = ß U 77 and ßr) = ß U 77. 

Results such as the modularity of confluence and strong normalisation are proven first for ßfj and 
then lifted to the more general ßr\ via the following lemma. 

Lemma 3. The reflexive, symmetric and transitive closure of —^ and 2^ are both the 
usual ßr\-equality over terms of Fu. 

Proof. Firstly, all r\ equalities M = Xx : A.Mx that seem to be forbidden by the restrictions of 
—'-^ can be obtained by /^-reduction of Xx : A.Mx. Thus the reflexive, symmetric, transitive 

closure of — is /377-equality. For the second part of the lemma, notice that —-^-expansions 
are examples of —^ -expansions. In addition, if M —""^ Ax : A.Mx, but A is not a type 
normal form, then both of these terms   —^ -reduce to Ax : NF(A).Ma;. 



240 

The major theorems concerning ßrj and ßrj are 

Theorem 4. The rewrite relations ßrj and ßr] are confluent and strongly normalizing to the long 
ß-q-normal forms. The long ßrj-normal form of a term may be calculated by first contracting all 
B-redexes and then performing any remaining type-normalised rj-expansions. 

3    Modularity Results for Fu 

In this section we define algebraic TRSs and show the modularity of confluence and strong nor- 
malisation for the unions of algebraic TRSs with Fu. First some definitions. 

Definition 5. A signature E consists of disjoint sets T of base types and T of function symbols 
together with a function which assigns to every function symbol / G T, a typing of the form 
f . ai _>..._> an ->■ a, where ai,..., an, a £ T and n > 0. We say the arity of / is n. 

Definition 6. An algebraic rewrite rule is an ordered pair (T, U) of algebraic terms such that T is 
not a variable, and every variable of U also appears in T. An algebraic term rewriting system T is 
a finite set {(T;, C/i)}"=1 of algebraic rewrite rules. 

Definition?. Given an algebraic TRS T, the associated algebraic rewrite relation is the least 
binary relation —2L^ on terms such that if (T, U) 6 T, 9 is a substitution and C is a context, 
then C[T9] -^ C[U6] 

Given an algebraic TRS, its union with calculi such as Fu is defined as expected. A term of the 
union of an algebraic TRS and Fu is algebraic if it is either a variable of base type or has the form 
fh...tn, where / € T has arity n, and every t; is an algebraic term. Note that an algebraic term 
is always of base type. The key concept in modular term rewriting is the layer structure, i.e. the 
ability to decompose a term constructed from symbols in the union of two disjoint signatures into 
a term constructed from symbols in only one signature and strictly smaller subterms whose head 
symbol comes from the other signature. We follow [10] in using the following defintions relating 
to layer structure. 

Definition 8. A typing judgement F h M : s is called trunk iff M is of the form /Mi, ...,Mk 

where / is a constant of arity k, otherwise it is called non-trunk. 

Definition 9. An algebraic trunk decomposition of a typing judgement r V- M : s consists of a 
typing judgement A h A : s, where A is an algewbraic term, and a term-valued substitution <j> 
such that M = A<j>, dom(0) = FV{A) and 

- Each free variable in A occurs only once 

- For each x 6 FV(A), the typing judgement F h <f>(x) : s is non-trunk. 

Note that all judgements r \- M : s are either trunk or non-trunk because M is of base- 
sort. Induction shows that all typing judgements r r- M : s have algebraic trunk decompositions 
which are unique upto the renaming of the free variables of A. We therefore write M = A[<fi] for 
an algebraic trunk decomposition of M and refer to A as a trunk of the term M. 

Example 1. If / is a binary function symbol and a is a non-trunk term, then a trunk decomposition 
for the term faa is fxy[a/x, a/y]. If g is a unary function symbol and a is a constant, then a trunk 
decomposition of g((\x ■ s.x)(a)} is gy[{Xx : s.x)(a)/y] 

Definition 10. A reduction M = A[<j>] —^ N is a trunk reduction iff the redex contracted is not 
a subterm of one of the 61 x) 's, otherwise it is a non-trunk reduction. 
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Example 2. Using the terms of example 1, and given a rewrite rule fxx —r^ x, there is a trunk 
reduction faa —r^ a. There is a non-trunk reduction g{{Xx : s.x)(a))        " ga. 

Example 2 show two undesirable properties of reduction. Firstly, the presence of non-left linear 
rewrite rules means that trunk reductions do not induce reductions of the trunk of the redex. For 
instance faa —^ a but there is no reduction fxy ~r^ x. Also /^-reduction may collapse the 
laver structure of a term and hence a non-trunk reduction need not preserve the trunk of the redex, 
eg the trunk of g((\x : s.x){a)) is gy but the trunk of ga is ga. We solve the first problem by 
introducing a special term variable f for each sort and then defining a special substitution j which 
maps every term variable of type s to f. There is also solution for the second problem. 

Lemma 11. Let A<j> be a trunk decomposition for M 

-IfM —21i- N is not a trunk reduction, then there is an algebraic trunk decomposition N - 
A<t>' such that for some x £ FV(A), <f>(x) -^ 4>'(x), while for all other y € FV{A), 

4>(y) = 4>'(y)- 

-IfM —^^ N is a trunk reduction, then there is an algebraic trunk decomposition N = A'<f>' 
such that A] -^^ A'j and for every y 6 FV(A'), there exists an x £ FV{A) such that 

<P'(y) = 0M- 

-IfM —^ N, then there is an algebraic trunk decomposition N = A'<t>' and for every y 6 
FV(A'), there exists an x 6 FV{A) such that either <p{x) —^ Nx and <j>'{y) is a subterm 

ofNx,or4>{x) = <P'{y) 

Proof. The lemma is proved by induction on the term M. 

3.1   Modularity of Confluence 

The proof strategy of [11] is used to show the modularity of confluence for the combination of 
algebraic TRSs with both extensional and non-extensional Fu. In particular, reduction to long 
/37/-normal form in Fu commutes with algebraic reductions. 

Lemma 12. IfT is a confluent algebraic rewriting system (over algebraic terms), then it is con- 
fluent over the terms ofFuUT (mixed terms). 

Proof. This proof of [ 11 ] generalises to Fu and CoC because the only property required of mixed 
terms is that the trunk of a term is preserved by non-trunk, algebraic reductions, as proven in 

lemma 11. 

Lemma 13. Reduction to ß normal form commutes w.r.t. algebraic reduction, i.e. 

01 

T    „ 
I 

-JL^.r 

Proof See lemma 31 in the appendix for the proof. 

These lemmas allow us to derive our first modularity result, namely that of confluence for the 
addition of algebraic TRSs to non-extensional Fu. This is a new result as it shows modularity of 
confluence alone, and not of confluence and strong normalization together as in [7]: 

Corollary 14. The union of non-extensional F'^ with a confluent algebraic TRS is confluent. 
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Proof. By lemma 13, if t =ßur f, then ß(t) —r 0(f)- By lemma 12, T is confluent over mixed 
terms. Hence ß{t) and ß(t') have a common 7"-reduct and hence t and t' have a common reduct. 

Proving that confluence is modular for the addition of algebraic TRSs to extensional Fu re- 
quires us to relate algebraic rewriting to expansive normal forms, extending [17]: 

Lemma 15. Reduction to fj normal form commutes w.r.t. algebraic reduction, i.e. 

T    . 

Vl 

I 

Y 

Proof. The proof is by induction on the structure of terms. The fact that the 77 normal form of a 
term is unique is necessary for the lemma to hold with arbitrary TRSs and not only left-linear ones. 

As a consequence of the previous lemmas, we have the following 

Corollary 16. Reduction to ßrj normal form commutes with algebraic reduction, i.e. 

T   „ 

ßvl 

1 

Y 

Proof By theorem 4, the long /377-normaI form of a term can be computed by first contracting 
all /3-redexes and then performing any remaining (restricted) 77-expansions. Thus the corollary 
follows from lemma 13 and lemma 15. 

Theorem 17. The union of ßrj with a confluent algebraic TRS is confluent. 

Proof. As in corollary 14 using corollary 16. 

Corollary 18. The union of ßrj {where 77 is not restricted to type normal forms) with a confluent 
algebraic TRS T is confluent. 

Proof. If two terms are T U ßrj equivalent, they are T U ßrj equivalent and hence by theorem 17 
there is a T U ßrj completion for these terms. But this is also a T U ßrj completion. 

3.2    Modularity of Strong Normalization 

The relations ßrj and ßr\ were proved confluent and SN in [23] by a modified reducibility ar- 
gument, adapted from traditional reducibility proofs to cope with the presence of expansionary 
77-rewrite rules. Reducibility arguments are designed to cope with the higher order features at the 
level of kinds and type constructors, while the effect of adding algebraic TRSs is only felt at the 
level of base types. Thus these reducibility arguments generalise to prove the modularity of strong 
normalisation for the combination of algebraic TRSs with extensional Fu. 

Lemma 19. IfT is a SN algebraic TRS, then its extension to Fu is also SN. 

Proof. The lemma is proved by induction on the structure of terms with the only interesting case 
being a trunk term M = A<p. By lemma 11, any infinite reduction sequence of M induces either an 
infinite reduction sequence of a (fi(x), or an infinite reduction sequence of Aj. The first possiblity 
is impossible by the induction hypothesis, while the second possibility is also impossible as T is 
SN on algebraic terms and Aj is algebraic. 
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We now prove the main result of this section, namely that the union of a SN algebraic TRS 
and /^-reduction in Fu is SN. The proof follows the modified reduciblity argument of [23] and 
thus we only sketch the general reducibility argument and concentrate instead on the particular 
novelties which arise via the addition of algebraic TRSs. One defines a notion of reducibility 
candidate and reducibility parameter exactly as in [23] and proves that if T is a type and 9 is a 
reducibility parameter, then TO is a reducibility candidate. The only new case is when T is a sort 
s and here the reducibility candidate s9 is defined to be the SN terms of type s. The following pair 
of lemmas are the key to completeing the proof. 

Lemma 20. If the terms t\,... ,tnare SN, then so is fti... tn. 

Proof. That there are no infinite ßfj reduction sequences is proved in [23]. By corollary 16, a 
rewrite ftx...tn = M —^ N induces a sequence of rewrites M0 —^ N0 where M0 and N0 

are the long /3r/-normal forms of M and N. Close inspection of the proof shows that if the initial 
rewrite is of the trunk, then this induced rewrite sequence is of length at least one. Hence there 
can be no infinite reduction sequences containing an infinite number of trunk rewrites. By lemma 
11, all other infinite reduction sequences of ft\... tn induce infinite reduction sequences of one 
of the terms U which is prohibited by assumption. 

Lemma21. IfU is a SN term of sort s< for i = l,---,m, and f has type si ->...->• sn where 
m <n, then fti... tm is reducible. 

Proof. The proof is by induction on the type of the term ft\... tm. If this type is a sort, then 
we must show that ft\... tm is SN under the assumption that each of the U are SN. But this is 
precisely lemma 20. If however the type of fh... tm is of the form s-*T, then we must show 
that if t is a reducible term of type s, then /i,... tmt is reducible. Since the reducible terms of 
type s are exactly the SN ones, this follows from the induction hypothesis. 

Lemma 22. IfT is a SN algebraic TRS, then so are ßfj U T and ß U T. 

Proof. Having defined reducibility candidates as in [23], the proof concludes by showing that if i 
is an arbitrary term, 9 is a reduciblity parameter, the free term variables of t are among Xj : Tj and 
UJ are members of the reducibility candidate TjB, then t[|0|][i*j/a:j] is a member of the reducibility 
candidate TO (note \0\ is the type-valued substitution underlying the reduciblity parameter 9). 

The only new case is when t is of the form fti... tn and one must show (/tx... tn)[|0|][uj/a:j] 
is reducible when each of the terms *i[|ö|][uj/xj] is reducible. But this follows from lemma 21. 
Strong normalisation of ßrjl)Tfollows by taking the identity substitution and identity reducibility 
parameter, while strong normalisation of ß U T follows as this is a subrelation of ßfj U T. 

There is a simple trick to extend strong normalisation of ßfj U T to ßr\ U T. If t is a term, 
let TNF(t) be the type normal form of t, ie the term that is obtained by normalising all the types 
occuring as subterms and in A-abstractions in t. A reduction t —^ t' is called type induced iff 
the redex contracted occurs inside a subterm of t which is actually a type. 

Lemma 23. If there is a rewrite t—^V, then there is a rewrite TNF(t) -jSi'rTNF(i')- If the 
original rewrite is not type induced then the final rewrite sequence is not of zero length. 

Proof. The lemma is proved exactly as in [23] 

Corollary 24. IfT is a SN algebraic TRS, then ßr}l_lT is also SN. 

Proof. There are no infinite sequences of type induced reductions because reduction on types is 
SN. In addition, if t -^^ t' is type induced, then TNF(t) = TNF(i'). Thus any infinite ßr/UT 
reduction sequence is mapped by type normalisation to an infinite ßfjliT reduction sequence. 
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4   Modularity for Algebraic TRS and CoC 

We have proven a series of modularity results concerning the addition of algebraic TRSs to F". 
The next logical step is to apply the same ideas to the much more powerful Calculus of Con- 
structions [12]. Due to lack of space, we cannot introduce it here in detail, but we recall that the 
most important feature is that the distinction between types and terms is blurred and types can 
contain terms embedded within them; let ß and rj refer to the Calclulus of Constructions rules 
in this section. Type dependency introduces infinite reduction sequences which are not present in 
non-dependent type theories. For example, if we define expansions by 

r\-t: Tlx: A.B 
r h t => Ax : A.tx 

and define the term B(x) = (\z : X -> X.X)(x), then there is a typing judgement X : *,x : 
X->Xhi: Tiz : B(x).X and hence an infinite reduction sequence 

X :*,x:X -> Ihi=> Xz : B{x).xz => Xz : B(Xz : B(x).xz).xz => ... 

Notice that this example does not use any higher order types and so can be formulated in simpler 
dependent type theories such as LF. The existence of infinite reduction sequences such as the one 
above forces us to restrict our attention to a type normalised form of restricted ^-expansion which 
we again denote by fj. Further, let ßfj be the rewrite relation containing all /^-reductions and type 
normalised restricted expansions and ßrj be defined as in ßfj but without the type normal form 
requirement. 

In Fu the existence of type normal forms is easy to prove as reduction at the level of types is 
defined independently to reduction at the level of terms. However in a dependent type theory such 
as CoC the existence of long ^ry-normal forms is much harder to prove. One can either use the 
standard theory of //-contractions as in [20] or prove their existence while simultaneously devel- 
oping the theory of expansions as in [22]. The following lemma is proved in [22] - we conjecture 
that ßfj is actually SN but a proof awaits further research. 

Theorem 25. ßfj and ßr\ are confluent and weakly normalising to the long ßr\-normal forms. 

4.1    Modularity of Confluence 

As we have described above, the theory of strong normalization for ^-expansions in Coc is not 
settled. Nevertheless, we can use confluence and weak normalization of ßfj to good avail and get 
the modularity of confluence for the union of algebraic TRSs with CoC. 

Lemma26. Algebraic reduction commutes with ß-normalization in CoC. 

Proof. As in [11]. Again, see lemma 31. 

Corollary 27. If T is a confluent algebraic TRS, then ßUT is also confluent 

Proof. As in corollary 14 and using lemma 26 

Proving that confluence is modular for the union of algebraic TRSs with extensional CoC 
requires another commutation lemma. 

Lemma28. Algebraic reduction commutes with fj-normalisation. 

Proof. Similar to lemma 15. 

Corollary 29. IfT is a confluent algebraic TRS, then ßfjUT and ßr)L)T are also confluent. 

Proof, ßfj U T is proven confluent by a similar argument to theorem 17 using the commutation 
lemmas 26 and 28. The confluence of ßrj U T is proved as in corollary 18. 
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5    Conclusions •■ 

We have proved a variety of modularity results for the combination of algebraic TRSs with higher 
order typed A-calcuIi. In generalising the previous results in the literature, our key innovation is 
the use of ^-expansions instead of the more problematic 77-contractions. 

There are several directions in which we wish to persue this research. Most importantly we 
want a modularity result for strong normalisation for the addition of algebraic TRSs to CoC. As 
we remarked in the paper, this research awaits further basic research into the use of ^-expansions 
in CoC. In particular we conjecture that ßrj is SN and we further conjecture that the combination 
of a SN algebraic TRS with ßrj remains SN. 
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A    Commutation of algebraic reduction with reduction to ß or Coc normal form. 

In this section we simply reformulate lemma 4.1 of [11] in the framework of non extensional Fu 

and Coc. It is to be noticed that there is really nothing new in the proof, as the clever argument 
used in that lemma is tight enough to only involve the first order fragment of the caculi, so that 
extensions to other calculi is straightforward. 

In the following, let A —c~^ B be an algebraic rewrite rule, with s being the sort of the al- 
gebraic term A (and B) and ■£ = x, : si,... ,i„ : sn = FV(A) U FV{B) with the «i's 
being the sorts of the variables used in the algebraic rule. Let also z be a chosen variable of type 
Sl _> ... _>. $n -* s. We also suppose a given typing and kinding context that we omit for read- 

ability. 

We say that a term has the z-algebraic property if all occurrences of the variable z in it are 
fully applied, i.e. at the head of a subterm zPx ■ ■ ■ Pn that possesses the type s with all the JVs 
possessing the type S{. This property is clearly inherited by subterms. 

The central property which is needed is the following (where by ß - n.f. we mean reduction 
to n.f. only w.r.t. the first order rule ß while F" (resp. Coc)-n.f. is w.r.t the full non extensional 
reduction system, which we will also call/«// normal form): 

Proposition 30. IfZ is an Fw (resp. Coc) normal form having the z-algebraic property, then 

X =ß-n.f.{Z[\-t :-?.A/z\)    and   Y = ß-n.f.(Z[\Tt-.-f.B/z]) 

are F" (resp. Coc) normal forms and moreover X     "^^ Y. 

Proof. This is by induction on the size of Z. Since Z is a normal form, it must be of the shape 
Xvi... vk.hTi ...Tm with vi being either a term variable x, : Si with Si a normal form, or a type 
variable t{ : K. 
We have now two cases: 
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h£z then X = ß- n.f.{Z[Xt : lt.A/z]) = \l?.hTA ... T* and Y = ß - n.f.(Z[\l> : 
-f.B/z]) = X^.hT1

B...TB withiy* = ß-n.f.(T$yf : -f.A/z]) and if = ß - 
n.f.(Tl{\~$ : ~f.B/z]).'Q\xtTi is still a full normal form, of size strictly smaller than Z (as at 
least /i is removed), and it still possesses the z-algebraic property as it is a subterm of Z. So, 
by induction hypothesis, T{

A is a full normal form and T/4 —"^ Tf, hence X is a full normal 
form and X —"^ Y. 

h = z In this case, k = m and we have that 

Z[X* : -f.A/z}) = Al7.(Alf : -f.A)^ ...Tm -
JL^ Xf.A^/x,... Tm/xn] 

and 

Z[A"£ : -f.B/z]) = A1T.(A^ : ~f .B)TX ...Tm -^ AlT.B[Ti/:ri.. .Tm/ar„] 

Then, since no /3-reduction can take place at the junction points of the Ti with A, as they 
have as type a base sort, X = ß- n.f.(Z[Xt : -f.A/z]) = X^.A[T^/Xl... T

A/xn] and 
Y = ß- n.f.{Z[\-£ : -f.B/z]) = \-f.B[T{3/xl.. .T

B/xn]. As above, the TZ
A (resp. 

Tf) are smaller normal forms than X (resp. Y), so by induction hypothesis we have that the 
TA and Tf are full normal forms and that T{

A —*^ if. Then, both X and Y" are full nor- 
mal forms and moreover X = \T?.A[Tf/xi... TA/xn] -^ Alt.Apf/x,... TB/xn] 
—^ \Tt.B[T?/xi... Tg/xn]. We are done. 

Using this crucial result it is then quite easy to show the equivalent of Lemma 4.1 of [11]: 

Lemma 31. Let A —c-i- B bean algebraic rewrite rule. IfM —^ N, then fnf(M) ~"^ fnf(N), 
where fnf(M) is the full non-extensional normal form w.r.t. Fu or Coc. 

Proof. If M —c-^ N, then M = C[A<j>] and N = C[B<t>\ with <j> a substitution [Pi /xu..., Pn/xn] 
Then, for a suitable variable z of type sx ->• ... -)■ s„ -> s, we can write terms 

M' = C[zPi... Pn][A^ : -f.A/z]    and   N' = C[zPi... P„][A^ : -f.B/z] 

s.t. M' —^ M and iV' —^ N. Now, C[^Pi... Pn] has the z-algebraic property, and since 
this property is preserved by the non-extensional Fu and Coc reductions, also fnf{C[zPi... Pn]) 
has it. 
Now, we can apply the previous theorem to such a full normal form and obtain that M" = 
ß - n.f,{fnf{C[zPx... Pn])[Xt : -f.A/z]) and N" = ß - n.f.(fnf(C[zI\ ... P„])[A^ : 
■f.B/z]) are full normal forms and that M" —"^ N". Since M' —~- M" (resp. N' ^ AT") 
and M' —^ M (resp. N' —^ N), we have, due to confluence of F" and Coc, that M" = 
fnf(M) and JV" = fnf{N), and we are done. 
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Abstract. Calculi with explicit substitutions have found widespread ac- 
ceptance as a basis for abstract machines for functional languages. In 
this paper we investigate the relations between variants with de Bruijn- 
numbers, with variable names, with reduction based on raw expressions 
and calculi with equational judgements. We show the equivalence be- 
tween these variants, which is crucial in establishing the correspondence 
between the semantics of the calculus and its implementations. 

1     Introduction 

Explicit substitution calculi (or A<r-calculi for short) first appeared in a seminal 
paper by Abadi et al. [1]. The basic idea is that instead of having substitutions 
as a meta-level operation, as in traditional A-calculus, we should make them 
part of the object-level calculus. The advantages of this approach are twofold. 
Firstly, it makes it possible to design much more efficient abstract machines as 
we are allowed to delay substitutions, and secondly it makes it much easier to 
prove them correct since the calculus and its implementation are closer. 

There are several variants of calculi with explicit substitutions. Some of these 
variants are geared towards semantics [15], [3], others are derived with imple- 
mentations in mind [9], [8], [2]. Rather than listing all variants, we explain in 
this paper what we take to be the principal differences between them. This way 
we describe what appears at first sight as various "design choices" for lambda- 
calculi. But we then justify why we have to develop calculi for each possible 
choice if we want to prove semantics and syntax equivalent. Moreover, by using 
the context handling of type theory as a guide, we are able to define a conflu- 
ent calculus with explicit substitutions and names—something that Abadi et al. 
were not able to do. 

1.1     Equations first versus Reductions first 

There are two main approaches when defining typed A-calculi with or without 
explicit substitutions. The first one, in the spirit of Martin Löf's type theory 
[10], defines the calculus with equations-in-context. Reduction is then a derived 

♦Research supported under the EPSRC project no. GR/L28296, x-SLAM: The Explicit 
Substitutions Linear Abstract Machine. 
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notion, obtained by orienting the equations. The second approach considers the 
set of typed terms as a subset of the set of raw terms, and hence reduction is 
defined on raw terms, which are not necessarily well-formed. Equality is now the 
derived notion, namely it is the symmetric and transitive closure of the relation 
generated by the reduction rules. 

The first approach is required when giving semantics to A-calculi because 
only well-formed objects have a meaning. The second approach avoids the need 
to check for well-formedness during reduction, which is incorporated in the first 
approach. As a consequence, this approach is well-suited for implementations, 
but a semantics for terms can only be given by showing the equivalence of this 
presentation to the Martin Löf-style presentation. Whereas this equivalence is 
easy to prove in the case of the simply-typed A-calculus (and hence it is not 
really necessary to differentiate between the two approaches in this case), the 
difference becomes crucial as soon as we add, for example, dependent types [14p. 
This difference becomes crucial again when we consider calculi with explicit 
substitutions. 

This paper presents calculi for both approaches and shows their equivalence 
(see section 3). This is because we want to connect the implementation, which 
is based on the second approach, with the semantics, which is based on the first 
approach. 

1.2 Typed versus untyped calculi 

There are typed and untyped calculi with explicit substitutions, both of which 
are presented already in [1]. The typing rules enforce two different restrictions: 
firstly, they eliminate expressions with misuse of variables, e.g., ones where we try 
to substitute two different terms for the same variable simultaneously. Secondly, 
they ensure that the only well-typed A-terms are the ones of the simply-typed 
A-calculus. 

1.3 Names versus de Bruijn numbers 

Another important kind of choice the designer of a explicit substitution A- 
calculus can make concerns the difference between variable names and de Bruijn 
numbers. De Bruijn numbers were initially considered, as an implementational 
trick for Automath: instead of using variables like x,y,z de Bruijn proposed to 
use natural numbers (that correspond to the binding level of the variable), in such 
a way that a class of a-congruent terms correspond to a single syntactic object. 
Hence two expressions with variable names are a-equivalent if and only if the 
corresponding terms with de Bruijn numbers are syntactically equal. More than 
simply an implementational trick, de Bruijn numbers are helpful when defining 
the semantics of the calculus in question. The point is that a de Bruijn-number 
n corresponds exactly to the n-th projection An x ■ • • x A\-^An. 

1 The equivalence proofs can still be done [6], but some of the required properties of the type 
theories, like confluence and subject reduction, are very hard to establish. 
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There is a trade-off between a version of the calculus with de Bruijn num- 
bers and a version with names. Expressions with variable names are much easier 
to read. The difference becomes apparent even for relatively small terms {e.g., 
compare the expressions \x.(\yz.x)(\z.x) and A.(A.A.3)(A.2)). The main draw- 
back of the version with names is the need to identify terms which only differ in 
the name of bound variables: the semantics of terms can only be defined mod- 
ulo a-equivalence. This complicates the definition of the syntax significantly, as 
the definition of a-equivalence is rather involved (see section 3). On the other 
hand, a-conversion is not needed for the version with de Bruijn numbers, and 
the absence of a-equivalence makes this better suited for implementations. 

So a judicious use of both versions seems the best option: for the presentation 
of results in the meta-theory, the version with names is used, and for implemen- 
tations one uses de Bruijn-terms to handle variable access. Of course a good 
implementation keeps the variable names as extra information during reduction 
so that terms can be printed with names rather than with de Bruijn numbers. 

1.4     Iterated Substitutions 

The fourth choice concerns the need (or not) for composition of substitutions. 
The precursor of the Acr-calculus, Curien's Ap-calculus [5], was designed to 

capture environment machines and had no notion of iterated substitutions. This 
is rather restrictive, as nested substitutions arise in several situations: during 
reduction to normal form rather than weak head normal form, when mod- 
elling sharing in environment machines, when modelling instantiation in theorem 
provers, and as the counterpart of composition in the categorical semantics of A- 
calculi. The Acr-calculus was developed by Abadi et al. [1] with these applications 
in mind. Iterated substitutions seem to us an essential part of any Acr-calculus. 

Summing up 

Summarising, it seems to us that the first "design choices" are not choices at all. 
We must have both the equations-in-context and the reductions-first versions, 
both the typed and untyped versions and both the de Bruijn and the names 
versions, as our goal is the implementation of abstract machines. It also seems 
essential to have composition of substitution for the reasons outlined above. 
Explicit weakening or not is, as far as this paper is concerned, a matter of taste. 

The paper is structured as follows. We define our calculus of explicit sub- 
stitutions and equations in context in the next section. Next we discuss issues 
relating binding operations and a-equivalences in explicit substitutions calculi. 
We prove the necessary syntactical properties (confluence and normalisation) 
of our calculus and then we examine the equivalence between the versions of 
the Acr-calculus with typed and untyped reduction rules. We conclude by briefly 
discussing implementations and applications, which are mostly future work. 
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2     A calculus with equational judgements 

In this section we present (with minor modifications) Martin-Löf s A-calculus 
with explicit substitutions. This calculus is the Aa-calculus by Abadi et al. but 
with names and equations-in-context. Tasistro [15] describes this calculus and 
gives ample motivation about the form of the judgements and their interpreta- 
tion. 2 

2.1     Well-formed expressions 

We start by presenting raw expressions and defining the judgements for well- 
formed expressions and then give a few intuitions about the calculus. 

Definition 1 Raw Expressions. The types of the Xa-calculus with names are 
base types and function types A => B. The raw expressions of the calculus are 
given by the following grammar: 

t::=x  |  \x:A.t  \  tt  \  f*t /::=()   |   (f,t/x)   \  /;/ 

We call expressions of the first kind terms and expressions of the second kind sub- 
stitutions3. Moreover, we write (tn/xn,... ,h/xi) for {■ ■ • (({),t„/xn),tn-i/xn-i}, 
... ,h/xi). 

We identify terms which are identical up to change of bound variables. Be- 
cause not only the A-abstraction but also the explicit substitution / * t binds 
variables, the definition of bound variable is significantly more complex than in 
the A-calculus; for a precise definition of the notion of bound variable and of 
a-equivalence see Section 3. 

Judgements for well-formed expressions require an additional kind of raw 
expressions, namely contexts. Such a context is a list xi: A%,... ,xn: An of 
assignments of a type to a variable. (Contexts are called environments in [1].) 
We call a context well-formed if no variable occurs twice in it. From now on 
we tacitly assume contexts to be well-formed. We denote the empty context, 
which is the special case of n = 0, by [ ]. Note that contexts are lists rather 
than multisets; in other words the order is relevant. This approach generalises 
to dependent type theory and is compatible with categorical semantics. Because 
contexts like x: A,y: B and y: B,x: A are not identified, there is an explicit 
representation of the exchange rule. This avoids problems with the existence of 
normal forms of substitutions; for details see Section 4. 

We have two judgements for the well-formedness of raw expressions, namely 
r h t: A, the usual "t is a term of type A in context F', and T h /: A. The last 
judgement should be interpreted as "/ is an (explicit) substitution for variables 
in A where the free variables of the terms to be substituted are contained in 
F'. Such a substitution roughly corresponds to a list of substitutions in the A- 
calculus. We call any context F arising from T by deleting some assignments 
Xi: A4 a subcontext: in that case we write F C T and call T an extension of F. 
2 We use the term A<r-calculus as a generic terra for any variant of the calculi presented in [1]. 
3 Note in particular the existence of an explicit substitution operator, denoted by *, which 

takes a substitution / and a term t and returns a term f * t. 
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Definition 2 Typing Judgements.   The inference rules for the judgements r h 
t: A and F h /: A are as follows: 

(i)   On terms: 

r,x: Abt: B r\-t: A=>B rh s: A     r h f: A  A\~t:A 
r,x: A,T' h x: A     fh Ax: A.t: A=> B TTlsTB r h f*t: A 

(ii)   On substitutions: 

 ^ (r, r r]   rhf-.A     r\-t-.A   rhf-.r'      r'\-g-.r" 
r\-(): r (1   -   >    r\-{f,t/x)-. A,X-. A r\- f;g-.r" 

The new syntax is best explained by relating the terms with explicit substitu- 
tions to terms with the usual implicit substitution of the simply-typed A-calculus. 
The basic idea is that a substitution r r- f: y: B 4 in the Acr-calculus corre- 
sponds to a list of terms t = (t±,... , t„) such that r \- ti: Bi in the A-calculus. 
Moreover, the operation * models explicit substitution: a term / * t in the Xa- 
calculus corresponds to a term t[i»/a;»] (with the simultaneous substitution of all 
terms ti for Xi in t) in the A-calculus. 

The operations ";" and "(_, _)" model sequential and parallel composition of 
substitutions respectively. If r h f: (x: A) and x:Ah<(:4 and / and g corre- 
spond to the lists t and s respectively, then the substitution /; g corresponds to 
the list (si[t/x],... ,sm[t/x]) and hence models sequential composition of the 
substitutions / and g. The substitution () acts not only as the identity substi- 
tution in the sense that the term () * t corresponds to t but also as weakening: 
If r h t: A and J" is an extension of r then the term i"" h () * t: A corresponds 
to the A-term i~" I- t: A in the extended context F'. 

2.2     Equations and Reductions 

Now we turn to the equations-in-context, which are judgements r \- f — g: A 
and r \- t = s: A. This notion of equality is sometimes called judgemental 
equality. If a judgement J1 h / = g: A can be stated for any contexts F and A 
such that r h /: A implies F h g: A, we will write / = g for J1 I- / = g: A. 
Similarly, if a judgement r\- t = s: A can be stated for any context r and type 
A such that F h t: A implies J1 h s: A, we will write t = s for this judgement. 
In section 5 we will relate this version of the calculus to a version with equations 
derived from reduction defined on raw terms. 

Definition3.   The equations of the Xa-calculus with names are as follows: 

(i) Equations modelling (traditional) A-calculus-reductions: 

(Arc: A.t)s = (Q,s/x) *t Xx: A.tx = t    if x not free in t 

We abbreviate a context  xi: Ai,... ,xn ■ ■ ■ An  to x: A.  Similarly we write t[s/x]  for 
t[si/x\,. . . ,Sn/xn]. 
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(ii) Equations for substitutions (In the third rule, y = x if y is neither a free 
variable nor a substitution variable in f, or y is a variable which is neither 
a free variable of t and f nor a substitution variable in f) 5: 

(f,t/x)*x = t                         (1) (f,t/y)*x = f*x ifxj^y (2) 
f*\x:A.t = \y:A.(f,y/x)*t(3) f * (ts) = (/ * *)(/ * s)   (4) 

();/ = /                       (5) Q*t = t                    (6) 
f;(g,t/x) = (f;g,f*t/x)     (7) f;{g;h) = (/;<?);/i          (8) 
f*(g*t) = (f;g)*t (9) 

r\- J: A = x\: Ai,... ,xn: A„ 
r\- f= (f*Xl/X!,... ,f*x„/Xn): A 

The first two equations are the equations corresponding to /3-and ^-reduction 
in the A-calculus respectively. The equation for the /3-rule has a term with 
an explicit substitution on the right hand side rather than an implicit sub- 
stitution as in the A-calculus. This is the place where explicit substitutions 
are introduced during the reduction of A-terms to normal form in order to 
make the delay of substitution possible. The equations (l)-(4) push substitu- 
tions over the constructors of A-terms. The equation (/, t/x) * x = x is the one 
where the replacement of the term t for x actually takes place. The equations 
/; (g-h) = (f;g);h and f * {g * t) = (f;g) *t express associativity of substi- 
tution. The last equation for substitution expresses the fact that substitution 
is determined by its effect on variables. In particular, this equation causes the 
substitutions (x: A) h (): (x: A) and (x: A) h (xi/xi): (x: A) to be equal. 
This equation can be thought of as an 77-rule for the explicit substitutions. It 
is necessary for the definition of an extensional semantics, e.g., a categorical 
semantics. 

Definition 4 Reduction Relations. The (typed) reduction relations rhW 
t': A (over terms), and T h / ~> /': A (over substitutions) are defined by 
orienting the above equations from left to right. 

Again, if a reduction rule can be stated for any contexts T, A and types A 
such that r h /: A implies r h /': A and T h t: A implies J™ h t': A, we will 
write / ~> /' and t-^t' respectively. 

Before we investigate the meta-theoretical properties of this calculus, we 
examine a-equivalence in detail in the next section. 

3    a-equivalence 

In this section we examine a-equivalence in a Acr-calculus with names, which is 
more complex than in the A-calculus. 

We aim to retain the results for the A-calculus, in particular we want two 
expressions to be a-equivalent iff their corresponding de Bruijn-terms are equal, 

5 the substitution variables in a substitution / are all variables x occurring in an expression 
(g,t/x); for a precise definition see Section 3. 
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and reduction should preserve a-equivalence. The latter causes problems which 
are not apparent in the A-calculus. If we define a-equivalence to be the smallest 
congruence such that Xx: A.t = Xy: A.t[y/x], then /3-reduction does not preserve 
a-equivalence: the two terms (Ax: A.t)s and (Xy: A.t[y/x])s are a-equivalent, 
but the contracta (s/x) * t and (s/y) * t[y/x] are not. 

Hence we have to define a-equivalence in such a way that terms like (s/x) * t 
and (s/y) * t[y/x] are a-equivalent. This means that the substitution operator * 
acts as another binding operator. However, this is a different kind of binding from 
the one A-abstraction provides: the substitution operator binds in any expression 
f * t those variables in t where there is a term contained in / which is to be 
substituted in t. In the example (s/x) * t, the variable x is bound by *. Note 
that the substitution operator * does not indicate the scope nor the name of the 
variables that it binds. 

We define the sets of free variables and substitution variables (which are 
all those variables in a substitution / which are bound in a term / * t or in 
a substitution /; g) by a mutual induction. The interesting cases for the free 
variables are FV(A:r: A.t) = FV(i) \ {a;} and FV(/ * t) = FV(/) U (FV(t) \ SV(/)). 
The substitution variables are defined by SV(()) = 0, SV((f,t/x)) = SV(/) U {x} 
and SV(f;g) = (SV(/) \ FV(#)) U SV(g). A variable occurring in t is called bound 
in the term t if it is not a free variable in t. A variable occurring in / is called 
bound in / if it is neither a free variable nor a substitution variable in /. 

In the A-calculus Curry defines substitution before he defines a-equivalence. 
As the substitution has been made explicit, we only need to define renaming 
(i.e., the replacement of one variable by another) as an operation in the meta- 
theory to state a-equivalence. This definition of renaming requires an auxiliary 
notion to change the name of the substitution variable x in (f,t/x) to y, i.e., 
we define an operation f {y/x}, which satisfies (f,t/x){y/x} = (f,t/y). This 
name-changing substitution is given by () {y/x} = (); (/; g) {y/x} = f; (g {y/x}) 
if x e SV(ff) and f;g{y/x} = f{y/x};g if x ? SV(g); (f,t/x){y/x} = (f,t/y) 
and (/, t/z) {y/x} = (/ {y/x} , t/z) iix^y. 

Definition5.   We define the renaming of the variable x by the variable y in t 
or f by induction over the structure of raw expressions. 

x[y/x] = y z[y/x\ = z if z jt x 
(Ax: A.t)[y/x] = Xx: A.t (Az: A.t)[y/x] = Xw: A.t[w/z][y/x]( z ^ x) 

(tu)[y/x] = (t[y/x])(u[y/x}) (/ * t)[y/x] = / {«,•/„<} [y/x] * t[zi/yi][y/x] 
0\y/x] = () </, t/z)[y/x] = (f[y/x],t[y/x]/z) 

(f;g){y/x] = (/{*/!«})[»/*]; Grfe/wDfo/*] 
In the second rule for X-abstraction, w is equal to y if x $ FV(i) or y $ FV(s), 

otherwise w occurs neither free nor bound in t or s. In the rule for f * t, the 
variable zi is equal to yi ifyi ^FV(s), otherwise it is afresh variable. The same 
condition applies for the case f;g. 

The definition of a-equivalence can now be stated. 

Definition 6.   We define a-equivalence in the Xa-calculus to be the smallest con- 
gruence relation on raw expressions including 

Xx:A.t=aXy:A.t[y/x]   f * t =a f {y/x} * t[y/x]    f;g=af{y/x};g[y/x] 
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The variable y is either x or it is not free in t, f and g nor is it contained in 
SV(/). In the last two rules x is bound by * and ; respectively. 

Next we examine the interaction between a-equivalence which is defined on 
raw expressions, and the judgements. For the typing judgements, f h t: A means 
there exists an a-equivalent term t' such that T h t': A according to the rules 
presented in Section 2. A similar convention is adopted for all other judgements 
and for reduction on raw expressions. The next theorem justifies this convention. 

Theorem 7. Assume that tx and t2 are two a-equivalent Xa-terms, and assume 
that /i and f2 are two a-equivalent substitutions. If T h h: A, then also T h 
t2: A, and similarly if T h /i: A, then also T h f2: A. If T \- h = s: A, then 
also r h t2 = s: A, and if T h /i = g: A, then T I- f2 = g: A. If t and s are a- 
equivalent terms in the X-calculus, then they are a-equivalent in the Xa-calculus, 

too. 

The Acr-calculus with de Bruijn numbers has no variable names and hence also 
no a-equivalence. The intuition is that a-equivalence is in fact only a consequence 
of the existence of names and does not affect the Atr-calculus in any other way. 
More precisely, equality modulo a-equivalence in the calculus with names and 
equality in the A<r-calculus with de Bruijn numbers coincide. The translation 
from the Atr-calculus with names into the Ac-calculus with de Bruijn-numbers 
is defined by an induction over the derivation and replaces each variable i in a 
context r,x: A,T' by the length \r'\ of the context f". For details, see [12]. 

The results of this section imply that Barendregt's variable convention can 
be adopted in the rest of this paper when we prove meta-theoretic properties. 
To be precise, we consider a-equivalent terms to be syntactically equal, and in 
the sequel we assume that all bound variables occur nowhere else in a given 
mathematical context (e.g., neither as free variables as in x(Xx: A.x) nor as 
substitution variables as in (f,t/x) * Xx: A.s). 

4     Confluence and Normalisation 

This section investigates confluence and normalisation for the (equational) 
Acr-calculus. We deduce confluence from the confluence of the simply-typed A- 
calculus, using a modularity argument, first described in [7] and familiar under 
the name "interpretation method". The argument is well-known, here we just 
make an effort to present it in its generic form. 

Definition 8 Modularity Properties. Assume that there is a translation [-] 
of the extended calculus into the confluent one satisfying the following modular- 
ity properties: Firstly, if t ~> s in the extended system, then also [i| ~>* [s]. 
Secondly, for each term t in the extended system we have t—>* [*]]. Thirdly, for 
each reduction t ~~> s in the confluent system there exists a reduction sequence 
t ^->* s in the extended system. 

In our case, this general argument works as follows. The translation [-] 
works by "carrying out the substitutions", i.e., {(U/xi) *t} = [t][|[ti]/xi]. 
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All reduction rules except the /3-rule (Xx: A.t)s ~» (s/x) * t and the 7]-rule 
Xx: A.tx ~~* t model explicit substitution. We call these rules cx-rules, and we 
denote a cr-reduction by t ~+ s. We expect the translation from the Acr-calculus 
to the A-calculus to map the redex and the contractum of a cr-reduction to the 
same A-term. We obtain the modularity properties as a consequence; for details 
see the technical report [12]. 

Note that the modularity properties do not hold for the original version of 
the Acr-calculus with names. In particular, the reduction (t/x,s/y) ~> (s/y,t/x) 
violates the first modularity property. 

Formalising the argument given before to establish confluence of the Acr- 
calculus we obtain the desired confluence. 

Theorem 9 Typed confluence. Let r h t: A be any well-formed Xa-term. If 
t "-»* ti and t -^** £2, then there exists a well-formed Xa-term F h u: A such that 
t\ ~>* u and t<2 ~>* u. Similarly, let T \- f: A be any well-formed substitution. 
If f ~~>* f\ and f ~>* fi, then there exists a well-formed substitution r h g: A 
such that /1 ~>* g and fy ~>* g. 

Normalisation also arises as a consequence of the modularity properties of 
the translation. Because the proof consists of giving an effective normalisation 
strategy, we obtain decidability of equality in the Acr-calculus as a corollary. 

Theorem 10 Normalisation. Every well-formed term t and substitution f of 
the Xa-calculus has a normal form, which can be effectively computed. The nor- 
mal form for a term is a normal X-term, and the normal form for a substitution 
is a lists of normal X-terms. 

Mellies [11] shows that strong normalisation does not hold. As a counterex- 
ample, he gives a A-term which reduces to the identity but which admits a 
reduction sequence where a term t reduces to a term t' which contains t as a 
subterm. But it is possible to show that all reduction strategies that reduce an 
expression first to one in weak head-normal form (i.e., substitution is pushed 
under A-abstraction only if the A-abstraction is the outermost constructor) lead 
only to finite sequences of reductions [13]. 

5     Reduction on Raw Terms 

The main part of this section examines a typed calculus with reduction defined 
on raw terms. At the end we mention briefly untyped calculi. 

Apart from the extensionality rule for substitution fh/^ (f*Xi/xi): x: A, 
all reduction rules do not use typing information. Hence we omit this rule, and 
write ~>r for the notion of reduction on raw terms given by turning all reduction 
rules r h / ~> g: A except r h f ~> (/ * Xi/xi): x: A into rules / ~»r u, 
and all reduction rules r h t ~> s: A into rules t ~^>r s. For this restricted 
fragment, which suffices for the design of abstract machines, we show in this 
section that reduction based on raw terms and the reduction derived from equa- 
tional judgements (see Section 2) coincide. The important properties for this 
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proof are uniqueness of types and subject reduction, which says that well-typed 
expressions reduce to well-typed expressions. The same proofs that work for the 
simply-typed A-calculus with reduction defined on raw expressions work also for 
the system with explicit substititution. 

Now we turn to the confluence proof for the calculus based on reduction 
on raw terms. The proof follows the general outline established in the previous 
section but it does not work directly because the previous proof uses the fact 
that every substitution reduces to a list of terms. This is no longer true if we use 
reduction on raw expressions: substitutions can no longer be reduced to lists of 
terms in general, but only to so-called canonical forms, i.e., lists of terms with 
an additional weakening at the end. In particular, the substitution (t/x); () is a 
normal form if t is a normal form. 

The details and the adaptation of the confluence proof are given in the tech- 
nical report [12]. We only cite the final theorem. 

Theorem 11. Let r h t: A be any well-formed Xa-term. i/f ~>* h and t ~->* t2, 
then there exists a well-formed Xa-termF h u: A such that t\ ~^>*r u andt2 ~>* u. 
Similarly, let T \- f: A be any well-formed substitution. /// ~>* /i and f ~>* f2, 
then there exists a well-formed substitution J1 h g: A such that f\ ~->* g and 

h ~>* 9- 

Remark Curien et al. [4] showed that confluence on open terms fails for the 
untyped Aer-calculus. To obtain confluence they introduce a special syntactic 
construction, which describes the effect of pushing a substitution under a A- 
abstraction. (They consider a version with de Bruijn-numbers, but the idea 
should work as well with a calculus with variables.) 

The result of good design now follows: the judgemental equality presentation 
of our Acr-calculus with names is equivalent to its presentation based on reduction 
on raw terms. 

Theorem 12. The Xa-calculus with judgemental equality is equivalent to the 
Xa-calculus based on reduction on raw terms. Thus T \- t = s: A if and only if 
r h t: A, T h s: A and t «-»* s, where ++* is the equivalence relation generated 
by ~», and similarly for substitutions. 

This confluence proof can also be applied to the untyped Aa-calculus. The 
reason is that the translation of explicit substitutions into list of A-terms still 
can be done. In this way the confluence of the untyped A-calculus can be lifted. 
Obviously, normalisation fails as any counterexample to normalisation in the 
untyped A-calculus can be reproduced in the calculus with explicit substitutions. 

6     Conclusions 

We examined choices for designing calculi with explicit substitutions. We pre- 
sented our own version of a calculus of explicit substitutions, for the simply typed 
A-calculus, for which we showed the equivalence between its version arising from 
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semantical (equations-in-context) considerations and syntactic (reduction on raw 
term) ones. (This equivalence is crucial in establishing the correspondence be- 
tween the semantics of the calculus and its implementations.) We discussed its 
typed and untyped variants and the names and de Bruijn flavours of the calcu- 
lus. Also we proved all the necessary, standard, properties of our calculus. The 

proofs are also standard. 
This calculus contains what we take to be the essential points of our approach 

of using categorical type theory to inform the implementation of abstract ma- 
chines. Ritter's PhD thesis is perhaps a more impressive example of the same 
approach, dealing with the Calculus of Constructions. But the point of the paper 
is to show how "inevitable" this calculus is, given our original goals. This is to 
be contrasted with the multitude of other explicit substitution calculi. Also it 
was necessary to clarify the case of the simply typed-lambda-calculus, to modify 
it appropriately, to deal with the linear lambda-calculus. Linearity introduces 
several new challenges that we are tackling at the moment. 
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On the Dynamics of Sharing Graphs 
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Abstract. We provide a characterization of fan annihilation rules of 
Lamping's optimal algorithm through suitable paths on the initial graphs 
of the evaluation. This allows to recast the computational complexity is- 
sues of the algorithm in terms of statics. The fruitfulness of the path 
characterization is pointed out by proving the relationship between the 
computational complexity of the Krivine machine and Lamping's algo- 
rithm. 

1    Introduction 

At the end of 80'ies, Lamping discovered a complex graph reduction technique [6] 
of A-terms that was optimal in the sense that no redex is ever duplicated by the 
algorithm (cf. [8]). This goal was achieved by an ingenious management of shared 
contexts, using suitable sharing (fan-in) and unsharing (fan-out) nodes in the 

graphs. 
Recently Asperti [1] and, independently, Lawall and Mairson [7] have shown 

that Lamping's management of shared expressions may have an exponential 
cost with respect to the number of ß-reductions. They also conjectured that the 
total number of fan-annihilations in the reduction of a term could provide a 
reasonable lower bound to its "intrinsic complexity". Unfortunately, very little 
is known about the dynamic aspects of Lamping's algorithm, such as the growth 
of Lamping's graphs (called sharing graphs in the following), the ratio between 
application-abstraction nodes and the other nodes, the exact cost of the sharing 
management (which is our utmost goal). 

So far, the only dynamic results concern beta-reductions. In particular, in 
[3, 2] we provided a bijective correspondence between families of /3-reductions 
fired along the evaluation of a term t and suitable paths in the initial graph of t. 
This result has been used for proving the correctness and coincidence of several 
optimal algorithms, proving the fruitfulness of our approach. In this paper, we 
apply the same technique to cover other dynamic aspects of Lamping's algorithm, 
giving a precise and simple description of fan-annihilations as suitable paths in 

the initial term. 
It turns out that the computational complexity of Lamping's abstract algo- 

rithm for AI-terms is a function of fan annihilations and /3-reductions. In other 
words, the computational complexity issues may be recast in terms of statics, 

* This work is partly supported by the ESPRIT CONFER-2 WG-21836 
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hopefully a more easily comprehensible view. Indeed we exploit the static view 
for proving that the complexity of the Krivine machine cannot be better than 
the number of fan annihilations in Lamping's algorithm. This is not striking, but 
just aims at emphasizing the relevance of path characterizations for reasoning 

about (even different) machines. 
Technical developments and proofs are missing in this extended abstract. 

They may be found at ftp: //ftp. cs . unibo. it/pub/laneve/f ullicalp .ps . gz. 

1.1     Lamping's abstract algorithm 

We said that Lamping's algorithm implements optimality through a suitable 
sharing of subexpressions, performed by explicit nodes called fan. Fan nodes, 
together with application and abstraction nodes are the core set of nodes of 
Lamping's algorithm. The rules governing their interaction are illustrated in 

Figure 1 below. 

a       b 
V   J 

cd cd 
(Fan-Lambda) 

cd c 
(Fan-Comm) 

Fig. 1. Interaction rules of Lamping's abstract algorithm 

There is no space here for introducing Lamping's algorithm. The reader can 
find a smooth introduction in [1]. Remark only that there are two rules for eval- 
uating fan-interactions: one annihilating the two fans and the other performing 
duplication. In the abstract algorithm described above we have assumed the pres- 
ence of an oracle solving the problem of which rule to apply (at each time exactly 
one rule may be used). Lamping's implementation of the oracle is described in 
Section 2. 
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1.2 The producer/consumer analogy 

The set of rules in Figure 1 may be split in two groups: annihilations and du- 
plications. Annihilations and duplications are strongly related: in a sense the 
first ones "consume" nodes, the latters "produce" (by duplicating) nodes. This 
relation is evident in those terms of the A/-calculus whose normal form is an 
atomic value (the final graph is a single edge). Let d, f and a be respectively 
the number of duplications, /3-reductions and annihilations along the reduction. 
Let moreover \M\ be the number of applications, abstractions and fan nodes in 
M. Since each duplication adds two new nodes in the graph, each /3-redex or 
fan-annihilation removes two nodes from it, and we have no nodes at the end of 
the computation, the following equation holds: 

|M| + 2d-2/-2a = 0 

So, / + a = d+ |Af |/2. This immediately gives the following property: 

Property 1. The length of the abstract Lamping-evaluation of XI-expressions 
yielding constant values only depends on the families of ß-redexes and of fan- 

annihilations. 

1.3 Dynamics vs. Statics 

By Property 1, the computational complexity of A-terms only depends on ß- 
redexes and fan annihilations. In [3], /3-reductions have been successfully recast 
in terms of suitable paths on syntax trees of A-terms. In this paper we are going to 
apply the same methodology to fan-annihilation rules, thus covering every inter- 
esting dynamic aspect of Lamping's abstract algorithm. For instance, the reader 
may observe that, in the evaluation of (2 A), the rule (FAN-ANN) is used twice. 
Consider one of them and, going backward along the reduction, follow the path 
traversed by the two interacting fans. When you get back to the initial graph, 
you will discover that each annihilation rule corresponds to a path in Figure 2. 
Both paths have a very precise and similar structure: they start and terminate 
at the same fan, and can be uniquely decomposed as £ A ip @ <f> @ if)r A £r, where ( 
is a discriminant (the path from the fan to the variable port of the A), ip is a vir- 
tual redex, followed by a @-cycle <f> (see Definition 9) and ( )r is the "reversing" 
operation. In the present paper we prove that this decomposition is general: 

Property 2. Fan-annihilations are in bijective correspondence with legal paths 
in the initial graph consisting of a discriminant, a virtual redex, an ©-cycle, the 
virtual redex reverted and the discriminant reverted. 

1.4 The comparison with Krivine machine 

Paths offer a fine grain description of the evaluation of A-terms. For this rea- 
son other reduction mechanisms may be reduced to path computations. As a 
consequence the characterization of fan annihilations in terms of paths becomes 
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Fig. 2. Virtual fan-annihilations in (2 A) 

an important step towards the comparison of Lamping's optimal algorithm with 

other reduction techniques. 
For instance, Danos and Regnier have recently proved that each move of 

Krivine machine, a well known environment machine for functional languages, 
actually corresponds to a path computation. A close inspection of this correspon- 
dence, together with Property 2, allows us to draw the following consequence: 

Property 3. Let M be a \I-term reducing to a constant. The length of com- 
putation of M in Lamping's abstract algorithm is at most 0(n), where n is the 

length of the Krivine machine computation. 

We observe that this property also gives more evidence to the thesis that the 
total number of fan-annihilations in the reduction of a term provides a reasonable 
lower bound to its "intrinsic" computational complexity [1, 7]. We finally recall 
that the Krivine machine may have an exponential slow-down with respect to 
Lamping abstract algorithm (for instance the evaluation of n27c, where n and 2 
are Church numbers, I is the identity and c is a constant, is 0(2") in Krivine 
machines and 0(n) in Lamping's algorithm). This is not very surprising, since 
the Krivine machine implements a call-by-name strategy, which is very inefficient 

for evaluating terms. 

2    Pairing fans: Lamping's full algorithm 

In order to solve the problem of correct fan pairing, Lamping added a local level 
structure to the bidimensional graphs presented in the Introduction. Each node 
is decorated with an integer tag which specifies the level at which it lives: two 
fans match if they meet at the same level; they mismatch otherwise. Further- 
more there are two new control nodes which operate on the level structure: the 
croissant, which opens or closes a level, and the bracket, which temporarily closes 

a level or restores a temporarily closed one. 
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More precisely, sharing graphs are unoriented graphs built from the indexed 
nodes in Figure 3. 

I t 
@i Xi 

./ \    / \        ♦ 
V 

application    abstraction fan croissant       bracket 

Fig. 3. Sharing nodes 

The port of a node depicted with an arrow is called its principal port. This is the 
only port where a node can possibly interact with other nodes in a graph reduc- 
tion rule. The other ports of each node are called auxiliary. It is convenient to 
introduce particular names for the auxiliary ports of application and abstraction 
nodes. In particular, the port of the application leading to the context (usual 
depicted at its top) will be called context port, while the other auxiliary port 
will be the argument port. In the case of an abstraction node, the port leading 
to the body of the function (usually depicted at the right of the other auxiliary 
port) will be called body port, while the other auxiliary port is the bound port 
(since it leads to the variable bound by the abstraction). 

Two nodes (nodes of the graph) annihilates if they meet along their prin- 
cipal ports at the same level. In Section 1.1 we have already introduced two 
annihilation rules: (BETA) and (FAN-ANN). The other two annihilation rules are 
described in Figure 4. 

^¥5u 

(1) (2) 

Fig. 4. (1) The rule (BRACKET-ANN); (2) the rule (CROISSANT-ANN) 

A node at a given level can also act upon any other node / at a higher level 
(reached at its principal port), according to the rules in Figure 5 (/ represents 
a generic node). In these rules, the nodes are simply propagated through each 

Fig. 5. Commutation rules 

fa 

f ) j-«-1 

other in such a way that their effect on the level structure is left unchanged. 
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Observe that rules (FAN-COMM), (FAN-APP) and (FAN-LAMBDA) are instances 
of the leftmost rule in Figure 5. 

2.1     The initial encoding of A-terms 

A A-term N with n free variables will be represented by a graph with n + 1 
entries (free edges): n for the free variables (the inputs), and one for the "root" 
of the term (the output). The translation is inductively denned by the rules in 
Figure 6. The translation function is indexed by an integer which can be thought 
of as being the level at which we want the root to be; the translation starts at 
level 0, i.e. [M] = [M]0. I 

[x]n =  An        p.x.M]n  = [MN]n 
M„ [N] n+1 

Fig. 6. Initial translation 

2.2     Consistent paths and the correctness 

The correctness of Lamping's algorithm was proved by means of suitable paths 
called consistent paths [6]. Let us recall the notions in [5]. 

The (finite) contexts are the terms generated by the following grammar: 

o   ::=   D  |   o -a |   * -a |  8 • a \ \\ ■ a |   (a, a) 

We denote by An[a] a context of the form {•■■(a, an),---ai). 

Definition^  (Consistent path) A consistent path in a graph [M] is a path 
such that 

1. every edge of the path is labeled with a context; 
2. consecutive pairs of edges satisfy one of the following constraints: 

An[(b, a)] An[(b, a)] A"[a] 

^T^ n 

An[((b, a), c)} 

An[(b,o-a)] An[(b,*-a)] An[{a,n)] 

A"[{b, a)] 

An[(b, (a, c)>] 

An[(b A-a)] 

A_ 

An[(bJi-a)] 

An[{b, a)] An[(b, a)]An[(b, (t • a)] An[(b, \\ ■ a)]An[(b, a)] 
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Consistent paths are taken equivalent up to contexts. That is, two consistent 
paths having pairwise equal edges are considered equal, even if the contexts 

differ. 

The above definition describes how the nodes of the graphs modify the con- 
texts when traversed. Notice that, the traversal of a node n can be forbidden 
if the external context does not allow the transformation performed by n. As a 
consequence, there are illegal (better, not consistent) paths. 

In order to formalize the statement of correctness we need the preliminary 
notions of residual and ancestor path. To this aim, let [M] —►* G —► G' and p 
be a path in G which starts and terminates at two principal ports 2. The notion 
of residual path is not defined when u is an annihilation rule and u involves the 

endpoints of p. 
By definition of sharing rules, it is "local", namely it involves exactly two 

nodes n and n' in G and the edges starting at these nodes. Therefore, let G\, be 
the subgraph of G where n, n' and the edges starting at n and n' are missing. Then 
G\, is also a subgraph of G'. If p is internal to G\, of G then the residual of p is the 
corresponding path in G\, of G'. Otherwise p = pieiitiiupie'j • • -ek^kupke^Pk+i 
such that pi are internal to the subgraph G\, of G, pxex or e'kpk+i may miss and 

{m,:,p,:} = {n, n'}. There are two cases: 

(u is a commutation rule) Let us define the cases when pxei or pie^u are miss- 
ing: the other cases may be defined in a similar way. In this case the residual 
of p is micip'2 • • •cfcp'i.'uj,mj.c/j.p'j.+1, where p\ are the residuals of pi, c;p-u;m<c- 
are the unique paths traversing the part of G' which is not in G\, such that 
they connect the ports which correspond to the initial port of e; and the 
final port of e\. The node mi is consecutive to the initial node of p'2 through 
the port corresponding to the final port of e[. 

(u is an annihilation rule) Remark that piei and e'kpk+i cannot be missing in 
this case. The residual of p is p\cx ■ ■ -Ckp',.^, where p\ are the residuals of 
Pi and Ci are the edges connecting the ports which correspond to the initial 
port of ei and the final port of e\. 

There is an obvious consequence of the above definition: 

Propositions.   The residual of a path (if any) is unique. 

The unicity of residuals allows to define the "inverse" notion, called ancestor. 
A close inspection of Lamping's graph rewriting rules reveals that they pre- 

serve the consistency of paths: 

Property 6. (The context semantics [5]) Let [M] A G ^* G', <p be a con- 
sistent path in G and u is not an annihilation rule involving the endpoints of <p. 
Then the residual of (p does exist and it is consistent. Similarly for ancestors. 

2 This constraint guarantees the unicity of the ancestor. Indeed, assume p starting at 
the auxiliary port of a node m, m is involved in u and u is not the first edge of p. 
Then the residuals of p and up should be the same. 
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The context semantics has been remarkably used for proving the correctness 
of Lamping's algorithm. In particular, in [5], the authors noticed that consistent 
paths starting and terminating at root nodes (the root and the free variables) are 
invariant with respect to reduction rules. Since these paths suffice for defining 
the Böhm tree of a A-term, it follows that the implementation is correct. 

3    Legality, fan annihilations and cycles 

An alternative definition of consistency, called legality, has been provided in [3] 
(the coincidence of consistent paths and legal paths is in [2]). The notion of le- 
gality has the advantage (with respect to the others) of clarifying the symmetries 
inside paths, which, as we will see, are crucial for defining the path character- 
ization of fan annihilations. Therefore, let us recall briefly the main definitions 
and properties of legal paths. 

A path is straight if it traverses nodes form auxiliary to principal ports (in 
particular, the path cannot "bouncing back", exiting from the same port it 
entered through). A straight path is elementary if one end is connected at a 
port of a @-node or a A-node, it traverses control nodes only and the other end 
is connected at a A-node or a @-node or at a (free or bound) variable node. A 
discriminant is an elementary path starting at a bound variable (a discriminant 
represents an occurrence of the bound variable). 

Definition 7. Let <p be a straight path connecting the principal port of an ap- 
plication @ and an abstraction A. These two nodes are paired (along ip) if and 
only if either ip is a redex, or every other application and abstraction internal to 
ip is paired (along a subpath of <p). 

Definition8. A straight path ip is a well-balanced path (shortly wbp) if and 
only if, for each application @ and abstraction A paired along a subpath of (p, 

the following conditions are satisfied: 

1. ip traverses @ through the context port if and only if it traverses A through 

the body port; 
2. <p traverses @ through the argument port if and only if it traverses A through 

the bound port. 

Next we define by crossed induction two other types of paths: ©-cycles and 

v-cycles. 

Definition 9. 

(©-cycle) Let @ be an application node in [M], u be the argument edge of @ 
and JV be the second argument of @. An @-cycle of @ is a path: 

1. @uipur@, where ip is internal to JV; 
2. or @uipi(ii/)2 • ■ •'0n£nV'n+i'"r@, where V>i are internal to N and £ are 

v-cycles over some free variable in N; 



267 

(v-cycle) Let 7 be a discriminant of A and starting at v. A v-cycle over v is a 
path vy\ipr @(j>@ilj\yr v where </> is a wbp starting at @ and terminating at 

A. 

Definition 10. (Legal paths) A wbp <p is a legal path if and only if, for every 
@-cycle <j> contained in ip, (p can be decomposed in one one of the following 

possible ways: 

(l) <p = C@4>@(0rh, 
(2) ^ = CiC@m<r, 
(3) <p = (1yXip@(j>@(TpY A(7)r(2, where @ and A are paired along ip and 7 is a 

discriminant. 

In case (3), we shall say that ij> and ipT are respectively the call and return paths 

of the @-cycle. 

The above definition essentially says that whenever we have a ©-cycle in <p the 
call and return paths, together with the associated discriminants, must be the 
same. Cases (1) and (2) are used to cover the cases in which the call or return 

paths are not complete. 

Definition 11. A legal path @cf>\ where @ and A are paired along <j> is called a 

virtual redex. 

This definition is justified by the following: 

Theorem 12. [3] Given a \-term M, there is a one-to-one correspondence be- 
tween virtual redexes in [M] and all the possible redex families obtained by eval- 

uating M. 

As proved in [2] consistent paths and legal paths are strongly related: 

Theorem 13.  Every wbp is legal if and only if it is consistent. 

The main result of the paper, namely the path characterization of (FAN-ANN) 

moves is stated in Theorem 14 below. 

Theorem 14. Let [M] —»* G and u be an edge in G connecting the principal 
ports of two fans. The interaction u annihilates the two fans if and only if the 

ancestor of u is a path £Xip@<f>@ipr \£r, where ( is a discriminant, i/> is a virtual 

redex and <f> is a @-cycle. 

It is evident that Property 2 is a smooth statement for Theorem 14. 

4    The comparison with Krivine machine 

Theorem 14 looks particularly appealing since it provides a new insight for rea- 
soning about dynamics of Lamping abstract algorithm. This insight relies on 
path computations, which indeed is an alternative evaluation of A-tems. 
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A meaningful application of Theorem 14, which we are going to show, allows 
to clarify the computational correspondence between two algorithms for evaluat- 
ing A-terms: Krivine machine and Lamping's abstract algorithm. With this we 
mean that it is possible to fix the relationship between the lengths of computa- 
tions in the two algorithms. To this aim we use a result recently put forward by 
Danos and Regnier [4]: each step of the Krivine machine is actually a suitable 
path in the sharing graph. Let us give the key intuition of Danos and Regnier, 
omitting the details of [4]. The intuition follows by the symmetries inside paths 
and two properties about @-cycles and well balanced paths (which we omit to 
recall since they are not relevant in the following discussion). Take for instance 

the consistent path 

where £ is a discriminant starting at a croissant at depth n, ij> is a virtual redex 
between a A at depth p (p < n) and an application @ at depth q. Let also 
A = (• • • (S, an), ■ ■ ■, oi) be the initial context of <p. A may be rewritten as the 
following pair 

on :: ■ ■ • :: &p :: c, o 

where a„ ::•••:: ap :: £ is called the environment and S is called the stack. Now 
we observe that: 

1. By definition of £, its final context will have the shape £, a :: S, where u is 
a suitable context depending on an, • • •, ap. 

2. So we start ip with the context £, a :: S. Since tp is a wbp, by the Rendez- 
vous property in [2], the final context of if; will have the shape £', a :: S, for 

some £'. 
3. Now, by the ©-cycle property in [2], if we start the @-cycle (j> with a context 

£', a :: S, we shall terminate with a context £', a :: S', for some S'. 
4. The reverse path of ip performs the reverse transformation on contexts. So 

at the end of tfir we have the context £, a :: S'. 
5. For a similar reason, the context at the end of £r has to be a„ ::•••:: ap :: 

£,a::S'. 

Observe that, the purpose of steps 4 and 5 is to restore the initial environment 
by using the informations on the top of the stack and the environment £'. This 
steps may be skipped if we were more careful in steps 1 and 2. That is, let us 
save the address d of the croissant at the beginning of £ and the environment 
an ■.:■■■:: ap :: £ on top of the stack S. Namely, the stack at the end of steps 
1 and 2 is (d, an :: • • • :: ap) :: S. Then, at the end of the @-cycle, we have a 
context £', (d, an ::•••:: ap :: £) :: S' and we may safely skip steps 3 and 4, just 
by restoring what is on top of the stack and jumping to d. 

It turns out that the above optimization corresponds to the step of the Kriv- 
ine machine performed when a bound name is met, while the step where the pair 
(d, an ::•••:: ap) is saved on the stack corresponds to the "stacking" move in the 
Krivine machine. The third reduction of the Krivine machine, the /3-move, corre- 
sponds obviously to subpaths which are virtual redexes. Therefore the following 

result: 
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Theorem 15. [4] The optimized path computation is isomorphic to the Krivine 

machine. 

Since Theorem 15 gives a path characterization of steps of Krivine machine, 
we may establish the computational correspondence between Krivine machine 
and Lamping's abstract algorithm. 

Theorem 16. Let M be a XI-term reducing to a constant. The length of com- 
putation of M in Lamping's abstract algorithm is at most 0(n), where n is the 
length of the Krivine machine computation. 

5     Conclusions 

The path characterization of fan annihilations has to be meant as the first step 
towards the goal of determining the total amount of work required by Lamping's 
(abstract) algorithm. We observe that a direct evaluation of this parameter looks 
very problematic, especially since not all sharing-graphs can be obtained by the 
reduction of a A-term, and nothing is known about the structure of these "legal 
graphs". As a consequence, no reasoning by induction on the size or the structure 
of these graphs seem possible. Vice-versa, computing paths in a A-term looks as 
a more realistic and promising research direction, since in this case we can profit 
of all the theoretical machinery of the geometry of interaction and its dynamic 

algebra [2]. 
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Abstract. In this paper we consider an on-line problem related to min- 
imizing the diameter of a dynamic tree T. A new edge / is added, and 
our task is to delete the edge e of the induced cycle so as to minimize 
the diameter of the resulting tree TU {/} \ {e}. Starting with a tree with 
n nodes, we show how each such best swap can be found in worst-case 
0(log2ra) time. The problem was raised by Italiano and Ramaswami at 
ICALP'94 together with a related problem for edge deletions. Italiano 
and Ramaswami solved both problems in 0(n) time per operation. 

1    Introduction 

The diameter of a tree is the length of a longest simple path in the tree and 
such a path is called a diameter path. The unique midpoint on all diameter 
paths is called the center, hence the center is the point whose maximal dis- 
tance to any node is as small as possible. In 1973 Handler [4] showed how one 
in linear time can compute the diameter (and center) of a tree. However, as 
pointed out by Rauch [8], too little work has been done to dynamically main- 
tain information about the diameter. To the best of our knowledge, the only 
dynamic algorithms concerning diameters are those given by Italiano and Ra- 
maswami in ICALP'94 [5], motivated by problems in high-speed wide-area net- 
works (see [6, 7] for details). They consider how to minimize the diameter of 
a dynamic tree T with n nodes and non-negative edge cost. Let / be a new 
edge which introduce a cycle C in the dynamic tree. Then removing an edge e 
from the cycle C is called a swap(ej). The best swap is the swap which mini- 
mizes the diameter of the resulting tree T//e = T U {/} \ {e}. In this paper we 
present an on-line algorithm for maintaining a dynamic tree, such that given a 
new edge, the tree computed is the tree resulting from the best swap. Italiano 
and Ramaswami [5] presented an 0(n) time algorithm for finding a best swap. 
In this paper, we show how to improve the complexity to 0(log2 n) worst-case 
time. 

Italiano and Ramaswami [5] considered the above incremental best swap 
problem as part of a fully dynamic type heuristic for maintaining a small diam- 
eter spanning tree T in a dynamic connected graph G. If an edge e is added to 
G, the above incremental algorithm is called to find a best swap for T with e. If 
an edge e is deleted and it belongs to T, they have a complementing decremen- 
tal algorithm that finds a "best swap" edge from G reconnecting T minimizing 
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the resulting diameter of T. They supported both insertions and deletions in 
time 0(n). Note that the above scheme does not maintain the spanning tree of 
the smallest possible diameter. As mentioned, this paper does not consider the 
decremental problem. 

As an intermediate step to our algorithm we show how to maintain a dynamic 
forest of trees under link and cut where given a node from a tree it returns the 
diameter of the tree the node belongs to. The time-complexity is O(logn) for 
each operation, where n is the number of nodes in the tree(s) involved. We show 
this, since to the best of our knowledge, no such algorithm has been presented 
before. 

All our results are based on topology trees [3, 2] (the terminology of topology 
trees is recalled in Section 2). Our algorithm for maintaining the diameter is 
straightforward, based on a simple observation. Our algorithm for finding a best 
swap is much more involved. One complication is that when we want to merge 
two clusters, we need to consider not only the information associated with the 
clusters being merged, but the information associated with O(logn) sub-clusters 
of each of the two clusters. This implies that a merge takes O(logn) time, and 
each best swap gives rise to O(logn) merges. Thus our 0(log2 n) time algorithm 
for best swap is derived. 

The paper is organized as follows: In section 2 preliminaries are given. In 
section 3 we present an algorithm for maintaining the diameters of trees in a 
dynamic forest. Finally in section 4 we give an algorithm which compute a best 
swap in 0(log2 n) time. 

2     Preliminaries 

In this section we give a short presentation of the topology trees by Frederick- 
son [3, 2]. Our presentation differ slighty from the original topology trees. We 
provide a more simple interface in order to simplify the use of the topology trees. 

Let T be a tree with n nodes. For a connected subtree of T, we call a node 
which has edges out of the subtree a boundary node. A cluster is a connected 
subtree of T with at most two boundary nodes. The set of boundary nodes of a 
cluster C is denoted dC. We say that dC = {o, b} if C has boundary nodes a 
and b even if a and b are identical. Two clusters are said to be neighbours if they 
intersect in exactly one node. A topology tree r of T is a binary tree such that:1 

1. The nodes of r represents clusters of T. 
2. The leaves of r represents the edges of T. 
3. If C is represented by an internal node of r with children representing A and 

B, then C = A U B and A and B are neighbours. 
4. The root of r represents T. 
5. The height of r is O(logn). 

1 In this description all leaf clusters contains only one edge, however the simplification 
presented in this paper holds for any size of the leaf clusters. 
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A tree with a single node has an empty topology tree. 
In order to maintain topology trees for a forest of dynamic trees we make use 

of the following operations: Merge takes two topology tree root nodes a and b and 
creates a new topology tree root with children a and b. By the definition above 
we have that only nodes representing neighbouring clusters may be Merged. 
DeleteRoot is the reverse operation, deleting the root of a topology tree. 

This presentation of the topology trees differ in the interface from those 
in [2, 3]. For the topology trees presented we have made no restriction on the 
degree of the tree for which the topology tree is used and we have reduced the 
number of different ways clusters can be related to each other. Because of the lack 
of space, we defer the description of the modification to the full journal version 
in which we will show that it does not change the complexity of the topology 
tree operations. From Frederickson [2, lemma 1,theorem 2] and Frederickson [3, 
lemma 2.3] we have the following proposition for topology trees. 

Proposition 1. A topology tree r of a tree T with n nodes, can be computed 
using a linear number of Merge operations. Topology trees for a forest of trees 
can be maintained under link and cut, using O(logn) Merges and DeleteRoots 
per link and cut operation. D 

Consequently 

Theorem 2. Let info be some information of clusters in a dynamic forest with 
n nodes so that 

1. For any edge e, info({e}) can be computed in time t±. 
2. For any neighbouring clusters d and C2, info(Ci UC2) can be computed in 

time t2, given info(Ci) and info(C2). 

Then we can maintain info for all trees in a dynamic forest in 0(h + t2\ogn) 
time per link and cut, given the ability to use 0{n * (h + t2)) time and 0{n) 
space for preprocessing. ^ 

3    Dynamic Diameters 

In this section we will present a simple algorithm for maintaining information 
about the size of diameters of trees in a dynamic forest under link and cut. The 
algorithm will be used in the following section. It builds on a generalization of 
former exploitations of properties of diameters and spanning trees (see e.g. [1, 
4, 5]). This generalization, given in the following lemma, makes it possible to 
construct efficient divide and conquer algorithms. 

Let T = (V, E) be a tree with n nodes. With each edge e in E is associated a 
nonnegative number cost(e). For two nodes a,b eV we then define the distance, 
dist(a, b), to be the sum of costs for all edges on the simple path from a to b in the 
tree. For a subset of nodes W C V we define diamT(W) = maxaj6ew dist(a, b), 
hence the diameter in the tree is diamT(V). By the path from a to b, denoted 
a ■ ■ ■ b, we mean both the set of edges and the set of nodes on that path. 
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Lemma3. Let T = (V,E) be a tree, {a,b} C V C V, {c,d} C V" C V, where 
dist(a, b) = diamriV) and dist(c, d) = diamriV") then 
diarriT(V' Li V") — diarriT({a,b,c,d}). 

Proof. Assume for contradiction that diarriT({a,b,c,d}) < diamriV' U V"). 
Then there exists eeV'\ V", f e V" \ V, so dist(e, /) = diamT(V U V") > 
diamrda, b, c, d}). Now either e g {a, b} or / £ {c, d}. Say e 0 {a, 6}. Let P de- 
note the path e • • • /. Let x,y G P be the nodes, such that a- ■ -x C\ P = {x} 
and b---y H P = {y}. Now assume w.l.o.g. that a,x,b,y is arranged such 
that dist(e,x) < dist(e,y). We now have dist(a,x) + dist(x,b) > dist(a,b) > 
dist(e,b) = dist(e,x) + dist(x,b), hence dist(a,x) > dist(e,x) which yields 
dist(a, f) > dist(e, f) contradicting our assumption. We therefore conclude that 
e € {a, b) and symmetrically / € {c, d}, which concludes the proof. D 

We now show how to use lemma 3 with theorem 2. Given two neighbouring 
clusters C\ and Ci of a tree T we can compute diamT{CiUC2) given the following 
information, info(C), for each of the clusters C\ and Ci- 

1. The boundary nodes dC. 
2. Two nodes a,b G C with dist(a,b) = diamriC). 
3. The distances between the nodes above. 

As we will show in the journal version, it is now straightforward to prove: 

Theorem 4. There exists an algorithm that maintains the diameters of trees in 
a dynamic forest in time O(logn) under link and cut, given the ability to use 
0(n) time and space for preprocessing, where n is the number of nodes in the 
tree(s) involved in the operation. D 

4     Best swap 

Given a tree T with n nodes and an edge / = (fci,&2) not in T, we wish to find 
an edge e on the cycle C = &i • • • &2 U {/} that yields the smallest diameter of 
T//e=Tu{/}\{e}. 

Using theorem 4 we can maintain the diameter of a tree dynamically under 
link and cut using O(logn) time per operation. So when an edge / is presented 
we can solve the best swap problem in O(fclogn) where k is the number of edges 
on the cycle C, by simply trying them one by one. But in general this is worse 
than the 0{n) algorithm given by Italiano and Ramaswami [5], however in this 
section we will provide an 0(log  n) time solution to the problem. 

4.1     Outline of the algorithm 

If we dynamically maintain the diameter of the tree, using theorem 4, we already 
know the diameter of the tree T = Tf/f. Therefore we only need to concentrate 
on finding the edge e on the path b\ ■ ■ ■ 62 which minimize the diameter of Tf/e. 
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If we remove an edge e G 61 ■ • • 62 from T, we divide it into two subtrees 
dependent on e: Tfcl (e), T6a(e) where bx G T6l(e) and 62 G T6a(e). We know 
from lemma 3 that when linking Tbl (e) and T62 (e) with /, the diameter of 
the combined tree Tf/e is the maximum of diam(Tbl(e)),diam(Tb2(e)) and the 
longest path in Tf/e which includes /, denoted maxpathf(e). From now on 
we assume that Tbl(e) is rooted in 61 and Tb2(e) is rooted in b2. Then the 
length of the longest path containing the edge / in Tf/e, maxpathf(e), becomes 
height(Tbl(e)) + cost(f) + height(Tb2(e)). Since cost{f) is constant, minimizing 
maxpathf(e) means minimizing height(Tbl(e)) + height(T&2(e)). 

To ease the following discussion, we will introduce notation regarding the 
order of edges and nodes on a path. Let a ■ ■ ■ b be a path, and let e, e' G a ■ ■ ■ b. 
We then have the order relation -< with respect to a ■ ■ ■ b: e -< e' iff dist(a, e) < 
dist(a,e'), similar e<e' iff dist(a,e) < dist(a,e'). 

The following theorem, proven in section 4.2, is the basis of our algorithm. 

Theorem5. Let bx,b2 be nodes in a tree T and let f = (61,62) be an edge not 
in T. Then there exists two nodes vltv2 E by-b2 such that wi ■< v2 and for any 
edge e G 61 • ■ • b2: 

( diam(Tb2(e)), if e G 61 • • • v\ 
diam(Tf/e) = < maxpathf(e), if e G vx ■ ■ -v2 

{ diam(Tbl (e)), if e G v2 ■ ■ ■ b2 

The algorithm consists of the following steps. 

Algorithm 1 
1. Find vi and v2. 
2. Minimize diam(Tb2 (e)) on 61 • • • Vi. 
3. Minimize maxpathf(e) on vi ■ ■ ■ v2. 
4. Minimize diam(Tbl(e)) on v2- ■ -b2. 
5. Compare with diam{T) and select the best swap. 

In section 4.2 we prove theorem 5 and we show how to find vi, v2 and how to 
minimize the diameters of the subtrees. In section 4.3 we show how to minimize 
maxpathf{e), which is the difficult part of the algorithm. 

4.2     What and how to minimize 

In order to prove theorem 5 we now proceed to investigate the behavior of 
diam(Tbl(e)), diam{Tb2(e)) and maxpathf(e) when e G h ■ ■ ■ 62. We know that 
when linking two trees, the diameter of the resulting tree is greater or equal to 
the diameters of both the original trees. Whereas maxpathf(e), is not a sim- 
ple monotone function, it still bears some relationship with diam(Tbl(e)) and 
diam(Tb2(e)) as we will show in the next two lemmas. 

Lemma 6. Let Ti be a tree with root x. Let T2 be another tree and let T be the 
tree rooted in x obtained by linking Tx and T2 with some arbitrary edge e. Then 
height(T) - height(Ti) < diam{T) - diam(Ti) . O 
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Lemma 7.   There exists a node w £ &i ■ • • b2 such that diam(Tbl (e)) 
< maxpathf(e) when e £ h ■ ■ ■ w and diam(Tbl(e)) > maxpathf(e) when e £ 
W ■ ■ ■ b'2 . 

Proof. We prove it by showing that as we move the edge e from b\ to b2, 
diam(Tbl(e)) grows at least as much as maxpathf(e). 

Formally let e', e" £ bi ■ ■ ■ b2 be edges such that e' ^ e". Then 

maxpathf(e") - maxpathf(e') 

= height{Tbl{e")) + height(Tb2(e")) - height(Tbl{e')) - height{Tb2(e')) 

< height{Tbl(e")) - height(Tbl(e')), since height{Th{e")) - height{Tb2{e')) < 0 

< diam(Tbl(e")) - diam(Tbl (e')), by lemma 6. 

Thus, if there exists an edge e = (zi, x2) such that diam(Tbl (e)) > maxpathf(e) 
then diam{Tbl (e)) > maxpathf(e) for all edges e e xr ■ ■ ■ b2. By the same argu- 
ment if there exists an edge e = (2/1,2/2) such that diam(Tbl(e)) < maxpathf(e) 
then diam(Tbl(e)) < maxpathf(e) for all e £ h ■ ■ ■ y2. w E h ■ ■ ■ b2 is then the 
node with greatest distance to foi such that diam(Tbl(e)) < maxpathf(e) for 
e G b\ ■ ■ -w. O 

Proof of theorem 5. By lemma 7 we know that there exists a node w2 such 
that diam(Tbl(e)) > maxpathf(e) when e £ w2---b2 and diam(Tbl(e)) < 
maxpathf{e) when e £ bx ■ ■ ■ w2. By symmetry there exists a node wi so 
diam(Tb2(e)) > maxpathf(e) when e € &i • • • u/i and diam(Tb2(e)) < maxpathf(e) 
when e e w2---b2. From this we see that if w\ < w2 on b\ ■ ■ ■ b2 then we 
can choose v\ = wi,v2 = W2 and maxpathf(e) is greater or equal to both 
diam(Tbl (e)) and diam(Tb2(e)) when e G vi ■ ■ ■ v2. Otherwise, if wi > w2 then 
for all e £ &i • ■ ■ 62 either diam(Tbl(e)) > maxpathf(e) or diam(Tb2(e)) > 
maxpathf(e) since the diameter of both the subtrees are as least as great 
as maxpathf{e) when e £ w2---wi. If this is the case then there exists a 
node v £ &! ■ - - 62 such that diam(Tb2(e)) > diam(Tbl(e)) when e £ 61 ••■i> 
and diam(Tbl(e)) > diam{Tb2(e)) when e £ v---b2. In this case we choose 
vi = v2 = v which concludes the proof. □ 

Propositions.   The nodes v\ and v2 can be computed in 0(log n) time. 

Proof. We have diam(Tb2(e)) = diam(Tf/e) for e £ 61 • • -vi and diam(Tb2(e)) < 
diam(Tf/e) for e £ v\ ■ ■ ■ b2. Thus, using the topology tree structure of section 2, 
vi is found by a simple binary search where each query is based on linking and 
cutting trees in O(logn) time, as described in theorem 4. The node v2 is found 
symmetrically. □ 

Proposition9. We can minimize diam(Tb2(e)) on b-y-vi and diam(Tbl(e)) 
on v2 ■ ■ ■ b2 in 0(log n) time. 

Proof. The edge e 6 61 ■ ■ -v\ which minimizes diam(Tb2{e)) is simply the edge 
with the greatest distance to &i since diam{Tb2{e)) is monotonically decreasing 
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as e moves from &i to V\. Similarly the edge minimizing diam(Tbl (e)) is the edge 
with greatest distance to b2 on v2 ■ ■ • b2. These edges are easily found in 0(log n) 
time, using the topology tree structure described in section 2. D 

In this section we have shown that v\ and v2 can be found in 0(log2 n) time. 
In fact these two nodes can be found in O(logn) time, which we will show in 
the journal version, however because it is rather technical and since it would not 
change the overall complexity we have only given the simple argument above. 

4.3     Minimizing the sum of the heights 

Recall from section 4.1 that if the new edge / is involved in the diameter of 
Tf/e, e G &i ■ • -b2, then diam(Tf/e) = maxpathf(e) = height(Tbl(e)) + cost(f) + 
height(Tb2(e)) and minimizing maxpathf(e) means minimizing height(Tbl (e)) + 
height(Tb2(e)). By theorem 5 we know that we only need to minimize maxpathf(e) 
on the path v\---v2. 

For any node v and any set of edges E', let maxdistE>(v) denote the maxi- 
mum distance from v reachable in E'. For any path P = p\ ■ ■ ■ p2 with px ^ p2 let 
First(P) and Last(P) denote the edges on P incident to pi and p2 respectively. 

Let U be the subtree of T, which consists of all the nodes reachable from vi 
(and v2) without using any edges from &i • ■ • vi U v2 ■ ■ ■ b2. Then U is a cluster of 
T with dU C {vi,v2}. 

For any edge e £ vi • • ■ v2 we have 

height(Tbl(e)) = max{dist(bi,vi) +maxdistu\{ey(v1),maxdistT\U(bi)} 

= mz,-yi{maxdistu\{ey{vi),maxdistT\U{bi) — dist{b\,V\)} + dist{b\,vi) 

= raax{maxdistu\^(vi),hvi} + dist{b\,vi) 

where hVl = maxdistj>\u(bi) — dist(b\,vi) 

height(Tb2(e)) = m&x{maxdistu\^ey(v2),hV2} + dist(b2,v2) 

where hV2 = maxdistx\u(b2) — dist{b2,v2) 

Thus in order to solve the problem, all we need to know about the tree outside 
U, is the constant values hVl and hV2. 

Definition 10. Let C be a cluster with dC = {a, b}, let e G o ■ • • b be an edge 
and let ha and hb be any nonnegative numbers. Then define 

hsumc{e,ha,hb) = max{m,axdistc\{e}(a),ha} + ma.x{maxdistc\{e}(b),hb}. 

With this definition, we have height(Tbl (e))+height(Tb2(e)) = hsumu(e, hvi, hV2) 
for e € vi ■ --V2- 

Lemma 11. Let A, B and C = A U B be clusters with dA = {a, c], dB = {b, c} 
and dC = {a, b}, a ^ b and let ha and hb be any nonnegative numbers. For any 
edge e\ £ a- ■ ■ c and e2 G c• • • b we have: 

hsumc{ei,ha,hb) = hsumA{e\,ha,max.{maxdistB{b),hb} — dist{b,c)) +dist(b,c) 

hsumc{e2,ha,hi,) = /iSMmß(e2,max{maa;distJ4(a), ha} — dist(a, c), hb) + dist(a,c). 
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Proof. 

hsumc{euha,hb) = max{maxdistC\{ei}(a),ha} + max{maxdistC\{ei}(b),hb} 

= ma,x{maxdistA\{eiy(a),ha} + 

ma,x{max{maxdistA\{eiy(c) + dist(b, c),maxdistB{b)}, hb} 

= ma,x{maxdistA\{eiy(a), ha} + 

max{maxdistA\{ei}(c) + dist(b,c),m&x{maxdistB(b),hb}} 

= m&x{maxdistA\{eiy(a),ha} + 

m&x{maxdistA\{eiy(c),max{maxdistB{b),hb} -dist(b,c)} +dist{b,c) 

= hsumA{ei,ha,max{maxdistB(b),hb} - dist(b,c)) + dist(b,c) 

The second equation follows by symmetry. □ 

Definition 12. Let C,a,b,ha and hb be defined as in lemma 11, then define 
BestCutsc(ha,hb) to be the set of edges e £ a • ■ ■ b minimizing hsumc(e, ha, hb). 

This definition of BestCuts satisfies the following two lemmas. 

Lemma 13. Let A,B,C,a,b,c,ha and hb be as in lemma 11, then 

BestCutsc(ha,hb) n A = BestCutsA{ha,max{maxdistB{b),hb} - dist(b,c))\J 

BestCutsc(ha,hb) f\B = BestCutsB(max{maxdistA(a),ha} - dist(a, c), hb). 

Proof. If there exists an edge eA in BestCutsc(ha,hb) n A then eA must mini- 
mize hsumc(eA,ha, hb) on the path o • ■ ■ c and by lemma 11 it must also mini- 
mize hsumA(eA,ha,max{maxdistB(b),hb} - dist(b,c)) on that path. But then 
BestCutsc{ha,hb)r\A =BestCutsA(ha,max{maxdistB(b),hb}-dist{b,c)) as de- 
sired. By symmetry, if there exists an edge eB in BestCutsc{ha,hb) H B then 
BestCutsc(ha,hb)r\B =BestCutsB{mzx{maxdistA(a),ha} -dist(a,c),hb). And 
since a ^ b then at least one of eA and eB must exist, yielding the desired re- 
sult. D 

Lemma 14. Let C,a,b,ha and hb be as in lemma 11, then 

ha > maxdistcia) ^ Last(a •••&)£ BestCutsc(ha, h) 

hb > maxdistc{b) =» First(a ■••&)£ BestCutsc(ha,hb). 

Proof. Assume ha > maxdistc{a). Then hsumc(e,ha,hb) = ha + 
max{maxdistC\{e}(b),hb} for all e  G  a---b. But then any edge minimizing 
maxdistC\{e}(b) will also minimize hsumc(e,ha,hb) and since Last(a---b) is 
such an edge we have Last(a---b) eBestCutsc(ha,hb) which proves the first 
part. The second part follows by symmetry. □ 

With this in hand we may now proceed to provide a procedure bestcutedge 
that finds an edge from BestCutsc(ha,hb). For any cluster with only one edge, 
it should just return that edge. For all other clusters we have the following 
proposition. 
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Proposition 15. Let A,B,C,a,b,c,ha and hb be as in lemma 11. If we define 

(eA,ifb = c,(\dB\ = l) 
u   *    * A      fh    h\     )eB,iia = c,(\dA\ = l) 
bestcutedgec(ha,hb) - < ^ -lihsurnc^haM) < hsumc(eB,ha,hb) 

[ eB, otherwise 

{Last(a ■ ■ ■ c), if ha > maxdistA(a) 
bestcutedgeA(ha,ra&yi{maxdistB(b),hb} - dist(b,c)) 

otherwise 

{First(c- ■■ b), if hb > maxdistB(b) 
bestcutedgeB(max{maxdistA(a), ha} - dist(a, c), hb) 

otherwise 

Then bestcutedgec(/ia)M eBestCutsc(/io,ft6)- 

Proof. By lemma 13 and lemma 14 we have that either eA or eB belongs to 
BestCutsc(ha,hb) and since bestcutedgec(ha,hb) picks the one minimizing 
hsumG{e,ha,hb) we have bestcutedgec(ha,hb) GBestCutsc(ha,hb) as desired. 

D 

Proposition 15 gives us a recursive way of finding a best cut edge for a cluster 
in a topology tree. The idea is now, for each cluster C, dC = {a, 6}, to save 
the latest value found by a call bestcutedgec(ha,hb) together with ha, hb and 
hsumc(ha,hb). Then if the next call bestcutedgec(h'a,h'b) has h'a = ha and h'b = 
hb, we can immediately return the desired values in constant time. Otherwise, 
if h'a > ha and h'b > hb the memorization means that we only need to do a 
logarithmic number of recalculations, as stated in the following lemma: 

Lemma 16. Let C be a node in a topology tree, with dC = {o, b}, let ha,hb and 
h'a > ha be any nonnegative numbers and suppose the last call to bestcutedgec 
was bestcutedgec{ha,hb). Then the number of recalculations needed to compute 
bestcutedgec(h'a,hb) is O(logn). 

Proof. From the definition of bestcutedge it is clear that whenever 
bestcutedgec (h'a, hb) makes two recursive calls, so does bestcutedgec (ha,hb), and 
at least one of these calls is identical to one made by bestcutedgec(h'a,hb). Fur- 
thermore the one new call made by bestcutedgec(h'a,hb) only differ in one pa- 
rameter, so the same argument can be applied recursively. Thus by induction at 
most one recalculation can occur for each level in the topology tree, yielding a 
total of O(log n) recalculations. □ 

Formally, for every cluster C in the topology tree, with dC = {a, b}, info(C) 
should include the following information in order for each of the recalculations 
to take constant time: 

— dist(a, b) 
— maxdistc (a), maxdistc (b) 

And if C has more than one boundary node: 



279 

- ei = First(a■ ■ ■ 6),e-i = Last(a■■■b) 
- maxdistc\{ei}(a),maxdistc\{ei}{b),rnaxdistC\{e2y(a),maxdistc\{e2}(b) 
- e,ha,hb and hsumc{e,ha,hb), where e = bestcutedgec{ha,hb) was the last 

call to bestcutedgec ■ 
Whenever a cluster C with two boundary nodes becomes the root on a topology 
tree, either by a Merge or a DeleteRoot, it should be initialized with a call 
bestcutedgec (0,0). 

Lemma 17.   TTie iime needed to update info during a Merge or a DeleteRoot is 
O(logn). 

Froo/. Let A and B be the clusters we want to merge, let C denote the cluster AU 
B and let dA = {a, c},dB = {b, c} and dC = {a, b}. In order to do the Merge, we 
need to compute bestcutedgec(0,0). By proposition 15 this can be done by com- 
puting bestcutedgeA(0,maxdistB{b)-dist(b,c)) and bestcutedgeB(maxdistA{a)- 
dist(a,c),0). In the structure we already have bestcutedgeA(0,0) and 
bestcutedgeB{0,0), and so by lemma 16 we only need to recalculate bestcutedge 
for O(logn) clusters. Using lemma 11 and proposition 15 each recalculation can 
be done in constant time given the information available, yielding a total of 
O(logn) time for the update. 

When deleting C again, we have to recalculate bestcutedgeA(0,0) and 
bestcutedgeB{0,0). The update made by the Merge operation that created C 
changed at most O(logn) clusters, and using lemma 11 and proposition 15 each 
value can be recalculated in constant time given the information available. Thus 
updating the structure under a DeleteRoot can be done in O(logn) time.        D 

By theorem 2 we now have that we can maintain info for a topology tree r in 
time 0(log2 n) per operation, such that if C is an internal node in r with dC = 
{a,b}, and the last call of bestcutedgec was bestcutedgec(ha,hb) then for any 
h'a > ha and h'b > hb we can find an edge e G a ■ ■ ■ b minimizing hsumc(e, h'a, h'b) 
in time O(logn) according to lemma 16. 

Given a topology tree r and an arbitrary path P = p1 ■ ■ -p2, there may not be 
a cluster in r where px and p2 are boundary nodes. Thus in order for the search 
described above to work for the path P, we will have to change the topology 
tree to create such a cluster. To do this we will introduce the concept of external 
boundary nodes. 

Let r be a topology tree, let C be an internal node of r with dC = {a, b}, 
and let r' be the subtree of r with root C. If we restrict ourselves to looking at 
T' then C has no boundary nodes in the normal sense. But the structure of r' is 
still exactly as if {a, b\ were boundary nodes. Formally we say that: 
- {a, 0} are external boundary nodes of C in r'. 
- {a, 6} are internal boundary nodes of C in r 

And we say that r' is a topology tree with external boundary nodes {a,b}. For- 
mally: For any tree T, and any nodes a,b £ T there obviously exists a tree I" 
with topology tree r', such that T is represented by a node in r' and dT = {a, b}. 
If we let r be the subtree of r' with root T, then r is said to be a topology tree 
with external boundary nodes a and b. In the journal version we will prove the 
following lemma 
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Lemma 18. Given a tree T with topology tree r and two nodes p\ and P2 from 
T. Then we can change r into a topology tree r' with external boundary nodes 
Pi andp2, and back, using O(logn) Merge and DeleteRoot operations. D 

Theorem 19. There exists an algorithm for maintaining a dynamic forest sup- 
porting link, cut and best swap operations in 0(log2 n) time, given the ability to 
use 0(n log n) time and 0(n) space for preprocessing, where n is the number of 
nodes in the tree(s) involved in the operation. 

Proof. By theorem 5 algorithm 1 solves the best swap problem. By proposition 8 
we can perform step 1 in 0(log2 n) time. By proposition 9 we can compute step 2 
and 4 in O(logn) time. To solve step 3 we do the following. We cut at most two 
edges to obtain the subtree U containing the path i>i • • • v%. By lemma 18 we can 
make v\ and v2 external boundary nodes in a topology tree structure for U using 
O(logn) Merges and DeleteRoots. Then we can apply lemma 16 to find the edge 
minimizing maxpathf in O(logn) time. Then we relink the topology tree back 
to its normal form without external boundary nodes. This is done to rebuild the 
structure that we may use it again. This can be done using O(logn) Merges and 
DeleteRoots by lemma 18. Since step 5 amounts to comparing four numbers and 
picking the smallest, this step clearly runs in constant time. Thus all steps in 
the algorithm can be done using O(logn) Merges and DeleteRoots. By lemma 17 
both a Merge and a DeleteRoot takes O(logn) time and using proposition 1 we 
can update the structure in 0(log2 n) time under link and cut. By proposition 1 
and lemma 17 the preprocessing takes O(nlogn) time and 0(n) space. D 
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Abstract. We study budget constrained optimal network upgrading prob- 
lems. We are given an edge weighted graph G = (V, E) where node v £ V 
can be upgraded at a cost of c(v). This upgrade reduces the delay of each 
link emanating from v. The goal is to find a minimum cost set of nodes 
to be upgraded so that the resulting network has a good performance. 
We consider two performance measures, namely, the weight of a mini- 
mum spanning tree and the bottleneck weight of a minimum bottleneck 
spanning tree, and present approximation algorithms. 

1     Introduction, Motivation and Summary of Results 

Several problems arising in areas such as communication networks and VLSI 
design can be expressed in the following general form: Enhance the performance 
of a given network by upgrading a suitable subset of nodes. In communica- 
tion networks, upgrading a node corresponds to installing faster communication 
equipment at that node. Such an upgrade reduces the communication delay along 
each edge emanating from the node. In signal flow networks used in VLSI de- 
sign, upgrading a node corresponds to replacing a circuit module at the node by 
a functionally equivalent module containing suitable drivers. Such an upgrade 
decreases the signal transmission delay along the wires connected to the module. 
There is a cost associated with upgrading a node, and there is often a budget on 
the total upgrading cost. Therefore, it is of interest to study the problem of up- 
grading a network so that the total upgrading cost obeys the budget constraint 
and the resulting network has the best possible performance among all upgrades 
that satisfy the budget constraint. 

5 Supported by the Department of Energy under Contract W-7405-ENG-36. 
' Supported by NSF CAREER grant CCR-9625297. 
11 Supported by DARPA contract N0014-92-J-1799 and NSF CCR 92-12184. 
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The performance of the upgraded network can be quantified in a number 
of ways. In this paper, we consider two such measures, namely, the weight of a 
minimum spanning tree in the upgraded network and the bottleneck cost (i.e., 
the maximum weight of an edge) in a spanning tree of the upgraded network. 
Under either measure, the upgrading problem can be shown to be NP-hard. So, 
the focus of the paper is on the design of efficient approximation algorithms. 

1.1 Background: Bicriteria Problems and Approximation 

The problems considered in this paper involve two optimization objectives, 
namely, the upgrading cost and the performance of the upgraded network. A 
framework for such bicriteria problems has been developed in [7]. A generic bi- 
criteria problem can be specified as a triple (A,B,T) where A and B are two 
objectives and r specifies a class of subgraphs. An instance specifies a budget on 
the objective A and the goal is to find a subgraph in the class F that minimizes 
the objective B for the upgraded network. As an example, the problem of up- 
grading a network so that the modified network has a spanning tree of weight at 
most D while minimizing the node upgrading cost can be expressed as (TOTAL 

WEIGHT, NODE UPGRADING COST, SPANNING TREE). 

Definition 1. A polynomial time algorithm for a bicriteria problem (A, B, J1) is 
said to have perform.ance (a, /?), if it has the following property: For any instance 
of (A, B, F) the algorithm 

1. either produces a solution from the subgraph class F for which the value of 
objective A is at most a times the specified budget and the value of objective 
B is at most ß times the minimum value of a solution from r that satisfies 
the budget constraint, or 

2. correctly provides the information that there is no subgraph from r which 
satisfies the budget constraint on A. 

1.2 Problem Definitions 

The node based upgrading model discussed in this paper can be formally described 
as follows. Let G = (V, E) be a connected undirected graph. For each edge e £ E, 
we are given three integers d0(e) > di(e) > ^(e) > 0. The value d,-(e) represents 
the length or delay of the edge e if exactly i of its endpoints are upgraded. 

Thus, the upgrade of a node v reduces the delay of each edge incident with v. 
The (integral) value c(v) specifies how expensive it is to upgrade the node v. The 
cost of upgrading all vertices in W C V, denoted by c(W), is equal to X^eiv c(v)- 

For a set W C V of vertices, denote by d\y the edge weight function resulting 
from the upgrade of the vertices in W; that is, for an edge (u, v) 6 E 

dw{u, v) := dj(u, v)        where i = \W C\ {u, v}\. 

We denote the total length of a minimum spanning tree (MST) in G with respect 
to the weight function dw by MST(G, dw)- 
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Definition 2. Given an edge and node weighted graph G - (V, E) as above 
and a bound D, the upgrading minimum spanning tree problem, denoted by 
(TOTAL WEIGHT, NODE UPGRADING COST, SPANNING TREE), is to upgrade 
a set W C V of nodes such that MST(G, dw) < D and c(W) is minimized. 

We also consider the node based upgrading problem to obtain a spanning 
tree with the bottleneck cost at most a given value. We denote the bottleneck 
weight (i.e., the maximum weight of an edge) of a minimum bottleneck spanning 

tree of G with respect to the weight function dw by MBOT(G, dw)- 

Definition3. Given an edge and node weighted graph G = (V, E) as above and 
a bound D, the upgrading minimum bottleneck spanning tree problem, denoted 
by (BOTTLENECK WEIGHT, NODE UPGRADING COST, SPANNING TREE), is 
to upgrade a set W C V of nodes such that MBOT (G,dw) < D and c(W) is 

minimized. 

Dual Problems The problem (TOTAL WEIGHT, NODE UPGRADING COST, 

SPANNING TREE) is formulated by specifying a budget on the weight of a tree 
while the upgrading cost is to be minimized. It is also meaningful to consider 
the corresponding dual problem, denoted by (NODE UPGRADING COST, TOTAL 

WEIGHT, SPANNING TREE), where we are given a budget on the upgrading cost 
and the goal is to minimize the weight of a spanning tree in the resulting graph. 

Lemma4. // there exists an approximation algorithm for (TOTAL WEIGHT, 
NODE UPGRADING COST, SPANNING TREE) with a performance of(a,ß), then 

there is an approximation algorithm for (NODE UPGRADING COST, TOTAL 

WEIGHT, SPANNING TREE) with performance of(ß,a). 

Proof. Let A be an {a, /^-approximation algorithm for (TOTAL WEIGHT, NODE 

UPGRADING COST, SPANNING TREE). We will show how to use A to construct 

a (ß, o/)-approximation algorithm for the dual problem. 
An instance of (NODE UPGRADING COST, TOTAL WEIGHT, SPANNING 

TREE) is specified by a graph G = (V, E), the node cost function c, the weight 
functions df, i = 0,1, 2, on the edges and the bound B on the node upgrading 
cost. We denote by OPT the optimum weight of an MST after upgrading a ver- 
tex set of cost at most B. Observe that OPT is an integer such that (n-l)D2 < 
OPT <{n- l)D0 where D2 := mine6£ d2{e) and D0 := maxee£i d0(e). 

We use binary search to find the minimum integer D such that (n — 1)D2 < 
D < (n - I)D0 and algorithm A applied to the instance of (NODE UPGRADING 

COST, BOTTLENECK WEIGHT, SPANNING TREE) given by the weighted graph G 
as above and the bound D on the weight of an MST after the upgrade outputs an 
upgrading set of cost at most aB. It is easy to see that this binary search indeed 
works and terminates with a value D < OPT. The corresponding upgrading set 
W then satisfies MST(G, dw) < ßD < /30PT and c(W) < aB. D 

A result similar to Lemma 4 can be shown for the bottleneck case. In view of 
these results, we express our results for the problems (TOTAL WEIGHT, NODE 

UPGRADING COST, SPANNING TREE) and (BOTTLENECK WEIGHT, NODE UP- 

GRADING COST, SPANNING TREE). 
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1.3     Summary of Results 

For the total weight MST upgrading problem, we derive our approximation re- 
sults under the following assumption: 

Assumption5. There is a polynomial p such that Do — Di < p(n), where 
Do := m&XezE do(e) and D2 :— mmeefi o?2(e) are the maximum and minimum 
edge weight, respectively, and n denotes the number of nodes in the graph. 

Theorem 6. For any fixed e > 0, there is a polynomial time algorithm which, for 
any instance of (TOTAL WEIGHT, NODE UPGRADING COST, SPANNING TREE) 

satisfying Assumption 5, provides a performance of (1, (1 + £)20(logn)). 

For the bottleneck case, we do not need any assumption about the edge weights. 

Theorem 7. There is an approximation algorithm for the (BOTTLENECK WEIGHT, 
NODE UPGRADING COST, SPANNING TREE) problem with performance (1, 2 Inn). 

Our approximation results are complemented by the following hardness results: 

Theorem 8. Unless NP C DTIME(ncl(Ioslogn)), there can be no polynomial time 
approximation algorithm for either (TOTAL WEIGHT, NODE UPGRADING COST, 

SPANNING TREE) or (BOTTLENECK WEIGHT, NODE UPGRADING COST, SPAN- 

NING TREE) with a performance of (f{n), a) for any a < Inn and any polyno- 
mial time computable function f. This result continues to hold with f(n) = 11 
being any polynomial, even if Assumption 5 holds. 

Due to space limitations, the remainder of this paper discusses mainly the al- 
gorithm mentioned in Theorem 6 above. Proofs of other results will appear in a 
complete version of this paper. 

1.4     Related Work 

Some node upgrading problems have been investigated under a simpler model by 
Paik and Sahni [9]. In their model, the delay of an edge is decreased by constant 
factors of 8 or S2, when one or two of its endpoints are upgraded, respectively. 
Clearly, this model is a special case of the model treated in our paper. 

Under their model, Paik and Sahni studied the upgrading problem for several 
performance measures including the maximum delay on an edge and the diameter 
of the network. They presented NP-hardness results for several problems. Their 
focus was on the development of polynomial time algorithms for special classes 
of networks (e.g. trees, series-parallel graphs) rather than on the development of 
approximation algorithms. Our constructions can be modified to show that all 
the problems considered here remain NP-hard even under the Paik-Sahni model. 

Edge-based network upgrading problems have also been considered in the 
literature [1, 4, 5]. There, each edge has a current weight and a minimum weight 
(below which the edge weight cannot be decreased). Upgrading an edge cor- 
responds to decreasing the weight of that particular edge and there is a cost 
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associated with such an upgrade. The goal is to obtain an upgraded network 
with the best performance. In [4] the authors consider the problem of edge- 
based upgrading to obtain the best possible MST subject to a budget constraint 
on the upgrading cost and present a (1 + e, 1 + 1/^-approximation algorithm. 
Generalized versions where there are other constraints (e.g. bound on maximum 
node degree) and the goal is to obtain a good Steiner tree, are considered in [5]. 
Other references that address problems that can be interpreted as edge-based 

improvement problems include [3, 8, 10]. 

2     Upgrading Under Total Weight Constraint 

In this section we develop our approximation algorithm for the (TOTAL WEIGHT, 
NODE UPGRADING COST, SPANNING TREE) problem. Without loss of general- 
ity we assume that for a given instance of (TOTAL WEIGHT, NODE UPGRADING 

COST, SPANNING TREE) the bound D on the weight of the minimum spanning 
tree after the upgrade satisfies D > MST(G,d2), i.e., the weight of an MST 
with respect to c/2, since node upgrading cannot reduce the weight of the min- 
imum spanning tree below this value. Thus, there always exists a subset of the 
nodes which, when upgraded, leads to an MST of weight at most D. We remind 
the reader that our algorithm also uses Assumption 5 (stated in Section 1.3) 

regarding the edge weights in the given instance. 

2.1     Overview of the Algorithm 

Our approximation algorithm can be thought of as a local improvement type 
algorithm. To begin with, we compute an MST in the given graph with edge 
weights given by d0(e). Now, during each iteration, we select a node and a subset 
of its neighbors and upgrade them. The policy used in the selection process is 
that of finding a set which gives us the best ratio improvement, which is defined 
as the ratio of the improvement in the total weight of the spanning tree to 
the total cost spent on upgrading the nodes. Having selected such a set, we 
recompute the MST and repeat our procedure. The procedure is halted when 
the weight of the MST is at most the required threshold D. To find a subset of 
node with the best ratio improvement in each iteration, we use an approximate 
solution to the Two Cost Spanning Tree Problem defined below. 

Definition9 Two Cost Spanning Tree Problem. Given a connected undirected 
graph G = (V,E), two edge weight functions, c and I, and a bound B, find a 
spanning tree T of G such that the total cost c(T) is at most B and the total cost 
l(T) is a minimum among all spanning trees that obey the budget constraint. 

The above problem can be expressed as the bicriteria problem (C-TOTAL 

WEIGHT, /-TOTAL WEIGHT, SPANNING TREE). This problem has been ad- 
dressed by Ravi and Goemans [11] who obtained the following result. 

Theorem 10. For alle > 0, there is a polynomial time approximation algorithm 
for the Two Cost Spanning Tree problem with a performance of (1 + e, 1). 
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2.2     Algorithm and Performance Guarantee 

The steps of our algorithm are shown in Figure 1. This algorithm uses Procedure 
COMPUTE QC whose description appears in Figure 2. 

ALGORITHM UPGRADE MST(ß) 
• Input: A graph G = (V, E), three edge weight functions do > di > d2, a node 
weight function c, and a number D, which is a bound on the weight of an MST in 
the upgraded graph; a "guess value" O for the optimal upgrading cost. 

1. Initialize the set of upgraded nodes: Wo := 0. 
2. Let To := MST(G,dw0)- 
3. Initialize the iteration count: i : = 1. 
4. Repeat the following steps until for the current tree T,-_i and the weight function 

dw,_l we have: div,_, (X;_i) < D: 
(a) Let Ti-i := MST(G, dwi_,) be an MST w.r.t. the weight function du/,.,. 
(b) Call Procedure COMPUTE QC to find a marked claw C with "good" quotient 

cost q(C). Procedure COMPUTE QC is called with the graph G, the current 
MST Ti-i, the current weight function dwi_i and the bound Q. 

(c) If Procedure COMPUTE QC reports failure, then report failure and stop. 
(d) Upgrade the marked vertices M(C) in C: Wi := W,_i U M(C). 
(e) Increment the iteration count: i := i + 1. 

• Output: A spanning tree with weight at most D, such that total cost of upgrading 
the nodes is no more than (l+e)Q-ö(\og n), provided Ü > OPT. Here, OPT denotes 
the optimal upgrading cost to reduce the weight of an MST to be at most D. 

Fig. 1. Approximation algorithm for node upgrading under total weight constraint. 

Before we embark on a proof of Theorem 6, we give the overall idea behind 
the proof. Recall that each basic step of the algorithm consists of finding a node 
and a subset of neighbors to upgrade. 

Definitionll. A graph C — (V, E) is called a claw, if E is of the form E = 
{ (v, w) : w G V \ {v} } for some node v £ V. The node v is said to be the center 
of the claw. A claw with at least two nodes is called a nontrivial claw. 

Let W be a subset of the nodes upgraded so far and let T be an MST with 
respect to dw\ that is, T = MST(G, dw). For a claw C with nodes M(C) C C 
marked, we define its quotient cost q{C) to be 

9(g) ■■=,   m     „Srf V     ,ifM(C)/0, 
dw (T)-Mb 1(1 U C, dWuM(c)) 

and +oo otherwise. In other words, q(C) is the cost of the vertices in M(C) 
divided by the decrease in the weight of the MST when the vertices in M(C) 
are also upgraded and edges in the current tree T can be exchanged for edges in 
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the claw C. Notice that this way the real profit of upgrading the vertices M(C) 
is underestimated, since the weight of edges outside of C might also decrease. 

Our analysis essentially shows that in each iteration there exists a claw of 

quotient cost at most d*°r)-D' where T is the weight of an MST at the beginning 
of the iteration and W are the nodes upgraded so far. We can then use a potential 
function argument to show that this yields a logarithmic performance guarantee. 

PROCEDURE COMPUTE QC(J2) 
• Input: A graph G = (V, E), a spanning tree T and a weight function d on E; 
W C V is the set of upgraded nodes; a "guess" Ü for the optimal upgrading cost. 

1. Let s:= riog1 + £ß]. 
2. For each node v <£ W and all K € {1, (1 + e), (1 + e)2,..., (1 + s)'} do 

(a)  Set up an instance /„,/<• of the Two Cost Spanning Tree Problem as follows: 
- The vertex set of the graph Gv contains all the vertices in G and an 

additional "dummy node" x. 
- There is an edge (v, x) joining v to the dummy node x of length l(v, x) = 

0 and cost c(v, x) = c(v) thus modeling the upgrading cost of v. 
- For each edge (v,w) £ E, Gv contains two parallel edges h and hup. 

The edge h models the situation where w is not upgraded: 

.... ( d2(v,w)  if we W 
(/!):=0 *^:- i J,(v,w)  ifw$W 31 

Similarly, hnp models an upgrade of w: 
,i\     fo     if we w      ...   .     , , c^*)~\M,n\ ;ri„dw        l(h»P):=d2(v,w >)  if w i W 

- For each edge (u, w) £ T, there is one edge (u, w) £ E which has length 
l(u, w) = d(u, w) and cost c(u, w) = 0. 

- The bound B on the c-cost of the tree is set to K. 
(b) Using the algorithm mentioned in Theorem 10, find a tree of c-cost at most 

(1 -|_ e)/f and /-cost no more than that of a minimum budget K bounded 
spanning tree (if one exists). Let TV,K be the tree produced by the algorithm. 

3. If the algorithm fails for all instances /„,/<• then report failure and stop. 
4. Among  all   the   trees  TV,K  find   a  tree   Tv>,K>   which   minimizes   the  ratio 

c(Tv.,K')/{d(T)-l(Tv.,K.)). 
5. Construct a marked claw C from T„« ,K> as follows: 

- The center of C is v* and v* is marked. 
- The edge (v*,w) is in the claw C if T„>,K' contains an edge between v* and 

w. The node w is marked if and only if the edge in Tv*,K' between v" and 
w has c-cost greater than zero. 

• Output: A marked claw C (with its center also marked) with quotient cost q(C) 
satisfying q(C) < 2(1 + ef d(°^g and cost c(M(C)) < (1 + e)Q. 

Fig. 2. Algorithm for computing a good claw. 
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2.3     Bounded Claw Decompositions 

Definition 12. Let G = (V, E) be a graph and W C V a subset of marked 
vertices. Let K > 1 be an integer constant. A K-bounded claw decomposition of 
G with respect to W is a collection Ci,...,Cr of nontrivial claws, which are all 
subgraphs of G, with the following properties: 

1- U=i V(d) = V and \Ji=1E(d) = E. 
2. No node from W appears in more than K claws. 
3. The claws are edge-disjoint. 
4. If a claw C,- contains nodes from W, then its center belongs also to W. 

Lemma 13. Let F be a forest in G = (V, E) and let W C V be a set of marked 
nodes. Then there is a 2-bounded claw decomposition of F with respect to W.    D 

Lemma 14. Let T := 7;_i be an MST at the beginning of iteration i with W := 
Wi-i being the nodes upgraded so far. Let U C V be a set of nodes. Let T" = 
MST(G, d-wuu) be a minimum spanning tree after the additional upgrade of the 
vertices in U. Then, there is a bisection ip : T —>■ T' with the following properties: 

1. For all edges e 6 T f~l T" we have ip(e) = e, 2. dwuu{<p{e)) < dw(e) for all 
e G T, 3. the "swaps" e i-> <p(e) transform T into T", and 4- ^2e£T(dw(e) — 

dwuu(<fi(e))) = dw{T) - dwuu{T'). D 

Lemma 15. Let T :— T{-\ be an MST at the beginning of iteration i, i.e., 
T = MST(G,dw), where W := Ws_i is the upgrading set constructed so far. 
Then there is a marked claw C (where its center v is also marked and v £ W) 
ivith quotient cost q(C) satisfying 

2 OPT 
q(C) < and c(M(C)) < OPT. 

dw\JL) - JL> 

Proof. Let T = MST(G, C/IVUOPT) be an MST after the additional upgrade of 
the vertices in OPT. Clearly, C?IVUOPT(7

1
') < D. Apply Lemma 13 to T' with the 

vertices in Z :— OPT \ W marked. The lemma shows that there is a 2-bounded 
claw decomposition of T" with respect to Z. Let the claws be C\,..., Cr. In each 
claw Cj, the corresponding nodes M{Cj) := Cj ("1 Z from Z are marked. Since 
the decomposition is 2-bounded with respect to Z, it follows that 

r 

]Tc(M(Q))< 2-OPT. (L) 

i=i 

Moreover, the cost c{M(Cj)) of the marked nodes in each single claw Cj does 
not exceed OPT, since we have marked only nodes from Z. By Lemma L4, there 
exists a bijection ip:T —)• T" such that 

^2(dw(e)-dwuOPT{<p(e))j = dw(T) - dWuoPT(T') > dw{T) - D.      (2) 
eer 
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For each of the claws Cj with M(Cj) ^ 0 in the 2-bounded decomposition of T" 
its quotient cost q(Cj) satisfies 

'M < v üT^f—mrv (3) 

since we can exchange the edges ip(e) (e G Cj) for the corresponding edges e in 
the current tree T after the upgrade and thus decrease the weight of the tree by 

at least E^^c,(dw{e) - dWu0PT(<p(e)))- 
Let C be a claw among all the claws Cj with minimum q(C). Then, 

9(C)- X)(dw(e)-<W>pT(p(e))) <c(M(Cj))     forj = l,...,r.       (4) 

Notice that the above equation holds, regardless of whether M(Cj) is empty or 
not. Summing the inequalities in (4) over j = 1,..., r, and using Equations (1) 
and (2), it can be seen that C is a claw with the desired properties. D 

2.4     Finding a good claw in each iteration 

Lemma 15 implies the existence of a marked claw with the required properties. 
We will now deal with the problem of finding such a claw. 

Lemma 16. Suppose that the bound Q given to Algorithm UPGRADE MST sat- 
isfies Q > OPT. Then, for each stage i of the algorithm, it chooses a marked 
claw C such that 

OPT 
g(C0<2(l+£)2

dty(r)_Z) and c(M(C')) < (1 + e)Q, 

where T := TJ_i is an MST at the beginning of iteration i and W := Wi-± is 
the set of nodes upgraded so far. 

Proof. By Lemma 15, there is a marked claw C with quotient cost q(C) at most 
9_   OPT 
'j—?W—7T- Let v be the center of this claw. By Lemma 15, v is marked. Let 
dw(J )-U 

c(C) := c[M(C)) be the cost of the marked nodes in C and L := MST(T U 
C, djyuM(c)) De the weight of the MST in T U C resulting from the upgrade of 
the marked vertices in C. Then, by definition of the quotient cost q(C) we have 

"c>=j^h i 2d^5- (5) 

Consider the iteration of PROCEDURE COMPUTE QC when it processes the 
instance Ivj< of Two Cost Spanning Tree Problem with graph Gv and c(C) < 
A' < (1 + e) • c(C). The tree MST(T U C, dwuM(C)) induces a spanning tree in 
Gv of total c-cost at most c(C) (which is at most K) and of total /-length no 
more than L. Thus, the algorithm from Theorem 10 will find a tree TV<K 

sucri 

that its total c-cost C(TVJK) is bounded from above by (1 + e)K < (1 + e)2c(C) 
and of total /-length 1(TV>K) 

no more than L. 
By construction, the marked claw C" computed by PROCEDURE COMPUTE 

QC from TVIK has quotient cost at most C(TVIK)/(dw(T) — HTVJK))I which is at 
most (1 + ej2c(C)/{dw(T) - L). The lemma now follows from (5). D 
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2.5 Guessing an Upper Bound on the Improvement Cost 

We run our Algorithm UPGRADE MST depicted in Figure 1 for all values of 

n e {1, (1 + e), (1 + e)2, ■ • -, (1 + £)'}, where t := [log1+£ c{V)]. 

We then choose the best solution among all solutions produced. Our analysis 
shows that when OPT < Ü < (1 + e) ■ OPT, the algorithm will indeed produce a 
solution. In the sequel, we estimate the quality of this solution. Assume that the 
algorithm uses / + 1 iterations and denote by Ci,..., Cj,CJ+1 the claws chosen 
in Step 4b of the algorithm. Let c,- := c(M(d)) denote the cost of the vertices 
upgraded in iteration i. Then, by construction 

d< (l+e)ß< (l + e)2OPT     fori=l,...,/ + l. (6) 

2.6 Potential Function Argument 

We are now ready to complete the proof of the performance stated in Theorem 6. 
Let MSTi denote the weight of the MST at the end of iteration i, i.e., MST,- := 
dWi (Ti). Define <f>,: := MST; - D. Since we have assumed that the algorithm uses 
/ + 1 iterations, we have fc > 1 for i = 0,..., / and <j>f+1 < 0. As before, let 
d := c(M(d)) denote the cost of the vertices upgraded in iteration i. Then 

Lemma 16   / Cj + i      \ 
&+1 = & - (MST,-- MST,-+1)       <       i1 ~ ^TOPT) **> (7) 

where a := 2(1 + e)2. We now use an analysis technique due to Leighton and 
Rao [6]. The recurrence (7) and the estimate ln(l - T) <-T give us 

£c,-<a.OPT-ln^. (8) 
=1 h 

Notice that the total cost of the nodes chosen by the algorithm is exactly the 

sum Y^{=i ci- By (8) and (6) we have 

£ a = cf+1 +J2C'<(1 + £)2°PT + 2(x + £)2°PT •ln ^-        (9) 

! = 1 

We will now show how to bound ln ^. Notice that <f>} = MST/ - D > 1, since 
the algorithm uses /+1 iterations and does not stop after the /th iteration. We 
have. 0o = MST0-£> < (n-l){D0-D2), where D0 and D2 denote the maximum 
and the minimum edge weight in the graph. It now follows from Assumption 5 
that ln^o e ö(log(np(n))) C O(logn). Using this result in (9) yields 

J2 Ci < (i + ef ■ OPT + 2(1 + efO{\og n) ■ OPT G (1 + e)2ö(\ogn) ■ OPT. G 
!=1 
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3     Concluding Remarks 

Our algorithms produced solutions in which the budget constraints were strictly 
satisfied. This is unlike many bicriteria network design problems where it is 
necessary to violate the budget constraint to obtain a solution that is near- 
optimal with respect to the objective function [7]. 

An open problem that arises immediately from our work is whether there is 
a good approximation algorithm for the (TOTAL WEIGHT, NODE UPGRADING 

COST, SPANNING TREE) problem even when Assumption 5 is not satisfied. It 
is also of interest to investigate whether our results for spanning trees can be 
extended to Steiner trees. Other open problems under the node-based upgrading 
model can be formulated using different performance measures for the upgraded 
network. Some measures which are of interest in this context include bottleneck 
weight, diameter and lengths of paths between specified pairs of vertices. 
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Abstract. The formalism of monadic second-order (MS) logic has been 
very successful in unifying a large number of algorithms for graphs of 
bounded treewidth. We extend the elegant framework of MS logic from 
static problems to dynamic problems, in which queries about MS proper- 
ties of a graph of bounded treewidth are interspersed with updates of ver- 
tex and edge labels. This allows us to unify and occasionally strengthen 
a number of scattered previous results obtained in an ad-hoc manner and 
to enable solutions to a wide range of additional problems to be derived 
automatically. 
As an auxiliary result of independent interest, we dynamize a data struc- 
ture of Chazelle and Alon and Schieber for answering queries about sums 
of labels along paths in a tree with edges labeled by elements of a semi- 
group. 

1     Introduction 

Many graph properties can be expressed via formulas in a suitable logic. E.g., 
for given vertices s and t in a directed graph, the fact that the subgraph spanned 
by a set A of edges contains a path from s to t can be expressed by saying that 
every vertex set U containing s, but not t, can be left via an edge in A, i.e., by 
the formula 

Joins(A, s, t) = VC/((s eUAt<£U)=> 

3e3u3v(tail(u, e) A head(v, e) Ae E A Au eU Av £ [/)), 

where e ranges over all edges, u and v range over all vertices, U ranges over all 
sets of vertices, and tail(u,e) and head(v,e) express that u and v are the tail 
and the head of e, respectively. If we want the graph spanned by A to be just a 
single (simple) path from s to t, we can additionally require A to be minimal, 
i.e., Path(A,s,t) = Joins(A,s,t) A Vß((ß C A A Joins{B, s,t)) => B = A), 
where B ranges over all sets of edges. 

Expressing computational problems such as "Is there a path from s to t?" 
in a formal framework holds out the prospect of deriving algorithms to solve 
such problems in an automatic way. Indeed, every graph property expressible in 
first-order logic can be decided in polynomial time. The catch is that first-order 
logic is too weak to express most graph properties of interest (see, e.g., (Cour- 
celle, 1990a)). It allows variables ranging over vertices and edges, existential and 



293 

universal quantification over such variables, the usual logic connectives A, V, 
and -i, and predicates such as tail and head for accessing the basic connectiv- 
ity structure of the graph under consideration. Very frequently, however, one is 
led, as in the examples above, to introduce variables ranging not over individual 
vertices or edges, but over sets of vertices or edges. Extending first-order logic 
with this possibility, we arrive at monadic second-order (MS) logic. As noted by 
many researchers, MS logic is a powerful language that allows the expression 
of a wide range of graph properties. Indeed, the collection of decision problems 
on graphs that can defined by MS formulas is so large that it includes many 
NP-complete problems, leaving little hope of obtaining efficient algorithms for 
the general case. Rather than reverting to a less expressive logic, one can try to 
evade this problem by restricting the class of input graphs. Arnborg et al. (1991) 
argue that a particularly felicitous combination is to consider problems definable 
by an MS formula on graphs of bounded treewidth, i.e., on graphs drawn from 
a class with a uniform upper bound on the treewidth of all graphs in the class. 
Loosely speaking, the treewidth of a graph is a measure of how far the graph 
deviates from being a tree. The details of the definition will be provided in the 
next section. 

Consider a single MS formula # with / free set variables (such as "vl" in 
the formula "Path(A,s,ty) and without free simple variables. # gives rise to 
several computational graph problems: First, there is the decision problem of 
determining whether there are sets A\,.. .,Ai of vertices or edges that satisfy <Z> 
if substituted for its free variables (e.g., "Is there a path from s to t?"). For this 
first type of problem it is not necessary to allow $ to have free variables—we 
might as well quantify them existentially; still, we keep the present formulation 
for the sake of uniformity. Second, the counting problem of detecting the num- 
ber of such tuples (e.g., "How many (simple) paths are there from s to tV). 
Third, if the input additionally associates each vertex or edge a with an /-tuple 
(/i(a),..., fi(a)) of real numbers, whose ith element is interpreted as the cost 
of including a in Ai, for i = 1,..., /, the optimization problem of computing the 
minimal cost of a tuple (A\,.. .,Ai) that satisfies <P (e.g., "What is the distance 
from s to tV). Fourth, in the same setting, the construction problem, (this is 
not a standard term) of actually computing a tuple (A\,..., Ai) satisfying <$> 
and of minimal cost (e.g., "Which path from s to t is shortest?"). And fifth, if 
fi{a) is reinterpreted as the probability of a stepping into Ai, for i = 1,...,/, 
with each vertex or edge entering each set independently of all other such ran- 
dom decisions, the reliability problem of computing the probability of obtaining 
a tuple (Ai, ...,Ai) that satisfies # (e.g., "What is the probability of having an 
operational path from s to <?"). 

Results by Courcelle (1990b) and Bodlaender (1996a) imply that every deci- 
sion problem defined by an MS property can be solved in linear time on graphs 
of bounded treewidth. Generalizations of these and related earlier results to 
counting, optimization, construction, and reliability problems were investigated 
by a number of authors (Arnborg et al., 1991; Bern et al., 1987; Bodlaender, 
1993a; Borie et al., 1992; Courcelle and Mosbah, 1993; Stearns and Hunt, 1996). 
One of the simplest and most general extensions was suggested by Courcelle 
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and Mosbah (1993), and we will essentially use their framework. In our formu- 
lation, a generic algorithm is instantiated by choosing a particular commuta- 
tive semiring % = (R, ®, ®, Ö, 1), i.e., an algebraic structure consisting of a set 
R, equipped with two associative and commutative operations © and <g> with 
neutral elements Ö and 1, respectively, such that ® distributes over © (i.e., 

a®(b®c) = {a®b)®(a®c) foralla,6,ce R) anda®0 = 0 for all a G R. Given 
an input graph G with associated functions fi,...,fi (which will be called cost 
functions, independently of their interpretation), the generic algorithm computes 
the value of G under <£ and U, defined as the quantity 

\G\*,n= 0 (g)(g) /."(a). 
G|=#[Ai A,] « = 1 aEAi 

i.e., the "sum", over all tuples (A1:...,Ai) that satisfy #, of the "products", 
over the sets A{, of the appropriate costs. With suitably chosen commutative 
semirings, this can be shown to solve the problems mentioned above as well as a 
number of additional problems. For example, with 11 = ({0,1,2,...}, +, •, 0,1), 
we obtain a solution to the counting problem. 

The problem of computing \G\$,n for fixed $ and U will be called static, 
meaning that the entire input as well as the question to be answered are known 
from the outset. The focus of this paper is to extend the elegant framework 
of MS logic to a dynamic setting in which, following a certain initialization or 
preprocessing based on the input graph, a sequence of attribute updates and 
queries must be executed online, i.e., each query must be answered before the 
next operation to be executed is revealed. An (attribute) update changes a single 
attribute of a vertex or edge without affecting the structure of the graph. One 
might also consider structural updates that insert or delete vertices or edges. 
The data structures and algorithms described here can easily be extended to 
allow deletions, but supporting insertions of vertices and edges appears to be 
considerably more difficult; see (Bodlaender, 1993b) for results in this direction 
in the case of graphs of treewidth 2. We allow boolean attributes, which take 
values in {false, true}, indicate (non)membership in "user-defined" sets, and 
may be tested in <P through corresponding predicates, and ring attributes, which 
take values in R, together define the cost functions, and cannot be referred to 
in #. A query temporarily (for the duration of the query) carries out a constant 
number of updates of boolean and/or ring attributes, thereby changing G into 
G", and then computes and returns |G"|#,7j, after which all attributes revert to 
their values before the query. This view of a query operation may be unfamiliar, 
but it is general and permits a convenient statement of our results. 

Our running example centered around the the MS formula Path(A,s,t) will 
be used to clarify some of the concepts introduced above. We have already seen 
that Path(A,s,t) expresses that the edges in A span a (simple) path from s to 
t, and if we give each edge e a ring attribute /(e) equal to its length, the length 

of the path spanned by A is YuetA /(e)> which can be minimized by choosing 
U = (M U {oo}, min, +, oo, 0). What is lacking is that we would like to support 
queries asking for the distance from s to t (call this an (s,i)-query), where s 
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and t are variable. We can achieve this effect within the general framework by 
introducing two "user-defined" sets, 5 and T, both initialized to 0, letting an 
(s, i)-query temporarily change two boolean vertex attributes to make S = {s} 
and T = {i}, and using instead of the original formula the formula 

3s3t(Origin(s) A Destination(t) A Path(A,s,t)), 

where Origin and Destination are predicate symbols corresponding to the sets 
S and T. It should be clear that other traditional types of queries can be for- 
mulated in a similar way. We show that for all r > 1, the dynamic version of 
every problem defined by an MS formula $ and a commutative semiring H whose 
operations can be carried out in constant time (call such a semiring efficient) 
can be solved on n-vertex graphs of bounded treewidth with initialization time 
0(n), (attribute-)update time 0(rn1/r), and query time 0(T + a(n)), where a 
is a slowly-growing "inverse Ackermann" function. Alternatively, for arbitrary 
integer k > 1, with the same update time, but initialization time 0(nlk(n)) 
and query time 0(T + k), where h, for every integer k > 1, is another slowly- 
growing function. Both a and the functions Ik are defined in the next section. In 
the special case of the dynamic distance and shortest-path problems considered 
above, this result was obtained previously by Chaudhuri and Zaroliagis (1995) 
for T = 0(1) as well as with a worse tradeoff between initialization time, update 
time, and query time. In more detail, Chaudhuri and Zaroliagis indicate the fol- 
lowing bounds, for all integers r > 1: Initialization time 0(crn), update time 

0(c2rn2i~r), and query time 0(c2ra(n)), where c = 0(3r). In order to compare 
these bounds with ours, observe, e.g., that in order to achieve an update time 

of 0(2vlog") with the bounds of Chaudhuri and Zaroliagis, it is necessary to 
choose r larger than |loglogn, which yields a query time of (logn)ß(loslogn), 

whereas our bounds associate an update time of 0(2 vloS") with a query time 
of 0(\/iogn). Our bounds are never worse than those of Chaudhuri and Zaro- 
liagis, and strictly better for all nonconstant r and r. One end of the tradeoff, 
with update and query times both O(logn), was demonstrated previously by 
Bodlaender (1993b). 

If only queries but no updates are to be supported, we achieve initialization 
time 0(n) and query time 0(a(n)) or, for every integer k > 1, initialization time 
0(nlk(n)) and query time 0(k). This result was found previously by Chaudhuri 
and Zaroliagis (1995) for the distance and shortest-path problems and by Arikati 
et al. (1995) for the problem of computing (the value of) a minimum cut sepa- 
rating two given vertices. (The value of a minimum cut separating s and t can 
be found by minimizing £)eeA /(e), where /(c) denotes the capacity of the edge 
e, subject to VB(Path(B,s,t) => (A n B ^ 0)), where A and B range over all 
sets of edges.) 

In some cases, queries may become cheaper if they can be batched. We con- 
sider queries that (temporarily) change at most d boolean attributes and no 
ring attributes and use the term exhaustive d-dimensional query to denote a set 
of all possible queries of this type (e.g., the well-known all-pairs shortest-paths 
problem is to answer an exhaustive 2-dimensional query). We can show that for 
all d > 1, exhaustive d-dimensional queries defined by an MS formula and an 
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efficient commutative semiring can be answered in 0(nd) time for n-vertex input 
graphs of bounded treewidth. This was proved previously for d = 1 and d = 2 
for the distance problem by Radhakrishnan et al. (1992) and for d = 2 for the 
problem of computing (the value of) a minimum cut by Arikati et al. (1995). 

All of the algorithms described above translate into parallel algorithms for 
the EREW PRAM. Due to space limitations, we omit further discussion of ex- 

haustive queries and parallel algorithms. 

2    Definitions 

As introduced by Robertson and Seymour (1986), a tree decomposition of a graph 
G = (V, E) is a pair (TD,U), where TD = (VD,ED) is a tree and U = {Ux \ x G 
VD} is a family of subsets of V called bags, one for each node in TD, such that 

(1) \JxeV  Ux = V (every vertex in G occurs in some bag); 
(2) for alf u, v G V, if u and v are the endpoints of some edge in E, then there 

exists an x G VD with {u, v} C Ux (every edge in G is "internal" to some 

bag); •       rr, , 
(3) for all x,y,z G VD, if y is on the (simple) path from x to z in TD, then 

UxnUz C [/y (every vertex in G occurs in the bags in a connected part of 

TD, i.e., in a subtree). 

The width of a tree decomposition (TD = (VD,-ED), {£4 | x G VD}) is 
max^vo \UX | -1. The treewidth of a graph G is the smallest treewidth of any tree 
decomposition of G. Many important graph classes are of bounded treewidth, 
including those of outerplanar and series-parallel graphs; for surveys of results 
of this kind, see (van Leeuwen, 1990) and (Bodlaender, 1996b). 

Define 70: W = {1, 2,...} ->• N by I0(n) = \n/2], for all n G iV. Inductively, 

for k = 1, 2,..., define /* : IV ->■ JV by Ik{n) = min{i G IV | /^(n) = 1}, for 
all n G IV, where superscript (i) denotes i-fold repeated application. Finally, for 
all n G W, take a(n) = min{k G W | Ik{n) < 3}. 

3     Static Algorithms 

Given an MS formula 4> with I free set variables and without free simple vari- 
ables and a commutative semiring 11 = (R,®,®,0,1), we say that a graph 
G = (V, £J) is appropriate for the pair (#,7£) if each a G V U E has a boolean 
attribute for each unary predicate symbol occurring in # and / ring attributes 
fi(a),...,fi(a) G R. The (static) ÜM5 problem defined by # and % is, given 
a graph G appropriate for (#, ft), to compute the value |G|#,TI of G under $ 
and ft. Courcelle and Mosbah (1993) show that every RMS problem defined 
by an MS formula # without free simple variables and an efficient commutative 
semiring ft can be solved in linear time on graphs of bounded treewidth. Our 
dynamic algorithms are based on a different proof of their result, which uses 
techniques of Arnborg et al. (1991), and which we now sketch. 
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Theorem 1. (Courcelle and Mosbah, 1993) For all constants t > 1 and all 
integers n > 1, every RMS problem defined by an MS formula $ without free 
simple variables and an efficient commutative semiring 1Z can be solved in O(n) 
time on n-vertex input graphs appropriate for (<£, TV) and of treewidth at most t. 

Proof. Let G = (VG, EG) be a n-vertex input graph appropriate for ($,7?.) and 
of treewidth at most t and take Q = VG U EG- Arnborg et al. (1991) show that 
O(n) time suffices to construct an MS formula \P with the same free variables as 
<P, a rooted binary tree T* = (V*, E*) appropriate for (9,Tl), and an injective 
function 7r : i? —> V* so that the following holds: Suppose that $ has / free set 
variables. Then, for all Au ..., At C Q, G |= <P[AU ..., A{\ if and only if T* |= 

W[K(A1),...,TT(A,)]; moreover, T* £ ¥[Bu...,Bi\ whenever (jLi Bi 2 K(ü)- 
Intuitively, if we identify a and n(a), for all a £ Ü, then T* satisfies \P under 
a particular assignment (association of free set variables with sets of vertices 
and/or edges) if and only if G satisfies $ under the same assignment. 

Informally, a finite tree automaton is the natural generalization of a usual 
finite automaton from inputs that are strings to inputs that are binary trees. 
Formally, we can take a finite tree automaton to be a 5-tuple (S, E,8,so, F), 
where S is a finite set of states, E is a finite alphabet, 8 is a transition function 
from S x 5 x E to S, s0 £ S is a distinguished initial state, and F C S is a 
distinguished set of accepting states. Given a binary tree, each of whose vertices 
is labeled with an element of E, the tree automaton assigns a state to each vertex 
in the tree, working from the leaves to the root (i.e., processing each vertex after 
all of its children). If the left and right children of a vertex v are assigned states 
s and t, respectively, and v is labeled a, the state S(s,t,a) is assigned to v; if 
one or both children are missing, the initial state so is used in place of their 
states. The tree automaton accepts the input tree exactly if the state assigned 
to the root belongs to F. Arnborg et al. (1991) show how to construct a tree 
automaton M = (5, E,8,s0,F) with the following property: Suppose that the 
unary predicates appearing in W are Pi,..., Pk- Then E — {false, true}h+l, and 
for arbitrary subsets A\,...,Ai of V*, if each vertex v G V* is labeled with 
the bit vector (Pi(v),..., Pk{v), b\,..., 6;) 6 E, where 6,- = true iff v E A{, for 
i=l,...,l, then M accepts T" exactly if T* |= ^[A^,..., A{\. 

We show how to derive from M another tree automaton M' = (5', E', 8', s'0) 
to solve the RMS problem at hand. M' is not a finite automaton, since both its 
alphabet and its state set may be infinite, and it will compute a value (namely, 
|T* lif^) rather than just accepting or rejecting, for which reason it has no set of 
accepting states; in other respects, M' behaves exactly as a finite tree automaton. 

Write H = (R, ©, ®, Ö, I), let m = \S\, and identify the states of M with the 
integers 1,..., m, with 1 being the initial state. We take the state set S' of M' 
to be Rm, the set of vectors of length m with components in R, and define the 
initial state s'0 as (1,0,..., Ö). The alphabet of M' is E' = {false, true}k x Rl, 
and the label of a vertex v £ V* is (Pi(v),..., Pfc(w), fi{v),..., fi(v)), where 
fi,..., fi are the cost functions copied to T* from the input graph G according 
to 7T, i.e., for i = 1,...,/, f{(n(a)) = fi(a) for all a £ Ü, and /,(a) = 0 for 
all a £ V* \ w(Ü). We next define the transition function 8'. Assume that the 
states of the (possibly fictitious) left and right children of a vertex u £ V* are 
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(Si,... 

where 

and (h,..., tm), respectively. Then the state of u is (n,..., rm), 

mm v 

r,=00 0 {sP®iq®    (g)    /.(«)), 
P = l 9=1 (61,...,6i)6{/a(»e,tr«e}' h.-i~' 

6(p,q,(Pi(u),...,Pk(u),bu-M)=J 
hi —true 

for j = 1,..., m. It can be seen that the sum for the jth component (correspond- 
ing to the jth state of M) is over those pairs of states of M and those choices 
of (non)membership of u in Au ..., At that would lead the original automaton 
to give M the state j, for j = 1,..., m. It can then be proved by induction that 
for each vertex u G V* and for j = l,...,m, the jth component of the state 

assigned to u is 

0 (g) (g) fi{a), 
Ai,...,AiCU       « = 1 a£A, 

M(u,i4i,...,Ai) = ; 

where [/ is the set of descendants of u in T*, and M(w, ^i,..., Ai) denotes the 
state assigned by M to u if the vertex labels are set according to At,..., At. If the 
state of the root of T* computed by M' is (si,..., sm), this observation shows 
that |G|#,-fc = \T* I*,-* = ©j6F SJ, which the automaton therefore computes and 

returns. Since m is a constant (for fixed #), each application of S' takes constant 
time, so that the entire processing of T* by M' can be carried out in 0(n) time. 

4    Data Structures for Queries 

In this section we describe data structures that support queries efficiently, but 
not updates. Given an MS formula # without free simple variables, a commuta- 
tive semiring Tl, and a constant d G IV, the d-dimensional RMS query problem 
defined by 4> and Tl is, given a graph G appropriate for (#,72.), to preprocess G 
for subsequent queries for quantities of the form \G'\$,n, where G" is obtained 
from G by (temporarily) changing at most d boolean and/or ring attributes. 

Let the tree T* and the machines M and M' be as in the proof of Theorem 1 
and consider a vertex u£V* with left and right children v and w, respectively. 
Let (n,...,rm), («!,..., sm), and (tlt...,tm) be the states assigned by M' to 
u, v, and w, respectively. Then, by definition of the transition function S\ we 
have rj = ®™=1CjpSp for j = 1,..., m, where 

Ujj, 

m. . 

0 0 (*,®      0     /•■(«)). 
9=1 (fc1,...,6,)6{/a'se,«™e}' ,*=*-' 

«(p.^^itu)....^^)^!.....^))^ bi — true 

for p = 1,..., ?7i. In other words, provided that the state of w remains constant, 
the function that maps the state of i; to the state of u is premultiplication with 
an m x m matrix (over the semiring Tl). We call this function the relay function 
of the edge {u, v} (for the input graph G). The relay functions of edges between 
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vertices and their right children are defined in complete analogy and have the 

same form. 
Suppose that G is changed into G' by modifying a single boolean or ring 

attribute of some vertex or edge a £ fi. This translates into a change of a single 
boolean or ring attribute of v = n(a) in T* or, as seen from the point of view of 
M', into a change of the label of v. We can compute |G'|$,7j by simulating the 
execution of M' on the new label settings. One way to do this is to compose the 
relay functions of all edges on the path from v to the root r* of T*, and then to 
apply the resulting function to the new state oft;; this yields the new state of the 
root, from which \G'\$tn can be computed in constant time. Similarly, a query 
that changes the labels of two vertices v and w can be handled by composing 
relay functions along the two paths from v and w to the children of the lowest 
common ancestor (LCA) u of v and w, using the result to compute the new state 
of it, and then propagating the change to r* by composing the relay functions 
on the path from u to r*. Answering queries therefore essentially reduces to 
composing functions along paths in T*, a problem that has been studied in a 
more general setting. 

Let us call a semigroup S = (5, ©) efficient if a © 6 can be computed from a 
and b in constant time for all a, b G S. We can assume without loss of generality 
that S contains a neutral element. In the context of a tree T, each of whose edges 
is labeled by an element of a semigroup (5, ©) called its weight, we define the 
weight of a (simple) path in T of length k as the quantity Ai © • • • © A*, where 
A,- is the weight of the iih edge on the path, for i = 1,..., k, and we define a 
path-weight query as a query that specifies two vertices u and v and asks for the 
weight of the (unique) path in T from u to v. The following lemma was proved 
by Chazelle (1987) and Alon and Schieber (1987). 

Lemma 2. For all n,k £ IV, an n-vertex tree with edge weights drawn from 
a efficient semigroup (S, ©) can be preprocessed for path-weight queries with 
preprocessing time 0(nlk(n)) and query time 0{k). 

A particularly interesting special case of preprocessing time 0(n) and query 
time 0(a(n)) is obtained by choosing k = a(n). Similar remarks apply below. 

Theorem 3. For all constants t > 1 and all integers n,k> 1, every t-dimen- 
sional RMS query problem defined by an MS formula <P without free simple vari- 
ables and an efficient commutative semiring TZ can be solved on n-vertex input 
graphs appropriate for (<P, TZ) and of treewidth bounded by t with preprocessing 
time 0(nlk(n)) and query time 0(k). 

Proof. We preprocess the tree T* of the proof of Theorem 1 according to Lemma 
2, the weight of each edge being its relay function and © being function com- 
position (i.e., matrix multiplication over 7£). We also preprocess T* so that 
subsequent queries for the LCA of two arbitrary vertices can be answered in 
constant time; it is known how to do this in 0(n) time (Harel and Tarjan, 1984; 
Schieber and Vishkin, 1988). 

Suppose that a query changes the labels of the vertices in some set U C V* 
(thus \U\ < t). Let Q = U U W U {r*}, where W is the set of all lowest common 
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ancestors of two vertices in U and r* is the root of T*; Q is still of bounded 
size. Let T = (V, E) be the tree obtained from T* by contracting each vertex 
in V* \ Q into its closest ancestor whose parent belongs to Q. With the aid of 
still more LCA queries, to determine for all u,v G Q whether u is an ancestor 
of v in T*, T can be constructed in constant time. We now process T from the 
leaves to the root, for each vertex v in T computing the new state assigned to v 
by M' after the label changes caused by the update. For a vertex v in Q, this is 
trivial, since the new states of its children in T*, if any, will be known when v 
is processed. For a vertex v in V \ Q, on the other hand, all descendants of v in 
T* that belong to U, if any, are descendants of a single vertex in Q whose new 
state is known when v is processed. Thus the new value of v can be computed in 
O(k) time by composing relay functions according to Lemma 2. Once the new 
state of r* is known, the query can be answered in constant time. 

5    Dynamic Data Structures 

In this section we dynamize the path-weight-query data structure of Lemma 2 
to allow updates of edge weights as well as path-weight queries and state the 
implications for dynamic RMS problems. 

Theorem 4. For all integers n,k,r > 1, every n-edge tree with edge weights 
drawn from an efficient semigroup (5, ©) can be preprocessed for path-weight 
queries with preprocessing time 0{nlk{n)), query time 0(r + k), and update 
timeO{TnllT). 

Proof. We reuse part of a scheme developed by Chazelle (1987) in order to prove 
Lemma 2. For a parameter m with 1 < m < n to be chosen below, we partition 
the edge set E of the input tree T = (V, E) into at most Zn/m sets, each of 
which spans a subtree of T, called a piece, with at most m edges. Chazelle shows 
how to do this in O(n) time (Lemma 3). Call a vertex of T a fringe vertex if it 
is shared between two or more pieces. In order to make what follows clearer, let 
us assume that we separate the pieces by replacing each fringe vertex v, shared 
between d pieces, by a star consisting of a central vertex, which we identify with 
v, connected to d new vertices; each of the d new vertices is associated with 
a different piece containing v, is called the representative of v in that piece, 
and replaces v as an endpoint of each edge belonging to the piece and incident 
on v. Provided that each star edge is given a weight of Ö, the neutral element of 
(5, ©), this transformation does not change the weight of the path between any 
two vertices in T. It at most triples the number of edges and is easily carried 
out in 0(n) time. 

The number of fringe vertices is bounded by 3n/m, and Chazelle shows how 
to construct an edge-weighted tree T* with at most 6n/m edges that contains 
all fringe vertices and assigns the same weight as T to the path between any two 
fringe vertices; T* is obtained in 0(n) time from T by removing all nonfringe 
vertices that have fewer than three incident edges lying on paths between fringe 
vertices and replacing paths of such vertices by single edges with the same weight. 



301 

Each piece is preprocessed independently for path-weight queries, and the 
global tree T* is processed recursively as just described. For all u,v £ V, denote 
by A(u, v) the weight of the path in T from u to v. Consider two vertices u and v 
in T and let x and y be the first and last fringe vertices on the path in T from u 
to v, respectively, if any. If a; and y do not exist, u and v belong to the same piece, 
and the weight A of the path from u to v can be obtained from the data structure 
maintained for that piece. Otherwise A = A(u, x) © A(x, y) © A(y, v). If x = u 
(u is a fringe vertex), A(u, x) = 0; otherwise A(u, x) = A(u, rx), where rx is the 
representative of a; in the piece of u, and the latter quantity can be obtained from 
the data structure maintained for the piece of u. A(y,v) is computed similarly, 
and A(x,y) is obtained recursively from the data structures maintained for T*. 
One small issue, how to determine x and y and possibly rx and ry, is resolved 
with the help of yet another tree T+, obtained from T by replacing all edges 
within each piece by edges from each (nonfringe) vertex in the piece to a new 
vertex representing the piece. The vertices of interest occur among the first four 
and the last four vertices on the path in T+ from «ton and can be identified 
by two applications of the algorithm of Lemma 2: The weight of each edge is its 
identity, considered as a string of length 1, and © is "truncated concatenation", 
which concatenates its two arguments but, if the resulting string is of length 
> 4, keeps only its suffix of length 3. 

Without loss of generality assume that k > 2. On the first recursive level we 
choose m = m0 = \\fh ("■)] and preprocess the pieces for path-weight queries 
according to Lemma 2. This needs a total of 0(nlk{n)) time and provides a 
query time of O(k). On all subsequent recursive levels we choose m = m\ = 
maxffn1"2''], 12} and preprocess the pieces for path-weight queries according 
to Lemma 2 with k = 2, ending the recursion when the number of edges drops 
below 12. This provides a query time of 0(1) per recursive level, and since 
mo = ü(I2(n)), the preprocessing effort sums to 0(n) over all levels. Because the 
recursive depth is 0(\ogn/\ogmi) = O(r), the overall query time is 0(r+k). An 
update of an edge weight requires recomputation of data structures maintained 
for a single piece on each recursive level, and thus needs O(molk(n)) time on the 
first level and 0{mil2{rni)) time on all subsequent levels, resulting in an overall 
update time of 0(rn1'T). 

Given an MS formula # without free simple variables, a commutative semiring 
H, and a constant d 6 IV, the d-dimensional dynamic RMS problem defined 
by $ and 1Z is, given a graph G appropriate for (#,7£), to preprocess G for 
subsequent updates of single boolean or ring attributes and queries for quantities 
of the form |G"|<p,7j, where G' is obtained from (the current) G by (temporarily) 
changing at most d boolean and/or ring attributes. As an immediate consequence 
of Theorem 4 and the methods introduced in Section 4, we obtain: 

Theorem 5. For all constants t > 1 and all integers n,k,T > 1, every t-di- 
mensional dynamic RMS query problem defined by an MS formula $ without 
free simple variables and an efficient commutative semiring 72. can be solved on 
n-vertex input graphs appropriate for ($,7?.) and of treewidth bounded by t with 
preprocessing time 0(nlk{n)), query time 0(T + k), and update time 0(rn1'T). 
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The Name Discipline of Uniform Receptiveness 
(Extended Abstract) 

Davide Sangiorgi 

INRIA - Sophia Antipolis, France. 

1     Introduction 

The 7T-calculus [9] is a paradigmatical process calculus for message-passing con- 
currency. Two processes with acquaintance of a given name can use it to interact 
with each other. Names themselves may be exchanged in communications, which 
can model modifications of the linkage structure among processes. These are the 
basic process constructs (using lower case for names and upper case for pro- 
cesses): a(b).P, the output of b at a with P as continuation; a(b).P, an input 
at a with b placeholder for the name received in the input; Px | P2, the parallel 
composition of the two processes; vaP, which makes name a local to P; and IP, 
which denotes a potentially-infinite number of copies of P in parallel. 

In this paper, we study the situation in which certain names are uniformly 
receptive. A name x is receptive in a process P if at any time P is able of offering 
an input at x (at least as long as there are processes that could send messages at 
x). The receptiveness of x is uniform if all inputs at x have the same continuation. 
Receptiveness ensures that any message sent at x can be immediately processed; 
unformity ensures that there is a unique way in which a message at x may be 
processed (that is, the input end of x is "functional"). 

These are semantic conditions, and are undecidable. To obtain decidable 
conditions we impose some restrictions. Roughly, we guarantee receptiveness by 
demanding that the name is available in input-replicated form as soon as created. 
For instance, .T is receptive in 

Px= ux{\x{p).P\Q) P2=ux{r{x).\x{V).P) (1) 

(On the right, name x is created when the output r{x) is consumed since, before 
this, x is frozen.1) We guarantee uniformity by demanding that there is only 
one input occurrence of the name; hence in (1) name x should not occur free 
in input position in P and Q. To preserve the uniformity property in a network 
of processes, we then also demand that only the output capability of the name 
may be transmitted; that is, as all 7r-calculus names, so uniform receptive names 
can be transmitted but, in contrast with the other names, they can be used by a 
recipient only in output (retransmitting the name, or sending a message at it). 

In the processes Pi and Pi above, the receptiveness at x is persistent, which 
is necessary if unboundedly many messages could be sent at x. It is useful to 

1 Indeed Pi is behaviourally the same as vx (\x(p).P | r{x)), which is of the same 
form as Pi. 
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consider separately the case in which at most one message can be sent. Then 
the replication in front of the input at x is unnecessary. We call the first form 
u-receptiveness, the second linear receptiveness. 

Uniform receptiveness corresponds to a precise discipline in the usage of 
names; it could by formulated by syntactic means, but it is easier and more 
elegant to do so using a type system along the lines of type systems for the 
7r-calculus. The impact of receptiveness on behavioural equivalences and process 
reasoning is the main focus of this paper. We shall develop some theory and proof 
techniques for processes with receptive names, and then illustrate their usefulness 
by means of some non-trivial examples, like the proof of some transformations 
that introduce parallelism in a resource, and the proof of the correctness of an 
optimisation of the translation of higher-order process calculi into the 7r-calculus 
[18, 13], which is adopted in the compiler of Pict [12]. 

The challenge in these examples is that the equalities implied by the trans- 
formations fail in the ordinary 7r-calculus (even w.r.t. the very coarse notion of 
trace equivalence). That is, there are contexts of the ordinary 7r-calculus that are 
able to detect the difference between the processes of the equalities. By imposing 
the type system for receptiveness, these contexts are ruled out as ill-typed. 

Uniform receptiveness often occurs in the 7r-calculus. Our first example is the 
coding of functions. A process Q with a local function Ar. M, accessible via a 
name z, is normally written vz(\z(r,y). P \ Q) where P is the coding of M and y 
is (a placeholder for) the name where the result of a function call will be delivered. 
Within Q, a call of the function with argument n is written vx (z(n, x).x(p). Q') 
where p is (a placeholder for) the result of the call. In the function declaration, z 
is w-receptive; in the function call, x is linear receptive. Similar combinations of 
linear and w-receptiveness occur in the coding of higher-order communications 
and of Object-Oriented languages. Typically, w-receptiveness occurs in the mod- 
elling of resources which are private to one or more client processes (above, the 
resource is a function). A discipline similar to w-receptiveness is presently used 
in the compiler of Pict [12], to allow optimisations of the code implementing 
communications. An important example of linear receptiveness (indeed, perhaps 
the most important) is found in process interactions based on the Remote Proce- 
dure Call (RPC) paradigm. An RPC interaction involves two synchronisations 
between a caller and a callee where, after the first synchronisation, the caller 
waits the time necessary for the callee to elaborate a response. When we are 
modeling RPC's in the 7r-calculus, the return name at which the callee deliv- 
ers its response is used as linear receptive. (The function call above too is an 
example of an RPC interaction.) 

As behavioural equivalence on processes, we use barbed equivalence. This 
equates processes which, very roughly, in all contexts give rise to the same pat- 
terns of interactions. The main inconvenience of barbed equivalence is that it 
uses quantification over contexts in the definition, and this can make proofs of 
processes equality heavy. Against this, one looks for direct characterisations, 
without context quantification. For instance, in CCS and in the ordinary TT- 

calculus barbed equivalence coincides with the well-known labeled bisimilarities 
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[13]. (In a labeled bisimilarity the bisimulation game is played not only on silent 
actions, as for barbed bisimulation, but also on input and output actions.) 

We sketch the essential points of our theory for processes with receptive 
names. The schema is the same for linear and for u receptiveness. We first 
introduce a type system which forces the receptiveness discipline, and prove some 
basic properties for it. Secondly, we isolate a subclass of the well-typed processes, 
called discreet processes, roughly characterised by the property that all receptive 
names which are emitted are private to the sender. Discreet processes are defined 
by means of syntactic restrictions on the output prefix similar to those in the 
language nl [15]. Thirdly, we introduce a simple but powerful algebraic law, 
with which any well-typed process can be transformed into a discreet process. 
Remarkably, this law equates a process whose first action is the output of a global 
name with a process whose first action is the output of a private name. The law 
is not valid in the untyped 7r-calculus, but it is valid under the receptiveness 
type system. Finally, we prove a direct characterisation of barbed equivalence 
on discreet processes, as a labelled bisimilarity called receptive bisimilarity. The 
latter differs from the ordinary bisimilarity in the requirement for input actions, 
but otherwise it can be used with the standard co-inductive techniques of labelled 
bisimilarities, including proof techniques such as "bisimulation up to expansion". 

For lack of space, some definitions and most of the proofs are omitted. More 
examples can be found in [17]. 

2     Some background on the 7r-calculus 

We use lower case letters p,q,r,... to range over names, and upper case letters 
P, Q, R to range over the set V of processes. This is the 7r-calculus grammar (for 
simplicity, we develop our theory on the monadic calculus): 

P:=0   |  p{q).P   |  p(q).P  |  p(q).P   |   \p = q]P 
|   Px \P2   |   vpP   |   Pi+P2   |   \p{q).P 

We allow the bound-output prefix p(q).P in the syntax; often in the 7r-calculus 
literature, p(q).P is given as an abbreviation for vqp{q).P. We use a to range 
over substitutions; for any expression E, we write Ea for the result of applying 
a to E, with the usual renaming convention to avoid captures. We assign sum 
and parallel composition the lowest precedence among the operators. We write 
p. P and p. P when the name transmitted at p is not important, and we often 
abbreviate a. 0 as a. The labeled transition system is the usual one, in the early 
style. Actions, ranged over by //, can be of four forms: r (interaction), p(q) (an 
input at p in which q is received), p{q) (free output) and p{q) (bound output). In 
these actions, p is the subject. Free and bound names of actions and processes are 
defined as usual. In a statement, we say that a name is fresh to mean that it is 
different from the names of other processes or actions in the statement. Relation 

==> is the reflexive and transitive closure of —>, and => stands for => —+ =>. 
P ij-p holds if there is P' and an action \i with subject p s.t. P =>• P'. A context 
C is static if it has the form up (P | [•]), for some P and p. 
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Definition 1 barbed bisimulation, equivalence and congruence. Barbed 
bisimulation is the largest symmetric relation « on processes s.t. P « Q implies: 

1. whenever P => P' then there exists Q' such that Q => Q' and P' « Q'; 
2. for each name p, P Jj-P iff Q -tip- 

Two processes P and Q are barbed equivalent, written P « <5, if for each static 
context C it holds that C[P] « C[Q]; they are fear&ed congruent, written P ~ Q, 
if C[P] « C[Q] for all contexts. 

Barbed equivalence and congruence usually coincide with the ordinary la- 
beled (early) bisimilarity and congruence of the 7r-calculus [13]. The proof of 
this fact is simple on the class of the image finite processes (to which most of 
the processes one would like to write belongs) by exploiting the n-approximants 
of the labeled equivalences. We recall that the class of image-finite processes is 
the largest subset I of V which is derivation closed and s.t. Pel implies that, 
for all /*, the set {P'   :   P =^> P'}, quotiented by a conversion, is finite. 

3     Linear receptiveness 

The discipline of uniform receptiveness (briefly receptiveness) can be added to 
any of the main existing type systems for the 7r-calculus. In this paper, our 
base type system will be Milner's sorting, that we now briefly recall. Names are 
partitioned into a collection of sorts. Then a sorting function is defined which 
maps sorts onto sorts (in the polyadic calculus it maps sorts onto sequences of 
sorts). If a sort s is mapped onto a sort t this means that names in 5 may only 
carry names in t; moreover, t is the object sort of s. In the remainder, we shall 
assume that there is a sorting system under which all processes are well-typed. 
We separate the base type system (Milner's sorting) from the typing rules for 
receptiveness so as to show the essence of the latter rules. 

We begin our analysis of receptiveness from the case of linear receptiveness. 
We call the non-linear-receptive names plain names. There are no constraints 
on plain names except those imposed by the underlying sorting. We shall omit 
the adjective "linear" when there is no ambiguity. For simplicity, we assume 
that: There is a single sort L-recep of linear receptive names; linear receptive 
names carry plain names. These two assumptions can be relaxed without dif- 
ficulties. We also assume the existence of a sort trig of names, different from 
L-recep but with the same object sort as L-recep (note that names in trig are 
plain names). The sort trig will be used to derive simpler characterisations of 
our bisimilarities. In the remainder, x,y, z... range over linear receptive names, 
a, b,.. over plain names, and v over names in trig. We recall that p, q, r range 
over the set of all names. A,P range over finite sets of linear receptive names. 
We sometimes write A - x as abbreviation for A - {x} and A,x for A U {x}, 
and also x for {x}. The type system for linear receptiveness is in Table 3. A rule 
with double conclusion is an abbreviation for more rules with same premises but 
separate conclusions. Judgements have the form A; P h P. As sets, the order in 
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0-rhP . . i^r     0;r.iKP 
(T"ilip-mat) »;fhaW.P,[a = tlP (T_lnP_2) 0;Pha(x).P 

x?r        0; r h P ,T ,    0;0l-a(b)P 
(T"inp-3)       x;Phx(fr).P (T_rep)  0;0Ma(fe).P 

(T-res-1) — ,   P, '  (T-res-2)   
Zl; P h i/a; P 

0;PI-P (T-out-1)  ■  (T-out-2) 

x£P        liTI-P ,_ ,        . 
(T"°Ut-3)  0;P,xhx(b).P,   x(b).P (T"b0Ut)       0; P h «(*)• P 

Z\i;PihP!        zl2;P2l-P2       zi!n^2=0       PinP2=0 
(T_par) Ai,A2;rur2\-Pi |P2 

0; P h Pi        0; PI-P2 
(T"nil) Pho (T-sum)      «;rHP.+ft 

Table 1. Typing rules for linear receptiveness. 

which names appear in A and P does not matter. Intuitively, if A; P h P then 
Zi U P are the only receptive names which appear free in P; process P must 
use any name in P exactly once in output position (that is, either performing 
an output at that name or transmitting this capability to another process), and 
names in A immediately and only once in input. This intuition is formalised in 
Theorem 2, which relates types and operational semantics of processes. We say 
that P is well typed if there are A, P s.t. A; P h P holds. 

Theorem 2 soundness theorem. Suppose A;T h P. 

x(a) 
1. if x £ A then for all a there is a unique P' s.t. P —> P'; 

2. If P a-^ P' andxgr then A;T,x\- P'; 

3. if P ^ P' then x <E A and A-x;T\- P'; 
alb) a(b) a(b) 

4. tfplip'orP—^p'orP^ P', then A;P\- P'; 

5. ifP -^ P' then either Z};Ph P' or there is x € AC\T and A-x\T-x h P'; 
x(a) x(a) a(x) 

6. tfP—^P'orP^P'orP —► P', then x E P and A\T - x h P'; 

7.ifpa-^P'andxgAur then A,x;T\- P'. 

Behavioural equivalences under linear receptiveness As usual in typed 
calculi, the definitions of the barbed relations take typing into account, so that 
the composition of a context and a process be well-typed. With receptiveness, an 
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additional ingredient has to be taken into account, namely the input availability 
of receptive names. If a process has the possibility of using certain receptive 
names in output, then a context in which the process is tested should guarantee 
the input-availability at these names, otherwise the essence of receptiveness — 
outputs at receptive names can be immediately consumed — is lost. 

Definition 3 complete processes and contexts. A process P is complete if 
A; 0 h P, for some A. We say that context C is complete on (A\T) if C[P] is 
complete, for all P s.t. A; P h P. 

Definition 4 barbed equivalences under linear receptiveness. 
Suppose A;P\~P, Q. Then we say that P and Q are barbed equivalent under lin- 
ear receptiveness at (A; r), briefly P «L ' Q, if for each static context C which 
is complete on (A; r) it holds that C[P] « C[Q] (where w is barbed bisim- 
ulation, Definition 1). Barbed congruence under linear receptiveness at (A;P), 
briefly ~L '   , is defined similarly — just remove the constraint on C being static. 

We write A;P\~D P if A;P \- P can be proved without using rule T-out-2; 
in this case we say that P is discreet. In a discreet process, all receptive names 
which are exported must be private: Syntactically, this means that outputs of 
global receptive names are disallowed (that is, using the terminology in [15], only 
internal mobility — the sending of fresh names — is allowed on receptive names). 
We write p t> q as abbreviation for a process p(r).q{r}.0 (a 1-place ephemeral 
buffer from p to q). We can transform well-typed processes into discreet processes 
using the law 

b(x). P = b(y). (y>x\P)     for y fresh (2) 

This law makes the output of a global name into the output of a local (i.e., 
private) name. The law is not valid in the ordinary 7r-calculus, but it is valid 
under receptiveness: 

Lemma 5. If A; fh b(x).P and y is fresh, then b{x).P ~f 'r b{y). (yt>x\P). 

We now derive a characterisation of the receptive barbed equivalence as a 
labeled bisimulation on discreet processes. We begin by defining the labeled 
bisimilarity on complete discreet processes. We say that an action ß is a plain 
input if ß is the input of a plain name, i.e., ß = p{a) for some plain name a. 

Definition 6 linear-receptive bisimilarity, xL. Linear-receptive bisimilarity 
is the largest relation xL on complete discreet processes s.t. P >;L Q implies: 

1- if P —> P' with bound name of ß (if it exists) fresh for P and Q, and ß is 
an output or a plain input then there is Q' s.t. Q ==> Q' and P' xL Q'; 

2. if P -^ P' then there is Q' s.t. Q =>■ Q' and P' xL Q'; 

3. if P —► P and x is fresh for P and Q then, for some fresh name v, there 

are Q' and Q" s.t.: (a) Q VM Q'; (b) ux (x > v | Q1) =» Q"; 
(c) vx{x>v\ P') xL Q". 
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The main novelty of receptive bisimulation is the use of a process x > v in the 
input clause (3). To understand this addition, recall that x represents a private 
receptive name that the observer exports; if the observer behaves as a well-typed 
process, then it must make x immediately available in input, as a process of the 
form x(p).R. It is perhaps surprising that we do not test the behaviour of the 
derivatives P' and Q' for all infinite choices of the process x(p).R, but only on 
a single, simple, process, namely a link x > v. 

Definition 7 linear-receptive bisimilarity on all discreet processes. 
Suppose A; r hD P, Q. Let x = A n T and y = T - A (therefore P = xUy); 
and let v be fresh and pairwise distinct names with | y | = | v |. 

We then set P x£',r Q if (vx,y){yt> v | P) xL (i/x,y)(y> v\ Q). 

The definition makes sense because processes (ux,y)(y > v \ P) and (vx,y)(y t> 
v | Q) are complete and discreet, and we have already defined xL on this class. 
Moreover, since on complete processes xL is preserved by structural equality and 
injective renaming, the above definition does not depend on the order of names 
in x, y and v, and on the choice of names v. 

The closure of barbed bisimulation w.r.t. the static contexts gives the or- 
dinary (early) labeled bisimulation [13]; the closure w.r.t. the complete static 
contexts gives receptive bisimulation. The proofs for the ordinary bisimulation 
can be adapted to receptive bisimulation. Here are further useful laws for re- 
ceptive barbed equivalence that are easy to prove using the labeled bisimilarity 
x^'r, and that are not valid in the ordinary 7r-calculus: 

UA;r\- x(p).P, then x(p).P ^''r x(p) | P. (3) 

Suppose that A;T\-P, Q, for some A and T with x e A - T, and let v be 
a fresh name; then 

P «f;r Q    iff   vx(v>x\P) ~?~x'r vx(v>x\Q) (4) 

Suppose that A; r h P,Q, for some A and P with y e r - A, and let v be a 
fresh name; then 

P^'rQ   iff   vy(y>v\P)«t,r~yvy(y>v\Q)- (5) 

Law (3) transforms a "synchronous" output into an "asynchronous" one; (4) 
transforms a global input into a local input; (5) does the same for outputs. 

4    w-receptiveness 

The other interesting example of uniform receptiveness is oj-receptiveness, where: 
The input of a name is always available, and always with the same continuation; 
there are no limitations on the utilisation of the name in output. A simple way 
of ensuring the uniformity condition on inputs is to require that the only input 
occurrence be replicated, i.e., of the form \x{p).P. 
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When adapting the theory of linear receptiveness to w-receptiveness, there 
are several, but not surprising, modifications to make. In the typing system, the 
interpretation of a judgement A; P h P is now that P must make names in A 
immediately available, in input-replicated form; whereas it may use names in P 
arbitrarily many times in output. We only show the new version of rules T-par 
and T-out-2, and one of the rules for replication: 

Aj\r\-Pi     A2-,r\-p2     A1nA2 = 9 
A1,A2;PhPl \P2 

xeT       0;ThP 0;TKP 
9-,r^a(x).P x;r\-\x(b).P 

In the definitions of the typed barbed relations, typed labeled bisimilarities 
and the algebraic laws for the w-case, the main modification w.r.t. the linear 
case is that the links p > q have to become persistent. Using ~^;r for barbed 
congruence under w-receptiveness at A; F, law (2) becomes 

b{x). P ~f;r b(y). (ly>x\ P)     for y fresh (6) 

5     Examples 

Parallelisation of resources We can use linear receptiveness to validate trans- 
formations that increase the parallelism in processes. In the processes below, we 
use recursion, polyadicity and communication of integers, which are straightfor- 
ward to accommodate in the theory of bisimulation previously developed (recur- 
sion can be coded up). Thus m, n range over integers and variables over integers. 
Consider the process: 

Al {b) =f a(x). b{n, c). vd c(d). x{n). Ax(d) 

A client can interrogate Ai (6) at a, and it will receive at the return channel x 
an integer n that Ai(b) has received at another channel b (this channel is re- 
newed at each cycle using c). Interactions between Ai and the clients are Remote 
Procedure Calls (RPC), therefore the return channels are used according to the 
discipline of linear receptiveness (see the discussion on RPC in the introduc- 
tory section). The behaviour of A\ is strictly sequential. Let us introduce some 
parallelism: 

A2(b) d=a(x).b(n,c).ud (x(n).c(d) | A2(d)^j 

A3{b) d= a(x).vd (b{n,c).c(d).x{n) | A3{d)^j 

Process A2{b) can accept a second request at a before the answer to the fist 
request has been delivered; however answers cannot overtake one another — they 
are delivered in the same order in which the requests were made. Process ^3(6) 
can even accept a request before receiving an integer at b; answers can overtake. 

Let now I(n) be a counter I{n,b) = i/cb{n,c).c(d).I(n + l,d) and consider 

the systems (n is any integer) Si(n)  = vb (Ai(b) \ I(n,b)), for i G {1,2,3}. 
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All these systems are distinguished in the ordinary 7r-calculus — the different 
degrees of parallelism that they exhibit are observable. We can prove that they 
are equivalent exploiting the linear receptiveness of the return channels x,y. 2 

For Sl(ra) «?;0 S2(n) one proves that the relation composed by all pairs of the 
form 

(si(n'>in^(ni>,S2(n')lII^<Tli)) 
i=l t=l 

for some channel vx and integers m,rii,n' is a xL-bisimulation up to expansion. 
The other equalities can be proved in a similar way. 

The above processes are simple. A more interesting example of parallelisation 
of resources is Cliff Jones's parallelisation transformation problem [5]. We analyse 
this in [16], where we prove Jones's transformation using a combination of the 
techniques for linear and u receptiveness. 

Encoding of higher-order process calculi We now present an example with 
w-receptiveness. Below x,y are supposed to be Lü-receptive names. We prove the 
correctness of an optimisation of the translation of higher-order process calculi 
into the 7r-calculus [13, 18]. In a higher-order calculus, terms of the languages 
may be transmitted. For simplicity of presentation, we consider the simpler case 
of a calculus where only processes may be communicated. The operators are those 
for sending a process (p{P1).P2), receiving a process (p{X). P), process variable 
(X), plus the usual operators of restriction, parallel composition, summation, 
replication. This calculus, which we call HOPC, is the core of Plain CHOCS 
[18], and is a second-order fragment of the Higher-Order 7r-calculus [13]. Upper 
case letter X ranges over process variables. A process is closed if it does not 
contain free variables. The compilation C of this calculus into the 7r-calculus in 
[13, 18] acts as a homomorphism on all process constructs except input, output 
prefixes and process variables where it is so defined: 

C\p{P).Q] = vxp(x).(\x.C[P] \C[Q\)     for x fresh 

C[p{X).Q\^ p{x).C\Q\) C[X]    d=if    x.O 

In the compilation, the communication of a process P is translated as the com- 
munication of a private name which acts as a pointer to (the translation of) P 
and which the recipient can use to trigger a copy of (the translation of) P. These 
pointers, introduced in the compilation, are used as w-receptive names. 

In [13], the correctness of compilation C is established, by proving that it is 
fully abstract w.r.t. barbed congruence (that is, for all closed HOPC processes 
P and Q, P ~ Q iff C[P] ~ ClQj). The optimisation that we consider acts 
on outputs of process variables. Let us call Ö the optimised compilation. It is 
defined as C except for the case of an output of a variable, for which we have: 

0\p{X).Ql =p(x).0[Q] 
2 In these definitions, also name c is linear receptive. We do not need this fact for the 

proofs (and it is reasonable not to use it, because the linear receptiveness of c is 
accidental — one can modify the definitions so that c is not linear receptive.) 
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For instance, when translating p(X).q{X}.0, the result of O is p(x).q{x).0 while 
that of C is p(x).vyq(y). \y. x. 0. The optimisation avoids us one level of indirec- 
tion through pointers. This optimisation is analysed in [13] and is shown to be 
unsound for untyped barbed equivalence. However, we can show that the optimi- 
sation is sound if we take into account the receptiveness of names. The proof is 
an immediate consequence of law (6), since, for all P, 0{P\ can be transformed 
into C\P\ by repeatedly applying the law: 

Theorem 8. Let P be a HOPC process with free variables in {Xi,..., Xn}, and 

let r =f {xu- • .,!«}■ It holds that C{PJ ~®jr 0{P\. 

Combining this with the theorem on C in [13], we can prove: for all closed 
HOPC processes P and Q, P ~ Q iff 0[P] ^f 0[Q\. 

In an expanded paper [17], other examples of application of w-receptiveness 
are reported: The proof of the equivalence between the target processes of Mil- 
ner's two encodings of call-by-values A-calculus into 7r-calculus [8] (this is a novel 
result); the proofs of some stronger versions of 7r-calculus replication theorems 
[10] (these results were already proved in [10]; exploiting receptiveness we get 
simpler proofs). 

6     Final remarks 

Several type systems have been proposed for process calculi. The most relevant 
for this work are [10], where the type system has input/output modalities to dis- 
tinguish between the capabilities of reading and writing on names, and the type 
systems expressing linearity information [3, 7, 4]. The type system for recep- 
tiveness represents a refinement of [10] and, in the case of linear receptiveness, 
also of [7]. Also [10] and [7] contain studies of the effect of types on process 
behaviours, using barbed congruence. The proof techniques developed in this 
paper are easier to apply, mainly because based on labeled bisimilarities. 

Other papers with results on behavioural consequences of 7r-calculus types 
include the following. [6] defines a type system for the asynchronous 7r-calculus 
that guarantees deadlock freedom in certain cases; a subsystem of this system 
is similar to ours for w-receptiveness. [19] uses a type system where types have 
a graph structure to prove the full abstraction of an encoding of the polyadic 
7r-calculus into the monadic calculus. Graphs allow expressing sophisticated com- 
munication protocols but introduce some complications in the typing. [14] uses 
a type system with input/output modalities and variant types to guarantee the 
adequacy of a translation of a typed object-oriented calculus into the 7r-calculus. 
[11] studies the constraints imposed by parametric polymorphism. 

Some of the ideas in this paper should be useful to develop reasoning tech- 
niques for other type systems, in particular those with input/output modalities 
and with linearity. They might also be useful in cases where either the receptive- 
ness or the uniformity condition fails; for instance the calculus in [2], where all 
names are uniform but not necessarily receptive, or that in [1], where all names 
are receptive but not necessarily uniform. 
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Abstract. An account of the basic theory of confluence in the 7r-calculus 
is presented, techniques for showing confluence of mobile systems are 
given, and the utility of some of the theory presented is illustrated via 
an analysis of a distributed algorithm. 

1    Introduction 

Confluence arises in a variety of forms in computation theory. It was first studied 
in the context of concurrent systems by Milner in [6]. Its essence, to quote [7], 
is that "of any two possible actions, the occurrence of one will never preclude 
the other". As shown in the works cited, for pure CCS agents confluence implies 
determinacy and semantic-invariance under silent actions, and is preserved by 
several important system-building operations. These facts make it possible to 
guarantee by construction that certain systems are confluent and to exploit this 
fact fruitfully when analysing their behaviours. A more general study was made 
in [1] which in particular clarified the relationships among various notions of con- 
fluence and semantic-invariance under silent actions, and illustrated the utility 
of the ideas for state-space reduction and protocol analysis; see also [1] for fur- 
ther references. Confluence of value-passing CCS agents was studied first in [18] 
and later in [22] where consideration was given to conditions under which con- 
fluent systems result from combinations of 'semi-confluent' agents and the ideas 
were utilized to show determinacy of programs in a fragment of a concurrent 
imperative programming language. 

The elaboration of techniques for reasoning about mobile systems expressed 
in the 7r-calculus [9] and variants of it has involved extension of established meth- 
ods and development of new concepts specific to the richer setting. Stemming 
from [8] there have been several works on disciplines of name-use respected by 
agents, sometimes expressed via type systems; see for instance [2, 15, 23, 25, 
20, 16]. Such disciplines contribute much to the effectiveness of 7r-calculi as de- 
scriptive formalisms and analytical tools. One promising strand of development 
concerns varieties of confluence. These have been used in showing determinacy 
of systems prescribed by concurrent object-oriented programs [13], in justify- 
ing optimizations in the Pict compiler [3, 17], and in proving the soundness of 
transformation rules for concurrent object-oriented programs [4, 14]. The aims 
of this paper are to give an account of the basic theory of confluence in the 
7r-calculus, to develop techniques for showing that mobile systems are confluent, 
and to illustrate the utility of some of the theory presented via an analysis of a 
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distributed algorithm. The extension of the theory from pure and simple value- 
passing agents to mobile agents is at some places fairly straightforward: we then 
proceed quickly, drawing attention only to significant points. Due to the richness 
of name-passing, however, techniques for showing mobile systems to be confluent 
are more involved. This paper contains a sample of results obtained on this topic 
in the first author's thesis [12]. Independently, Uwe Nestmann in his thesis [11] 
has developed a static type system concerned with sharing of ports (polarized 
names) by mobile agents and shown that well-typed agents are confluent. 

A summary of the paper follows. Preliminary material is collected in the next 
section, while in section 3 the basic definitions and results on confluence in the 
7r-calculus are given. Section 4 is concerned with techniques for showing that 
complex systems are confluent. The final section is devoted to an illustration of 
the utility of some of the theory presented: an analysis of a distributed algorithm. 
Due to lack of space all proofs are omitted; see [12] for a detailed technical 
account. 

We are grateful to an anonymous referee for helpful comments. 

2    Preliminaries 

In this section we recall briefly background material on the (polyadic) 7r-calculus 
[9, 8]. For undefined terms and explanation we refer to these papers. 

We assume an infinite set N of names, ranged over by lower-case letters, a 
partition S of N into a set of infinite (subject) sorts, and a sorting A : S —>■ 
S*. For S 6 S, X(S) is the object sort associated with S. The agents are the 
expressions given as follows which respect the sorting A: 

P  ::=  0   |   ir.P   |   P + Q   |   P\Q   I    {yy)P   \   A(y). 

Here n ranges over the prefixes r, x{y) and x(y), in the latter two of which x is 
the subject and the tuple y is the object. In a prefix x(y) the occurrences of the 
pairwise-distinct names y are binding; the occurrence of y in (i/y) is also binding. 
We write fn(P) (resp. bn(P)) for the set of free (resp. bound) names of P, and 
n(P) for the set of all names occurring in P. We write also fns(P) for the free 

names of P of sort S. Each agent constant A has a defining equation A(x) = P 
where fn(P) C x and x are pairwise distinct. We regard as identical agents which 
differ only by change of bound names. We write = for structural congruence of 
agents. A substitution is a sort-respecting mapping from N to N. We write Pa for 
the agent obtained from P by applying the substitution a. We write {vfx} for the 
substitution which maps each component of x to the corresponding component 
of y and is otherwise the identity. 

Here we give the behaviour of agents by the early transition rules [10, 19]. 
In this system there are three kinds of action: input actions of the form x(y); 
output actions of the form (vz)x(y), where the set z of bound names of the 
action (which is omitted when it is empty) satisfies z Cy; and the silent action 
T representing communication between agents. We write bn(a) for the set of 
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bound names of the output a and set bn(a) = 0 if a is an input or r. We 
write Act for the set of actions. The subject/object terminology carries over 
from prefixes to visible actions. The transition rules are as follows where n(a) 
is the set of names occurring in the action a. The third, fourth and fifth have 
symmetric forms. 

~ x(z) ~ _ „ 
1. x(y).P —4 P{zfy]    if the sorts of the components of y and z agree. 
2. n. P —> P    if n is T or x(y). 
3. If P -^4 P' then P + Q -?4 P'. 
4. If P ^4 P' then P | Q -24 P' | Q    if bn(a) n fn(Q) = 0. 

5. If P ("^v> P' and Q ^4* Q' then P | Q -^ {yz){P' \ Q')   if znfn(Q) = 0. 
6. If P -^4 P' and j/ £ n(a) then (i/j,)P -^4 (vy)P'. 

7. If P    —►    P and toe|/-(zU {a;}) then [vw)P     —>     P . 

8. If P{«/E} -^4 P' and A{x) d= P then X(£) -A P'. 

We write ==>■ for the reflexive and transitive closure of —>, =>■ for the compo- 

sition =>■—>==>, and =>■ for =>■ if a = r and ==>■ otherwise. We further write 

P -^4 Q if P -A Q, or a = r and P = Q. 
We often tacitly assume that bound names of actions are fresh. (Early) bisim- 

ilarity is the largest symmetric relation fa such that if P fa Q and P -^4 P', for 

some <5', Q =£> Q' and P' « <3'- Branching bisimilarity is the largest symmetric 
relation ~ such that if P ~ Q and P -^4 P', then either a = r and P' ~ <3, or 
for some Q',Q", Q =$> Q" -^4 Q', P ~ Q" and P' ~ Q'. The standard nota- 
tions for these relations have a dot to differentiate them from the congruences 
defined as bisimilarity under all substitutions. Since we do not consider the latter 
here we use the less cumbersome symbols. Finally, an agent P diverges, written 
Pf, if P can perform an infinite sequence of r actions; otherwise P converges, 
P-l; and P is fully convergent if for each derivative P' of P, P'4-- 

3    Confluence 

In [7] confluence for pure CCS agents was defined using bisimilarity, and it was 
shown that a wide range of behavioural equivalences coincide on confluent agents. 
In developing a theory of confluence for the 7r-calculus we choose here to base 
it on early bisimilarity. The connections between this treatment and the various 
other possibilities are straightforward. In our view, in applications of the theory 
there is likely to be little substantial difference between the variants. With this 
choice 'determinacy' can be defined as it can for pure CCS agents. 

Definition 1. P is determinate if for each derivative Q of P and action a, if 

Q -^4 Q' and Q =^> Q" then Q> » Q". G 
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Note for instance that P = a(x). (x(y).a{y}.0 + b(y).0) is not determinate if x, b 

have the same sort as P ^l Q = b(y).a{y).0 + b(y).0 and Q has non-bisimilar 
%)-derivatives. As in pure CCS, an agent bisimilar to a determinate agent is 
determinate, and determinate agents are bisimilar if they may perform the same 
sequences of visible actions. The following lemma summarizes conditions under 
which determinacy is preserved by operators. In the last part, sort(M) is the set 
of sorts of the names in M. 

Lemma 2. 

1. If P is determinate so are T.P, x(y).P and (uy)P. 
2. If P is determinate and for each y £ y, if y is of sort S then fns(P) C {y}, 

then a(y).P is determinate. 
3. If each -Kt. Pi is determinate, no 7Tj is r and no two of the 7Tj are inputs or 

outputs with the same subject, then Y^i ^i- Pi is determinate. 
4. If Pi,P2 are determinate, fn(Pi) nfn(P2) = 0, sort(bn(P!)) nsort(n(P2)) = 0 

and sort(bn(P2)) n sort(n(Pi)) = 0, then Pl | P2 is determinate. □ 

The condition in (2) cannot be dropped: consider R = x(y).a(y).0 + b(y).0 
where x, b have the same sort. Clearly R is determinate but P = a(x).R above is 
not as R{b/x} is not. Note, however, that if x, b were of different sorts, P would be 
determinate. Using sorts to make distinctions among names in this way is often 
helpful in applications of the calculus. Similarly, the condition in (4) cannot be 
dropped: as in CCS, Pi, P2 cannot share free names (consider a. 0 | ä. 0), but in 
addition in the mobile setting more must be said as that_property need not be 
preserved under transition; for instance if P = w(z). z{x). b.0,Q = a(y).c. 0 and 

a,z are of the same sort, then P | Q -$ R = a{x).b.O | a(y).c.O and R is not 
determinate. The condition in (4) ensures that a bound name of one component 
cannot be instantiated with a name free in the other. 

A pure CCS agent P is confluent if for each derivative Q of it and distinct 
a,ß, (i) if Q -^ Qi and Q =?* Q2, then Qj =*■ Q[ and Q2 ==>• Q'2 « Q[, 

and (ii) if Q -^ Qi and Q =U Q2, then Q1 =^ Q[ and Q2 ^ Q'2 « 
Q[. For value-passing CCS agents the definition must be refined to account 
for different inputs with the same subject [18, 22]. This holds also for mobile 
agents with the additional point that data received are names which may be 

used for interaction: consider P = a(x).x(y}.0 which one would expect to be 

determinate and the transitions P —l b{y)-0 and P ^-4 c{y}.01 In the 7r- 
calculus a further consideration arises: consider P = (i/z)(a(z).0 \ b(z).O) and 

its transitions P (^z> Px = b(z).0 and P (^2> P2 = a(z).0. Note that P 
has no (^z)6(z)-transition, and dually for P2. In our view P should none the 
less be regarded as confluent. To give the definition we introduce two pieces of 
notation. 

Notation 3    We write a tx ß if a and ß are different actions and are not both 
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inputs with the same subject. The weight a[ß of action a over action ß is a 
except if a = (uz)ci(y) when it is {yz — bn(ß))a(y). □ 

Thus for instance, {vyz)a(y, z)\_{pz)b(x,z) is (vy)a{y,z). We then have: 

Definition 4. An agent P is confluent if for each derivative Q of P and a,ß 
with a tx ß, (i) if Q -5-» Qi and Q =^> Q2, then Qi => <5'x and Q2 => Q2 ~ Q[, 

and (ii) if Q -24 Qi and Q Jk Q2, then Qj M Q\ and Q2 ^ Q2 ~ Qi-      D 

Thus for instance P = {yz) (a{z). 0 | b(z). 0) above is confluent as after P    —> 

Pi = b{z).0 and P (vz-Hz) P2 = a{z).0 we have P^-Ho and P2 ^4 0. 
It is easy to see that an agent bisimilar to a confluent agent is itself confluent. 

An agent P is r-inert if for each derivative Q of P, if Q -^ Q' then <5' « Q. 
By a generalization of the argument from the CCS case we have: 

Lemma 5.     If P is confluent then P is r-inert. □ 

The following result is a useful characterization of confluence in which only single 
transitions need be considered. It holds only for fully convergent agents. In [1] 
it was observed that for fully convergent ('r-well founded') agents, r-inertness 
implies confluence. A similar observation is included here. 

Lemma 6. Suppose P is fully convergent. Then P is confluent iff P is r-inert 
and for each derivative Q of P and a,ß with a tx ß, (i) if Q —> Qi and 

Q ^ Q2 then Qi « Q2, and (ii) if Q -^+ Qj and Q A Q2, then Qx % Q[ 

The proof shows that if P is fully convergent and r-inert and satisfies (i), then 
P is determinate. The assumption that P is fully convergent cannot be dropped: 

consider P = a. b. 0 + r. (a. 0 + r. P). It is easy to see that P is r-inert and 
that all of its derivatives satisfy (i) and (ii). However, P is not determinate. 

We record the analogues for confluence of the earlier results on preservation 
of determinacy by operators. 

Lemma 7. 

1. If P is confluent so are r. P, x(y). P and {vy)P- 
2. If P is confluent and for each y £ y, if y is of sort S then fns(P) C {y}, then 

a(y). P is confluent. 
3. If Pi,P2 are confluent, fn(Pi) H fn(P2) = 0, sort(bn(Pi)) n sort(n(P2)) = 0 

and sort(bn(P2)) f~l sort(n(Pi)) = 0, then Pi | P2 is confluent. G 

Of course here the guarded summation clause is missing. 
In the following section we will consider further techniques for showing sys- 

tems to be confluent. Before doing so we consider a variant of confluence based 
on branching bisimilarity. 
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Definition8. P is ^-confluent if for each derivative Q of P and a, ß with 
ax/?, (i) if Q -?+ Qx and Q ^^ Q2, then Qx =>• Qjjmd Q2 =^ Q2 « Q\, 

and (ii) if Q -^ Qi and Q =*■ A Q2, then Qx =A Qi and Q2 =^ 

The following observations were made in [4]. Confluence (for non-mobile labelled 
transition systems) based on branching bisimilarity was also considered in [1] and 
observations similar to some of these made. An agent P is r~-inert if for each 
derivative Q of P, if Q -^ Q' then Q' ~ Q. 

Lemma 9. 

1. If P is ~-confluent then P is T~-inert. 
2. If P, Q are r-inert andPwQ then P ~ Q. 
3. P is r~-inert iff P is r-inert. 
4. P is confluent iff P is ~-confluent. n 

In contrast to these coincidences, to obtain a satisfactory notion of 'partial' 
confluence which is not r-inert it is essential to base the theory on branching 
bisimilarity rather than bisimilarity; see [4]. 

4    Confluence by construction 

A main motivation in [7] for studying confluence was to find an interesting prop- 
erty implying determinacy which can be guaranteed to hold simply by confining 
the use of combinators in building systems. Work elaborating this view and 
showing its fruitfulness has been described in the Introduction. Here the empha- 
sis is on sample results of this kind in the richer setting of name-passing. The 
approach is complementary to development of static type systems as in [11, 20]. 
A useful definition: an agent P is o-determinate if for each derivative Q of P, 
there are not two distinct output actions a, ß with the same subject such that 

Q -2-> and Q ==>. The first result gives conditions under which a combination 
of confluent agents is confluent. 

Theorem 10. Suppose P = (vz)(Pi | ... | P„) where each Pt is confluent and 
o-determinate. Suppose that for each derivative P' = {vz'){P[ | ... | P^) of P, 
no name occurs free in more than two components of P', and a free name of P' 
occurs in exactly one component of P'. Then P is confluent. □ 

Note that in this theorem it is not possible to replace 'confluent' by 'determinate': 
consider (va)(a. 0 | (a. 0 + b. 0)). 

It is often the case that although the components of a system are not them- 
selves confluent, the constraints they place upon one another's behaviour ensure 
that the system itself is confluent. The second theorem is an instance of this 
idea. To state it we need some definitions. We refer to a set of agents closed 
under derivation as a system. For SeSwe say a system is S-closed if none of 
its agents may perform an input or an output via an 5-name. 
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Definition 11. Suppose S and S = Si ... S„ are distinct sorts and the sorting 
A is such that A(S) = (5) and no 5» occurs in any other A(S'). A system V is 

S, S-sensitive if there is a partition {Pp | p a finite subset of Si x ... x Sn} of 
P such that: 

1. if P e Vv and P -^-> P' where a is not an input or output via an S-name 

or an input via an 5;-name, then P' £ Pp; 
2. if P £ Vp and P -^> P' where a is an output via an 5-name, then a = 

(i/i)x(i)P'eF*'; 
3. if P £ Pp and P -^ P' where a = ar^i,..., zn) with x : 5, then at most 

one of the Zi occurs free in P'; 
4. if P € Vv and P -^4 P' where a is an input via an S;-name, then there is 

z = (zi,..., zn) e p such that the subject of a is z* and P' € Pp~fz}. 

Further, V is S1, S-confluent if it is 5, S-sensitive and whenever P £ Pp, P —> Pi 

and P => P2, then unless for some (zi,... ,zn) € p, a and ß are inputs via 

distinct Zi and Zj, Pi % P[ and P2^P^ P[. U 

We then have: 

Theorem 12.    Suppose P = (vz)(Pi | ... | P„) and V = {Q | Q is a derivative 

of a Pj} is S-closed and 5, S-confluent with partition {Vp}~. Suppose each Pj € 

P0 and is o-determinate. Suppose that for each derivative P' = (vz')(P{ \ ... \ 
P/j) of P, no name occurs free in more than two components of P', and a free 
name of P' occurs in exactly one component of P'. Then P is confluent. □ 

In closing this section we mention that related results of a synthetic nature can 
also be obtained for useful varieties of 'partial confluence' as described in the 
Introduction, and that static type systems as in for instance the papers cited 
earlier complement them effectively. 

5    An application 

The aim of this section is to illustrate the utility of some of the theory presented 
via an analysis of a distributed algorithm. It is a variant of the Propagation of 
Information with Feedback protocol of [21] studied in [24]. Consider a network 
of m processes connected by communication links, where the graph having the 
processes as nodes and the links as edges is connected. Each process stores an 
integer, its value. A distinguished process, the root, conducts the interaction 
between the network and its environment. The intended behaviour of the algo- 
rithm is that on receiving a request from the environment, the root should emit 
to it the value of the network, i.e. the sum of the values of the m processes. We 
proceed to give and explain the process-calculus description of the algorithm. 
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We use the following sorts: E, T, D, I, 0. The sorting A is as follows: A(E) = 
(T,D), A(T) = (int), A(D) = (), A(l) = (0), A(0) = (int). Here int is the type 
of integers; we allow simple arithmetic expressions in the descriptions - the 
foregoing theory extends easily to accommodate this. It is intended that each 
process passes from its initial quiescent state through some active states to a 
final inactive state. The behaviour of a non-root process is described as follows, 
where Q represents the quiescent state, A the active states, I the inactive state, 
and e is the empty tuple. 

Q(e,v) d=   Ee€~e(t,d).A(t,e-e,e-e,e,e,v) 

A(t,e,e,e,s,v)   =   t(v).I 

I cHf 0 

A(t,s,r,d,p,v) d=   Se€7(iyt,d)e(t',d).A(t,?-ezr,d,p{t',d),v} 

+ Se(~e{t',d).A{t,J,r- e,dd,p,v) 

+ £dejd- A(t, s,f,d- d,p, v) 

+ Z{t,4)e~ {t'(v').A{t,s,r,d,p- (t',d),v + v') 

+ d.A(t,s,r,d,p- (f,d),v)). 

In Q(e, v), v is the value of the process and the names e of sort E represent the 
edges incident on it in the network. In the quiescent state the agent may receive 
via any such name a pair of names, t of sort T and d of sort D. It discards d 
and undertakes to send an integer along t which it does when it has all but 
completed its activity (second and third clauses). That activity is described in 
the fourth clause: A(t,s,r,d,p,v) represents the state in which the process is 
storing v, has yet to send data along each E-name in s, has yet to receive^ data 
along each E-name in f, has yet to send a signal along each D-name in d, and 
for each T-name, D-name pair in p, has yet to receive either an integer along the 
T-name or a signal along the D-name. 

The behaviour of the root is given as follows: 

Qo{}n,e,v)   =   in(out).A0(out,e - e,e - e,e,e,v) 

Ao(out,e,e,e,e,v)   =  out(v).I0 

Jo  d=f 0 
,    i — —    ,  —     t,    def 

A0(out, s,r,d,p,v)   =   ... 

where the fourth clause is as for A but with 'AQ' in place of 'A' and 'out' in 
place of '£'. Thus the root behaves similarly to the other nodes except that it is 
activated by receiving along the name in of sort I a name of sort 0 via which it 
undertakes to send the network's value. The network is represented by 

P0   =   (ve)(Qo(\n,e0,vo) | n1<i<mQ{ei,vi)) 

where e are the E-names representing all the edges and for each i, e, those 
incident on the ith process. We will prove the following correctness result: 
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Theorem 13.     P0 « in(out).öüt(t;). 0, where v = E™^1 u». 

The algorithm may be thought of as consisting of two phases. In the first a 
spanning tree for the network is established, and in the second each non-root 
process passes to its parent the sum of the values stored in its descendants, and 
the root then emits to the environment the network's value. The sending by A0 

or A along a name e of a pair t',doi fresh names is an invitation to the receiver 
either to become a child of the sender and to undertake to send it an integer 
along t', or, if the receiver is already active (and so has a parent), to decline to 
do so by sending a signal via d. A process sends an integer to its parent only 
when it has determined the sum of the values of its descendants. 

First we give a characterization of derivatives of P0. For S G S, in an agent 
of the form (i/z)IIiZi, we say there is an S-path between components Z' and Z" 
if there are S-names xlt...,xp such that xt 6 fn(Zi,Zi+1) for each i, Z' = Zx 

and Z" = Zp+\. 

Lemma 14. If P0 -^ P where w G Act* then P = (vetd){R | ili<i<ra Nt) 
where: (a) fn(P) is {in}, {out} or 0, and in and out may occur only in R (the 
derivative of the root Q0); (b) no name occurs free in more than two components 
of P; (c) if a T-name occurs free in a component of P, there is a unique T- 
path between that component and R; (d) the sum of the integers stored in the 
components which are quiescent or active is the network's value. □ 

Some useful notation: Pi = (i/e)(A0(out, e0,e0,e,e,v0) | Pi<i<m Q(ei,Vi)), P/> = 
(ve)(A0(out,e,e,e,e,v) | /7i<«mI), and Pu = (vZ)(I0 \ JTi<i<mJ). We will 
later show that P/, and Pu are derivatives of P0. We use P to range over deriva- 
tives of P0. Key in proving the theorem will be the agents of the form 

Q'(e,e,v) d=   e(t,d).A(t,e-e,e-e,e,e,v) 

where e G e. Q' is similar to Q except that it may be activated only by an 
interaction along the specific name e. Note that, where ~ is strong bisimilarity, 

Q{e,v)~Ee€7Q'(e,e,v). (1) 

Let T be the set of agents of the form 

T0 
d=   (i/e)(Qo(in,e0,«o> |iIi<i<mQ'<ei,Ci,i;i)) 

where ei,...,em_i represent a spanning tree of the graph, with e» G e, for 
each i. Note that such a T0 differs from P0 just in having Q' where P0 has Q: 
the edge via which each non-root node will receive its first communication is 
determined; intuitively, T0 represents the fragment of the behaviour of P0 in 
which the spanning tree is given by those edges. Let T0 G T. Directly from (1) 
and Lemma 14 we have: 

Corollary 15. If T0 -^> T where w G Act* then T = [vetd){R \ iTi<i<ro N<) 
where (a)-(d) as in Lemma 14 (with 'T' for 'P') hold. □ 
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Some useful notation: 7\ = (ve)(A0(out,e0,e0,e,e,v0) | ni<i<mQ'(ei,ei,Vi)), 
T^ = (ve)(Ao(out,e,e,e,e,v) \ nx<i<mI) and Tu = (i/e)(J0 \ IJi<i<mI)- We 
use T to range over derivatives T0. We analyse T0, noting first that it has a 
specific behaviour: 

T 1C rp     'n <OUt>   55t(tt) n Lemmalb.     io   —>  ii =>!,/,  —>• Ju. u 

We now have the key observation whose proof appeals Theorem 12. 

Lemma 17.    T0 is confluent. D 

^From these two results we have: 

Corollary 18.     T0 « in(out).öüt(t>). 0. □ 

Having used confluence to analyse the behaviour of T0 we now relate it to that 
of P0. We say P and T are similar if they differ only in that where P has a 
quiescent component Q, T has a quiescent component Q'. 

Lemma 19.     {(T, P) | P and T are similar} is a strong simulation. □ 

By Lemma 16 and 19 we have that P0 '"^ Pi => P^ °^ P*- We say that To 
is compatible with a computation P0 -^ Pi -^ ... -^ Pr H for each i, if a* is r 
and arises from complementary actions (vt', d)e(t', d), e(t',d) where the second 
is performed by a quiescent component Q(ej,Vj), then in T0 that component is 
Q'(e,ej,Vj); i.e. the E-names used to activate components in the computation 
are those via which the Q'-components of T0 may be activated. 

Lemma 20. If P0 -^ P then for any T0 compatible with the computation, 
T0 -^ T with P and T similar. □ 

We can now prove the theorem. Since P0 ~ in (out). Pi it suffices to show that 

Pi « öüi(v). 0. We have seen that Pi °^£ Pu ~ 0. Choose one such computation 
and, by Lemma 14, choose T0 compatible with it. Then not (Px =^>) with a / 
öut(w) as otherwise by Lemma 20, (Xi =^>), contradicting Lemma 18. Finally, 
and for the same reason, not (Pi => P/ /-»). D 

We conclude by briefly comparing this analysis with that in [24]. The latter 
uses a static I/O-automaton model [5] of the algorithm and establishes that the 
fair traces of the automaton representing it are included in those of an automa- 
ton akin to the agent in(out).oüt(u).0. In our view name-passing and careful 
use of sorts allow a very direct and perspicuous description of the algorithm's 
behaviour: the construction and use of the spanning tree are manifest in the de- 
scription. Moreover the use of reasoning techniques involving name-passing aids 
the analysis, and the proof illustrates the idea that when studying the behaviour 
of a confluent system it may suffice to examine in detail only a (small) part of 
it. Finally, here the correctness criterion is bisimilarity, rather than inclusion of 
fair traces. 
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A Proof Theoretical Approach 
to Communication* 
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Abstract. The paper investigates a concurrent computation model, chi 
calculus, in which communications resemble cut eliminations for classical 
proofs. The algebraic properties of the model are studied. Its relationship 
to sequential computation is illustrated by showing that it incorporates 
the operational semantics of the call-by-name lambda calculus. Practi- 
cally the model has pi calculus as a submodel. 

1     Communication as Cut Elimination 

Concurrent computation is currently an open-ended issue. The situation is in 
contrast with sequential computation whose operational semantics is formalized 
by, among others, the A-calculus ([2]). In retrospect, the A-calculus can be seen 
as a fallout of proof theory. Curry-Howard's proposition-as-type principle allows 
one to code up constructive proofs as typed terms. At the core of the construc- 
tive logic is the minimal logic, whose type theoretical formulation gives rise to, 
roughly, the simply typed A-calculus. Now the untyped A-calculus is obtained 
from the simply typed A-calculus by removing all the typing information. 

In recent years, classical proofs have been investigated in a computational set- 
ting. Girard proposed proof nets ([4]) as term representations of classical linear 
proofs. These classical terms are typed. The conclusion of a proof derivation is the 
type of the proof net corresponding to that proof derivation. The computations 
of these terms are cut eliminations modeled by rewritings of graphs. As the terms 
are typed, cuts happen between nodes of correlated types. Abramsky's proof- 
as-process interpretation ([1, 3]) relates proof nets to processes. At operational 
level, this interpretation is supported by a cut-elimination-as-communication 
paradigm. It looks like a type-erasing interpretation similar to the one found in 
a constructive world. 

This paper investigates a concurrent computation model obtained by revers- 
ing the roles of proofs and processes in Abramsky's paradigm. That is to say 
that we regard communications as cut eliminations. The way to arrive at such a 
model of communication echoes that in the sequential world. First we take the 
multiplicative linear logic as the 'minimal logic' in a classical framework. There 
is nothing canonical about this choice. As the typed classical terms we take the 

Supported by NNSF of China, grant number 69503006. 



326 

proof nets. The following left diagram is a proof net: 

[A    A B     BJ B    Bs 

A®B ALpBL C CL 

The first step towards the model is to abstract away the logical aspect of proof 
nets but keep its proof theoretical content. The above proof net becomes the 
right diagram in the above. There are two kinds of edge in the net. So the sec- 
ond step is to transform the net into a graph with only directed arrows: 

C CL 

We then forget about the typing information while recording positive and nega- 
tive information by labels on arrows, arriving at an untyped graph (left below). 

This is the untyped version of the original classical typed term. Notice that there 
are two kinds of node in the proof net: the internal nodes and the conclusion 
nodes. In order to distinguish them in the untyped graph, we label the conclu- 
sion nodes with small letters (above right). We call graphs of this kind reaction 
graphs. In a reaction graph, a node without (with) a label is called local (global). 
Reaction graphs can be seen as the underlying graphs of proof derivations in a 
generalized and distilled form. Computations with reaction graphs are cut elim- 
inations. Here is an example of two consecutive cut-eliminations: 

o     ® ® ® 

o^-o       o~=-o     8 
In the left graph, the two upper nodes show up opposite polarities to the left 
bottom node. This cut is eliminated in the first reduction. The two arrows are 
removed and the two upper nodes are coerced with the resulting node labeled by 
m. In the middle graph, the two bottom nodes with the arrows pointing to the 
node labeled m form a cut. The second reduction eliminates the cut. The idea of 
this paper is to think of these cut-eliminations as communications. To develop 
the idea, we need a process-like notation for reaction graphs. Let us define graph 
terms by abstract syntax as follows: G := 0 | m[x] | m[x] \ (x)G \ G\G'. Here 0 is 
the empty reaction graph; m[x] and rn[x] are respectively the following graphs: 

(x)G is obtained from G by removing the label x from G; G\G' is the amal- 
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gamation of G and G', coercing nodes with same labels. The two consecutive 
cut-eliminations in the above can now be described by the following reductions: 

(x)(y)(z)(m[x]\y[x}\y[m]\y[z}\J[y]) - (x)(y)(m[x]\y[x)\m[y]) -+ (x)(x[x}). 

This term representation gives rise to a calculus of reaction graphs. 
The calculus of graphs only deals with finite computations. To achieve Turing 

computability, we extend the language with standard process combinators. The 
resulting language will be referred to as x-calculus, where x stands for exchange 
of information. The paper initiates a study of this computation model. 

2    A Model for Concurrent Computation 

Let J\f be a set of names ranged over by lower case letters and H = {ä \ a € -A/-} 
be the set of conames. The union jV U A/" will be ranged over by a. Define ä to 
be m (m) whenever a is rn (m). Let T be the set of x-terms defined as follows: 

P := 0 | a[x].P | P\P' | (x)P | a(x)*P. 

Here m[x].P and rn[x].P are terms that must first perform a communication 
through name m and then enacts P[y/x], where y is the name received in the 
communication. In (x)P, the (x)-part is a localization combinator. In both (x)P 
and a(x)*P, x is local. The set of local names appeared in P is denoted by 
ln(P), whereas the set of global names, or non local names, in P is designated 
by gn(P). Set n(P) is the union of ln{P) and gn{P). We adopt the a-convention 
saying that a local name in a term can be replaced by a fresh name without 
changing its syntax. 

The effect of a substitution [j/i/ari] ■ • ■ [yn/xn\ on a term is defined as follows: 

P[yi/xi]...[yn/xn] =f (...P[yi/x1]...)[yn/xn\. Substitutions will be ranged 
over by cr. 

For simplicity, a structural congruence is imposed on the members of T. 

Definition 1. The relation = is the least congruence on x-terms that contains: 
(i) P|0 = P, PX\P2 = P2\Pi, and Pi\(P2\P3) = (Pi\P2)\Pa; 
(ii) (*)0 = 0, (x)(y)P = (y)(x)P, and (x)(P\Q) = P\(x)Q if x $ gn(P); 
(iii) P = Q if P and Q are a-convertible. 

We regard = as a grammatic equality. So P = Q means that P and Q are syn- 
tactically the same. The operational semantics of the language can be defined in 
terms of a labeled transition system. We prefer however a reductional semantics 
for x-calculus in the style of [5]: 

(x)(R\a[x].P\ö{y].Q) - (x)(R[y/x]\P[y/x}\Q[y/x}) 

a(x)*P\ö[y}.Q — a(x)*P\P[y/x]\Q 

P-+P' P-*P' 
P\Q^P'\Q       (x)P-r(x)P'- 



328 

To help understand the communication rules, we now give some examples, as- 
suming x and y are distinct: 

(x)(R\m[y}.P\m[x].Q) - R[y/x]\P[y/x]\Q[y/x] 

rn[y).P\{x){R\m[x].Q) - P\R[y/x]\Q[y/x] 

(y)(m[u].P\(x)(R\m[x].Q)) - (y)(P\R[y/x]\Q[y/x}) 

(x)rn[x].P\(y)m[y].Q-* (z)(P[z/x]\Q[z/y]), where z is fresh 

(x)(m[x].P\m[x].Q)-+(x)(P\Q). 

It is clear from these examples that the localization operator in x-calculus acts 
as an effect delimiter. A communication either instantiates a local name by a 
global name or identifies two local names. 

Let _*+ (_►*) be the (reflexive and) transitive closure of -+. We will denote 
by x a sequence xi,...,xn of names. We will also abbreviate (xi)... (xn)P to 
(x)P. When the length of the sequence x is zero, (x)P is just P. 

3    Algebraic Properties 

To study the algebraic semantics of x-terms, a labeled transition system is de- 

fined as follows, where 6 ranges over {—+, —►, —►  \a £ N UJV,x £ M}: 

(y)(R\a[y].P)^ (R\P)[*/y] a(y)*P —► a i(y)* P\P[x/y] a[x].PaM]P 

p aM] p' p-^p' 

p 

ln(S) C\ gn(Q) 

\Q^P'\Q 

= 0 p-Lp' 

(x)P- 

x £ n(6) 

L(x)P>   ■ 

In the rules, ln(5) is {x} when 6 is a(x); it is the empty set otherwise. n(6) is 

the set of names in 6. Let => denote relation —►*—+—►*. 
A bisimulation equivalence for x-terms should take into account the distin- 

guished feature of the localization operators of the language. The equivalence 
we introduce in this section is based upon the old idea that two terms are con- 
sidered observationally equivalent if and only if placing them in a same context 
results in two observationally equivalent terms. Working explicitly with contexts 
is unnecessary in our setting due to the presence of the structural equality =. 

Definition2. Suppose KCTxT. The relation 1Z is a local simulation if when- 
ever P1ZQ then for any term R and any sequence x of names it holds that 
(i) if (x)(P\R) — P' then Q' exists such that (x)(Q\R) —• Q' and P'TZQ'; 

(ii) if (x)(P|Ä) -i- P' then Q' exists such that (x)(Q\R) 4> Q' and P'TZQ'. 
The relation TZ is a local bisimulation if both V, and its inverse are local simu- 
lations. The local bisimilarity « is the largest local bisimulation. 
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As usual, local bisimulation up to « is a useful tool for proving two x-terms 
being locally bisimilar. We omit the standard definition. 

In the rest of this section, we prove that « is a congruence relation. The fact 
that « is closed under parasition and localization combinators can be proved 
already at this point. 

Propositions. IfP « Q then (i) P\0 « Q\0 and (ii) (x)P « (x)Q. 

The next lemma is crucial in showing that « is a congruence relation. It is the 
first indication that local bisimilarity is algebraically appropriate. The property 
is not enjoyed by local bisimilarity for /[--processes. 

Lemma 4. // P ss Q then Pa fa Qa for an arbitrary substitution a. 

Proof. Let 7v be the union of fa and the following 

((z)(P<r|Ä),(z)(Q<r|Ä)) 
P fa Q, R € T, za sequence of names, 
a a substitution [j/i/zi] • • -[yn/xn] such 
that x\,...,xn are pairwise distinct 

Suppose (z)(Po-\R)K(z)(Qo-\R) and (z){Pa\R) -* P', where a is the substitution 
[yi/xi] ■ ■ ■ [yn/xn] witn xi,...,x„ being pairwise distinct. Let a and b be fresh 
names. Then for the sequence z of names 

(z)((x)(a)(b)(b[b}.P\a[Xl] a[xn]\ä[yi] ä[yn}.b[b])\R) ^* (*)(P'\R) 

■i- P' 

As 6 g gn(P,Q), b[b].P « 6[6].Q follows easily. By Proposition 3, 

(x)(a)(6)(6[6].P|a[a:i] a[xn]\ä[yi] ä[yn].bß) 

« (x)(a)(6)(6[6].Q|a[xx] a[i„]|ä[yi] ä[y„].6[6]). 

So by definition, there exists some Q' such that P' fa Q' and 

(z)((x)(a)(6)(6[6].Q|a[ari] a^M^] ä[j/„].6[6])|Ä) A Q'. 

During the above reduction every a[xi\ must have reacted upon ä[yi\, for 1 < 
i < n, and b[b] upon &[&]. It can be easily proved that all the communications 
through a and that through 6 can happen in the very beginning. That is 

(z)((x)(a)(6[6].Q|a[xJ a[ar„]|S[yi] a[yn].b[b])\R) -' (z)(Q<r|P) 

4 Q'. 

So (z)(Po-|Ä) — P' is matched by (z)(Qcr\R) A- Q'. The case when (z)(Pa\R) — 
P' is similar. So 7^ is a local bisimulation. It follows that F«Q implies P[y/x] sa 
Q[y/ar]. Therefore P fa Q implies Per ss Qcr for a substitution er. D 

We now come to the main result of the section. 
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Theorem 5. « is a congruence equivalence: if P « Q and O € T iAera 
(i) a[x].P » a[i].Q; f»j P|0 » 0|O; 
(«i«; (z)P « (x)<3; ^'»; c*(»*P « a(ar)*Q. 

Proo/. We sketch the proof of (iv). The proof of (i) is simpler. Let H be 

{((x)(m(y)*P|P), (x)(m(y)*Q\R)) \PmQ, ReT, m,x names}. 

Suppose (x)(m(y)*P|P) — P' and that (x)(m(t/)*P|P) - P' is caused by 
a communication between m(y)*P and R. Then P' is (x)(m(?/)*P|P[a/z/]|Ä')- 
Similarly (x)(m(t/)*Q|P) — (x)(m(y)*Q|Q[a/y]|Ä'). By Lemma4, P[a/y] « 
Q[a/y]. By Proposition 3, (x)(m(y)*Q|P[a/y]|P') « (x)(m(y)*Q|Q[a/y]|P')- I* 
is then easy to see that 11 is a local bisimulation up to «. □ 

4    ^-Processes as %-Terms 

A question naturally arises as to the relationship between 7r-calculus and X" 
calculus. We give a first answer in this section. Let V be the set of 7r-processes 
denned as follows: P := 0 | m(x).P | mx.P | P\P' \ (x)P | m(x)*P. We refer 
the reader to [6] for background material on 7r-calculus. 

There are many bisimulation equivalences on 7r-processes. What is most rel- 
evant in this section is the open bisimilarity denned in [8]. Actually we will use 
a version of open bisimilarity stronger than Sangiorgi's. 

Definition6. Let H be a binary relation on the set of 7r-processes. The relation 
U is an open bisimulation if whenever P1ZQ then for any T-process R, any 
sequence x of names and any substitution a it holds that 

(i) if (x)(P<r|P) A P' then Q' exists such that (x)(Q<r|P) 4- Q' and P'IZQ'; 

(ii) if (x)(Q<r|Ä) A Q' then P' exists such that (x)(P<r|P) A P' and P'IZQ'. 
The open bisimilarity fa" is the largest open bisimulation. 

«° is a congruence equivalence and is closed under substitution. 
A structural translation from JT to x has as nontrivial clauses the following: 

(m(x).P)0 = {x)m[x).P\ 

(mx.P)od=m[x}.P0. 

Imposing on V a same structural congruence as given in Definition 1, one has 

Theorem 7. For P,QeV, it holds that 
(i) p^Qlffp°->Q°; (Ü) P^QzffP" ^_Q°; 

(Hi) P^Qiff P° ^ Q°; (iv) P m^] Q iff P° "^ Q°■ 

Theorem8. For P,Q eV, P «° Q iff P° « Q°■ 
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5     Call-by-Name in x-Calculus 

A concurrent computation model has to answer the question of whether it cap- 
tures sequential computation successfully. The issue is often addressed by re- 
lating variants of A-calculus to the model. Our focus in this section is on the 
call-by-name A-calculus ([7]), whose semantics is defined by the following rules: 

M — M' M -*M' 
(Xx.M)N -* M[N/x]      MN — M'N      Xx.M -> Xx.M'' 

The following translation, which is Milner's encoding of the lazy A-calculus with 
modification, serves as an encoding of the call-by-name A-calculus in x-calculus: 

[arju = x[u] 

{Xx.M}u = (v)(x)(n[x].u[v]\lM}v) 

{MNju d= (V)(X)({M}V\V[X].V[U}.X(W)*INJW). 

The parasition of ü[x].ü[v] and \M\v in \Xx.M\u allows {M}v to evolve inde- 
pendently, thus modeling reduction under A-abstraction. The encoding preserves 
the operational semantics of the call-by-name A-calculus in the sense the oper- 
ational semantics of the lazy A-calculus is preserved by Milner's encoding ([5]). 
A formal treatment is omitted in this extended abstract. 

The call-by-name A-calculus is one example which can not be treated suc- 
cessfully in 7r-calculus. 

6    Towards an Integration of x and A 

There are two problems one encounters when trying to simulate the operational 
semantics of the full A-calculus. The first is how to model reduction under A- 
abstraction. The second is how to model reduction MN -*■ MN' caused by 
TV —► N'. The former is to do with parallel computation. There is no reason why 
it should pose any problem for concurrent computation. This view is supported 
by the result in Sect. 5. The latter is to do with recursion because the A-term N 
may be duplicated in future reduction. In any structural interpretation, this N 
must be translated into the body of a replicator or guarded recursion. So if the 
N induces an infinite reduction, the interpretation of MN would have no termi- 
nating reduction sequences. It is our view that the second problem is orthogonal 
to concurrent computation. It is caused essentially by the incompatibility of the 
two recursion mechanisms. 

In this section we take a look at a higher order calculus combining the com- 
munication mechanism of the x-calculus and the recursion mechanism of the 
A-calculus. The purpose of this investigation is to see if the two mechanisms fit 
coherently and if local bisimulation suffices as a tool for studying the algebraic 
properties of the language. 
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6.1     x with Call-by-Name A 

Let the set H of higher order x-terms be defined by the following abstract syntax: 

E := X | a[x].E \ E\E' \ {x)E \ a(X)E \ a[E], 

where X is a term variable. Let 0 abbreviate (a)a(X)X. The semantics of the 
higher order x-calculus is defined by the relevant rules of the first order x-calculus 
together with the following rules incorporating a call-by-name mechanism: 

E->F 
a(X)E\ä[F) — E[F/X)      a(X)E - a(X)F 

A structural equality is imposed on the members of 7i, whose definition is the 
same as Definition 1. Usually a bisimulation equivalence for a higher order pro- 
cess calculus is defined for closed processes. This is a tractable approach. But in 
the presence of the second reduction rule given above, the method breaks down. 
A bisimulation equivalence for higher order x-calculus has to be defined on all 
terms. For that purpose, let's say that a binary relation K on H is substitution 
closed if whenever ETZF then E[Ex/Xu..., Ei/Xi\KF[ExIXu ..., E'i/Xi] for 
Ei,...,E{ ETi and X\,...,Xi that are among the free variables of E\F. 

Definition9. A substitution closed binary relation K on 7i is a local bisimula- 
tion if whenever EKF then for any H eW and {x} C J\f it holds that 

(i) if (x)(E\H) A E' then F' exists such that (x)(F\H) A F' and E'KF'; 

(ii) if (x)(F|tf) 4 F' then E' exists such that {x)(E\H) A E' and E'KF'. 
The local bisimilarity saw is the largest local bisimulation on higher order terms. 

The above definition is given in terms of a labeled transition system on H that 
is defined by the relevant rules in Sect. 3. It should be remarked that «" is by 
definition substitution closed. 

Theorem 10. «w is a congruence equivalence: if E ww F and G (EH then 
(i) a[x].E «" a[x].F; (ii) E\G «" F\G; (Hi) (x)E «w (x)F; 
(iv) a(X)E «w a(X)F;     (v) a[E] «w a[F]. 

Proof. We only prove (v). For the sake of this proof, let's define 7i0[X] to be the 
set of all higher order terms E such that each occurrence of X is within a[G] for 
some a G M U 77 and some G € Ti. Let K be 

{{E[A/X],E{B/X}) | A ^ B, Ee H0[X], X a variable}. 

Suppose E[A/X] — G. Then G = F[A] for some F € H0[X]. It can be easily 
shown that some H G U exists such that E[B/X] — H and F[B/X] «w H. 
It follows that K is a local bisimulation up to «". Thus a[E) «w a[F] since 
a[x] e n„[x]. a 

In the remaining of the section, we justify our claim that the higher order 
calculus is a combination of x and A. 
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6.2     Recursion 

As a test for local bisimilarity, we examine Thomsen's recursion ([9]) in this 
section. Suppose that E contains free variable X and a does not occur in E. The 
following abbreviations will be used: 

def WX(E) = a[a]\a(X)(ä[a}.E\ä[X}), 
def recX.E^1 (a)(Wx(E)\a[Wx(E)]). 

We remark that rtcX.E denned here is slightly different from Thomsen's. The 
idea is to make WX(E) inert. Before proving the main property concerning 
recX.E, we first establish the following result. 

Lemma 11. (a)(F[Wx(E)/X]\a{Wx{E)}) «<- (a)(b)(F'\ä[Wx(E)}\b{Wx(E)]), 
where E and F have free variable X and F' is obtained from F[WX(E)/X] by 
replacing some occurrences ofWx{E) by WX(E). Here a and b are fresh. 

Theorem 12. Suppose E contains free X. Then recX.E xP E[recX.E/X]. 

Proof. Suppose E and F contain free variable X, a £ n(E, F) and gn(E) l~l 
ln(F) = 0. Using Lemma 11, one proves that (a)(F[Wx(E)/X}\ä[Wx(E)}) sa 
F[recX.E/X]. So rtcX.E «" (a)(E[Wx(E)/X]\ä[Wx(E)]) «<* E[rtcX.E/X], 
which is what we are after. D 

6.3     Projecting Out Guarded Recursion 

In this section we show that the higher order \ can be seen as an extension 
of the first order x- A fallout of the result is a justification of the claim that 
the guarded recursion is completely unnecessary in the higher order x-calculus. 
Let x+ be the higher order x-calculus enriched with the guarded recursion. The 
language x+ can be investigated along the same line as the higher order x has 
been. H+ and «+ are defined accordingly. It can also be shown that «+ is a 
congruence relation. The definition of a structural translation ~ from x+-terms 
to xw-terms is nontrivial only on guarded recursion: 

Q(^T*i;1i:f(a)((2;)aH.(Jg|a(X)(X|ä[X]))|ä[(x)a[a;].(^a(X)(X|ä[X]))]). 

The translation ~ projects the guarded recursion out, as it were. 

Theorem 13. For P EH+, P «+ P. 

Theorem 14.  (i) Suppose P and Q are in 7i. Then P «+ Q iff P «'" Q. 
(ii) Suppose P and Q are in Ti+. Then P «+ Q iff P ^ Q. 

(Hi) (a) ifP^P'(P^ P') then P -L P" (P — P") such that P" «w P; 

(i) ifp± P" (p _ P") then P-LP' (P — P') such that P" *y P. 
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Proof, (i) Suppose P, Q are in %. P «+ Qjlearly implies P «w Q. Suppose 

P «" Q. Then (x)(P|P) = (x)(P|P) and (x)(Q\R) = (x)(Q\R), where Ä G W+. 
By theorem 13, (x)(P\R) «+ (x)(P|P) and (x)(Q|P) «+ (x)(Q|P). It is now 
easy to see that «w is a local bisimulation up to «+. 
(ii) By theorem 13, P »+ Q iff P «+ Q. By (i) P «+ Q iff P *u Q. D 

As x+ extends the first order \, so does the higher order x-calculus in view 
of Theorem 13 and Theorem 14. 

6.4    Full Integration 

An integration of x witn tne fu^ ^ is tne higner order calculus extended with 

E -* F 
a[E] -* a[F]' 

The operational semantics of the full A-calculus can be simulated in the fully 
integrated calculus. The encoding is the following: 

lxju
d^x[u]\X 

l\x.M}u = (x)(v)(u[v].u[x]\x(X)[M]v) 

IMN}U = (x)(v)([AqMu]tf*MW(*W\Mw)])- 

Theorem 15. Suppose M is a X-ierm. If M -* N then [M]„ —+ [iV]u. 

Definition 9 now gives rise to an equivalence relation on the set of all terms 
of the fully integrated calculus. The results in Sect. 6.2 and Sect. 6.3 also hold 
for this language. The (i) through (iv) of Theorem 10 also hold. But so far we 
haven't been able to prove the (v) of Theorem 10 for the fully integrated calculus. 

7    Remark on Pragmatics 

In the formulation of x-calculus, we use the same set of names for both global 
and local names. But conceptually the identification is not always helpful. The 
standard bisimilarity ([6]) for the 7r-processes is not closed under input prefixing 
operation. This is because the variable names and the free names are regarded 
as semantically different in this approach. Sangiorgi's open bisimilarity is con- 
gruent. But in that approach local names are treated differently. In x-calculus, 
both local and global names are variable names, which is what local bisimilar- 
ity assumes. The situation is similar to that in A-calculus, where both free and 
closed variables are, well, variables that can be instantiated by any A-terms. 

But variable names alone do not suffice in practice. This is clear from the 
mobile process interpretation of object oriented languages ([10]). The usual prac- 
tice is to postulate that Af consists of two parts: a set Mv of variable names and 
a set M'c of constant names. We can now define a x-process to be a x-term in 
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which all variable names are localized. So in x-processes there are two kinds of 
local names: local variable names and local constant names. A communication 
either identifies two local variable names or replaces a local variable name by a 
local or global constant name. A communication between two constant names is 

prohibited. Let ß range over {—, ", °^], a^\ a e K, a £ AfcUÄTc}- 

Definition 16. Let R be a binary relation on the set of x-processes. U is a 

simulation if PUQ implies that if P -£• P' then there exists some Q' such that 

Q A Q' and P'TZQ'. The relation H is a bisimulation if both H and its reverse 
are simulations. The bisimilarity «x is the largest bisimulation. 

The 7r-calculus can be reexamined in this new setting. The input prefix op- 
eration restricts variable names whereas the localization operation always re- 
stricts constant names, x-processes are now defined to be those processes in 
which all variable names are restricted by input prefixes.  Let 7 range over 

Definition 17. Let 1Z be a binary relation on the set of ^-processes. U is a 

simulation if PTZQ implies that if P ^* P' then there exists some Q' such that 

Q^> Q' and P'TZQ'. The relation 72. is a bisimulation if both 11 and its inverse 
are simulations. The bisimilarity ss*" is the largest bisimulation. 

The translation given in Sect. 4 works in this practical setting. It establishes an 
operational correspondence in the sense of Theorem 7. In addition one has 

Theorem 18. For ir-processes P and Q, P «*' Q if and only if P" «* Q°. 

So practically speaking, ir is a subcalculus of x- 
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Abstract. Very recently, the second author showed that the question 
whether an equation over a trace monoid has a solution or not is decid- 
able [11,12]. In the original proof this question is reduced to the solv- 
ability of word equations with constraints, by induction on the size of 
the commutation relation. In the present paper we give another proof of 
this result using lexicographical normal forms. Our method is a direct 
reduction of a trace equation system to a word equation system with 
regular constraints, using a new result on lexicographical normal forms. 

1    Introduction 

Solving equations is a central topic in various fields of computer science, es- 
pecially concerning unification, as required by automated theorem proving or 
logic programming. A celebrated result of Makanin [10] states that the question 
whether an equation over words has a solution or not is decidable: There ex- 
ists an algorithm deciding for a given equation L = R, where L,R G (J? U E)* 
contain both unknowns from Q and constants from E, whether an assignment 
a:ü -» E* exists, satisfying a(L) = a(R). Slightly more general, the existen- 
tial theory of equations over free monoids is decidable, i.e., given an existentially 
quantified, closed first-order formula S over atomic predicates of the form L = R 
and L ^ R, it is decidable whether S is valid over a given free monoid. Moreover, 
adding regular constraints, i.e., atomic predicates of the form x £ C, where C is 
a regular language, preserves decidability [14]. 
In this paper we prove the generalization of Makanin's result to trace monoids, 
which were originally studied in combinatorics [4]. They became meaningful 
for computer science in concurrency theory, where they were introduced by 
Mazurkiewicz [13] in connection with the semantics of labelled Petri nets. For 
an overview of trace theory and related topics see "The Book of Traces" [7]. 
Most results obtained so far in the area of equations on traces were restricted 
to equations without constants, see [8,5]. The decidability of the solvability of 
equations with constants was stated as an important open question. 

* This work was done during a stay at the University of Stuttgart. 
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2    Notations, Preliminaries and Lexicographical Normal 
Forms 

An independence alphabet is a pair {E,I), where E is a finite alphabet and 
I C E x E is an irreflexive and symmetric relation, called independence relation. 
With a given independence alphabet (E, I) we associate the trace monoidM(E, I). 
This is the quotient monoid 17*/=/, where =/ denotes the congruence being the 
equivalence relation generated by the set {uabv = ubav \ (a,b) G /, u,v G E*}; 
an element t G M(E, I) is called a trace, the length |i| of a trace t is given by the 
length of any representing word. By alph(i) we denote the alphabet of a trace t, 
being the set of letters occurring in t. 
By 1 we denote both the empty word and the empty trace. Words v,w G E* 
are called independent (w.r.t. I), if alph(u) x alph(w) C I. In this case we 
simply write (v,w) G I or v € I(w) where I(w) for w G E* is a shorthand for 
{a G £ | {a} x alph(w) C /}. 
The initial alphabet of w G E* is the set init(w) = {o G E | 3w',w" G 
17* with w =/ «/ and iu' = aw"}. 
A word language L C 17* is called I-closed if whenever ufi and w =i v then 
we have u> G L. 

Throughout the paper we will suppose that (E,I) denotes an independence 
alphabet, where E has the cardinality n > 1. We suppose that E is totally 
ordered by < and we identify E with the set {l,...,n}. The order on 17 is 
extended to the lexicographical order on E*. 
A word v G E* is in lexicographical normal form (w.r.t. / and <) if v < w holds 
for all w such that v =i w. Let LNF denote the set of lexicographical normal 
forms, i.e., LNF C E* is the set of minimal representatives for M(E,I). For 
v G E* we denote by \ex(v) the unique word w G LNF such that w =i v. We 
view lex as a mapping lex : E* —► LNF. 
There is a simple characterization of lexicographical normal forms due to Anisi- 
mov and Knuth: 

Proposition 1 ([3]). Let E be totally ordered by <. Then a word v G E* is in 
lexicographical normal form (w.r.t. I, <) if and only for every factor aub of v 
with a, b G E, u G E* and (au, b) G / we have a < b. 

Definition 2. Let E be totally ordered by <. For 0 ^ A C E let the height 
h(A) be h(A) = max{a | a G A}. Let also /i(0) = 0. (Thus, h(A) G {0,... ,n}.) 
The height h(v) of a word v G 17* is defined as h(v) = h(alph(v)). 

Remark 3. Let m > 1 and s, t,u,Si,..., sro,ii,... ,tm G E* be words satisfying 
the following conditions: 

^ -- ^i      sm , 
t ==/ *i      trn , 

f ^ Siti • • • smtm , 

tj G I{SJ+I ■ ■ ■ sm) for all 1 < j < m . 

Then we have st =/ v. 
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The previous remark is clear and its converse will be stated for lexicographical 
normal forms in the Main Lemma below. It is the crucial correctness argument 
for our reduction from trace equations to word equations. The important point 
is that the value of m (given below) can be bounded as a function in the size of 
the alphabet, and that the height decreases. 

Lemma 4 (Main Lemma). Let s,t,v E LNF be words in lexicographical nor- 
mal form such that st =i v. 
Let h = h(s) denote the height of s and suppose h > 0. 
Then there exist an integer m, 1 < m < l"-1)^"1) + l; and words Si,...,sm, 
h,..., tm E LNF in lexicographical normal form such that the following condi- 
tions hold: 

s — S\ ' • • sm , 
t =i t\ • • • tm , 
V   —   S±tl   •  •  • S-jjitjyi  , 

Si ^ 1,   for all 1 < i < m, 
tj T^ 1  for all 1 < j < m , 
tj E I(sj+i ---Sm) for all l<j<m, 
h(tj) < h for all 1 < j < m. 

Remark 5. Before giving the proof of the Main Lemma, let us note that the 
trace equality st =/ v above cannot be replaced by word equalities of type 
s = Sl ■ • ■ sm, t = h ■ ■ ■ tm, v = sih ■ ■ ■ smtm. For example, consider M(S, I) = 
{a, b, c}*/{ab = ba, be = cb} and s = c, t - ab. Then the lexicographical normal 
form of st is v = bca. 

Proof of the Main Lemma. We have st =/ v with s,t,v E LNF and h = h(s) > 0. 
Consider the decomposition of v, v = sih ■ ■ ■ smtm, where m > 1 is minimal such 
that s =i si • • ■ sm, t =/ h ■ ■ ■ tm, and tj E I(sj+X ■ ■ ■ sm) for all j, 1 < j < m. 
Clearly, since m is minimal, we have Si ^ 1 and tj / 1 for all 1 < i < m, 
1 < j < m. Moreover, the words Si,tj are in lexicographical normal form. 
Let us first show that s = si • • • sTO. Assume aub is a factor of si • • • sm with 
a, b E E, u E S* and b E I{au). If aub is a factor of some st, then a <b follows 
by Prop. 1 and we are done. Otherwise let i < j be such that Si E S*au', 
Sj E u"bE* and u = u'si+1 ■ ■ ■ Sj-xu". Since tk E I(SJ) for k < j we obtain 
b E I(au'si+iti+1 ■ ■ ■ Sj-itj^iu"), hence a < b due to v being in lexicographical 
normal form. Thus Si ■ • • sm is in lexicographical normal form, again by Prop. 1, 
and it follows that s = si ■ ■ ■ sm. 
Suppose that 1 < j < m and let b denote the first letter of sj+i. Let a E alph(^), 
i.e. tj = uau' for some words u,u'. Then au'b is a factor of v E LNF satisfying 
b E I(au'), thus we have a < b. Therefore h{tj) < h(b) < h for every 1 < j < m. 
Finally, assume by contradiction that m > (n - l)(h - l)/2 + 1. Let h,aj 
denote the first letter of sit tj respectively, 1 < i < m, 1 < j < m. Consider 
the chain of alphabets I(s2 ■ • ■ sm) C I(s3---sm) C •■• C I(sm). Note that 
we have I(s2 ■ ■ ■ sm) ^ 0 due to h ^ 1, and also I(sm) / £ due to sm ^ 1. 
Therefore by the pigeon-hole principle there exist some indices 1 < i,j < m with 
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j -i > (h- l)/2 satisfying I{si+i ■■■sm) = I{SJ+I ■ ■ ■ sm). Consider the factor 
tiSi+iU+i ■■■tjSj+i of v. Note that (tk,si) 6 / holds for every k, I such that 
i < k,I - 1 < j, since tk E I{sk+i ■ • ■ sm) = I(si+1 ■■■sm). Therefore, v £ LNF 
implies en < bi+i < ai+1 < ■ ■■ < a,j < bj+i and we obtain h(s) > h(bj+i) > 
2(j — i + 1) > h, a contradiction. 

3    Trace Equation Systems 

Definition 6. Let Q denote a finite set of unknowns with E (~l fl = 0. 

i) A word equation over E and Q has the form L = R, with L,R £ (E U J?)*. 
ii) An assignment for an equation over E and /? is a mapping cr: 17 —> 17* 

being extended in a natural way to a homomorphism cr: (17 U Q)* -t E*, by 
fflr = idi> 
A solution {or the equation L = i? is an assignment cr satisfying the equality 
cr(L) = cr(fi) in 17*. 

Makanin [10] showed in 1977 that the question whether a word equation has 
a solution or not is decidable. Moreover, the solvability of a system of word 
equations can be reduced by well-known techniques to the solvability of a single 
equation. The problem can also be generalized by introducing regular constraints 
for the unknowns, i.e. regular sets Cx C E* for x 6 Ü. Here, a solution a 
for an equation is required to satisfy o(x) e Cx for all x. It has been shown 
by Schulz [14] that the solvability of word equations with regular constraints 
remains decidable. We are going to show that this more general result generalizes 
to traces. 

Definition 7. Let (E,I) denote an independence alphabet and Q a finite set 
of unknowns, E D J? = 0. 

i)  A trace equation over {E,I)  and Ü has the form L = R, with L,R £ 
{EUÜ)*. 
A solution for the equation L = R is an assignment a: Q -> 17* satisfying 
a(L) =j a(R). 

ii) A system of trace equations is a formula built with the connectives and (&), 
or (V), not (-i) over atomic predicates of the form L = R (trace equation) 
and x G C (constraint), where C C E* denotes an /-closed regular language. 
A solution for a system S over (17, /), Q is an assignment o~.Q-^tE* such 
that 5 evaluates to true when the atomic predicates L = R, x G C are 
replaced by the truth value of er(L) =/ cr(R), a{x) € C, respectively. 

Remark 8. Later we will deal simultaneously with trace and word equations, so 
we distinguish notationally between L = R for a word equation, whereas L = R 
denotes a trace equation. The difference is that equality under an assignment is 
interpreted in the free monoid E*, resp. in the trace monoid M(i7,7). 
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Remark 9. A system of word equations (with regular constraints) is just a special 
case of Def. 7 where one takes 7 = 0. Since negations can be eliminated (see also 
3.1), we note that the question whether a system of word equations has a solution 
or not is decidable. 

Remark 10. Adding arbitrary (i.e., not /-closed) regular constraints to a system 
of trace equations makes the question of solvability undecidable. This is due to 
the fact that the solvability of the equation x = y with x G C, y G C" is equivalent 
to the non-emptiness of the intersection {w G E* \ w =/ v for some v e C} n 
{w G E* | w =i v for some v G C"}. For regular languages C,C this last 
question is known to be undecidable, see [1]. 

Remark 11. Similar to the word case, the solvability of a trace equations system 
could be reduced to the solvability of a single trace equation (with additional 
constraints). However, this would be of no use here. 

The aim of this section is to reduce the solvability problem for trace equations 
to word equations with regular constraints. We will give a direct proof using 
lexicographical normal forms to show the following 

Theorem 12 ([11,12]). Let S be a trace equation system over {E,I) and ft. 
Then a set ft' 2 ft of unknowns and a system of word equations S' over E, ft1 

can be effectively constructed,  such that S is solvable if and only if S' is solvable. 

Corollary 13. It is decidable whether a system of trace equations has a solution. 

3.1     Basic Reductions 

For a given trace equation system S we first eliminate constants by introducing 
new unknowns xa and constraints xa G {a}, for a G E. Then we replace a by xa 

in each equation L = R of S. Hence, without loss of generality atomic predicates 
are of the form L = R, where L,R G ft*. 
Furthermore, we may assume that the given system is written in disjunctive 
normal form. Then we replace every negation not(L = R) by the disjunction of 
formulas of the type 

L = xy & R = xz k init(y) = A & init(z) = A' (1) 

where x, y, z denote new unknowns and the disjunction is taken over all alphabets 
A, A' C E such that A f~l A' = 0 and A U A1 ^ 0. Clearly, constraints of the form 
init(x) = A or alph(a;) = A, A C E, can be expressed by /-closed regular 
languages. 
Since the set of /-closed regular languages forms an effective boolean algebra (as 
the family of recognizable subsets of a monoid [9]) we may also suppose that the 
formula contains no negated constraints, i.e. no formula of type not (a; G C). 
Moreover, it suffices to consider trace equations of the form X\---Xk = j/i • • ■ J// 
with k > I > 0, Xi,yj G ft. (The equation Xi ■ ■ ■ xu = 1 and the occurrences of 
each Xi can be deleted from all equations, adding the constraints alph(a;,) = 0.) 
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3.2     From Traces to Words 

The main idea for reducing trace equations to word equations will consist in 
replacing a trace equation L = R by some word equations Lx = R\,..., Lu = Rk 
with additional constraints and unknowns. Moreover, for every solution a for 
L = R the mapping lex o a: fl ->• £* -> LNF can be extended to a solution 
for the equations Li = Ri,... ,Lk = Rk- Vice versa, each solution for the new 
equations will also be a solution for L = R when restricted to its unknowns. 
This reduction actually goes by a chain of intermediate trace equations. By 
choosing an appropriate ordering we will show that the reduction process termi- 
nates yielding a system of word equations (with constraints). 
We will consider in the following formulas S{T, W, C) in disjunctive normal form 
with atomic predicates from some finite sets T, W, C, containing no negations. 
T will denote a set of trace equations, W a set of word equations and C = {x € 
Cx | x € Q) a set of constraints, where each Cx is an /-closed regular language. 
Moreover, every L = R in T has the form xi---Xk = V\ ■ ■ • Vi with k > I > 1, 
Xi, yj G Q. A solution for S(T, W, C) is an assignment cr:f2->£* which makes 
the formula evaluate to true when (L = R) from T, (L = R) from W and 
x £ Cx from C are replaced by the truth value of a{L) =/ a(R), a(L) = a(R), 
and a{x) € CX: respectively. 

Definition 14. A formula S(T, W, C) as above is called normalized if for every 
solution a for S the mapping lex o a is a solution for S, too. 

Remark 15. Note that a formula ,S(T, 0, C) with /-closed constraints C is always 
normalized. 

Remark 16. Suppose S = S(T,W,C) is normalized and let x = y belong to T, 
where x,y G ß. Consider the new formula S' = S'(T',W',C) obtained from S 
by replacing every occurrence of x = y by £ = y and letting X" = T \ {x = y}, 
V(/' = W' U {x = y). Then 5 is solvable if and only if S' is solvable. Note that 
a solution for 5" is a solution for S, too. However, the converse is true only 
because 5 is a normalized system. Without this assumption about S it cannot 
be guaranteed that every solution for S also solves S', see the example below. 
Moreover, 5" is a normalized system, too. 

Example 17. Consider the trace equation system S = ({x = y},{x = ab,y = 
ba}, 0) given as the conjunction (x = y) & (x = ab) & (y = ba), where (a, b) € /. 
Then S is not normalized, but of course it has a solution. However, replacing 
x = y by the word equation x = y yields a system with no solution. 

Proof of Thm. 12. Recall that an equation system with /-closed constraints 
S = S(T,$, {x £ Cx}xen) over (£,I),Q is a normalized system. As previously 
noted it suffices to consider a formula S with trace equations of the form 

Xl---xk=yi---yh   k>l>l,   (M)^(l,l). (2) 

We suppose without loss of generality that for all unknowns x € Q some Ax C £ 
exists such that h(Ax) > 0, and x £ Cx implies alph(s) C Ax, for all x. Moreover, 
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let 5 be a conjunction of trace equations as in (2), of word equations and of I- 
closed regular constraints x € Cx. 
We define the weight of a trace equation xx • ■ • xk = Hi ■ • ■ Vi as in (2) as the 
triple of natural numbers (I, h(U^AXi), k) and we consider the lexicographical 
ordering on N x N x N. We will show in the following that every such trace 
equation can be replaced by a formula over word equations and trace equations 
of lower weight, together with some additional constraints. Concretely, we apply 
the following rules. 

Rule 1:   Suppose I > 1 and let z denote a new unknown. Then we replace the 
equation x\ ■ ■ ■ xk = j/i • • • yi by 

Xi ■xk=z    k    yi---yi=z    &    alph(z) C U*=1 A^ 

Rule 2: Suppose / = 1 and k > 2, and let z denote a new unknown. Then we 
replace the equation x\ ■ ■ ■ xk = y\ by 

xiz = yi    &    x2 ■ ■ ■ xk = z    &    alph(,z) C U*=2AXi . 

Rule 3: Suppose I = 1 and k = 2 and, in order to simplify notation, consider the 
equation xy =■ z (rather than uniformly Xix2 = t/i)- Moreover, let h = h{Ax) 
denote the height of Ax (where alph(x) C Ax follows from the constraint x£Cx). 
We replace xy = z by the disjunction of the word equation 

xy = z (3) 

and of formulas of the type 

x = xi---xm    &   y = yi---ym    &   z = xxyi ■ ■ ■ xmym    & 

alph(zi) C Ai    &    ■••    &    alph(a;m) C Am    & 

alphd/iJCB!    &    •••    &    alph(ym) C Bm, (4) 

where xityj are new unknowns and the disjunction is taken over all values of 
m such that 1 < m < [n - l)(/i - l)/2 + 1 and over all alphabets A±,..., Am, 
Bi,..., Bm C E such that1 

Ai ^ 0 for all 1 < i < m, and 

1 < h(Bj) < h for all 1 < j < m, and 

Bj x Ai C I for all 1 < j < i < m, and 

Ai U ■ ■ • U Am C Ax, and Bx U ■ • • U Bm C Ay . (5) 

The word equation xy = z in (3) corresponds to the case m = 1 in (4) (this is 
in particular the case when h = 1 in (5)). It is actually the main case where the 
number of trace equations in S decreases. 
Let S" denote the formula obtained from S by applying one of the three rules 
described above. Note that none of the rules adds negations. 

1 Obviously some equations become redundant and they can be actually omitted in 
the disjunction. 
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Lemma 18. Let S be a normalized equation system. Then the new system S" is 
normalized, too. Moreover, S' is solvable if and only if S is solvable. 

Proof. The claim is easily seen for the first two rules above, since there is a 
natural bijection between the set of solutions of 5 and of S", respectively. 
Clearly, if 5" has been obtained from S by the third rule, then every solution 
for S' is a solution for S, too, see Rem. 3. Therefore, let us consider an equation 
xy = z in S and a solution o-.Q-^E* for S. Then a' = lex o a is also solution 
for S, since S is normalized. We show that a' can be extended to a solution for 
S'. Let s = a'(x), t = a'(y) and v = a'(z). Hence, st =i v with s,t,v € LNF. If 
h(s) = 1, then in the Main Lemma we have m = 1, hence v = st. Therefore a' 
is a solution of the new system 5". 
Suppose that st =/ v with s,t,v £ LNF, h(s) = h > 1. Then some m, 1 < 
m < (n - l)(/i- l)/2 + 1, and words su ..., sm, h,... ,tm exist, satisfying the 
conditions of the Main Lemma. With a'(xi) = st, a'(yj) = tj it is easily verified 
that a' is a solution for 5'. 
The relation between the solution set of S and the solution set of S", together 
with the fact that S is normalized, imply that S" is normalized, too. This shows 
the lemma. 

Finally, note that the new trace equation y± ■ ■ ■ ym = y in (4) has lower weight 
than xy = z due to hiVjS^Bj) <h = h(Ax). Hence the reduction rules establish 
a noetherian rewriting system on trace equation systems. Applying the rules as 
long as possible we end with a system of word equations S" = (0, W, C"). This 
concludes our proof. 

4    Computing Lexicographical Normal Forms 

The aim of this section is to give a formula for computing the product of lexi- 
cographical normal forms. This yields an alternative proof of Thm. 12 and the 
so far best known upper bound on the number of new unknowns needed for the 
reduction. We conclude the section with two remarks concerning the parallel 
complexity of computing lexicographical normal forms. 

Definition 19. Let ~/ be a relation on (E*)* defined as 

(X\ , • . • , Xm) ~/  (Xi, . • • , Xmi) 

if m = m! and there exists some i, 1 <i < m such that 

Xj = x'j    for all 1 < j < m, j £ {i, i + 1},   and 

(xi,xi+i) = (x'i+1,x'i) and (xi,xi+1) el. 

By «/ we denote the equivalence relation generated on (E*)* by ~/. 

Let x e E*, by abuse of language we write {xi,... ,xm) ~i x if some words 
x[,..., x'm exist such that 

(zi,..., xm) «/ (xi,..., x'm)  and x = x\---x'm. 
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Theorem 20. Let s,t,v G LNF be words in lexicographical normal form such 
that st =i v. 
Then there exist positive integers m,p with m < ^n~2 '—V 1, p < nnn\ such that 

S — S\ • • • sm , 

t — X\ ' ' ' Tp , 

(Sl, . . . , Sm, t\ , . . . , tp) ~/ V , 

for some words Sj,..., sm, t\,..., tp G E*. 

Proof. Let h = h(s) denote the height of s. Let m(h),p(h) denote the minimal 
integers such that 

S = Si ■ ■ -Sm^h) , 

t = ti ■ ■ ■ ip(ft) , 

(Si, . . . ,Sm(h),t!, . . . ,tp(h)) »/ V, 

for some words Si,tj. Note that m(h),p(h) < \v\. For h = 0 we have s = 1, thus 
m(0) = p(0) — 1, which satisfies the theorem. 
For h > 1 we will show by induction on h that m(h) < (n — l)(h — l)/2 + 1 and 
p(h) < nhh\, thereby proving the theorem. 
Let h> 1. By the Main Lemma there exist an integer m < (n — l)(/i — l)/2 + 1 
and words Si,... ,sm, t\,...,tm in lexicographical normal form satisfying 

S — S\ Sjfi j 

£ —/   61 ' ' * trn , 

V — S\t\ ' • • smtm , 

Si ^ 1, tj ^ 1  for 1 < i < m, 1 < j < m, 

tj G I(sj+i ■ ■ ■ sm) and h{tj) < h for 1 < j < m . (6) 

If h = 1, then m = 1 in (6), so we can take m(h) = p(h) = 1, since t = ti G LNF, 
which satisfies the claim. Hence let h,m>2. 
Let t\ = t\ and ti = lex(ij_ii;) for i = 2,... ,m. Clearly, tm = t, h(ti) < h for 
1 < i < m and 

ti-\ti =i ti,   for 1 < i < m. (7) 

Now we can apply the induction hypothesis to each of the (m — 1) equivalences 
(7) obtaining 

i*/(ti,...,<'p)) (8) 

for somep < (m — l)[m(h—l)+p(h — l)], some words t[,... ,t'p and some integers 
1 — l0 < li < •■• <lm = p+1 such that 

ti = t\     ■ ■ ■ t\._l for every 1 < i < m. (9) 

The above claim can be verified by noting that 

t «/ (ti,. ..,t'i,...,t'j,...,t'q) and t\ ■■■t'j «/ (vu . ..,vk) 
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implies that 
t ~i (i'i, • ■ •, t'i_i, v1,..., vt, tj+1 ,...,tq), 

for some I < j - i + k and v[,... ,v\ £ £*, such that v[ ■ ■ -v[ = vx---vk and 
each v'q is a factor of some vr. Hence, we obtain from (8), (9) for suitable words 

i-i j • • • i u
p- 

t - t" ■■■ t" 

u «/ (si,..., sm,ii,.. -,im) «j (si, ■ ■ ■ ,sm,t1,... ,tp) 

~7 (sl j • • • i smi *1 : • • • I Sp/ ■ 

Hence by the induction hypothesis we get 

P(h) < (m - l)[m(h - 1) + p(h - 1)] 

< (n - l)(/i - l)/2 [(n - l)(/i - 2)/2 + 1 + nh~\h - 1)!]   < nft/i!, 

which concludes the proof. 

Remark 21. We can also use Thm. 20 in order to prove the main result, Thm. 12. 
Recall that the main difficulty consists in replacing a trace equation of the form 
xy = z, where x,y,z £ Q. By Thm. 20 we simply replace such an equation 
xy = z by a disjunction over clauses of the form 

x = xi---xm    &    y = 2/i • • • yp    & 
z = 2^(1) ■ • • Zn(m+P)    &    alph(zj) C Ai , 

for all 1 < m < {-^- + 1, 1 < p < nnn\, vr £ S^+p and A{ C 17. Here au.j/j 
denote new variables and Zi = xt for 1 < i < m, resp. zm+j = yj for 1 < j < p. 
S^+p denotes the set of permutations over {l,...,m+p} such that for i < j 
the inequality 7r(i) > n(j) implies Ai x Aj C /. This reduction of a single trace 
equation to word equations roughly yields an increase in the number of word 
equations by (N+ 2)l2n<~N+l\ where N = nnn\ + (n- l)2/2 +1- Hereby we need 
N additional unknowns. 

We conclude this section with two remarks concerning the parallel complexity 
of computing lexicographical normal forms. We consider uniform circuit com- 
plexity classes like AC0 and TC°. Let /: S* -> E* be a function such that 
|/(w)| = p(\w\) for some polynomial p and every w £ £*. Let k > 0. Then 
/ is ACfc-computable if there is a family (Cn)n>o of polynomial-size circuits of 
depth 0(logk(n)) with AND and OR gates of unbounded fan-in/out and unary 
NOT gates, such that CH computes f(w) for all w £ S*. A function / is TCfc- 
computable if there is a family of circuits as above which in addition to AND, 
OR and NOT gates contain MAJORITY gates of unbounded fan-in/out. A MA- 
JORITY gate yields 1 if and only if more than half of its inputs are 1. In order to 
be able to deal with arbitrary alphabets £ one usually assumes that the circuits 
have special input/output gates testing x = a for each input position x and 
letter a £ £ (analogously for the outputs). Uniformity means that given n > 0 
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(a fixed coding of) the circuit Cn can be easily computed (e.g. in logarithmic 
space). It is not very hard to verify that AC* C TC* C ACfc+1, k > 0. For more 
details about circuit complexity see e.g. [15]. We state the results below without 
proofs (being sketched in [6]). With Thm. 20 we obtain 

Corollary 22. Let {S,I) denote an independence alphabet. 
Then we can compute lex(st) on input s,t £ LNF in uniform AC . 

Remark 23. We could apply Cor. 22 in order to compute the function lex in 
AC1. However, we can do better: the mapping lex: S* ->• LNF is computable in 
uniform TC°. This result can be compared with the fact that the equivalence 
s =i t can be verified in uniform TC°, too (see [2]). 
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Star-Free Picture Expressions Are Strictly Weaker 
than First-Order Logic 

Thomas Wilke 
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Mathematik, 24098 Kiel, Germany 

Abstract. We exhibit a first-order definable picture language which we 
prove is not expressible by any star-free picture expression, i. e., it is not 
star-free. Thus first-order logic over pictures is strictly more powerful 
than star-free picture expressions are. This is in sharp contrast with 
the situation with words: the well-known McNaughton-Papert theorem 
states that a word language is expressible by a first-order formula if and 
only if it is expressible by a star-free (word) expression. 
The main ingredients of the non-expressibility result are a Frai'sse-style 
algebraic characterization of star freeness for picture languages and com- 
binatorics on words. 

1    Introduction 

There are two fundamental results connecting logical definability with concepts 
in the theory of regular languages: 1) Biichi's theorem (see [1]) which states that 
a word language is recognized by a finite automaton if and only if it is definable 
in (existential) monadic second-order logic, and 2) McNaughton and Papert's 
theorem (see [9]) which says that a word language is star-free if and only if it is 
definable in first-order logic. In [6], it was shown that the first result essentially 
carries over to picture (or "two-dimensional") languages in the following sense: 
a picture language is recognized by a tiling system if and only if it is definable 
in existential monadic second-order logic (while in [5], see also [6], full monadic 
second-order logic had been proven to be strictly more powerful). 

In this paper, we show that the second result does not carry over to pic- 
ture languages. More precisely, we exhibit a simple, first-order definable picture 
language, denoted L+ (see page 3), and show that L+ is not expressed by any 
star-free picture expression. On the other hand, it is straightforward to see that 
every star-free picture language is definable in first-order logic. We thus con- 
clude that the class of star-free picture languages is strictly contained in the 
class of first-order definable picture languages. This clarifies an interesting ques- 
tion about the fine structure of the class of all recognizable picture languages, 
which was brought up in [6]. It should also be noted that by a result from [5], the 
class of first-order definable picture languages is strictly contained in the class 
of all recognizable picture languages. 

As with star-free word expressions, star-free picture expressions are built from 
singleton sets using boolean combinations and concatenation. Of course, due to 
the two-dimensional structure of pictures there are two kinds of concatenation: 
"horizontal" and "vertical", sometimes also called "row" and "column" concate- 
nation. Similarly, in first-order formulas over pictures one can use a "horizontal" 
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and a "vertical" order relation to specify spatial relations between positions. It 
is the unrestricted use of these two order relations that makes first-order logic 
over pictures more powerful than star-free expressions. 

The proof that L+ is not star-free is based on a characterization of star-free 
picture languages in the style of Frai'sse's algebraic characterization of first-order 
definability ([3], see also [2]). The other ingredient of the proof is an encoding 
of certain pictures by words, which allows us to apply "one-dimensional" com- 
binatorial arguments. Although Frai'sse's idea is quite old, this is the first time 
that it has been applied to a problem on picture languages. 

The paper is organized as follows. In Section 2, basic terminology and no- 
tation is introduced and the main result is stated. Section 3 then describes the 
algebraic characterization of star freeness, Section 4 focuses on the encoding of 
"diagonal" pictures in words, in Section 5 a combinatorial lemma about words 
is established, and in Section 6, the proof of the main theorem is completed. 

For a survey on picture languages, see the forthcoming handbook chapter [4]. 
Thanks to Kousha Etessami, Oliver Matz, and Sebastian Seibert for fruitful 

discussions and comments on drafts of this paper. 

2     Basic Terminology and Main Result 

A picture1 over an alphabet A is a matrix with entries from A. We say (m x n)- 
picture for a picture with m rows and n columns. An atomic picture is a (1 x 1)- 
picture. Words can and should be thought of as (1 x n)-pictures. 

There are two concatenations defined for pictures: juxtaposition and supra- 
position.2 The juxtaposition of an (m x n)-picture with an (m' x ra')-picture is 
defined when m = m' and is the (m x (n + n'))-picture denoted PmQ where 

<'m««'={ftU'o:>": (1) 

The supraposition of P and Q is defined when n = n' and is the ((m + m') x ??.)- 
picture denoted P a Q where 

(PÜQ)ii = {%j !!*-m' (2) 

Juxtaposition and supraposition are extended to sets of pictures just as concate- 
nation of words is extended to sets of words. 

A star-free picture expression over an alphabet A is built from the letters of 
A (each letter a standing for the singleton set with the atomic picture a) using 
the additional symbols 0 (for the empty set), + (for set-theoretic union), ~ (for 
set-theoretic complementation with respect to the set of all pictures over A), and 
en and B. Each star-free picture expression over A defines a picture language over 

1 Not to be confused with the notion of picture defined in [8]. 
2 "Juxtaposition" and "supraposition" are also known as "horizontal" and "vertical" 

as well as "row" and "column" concatenation. 
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A in a canonical way. For instance, given an alphabet A with two letters a and 
b, the expression a + (aB~0) + (am~0) + (am~0) B~0 defines the set of all 
pictures whose upper left entry is a. Notice that we don't consider the empty 
picture. A picture language is said to be star-free if it can be expressed by a 

star-free picture expression. 
The first-order vocabulary we use consists of built-in predicates <„ and <h 

for horizontal and vertical order relation and a unary predicate Pa for each 
letter a. First-order formulas in this language are interpreted in pictures, where 
the first-order variables range over the positions of the picture in question. For 

example, consider the formula 

3;c3j/! ... 3y4(yi <h x <h Vi Ay3<v x <v y4 A Ptx A Pij/i A ... A Pm)  •   (3) 

This formula defines the set of all pictures satisfying the following condition: 
there is a position labeled 1 to the left and right of which there is an occurrence 
of 1 and over and under which there is an occurrence of 1. We write L+ for the 
picture language containing all pictures over {0,1} satisfying (3). 

The main result of this paper is: 

Theorem 1.   The language L+ is not star-free. 

Every star-free picture expression can be converted into an equivalent first- 
order sentence in a straightforward way, in fact, by reusing variables one can 
even show that five first-order variables are always sufficient. (The interested 
reader may want to notice that in order to define L+ two variables are actually 

enough.) 
As a consequence, we have: 

Corollary 2. The class of star-free picture languages is strictly contained in the 

class of first-order definable picture languages. 

In the notation of [4], we thus have: £(SFRE) C £(FO) C £(EMSO) C £(MSO). 

3    Algebraic Characterization of Star Freeness 

Fix an alphabet A and let k > 0. There are only a finite number of picture 
languages over A that can be defined by star-free picture expressions over A of 
nesting depth at most k in the concatenation operations. The set of all these 
picture languages is not only finite but also a boolean algebra, i.e., there is a 
finite partition of all pictures over A such that an arbitrary picture language over 
A is definable by a star-free expression of concatenation depth at most k if and 
only if it is a union of the blocks of this partition. In this section, we describe 
this partition in terms of the corresponding equivalence relation. 

Concatenation depth, denoted cd, is defined by: 

cd(0) = cd(a) = 0 , 

cd(~£) = cd(£)  , 
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cd{E + F) = max(cd(£),cd(P))  , 

cd(PmP) = cd(EBF) = max(cd(£),cd(F)) + 1 , 

where a stands for an arbitrary letter and E and F stand for arbitrary picture 

expressions. 
We define k-equivalence, =k in symbols, as a relation over pictures inductively 

as follows. 

1. Pictures are O-equivalent if they are identical or both not atomic. 
2. Pictures P and Q are (k + l)-equivalent if the following conditions hold: 

(K)  P and Q are ^-equivalent. 
(J) For all pictures Pi, P2 such that P = Pi mP2 there exist pictures Qi, 

Q2 such that Q = Qi mQ2, Pi =k Qi, and P2 =fc #2- 
(S) For all pictures Pi, P2 such that P = PiBP2 there exist pictures Qi, Q2 

such that Q = Qx BQ2, Pi =k Qi, and P2 =k Qi- 
(J') & (S') Conditions (J) and (S) hold when the roles of P and Q are ex- 

changed. 

This means P and Q are (k + l)-equivalent if and only if they are ^-equivalent 
and for any decomposition of P into two pictures, one can find a decomposition 
of Q into two pictures such that corresponding "factors" are fc-equivalent, and 
vice versa. 

The key fact about this equivalence relation is: 

Theorem 3 (correctness and completeness). A picture language L is de- 
finable by a star-free expression of concatenation depth at most k if and only if 

L is a union of =k-classes. 

We leave out the proof, which follows proofs of similar claims in the literature, 
see, e. g., [10], where the fine structure of the class of all star-free word languages 
is characterized. 

Thus, in order to prove that a picture language L is not star-free we only 
have to show that for every k there are two pictures P and Q such that P 6 L, 
Q £ L, but P =fc Q. That is what we will do in Section 6 (for L = L+). 

We need some facts about ^-equivalence on words, all of which can be proven 
by a straightforward induction on k. 

Lemma 4 (projections). Let A and B be alphabets and n:A+ —»■ B+ a homo- 
morphism. If u and v are strings over A such that u =k v, then w(u) =k ir(v). 

Lemma 5 (congruence property for words). Let k > 0. The relation =k 
restricted to words is a congruence relation, i. e., uu1 =t vv' whenever u =k v 
and u' =k v' for words u, u', v, and v'. 

Lemma 6 (aperiodicity). For each k > 0, there exists Ik > 0 such that 

u ik+™. ^fe uh        yor every word u and every m > 0. (4) 
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Corollary 7.  Let k > 0. Assume u is a word of the form 

0io10il10i2...0n210i'1-I10i"  , 

where n > lk + 1 and ij > lk for every j E {1,. . ., n - 1}. 

(5) 

(a) lfio,in > h and v is obtained from u by changing one occurrence of 1 to 0, 

then u =k v. 
(b) If v is obtained by changing one inner (i. e., neither the first nor the last) 

occurrence of 1 to 0, then u =k v. 

We also need the following very simple (and weak) congruence-like property 
of ^--equivalence over pictures, which can also be proven by induction on k. 

Lemma 8. Let k > 0, / > 0. Assume A is an alphabet, a E A, P is an (m x n)- 
picture over A, and Q is an {m1 x n')-picture over A. Define P' and Q' to be 
the unique (m x /)- and (m' x l)-picture over the alphabet {a}. If P =k Q, then 
PnnP' =k QnjQ'. The dual claim, holds for supraposition instead of juxtaposition. 

4     Diagonal Pictures 

As explained above, in order to prove that L+ is not star-free we have to find 
pictures Pk and Qk such that Pk E L+, Qk i L+, and Pk =k Qk for every 
ik. We will choose the pictures Pk and Qk from a class of specifically designed 

pictures, so-called "diagonal pictures". 
We will introduce diagonal pictures as certain pictures over {0,1} determined 

by words over an alphabet denoted by D. This alphabet is defined to be the set 
of subsets of the five-element set C = {1, n, s, w, e}, where n stands for "north", 
s for "south", etc. Given an element a E C and a string u over D, the a- 
projection of u, denoted u I a, is the unique string v over {0,1} of length |u| 
satisfying v{ = 1 if and only if a E ut. Given a word u of length / over D, the 
corresponding diagonal picture, P(u) in symbols, is given by: 

«1 J. 1   u-i 4- n M3 4- n ' 

uo 4 w  ui 4 1     0 
«3 i w      0     U3 4 1 • 

P(u) 
Ui  4 H 0 

w/_i 4 w     0 0 
Ul  4 H     Xl'l 4 S W3 4 S 

U{ 4 n • • w/-i 4 n ui 4 n 
0     • 0 «2 4 e 
0     • 0 w3 4 e 

Ui 4 1 • • •       0 U{ 4 e 

0     • • • u;_i 4 1 u/-i I e 

Ui 4 s • • • u;_i 4 s ui 4 1 

(6) 

Given an arbitrary (m x n)-picture P and r0, r\, r2, and r3 with 1 < r0 < 
•'1 < m and 1 < r2 < r3 < n, we define the subpicture of P determined by r0, 
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r3, denoted P[r0, ?'i, r2, r3], or, P[r] for short, to be 

^r0,r2       Pr0,r2 + l 

Pr0 + l,r2   "i-o + l,r2 + l 

-Pr0 + 2,r2 -Pr0+2,r2 + l 

P ri,r2 + l 

»•era 

ro + l,r3 

P ro + 2,r3 

Pr- 

(7) 

As with diagonal pictures, we describe subpictures of diagonal pictures by 
words. For this, we use two additional symbols: h, the horizontal clipping mark, 
and v, the vertical clipping mark. We write E for the sets of subsets of CU{h, v}. 

With P(u)[r] we associate the word u[r] over E defined by: 

\u[f]\ = «1, 
u[r]i n C = w. for i G u,- .HI. 
h G u[r], iff ro = i or ri = i, and 
v G u[f]i iff ?'2 = i or ?'3 = «. 

The important lemma about diagonal pictures is the following. 

Lemma 9. Let k > 0. Assume u and v are words over D and f and s are such 

that u[r] =7fc+4 v[s}. Then P{u)[r] =k P(v)[s). 

Proof. The proof goes by induction on k. 
Induction base, k = 0. By symmetry, it is sufficient to show that under the 

assumption u[f] =4 v[s], if P(u)[r] is atomic, then so is P(v)[s] and both pictures 
are identical. 

In general, a picture P(u)[f] is atomic if and only if r0 = ri and r2 = r3. This 
is true if and only if u[r] contains exactly one position i such that h G u[r]{ and 
exactly one position j such that v G u[f]j. Whether or not this is true is easily 
seen to be determined by the 4-equivalence class of u[r]. Hence, if u[r] =4 v[s] 
and P(u)[f] is atomic, then P(v)[s] is atomic as well. 

Furthermore, if a picture P(«)[r] is atomic, then: 

' u[f]ro 11 if r0 = r2, 
u[f]r2 4-n if 1 = 7'o < r2, 
u[f]ro I w if 1 = r2 < r0, 
u[f]r3 I s if 1 < r2 < ?*o = |«|, 
u[r]ro I e if 1 < r0 < r2 = |«|, 
0 otherwise. 

P(u)[r] = < 

It is now easily seen that the order relation between r0 and r2 as well as which 
of these two values is 1 or \u\ is determined by the 4-equivalence class of u[r], 
i.e., if u[r] =4 v[s] and P(M)[r] is atomic, then we are in the same of the above 
cases for both pictures P{u)[r] and P(v)[s]. 

Also, if u[r] =4 v[s], r0 = ?*i, r2 = r3, s0 = «l, and s2 = s3, then u[r]ro = 
v[s]$0 and u[r]ri = u[s]Sl. Thus, if u[r] =4 D[S] and P(«)[?;] is atomic, then 
P(u)[f] and P(v)[s] are identical. 
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Induction step. Assume that for all k' < k and all f' and s', if u[f'] =7k'+4 
v[s'], then P{u)[f'] =k> P(v)[s']. Assume also that u[f] =7k+n v[s\. Write P and 
Q for P(u)[r] and P(v)[s], respectively. We want to show P =fc+i Q. 

First, notice that we have P =/, Q by induction hypothesis, as u[f] =7^+11 
v[s] implies u[r] =7k+4 v[s\. So (K) holds. What we need to show in addition is 
that (J), (S), (J'), and (S') hold. By symmetry, it is enough to consider only (J). 

Let Pi and P2 be such that P = Pi m?2. There exists r4 such that r2 < r4, 

?'4 + 1 < ?"3, and 

Pi =P(u)[r0,r1,r2,r4]  , 

P2 = P(v)[r0,r1,r4 + l,r3]  . 

In the rest of this proof we will only analyze the situation where r2 < r4 and 
j'4 + 1 < r3; the other three cases (where r2 = r4 and r4 + 1 = r3, or r2 < r4 and 
r4 + 1 = r3, or r2 = r4 and r4 + 1 < r3) are simpler and can be dealt with in a 

similar way. 
There exist unique (possibly empty) words «i, «2, w3, and u4 and letters ai, 

a-2, 0.3, and 0,4 such that 

u[r] = «i(ai U {v})u2a2a3M3(a4 U {V})M4  , 

u[ro,r1,r2,r4] = «i(ai U {v})u2(a2 U {v})a3u3a4w4  , 

u[r0, r-i, r4 + 1, r3] = wiai«2a2(a3 U {v})u3(a4 U {v})«4  . 

Since we assume u[f] =7k+n v[s], we can conclude there are vi, v2, ^3, and v4 

such that 

- v[s] = vi(ai U {v})u2a2a3i>3(a4 U {v})v4, and 
- «1 =7A:+4 ^1, «2 =7fc+4 «2, «3 =7fc+4 ^3, and W4 =7fc+4 V4. 

Let s4 = |i>iaii>2a2| and define 

Qi = P(u)[s0,si,s2,s4]  , 

Q2 = P(v)[s0,s1,s4+ l,s3] . 

Then Q = Q\ mQ2, and to finish the proof we need only show Pi =k Q\ and 

P2 =* <52. 
From the definition of s4, we know: 

u[so,si,S2,s4] = vi{ai U {v})«2(a2 U {v})a3ii3a4V4  , 

t;[s0)si,s4 + l,s3] = ■i;iaiV2a2(a3U{v})^3(a4 U {v})v4  . 

Since (7/t + 4)-equivalence is a congruence relation on words, we obtain: 

«i(ai U {v})u2(a2 U {v})a3u3a4w4 =7fc+4 ^i(ai U {v})v2(a2 U {v})a3ü3a4v4  , 

uiaiU2a2(a3 U {v})u3(a4 U {v})w4 =7fc+4 via1v2a2(a3 U {v})t;3(a4 U {v})v4   . 

This implies, by the induction hypothesis, 

P(u)[r0,ri,r2,r4] =k P(v)[s0, «i, s2, s4]  , 

P(«)[r0,ri,r4+ l,r3] =fc P(v)[r0, n, r4 + l,r3]  , 

hence Px =k Qi and P2 =fc Q2- 
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5 A Combinatorial Lemma about Words 

As said above, we will define the pictures Pk and Qk we are looking for as certain 
diagonal pictures: we will set Pk = P{sk) and Qk - P{tk) for appropriate words 
sk and tk with specific combinatorial properties. The building blocks in the 
construction of these words are the words described in the following lemma. 

Lemma 10. Let A be an arbitrary finite alphabet, a e A, and k,m > 0. there 

exists a word uk>m such that 

- all words in {ukmA)*u^m are k-equivalent, 

- Uk,m £ (a>mA):a>m, and 
- Uk,m € A*(bA*)m+1 for every b £ A. 

Proof. By induction on Ar. Let A = {ai,..., an} and assume a = ax. 
Induction base. For k = 0, the following choice is obviously correct: 

u0,m = a1a1(a?a2a?a3a? ■ ■■a?ana?)m+1  . 

Induction step. Suppose uk>m is a word such that the above three conditions 

hold. Set 

Uk + l,m. = UklmUktma\Uk]mUk,ma2Uk,mUk]m ■ ■ • «fc,m«A:,m«nWfc,m«fc,m   ■ (8) 

We claim that this choice is correct. The second and third condition are obviously 

satisfied. 
By the induction hypothesis, all words in {ul+lmA)*ul+lm are ^-equivalent. 
Furthermore, if u = u'u" is a decomposition of a word from the set denoted 

by (U*+l,m-4)*Ufc + l,m> then 

- there exist w, w', w", and w'" such that u' = ww', u" = w"w'", w'w" £ 
uk,mAuk,m, and w =k uk,m =k w'" (by the induction hypothesis); or 

- I«'] < \iik,m\ and tnere exists w and w' such that u'w = ukim, ww' = u", 
and w' =k Uk,m (by the induction hypothesis); or, symmetrically, 

- |w."| < |wfc,m| and there exists w and w' such that w'u" = ukjm, ww' = u', 
and w =k Uk,m (by the induction hypothesis). 

On the other hand, every word from (Ufc+i,m^)*u*+i,m allows a11 tne decompo- 

sitions described above. Therefore, all words in (uk+lmA)*ul+ltm are (k + 1)- 

equivalent. 

6 Tying Things Together 

As pointed out in Section 3, all we need to do in order to prove that L+ is not 
star-free is to define pictures Pk £ L+ and Qk £ L+ and show Pk =k Qk, for 

k > 0. 
For notational convenience, write + for {1, n, s, w, e} and T for {1, s, w, e}. 
Let wk be the word u8k,2i7k from Lemma 10 with A = Z?\{+} and a = 0. Set 

sk = wk+wk and tk = wk$wk and define Pk = P(sk) and Qk = P{tk). These 
are the pictures we are looking for: 
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Proposition 11. For k > 0, 

1. Pk e L+ and Qk £ L+, and 

2. Pk' =k Qk' for all k' > k. 

Proof. The first claim is obvious (cf. (6)). 
The proof of the second claim goes by induction on k. The induction base, 

k = 0, is trivial. In the induction step, we assume Pk' =k Qk for all k' > k and 

need to show Pk' =k+i Qk' for all k' > k. 
Let k' > k. Write P and Q for Pk' and Qk'. We have to verify (A'), (J), (S), 

(J'), and (S'). By induction hypothesis, we know P =k Q, hence (K) holds. Of 
the other four requirements, we will only consider (S) in the rest of this proof. 
That (J), (J'), and (S') hold can be proven in a similar fashion. 

Let P = Pi BP2. Without loss of generality, assume Pi has less rows than 
P2. (Notice that Pi and P2 cannot have the same number of rows.) 

Also, assume that Pi and P2 have at least 2 rows. If this is not the case, the 
situation is simpler but changes would have to be made to the notation in the 
following. 

We have to find Q\ and Q2 such that Q = QiQQ2, Pi =k Qi, and P2 =k Q2- 
Let p be the number of rows of P (which is also the number of columns of 

P and the number of rows and columns of Q) and pi the number of rows of Pi. 

Then Pi = P(wk,+wk,)[l,pi, l,p] and P2 = P(wk>+wk-)\pi + l,p, l,p]- 
Write wki-\-wki as ais'a2azs"-\s'"a^ such that 

(wk,+wk,)[l,pi, l,p] = (ai U {h, v})s'(a2 U {h})a3s"+s"'(a4 U {v})  , 

(wk.+wk.)\pi + l,p, l,p] = (ai U {v})s'a2(a3 U {h})s"+s'"{a4 U {h, v})  . 

By definition of wk>, we know wki-rwki =gki wki. Therefore, there exist t' and 
t" such that wki = ait'a2a3t" and 

*' =8fc'-4 t'   , (9) 

s"-rwki =sk'-A t" ■ (10) 

Let qi — \ait'a2\, and define 

Qi =P(wkSwk,)[l,qi,l,p)  , (11) 

Q2 = P{wk,%wk,)[qi + l,p, l,p]  . (12) 

Clearly, Q = Qi BQ2. To conclude the proof, we show Pi =k Qi and P2 =k Q2. 
Proof of Pi =k Qi. First note the following. Since =8fc'-4 is a congruence 

relation, (10) implies s"-rivkSwki =sk'-4 t"9wk>, which, in turn, by assumption 
about wki, implies 

s"-rwk> =sk'-i t"%wki  , (13) 

hence 
s'SV" =8fc,_5 t"9s'" . (14) 

We now proceed by a case distinction on \s"\. 
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First case, \s"\ > l7k>. First of all, observe 

Pi = P(als'a2a3(s"+sl" 1 n)a4)[l,pi, l,p]  , (15) 

Qi = P(ai<,a2a3(i"0s/" l n)a4)[l, </i, l,p] . (16) 

Since |s"| > /T^, we can use Corollary 7 (part (a) or (b)) in combination with 
the definition of wk> to conclude: 

s"+s'" 1 n =7k, s"-rs'" 1 n . (17) 

This, together with (14) and Lemma 4, yields 

s"+s'" 1 n =7k,t"Qs'" 1 n . (18) 

Using the congruence property again and combining (9) and (18), we obtain: 

(ai U {h, v})s'(a2 U {h})a3{s"+s'" 1 n)(a4 U {v}) 

=7*'-3 («i U {h, v})t'(a2 U {h})a3(i"0s"' 1 n)(a4 U {v})  , 

which means, as &' > k, 

(a1s'a2a3(s"-rs'" 4 n)a4)[l,pi, l,p] =7*+4 P^i^'ü^as^'W 1 n)a4)[l, 9i, l,p]  • 

From this, (15), and (16), together with Lemma 9, now follows Pi =k Q\. 
Second case, \s"\ < l7k>. Write I for l7k>. Then \s'\ > I, and, by construction 

of wk>, we can write s' as so0' for an appropriate s0- Define pictures R and R' 

as follows: 

R - P(a1s0(9la2a3s"+wk' I n))[l, \ais0\, l,p]  , 

R' = P(a1so(0'a2a3s"0w;fc- 4- n))[l, |ais0|, l,p] • 

We have 0'a2a3s"a4+u>fe< J, n =7fc/ 0'a2a3s"'a$wk' \. n by Corollary 7(a), hence 

P. =fc R' by Lemma 9. 
Let Z be the unique ((/ + 1) x p)-picture over {0}. Then, by Lemma 8, 

R.BZ =k R'BZ. On the other hand, RBZ = Pi (recall that a2 = 0 by definition 
of wk')- So for the rest it is enough to show R'BZ =k Q\. 

By construction of R' and Z, we know 

R'BZ = P(a1s
,a2a3s"®wkl)[l,pul,p] ■ (19) 

Combining (9) and (13), we obtain 

(a1s'a2a3s"-rwkl)[l,pi,l,p]=sk'-4 {a1t'a2a3t"$wk,)[l,qi,l,p\ . (20) 

Thus, by Lemma 9, R'BZ =k Qx. 
Proof of P2 =k Q2- Combining (9) and (14), we obtain 

(ai U {v})s'a2(a3 U {h})s"-rV"(a4 U {h, v}) 

=8fc-_5 (ai U {v})t'a2(a3 U {h})i"0s"'(a4 U {h, v})  , 
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which means 

(a1s'a2a3s"-rwki)[pi + l,p, l,p] =7k+4 {a1t
la2a3t"9wkl)[qi + l,p, l,p] . 

Using Lemma 9, we conclude 

P{wk.-rwk>)\pi + l,p,l,p]=k P(wk>$wk,)[q1 + l,p,l,p]  , 

which means Po =k Qi- 

7    Concluding Remarks 

We have seen that the class of star-free picture languages is strictly included in 
the class of first-order definable picture languages, which clarifies an important 
aspect of the fine structure of the class of all recognizable picture languages. 

One obvious question is: what happens when the power of star-free picture 
expression is enhanced, for instance, by introducing a concatenation with four 
arguments? The proof methods presented here yield the following result: star-free 
picture expressions are strictly less expressive than star-free picture expressions 
augmented by the four-place concatenation, and these expressions are strictly 
less expressive than first-order logic. 

The second question that is interesting here is whether there is a constant 
k such that each first-order sentence over pictures is equivalent to a first-order 
sentence using k variables. This is true for words and k = 3, see [7]. 
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Abstract. We present a simple method to associate rewards with terms 
of the stochastic process algebra EMPA in order to make the specification 
and the computation of performance measures easier. The basic idea 
behind this method is to specify rewards within actions of EMPA terms, 
so it substantially differs from methods based on modal logic. The main 
motivations of this method are its ease of use as well as the possibility 
of defining a notion of equivalence which relates terms having the same 
reward, thus allowing for simplification without altering the performance 
index. We prove that such an equivalence is a congruence finer than the 
strong extended Markovian bisimulation equivalence, and we present its 
axiomatization. 

1     Introduction 

A commonly used method to specify steady-state performance measures for 
Markovian models is based on rewards [6]. The basic idea is that a number de- 
scribing a reward (or weight) is attached to every state of the Markovian model, 
and the performance index is defined as the weighted sum of the steady-state 

probabilities of the states of the Markovian model. 
So far the specification of performance measures in the field of stochastic 

process algebras has received a scarce attention. The main negative consequence 
is that the whole Markovian model underlying a given term has to be manually 
scanned by the designer in order to assign rewards to states. 

Recently, in [3] a technique to formally specify rewards for the stochastic 
process algebra PEPA [5] has been proposed. The idea is to express rewards 
by means of the Hennessy-Milner logic [4]: a logical formula is specified together 
with an arithmetical expression, and every state satisfying the formula is assigned 
the reward specified by means of the arithmetical expression. We shall call such 

a method logic-based. 
The idea of describing rewards through a modal logic seems to be quite 

adequate because modal logic formulae make assertions about changing state, 
hence they constitute an adequate link between algebraic terms, which describe 
the behavior of concurrent systems, and rewards, which are associated with 

states. 
In this paper we propose a different way to associate rewards with terms of 

stochastic process algebras. The idea is not to use a separate formalism in order 
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to specify rewards: they are directly described within the actions forming the 
algebraic terms. This method, which we shall call algebra-based, closely resembles 
the manual method consisting of associating rewards while scanning the state 
space of the Markovian model: the difference is that in the algebra-based method 
the algebraic term, which is much more compact than its underlying state space, 
is scanned and the appropriate actions are assigned a reward. The algebra-based 
method could be convenient due to its ease of use, since the designer is not forced 
to know the modal logic formalism, its low computational cost, as rewards are 
associated with states during the construction of the semantic models without 
the need to check for a modal logic formula, and the possibility of defining a 
congruence which equates terms having the same reward, thereby allowing for 
simplification without altering the performance measure. 

The purpose of this paper is to extend the theory developed for the stochastic 
process algebra EMPA [1, 2] in order to deal with rewards according to the 
algebra-based method. In Sect. 2 we show that several performance measures 
can be derived using the algebra-based method. In Sect. 3 we introduce the 
syntax and the semantics for EMPA augmented with rewards. In Sect. 4 we 
define an equivalence which relates two terms if they have the same reward, we 
prove that such an equivalence is a congruence strictly contained in the strong 
extended Markovian bisimulation equivalence, and we present its axiomatization. 
In Sect. 5 we report some concluding remarks. 

2    Deriving Performance Measures 

In this section we show by means of an example that the algebra-based method 
we are going to introduce, though less powerful in general than the logic-based 
method proposed in [3], allows the designer to easily specify several steady-state 
performance measures frequently occurring in practice such as those identified 
in [3]: rate type (e.g. throughput of a service center), counting type (e.g. mean 
number of customers waiting in a service center), delay type (e.g. mean response 
time experienced by customers in a service center), and percentage type (e.g. 
the fraction of time during which a server is busy). 

The example we consider is taken from queueing theory, and concerns a 
queueing system M/M/n/n with arrival rate A and service rate /i [7]. Such a 
queueing system represents a service center composed of n independent servers, 
such that the customer interarrival time is exponentially distributed with rate A 
and the service time of each server is exponentially distributed with rate ß. The 
queueing system at hand can be given two different descriptions with EMPA: 
a state-oriented description where the focus is on the state of the set of servers 
(intended as the number of servers that are currently busy), and a resource- 
oriented description where the servers are modeled separately [9]. Recalling that 
"<a, A>._" is the prefix operator where a is the action type and A is the action 
rate (a positive real number in the case of exponentially timed actions, oo;iU, 
in the case of prioritized weighted immediate actions, and * in the case of pas- 
sive actions), "_+ _" is the alternative composition operator, and ~-\\s -" 's the 
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parallel composition operator with synchronization set 5, the state-oriented de- 
scription is given by 

SystemM/M/nin = Arrivals \\{a} Servers^ 

Arrivals = <a, A>.Arrivals 

Serverso — <a,*>.Servers\ 

Serversh = <a, *>.Serversll+i + <s,h- n>.Serversh-i,   1 < h < n - 1 

Serversn = <s,n- fj,>.Serversn-i 
whereas the resource-oriented description is given by 

System^/M/n/n = Arrivals\\{a} Servers 

Arrivals = <a, A>. Arrivals 

Servers = SIL 5 11» ... \U 5 

S = <a, *>.<s, p>.S 

In order to highlight the difference between the logic-based method and the 
algebra-based method for assigning rewards to stochastic process algebra terms, 
we compute for the queueing system above the mean number of customers in 
the system. Since every state must be given a reward equal to the number of 
customers in that state, we proceed as follows: 

- In the case of System'^/M/n/„, the reward specification used in the logic- 
based method is (s)tt => rate(s)//M, i.e. every state having an outgoing 
transition with type s is given a reward equal to the rate of that transition 
divided by /z. Using the algebra-based method, every action of the form 
<s,h- p> must be replaced by <s, h- p,h> (and any other action must be 
replaced by a triple with zero reward). Thus, in such a case the two methods 
are equally simple. 

- In the case of SystemrM/M/n/n, the logic-based method turns out to be more 
complex because the modal logic formula must somehow count the num- 
ber of possible consecutive actions with type s that can be executed: as 
a consequence, the rewards can be specified through the set composed of 
(s)->{s)tt => 1, (s)(s)-.(s)« => 2, ..., (s){s)... (s)-i(a)tt => n. If we use 
instead the algebra-based method, all we have to do is to replace every action 
of the form <s,p> with <s, p, 1> as we assume that rewards are additive 
(by analogy with rates of exponentially timed actions and weights of imme- 
diate actions), i.e. the reward gained by a state is the sum of the rewards 
labeling its outgoing transitions. Therefore, in such a case the ease of use 
of the algebra-based method becomes evident, and it would be even more 
evident if we considered e.g. a queueing system similar to the previous one 
where a FIFO queue with a given capacity is introduced in front of the set 
of servers: since the delivery of a customer from the queue to the server has 
to be modeled by means of an action, and since actions of type s are inter- 
leaved with actions of this kind, the formalization of modal logic formulae 
that capture the number of customers in the system is really difficult. 
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To conclude this section, we show that other performance measures for the 
queueing system above can be easily specified with the algebra-based method, 
and that this capability depends on the style used to represent the system: 

- If we want to compute the throughput of the system, defined as the mean 
number of customers served per time unit, we have to take into account the 
rate of actions having type s. As a consequence, in the case of System M/M/n/n 

we must replace every action of the form <s, h ■ n> with <s, h ■ ß,h ■ y,>, 
while in the case of Systemr^/M^n^n we must replace every action of the form 
<s,fi> with <s,fx,n>. 

- If we want to compute the mean response time of the system, defined as 
the mean time spent by the customers in the system, we can exploit Little's 
law [7] which states that the mean response time of the system is equal to 
the mean number of customers in the system divided by the customer arrival 
rate. Therefore, in the case of SysterriM/M/n/n we must replace every action 
of the form <s, h-(j,> with <s, h-fj,, h/X>, while in the case of System*^ j M j n I n 
we must replace every action of the form <s,/x> with <s,fi, 1/A>. 

- If we want to compute the utilization of the system, defined as the fraction 
of time during which servers are busy, we have to single out states having 
an outgoing transition labeled with s. Thus, in the case of SystemM/M/n/n 

we must replace every action of the form <s, h ■ p> with <s, h ■ p, 1>. We 
observe that, unlike the logic-based method, in the case of System^/M/n/n 
the algebra-based method cannot be used to determine the utilization of the 
system due to the additivity assumption: the rate to associate with actions 
of the form <s,/i> would be the reciprocal of the number of transitions 
labeled with s exiting from the same state. Since the main objective of the 
algebra-based method is its ease of use, we prefer to keep the specification of 
rewards as simple as possible, i.e. just by means of numbers: thus we avoid the 
introduction of arithmetical expressions as well as particular functions such 
as the one determining the number of transitions of a given type exiting from 
the same state. Incidentally, the inability to compute the utilization in the 
case of the resource-oriented description should not come as a surprise, since 
this description is more suited to the determination of performance indices 
concerning a single server instead of the whole set of servers. As it turns 
out, it is quite easy to measure the utilization of a given server specified in 
SystemM,M,n,n, whereas this is not possible for System M/M/n/n- This means 
that the style [9] used to describe a given system through an algebraic term is 
strongly related to the possibility of deriving certain performance measures 
through the algebra-based method. 

3    Syntax and Semantics for EMPAr 

In this section we extend the syntax and the semantics for EMPA [1, 2] in order 
to cope with the presence of rewards treated according to the algebra-based 
method outlined in the previous section: the resulting stochastic process algebra 
is called EMPAr. 
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As usual, the building blocks of EMPAr are actions. Each action is a triple 
<a, X, r> consisting of the type of the action, the rate of the action and the re- 
ward of the action: the third component is new with respect to the structure of 
EMPA actions. Like in EM PA, actions are divided into external and internal (r) 
according to types, while they are classified as exponentially timed, immediate 
or passive according to rates. Since exponentially timed actions model activities 
that are relevant from the performance standpoint, nonzero rewards can be as- 
signed only to them. We denote by AType the set of types, by ARate = R+U/n/U 
{*}, with "inf = {ooiiU, | I G N+ A w G R+}, the set of rates, by A Reward = R 

the set of rewards, and by Actr = {<a, X, r> G AType x ARate x AReward \ X G 
Inf U {*} => r = 0} the set of actions. We use a, b, c,... as metavariables for 

AType, A,/i,7,.-- for ARate, A,M,7,--- f°r R+. and r, r', r",... for AReward. 
Finally, we denote by PLevel = {-1} U N the set of priority levels, and we 
assume that * < A < oo/iU, for all A G R+ and oofiU, G Inf. 

Let Const be a set of constants, ranged over by A, B,C,..., and let RFun = 
-O : AType —► AType | ip(r) = r A <p{AType - {r}) C AType - {r}} be a set of 

relabeling functions. 

Definition 1. The set CT of process terms of EMPAr is generated by the fol- 

lowing syntax 
E ::= 0 | <a, X, r>.E | E/L | E[<p] \ E + E \ E \\s E \ A 

where L,S C AType - {r}. The set £r will be ranged over by E,F,G,.... We 
denote by Qr the set of guarded and closed terms of Cr. ■ 

We recall from [1, 2] that the alternative composition operator is parametric 
in the nature of the choice: the choice is solved according to durations in the 
case of exponentially timed actions (race policy) and according to priorities and 
weights in the case of immediate actions (preselection policy), while it is purely 
nondeterministic in the case of passive actions. We also remind that, concerning 
the parallel composition operator, a synchronization can occur if and only if the 
involved actions have the same type belonging to the synchronization set, and 

at most one of the involved actions is not passive. 
The integrated semantics of EMPAr terms can be defined by exploiting again 

the idea of potential move: the multiset l of the potential moves of a given 
term is inductively computed, then those potential moves having the highest 
priority level are selected and appropriately merged. The formal definition is 
based on the transition relation  ►, which is the least subset of Qr x Actr x 
gr satisfying the inference rule reported in the first part of Table 1. This rule 
selects the potential moves having the highest priority level, and then merges 
together those having the same action type, the same priority level and the same 

1 We use "{|" and "|}" as brackets for multisets, ". © _" to denote multiset union, 
Mufin{S) {Vfin(S)) to denote the collection of finite multisets (sets) over set S, 
M{s) to denote the multiplicity of element s in multiset M, and x;(Af) to denote 
the multiset obtained by projecting the tuples in multiset M on their i-th component. 
Thus, e.g., (ffi(PA/2))(<o,*, 0>) in the fifth part of Table 1 denotes the multiplicity 
of tuples of PMi whose first component is <a, *,0>. 
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(<a,Ä. r>,£') € Meltr{Selectr(PMr{E))) 
a,X,r 

E E' 

PM r(0) = 0 

PMr(<a, X, T>.E) = {| (<a, Ä, r>, E) |} 

PMr(E/L) = {| (<a, X, r>, £'/!) I (<a, Ä, r>, £") € PMr(£) A a ft 11} 0 
{| (<r, Ä, r>, E'/L) | (<a, Ä, r>, E') € PMr(£;) A a € L |} 

PA/r(£[yj]) = {| (<v(a), Ä, r>, £'[*>]) | (<a, X, r>, £') € PMr(£) |} 

PA/r(£i + E2) = PMr(Ei)® PMr{E2) 

PA/r(£i ||s £2) = {| (<a, Ä, r>, E[ \\s E2) \ a £ S A (<a, Ä, r>, E[) € PA/r(£i) |} ( 
{| (<a, X,r>,E1\\sE!>)\atSA (<a, Ä, r>, £J) € PMr(£j) |} ( 
{|(<a,7,r>,^||s^)U€5A 

(<a,A,,r1>,£0€PMr(£i) A 
(<a,Ä2)r2>,^)€PMr(£2) A 
7 = 7Vormr.,rate(a,Ä1,Ä2)PA/r(JE1),PA/r(£2)) A 
r = ATormrireward(a)r1,r2,PA/r(£1),PMr(£2))|] 

PMr(A) = PMr(E)       \i A = E 

Selectr(PM) = {] (<a, Ä, r>, E) € PM | PLr(<a, Ä, r>) = -1 V 
V(<6, A, r'>, £") € PA/. PLr(<a, X, r>) > PLr(<b, ß, r'>) \ 

PLr{<a, *,0>) = -1       PIr(<a,A,r>) = 0      PLr(<a, oc(,„,, 0>) = / 

Meltr(PM) = {(<a,X,r>,E) | (<a,£,r'>, £) e PM A 
Ä = Min{|7 | (<a,7,r">,£) € PM A PLr{<a, 7, r">) = PLr(<a, £, r'>) |] A 
r = £{| r" I (<a> 7, r">> E)ePM A PIr(<a, 7, r">) = P£r(<a, A, r'>) |}} 

* A/in * = *      Ai A/in A2 = Ai + A2       ooiyW1 A/in ooi|U,,, = ooi.u^+u,. 

v /    I    i    PM-    p., >      / 5p/!'t(ÄIll/(x1(PM2))(<a,*,0>))if Ä2=* 
/Wmr,rate(a, Aj.A., PA/:, PM2)= I Sp^2| 1/(xi(pMi)){<a ^0>))ifAi = + 

,v r pu     PM \       fn/(x1(PA/2))(<a,*,0»if r2=0 
iWmr,reu,ard(«,r1,r2,PM1,PM2)= |r2/{xi(pMi))(<a^0>).f ^ =0 

Split(*, a) = *      Split(X,a) = X ■ a      Split(ooi,w, a) = oci.w.a 

Table 1. Inductive rules for EMPAr integrated interleaving semantics 
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derivative term. The first operation is carried out through functions Selectr : 
Mufin(Adr x QT) —► Mufi„(Actr x gr) and PLr : Actr —> PLevel, which are 
defined in the third part of Table 1. The second operation is carried out through 
function Meltr : Mufin(Actr x Qr) —► Vfin(Actr x Gr) and partial function 
Hin : (ARate x ARate) —e* ARate, which are defined in the fourth part of 
Table 1. Observe that function Meltr sums the rewards of the potential moves 
to merge: this is consistent with the additivity assumption about rewards. 

The multiset PMr{E) e Mufin(Actr x Qr) of potential moves of E 6 Qr is 
defined by structural induction in the second part of Table 1. The normalization 
of rates and rewards of potential moves resulting from the synchronization of 
an action with several independent or alternative passive actions is carried out 
through partial functions Normrirate : (AType x ARate x ARate xMufin(Actr x 
gr) x MufiniActr x gr)) -&* ARate and Normr>reward : (AType x AReward x 
AReward x Mufin(Actr x Qr) x Mufin(Actr x gr)) -e->AReward, and function 
Split : (ARate x R]o,i]) —► ARate, which are defined in the fifth part of Ta- 
ble 1. Observe that the normalization of rewards is consistent with the additivity 
assumption about rewards. 

Definition 2. The integrated interleaving semantics of E 6 £r is the labeled 
transition system Ir{Ej = (1E,Actr,  >E,E) where ]E is the set of states 
reachable from E, and  *E is  ► restricted to ]E x Actr x IE. ■ 

As in [1, 2], from the integrated semantic model it is possible to obtain a 
functional semantic model (by dropping action rates and rewards) as well as a 
performance semantic model (basically by dropping action types and by lifting 
rewards from transitions to states according to the additivity assumption). Due 
to lack of space, we do not show the related definitions here. 

4    A Notion of Equivalence for EMPAr 

In [1, 2] we developed a notion of equivalence for EMPA called strong extended 
Markovian bisimulation equivalence and denoted ~EMB ■ Such an equivalence 
was defined according to the idea of probabilistic bisimulation [8] on the inte- 
grated semantic model, and we proved that it is necessary to define it on the 
integrated semantic model in order for the congruence property to hold. For the 
sake of convenience, we can extend ~EMB to EMPAr since it disregards rewards, 
provided that like in [1, 2] we introduce a priority operator "©(_)" and we con- 
sider the language Cr,e generated by the following syntax 

E ::= 0\ <a,X,r>.E \ E/L \ E[<p] \0(E) \E + E\E\\SE\A 

whose semantic rules are those in Table 1 except that the rule in the first part 
is replaced by 

(<o, Ä, r>, E') € Meltr(PMr(E)) 
a,X.r 

E *E' 
and the following rule for the priority operator is introduced in the second part 
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PMT{0{E)) = Selectr(PMr{E)) 

It is easily seen that EMPAr coincides with the set of terms {©(E) \ E € Cr}. 
We denote by QV]@ the set of guarded and closed terms of £r,e- 

One of the advantages of the algebra-based method, besides its ease of use, is 
the possibility of defining a notion of equivalence for EMPAr which relates terms 
having the same reward, thus allowing for simplification without altering the 
value of the performance index we are interested in. Exploiting the lesson learnt 
with ~EMB i we define this new equivalence on the integrated semantic model. For 
simplicity, one may be tempted to relate strongly extended-Markovian bisimilar 
terms having the same total reward, intended as the sum of the rewards attached 
to the actions it can execute. However, in this way one would fail both to capture 
an equivalence preserving the performance measure at hand and to obtain a 
congruence. 

Example 1. Consider terms 

A = <a, A, r>.<b, ß, ri>.A 

B = <a,X,r>.<b,n,r2>.B 
where n ^ r2. Then A ~EMB B and A and B have the same total reward r, but 
if we solve the two underlying performance models we obtain two different values 
of the performance measure we are interested in: r • /i/(A + p) + rx ■ A/(A + fj.) 
and r •///(A +/x) + r2 • A/(A+/x). ■ 

Example 2. Consider terms 
Ei = <a, A, rx>.0 + <b, y,, r2>.0 
E2 = <a, A, r2>.0 + <b, p, r1>.0 

where ri ^ r2. Then E\ ~BMB E2 and E\ and E2 have the same total reward 
r\ + T2, but e.g. E\ ||{j,j 0 has total reward ri while E2 ||{j} 0 has total reward 

r2. ■ 

The examples above show that if we want to preserve the performance measure 
and to obtain a congruence, we cannot treat rewards separately from the rest 
of the actions: rewards must be checked in the bisimilarity clause in order to 
guarantee that, given two equivalent terms, they have the same total reward and 
any pair of equivalent terms reachable from them have the same total reward. 

Below we show that it is really easy to extend the definition of ~EMB in such 
a way that both objectives are achieved. Proofs of results are omitted whenever 
they are smooth adaptations of the corresponding proofs in [2]. 

Definition3. We define partial functions Rate, Reward, RR with domain or,® x 
AType x PLevel x V(Qrt@) and ranges ARate, AReward, ARate x AReward re- 
spectively, by 

Rate(E,a,l,C)= Min^X \ E-^-^ E' A PLr(<a, Ä,r>) = / A E' 6 C [} 

Reward(E, a, I, C) - £{] r | E -^-^* E' A PLr(<a, Ä, r>) = I A E' G C [} 
RR(E,a,l,C) = (Rate(E,a,l,C),Reward(E,a,l,C)) m 
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Definition4. An equivalence relation B C Qr@ x QT<@ is a strong extended 
Markoman reward bisimulation (strong EMRB) iff, whenever (Ex,E2) G #, then 
for all a G AType, I G PLevel and C € Qr,e/B 

RR(Eua, I, C) = RR(E2, a, I, C) 
In this case we say that E\ and En are strongly extended-Markovian reward 

bisimilar (strongly EMRB). ■ 

Propositions. Let ~EMRB be the union of all the strong EMRBs. Then ~EMRB 

is the largest strong EMRB. ■ 

Definition 6. We call ~EMRB the strong extended Markovian reward bisimula- 
tion equivalence (strong EMRBE), and we say that Ei,E2 G GT,e are strongly 
extended-Markovian reward bisimxdation equivalent (strongly EMRBE) if and 

only if E\ ~EMRB E2. * 

Proposition 7. ~EMRB C ~EMB ■ 

Proof. It follows immediately from the fact that every strong EMRB is a strong 

EMB too. ■ 

The following example shows that the inclusion is strict. We would like to point 
out that this is not inconsistent with ~EMB- The purpose of ~EMB is to relate 
terms describing concurrent systems having the same functional and performance 
properties: if Ei ~EMB E2 but Ei ^EMRB E2, this simply means that we are 
measuring two different performance indices for Ex and E2. 

Example 3. Consider terms 
A = <a,X,l>.<b,iJ,,0>.A 

B = <a,X,0>.<b,fj.,l>.B 
Then A ~EMB B but A ^EMRB B. If we regard a and b as the transmission 
over two different channels, then by means of A we can compute the utilization 
of the former channel, whereas by means of B we can compute the utilization of 

the latter channel. • 

Theorem 8. Let Eu E2 G QTt@- If Ei ~EMRB E2 then: 

1. For every <a,X,r> G Actr, <a,\,r>.Ei ~EMRB <a,X,r>.E2. 
2. For every L C AType — {r}, E\/L ~EMRB E2/L. 
3. For every ip G RFun, E\[(p] ~EMRB E2[<p]. 

4. 0(EX) -EMRB &(E2). 
5. For every F G Gr,e, Ex + F ~EMRB E2 + F and F + Ex ~EMRB F + E2. 
6. For every F G Gr,e and S C AType - {T}, EX \\S F ~EMRB E2\\S F and 

F \\s Ex —EMRB F \\s E2. ■ 

Theorem 9. ~EMRB is preserved by recursive definitions. ■ 

Theorem 10. Let Ar be the set of axioms in Table 2. The deductive system 
Ded(Ar) is sound and complete with respect to ~EMRB for the set of nonrecursive 

terms of Gr.e- * 
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(A.i)   (£1 + E2) + E3 = E1+ (E2 + Es) 
(Ar.2)   Ex + E2 = E2 + Ei 
(Ar,3)   £+_0 = £ 
(ATA)   <a,\i,ri>.E + <a. Ä2. r2>.E = <a,\i Min\2,ri + r2>.E 

if PLr(<a,Äl,ri>) = PLr(<a,\2,r2>) 

(Ar,,)   0/7 = 0 

{ATfi)   «a, A, r>.E)/L - | <rj ^ r>_(£;/jT) if 0 £ L 

(X.y)   (E1+E2)/L = E1/L + E2/L 

Mr,»)     0[<p] = 0 
(.4r,9)   (<a, Ä, r>.£)[¥>] = <v>(o), Ä, r>.(£[d) 
(A-,10) (Ei + E2)[V] = Eilv] + E2[<p] 

Mr,n)0(O) = O 

(^r,12)0(^<a.,Ä,,r,>.JB,)= £«*.,,ÄJ,'-J>.0(£J) 

where 7= {i € 7 [ Ä, = * Wl 6 7. PLr{<ai, A,,r,>) > PLr(<oh, Ah,rh>)} 

(A,i3)0||sO = 0 

(Ar.u) ('t<a„~X„rl>.El)\\sO= E <OJ.^.'
-
J>-(

£
> Ikfi)      where J = {i € / | a; £ S} 

M-MS) 0 ||s(E <a" *., r;>.£.) = E <0J. ^> rJ>-(0 Ik EJ)      
where J = {* S / | a, £ S} 

.6/ >ev 

(Ar.u) (E <«.,Äl,T-,>.£,)lls(E <a,,Ä„r,>.£;i) = 

E  <aj,Äj,r>>.(£>||s E <a..A,,7-,>.£.) + 
jeJi ieh 
E  <aJ,ÄJ,r-J>.(E <a,,X,.r,>.E,\\sEJ) + 

E        <at, Split(Xk, l/nk). rk/nk>.(Ek \\s Eh) + 
keKx^h£Hk 

E        <ak,Split(\k, 1/nfc). rk/nk>.{Eh \\s Ek) 
fceA'2AheHk 

where 7i = {J € 7i | a, ^ 5} 
72 = {«' € 72 | a, i S] 
R\ = {jj e 7i | 3i2 € 72.a<! = a;, g 5 A A,, = *} 

K2 = \i2 6 72 I 3ti € A.Oi, = a,, S 5 A Ä,, = *} 

Hk = {A € 72 | ak = ah A \h = *} with fc G A'i 
Hk = {h e h \ ak =ah A\h = *} with fc 6 A_2 

Table 2. Axioms for ~EMRB 
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5     Conclusion 

In this paper we have introduced an algebra-based method to attach rewards 
with EMPA terms in order to derive performance measures. As observed in 
Sect. 2, though less powerful in general than the logic-based method proposed 
in [3], the algebra-based method may be convenient due to its ease of use, its 
low computational cost and the possibility of defining a notion of equivalence 
accounting for rewards. Furthermore, it has been a really easy task to extend 
the theory developed for EMPA in order to take into account rewards according 
to the algebra-based method. 

Concerning future work, we could allow the designer to associate rewards 
with immediate actions as well, because in this way we could derive performance 
measures also when we restrict ourselves to the probabilistic kernel [2] of EMPA. 
Finally, the algebra-based method will be implemented in a software tool (we are 
currently developing) based on EMPA for the modeling and analysis of functional 
and performance properties of concurrent systems. 
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Abstract 

In this paper we present two actor languages and a semantics preserving translation between them. The source of 
the translation is a high-level language that provides object-based programming abstractions. The target is a simple 
functional language extended with basic primitives for actor computation. The semantics preserved is the interaction 
semantics of actor systems—sets of possible interactions of a system with its environment. The proof itself is of 
interest since it demonstrates a methodology based on the actor theory framework for reasoning about correctness of 
transformations and translations of actor programs and languages and more generally of concurrent object languages. 

1    Introduction 
In this paper we continue our investigation of the actor model of computation [Hew77, Agh86, Agh90, AMST97, 
Tal96b, Tal96a]. Actors are independent computational agents that interact solely via asynchronous message passing. 
An actor can create other actors; send messages; and modify its own local state. An actor can only effect the local state 
of other actors by sending them messages, and it can only send messages to its acquaintances - addresses of actors it 
was given upon creation, it received in a message, or that it created. Actor semantics requires computations to be fair. 

We take two views of actors: as individuals and as elements of components. Individual actors provide units of 
encapsulation and integrity. Components are collections of actors (and messages) provided with an interface spec- 
ifying the receptionists (actors accessible from outside the component) and external actors (accessible from but not 
existing inside the component). Collecting actors into components provides for composability and coordination. Indi- 
vidual actors are described in terms of local transitions. Components are described in terms of interactions with their 
environment. 

The actor model provides a natural framework for inter-operation of multiple languages since the details of the 
code describing an individual actors behavior are not visible outside that actor. All that needs to be common is the 
messages communicated among the different actors. In [Tal96b], this intuition is formalized using the notion of an 
abstract actor structure. Here we generalize the notion of an abstract actor structure to an actor theory. Actor theories 
provide a general semantic framework for specifying and reasoning about actor systems as well as for reasoning about 
relations between different actor languages. An actor theory plays the role of a theory that axiomatizes the behavior 
of individual actors. The models of an actor theory account directly for the interaction (exchange of messages) of 
a actor component with its environment. Each model of an actor theory gives rise to a corresponding semantics of 
actor components. Two important models are: computation paths—analogous to labelled transition system semantics; 
and interaction paths—obtained from computation paths by omitting details of internal computation. These give rise 
to computation path and interaction semantics, respectively. Both semantics are composable and as we will see, 
interaction semantics is largely insensitive to the particular choice of actor language. 

In this paper we illustrate the ideas and techniques based on actor theories by showing how they can be used 
to establish the correctness of a translation from a high-level actor language to low level actor language such as 
might be found in compiler preprocessor. The low-level kernel language, k£, is an extension of a simple functional 
language based on the call-by-value A-calculus with primitives for actor computation. The high-level user language, 
"C, provides object-based programming abstractions. Each of the languages is given a semantics by defining a 
corresponding actor theory. We give a separate semantics for the user language in order to be able to reason directly 
about user programs. The correctness theorem shows that we can also reason about user programs by translating to the 
kernel language and reasoning in terms of the kernel semantics. The translation, uSk, from the user language to the 
kernel language eliminates the object-based programming abstractions in favor of the simple actor primitives. The 
main result presented there is that the translation, u2k, preserves the interaction semantics. 
Theorem (user-to-kernel): Isem("P) = Isem(u2k("P)) \"M where "P is a user language program, hem maps 
programs to their interaction semantics, and [Tvl restricts the kernel interactions to user language messages. 

The proof that the translation preserves interaction semantics itself is of interest since it demonstrates a methodol- 
ogy for proving correctness of transformations and translations of actor languages and more generally of concurrent 
object languages. For the proof we lift the translation to semantic configurations that correspond to the possible actor 
system states and show that the following diagram commutes 

up       uSl\      kp 

l-U 4- 1-1 
"K     ^    kK 

where P is a top-level program, K, is a configuration, and [.] gives the semantics of a program in terms of the initial 
configuration that it describes. (We use the following convention: if X is some entity, then we use the super-prescript 
"A" to indicate that A' belongs to the user language and kX to indicate that X belongs to the kernel language. So 
for example "K is an user language configuration.) The proof is completed by showing that interaction semantics is 
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preserved by translation at the semantic level Isem(aK) = Isem{u2k{aK))\"M.. This proof involves establishing a 
correspondence between the (possibly infinite) computations of two systems. The actor theories defined for each of the 
languages correspond to standard transition system semantics with transitions that are small and easy to understand, but 
exp°ose much irrelevant detail. We make use of a general interaction semantics preserving actor theory transformation 
that can be thought of as moving from a small step a big step operational semantics. Changing the level of abstraction 
of the operational semantics of a fixed language is a general technique useful for reasoning about systems at the 
desired level of detail. Reasoning about the level changing transformation on actor theories and the language changing 
translation is simplified by using ideas from the rewriting logic model of concurrent computation [Mes92, Ta!96a] to 
define notions of computation path equivalence. 
Notation: We use the usual notation for sets, functions, finite sequences, etc. Let Y be a set. We specify meta- 
variable conventions in the form: let y range over V, which should be read as: the meta-variable y and decorated 
variants such as y', y0 range over the set Y. Mu [Y] is the set of (finite) multi-sets with elements in Y. 0 is the 
empty multiset and if A', and X2 are multisets, then X0 , Xi is the multiset union of the two. 

2   A Semantic Framework for Actors 
In this section we introduce actor theories as a general semantic framework for actor computation. The notion of 
actor theory provides an axiomatic characterization of actor languages: the basic features, capabilities, and con- 
straints. Actor theories can be considered as an operational alternative to the domain theoretic behaviors used by 
Ciinger [Cli81]. Actor theories are a simplification and generalization of the notion of abstract actor structures pre- 
sented in [Tal96b, TaI96a]. 

An actor theory describes individual actor behaviors and their local interactions in a representation independent 
manner. An actor theory specifies sets of actor names, actor states, message contents, and labelled reaction rules. 
Actor names are the means of uniquely identifying individual actors. Actor states are intended to carry information 
traditionally contained in the script (methods) and acquaintances (values of instance variables), as well as the local 
message queue and the current processing state. Message contents represent the information that can be communicated 
between actors, both locally and as interactions with the environment. Reaction rules determine what an actor in a 
given state can do next and how it will respond to messages with given contents. More generally reaction rules 
describe synchronous interactions of groups of actors and messages. Reaction rules are labelled. These labels are used 
in deriving a labelled transition system semantics. In this way the labels provide information concerning the basic 
observations that can be made as an actor system evolves. An actor theory must obey the fundamental acquaintance 
(locality) laws of actors [BH77, Cli81] in addition to renaming laws that express the fact that computation is uniformly 
parameterized in the choice of actor names—renaming commutes with everything. To state these laws an actor theory 
also provides a primitive operation to determine the acquaintances of (actor names occurring in) the various entities 
and a primitive operation to rename them. 

The operational semantics of an actor theory is given by the transition relation on configurations derived from the 
reaction rules. A configuration can be thought of as representing a global snapshot of an actor system with respect 
to some idealized observer [Agh86]. It contains a set of receptionist names, a set of external actor names, and a 
collection of actors and messages. The sets of receptionist names and external actor names are the interface of an 
actor configuration to its environment. They specify what internal actors are visible from the environment, and what 
actor connections must be provided for the configuration to function. Both the set of receptionist names and the set of 
external actor names may grow as the configuration evolves. The collection of actors and messages is the interior of 
the configuration. It specifies the internal actors and their current states, and the state of the internal message system. 
Configurations evolve either by internal computation or by interaction with the environment. The transition relation 
expresses the ways a configuration might evolve and interact with its environment. The computation path semantics 
of a configuration is the set of fair computations possible starting with that configuration. Interaction semantics gives 
a more abstract view of an actor system, specifying only the possible interactions (patterns of message passing) a 
svstem can have with its environment. Interaction semantics is the result of hiding all information concerning the 
internal computations and what actors may be present beyond the receptionists. 

The term reaction rule is used here in the same spirit as in the Chemical Abstract Machine [BB92J to indicate local 
interactions of reactive entities. Actors and messages can be thought of as special kinds of molecules and interiors are 
like solutions Actor theories are in fact a special case of rewrite theories and we the mechanisms we use to derive the 
computations of a actor system are based on those of rewriting logic [Mes92]. 

An actor theory is a structure AT of the following form: AT = < <A,S,M,L>, {acq, .), RR). AS, M-, L 
arc the primitive sorts of AT. A is a countable set of actor names, S is a set of actor states, M is a set of message 
contents and L is a set of labels. From the primitive sorts we form actor entities (briefly actors), AE, messages 
Mse and configuration interiors, I. We let a range over A, M range over M, s range over S, I range over L, and 
I ran^e over I [ s ] „ is an actor with name, a, in state, s and o < M is a message with addressee, a, and contents, M. 
A configuration interior, /, is a multiset of actors and messages in which no two actor entities have the same name 

RR is a set of reaction rules that specify the behavior of individual actors and their synchronization with other 
internal actors and messages. Elements of RR are triples of the form /:/=>/' where I is the rule label, / is rule 
source, and/'is the rule target. T       _ rA1    .       , 

The primitive operations of AT are: acq and ".. The acquaintance function, acq : S U M U L -> K, [Aj, gives the 
(finite) set of actor names occurring in a state, message contents, or label, acq extends homomorphically to structures 
built from the primitive sorts. Actor addresses cannot be explicitly created by actors, and the semantics cannot depend 
on the particular choice of addresses of a group of actors. A renaming mechanism is used to formulate this requirement. 
We let Bii(A) be the set of bijections on A (renamings) and let a range over Bij(A). For any such a, a is the 
associated renaming function on states, message contents, and labels. Renaming is extended naturally to structures 
built from addresses, states, and values. For example S( [*].) =  l<*(s)] o(„,. Renaming, a, commutes with the 
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acquaintance function and is determined by the restriction of a to the acquaintances of an object. It is a bijection on 
A U M U L. To state the axioms for reaction rules, we define two auxiliary functions: InAct, ExtAct : I -> VU[A], 
InAct(I) is the set of names of actors that occur in I, and ExtAct(I) is the set of names of external actors referred to 
in /: InAct(I) = {a e A | (3s € S)( [s] „ € /)}        ExtAct(I) = acq{I) - InAct{I). 
Axioms for Reaction rules (RR)    If 7: J =W € RR, then 
(i)    InAct(I) jt 0 
(ii)    I: I0 => I{, € RR implies InAct{J) = InAct(I0) and InAct{I') = InAct(Io) 
(iii)    InAct(I) C InAct(J') C acq(l) 
(iv)   ExtAct(I') C ExtAct(I) 
(v)   5(7) : 3(7) => S(I') £ ÄÄ for any renaming a in Bü(A) 
(i) states that reactions must involve at least one existing actor; (ii) states that a label uniquely determines the actors 
involve in a reaction; (iii) states that actors cannot disappear and that the actors involved in a reaction must be made 
explicit as acquaintances of the reaction label; (iv) states that no references to external actors are acquired in an internal 
transition, although some may be forgotten; and (v) states that the set of rules is closed under renaming. 
If I: I =S- I' € RR, we call InAct(I) the old actors of 7 and InAct(I') - InAct(I) the new actors of 7. 

An actor configuration is a configuration interior, 7, together with two sets of actor names: the receptionists p , 
which are a subset of the internal actors of the interior; and the externals x which include all actors mentioned in the 
interior that are not internal actors. 
Definition (Configurations, K):     K = {^ I j    | p C InAct(I) A ExtAct{I) C x}. We let K range over K. 

The computations of a configuration are given by the labelled transition relation: K —> K'. K is the source of 
the transition and K' is the target and I is the label. Transition labels are either rule labels, input/output labels, or a 
special idle label, idle. An input label has the form in(a < M), indicating a message coming in from the environment. 
An output label has the form out(o < M) indicating a message transmitted to the environment. We now let the range 
of I include these additional transition labels. 
Definition (Transition rules): 

(internal)    ^ I0 , I)' -A ( h , I)'    if I : Io => h <Z RR 

(in) (jY "^ (l,a<M\' if a £ p A acq(M) n InAct(I) C p 
\       II X \\ II XU(oCq(M)-p) 

(out) ( /, o < M )       -U  ' ( / J if a i InAct{I) 

In (internal) we assume that the configurations are well-formed - InAct(h) n InAct(J) = 0, p C InAct(Io) U 
InAct(l), and ExtAct(I0J) C X- 

The computation paths of a configuration, V(K) are the computation paths whose initial configuration is K. 

Definition (Computation Paths, V, V{K)):     V is the set of sequences, TT, of the form 

7T = [K, -i-» K,+l \ i £ N]       V{K) = {i£P[   if is the source of TT(0)} 

A finite computation is a path in which all but a finite number of the transition labels are idle. Recall that actor 
computations are required to be fair. Thus we do not want to consider arbitrary paths, only the fair ones. A computation 
is fair if whenever a transition is enabled, either it eventually fires or it becomes permanently disabled. We only 
consider enabledness for transitions whose label is a reaction rule label or an output label. We can not force the 
environment to do an input and the idle transitions are simply ignored for the purpose of fairness. T(K) is the fair 
paths for K. 

In analogy to thinking of a sequential procedure as a black box characterized by its input/output relation, we would 
like to think of an actor system as a black box characterized by the set of possible interactions with its environment. 
Thus we define the interaction semantics of an actor system in such a way as to hide the details of internal transitions. 
The interaction semantics of a configuration is its set of possible interaction paths. An interaction path of a configu- 
ration is an infinite sequence of interaction labels together with an initial interface consisting of a pair of finite sets of 
actor names (the receptionists and externals). An interaction label is either an input/output label or the special sign, 
T", standing for possible internal activity. The infinite sequence of interaction labels in an interaction path is obtained 
from a computation path by mapping internal transitions to silent transitions. 

The function isem maps transition labels to interaction labels and computation paths to interaction paths. The 
receptionists and externals of isem(x) are those of the initial configuration of 7r. The interaction sequence of wem(7r) 
is the sequence of labels obtained by replacing internal and idle transition labels to T* . 
Definition (isem(ir) Isem(K)): 

ti\-jT~    if7eLU{idle} 
isem(l) - < ;      if/ £ in(Msg) u out(Msg) 

Vft + l 
isem(Tr) = i?™    where   7r(i) = (ü)     -=-> (■fi+i) and   #(i) = isem{k)    for   i€N 

hem(K) = {isem(Tr) | -a £ F(K)} 
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So far we have been working in the context of a fixed, but arbitrary actor theory. In the case that we consider inter- 
action semantics in more than one actor theory, we index Isem by the name of the actor theory, writing IsemAT(K). 
It is sometimes convenient to restrict the interactions of a configuration with its environment by restricting the possible 
set of input messages. For V C M, we define Isem(K) \V to be set of interaction paths f e Isem(K) whose input 
labels are messages with contents in V. 
Definition (Isem(K)\V): 

Isem(K)\V = {isem{n) | TT € F(K) A (Vi g N, a € A, M <E M)(jr(i) = in(a « M) => M 6 V)} 

For a given actor language, we usually define the reaction rules for an actor theory by giving the semantics in terms 
of basic reduction steps for expressions of the language. We call this a small step actor theory. It is simple to define, but 
gives rise to computations with many small and mostly uninteresting steps. In the following we show how to transform 
such an actor theory' in to big step actor theory which preserves the interaction semantics of the language. In the big 
step theory internal computation steps are those that create actors, send messages, or involve some synchronization of 
actors and messages, thus suppressing further details of internal computation of an actor. 

The key ideas motivating the transformation are the notions of silent step and that of a path being in big-step 
form. A silent step is one involving a single actor that creates no new messages or actors. A path in big step 
form consists of input/output transistions and non-silent steps each preceded by the necessary silent steps to pre- 
pare the reacting actors. For AT = { (A,S,M,L),(acf,t),ÄÄ ) we define its big-step variant AT* by AT'9 = 

((A, S,M, L*), (acgt, ?f>, ÄÄ* > where 

RR* = {/':/=> /' | (3/")(J A/"A(: /" => I' €RR   a non-silent rule} 

and / -^+ /" is sequence of silent steps. The crucial property of the big step operation is that it preserves interaction 
semantics. Let AT be an actor theory and let K be a configuration of AT. Then 
Theorem (small2big):     IsemAT(K) — IsemAT\ (K) 

The proof relies on the ability to put paths into big-step form. 

3    The Kernel Language 
We assume given an infinite set of variables, X. We also assume as given a collection of basic or atomic data. At, that 
includes the°booleans t, f € Bool, Scheme style symbols, Sym, (Sym includes nil, the empty or null list), (con- 
stants denoting the elements of) the integers, Z, and actor names, A. Expressions are built from atoms and variables by 
the following operations: A-abstraction, application of primitive operations to sequences of expressions, conditional 
branching, and an actor creation construct. The primitive operations include operations on basic data and pairs, and 
kernel primitives manipulating actors, procedures, and local continuations. The data operations dOp contains the 
recognizers: boolean? for booleans, symbol? for symbols, integer? for integers, cons? for pairs, and actor? for 
actors (all of arity 1); pairing cons, car, cdr (arities 2, 1, 1); the equality predicate, equal?, on atomic data; and the 
usual arithmetic operations, aOp. We consider actor addresses to be atomic data and consequently can tell one address 
from another. The functional specific primitives are procedure?, the recognizer for procedures (arity 1), app, lambda 
application (arity 2), and clc, control abstraction (arity 1). We include app in the list of primitive operations as a tech- 
nical convenience, to make the syntax more concise. The actor primitives consists of an actor creation construct plus 
the operations: self (of arity 0), the name of the executing actor; send, asynchronous send (arity 2); ready, establish- 
ing behavior for receiving (arity 1). Actor creation expressions are of the form letactor{i0 ™ eo,...xt :— et) e 
where the x; are pairwise distinct variables. Executing a letactor expression creates a new actor entity <H for each 
i, executing expressions a with x{ bound to a*. The original executing actor then proceeds by executing e (with x{ 

bound to a;). 
The top level syntactic construct is a kernel program which describes a configuration. For convenience, kernel 

programs may include a library of mutually recursive definitions. For this purpose we reserve a subset kPunId of X 
to be used as function names. 
Definition (Kernel Programs): 

''M = At U cons(fcM, kM)        ''Program = program(receptionists : VU[A},    externals : 7>„[A] 

library : 7>„[FunId := AX.'E] 

actors : VU[A := *E] 

messages : Ma[A<kM]) 

where the function identifiers in the library part and actor names in the actors part must be distinct, and all actor 
names occurring in an actor state or message contents must either be one of the actor names defined in the actors 
part or one of the names occurring in the externals part. Message contents are simply values built up from the 
atomic data via the pairing operation cons. Lambda abstractions and structures containing lambda abstractions are 
not allowed to be communicated in messages. 
Definition (Kernel Expressions): 

''O = dOp U {procedure?, app, clc} U {self, ready, send} 

At = A U Bool U Z U Sym 

"E = X U At U AX* U 0„(E„) U if (E, E, E) U letactor{(X := fcE)+}kE 
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We let x,y,z range over X, a ranges over A, ke ranges over ^E, kM ranges over kM. The binding constructs are 
letaetor and A. Ax.e binds the variable x in the expression e. letactor{... x; := \ ... }ke binds the i,- in 
each of the \, and also in ke. Two expressions are considered equal if they are the same up to the renaming of bound 
variables. For any expression e, we write FV(e) for the set of free variables of e. We write e'[x := e] to denote the 
expression obtained from e' by simultaneously replacing all free occurrences of S by e, avoiding the capture of free 
variables in e. We use standard abbreviations: let, for lambda application; boolean functions not, and, boolean func- 
tions; and letrec-p^id,- = Ai.ke}]<J<t \, for mutual recursive definition. We also use the following definitions 

for structuring message contents. 

list„ = A11.A12 Ai„cons(ii,cons(i2,. ■■ cons(x„,nil))) 

msgMk = Aimid-A3;8rgs.Aicvl8flist3(2;mid,Xarg5,icust) 

As indicated earlier, the semantics is given by defining an actor theory, kAT. The only primitive sort of kAT that 
remains to be defined is the set of kernel actor theory states, 'S. 
Definition ('S):     'S = {ke 6 *E | FV(ke) = 0} 
The acquaintances of an state (or message contents for that matter) is simply just the actor names occurring therein and 
renaming is simply substitution. The meaning of a kernel program is defined to be a configuration of kAT as follows. 

Definition (fkPJ):     Let kP be given by 

program(receptionists : p,   externals : x,   library : {kfidj = Ax. e}i<j<i 

actors : { [ve}■] „,}!<.,<„,,   messages: {aj <kMj}1<j<n) 

then lkPj = ( kI Y where kI = { [letrec{k^. := Ax.ke}i<;<j \ ] 0). }1£j<m ,  { [kM, ] „. }1£j,£n 

To complete the semantics all that remains is to define the reaction rules. To do this we decompose each non-value 
expression as a reduction context filled with a redex. Reduction contexts identify the subexpression of an expression 
that is to be evaluated next using the standard call-by-value reduction strategy of [Plo75] and were first An expression 
e is either a value or it can be decomposed uniquely into a reduction context filled with a redex. Thus, local actor 
computation is deterministic. 
Definition (kV '"E.-dx kR): The set of values, kV, the set of redexes, 'Erdx, and the set of reduction contexts, 
kR, are defined by 

ty = At U consfHr, "V) U AX.^ 

■^rd* = (^„(V) - cons(kV,kV)) U if (kV,kE,kE) U letactor{(X := kE)+}kE 

■n = {.} u ko„+m+i (kvn, kR, kEm) u if (kR, kE, "E) 

We let kR range over kR. With the exception of the actor primitives letaetor send, and ready, reduction steps 
are silent - they only depend on information local to the executing actor and only effect the state of the executing 
actor. Thus we define a sequential reduction relation, e -^-*^ e', on expressions that lifts uniformly to define the silent 
reaction rules. The decoration X is an abstract context introduced to make the dependence on local context explicit. 
We use a function self{kQ that extracts the name of the executing actor from % To define the sequential relation, we 

first define the purely functional reduction relation r —>^ e which gives the rules for redexes that do not manipulate 
the reduction context. The rules are standard and are omitted. The sequential reduction relation is then defined by 
lifting functional reduction and adding the rule for clc. 
Definition (Sequential steps ( -^-*\ )): 

(rdx)   kR{e\ -^ kR[e']    ifkeMK
ke' 

(clc)    kÄ[clc(kt;)l -^ app(V Xx.kR[x])        x $ FV(kÄ[nil]) 

clc captures the actors local continuation, R, as a function, \x.R\x\, and applies its argument ^ to this function, in 

the empty reduction context (the local top level). We let —>y^ be the reflexive, transitive closure of —y\ . Now 

we are ready to define the reaction rules of kAT. 
Definition (kiJÄ): 

seq(a) : [ke] „ => [V] „    if ke -^ V    where    seZ/ft) = a 

send(a) : [kÄ[send( W)]] . =*• [kÄ|[nil]|] „ , kEmÜ(kv0 <kt>i) 

ready(a,kAf): [kÄ[ready(kt>)J] „ ,  a«kAf =4> [app(VkM)] „ 

leta(o, 5) : [kÄ[letactor{x := ke} keJ] „ =*■ [kfi[ke[x := a]]] „ ,  { [kei[x := a]] ,*}!<;<„, 

ifLen(S) = Len(x) = m and 2 0 acq(kR[ke, ke]) = 0 
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Where vEmit(^v0 < V) = k»o " "^l if "^o € A and ^i £ kM, otherwise it is 0 The meta-function kBmit prevents 
ill-formed messages from getting into the system. The labels of kAT are 

seq(A) U send(A) U ready(A, kM) U leta(A, A*) 

where in the case of leta(o, 3) we require a g 3. acq(l) is just the union of old and new except for the delivery label 
where acg(ready(a,kM)) = {a} U acq(kM). Again, renaming is just substitution. 

4   The User Language 
The user language has the same variables, basic data, actor names, and data operations as the kernel language. In 
addition we assume given two disjoint, countably infinite sets of identifiers: Funld for functions; and Behld for 
behaviors. Expressions are built from atoms and variables by the following operations: application of primitive 
operations to sequences of expressions, let binding, conditional branching, the letactor actor creation construct, 
and asynchronous and synchronous method invocation. The primitive operations include dOp and following user 
primitives: self, as in the kernel; customer, the customer of the current message (arity 0); fid{, user defined oper- 
ations (arity i) for i e N,fid e Funld; and readyki(fj, specifying the behavior for the next message (arity i) for 
i € N, bid € Behld. An asynchronous invocation is of the form ue„ < mM[ue]@uec. The target of the request is 
the value of ue„ and the message contents has method name mid, arguments "e and customer, "ee. Once the target, 
arguments, and customer are evaluated, nil is returned as the value and the requesting actor proceeds with its com- 
putation without waiting for a reply. A synchronous invocation (also referred to as a request or remote procedure call) 
is of the form ue„. mid[ne}). The target of the request is the value of "ea and the message contents has method name 
mid, arguments ue. The requesting actor suspends execution until a reply is received. A ready expression is of the 
form ready ii(i „("ei,..., ue„) (also written ready(6id(uei,... ,ue„))). Execution of a ready expression terminates 
processing of the current message and looks for the next message enabled for the behavior bid with parameters given 
by the values of the uei. If there is no enabled message in the local message queue the actor waits for one to be 
delivered. In the user language there is no lambda abstraction and thus no functions as values. Instead, each program 
contains a library of (mutually recursive) function and behavior definitions. A behavior definition has the form 

behavior bid(p)(methodDefs). 

where bid a the behavior identifier, p is a parameter list (a list of distinct variables), and methodDefs is a set of method 
definitions. A method definition has the form 

method mid(p)[disable - vhenue<i]ue"' 

where mid is a method name (a symbol from Sym), p is a parameter list, "edc is the [optional] disabling condition 
(assumed false when not present) that specifies when a method can be invoked, and uem is the method body. "ec is 
required to be functional, i.e. its evaluation involves no actor primitives other than self or customer. For consistency 
we require that a method (i.e a method identifier) should have a unique definition within a given behavior. The free 
variables of constraints and method bodies must be among the method parameters or the behavior parameters. A 
function definition has the form 

function fid (p)ue 

where fid is a function identifier, p is a parameter list, and ue is an expression, the function body. The free variables 
of the function body must be among the function parameters. 
Definition (User Programs and Libraries): 

"M = MethId["V']@(A U {nil})    Program = program(receptionists : P„[A],  externals : 7>„[A] 

library : Vu [(BehDef U FunDef)] 

actors : 7>„[A := TEJ,  messages : M„[A < Tvl]) 

where the actor names in the actors part must be distinct, and all actor names occurring in an actor state or message 
contents must either be one of the actor names defined in the actors part or one of the names occurring in the 
externals part. We let "M range over "M. We let c range over A U {nil} and we may omit the customer part if it is 
nil. Message contents consist of a method identifier (symbol), an argument list (a list of values), and a customer (an 
actor name ornil signifying no customer). We identify Methld with Sym and let mid range over Methld and use 
mid to stand for a symbol used as a method identifier. mid[v]@c abbreviates the list construction msgMk(rm'd", v, c). 
We use the the following meta functions: msgMeth(M) selects the method component; msgArgs(M) selects the 
arguments component; and msgCust(M) selects the customer component. A library is well-formed if it contains at 
most one definition of each fid e Funld, and bid € Behld, and these definitions themselves are well-formed. We 
let x. y, and p range over lists of distinct variables. User expressions, "E, are defined in a manner similar to kernel 
expressions and we omit the details. We let ue range over "E. 

As for the kernel language, the semantics is given by defining an actor theory "AT. Since libraries do not evolve 
we parameterize the actor theory by the library of definitions in force, letting library be just part of the auxiliary axioms 
describing the actor theory. Thus to give the semantics we need only define user states, VS (since the message contents, 
"M, have been explained above) and give "RR, relative to the given library. 
There are five kinds of actor states: 

c, Q) - processing message with customer c, with current state ue; 
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• lbid("v) Qi QT) - traversing the queue of delivered but unprocessed messages, Q = Qi * QT, looking for an 
message that is not disabled. The current behavior is bid("v), The message (contents) in Qr have been checked 
and rejected (i.e. they are disabled). The messages in Q, are yet to be checked; 

• (tp,"M.bid{"v), Qt- Qr) checking disabling constraints of behavior bid for message uAf. 

• la' "R c Q) -waiting for a reply to a request. nR is a reduction context-the continuation of the computation 
upon receipt of an answer, a' is an actor created to serve as a reply address, to distinguish the request-reply from 
other arriving messages. 

• (a) - the state of an actor serving as a reply address for a request sent by a; 

where a a' are actor names, ue is an expression (of the user language), c is a customer - and actor name or nil, ip is 
functional expression, "M is the contents of a user message, and Q is a mail queue - a sequence of messages (or more 
precisely their contents). .     „   • ,    .■ .   . 

A state of the form (ue, c, Q) is an execution state. It attempts to step by decomposing "e into a reduction context 
and redex and reducing the redex. It is hung if the redex fails to reduce. A state of the form (bid("v), Qt,.Qr) is an 
execution state if Q, is not empty. If "v does not match the parameter list of the definition of bid then the state is 
hun° Otherwise it steps by starting evaluation of the constraints associated, m the behavior definition for bid with 
the method name of the first message in Q,. If Q, empty then the state is waiting for delivery of a message (having 
already walked through its queue and found no enabled messages). A state of the form (ip, M, btd(y), Qr, Qi) steps 
by evaluating <p one step if it is not a value expression. If ip is the value f, then it starts evaluation of the method body 
associated with the method of "M in the behavior definition for bid. If ip is a value other than f then "Mis considered 
disabled and put on the end of rejects queue, QT. States of the last two forms occur in pairs [ a , UR, c, Q ] * , [ o] „. 
that are waiting for a reply to a request by a that will arrive as a message to a', serving as a unique request identifier. 

The meaning of a user program is defined to be a configuration of "A T as follows. 
Definition ([UPJ):     Let UP be given by 

"P = program(receptionists : p,  externals : x,   library : Lib 

actors : {a, := ueJ}i<;j<m,  messages : {oj <uMi}i<j<„) 

then fP] = ("/)" where"/ = {[uej,nil,nil] ,)1S<„ , {a- <u^'}i<J<n 

To complete the'definition of "AT we must give the reaction rules. We first define some auxiliary meta functions 
and predicates to ease definition of rules concerning behaviors and methods: behUatch(Lib, bid, y) tests whether the 
parameters of ready expressions match those of the behavior definition; cstrExp(Lib,bid,"v,mid(^ )@c) extracts the 
constraint associated with a method; and methExp(Lib, bid,'S, mid{*v')@c) extracts a method body from a library 
given a behavior identifier, a parameter list, and a message. We write ue\p := 8] for the simultaneous substitution of 
the sth value in €■ for the »th variable in p. This is defined only when p and v have the same length. The definition 
of cstrExp reflects the fact that a message is considered disabled if there is no matching method definition and that 
messages with matching method definitions are by default enabled if there is no explicit disabling constraint. ^ 

As in the kernel language, to give the reaction rules, we first define the sequential reduction relation "e —>x "e' 
parameterized bv and abstract context %. We also use a function customer^) to extract the customer of the current 
message. We define the values "V, reduction contexts "R and redexes "Erdx of the user language, anaogous to the 
kerneflanguage definitions, again giving the unique decomposition property for non-value expressions. We let 

"R range over "R. The relations -^ and -^ are defined similarly to the kernel case and again we omit details. 

We iet _%y^ be the reflexive, transitive closure of -^ . Notice that the sequential rules are sufficient to evaluate 
functional expressions, in particular we only need the sequential rules to check constraints. 

The labelled reaction rules for the user language are given by the following. 
Definition ("RR): 

seq(a) : [ue, c, Q] a => l"e',c,Q)„        if "e-^-f... V 

send(a): [ufl[uu < mid("v)@"v'], c, Q] a =*■ [uÄ[nil], c, Q] „ , aEmü(\ < mid("vWv') 

rpc(o,ao) : ["£["« • mid{"v)\, c, Q) „ =*■ [ao,"R, c, Q] „ ,   [a]«, , uEmit{uv< m:dC8)@no) 

if oo $ acq{l"Rla' .mid("f>)],c, C)„) 

rcv(a.ao,u"): [°o,u-R,';, Q]„ ,   [o]^,   ao < mid(["v] * "S)@c' =*■ ["£[»], c, Q] . ,   [nil.nil, [ ]] v 

deliver(a,u,\f): lbid{"v), [], Q] a ,   a <UM =*• lbid(%), [aM], Q] „ 

walk(a) : [uß[ready(fci<i(v,S))]]1
uM, Q] „ =*• [bidCv), Q, []] .        if behMatch(Lib, bid,'*) 

leta(a,tt): [uÄ[[letactor{ä; := ue}ue], c, Q] „ =*• [uÄ[ue[ä := a\], c, Q] a , { [ue,[ä := 5), c, []] 0l}i<i<ifc 

if Len(ö) = Len(i) = k and 5 n ac?("Ä[letac:tt>r{i := "e}"e], c, Q) = 0 

cstr(n) : [ bid{"v), [UM] * Qi,Qr]*=* [ cstrExp(Lib, bid,"v,uM),"M ,bid("v), Qt, Qr] . 

enable(a): [f ,"M. bid{"V), Qi, QA a => [methExp{Lib,bid,'iD,aM),msgCust{uM),Qi* Qr]a 

disable(o) : [uv."M, bid("v), Qt, Qr] a => [bid{"v), Qt, Qr *["M]] *        iCv^i 

check(a) : [ueo,uM, bid{"v), Qt, Qr] a =*  [uei,"M, bid{"v), Qt, Qr) a        if ueo-^„,m.,c«,.(»M) % 
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where "Emit{uv < UM) = "v < "M if "v e A and msgCusVM 6 A U {nil}, otherwise it is 0. As in the kernel 
language, the meta-function "Emit prevents ill-formed messages from getting into the system. 

5   A Semantics Preserving User to Kernel Translation 

In this section we define a translation, %2k : "C -+ kC and show that this translation preserves interaction semantics. 
u2k is a family of maps, one for each syntactic category. The members of the family are distinguished by context 
of application rather than by name. Programs are translated by translating the library, actors, and messages parts. A 
library is translated by translating the function and behavior definitions, producing a kernel language library. An actor 
description is translated by translating the expression part assuming it executes in a local context in which the current 
message has no customer and message queue is empty. A message description is translated by simply eliminating the 
syntactic sugar. The core of the translation is its behavior on expressions. Expressions are translated in the context 
of a user library. In order to leave this dependence implicit, we adopt a standard convention about converting user 
function and behavior identifiers into variables and assume sufficient renaming has been done to avoid conflicts. The 
translation u2k("e) of a user expression is a lambda term of the form Xc.Xq.ke which when applied to a customer, c, 
and a message queue, q, (represented as a list) reduces to a kernel expression that corresponds to the user expression 
executing in a local context where the current message has customer c and message queue elements are the elements 

of q. We use the following abbreviation u2k" (ue, c, q) = app(u2A(ue), c, q)) in defining the translation. 
The translation of the expression forms that are common to the two languages as well as customer and asyn- 

chronous send are straightforward. It amounts to passing the customer and message queue parameters to the translated 
subexpressions. The translation of synchronous invocations (requests) and readybid are where care is needed. In 
the user language, the transition that delivers the reply to a request involves two actors, the actor requesting the reply 
and the actor created to serve as the reply address, as well as the reply message. Kernel actor transitions involve at 
most one actor. The three-body interaction is replaced by a delivery to the reply address followed by a forwarding 
and delivery to the requesting actor. To avoid forgery, we introduce a third actor which has null behavior and simply 
serves as a secret key known only by the requestor and the actor serving as the reply address. The forwarded message 
is tagged with this key. 

The translation of a readybid expression must produce code to walk the message queue, checking the disabling 
constraints for the method of each message. If an enabled message is found, then the translated method body is 
executed. If the end of the queue is reached, then the actor executes ready with a behavior that treats the next message 
delivered as the next element of the message queue to check. 

We begin by defining the mapping on programs, and work our way down to expressions. Programs are translated 
as follows: 

u2fc(program(receptionists : p    externals : x —     program(receptionists : p   externals : \ 

library : "Lib library : u2k(uLib) 

actors : {(a := uej)i<,<i actors : {a,- := u2k"("e,-,nil,nil)}Ki<i 

messages : {aj < Mj}J<i<n)) messages : {aj < Mj}1<i<n) 

To translate function definitions we associate a kernel function symbol ^fid to each user function identifier, fid. 
The translation of a definition of fid yields a definition of 'fid. The translation of behavior definitions is a little more 
complex. For each defined behavior identifier, bid, the translation consists of definitions of three operations: kbid, the 
top level behavior function; Qvs.lk[bid], controls the queue walking for bid; and Mcheckf&id], checks constraints for 
a particular message. 

User functions, behaviors and methods have parameter lists. The translated operations will be applied to a list of 
arguments and must check if the number of arguments is correct and then bind these to the individual parameters. For 
this purpose, we define a family of abbreviations parBind[p, t;, e] that binds elements of p to corresponding elements 
of v in e. The translation of a function definition is given by: 

u2k(i\mctionjid(p)''e) = kfid := Xc.Xq.Xy.lt (not(equal?(length(y),n)), 
hang, 
parBind(p,y, u2k'("e,c, q))) 

where Len(p) = n and hang is some functional redex that fails to reduce, for example car(nil), thus hanging the 
computation if the arguments do not match the parameters. 

Let mcthodDcfs be {method mid,(pi)[disable - when "e?]"e™ \ i < mw] ("ef is taken to be to f if no 
disabling constraint is present). The translation u2fc(behavior bid(p)(methodDeJs)) of a behavior definition with 
Len(p) = n is kbid = Xq.Xy.if(not(equal?(length(y),n)),nil,Qwalk[&:d](g,nil,i/)) Qvs.lk[bid](qi,qr,y) 
waits for a message to be delivered, if qi = nil and otherwise calls Hdheck[bid](cdr(qi),qr,y){csr(qi) to check the 
first element of?;. Hcheck[bid](qi,qT,y)("M) looks for a method definition matching "M. If none exists, or if the 
matching method method is disabled relative to the behavior parameters, y and the message arguments, then it calls 
Qu&lk[bid](qi, append(gr, list{uM)), y). Otherwise it reduces to the appropriately instantiated method body. 

We give the clauses for the most interesting cases: 

u2fc(customer()) = Xc.Xq.c 

u2k(fid("e,,..., "en)) = Xc.Xq.xppffid, c, q, list„(u2r ("ei, c, j),... u2k' (%, c,«))) 
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,i2/t(letactor{o, := "e,}1<1<„ "e) = Ac.Ag.letactor{aj := u2k'("a, c,nil)}1<i<„u2i"(ue,c,g) 

u2i(ready(Mdfei,..., "e„))) = Ac.Ag.let{ij := u2k"("ei, c, ?)>!<;<„ 
let{y := list„(u,... ,i„)} 

clc(A/.app(k6i<i, q,y)) 

u2k("eo . mid["ei,..., "e,,]) = 

Ac.Ag.let{i; := u2f("ej,c, g)}0<v<„ 

let{m„g, := list„(n,... ,!„)} 

letactor{aj(ey := nil} 

let{6 := RpcAm(self (), ak«y)} 

letactor{u> := ready(ft)} 

seq(send(io, msgMk(mi<2, margB, w)), 

clc(Afc.ready(RpcWait(k, Okey)))) 

where the following definitions are also added to the generated kernel library of any program translation 

RpcAux = Ai„.Aik«yAm.send(i„,msgHk(nil, listi(car(msgArgs(m))),ikcy) 

RpcWait = Afc.AikeyAm.if (equal?(xkcy,msgCust(m)), 

app(fc, car(msgArgs(m))), 

seq(send(self(),m),ready(RpcWait(i:,ik=y)))) 

To establish correctness of the user-kernel translation, we extend it to actor theory configurations and show that 
this mapping preserves interaction semantics. The following lemma says that the user-to-kernel translation commutes 
with the meaning function on programs. This formalizes the commuting diagram of § 1. 
Lemma (user-to-kernel.l):     For any user program, "P, [u2k{"P)] = u2k(l"P]) 
Proof:     By calculation using the definitions of [ ], and u2k. 
The main work of the proof is in the following lemma. 
Lemma (user-to-kernel.2):     For any user configuration "K we have 

Isem{uK) = Jsem{u2k(uK))\"M. 

The main theorem is an easy consequence of the above lemmas. 
Theorem (user-to-kernel): 

Isem("P) = Isem{u2k{"P))l"M 

6    Conclusions 
The main technical contribution of this paper is to present a method for establishing equivalence of actor systems, 
or more «enerally for distributed object-based systems. The main result of this paper is a proof of correctness of 
what is essentially a stage of compilation of a high-level actor language. In [PT94] high-level object programming 
constructs are explained by expansion in the Pict language. In [Wal95] a semantics for a variant of POOL is given 
via translation to a sorted Pi calculus. This is shown to be a simulation (up to bisimulation ) of a direct transition 
system operational semantics of POOL. Core Facile is a synthesis of the typed lambda calculus and pi-calculus style 
concurrency primitives. In [Ama94] a translation from Core Facile to a variant based on asynchronous communication 
is given. The translation of a process is shown to preserve barbed bisimilarity and barbed congruence of the translation 
of two expressions implies congruence of the expressions. The converse is left open. The translation goes by an 
intermediate language obtained by adding a control operator to the asynchronous Facile much as we have done in 
the kernel language. In [AP94] an extension of the Pi-calculus to model locality and failure is translated in to a 
simply sorted Pi-calculus and similar properties are proved for the translation. Our approach differs in giving both 
languages an abstract, composable semantics in the same semantic domain and showing that the translation preserves 
the abstract semantics. The notion of barbed bisimulation seems to share with abstract actor structures and interaction 
semantics the objective of hiding details of internal computation. More detailed investigation of the relation between 
these approaches is an interesting topic for future work. 
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Abstract. In this paper we address min-max equations for periodic and 
non-periodic problems. In the non-periodic case a simple algorithm is 
presented to determine whether a graph has a potential satisfying the 
min-max equations. This method can also be used to solve a more general 
quasi periodic min-max problem on periodic graphs. Also some results 
regarding the uniqueness of solutions in the latter case are given. 

1    Introduction 

Min-max problems can be considered to be a generalization of a variety of graph 
problems involving potentials. There is a close relationship with network flow 
problems (non-periodic case), see e.g. [1], and the well known maximum cycle 
mean problem (periodic case), see e.g. [10], [8]. In particular, previous results in 
the non-periodic case can be related to a feasible potential function p observing 

lower linear constraints 

p(vj) < p{vi) + w(vi,Vj)    VVJ £ V-,(vi,Vj) £ E (1) 

and an optimal potential function p using min constraints 

p(vj)=     min    {p{vi)+w{vi,Vj)}    VWJ £ V (2) 

associated with some network g-{V~,E,w). Our paper addresses a generaliza- 
tion where these sets of inequalities are mixed for a given network g(V,E,w) 
with their dual forms, that is upper linear constraints 

p(vj) > p{vi) + w{vu Vj)    VVJ £ V+, {vi, Vj) £ E (3) 

and max constraints 

p(vj)=    max   {pivj+wivi^j)}    Vu,- £ V+ (4) 
(vi,vj)eE 

with V+ UV~ = V. If a distance function d is given additionally, the correspond- 
ing quasi periodic problem deals with edge weights w{vi,Vj)-X(vj)d(vi, Vj) where 
a specific period X(VJ) is associated with each node Vj. 
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In the area of interface timing verification, see [11, 17, 19], problems related 
to the existence of min and/or max constraints frequently occur. There, the dif- 
ference between the potentials of two nodes must be maximized under various 
constraints. In particular, it is possible to transform one of the problems ad- 
dressed in [11], [17] and [19] to a problem with mixed constraints (1), (2) and 
(3). Different pseudo-polynomial algorithms are derived for the solution of this 
problem based on iterative tightening [11], removing negative cycles [17] and 
maximum separations [19]. However so far, neither a polynomial algorithm nor 
a proof of intractability is known. 

In comparison to these results, we are mainly dealing with constraints (2) 
and (4). Note that constraints of the form (1) or (3) can easily be converted into 
constraints (2) and (4) by a simply adding one additional node and two edges for 
each node Vj with constraints of type (1) or (3). Regarding the non-periodic case 
our paper presents efficient pseudo-polynomial algorithms for finding optimal 
potentials satisfying constraints (2) and (4). 

The consideration of constraints (4) in connection with periodic graphs has 
raised significant interest in the past, as it is the root for many problems from 
different application areas, see [9, 14, 10, 8]. This includes e.g. control theory 
and manufacturing [5], timing properties of discrete event systems [15], parallel 
algorithms [16], and other areas of computer science. A comprehensive treatment 
of the theory and its applications can be found in [2]. Especially the use of linear 
equations over a new max-plus algebra [5, 2] has produced many results. Some 
of these results have even been generalized to problems which are periodic in 
multiple dimensions, see [3]. 

Driven by application areas like asynchronous circuit design, timing and pro- 
tocol verification, and timing behavior of general Petri nets, some recent ap- 
proaches addressed the generalization of these results to dynamic graphs with 
constraints of the form (4) and (2). These dynamic min-max systems have been 
investigated in [12, 13, 2]. Further results in this direction are described in [6, 7]. 
However, the models used in these two groups of papers are quite different. Olsder 
[12, 13] describes a periodic min-max problem in terms of an eigenvalue problem, 
whereas Gunawardena [6, 7] defines a certain class of min-max functions. Both 
models are special cases of those used in our paper. 

Also with respect to numerical procedures and the uniqueness of the period, 
the results in [12, 13] are restricted to a subclass of min-max problems. On 
the other hand, [6, 7] contain "complete" results in the case that only two dis- 
tances have the value 1 while all others are zero. For all other considered cases 
(d(vi,Vj) € {0,1}), there is no procedure which decides whether a min-max sys- 
tem has a period or not. Moreover, the given algorithm for the computation of 
the period is exponential in the size of the graph. In this area our paper contains 
the following new results: 

— A relation between potential functions of dynamic and weight transformed 
static graphs is derived. This is similar to a known result for max-plus prob- 
lems [4]. 

- Results on the uniqueness of the periods in the quasi-periodic case are given 
as well as algorithms to determine these periods. 
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2    The Static Min-Max Problem 

2.1     Definitions and Properties 

We start this section by denning various forms of graph potentials. 

Definition 1 Min-Max Potential. Assume a weighted digraph Q{V = V+ U 
V~,E, w) with V+ n V" = 0, E C V x V and tu : £ -> Q, also called min-max 
graph subsequently. Then, a potential p : V -> Q is called feasible if 

mj I < p(vj)+w(vj,Vi)   V(vi,Vi) G £,«< G 1/-. 

Further, a feasible potential p : V -» Q is a min potential if 

p(i>i) =     min    {p(fj) + w(vj,Vi)}        Vtii G V-. 
(u,-,i;0GS) 

Similarly, a feasible potential p : V ->■ Q is a max potential, if 

p(fi) =     max    {p(^) +tu(uj,tii)}        Vuj G V+. 
(vitVi)€E) 

Finally, a potential p : V -> Q is a min-max potential if it is a min potential 
and a max potential at the same time. ■ 

The definition of a min-max potential directly leads to our first key problem: 

Problem, 2. Is there a min-max potential for a given min-max graph Q ? 

The problem can be simplified by using the following few observations: 

1. If g consists of two independent graphs, it is sufficient to consider each graph 
separately. 

2. If g+ = (V,ED {V+ x V+),w) contains a positive weight cycle, then there 
is no min-max potential for Q (positive cycle in a longest path problem). 

3. If Q- =(V,EC\ (V~ x V~),w) contains a negative weight cycle, then there 
is no min-max potential for Q (negative cycle in a shortest path problem). 

4. It suffices to only consider bipartite min-max graphs where E C (V+ x 
V~) U (V~ x V+) as additional nodes can be inserted without changing the 
problem substantially. A proof of this claim is given in [18]. 

Therefore, we assume for the remainder of this section that Q is a connected 
bipartite graph and that for each node Vj G V there is at least one edge (vi,Vj) G 
E. 

In the next corollary we show that knowledge about a min potential for a 
graph can provide some information about min potentials for related graphs. 
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Corollary 3. // a bipartite graph Q(V,E,w) has a min potential, then there is 
also a min potential for any graph Q'{V,E,w') with w'(vi,Vj) < w(vi,Vj) for 
all (vi,Vj) G E. On the other hand, if a bipartite graph Q(V,E,w) has no min 
potential, then no min potential exists for any graph Q' (V, E,w') withw'(vi,Vj) > 
w{vi,Vj) for all (vi,Vj) G E. 

Proof. Let p be a min potential of Q and w'(vi,Vj) < w(vi,Vj) for all {vi,Vj) G E. 
Then p' with 

,,   s(p(vi) forVi€V+ 

P[Vi>      {min^.^eE^piv^+w'iv^Vi)} for Vi G V~ 

is a min potential for Q1', as p'(vi) > p(vj) + w(vj,Vi) > p'(vj) + w'(vj,Vi) for 
all Vi G V+ and {vj,Vi) G E. The second claim of the corollary is a direct 
consequence of the first one. ■ 

Of course, a similar corollary holds for max potentials as well. It is easy to see 
that 'tight' edges (vi,Vj) of a min-max graph with p(vj) = p{v{) + w{vi,Vj) are 
especially important. For any min-max potential p, there must be a tight input 
edge for each node Vj G V. Also, a min-max potential for a graph Q implies the 
existence of a cycle C consisting of tight edges. In Q this cycle C must be a zero 

weight cycle, i.e. T,(Vi,vj)ecw(vi'vj) = °- 
Moreover, we can restrict ourselves to those min-max potentials where Qp 

is connected. Then, the difference between the min-max potential values of any 
two vertices \p(vi) - P(VJ)\ is bounded by the maximum length of any simple 
(undirected) path in Q. For such a path we can use the following upper bound 
s: 

s= XX ma? J\w(vi,Vj)\}). (5) 
vltv {Vi'Vj)€E 

2.2     Algorithms 

Now, we describe a method to determine whether a bipartite weighted digraph 
has a min-max potential. This method is based on Function increase in Table 1. 

The following corollary describes the possible outcome of Function increase, 
see [18] for a detailed proof. 

Corollary 4. // and only if the bipartite min-max graph Q has a min potential, 
then Function increase returns 'true' and the generated potential p is a min 
potential. ■ 

Any change of the potential of a node Vi G V+ requires that at some time 
during the execution of the function there was a node Vj G V~ with p(vi) = 
p(vj) + w(vj,Vi). On the other hand, if p(uj) = p(vj) + w(vj,vt) at any time 
during the execution of the loop for a node Vi G V+, then there is a tight edge 
{vk,Vi) for some node vu G V~ provided the function returns 'true'. Hence, if 
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Boolean Function increase^, p, Qt) { 
in Q; inout p; out Qt; 
a = max{p(i>) | v € V+}; 

loop:    p{vj) = m\n{p{vi) + w{vi,Vj) \ (vi,Vj) € E} for all Vj € V"; 
if(3(vj,Vi) e E with u; € F+ and p{vi) < p{vj) + w(vj,Vi)) { 

p(vi) =p{vj) + w(vj,vi); } 
else {   Qt = Q\ return 'true'; } 
if (there is no change in the potential of any node i>; with p(vi) < a + s) { 

Qt = subgraph of Q induced by all nodes with p(vi) < a + s; 
return 'false'; } 

goto loop; 

Table 1. Function increase 

Function increase starts with a max potential and returns 'true', the generated 
potential p will be a min-max potential. This leads directly to the following 

theorem: 

Theorem 5. Q has a min-max potential, if and only if it has a min potential 

and a max potential. B 

Therefore, a min-max potential of Q can be detected by first applying Func- 
tion increase to an arbitrary initial potential and then applying its dual coun- 
terpart Function decrease to the resulting potential. The existence of a min-max 
potential for Q requires that Function increase and Function decrease both return 

'true'. 
This procedure constitutes a pseudo polynomial way to solve the min-max 

problem. However, cycles with a small weight sum, like e.g. w{vi,Vj)+w(vj, vt) = 
e ->• 0, in connection with large edge weights may lead to a large number of 
iterations. This problem is addressed in [18], where we introduce improved al- 
ternatives to functions increase and decrease. 

3    The Dynamic Min-Max Problem 

In this section we address the quasi-periodic min-max problem on dynamic 
graphs. To this end, we first define dynamic graphs as usual via static graphs, 
see e.g. [9]. Then, Problem 2 is extended to dynamic graphs. 

Definition 6 Static Graph. A (bipartite) static graph Qa{V, E, w, d) with V = 
V+ U V~ is a bipartite weighted digraph with a weight function w : E -> Z and 

a distance function d: E —> Z>Q. ■ 

Definition 7 Dynamic Graph. The dynamic graph corresponding to a given 
static graph Qs{y,E,w,d) is an infinite weighted bipartite graph Qd{Vd,Ed,wd) 

where 
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Vd ={vi(k)\vi£V,keZ>0}, 
Ed = {{vi(k - d(vi, Vj)),Vj(k)) | 

(vi,Vj) G E,k e Z,k> d(vi,Vj)}, 
wd(vi(k - d(vi,Vj)),Vj(k)) =w{vi,Vj) for all (vi(k - d(vi,Vj)),Vj(k)) G Ed. 

Definition 8 Quasi-Periodic Min-Max Potential. The quasi-periodic min- 
max potential pd : Vd ->■ Q of a dynamic graph Gd{Vd,Ed,wd) is a min-max 
potential pd for all k > K = max(VitVj)eB{d(vi,Vj)}. Moreover, there is a period 
function A : V -» Q such that 

pd{vi(k + 1)) = Pd(vi(k)) + X(vi) for all v^k) £ Vd. 

Problem 9. Is there a quasi-periodic min-max potential for a dynamic graph 
gd(Vd,Ed,wd)? 

In order to avoid dealing with infinite dynamic graphs, we use the regularity 
of those graphs to describe them with a cycle graph, see also [1]. 

Definition 10 Quasi-Periodic Cycle Graph. For a static graph 
Qs(V,E,w,d) and a period function A : V ->• Q with \(vi) > \{VJ) for all 
Vi € V+ and Vi,Vj adjacent in Gs, the quasi-periodic cycle graph Qc(V,Ec,wc) 
is defined by 

Ec = {(vi,Vj) £ E | \(vi) = X(vj)}, 

wc(vi,Vj) = w(vi,Vj) - X(vj)d(vi,Vj) for all (vi,Vj) G Ec. 

Now, the following corollary establishes a close relation between the quasi- 
periodic min-max problem of a dynamic graph and the min-max problem of the 
corresponding quasi-periodic cycle graph. 

Corollary 11. Assume a static graph Qs{V,E,w,d).  Then, the following two 
statements are equivalent: 

- The dynamic graph Qd corresponding to Qs has a quasi-periodic min-max 
potential pd with the period function X. 

- The quasi-periodic cycle graph Qc corresponding to Qs and X has a min-max 



385 

Proof. A max potential of Qd requires for all Vi{k) G Vd
+ and k > K the correct- 

ness of the equation 
Pd{vi(k)) = 

max {Pd(vj(k - d(vj,Vi))) + wd(vj(k - d(vj,Vi)),Vi{k))}. 
(Vjik-divj ,Vi)),Vi(k))eEd 

Using the definition of a dynamic graph and the periodicity of pd we obtain 
the equivalent conditions 

PrfMO)) =    max   {pd(uj(0))+tüc(uj,i;i) + (Ä;-d(uj)i;i))(A(vJ-)-Ä(«i))} V/c> K 
(vj,Vi)€E 

(6) 

1. örf has a quasi-periodic min-max potential ->■ öc has a min-max potential. 
First assume that A(u») < A(i>j). Then, £c does not exist. Also, the validity 
of Equation (6) for all k > K prevents Pd(vi(0)) from being finite. 
On the other hand if A(u,) > \{VJ), then edge (vj,Vi) cannot affect Equa- 
tion (6) for k -¥ co. Therefore, it need not be considered in Equation (6). 
This results in 

Pd(vi{0)) =     max    {pd(vj(0)) + wc(vj,Vi)}    Vk > K, 
{vj,Vi)£Ec 

which leads to a max potential pc{vi) = Pd(t>i(0)) for all vt E V+. 
2. £c has a min-max potential -> Qd has a quasi-periodic min-max potential. 

Suppose that a cycle graph is given with pc(vi) = max(v.<Vi)eEc{Pc(vj) + 
wc(vj,Vi)} for all vt e Vc. If we set pd(vi(0)) = pc{vi) for all vt G Ec, then 
Equation (6) holds as X(vi) > X(VJ) and the third term in the max-expression 
becomes sufficiently negative for all edges in E\EC and k ->• oo. 

Similar arguments are used for all Vi (k) G Vd~. ■ 

Due to Corollary 11, the solution in the quasi-periodic case divides Qs into 
subgraphs with different periods. In other words, the quasi-periodic cycle graph 
Qc of Qs consists of unconnected subgraphs, where each subgraph has a min- 
max potential and a period common to all nodes. This suggests an algorithm to 
determine the periods and subgraphs by iteratively pealing off subgraphs with 
decreasing periods from the static graph. Therefore, at first the case of a single 
period A for all nodes vi G Qs will be considered. The functions lower-period 
and upper-period are introduced to determine the single period A for all nodes 
Vi G Qs. 

Note that if a dynamic graph Qd has a periodic min-max potential with period 
A, then the corresponding cycle graph Qc has at least one directed cycle C with 

£(<^)ecM^,Vj) = 0. Assuming T,(Vi,Vj)ecd(vi>vi) > ° this results in 

£(„<,v,-)ec <*("*> "i)' 



386 

Boolean Function lower-period(<5s, A;, p) { 
in Qs; out A;; inout p; 
determine s and t\ 
\\ =     s\ \u — S] 
generate the periodic cycle graph Qc of Q, and A;; 
if   (increase(<5c, p, Qt)) { h = -co; return 'true'; } 
generate the periodic cycle graph Qc of Qs and \u; 
if  (!increase(öc, P, Qt)) { return 'false'; } 

loop     A = (\u + A;)/2; 
generate the periodic cycle graph Qc of Qs and A; 
if (!increase(£c, p, Gt)) { A( = A; } else { Xu = A; } 
if  (A„ - A/ < 1/t2) { return 'true'; } 
goto loop; 

} 

Table 2. Function lower-period 

Now, we can introduce Function lower-period in Table 2 to determine the 
minimal period A/ for which a periodic min-max potential may exist. This func- 
tion is based on binary search, see also [10], [1] and uses the following upper 
bound t for the sum of distances in any simple path in Qs: 

E(, max   {\d(vi,Vj)\}). (8) 
(vi,Vj)£E 

VjEV 

The correctness of Function lower-period is addressed in Corollary 12. In the 
remaining part of this section all corollaries and theorems are given without 
proofs due to space restrictions. Regarding the proofs the interested reader is 

referred to [18]. 

Corollary 12. If Function lower-period returns 'false', then the dynamic graph 
Qd corresponding to Gs has no periodic min-max potential. Otherwise, Gd has 
min potentials for all k > K and for all periods X > Xi, while there is no min- 

potential for all periods X < Xi. ■ 

Similarly, a Function upper-period based on Function decrease is used to de- 
termine the maximal period A;, for which a periodic min-max potential may ex- 
ist. The combination of both functions yields an algorithm to determine whether 
there are periodic min-max potentials for a dynamic graph Gd- The proof is a 
direct consequence of Corollary 12, its counterpart for Function upper-period and 

Theorem 5. 

Theorem 13. If either Function lower-period or Function upper-period return 
'false' or if A/ > Xu is produced, then there is no periodic min-max potential for 
the dynamic graph Gd corresponding to Gs- Otherwise, there are periodic min- 
max potentials for all periods A; < A < Au. ■ 
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In the following corollary we address the computational complexity for the 
presented method. 

Corollary 14. There is an algorithm which computes a periodic min-max po- 
tential in pseudo-polynomial time. ■ 

Finally, a result on the uniqueness of a period A is derived. 

Theorem 15. If the static graph Qs corresponding to a dynamic graph Qd con- 
tains only edges with distance > 0, then Gd either has no periodic min-max 
potential or a min-max potential with a unique period. ■ 

Now, we can return to the main task of addressing the general case of different 
periods associated with the nodes of the dynamic graph. In order to simplify the 
following discussions, we suppose that there is no directed cycle with a zero sum 
of distances in the given static graph Qs, i.e. 

V"     d(vi,Vj) > 0 for all directed cycles C of Qs. 
{v,,Vj)<EC 

Remember that the period function defines a partition of the dynamic graphs 
into subgraphs whose nodes have equal periods. At first, these subgraphs are 
defined formally. This is done using the weighted bipartite graph Q in a similar 
fashion as in the static min-max problem, see Section 2 and Definition 1. 

Definition 16 Dominating Subgraph. A dominating subgraph Gt of a di- 
graph Q (as defined in Definition 1) is a subgraph of Q with the following prop- 
erties: 

1. There exists a min potential p of Q which is a min-max potential of Gt- 
2. There are no edges (vi,Vj) or (vj,Vi) with vt G Vf and Vj £ (V+\Vt

+). 

Next, the following theorem provides results on one step of a procedure which 
determines the quasi-periodic min-max potential of a given static graph. It is 
shown that the concatenation of Functions lower-period and decrease 

- peals off a subgraph of a given static graph, 
- produces a period Xmax and a corresponding min-max potential for this 

subgraph and 
- that the remaining static graph has a min potential for a period less than 

A-max ■ 

Corollary 17. Given a static graph Gs- After execution of Functions lower- 
period (Gs, Xmax, p) with initial potentials p(vi) = 0 and decrease^, p, Gt) 
with the periodic cycle graph Gc corresponding to Gs and Xmax, the following 
properties hold: 
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1. Gt w a dominating subgraph of Gc- 
2. The application of Function lower-period((os\0t), A, p) returns 'true' with 

X ^ Xmax ■ 

Now, we are ready to present the complete algorithm for the calculation of the 
quasi-periodic min-max potential, see Table 3. Input to the Function period(Gs, 
\{)) is the given static graph Gs, while its output is the resulting period func- 
tion A. The corresponding min-max potentials can be either extracted during 
execution of Function period or by using the proof of Corollary 11. 

Boolean Function period(5s, A()) { 
in Gs', out A(); 

loop    p(vi) = 0 for all Vi G Vs; 
lower-period(Ss, Xmax, p); 
generate the periodic cycle graph Qc of Gs and Xmax; 
if  (decrease^, p, Gt)) { 

X(v{) = Xmax for all Vi G Vt; 
return 'true'; } 

else { 
X(vi) = Xmax for all Vi G Vf, 
Gs = Gs\Gt\ 
goto loop; 

} 
} 

Table 3. Function period 

Finally, the following theorem states one of the main results of this paper. 

Theorem 18. Any dynamic graph Gd has a quasi-periodic min-max potential. 
The potential is unique. ■ 

4    Conclusion 

In this paper, we demonstrate a close relationship between static and dynamic 
min-max problems. Also, pseudo polynomial algorithms for the solution of min- 
max equations systems in the quasi-periodic and non-periodic case are presented. 
Further, we show that any dynamic graph has a unique period function. 
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Abstract. In this paper, we present deterministic parallel algorithms 
for the coarse grained multicomputer (CGM) and bulk-synchronous par- 
allel computer (BSP) models which solve the following well known graph 
problems: (1) list ranking, (2) Euler tour construction, (3) computing the 
connected components and spanning forest, (4) lowest common ancestor 
preprocessing, (5) tree contraction and expression tree evaluation, (6) 
computing an ear decomposition or open ear decomposition, (7) 2-edge 
connectivity and biconnectivity (testing and component computation), 
and (8) cordal graph recognition (finding a perfect elimination ordering). 
The algorithms for Problems 1-7 require O(logp) communication rounds 
and linear sequential work per round. Our results for Problems 1 and 2 
hold for arbitrary ratios ?-, i.e. they are fully scalable, and for Problems 
3-8 it is assumed that - > p£, e > 0, which is true for all commercially 
available multiprocessors. We view the algorithms presented as an im- 
portant step towards the final goal of O(l) communication rounds. Note 
that, the number of communication rounds obtained in this paper is in- 
dependent of n and grows only very slowly with respect to p. Hence, 
for most practical purposes, the number of communication rounds can 
be considered as constant. The result for Problem 1 is a considerable 
improvement over those previously reported. The algorithms for Prob- 
lems 2-7 are the first practically relevant deterministic parallel algorithms 
for these problems to be used for commercially available coarse grained 
parallel machines. 
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1     Introduction 

The Models: Speedup results for theoretical PRAM algorithms do not neces- 
sarily match the speedups observed on real machines [2] [31]. Given sufficient 
slackness in the number of processors, Valiant's BSP approach [34] simulates 
PRAM algorithms optimally on distributed memory parallel systems. Valiant 
points out, however, that one may want to design algorithms that utilize local 
computations and minimize global operations [33] [34]. The BSP approach re- 
quires that g (= local computation speed / router bandwidth) is low, or fixed, 
even for increasing number of processors. Gerbessiotis and Valiant [17] describe 
circumstances where PRAM simulations can not be performed efficiently, among 
others, if the factor g is high. Unfortunately, this is true for most currently avail- 
able multiprocessors. The parallel algorithms presented in this paper consider 
this case for graph problems. 

As pointed out in [34], the cost of a message also contains a constant overhead 
cost s. The value of s can be fairly large and the total message overhead cost 
can have a considerable impact on the speedup observed (see e.g. [8]). We are 
therefore also using a more practical version of the BSP model, referred to as 
the coarse grained multicomputer model (CGM) [8], [9], [10]. It is comprised 
of a set of p processors Pi,...,Pp with 0(n/p) local memory per processor 
and an arbitrary communication network (or shared memory). All algorithms 
consist of alternating local computation and global communication rounds. Each 
communication round consists of routing a single /i-relation with h = 0(n/p), 
i.e. each processor sends 0(n/p) data and receives 0(n/p) data. We require 
that all information sent from a given processor to another processor in one 
communication round is packed into one long message, thereby minimizing the 
message overhead. In the BSP model, a computation/communication round is 
equivalent to a superstep with L = -g (plus the above "packing requirement"). 

Finding an optimal algorithm in the coarse grained multicomputer model 
(CGM) is equivalent to minimizing the number of communication rounds as well 
as the total local computation time. This considers all parameters discussed above 
that are affecting the final observed speedup and it requires no assumption on 
g. Furthermore, it has been shown that minimizing the number of supersteps 
also leads to improved portability across different parallel architectures ([33] 
[34] [13]). The above model has been used (explicitly or implicitly) in parallel 
algorithm design for various problems ([4], [8], [9], [14], [12], [22], [10]) and shown 
very good practical timing results. 

The Results: In this paper, we study deterministic parallel graph algorithms 
for the CGM and BSP models. We consider the following well known graph 
problems: 

1. list ranking 
2. Euler tour construction 
3. computing the connected components and spanning forest 
4. lowest common ancestor preprocessing 



392 

5. tree contraction and expression tree evaluation 
6. computing an ear decomposition or open ear decomposition 
7. 2-edge connectivity and biconnectivity (testing and component computation) 

8. cordal graph recognition, finding a perfect elimination ordering 

These problems have been extensively studied for the PRAM (see e.g. [28]) 
and for fine-grained parallel network models of computation (see e.g. [1]). However, 
for the practically much more relevant CGM/BSP model there exist, to the best 
of our knowledge, only a few results on parallel graph algorithms. 

Reid-Miller's [27] presented an empirical study of parallel list ranking for the 
Cray C-90. The paper followed essentially the CGM/BSP model and claimed 
that this was the fastest list ranking implementation so far. The algorithm in [27] 
required O(logn) communication rounds. In [11], an improved algorithm was 
presented which required, with high probability, only O(klogp) rounds, where 
k < log* n. In [13], O(logp) communication rounds are achieved by a random- 
ized algorithm. Bäumker and Dittrich [3] presented a randomized connected 
components algorithm for planar graphs using O(logp) communication rounds. 
They suggest an extension of this algorithm for general graphs with the same 
number of communication rounds. 

We improve these results by giving the first deterministic algorithms for list 
ranking and computing connected components using O(logp) rounds. This im- 
provement is an important step towards the ultimate goal, a deterministic al- 
gorithm with only 0(1) communication rounds. In fact, it is an open problem 
whether this is possible for these graph problems. Algorithms with 0(1) rounds 
have been presented for various Computational Geometry problems [8, 9, 10, 11, 
16], but the graph problems studied in this paper have considerably less "in- 
ternal structure" which could be exploited to obtain such solutions. Note that, 
in practice, the number of processors is usually fixed. In contrast to the previous 
deterministic results, the improved number of communication rounds obtained 
in this paper, O(logp), is independent of n and grows only very slowly with 
respect to p. Hence, for most practical purposes, the number of communication 
rounds can be considered as constant. We expect, that this will be of considerable 

practical relevance. 
As in [27] we will, in general, assume that n » p (coarse grained), because 

this is usually the case in practice. Note, however, that our results for Problems 
1 and 2 hold for arbitrary ratios |. Goodrich [18] calls such algorithms fully 
scalable. For Problems 3-8 we will assume that £ > p\ e > 0, which is true for 

all commercially available multiprocessors. 

2    List Ranking 

Let L be a list represented by a vector s s.t. s[i] is the node following i in the list 
L. The last element / of the list L is the one with s[l] = l. The distance between 
i and j, dL(i,j), is the number of nodes between i and j plus 1 (i.e. the distance 
is 0 iff i = j, and it is one if and only if one node follows the other). The list 
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ranking problem consists of computing for each i £ L the distance between i and 

I, referred to as rank 1(1) = d/,(i, Z). 
For our algorithm, we need the following definitions. A r-ruling set is defined 

as a subset of selected list elements that has the following properties: (1) No two 
neighboring elements are selected. (2) The distance of any unselected element to 
the next selected element is at most r. 

An overview of our CGM list ranking algorithm is as follows. First, we com- 
pute a 0(j»2)-ruling set R with \R\ = 0(n/p) and broadcast R to all processors. 
More precisely, the 0(p2)-ruling set R is represented as a linked list where each 
element i is assigned a pointer to the next element j of R with respect to the 
order implied by L as well as the distance between i and j in L. Then, every 
processor sequentially performs a list ranking of R, computing for each i £ R 
its distance to the last element of L. All other list elements have at most dis- 
tance 0(p2) from the next element of R in the list. Their distance is determined 
by simulating standard PRAM pointer jumping until the next element of R is 

reached. 
All steps, except for the computation of the 0(p2)-ruling set R, can be easily 

implemented in O(logp) communication rounds. 

In the remainder of this section we introduce a new technique, called determ- 
inistic list compression, which will allows us to compute a 0(p2)-ruling set in 
O(logp) communication rounds. 

The basic idea behind deterministic list compression is to have an alternating 
sequence of compress and concatenate phases. In a compress phase, we select a 
subset of list elements, and in a concatenate phase we use pointer jumping to 
work our way towards building a linked list of selected elements. 

For the compress phase, we apply the deterministic coin tossing technique 
of [7] but with a different set of labels. Instead of the memory address used 
in [7], we use the number of the processor storing list item i as its label l(i). 
During the computation, we select sequentially the elements of R in the sublists 
of subsequent nodes in L which are stored at the same processor. The term 
"subsequent" refers to successor with respect to the current value of s. 

Note that, there are at most p different labels, and subsequent nodes in those 
parts of L that are not processed sequentially have different labels. We call list 
element s[i] a local maximum if Z(i) < l(s[i\) > l{s[s[i}]). We apply deterministic 
coin tossing to those parts of L that are not processed sequentially. 

The naive approach of applying this procedure O(logp) times would yield 
a 0(p2)-ruling set, but unfortunately it would require more than O(logp) com- 
munication rounds. Note that, when we want to apply it for a second, third, 
etc. time, the elements selected previously need to be linked by pointers. Since 
two subsequent elements selected by deterministic coin tossing can have distance 
O(p), this may require O(logp) communication rounds, each. Hence, this straight 
forward approach requires a total of 0(log2p) communication rounds. 

Notice, however, that if two selected elements are at distance 0(p) at a given 
moment, then it is unnecessary to further apply deterministic coin tossing in order 
to reduce the number of selected elements. The basic approach of our algorithm is 
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therefore to interleave pointer jumping and deterministic coin tossing operations 
with respect to our new labeling scheme. More precisely, we will have only one 
pointer jumping step between subsequent deterministic coin tossing steps, and 
such pointer jumping operations will not be applied to those list elements that 

are pointing to selected elements. 
This concludes the high level overview of our deterministic list compression 

techniques. The following describes the algorithm in detail. 

Algorithm 1 CGM Algorithm for computing a p2-ruling set. 
Input: A linked list L and a vector s where s[i] is the node following i in the 
list L. L and s are stored on a p processor CGM with total 0(n) memory. 
Output: A set of selected nodes of L (which is a p2-ruling set). 

(1) Mark all list elements as not selected. 

(2) FOR EVERY list element i IN PARALLEL: 
IF l(i) < l{s[i\) > l(s[s[t\]) THEN mark s[i\ as selected. 

(3) Sequentially, at each processor, process the sublists of subsequent list ele- 
ments which are stored at the same processor. For each such sublist, mark 
every second element as selected. If a sublist has only two elements, and not 
both neighbors have a smaller label, then mark both elements of the sublist 

as not selected. 

(4) FORfc= 1...log? DO 
(4.1) FOR EVERY list element i IN PARALLEL: 

IF s[i] is not selected THEN set s[i] := s[s[i]]. 

(4.2) FOR EVERY list element i IN PARALLEL: 
IF (», *[*] and s[s[t]] are selected) AND NOT (/(*) < l(s[i\) > 
l{s[s[i]])) AND (/(») ^ l(s[{\)) AND (/(*[«]) # l{s[s[t\])) THEN mark 
s[i] as not selected. 

(4.3) Sequentially, at each processor, process the sublists of subsequent selec- 
ted list elements which are stored at the same processor. For each such 
sublist, mark every second selected element as not selected. If a sublist 
has only two elements, and not both neighbors have a smaller label, then 
mark both elements of the sublist as not selected. 

(5) Select the last element of L. 

— End of Algorithm — 

We first prove that the set of elements selected at the end of Algorithm 1 is 

of size at most 0(n/p). 

Lemma 1. After the kth iteration in Step 4, there are no more than two selected 
elements among any 2k subsequent elements of the original list L. 
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Proof. Due to space limitations, the proof is omitted. It can be found in the full 

version of this paper [5]. 

In order to show that subsequent elements selected at the end of Algorithm 1 
have distance at most 0(p2), we need the following lemmas. 

Lemma 2. After every execution of Step 4-3, the distance of two subsequent 
selected elements with respect to the current pointers (represented by vector s) is 

at most 0(p). 

Proof. Due to space limitations, the proof is omitted. It can be found in the full 
version of this paper [5]. 

Lemma 3.  After the k-th execution of Step 4-3, two subsequent elements with 
respect to the current pointer 
respect to the original list L. 

respect to the current pointers (represented by vector s) have distance 0(2k) with 

Proof. Obvious consequence of the fact that only k pointer jumping operations 

were so far executed in Step 4.1. 

Lemma 4. No two subsequent selected elements have a distance of more than 

0(p2) with respect to the original list L. 

Proof. Follows from Lemma 2 and Lemma 3. 

In summary, we obtain 

Theorem 5. The list ranking problem for a linked list with n vertices can be 
solved on a CGM with p processors and 0(|) local memory per processor using 

0(\ogp) communication rounds and 0{j) local computation per round. 

3    Euler Tour in a Tree 

Let T = (V,E) be an undirected tree and T* = (V, E*) be a directed graph with 
E* = {{v,w),(w,v)\{v,w} € E). Thus, T* is Eulerian because indegree(v) = 
outdegree(v) for each vertex v. The Euler Tour problem for T consists of com- 
puting for T* a path that traverses each edge exactly once and returns to its 
starting point, as well as for each vertex its rank in this path. 

Theorem 6. The Euler Tour of a tree T with n vertices can be computed on 
a CGM with p processors and O(-) local memory per processor using O(logp) 

communication rounds and O(-) local computation per round. 

Proof. Due to space limitations, the algorithm and proof are omitted. They can 
be found in the full version of this paper [5]. 
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4     Connected Components and Spanning Forest 

Consider an undirected graph G = (V, E) with n vertices and m edges. Each 
vertex v £ V has a unique label between 1 and n. Two vertices u and v are 
connected if there is an undirected path of edges from u to v. A connected 
subset of vertices is a subset of vertices where each pair of vertices is connected. 
A connected component of G is defined as a maximal connected subset. 

In this section, we study the problem of computing the connected compon- 
ents of G on a CGM with p processors and 0(2L^21) local memory per processor. 
We introduce a new technique, called clipping, which refers to the idea of tak- 
ing a PRAM algorithm for the same problem but running it for only O(logp) 
rounds and then finishing the computation with some other O(logp) rounds CGM 
algorithm. (See also JaJa's accelerated cascading technique for the PRAM [19].) 

Steps 1 and 2 of Algorithm 2 simulate Shiloch and Vishkin's PRAM algorithm 
[30], but for logp phases only. Each vertex v has a pointer to a vertex parent(v) 
such that the parent(v) pointers always form trees. The trees are also referred 
to as a supervertices. A tree of height one is called a star. An edge (u,v) is 
live if parent(«) / parent(v). Shiloch and Vishkin's PRAM algorithm merges 
supervertices along live edges until they equal the connected components. When 
simulated on a CGM or BSP computer, Shiloch and Vishkin's PRAM algorithm 
results in logn communication rounds or supersteps, respectively. 

Our CGM algorithm requires 0(logp) rounds only. It simulates only the 
first logp iterations of the main loop in the PRAM algorithm by Shiloch and 
Vishkin and then completes the computation in another logp communication 
rounds (Steps 3-7). 

Algorithm 2 CGM Algorithm for Connected Component Computation 
Input: An undirected graph G = (V, E) with n vertices and m edges stored 
on a p processor CGM with total 0(n + m) memory. Output: The connected 
components of G represented by the the values parent(v) for all vertices »6 V, 

(1) FOR all v e V IN PARALLEL DO parent{v) := v. 

(2) FOR k := 1 to logp DO 

(2.1) FOR all v £ V IN PARALLEL DO parent{v) := parent(parent(v)). 

(2.2) FOR every live edge (u,v) IN PARALLEL DO (simulating concurrent 
write) 
(a) IF parent (parent (v)) — parent(v) AND parent(parent(u)) = parent(u) 

THEN { IF parent(u)  > parent(v) THEN parent(parent(u))  :- 
parent(v) ELSE parent(parent(v)) := parent(u) } 

(b) IF parent(u) = parent(parent(u)) AND parent(u) did not get new 
links in steps 2.1 and 2.2(a) THEN parent(parent(u)) := parent(v) 

(c) IF parent(v) = parent(parent(v)) AND parent(v) did not get new 
links in steps 2.1 and 2.2.1 THEN parent(parent(v)) := parent(u) 

(2.3) FOR all v&VIN PARALLEL DO parent[v) := parent(parent(v)). 



397 

(3) Use the Euler Tour algorithm in Section 3 to convert all trees into stars. 
For each v £ V, set parent(v) to be the root of the star containing v. Let 
G' = (V',E') be the graph consisting of the supervertices and live edges 
obtained. Distribute G' such that each processor stores the entire set V 
and a subset of — edges of E'. Let Ei be the edges stored at processor i, 

0<i<p-l. 

(4) Mark all processors as active. 

(5) FOR k := 1 to logp DO 
(5.1) Partition the active processors into groups of size two. 

(5.2) FOR each group Pi,Pj of active processors, i < j IN PARALLEL DO 
(a) processor Pj sends it's edge set Ej to processor Pi. 

(b) processor Pj is marked as passive. 

(c) processor  P,- computes the spanning forest  (V',ES) of the graph 
SF = (V, Ei U Ej) and sets E{ := Es. 

(6) Mark all processors as active and broadcast EQ. 

(7) Each processor i computes sequentially the connected components of the 
graph G" = (V, Eo). For each vertex v of V let parent1'(v) be the smallest 
label parent(w) of a vertex w £ V' which is in the same connected component 
with respect to G" = (V, Eo). For each vertex u £ V stored at processor Pi 
set parent(u) := parent'(parent(u)). (Note that parent(u) £ V.) 

— End of Algorithm — 

Lemma 7.  [30]   The number of different trees after iteration k of Step 2 is 

(1) 
We obtain 

bounded by {\)kn. 

Theorem 8.  Algorithm 2 computes the connected components and spanning forest 
of a graph G = (V, E) with n vertices and m edges on a CGM with p processors 
and 0("+"1)  local memory per processor,   "+m   > pe  (e >  0),  using O(logp) 

communication rounds and 0(n^m) local computation per round. 

Proof. Due to space limitations, the proof is omitted. It can be found in the full 
version of this paper [5]. 

5     Other Graph Problems 

In the remainder, we summarize our solutions for Problems 4-8. Due to space 
limitations, the algorithms and proofs are omitted. They can be found in the full 
version of this paper [5]. 
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Lowest Common Ancestor: The lowest common ancestor,LCA(u,v), of two 
vertices u and v of a rooted tree T = (V, E) is the vertex w that is an ancestor 
to both u and v, and is farthest from the root. The problem of preprocessing T 
in order to answer a query LCA(u, v) quickly for any pair (u, v) is called the 

lowest-common-ancestor (LCA) problem. 

Theorem 9. Consider a rooted tree T = (V, E) with n vertices. The LCA prob- 
lem can be solved on a CGM with p processors and 0(j) local memory per 

processor using 0(logp) communication rounds and 0(j) local computation per 

round. 

Tree Contraction and Expression Tree Evaluation: We observe that the 
classical tree contraction and expression tree evaluation algorithm of [24] can be 
easily implemented on a CGM to run in O(logp) communication rounds. 

Observation 1 Tree contraction and expression tree evaluation on a tree T with 
n nodes can be performed on a CGM with p processors and O(j) local memory 

per processor, - > pc (e > 0), using O(logp) communication rounds and 0(j) 

local computation per round. 

Open Ear Decomposition and Biconnected Components: Consider an 
undirected graph G = (V, E) with n vertices and m edges. For the remainder, we 
assume that G is connected. An ear decomposition of G is an ordered partition of 
E into r simple paths Pi,...,Pr such that Pi is a cycle, and, for each 2 < i < r, 
Pi is a simple path with endpoints belonging to Pi U ... U P;-i but with none 
of its internal vertices belonging to Pj, j < i. The paths P,- are called ears. If 
none of the Pt,i > 1, is a cycle, then the decomposition is called an open ear 
decomposition. For an edge e in Pi, let i be the ear number of e. An edge e £ E 
is a cut-edge if e does not lie on a cycle in G. A connected undirected G is 
2-edge connected if it contains no cut-edge. G has an ear decomposition if and 
only if G is 2-edge connected. A cut-vertex is a vertex whose removal leaves G 
disconnected. G is biconnected if it contains at least three vertices and has no 

cut-vertex. 

Theorem 10. For a graph G = (V, E) with n vertices and m edges, the ear de- 
composition, open ear decomposition, as well as its 2-edge connected and bicon- 
nected components can be computed on a CGM with p processors and 0(It^i2i) 

local memory per processor using O (log p) communication rounds andO(j) local 

computation per round. 

Chordal Graph Recognition: A graph G = (V, E) is chordal, if every cycle of 
length greater than three has a chord, i.e., an edge connecting two non-consecutive 
nodes of the cycle. A simplicial node is a node whose neighbors form a clique. 
Dirac [15] showed that every chordal graph has a simplicial node. It is easy to 
see that removing an arbitrary node from a chordal graph yields another chordal 
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graph. Therefore, after removing the simplicial node of a chordal graph, the new 
graph has another simplicial node. Successively removing all simplicial nodes 
gives an ordering of the nodes of G. This ordering is called perfect elimination 

ordering (PEO). 

Theorem 11. Finding the PEO of a given graph G — (V, E) with n vertices and 
m edges can be solved on a CGM with p processors and C^^^21) local memory 

per processor, n^m- > p( (e > 0), using O(log n logp) communication rounds and 

O("+"') local computation per round. 
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Abstract.  We construct a scheme for private information retrieval with 
k databases and communication complexity 0(n ''        '). 

1     Introduction 

Much attention has been given to the problem of protecting a database from a 
user that tries to retrieve an information that he is not allowed to access[2, 8, 12]. 

In some scenarios, an opposite problem can appear: a user wishes to retrieve 
some infomation from a database without revealing to the database what infor- 
mation he needs. For example[7], an investor wishes to receive an information 
about a certain stock but he does not wish others (even the database) to know 
in which particular stock he is interested. 

However, there is only one way to reach a complete privacy: the user should 
ask for the copy of the entire database. Otherwise, the database will get some 
information what the user wishes to know. This is not a good solution because 
it requires much time and much communication from the database to the user. 

If there are several identical copies of the database, an another scenario is 

possible[7]: 
The user asks a query to each database and combines the results of the 

queries, obtaining the desired information. Each query alone gives no information 
what the user is interested in. 

Chor, Coldreich, Kushilevitz, Sudan[7] introduced this model and constructed 
several schemes for a private retrieval of one bit from a database: 

1. A scheme for 2 databases with Ofo1?3) communication, (n is the size of the 
database) 

2. A scheme for k databases with 0{n1lk) communication. 
3. A scheme for O(logn) databases with 0(log2 nloglogn) communication. 

In this paper, we improve their result, constructing a protocol for k databases 

with 0(n1/(2k~1^) communication. 

The author was supported by Latvia Science Council Grant 96.0282 and scholarship 
"SWH Izglitibai, Zinätnei un Kultürai" from Latvia Education Foundation 
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Related work. Protocols for private information retrieval in [7] and this 
paper have used ideas from several related problems (instance hiding and mul- 
tiparty communication complexity). 

Instance hidingfl, 5, 6] is the problem of obtaining the ith bit from the or- 
acle so that i remains secret. There are some similarities and some substantial 
differences between instance hiding and private information retrieval (see [7] for 

more detailed discussion). 
Techniques from instance hiding were relevant to protocols for private infor- 

mation retrieval in [7]. However, they are not used in this paper. 
Multiparty communication complexity is also related to private information 

retrieval. Pudlak, Rödl, Sgall[ll] and Ambainis[3] have considered the problem 
of computing Xfi+j)modn where as is a string of n bits and i, j are integers in the 
following model: 

Player 1 knows x, i, Player 2 knows x,j. Each of them sends one message to 
Player 3. Player 3 computes the result, using only the messages received from 
Players 1 and 2. 

Any protocol for the above problem can be easily transformed into protocol 
for private information retrieval. Thus, we can obtain nontrivial protocols for 
private information retrieval with o(n) communication. 

Another communication complexity problem was studied by Babai, Kimmel 
and Lokam[4]. It also can be applied to private information retrieval. 

However, all these protocols are less efficient than the protocols for private 
information retrieval designed in [7]. Still, the ideas from [3, 4, 11] (not explicit 
protocols) can be useful in the study of private information retrieval. In partic- 
ular, this paper is based on the idea of combining two protocols which appeared 
in the setting of multiparty communication complexity [3, 11]. 

2     Model 

Formally, we view the database as a string x consisting of n bits, k denotes the 
number of identical databases. We assume that the user wishes to retrieve a 
single bit Xi from the database. 

We require that, for every database, indices i, j and any message from the 
user, the probability of the database receiving this message is equal when the 
user retrieves the ith bit and when the user retrieves the jth bit. This means 
that database does not get any information about i. 

There are several extensions of this model. [7] considered schemes which allow 
to retrieve blocks of information and give a higher degree of privacy (knowing 
k — 1 of k queries gives no information about the bit that the user retrieves). 
Ostrovsky and Shoup[9] have extended the results of [7] and designed schemes 
for private information storage. Using their schemes, the user can both read and 
write to the database without revealing which bit is accessed. They have shown 
that any protocol for private information retrieval can be transformed to the 
protocol for private information storage with a slight increase in the number of 
databases and communication. 
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However, in this paper, we consider only the basic one-bit model of [7]. 
S © i denotes S U {i}, if i £ S and S - {i} if i G 5. 

3     Result 

Consider some protocol for private information retrieval. Does the user use all 
bits in the messages from the databases? In some protocols, only a few bits are 
really neccessary. If the user knows in advance which bits are necessary, two 
protocols can be combined, obtaining the third with more databases and less 

communication. 
Below, we show how to combine a protocol for 2 databases and a protocol for 

jfe - 1 databases, obtaining a protocol for k databases with less communication. 

1. The user in the k database protocol simulates the user in the protocol for 
2 databases. Let xx denote the message sent to the 1st database and x2 the 
message sent to the 2nd database in the 2 database protocol. 
The user sends xx to the 1st database and x2 to the 2nd, ..., the kth database. 

2. Then, the user computes the length of the reply from the 2nd database in the 
2 database protocol and the positions of necessary bits in this reply. Further, 
m denotes the length and ni,..., n» denote the positions of the necessary 

bits. 
The user simulates the user in the protocols for k — 1 databases where n£h, 
..., n'h bits from an m bit database are retrieved, sending to the (i + l)st 

database the messages which are sent to the zth database in the (k - 1) 

database protocol. 
3. The 1st database simulates the 1st database in 2 database protocol and sends 

the user the same message. 
4. The 2nd, ..., the kth database simulate the 2nd database in the 2 database 

protocol. Instead of sending the message to the user, they consider it as a 

new 771-bit database. 
Further, they simulate databases in the (k - 1) database protocol for the re- 
trieval of the n'h, ..., the nf1 bit and send the messages from these protocols 

to the user. 
5. The user simulates the user in the (k - 1) database protocol for the retrieval 

of the n£h, ..., the n'h bits. Then, knowing the message from the 1st database 
and all the necessary bits from the second message, the user simulates the 
user in the 2 database protocol. The result of this simulation is the bit that 
the user wishes to retrieve. 

If we wish to apply this idea, 2 database protocol should satisfy certain 
constraints: 

1. The most of communication goes from the databases to the user. (The 
amount of communication from the user to databases increases when two 
protocols are combined. Hence, if it is already large, the combination is use- 

less.) 
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2. Only few bits from the messages received by the user are necessary. 
3. The user knows in advance which bits are necessary, i.e. the positions of 

these bits do not depend on the databases' contents. 

Below, we use the idea of combining two protocols to prove 

Theorem 1. Let k>2. There exists a protocol for private information retrieval 

with k databases and 0(n1^2k"1^) bits of communication. 

Proof. By induction. 
The protocol for 2 databases was constructed by Chor, Goldreich, Kushilevitz 

and Sudan[7]. The protocol for k databases is obtained as the combination of 

the protocols for 2 databases and (k — 1) databases. 
First, we describe the 2 database protocol that we use to obtain a k database 

protocol from a (k — 1) database protocol. 

1. Let / = f 2fc_^/n|. The database can be considered as a 2k - 1 dimensional 
cube {0, ...,l - l}2*-1. Each position i G {0,..., n - 1} in the database 
coresponds to some position (ii,.. -, *2fe — l) in the cube. 
The user chooses independently (2k -1) random subsets of {0,..., I- 1}: Sj, 
..., Slk_v Let S2 =51

1ffiii, ..., S2
k_1 = Slk_1®i2k-i where (H, .. .,i2k-i) 

is the position of the required bit in the (2k - 1) dimensional cube. 
He sends 5j,..., S2Vi to the 1S' database and S2,..., Sjk_1 to the 2nd 

database. 
2. The 1st database computes the exclusive-or of the bits in positions (ji, ..., 

J2Jfe-i) such that jx £ Si, ..., j2k-i € S^-i and sends it to the user. 
The database also computes the exclusive-or of the bits in positions (ji, ..., 
j2k-i) such that jx E S[, ..., j2k-i £ S'2k_1 for each possible Si, ..., S'2k_1 

such that 
(a) SJ = Sj ®t for some j £ {1,..., 2k - 1} and t G {0,..., I - 1}; 

(b) S[ = Sj for all * ^ j. 
The exclusive-xor for each possible Si, ..., S2J._1 is sent to the user, too. 

3. The 2nd database computes the exclusive-or of the bits in positions (ji, ..., 

J2k-i) such that J! G S2, ..., j2k-i G ^-i and sends it to the user. 
Further, the 2nd database computes the exclusive-or of the bits in positions 

(ji, ■ ..,J2k-i) such that J! G Si, ..., j2k-i G S^ for each possible Si, ..., 
S2jfe_1 such that 
(a) For each i G {1,..., 2k - 1} S'{ is equal to Sf or Sf ffi U for some U G 

{0.....J-1}; 
(b) There exist at least two i G {1,..., 2k - 1} such that S^ = Sf. 
The exclusive-xor for each possible Si, ..., S2jt_1 is sent to the user, too. 

4. For each possible Si, ..., S2jt_1 such that S? is either Sj or Sf, the user 
finds the exclusive-or of bits in positions (ji, ■ ■-,J2k-i) satisfying j\ £ ^ii 

■ • -, J2k-i €. S'2k-i: 

(a) If St- = Sf for at most one i, then the exclusive-or is one of the bits sent 

by the 1st database. 
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(b) If S'i = Sf for at least two i, then the exclusive-or is one of the bits sent 
by the 2nd database. 

The user computes the exclusive-or of all these values. It is the necessary bit 

from the database. 
(5? = Sj © ij. Hence, ij belongs to exactly one of Sj and Sj and i\ G S[, 

..., i2k-i G S'2k_1 for exactly one choice of S[,..., S'2k_1. 

For each other position (i'1}.. -, *2fc —a.) we ^ave *i ^ ^ii • ■ •> *2k-i ^ ^A-I 

for an even number (possibly zero) of combinations S[,..., S2k_v 

Hence, the exclusive-or computed by the user contains the bit in the position 
(*i) • • ■ i *2ife-i) exactly once and any other bit an even number of times. It 
follows that this exclusive-or is equal to the bit in the position (ii,..., i2fc-i), 
i.e. the bit that the user wishes to retrieve.) 

The amount of transmitted bits. 

1. Communication from the user to the databases. 
To transmit a set Sj, the user needs 1 =  "—-f/n bits. (For each x G {0,..., / - 

1}, the user must say whether x G Sj.) The user transmits 2k - 1 sets (5j, 

• • -i s2k-i) to the 1St database and 2fc — 1 sets to the 2nd database. 
So, the total amount of communication in this direction is 2(2k— 1) 3U~^fn = 

0( 2k-^n). 
2. Communication from the 1st database to the user. 

The 1st database computes the exclusive-or of the bits for several combina- 
tions of Sj,..., S'2k_1 and sends it to the user. The amount of bits trans- 
mitted by the 1st database is equal to the number of the combinations of 

5i,...,5^_x, i.e. (2*-1)1 + 1. 
k is a constant and I = [ 2k~-$/n\. Hence, the amount of communication in 
this direction is 0( *k-J/n), too. 

3. Communication from the 2nd database to the user. 
Similarly to the previous case, the amount of bits transmitted by the 2nd 

database is equal to the number of combinations S[,..., S'2k_v 

For the 2nd database, the amount of such combinations is at most (22k~1 - 
2k)l2k~3 = 0(n(2k-3V(2k-V) because: 
(a) Those i for which S[ ^ S2 form a subset of {1,..., 2k - 1} with at most 

2k - 3 elements. (For at least two i G {1,..., 2* - 1}, Sf - S-.) 
The amount of such subsets is 22*-1 — 2k. 

(b) If we have chosen i for which Sf ^ 5,', it remains to choose i;. There are 
I possible values of i; for each i. 
ti is chosen for at most 2k —3 values of i. Hence, there are at most l2k~3 

possible combinations of i;. 

So, the user transmits 0( 3k-j/n) bits, the 1st database 0( 2"-^/n) bits and the 
2nd database O^2*-3)^2*"1)) bits. 

From the 2nd database's answer the user needs a constant amount (22k~1—2k) 
of bits. The positions of these bits in the message from the 2nd database do not 
depend on the contents of the database. 
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Hence, we can combine the described protocol with a (k - 1) database pro- 
tocol, using the method described at the beginning of this section. 

Communication in the k database protocol. 

1. Communication from the user to the databases. 
The user sends to the databases: 
(a) The information from the 2 database protocol: 0( "-$/n) bits to each 

database. 
(b) The information for the simulations of the (k - 1) database protocol: 

0( 2k-f/m) bits where m is the length of the message from the 2nd 

database in the 2 database protocol. We have 

m 0(n(2*-3)/(2fc-l))_ 

Hence, 0( 2k-^/n) bits are transmitted for this purpose. 
2. Communication from the 1st database to the user. It is the same as in the 2 

database protocol, i.e. 0( 2k~j/n) bits. 
3. Communication from the 2nd, ..., the kth database to the user. 

In each simulation of (k — 1) database protocol, these databases communicate 

0{ "-^m) = 0{ "-{/„(a*-3)/(2*-i)) = o( 2k~tfi) 

bits. The amount of simulations performed by the databases is equal to the 
amount of bits needed by the user from the 2nd database's message, i.e. 
constant. Hence, the communication by these databases is 0( 2k~\/n), too. 

We have constructed a protocol with k databases and 0{ 2k-^/n) communication 
from a protocol with (k - 1) databases and 0( 2k~^/n) communication. 

Using the construction of Ostrovsky and Shoup[9] and the protocol described 
above, we can obtain a scheme in which both reading and writing are private. 
This scheme has (k + 1) databases and 0(n1^2*~1)logTi) communication com- 

plexity for any k > 2. 
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Abstract: A new process logic, is defined, called computation paths logic (CPL), 
which treats formulas and programs essentially alike. CPL is a pathwise extension of 
PDL in the spirit of the logic R of Harel and Peleg. It enjoys most of the advantages 
of previous process logics, yet is decidable in elementary time. We also offer extensions 
for modeling asynchronous/synchronous concurrency and infinite computations. 

1     Introduction 

Two major approaches to modal logics of programs are dynamic logic [Pr] and 
temporal logic [Pn]. Prepositional dynamic logic, PDL [FL] is a natural 'dy- 
namic' extension of the prepositional calculus, in which programs are inter- 
mixed with propositions in a modal-like fashion. Formulas of PDL can express 
many input/output properties of programs in a natural way. Moreover, valid- 
ity/satisfiability in PDL is decidable in exponential time, and the logic has a 
simple complete axiomatization [KP]. PDL is thus a suitable system for reason- 
ing about the input/output behavior of sequential programs on the propositional 
level. However, PDL is unsuited for dealing with the continuous, or progressive 
behavior of programs, i.e., the situations occuring during computations. The 
need for reasoning about continuous behavior arises naturally in the study of 
reactive and concurrent programs. 

The main approach proposed in response to this need is temporal logic, TL 
[Pn], in which assertions can be made naturally about the progressive behavior of 
programs. In particular, TL can easily express freedom from deadlock, liveness, 
and mutual exclusion. The basic versions of TL, however, are not compositional, 
in the sense that their treatment of a well-structured program does not derive 
directly from their treatment of its components. Indeed, TL usually does not 
name programs at all, but refers to instructions and labels in a fixed program. 
Although TL can discuss the synthesis of complex programs from simpler ones 
to some extent using at predicates, this method is rather cumbersome. 

This dichotomy between the dynamic and temporal logic approaches has 
prompted researchers to try to combine the best of the two in what is generally 
called process logic. Accordingly, a system called PL was proposed in [HKP]. 
It borrows the program constructs and modal operators [ ] and ( ) from DL, 
and the temporal connectives suf (similar to until) and f (standing for first) 
from TL, and combines them into a single system. The expressive power of PL 
is greater than that of PDL and of TL, and its validity/satisfiability problem 
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was shown in [HKP] to be decidable, though it is not known to be elementary. 
There are some inconvenient features of PL, including the asymmetry of 

its central path operator, suf, and the fact that its formula connectives are 
somewhat weaker than its program operators. A proposal that overcomes these 
problems is the regular process logic, RPL, of [HP]. In RPL, the operators suf 
and f are replaced by chop and slice, corresponding essentially to Kleene's 
regular operations of concatenation and star. In this way, the regular oper- 
ations on programs, a U ß, aß, a*, have natural counterparts on formulas: 
X V Y, X chop Y and slice X. It is shown in [HP] that RPL is even more 
expressive than PL, and that its validity problem is also decidable but nonele- 

mentary. 
Using the fact that in RPL both program and path operators are those of 

regular expressions, and that programs and formulas are interpreted over paths, 
a uniform process logic R was defined in [HP]. In R, formulas are constructed 
inductively from atomic propositions and binary atomic programs, using a single 
set of regular operators. It was shown in [HP] that R is more expressive than RPL 
with binary atomic programs, and is decidable (though, again, nonelementary). 

In the interest of obtaining a useful process logic decidable in elementary 
time, an automata-oriented logic, YAPL, was defined in [VW]. In YAPL, formu- 
las are constructed using finite automata for both temporal (path) connectives 
and for constructing compound programs from basic (atomic) ones. There is a 
clear distinction between state and path formulas in YAPL, atomic programs 
are binary and atomic formulas are restricted to being state formulas. YAPL 
is indeed shown in [VW] to be decidable in elementary time (even over infinite 
paths). YAPL formulas, however, can be somewhat less intuitive and not that 

easy to comprehend. 

In the present paper, we try to combine some of the advantages of previous 
methods by introducing a new process logic that is compositional, uniform in its 
treatment of programs and formulas, expressive enough to capture the interest- 
ing path properties mentioned in the literature in a natural way, explicit in its 
treatment of concurrency, and elementary decidable. 

We term our basic formalism computation paths logic (CPL). A single set of 
regular operators acts on both transition formulas (programs) and state formu- 
las. For example, a* ■ P ■ b is a CPL formula. (Here a and b are atomic programs 
and P is an atomic state formula.) Intuitively this formula means: "perform ac- 
tion a some nondeterministic number of times, check for property P and then do 
action 6". An important operator in CPL is TV — pathwise intersection. Thus, 
/ n g is true on paths that satisfy both / and g. Using this operator, it is possi- 
ble to express a large variety of properties of computation paths. For example, 
a n (skip* ■ P ■ skip*), where a is a program and P is a proposition, is true on 
a-paths that contain some P-state. Note that anb, for atomic programs a and b 
is true only for paths which are both a-paths and 6-paths, and is not expressible 

by PDL programs or formulas. 

1 Some versions of PL have been shown to be nonelementary [Ha], but it is still not 
known whether PL itself is elementary. 
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Unlike PL and its descendants, RPL and R, we have decided not to include 
the modal operators [ ] and ( ) in CPL. The reason is as follows. Consider 
a PL/RPL/R formula of the form [a]tp, where a is a program and <p is a path 
property. While one might expect this formula to be true on all a-paths that 
satisfy <p, in PL it is defined to be true on all paths p which, when extended by 
an a-path r, result in a path p ■ r satisfying (p. This, however, corresponds to 
the above intuition only when p is a path of length 0, i.e., a state. This broader 
(and somewhat complicated) definition in PL is an unavoidable outcome of the 
wish of the authors of [HKP] to have only path formulas, but at the same time 
use (   ) and [   ] as in PDL. (For example, they wanted {aß)f to be equivalent 

to (<*></?>¥>.) 
To make our logic elementary decidable, we use a special form of negation. 

Specifically, negation in CPL is not taken relative to the set of all paths (as 
is done, e.g., in PL/RPL/R). In fact, a negated formula is a state property, 
made true in any state that is not the initial state of a path that satisfies the 
argument formula. For example, ->(a • P) asserts "it is not possible to carry out 
a computation of a ■ P from the present state". While this form of negation is 
weaker than negation relative to all paths, most interesting path properties are 
still expressible. 

In Section 3, we show that CPL is elementary decidable, by reducing its 
satisfiability problem to that of APDL, the version of PDL in which programs 
are represented by finite automata rather than regular expressions [HS2], The 
reduction is rather involved, and combines ideas from both [Pe] and [SPH]. 

In Section 4 we propose an extension of CPL for modeling concurrent pro- 
cesses, called ICPL. It uses '||' to denote interleaving. This might be termed 
asynchronous concurrency. Even though the interleaving operator itself is very 
intuitive, combining it with other operators (especially 'fl') turns out to be rather 
technically involved. Nevertheless, ICPL is also decidable in elementary time. 

To model synchronous concurrency, we introduce a further extension in Sec- 
tion 5, called SICPL (ICPL with synchronization). In SICPL, which is shown 
to be elementary, interleaving can be synchronized with respect to subsets of 
atomic programs. For such a subset syn, and formulas / and g, the interleaving 
of / and g synchronized on syn is expressed by / | syn \ g (the notation is apt, 
since '||' denotes the special case where syn = 0). For example, the formula 
(a U b) ■ c | a, b \ (a U c) • P ■ (b U c) is true only in paths of the form: 

A further elementary extension of CPL for expressing properties of infinite com- 
putations, wCPL, is defined in Section 6. 

2     Definitions and Basic Observations 

Definition 1. A path over a set S is simply a non-empty finite sequence of 
elements of 5". The notions first, last and fusion, denoted p ■ q, are defined in 
the usual wav. 
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We now define computation paths logic, CPL for short. It has two sorts, 
a set ASF of atomic state formulas (propositions), and a set ATF of atomic 
transition formulas (programs). The set of formulas is defined as the least set 
containing ASF and ATF, and such that if / and g are formulas, then so are 
(pf), (/*), (f-g), {füg) and (fPig). (We often omit the parentheses where 

there is no confusion.) 
CPL formulas are interpreted over models M = (SM,pM), where SM is the 

set of states, pM(P) C (SM) for each P GASF, and pM(a) C SM x SM for each 
a GATF. In addition, pM is is extended to all formulas as follows: 

PM{f ■§) = PMU)-PM{9) 
PM(fn9)=pM(f)DpM(g) 
PMhf) = (SM)\first(pM(f)) 

pM(fUg)=pM(f)UpM(g) 

pM{n = pM{ir 

(We often leave out the M subscript of S and p.) A path p in a model M satisfies 
a CPL formula /, written M, p (= /, when pGpM(/).A formula / is satisfiable 
iff M, p\= f for some path p in some model M. A state s in a model M satisfies 
a CPL formula /, written M, s (= / iff there exist a path satisfying / whose 

first state is s. 
Example: Consider the CPL formula <p : (P ■ a)* ■ Q n (6 U c)* ■ -(6 • P) ■ a, 
where P, Q <E ASF and a, b GATF. In the model illustrated in the figure below, 
paths that satisfy ip are (among others): (1, 2, 3, 4, 5), (1, 2, 3, 1, 2, 3) 
and (1, 2, 3, 1, 2, 3). On the other hand, a path that does not satisfy <p is 

(1, 2, 7, 8, 9) (this is because (8)   £  ->(b-P)). 

For CPL formulas / and g, it is sometimes convenient to use the following 
abbreviations: /? instead of -.-./, fWg instead of /? U g? and / A g instead 
of /? n #?. Regarding transitions, it useful to use the following abbreviations: 
skip instead of UaeATFa, path instead of skip* and true instead of path?. Note 
that path holds in every path in which consecutive states are connected by some 
atomic transition. Moreover, it follows from the semantics of CPL that for every 
/ GCPL and every path p in any model M, if p G pM{f) then p \= path. So that 
path plays the role of 'true' for paths that correspond to formulas. The formula 
true is a 'state version' of path and is true in every path of length 0, i.e., in every 

state in every model. 
Let us demonstrate how to express some useful path properties in CPL. 

- The existence of some segment of the path satisfying / is expressed by 

someseg (/)   =  path ■ f ■ path. 



412 

- The existence of some prefix of the path satisfying / is expressed by 
somepre (/)   =   f -path. 

- The existence of some suffix of the path satisfying / is expressed by 
somesuf (/)   =  path ■ f. 

- The existence of some state in the path satisfying / is expressed by 
some state (/)   = someseg (/?). 

- An operator similar to O (nexiiime) of TL is   next (/)   =  skip ■ f. 
- An operator similar to U of TL is  / until g  =   (/ • skip)* ■ g. 

CPL can clearly be viewed as a pathwise extension of PDL. It is not too difficult 
to show that PDL^CPL in expressive power, where we only consider state 
formulas of CPL. Considering other process logics, CPL can be thought of as 
a restricted version of the logic R of [HP], so that: PDL<^CPL<R. From this, 
and the fact that R is decidable [HP], we can conclude that CPL is decidable. 
Since R is nonelementary [Pe], this yields a nonelementary decision procedure for 
CPL. We will show in the next section, however, that CPL is in fact elementary. 

3     CPL is Elementary Decidable 

In this section we show that satisfiability of CPL formulas is decidable in el- 
ementary time. This will be done in two steps. In the first, we carry out a 
reduction from the satisfiability problem of CPL to the satisfiability problem 
of CPL over one-action-per-transition models. These one-action-per-transition 
(oapt, for short) models are defined below. (These models were used in [Pe] for 
the logic R.) In the second step we carry out a reduction from the satisfiability 
problem of CPL over oapt-models to the satisfiability problem of APDL. 

Definition2. A model M is called an oapt-model relative to the set ATF ai,..., an 

if for every 1 < i ^ j < n, p(a8) fl p(aj) — 0. A CPL formula f is oapt-satisfiable 
iff there exist some oapt-model which satisfies f. 

Lemma3. For every CPL formula f over {a\ ,. .an}, there exists a CPL formula 
f (over a new ATFj stich that f is satisfiable iff f is oapt-satisfiable. 

Proof: Let. / be a formula f over {a,\, ...,an}. We define a set ATF' of 2" — 1 
new symbols (to be used as the atomic transition formulas of /'), each of the 
form flCl...c„ where cj,- £ {k, £}, 

ATF' = {aCl...Cn |Vl<*<n , ck 6 {*,  ~k}} \ {ais...«} • 

Let /' be the formula, obtained from / by replacing every appearance of a^, for 1 < 
k < n, with ßk = |J/C    ciCk=k} aci...cn The following claim (the proof of which 
we omit here) completes the proof of the lemma. 
Claim: / is satisfiable  <=^   /' is oapt-satisfiable.    ■ 

As preparation for the reduction to APDL, let us start the discussion in 
the framework of PDL. Recall that a PDL model is also a CPL model; note, 
however, that while CPL formulas are interpreted over paths, PDL formulas are 
interpreted over states. To overcome this dichotomy we shall relate paths to PDL 
programs in the following way: 
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Definition-*. For a PDL program a and a path p = (pi, ■ ■ ■ ,Pfc) in a model 
(S, T, R), p£a is defined by induction on the structure of a: If a G ATF then 
p <E a iff k = 1 and (p0,Pi) G #(<*); P G <* U /? iff p G a or p G /?; p G a\ ß iff 
there are paths q (E a and r £ ß with p = q ■ r; p G a* iff p G a' for some i > I 

or p = (po); p G v?? iff p = (po) and (p0,Po) G ß(v>?)- 

Via this association we can view PDL programs as being carried out along paths 
rather than as binary relations. For the reduction, however, it is more convenient 
to use the automata version of PDL, namely APDL [HS2]. The reason for this 
is that TV can be handled more economically by automata than by regular 
expressions. (This also applies to other operators used in the extensions of CPL 
we define later on.) Even though APDL formulas are, in general, more succinct 
than their equivalent PDL formulas, satisfiability for APDL can be decided in 
EXPTIME [HS2], This is also the case for deciding satisfiability over oapt- 
models. For if M, s \= <p, then M can be transformed into an oapt-model of ip 

(by duplicating states). 
We shall use this to get an elementary decision procedure for CPL by carrying 

out a reduction from CPL into APDL. Relating paths in a model to APDL 
programs is done as in Def.4, i.e., if a is an automaton (APDL program) then 
p G a iff p G r(a), where r(a) is a regular expression denoting the language of 

a. 

Lemma 5. For every CPL formula f there exists an APDL program. (NFA) Af, 

such that for every path p in every oapt-model, p G p(f) iff p G Af. 

Proof: The APDL automaton (program) Af corresponding to the CPL formula 
/ is built by induction on the structure of/. Here we briefly describe the following 
two (non-routine) cases. For -.# we let A-,g be a two state NFA accepting the 
(one word) language {([Ag] false)?}. For g f)h we have to be careful since the TV 
in CPL is intersection in the path sense rather than in the language sense. We 
use the fact that we are dealing with oapt-models and build Agnh that simulates 

both Ag and Ah synchronizing on ATF-letters.   ■ 

Theorem 6. If we fix ATF to be a subset of {ax, ... ,an], then satisfiability of 

CPL formulas can be decided in 2EXPTIME . 

Proof: Let / be a CPL formula over ATFC {ai,...,an}. Use Lemma 3 to 
construct /' with new atomic transition formulas ATF', such that / is satisfiable 
iff /' is oapt-satisfiable. Note that since the set {ai,...,an} is fixed, |/'| = 
ci ■ l/l, for some constant cx. By Lemma 5, there exist an APDL program A5> 
(in the form of an NFA over the alphabet ATF' U PropA) such that for every 
path p in every oapt-model M: p G p(f) iff p G Af. In other words: p G 
p(f) iff first(p) \= <Af>true. It is known [HS2], that satisfiability of APDL 
formulas can be decided in deterministic exponential time. One can easily prove 
by induction on the structure of /' that \Af\ < 2C2'I/'1, for some constant c2 

(actually, the exponent is needed only for the TV case). So that the overall time 
complexity of deciding satisfiability of the original CPL formula / is bounded 

by 22°3     , for some constant C3.     I 
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4    CPL with Interleaving 

The motivation for adding the interleaving operator to CPL is twofold. Our 
primary motivation is that the interleaving operator can be interpreted as the 
simplest case of composition used in algebraic approaches to modeling concurrent 
computation (see, e.g., [M]). Interleaving represents the case where processes 
run concurrently in such a fashion that their atomic steps can be arbitrarily 
interleaved but where no communication between them takes place. This form of 
concurrency, modeled by interleaving, might also be described as asynchronous. 
Second, as discussed in the sequel, using interleaving we gain succinctness. 

Let us now define ICPL (CPL with interleaving). The syntax of ICPL ex- 
tends that of CPL as follows: if / and g are formulas, then so is (/ |[ g). Turning 
to the semantics, the basic difficulty is that our p, which associates paths with 
formulas, is not informative enough to capture interleaving. For example, we 
would like the formula (a ■ P) \\ b to be satisfied by the paths: a ■ P ■ b (i.e., an 
o-transition followed by a 6-transition, with P true in the intermediate state), 
a-b-P and b-a-P. However, paths of the second form would not appear if we used 
p(a ■ P) and p(b), since p(a ■ P) contains only V-paths with P at the last state. 
To solve this problem we shall use a more detailed version of p. The idea is that 
now pnf(f) will contain, in addition to paths in M that are associated with /, 
some 'evidence' of this association. We will associate with each formula (via this 
extended p) a set of computation paths (defined below) rather than a set of (or- 
dinary) paths. A computation path in a model M consists of two objects: a com- 
putation, which is a sequence of transitions accompanied by a sequence of prop- 
erties (state formulas); and an ordinary path over M, i.e., a sequence of states 
of M. To get a feeling for this, the figure below illustrates a computation path: 

a Hb-Q)    a,c      R 
s t r 

Here, the path is (s,t,r), i.e., the sequence of states, and the computation is 
((a,{a,c}), (P,^(b-Q),R)). 

Definition 7. The set of state formulas SF is the minimal set of ICPL formulas 
that contains ASF, contains all formulas of the form -■/, and is closed under 
• and n. For state formulas / and g of the form f — f1 ■ f2 ... ■ fk, 
g = gl ■ g2 . . . ■ (/', where k,l > 1, let 

((f1ng1)-...-(fkng<), k = l 
fng={ (f1ng1)-...-(f'ngl)-f'+1-...-fk, k>i 

{(f1ng1)-...-(fkngk)-gk+1-...-g',k<l 

Definition8. A computation is a pair c = (Tranc, Valc), where Tranc is a 
path over the set 2ATF — 0 and Valc is a path of length \Tranc\ + 1 over the set 
SF. The length of c, denoted |c|, is |V^a/c|. 

We now define several operations on computations. For this we use the two 
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computations: 

Tranc Valc Trand Vald 

c = ((tlt...,tk),(/o,...,/*)>and d = ((ri.• • ■'r')<(»°>• • ■'si)) 

- c-d=((Tranc);(Trand), {Valcy(Vald)), where (h,... ,tk) ; (n,...,n) = 

(ii,... ^fc.T-i,..., r,) and (fo, ■ ■ ■, fk):(go, ■ ■ ■ ,9i) = (/o, •••,/* -ffo, ■••,#/)• 
- If c and d are of the same length (i.e., fe = /), 

then c n rf =f ((<i U ri, . . ., tk U rk),  (foHgo, • • •, fk^gk))- 

The next operation we want to define is c || d. In general, c \\ d is a set of computa- 
tions. A computation in c || d is obtained by sequentially executing portions from 

or from d. Let us make this notion more precise. First, denote by Ic C {0,..., &} 

the set of indices s.t. i G h iff/; is of the form // •/?■■• /;as*(/0 (and/as*(/,-) > 2). 
Next, define a formula portion of c to be any element of the set 

c 

u   /0u u Li* 
ie{o,...,fc}-ic «e^   m=1 

Finally, a portion of c is a formula portion or a transition portion of c, where a 
transition portion of c is an element of {rjj=1. Portions of d are defined in a 

similar way. 
Constructing a computation e £ c \\ d is carried out as follows. Initialize Trane 

and Vale with ( ), and set pointers to the leftmost formula portions of c and 
d. While there remain portions of c and d, that have not been dealt with, non- 
deterministically add to e the next portion of c or that of d, and advance the 
corresponding pointer to the next portion, where the successor of a transition 
is a formula and the successor of a formula portion is either the next portion 
of the same formula or the next transition, if the current portion is last in the 
formula. When one of c or d has been consumed, simply add to e the remaining 

portions of the other. 

Definition9. A computation path in a model M is a pair p = (Statp, cp), where 
Statp is a nonempty path over SM (i.e., an ordinary path in the model M) and 

cp is a computation with |Va/Cp| = \Statp\. 

For a computation path p = (Statp, cp), we denote TranCp and ValCp by 
Tranp and Valp, respectively. We intend to use a computation path p as follows: 
Statp will be the states along p, Tranp will be the sequence of transitions along 
p, and Valp will be the sequence of state formulas satisfied in states along p. For 
example, a computation path p with Statp = (s, t, r), Tranp = (a, {a, c}) and 
Valp = (P, ->(& -Q),R) is illustrated in the figure prior to Def.7. 

We have defined • both on computations and on paths, and we now use these 
together to define p ■ q, for computation paths p and q (and then, extend it to 

sets of computation paths in the usual way):  p ■ q = (Statp ■ Statq,  cp ■ cq) . 
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Definition 10. Let CP be a set of computation paths in a model M. A path p = 
(«o, ■ ■ ■, Sk) in M is CP consistent with a computation c = ((ti,... ,ti), (/o, • • •, //)), 
if the following conditions are satisfied: (i) |p| = \c\ (i.e., k = /), (ii) For every 
0 < i < k - 1, there exist q G CP s.t. Statq = (si}Si+i) and Tranq = (ti), and 
(iii) For every 0 < i < k, there exist q G CP s.t. Statq = (s,-) and Va/g = (/,). 

We can now define the semantics of ICPL. Formulas are interpreted over the 
same models as in CPL, that is, models of the form M = (SM,p°M), where SM is 
the set of states, p°M(P) C (5), for every element P GASF, and p°M(a) C S x S, 

for every element a GATF. 
Next, p°M is extended by induction to a function pM, which assigns a set 

PM (/) °f computation paths to every ICPL formula /. The set of all compu- 
tation paths assigned to formulas in this way (i.e., those that are in pM(f) for 
some /) is denoted CP(M). All the inductive cases in the definition of pM are 
straightforward, except for the following two: 

pAf(fng) = {r | 3p£pM(f), q G PM(g) s.t. Statr = Statp = Statg 

and cr = cp fl cq} 
PM(f II d) = {r I Statr is CP(M) consistent with cr and cr G (cp || c?), 
for some p G pM(/), 9 G pM(g)} ■ 

Definition 11. An ICPL formula f is satisfied in a path p of a model M, written 
M, p |= /, iff p = Statq for some computation path q G pM(f)- f is satisfiable 
iff A/, p (= / for some path p of some model M. 

How does ICPL relate to CPL? Recall that ICPL is intended to be CPL extended 
with the'H'-operator. While syntactically it is clear that CPLjICPL, semantically 
this may seem less obvious due to the differences in the definitions. We there- 
fore proceed by showing that under the canonical correspondence between CPL 
models and ICPL models, that is,   pcph = p°CPL,   this is indeed the case. 

Proposition 12 For every CPL formula f and every (ordinary) path p in any 

model M, M,p\=      f iff M,p\=       f. 
' 'r>     CPL''       •" 'rl     ICPLJ 

Proof: Omitted.      ■ 

In what sense is ICPL 'better' than CPL? Well, using the well known fact that 
regular sets are closed under interleaving it is not difficult to prove that ICPL 
and CPL have the same expressive power. Nevertheless, ICPL has two important 
advantages over CPL. The first is clarity in modeling asynchronous concurrent 
computations. For example, consider the following two computations: (i) Execute 
a, observe P and then perform 6. (ii) Observe Q and then execute b followed by 
a. In ICPL, we can use the formula a ■ P ■ b \\ Q ■ b ■ a to model computations 
that arise from running these two in parallel, while in CPL it appears that one 
must use a much more cumbersome formula that explicity lists many of the 
possible interleavings. The second (and related) advantage of ICPL over CPL is 
succinctness. It is known that the use of the interleaving operator can shorten a 
regular expression by an exponential amount [F, MS]. It is true that interleaving 
in ICPL is (in general) not interleaving in the language sense. However, ICPL 
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formulas that use only ATF and the operators '•', '*', CU' and '||' correspond 
essentially to regular expressions (extended with interleaving operator) over the 
alphabet ATF. As to decidability, we have: 

Theorem 13. Satisfiability of ICPL formulas with ATFC {ai,...,an} can be 

decided in 2EXPTIME . 

5 ICPL With Synchronization 

ICPL is suited for modeling asynchronous concurrency. To model synchronous 
concurrency as well, we introduce ICPL with synchronization (SICPL). All ICPL 
formulas are SICPL formulas. In addition, if / and g are SICPL formulas and 
syn is a subset of ATF, then / | syn \ g is a SICPL formula. (The set syn has 
to be written out in full, for example as in (a ■ b)* ■ P \ a, b | (a U b).) Intuitively, 
/ | syn | g represents the interleaving of / and g synchronized w.r.t. syn. See 
the example in Section 1. 
To present the formal semantics of SICPL (which will not be given here), one 
has to modify each step in the definition of piw(f || </)• Here we have: 

Theorem 14. Satisfiability of SICPL formulas with ATFC {a\,. . ., an] can be 

decided in 2EXPTIME . 

6 Infinite Computations 

CPL (and its extensions ICPL, SICPL) are input/output oriented and are there- 
fore appropriate for stating properties concerning programs with finite compu- 
tations. We wish, however, to make it possible to reason about processes with 
possible infinite computations. For example, we would like to say that the infi- 
nite model P ■ a ■ P ■ a... (the a's are transitions, and the P's signify truth in 
the intermediate states), admits in addition to the finite computations described 
by (P ■ a)* also the infinite computation (P ■ a)w. With this idea in mind, we 
introduce the extension wCPL. 

Basically, one would like wCPL to extend CPL by employing the new operator 
'w' and to use formulas of the form fw, where / is a CPL formula. The most 
intuitive interpretation of fw is simply to associate with it infinite paths that 
result by fusing infinitely many (finite) paths of/ (that is, take p{fw) as p(f)w) ■ 
Choosing this interpretation, however, forces one to make a distinction between 
'w-formulas' (those with possibly infinite paths corresponding to the w) and 
'finite formulas'. This is necessary in order to interpret (or to forbid) formulas 
of the form f"-g, f« ■ g", (/")* etc. 

To enable a uniform representation, we have decided to adopt a more modest 
interpretation of fw, as follows. We shall consider fw rather as a test, true in 
states (i.e., paths of length 0) from which it possible to repeatedly carry out 
computations of/ infinitely often. The advantage of using this interpretation is 
that even though paths associated with formulas are finite, and hence all CPL 
operators are applicable and retain their usual meaning, it is still possible to 
make assertions concerning infinite computations. 
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Definition 15. An w-path over a set S is an infinite sequence of elements of S. 

For a set P of finite paths, let Vw = {pi ■ pi • Pz ■ ■ • I Vi > 1, Pi G V}. That is, 
Pw is the set of finite and infinite paths obtained by repeatedly fusing (finite) 

paths from P infinitely often. 

The svntax is such that wCPL contains all CPL formulas, and in addition if/ and 
</are wCPL formulas, then so are (-■/), (/*), (/w), (/-ff), (fUg) and (/riff). 
As for semantics, wCPL is interpreted over the same models as CPL. Given a 
model M and an wCPL formula /, pM (/) is defined exactly as in CPL with the 

addition of the clause: pM(fw) = first {(pM(f))w) ■ 
wCPL can be considered to be a 'path version' of RPDL [HS1]. Indeed, we 

can extend the embedding of PDL in CPL to an embedding of RPDL in wCPL 
by: (repeat(ß))' = (/?')w- Thus, wCPL's expressive power is at least as that of 
RPDL, which is known to be high (for example it exceeds that of CTL* [E].) 

Proving that wCPL is elementary decidable is done by reducing its satisfiabil- 
ity problem to that of ARPDL (the automata version of PDL+ repeat). Here, we 
omit the details, and only mention that this reduction costs at most an exponen- 
tial in added size. Thus, using the fact that ARPDL is decidable in 3EXPTIME 

[VW], we have: 

Theorem 16. Satisfiability of wGPL formulas with ATFC {ai,...,a„} can be 

decided in 4EXPTIME . 
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Abstract. In this paper we develop a new exponential algorithm for 
model-checking infinite sequential processes, including context-free pro- 
cesses, pushdown processes, and regular graphs, that decides the full 
modal mu-calculus. Whereas the actual model checking algorithm res- 
ults from considering conditional semantics together with backtrack- 
ing caused by alternation, the corresponding correctness proof requires 
a stronger framework, which uses dynamic environments modelled by 
finite-state automata. 

1     Introduction 

Over the past decade model-checking has emerged as a powerful tool for the 
automatic analysis of concurrent systems. Whereas model-checking for finite- 
state systems is nowadays well-established, the theory for infinite systems is 
a current research topic (cf. [BE97]). Since even weak branching time logics 
are undecidable for infinite-state systems incorporating parallel operators, much 
work has focused on the verification of sequential processes. The strongest res- 
ults obtained so far show the decidability of monadic second order logic (MSOL) 
for the infinite binary tree [Rab69], pushdown transition graphs [MS85], regular 
graphs [Cou90], and rational restricted recognizable graphs [Cau96]. However, 
all decision procedures are non-elementary and thus not applicable to practical 
problems. Moreover, MSOL is usually too expressive, since it allows to distin- 
guish even bisimilar models. For these reasons, the modal mu-calculus is seen 
as an attractive alternative for specifying behavioural properties. 

The model-checking problem for sequential processes and the modal mu- 
calculus was first considered in [BS92]. The authors developed an iterative 
model-checking algorithm that decides the alternation-free part of the modal 
mu-calculus for context-free processes based on a conditional formulation of 
the semantics of //-formulas. Moreover, in [HS94] it is shown how this can be 
done using tableaux-based techniques, allowing local model checking.   Finally, 

* This work was supported during my stay at IRISA by the European Community 
under HCM grant ERBCHBGCT 920017, and during my stay at the LFCS by the 
DAAD under grant D/95/14834 of the NATO science committee. 
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the approach was also extended to the strictly larger classes of pushdown pro- 
cesses [BS95] and regular graphs [BQ97]. Since alternation of fixpoints gives 
rise to a strict hierarchy [Bra96] the problem of model-checking the full modal 
mu-calculus has still been open. Only recently, Walukiewicz presented a first 
exponential model-checking algorithm for pushdown processes based on games 

[Wal96]. 
In this paper we develop an alternative algorithm which, essentially, arises 

as a combination of extending the standard iterative model-checking techniques 
with conditional reasoning, in order to capture sequential model structures in 
an alternation-free setting [BS92, BS95, BQ97], and the observation that altern- 
ating fixpoints require some kind of backtracking, as it is known from regular 
model checking (cf. e.g. [CKS92]). Whereas the actual model checker results 
from this combination, the corresponding correctness proof requires a stronger 
framework, which uses dynamic environments. In contrast to the 'standard' 
assertions, which suffice algorithmically, dynamic environments also explicitly 
model valuations of variables that occur free in the actual fixpoint computation. 
This explicit treatment is necessary in order to establish the link between the 
result of the fixpoint iteration and the semantics of the full modal mu-calculus. 

Fortunately, all this additional complexity is only required for the proof and 
need not be considered for an implementation. Taking \C\ as the number of 
transitions, and \Q\ as the branching degree in the finite sequential process rep- 
resentation, as well as |4>| as the size of the formula, and "ad" as the alternation 
depth of the formula under consideration, the overall complexity1 is 

0( m * (IQI * |C|)ad«+1 * 2l*l*(ad«+IQ|)). 

Note that this does not only cover context-free and pushdown processes, but also 
regular graphs, which are not covered by the algorithm proposed by Walukiewics. 
It is not at all clear, whether a similar extension is also possible for Walukiewics' 

algorithms. 
The plan of the paper is now as follows. The next section describes the class 

of processes we will consider, and presents the modal mu-calculus. Subsequently, 
we develop our model-checking algorithm which is proved to be correct in Section 
4. The final section contains our conclusions and directions for future research. 
Proofs and further details can be found in the full version [BS97]. 

2     Processes and Specifications 

Infinite sequential processes comprise context-free processes, pushdown pro- 
cesses, and regular graphs. In this paper we will mainly concentrate on the 
model-checking problem for context-free processes, as the extension to push- 
down processes, respectively regular graphs, can be obtained following the lines 

of [BS95], respectively [BQ97]. 

In this paper we neglect the optimization of [LBC+94] which exploits monotonicity 
arguments and would reduce ad(#) to ad(<£)/2. 
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2.1 Context-Free Processes 

As usual, we consider labelled transition graphs as models for the behaviour 
of concurrent systems, since they allow to represent the underlying semantics 
of many process calculi. In particular, we are interested in classes of infinite 
transition graphs which can be finitely represented by labelled rewrite systems. 

Definition 2.1. A labelled transition graph is a triple T = (S,Act,^) where 
S is the set of states, Act is the set of transition labels (or actions), and —> C 
S x Act x S is the transition relation. 

Definition 2.2. A labelled rewrite system is a triple V, — (V,Act,R) where V 
is an alphabet, Act is a set of labels, and R C V* x Act x V* is a finite set of 
rewrite rules. If the rewrite rules are of the form R C V x Act x V* the rewrite 
system is called alphabetic. 

In the remainder of the paper, a rewrite rule (u,a,v) £ R is also written 

as « -4». In general, rewrite systems are used to define a rewrite relation on 
words of V* where a rewrite rule may be applied at any position. The technical 
development of this paper concentrates on rewritings of the following restricted 
form. 

Definition 2.3. Let H. — (V,Act,R) be a rewrite system. Then the prefix 

rewriting relation of R is defined by i—>R =df { [uw, a, vw) | (u —> v) £ R, w £ 
V* }, and the labelled transition graph TR =df (V*, Act, \—>R) is called the prefix 

transition graph of 7?.. By abuse of notation, we will henceforth write uui —► vw 
instead of uw i—>R vw. 

An alphabetic rewrite system which is interpreted wrt. prefix rewriting is 
called a context-free system, and a context-free process is then the rooted prefix 
transition graph of a context-free system. Note that the states of a context-free 
process are words over V, and we will henceforth use lower greek letters a, ß,... 
to denote them.  One standard example for a context-free process is the prefix 

transition graph of Cex = {A-+ AB, A —>• e, B —»• e } rooted at A. 

2.2 The Modal Mu-Calculus 

Nowadays it is widely accepted that system properties can conveniently be ex- 
pressed by temporal logic formulas. Particularly, the modal mu-calculus as intro- 
duced by Kozen [Koz83] is a powerful branching time logic. It combines standard 
modal logic with least and greatest fixpoint operators which allows to express 
very complex temporal properties within this formalism. Due to its express- 
iveness and its conciseness the mu-calculus can be regarded as the "assembly 
language" of temporal logics. Formulas of the mu-calculus, given in positive 
form, are defined by the following grammar 

<2> ::= tt | f f | X | <2> V $ \ $ A 4> | [a]& \ {a)<P | pX.$ \ vX.<I> 

where X ranges over a (countable) set of variables Var, and a over a set of 
actions Act. We will use Lfi to denote the set of all mu-calculus formulas. 
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Standard Semantics Given TR = {V*,Act,-+), and a valuation V : Var -» 
21'*, the inductive definition below stipulates when a context-free process a G V* 
has the property <P, written as a |=v #.   If a fails to satisfy <P, we will write 

a< ^v X iff a G V(X) 
a [=v $1 V$2 iff a^v^i  V a (=v ^2 
a (=v ^1 A <?2 iff a Nv ^1  A a |=v ^2 

a |=v (a)# iff 3 a', a A a'  A  a' |=v <? 
a |=v [a]4> iff V a', a 4 a' =^ a' ^v $ 
a ^v /iX.<P iff V S C V*. (V ß G f. /? N[Jr-*s] $=>j8e5)=>aeS 
cv (=v vX.<P iff 3SCV*.(W ßeV*. ßeS^ß \=v[x^s] #) A a G 5 

where V[X >->• 5] is the valuation resulting from V by updating the binding of 
X to 5. The clauses for the fixpoints are a reformulation of the Tarski-Knaster 
theorem which states that the least fixpoint is the intersection of all pre-fixpoints 
and the greatest fixpoint is the union of all post-fixpoints. As a consequence, 
states satisfy a fixpoint formula iff they satisfy the unfolding of the formula, i.e. 
a |=v <rX.$ iff a \=v $[<rX.$/X] where a G {p,v} and &[&/X] denotes the 
simultaneous replacement of all free occurrences of X in <£ by 9. 

The satisfaction relation defined above is independent of the valuation if 
the considered formula has no free variables in which case we will drop the 
index V. We extend our satisfaction relation, moreover, to sets of formulas by 
writing a \= F if a \= <P, for all # G f. Finally, we observe that the usual 
denotation of formulas as the set of states where the formula holds is obtained 
in our presentation by [<2>]v - {a \ a \=v <?}. Next we define some standard 
notions which will allow us to deal with occurrences of subformulas in a given 
formula, as well as to measure the complexity of a formula. 

Definition 2.4 (Binding). A formula $ is called well named if every fixpoint 
operator in <P binds a distinct variable, and free variables are distinct from 
bound variables. With each well named formula«? we then associate its binding 
function V$ which assigns to every bound variable X of <P the unique subformula 
<rX.&(X) of <P, called the binding definition of X in <P. 

From now on we assume that every formula is well named. 

Definition 2.5 (Dependency order, Expansion). Given a formula <P, we 
define the dependency order over the bound variables of <£, denoted by <$, as the 
least partial order such that if X occurs free in V$(Y) then X <<p Y. Moreover, 
for every subformula & of #, we define the expansion of «^ with respect to T>$ as: 
{&}Vt, =df V [V$(Xn)/Xn]. ..[VtiX^/Xi] where the sequence (Xu. ..,Xn) 
is a linear ordering of all bound variables of 4> compatible with the dependency 

order, i.e. if Xi <<j Xj then i < j. 
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Definition 2.6 (Subformulas, Closure). The subformula relation on Lfi, de- 
noted by ^, is the least partial order on Lfi such that ^ < &i V$2, #i :< #1 A#2, 
<J/ X (a)!?, <? ^ [a]^, ^ ^ /zX!?, and >f ^ z-X.!/', for i = 1,2 and a G ylcL Given 
a formula^, we define the closure of $ as CL(^) = { ^ | ^ ^ # }. Furthermore, 
if CL(#) = { #i,..., #V, } we will henceforth assume that the subformulas fy are 
linearly ordered compatible with ^, i.e. if <Pj < >£j then i > j. 

Definition 2.7 (Alternation Depth). 
A formula <P is said to be in the classes E0 and Ho iff it contains no fixpoint 
operators. To form the class Sn+i, take E„UlIn, and close under (i) boolean and 
modal combinators, (ii) nX.<!>, for $ G En+i, and (iii) substitution of <P' G Sn+i 
for a free variable of <P G Sn+i provided that no free variable of $' is captured 
by <P; and dually for 77n+i. The (Niwinski) alternation depth of a formula <P, 
denoted by ad(#), is then the least n such that $ G l^n+i H /7n+i- 

Assertion-Based Semantics As pointed out in [BS92], context-free processes 
can be verified by considering Hoare-logic style pre-condition/post-condition 
pairs of sets of formulas for each of the nonterminals occurring in the context- 
free system. A triple { T } a {A} is then interpreted as a satisfies all formulas 
of F if we assert that after termination of a exactly the set of formulas A holds. 
This intuition is formally captured by the following definition of assertion-based 
semantics which generalises standard semantics by taking into account the set 
of formulas which hold after termination of a process. 

Given Tc = (V*,Act,i—>c), and a valuation V : Var ->■ 2V", the inductive 
definition below stipulates when a context-free process a G V* has the property 
<P under the hypothesis that after termination of a the formulas A hold, written 
as a \=v {@,A). If a fails to satisfy $ under the hypothesis A, we will write 
a ^v (0, A). First we have e \=v ($, A) iff <2> G A and then, for a ^ e, 

a \=v (tt,A) 
afiv (if, A) 
a |=v (X,A) iff aeV{X) 
a |=v (<£>! V$2,A)  iff a \=v (^uA)Va \=v ($2,A) 
a \=v (#i A$2,A)  iff a \=v (<PuA)Aa \=v {<P2,A) 

ak=v((a)0,A)        iff 3 a', a A a' A a' \=v (<Z>, A) 

a\=v([a]$,A) iff V a', a A-a'=> a' \=v (&,A) 
a ^v {t*X.$, A)      iff V S C V*. (V ß G V*. ß hv[x^s] (#, 4) => ß € 5) 

=>■ a G 5 
a ^v (i/M, /i)      iff 3 5 C f*. (V /? G V*. ß G 5 =>• ß \=V[x^s] (#, 4)) 

AaeS 
As in the case of the standard semantics, we will use a (=v (71, ^i) to denote 
a \=v (<?>,/}), for all<PG T. 

The usefulness of the assertion-based semantics is underpined by the follow- 
ing proposition [BS92] which states that, firstly, the assertion-based semantics 
extend the standard semantics, and secondly, that they allow to reason compos- 
itionally about context-free processes. 
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Proposition 2.8.   The assertion-based semantics is 

1. an extension of standard semantics, i.e. given a closed formula $, we have, 

a^$     iff     a\=($,Ae) forAe = {$eCL{$)\e^{<P}v*}- 

2. compositional wrt. context-free processes, i.e. for all A, F C L(i, 

aß \= (r, A)     iff    3 S C Lpi. a \= (r, S) and ß \= {E, A) 

The effectiveness of our algorithm, which is presented in the next section, relies, 
in particular, on Proposition 2.8.1, as it shows that $ can be verified by taking 
into account merely the semantics of all subformulas of 0. 

3    The Model-Checking Algorithm 

In this section we develop our model-checking algorithm which checks closed 
//-formulas with arbitrary alternation depth for context-free processes in expo- 
nential time. In fact, the algorithm coincides with a backtracking extension of 
the model-checker of [BS92] which deals only with the alternation-free fragment 

of the modal mu-calculus. 
Given a context-free system C and a closed formula #, each nonterminal 

A e V = {Ai,...,An} defines a mapping \AJ : 2CLW ->■ 2CLW from post- 
to pre-conditions. As we are, however, in particular interested in the question 
whether a given subformula 9 G CL($) belongs to the pre-condition set or not, 
we refine this notion by defining the following functions, called characteristic 

property transformers (CPT). 

\A\   (Z1J -df | 0   otherwise 

Writing IB for the usual lattice of boolean values, characteristic property trans- 
formers are elements of the boolean lattice consisting of all functions from 
2CLW to IB, where the ordering, and the meet and join operations respect- 
ively, are defined argument-wise. More importantly, they can be obtained as a 
fixpoint solution of an appropriate function scheme, called the property trans- 
former scheme (PTS). This scheme is defined by the rales given in Figure 1, and 
consists of two parts. The first part copes with the structure of the context-free 
system, as well as with the semantics of the formula, and defines an equation for 
each pair {A,&) eVx CL($). The second part deals with the empty process 
according to the first clause of the assertion-based semantics, as well as with 
composed processes according to Proposition 2.8.2. Whereas the rules for the 
basic cases mimic directly the semantics of the subformula, the fixpoint related 
equations are slightly more complicated and require a simultaneous computa- 
tion of all their corresponding transformers, sel^ then simply selects the A 
component of the resulting tuple. The other auxiliary function, mem,?, tests the 
membership of <P in the given set of formulas. It returns 1 if # G A and 0 

otherwise. 
The overall structure of the model-checking algorithm consists now of the 

following three steps. 
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Mt 

= 1                                           IA]*«*' = [A}**UIA]*> 
= o                                M*'A*3 = [A]*1 n M*= 
= V(X,A)                                [Ap*   =UA^Jafv 

my* = 
sel^(n{(/i* ,...,/^J |V,-G[1,n] lMtl{XtAi)^hxiJ€llin]]^hl}) 

selA(U{(hXi:...,hXj |V,-G[1,n] />£ C[A|[(M.H^.£ll]n]]}) 

= mem^(Z\) 

= «({r£CL(<2>) | [a]£(4) = i}) 

Figure 1. The property transformer scheme. 

1. Given a context-free system C and a closed //-formula«? construct the prop- 
erty transformer scheme according to the rules given in Figure 1. 

2. Solve the (finite) fixpoint problem for the property transformer scheme. 
3. Check whether  [yli]*(Z\e)  =   1 where Ai  is the root of the context-free 

system, and A€ = {<P £ CL(#)  | e \= {^v* }• 

In Section 4 we prove that the second step of the algorithm computes trans- 
formers which reflect the assertion-based semantics, while Proposition 2.8.1 now 
ensures that the third step solves the model-checking problem, as we have 

{Alf{At) = l     iff    A^frAJ     iff    Ai\=*. 

Moreover, the ordinary semantics of C?> can be obtained from the set of CPT's 
by means of [<P] = { a £ V* | fa]*(^\e) = 1 }. This set can always be shown to 
be a regular set of states. 

As expected, the required backtracking for alternating //-formulas yields a 
worst-case time complexity for the algorithm, which is exponentially worse (in 
the alternation depth) than the estimation given for the alternation-free case 
[BS92, BS95], 

Theorem 3.1 (Complexity). 
Let. C be a context-free system, and <P be a closed ^.-formula. Then the worst-case 
time complexity of solving the property transformer scheme is 

0(\4>\*(\C\*2^)adW+1) 

4    Dynamic Environments 

In the presence of formulas containing free variables the simple composition prop- 
erty of Proposition 2.8.2 no longer captures correctly the behaviour of context- 
free processes wrt. the specification at hand.   This defect is eliminated by the 
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slight modification given below. 

{r,V}aß{A,V}     iff    3 2,V"{r,V'}a{2,V"}znd{£,V"}ß{A,V} 

Intuitively, the modified composition rule expresses that in addition to assertions 
also environments must be adapted when considered at intermediate states. In 
general, the valuation V" is obtained from V by right cancellation of ß, i.e. for 
all X G dom[V), V"{X) = (V{X) H V*ß)ß~1. As an example, aß G V(X) would 

imply Q G V"{X). 
In the remainder of this section we fix now a context-free system C, and a 

formula 0 with closure { $1, ...,•?„ }. Our aim is to develop a formalism, the 
dynamic, environments, which faithfully models the adaptations of valuations 
needed for composition. Dynamic environments will be partitioned into levels 
k G [l,n] where a dynamic environment of level k defines the valuations for 
{ #!,..., $'k }• This change from valuations for variables to valuations for sub- 
formulas is reflected in the semanics by adding the rule "if «f G dom(V) then 
(a \=v {&,£) if a G V(^))". The original model-checking problem is then 
reduced to a corresponding fixpoint problem on the finite domain of dynamic 
environments, such that the semantics of the original formula is captured by the 

final environment of level n. 

Definition 4.1 (Dynamic Environment). 
A dynamic environment Ak of level k G [l,n] is a sequence of deterministic 
finite-state automata A- = (QA„V,SAt,FAt), i G [1,*], where QAt = (2CL(*))* 
are the state sets of the automata, V is the input alphabet, SAi :_QA, x 
y _>. QA. are the transition functions obeying the constraints 5Ai(Ai,A) = 
A implies SAl_, (Ä-i, A) = r,-_i where A{ denotes {A1,..., A{), and FAl = 
{Ai G QA, | ^i G At} is the set of accepting states. Denoting the transitive 
closure of SAl, as usual, also by SAi the language accepted by Ai starting in the 
state Ai is CAt{Ai) = { a G V*   |  SAt{A,&) G FAi } where 5 is the reverse of 

Q:_ 

A dynamic environment Ak together with a state Ak is then interpreted as 
an environment which defines valuations for $i,..., #)t by means of 

Äl(A,)=äf[V1^CAl(Al)] 

Ak{Ak) =it Äk-i{Äk-i) [Vk^CAk{Äk)}  for  2 < k < n 

Dynamic environments are a convenient formalism to describe the semantics 
of p-formulason context-free processes since they model compositionality simply 

by transitions in the finite automaton. 

Lemma 4.2. Let {r,V}A{A, Äk(Ak) }. Then 

1. For all i < k, <F{ G F iff A G Äk(Äk)(#i), and 2. V = Äk(SAk{Äk,A)). 

2 Here we have to use ä as the automaton has to model the above mentioned right 
cancellation 
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The first property expresses that a dynamic environment of level k captures 
the semantics of all subformulas up to level k, while the second property states 
that the environment to be considered in the pre-condition of A coincides with 
the interpretation of the A-successor of At in Ak ■ 

The granularity of the transition functions of dynamic environments is not 
sufficient to obtain a match between the semantic and the iterative intuition 
behind the model checking problem. We therefore split these transition functions 
into characteristic transition functions as follows. 

*-><^--{ilt{±A)=n*"d*'er' 
The split into characteristic transition functions allows us to view a dynamic 
environment Äk as a matrix of CTF's as depicted below. 

6l<1 51'2 ...tf1-* ...S1'" 

rfc.l rfc,2 rfe,fc gk,n 

This matrix can be systematically extended to a matrix for Äk+i with new row 
(Sk+1,1,..., Sk+1'n) by means of a fixpoint computation such that the final result 
will capture the semantics of the formula«? on the given process3. 

As will be elaborated on in the next subsection, these matrices are adequate 
for proving our main result, Theorem 4.6, i.e. the equivalence of the semantic 
and the iterative algorithm presented in Section 4.1, because it is possible to 
"synchronize" their corresponding computations on the diagonal. 

4.1     Semantic and Iterative Solutions 

Given the semantics of the formulas 9\,..., &k-i in terms of a dynamic en- 
vironment Ak-i we will now consider the semantics of the remaining formulas 

Definition 4.3 (Semantic Solutions). 
We call Äk, for k £ [l,n], the semantic solution of Ak-i, written as S(Ak-i), if 
the transition function of Ak satisfies 

SAk{Ak,A) = tk     iff     (rfc,A-i(Ä_i>) A {Ak,Äk-i{Äk-i)). 

Moreover, we call (Ak,---,An) the semantic solutions of Ak-i, denoted by 
S(Äk-i), if Äi = S(Äi-i), for i £ [k,n]. 

It turns out that the semantic solution respects the standard substitution lemma. 

" More precisely, since the arity of characteristic transition functions depends on the 
row, they have to be adapted as described in [BS97] during this computation. 
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Lemma 4.4. Let (A, A-i(A-i)) A (Ak, Ak-i(Äk-i)) and let Ak be the se- 
mantic solution ofAk-i-  Then 

(rk,Äk-i{rk-1)[^k^CAk(rk)])A{All,Äk.i(Äk.1)[^k^CAkM]) 

Corollary 4.5 (Diagonal Consistency). IfÄk, ..-.Ä are the semantic solu- 

tions ofAk-i then V'i = 8™, for i G [Ar, n],j G [1, n}. 

Due to this corollary we may simply identify the semantic solutions Ak,---,An 

with the characteristic transition functions 8k>k,.. .,8n,n. 
Let us finally sketch the resulting(conceptual) algorithm which iteratively 

computes the semantic solutions for Äk-i- Given Ak-i, we would like to com- 
pute 8iJ for i G [Ar, n], j G [1, n]. By Corollary 4.5 we already know that S1^ = S1J 

for i G [A-, n],j G [1, k - 1]. The remaining characteristic transition functions are 
then computed level-wise by a two-level fixpoint computation. During the inner- 
level computation we have fixed some approximant 8k-k and vary the values of 
Sk'k+1,...,Sk'n. The idea is that (8k'\ ... ,6k-n) together with A-i defines 
a dynamic environment Ak for which we can compute the semantic solutions 
0k+i,k+i^ _ gn,n by induction. We may therefore update Jfc'fc+1,..., 8k<n by 
gk+i,k+i^ ^ Qn,n^ ancj repeat this iteration until we reach consistency. In the 

outer-level fixpoint computation we may now update the fixed 8k<k by evaluat- 
ing the characteristic transition function for the "unfolding" of \Pk in the current 
setting, and start the inner fixpoint computation again. Our main theorem 
then states that if we have reached consistency also at the outer-level then the 
iterative and the semantic solutions for Ak-i coincide. 

Theorem 4.6. For any given dynamic environment Ak, the semantic and the 

iterative solutions coincides. 

The observation that only the characteristic transition functions on the diag- 
onal have to be taken into account when updating Sk'k wrt. the current dynamic 
environment An, allows us to replace the "conceptual" algorithm used in the 
correctness proof to the "actual" model-checking algorithm presented in Section 
3. This optimization is the key for proving the claimed complexity result. 

5    Conclusions and Further Research 

In this paper we have presented an iterative, exponential model-checking al- 
gorithm for context-free processes which deals with the full modal mu-calculus. 
This basic algorithm can also be extended to the class of pushdown processes 
following the lines of [BS95], as well as to the class of regular graphs follow- 
ing the lines of [BQ97], respectively. Essentially, both extensions are obtained 
by taking into account the arity Q of pushdown processes (i.e. the number of 
states in the finite control), respectively regular graphs (i.e. the maximal arity of 
an hyperedge), which yields characteristic property transformers with multiple 
arguments. For these extensions our algorithm has the worst-time complexity 
0( |<P| * (IQI * |C|)ad(*)+1 * 2l*l*(adW+iei)). 
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Recently, Walukiewicz presented another model-checker for pushdown pro- 
cesses which uses games [Wal96]. His algorithm has the different complexity 
estimation 0{ \C\ * (2l<3l*l*l*ad(<?)jad(<?) ^ and beriaves nence worse for increasing 

degrees of alternation depths. 
Since our algorithm directly mimics the behavioural intuition behind sequen- 

tial processes and, in particular, keeps process and formula structure transparent, 
it gives a direct handle to extending the underlying process structure. Intended 
future work includes plans to extend model-checking to the class of rational re- 
stricted recognizable graphs as introduced in [Cau96], and second, to develop 
a local variant. Both extensions will exploit the structural transparency of our 
approach and, in particular, use the framework of dynamic environments. 
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Abstract. We introduce a symbolic model checking procedure for Probabilistic 
Computation Tree Logic PCTL over labelled Markov chains as models. Model 
checking for probabilistic logics typically involves solving linear equation sys- 
tems in order to ascertain the probability of a given formula holding in a state. 
Our algorithm is based on the idea of representing the matrices used in the lin- 
ear equation systems by Multi-Terminal Binary Decision Diagrams (MTBDDs) 
introduced in Clarke et al [14]. Our procedure, based on the algorithm used by 
Hansson and Jonsson [24], uses BDDs to represent formulas and MTBDDs to 
represent Markov chains, and is efficient because it avoids explicit state space 
construction. A PCTL model checker is being implemented in Verus [9]. 

1    Introduction 

Probabilistic techniques, and in particular probabilistic logics, have proved successful 
in the specification and verification of systems that exhibit uncertainty, such as fault- 
tolerant systems, randomized distributed systems and communication protocols. Mod- 
els for such systems are variants of probabilistic automata (such as labelled Markov 
chains used in e.g. [24, 34, 35, 17]), in which the usual (boolean) transition relation 
is replaced with its probabilistic version given in the form of a Markov probability 
transition matrix. The probabilistic logics are typically obtained by "lifting" a non- 
probabilistic logic to the probabilistic case by constructing for each formula <f> and a 
real number p in the [0,1]-interval the formula [ef>]>p in whichp acts as a threshold for 
truth in the sense that for the formula [</>]>p to be satisfied (in the state s) the proba- 
bility that 0 holds in s must be at least p (see [26, 32, 25] for a different approach). 
With such logics one can express quantitative properties such as "the probability of 
the message being delivered within t time steps is at least 0.75" (see e.g. the timing or 
average-case analysis of real-time or randomized distributed systems [24, 23, 5, 6, 2]) 
or (the more prevalent) qualitative properties, for which <p is required to be satisfied by 
almost all executions (which amounts to showing that (/> is satisfied with probability 1, 
see e.g. [1, 17, 23, 24, 21, 22, 29, 30, 34]). 

* This research was sponsored in part by the National Science Foundation under grant no. CCR- 
8722633, by the Semiconductor Research Corporation under contract 92-DJ-294, and by the 
Wright Laboratory, Aeronautical Systems Center, Air Force Materiel Command, USAF, the 
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Much has been published concerning the verification methods for probabilistic log- 
ics. Probabilistic extensions of dynamic logic [26] and temporal and modal logics, 
e.g. [2, 6, 17,24, 21,27, 30, 31, 34], and automatic procedures for checking satisfaction 
for such logics have been proposed. The latter are based on reducing the calculation of 
the probability of formulas being satisfied to a linear algebra problem: for example, in 
[24], the calculation of the probability of 'until' formulas is based on solving the linear 
equation system given by an n x n matrix where n is the size of the state space. Optimal 
methods are known (for sequential Markov chains, the lower bound is single exponen- 
tial in the size of the formula and polynomial in the size of the Markov chain [18]), 
but these algorithms are not of much practical use when verifying realistic systems. As 
a result, efficiency of probabilistic analysis lags behind efficient model checking tech- 
niques for conventional logics, such as symbolic model checking [11, 12, 10,8,15,28], 
for which tools capable of tackling industrial scale applications are available (cf. smv). 
This is undesirable as probabilistic approaches allow one to establish that certain prop- 
erties hold (in some meaningful probabilistic sense) where conventional model checkers 
fail, either because the property simply is not true in the state (but holds in that state 
with some acceptable probability), or because exhaustive search of only a portion of the 
system is feasible. 

The main difficulty with current probabilistic model checking is the need to inte- 
grate a linear algebra package with a conventional model checker. Despite the power of 
existing linear algebra packages, this can lead to inefficient and time consuming com- 
putation through the implicit requirement for the construction of the state space. This 
paper proposes an alternative, which is based on expressing the probability calculations 
in terms of Multi-Terminal Binary Decision Diagrams (MTBDDs) [16]. MTBDDs are 
a generalization of (ordered) BDDs in the sense that they allow arbitrary real numbers 
in the terminal nodes instead of just 0 and 1, and so can provide a compact representa- 
tion for matrices. As a matter of fact, in [13] MTBDDs have been shown to perform no 
worse than sparse matrices. Thus, converting to MTBDDs ensures smooth integration 
with a symbolic model checker such as smv and has the potential to outperform sparse 
matrices due to the compactness of the representation, in the same way as BDDs have 
outperformed other methods. As with BDDs, the precise time complexity estimates of 
model checking for MTBDDs are difficult to obtain, but the success of BDDs in practice 
[8, 28] serves as sufficient encouragement to develop the foundations of MTBDD-based 
probabilistic model checkers. 

In this paper we consider a probabilistic extension of CTL called Probabilistic Com- 
putation Tree Logic (PCTL), and give a symbolic model checking procedure which 
avoids the explicit construction of the state space. We use finite-state labelled Markov 
chains as models. The model checking procedure is based on that of [24, 18], but we 
use BDDs to represent the boolean formulas, and a suitable combination of BDDs and 
MTBDDs for probabilistic formulas. Currently, we are implementing the PCTL sym- 
bolic model checking in Verus [9]. For reasons of space we omit much detail from this 
paper, which will be reported in [4]. We assume some familiarity with BDDs, automata 
on infinite sequences, probability and measure theory [8, 33, 20]. 
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2   Labelled Markov chains 

We use discrete time Markov chains as models (we do not consider nondeterminism). 
Let AP denote a finite set of atomic propositions. A labelled Markov chain over a set 
of atomic propositions AP is a tuple M = {S, P, L) where S is a finite set of states, 
P:SxS-)[0,l]a transition matrix, i.e. YlteS P(s>*) = 1 for a11 s G 5' 
and L : 5 -» 2AP a labelling function which assigns to each state s £ S a set of 
atomic propositions. We assume that there are 2n states for some n, and that there are 
sufficiently many atomic propositions to distinguish them (i.e. L(s) ^ L(s') for all 
states s, s' with s ^ s'). Any labelled Markov chain may be transformed into one 
satisfying these conditions by adding dummy states and new propositions. 

Execution sequences arise by resolving the probabilistic choices. Formally, an ex- 
ecution sequence in M is a nonempty (finite or infinite) sequence IT = s0sis2,... 
where 8i are states and P(«i_i, «<) > 0, t = 1,2,.... The first state of TT is denoted 
by first(ir). 7r(fc) denotes the k + 1-th state of n. An execution sequence n is also 
called a path, and a full path iff it is infinite. Path,, (s) is the set of full paths TT with 
first(ir) = s. For s 6 S, let S(s) be the smallest cr-algebra on Pathu(s) which 
contains the basic cylinders {TT G Pathos) : p is a prefix of TT} where p ranges over 
all finite execution sequences starting in s. The probability measure Prob on S(s) is 
the unique measure with Prob { TT € Pathu{s) : p is a prefix of TT } = P(p) where 
P(s0si • • ■ sk) = P(s0, Si) • P(si, s2) • ... • V{sk-i,sk). 

Example 1. We consider a simple communication protocol similar to that in [24]. The 
system consists of three entities: a sender, a medium and a receiver. The sender sends 
a message to the medium, which in turn tries to deliver the message to the receiver. 
With probability j^, the messages get lost, in which case the medium tries again to 
deliver the message. With probability -^, the message is corrupted (but delivered); with 
probability ^, the correct message is delivered. When the (correct or faulty) message 
is delivered the receiver acknowledges the receipt of the message. For simplicity, we 
assume that the acknowledgement cannot be corrupted or lost. We describe the system 
in a simplified way where we omit all irrelevant states (e.g. the state where the receiver 
acknowledges the receipt of the correct message). 

We use the following four states: 
the state in which the sender passes the message 
to the medium 
the state in which the medium tries to deliver the 
message 
the state reached when the message is lost 
the state reached when the message is corrupted 

The transition sdei ->■ sinit stands for the acknowledgement of the receipt of the correct 
message, serror -» sinit for the acknowledgement of the receipt of the corrupted mes- 
sage. We use two atomic propositions ax, a2 and the labelling function L(sinu) = 0, 
L(sdei) = {a1,a2},L(siost) = {a2}, L{serror) = {a\).M 

Sinit 

Sdel 

Slost 

terror 
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3 Probabilistic branching time temporal logic 

In this section we present the syntax and semantics of the logic PCTL (Probabilistic 
Computation Tree Logic) introduced by Hansson & Jonsson [24]4. PCTL is a proba- 
bilistic extension of CTL which allows one to express quantitative properties of proba- 
bilistic processes such as "the system terminates with probability at least 0.75". PCTL 
contains atomic propositions and the operators: next-step X and until U. The operators 
X and U are used in connection with an interval of probabilities. The syntax of PCTL 
is as follows: 

# ::= tt | a | #i A#2 | "■# | [ ^ bj> I [$iU$2hP 

where a is an atomic proposition, p € [0,1], 3 is either > or >. Formulas of the 
form X$ or $iU$2, where #, $i, $2 are PCTL formulas, are called path formulas. 
PCTL formulas are interpreted over the states of a labelled Markov chain, whereas path 
formulas are interpreted over paths. The subscript 3 p denotes that the probability of 
paths starting in the current state fulfilling the path formula is 3 p. Thus, PCTL is like 
CTL, except that the path operators A and E in CTL have been replaced by the operator 
[' ]DP- The usual derived constants and operators are: ff = -<tt, $\ V #2 = _l(-,^i A 
-1^2), #1 -> ^2 = ~^i V #2- Operators for modelling "eventually" or "always" can 
be derived by: [0#]>p = [ttU$]>p, [0$]>p = -.[0-i#]>i_p, and similarly for [-]>p. 

Let M = (5,P,L) be a labelled Markov chain. The satisfaction relation |= C 
5 x PCTL is given by 
s |= tt for all s G S s \= #1 A #2 iff s \= $1 and s |= £2 

s^aiffaGL(s) s |=-><2> iff s ^ <? 

s f= [X#]3p iff Pro6{7T G Pathu(s) : TT \= X#}  3 P 

s |= [^i(7#2]3p iff Prob{n e Pathu(s) : TT |= £I[/<P2} 3P 

TT |= X*iif7r(l) M 
7T |= *i(7#2 iff there exists A; > 0with7r(i) \=$i,i = 0,1,..., k- 1 and n(k) \= $2- 
For a path formula / the set {n G Pathu{s) : ir \= /} is measurable [34, 18]. If s \= $ 
then we say s satisfies $ (or # holds in s). The truth value of formulas involving the 
linear time quantifiers O and □ can be derived: 

s \= [0#]3p iff Prob{TY e Pathw(s) : Tx{k) \= £ for some k > 0}  3 P 

s \= [ü#]3p iff Prob{w £ PatK{s) : it(k) \= # for all k > 0}  3 P- 
Given a probabilistic process "P, described by a labelled Markov chain M = (S, P, L) 
with an initial state s, we say V satisfies a PCTL formula § iff s f= #. For instance, if 
a is an atomic proposition which stands for termination and V satisfies [Oa]>P then V 
terminates with probability at least p. 

4 Multi-terminal binary decision diagrams 

Ordered Binary Decision Diagrams (BDDs) [7, 8, 15, 28] are a compact representation 
of boolean functions / : {0,1}" -> {0,1}. They are based on the canonical represen- 
tation of the binary tree of the function as a directed graph obtained through folding 

For simplicity we omit the bounded 'until' operator of [24]. 
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internal nodes representing identical subfunctions (subject to an ordering of the vari- 
ables to guarantee uniqueness of the representation) and using 0 and 1 as leaves. In [16] 
it is shown how one can generalize BDDs to cogently and efficiently represent matrices 
in terms of so-called multi-terminal binary decision diagrams (MTBDDs). 

Formally, MTBDDs can be defined as follows. Let xx,..., xn be distinct variables, 
which we order by x^ < Xj iff i < j. A multi-terminal binary decision diagram 
(MTBDD) over {xx,... ,xn) is a rooted, directed graph with vertex set V contain- 
ing two types of vertices, nonterminal and terminal. Each nonterminal vertex v is la- 
belled by a variable var(v) £ {xi,...,xn} and two children left(v), right{v) G V. 
Each terminal vertex v is labelled by a real number value(v). For each nonterminal 
node v, we require var(v) < var(left{v)) if left(v) is nonterminal, and similarly, 
var{v) < var(right(v)) if right(v) is nonterminal. A suitable adaptation of the op- 
erator REDUCE(-) [7] yields an operator which accepts an MTBDD as its input and 
returns the corresponding reduced MTBDD. 

Each MTBDD Q over {xx,.. .,xn} represents a function FQ : {0,1}™ -> M, 
and, vice versa, each function F : {0,1}™ -> M can be described by a unique reduced 
MTBDD over (zi,..., xn). In the sequel, by the MTBDD for a function F : {0,1}™ ->■ 
R we mean the unique reduced MTBDD Q with FQ = F. If all terminal vertices are 
labelled by 0 or 1, i.e. if the associated function FQ is a boolean function, the MTBDD 
specializes to a BDD over (x\,...,xn). 

MTBDDs are used to represent .D-valued matrices as follows. Consider a 2m x 2m- 
matrix A. Its elements atj can be viewed as the values of a function JA : {1, ■ ■ • 2m} x 
{1,... 2m} -> D, where /^(i, j) = a{j. Using the standard encoding c : {0, l}m -> 
{1,... 2m} of boolean sequences of length m into the integers, this function may be 
interpreted as a D-valued boolean function / : {0, l}m ->• D where f(x,y) = 
fA(c{x),c(y)) for x = (xi ... xm) and y = (yi ■ ■ ■ ym). This transformation now al- 
lows matrices to be represented as MTBDDs. In order to obtain an efficient MTBDD- 
representation, the variables of / are permuted. Instead of the MTBDD for f(xi ... 
xm,yi ■■■ym), we use the MTBDD obtained from f(xi,yi,X2,y2,---xm,ym). This 
convention imposes a recursive structure on the matrix from which efficient recursive 
algorithms for all standard matrix operations are derived [16]. 

4.1    Representing labelled Markov chains by MTBDDs 

To represent the transition matrix of a labelled Markov chain by a MTBDD we abstract 
from the names of states and instead, similarly to [8, 15], use binary tuples of atomic 
propositions that are true in the state. Let M = (5, P, L) be a labelled Markov chain. 
We fix an enumeration a\,..., an of the atomic propositions and identify each state s 
with the boolean n-tuple e(s) = (&i,..., &„) where 6» = 1 iff o, G L(s). In what fol- 
lows, we identify P with the function F : {0, l}2n ->■ [0,1], F{xx,yu ... ,xn,yn) = 
P((zi,... ,xn), (yi,.. .,yn)), and represent M by the MTBDD for P over (zi,2/i, 
...,xn,yn). The associated MTBDD is denoted by P. 

Example 2. For the system in Example 1 we use the encoding e(sinit) = 00, e(sdei) = 
11, e(siost) = 01 e(serror) — 10. The values of the matrix P, the function F and the 
MTBDD P for F are are given by: 
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00 01 10 11 
00 0 0 0 1 
01 0 0 0 1 
10 1 0 0 0 
11 98 

100 
1 

100 
1 

100 0 

F(xuyi,x2,y2) 

1     : if x1y1x2y2 e {0101,0111,1000} 
^ : if xiyix2y2 e {1011,1110} 
f^ :ifxiyix2y2 = 1010 
0     : otherwise. 

(The thick lines stand for the "right" edges, the thin lines for the "left" edges.) I 

4.2    Operators on MTBDDs 

Our model checking algorithm makes use of several operators on MTBDDs proposed 
in Bryant [7] and Clarke et al [14]. We briefly describe them below. 
Operator BDD(-): takes an MTBDD Q and an interval I, and returns the BDD rep- 
resenting the function F(x) = 1 if FQ(X) G /, else F(x) = 0. We obtain B = 
BDD(Q, I) from Q by changing the values of the terminal vertices (into 1 or 0 de- 
pending on whether or not value(v) e I) and applying Bryant's reduction procedure 
REDUCE(-). We write BDD(Q, > p) rather than BDD(Q,]p, oo[) and BDD(Q, > 
p) rather than BDD(Q, [p, oo[). 
Operator APPLY(■): allows elementwise application of the binary operator op to two 
MTBDDs. If op is a binary operator on reals (e.g. multiplication * or minus -) and Qi, 
Q2 are MTBDDs over x then APPLY(Q1,Q2,op) yields a MTBDD over x which 
represents the function f(x)  = /Q1(X) op /Q2(3J). 

Operator COMPOSEk(-): This operator allows the composition of a real function 
F : {0, \}n+k -» M and boolean functions d : {0, l}n -> {0,1}, i = 1,..., k giving 
H(x)=F{x,G1(x),...,Gk(x)). 
Matrix and vector operators: The standard operations on matrices and vectors have 
corresponding operations on the MTBDDs that represent them [13]. If MTBDDs A 
and Q over 2n and n variables represent the matrix A and vector q respectively, then 
MV-MULTI(A, Q) denotes the MTBDD over n variables that represents the vector 
A   q. 
Operator SOLVE(-): [8] presents a method to decompose a regular matrix A into a 
lower and upper triangular matrices and a permutation matrix. Using this LU-decompo- 
sition we can obtain an operator SOLVE(A, Q) that takes as its input a MTBDD A 
over 2n variables where the corresponding matrix A is regular and a MTBDD Q over n 
variables which represents a vector q, and returns a MTBDD Q' over n variables which 
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represents the unique solution of the linear equation system A ■ x = q. Alternatively, 
we can use iterative techniques to solve the equations; our experiments indicate that this 
performs better. 

4.3    Description of (MT)BDDs by relational terms of the ^-calculus 

We will use the //-calculus as a notation for describing (MT)BDDs. In the algorithm 
in the next section, all our (MT)BDDs are either over 2n variables (in which case they 
represent 2n x 2™ matrices), or over n variables (in which case they represent vectors of 
length 2n). For example, if B, C are BDDs over n variables and ü = (ui,..., u„), 
v = (vi,.. .,vn), then D = Xüv [B(ü) A C(v)] is a BDD over 2n variables; if 
B,C represent the vectors (&i)i<,<„ and (c;)i<;<„ respectively, then D represents 
the matrix whose element in the zth row and jth column is 6* A Cj. The BDD E = 
Xü [B(u) A Civ)] is a BDD over n variables, representing the vector (bi A Cj)i<i<n. 

We write TRUE for the BDD over n variables which returns 1 in all cases of its 
arguments. We write -<B instead of Xx[-iB(x)], and B± A B2 for the BDD Xx[Bi (x) A 
B2 (x)]. If x = (xi,...,xn),y = (yi,...,yn) then x = y abbreviates the formula 

f\l<i<Jxi *> a/0- 
We require one further operator. If the labelled Markov chain M — (S, P, L) is rep- 

resented by a MTBDD P as described in Section 4.1, and Bi, B2 are BDDs that repre- 
sent the characteristic functions of subsets Sx, S2 of 5, then REACH(B1, B2, BDD(P, 
> 0)) represents the set of states s e S from which there exists an execution sequence 
s — s0,si,...,sk with k > 0 and s0,... ,sk-i G Si, sk G 52, and which is used in 
the operator UNTIL(-) defined in Section 5. 
Operator REACH(-) Let Bx, B2 be BDDs with n variables and T a BDD with 2n 
variables. We define REACH(B1,B2,T) to be the BDD over n variables which is 
given by the //-calculus formula fiZ Xx [B2(x) V (Bi (x) A 3y[Z(y) A T(x, y)])]. This 
operator uses the method of [8] to obtain the BDD for a term involving the least fixed 
point operator /x. 

5    Model checking for PCTL 

Our model checking algorithm for PCTL is based on established BDD techniques 
(i.e. converting boolean formulas to their BDD representation), which it combines with 
a new method, namely expressing the probability calculation for the probabilistic for- 
mulas in terms of MTBDDs. In the case of [X$]^p the probability is calculated by 
multiplying the transition matrix by the boolean vector set to 1 iff the state satisfies #, 
whereas for [$iU$2]zip we derive an operator called UNTIL(-), based on [24], which 
we express in terms of MTBDDs. 

Let M = (5, P, L) be a labelled Markov chain which is represented by a MTBDD 
P over 2n variables as described in Section 4.1. For each PCTL formula #, we define 
a BDD B[$] over x = (xi,...,xn) that represents Sat(&) = {s G S : s (= £}. We 
compute the BDD representation B[$\ of a PCTL formula $ by structural induction: 
B[tt) = TRUE B[a,i] = Xx [xi] 
£[-,#] = -,£[#]      B[$i A <f2] = B[§i\ A B[$2) 
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B[ [X$\-3P ] = BDD ( MV-MULTI(P, B[$\), 3 P ) 
B[[$iU§2]3P] = BDD{UNTIL{B[$llB[$2lP),^p)) 
The operator UNTIL(B[$i],B[$2],P) assigns to each state s G S the probability 
of the set of full paths from s satisfying #i£/£2; formally, it represents the function 
S->[0,l],mps, where ps = Prob {K G Pathw(s) : IT \= $XU$2} ■ Our method 
for computing ps is based on the partition of S introduced in [24, 18], but we must 
compute with BDDs. We first compute the set V = {s £ S : ps > 0} and then set 
V = V \ Sat($2). We then have: ps = 1 if s f= #2; Ps = 0 if s £ V; and for the 
remaining cases (i.e. those such that s G V) 

p,= ]£P(a,i)-Pt +     5]     P(*.*)-P*+   E   P(a>*)-Pt- 
teV tG5ot(*2) t65\V 

In the second term, each p* = 1 and in the third term, each pt = 0. Therefore ps 

(s e V) satisfies a |V|-dimensional equation system of the form x = Ax + b, or 
equivalent^ (I - A) x = b where I is the \V'\ x |V'| identity matrix. One can show 
this system has a unique solution using the method in [24, 18]. 

We now demonstrate how UNTIL(-) can be expressed in terms of MTBDDs. Let 
Bi = B[$i],i = 1,2. The set Vis given by the BDDS = REACH{Bx,B2,BDD(P, 
> 0)), V by B' = Xx [B(x) A ->B2(x)]. In order to avoid the BDD for the "new" 
transition matrix A with [log2 |V'|] variables, we instead reformulate the equation in 
terms of the matrix P' = (p'Szt)Sttes which is given by: p'Sit = P(s, t) if s, t G V and 
p's t = 0 in all other cases. The MTBDD P' for P' can be obtained from the MTBDD 
P representing the Markov transition matrix. The following lemma shows that I - P' 
is regular (we omit the proof). 

Lemma 1. Let V, P', I be as as above. Then, I - P' is regular. The unique solution 
x = {xs)seS of the linear equation system (I - P') • x = q where q = (qs), qs = 
Etesat(*2) P(s^) satisfies: xs  = ps if s G V. 

The algorithm for the operator UNTIL{-) is shown in Figure 1. It first calculates the 
MTBDDs B and B', for V and V. B2 is used as a mask to obtain P' from P; it sets 
to 0 the entries not corresponding to states in V. We next calculate the MTBDD Q 
for the vector q, and use the operator SOLVE(-) to obtain the MTBDD Q' satisfying 
FQ, (S) = ps for all sGV'. The result, the MTBDD Q" for the vector p = (ps)ses, is 
obtained from the MTBDD for the function F(x) = max{ FB2 (X), FQ< (X) ■ FB< (x) } 
which uses Q' for all s G V and ensures that 1 is returned as the probability of the states 
already satisfying <£2. 

Example 3. Let # = [ try.to-deliver U correctly-delivered ]>0.9 where 
try do-deliver = a2 and correctly-delivered = -iai A -ia2. We consider the system 
in Example 1. Our algorithm first computes the BDDs Bx for Sat(tryJo-deliver) = 
{sdei,siost}, B2 for Sat{correctly-delivered) = {sinU}, and then applies Algo- 
rithm UNTIL(B1,B2,P). V = {sinit,sdei,slost} is represented by the BDD B, 
V' = {sdei,siost} by the BDD B'. Thus, B2, P' and A stand for the matrices 

'0000\ /0   0   00\ /l    0    0  0 
0101       p/=      0   0   01 
0000 0000 
0101/ VO^öOO/ 

A=   I  "     X     °-1 
A

        '"010 

■155 0   1 



438 

Algorithm: UNTIL(BUB2,P) 

Input:     A labelled Markov chain represented by a MTBDD P over 2n variables, 
BDDs B\, B2 over n variables 

Output:   MTBDD X over n variables which represents the function that assigns to each 
state the probability of a path from the state reaching a B2-state via an execution 
sequence through Bi -states 

Method: B := REACH(BUB2,BDD(P,> 0)); B' := \x [ B{x) A ^B2{x) ]; 
B2 := Aziyi ...xnyn [B'{xi,..., xn) A B'(yi, • • •, Vn)\, 
P' := APPLY(P, B2,*);I:= XxlVi ... xnyn [x = y\; 
A ■= APPLY(I,P',-);Q:= MV-MULTI(P,B2); 
Q' := SOLVE(A, Q); Q" := APPLY(B2, APPLY(Q',B', *), max); 
Retum(REDUCE(Q")).  

Fig. 1. Algorithm UNTIL(BUB2,P) 

B-2 (viewed as a vector) is q2 = (1,0,0,0). Thus, Q is the MTBDD for the vector 
p • q2 = (0,0,1,0.98). We solve the linear equation system 

/° 
0 
1 

V   J8_ 
\ 100 ' 

which yields the solution x = (0, §§, 1, §§) (represented by the MTBDD Q1). More- 
over, the MTBDD APPLY(Q', B', *) can be identified with the vector (0, i 
UNTIL(Bi,B2,P) and the BDD B[$\ are of the following form. 

0 ^) 

Thus, B[$] represents the characteristic function for Sat{§) = {sinit,Sdeh Siost}-' 

6   Implementing PCTL model checking 

We are integrating PCTL symbolic model checking within Verus [9], which is a tool 
specifically designed for the verification of finite-state real-time systems. Verus has 
been used already to verify several interesting real-time systems: an aircraft controller, 
a medical monitor, the PCI local bus, and a robotics controller. These examples have not 
been originally modeled using probabilities. However, these systems exhibit behaviors 
which can best be described probabilistically. The integration of PCTL model check- 
ing with Verus allows us to verify stochastic properties of these and other interesting 
applications. 
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The Verus language is an imperative language with a syntax resembling that of the C 
language with additional special primitives to express timing aspects such as deadlines, 
priorities, and delays. An important feature of Verus is the use of the wait statement 
to control the passage of time. In Verus time only passes when a wait statement is 
executed: non-wait statements execute in zero time. This feature allows a more accurate 
control of time and leads to models with less states, since consecutive statements not 
separated by a wai t statement are compiled into a single state. To describe probabilistic 
transitions we extend the Verus language with the probabilistic select statement. 

From the Verus description of the application, the tool generates automatically a 
labeled state-transition graph and the corresponding transition probability matrix using 

BDDs and MTBDDs respectively. 
The first experimental results of our PCTL symbolic model checking implementa- 

tion are promising: Parrow's Protocol (which is of a similar size to Example 1) can be 
verified in less than a second. We have modeled a fault tolerant system [23, p. 168-171 ] 
with three processors that has about 35000 reachable states (out of 108 states). A safety 
property of this system took only a few seconds to check. Next we plan to evaluate 
how well PCTL symbolic model checking performs as a formal verification tool in real 
applications by modeling industrial size systems. 

7    Concluding remarks and further directions 

We have proposed a symbolic model checking procedure for the logic PCTL which we 
are implementing using MTBDDs in Verus, thus forming the basis of an efficient tool 
for verifying probabilistic systems. Our algorithm can be extended to cater for "bounded 
until" of [24] which is useful in timing analysis of systems. We expect that MTBDDs 
can be used to derive PCTL* model checking by applying the methods of [18]. Like- 
wise, testing of probabilistic bisimulation and simulation [3, 19] can be implemented 
using MTBDDs. An extension to the case of infinite state systems, perhaps by appropri- 
ate combination with induction, as well as a generalization to allow non-determinism, 

would be desirable. 
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Abstract. The expectation of the absolute value of the difference be- 
tween the heights of two random binary search trees of n nodes is less 
than 6.25 for infinitely many n. Given a plausible assumption, this ex- 
pectation is less than 4.96 for all but a finite number of values of n. 

1     Introduction 

A binary search tree (BST) of n nodes is constructed from n distinct keys in 
random order by inserting each key in turn into an initially empty tree by the 
familiar algorithm which inserts a key into an empty tree by constructing a new 
root node with this key and otherwise inserts the key into the left or right subtree 
depending on whether it is smaller or larger than the key at the root. Two other 
equivalent definitions are often useful in considering the shape or in particular 

the height of such a tree: 

- A random tree of n nodes is empty if n is zero and otherwise consists of 
a root node and a left subtree of I nodes and a right subtree of n - 1 - / 
nodes where / is an integer chosen uniformly on 0 .. . n - 1; the subtrees are 
constructed in the same way, all the random choices being independent. 

- The i-th node is inserted into the tree by choosing one of the i external 
nodes of the tree, each with the same probability 1/i, and replacing it by a 
new internal node. Hence we have the important result that the probability 
of this insertion increasing the height of the tree is 1/i times the number 
of external nodes at the deepest level containing any external nodes, or 
alternatively 2/i times the number of internal nodes at the deepest level 
containing any internal nodes; we call these internal nodes at the deepest 

level critical nodes. 

We are interested in the distribution of the random variable h(n) which is the 
height of a tree constructed in any of these ways. h(n) is also the stack depth used 
by a straightforward version of Quicksort to sort n randomly ordered distinct 

values. 
The mean value of h(n) is known to be close to clogn where c « 4.3011 

is the larger root of c = 2e1_1/c. An upper bound of the form (c + o(l)) log n 
was shown in [41; a lower bound of the form (c - o(l))logn was shown in [1]; 
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and finally the height was shown with high probability to lie within bounds 
clog77. ± O(loglogn) in [2]. 

Direct calculation for small to moderate values of n and random construction 
of larger trees [3] have shown that the variance of the height remains small for 
quite large n and shows no sign of diverging. To date the only explanation of 
these results has been an upper bound of 0(log  logn) on the variance in [2]. 

In this paper we will show that there are indefinitely large values of n for 
which E[\h(n)-E[h(n)]\] is less than 6.25. Although this does not prove anything 
about the variance and does necessarily not apply to all n, it suggests very 
strongly that the distribution remains tightly concentrated around its mean. If 
we make a simple and plausible assumption about the convergence of the number 
of critical nodes, we can both strengthen the bound and show that the conclusion 
applies to all sufficiently large n. 

In section 2 we will prove a very weak version of the main theorem which we 
hope will illustrate the essential (and very simple) ideas in the clearest possible 
way. In section 3 we will give the strongest form that we yet know of the theorem. 
In section 4 we show briefly how the theorem can be strengthened further if we 
assume that the expected number of critical nodes converges. Finally in section 
5 we sketch some directions for further work. 

2     A weak upper bound 

We take hi(n) and h2{n) as two independent random variables each distributed 
as the height of an n node BST. Let c be the limit of E[h(n)]/ logn. Let e be an 

arbitrary positive number. 

Theorem 1. E[\hi(n) - h2{n)\]  < 6clog3 - 6 + e infinitely often. 

(It follows immediately that E[\h(n)~ E[h{n)]\] < 6clog3-6+e (« 22.417+ 

e) infinitely often.) 

Proof by contradiction: Suppose the contrary. Then for large enough N, 
E[\hi(n) - h2{n)\] > 6clog3 - 6 + e for all n greater than TV. Now choose a v 
greater than N such that E[h(iv)] < E[h(i/)] + clog3 + e/6. (Infinitely many 
such v exist since E[h(n)]/ logn —>■ c.) 

Consider a random tree of size Zv and the following algorithm to choose one 
of its immediate subtrees (L is its larger immediate subtree and S its smaller): 
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if \L\>2v 
then 

choose L 

else 
if the height of S is greater than that of L 

then 
choose S 

else 
choose L 

fi 
fi 

Note that the probability of taking the first case is 2/3. 
Consider the height of the subtree chosen: 
In case 1 we choose a random subtree of size greater than v. height. > E[h(v)]; 
For the case of \L\ < 2v, it is clear that the mean height is greater than it 

would be for two subtrees of size v, namely E[max(hi(v), h2{v))] = E[(hi(v) + 
h2(v))/2 + \hi{v)-h2{v)\/2] which is greater than E[h{y)} +3clog3-3+ e/2 

by the choice of v. 
Hence the expected height of the subtree chosen is at least E[h(v)] + c\og3- 

1 + e/6 making it greater than E[h(3v)} - 1 which is clearly impossible since the 
maximum possible height for a subtree is one less than the height of the tree.D 

3     Three ways to improve the bound 

The argument giving the upper bound of 22.417 can be strengthened in (at least) 

three ways: 

- Choose a value other than "Zv for the size of the tree. Any size greater than 

2v will give some non-trivial upper bound. 
- Consider not only the immediate subtrees of the tree but possibly deeper 

subtrees. As long as a subtree has size greater than 2v we can consider its 
split into two subtrees, certain that one of them will have at least v nodes. 

- Where a subtree has size av (a > 1), we have lower bounded its height by 
that of a tree of size v. In fact, since every tree has at least one critical node, 
the mean height of an av node tree must exceed that of an v node tree by 

av 

at least 2   V"   1/i which we can approximate by 2 log a for large v. 

i = v+l 

Hence we have a general scheme for a method of choosing a subtree and an 

associated upper bound: 
Starting with a tree of size kv, with probability 1 - p find a subtree of size 

av (a > I), at a depth A from, the root. Otherwise (with probability p) find two 

disjoint subtrees with sizes ßv and -yv (ß, 7 > I), at depths B and C respectively 
from, the root; choose one of these two according to which was higher at the. 

moments when each, contained exactly v nodes. 
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We consider the expected value of the depth of the deepest node in the 
subtree thus chosen. If only one subtree is found (probability 1 — p) this is at 
least E[A + 21oga + h[v)]. Otherwise (probability p) it is the expected depth of 
the root of the subtree chosen plus the expected height of that subtree when its 
size was v plus the amount by which the height has increased since then, giving at 
least (£[(5 + C + 21og/?+21og7)/2 + /j(z/) + £,[|/i1(^)--/i2(j/)|/2]). Putting these 
two together we find that the expected depth is at least (1 — p){E[A + 2 log a + 
h(v)]) + p{E[{B + C+2\ogß+2\og1)/2 + h(v) + E[\hl{v)-h2{v)\/2]). Since 
this must be no greater than E[h(kv)] and we can choose infinitely many v with 
E[h(kv]\ < E[h(v)] + clogk + e, we can deduce an upper bound, valid infinitely 
often of 

E^v) - h2(v)\/2] < 
clogk/p - E[(B + C + 2\ogß + 2\ogf)/2] - ^E[A + 2loga] + O(c). 

If we define a random variable /(n) as the value of A + 2 log a if only one 
subtree is found and (5 + C + 21og/? + 21og7)/2 if two subtrees are found, when 
the scheme is applied to an n node tree, we can rewrite this inequality as 

£[IM")-M")0   <  2(clogfc  -  E\J{kv)])/p 

Theorem 2. £[|/ii(n) - h2(n)\]   < 6.247 infinitely often. 

Proof: We consider the particular instance of this scheme in which we choose 
a cut off depth d and apply the algorithm choose2(T, d) where choose2 is defined 

choose2 (tree,depth); 
if depth = 0 then return tree fi; 
if size(tree) < 2v 

return tree 
else 

let L and S be the larger and smaller immediate subtrees of tree 
if size(S) > v 

then return {choosel(L,depth-l), choose 1(S,depth-1)} 
else return {choose2(L,depth-1)} 

fi 
fi 

end; 



445 

inhere choose! chooses some subtree of size at least v. 

choosel(tree, depth); 
if depth = 0 then return tree fi; 
if size(tree)   <   2v  then 

return tree 

else 
return choosel(larger subtree of tree, depth - 1) 

fi 
end; 

To apply inequality (1) we need to know the value of p and that of E[f{kvj\. 
Denning p(n, depth) as the probability of finding two subtrees of size at least v 
when starting with a tree of size n (> v) at depth levels above the cut off level, 

we obtain 

p{n,de] 
if n < 2;/ or depth — 0 
then 

0 
else 

1 - 2vjn + Ivjn x E[p{n', depth - 1)] 

fi 

where the expectation is taken over subtrees of sizes n' from n - v to n - 1 

Further defining pp{x, depth) as the limit oip{xv, depth) as v tends to infinity, 

we find that 

pp(x, depth)   = 
if x < 2 or depth = 0 
then 

0 
else 

1 - 2/z + 2/x /       pp{y, depth - 1) dy 
Jx-l lx-\ 

fi 

Similarly defining ff{x, depth) and gg{x, depth) as the limits as v tends to infinity 
of the expected values of (root depth + 2 log size) averaged over the nodes 
returned by choose2(T, depth) and choosel(T, depth) applied to xv node trees 

T, we obtain 
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ff(x, depth)   = 
if x < 2 or depth = 0 
then 

2 * log(x) 
else 

PX-\ 

1 + l/x / gg{y, depth - 1) dy   + 2/x /       ff{y, depth - 1) dy 
Jl Jx-l 

fi 

where 

gg(x, depth)   = 
if x < 2 or depth = 0 
then 

2 * log (a;) 
e/se 

1 + 2/x /      gg(y,depth-l) dy 
Jxl2 Ixl 

fi 

and   lim S[/(Ai/)]  =  ff(k,d) 
v—>oo 

giving an upper bound on i?[|/ii(n) - h2(n)\] as close as required to 2(clogA: - 
ff(k,d))/pp(k,d). 

The strongest bound yet found was obtained by taking k — 3.9, d = 5, giving 
a bound slightly less than 6.247. n 

(The computation of//(3.9,5) and pp(3.9,5) was done by Maple after defi- 
nition of multiple functions such as ff[d, i]{x) defined only for [a?J = i and there 
equal to ff(x, d); this enables the integrals to be written as sums of integrals so 
that no if then else fi constructs remain in the definitions.) 

4    The Convergence Hypothesis 

The result, of the previous section can be strengthened both by replacing the 
'infinitely often' by 'almost always' and by reducing the bound, if we accept a 
very plausible and empirically justified hypothesis. 

Definition: ee(n) is the expected number of critical nodes of an n-node tree. 
Note: the probability that the addition of the (n + l)-st node increases the 

height of the tree is 2ec(n)/(n + 1). Calculation of ec(n) for n up to 100,000 
and approximation by constructing random trees for larger n both suggest that 
ec(n) is monotonically increasing after initial fluctuations while n is less than 8. 
(See [3] for methods of rapid construction of very large random trees.) 

The Convergence Hypothesis: ec(n) tends to a limit as n increases. 
Note: if this hypothesis is correct the limit must be c/2. 
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Theorem 3. If the Convergence Hypothesis holds then £[M")- h,(n)\]   < 4.96 

except for (possibly) finitely many n. 
(Again, this implies immedi ately that the same b ound applies tc E[\h(n) - 

E[h(n)]\]). 
Proof. 

extending the result to almost all n: 
In the proof of the main theorem, we relied on the fact that since E[h(n)/ log n] 
tends to c, there exist infinitely many v for which E[h(kv) - E[h(v)} < 
clogk + e. Now given the convergence hypothesis, for any k and e, by 
choosing Ar large enough we can guarantee that for all v larger than N, 
ec{v) < c/2 + f/21ogifc so that E[h(kv) - h(v)} < clogk + e and the argu- 
ment of section 3 goes through unchanged. 
reducing the bound: The proof in section 3 used the fact that a random 
tree of size av had height at least E\h(y)\+1\o%a (and a similar result for the 
higher of two trees of sizes ßv and 71/). Given the Convergence Hypothesis, 
provided we choose v large enough, the first of these results remains true with 
any constant less than c instead of the "2". (The second does not since the 
higher of two random trees is not a random tree.) Hence we can replace the 
"2 log x" by "(c - f) log x" in the definition of // (but not gg) and recompute 
the bound obtained by the modified version of inequality (1). This time the 
best result obtained has d = 1 and k - 2.67, giving a bound of just under 

4.953. G 

5    Further work 

As has been shown, a significant improvement in the main theorem would be 
obtained if the expected value of the number of critical nodes was shown to 
converge. Even showing that this expectation is bounded for all n would prove 
that E[\hi{n) - h2[n)\] is bounded though it would not directly give an explicit 
bound. It seems extremely implausible that this expectation should oscillate 
unboundedly but a proof that it does not do so has not been easy to find. 

Alternatively, improving the algorithm for choosing a subtree could further 
decrease the numerical value of the bound. Two ways of doing this seem worth 
exploring: firstly, when the kv node tree turns out to have three or more v 
node subtrees, a careful choice between these should give a deeper leaf than the 
current choice between the first two found; secondly, when two subtrees are found 
with depths B and C and sizes ßv and jv, biasing the choice to the one with 
larger depth and size must give a deeper leaf on average. Also there may be other 
parameters for which the existing algorithm gives a better bound. Unfortunately 
the computations are very slow with d > 3 so not very many have been done 
(the computation of the bound in theorem 2 took Maple a weekend). 

The methods and results developed here tell us nothing about the variance 
of h(n). We continue to conjecture that this variance is bounded as n goes to 

infinity. 
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Abstract. We present a new master theorem for the study of divide- 
and-conquer recursive definitions, which improves the old one in several 
aspects. In particular, it provides more information, frees us completely 
from technicalities like floors and ceilings, and covers a wider set of toll 
functions and weight distributions, stochastic recurrences included. 

1    Introduction 

Let Fn denote a variable related to some divide-and-conquer (d.a.c, for short) 
algorithm or data structure, such as the number of comparisons made in quick- 
sort or the number visited nodes while a search in a BST, while dealing with an 
instance of size n. By the recursive structure of the algorithm or data structure 
it is always possible to get a recurrence that defines Fn from the values of the 
variable for instances of smaller size. From this recurrence it is necessary to de- 
duce explicit or asymptotic expressions for Fn (that is, we need to "solve" the 
recurrence). 

To this end, we can make use of the (classical) master theorem (see [1, 5]). See 
also [7, 8] for several improved versions. It is a set of simple rules that provide 
quick (albeit partial) information on the value of F„. Assume that we have the 

recurrence 
Fn=tn + W-FSn, (1) 

where tn is the toll function or cost of the divide and combine steps needed to 
solve a problem of size n, W is the (fixed) number of recursive calls at each 
step, and Sn = Z ■ n + 0(1) is the size of the subproblems to be recursively 
solved, for some 0 < Z < 1. Notice that expresions with floors and ceilings in 
the argument of the recursive call, like [n/2J, are covered by the term 0(1) 
above. Let a = — logz W. Then, the classical master theorem states that the 
solution to this recurrence is 

&(na), iftn = 0(na) for a< a; 
Fn= { 9(tnlogn),    [{tn = 0(na\ogcn)fovc>O; (2) 

0(tn), iitn = Q(na) for a > a. 

This research was supported by the ESPRIT LTR Project ALCOM-IT, contract 
# 20244 and by a grant from CIRIT (Comissio Interdepartamental de Recerca i 
Innovaciö Tecnolögica). 
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Notice that there are two gaps for the values of t„ where we cannot use the 

master theorem. 
Although this theorem is sometimes enough for simple purposes, it presents 

some drawbacks. For instance, consider the recurrence 

5n = 1+U!l^M.flL(B_1)/2j^ if„>2,   (3) 

with B0 = 0 and B\ = 1, defining the expected number of comparisons during 
a binary search in an array of size n, when we search for some key in the array 
chosen at random. It does not follow the master theorem pattern utterly, since we 
do not have exactly one expected recursive call at each step but 1 - 1/n, since 
the central item in the current search range could be, by chance, the sought 
item. In other words, the number of recursive calls is not constant but tends 
to a constant. Despite this, we can assume that the solution to the recurrence 
Fn = 1 + Fn/2 must be close to Bn (which is true) and therefore deduce that 
Bn = @(logn). Posterior reasoning can rigorously prove that this approximation 
does not lead to a wrong answer. 

Much more difficulties presents the analysis of stochastic recurrences like 

S0 = 0,    Sn = n - 1 + ^   J2   kSk'    if « > !. (4) 
0<k<n 

defining the expected number of comparisons to select the i-th of the n keys of 
an array (where i is chosen at random) when using Hoare's FIND [3]. Here we 
would need to make further approximations, which could easily lead to wrong 
conclusions. 

The theorems presented in this paper improve previous theorems in several 
aspects. On the one hand, we will show how technicalities like floors and ceilings 
will not need to be treated any more, not previously to the analysis of the 
recurrence nor afterwards. On the other, recurrences where the asymptotic sizes 
of the subproblems to be recursively solved consist in a set of several fixed 
fractions of the original problem (this improvement was already considered in [8]) 
and the number of recursive calls to each one tends to a constant (but is not 

constant) like 

Fn = tn + (2 - l/V£)FLn/3j + 4FL„/2_^-j + (1 + l/n)Fl4n/5+lnin]      (5) 

for n large enough, can be easily analysed through our theorems as well. Depend- 
ing on t„, we can also deduce the constant of the main term of the solution (for 
the basic recurrence (1) this constant can also be found; see [5], for instance). 
Furthermore, we will be able to deal with stochastic recurrences like (4), and a 
simple application of our theorems will sometimes yield several of the main terms 
of the explicit solution of a recurrence with their corresponding multiplicative 
factors, and not only the growing order of the dominating term. Finally, we will 
see how the new theorems cover a wider set of toll functions. In terms of the 
classical master theorem, the new ranges for tn are tn = ö(na logc n) for c < — 1, 
tn = 0(na\ogcn) for c > -1 and t„ = Q{na) for a > a, thus closing almost 
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completely the gap between the first and the second case. The results for the 
first range were first given in [7]. 

Next sections are organized as follows. In Sections 2 and 3 we present the 
two types of recurrences that are more likely to appear in practical situations, 
and give a master theorem for each one. Section 4 includes the main results from 
which both theorems can be derived. Section 5 ends the paper with some final 
remarks. 

2    The Discrete Master Theorem 

To begin with, let us introduce the concept of divide-and-conquer recursive def- 
inition formally. 

Definition 1. Let Fn > 0 be a function defined for all n > 0. We say that 

T = N, {&„}o<n<JV, {tn}n>N, {wn,k}„^ 
0<k<n 

N 

is a d.a.c. recursive definition of Fn iff N > 1, Fn = bn for all 0 < n < N and 

Fn=tn+   J2   Wn-kFk (6) 
0<fc<n 

for every n> N, where t„ > 0 and wnik > 0. 

The weight wnik is the (expected) number of recursive calls to the algorithm to 
deal with a subproblem of size k when the original problem has size n, while 
t„ includes the cost to divide a problem of size n into smaller subproblems that 
will be recursively solved, and to combine the solutions of the recursive calls to 
find the answer to the whole problem. 

Definition2. Let Jbea d.a.c. recursive definition of a function Fn. We say 
that T is a discrete recursive definition if it follows the pattern 

Fn=tn+   Yl   Rd,nFSd,n (7) 
l<<f<Z> 

for every n > N, where D > 1 is the (finite) number of subproblems to be 
recursively solved; RdtU = Wd + rd,n > 0 is the number of recursive calls to deal 
with the d-th subproblem, where wj, > 0 is the asymptotic number of calls to it 
and 

J2   \ra,n\ = 0(n-") (8) 
l<d<D 

for some p > 0; Sd,n = zd ■ n + Sd,n is the (integer) size of the d-th subproblem 
to be recursively solved, where 0 < z& < 1 and 

j2    \l*A = o(n-°) (9) 
l<d<D 

for some a > 0. 
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For example, (3) is a discrete recursive definition. Here we have two subprob- 
lems to recursively deal with (D = 2) that are both asymptotically 1/2 the size 
of the whole problem (zx = z2 = 1/2, -3/2 < s1>n < -1/2, -1/2 < s2<n < 1/2) 
and 1/2 expected calls to each one (wi — w2 = 1/2, -3/2n < ri)n < -l/2n, 
-l/2n < r2,n < 1/2«), where for the bounds of sHik and rn,k we have used the 
fact that r - 1 < [rj < r and r < |>] < r + 1 for every real r. Notice than 
p = cr = 1 is a possible choice here. 

Theorem3 (Discrete Master Theorem). Let T be a discrete recursive def- 
inition of a function Fn, and let Bnalncn be the main term of tn, for some 
constants B, a and c. Let us define 

^(x) =    J2   Wd'ZdX' 
\<d<D 

and letU = l- $(a). Then, 
1) ifH > 0 then Fn ~ tn/7i; 
2) ifH = 0 then 

2.1) ifc>-l then Fn ~ t„ Inn/W, where 

U' = -{c+l)   Y2   Wd-zd
a\nzd; 

l<d<D 

2.2) ifc = -l then Fn = 0{na loge n) for any e > 0; 
2.3) ifc<-\ then Fn = 0{na); 

3)if7i<0 then Fn = 0(na), where a is the unique solution of #(a) = 1. 

Some Examples of the Use of the Discrete Master Theorem 

Let us solve (3). To begin with, the main term in its toll function is ra°log°n. 
Now we can use the master theorem as follows. 

1. First, we identify the set of values {wd}i<d<D and {zd}i<d<D- This yields 
wi = w2 = 1/2 and z\ = z2 = 1/2. We should make sure that properties (8) 
and (9) hold, but this is trivial here (floors and ceilings are never a problem). 

2. We define <P{x) = (1/2)* and hence U = 1 - <Z>(0) = 0. 
3. Since U = 0 and c > -1, we define %' = -(0 + l)((l/2)°ln(l/2)) = 

-ln(l/2) = In2, and finally Bn ~ Inn/In2 = log2n. 

Let us consider now (5). Assume that tn = 6n2/ln  n. 

1. W! = 2, w2 = 4 and w3 = 1; z\ = 1/3, z2 = 1/2 and z3 = 4/5. (It is a simple 
matter to check that this recurrence is indeed a discrete recursive definition). 

2. $(x) = 2(l/3f + 4(1/2)* + (4/5)* and hence % = 1 - 0(2) = -194/225. 
3. Since % < 0, Fn = 0(na), where a is the unique solution of $(a) = 1, which 

numerically is a ~ 3.16756. 
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Finally, let us set t„ = n2 for the recurrence 

Fn=tn + F[n/4l. (10) 

Notice that we do not need to explicitly state the values of Fn at small indices, 
since they are irrelevant to the master theorem. Solving it is very easy. 

1. w\ = 1 and z\ = 1/4. 
2. ${x) = (1/4)* and hence % = 1 - 0{2) = 15/16. 
3. Since U > 0, Fn ~ n2/(15/16) = 16n2/15. 

Note that the last example above follows the pattern of Equation 1, and 
hence we can analyse it through the old master theorem (2), which becomes a 
particular case of the new one. 

3    The Continuous Master Theorem 

This section covers the analysis of recursive definitions like (4). To begin with, 
let us define the concept of shape function (the reason for this name will be clear 
after Definition 5). 

Definition^ Let u(z) > 0 be a function over [0,1] such that ui'(z) exists and 
is bounded for every 0 < z < 1. Furthermore, let fQ u(z)dz be greater or equal 
than 1. Then we say that u(z) is a shape function. 

Definition5. Let T be a d.a.c. recursive definition of a function F„. We say 
that T is a continuous recursive definition if it follows the pattern 

Fn=tn+    Y,    "n,kFk (11) 
0<fc<n 

for every n > N, and if there exists some shape function w(z) such that 

E 
0<fe<n 

Wn,k -    / W( 0(n->) (12) 

for some p > 0. 

Loosely speaking, the last definition allows us to use the integral in the right 
of the expression above to find a good approximation to un,k- For instance, 
the shape function for (4) is u>(z) — 2z (notice that this function follows the 
conditions required for a shape function), since 

/  "      , x    . /" " . si**1      2fc       1 1 /        u)(z) dz = 2z dz = z    fcn   = — + — = w„|fc + -j, 
J h. J — n ft TX Tl 

and hence the sum of errors is 1/n = 0{n~p) for p = 1. 

^ 
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Therefore, u(z) is nothing except the asymptotic shape of the distribution of 
weights, which now does not consist in a finite number of fixed fractions of the 
original size of the problem (as it was in previous section), but is very similar to 
a continuous probability distribution, where the area beneath the function is the 
asymptotic number of recursive calls. Recall that, by definition, fQ ui(z)dz > 1, 
and therefore we are assuming that there is at least one asymptotic recursive 
call. This condition (very likely to hold in practice) simplifies the study of these 
recurrences. 

Theorem6 (Continuous Master Theorem). Let T be a continuous recur- 
sive definition of a function Fn, and let Bna lnc n be the main term oftn, where 
B, a and c are constants. Let us define 

Jo 
ip(x) =  /   ui(z)zx dz, 

and let U = l-f{a). Then, 
1) ifU > 0 then Fn ~ tnjU; 
2) ifH = 0 then 

2.1) ifc> -1 then Fn ~ tn \nn/K', where 

W = -(c+ 1) /   uj{z)za\nz dz; 
Jo 

2.2) ifc = -l then Fn = 0(na loge n) for any e > 0; 
2.3) ifc<-\ then Fn = G(na); 

3) ifU < 0 (including the case % = -coj then Fn = 0(na), where a is the 
unique solution of <p(a) = 1. 

Some Examples of the Use of the Continuous Master Theorem 

Let us solve the recursive definition 

Qo = 0,        Qn = l+-j-——   V  {n-k)Qk,    ifn>l, (13) 
n(n + 1) „fr-' 

related to the number of comparisons in a half-defined search in a quad-tree [2]. 
Notice that the main term in the toll function is n°. Hence, 

1. First, we identify the shape function of the weights. As first chance, we can 
try the following. 
(a) From ujnik we compute a set of new weights an>k, by replacing terms like 

n + 1 or (n - 1 - k) by n or (n - k), respectively. This yields <rn,k = 
4{n-k)/n2. 

(b) Now we have to check that \u>„ik - <r„ifc| = 0(n-2). This is true in our 
example, since \u>„tk - o-n<k\ = 4(n - k)/{n2(n + 1)) = 0{n~2). 

(c) We compute u(z) = n ■ rrn,zn- This step produces an expression without 
n's, u{z) = n ■ 4(n - zn)/n2 = 4(1 - z). 
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(d)  Finally, we should prove that u)'(z) exists and is bounded, and also that 

f* u(z)dz > 1, which is trivial here. 
2. We define 

-, l 

<p(x) \i (1- 
Jo 

dz 
rx+l yX + 2 

x + 1     x+2 
= 4 

J 0 
x+l      x+2 

if x > -1 (and ip(x) = +oo otherwise). Hence, ft = 1 - ip(0) - -1. 
3. Since ft < 0 we have that Fn = 6>(na), where a is defined as the unique 

solution of tp(a) = 1, which yields a = (y/tf - 3)/2 ~ 0.56155 (this is the 
only solution to a2 + 3a - 2 = 0 that is greater than -1). 

Let us analyse (4). 

1. We already know that u(z) = 2z. 
2. We define 

nx, =  f UJ{Z)Z
X
 dz = 2 / 

Jo Jo 
zx+1 dz = 2 

rx + 2 

x + 2 Jo x + 2 

if x > -2 (and tp(x) = +oo otherwise). Hence, ft = 1 - ip{l) = 1/3. 
3. Since ft >0, S^ ~ n/(l/3) = 3n. 

In this example we can get even more information, by means of a simple trick. 
Define G„ = Sn - 3n. Then 

G„ = n-1+ A   ^   kSk-Zn = -2n-l + ^   £   fc2 + A   £   fcGfc. 
0<fc<n 0<fc<n        0<fe<n 

It is well known that £o<fc<n k2 = n3/3 - n2/2 + n/6. Therefore, 

Gn = -4+- + —   ^   fcGfe. n     nz 

0<fc<n 

We can now solve this recurrence using Theorem 6 again. The first step is already 
done, since the distribution of weights remains the same, as is the case for <f{x). 
Computing ft produces ft = 1 - <p(Q) = 0. Since ft = 0 and c > -1, we define 

/   2zz°\nz dz = -2       zln; 
Jo Jo 

ft' = -(0 + 1) /   2zz"\nz dz dz = -2 
2Z , Z" 
— In 2 r 
2 4 

and get G„ 41nn/(l/2) = -8Inn. We can make one more step, defining 
In = G„ + 8Inn for n > 0, which produces 

/„ = 
8 In n      1      4 In n 1      41nn      ^ / 1 \       2    v-^   , r 

0<fe<n 

where we have used the equality £0</c<n k In k = 2-^2-- \- ^+ ^+0(1). 
Now we get ft = 1 - y{-l) = -1 < 0, and hence In = 0(na) = 0{1). Notice 
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that we cannot deduce that In = 0(1), since the toll function in the definition of 
/„ includes positive and negative terms together, and their contributions could 
cancel each other. As a final conclusion we have that Sn — 3n - 8 Inn + 0(1). 

We end this section analysing the number of comparisons while sorting an 
array of n keys through the variant of quicksort that uses as the pivot of the 
partition stage the median of a random sample of 2k + 1 keys, for some fixed 
k > 0 (Ar = 0 reduces to basic quicksort). This method was suggested by Hoare 
himself in [4], and later Van Emden [6] analysed it by means of information- 
theoretic arguments and sensible approximations. We can now prove the same 
results as a simple consequence of the continuous master theorem. 

Let Qlfc) be the number of expected comparisons while using quicksort to sort 
an array with n items when the sample has 2Ar + 1 keys at each stage (except 
for small n). The recurrence for any k is 

where Sk is the (linear in Ar, but constant in n) number of comparisons to find 
the median of the sample. Therefore, 

1. (a) We compute 
(fc) _ 2(2fc+l)!   ^    (n - i)fc 

<T, n2k+l        Ar! Ar! 
(k) as a good approximation for w„ -. 

(b) It is routine work to check that ,(*) _ „CO = 0(n~2). 

(c) We compute uk(z) = n ■ o$„ = 2(2A; + 1)!/Ar!2 • z*(l - z)k. 
(d) Since Uk(z) is a polynomial on z, we have that w//(z) exists and is 

bounded. Furthermore, we know that the asymptotic number of recursive 
calls is 2. 

2. We define 

¥>*(*) = /'"*(*)**  ^^fclt^jf**^1-')* dz> 
and evaluate %{k) — 1 — ^(1). For this step, we can use the equality 

(see [2], page 479, for instance) to find that, as expected, 7i(k) = 0. 
3. Therefore, we define 

n'(k) = -f1
Ult{z)z1lnz dz = -2(2* + 1)! jfV+1(l-*)*Inz dz. 

This step yields W'(Ar) = l/(Ar + 2) + l/(Ar + 3) + ... + 1/(2* + 2) (see [6], 

page 565). Finally, Q{
n
k) ~ n\nn/W(k). 
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4    The Theorems 

In this section we present, without proof, the main technical results from which 
both Theorem 3 and Theorem 6 can be derived. Most of them refer to canonical 
recursive definitions, which are defined as follows. 

Definition 7. Let T be a d.a.c. recursive definition of a function Fn. Let Wn = 
J2o<k<nwn,k- We say that T is a canonical recursive definition if and only if 

both these properties hold: 1) It exists some p > 0 such that \Wn - 1| = 0{n~p). 
2) It exists some upper bound U < 1 such that 

E Wn,k      k_ <u 

Wn     n 
0<k<n 

for n large enough. 

Intuitively, the first condition requires that the total number of recursive calls 
to solve a problem of size n tends to 1 (with a minimum convergence speed). 
Notice that, opposed to the old master theorem, the number of recursive calls 
depends on n. The sum in the second condition above is the average fraction of 
the original problem that is solved by a recursive call. Therefore, this condition 
implies that the problem is broken into pieces that are (on average) a fraction 

of the original one. 

Let T be a recursive definition of Fn. As an immediate consequence of (6) we 
have that Fn = Q(tn). The natural question that arises is: Can Fn grow faster 
than tn and, if so, under which conditions? For the recursive definitions we deal 
with and roughly speaking, we could say that there is a growing order associated 
to every distribution of weights, irrespective of how small tn is. Let us call it 
0(na). Then, the growing order of Fn should be Max{0(<„), &{na)}. And this 

is almost true. 
For instance, let us consider (10). We will see in a moment that a = 0 for any 

canonical recurrence, such as this one. Therefore, for "big" values of tn, such as 
n, n3 or 2n we should get Fn = Max{0(<„), 0(1)} = 9(t„), which is true. For 
"small" values of tn like 1/n, 1/n3 or 2~n, Fn should be 0(1), which is also true. 
However, things are not so easy for values of tn close to 0(1). For example, for 
tn = 1, Fn turns out to be 0(logn) instead of 0(1). We will see in this section 
how to cope with this additional factor. 

There is another remark about the results in this section that we should make, 
namely that recursive definitions with "small" toll function (and thus inside the 
zone dominated by the term 0{na) associated to the distribution of weights) are 
the most difficult to analyse. Indeed, there is no way to find the lower order terms 
in the asymptotic expression of Fn nor even the multiplicative factor of the main 
term na, but to consider all the values of Fn, the values at small indices included. 
In terms of a recursion tree (see [1], for example) this situation corresponds to 
the case in which the solution to the recurrence is dominated by the values at 
the leaves. Therefore, a method for the study of recursive definitions based only 
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in the asymptotic properties of the toll function and the distribution of weights 
(like our master theorems) cannot be used to get the multiplicative factor of the 
main term na in Fn. Moreover, for some recursive definitions that factor is not 

asymptotically constant. 

Next theorems formalize one of the claims stated above, namely that any 
canonical recursive definition is, on the one hand ß(l) (under some minimum 
additional conditions), and on the other, 0(1) for "small" tn. 

Theorem 8. Let T be a canonical recursive definition of a function Fni such 
thattn >0 and YJo<k<Nwn,k = 0{n-i>) for some p>Q. Then Fn = ß(l). 

Notice that, apart from being canonical, T must follow two additional con- 
ditions. They are mainly technical properties that hold in most cases. Roughly 
speaking, tn > 0 avoids the case "everything is zero", whilst the second condition 
makes the values of Fn at n < N completely irrelevant. 

Theorem9. Let T be a canonical recursive definition of a function Fn, such 

that tn = ö{\ogc n) for some c < -1. Then Fn = 0(1). 

Now we present the main results related to the canonical recursive definitions 
that are dominated by the toll function. In contrast to the last recurrences, 
where the toll function lay in the influence zone of the distribution of weights, 
recursive definitions whose toll function is big enough to dominate the recurrence 
are typically easier to analyse, and in most cases we can get the multiplicative 
factor of the main term of the asymptotic expression of Fn Moreover, as we have 
already seen in Section 3, sometimes it is possible to get several of the main 
terms of the solution, their multiplicative factors included. 

Theorem 10. Let I be a canonical recursive definition of a function Fn, and 
let tn = naSn, where a > 0 and Sn is a strictly positive increasing (eventually 

constant) function for n large enough. Then Fn = &{tn). 

Theorem 11. LetT be a canonical recursive definition of a function Fn, and let 
tn = lnc n ■ Sn, where c > -1 and Sn is a strictly positive increasing (eventually 

constant) function for n large enough. Then Fn = 0(tn logn). 

Notice that, according to the old master theorem, 0(1) seemed to be the thresh- 
old value for tn above which Fn became w(l). Combining last theorem with 
Theorem 9 allows us to state that in fact, this threshold lies close to tn = 1/ log n. 

The remaining theorems in this section are crucial to both master theorems. 

Theorem 12. Let T be a canonical recursive definition of a function F„, and 
let tn = naSn, where a > 0 and 5n is a strictly positive increasing function for n 
large enough. Furthermore, let 

U -  lim     1 -    Y^    wn,k ■ T- 
n—foo   I '—' tn 

\ M<k<n 

exist for some M. Then Fn = tn/% + o(tn). 
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Theorem 13. Let T be a canonical recursive definition of a function Fn, and 
let tn = lnc n ■ Sn, where c > -1 and S„ is a strictly positive increasing function 

for n large enough. Furthermore, let 

7i =  lim     Inn-    }      wUik ■ — -InA; 
\ M<k<n 

exist for some M. Then Fn = tn Inn/H + o(t„ logra). 

Theorem 14. Let T be a discrete (continuous) recursive definition of a function 

Fn, and let a be the unique solution of the equation $(a) = 1 (<p(a) = 1). Let B 
be the recursive definition that we get after the substitution Bn = Fn/na. Then 
B is a canonical discrete (continuous) recursive definition. 

5    Final Remarks 

We have shown how to extract useful information from the most common re- 
cursive definitions, exclusively through the analysis of the asymptotic behaviour 
of the toll function and distribution of weights. We have only given restricted 
versions of the master theorems, which can be further generalized. For instance, 
they could be adapted to deal with toll functions that include sublogarithmical 
factors (like log log n). On the other hand, the definition of shape function is also 
a bit restrictive, but it is enough for general purposes. 
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Abstract. The notion of bisimulation as proposed by Larsen and Skou 
for discrete probabilistic transition systems is shown to coincide with a 
coalgebraic definition in the sense of Aczel and Mendler in terms of a set 
functor. This coalgebraic formulation makes it possible to generalize the 
concepts to a continuous setting involving Borel probability measures. 
Under reasonable conditions, generalized probabilistic bisimilarity can be 
characterized categorically. Application of the final coalgebra paradigm 
then yields an internally fully abstract semantical domain with respect 
to probabilistic bisimulation. 

Keywords. Bisimulation, probabilistic transition system, coalgebra, ul- 
trametric space, Borel measure, final coalgebra. 

1    Introduction 

For discrete probabilistic transition systems the notion of probabilistic bisimi- 
larity of Larsen and Skou [LS91] is regarded as the basic process equivalence. 
The definition was given for reactive systems. However, Van Glabbeek, Smolka 
and Steffen showed in joint work with Tofts [GSS95], that for a concrete process 
language the usual notion of strong bisimilarity and the probabilistic concepts of 
reactive, generative and so-called stratified bisimulation constitute a hierarchy of 
observational congruences. Several other probabilistic equivalences are proposed 
as well in the literature. However, in all papers, discrete probability distribu- 
tions are used, and hence the transition systems that are treated are in essence 
of a finitely branching or image-finite nature. The recent work of Blute et al. 
[BDEP97] is the single execption that we know of. 

For the exploration of probabilistic transition systems and stochastic equiva- 
lences in the setting of modeling continuous systems, such as real-time or hybrid 
systems, one usually wants to allow more general probability measures than the 
more limited discrete probability distributions. [BDEP97] use stochastic kernels 
and spans of zigzags to underpin their notion of process equivalence. They prove 
that their notion of bisimulation agrees in the discrete case with the Larsen- 
Skou definition, but do not provide a characterization of bisimilarity in terms of 
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transition steps, i.e., they do not give a continuous analogue for the Larsen-Skou 
bisimulation. 

Here we attack the problem of continuous probabilistic transition systems 
and bisimulation by exploiting the transition-systems-as-coalgebras paradigm. 
Using a minimal amount of category theory, it can be summarized as follows: 
Let T: C ->• C be any functor on a category C. A coalgebra of T is an object S in 
C together with an arrow a: S -» F(S). For many categories and functors, such 
a pair (S, a) represents a transition system, the type of which is determined by 
the functor T. Vice versa, many types of transition systems can be captured by 
a functor this way. For instance, consider the familiar labeled transition systems 
(S,A,->), consisting of a set S of states, a set A of actions, and a transition 
relation ->CSxixS. Put C(X) = V{A x X), the collection of all subsets of 
AxX, for any set X, and, for f:X-*Y, £(/): £{X) -> C(Y), by £(/)({K, Xi) | 
i G /}) = {(oi, f(xi)) \i £ I}. It can be easily shown that £ is a functor on the 
category of sets and functions. A labeled transition system (5, A, ->■) can now 
be represented as an £-coalgebra by defining 

a:S->£(S),   s >-> {(a, s') \ {s,a, s') £ ->}. 

Conversely, any £-coalgebra corresponds to a transition system: If (5, a) is a 
coalgebra for £, then (5, A, -►), with -4C5xAxS given by (s, a, s') € -» «# 
(a,s') e a(s), is clearly a transition system. (See [Rut96] for more details.) 

One of the advantages of the coalgebraic view on transition systems is the ex- 
istence of a general definition of ^"-bisimulation, for any functor T (cf. [AM89]). 
For instance, applying that definition to the functor C above yields the standard 
notion of strong bisimulation. In general, the coalgebraic theory gives a generic 
approach to the definition and description of bisimulation: First define or char- 
acterize the transition systems one is interested in as coalgebras of a suitably 
chosen functor T. Then obtain a definition of bisimulation for those systems by 
applying the categorical definition of ^-bisimulation. 

The coalgebraic approach is applicable to many kinds of transition systems— 
see [Rut96] for many examples. In the present paper, this scheme is used to de- 
scribe discrete and continuous probabilistic transition systems and bisimulations. 
The functor M i assigns to a metric space its collection of Borel probability mea- 
sures. It is shown that the corresponding notion of Ali-bisimulation coincides, 
under mild conditions, with the continuous analogue of Larsen-Skou bisimula- 
tion. This extends a similar result for the discrete case, which is in fact given 
first: the functor V, which assigns to a set the collection of its simple probabil- 
ity distributions, is shown to yield a categorical characterization of Larsen-Skou 
bisimulation. Hence, in agreement with general opinion, also from the coalgebraic 
point of view the latter equivalence is suggested as the canonical one. 

Another appealing aspect of the coalgebraic approach is a canonical way of 
finding internally fully abstract domains of bisimulation, where two elements are 
equal if and only if they are bisimilar. It follows from a simple but very gen- 
eral argument that final coalgebras are fully abstract (see Aczel's final coalgebra 
model for nonwellfounded sets [Acz88], and also [RT93]). We shall show that 
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it follows from general coalgebraic considerations [AR89,Bar93,RT93] that both 
our functors V and Mi have a final coalgebra, which consequently are internally 
fully abstract with respect to (discrete and continuous) probabilistic bisimula- 
tion. Therefore these final coalgebras can be exploited as semantic domains for 
probabilistic bisimulation (an important direction for future research). 

As mentioned above, the functor Mi is defined on ultrametric spaces, and the 
Borel (T-algebras and associated measures are taken with respect to the metric 
topology. Our reasons for considering metric spaces rather than the, in semantical 
contexts, more standard use of ordered structures, as studied, e.g., by Jones and 
Plotkin [JP89] and by Edalat [Eda94] are twofold. Firstly, one can resort to 
the rich literature for standard measure theory on metric spaces. Secondly, we 
can apply the recently developed theory on coalgebraic bisimulation and final 
coalgebras in the metric setting [AM89,RT94]. Notably, we shall see that My is 
locally contractive, from which it follows that it has a final coalgebra. Because 
of the coalgebraic definition of bisimulation, we thus obtain an internally fully 
abstract domain. Such a full abstractness result has been lacking so far in the 
literature. 

In conclusion, D-bisimilarity and Larsen-Skou bisimilarity coincide for dis- 
crete probabilistic transition systems. For the continuous case, the functor Mi 
captures the generalization of probabilistic transition systems, and, under condi- 
tions, characterizes the associated notion of probabilistic bisimulation. For both 
functors a final coalgebra and hence, internally fully abstract domain exists, 
which can be exploited in the construction of domains for probabilistic bisimu- 
lation semantics. 

Acknowledgments We are grateful to Henno Brandsma, Prakash Panangaden, 
Jaco de Bakker, and, as always, the members of the Amsterdam Concurrency 
Group for discussions on various aspects of this paper. 

Note A technical report version of this paper is available by anonymous ftp 
from ftp.cs.vu.nl as /pub/papers/theory/IR-423.ps.Z. 

2     Mathematical Preliminaries 

Basic measure theoretic definitions (See, e.g., the standard textbook [Rud66].) 
A cr-algebra E on a set X is a collection of subsets which contains X and 
is closed under complement and countable union. Elements E of E are called 
measurable subsets of X. Trivially, the powerset V{X) is a cr-algebra for X. If X 
is a topological space, the Borel cr-algebra B(X) is defined as the least cr-algebra 
containing all open sets. 

A function ß: E -> [0,1], where E is a u-algebra on a set X, is called a 
17-probability measure if ß{X) = 1 and ß is cr-additive, i.e., ß(\Ji&IEk) - 
Y,iei ß{Ei) for any countable disjoint collection of measurable sets {Ei \i e I}. 
For X a topological space, a Borel probability measure is a probability mea- 
sure on X taken with respect to the Borel cr-algebra B(X). For a; G X, the 
Dirac-measure 6X is given by 5X{E) = 1 if x 6 E, and SX(E) = 0 otherwise. 
A function ß:X ->■ [0,1] is called a simple probability distribution if there ex- 
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ist n distinct points Xj,... ,xn, n > 0, such that ß{x\) + ■ ■ ■ + fi(xn) = 1 and 
p(x) = 0 for x £ {xi,... ,xn}. V(X) denotes the collection of all simple prob- 
ability distributions on X. For E C X, p[E] is short for Y^xeB^(x)- This way, 
a simple probability distribution corresponds to a convex linear combination of 
Dirac-measures. 

Metric spaces (See, e.g., the monograph [BV96].) A pair (M,d) with M a 
nonempty set and d: M2 -> [0,1] is called an ultrametric space if, for all x,y,z G 
M: d(x,y) = d(y,x), d(x,y) = 0 o- x = y, and d(x,z) < ma,x{d(x,y), d(y,z)}. 
The last expression is referred to as the strong triangle inequality. For metric 
spaces Mj, M2, a function /: Mi ->■ M2 is called nonexpansive if d2(f (x), f {y)) < 
di{x,y), for alia;,?/ G M. In case d2(f(x), f(y)) < n-di(x,y), for al\x,y G M, the 
function / is called /t-contractive, where K is a constant with 0 < K < 1. The col- 
lection of all nonexpansive mappings from Mi to M2 is denoted by Mi —h M2. 
We use the notation Ö, or more explicit 0{M), for the collection of all open 
subsets of M. For e > 0 we put Oe = { O G £> | \fx G O: £e(x) CO}. 

Binary relations For a binary relation i? C 5 x T we use 7Ti and 7r2 for the 
projections of R on 5 and T, respectively. R is called total if the two projections 
7Ti and 7T2 are surjective. We say that R is z-closed if, for all s, s' G S, t, t' G T, 
i?(s,i) A ^(s',*) A i?(s',i') => Ä(s,i')- If we put, for n G N, i?0 = i?, i?n+i = 
{(s,0 GÄxTl 3s' eS,i' GT:.R(s,i)A.Rn(s',*)A.R(s',i')},aiid.R* = {JneNR"-' 
we have that R* is the least z-closed binary relation onSxT containing R. Below 
we will employ, for s G S, the notation F(s) = {t G T | #(s,£)} and, for U CS, 
Fiu] = Us6c/-F(s)I and, likewise, for i G T, £(*) ={5651 R(s,t)}, and, 

forvcr,£[y] = ut6V
£(*)- 

Coalgebras (See, e.g., [Rut96].) Let C be either the category of sets and functions, 
or the category of ultrametric spaces and nonexpansive mappings. (These are 
the only categories playing a role in this paper.) Let T:C -> C be a functor. 
An J^-coalgebra is a pair (S, a) consisting of an object 5 in C together with an 
arrow a: S -> T(S) in C called a coalgebra structure on S. A homomorphism 
between two ^"-coalgebras (5, a) and (T,ß) is an arrow /: 5 ->■ T in C such that 
.F(/) • a =/3 •/. 

An T'-bisimulation between two ^-coalgebras (S,a) and (T,ß) is a relation 
R C 5 x T for which there exists a coalgebra structure 7: i? ->• J"(fi) such that 
the projections 7Ti: i? -> 51 and 7r2: i? -» T are homomorphisms: T(ni)«a = 7°7Ti 
and ^"(^2) • /3 = 7 «7r2. We then say that R is an ^-bisimulation for a and /?. 
The arrow 7 is called mediating for a and /?. We write x ~ y {'x and y are 
.F-bisimilar') whenever there exists an ^-bisimulation R with (x, y) G R. 
An ^-coalgebra (D, <5) is called final if there exists for any JF-coalgebra (5, a) a 
unique homomorphism from (S, a) to (£>,<$). We have the following result. 

Theorem 1. (Internal full abstractness) For a final T-coalgebra (D,S) and 
x,y G D, x = y if and only if x ~ y. 
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The proof is easy, see, e.g., [Rut96], Theorem 9.2. The main difficulty in obtaining 
full abstractness lies in the construction of a final coalgebra, which in general is 

nontrivial. 

3    A coalgebraic interpretation of Larsen-Skou 
bisimulation 

Starting from the definitions of a discrete probabilistic transition system and 
probabilistic bisimulation as proposed in the literature, we will consider general- 
izations of (discrete) probabilistic transition systems as coalgebras of a functor V 
on Set. We argue that £>-bisimilarity implies probabilistic bisimilarity, and, us- 
ing the notion of z-closure, that probabilistic bisimulation and totality imply 
D-bisimilarity. Then it is shown how this leads to the existence of a fully ab- 

stract domain. 

Definition 2. [LS91,GSS95] A discrete probabilistic transition system is a tuple 
(Pr, Act, p) where Pr is a given set of processes, Act is a given set actions, and 
fj,: Pr x Act x Pr -> [0,1] is a so-called transition probability function, i.e., for 
all P £ Pr, a € Act, p(P, a, •) is either the zero-map or a simple probability 

distribution. 
A probabilistic bisimulation for a discrete probabilistic transition system is 

an equivalence '=' on Pr such that 

P = Q => Zp'eE P(P,a,P') = EP'6E KQ,a,P') 

for all P,Q  £ Pr, a £ Act, and equivalence classes E G Pr/=. (Using the 
conventions of Section 2, the implication can also be written as P = Q => 
p[P,a,E] = fj,[Q,a,E\.) Two processes P and Q are said to be probabilistic 
bisimilar if some probabilistic bisimulation contains the pair {P,Q). 

Above we introduced the notation V{S) for the collection of all simple probability 
distributions over a set S. In fact, V can be extended to a Set-functor by defining 
for a mapping /:S-)Ta function V{f):V(S) -» V(T) which maps a simple 
distribution ii on S to a simple distribution V(f)(ß) on T such that V(f){p)(t) - 

M[/_1({*})]- . . .       • 
Let 0 represent termination. Note that a probabilistic transition system is 

just a mapping /x: Pr x Act -> V(Pr) + {0} or, equivalent^, a function M: Pr -4 
/Act -» (V(Pr) + {0})). In other words, a probabilistic transition system is 
precisely a coalgebra of the functor Act -> (Z>(-) + {0}). Applying the category 
theoretical machinery as described in Section 2 now gives us the coalgebraic 
notion of bisimulation. We will show that it corresponds to (actually generalizes) 
the notion of probabilistic bisimulation of Definition 2, thus providing categorical 
evidence for the Larsen-Skou bisimulation as the canonical process equivalence 
for discrete probabilistic transition systems. 

For clarity of presentation we suppress, for the moment, the action compo- 
nent of a probabilistic transition system, and also do not bother about termi- 
nation. Thus we consider coalgebras of the functor V itself. As it turns out, the 
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presence of labels and termination does not make any essential difference for 
the technical content of what follows. Before we relate probabilistic bisimulation 
with D-bisimulation, we first give a generalization of Definition 2, by allow- 
ing bisimulations between different transition systems, which are not necessarily 
equivalence relations. 

Definition 3. Let a: S ->■ V{S), ß:T ->• V(T) be two (stripped) discrete prob- 
abilistic transition systems. A binary relation R C S x T is called a probabilistic 
bisimulation for a,ß iff R(s,t) => a(s)[U] = ß{t)[V], for all s £ S,t £ T and 
U C S, V C T such that 7rf 1(C7) = ^(V). Two elements s € S, t £ T are 
said to be probabilistic bisimilar if some probabilistic bisimulation contains the 
pair (s,t). 

Note that if R is an equivalence relation, then 7rf 1(U) = 7r^"1(l/) if and only if 
U = (Jig/ ^t = V, for some collection of equivalence classes {Ei\i £ 1} of R. Thus 
in this case, the condition on U and V in Definition 3 amounts to the assumption 
of E being an equivalence class in Definition 2, or, following the terminology 
of [Hen95], U and V are the same '='-block. This shows that Definition 2 is a 
special instance of Definition 3 ('modulo' the presence of labels and termination). 

By exploitation of the various definitions one straightforwardly verifies that 
P-bisimulation implies probabilistic bisimulation. 

Lemma 4. Let a: S -» V(S) and ß: T -> V(T) be two discrete probabilistic 
transition systems. Let R be a V-bisimulation for Q, ß. Then R is a probabilistic 
bisimulation for a, ß. 

The reverse of the above lemma is more intricate. We will first use the concept 
of z-closure and associated properties as developed in Section 2. 

Lemma 5. If R C SxT is a probabilistic bisimulation for a: S —► V(S), ß: T —► 
V(T), then so is R*, the z-closure of R. 

So, if s £ S and t £ T are probabilistic bisimilar, we can assume —without loss 
of generality— that there exists a z-closed probabilistic bisimulation contain- 
ing (s,t). We will need, for technical reasons, that R is total. This is equivalent 
with the common assumption of transition systems to have a distinguished initial 
state and considering reachable states only. 

Theorem 6. Let R C S x T be a probabilistic bisimulation for a: S —> V(S) 
and ß:T —► T>(T). Moreover, assume R to be z-closed and total. Then R is a 
T>'-bisimulation. 

Proof. The mapping 7: R —> V(R) given by 

r        0 a ß(t)[F(s>)} = 0 
-r(s,t)(s',f) =      a(s)(s>).ß(t)(t>) 

{      ß(t)[F(s')]       otherwlse' 

for (s, t) £ R, is mediating for a and ß. □ 
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The format of the definition of j{s,t) is reminiscent of the discrete probability 
distributions of [JL91]. It is however not clear how their notion of probabilistic 
specification extends to the continuous setting of Section 4. 

It is straightforward to adapt the above line of reasoning to a functor V' 
given by V = Act ->• (£>(•) + {0}). The discrete probabilistic transition systems 
of Definition 2 are in 1-1 correspondence with the coalgebras of this functor, and 
the notion of P'-bisimulation coincides with that of probabilistic bisimulation of 
Definition 2 (for total relations R). 

We can now benefit from some general insights in the theory of coalgebras, 
by applying (a minor variation on) a result from [Bar93] involving boundedness 
of a set functor. 

Theorem 7.  The functor V (and also V) has a final coalgebra. 

The final coalgebra for V is nontrivial. The final coalgebra for V, though, is 
degenerate: it equals the one element set. This is equivalent to the fact that, 
due to the absence of labels and a concept of termination as present for V', all 
elements in any two P-coalgebras are probablisitically bisimilar. 

Let P be the final £>'-coalgebra, so P £* Act -»• (£>(P) + {0}). (Note that 
final coalgebras are always fixed points. See, e.g., [Rut96], Theorem 9.1.) The 
following is immediate by Theorem 1. 

Corollary 8. The system P is internally fully abstract with respect to the orig- 
inal notion of probabilistic bisimulation of Definition 2. 

4    Mi-Bisimilarity for Probabilistic Transition Systems 

The previous section illustrates that in a discrete probabilistic setting, a coalge- 
braic interpretation of probabilistic transition systems and bisimulation can be 
given, which is equivalent with the usual 'direct' approach. One of the advantages 
of the abstract coalgebraic approach is that it can fairly easily be generalized to 
the continuous setting of stochastic systems. We will now, in fact, allow proba- 
bility measures to play the role of the simple distributions in the definition of a 
probabilistic transition system. 

Probability measures only make sense in the context of a cr-algebra. When the 
collection of processes comes equipped with a topology —as is the case if the set 
of processes is endowed with an order or a metric structure— the obvious choice 
for this cr-algebra is the Borel cr-algebra, i.e. the least cr-algebra containing all 
the open sets. As mentioned in the introduction, we prefer the use of ultrametric 
(cf. [BV96]) above order, because of a combination of the following two reasons: 
(1) the technical advantage of a close relationship between standard measure 
theory and metric topology, and (2) the availability of a final coalgebra theorem 
in the metric setting, leading to a fully abstract domain for general probabilistic 
bisimulation. 

The generalization of the notion of a discrete probabilistic transition system 
and the associated concept of bisimulation as proposed by Larsen and Skou is 
as follows. 
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Definition 9. A (general) probabilistic transition system is a tuple (Pr,Act,ß) 
where Pr is a given ultrametric space of processes, Act is a given set of actions, 
and ß: Pr x Act x B(Pr) -> [0,1] is a so-called (general) transition probability 
function, i.e., ß(P,a,-) is either the zero-map, or a Borel probability measure, 
for all P e Pr, a e Act. (Here B(Pr) denotes the collection of Borel measurable 
subsets of Pr.) 

A probabilistic bisimulation for a probabilistic transition system (Pr, Act, ß) 
is an equivalence '=' on Pr such that every equivalence class E C Pr of ' = ' is 
measurable, and 

P = Q => ß(P,a,E)=ß{Q,a,E) 

for all P, Q e Pr, a G Act, and £ e Pr/=. Two processes P and Q in Pr are said 
to be probabilistic bisimilar if there exists a probabilistic bisimulation containing 
the pair (P,Q). 

Note that the equivalence classes E of '=' must be measurable, since only then 
the values ß(P, a, E),ß(Q, a, E) are well-defined. 

For reasons of presentation, we dispense with the actions and with the treat- 
ment of termination. They can be added again later. In this way, a probabilistic 
transition system becomes a function a:S^ Mi(S) where Mi(S) denotes the 
collection of all Borel probability measures. In the reformulation of the related 
notion of probabilistic bisimulation we give, as before, first a slightly more gen- 
eral definition of bisimilarity of systems with different carriers. 

Definition 10. Let a: S ->• Mi(S) and ß:T H> Mi(T) be two probabilistic 
transition systems. A relation R C S x T is called a probabilistic bisimulation 
for a,ß iff R(s,t) => a(s)(U) = ß{t){V) for all s e S, t e T and U G B(S), 
V e B{T) such that ?rf 1(C7) = ir^iV). Two elements s € S, t € T are said to be 
probabilistic bisimilar iff some probabilistic bisimulation contains the pair (s, t). 

As for V in the previous section, M\ can be regarded as a functor, viz. a functor 
on the category UMS of ultrametric spaces and nonexpansive mappings. 

Definition 11. The functor MiiUMS -> UMS is given as follows: MX(M) is 
the collection of all Borel probability measures endowed with the metric d such 
that d(ß,v) <e <^- VOe Oe:ß{0) = i/(0), for all ß,v £ MX{M), e > 0. For 
nonexpansive f:M -> N the mapping M\(f):Mi(M) -> M\(N) is defined by 
M1(f)(ß)(V) = ßif-HV)), for all V € B(N). 

Elementary considerations concerning Borel-cr-algebras and nonexpansive maps 
show that AWi is a well-defined functor on UMS. Following the coalgebraic 
paradigm, Mi induces a notion of A41-bisimulation. One half of the relationship 
of A41-bisimulation and probabilistic bisimulation can be shown directly. 

Lemma 12. Let a: S —)• A4i(S), ß:T -> A4\(T) be two probabilistic transition 
systems. Any M\ -bisimulation R for a and ß is also a probabilistic bisimulation 
for a,ß. 
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Below we show that the reverse also holds under reasonable conditions. The tech- 
nicality to be dealt with concerns the proper generalization of the measurability 
condition of the equivalence classes E. 

For a probabilistic bisimulation '=' in the sense of Definition 9 we have, by an 
elementary set-theoretic argument, a partitioning into squares of subsets. More- 
over, these subsets are measurable by assumption. So, we have = = \Ji€l Ei x Ei. 
Similarly, for the general set-up, we want a decomposition R = \Jk€K Ek x Fk 
where the Ek and Fk are Borel sets in S and T, respectively. Additionally, 
for measure theoretical considerations, we will assume the number of rectan- 
gles Ek x Fk that constitute R to be countable. 

Definition 13. A binary relation RC SxT on two ultrametric spaces S and T 
is said to have a Borel decomposition iff R = \JkeK E* x F* wnere {Ek\k £ K}, 
{ Fk | k e K } are countable partitions of Borel sets of S and T, respectively. 

In the construction of a mediating probabilistic transition system 7: R ->■ M\ (R), 
for a given probabilistic bisimulation it!, we can again assume that R is z-closed. 
Since no measure theoretical considerations are involved, the proof of this is 
literally as for Lemma 5. The property is used in the next result. 

Theorem 14. Let a:S ->■ Mi(S), ß:T -> M\{T) be two probabilistic tran- 
sition systems. Let R be a probabilistic bisimulation for a,ß in the sense of 
Definition 10. Assume that R is z-closed. If R has a Borel decomposition, then 
R is an M 1 -bisimulation for a,ß. 

Proof. Let { Ek x Fk | k € K } be a Borel decomposition of R. Suppose R(s, t) 
holds.   The mapping j(s, t): B(R) -> [0,1] is then given by 

(   *UTT*v\nm      v       a(s)(UnEk)-ß(t)(VnFk)        ,    , 
l(s,t)((U xV)nR) = l^kzx ß(t)(Fk)  ^     ' 

for U e B(S), V G B(T). The verification that j(s,t) is well-defined and medi- 
ating for a(s), ß(t) is nontrivial but omitted for reasons of space. D 

In the remainder of this section, we shall again use some general insights from 
the theory of coalgebras, this time by applying a result from [AR89,RT93]. 

In turns out, that we are only able to show the existence of a final coalgebra 
when we consider an adaptation of Mi, say M[, which delivers Borel probability 
measures with so-called compact support, i.e., measures that vanish outside a 
compact set. More precisely, for a metric space M, ß: B(M) ->■ [0,1] is said to 
have a compact support if, for some compact subset K C M, we have that 
U n K = 0 => n{U) = 0, for all U £ B(M). Let M\{M) denote the collection of 
all Borel probability measures of an ultrametric space M. Similarly as for Mi, 
the new M\ extends to a functor on UMS. 

Additionally, to ensure the property of local contractivity (see, e.g., [RT93]), 
we put in a scaling functor -/2. This operation is harmless from a semantical point 



469 

of view. The usage of M[, though, does narrow the type of transition systems 
falling within the framework. However, we stress that the established relationship 
of coalgebraic and probabilistic bisimulation, still carry through for the modified 
setting. Additionally, for the class of transition systems, now captured by the 
functor Act -> (M[ {-)/2 + {0}), the existence of a final coalgebra is guaranteed. 

Theorem 15. Let the functor f:UMS -» UMS be given by T = Act -> 
(M\{-)/2 + {0}). Then the following holds: 

(a) T is locally contractive, i.e., for some K, 0 < K < 1, and all ultrametric 
spaces M and N, the function TM,N- (M-h N) -> (T{M) -h T{N)) given 
by TM,NU) = F{f) *s K-contractive. 

(b) If M is complete, then T(M) is complete. 
(c) The functor T has a final coalgebra. 

The presence of '-/2' in the definition of T results in (a). (The other constituent 
functors are locally nonexpansive.) Only for part (b) the assumption of measures 
having a compact support is necessary. Its proof is non-trivial. Finally, part (c) 
follows from (a), (b), and (a minor variation of) [RT93], Theorem 4.8. 

Let Q be the final J"-coalgebra: Q S Act -> (M[(Q)/2 + {0}). From Theorem 1 
and 15 we then immediately obtain the following result. 

Corollary 16. The system Q is internally fully abstract with respect to proba- 
bilistic bisimulation. 

5    Conclusion and future research 

In this paper, a framework is proposed for probabilistic transition systems, in- 
volving general probability measures, and an associated notion of probabilistic 
bisimulation. Most research reported in the literature so far deals with discrete 
probabilistic transition systems, employing simple probability distributions only. 
The use of Borel measures allows for an extension of this to a continuous set- 
ting, which is necessary for the further development of models for dynamical, 
real-time, and in particular hybrid systems, for which discreteness and image- 
finiteness are often too restrictive. 

Following the transition-systems-as-coalgebras paradigm, the categorical set- 
up provides a characterization of the Larsen-Skou bisimulation in terms of a 
set functor. For the continuous case, a similar result is shown for a functor on 
the category of ultrametric spaces. Moreover, exploiting parts of the theory of 
coalgebras, both for the discrete case and for the continuous case, internally fully 
abstract domains are constructed. 

Further investigations of the proposed notion of Borel decomposition should 
clarify how the latter relates to the use of Polish spaces as in [BDEP97]. We ex- 
pect that the technical result obtained there, on the existence of weak pullbacks, 
applies also to our setting. Also, once a suitable continuous process language is 
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identified (such as PCCS [GJS90] for the discrete case), the process equivalences 
and fully abstract domains presented in this paper may be fruitfully applied in 
the semantical study of dynamical and hybrid systems. 
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Distributed Processes and Location Failures 
(Extended Abstract) 

James Riely and Matthew Hennessy* 

Abstract 

Site failure is an essential aspect of distributed systems; nonetheless its effect 
on programming language semantics remains poorly understood. To model such 
systems, we define a process calculus in which processes are run at distributed lo- 
cations. The language provides operators to kill locations, to test the status (dead 
or alive) of locations, and to spawn processes at remote locations. Using a variation 
of bisimulation, we provide alternative characterizations of strong and weak barbed 
congruence for this language, based on an operational semantics that uses configu- 
rations to record the status of locations. We then derive a second, symbolic char- 
acterization in which configurations are replaced by logical formulae. In the strong 
case the formulae come from a standard propositional logic, while in the weak case 
a temporal logic with past time modalities is required. The symbolic characteri- 
zation establishes that, in principle, barbed congruence for such languages can be 
checked efficiently using existing techniques. 

1    Introduction 

Many semantic theories have been proposed for concurrent processes [18, 16, 6]. Al- 
though these theories have been fruitfully applied to the analysis of some distributed 
systems, for the most part they ignore an essential feature of such systems, namely their 

distribution. 
As a simple example consider two implementations of a client-server application 

in which the client can demand an interactive service provided by the server, such as 
previewing or updating a document. In one implementation (System A) the server 
spawns a process to handle the document at its own site, the remote location, and the 
client previews the document remotely. In the other (System B) the server sends a 
process, including the document, to the client site, and the client previews the document 
locally. Using the semantic theories mentioned above it would be difficult to distinguish 
between these implementations, as the only difference between them is the location at 
which activity occurs. We aim to develop a useful extensional theory of systems which 
would take this type of property into account. 

•Research funded by EPSRC project GR/K60701. Authors' address: School of Cognitive and Computing 
Sciences, Univ. of Sussex, Falmer, Brighton, BN1 9QH, UK, {jamesri ,matthewh}@cogs.susx.ac .uk 
Acknowledgement: We thank Flavio Corradini and Alan Jeffrey; both made important comments and sug- 
gestions in the early stages of this work. 
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In [8, 20, 10] such theories have been proposed. All of these theories, however, 
are based on a very strong assumption: that an observer, or user, can determine the 
location at which every action is performed. Here we start from a weaker premise: that 
in distributed systems sites are liable to failure. The model of failure we have adopted 
is a fail stop model in which failures are independent of each other and the number of 
failures that can occur is unbounded. Assuming that sites can fail, it is easy to see that 
Systems A and B, outlined above, are indeed different: if, after the client has begun 
interaction with the document, a failure occurs at the remote site, then in System A the 
client deadlocks, while in System B it can continue operation unaffected. 

Our work is motivated by the papers [2, 12]. In these papers, distributed languages 
with location failures are defined and shown to be very expressive. In both of these 
papers, the semantics is based on barbed equivalence, which requires quantification 
over all program contexts and thus is difficult to use directly. In each of the cited works, 
the authors provide a translation from their language into a simpler (non-distributed) 
language and prove that the translations are adequate or fully abstract in some sense. 
While these translations provide theoretical results about the relative expressiveness of 
distributed and interleaving calculi, they are sufficiently complicated to make reasoning 
about examples, even simple ones, very difficult. 

By restricting attention to an asynchronous language, Amadio [4] has recently im- 
proved on the results of [2], providing simpler translations. Although our work devel- 
oped independently of [4], the language we study has much in common with the lan- 
guage developed there. The main difference is that our language has no value-passing, 
allowing us to concentrate on the effects of location failure and simplifying the state- 
ment of many of our results. Since the issues raised by failures and value passing are 
largely independent, this paper may be seen as providing two extensional views of a 
language similar to Amadio's; the first of these is concrete, as is his translation, the 
second is more abstract. 

In Section 2, we consider a simple language for located processes based on pure 
CCS [18], with which we assume familiarity. For example (a.p)t is a process located at 
I which, if £ is alive, may perform the action a and then behave as (p)i. In addition to the 
usual operators of CCS we have the following new operators: spawn(£,p) which starts 
process p running at location £;k\\\£.p which, if location £ is alive, kills I (with the result 
that any process located at £ is deactivated) and then behaves as p; and if £ then p else q 
which silently evolves to either p or q, depending on whether £ is alive or dead when 
the test is performed. 

We give an operational semantics for this language in terms of a labelled tran- 
sition system. The judgments depend on a set L, of live locations, and are of the 
form L>P A LlfrP1, where P and P1 are located processes and a is either a vis- 
ible action, which permits synchronization, or the internal action x. To decide on 
an appropriate equivalence between process terms we follow the approach advo- 
cated in [22]. We define both strong and weak barbed equivalence between pro- 
cesses, ~ and RJ. We then dictate that the required equivalence, which we refer to 
as barbed bisimulation equivalence, is defined (for example in the weak case) as: P 
K, Q if and only if for every suitable context C[],C[F] «C[ß]. Although this may be 
reasonable, it is not a very useful definition; the reader is invited to determine whether 
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the following pairs of processes should be equivalent or distinguished. 

P\ = 
Öl = 

(a)(\(a+x.a)k 

(a + x)l\(a.a)k 

\a Pi = [(if k then a else nil); | (a.a)k] \a 

\a 02 = (spawn(fc.a))* 

In Section 3 we define two bisimulation-based relations, strong and weak Located- 
Failure equivalence (LF-equivalence) and show that these coincide with the indirectly 
defined barbed congruences. Since LF-equivalence is defined using bisimulations, the 
problem of deciding that two systems are semantically congruent can, in principle, be 
solved using standard proof techniques associated with bisimulation [18]. However, 
constructing an LF-bisimulation requires that one consider the behavior of the systems 
under all possible sequences of kills, by both the systems themselves and the environ- 
ment. The number of states that must be explored may be exponentially larger than the 
number needed to construct a CCS bisimulation. 

In Section 4 we use the ideas of [15] to give alternative symbolic characterizations 
of LF-equivalence that can be decided using a much smaller state space. The idea is to 
replace the operational judgments L> P A L' >/" with judgments of the form P-^P', 
where cp is a logical formula that describes the circumstances under which the action 
a can be performed. In the strong case the required logic is straightforward: a prepo- 
sitional logic that describes the state (dead or alive) of the sites in the system. In the 
weak case, however, we require a more complicated logic that can express statements 
of the form site £ was alive at some point in the past. Using these symbolic transitions, 
the standard definition of symbolic bisimulation [15] requires only minor modification 
to capture ~ and «; hence the symbolic proof techniques and tools of [15] may be used 
to check the new semantic equivalences proposed in this paper. 

In this extended abstract we have omitted several formal definitions and all proofs. 
The full version [21] includes additional results and examples, including a discussion 
of basic processes and comparisons with other equivalences. 

2   The Language 

The syntax of processes is parameterized with respect to several syntactic sets. We 
assume a set hoc of locations k, £, m, a set PConst of process constants A used to define 
recursive processes, and a set Act of communication actions a, b, c, such that every 
action a E Act has a complement a E Act (~ is a bijection on Act). The set Actx = ActU 
{t} of actions a includes also the distinguished silent action x. The formal syntax is as 
follows. Most of the operators should be familiar from CCS; all of the new constructs 
have been described in the introduction. 

p,q(EBProc)   ::=  a.p   | spawn (£,p)  | W\\\£.p | if £ then p else q | A | "Lit/Pi 

| p\q   \p\a | P[f] 

P,Q(ELProc)   ::= P\Q \P\a \ P[f]   \(p)t 

We have adopted a two-level syntax which distinguishes between basic processes p 
and located processes P. Intuitively, a basic process corresponds to what one normally 
thinks of as a. process: a collection of threads of computation that must be run at a single 



474 

site. A located process, instead, corresponds to a distribution of basic processes over 
several sites. Note that many basic processes may be located at a single site, and a basic 
process may share a private channel (unknown to other basic processes running at the 
same site) with a remote process. 

The ability of a process to perform an action is dependent on the set of live loca- 
tions, and consequently the transition relation determining the operational semantics 
is defined between configurations. A liveset L is any subset of hoc. A configuration 
(L>P) is a pair comprising a liveset L and a located process term P. The set of all 
configurations is Config, ranged over by C and D. 

In giving the intensional semantics of processes, it will be convenient for later de- 
velopment if we distinguish executions of the operator k\\\£.p depending upon whether 
C is alive or dead at the time of execution. To capture this distinction, we extend the set 
of actions to the set KAct = Act LI {killl \ (. £ Loc], which includes the kill actions killl. 
Unless otherwise specified, p ranges over KActz = KActö {x}. In Table 1 we define the 
transition relation (-^) C Config x Config. The definition uses the following simple 
structural equivalence on processes: 

(p\q)t = (p)t | (q)t (p\a)t = {p)t \a {p\f]\ = {p)t [/] 

While the transition relation —► distinguishes effective kill actions from those that 
have no effect, a basic tenet of our study is that the precise moment of location failure 
should be unobservable. Thus we extract from —► a transition relation i—► in which 
all kill actions have been replaced with silent actions. It is this derived relation i—► that 
we take to be fundamental. 

Definition 1 0—). C A C iff C -2- C' D 

Ch-I-C' iff C -^ C or 3k: C ■&&> C 

Most of the rules in Table 1 are straightforward, being inherited directly from CCS, 
modulo the constraint that the process {p)t can only move if I is alive. Note that the 
three new operators — kill, spawn and the conditional — are modeled as x-transitions; 
this reflects the fact that in a distributed system the implementation of these operators 
would involve some computation and thus the passage of some time. 

We now discuss the problem of defining an appropriate semantic equivalence for lo- 
cated processes, based on the transition relation i—v. An obvious possibility is to adapt 
the bisimulation equivalences of CCS [18]. (Strong) CCS-bisimulation is the largest 
symmetric relation ~ccs on configurations such that whenever C ~ccs D and C i-S-> C' 
there exists a D' such that/) >-^+ D' and C ~ccs D'. A weak version of this relation, RJ

CCS
, 

can be obtained by adapting this definition to the weak transition relation |=>-, defined as 
usual. To see that CCS-bisimulation is not suitable for our language, for example is not a 
congruence, consider the processes PT, = [ (a.a)( | (ä)^ ] \a and Q3 = [ (a), | (ot.a)k ] \a. 
P3 ~ccs 03. Dut ^3 and 03 can be distinguished by a context that kills location I, if this 
kill action is performed after the initial communication on a. 

The use of saccs for CCS has been justified in [22] by the fact that it coincides with the 
congruence obtained from a simple notion of observation called barbed bisimulation. 
Similar results have been obtained for lazy and eager functional languages [1, 14, 7], 
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Table 1 Transition system with configurations (symmetric rules for | omitted) 

Acte) L>(a.P)l-^Lt>(p)l if t£L 
Spawnc) L>(spawn(k,p))t

J^L>(p)k if £<EL 

Killlc) L>(K\\m.p)t-^L\{m}>(p)l if £eL,meL 
Kill2c) Lt>(killm.^-^Lt>(/7); if £eL,m(£L 

Condlc) Lt>(if m then p else q)(-
L*Lt>(p)t if £eL,m£L 

Cond2c) L>(ifmthenpelse^-L+L>(g)/ if £<EL,m<£L 

Sumc)    L^MPh-^L'^h     if    L>(Pj)t-^L'>(p'j)k,j€l 
tief 

Defc) L>(^^L'>(p')t     if    L>(^-^L'>(^,^ = P 

Strc) L»P^L'>Q if P = P',L>PI-^LI>QI,Q' = Q 

Parc) L>P|ß-^L'>/y|ß if L>P^L'>P' 

Commc) Z>P|ß^L'>/"|ß' if L>P ^U >P',L»Q-^ L1 »@ 
Restrc) L>P\a-^Ll>P'\a if L>/> -£+£/>/", p <£ {a,a} 

Renc) L>P[/]^HL'!>/"[/] if L>P^L'>P' 

giving further evidence for the reasonableness of this approach. Roughly, two processes 
are barbed bisimilar if every silent transition of one can be matched by a silent transi- 
tion of the other in such a way that the derived states are capable of exactly the same 
observable actions; in addition, the derived states must also be barbed bisimilar. For 
our language, the formal definition is as follows. 

Definition 2 (Barbed bisimulation). Weak barbed bisimilarity («) is the largest sym- 
metric relation over configurations such that whenever C « D: (a) C i—► C implies 
that for some D',D\^>D' and C' « £>'; and (b) for every a, C A implies D l=^>. 
Strong barbed bisimilarity (~) is obtained by replacing t=> by i—> everywhere in the 
definition. O 

Barbed bisimulation is a very weak relation; for example, it is not preserved by 
parallel composition. However, by closing over all contexts we arrive at a reasonable 
semantic equivalence that by definition enjoys an important property, namely that it is 
a congruence. 

Definition 3 (Barbed equivalence). Located processes P and ß are (weak) barbed 
equivalent (P « Q) if for every context C[ ] such that C[P] and C[Q] are configura- 
tions, C[P] « C[Q]. Strong barbed equivalence (~) is obtained in the same manner 
from ~. n 

Because it requires quantification over all contexts, barbed equivalence is difficult 
to use directly. For example the processes Pi and Q\, given in the introduction, are 
distinguished by « whereas P2 and ß2 are identified; it is far from obvious why. Even 
worse, processes P5 and Q5 (given in Section 3) are related, although establishing this 
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IS fact requires that one prove that P\ and Q\ are related under the assumption that 
alive at the time P\ and Q\ are compared, that is, I is initially alive. 

We end this section with some additional, simpler examples. The processes (a)l | 
(b)k and (b)t \ (a)k can be distinguished by a context that kills I. The same context can 
be used to distinguish the basic processes spawn(£,a) and spawn(£,a), regardless of 
where they are located. These examples indicate that although the location of an action 
is not reflected directly in the operational semantics they do impinge on the behavior of 
processes. The order in which kill actions are executed is also significant. For example 
kill£.W\\\k can be distinguished from killk.killt using the process (a)t \ (b)k. 

3   Located-Failures Equivalence 

In this section and the next, we provide alternative characterizations of barbed equiv- 
alence for our language. Note that if L>P -^ L'>P, then l! is determined by L and 
/j. To emphasize this, we adopt the following notation. For each action /J, we define 
a function "iafter^" which reflects the immediate effect of action // on a liveset. We 
also define the relations -jr-s- and =fe> on process terms, which capture the capability of 
action p under liveset L. 

iafter;U(L) 
clef U\{k}, if fj = killk 

if fit Act U{T,E} 

P-M+p> g. L>P J^iafter^(L)>F/ 

P=^p g L>P =^ iafter^L) >f 

For example, iaftera(L) = L for any a, and iafterfa/K({£, k}) = {k}. If P = (a.a)t | (a)^, 
then P =F=> nil, but P has no a-transition under the liveset {k}. 

We first present the strong case. 

Definition 4 (Strong LF-equivalence). Let S = {§L}LCLOC 
be an indexed family of re- 

lations on LProc. S is a strong LF-bisimulation if for every L, S^, is symmetric and 
whenever P §i Q: 

(a) P -^P> implies 3Q': Q -f> Q' and P Siafterp(L) Q' 

(b) for every k£L    P S^{/t} Q 

P and Q are strong LF-equivalent under L (P ~L Q) if there exists a strong LF- 
bisimulation S with P §L Q. 

P and Q are strong UP-equivalent (P ~ Q), if P ~L ß for every subset L of hoc.  D 

In the full paper, we prove that ~ and ~ coincide. The alternative characterization 
of weak barbed equivalence is more complicated: it is not sufficient to change the strong 
arrows in Definition 4 to weak arrows. To see this, consider the following processes: 

P5=[(b.ß.a+b.(a+'t))l\($.(ä+x.a) + ä.a)k]\a\$ 

Q5= [(6.(a+T)),| (a.a)J\a 
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If £ is initially dead, P5 and ß5 are clearly equivalent: both are strong equivalent to nil. 
If £ is initially alive, however, the situation is not so clear. The questionable move is P5 's 
^-transition to Pi ~ [(a)t\ (a + x.a)k]\a. To match this move ß5 must perform a weak 
^-transition to g, ^ [ (oc + i)t \ (ä.a)k] \a. But Pi and ßi are not barbed equivalent: if 
£ is dead, then g, is capable of a a transition that Pi cannot match. This would lead one 
to believe that P and ß are not barbed equivalent; however, they are. 

Intuitively this is true because when P5 reaches Pi, £ must be alive; thus P\ and Q\ 
need only be compared under the constraint that £ is initially alive. Once this compar- 
ison has begun, the environment can distinguish Q\ from P\ only by killing £, but it 
cannot control internal activity on the part of Pi before £ is dead. 

Definition 5 (Weak LF-equivalence). For p G Actx, define £ such that a = a and x = e. 
The definition of « is similar to that for ~, except that when P §L Q, we require: 

(a) P -£+ P1 implies 3ß': ß =£> ß' and P1 §L ß' 

(b) for every * e L    3ß':  Q =fr • =^ ß' and P §A{t} ß' □ 

Whereas the first clause in the definition of weak LF-bisimulation is as one would 
expect, the second clause is somewhat surprising. It says, in effect, that if the environ- 
ment kills a location k, then ß must be able to (silently) evolve to a process Q' that 
matches P; but in reaching ß', ß may exploit the intermediate states of the system (that 
is, k alive, then k dead). 

Theorem 6. For all located processes P&Q if and only ifP K.Q. □ 

4   Symbolic characterizations 

While the LF-equivalences provide a great deal of insight into the meaning of barbed 
equivalence in distributed process description languages such as ours, they are unwieldy 
to use in practice. For the most part, this is due to the use of configurations in the opera- 
tional semantics. In this section, we improve this situation by defining a symbolic tran- 
sition system directly on located process terms, then giving characterizations of strong 
and weak LF-equivalence using these symbolic transitions. As one should expect, the 
weak case is quite a bit more subtle than the strong. 

We begin by giving the symbolic operational semantics. The symbolic transition 
relation makes use of propositional formulae Jt, p, which are given a semantics in terms 
of livesets. Intuitively, a formula indicates a set of constraints on the status of locations 
(dead or alive) at the time that the transition is enabled. If P -^f f then if location 0 
is dead and 1 is alive, P is capable of making an ^-transition to /"; that is, if 0 ^ L and 
1 e L then P -f* P1. In Table 2 we define the transition relation -f+ C LProc x LProc. 
The two transition systems are related by the fact that P-^P1 if and only if there exists 
a K such that P -jf* P1 and L1= n. 

The standard definition of symbolic bisimulation [15] requires that we define entail- 
ment between formulae, which we do in the standard way: 

nlhp iff VL: L t= n implies L1= p 
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Table 2 Symbolic transition system (symmetric rules for | omitted) 

Acts) (a./*)/ -f* (p)i 
Spawn5) (spawn(k,p))(-j->(p)k 

Killls) {mm.p)lJf^{p)l 

Kill2s) (kiN/M/T^rOO/ 
Condls) (if /n then p else q)t-r^{p)t 

Cond2s) (if mthen pe\seq)t -j^g- {q)t 

Sums) iXivPi)t-¥^j)t   if    (^)/-^(P/)/.J'e/ 
Defs) W/HHA     if     (P)/^(A,^ = P 

Str.) P-^ß    if    P = P',P,^Q',QI = Q 

Pars) Plß-^P'lß     if    P-frP1 

Comms) Plßi^P'lß'     if    P-|* *" > ß-?h C 
Restrs) P\a-^P'\a     if    P -£♦ /",/Y £ {a,5} 

Rens) P[/]^P[/]     if    P ~h ? 

Note that entailment is a preorder on formulae. If % lh p we say that n is stronger than 
p. ff is the strongest formula under lh, tt the weakest. 

We must also identify a set of formulae suitable as parameters in the recursive defi- 
nition of symbolic equivalence, that is, the analogs of the parameters L in the definition 
of LF-equivalence. Intuitively, when we say that P and ß are LF-equivalent under L, we 
are limiting attention to a single possible world, namely that in which exactly the sites in 
L are alive. The idea of symbolic equivalences, instead, is to treat many possible worlds 
simultaneously (via entailment). In the case of strong LF-bisimulation, where P~LQ 

and M C L imply P ~M Q, this is achieved by restricting attention to negative formulae 
— formulae which contain no positive atoms — in the recursive definition of symbolic 
equivalence. Finally, we identify a transformation on formulae (indexed by actions) 
which specifies the conditions under which residual processes are to be compared: 

M 1= aftera(p) iff 3L: L1= p andM C L 

M 1= afterfam(p) iff 3L: L t= p and M C L\{k} 

Definition 7 (Strong symbolic bisimulation). Let 8 be a family of relations on LProc 
indexed by negative formulae f>. S is a strong symbolic bisimulation if for every f>, Sö 

is symmetric and whenever P S# ß and P -£+ P1 then for some n,-, p;, and ß,: 

(a) dAnll-V.-p,-, (c)     Q-frQi, and 
(b) p.-lr-Tt,-, (d)      P1 S^p,) Qi 

We write P ~^ ß to indicate that there exists a symbolic bisimulation 8 with P S$ Q. D 

Theorem %.P~LQiff3ü:P~\Q andh 1= A In addition, (~) = (~*t). D 
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As a first attempt to define weak symbolic bisimulation, let us try simply replacing 
the strong transitions in Definition 7 with weak edges defined by conjoining formulae. 
For example, we would have P => P and P ==^ P1 if P -^ • -f* P'■ Unfortunately, 
this definition does not suffice. Consider the processes P5 and g5, previously defined; 
these have the following symbolic transition graphs (where we have write -£-» as -^): 

G 5 

*<A* i                            \ i 
TMt      ^1       Xk             T'  01      "t/A/t 

#A        ^.       .A         A 
yQ 
S 

1      *M* 

As noted in Section 3, in order to prove these processes equivalent we must compare 
the processes P\ and Q\ under the assumption that £ is initially alive, but using our 
provisional definition we would end up comparing P\ and Q\ under the assumption 
tt = neg(£ A k), which is not strong enough to prove that they are related. 

As a second attempt, we might simply allow all positive information to carry over 
into the recursive formula "ö,, that is, change the last clause of Definition 7 to fy = p,. 
Whereas our first attempt produced an equivalence that was too strong, the revised 
definition is too weak. For example, the following processes would be identified even 
though they are not barbed equivalent. 

P6= [(a.a)t\(a)k]\a Q6 = [(a),|(ä.a)t]\oc 

l a l I Ok 

Here Pb and Q'6 would be compared under the formula £ Ak. This formula, however, 
says something more than we would like, namely that £ and k remain alive until P'b and 
Q'b execute their first action. More complicated examples can be constructed to show 
that we must be able to express properties such as "£ and k must have been alive, then t 
must have died, and after that k must have died." 

Our solution is to define weak symbolic edges using a past-timetemporal logic [17], 
interpreted over sequences of livesets. A live sequence £ is a finite nonempty sequence 
of livesets {Ll}..., Ln), such that for every / between 1 and n - 1 there exists a location 
k such that L,+ 1 = U\{k}. For example, ({£},0) is a live sequence, but ({£},{£}) 
and {{£,k},0) are not. We write £(,) for the ith element of £ and, where clear from 
context, use n to refer to the length of £. Thus, for example, £ models I if £ £ £(,,) 
and £ models 0q> if £ or some prefix of £ models cp. Because Jive sequences must be 
strictly decreasing, £ A §1 is unsatisfiable; however {{£},0} t= IA Q£. Weak symbolic 
transitions are defined as follows: 

P=^P p        a     v p'  ifP A.    a , p< 

p S ,p/jfp_^    _t    pi     p       killk        pi  -r p _e^    JdlU^ pi 

P     ^   :-P' ifP4>--^P' 
(pAll <P * 
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Intuitively P =^> P1 means that P can perform the action /J to become P1 in an environ- 
ment where the change in live sets satisfies the formula (p. For example if (pi = (£ A k); £ 
and q>2 = (£Ak)°ik then P6 has the symbolic transition ==> but not =>, whereas for ß6 

it is the opposite. 
As parameters to the weak relation we simply take Boolean formulae, but now in- 

terpreted on the initial liveset of a live sequence. Rather than use two logics in the 
definition or introduce additional operators, we define the function "initially" which 
converts Boolean formulae into temporal formulae with this interpretation in mind. The 
transformation function for generating formulae after an action is performed, which we 
call "finally", must then transform temporal formula into propositional ones. The defi- 
nitions are as follows: (In the full paper, we show how to calculate these functions.) 

£ t= initially(rc) iff      L^Pn 

Ml=finally((p)    iff 3L: £ l=(pandM = £(„) 

Definition 9 (Weak symbolic bisimulation). Similar to Definition 7, except that when 
P Sn Q and P =|> /* we require: 

(a) initially(7t)AcplhV,V;, (c)     ß=f>ß;, and 
(b) y/IHcp,-, (d)    P1 Sfinaiiy(V/) Qi n 

Theorem 10. P^LQ iff 3n: Ltn and P «^ Q. In addition, («) = (^t). D 

5    Conclusions 

In this paper we have proposed a new semantic theory for distributed systems which 
takes into account the possibility of failures at sites. This theory is an adaptation of 
standard bisimulation-based theories [18] using an operational semantics for located 
processes. The new semantic equivalences are justified in terms of barbed bisimulations 
[22]. We also give symbolic characterizations of the new equivalences, which means 
that they can be investigated using the symbolic methods of [15]. 

Site failure has also played a role in languages studied in [2, 4, 12]. In these papers 
abstract languages based on Facile [13] or the pi-calculus [19, 5] are studied. The orig- 
inal motivation for this paper was to provide an alternative characterization of barbed 
equivalence for languages such as these. Although we have not treated value passing 
or references, we postulate that our results can be extended in a straightforward way to 
value-passing languages which retain the assumption that all failures are independent, 
such as the languages in [2, 4]. More delicate is the extension to languages such as the 
distributedjoin-calculus [12] in which the independence assumption is dropped. In this 
case the logical language used for symbolic bisimulations must be extended to allow 
statements about the interdependence of locations; we leave this to future work. 

A number of location-based equivalences already exist in the literature [8,9,20, 10]; 
however, none of these theories addresses the possible failure of sites. Their empha- 
sis, rather, is to define a measure of the concurrency or distribution of a process: two 
processes are deemed equivalent only if, informally, they have the same degree of con- 
currency. In the full paper we give a series of counter-examples which show that ~ 



481 

is incomparable with all of the equivalences proposed in these papers; we also discuss 
variations on the language and model of failure. 
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Abstract. We propose a general approach to define behavioural pre- 
orders over process terms by considering the pre-congruences induced 
by three basic observables. These observables provide information about 
the initial communication capabilities of processes and about their possi- 
bility of engaging in an infinite internal chattering. We show that some of 
the observables-based pre-congruences do correspond to behavioral pre- 
orders long studied in the literature. The coincidence proofs shed light on 
the differences between the must preorder of De Nicola and Hennessy and 
the fair/should preorder of Cleaveland and Natarajan and of Brinksma, 
Rensink and Vogler, and on the role played in their definition by tests 
for internal chattering. 

1    Introduction 

In the classical theory of functional programming, the point of view is assumed 
that executing a program corresponds to evaluating it. If we write M \. v to 
indicate that program M evaluates to value v, the problem of the equivalence of 
two programs, hence of their semantics, can be stated as follows: 

Two programs M and N are observationally equivalent if for every pro- 
gram context C such that both C[M] and C[N] are programs, and for 
every value v, we have: C[M] \.v'\i and only if C[N] I v. 

An alternative approach, used e.g. for the lazy lambda calculus [1], is that of 
denning a simulation (whose kernel is an equivalence) based on the reduction to 
normal forms. In general, given a language equipped with a reduction relation, 
the paradigm for denning equivalence over terms of the language, can be traced 
back to Morris [16] and can be phrased as follows: 

1. Define a set of observables (values, normal forms, ...) to which a program 
can evaluate by means of successive reductions. 

2. Consider the largest (pre-)congruence over the (set of operators of the) lan- 
guage induced by the chosen set of observables. 

This paradigm has been the basis for assessing many semantics of sequential 
languages and is at the heart of the full abstraction problem, see e.g. [18]. 

Here, we aim at taking advantage of this paradigm also to assess models of 
concurrent systems and their equivalences. In this case, the choice of the basic 
observables is less obvious. On one hand, it is well-known that input/output 

* Work partially supported by EEC: HCM project EXPRESS, by CNR project "Speci- 
fica ad alto livello e verifica formale di sistemi digitali" and by Istituto di Elaborazione 
dell'Informazione CNR, Pisa. 
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relations are not sufficient for describing the semantics of these classes of systems, 
and thus it would be limitative to use values as observables. On the other hand, 
studying the evolution to normal forms under all possible contexts is not as 
inspective as in the case of lambda calculus. Indeed, the interaction between a 
A-term and the environment is circumscribed, while that between a process and 
its environment is less clear. 

If we consider the A-term MN, we know the extent of the influence of N over 
M, and, in any computation, we know exactly when an interaction between M 
and N occurs, namely when M reduces to a A-abstraction. 'inus by observing M 
in all possible contexts we can fully understand its behaviour. When considering 
concurrent systems, the internal evolution of each parallel component is freely 
intermingled with external communications. Then understanding the semantics 
of a component via its contextual behaviour turns out to be much less obvious. 

Here, we shall consider a simple process description language, TCCS (Tau- 
less CCS [7]), and will study the impact of three basic observables for concurrent 
systems on this language. However, our results are easily extensible to general 
SOS language formats, like GSOS [2]. 

We shall be interested in testing for the initial guaranteed communication 
capabilities of a system. Indeed, when one is willing to infer the interactive 
behaviour of a system from its "isolated" behaviour, to know about the system's 
possibility of accepting communications along specific channels is not sufficient: 
due to the inherent nondeterminism of concurrent computations, it is necessary 
to know whether the acceptance of the communications is guaranteed. This is 
essential to establish liveness properties, like the absence of deadlock. 

Moreover, we shall be interested in the risk a system has of getting involved in 
an infinite sequence of internal communications (to diverge), because this could 
lead to ignoring all subsequent external stimuli. Finally, with respect to this, it 
might also be important to know the external communications that can lead to 
divergent states. 

These considerations guide us to introducing three basic observables: 

1. P\l (P guarantees (.) asserts that, by internal actions, P can only reach 
states from which action I can be eventually performed; 

2. P I (P converges) asserts that P cannot get involved in an infinite sequence 
of internal actions; 

3. P 11 (P converges along £) asserts that P converges and does so also after 
performing £. 

For finite process graphs these observables are obviously decidable; in general, 
they are not, but this is somehow expected since the basic language (TCCS) is 
Turing powerful. 

We shall analyze the impact of the above predicates on the semantics of 
TCCS. The predicates naturally induce five contextual preorders. These pre- 
orders are listed in Table 1; there we represent a contextual preorder using the 
notation Sl^

c
S2 , where si (if present) refers to the used convergence predicate, 

and S2 (if present) refers to the guarantees one. The universal relation is denoted 
byU. 
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conv./comm. no req. 4 it conv./comm. no req. 4 ie 

no req. U ^ no req. U c. c 

\e <\ & -<c \l 

Table 1. Contextual Preorders Table 2. Main results 

Our main results are five full abstraction theorems that make it manifest 
that our contextual preorders do coincide with well-known and/or intuitive be- 
havioural preorders over processes studied in the literature. Table 2 provides a 
summary of the claimed results. 

More specifically, we will show that: 

- ^c , the contextual preorder induced by ! I, coincides with £^ , the max- 
imal pre-congruence included in the fair/should preorder of [17] and [3]. 
This pre-congruence can be characterized (see [4]) as the conjunction of 
the classical trace preorder (called may preorder in [6]) with the fair/should 
preorder; 

- ^c and iC^
c, the contextual preorders induced by 4. and 4. t, both coincide 

with £ t the (reverse) inclusion of the convergent traces preorder, a simple 
variant of the trace preorder. 

Together with the impact of the three observables used in isolation we also 
study the result of their conjunctions and show that: 

- ^c , the contextual preorder induced by 4 and ! £, coincides with £M , the 
original must preorder of [6, 10]; 

- m^c
c> 

the contextual preorder induced by 4 £ and It, gives rise to a new 
preorder, the safe-must preorder £ , which is supported by a very intuitive 
testing scenario. 

The safe-must preorder has a direct characterization in terms of compu- 
tations from pairs of observers and processes: a computation is successful if a 
success state is reached before a catastrophic one (this explains the adjective 
'safe')- This notion certainly deserves further investigation. 

In the rest of the paper, we recall syntax and operational semantics (Sec. 2) 
and introduce an observational semantics (Sec. 3) for TCCS, then we present 
our full abstraction results (Sec. 4), compare the semantic preorders (Sec. 5) 
and briefly discuss related work. Due to space limitations, most proofs have 
been omitted; they can be found at http://dsi2.dsi.unifi.it/~denicola. 

2    Tau-less CCS: TCCS 

In this section, we briefly present the syntax and the operational semantics of 
TCCS, (r-less CCS [7, 10]). We have preferred to use TCCS rather than CCS 
because it allows us to avoid the "congruence problems" that arise when the CCS 
choice operator (+) is used and silent actions are abstracted away. It is worth 
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mentioning that the very same results can be obtained by using CCS and its 
must pre-congruence obtained from the must preorder by imposing that when- 
ever the "better" process can perform a silent move also the other can do it. 

We assume an infinite set of names Af, ranged over by a,b,..., and let 
Af = {a | a £ Af}, ranged over by a,b,..., be the set of co-names. Af and AT 
are disjoint and are in bijection via the complementation function (7); we define: 
(<z) = a. We let C — AfUAJ", ranged over by 1,1',..., be the set of labels; we shall 
use B to range over subsets of C and we define B = {£ \ £ G B}. We also assume 
a countable set X of process variables, ranged over by X, Y, — 

Definition 1. The set of TCCS terms is generated by the grammar: 

E := 0   \0   \ £.E   | E[)F   \ E®F   \ E \ F   \ E\L   \ E{f}   | X   | recX.E 

where / : C —¥ C, called relabelling function is such that {I \ f(£) ^ £} is finite, 
f(a) e Af and f(l) = /(£). We let V, ranged over by P, Q, etc., denote the 
set of closed terms or processes (i.e. those terms where every occurrence of any 
agent variable X lies within the scope of some recX.„ operator). 

In the following, we often shall write £ instead of £.0. We write 
-{£[/£u .. -,£'„/£„} for the relabelling operator _{/} where /(£) = £\ if £ = £h 

i E {1,... ,n}, and /(£) = £ otherwise. As usual, we write E[Ei/Xi,... ,En/Xn] 
for the term obtained by simultaneously substituting each occurrence of Xi in 
E with Ei (with renaming of bound process variables possibly involved). 

The structural operational semantics of a TCCS term is defined via the two 
transition relations —> and >—> induced by the inference rules in Table 3 and in 
Table 4, respectively. The symmetrical versions of rules AR4 and AR5 in Table 3 
and of rules IR5, IR6 and IR7 in Table 4 have been omitted. 

Table 3. SOS rules for TCCS: Action Relation 

iRi n ^-> n IR2 recX.E ^-> E[recX.E/X] 

P{f)   ^   P'{/} 
IM P\L ^ p'\L 

IR5 P © Q ^-> P TPfi                       ^* 
P [} Q ^ P' 0 Q 

TR7                   )^—>   f 
ift' P\Q >-> P'\Q 

IR„ P -A P',    Q A Q 
iKÖ     P | Q ^ P | Q' 

Table 4. SOS rules for TCCS: Internal Relation 
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As usual, we use =*• or =^> to denote the reflexive and transitive closure 

of >—> and use =^> , with s G £+, for =» -A =^> when s = fe'. Moreover, 

we write P =^f for 3P' : P =^> P' (P -A and P ^-> will be used similarly). 

We will call sort of P the set sort(P) = {£ G C \ 3s G £* : P =^ }, successors 

0/ P the set S{P) = {£ £ C \ P =U }, and language generated by P the set 
L(P) = {s G £* I P =^> }■ Note that since we only consider finite relabelling 
operators, every TCCS process has a finite sort. 

A context is a TCCS term C with one free occurrence of a process variable, 
usually denoted by _. If C is a context, we write C[P] instead of C[P/-}. The 
context closure 1ZC of a given binary relation 11 over processes, is defined as: 
P1ZCQ iff for each context C, C[P]7eC[Q]. 1ZC enjoys two important properties: 
(a) (Rc)c = 1ZC, and (b) 11 C W implies ftc C 1Z'C. In the following, we will 
write % for the complement of 1Z. 

3    Observational Semantics 

In this section, we introduce different observational semantics for TCCS; we 
follow two approaches. The first approach takes advantage of basic observables, 
the second one of the classical testing scenario of [6, 10] and variants of it. 

3.1     Basic Observables and Observation Preorders 

Definition 2. Let P be a process and I G C. We define three basic observation 
predicates over processes as follows: 

- P\l (P guarantees £) iff MP' : P ^ P' implies P' =U ; 
- P X (P converges) iff there is no infinite sequence of internal transitions 

P >—► Px  >—> • ■ ■ starting from P; 
- P 11 (P converges a/on<? £) iff P 1 and \/P' : P =U P' implies P' 4-. 

The above predicates can be combined in five sensible ways and used to 
define the corresponding basic observation preorders over processes, as stated in 
the following definition. 

Definition 3. Let P and Q be processes. 

- P t<Q iff P I implies Q |; 
- P i£d Q iff for each I € £: P I £ implies <2 4 £; 
- P ^c Q iff for each ^ € £: P ! £ implies Q ! £; 
- P^£Q iff for each £G£: P 1 and P !£ implies Q 4- and Q ! £; 
~ PiC^c<3 iff for each £G£: P 1 £ and P !£ implies Q 4- ^ and Q ! £. 

Of course, the basic observation preorders are very coarse. More refined rela- 
tions can be obtained by closing the above preorders under all TCCS contexts. 
For each basic observation preorder, say <, the contextual preorder generated by 
-< is defined as its closure -<c. 
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3.2     Testing Preorders and Alternative Characterizations 

Like in the original theory of testing [6, 10], we have that: 

- observers, ranged over by 0,0',..., are processes capable of performing an 
additional distinct "success" action w $ C; 

- computations from P \ O are sequences of internal transitions P | O   >—> 
-Pi | 0\  >—> ■ ■■, which are either infinite or such that Pk \ Ok >f^ , k > 0. 

Definition 4. Let P be a process and O be an observer. 

1. Pmust    0 if for each computation from P\0, say P\0 >—> P\\0\ >—> ■■■, 
there is some i > 0 s.t. Oi —> . 

2. Pmust   0 if for each computation from P \ O, say P \ 0 >—> Pi 10\ >—> ■ ■ ■, 
there is some i > 0 s.t. Oi —> and Pi 4- 

3. Pmust   O if for each computation from P \ O, say P | O >—> Pi \ 0\ >-^ ■ ■ -, 

it holds that Pi \ Oi =^> for each i > 0. 

The first definition of successful computation given above is exactly that 
of [6]. The second one, considers successful only those computations in which a 
success state is reached before the observed process diverges. The third definition, 
which is essentially taken from [3], totally ignores the issue of divergence. These 
three notions allow us to define three preorders: the first one ( £ ) js the original 
must preorder of [6, 10], the second one ( £ ) js the new safe-must preorder and 
the third one ( E   ) is the (reverse of the) fair/should preorder of [17] and [3]. 

Definition 5. Let i £ {M, S, F}. For all processes P and Q, P ^.Q iff for every 
observer 0: P musti O implies Q musti O. 

We introduce below alternative characterizations of the preorders must and 
safe-must. They support simpler methods for proving (or disproving) that two 
processes are behaviourally related. We need some additional notation. 

Definition 6. Let s G £*, B Cfin £ and S be a set of processes. 

- The convergence predicate, 4- s, is defined inductively as follows: P \. e if P \.\ 

P I Is' if P I e and VP' : P =U P' implies P' I s'. 
We write P t s if P 4- s does not hold. 

- (Pafters) denotes the set of processes {P' : P =£■ P'}. 
- We write P 1 B if W £ B : P | £ and S I B if VP € S : P I B. 

- P\B stands for \/P' : P => P< implies 3£ € B : P' =U . 
- S |! B stands for VP e S : P I B and P! B. 

Definition 7. For all processes P and Q, we write 

- P CM  Q if Vs £ £* such that P | s, it holds that: 
(a) Q i s, and (b) for every B Cßn £: (P after s)! P implies (Q after s)! P. 

- P <äCs <2 is the same as above but predicate ! is replaced by J.!. 
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Theorem 8. For all processes P and Q, (1) P £M Q iff P   <C„   Q and (2) 

By taking advantage of the above alternative characterizations it is easy to 
prove that the must and the safe-must preorders are pre-congruences. 

Theorem 9. For all processes P and Q and i G {M, S], P £.Q iff P ^Q- 

Note that the congruence result does not hold for the fair/should preorder 
C it is not preserved by the recursion operator. This can be easily seen by 

considering the following counter-example. Consider the processes P = a.b\\a.c 
and Q = a.b and the context C = recX.(.\a.b.X)\{a,b}. It obviously holds that 
P £F Q, but C[P] gF C[Q] (just take O = c.w); hence P gF Q. 

An alternative characterization of the closure of the fair/should preorder is 
given in [4], for a language slightly different from ours. 

Definition 10. For all processes P and Q, we write 
P £     Q if (P £   Q and L(P) C L(Q)). 

FT F 

Theorem 11. For all processes P and Q, P C^ Q iff P £F Q. 

4    Full Abstraction Results 

From now on, we adopt the following convention: an action declared fresh in a 
statement is supposed to be different from any other name and co-name men- 
tioned in the statement. 

4.1     Convergence predicate and convergent traces 

In this section, we deal with the first two contextual preorders, x^
c and lc^

c, 
and prove that they have the same distinguishing power and coincide with the 
reverse inclusion of the convergent traces preorder. 

Definition 12. For all processes P and Q, we write P £m Q if Vs € £* such 
that P I s, it holds that: 
a) Q I s, and 
b) s e L(Q) implies s G L(P). 

Theorem 13. For all processes P and Q, P £^ Q iff P £m <2- 

The following special contexts can be used to prove the next theorems. If 
s G £*, say s = h ■ ■ ■ ln (n > 0), we define 
- Cl =.\l1.---ln.O and 

Theorem 14. For all processes P and Q, P £m Q iff P4d
c <2- 

Theorem 15. For all processes P and Q, PiC<c Q'& P^ Q- 
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4.2 Guarantees and fair testing 

Lemma 16. Let P be a process, 0 be an observer and let I €_ C be a fresh 
action; (1) Pmustr O iff P | CK^M !I, and (2) P!l iff Pmustr l.w. 

Theorem 17. For all processes P and Q, P £* Q iff P ^ Q. 

PROOF: (<=) We prove that -<c is contained in £ , the claimed result follows 
by closing under contexts. Suppose that P <C

CQ and that PmustF O; let £ be a 
fresh action. We have: 

Pmust   O  implies (Lemma 16(1)) 
P | 0{Z/w} ! I implies (hypothesis P<C

CQ, with C = .\0{%}) 
Q | 0{*/w} ! £ implies (Lemma 16(1)) 

QmustF O 

(=>) The proof is similar but relies on Lemma 16(2). □ 

4.3 Guarantees and convergence, and must testing 

The next definition introduces two special contexts to be used in the proof of 
Theorem 20. 

Definition 18. Let s E C*, say s = £i ■ • •£„ (n > 0), and B Cfin C. Let fB 

denote a function which maps each I G B to a single fresh c. Fix a bijective 
correspondence among £i, ..., ln and n fresh actions au ..., an. We define 
- Ci = .\Ql where Q\ = c and Q£/ = £.Q|' []c, and 
- Cl'B = (- | Ps){/B} | QI where Ps = h.oty. ■ ■-ln.an, Q\ = 0 and QllS' = 

äi-QS'De- 

Lemma 19. Let s e C*, B Cfin C- and c be a fresh action. 
a) P I s iff Cf [P] | iff Cf [P] 1 c. 
b) (P after s)\B Iff CZlB[P]\c. 

Theorem 20. For all processes P and Q, P £    Q iff P , ^ Q. 

PROOF: (=>•) From the definition, it is easily seen that <M is contained in 
1<C (indeed P! c iff (P after e)! {c}). From this fact, by closing under contexts 
and applying Theorem 8, the thesis follows. 

{<=) Here, we show that ^c
c is contained in <CM . From this fact and The- 

orem 8, the thesis follows. Assume that P ^C
CQ and that P 4- s, for some s G £*. 

We have to show that: (a) Q 1 s and (b) (Pafter s) \B implies (Qafters) IB, 
for any B Cfin £. As to part (a), from P I s and Lemma 19(a), it follows that 
Cf[P] 4.. Obviously, for every process R, C°3[R]\c. From CI[P] 4-, CS

3[P] !c and 
Ft^

c Q it follows that C3[Q] 4- By applying again Lemma 19(a), but in the 
reverse direction, we obtain Q 4- s. As to part (b), suppose that (Pafter s)! B. 

From this, applying Lemma 19(b), it follows that Cl'B[P]\c. Moreover, it is 
easy to see that for every process R, R 4- s implies Cs

4' [R] 4-- From C\' [P] 4-, 
Cl'B[P] !c and P^= Q, it follows that C^fQ] !c. By applying again Lemma 
19(b), but in the reverse direction, we obtain (Q after s)! B. □ 
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4.4     Guarantees and convergence, and safe-must 

To prove full abstraction for safe-must, we will use another special context. 
Again, we assume that c G C is always fresh. If s G C*, say s = h ■ ■ ■ £n (n > 0), 
and B Cfin C, we define the context 

- C°>B = - | Ql'B where Q<f = EteB ** and Q«>B = LQi'B[]c 
The proof of the following theorem is similar to that of Theorem 20, but relies 
on the context C$     instead of Cs

4'   . 

Theorem 21. For all processes P and Q, P £s Q iff PiC<c
c Q- 

It is worthwhile to point out why the context C^'B cannot be used in place of 
the context CS

A'
B to prove full abstraction for the must preorder (Theorem 20). 

Indeed, P|s does not imply that Cs
h'
B[P) I (for instance a.b.Q I a but 

Cl'{b}[a.b.n} t). This would invalidate the proof of the "if" part of Theorem 20. 

5    Comparing the preorders 
Theorem 22. For all processes P and Q, P £M Q implies P £s Q, but not 
vice-versa. 

PROOF: Paralleling the proof of Theorem 20, part «=, it is easy to show that 
^ is contained in <s , from which the result will follow by applying Theorems 

20 and 8. To show that the vice-versa does not hold, consider P = a.b.Q and 

Q d= a. It is easy to see that P ^ Q, but P x^
c

c Q (just consider _ | ä). □ 

Theorem 23. 
i    c    -   -<c  r     -<;c  =   c   c     -<c =   -<c ■ 

2    -<c   =   C      and   C      is not comparable with   £    ,   £    and  ,^c. 
— L ^ FT FT MS* 

PROOF: 
1. The result follows from Theorems 14, 20, 21 and 22. By definition, it is 

easily seen that IC<C
C is included in iC<c. The inclusion is strict: aiC<c0 

but aiC^c 0. 
2. The equality ^c = £ derives from Theorems 17 and 11. To see that 

neither of C , C and ,-<c is included in £ (hence in £ ), consider 

the processes P d= recX.(a.X[]a.b) and Q =f recX.a.X. Clearly, P £M Q, 

hence P £ Q and P IC<CQ- However, P £F <2 (because PmustF O and 

Q mist O, when O d= recX.(ä.X[]ö.w)). To see the converse, observe that 
0 £ J7, but 0 iZ< J7, hence 0 £s J? and 0 £M ß. D 

The mutual relationships among the pre-congruences are simpler if we move 
to strongly convergent processes. We say that a process P is strongly convergent 
if P 4- s for every s E £*. 

Theorem 24. For strongly convergent processes, it holds that: 

-^c   —   c       r   C     —    -<:c   —      -<c   —   C    r      -<c  =    ^c 
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6    Conclusions 

We have proposed three basic notions of process observables, that, when closed 
with respect to the contexts of a CCS-like language, induce five pre-congruences 
that have been proved to coincide with well-known and/or intuitive behavioural 
relations. 

Notions of observables in the same spirit as ours have been proposed in [13], 
[21], [11], [15], [8] and [12]. 

In [13], it is shown that the pre-congruence induced by inclusion of maxi- 
mal traces coincides, both for CCS and CSP, with the must pre-congruence of 
[6]; another characterization is given by only considering the inclusion of the 
maximal e-trace, i.e. a sequence of invisible moves leading to a divergent state 
or to a deadlocked one. The strength of the basic observables (maximal traces 
are definitely more inspective than our guarantees predicate) prevents from cap- 
turing different notions such as fair testing, and hinders the role played by the 
convergence test, which is somehow included in that for maximality. 

In [21], two Petri nets are called d-equivalent if they both can reach a dead- 
locked state or if they both cannot do so. Then it is proved that, by closing 
d-equivalence with respect to parallel composition, the variant of failure seman- 
tics [5] that ignores divergence is obtained. 

In [11], a series of variants of the testing framework is proposed and results 
are listed showing that, by changing the expressive power of testers, a number 
of equivalences ranging from bisimulation to testing can be captured. One of 
the considered family of observers is that consisting just of agents of the form 
l.iu.O, that somehow resemble our \l predicates. It is claimed that for strongly 
convergent processes the pre-congruence induced by this family of observers 
coincides with the must preorder and the reader is referred to [13] for the proof. 
However, we could not find the proof in Main's paper. 

Milner and Sangiorgi [15] define an equivalence for processes based on ele- 
mentary observables, namely the possibility for a process to synchronize along a 
specific channel. However, they permit to recursively test for the presence of this 
observable. The resulting notion of observability (called barbed bisimilarity), 
when closed under parallel composition, yields bisimulation-based equivalences 
that are significantly more discriminating than ours. 

Ferreira [8] and Laneve [12] deal with languages significantly different from 
classical process algebras. In particular, Ferreira uses a predicate which resem- 
bles very much the conjunction of our I and ! £ (based on production of values 
rather than on communication capabilities) to define a testing preorder for Con- 
current ML [20]; this seems to be strongly related to our safe-must preorder. He 
also conjectures that if one considers pure CCS (and observes communication 
capabilities instead of value productions) the obtained preorder coincides with 
the must pre-congruence of [6]; here we have proved this conjecture. Laneve dis- 
cusses the impact of an observables-based testing scenario on the Join Calculus, 
a language with elaborate synchronization schemata [9]. 
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Abstract. Motivated by the problem of efficient routing in all-optical 
networks, we study a constrained version of the bipartite edge coloring 
problem. We show that if the edges adjacent to a pair of opposite vertices 
of an L-regular bipartite graph are already colored with ah different 
colors, then the rest of the edges can be colored using at most (l + a/2)L 
colors. We also show that this bound is tight by constructing instances 
in which (1 + a/2)L colors are indeed necessary. We also obtain tight 
bounds on the number of colors that each pair of opposite vertices can 
see. 
Using the above results, we obtain a polynomial time greedy algorithm 
that assigns proper wavelengths to a set of requests of maximum load 
L per directed fiber link on a directed fiber tree using at most 5/3L 
wavelengths. This improves previous results of [9, 7, 6, 10]. 
We also obtain that no greedy algorithm can in general use less than 
5/3L wavelengths for a set of requests of load L in a directed fiber tree, 
and thus that our algorithm is optimal in the class of greedy algorithms 
which includes the algorithms presented in [9, 7, 6, 10]. 

1     Introduction 

In this paper, we study a constrained version of the well-known problem of col- 
oring the edges of an L-regular bipartite graph. It is a classical result from graph 
theory (see e.g. [3]) that the edges of an L-regular bipartite graphs can be colored 
using exactly L colors so that edges that share an endpoint are assigned different 
colors. We call such edge colorings legal colorings. The problem does not have any 
other extra constraint: any given color can be used on any edge provided that 
no other adjacent edge is colored using that same color. Our constrained version 
of the bipartite edge coloring problem can be described in the following way. 

Partially supported by Progetto MURST 40%, Algoritmi, Modelli di Calcolo e Strut- 
ture Informative and by EU Esprit Project GEPPCOM and ALCOM-IT. 
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We are given an L-regular bipartite graph G = ({vi, ■ ■ ■, vn}, {«1, • • •, un},E) 
along with a partial legal coloring of its edges that specifies a color for all edges 
incident to vertices vi and uj. We denote the total number of constraining colors 
by Q'L, where 1 < a < 2. We want to color the remaining edges of the graph so 
as to minimize the total number of colors used and the number of colors used to 
color the edges touching a pair (ui,Vi) of opposite vertices. 

Our motivation lies in the field of WDM (wavelength division multiplexing) 
routing in all-optical networks. Optics is emerging as a key technology in state- 
of-the-art communication networks. A single optical wavelength supports rates 
of gigabits-per-second (which in turn support multiple channels of voice, data, 
and video [5] [8]). Multiple laser beams that are propagated over the same fiber 
on distinct optical wavelengths can increase this capacity much further; this is 
achieved through WDM (wavelength division multiplexing). We model the un- 
derlying fiber network as a directed graph. Communication requests are ordered 
transmitter-receiver pairs of nodes. WDM technology establishes connectivity 
by finding transmitter-receiver paths, and assigning a wavelength to each path, 
so that no two paths going through the same link use the same wavelength. Op- 
tical bandwidth is the number of available wavelengths. Bandwidth is a scarce 
resource: state-of-the-art technology allows for no more than 30-40 optical wave- 
lengths in the laboratory, less than half as many in manufacturing, and there is 
no anticipation of dramatic progress in the near future [11]. It is thus important 
to minimize the number of wavelengths used to service a requested communi- 
cation pattern. Variations of this problem have been studied by several authors 
[12,1,9,7,6,10,2]. 

In this paper, we concentrate on tree topologies which are relevant to wide- 
area networks. In particular we consider directed trees where each edge of the 
tree consists of two opposite directed fiberlinks. Directedness accurately reflects 
directed optical amplifiers placed on the fiber as well as asymmetries of the 
communication requests. Raghavan and Upfal [9] showed that routing requests 
of maximum load L per link of undirected trees can be satisfied using no more 
than 3L/2 optical wavelengths and their arguments extend to give a 1L bound 
for the directed case. Mihail et al. [7] were the first to address the directed case. 
Their main result is a 15L/8 bound for directed trees. They obtain this bound by 
reducing the wavelength assignment problem to the constrained bipartite edge 
coloring problem and obtain a solution specifically for the case a = 3/2. This was 
improved in [6] (and independently in [10]) by solving optimally the constrained 
bipartite edge coloring problem for the value a = 3/2 and yielding a bound of 

7/4L for directed trees. 

1.1     Summary of results 

Our results can be summarized in the following theorems. We first present our 
results on the constrained bipartite edge coloring problem. 

Theorem 1. There exists a polynomial time algorithm that properly colors the 
uncolored edges of an L-regular bipartite graph constrained by aL colors using 
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at most (1 +a/'2)L colors and so that each pair (v,,Ui) of opposite vertices sees 
no more than max{aL, (1 + a/A)L) different colors. 

The next lower bound states that the above result is in general tight. 

Theorem 2. For each 1 < a < 2 and for each L > 0 there exists an L-regular 
bipartite graph constrained by ah colors for which any legal coloring of the re- 
maining edges requires at least (1 + a/2)L total colors while there exists a pair 
of opposite vertices that sees at, least, maxjai, (1 + a/A)L] different colors. 

Next we present our results for wavelength routing on directed trees. We 
express our results in terms of the maximum load L of a set of requests; i.e., 
the maximum number of paths between transmitter and receiver that share the 
same directed fiber link. The proposed algorithm is a greedy algorithm. A greedy 
algorithm is an algorithm that considers the vertices of the tree one at a time in 
a DFS manner and, while at vertex v, colors (i.e., assigns a wavelength to) all the 
requests that touch vertex v (i.e., start at, end at, or go through v) that are still 
uncolored. Once a request has been colored, a greedy algorithm never recolors it. 
Greedy algorithms do not require global control and are thus amenable of being 
implemented in a distributed setting without a "central authority" that has 
knowledge of the overall request pattern. All known algorithms for the problem 
of wavelength routing on directed trees are indeed greedy algorithms [7, 6, 10]. 

Theorem 3. There exists a greedy polynomial time algorithm, that assigns luave- 

lengths to a set of requests of maximum load L on a directed tree using at most 

5/3L wavelengths. 

Our next theorem shows a lower bound that implies that no greedy algorithm 
can in general beat the 5/3L barrier. 

Theorem 4. For each L, for each e > 0 and for each greedy algorithm. G there, 
exists a tree and a pattern of communication requests of maximum load L for 
■which G uses at least (| — e) L luavelengths. 

Therefore better bounds can only be obtained by non greedy algorithms. The 
only known general lower bound is 5/4L [10]. 

The rest of our paper is organized as follows. 
In Section 2, we prove Theorem 1 by giving an algorithm that solves the 

constrained bipartite edge coloring problem. Next, in Section 3 we explain the 
reduction of the wavelength routing problem on directed trees to the constrained 
bipartite edge coloring problem. This reduction proves Theorem 3. Finally, in 
Section 4, we present our lower bounds. 

2    The algorithm for the constrained bipartite edge 
coloring problem 

In this section we present our algorithm for solving the constrained bipartite 
edge coloring problem. 
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The algorithm receives as input an L-regular bipartite graph G = ({Wo,—,Wn}, 

{X0, ■■■,Xn},E) where all the edges incident to W0 and X0 have been properly 
colored using ah different colors. We call the edges that are colored color-forced 
edges and a pair (W{, Xt) of opposite vertices a line. We assume without loss of 
generality that no edge connects two opposite vertices. If a color appears on only 
one color-forced edge, then we call it a single color. If it appears on two color- 
forced edges, we call it a double color; note that one of these two color-forced 
edges has to be incident to Wo and the other to X0. We denote by D and S the 

number of double and single colors, respectively. 

Step 1: Obtaining perfect matchings. We proceed by decomposing the bipartite 
graph into L perfect matchings which can always be done since it is L-regular. 
Each such matching includes exactly two color-forced edges: one incident to W0 

and one incident to XQ. A double color is called separated if its two color-forced 
edges appear in different matchings. On the other hand, if they appear in the 
same matching then the color is said to be preserved. We classify the matchings 
into four types: TT, PP, SS, ST, based on their corresponding color-forced edges. 
If the two color-forced edges of a matching are colored with separated colors, 
then the matching is of type TT. If the two color-forced edges are colored with 
the same preserved color, then the matching is of type PP. If the two color-forced 
edges are colored with two single colors, then the matching is of type SS. If the 
two color-forced edges are colored with a single color and with a separated color, 

then the matching is of type ST. 

Step 2: Constructing chains and cycles of matchings. We partition the matchings 
into groups. Each such group is either a chain or a cycle of matchings. A chain 
of matchings is a sequence M0, Mx, • • ■, M,_x of I matchings such that 

1. M0 and Mj_i are matchings of type ST; 

2. Mi, • • •, M;_2 are all matchings of type TT; 
3. for each 0 < i < I - 2, matchings M; and Mi+1 share exactly one double 

(separated) color. A chain consists of at least two matchings. 
A cycle of matchings is a sequence (M0, Mi, • • •, M,_i> of I TT matchings 

such that, for each 0 < i < I - 1, matchings M; and Mi+1 mod i share exactly 

one double (separated) color. 

Step 3: making chains and cycles minimal. A sequence C of matchings (chain 
or cycle) is minimal if it does not contain any two parallel color-forced edges. 
A non-minimal sequence of matchings can be split into two shorter sequences 
in the following way. Consider the sequence C = <M0, ■ ■ -,M_i) of matchings 
and suppose that the edge colored a of M; and the edge colored Cj of Mj are 
parallel. We exchange the two edges thus obtaining two new matchings M/ and 
M'- with color-forced edges colored c,- and c,-+i and c; and cj+i and the two 
new sequences of matchings Cx = (M0, Mi, • •-M;_i, Mj, Mi+1, • • ■, M_i) and 
C2 = {M-, Mi+i, • • •, Mj_i>. The sequence Ci is of the same type (i.e., a cycle 
or a chain) as C while C2 is always a cycle. We repeat this process of splitting 
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one sequence into two new sequences until all sequences are minimal (i.e., they 
do not contain parallel edges). 

Step 4: constructing triplets of matchings. Next we partition all the matchings 
into groups of three matchings that we call triplets. Each such triplet has six 
color-forced edges; of these, two are colored with single colors and the remaining 
four with double colors. 

We obtain the triplets as follows. First, we consider all the chains of length 3 
or greater. From each such chain C = (Mo, Mi,- ■ -M/_i) we obtain one triplet 
by stripping off C and grouping together the first two matchings M0,M\ and 
the last matching Mj_i. Triplets obtained in this way will consist of two ST 
matchings (that is M0 and M(_i) and one TT matching (that is Mi). The color- 
forced edges are colored with single colors so and Si and double colors di,d.2,di-i, 
with rfi being the common color of Mo and M\. Now we are left with cycles, 
"stripped chains," chains of length 2, and SS matchings. We consider the even 
length cycles and stripped chains first and construct triplets each consisting of 
two consecutive TT matching from the same cycle or stripped chain and one SS 
matching. We repeat the same process for odd length cycles and stripped chains. 
However, in this case for each cycle or stripped chain there will be exactly one 
"leftover" TT matching. We then construct triplets with one SS matching along 
with a pair of these TT leftover matchings. Finally, if at any time during the 
construction of the triplets we run out of SS matchings, we continue constructing 
triplets by grouping together each individual TT matching along with a pair 
of ST matchings that constitute a chain of length 2. If the total number of old 
colors is exactly 4/3L, thus including exactly 2/3L single colors and 2/3Z double 
colors all matchings can be grouped into such triplets. Instead, if we have less 
than 4/3L old colors, then we are left with some extra TT matchings for which 
there is no corresponding ST or SS matching. These extra TT matchings will 
be dealt with separately and we omit from this abstract further details. On the 
other hand, if the number of old colors exceeds 4/3L, then we are left with extra 
SS or ST matchings for which no corresponding TT matching exists. Coloring 
these matchings is trivial since we can use no new color (we use the single colors 
to color the uncolored edges) and thus meet the two conditions presented below. 

We will color the matchings maintaining the following two conditions which 
are sufficient, to prove Theorem 1. 
Condition 1. The number of new colors used is at most D/2. This condition 
will be enforced by using at most one new color per triplet. 
Condition 2. Each line sees at most max{(l + a/4)L,aL} colors. 

For values of a > 4/3 this is enforced by making sure that if a line sees a new 
color it does not see one of the old colors. Consequently, the number of colors 
seen by a line does not exceed QL once all edges have been colored. 

Lemma 5.   Condition 1 above implies that the total number of colors used is at 
most (l + a/2)L. 

Proof. Since the number of edges adjacent to Wo and X0 is 2L, we have 2D+S = 
2L and, since QL colors are used to color these edges, we have that D + S = aL. 
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From these two equalities we get directly that D = {2-a)L. Therefore the total 
number of colors used is at most D + S + D/2 < ah + (2 - a)L/2 = (1 + a/2)L. 

Step 5: setting the active colors. We color each triplet individually using four 
of the old colors that appear on the color-forced edges of the triplet and, in 
some cases, a new color. The four old colors used are called the active colors for 
the triplet and they include the two single colors of the triplet. The remaining 
two active colors are chosen among the double colors of the triplet so that each 

double color is active for exactly one triplet. 
We continue by determining what the active colors are going to be for each 

triplet. We have to be careful about consistency among triplets that share double 
colors; i.e., include TT matchings from the same cycle or chain. 

First we fix the active colors of the triplets containing the leftover TT match- 
ings. In order to properly color such a triplet {S,TUT2) while maintaining the 
properties above we choose the active colors to be the two single colors of match- 
ing S along with the color of the color-forced edge touching Wo in Tx and the 

color of the color-forced edge touching X0 in T2. 
This choice of active colors for such a triplet forces the choice of active colors 

for the triplets containing TT matchings coming from the same cycle or chain 
as Ti and T2 in the following obvious way. Let (S,T3,T4) be a triplet consisting 
of one SS matching and two consecutive TT matchings from the same cycle or 
stripped chain as Ti. Then the active colors of such a triplet are the colors of 
the color-forced edges touching W0 in T3 and T4 along with the two colors of 
the color-forced edges of Si- If, instead, T3 and T4 belong to the same cycle or 
stripped chain as T2, then the active colors are going to be the old single colors 
appearing in Si along with the color of the color-forced edges of T3 and T4 that 

touch XQ. 
Finally, we can determine the active colors of the triplets containing two TT 

matchings belonging to even length cycles or chains (i.e., those cycles or chains 
that did not give rise to leftover TT matchings) to be for each triplet the two 
old single colors of the triplet along with the color of the color-forced edges that 
touch X0 or Wo, picked arbitrarily as long as we are consistent across each cycle 

or chain. 

Step 6: coloring the triplets. As we mentioned above for each triplet we will 
use the active colors of the triplet and, sometimes, a new color. If we do use a 
new color for a triplet, we enforce the property that each line that sees the new 
color does not see one of the active colors of the triplet. This ensures that the 
total number of colors that a line will see across all triplets does not exceed the 
number of old colors and that the total number of new colors introduced for all 

triplets is at most half the number of old double colors. 
There are four general types of triplets: 

Type A These are triplets consisting of one SS matching and two leftover TT 
matchings. A special case of type A triplet occurs when one or both the 
leftover TT matchings is actually a PP matching that is the leftover matching 

of a cycle of length 1. 



499 

Type B These are triplets consisting of one SS matching and two consecutive 
TT matchings from the same cycle or chain. A special case of type B triplet 
occurs when the two TT matchings constitute a cycle of length 2. 

Type C These are triplets consisting of the two ST matchings that constitute 
a chain of length 2 and one TT matching. A special case of type C triplet 
occurs when the TT matchings is actually a PP matching. 

Type D These are triplets that were obtained by stripping off a chain the first 
two matchings (an ST and a TT matching) and the last matching (an ST 
matching). A special case of type D triplet occurs when the chain has length 

exactly 3. 

Due to lack of space we next show the coloring algorithm only for triplets of 
type A. The complete coloring appears in the final version. 

Step 6. A: coloring triplets of type A. Consider a triplet R = (5,Ti,T2) of type 
A, where S = (si,s2), ?i = (z,2/) and T2 = (w,z). We note that «i and s2 are 
single colors and that x, y, w, and z are double colors and let the active colors of 
R be si,s2,x, and z. Here we concentrate on the case in which the four double 
colors are distinct separated colors. If x = y or w = z, then the corresponding 
TT matching is actually a PP matching and the coloring is much simpler than 
what we are going to describe below. If x = z or y = w, then R is actually a 

triplet of type B. 
Suppose x,y,w, and z are distinct separated double colors. We consider 

matchings T\ and T2 together as one cycle cover of the bipartite graph. In what 
follows, for the sake of clarity we assume that the cycle cover of two matchings 
consists of one single cycle that spans the entire bipartite graph. We remark that 
all our colorings can be easily adapted if such a cycle cover consists of more than 

one cycle. 
We first check if there exists an uncolored edge whose endpoints are incident 

to color-forced edges colored with all four active colors. Note that these may 
include the "fixed" color-forced edges colored with si, s2, x, and z that belong to 
ft as well as the two "free" color-forced edges colored with x and z that belong 
to other triplets. We denote by ex and e2 the free color-forced edge colored with 
x and z, respectively and by eSl and e$2 the color-forced edges colored with si 

and s2, respectively. 
Suppose there is no edge restricted by all four active colors. We color the 

uncolored edges of the cycle cover by starting from one of the color-forced edges 
of the cycle colored with an active color (i.e., either x or z) and alternating 
between x and z. When we encounter a vertex v that is incident to a free color- 
forced edge e, we use color s2 to color the edge, e', incident to v that would 
have been colored with the same color as e. Then we color the next edge x and 
continue alternating between z and x. This is possible unless e' is adjacent to e52 

as well. Note that ez cannot be incident to the same vertex as eS2, and, similarly, 
ex cannot be incident to the same vertex as eSl. 

Now if e' is restricted by both z and s2, then we color with s2 the other edge 
incident to v, color e' with x and continue alternating z and x (see Figure 1); 
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we finish by using si to color the edges in the SS matching. This coloring is 
obviously proper and we do not need to argue about the number of colors seen 
by a line since we have used no new color. 

Fig. 1. The case in which an edge is restricted by both z and si. 

On the other hand, if ex and eS2 are incident to the same vertex v then we 
color the conflicting adjacent edge e = (v,u) with s\ and continue alternating x 
and z starting with x. The uncolored edges of the SS matching are then colored 
using si except for the edge eu = (u,u*) incident to u. Edge eu is colored s2 

unless u* sees the edge colored s2 used to fix the conflict with ez in which case 
e„ is colored with z (see Figure 2). 

Fig. 2. The case in which an edge is restricted by both x and S2- 

The previous coloring is proper unless e is also adjacent to eSl in which case 
a more complex coloring is performed. 

Finally we consider the situation where we have an edge (u, v) restricted by 
all four active colors. Note that such a restricted edge belongs to one of the TT 
matchings of the triplet, as edges of the SS matching cannot be restricted by s\ 
or S2- We color edge (u,v) with n, the rest of the uncolored edges of the cycle 
cover by alternating x and z, and the uncolored edges of the SS matching with 
n. This coloring is obviously proper. No line except the lines containing vertices 
u and v sees an edge colored with one of the two single colors. Moreover, since 
u and v cannot be a line as they are adjacent, the line containing u does not see 
color S2 and the line containing v does not see color si. Therefore, if a line sees 
n then it does not see at least one of the active colors. 
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2.1     An alternative coloring approach for a = 4/3 

In this section, we briefly describe an alternative method for coloring edges of a 

bipartite graph G for the case a = 4/3. 
It is possible to show that the L perfect matchings obtained from G can be 

grouped entirely into triplets such that each triplet can be colored with at most 
one new color and with < 4 colors per line, thus ensuring Conditions 1 and 2. 
Due to a result in [10], every triplet t = (Mi,M2,M3) with two double colors 
and one single color incident to each of W0 and X0 can be colored in such a way, 
provided that at least one double color d appears twice in t (call such a triplet 
a KS-triplet) and that t can be partitioned into a gadget (a subgraph where W0 

and Xo have degree 3 and all other vertices have degree 2) and a matching of 
all vertices except {W0,X0}. Only the two single colors and the double color d 
oft as well as one new color are used. Every KS-triplet can be partitioned into 
gadget and matching unless it contains a PP-matching. Therefore, we assume 
that. G is decomposed into L perfect matchings such that the union of SS-, ST-, 
and TT-matchings does not contain further PP-matchings. 

A PP-matching and a chain of length 2 as well as two PP-matchings and an 
SS-matching give triplets that can be colored without any new color and 4 colors 
per line. Chains of odd length and cycles of even length yield triplets of Type B, 
C, and D, which are KS-triplets. Two chains of even length, one of which has 
length > 2, yield KS-triplets by combining the first (last) two matchings of the 
longer chain with the first (last) matching of the shorter chain and producing 
triplets of Type B or C from the rest. If there is a chain of length 2, a cycle 
of odd length also yields triplets of Type B and C. Note that there is always a 
sufficient number of SS-matchings or chains of length 2 to produce KS-triplets, 
because we have 2/3L edges with single colors and 4/3L edges with double colors 

altogether. 
After these reductions, we are left with at most one chain of even length > 2, 

at most one PP-matching, a number of cycles of odd length, and SS-matchings. 
Two cycles of odd length are handled by choosing an SS-matching and two TT- 
matchings, one from each cycle, such that the resulting triplet t does not have 
parallel color-forced edges. If t can be partitioned into gadget and matching, 
it is colored with reused old colors and one new color using techniques similar 
to [10], and triplets of Type B are produced from the remainder of the two cycles. 
Otherwise, the TT-matchings can be reassembled, turning the two given cycles 
into a single cycle of even length, which is handled as above. A chain of even 
length > 2 and a cycle of odd length are combined similarly. 

For a PP-matching and a cycle of odd length, we choose an arbitrary SS- 
matching Mi and a TT-matching M2 from the cycle such that the cycle cover 
Mi U M2 does not contain parallel color-forced edges. This cycle cover can be 
colored with one new color and one of its single colors such that no line sees more 
than 3 colors. The PP-matching M3 is colored using its preserved double color, 
thus ensuring that the coloring for t = (Mi,M2,M3) meets the requirements. 
The remainder of the cycle is combined with SS-matchings into Type B triplets. 
A PP-matching and a chain of even length > 2 are handled similarly. 



502 

3 Reducing the routing problem to a constrained 
bipartite coloring problem 

In this section we reduce the problem of assigning wavelengths to the constrained 
bipartite edge coloring problem. We do so by giving an algorithm that properly 
assigns wavelengths by using as a subroutine our algorithm for the constrained 
bipartite edge coloring problem of the previous section. 

Our algorithm for assigning wavelengths is a greedy algorithm as the ones 
presented in [7, 6, 10]. The algorithm roots the tree at an arbitrary node and com- 
putes a depth-first numbering of the nodes of the tree. The algorithm proceeds 
in phases, one per each node v of the tree. The nodes are considered following 
their depth first numbering. The phase associated with node v assumes that a 
partial proper coloring of all paths that touch (i.e., start, end, or go through) 
nodes with numbers strictly smaller than v'a has been computed and extends 
the partial coloring to one that assigns proper colors to all paths that touch v 
but have not been colored yet. We stress that the algorithm never recolors paths 
that have been colored in previous phases. 

We now show the reduction of the path coloring problem of a phase associated 
with node v to an instance of the constrained bipartite edge coloring of a graph 
Gv. Without loss of generality, we assume to have full load L on each directed 
link and denote by c0 v's parent and by ci, • • •, Ck the children of v. We construct 
Gv in the following way. For each vertex c;, Gv has four vertices Wi,XitYi,Zi 
and the left and right partitions are {Wi,Zj\i = 0, • • -k} and {Xi,Yi\i = 0, • • -k). 
Gv has an edge from Wi to Xj, for each path of the tree directed out of c,- into 
Cj and an edge from Wi to Y,, for each path from c,- to v. Finally, for each path 
from v to Cj, Gv has an edge from Z{ to Xi. See Figure 3. The above edges are 
called real. Notice that no real edge extends across opposite vertices Z,- and Yi 
or Wi and Xi and only edges with an endpoint in Wo or Xo already have a color 
as they correspond to requests touching v's parent and have been assigned a 
color in a previous phase. Notice also that all vertices of type Wi and Xj have 
degree L whereas vertices of type Z{ and Y, do not necessarily have degree L. 
We therefore add fictitious edges to the bipartite graph so that all vertices have 
degree L. Clearly, any proper coloring of the edges of Gv corresponds to a legal 
assignment of wavelengths to requests that go through vertex v and we compute 
such a coloring of the edges of Gv by running the algorithm of the previous 
section on Gv. 

4 Lower bound 

In this section we present our lower bounds for the wavelength routing problem 
by showing that any greedy algorithm for assigning paths to requests of load L 
on a tree cannot use less than 5/3L colors even if the tree is binary. The lower 
bound for the constrained bipartite edge coloring is obtained similarly. 

We prove the lower bound inductively. We assume inductively that, for a 
vertex C there are an/2L requests along each link to its parent and that all of 
these requests are colored using different colors. 
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Fig. 3. Requests touching vertex v and the corresponding bipartite graph (only real 
edges are shown). 

Then we assign requests between the two children A and B of C in such a 
way that (1 + ^)1 colors are used in total and the inductive hypothesis between 
one of A and B and one of its children is enforced for an+1 = 1 + gf. It is easy 
to see that a* = lim„._>oo «» = 4/3, where ax = 1 and an = 1 + ^f1- for n > 1. 
Therefore, for any e > 0 and any greedy algorithm G, it is possible to construct 
a set of communication requests of maximum load L so that G uses at least 

(5/3 - e)L colors. 
The base of our induction for a1 = 1 is established in the following way. 

We start with L requests on each direction between the root R and one of its 
children R'. The greedy algorithm colors these request using at least L colors 
in each direction. We then choose two sets of L/2 request along each direction 
with each request colored with a different color, propagate them to one of the 

children of R! and stop at Rl the remaining requests. 
Let C be a vertex and A and B the two children of its left child. We denote by 

A2 the set of colors used along the link (C, A), by K3 the set of colors used along 
the link (B, C), by Kx the set of colors used along the link (B, A) and by A4 the 
set of colors used along the link (A, B) . We inductively assume that A2nA3 = 0 
and \K2\ = |A'3| = a/2L whence thus \K2U K3\ = ah. We fill the link (B,A) to 
capacity by assigning kx = L(l-a/2) requests. These requests need to be colored 
with new colors and thus the total number of colors used increases to L(l + §). 
Next we assign L requests to the link (A, B). The best that any greedy algorithm 
can do is to color these L requests colored using all the new colors employed for 
the link (B, A), plus half of the colors of K3 and half of the colors of K2. The 
edge (A,C) thus sees |A'iUA'2UA'4| = \Ki\ + \I<2\ + \K4\-\K2r)K<i\-\KinKA\ - 
(1 + |)L. In order to complete the inductive step we have to enforce for A the 
same situation as in C for (1 + f). This is achieved in the following way: 

1. among the |A'i| + |A'2| = L requests coming from C, we let only the following 
continue to the left child of A: 

Si:U L requests from A'i. 
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- S2'. \L requests from ÄV 
for a total of \ (l + f) colors. 

2. and the |A'4| = L requests coming up from A to C all originate from A 
except for the following ones which instead come from the right child of A 
- Ri: jL requests that were colored with colors used of I<2 and which 

were not considered in S2 above; 
- R2: f L requests that were colored with colors used of A3; 
- R3: (| - §a) L that were colored with colors of Ä'i and which were not 

considered in Si above; 
for a total of \ (l + f) colors. 

Finally, observe that the requests going down to the left child of A and those 
coming up from the right child of A are colored with different colors (i.e. the 
sets of colors are disjoint). This completes the proof of Theorem 4. 
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Abstract. Let T be a symmetric directed tree, i.e., an undirected tree 
with each edge viewed as two opposite arcs. We prove that the minimum 
number of colours needed to colour the set of all directed paths in T, so 
that no two paths of the same colour use the same arc of T, is equal to 
the maximum number of paths passing through an arc of T. This result 
is applied to solve the all-to-all communication problem in wavelength- 
division-multiplexing (WDM) routing in all-optical networks, that is, 
we give an efficient algorithm to optimally assign wavelengths to the all 
the paths of a tree network. It is known that the problem of colouring a 
general subset of all possible paths in a symmetric directed tree is an NP- 
hard problem. We study conditions for a given set S of paths be coloured 
efficiently with the minimum possible number of colours/wavelengths. 

1    Introduction 

Let T be a tree and x,y two vertices of T. The dipath P{x,ij) in T is the 
undirected path joining x to y, in which each edge is considered traversed in 
the direction from x to y. In other words, the dipaths P{x,y) and P{y,x) are 
different and do not traverse any edge in the same direction. We are interested 
in colouring the set of dipaths P(x, y), for all ordered pairs x, y of vertices of T, 
in such a way that two dipaths using the same edge of T in the same direction 
obtain different colours. Let c(T) denote the minimum number of colours in such 
a colouring of the dipaths of T. Let n(T) denote the maximum number of dipaths 
P(x,y) which all pass through the same edge of T in the same direction. Clearly 
TT(T) < c(T) for every tree T. It has been conjectured by Bermond et al. [7] that 
in fact TT(T) = c(T) holds for every T. Here we prove this conjecture. 
Moreover, given a subset S of all the paths on a tree T, we consider conditions 
for the existence of an efficient algorithm to colour all the paths in S with the 
minimum possible number of colours; this problem is NP-hard in general. 

* Work partially supported by the Italian Ministry of the University and of the Sci- 
entific Research in the framework of the project: "Efficienza di Algoritmi e Progetto 
di Strutture Informative" and by Galileo Project. 
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1.1     Motivations and Related Work 

The problem originally arose in the context of all-optical networks. Optical net- 
works are emerging as key technology in communication networks and are ex- 
pected to dominate many applications, such as video conferencing, scientific 
visualisation, real-time medical imaging, high-speed super-computing and dis- 
tributed computing [17, 25, 29]. The books of Green [17] and McAulay [22] 
offer a comprehensive overview of the physical theory and applications of this 
emerging technology. All-optical networks exploit photonic technology for the 
implementation of both switching and transmission functions [16], and main- 
tain the signal in optical form through the transmission, thus allowing for much 
higher data transmission rates (since there is no prohibitive overhead due to 
conversions to and from the electronic form). Wavelength-division multiplexing 
(WDM) [10] partitions the optical bandwidth into a number of channels, and al- 
lows multiple data streams to be transferred concurrently along the same optical 
fiber, on different channels, i.e., different wavelengths. The same wavelength on 
two input ports of a switch cannot be routed to a same output port, due to elec- 
tromagnetic interference. There are various switches considered in the literature, 
with 'generalized switches' being one of the more common variants, [1, 2, 27]. 
These switches allow different signals to travel on the same communication link 
into the switch (on different wavelengths), and then exit from it along different 
links. 

All-optical networks are networks where the information, once transmitted as 
light, reaches its final destination directly without being converted to electronic 
form in between. Maintaining the signal in optic form allows to reach high speed 
in these networks since there is no overhead due to conversions to and from the 
electronic form. Such an approach allows thus the elimination of the "electronic 
bottleneck" of communications networks with electronic switching. 

In an all-optical network one needs to set up a number of communications 
(paths) between given pairs of nodes, with each path being transmitted on one 
particular wavelength, and all paths sharing a link having different wavelengths. 
Specifically, one is given a set of requests (ai,&i), (02,62),..., (a^, 6/s), and is 
required to connect each a,- to the corresponding b, by a path P,- and assign 
wavelengths to each path Pi so that paths of the same wavelength do not share 
a link. Viewed in this light, the problem has initially been treated in the context 
of undirected graphs, [2, 1, 27]. However, it has recently become clear that each 
bidirectional optical link will actually consist of a pair of unidirectional links [25], 
and hence the new models of the situation tend to represent the network by a 
symmetric directed graph, or equivalently, view each path as a dipath (as above) 
[7, 23, 18]. We study the situation in the case of trees. The interest in trees is due 
to the fact tree-like networks are standard in the telecommunications industry 
[23]. Furthermore, trees free us from one half of the problem - that of choosing 
the actual paths for connecting the required nodes (since in a tree these paths 
are unique). The minimum number of wavelengths corresponds to the minimum 
number of colours in a colouring of dipaths as detailed above. This parameter 
is considered of importance in evaluating the competitiveness of the wavelength 
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division multiplexing technology [23]. 
Thus this general problem becomes one of colouring a given set (or multiset) 

S of dipaths in a tree T with the minimum number of colours, so that dipaths 
using one edge in the same direction obtain different colours. We find the above 
terminology convenient to work with. However, it should be clear to the reader 
that, an equivalent formulation would consider T to be a symmetric directed 
tree - by replacing each edge of T with the two opposite arcs (optical links) 
corresponding to it - and then each dipath would simply become a directed path 
in the usual sense of the word. Conditions on using an edge in one direction then 

simply translate into conditions on using an arc. 
We call proper a colouring of S a colouring such that dipaths of S using 

one edge in the same direction obtain different colours. The minimum number 
of colours in a proper colouring of a set (multiset) S of dipaths in a tree T 
will be denoted by cs{T), and the maximum number of dipaths from S that 
pass through one edge of T in one direction by ns(T). We clearly must have 

Ki(T)<cs{T). 
The problem of colouring a general subset of all possible paths in a symmetric 

directed tree is an NP-hard problem [12]. Approximation algorithms are given 
in [27, 23, 18, 19]. The best ratio is obtained in [18] where the authors provide 
an algorithm that requires at most 5/3TTS(T) colours, for any set S of paths in 
a symmetric directed tree T. A recent survey including this topic is given in [6]. 

1.2     Our Results 

In Section 2 we concentrate on the problem of all-to-all communication (or 'gos- 
siping'). In this situation, every node is requesting a connection with every other 
node. All-to-all communication among the processors is one of the most impor- 
tant issues in multi-processor systems. The need for this kind of communication 
arises in many problems of parallel and distributed computing including many 
scientific computations [8, 11, 13] and database management [30]. Due to the 
considerable practical relevance in parallel and distributed computation and the 
related interesting theoretical issues, such problems have been extensively stud- 
ied in the literature (see the surveys [20, 21, 24, 6]). First studies of this problem 

in the context of optical networks, can be found in [7, 5, 6] 
In this paper, we show that the minimum number of colours necessary to 

establish all-to-all connections in a tree is equal to the maximum number of 
intersecting dipaths, i.e., we shall prove the following result. 

Theorem 1. Let T be a tree. Then c{T) = n(T). 

Above Theorem 1 settles a conjecture by Bermond et al [7]. 
We stress that our proof also represents an efficient (e.g., polynomial) algorithm 
for the actual assignment of the colours to the paths. 

In Section 3 we study conditions, given a set S of paths on a tree T, for the 
existence of an efficient algorithm to colour the paths in S with the minimum 
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possible number of colours. We recall that the problem of optimal colouring of 
paths is NP-hard [12]. We show that cs(T) = irs{T) for each set of paths S 
if and only if T is a generalized star, that is, a tree obtained from a star by 
replacing each edge with a path. 
Moreover, given any tree T, we give conditions on the set S assuring that cs{T) = 
7Ts(T) and cs{T) can be found in polynomial time. 

Due to space limitations some proofs are omitted from this extended abstract. 

2     Colouring all paths 

In this section we consider the problem of all-to-all communication (or 'gossip- 
ing'). In this situation, every node is requesting a connection with every other 
node; thus S consists of the paths P(x, y) for all ordered pairs x, y of vertices of T, 
and we shall omit the subscripts S and write c(T), 7r(T) instead of cs(T), irs(T). 

We will find it more convenient to prove a weighted version of the theorem. 
A weighted tree is a tree T with positive integer weights w(x) on the vertices 
x of T. (The intention of the weights is to have a vertex of weight w represent 
w unweighted vertices). The total weight of a set X of vertices of T is w(X) = 
J2x£X w(x). (In particular w(T) is the weight of the entire tree.) 

Let e be an edge of a weighted tree T. The removal of e from T results in 
two weighted subtrees T\ and Ti- The load of e is the product w(Ti)w(T^). The 
forwarding index of the weighted tree T , denoted by TT(T), is the maximum load 
of any edge in T. It is clear that when all weights are 1 this definition coincides 
with the previous definition of n(T). 

In a weighted tree T, we shall consider the multiset of all dipaths which 
consists of w(a)w(b) copies of the dipath from a to b, for every ordered pair of 
vertices a, b. We denote by c(T) the minimum number of colours in a proper 
colouring of the multiset of all dipaths. When all weights are 1, the multiset 
of all dipaths is precisely the set of all dipaths, and so the definition of c(T) 
also coincides with the one given earlier. For a particular vertex v, we let In(v) 
(respectively Out(v)) consist of those dipaths from the multiset of all dipaths 
which end (respectively begin) with v. The weighted version of our theorem is 
as follows: 

Theorem 2. Any weighted tree T satisfies 

c(T) = w(T) 

and there exists an efficient algorithm which colours T with c(T) colours. 

2.1     Two operations to generate weighted trees 

There is a natural way to build all trees from a single edge, by adding and split- 
ting leaves. We will formally define these operations in the context of weighted 
trees, and then apply them to give an inductive proof of our theorem. 
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In the following definition we assume that T is a weighted tree of weight 

W(T) = W, x is a leaf of T, / is the parent of x, and finally, that S is a positive 

integer S < w(x). 

Definitioii3. The operation AddLeafs{x,T) modifies T as follows: 

- the weight of x is decreased by 5 
- a new node y is added with weight S 
- the edge [y,x] is added. 

The operation Split Lea fs(x,T) modifies T as follows: 

- the weight of x is decreased by S 
- a new node y is added with weight S 
- the edge [y, f] is added. (Recall that / is the parent of x.) 

We say that an operation AddLeafs{x,T) or SplitLeafsxT is legal if S + w(x) < 

W and w{x) < W/2 

We will often abbreviate the notation to simply say that we have performed 
an operation AddLeaf or SplitLeaf (with respect to the node x and the 
weight S if needed). It is easy to see that if an operation Split Lea fs{x,T) 
(resp. AddLeaf6{x, T) ) is legal then in the new tree the load of [x, f] and [y, f] 
(resp. [x, y]) cannot be larger than the load of [x, f] in T. Therefore we have the 

following property. 

Properties 2.1 // an operation AddLeaf or SplitLeaf is legal then the for- 
warding index of the new tree does not exceed the forwarding index of T. 

Definition 4. Let T be a weighted tree, and let W denote W{T). T is called 
W/C-tree if the two trees resulting from the removal of an edge of maximum 

load have weights C and W - C, with C > W/2. 

Notice that the above definition is non ambiguous since each edge of maxi- 
mum load is associated with the same value of C and TT(T) = C{W - C). In case 
T is a weighted star then the above definition is equivalent to the fact that the 

maximum weight of a leaf is (W - C)C\ we call T a W/C-star. 
Given a W/C-tvee T, we will recursively construct T from some initial W/C- 

star S by means of a sequence of AddLeaf'and SplitLeaf legal operations. By 
Property 2.1 this will assure that at each step of the construction we have a tree 

with forwarding index TT(5) = C{W - C) = TT(T). 

Lemma 5. T can be generated from, some W/C-star T* by repeated application 

of legal operations   AddLeaf or  SplitLeaf . 

Proof (Sketch). We first show that any W/C-txee T contains a vertex u such 

that the maximum weight of a component of T \ {u} is W - C. 
In order to construct our tree T, we start from the W/C-star T* consisting 

of the vertex u and all its neighbours in T; for each neighbor v of u we set the 
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weight w(v) of v equal to the weight of the component of T \ {«} that contains 
v. 

Let t be the number of nodes of T which are not adjacent to u. If t = 0 
then the tree T is a W/C-star and we don't need to perform any operations. 
Otherwise we suppose that the result holds for if t < k, and let t = k + 1. Let z 
be a leaf of T of maximum distance from «, and let p be the parent of z. This 
implies that p has at most one neighbour which is not a leaf. 

- If the degree of p is strictly greater than two, then let x be a leaf neighbour 
of p other than z. Let T" be the weighted tree obtained from T by removing 
z and increasing the weight of x by w(z). Then T is generated from T" by 
the operation Split Lea fw^(x ,T'). 

- If the degree of p is two, then let x = p. Let T" be the weighted tree obtained 
from T by removing z and increasing the weight of of x by w(z). Then T is 
generated from T" by the operation AddLeafw^{x,T'). 

We then show that in both cases the operations are legal. D 

2.2     An inductive colouring 

We have seen how an arbitrary W/C-tiee T can be constructed from a W/C-st&r 
by legal operations, with all intermediate trees being also W/C-tvees. We now 
begin to prove that the multiset of dipaths in each of these trees admits a proper 
colouring with W(W — C) colours. 

Lemma 6. The multiset of dipaths of any W/C-starT can be efficiently coloured 
with W(W — C) colours. 

Proof. The crucial observation here is the following: In a star, two dipaths 
conflict (use some edge in the same direction and hence must obtain differ- 
ent colours) if and only if they have the same beginning or the same end. in 
other words, two dipaths of the same colour must belong to two different mul- 
tisets In(v) and to two different multisets Out(v). For each vertex v we have 
|/n(v)| = \Out(v)\, but these sizes differ from vertex to vertex. Of course, the 
maximum |/n(i;)| = n(T). We now add to each In(v) and Out(v), ir(T) — \In{v)\ 
artificial paths (consisting of the single vertex v), to arrive at a situation where 
each In(v) and Out(v) has exactly TT(V) dipaths. Thus the union of any k sets 
In{v) contains at most k sets Out(v), and, according the the theorem of Hall 
[28] (Theorem 9.2.1), one can efficiently determine a set of dipaths consisting 
of exactly one representative from each In(v) and from each Out(v). These di- 
paths will be coloured by colour 1, and deleted from consideration. Now each 
In{v) and each Out(v) has n(T) — 1 dipaths, and so we can continue as above. 
Clearly, this will produce a proper colouring of the multiset of dipaths in T with 
TT(T) = W(C - W) colours. D 
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We continue, assuming that we have a W/C-tree T with a proper colouring 
of its multiset of dipaths with W(W - C) colours, and show how to induce a 
proper colouring of a tree T" obtained by a legal operation. 

Let x be a fixed leaf in T (the leaf on which we shall perform the legal 
operation AddLeaf or Split Leaf ). We wish to use again the Theorem of Hall 
in a fashion similar to the above proof, but treating only the multiset of dipaths 
starting (and ending) with x. These dipaths are already coloured, and we may 
have used different colours for Out(x) and In(x). We deal with this complication 

by introducing the following bijection: 
Let Out denote the set, of colours used on the dipaths from the multiset 

Out {x), and let In denote the set of colours used on the dipaths from the multiset 
In{x). Since all dipaths in Out(x), and in In{x), have different colours, \Out\ = 
\In\. Let <j> be a fixed bijection between Out and In, such that for any c G 

OutnIn,<j)(c) = c. 
Notice that the w(x)w{z) dipaths between x and any vertex z of T \ {x} 

must all obtain different colours, as they all use the unique edge out of x. We 
now arbitrarily fix (for each vertex z) a partition of these w(x)w(z) colours 
into w{z) classes of size w(x) denoted by 0\, 0\, ■ ■ ■, Oz

w(z). Similarly, we fix 

(for each z) another partition of the set of w(x)w{z) colours of dipaths from z 

to x into I\ ,1%, ■ ■ ■!„!;), eacn of size w(x)- We sha11 sa^ that two colours on 

dipaths starting in x are I-eqwvalent if they belong to the same class I] for 
some z G T \ {x},j G {1,2, • ■ •, w(z). Similarly, we shall say that two colours 
on dipaths ending in x are O-eqmvalent if they belong to the same class O) for 

some:eT\{i},je {1, 2, • • •, w{z). 

Definition?. A supercolour is a set U of colours such that no colours from U 
are /-equivalent, and no colours from <j>(U) are O-equivalent. 

Let X be the set of w(x){W - w(x)) colours used by the dipaths starting in 

Lemma 8.   The set X of colours can be partitioned into w(x) supercolours. 

Proof Omitted. D 

The following result allows to complete the proof of Theorem 2. 

Proposition9. If T is a W/C-tree with a proper colouring of its multiset of 
all dipaths, and if T is obtained from T by performing the legal operation 
AddLeafs(x,T) or SplitLeafs{x,T), then V is a W/C-tree which also admits 
a proper colouring of its multiset of all dipaths. Such a colouring of T" can be 

efficiently determined. 

Proof Omitted. D 
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3     General sets of paths 

We have shown that c(T) = TT(T) for any tree T, even in the general case of 
weighted trees. Thus the set (multiset) of all dipaths P(x,y) can be coloured 
with 7r(T) colours. Our proof represents a polynomial algorithm for the actual 
assignment of the colours. In the more general situation of an arbitrary set S of 
dipaths, it is known that the problem of optimally colouring the paths in the set 
S is NP-hard [12], and only approximation algorithms are known [23, 18, 19]. 

The undirected version of the problem, that is, minimize the number of 
colours in a colouring of paths of a tree T so that all paths using an edge of 
T have different colours, is also NP-hard [15, 27]. 

In this section we make some additional remarks about cs{T), that is, the 
minimum number of colours in a colouring, of the paths from a subset S of all the 
paths on a directed symmetric tree T, such that conflicting paths obtain different 
colours. We consider situations in which cs{T) can be efficiently evaluated. 

It is easy to see that if T is a path or a star then ns(T) = cs{T) for every S. 
In fact, when T is a path TTS(T) = cs(T) is equivalent to the fact for an interval 
graph the chromatic number is equal to the maximum clique size [14], and when 
T is a star 7Ts(T) = cs(T) is equivalent to the fact that for a bipartite graph 
the edge chromatic index is equal to the maximum degree [9]. These results also 
imply corresponding polynomial algorithms [9, 14]. We now extend these results 
(and algorithms) as follows. 

Definition 10. The conflict graph of set of paths 5 on a tree T is the undirected 
graph whose vertices are the dipaths from S, and two dipaths are adjacent if 
and only if they conflict, i.e., use an edge of T in the same direction. 

Definition 11. A generalized star is a tree obtained from a star by replacing 
each edge with a path (the paths may have different lengths). 

Notice that a generalized star is a tree in which at most one vertex has 
degree greater than two, and, conversely, any tree in which at most one vertex 
has degree greater than two is a generalized star. Also note that stars and paths 
are generalized stars. We proceed to prove that all conflict graphs in a generalized 
star T are perfect; this will imply in particular that 7Ts(T) = cs{T) for all S. 

Definition 12. An odd hole of an undirected graph is an induced cycle with- 
out chords, of odd length greater than three. An odd antihole is an induced 
complement of a cycle without chords, of odd length greater than three. 

Lemma 13. The conflict graph of of any set of paths on a generalized star cannot 
contain an odd hole or an odd antihole. 

Proof Omitted. □ 

Since it is not hard to show that the conflict graph of trees satisfies the 
perfect graph conjecture, the above Lemma 13 implies that conflict graphs in 
generalized stars are perfect; therefore we have the following result. 



513 

Corollary 14. For any set S of dipaths in a generalized starT we have cs(T) = 

*s(T). 

We remark that by combining polynomial algorithms for edge colouring bi- 
partite multigraphs and for vertex colouring interval graphs, we obtain a poly- 
nomial algorithm for colouring the dipaths of S in a generalized star with TTS{T) 

colours. It is not difficult to observe that whenever T is a tree other than a gen- 
eralized star, then there exists a set of dipaths S in T such that 7Ts(T) ^ cs(T). 

Proposition 15. cs{T) = ns(T) for all sets S if and only ifT is a generalized 

star. 

We also consider the following condition on S which assures that irs(T) = 

cs(T): 

Definition 16. A set of paths 5 is well distributed in T if T does not contain 
an odd number of edges [v, ai], [v, a2],. ■. [v, a2k+i] such that some dipath of 
5 contains both edges [v,a,-] and [u,a;+i] (in some direction), for any index 
i= 1,... 2k + 1 (addition on index is taken modulo Ik + 1). 

Proposition 17.  If S is well distributed in T then 

CS(T)=7TS(T) 

and c,s(T) can be found in polynomial time. 

Proof (Sketch). We verify that if S is well distributed in T then T admits 
an orientation such that each dipath in S either uses all edges in the chosen 
direction, or all in the opposite direction. Since a path which uses edges in the 
chosen direction cannot conflict with a path which uses edges in the opposite 
direction, we can colour each set separately. It is easy to see that the conflict 
graph of each of these sets is chordal and hence c = w and 7r can be found in 
polynomial time [14]. 
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Abstract. The paper deals with on-line routing in WDM (wavelength 
division multiplexing) optical networks. A sequence of requests arrives 
over time, each is a pair of nodes to be connected by a path. The problem 
is to assign a wavelength and a path to each pair, so that no two paths 
sharing a link are assigned the same wavelength. The goal is to minimize 
the number of wavelengths used to establish all connections. 

We consider trees, trees of rings, and meshes topologies. We give on-line 
algorithms with competitive ratio O(logn) for all these topologies. We 
give a matching ß(log n) lower bound for meshes. We also prove that any 
algorithm for trees cannot have competitive ratio better than ß(log°f0gn)- 

We also consider the problem where every edge is associated with paral- 
lel links. While in WDM technology, a fiber link requires different wave- 
lengths for every transmission, SDM (space division multiplexing) tech- 
nology allows parallel links for a single wavelength, at an additional cost. 
Thus, it may be beneficial in terms of network economics to combine be- 
tween the two technologies (this is indeed done in practice). For arbitrary 
networks with ß(logn) parallel links we give an on-line algorithm with 
competitive ratio O(logn). 

1    Introduction 
All-optical networks promise data transmission rates several orders of magni- 
tude higher than current networks. The high speeds in these networks arise from 
maintaining signals in optical form throughout a transmission thereby avoid- 
ing the overhead of conversions to and from electrical form (see [Gr92] for an 
overview of the topic). Wavelength division multiplexing (WDM) supports the 
propagation of multiple laser beams of distinct wavelengths through an optic 
fiber. Thus, the high bandwidth of the WDM network is utilized by partitioning 
it in many "channels", each at a different optical wavelength. Intuitively, we may 
think of wavelengths as light rays of different colors. 

A major algorithmic problem for optical networks is that ot routing, .hacn 
routing request, consists of a pair of nodes in the network, and requires the 
assignment of a path and a wavelength (color). The key restriction is that two 
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requests with equal wavelength cannot be routed through the same link. The 
main goal is in lowering the number of wavelengths for certain routing requests. 

Many of the applications for high speed optical networks are real-time. It is 
therefore very natural to consider the problem of routing in an on-line setting 
where routing requests appear over time. 

The Path Coloring Problem. The routing problem on a WDM network with 
generalized switches is referred to as path coloring. More formally, let G = (V, E) 
be a graph representing the network, with \V\ — n. We are given a sequence of 
routing requests consisting of pairs pi = (si,ti) of nodes in G. The algorithm 
must assign a path connecting s» and U and a color, so that no two paths sharing 
an edge are assigned with same color. The goal is to minimize the number of 
colors. The performance measure for an on-line algorithm is the competitive 
ratio [ST85] defined as the worst case ratio over all request sequences between 
the number of colors used by the on-line algorithm and the optimal number of 
colors necessary on the same sequence. 

While in WDM technology, a fiber link requires different wavelengths for ev- 
ery transmission, SDM (space division multiplexing) technology allows parallel 
links for a single wavelength, at an additional cost. This can be profitable since 
only a limited number of wavelengths are available in practice. The two technolo- 
gies are then combined to find an efficient trade off between the two approaches. 
This motivates considering a generalization of the path coloring problem where 
a link of a color is replaced with a number of parallel links. We will alternatively 
model this case with a bandwidth B available on a link for any color, meaning 
that B paths of the same color may be routed through a link (that is in the 
basic path coloring problem B = 1). 

Related previous work. 
The on-line path coloring problem has been studied by Raghavan and Up- 

fal [RU94] who give constant approximation algorithms for undirected trees 
and trees of rings. Further results for trees were given in a sequence of pa- 
pers [MKR95, KP96, KS97, EJKP97]. Rings have been recently addressed in 
[GK97] and meshes were studied in [RU94, AR95, KT95]. Kleinberg and Tar- 
dos [KT95] give an O(logn) approximation algorithm for meshes and certain 
"nearly Eulerian planar graphs". Rabani [Ra96] improves the bound for meshes 
to 0(pory(loglognY). 

The on-line path coloring problem has been studied in the case of a line 
topology in the context of interval graph coloring by Kierstead and Trotter 
[KT81]. They give an optimal 3-competitive algorithm for the line ([KT81]). 
Slusarek [S195] proved the same bound for circular arc graphs. 

The path coloring problem is closely related to the virtual circuit routing 
problem, motivated by its application to ATM networks. The Joad version of this 
problem is where every requested pair must be assigned a path as to minimize 
the maximum number of paths crossing a given edge. Aspnes et al. [AAFPW93] 
give an 0(log n) competitive algorithm for the load version. Most of the work has 
concentrated on the throughput version of the problem, where every requested 
pair may be either accepted or rejected. The basic problem, also referred to as 
call-control, is where the paths of all accepted pairs must be edge-disjoint. This 
can also be generalized to the case where edges may have a given bandwidth 
B (that can be viewed as having B parallel edges!. Awerbuch et al. [AAP93] 
prove that if B = ß(logn) then there is an O(logn) competitive algorithm (for 
throughput). They also give a lower bound of Q{n) for deterministic algorithms 
in the general case. Randomized algorithms have been first studied by Awerbuch 
et al. [ABFR94, AGLR94] giving an O(logZl) competitive algorithm for trees, 
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where A is the diameter of the tree. They also show a matching lower bound. 
Kleinberg and Tardos [KT95] give O(logn) competitive algorithm for meshes 
(and some generalization), improving upon a previous result of [AGLR94]. 

Bartal et al. [BFL96] prove that for various routing problems including the 
throughput version of virtual circuit routing and the path-coloring problem there 
exist networks where the competitive ratio is ü{ne) (for some fixed e) for any 
randomized algorithm. Finally, the on-line version of maximizing the throughput 
in optical networks was addressed in [AAFLR96]. 

Contributions of this paper. We consider the on-line path coloring problem 
on trees, trees of rings, and meshes topologies: 

- We present an O(logn) competitive deterministic algorithm for path col- 
oring on meshes. 

- We prove a matching J?(logn) lower bound for the mesh. The lower bound 
holds for randomized algorithms for the load version of the virtual circuit 
problem which immediately extends to the path coloring problem. 
We comment that this also provides the first lower bound for the load 
version of the virtual circuit routing problem in undirected networks with 
unit edge capacities [AAFPW93]. 

- We give an O(logn) competitive algorithm for path coloring on arbitrary 
networks with bandwidth J?(logn) (the actual statement is somewhat more 
general). This algorithm is also used as a building block for our algorithm 
for path coloring on meshes. This result can be viewed as a balanced com- 
bination of WDM and SDM technologies. 

- We give an O(logn) competitive algorithm for trees and trees of rings. 
We also prove that any deterministic algorithm for trees cannot have com- 

petitive ratio better than /2(lo'g
0f0gJ (even for trees with Ä = °(loSn))- 

A logarithmic upper bound and an ü{y/\ögn) lower bound for trees have 
been independently obtained by Borodin, Kleinberg, and Sudan [BKS96]. 

Paper structure: Section 2 contains the results for path coloring with more 
bandwidth on arbitrary networks, that are also used in Section 3 for the O(logn) 
competitive algorithm for path coloring on meshes. Section 4 contains the lower 
bound for meshes. Upper and lower bounds for trees are in Section 5. The results 
and the proofs that are omitted from this abstract can be found in [BL97]. 

2    Path coloring with more bandwidth 
Let G = (V,E) be a network with \V\ = n vertices and \E\ = m edges. We 
consider the path coloring problem with bandwidth B on the edges. At the j- 
th step, call j, with endpoints (sj,tj), is presented to the algorithm that must 
assign a color c(j) and a path P(j). The goal of the on-line is to use a set of 
colors of minimum cardinality C under the constraint that the bandwidth on 
any edge does not exceed B. . 

We give an algorithm for general networks for this problem. The algorithm 
fixes a set C of C colors that it may choose from, at the beginning, based on 
an estimate for the optimal performance. The basic algorithm chooses, at every 
step, one path and one of these colors according to some optimization criteria. 
This criteria assigns to any edge of any color an exponential function of the 
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current load. Our goal is in proving that the algorithm never exceeds a certain 
bandwidth on every edge. 

A variant for this algorithm proves to be useful (see Section 3) in obtaining 
an algorithm for path coloring on meshes (with edge bandwidth = 1). 

In this variant we restrict the choice of the on-line algorithm for call j to a 
subset C(j) of C (that may be chosen according to some arbitrary rule) whose 
cardinality is at least aC. 

We thus state our results in terms of this parameter a. However, for the scope 
of this section alone it is enough to set a = 1. 

Let C* be the number of colors used by the optimal solution to accommodate 
the whole set of calls, and let B* be the bandwidth available by the optimal 
solution on any edge of any color. 

We compare our algorithm to a stronger adversary that uses a bandwidth 
A* < B*C* on a single color, rather than being restricted to using C* colors 
and bandwidth B* for every color. 

We assume that the on-line algorithm knows a value A such that A* < A < 
2A*. This is performed by applying a doubling technique (whose description is 
omitted in this abstract) that results in increasing the competitive ratio at most 
by a factor of 4. 

Let the load on edge e for color c, denoted by A£(j), be the number of calls 
assigned with color c and a path crossing edge e when call j is presented. Let 
a = 213. Call j is assigned with a color c(j) and a path P(j) which achieve the 
minimum, over all the colors in C(j) and all paths connecting Sj and tj, of the 
following "exponential cost": 

eeP(j) 

Theorem 1. // the number of colors used by the algorithm is C = 8-4^-(2^ — 1) 
where A > A* then the bandwidth is B < 1 + A log ^. 

Proof. _ 
Let A be the maximum load on any edge for any color in the solution of 

the on-line algorithm at the end of the sequence. Thus A calls are assigned with 
same color and a path crossing a given edge. When the last such path P(k) is 

assigned to a call k, its exponential cost is at least oA_1. By definition of the 
algorithm, the chosen path is the minimum cost path over all paths and colors 
C(k). Therefore, at the time this call arrived, for C(k) > aC colors, any path 
connecting the same pair of vertices has a cost of at least aA_1. It follows that 
the sum of the exponential costs over all edges and all colors at the end of the 
sequence is 

Z{f)>aCa>-\ (1) 

where X[f) indicates the value of a function X at the end of the sequence. 
Let l*(j) be the number of calls in the adversary solution assigned with path 

crossing edge e when call j is presented. 
We use the following potential function: 

^o^EE^-f)- 
cGCe6E 
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The sum of the exponential costs of the on-line algorithm at the end of the 
sequence is also bounded by the following: 

Z(f) < 2£Zy*(/)(1 - ™) < 2(*(/) -#(0)) +2mC, (2) 
c6Ce€-E 

In the following we prove that for the claimed choice of C, the potential 
function does not increase after each step of the algorithm. Therefore #(/) < 
#(0), and thus the equations 1 and 2 can be combined to achieve: 

£?<X<l + ilog^. 

To complete the proof we prove that if C = 2A^(2ß - 1) then for every 
j; <£(j + 1) - $(j) < 0. An extra factor of 4 is due to the application of the 
doubling technique to estimate the value of A. Let P*(j) be the path assigned 
by the adversary for call j. The change in the potential function due to call j is: 

*ü +1) - *ü) < E (ßA",ü+1) - aA",(i)) - JA £ E(^ü+1)<:(;+u 
eeP(j) c€CeeE 

-a^m< E^-^^-^E E aA'a)- 

Observe that for any color c G C(j), the cost of any path P connecting Sj to 
tj is not less than the cost of the path P(j) on color c(j) chosen by the on-line 
algorithm for call j. Therefore we get for any c G C(j): 

J2aKU)>   E   °A'(,'Ü)- 

The above inequality also holds for P = P*(j), and hence 

*(j +1) - *(i) < ((« - i) - ff) EeePü) «A«°')(i)- 
Recall that a = 2ß - 1. Thus, by choosing C = 2^1^ (20 - 1) we have that 

the potential function does not increase.    ■ 
As an application we get the following result for the on-line load balancing 

problem ([AAFPW93]), in which only one color is available and the goal is to 
minimize the number of paths assigned to a single edge of the network. 

By applying Theorem 1 with ß = 1 and a = 1 we get: 

Corollary 2. There exists an algorithm for on-line load balancing that uses 
0(A*) colors with bandwidth O(logn). 

Note that Corollary 2 gives a stronger result than that of [AAFPW93] that 
only shows that the on-line load is bounded by 0(A* logn). 

Finally, going back to the path coloring problem, recall that A* < C*B . 
For an appropriate choice of ß (the proof is omitted), Theorem 1 implies the 
following: 

Corollary 3. Let S be such that B* = Jlog^, and let 7 > 0 be some positive 
coefficient. The algorithm for on-line path coloring with more bandwidth uses 
C < 8C*^-(log ^(2^ - 1) + 1) colors with bandwidth B < jB*. 
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The above corollary shows that if the bandwidth is J?(logn), then the on- 
line algorithm does not exceed the bandwidth by using O(logn) more colors. 
We thus obtain the result for optical networks with general topology when the 
technologies WDM and SDM are combined in a network that contains J?(logn) 
parallel fiber optic links on each connection. 

3    Path coloring on meshes 
In this section we present an O(logn) competitive algorithm for path coloring 
on meshes. 

G = (V, E) denotes the y/n x ^Jn two dimensional mesh. We consider -Jn to 
be a power of 2. Let \E\ = m be the number of edges of the mesh. The vertex 
of the mesh with row i and column j is denoted with G[i, j}. Given two vertices 
v = G[i,j],v' = G[i',j'] we define their distance as the length of the shortest 
path connecting the two vertices: d(v, v') = \i - i'\ + \j - j'\. 

Let a and a be parameters that will be fixed later. Calls are divided into 
short calls and long calls. A call (s,t) is long if d(s,t) > 2a\og^k, and short if 
d(s, t) < 2a log —. a and a will be chosen so that a log ^ is a power of two. 

We use two different algorithms for long calls and short calls. The algorithm 
for long calls translates the problem in a mesh, to a problem of coloring with 
more bandwidth in a simulated network that is also a mesh. Theorem 1 al- 
lows a logarithmic competitive ratio with a logarithmic bandwidth on any edge. 
The route obtained in the simulated network is later translated into a route in 
the original mesh, satisfying the constraint that paths associated to calls with 
the same color are disjoint. We describe in Section 3.1 the construction of the 
simulated network, and in Section 3.2 how a route in the simulated network is 
transformed into a route in the original mesh. 

The algorithm for short calls, whose description is omitted in this abstract, 
classifies the calls on the basis of their length, and applies a greedy algorithm 
within each class. 

Both algorithms for long and short calls have competitive ratio O(logn). 
Therefore, we can state the following theorem. 

Theorem 4. There exists a O(logn) competitive algorithm for path coloring on 
meshes. 

3.1    The algorithm for the simulated network 
In this section we describe the algorithm for the problem of coloring and routing 
calls on a simulated network of a mesh of size \fn x ^Jn. 

The algorithm divides the mesh into   j'i», x aX^
n%m, squares of size a log ^ x 

a log ^p. Square S\p, q], p, q = 1,...,   ,'\,, is the subgraph of G induced by the 

set of vertices {G[i,j]\i = (p-l)alog^+\ ..., pa log 2a ;j = (q-l)alog^ + 
l,...,qa\og^f}. 

Note that long calls have their endpoints in different squares, since the dis- 
tance between the endpoints is bigger than 2a log ^. 

The simulated network N of the mesh G = (V, E) is a mesh of size    ,   "m x v        ' a log — 
\/n 

Let m! be the number of edges of the simulated network. Every edge of N 
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is associated with a bandwidth equal to crlog2^  = 6log^-. (Observe that 
logm' = logm - 0(log log m). Hence cr « 8 for large m.) 

This mesh corresponds to the network obtained from the original mesh by 
contracting every square of G onto a vertex and connecting every pair of vertices 
representing adjacent squares with an edge. The bandwidth of the edges models 
the fact that at most a log ^ edge-disjoint paths can pass between two adjacent 
squares. 

The basic idea is to color and route long calls in the simulated network using 
the algorithm of Section 2 for path coloring with more bandwidth, and then 
translate the assigned paths into an appropriate routing in the original network. 

The sequence of long calls in the mesh G is transformed into a sequence of 
calls in the simulated network in the most natural way: Each long call (s, t) is 
replaced by a call between the two vertices of N representing the two squares 
containing s and t. 

The path obtained for a call in the simulated network is transformed into a 
path in the original mesh G respecting the following rule: The path in G will 
cross between adjacent squares in G where the path in N passes through the 
edge connecting the corresponding nodes in TV. 

However we need that the paths with same color crossing any square are edge 
disjoint. For this purpose we will restrict the set of candidate colors for each call 
to a constant fraction of the overall number of colors. (Observe that the design 
of the algorithm of Section 3.2 includes this feature). 

For this purpose we distinguish between the two squares that include the 
endpoints of a call, and the squares that are crossed by the path connecting 
the endpoints. We say that a call is internal to a square if one of its endpoints 
belongs to the square. A call is called external to a square if it is not internal to 
the square and the path derived by the routing in the simulated network crosses 
the square. 

We furthermore define in any square 5 of the mesh, three concentric regions: 
S1, S2 and S3 (see Figure 1). Each region contains 2 log ^ concentric rings of 
the square. S1 is the most external region, S2 is internal to S1 and S3 is internal 
to both S1 and S2. Finally, the area surrounded by S3 is called the central region 
of the square. 

S' 

s: 

s. 

□ G 

Fig. 1. The routing of a long call. 

The set of colors C used by the on-line algorithm is partitioned into three 
sets Cl,C2,C^ of equal size. If a call is associated with a color c € Cl, i = 1,2,3, 
then its two endpoints must lie on a region different from Sl, while the path 
connecting the two endpoints will cross any square of the mesh different from 
the two squares containing the endpoints using a ring of region S\ 

In Section 3.2 we will snow how this requirement allows to avoid intersections 
between calls with same color crossing a square. 

We further impose an additional requirement: for any square, at most one 
internal call is associated with any color. This requirement is to avoid conflicts 
between paths assigned to internal calls that leave a square. 
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Consider the j'th long call (sj,tj). Let S(SJ) and S(tj) be the squares con- 
taining sj and tj, respectively. The set C(j) of candidate colors for call j is 
defined as follows. A color c G Cl is in C{j) if the two following conditions hold: 

1. Sj i S^Sj) and tj i Sl{tj), e.g. both endpoints are not in region i of their 
corresponding squares. 

2. No call with an endpoint in S(SJ) or S(tj) has been previously assigned 
with color c. 

The algorithm for path coloring with more bandwidth in the simulated net- 
work is run with parameters satisfying: a < \\ 5 > 13; and 7 = j- Tne vame 

a that defines the size of each square is chosen in order to satisfy a log ^ = 

5 log 2ml. 
The choice of the parameters is such that the adversary bandwidth B* = 

S log 2HL. is eqUai to the maximum number of calls that can be routed through 

two adjacent squares, and the width <51og ^ of a square is equal to 13 times 
the maximum bandwidth B = log ^ used by the on-line algorithm for routing 
between two adjacent squares. 

To apply the result of Corollary 3 we need the following lemma whose proof 
is omitted. 

Lemma 5.   The set of feasible colors C(j) for a call (sj,tj) has size at least aC. 

Therefore, from Corollary 3 we can derive the following corollary, on the 
number of colors and the bandwidth used by the on-line algorithm for path 
coloring with more bandwidth in the simulated network: 

Corollary 6. The algorithm for on-line path coloring with more bandwidth in 
the simulated network N uses C = 8C*f (log2^- + 1) colors with bandwidth 

3.2    Routing of long calls 
In this section we describe how to transform a path in the simulated network 
N into a path in the mesh G, so that the paths associated to calls with same 
color are mutually edge-disjoint. A path in the simulated network indicates the 
squares to cross to connect the two endpoints of a call. We are left to describe 
the route followed by the path within each square. 

Given a color c G C\ the set of calls accepted with that color have the 
following property 

1. At most one call is internal to each square. 

2. Both endpoints of each call are outside region 5* of their squares. 

The run of the algorithm for path coloring with more bandwidth ensures that 
the maximum bandwidth of the on-line algorithm in the simulated network is 
B = fz log 2s. It follows that at most B calls are assigned with paths crossing 
the boundary between two adjacent squares, and there are at most 2B external 
calls for each square. 

We will maintain inductively the following property: A call crosses the bound- 
ary between two squares on a row or on a column connecting the central regions 
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of the two squares. The central region of a square has size B x B. Since B is 
the maximum number of calls routed between adjacent squares, a distinct row 
or column can be associated with any call. 

We first consider external calls. By induction, each external call enters the 
square on a row or on a column leading to the central area. We route it towards 
the central area until a free ring of region Si is reached. This is always the case 
since there are at most 2B external calls and 2B available rings in each region 
S\ The call then follows the ring until it reaches a free row or a free column 
connecting the central region of the square to the central region of the adjacent 
square to which the call is directed. The route follows such row or such column 
until the adjacent square. 

Finally, we consider the routing of the possible single internal call. The end- 
point of the internal call is outside the area Si. If it is originated in the central 
area, then it can be routed through a path that reaches a free row or column 
that connects the central area to the central area of the adjacent square to which 
the internal call is directed. The route goes through such row or column until 
the adjacent square is reached. If the internal call has the endpoint outside both 
the central area and the region S\ it is routed through the ring on which the 
endpoint lies until it reaches a free row or column connecting the central area of 
the square to the central area of the adjacent square to which the call is directed, 
and then follow it until the appropriate adjacent square. 

The routing of a call associated with a color of set C2 is shown in Figure 1. 
In particular, it is described the route followed in the two squares where the call 
is internal, and in one square where the call is external. 

4    Lower Bounds on Meshes 
In this section we give a randomized lower bound of J?(log n) for the path coloring 
problem on meshes. The lower bound also applies to the load balancing problem 
([AAFPW93]) on meshes. 

The lower bound is based on an application of Yao's Lemma to on-line algo- 
rithms. We construct a distribution over request sequences, such that the number 
of colors used by an optimal algorithm is always bounded by a constant while the 
expected on-line load (i.e., the maximum number of paths crossing an edge) of 
a deterministic algorithm is i?(logn). We recall that the load of a path coloring 
algorithm is bounded above by the number of colors and thus the lower bound 
follow. 

The distribution over request sequences is defined recursively in L = log4 n 
stages as follows. At the i'th stage of the recursion, i = 1,2,... ,L, we define 
a probability distribution for an 4L~i+1 x 4L~i+1 square Si of the mesh. We 
consider a partition of Si into 16 subsquares of size 4L~l x 4L~\ The internal 
part of the square Si is defined as the square I consisting of the 4 internal 
subsquares in the above partition. S \ I is called the external part of the square. 
Let I[x, y] denote the vertex with row x and column y in the submesh defined 
by / where 0 < x, y < 2 ■ 4L~\ We now give for each 0 < x < 2 • 4L~i a set of 8 
vertical calls from l[0,x] to I[2 ■ AL~\x). Then choose at random one of the 16 
subsquares and proceed with the (i + l)'st stage of the probability distribution 
for that subsquare recursively. The (L + l)'st stage of the probability distribution 
contains no requests. 

The next two claims give bounds on the optimal and the on-line solutions. 

Claim 7 The number of colors used by an optimal algorithm for the above prob- 
ability distribution is 8. 
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Proof. We prove the claim by induction on i. If the subsquare of size 4L~l xAL"1 

chosen in the probability distribution is not in the internal part J, then we route 
the calls given in the i'th stage through the internal part of the square, and 
otherwise we route the calls through the external part of the square, so that 
none of the routes will cross the routes for calls in stages j > i. This can be done 
so that calls with distinct source and destination have disjoint paths and thus 
the number of colors is 8.    ■ 

Claim 8 Let Ai be the expected average load of the on-line algorithm on the 
edges in the square Si. Then Ai >i. 

Proof. We first prove that the average increase in the load of the edges of the 
square Si due to the requests given at the i'th stage is at least 1. The number 
of edges of the mesh Si is 2 x 42(i-*+1). The requests given at the ith stage 
include 8 x 2 x 4L_i calls between pairs of vertices such that any path between 
them includes at least 2 x AL~l edges in 5, (even if the path passes outside the 
square). Therefore, the increase of the average load on edges of Si is 1. 

We now prove by induction that At >i. For i = 1 it follows from the above 
claim. We assume the claim holds for i and prove it for i +1. Since the subsquare 
for the (i + l)'st stage is chosen at random the expected average load of the edges 
of Sj+i is equal to Ai. Since the average increase in the load of the edges of Sj+i 
is at least 1 we have Ai+i >i + l.   ■ 

We conclude the following. 

Theorem 9. The competitive ratio of any on-line randomized path coloring al- 
gorithm on meshes is J?(logn) against oblivious adversaries. The same lower 
bound holds for load balancing on meshes. 

5    Path coloring on trees and trees of rings 
In this section we consider the on-line path coloring problem on trees and on 
trees of rings. 

An algorithm for trees and trees of rings is obtained by showing that these 
graphs are 0(C)-inductive graph, where C is the maximum number of paths 
that crosses an edge, which is a lower bound on the optimal cost. We omit the 
proof of this fact in this abstract. The upper bounds follow from a result by 
Irani [190] that the greedy on-line coloring algorithm uses O(dlogn) colors on a 
d-inductive graph of n vertices. We can therefore conclude: 

Theorem 10. There exists a 0(log n)-competitive algorithm for on-line path col- 
oring on trees and trees of rings of n vertices. 

We also prove the following lower bound on the competitive ratio of determin- 
istic algorithms for on-line path coloring on trees whose description is omitted 
in this abstract. 

Theorem 11. Any algorithm for path coloring on trees of n vertices has a com- 
petitive ratio o//?(lo'°f0gn). 

Acknowledgments: We would like to thank Yossi Azar, Allan Borodin, 
Amos Fiat, Sandy Irani, Hal Kierstead and Gerhard Woeginger for useful dis- 
cussions. 
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Abstract. We investigate the time complexity of deciding the existence 
of layout« of virtual paths in high-speed networks, that enable a connec- 
tion from one vertex to all others and have maximum hop count h and 
maximum edge load / , for a stretch factor of one. We prove that the 
problem of determining the existence of such layouts is NP-complete for 
every given values of h and I, except for the cases h = 2, / = 1 and h = 1, 
any /, for which we give polynomial-time layout constructions. 

1    Introduction 

1.1     Motivation 

Asynchronous Transfer Mode (ATM for short) is widely accepted as the most 
popular architecture that supports high-speed networks, and is thoroughly de- 
scribed in the literature [14, 13, 16]. ATM is based on relatively small fixed-size 
packets, that are routed independently, based on two small routing fields at 
their header (termed virtual channel index (VCI) and virtual path index (VPI)). 
At each intermediate switch, these fields serve as indices to two routing tables, 
and the routing is done in accordance to the predetermined information in the 
appropriate entries. 

Routing in ATM is hierarchical in the sense that the VCI of a cell is ignored 
as long as its VPI is not null. This algorithm effectively creates two types of 
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N. ERBFMBICT960861, by the EU ESPRIT Long Term Research Project ALCOM- 
IT under contract N. 20244 and by the Italian MURST 40% project "Algoritmi, 
Modelli di Calcolo e Strutture Informative". 
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predetermined simple routes in the network - namely routes which are based on 
VPIs (called virtual paths or VPs) and routes based on VCIs and VPIs (called 
virtual channels or VCs). VCs are used for connecting network users, and VPs 
are used for simplifying network management (routing of VCs in particular). 
Thus the route of a VC may be viewed as a concatenation of complete VPs. 

As far as the mathematical model is concerned, given a communication net- 
work, the VPs form a set of simple paths in the network (termed the virtual path 
layout (VPL for short)) on the same vertices. Each VC is thus a concatenation 

of such virtual paths. 
The VP layout must satisfy certain conditions to guarantee important per- 

formance aspects of the network (see [1, 12] for technical justification of the 
model for ATM networks). In particular, there are restrictions on the following 

parameters: 

The hop count: The number of VPs which comprise the path of a VC in the 
virtual graph. This parameter determines the efficiency of the setup of a VC 

(see, e.g., [4, 17, 18]). 
The load: The number of virtual paths that share any physical edge. This 

number determines the size of the VP routing tables (see, e.g., [6]). 
The stretch factor: The ratio between the length of the path that a VC takes 

in the physical graph and the shortest possible path between its endpoints. 
This parameter controls the efficiency of the utilization of the network. 

In many works (e.g., [2, 3, 12, 5]), a general routing problem is solved using 
a simpler sub-problem as a building block; In this sub-problem it is required 
to enable routing between all vertices and a single vertex (rather than between 
any pair of vertices). This restricted problem for the ATM VP layout problem 
is termed the rooted (or one-to-many) VPL problem [12] and is the focus of the 

present work. 

1.2     Related Work 

A few works have tackled the VP layout problem, some using empirical tech- 
niques [1, 15], and some using theoretical analysis [12, 5, 11]. 

The VP layout problem is closely related to graph-embedding problems since 
in both cases it is required to embed one graph in another graph. However, while 
in most embedding problems both graphs are given, here we are given only the 
physical (host) graph, and we can choose the embedded graph (in addition to 

the choice of the embedding itself). 
Most of the performance parameters are also different in both cases: 

- While the association between the host graph and the embedded graph is 
made by the dilation parameter in embedding problems, here it is made by 
the stretch factor. In other words, in embedding problems it is important to 
minimize the length of each individual embedded edge, while in this model 
it is important to minimize the length of paths. 
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- The hop count parameter is closely related to the distance in the virtual 
graph, however, while the distance depends only on one graph, the hop count 
also depends on the physical graph (unless the stretch factor is unbounded). 

- The load parameter is identical to the congestion in embedding problems, 
and the different terminology is due to the loaded meaning of congestion in 

the communication literature. 

The computational complexity of determining the existence of a VP layout 
for a given network within a given maximum hop count and a given maximum 
load was investigated in [12], where the authors showed that this problem is NP- 
complete when there is no limit on the stretch factor. In [12] also some polynomial 
construction algorithms are given for trees for the stretch factor equal to one, 
i.e. when the physical routed paths are shortest. 

1.3     Summary of Results 

In this paper we improve the results of [12], concerning the computational com- 
plexity of constructing virtual path layouts from a given node to all other nodes 
in the network. While in [12] the maximum hop count h and the maximum load 
/ are not constant, here we tightly establish the border between tractability and 
intractability, by determining the lowest (constant) values of h and I that make 
the problem computationally hard. Moreover, we give efficient construction al- 

gorithms for all the tractable cases. 
Specifically, we show that the problem of determining the existence of such 

layouts is NP-complete for every given values of h and /, except for the cases 
h = 2, / = 1 and h - 1, any /, for which we give polynomial-time constructions. 
All results in this paper concern the stretch factor of one. 

The paper is organized as follows: In Section 2 we define the model and the 
related performance measures. In Section 3 we give the above-mentioned NP- 
completeness results. In Section 4 we present efficient construction algorithms for 
the polynomial cases, and in Section 5 we conclude and list some open problems. 
Some proofs are only briefly sketched in this Extended Abstract. 

2    The Model 

Following [12] we model the underlying communication network as an undi- 
rected graph G = (V,E), where V corresponds to the set of switches and E to 
the set of physical links between them. 

Definition 1. A rooted virtual path layout (RVPL for short) <E is a collection 
of simple paths in G, termed virtual paths (VPs for short), and a vertex r eV 

termed the root of the layout (denoted root^)). 

Definition2. The hop count H{v) of a vertex v € V in a RVPL <P is the 
minimum number of VPs whose concatenation forms a shortest path in G from 
v to root^P). If no such VPs exist, define %{v) = oo. (Note that the assumption 
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of stretch factor equal to one is reflected by the requirement of using shortest 

paths.) 

Definition3. The maximal hop count of a RVPL & is defined as Hmax{^) = 

maxv£v{Ti{v)}. 

Definition^ The load £(e) of an edge e £ E in a RVPL $ is the number of 

VPs 4' € lP that include e. 

Definition5. The maximal load £max(<E) of a RVPL f/ is maxee£ £(e). 4 

To minimize the load, one can use a RVPL & which has a VP on each physical 
link, i.e., £mar(^) = 1, however such a layout can have a hop count equal to the 
diameter of the network. The other extreme is connecting a direct VP from the 
root to each other vertex, yielding %max = 1 but usually a very high Cmax. In 
general, we are interested in the intermediate cases where we trade one parameter 
for the other. The following decision problem then naturally arises. 

Definition6.   (h, l)-RVPL Problem: 

INSTANCE:  A network G = (V, E) and a given root r e V. 
QUESTION: Is there a (h,l)- RVPL 9 for G with root r, i.e. a RVPL such 

that nmax{V) < h and Cmax(V) < n 

3 The NP-complete Cases 

In this section we tightly establish the values of h and / that make the problem 
of determining the existence of virtual path layouts NP-complete. Namely, we 

prove the following theorem. 

Theorem 7. The {h, I)-RVPL problems are NP-complete for any h and I except 

for the cases h = I, any I and h = 2, / = 1. 

First observe that the (/i,/)-RVPL problems belong to the class NP. In fact, 
given an RVPL W for G = (V, E) with a given root r G V, one can easily check 
whether C(e) < I for every edge e £ E and whether Hmax{^) < h. For the latter 
task we define a weighted graph G' = {V, £"), termed virtual graph, with an edge 
of weight / connecting vertices a and b if and only if there is a virtual path of 
length / between them; then, if d is the (unweighted) distance between r and v 
in G, by using slight modifications of usual shortest path algorithms we verify 
that, for every vertex v £ V - {r}, there is a path from r to v in G' of length d 
that has at most h edges. 

We prove Theorem 7 in the following four lemmas. In Lemma 8 we prove that 
(3,1)-RVPL is NP-complete. In Lemmas 9 and 10 we prove that for every / the 
(2,/)-RVPL problems are NP-complete. Finally, we prove in Lemma 11 that for 
every h and /, if (h, /)-RVPL is NP-complete then so is {h + 1, /)-RVPL. Thus, 
the first three lemmas establish the basis of an inductive proof and Lemma 11 
is the inductive step. 

4 As mentioned above, the load on an edge is identical to its congestion. 
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Lemma 8.   The (3, \)-RVPL problem is NP-complete. 

Sketch of proof. In order to prove the NP-completeness of the (3,1)-RVPL 
problem, we provide a. polynomial time transformation from the Dominating Set 
problem (DS) (known to be NP-complete; see [10]). In this problem we have a 
universe set U = {«i, ...,um} oim elements, a family {Ai,..., Aj} of / subsets 
of U and an integer k < /; we want to decide if there exist k subsets Aj1,..., Ajk 

which cover U, i.e. such that \Ji=1 Aj{ = U. 
Starting from an instance IDS of DS, we construct a graph G that admits a 

(3,1)-RVPL if and only if IDS admits a cover. 
Let G= (V,E), where V = {r}UViU{v}UV2UV3 and E = ExUE2UE3UEA 

(see Figure 1), with Vl = {qa \ a = l,...,k + 1}, V2 = {wb \ b = 1,...,/}, 
V3 = {zc | c = 1,..., m}, and J^ = {{r, qa] \ a = 1,.. .,k + I}, E2 = {{qa,v} \ 
a=l,...,k+l},E3 = {{v, wb}\b=l,...J},E4 = {{wb, zc} \ uc G Ab}. 

Instance Dominating Set 

U — {ui, . . . , tiis} 
k = 4, / = 9 
subsets Ai, . . . , Ag C U 

Ai — {ui,u3, u4], ..., 

Ae = {ti9,uio,«ii|Mij}.-, 
Ac, = {«is, "17} 

2l  ^2 «3 Z4 ^5 26 27 Zg Z9 210 Zll ^12 Zl3 ^14 ^15 ^16 Zl7 218 

Fig. 1. The reduction graph for (3, 1)-RVPL 

We show that if there are k dominating sets Ajl,..., Ajk, then there exists 
a (3,1)-RVPL & for G, and that if there are no k dominating sets, then no 
(3,1)-RVPL 9 for G exists. The details are omitted in this Extended Abstract. 

D 

Lemma 9.   The (2,2)-RVPL problem is NP-complete. 

Sketch of proof. We prove the claim by providing a polynomial time trans- 
formation from the 3-SAT problem (see [10]). An instance of this problem is 
constituted by a boolean formula / over m variables x\,..., xm, where / is in 
conjunctive normal form, i.e. / is the conjunction of g clauses ci,..., cg, each of 
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which is the disjunction of three literals. We want to determine whether there 
exists a truth assignment for xi,..., xm which satisfies /. 

Starting from an instance of 3-SAT, we construct a graph G that admits a 

(2, 2)-RVPL if and only if / is satisfiable. 
Let G = {V, E), where V = {r}\JV1\JV2UV3VV4ÖV6, and E = E1öE2UE3U 

E4öE5UE6 (see Figure 2), with Vx = {üa,ua | a= l,...,m}, V2 = {va,va | a = 
l,...,m}, V3 = {qa \ a = l,...,m}, V4 = {wa,i | a = 1,..., m, i = 1,... ,4}, 
V5  =   {zfcj   |  6 =   l,...,g,j  =  1 4}, and Ex  =  {{r,üa},{r,ua}  \  a = 
l,...,m}, E2 = {{üa,va},{ua,va} \ a= l,...,m}, E3 = {{ua,qa},{ua,qa} I 
a = l,...,m], E4 = {{qa,wa>i} | a= l,...,m, i= 1.....4}, E5 = {{va,zbJ} \ 
a = l,...,m,b = l,...,g,j = l,...,4,xa G cb}, E6 - {{va,zb)j} | a = 
l,...,m,b=l,...,g, j = l,...,4,xaE cb}. 

«1,121,221,3 «1,4 22,122,222,322,4 

/ = (xTVE2"Vz3)   A   (^lVs2Vli") 

Fig. 2. The reduction graph for (2, 2)-RVPL 

Informally, in G we associate to each variable xa a truth setting component 
constituted by the subgraph induced by the vertices r, ua, ua, va, va, qa, wa>i, 
u'a,2, t"a,3 and wai4. To explain the intuition for our construction, consider any 
path layout for the graph G. The restriction of this layout to this subgraph can 
be associated in a natural way to a truth assignment for xa. In fact, in order for 
r to reach the four vertices waii,wai2,wa,3,Wa,4 in at most two hops, the VPs 
(r,üa,qa) or (r, ua,qa) must belong to the RVPL. 

W.l.o.g. we can then assume that either {r,ua,qa) or (r,ua,qa) are in the 
RVPL . In the first case the truth assignment associated to xa is true, and in 
the second it is false. If the truth assignment of xa is true (resp. false), then the 
RVPL can contain the VP (r, ua,va) (resp. {r,ua,va)), so that all vertices zbj 
corresponding to clauses cb containing xa (resp. xa) can be reached in at most 
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two hops, as they are directly connected to va (resp. va). (See Figure 3. 

"'o,l   t(;a,2   wa,3   wa,4 

xa false 

wa,\   wa,2   wa,3   wa,4 

xa true 

Fig. 3. Path layout and truth assignment in the case of (2,2)-RVPL 

We show (details omitted in this Extended Abstract) that there is a truth 
assignment satisfying / if and only if there exists a (2, 2)-RVPL <? for G. 

D 

Lemma 10. For every I, the (2,l)-RVPL problem is NP-complete. 

Sketch of proof. Given any / > 2, we will prove that (2,/}-RVPL is an NP- 
complete problem by a polynomial time transformation from the 3-SAT prob- 
lem which is a generalization of the transformation presented in the proof of 
Lemma 9. Let an instance of the 3-SAT problem be as defined in the proof of 
Lemma 9. Starting from this instance, we construct a graph G that admits a 
(2, /)-RVPL if and only if / is satisfiable. 

The idea is to add a construction to each of the vertices ua and v.a which will 
force an addition of/ - 2 VPs on each of the edges {r, ua) and {r, v,a} (in order 
to reach all vertices in the new construction in 2 hops). In addition, we have to 
enlarge the number of wa,i vertices (actually we will have 2/ such vertices for 
every variable a in /), and the number of ztj vertices to 3(/ — 1) + 1 for each 
clause b in the formula /. Note that for the special case / = 2 we will get exactly 
the same construction as in the proof of Lemma 9. 

Formally, we specify only the additions to the construction of Lemma 9. We 
add the following sets of vertices Ve = {sa,i, sa,i \ a = 1,..., m, i = 1,..., / - 2}, 
V7 = {ta,i,j,ta,i,j \a=l,...,m,i=l,...,l-2,j=l,...,l}, and the following 
sets of edges: E7 = {{ua,_sa,i}, {ua, sa,i] \ a = 1,.. ., m , i - 1,..., / - 2}, 
£"8 = {{Sa,i,ta,i,j},{Sa,ija,i,j} I a = 1, . . . , m , i = 1, . . ., / - 2 , j = 1, . . ., /}. 

We enlarge the number of waii and ztj vertices as follows: VA — {wa,i | a = 
l,...,m,i=l,...,2l},Vs = {z'bJ | 6 = 1,..., ff , j = 1,..., 3(/ - 1) + 1}, and 
we correspondingly enlarge the number of edges in the sets £4, E5 and E6 as 
follows: E4 = {{qa,wa,i} \ a = 1,... ,m, i = 1,...,2/}, E5 = {{va,zitj} | a - 
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l,...,m,6= l,...,g,j = 1,...,3(/- 1) + 1, z„ € ct}, £6 = {K,^,j} I « = 
1,..., m , b = 1,... ,g , j = 1,..., 3(/ - 1) + 1, xa £ cb}. 

Clearly to reach the tatitj and ta>ij vertices in two hops, we must reach each 
of the sa<i and ~sa,i vertices in one hop, which uses /- 2 VPs on each of the edges 
{r,ua} and {r,Tia}. 

The rest of the proof is a generalization of the proof of Lemma 9, and is 
omitted in this Extended Abstract. n 

Lemma 11. For every h and I, if the {h,l)-RVPL problem is NP-complete then 
(h + l,l)-RVPL is also an NP-complete problem. 

Sketch of proof. We assume that {h, /)-RVPL is NP-complete and prove that 
(/).+ 1, /)-RVPL is also NP-complete by a polynomial transformation from (h, /)- 
RVPL. Given an instance of (h, /}-RVPL, a graph G = {V, E) and a vertex r £ V, 
we construct a graph G' = {V, E') and a vertex r' £ V such that there exists a 
(h + 1, /)-RVPL for G' if and only if there exists a (h, Z)-RVPL for G. For every 
vertex in V, let deg(v) be the degree of the vertex (i.e., the number of vertices 
adjacent to v in G). The graph G" is constructed from G by adding deg(v) ■ I 
new vertices to each vertex v in G, and connecting each of them to v. Formally, 
V = VU {wVti | v G V, i = 1,..., deg(v) ■ I}, E' = E U {{v, wVii} | v £ V, i = 
l,...,deg{v)-'l}. 

The root r' of G' is the vertex r £ V. We term the vertices and edges of G 
in G' original and the rest of the vertices and edges in G' new. Obviously the 
transformation is polynomial in the size of the input graph G. 

Assume that there is an {h, /)-RVPL <f for G with root r. To get an (h + 1,1)- 
RVPL #' for G' with root r' we add to 9 the VPs of length 1 from every v £ V 
to every wV)i. It can also be shown (detailed omitted here) that if there is an 
{h + l,/)-RVPL <f' for G' with root r', then in <P' for every original vertex v, 
7i{v) < h and thus !f' induces an (h, /)-RVPL for G in the natural way (remove 
from W all VPs with an endpoint which is a new vertex). 

D 

Sketch of proof, [of Theorem 7] We prove that for every h and / except for the 
cases h = l, any /, and, h = 2,1=1 the (h, /)-RVPL problem is NP-complete by 
induction on h. The basis is established in Lemmas 8, 9, and 10, where we prove 
that the problems (2, /)-RVPL for every /, and (3,1)-RVPL are NP-complete. The 
induction step is established in Lemma 11, where we prove that for every h and 
/, the NP-completeness of the {h, /)-RVPL problem derives the NP-completeness 
of </?.+ !, 0-RVPL. D 

4    Polynomial Cases 

In this section we show that the above NP-completeness results are strict, by 
giving polynomial running time algorithms for the (2,1)-RVPL problem and the 
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(1, /)-RVPL problems for any / > 1. We do this by applying algorithms to find 
flow in networks, which are known to be polynomial (e.g., [9, 8, 7]). 

Given a directed graph G = {V,E), with capacities c(e)- positive integers - 
for the edges e £ E, and two specified vertices s and t, we want to find a flow 
of maximum total value from s to t. It is well-known that in the case of unit 
capacities there is a flow of value k from s to t in G iff there are k edge-disjoint 
paths connecting s and t, and that this holds also in a general network with 
integral capacities, provided that each edge e is replaced by x parallel edges of 
unit weight each, where x is the original capacity of e. 

Given a graph G = {V, E) and a specified vertex r, to construct a (1, /}-RVPL 
for it, we construct the graph G' - (V, £")> as follows. V = V U {<}. For E' we 
construct a shortest-path BFS graph, rooted at r; this gives a directed layered 
graph (whose layers are identical to those constructed by the Dinic's Algorithm; 
see [8, 7]); The vertices in layer i,i > 0 are exactly the vertices in V whose 
distance from r is exactly i. There are no edges within a layer, and all edges are 
from layer i to layer i + 1, for some i > 0. All these edges have a capacity of /. 
We then add all the edges (v,t) for every vertex v in V - {r}, with capacity 1. 
The source and destination of G' are r and t, respectively. (See Figure 4(b)). 

layers 

(a) Initial network G        (b) (V) - RVPL (c) (2,1) - RVPL 

Fig. 4. The flow constructions 

We then run any algorithm to determine the maximum flow in this network. 
By the above, there is a flow of value \V\ - 1 in G' iff there are paths in G 
from r to all other vertices in |V|, such that no edge is used in more than / of 
them, which means that there is a solution to the (1, /)-RVPL problem iff there 
is a flow of value at least |V| - 1 in G', which thus supplies a polynomial-time 
algorithm for the (l,/)-RVPL problem. 
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Given a graph G = (V, E) and a specified vertex r, to construct a (2, 1)- 
RVPL for it, we construct the following graph G' = {V, £")• V = V U {t}, and 
E' is defined as follows. Let U denote the set of neighbors of r in G. For E' we 
construct a shortest-path BFS graph, rooted at r (as above). This partitions the 
vertices of V into layers, such that the vertices in layer i, i > 0 are exactly the 
vertices in V whose distance from r is exactly i. As above, there are no edges 
within a layer, and all edges are from layer i to layer i + 1, for some i > 0. 
We then add to E' all the edges (v,t) for every vertex v in V - (U U {r}). All 
the edges in E' have a capacity of 1, except for the edges emanating from r, 
whose capacity is \V\ - \U\ - 1. The source and destination of G' are r and t, 
respectively. (See Figure 4(c)). It can be shown that there is a (2,1}-RVPL iff 
the maximum flow in the network is equal to | Vj - \U\ - 1, and thus the problem 
is solved in polynomial time by solving the corresponding flow problem. 

Note that, in the case of h = 1 and arbitrary /, if we run the network flow 
algorithm on the original network to which t is added as above, and where 
each edge is replaced with two anti-parallel edges (rather than using the layered 
network) and capacities are similarly defined, we can determine whether a layout 
exists, but with an arbitrary stretch factor. 

5     Summary and Open Problems 

We have considered a routing problem termed the "rooted VP layout problem" 
that arises in ATM networks and we have investigated the computational com- 
plexity of determining the existence of RVPL fulfilling a maximum hop count 
h and a maximum load /. We have shown that deciding the existence of such 
layouts is NP-complete for all values of h and /, except for the cases h = 2, / = 1 
and h= 1, any /, for which we presented polynomial-time layout constructions, 

based on network flow algorithms. 
In classical graph embedding problems vertices are mapped to vertices and 

edges are mapped to paths connecting the endpoints of their corresponding ver- 
tices; this is a very common situation in embeddings within a VLSI networks. 
In this context, the term dilation is used to denote the longest path onto which 
an edge is embedded. Since in our constructions for the NP-complete results the 
virtual paths were of length at most two, it follows that the above two problems 
remain NP-complete for any given bound on the dilation. 

An open problem is to extend these results to many-to-many virtual path 
layouts, where we are interested to connect all pairs of vertices with virtual paths 
under similar constraints, or to other cases when the pairs to be connected are 

specified. 
A more difficult problem seems to be the one in which not only shortest 

path layouts are considered, but also layouts that are within a given stretch 
factor / (that is, one in which the virtual channel between the desired vertices is 
bounded by / times the shortest path between these vertices). Our polynomial- 
time algorithms do not apply for a given stretch factor (though, as we noted, we 
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can use simpler algorithms for the case h = 1, any /, under the assumption of 

an arbitrary stretch factor). 

Acknowledgment: We thank Shlomo Moran for very helpful comments. 
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Efficiency of Asynchronous Systems 
and Read Arcs in Petri Nets 

Walter Vogler *, Universität Augsburg, Germany- 

Abstract 

Two solutions to the MUTEX-problem are compared w.r.t. their tem- 
poral efficiency. For this, a formerly developed efficiency-testing for asyn- 
chronous systems is adapted to nets with so-called read arcs. The close re- 
lation between efficiency-testing and fairness is pointed out, and it is shown 
that read arcs are necessary for any solution to the MUTEX-problem. 

1    Introduction 

The testing scenario of [DNH84] has been developed further in [Vog95b, JV96] in 
order to compare the temporal efficiency of asynchronous systems - using Petri 
nets as system models. This approach is applied here to two solutions of the 
MUTEX-problem based on token passing. The corresponding nets contain what 
we call read arcs, and one of our main results is that this is in fact necessary. 

c 

® ÖO^O^H 
Figure 1 

In Petri nets, the check of a side-condition is modelled with a loop as in 
Figure 1: the occurrence of t removes the condition c and restores it afterwards; 
hence, t and £' can occur in any order, but not at the same time. This is certainly 
adequate if e.g. c models the processor that t and t' run on. But if e.g. c is a 
value from a data base which can be read concurrently, then t and i' can occur 
at the same time. We model such cases with special read arcs instead of loops. 

Read arcs have not found so much attention in the past, probably because 
loops and read arcs are treated just the same if we only look at interleaving 
semantics. But they do make a difference when we explicitly take into account 
concurrency.   E.g. [CH93] discusses a step semantics and [MR95] defines net- 

"This work was partially supported by the DFG-project 'Halbordnungstesten'. Author's 
address: Institut für Informatik, Universität Augsburg, D-86135 Augsburg, Germany, email: 
vogler@informatik.uni-augsburg.de 
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processes for nets with read arcs. In both approaches, a net with read arcs can 
be translated to an equivalent net without, but it is argued in [MR95] that the 
former is more natural and compact. In clear contrast, read arcs are even better 
motivated in our setting, since they add relevant expressivity: the MUTEX- 
problem can only be solved with nets having read arcs; this also holds, if we 
disregard efficiency and simply take fair behaviour as a basis. 

In the testing approach of [DNH84], a system is an implementation if it per- 
forms in all environments, i.e. for all users, just as well as the specification. While 
in the classical setting successful performance only depends on the functionality, 
i.e. which actions are executed, the testing approach was refined in [Vog95b] to 
consider also efficiency. The must-version of this efficiency testing (concerned 
with worst case behaviour) is not so easy to define in the case of asynchronous 
systems, where the components work with indeterminate relative speeds; most 
often, this is interpreted as 'each component may work arbitrarily slow'. With 
this view, the worst case is simply that nothing is done for a long time, hence 
every test is failed and we do not have a sensible theory of testing. 

As a way out, [JV96] assumes that each action is performed within one unit of 
time (or is disabled within this time). Such an upper time bound is a reasonable 
basis for judging the efficiency; since actions can also be performed arbitrarily 
fast, the components work with indeterminate relative speeds even under this 
assumption, and we have a valid theory for asynchronous systems. It turns out 
that, for the resulting testing scenario, the implementation preorder is a sensible 
faster-than relation. Three variants based on dense time are considered and each 
of them is shown to coincide with a discretely timed version. In the most simple 
variant, which we will generalize here to nets with read arcs, transitions must 
fire within time 1 after enabling, but the firing itself is instantaneous. 

After defining some basic concepts in Section 2, we define our asynchronous 
firing rule in Section 3 and present a characterization of the faster-than relation 
that results from testing; also, the use of loops is discussed. Section 4 shows the 
close relation between efficiency testing and fairness (in the sense of progress) 
demonstrating that our efficiency testing is concerned with asynchronous be- 
haviour; it is also described how to determine the fair behaviour of a composed 
system in a modular fashion. The two MUTEX-solutions with read arcs are 
studied in Section 5. We view a MUTEX-solution as a scheduler, i.e. an inde- 
pendent component the users have to synchronize with. This view allows a clean 
formulation of the correctness requirements and fits very well the behaviour no- 
tions we have given in Sections 3 and 4; we prove the correctness of one of our 
solutions and then show that no ordinary net without read arcs can be correct 
in this sense. Finally, we show that, from the point of view of one user, one 
solution is more efficient than the other. 

Due to lack of space, the proofs had to be omitted; see [Vog96], also for a 
discussion of the literature on the efficiency of asynchronous systems. I thank 
Roberto Gorrieri and Lars Jenner for their comments, which helped to improve 

the presentation of this paper. 
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2    Basic Notions of Petri Nets with Read Arcs 

We use safe nets (extended with read arcs) whose transitions are labelled with 
actions from some infinite alphabet £ or with the empty word A, indicating 
internal, unobservable actions. £ contains a special action w, which we will need 
in our tests to indicate success. 

Thus, a net N = (S,T,F,R,l, MN) consists of finite disjoint sets 5 of places 
and T of transitions, the flow F C S xTUT X S consisting of (ordinary) arcs, 
the set of read arcs R C 5 x T U T X S, the labelling l:T->SU {A}, and the 
initial marking MJV : S -» {0,1}; R is always symmetric with R D F — 0. As 
usual, we draw transitions as boxes, places as circles and arcs as arrows; read 
arcs are drawn as lines without arrow heads, i.e. we identify the two elements 
(x, y), (y, x) £ R. The net is called ordinary, if R = 0. 

For each i£SUT, the (full) preset of a; is 'x = {y \ (y, x) £ F U R} and 
the (full) postset of x is x* = {y \ (x, y) £ F U R}; the reduced preset of x is 
°x = {y | (y, x) G .F} and the reduced postset of a; is se° = {y \ (x,y) £ F}. 
If E £ °2/ D y°, then x and y form a loop. A marking is a function 5 —» JV0. 
We sometimes regard sets as characteristic functions, which map the elements 
of the sets to 1 and are 0 everywhere else; hence, we can e.g. add a marking and 
a postset of a transition or compare them componentwise. 

Our basic firing rule extends the firing rule for ordinary nets by regarding 
the read arcs as loops, i.e. as ordinary arcs (since R is symmetric). A transition 
t is enabled under a marking M, denoted by M[t), if 't < M. If M\t) and 
M' = M + f - *t (which is the same as M + t° - °t), then we write M[t)M' 
and say that t can occur or fire under M yielding the follower marking M'. 

Enabling and occurrence is extended to sequences as usual. If w £ T* is 
enabled under Mff, it is called a firing sequence. We extend the labelling to 
sequences of transitions as usual, i.e. homomorphically; thus, internal actions 
are deleted in this image of a sequence. With this, we lift the enabledness and 
firing definitions to the level of actions: a sequence v of actions is enabled under 
a marking M, denoted by M[v)), if M[w) and l(w) = v for some w £ T*. If 
M = MM, then v is called a trace; the set of traces is the language of N. 

A marking M is called reachable if MM[W)M for some w £ T*. The net is 
safe if M (s) < 1 for all places s and reachable markings M. 

General assumption: All nets considered in this paper are safe and only have 
transitions t with °t ^ 0. (The latter condition is no serious restriction, since it 
can be satisfied by adding a loop between t and a new marked place, if °t were 
empty otherwise; this addition does not change the firing sequences.) 

We use a TCSP-like parallel composition \\A and write || for ||s—{o>}- Nets 
combined with ||^ run in parallel and have to synchronize on actions from A. 
To construct JVi \\A N2, we take the disjoint union of Ni and N2, combine each 
a-labelled transition ti of iVi with each a-labelled transition t2 from N2 if o £ A 
(i.e. introduce a new a-labelled transition (ii,*2) that inherits all arcs from t\ 
and t2), and delete all the original a-labelled transitions in N\ and iV2 if a G A. 
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3    Timed Behaviour of Asynchronous Systems 

We now describe the asynchronous behaviour of a parallel system, taking into 
account at what times things happen. Hence, the components of the system 
vary in speed - but we assume that they are guaranteed to perform each enabled 
action within at most one unit of time; this upper time bound allows the relative 
speeds of the components to vary arbitrarily, since we have no positive lower time 
bound. Thus, the behaviour we define is truly asynchronous. 

For ordinary nets, [JV96] bases a testing preorder on such an asynchronous 
firing rule using dense time, shows that one can just as well use discrete time, and 
gives a characterization of the testing preorder. These results can be generalized 
to nets with read arcs [Vog96]; here, we immediately define an asynchronous 
firing rule using discrete time and present the respective characterization. 

Due to the time bound 1, a newly enabled transition fires or is disabled within 
time 0 - or it becomes urgent after one time-unit (denoted by a), i.e. it has no 
time left and must fire or must be disabled before the next a. 

The crucial point of read arcs is that they differ from loops w.r.t. disabling. 
If we have a loop (c,t), (t,c) and an arc or read arc (c,f) for a place c and 
urgent transitions t and t' (see Figure 1), then firing t removes the token from c 
and, thus, disables t' momentarily; hence, t' is not urgent any more. If, instead, 
(c, t) and (t, c) form a read arc, t just checks for the presence of a token without 
removing it and, thus, t' is not disabled and remains urgent; hence, t and t' will 
occur faster - and this is what we should expect since t does not block t'. 

Definition 3.1 An instantaneous description ID = (M, U) consists of a mark- 
ing M and a set U of urgent transitions. The initial ID is IDN = (MN, UN) with 
UN = -0 I MN[t)}. We write (M, U)[e)(M\ U') in one of the following cases: 
1. e = t e T, M[t)M', U' = U- {t'\°t n •*' ± 0}) 
2.e = a1M = M',U = 9,U' = {t\ M[t)} 

DFS(N) - {w | IDN[w) ID} is the set of discretely timed) firing sequences 
of N, DL(N) = {l{w) | w G DFS{N)} is the discrete language of N containing 
the discrete traces of N, where 1(a) = a. For w e DFS(N) or w € DL(N), ((w) 
is the number of CT'S in w. The behaviour inbetween two a's is called a round. 

We call a net testable, if none of its transitions is labelled with w. A testable 
net TV satisfies a timed test (O, D), N must (O, D), if each w £ DL(N\\0) with 
((w) > D contains some w; we call a net Ni faster than a net N2, Nx Zl N2, if 
for all (O, D) we have N2 must (O, D) => JV"i must (O, D). □ 

Part 1 allows enabled transitions - urgent or not - to fire; hence, DL(N) 
includes the language of N and describes an asynchronous behaviour. U = 0 in 
Part 2 requires that no urgent transition is delayed over the following a. Each 
enabled transition is urgent after a. Thus, a discrete trace is any ordinary trace 
subdivided into rounds by a\ such that no transition enabled at (i.e. immediately 
before) one a is continuously enabled until after the next a. 

The definitions for testing are standard except for the time bound, where 
we require that every run of the system embedded in the test environment is 
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successful within time D; hence, we do not consider traces that do not last for 
time D. We call the implementation Ni faster, since it might satisfy more tests 
and, in particular, some test nets within a shorter time. 

The test-preorder ZJ formalizes observable difference in efficiency; refering to 
all possible tests, it is not easy to work with directly. Thus, we now characterize 
ZJ by so-called i-refusal traces [JV96]: we replace the IT'S in a discrete trace by 
sets of actions, indicating the time-steps now. Such a set contains actions that 
are not urgent, i.e. can be refused when the time-step occurs. 

Definition 3.2 For discrete instantaneous descriptions (M, U) and (M', U') we 
write (M,U)[e)r(M',U') if one of the following cases applies: 
1. e = t G T, M[t)M', U' = U- {t'\°t n •*' ^ 0}) 
2. e = X C E, M = AT, U' = {t | M[t)}, VteU : l(t) <£ X U {A}; X is a refusal 

set. 
The corresponding i-refusal firing sequences form the set RFS(N). RT(N) = 
{l(w) | w G RFS(N)} is the set of i-refusal traces where l(X) = X. □ 

Occurrence of E exactly corresponds to that of a, hence: 

Prop. 3.3 For nets Nx andN2, RT(Nx) C RT(N2) implies DL{NX) C DL(N2). 

We will show later that read arcs add relevant expressivity; here, we state 
that ordinary loops are in fact not needed in nets with read arcs. 

Prop. 3.4 For each net N, there is a loopless net N' with RT(N) = RT(N'). 

Still, loops are certainly often adequate: if two activities run on the same 
processor, they cannot occur together; if one takes place, the other has to wait 
a little - and this is just how we treat two transitions with a common loop-place 
here. Also, our construction for 3.4 makes nets possibly exponentially larger. 
Finally, on the level of discrete firing sequences, loops have expressivity of their 
own, since no net without loops has the same discrete firing sequences as the 
one shown in Figure 1: 

Prop. 3.5 IfN is a loopless net such thatt',tt' G DFS(N), ihenta £ DFS(N). 

To show that ÄT-semantics induces a congruence for H^, one defines \\A for 
i-refusal traces: actions from A are merged, while others are interleaved; refusal 
sets are combined as in ordinary failure semantics. 

Definition 3.6 Let u,te(SU 7>(E))*, A C E. Then u \\A v is the set of all 
w G (E U 'P(E))* such that for some n we have u = u±.. .un, v = vi...vn, 
w = u>i... wn and for i = 1,..., n one of the following cases applies: 

- ui = Vi = Wi G A 
- Ui = u>i G (E — J4) and V{ = A, or v^ = tUj G (E — A) and Ui = A 
- m, Vi, Wi C E and Wi C ((ui U Vi) n -A) U (ui fl Vi) □ 

Theorem 3.7 gives us one half of the characterization in 3.8. 

Theorem 3.7 For ACE and nets Ni and N2, we have that RT(NI\\AN2) = 
(J {u\\Av | u G RT(N!), v £ RT{N2)}. 
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Theorem 3.8 For testable nets, Nx =1 N2 if and only if RT(N1) C RT(N2). 

Observe that a faster system has less i-refusal traces; such a trace is a witness 
for slow behaviour, it is something 'bad' due to the refusal information. 

Corollary 3.9 Inclusion of RT-semantics is fully abstract w.r.t. inclusion of 
DL-semantics and parallel composition, i.e. it is the coarsest precongruence for 

parallel composition that respects DL-inclusion. 

Theorem 3.8 essentially reduces ~J to an inclusion of regular languages, which 
implies decidability. The testing preorder 3 is als0 compatible with some other 
interesting operations, namely relabelling, hiding and restriction. 

4    Efficiency Testing and Fairness 

Now we relate our notion of asynchronous behaviour to (weak) fairness (or 
progress assumption); at the same time, we study compositionality for fair be- 
haviour. Fairness requires that a continuously enabled activity should eventually 
occur; in real life, this is automatically true, i.e. it does not have to be imple- 
mented. First, we extend the definition of the various firing sequences to infinite 
sequences taking into account that an infinite run should take infinite time. 

Definition 4.1 An infinite sequence is a (discrete/i-refusal) firing sequence if 
all its finite prefixes are (discrete/i-refusal) firing sequences. 

A progressing (i-refusal) firing sequence is an infinite discrete, i-refusal resp., 
firing sequence with infinitely many cr's, sets resp. The images of these sequences 
are the progressing (refusal) traces, forming PL(N), PRT(N) resp. 

For a progressing (refusal) trace v, a(v) denotes the sequence of actions in 
v, which remains after removing all cr's, sets resp. □ 

Pi?T-(PI-)semantics extends ÄT-(Z>Zr)semantics to infinite runs, required to 
take infinite time. Using König's Lemma, one can show that nets have the same 
PRT-(oi P2^)semantics if and only if they have the same RT-(oi DL-)semantics. 

Classically, an infinite firing sequence MN\t0)Mi\ti)M2 .. ■ would be called 
fair if we have: if some transition t is enabled under all Mi for i > j, then t = U 
for some i > j; hence, an infinite sequence of t"s would not be fair in the net of 
Figure 1, since t is enabled under all states reached, but never occurs. But the 
sequence should be fair: t is not continuously enabled, since every occurrence of 
t' disables it momentarily, compare [Rei84, Vog95a]. Thus, we will require that 
t is enabled also while each U with i > j is firing. For this, we have to keep in 
mind that a read arc does not consume a token. 

Definition 4.2 For a transition t, a finite firing sequence Mjv[i0)Mi[*i) ■ ■ ■ Mn 

is t-fair, if not Mn[t). An infinite firing sequence MN[to)Mi[ti)M2 ... is t-fair, if 
we have: if t is enabled under all Mi - °U for i greater than some j, then t — U 
for some i > j. A finite or infinite firing sequence is fair, if it is t-fair for all 
transitions t. The fair language of N is Fair(N) = {v\v — l(w) for some fair 

firing sequence w}. a 
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Now we establish a first relation of our approach to fairness: PL(N), the 
infinite version of DL(N), describes an asynchronous behaviour just as Fair(N). 

Theorem 4.3 For all nets N, Fair(N) = {v \ 3u G PL(N) : v = a(u) } 

Next, we determine the coarsest precongruence refining fair-language inclu- 
sion, something that is needed when systems are constructed bottom-up with ||^. 
Theorem 4.5 was first obtained in [G0I88]. We improve the original results by 
allowing read arcs and loops; also, Gold considered safe nets where always °t ^ 0 
- as we do -, but allowed unsafe nets with isolated transitions as environments 
in the proof of 4.5 iii); this is improved, too. 

Definition 4.4 For a net N, define the fair failure semantics by TT{N) = 
{(v, X) I X C E and v = l(w) for some, possibly infinite, firing sequence w that 
is f-fair for all transitions t with l(t) G X U {A}}. Q 

The intuition for (v, X) G TT(N) is that all actions in X can be refused when 
v is performed - in the sense, that fairness does not force additional performance 
of these actions. 

Theorem 4.5 i) For all nets N, Fair(N) = {v | (v, S) G TT{N)}. 
ii) For AC £ and nets Nt and N2) TT{Nl\\AN2) = {(w,X) | 3(wi,Xi) G 

TT{Ni), i = 1, 2 : w G ^i|U^2 and X C ((Xi U X2) nA)U (Xx D X2)}. 
iii) Inclusion of TT-semantics is fully abstract w.r.t. fair-language inclusion 

and parallel composition in the sense of Corollary 3.9. 

This result and the following, second relation to our testing approach will 
also be useful in the next section. 

Theorem 4.6 For a net N, (v, X) G TT{N) if and only if there is some w G 
PRT(N) such that v = a(w) and, for each x G X, there is some suffix of w 
where x is in all refusal sets. 

5    Two Token-Passing MUTEX-Processes 

In this section we will show how useful, in fact necessary, read arcs are to achieve 
mutual exclusion. Both our processes pass an access-token around and only the 
owner of the token may access the critical section, which guarantees mutual 
exclusion. MUTEXi, shown below, is a modification - using read arcs - of a 
Petri net solution given in [KW95]. The first user has priority, i.e. owns the 
access-token lying on p\. He can repeatedly request access with ri, enter the 
critical section with e\ (marking ci) and Zeave it with l\. The second user misses 
the access-token (m2 is marked); if she requests access, she has to order the token 
by marking o2, and now the first user might #rant the token by marking g2. 

For MUTEXi to work properly, [KW95] assumes fairness in general: e.g., if 
the internal transition ordering the token is enabled, it has to fire eventually; 
otherwise the token will never be passed and the requesting user will never enter 
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the critical section. In our solution, it is essential that the upper ei-transition 
checks with a read arc that the token has not been ordered. This check does not 
disable the ordering transition; so, if the latter is enabled and time progresses, 
then it will order the token, which now cannot be used by the owner to enter 
the critical section again and will be passed eventually, 

reqj 

As usual, MUTEXi is seen in [KW95] as 'code', which has to be inserted into 
the code of the users; e.g. the ri-transition is the first user requesting access. 
Since the first user should not be obliged to request, [KW95] has a special class of 
'weak' transitions for which fairness is not assumed. This concept is not needed 
in our view: we see a net such as MUTEXi as a scheduler guaranteeing mutual 
exclusion; the user processes are put in parallel with such a MUTEX-process 

using ||{ri,ei,ii,r2,e2,(2}) they issue their requests to it and are then allowed to 
enter the critical section. In this view, the ri-transition is the MUTEX-process 
offering the possibility to request; if this offer is not used, then, technically, time 
can pass in an i-refusal trace with a refusal set not containing r^. 

Our view seems to be very beneficial as a clean way to deal with the question 
what users do while being noncritical; they may e.g. communicate with each 
other and even run into deadlocks - it is not completely clear whether this is 
allowed in the usual view. Here, it obviously is allowed, but we do not have to 
deal with it explicitly, since such a behaviour is not part of the MUTEX-process. 
The obligation to prove that a user can indeed request becomes obvious in our 
view - this obligation is often ignored, see also below. 

For the solution of [KW95], fairness is actually not enough; [KW95] therefore 
requires a restricted form of strong fairness by introducing 'fair arcs'. We will 
show that, using read arcs, strong fairness is not needed at all. 

While in MUTEXi the token has to be ordered, it is passed automatically 
in MUTEX2 below if it has been used or is not needed. The check whether the 
token is needed or not is performed by the read arcs from nc\ and nc2. 

We will now argue in our setting that MUTEX2 is correct, omitting the 
similar arguments for MUTEXi. Safety is easy: if one user enters, then he must 
leave before another enter is possible, since we always have exactly one token 
on the places ci, pi, p2 and c2. (This set is an S-invariant, as also used e.g. in 
[KW95].)  Also, MUTEX2 ensures that the users follow the right protocol, i.e. 
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it allows the actions n, et and k only to be performed cyclically in this order. 
Liveness - i.e. whenever a user wishes to enter he will be able to do so eventually 
- is more difficult and requires to assume fairness. First, we have to make sure 

that a user may always perform a request. 

Prop. 5.1 Let (w,X) G TT(MUTEX2) and i G {1,2}. Then in w r{ occurs 

and each l{ is followed by another rj, or ri £ X. 

This proposition says that if the environment, i.e. the t-th user, tries to 
request (enables an rj-transition permanently) at a proper moment (initially or 
after leaving, i.e. when he is not already requesting or in the critical section), then 
the request will be performed. If it were not, neither the user (by assumption) 
nor MUTEX2 (by 5.1) would refuse rit hence the combined run according to 
4.5 ii) would not refuse T-J, i.e. it would violate fairness according to 4.5 i). By 
Theorem 4.6, we can formulate 5.1 equivalently as: each w G PRT(MUTEX2) 
contains T\ as in 5.1 or at some stage no following refusal set contains n. The 
proof of 5.1 uses this variant and shows in fact that, after k, r; can be refused 
at most once before it occurs again. Similar variants are used to prove 5.2 and 
5.3, where the former states that a user that enters and then wants to leave will 
do so. (In fact, he will do so in the present or next round.) 

Prop. 5.2 Let {w,X) G TT{MVTEX2) and i G {1,2}. Then each e{ in w is 

followed by an U, or k 0 X. 

The most difficult part is to show that a requesting user will eventually enter; 
here, we must require that a requesting user is indeed willing to enter and also 
that a user that enters is willing to leave after a while. Since by 5.2, willingness to 
leave ensures that this happens indeed, we can restrict attention to fair failures 
where each e; is followed by k; for these we show that each requesting user will 
enter unless some user has requested but is not willing to enter. 

Prop. 5.3 Let i G {1,2} and (w,X) G TT{MXJTEX2) such that each et is 
followed by k. Then either each 7-j is followed by e{ or for some j G {1, 2} some 

rj is not followed by ej and ey ^ X. 

We now come to the main result regarding the expressiveness of read arcs. 
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Theorem 5.4 Let N be a correct MUTEX-process, i.e. a net that satisfies 
Propositions 5.1 to 5.3 and guarantees mutual exclusion, namely that e- and 
l-transitions occur alternatingly.  Then N has read arcs. 

Independently, [KW96] have shown a similar result. For correctness, some 
state-properties are required and a certain net-structure is prescribed there. The 
latter makes the result quite dependent on Petri nets as system models, whereas 
our MUTEX-specification in 5.1-5.3 is action-oriented and, thus, fairly model- 
independent. Also our proof seems to be transferable to other models. 

One could also view 5.4 as evidence that a 'simple' progress assumption is 
not enough to achieve mutual exclusion, as argued in [KW96], who recommend 
'fair arcs' as a way to introduce strong fairness in a limited way. Read arcs 
seem less drastic, but they allow a 'refined' progress assumption, since with read 
arcs repeated read accesses to one location do not block a write access to this 
location. This is a restricted form of what [Ray86] calls fairness of hardware. 

In fact, the discussion of Dekker's and Knuth's algorithms in [Ray86, p.27/28] 
might give the impression that the latter does not rely on any fairness of hard- 
ware - something that should be false in view of our theorem. And it is: without 
this fairness, one user-process in Knuth's algorithm can e.g. repeatedly test the 
variable turn in its pre-protocol, thereby preventing the other process from writ- 
ing turn in its post-protocol and in effect from requesting again. Thus, 5.1 treats 
a realistic possibility for failure that is often ignored. 

We conclude the discussion of the MUTEX-problem by comparing the effi- 
ciency of MUTEXi and MUTEX2. Our results are intuitively plausible, hence 
they demonstrate the feasability of our approach. 

The first observation is that both processes have their advantages: if there 
is no competition, then moving the access-token to the other part of the net is a 
useless and time consuming effort; on the other hand, if the competition is strong, 
ordering the token is an additional overhead. This is demonstrated by the follow- 
ing i-refusal traces. If in MUTEX2 the access-token is moved to p2 immediately 
before rx, then t becomes urgent only in the second round, at the end of which 
d can still be refused; we get Pl{ei}{ei} £ RT(MUTEX2) \ RT(MUTEXX) 
showing that sometimes MUTEX2 is slower - namely if the second user is not 
interested in entering the critical section. Vice versa, MUTEXi is sometimes 
slower as witnessed by r2{e2}{e2}{e2} £ RT{MUTEX1)\RT(MUTEX2), where 
an additional round is needed to order the token. 

RT(MUTEXi) shows how efficiently the respective MUTEX-process serves 
the environment consisting of both users. Interestingly, we can also use our 
approach to study a different view: how efficiently are the needs of the first user 
met by the system, which for him consists of a MUTEX-process and the second 
user? As second user, we take a standard user who, in the non-critical section, 
can choose between requesting with r2 and some other internal activity; if she 
requests, she is willing to enter the critical section in the next round and to 
leave it again in the round after.  As a net, this user looks like the right hand 
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side of MUTEX2, i.e. has places nc2, req2 and c2 and the transitions between 
them, plus an internal transition on a loop with nc2. We compose this user 
with MUTEXi via ||{r2,eai(3} and hide the synchronized actions (change them to 
A), since from the point of view of the first user they are internal activities of 
the system. Thus, MUTEXX and MUTEX2 are transformed to MUTEX3 and 
MUTEXi It is plausible that MUTEXi is more efficient than MUTEX3: we 
consider the worst case efficiency; naturally, for the first user strong competition 
is the worst case, and in the case of strong competition MUTEX2 is more efficient 

since it saves the additional effort of ordering the token. 

Theorem 5.5 i) MUTEXi is strictly faster than MUTEX3. 
ii) The efficiency of MUTEX2 and that of MUTEXy are incomparable. 
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Abstract. It is shown that bisimulation equivalence is decidable for the 
processes generated by (nondeterministic) pushdown automata where the 
pushdown behaves like a counter, in fact. Also regularity, i.e. bisimulation 
equivalence with some finite-state process, is shown to be decidable for the 
mentioned processes. 

1     Introduction 

In recent years, growing effort has been devoted to the area of verification of 
(potentially) infinite-state systems. An important studied question is that of 
(un)decidability for various (behavioural) equivalences. A prominent role among 
these equivalences is played by bisimulation equivalence, or bisimilarity, which is 
more appropriate for (concurrent, reactive etc.) systems than e.g. the traditional 
language equivalence (cf. [Mil89]). Roughly speaking, two processes (states of 
systems) are bisimilar iff for any evolving of one process caused by performing an 
action labelled a there is an action labelled a which causes evolving of the other 
process in such a way that the resulting processes (states) are again bisimilar. 

Several recent results help to highlight and understand the decidability 
boundaries for bisimilarity, which are different from those for language equiva- 
lence. It is e.g. known that bisimilarity is decidable for Basic Parallel Processes 
([CHM93]) while the language equivalence is undecidable for them ([Hir93]). 
More relevant here are context-free processes (generated by context-free gram- 
mars), also called BPA-processes, where the language equivalence is well-known 
to be undecidable while bisimilarity is decidable ([CHS95]). Pushdown automata 
(which are in the 'language sense' equivalent to context-free grammars) generate 
a richer family than that of context-free processes when considering bisimulation 
equivalence. These pushdown processes can be identified with 'state-pushdown' 
configurations, whose behaviour is determined by the transition rules (not allow- 
ing e-rules). Recently Stirling ([Sti96]) has shown the decidability of bisimilarity 
for normed pushdown processes, while the question remains open for the whole 
class. 

Here we show the decidability of bisimilarity for another subclass of pushdown 
processes: we will not impose the restriction of normedness but we consider the 
case when the pushdown behaves like a counter, in fact; i.e. there is only one 
stack symbol, besides a special bottom symbol which enables to test 'emptiness' 
of the pushdown.    Let us call such processes as one-counter processes.   The 

1 Supported by the Grant Agency of the Czech Republic, Grant No. 201/97/0456, and also 
by the Univ. of Ostrava grant No. 031/97 
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decidability result for one-counter processes also confirms the conjecture by the 
author ([Jan93]) that bisimilarity for labelled Petri nets with one unbounded 
place is decidable (while two unbounded places suffice for undecidability). 

Semidecidability of nonbisimilarity of pushdown processes can be derived 
easily in the standard way applied for image finite systems. Therefore semide- 
cidability of bisimilarity is what matters here. In similar cases, the key point is to 
show that the bisimilarity case has always a finite (or finitely presented) witness 
whose validity can be checked algorithmically. In our case, at the one-counter 
processes, the role of such witnesses is played by (descriptions of) semilinear 

sets; this approach was already used in [Jan93] or [Esp95]. 
Roughly speaking, the existence of such witnesses (i.e. semilinear bisimula- 

tions) for one-counter processes can be anticipated from the intuition that two 
bisimilar processes have to have the same 'distance' (minimum number of steps) 
to a 'bottom process' (configuration with only the bottom symbol in the push- 
down=counter) when such bottom processes matter at all; it can be guessed 
that then the counter heights of such processes have to be, in principle, linearly 
related. The possibility of an algorithmic checking of a witness' validity can be 
easily observed due to the decidability of Presburger arithmetic (although this 

deep result is surely not needed in its whole). 
Another natural decidability question is that of regularity of a given process, 

which will in our context mean the bisimulation equivalence with some finite- 
state process. This problem has been shown to be decidable for labelled Petri 
nets ([JE96]), which include BPP-processes. In [BCS96], the decidability is 
shown for BPA-processes (where the 'language regularity' is well-known to be 
undecidable). The question for the whole class of pushdown processes is still open 
(while for the class of normed pushdown processes is easily seen to be decidable). 
As an additional result, we demonstrate that regularity is also decidable for one- 

counter processes. 
In fact, one-counter processes can be 'almost' identified with labelled Petri 

nets with one unbounded place; but unlike Petri nets they can 'test for zero'. 
Nevertheless the strategy used in the proof of decidability of regularity for la- 

belled Petri nets ([JE96]) applies for them as well. 
Section 2 contains definitions and claims the results; the proofs are given in 

Section 3. Section 4 adds some further comments. 

2     Definitions and Results 

We begin with recalling some standard notions. 
A labelled transition system, a system for short, is a tuple T = (S, {—>}0EA) 

where S is the set of states, A is the set of actions (or action names) and each 

-^ is a binary (transition) relation on S (—»-C S x S). By E —► F (E, F e S) 

we mean that E -^ F for some a; -►* denotes the reflexive and transitive 
closure of the relation -». By E -►* S' {S' is reachable from E), where S' C S, 

we mean E —*■* F for some F € S'. In the obvious sense, we also use E —► F 

where u G ^4*; |w| denotes the length of the sequence u. 
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A transition system T = (S, {-^}ae^0 is finite iff S and A are finite. T 
is image finite iff succ(E) = \JaeA succa(E) is finite for any E £ S, where we 

define succa(E) = {E1 \ E -^ E'}. 
Speaking of a process E, we always consider it as (being associated with) a 

state in a transition system which is clear from the context. When necessary, 
we denote the relevant transition system by T{E). Using the term of a finite, 
or rather a finite-state, process E, we mean that T(E) is finite; similarly for an 
image finite process. 

A binary relation V, between processes is a bisimulation relation provided 
that whenever (E, F) £ TZ, for each action a 

iiE-^E' then there is F' s.t. F -?- F' and (£", F') G 11, and 

if F -% F' then there is E' s.t. E -^ E' and (E1, F') G ft. 

Two processes E and F are bisimulation equivalent, or bisimilar, written E ~ F, 
if there is a bisimulation relation ft relating them. 

The family {~n\ n > 0} (of relations between processes) is defined induc- 
tively: 

1/ E ~o F for all processes F, F 
2/ E ~n+i F iff for each a 

if £ -^ F' then there is F' s.t. F ^ F' and F' ~n F', and 
if F -?- F' then there is E' s.t. E-^ E' and F' ~n F'. 

Let us recall some 'folklore' results. 

Proposition 2.1  For image finite processes, E ~ F iff\/n>0:E ~n F. 

Let us call T = («S, {—»lae^) an admissible system iff the state set S is finite 
or countably infinite (identified with a set of sequences over a finite alphabet), 
the action set A is finite, T is image finite, and all the successor functions 
succa : S —► 2s are effectively computable. 

Proposition 2.2 Considering only admissible transition systems, all the rela- 
tions E ~„ F (n G M) are decidable. Therefore the problem E •/• F is semide- 
cidable. 

Now we define the pushdown processes (cf. e.g. [Sti96]); loosely speaking, 
these are state-pushdown configurations of a given (nondeterministic) pushdown 
automaton without e-rules. Then we introduce the 'one-counter case'. 

Suppose a given collection (i.e. a pushdown automaton viewed as a 'push- 
down process generator') M — (V,T,A,B) where V = {pi,P2, ■ ■ ■ ,Pk} is a 
finite set of states, T = {Xi, X2, ■ ■ ■, Xm} is a finite set of stack symbols, 
A = {o.j, 02, . . ., an} is a finite set of actions, and B is a finite set of basic 

transitions, each of the form pX —► qa where p, q are states, a is an action, X 
is a stack symbol and a is a sequence of stack symbols (i.e. a G F*). The transi- 
tion system TM generated by M has the expressions pa (p G V, a G T*), called 
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pushdown processes, as states, A is its action set, and the transition relations 
are in the straightforward way determined by the basic transitions together with 
the following prefix rule: if pX -^ qa  then  pXß -^ qaß    (for any^/3 G F*). 

When T = {X, Z} and any basic transition is of the form pX —► qa or 

pZ -I* qaZ where a G {X}* (we call M = {V,T,A,B) a one-counter machine 
in such a case), then any pXX ...XZ is called a one-counter process. For 
convenience, a process pXmZ will be denoted by p(m) (m G //", where Af denotes 

the set of all nonnegative integers). 
Notice that any process reachable from a one-counter process is a one-counter 

process as well. Thus for a one-counter machine M we can safely suppose that 

TM has states of the form p(m) only. 
Our main aim here is to show 

Theorem 2.3 Bisimulation equivalence is decidable for one-counter processes. 

More precisely it means that there is an algorithm which inputs (descriptions 
of) two one-counter processes p(m), p'(m') together with the respective one- 
counter machines M,M', and after a finite amount of time answers whether or 

notp(m)~p'(m'). 
An additional result is expressed in the following theorem; here a process F 

is called regular iff there is a finite-state process p s.t. E ~ p. 

Theorem 2.4 Regularity (wrt bisimilarity) is decidable for one-counter pro- 

cesses. 

Each of the two decidability results is implied by two semidecision procedures. 
We can immediately note that semidecidability of nonbisimilarity E ■/■ F follows 
from Proposition 2.2 since one-counter systems (as well as pushdown systems) 

are obviously admissible. 
We finish this section by recalling some known notions and results which are 

then used in the proofs in Section 3. 
Given a transition system T = (S,{-^}a€A), we define the class of all 

n-incompatible processes as INC% = {E | VF G S : E ^n F}. 
More specific variants of the following two propositions were used in [JM95], 

[JE96]. 
T(F) 

Proposition 2.5 For any n, E ~ F implies that E ~„ F and E />* INCn 

In addition, the implication can be reversed for any n s.t. ~„_i coincides with 

~n (and hence ivith ~j on T(F). 

Corollary 2.6 Let A be a finite transition system with k states. For any states 

p, q, it holds that p ~*_i q iffp ~k q (iff P ~ <l)- H V^lds for any process E and 
a state p of A: E ~ p iff E ~k p and E /»* INC£. 

The distance of a process E to F, denoted by Dist(E,F), is the length 

of the shortest sequence u s.t. E -^ F; if F is not reachable from E, we 
put Dist{E,F) = oo. For a set T of processes, we define Dist(E,T) = 

min{Dist(E,F) \ F G T}. 
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Proposition 2.7 If E ~ F then Dist{E,T) = Dist(F,T) for any quotient 
class T o/~„ on the set of all processes. 

We need the notion of semilinear sets. An important fact is that they are 
precisely the sets expressible in Presburger arithmetic (cf. [GS66]); we will use 
it implicitly when arguing that some sets are semilinear. 

A set V C Mr of vectors (r > 1) is linear if there is a base vector y and 

period vectors xi, x2,..., xm in Mr such that V =  { y + YA=I 
C
»'^ I c» G ^ }■ 

K is semilinear if it is a finite union of linear sets. 
In fact, here we are mainly interested in dimensions r = 1,2. The next fact 

on one-dimensional semilinear sets is easily derivable: 

Proposition 2.8 Suppose a set V C M.  Then: 

1/ If there are c,8 G M s.t.   Vm > c : m G V => m + <5 G V Men 1/ «s 

semf/niear. 

4) ?/ // V is semilinear then there are constants c and A s.t.  for any m > c, 
the value m mod A determines whether m G V or m £ V. 

3     Proofs 
In this section we always (implicitly) suppose a given one-counter machine M 
with k states (and the stack alphabet {X, Z}); the states are denoted by p,q 

(often primed or with subscripts). 
Subsection 3.1 proves the crucial fact of this paper (Proposition 3.3) which 

shows that the set {(m, n) \ p(m) ~ q(n)} is semilinear for any p, q. Subsections 

3.2 and 3.3 then prove the theorems. 
In the proofs we need the notion of the underlying automaton AM which 

behaves like M as long as the bottom of the stack is not reached, and also the 
notion of processes which are 'Basically Incompatible' with (states of) AM' 

The underlying finite automaton AM (viewed as a finite transition system) 

has the same set of states as M, and it has the transition p —► q iff M has a 
basic transition pX —> qa (a G {X}*). 

We define Bine = {p(m) | p(m) G INC£M) = {p(m) | p{m) ^k q for each 

state q}. 
When we observe that p(m) ~jt p for m > k, the next lemma is clear: 

Lemma 3.1 If p(m) £ Bine then m < k.    Therefore Bine is a finite,  and 
effectively computable, set- 

Due to corollary 2.6 we can add (recall that k denotes the number of states 
of M and hence also of AM)'- 

Lemma 3.2  For m> k (and any state p), p(m) ■/■ p iff p(m) —►* Bine. 
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Notation. By p(m) ^>r q(n) (r G H) we mean that there is a path p(m) = 

qi(ni) -+ q2(n2) — •••"-> 9*K) = ?(") s-t- "•' > r for t = 1, 2,..., s. By 
p(m) -+*POS q(n) (POSitive) we mean that p(m) -^ q(n). 

Observe the obvious fact (used implicitly in what follows): if r > 1 then 
p(m) -*>r q(n) iff p(m + 6) -+*>r+s q(n + 6) for any 8 G M. In particular 

p(m) -^*pOS q(n) implies p(m + 6) -+POS q(n + 6). 

3.1     Semilinearity Proof 

This subsection is devoted to a proof of the next crucial proposition: 

Proposition 3.3 For any one-counter machine and its states p, q, the set 

{(m,n) | p(m) ~ q(n)} is semilinear. 

First observe that if p(m) ->* Bine and q(n) -f>* Bine then surely p(m) ^ 
q(n) (cf. Proposition 2.7). Therefore the set B = {(m,n) \ p(m) ~ q(n)} can be 

written as B = B\ U B2 where 

Bi = {{m,n) \p(m)~q(n),p(m)-f+* BInc,q(n)-^* Bine}, 

B2 = {(m,n) | p(m) ~ q(n),p(m) -** BInc,q(n) -+* Bine}. 

Therefore it suffices to show semilinearity of B\ and B2. 
The next lemma is a means for proving semilinearity of By. 

Lemma 3.4 For any state p (of the one-counter machine M), the set {m | 
p(m) ->■* Bine} is semilinear; therefore also {m \ p(m) ■/** Bine} is semilinear. 

Proof:   Recall that we suppose M with k states; let V be the state set. 
We have to show semilinearity of R = {m | p(m) -►* Bine}. For any Q C V 

we define the set RQ C R as follows: m G RQ iff there is a 'witness' path 

p(m) = gi("i) -► 32(»2) -»■...-+ ?»(".) € -S/nc (1) 

s.t. g,: G Q for ?' = 1, 2,..., s' where s' < s is the maximum number s.t. n; > 1 
for i = 1, 2,..., s' (the path goes through states from Q solely while after the first 
reaching of the stack bottom - if it happens at all - there are no restrictions). 

It is clear that Rv = R and it suffices to show semilinearity of all RQ. We 

proceed by induction on \Q\. 
When Q = 0 then RQ is obviously semilinear (RQ = 0 or RQ = {0}). 
Now we show semilinearity of RQ, \Q\ > 0, while supposing semilinearity for 

each RQ<, \Q'\ < \Q\. Let some m > 2k be in RQ (otherwise RQ is finite, hence 
semilinear) and let (1) be a relevant witness path; recall that k > ns (Lemma 
3.1). We can take the leftmost subsequence ^(m), qi2(m-l), ..., qik+1(m-k); 
due to the pigeonhole principle, there is q = qitl = qib for a ^ b.   Therefore 

P(m) ^>n; ?("i) ^>n'2 ?K) ^* ««("') G S7nc where 6 = "i ~ n'2 > °' 
n'2 > 0; hence q(n + 6) -^*>n q(n) for any n > 0. 
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We can write RQ = RQ U RQ\{9} where 

Rq  = {m £ RQ I there is a witness path with q — qi for some i, 1 < i < s'}. 

Since m £ Rq
Q obviously implies m + 6 £ Rg

Q, Rq
Q is semilinear (cf. Proposition 

2.8 1/); semilinearity of RQ\{9) follows from the induction hypothesis. O 

Corollary 3.5 B1 = {(m,n) \ p(m) ~ q(n),p(m) -f+* BInc,q(n) ■/+* Bine} is 

semilinear. 

Proof: Given r < k, consider Bi(r, -) = {n | (r, n) £ Bi} Note that for any 
n £ Bi(r,-), n > k implies q(n) ~ q. Therefore when 5i(r,-) is infinite, it 
is the union of a finite set and the set {n > k \ q(n) ■/+* Bine}; in any case, 
Bi(r,-) is semilinear. Semilinearity of Bi(-,r) = {m \ (m,r) £ B\} can be 
established similarly. B\ can be written 

fc-l k-l 

Bi = U i(r' n) I n e 5i(r> -)> U U ^m' r) im e B^-' f)>U 5i 
r = 0 i"=0 

where 

B[ = {(m,n) | m > k,n> k,p(m) ~ q(n),p(m) -/+* BInc,q(n) y^* Bine}. 

B[ is either empty (when p •/• ?) or equals to {(m,?j) |m>fc,n> k,p(m) -f** 
Bine, q(n) ■/+* Bine} (when p ~ g). 

Thus semilinearity of Bi is clear. □ 

We also need another corollary. 

Corollary 3.6 There are constants c and A s.i. for any p and any m > c, the 
value m. mod A determines whether or not p{m) —►* Bine. 

Proof: For any state p, we get the relevant cp, Ap due to Proposition 2.8 2/. 
The constant c desired here can be taken as the maximum of cp's and A can be 
taken as the product of Ap's. E 

Our aim now is to show semilinearity of B2 = {{m, n) \ p(m) ~ q(n),p(m) —►* 
BInc,q(n) —* Bine}. 

Notation. Dist(p(m),BInc) will be denoted by Dist(p(m)) for short. 

Since Dist(p(m)) = Dist(q(n)) is a necessary condition for p(m) ~ q(n), we will 
explore which relation it imposes for m and n. First we show that Dist(p{m)) is, 
in fact, linear (when finite) in m with the provision that the coefficient depends 
on m mod A. Here and further, A is taken from Corollary 3.6. 

Lemma 3.7 There is a constant d £ßf, and for any state p and any congruence 
class {i)mod A (0 < i < A — 1) there is a rational constant k' s.t. the following 
holds for any m, m = i{mod A): if Dist(p(m)) is finite then 

Dist(p(m)) £ {k'm — d, k'm + d). 
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Proof: Suppose some p and (i)mod A- In the proof, for each number denoted 
by m. we implicitly suppose m = i(mod A). We show that there are k' and d' 
s.t. Dist(p(m)) G (k'm - d', k'm + d'), by which we will be done (the desired d 

can be taken as the maximum of all relevant constants d'). 
Observe that p(m) -►* Bine, for a large m, implies a decreasing cycle: 

p(m) -+POS q(n + 6) -+>„ q(n) -►* Bine for some q, n > 0,8 > 0. 

Let Q = {q | p(m) ^POS q(n) ->* Bine for some m,n). Now let q' be a 

state of Q which allows a decreasing cycle q'(n + 8W) -^>„ q'(n) (for some w, 
6W > 0, and all n > 1) with the best decreasing rate - i.e. 8w/\w\ is maximal 
possible. The existence of such q' can be easily derived (by 'pigeonhole principle 
reasoning' we could suppose \w\ < k). Moreover we can safely suppose that 
Sw is a multiple of A (otherwise we take wA which yields the same decreasing 
rate), and thus q'(n + 8W) -+* Bine iff q'(n) -»■* Bine for n > c, c taken from 

Proposition 3.6. 
Let us choose m > c + Sw + k s.t. p(m) -^POS ?'(«) ^* Bine for some 

u and n,c < n < c + Sw; denote <5U = m - n. Note that p(m + jA) —>Pos 

q'(n + jA) -+* Bine for any j > 0. 
Now let d0 = \u\, di = max{Dist(p'(c + x)) | x G {0,1,...,^} and 

Dist{p'(c + x)) is finite }. Then it is clear that for any m > c + 6W + k 

Dist(p(m)) <d0+ Km - 6U - c)/6w)\w\ + dx 

On the other hand it is easily verifiable that 

Dist(p(m)) > ((m - Su - c)/6w - lj \w\. 

Calculating the desired k', d' is now a technical routine {d1 has to be chosen 
large enough to 'cover' the finitely many m < c + 6W + k as well). □ 

Corollary 3.8 There is a constant d G M s.t. for any p, q and congruence 
classes (i) A A, {J)mnA A, there is a rational constant k' s.t. the following 
holds for any m,n, m = i(modA), n = i(modA): tfDist(p{m)) = Dist{q(n)) < 

oo </).ew ?i G (fc'm - d, k'm + d). 

Proof: Because there are constants kx, k2 and d' s.t. Dist(p(m)) G (fcim - 
of', k^n + d') and Dist(q(n)) G (&2« - rf', ^2" + d') then it must hold k2n - d' < 
kim + d' and k2n + d1 > kyin - d'. Hence we have mk1/k2 - 2d'/k2 < n < 

mkx/k'i + ld'lk-t. u 

Recall that our aim is to show semilinearity of B2. We already know that 
there is d G M and a finite set K = {kx, k2,..., kr} of rational constants s.t. it 
suffices, for each k' G K, to show semilinearity of the set 

Bk> = {(m, n) | p(m) ~ q(n),n G (k'm - d, k'm + d)}. 
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(The union of S^'s consists of B2 and a subset of B\ which is obviously semi- 
linear, i.e. expressible in the Presburger arithmetic). 

In fact, we will consider only the subset of Bv where m > c for a sufficiently 
large c (the rest being finite and therefore causing no problems); c will be chosen 
so that for any m, n, m > c, \n - k'm\ < d, the following holds: for any p', q' and 

any moves p'(m) -^-+ p"(m'), q'(n) -^-> q"(n') it is ensured that \n' - k"m'\ > d 
for each k" G K, k" ^ k' (a pair of moves cannot lead from 'ö^-area' into 

'ßj;//-area'). 
Given k', let us denote Cut(m) = C\fL0CuU(m) where CuU(m) - {(p1', q', x) \ 

x G {-d,-d+l,.. .,d},p'(rn) ~,- q'(round(k'm) + x)}. 
Observe that there surely is an infinite sequence m0 < mi < m2 < ... 

s.t. for all i > 0: k'rrii is integer, mj+i - m» = 0(mod A), k'mi+i - k'mt = 
0(mod A). Since, for any m, Cut(m) is a boundedly finite set, there are surely 
m, m' satisfying the assumption of the next lemma; and it is easily observable 
that the lemma demonstrates semilinearity of Bk> and thus finishes the proof of 

Proposition 3.3. 

Lemma 3.9 When Cut(m) = Cwt(m') for sufficiently large m where m < m', 
k'm,k'm' are integers, in! — m = 0(mod A), k'rn! - k'm = 0(mod A), then 

Cut{m +8) = Cut(m' + 8) for any 8>0. 

Proof: We show Cut(m + 8) C Cut(m' + 8) while the other inclusion will be 
completely symmetric. 

In fact, we show by induction on i that (p,q,x) G Cut(m + 8) implies 
(p, q, x) G Cuti(m' + 8) for all i; for i = 0 it is trivial as well as for 8 = 0. 

Induction hypothesis: for any p, q, x, 8, if (p, q, x) G Cut(m+8) then (p, q, x) G 

Cuti(m' +8). 
Now we consider arbitrary (but fixed) p,q,x,8 > 1 s.t. (p, q, x) G Cut(m + 8) 

and we show that (p,q,x) G Cwi,+i(m' + 8) by which the whole proof will be 
finished. 

In other words, denoting mj = m+8, rii = round(k'(m+8)) + x, m.2 = m' + 8, 
n2 = round(k'(m' + 8)) + x, we suppose p(rai) ~ <z(«i) and we have to show 

p(m2) ~i+i q(n2). 
Let p(mo) -^-+ p\m2 + y) (—1 < y < max, max depending on the machine 

M). There is the corresponding movep(mi) —► p'(mi+y) and there has to be a 

moveg(ni) -?-* q'(ni+z) (-1 < z < max) s.t. p'(mi+y) ~ q'(n\ + z). We claim 

that the corresponding move q(n2) —> g'(n2 + 2) yields p'(rri2 + y) ~» q'(n2 + z). 
When \k'(mi + y) - {n\ + z)\ < d (hence also \k'(m2 + y) - (n2 + z)\ < 

d), it follows from the inductive hypothesis. Otherwise Dist(p'(mi + y)) = 
Dist(q'(ni+z)) = oo and p' ~ q'. But then also Dist(p'(m2 + y)) = Dist(q'(n2 + 
z)) = oo (recall the property of A); therefore p'(m2 + y) ~ q'{n2 + z). 

The remaining parts of the proof are completely similar. □ 

3.2    Decidability of Bisimilarity 

Now we can provide a proof for Theorem 2.3: 
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Theorem. BiSimulation equivalence is decidable for one-counter processes. 

Proof:    First notice that we can always consider the bisimilarity problem in- 
stance 'p(m) ~ q(n) ?' where p(m), q(n) are associated to the same one-counter 
machine (which can be achieved by taking the union of two machines - i.e. union 
of action sets, and disjoint union of state sets and basic transition sets). 

Recall that it suffices to show semidecidability for 'p(m) ~ q(n) ?' (cf. 
Proposition 2.2). Now due to Proposition 3.3 it suffices to generate all bisimu- 
lation candidates K s.t. the set {(m>') | O'(m'),«'(«')) G 11} is semilinear for 
each pair of states p',q', and for each such candidate to check if H actually is a 
bisimulation containing (p(m),q{n)). (Descriptions of) such candidate relations 
can be obviously generated in a systematic way, and the condition to be checked 
is easily seen to be expressible in Presburger arithmetic, which is decidable (cf. 

e.g. [Opp78]). D 

3.3    Decidability of Regularity 

Here we provide a proof for Theorem 2.4: 

Theorem. Regularity (wrt bisimilarity) is decidable for one-counter processes. 

Proof: Semidecidability of regularity of p(m) follows from Theorem 2.3. (We 
can generate all finite state processes F, viewed as special cases of one-counter 
processes, and to check for each of them whether p(m) ~ T). 

Semidecidability of nonregularity will follow when we show that p(m) is non- 

regular iff there is a path 

p(m) ^* p'(mi) -*POS P'(™2) -+*POS «'("O ^*POS v'fa) -** Bine 

where mi < m2, n\ > n2. 
The existence of such a path ensures for any i > 0 that 

p(m) _>* p'(m2+i(n1-n2)(m2-mi)) -*•* q'(n1+i(m2-m1)(n1-n2)) ->* Bine 

which implies that there are reachable states with arbitrarily large (but finite) 
distances to Bine - and this obviously implies nonregularity of p(m). The 

opposite direction can be also easily established. G 

4    Further Comments 

The example of a pushdown process used in [Sti96] 

pX -^ PXX,pX -U qe,pX -^ re, qX -^ sX, sX -^ qs, rX —> re 

can be easily transformed in a one-counter process with the isomorphic transition 
system. This process can serve as an example of a one-counter process which 
is not equivalent to a BPA-process, nor a BPP-process, and when adding a 

rule pX -t-* qfin we get a one-counter process not equivalent to any normed 

pushdown process. 
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Abstract. We address the verification problem of FIFO-channel systems 
by applying the symbolic analysis principle. We represent their sets of 
states (configurations) using structures called CQDD's combining finite- 
state automata with linear constraints on number of occurrences of sym- 
bols. We show that CQDD's allow forward and backward reachability 
analysis of systems with nonregular sets of configurations. Moreover, we 
prove that CQDD's allow to compute the exact effect of the repeated ex- 
ecution of any fixed cycle in the transition graph of a system. We use this 
fact to define a generic reachability analysis semi-algorithm parametrized 
by a set of cycles 9. Given a set of configurations, this semi-algorithm 
performs a least fixpoint calculation to construct the set of its successors 
(or predecessors). At each step, this calculation is accelerated by consid- 
ering the cycles in & as additional "meta-transitions" in the transition 
graph, generalizing the approach adopted in [5]. 

1    Introduction 

Analyzing the behaviour of systems relies basically on solving reachability prob- 
lems in their models, that are in general finite-state automata supplied with 
(possibly unbounded) data structures (Petri nets, timed or hybrid automata, 
fifo-channel systems, etc). It is therefore fundamental to compute the set of all 
successors or all predecessors of a given set of states S, i.e., the set of states that 
are reachable from S, or those from which it is possible to reach S. 

Let post(S) (resp. pre(S)) denote the set of immediate successors (predeces- 
sors) of the set 5, and let post*(S) (pre*(S)) denote the set of all its successors 
(predecessors). Clearly, post*(S) is the limit of the infinite increasing sequence 
{Xi)i>0 with X0 = S and Xi+1 = XiUpost{Xi) for every i > 0. Similarly, pre*(S) 
is the limit of the infinite sequence obtained by considering pre instead of post. 

Unfortunately, for any interesting class of infinite-state systems, the sets Xt 

are in general infinite and the sequence (Xi)i>0 is not guaranteed to reach its 
limit. Hence, the first problem is to find a class of finite structures that can 
represent the infinite sets of states we are interested in. This class of structures 
should be effectively closed under union and the post and pre functions such that 
the Xi's can be calculated. Moreover, to compare two sets and to check whether a 
given state belongs to an infinite set, the membership and the inclusion problems 

of the class should be decidable. 
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For instance, for systems manipulating integer or real valued variables (Petri 
nets or timed and hybrid automata), representation structures based on polyhe- 
dra or sets of linear constraints are used [3, 6, 2, 13]. In systems manipulating 
sequential data structures like stacks or queues sets of states are vectors of words, 
and automata-based representation structures can naturally be used. 

Another problem is the convergence of the sequence of Xj's. In general this 
sequence never reaches its limit and an exact acceleration of the computation of 
the limit is considered by defining another increasing sequence (Yi)i>o such that 
for every i > 0, Xt C Y{, and Y{ C \J^0 xi- This approach has been used [9, 7] 
to define model-checking algorithms for pushdown systems using (alternating) 
finite-state automata to represent sets of stack contents. 

In [5], finite-state automata-based structures called QDD's are used to repre- 
sent queue contents of fifo-channel systems (communicating finite-state machines, 
CFSM). However, contrary to the case of pushdown systems, the set of reachable 
states of a CFSM is not regular in general, and hence not QDD representable. 
Moreover, there is no algorithm allowing to construct the set of reachable states 
even if we know that it is regular [10, 12, 1]. To face this problem [5] proposes an 
acceleration technique based on adding to each Xi+i the set of states post*e{Xi) 
which corresponds to the set of all successors after repeating as much as possible 
a cycle 9 of a special kind (called meta-transitions). The restriction on the nature 
of 9 guarantees that the post*9 image of a regular set is also regular. 

In this paper, we also consider CFSM's and propose a generalization of the ap- 
proach adopted in [5] by allowing an exact acceleration of the fixpoint calculation 
with the successors by any cycle in the transition graph of the system. The diffi- 
culty comes from the fact that the set of reachable states by a cycle is in general 
nonregular. Therefore, we propose a representation structure called CQDD (con- 
strained QDD) allowing the representation of such sets. This structure is based 
on a combination of (simple) finite-state automata with Presburger arithmetics 
formulas expressing constraints on the number of occurrences of symbols. 

We show that CQDD's satisfy the desirable properties of a representation 
structure mentioned above. Moreover, and this constitutes our main result, we 
prove that the class of CQDD representable sets of states is effectively closed 
under the function post*e for every cycle 9. We prove also that the class of CQDD 
reverse representable sets of states (their reverse image is CQDD representable) 
is effectively closed under the function pre*g for every cycle 9. These results allow 
to define a generic reachability analysis semi-algorithm which is parametrized by 
a set of cycles in the transition graph of the system. When it terminates, our 
algorithm returns the exact set of successors (or predecessors) of a given CQDD 
representable (or CQDD reverse representable) set of states. Several analysis al- 
gorithms can be derived from our algorithm by determining adequate strategies 
for choosing the set of cycles to be considered to accelerate the fixpoint calcula- 
tion. The algorithm of [5] can be seen as a particular instance of our algorithm. 

Related work: In [16, 11] a model-checking semi-algorithm is proposed for CFSM, 
based on a finite representation of the state-graph by means of graph grammars. 
This approach is different from ours since it is based on a finite representation 
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of the state-graph instead of a finite representation of the set of states. There 
are other existing works on the analysis of CFSM's assuming that the systems 
have lossy or unreliable channels (queues) [1, 12]. In our work we do not have 
such assumptions. Other works propose (terminating) algorithms generating an 
upper approximation of the set of reachable states [15]. This is different from 
our approach because we construct the exact set of reachable states as a fixpoint 
calculation and helping the termination of this calculation by exact accelerations. 

The rest of this paper is organized as follows. In Section 2 we introduce 
some basic definitions. In Section 3 we define CFSM's and the successors and 
predecessors functions. In Section 4, we define CQDD's and give basic results. 
In Section 5, we show how CQDD's can be used to represent nonregular sets of 
states and give our main results on the class of CQDD representable and reverse 
representable sets of states. In Section 6, we present our generic forward and 
backward analysis algorithm. Finally, we conclude in Section 7. Due to lack of 
space we omit the proofs of the theorems. They can be found in [8]. 

2    Preliminaries 

Presburger arithmetics is the first order logic of natural numbers with addition, 
subtraction and the usual ordering. We say that / is a Presburger formula over a 
set of variables X — {xi,.. .,xn}, and we write f(X), if the set of free variables in 
/ is precisely X. The semantics of Presburger formulas is defined in the standard 
way. Given a formula / with free variables X = {x\,...,xn}, and a valuation 
v : X -> IV, we say that v satisfies /, and write v \= /, if the evaluation of / 
under v is true. We say that a formula / is valid if every valuation satisfies /. 

A simple automaton over £ (SA) is a finite-state automaton A — (Q,qo,^ 
,qm) where Q is a finite set of states with Q = {qo,qi,- ■ ■,qm} U (J™o ^» where 
Pt = {pj,... ,pf}, q0 (resp. qm) is the initial (resp. final) state, ->C Q x £ x Q 
is a set of transitions (transition relation) defined as the smallest set such that : 

1. Vi G {0, ...,m- 1}. 3!aG S. qt A qi+i, 
2. Vt G {0,..., m}, if Pi ^ 0 then 3!a G S. q{ A p\, 3!a G S. p\l A q{ 

and Vj G {1, ■ ■ ■, £i - 1}. 3!a e S. p> 4 pf'+\ 
3. Vi € {0,..., m — 1}, if Pj = 0 then there is at most one a G S with qi A <?, 
4. if Pm = 0 then 3£' C E. Va G X". qm A qm, 

A restricted simple automaton (RSA) is a simple automaton where point (4) 
in the definition above is replaced by:   (4'). if Pm = 0 then qm has no successors. 

Notice that in simple automata, the outdegree of the states q^s, except maybe 
qm, is at most 2, whereas the outdegree of the states in the Pj is always 1. 
Each state different from qm belongs to at most one loop which is of the form 

qi A p\ A .. .pf -4 qt. We say that qi is the root of this loop. The state qm has 
a particular status since it may be the root of several loops, but in this case all 
these loops must be self-loops. In RSA qm has the same status as the other q^s. 
Nondeterministic choices may occur only at the states qi. A simple automaton 
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is deterministic if every state qi has at most one successor by each symbol in E. 
We write DSA (resp. DRSA) for deterministic SA (resp. RSA). 

Given a word w = ao ■ ■ ■ at £ E*, a run of A over w is a sequence of transitions 
p = (s0,a0,si)... (s(,ai,si+i) £-)l+1 such that So = <?o- The run p is accepting 
if sf+1 = qm. The language accepted by A, denoted by L(A), is the set of words 
w £ E* such that there is an accepting run of A over w. 

Notice that RSA's accept languages over E which are definable by regular 
expressions of the form uiv*U2V* '' ■«m|)mum+i where the u,'s and the ViS are 
words over E such that only U\ and um+i may be empty. SA's accept words of 
the form u\v*U2V* • • • um(a,\ + ... + at)* where the a;'s are symbols in E. 

Let A = (Q, qo,-^, qm) be a simple automaton. Let X be the set of variable 
{xf : t £-»}. We consider for each run p of A the valuation vp of the variable in 
X such that, for every xt £ X, up(x) = \p\t- Then, we define a Presburger formula 
[.4] over X which characterizes the set of valuations corresponding to all accepting 
runs of A. For that, let us introduce some notations. We denote by T the set of 
transitions {t €-> : 3i e {0,... ,m - 1}. 3a £ E. t = (qi,a,qi+i)}. For each 
state q £ Q, we denote by In(q) (resp. Out(q)) the set of transitions of the form 
((?'>a)(?) (resp. (q,a,q')) for some q' £ Q and a £ E. Now, let [A] be the formula 

{AteTXt   =   1) A (AgSQ\{?0} J2teln(q) Xt   =  T,teOut(q)_ Xt) A (1 + Jlteln(qo) Xt   = 

StgOutfo ) xt)- ^ can ^e checked that for each valuation v of the variables in X, 
v satisfies [A] if and only if there exists an accepting run p of A such that v = vp. 

It is well known that every finite-state automaton has a characteristic Pres- 
burger formula due to Parikh's theorem [14]. However, the formula we give above 
is simpler and exploits the particular structure of simple automata. 

3    Communicating Finite-State Machines 

We consider a generalization of communicating finite-state machines (CFSM) 
defined in [4]. A CFSM is a finite-state machine which can send and receive 
messages over a finite set of unbounded FIFO queues. Usually, a transition either 
appends a message to the end of a queue or removes a message from the head of 
a queue. We generalize this by allowing simultaneously appending and removing 
messages from several queues. 

Formally, a Communicating Finite-State Machine M. is a tuple (S,K, E,T) 
where S is a finite set of control states, K is a finite set of unbounded FIFO queues, 
E is a finite set of messages, T is a finite set of transitions. Each transition is 
of the form {s\,op, s^), where s\ and S2 £ S, and op is a finite set of queue 
operations of the form /c;!w or mlw with K» £ K and w £ E* such that for each 
queue KJ there is at most one label Kj!w or Ki?w in op. 

A configuration of A4 is a tuple 7 = (s, w) where s is a control state in S, 
and w = (wi,... ,W\K\) is a |K|-dim multi-word (i.e., a tuple in (X1*)^!), each 
Wi being the contents of the queue Ki, for i € {1,..., \K\}. We denote by Conf 
the set of all configurations of M, i.e., Conf = S x (E*)\K\. 

We define a global transition relation between configurations in the following 
manner: Let 7 = (s,wi,... ,W|K|) 

and 7' = (s', w[,..., w',K,) be two configura- 
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tions, and let op be a set of queue operations. Then, we have 7 -» 7' if and only 
if there exists a transition (si, op, s2) £ T such that, for every i e {1,. ■ ■, \K\}, 

- if Ki?w € op then imuj = wt else if K,!W € op then w- = wiw, 
— otherwise w\ = w;. 

Given a transition r = (s, op, s') 6 T, we say that r is executable at 7 = (s, w) 
if there exists 7' = (s', w') such that 7 ^? 7'. In this case, 7' (resp. 7) is the imme- 
diate successor (resp. predecessor) of 7 (resp. 7') by r. We define the predecessor 
and successor functions preT and postT, both in 2C'0"/ -> 2Conf, such that, for 
every set of configurations C, preT(C) (resp. postT{C)) is the set of immediate 
predecessors (resp. successors) of the configurations in C by r. The pre (resp. 
post) function is defined as the union of the functions preT (resp. postT), for all 
T &T. The notion of executability can be generalized to sequences of transitions, 
in particular to cycles in the transition graph T. A sequence 6 of transitions in 
T is called a cycle if it is of the form (s0,op0,Si)(si,opi,s2) • ■ ■ (sn-i,opn,so)- 

The definitions of preT and postT can also be generalized to sequences of 
transitions: preT1...Tii = preTl o ... o preTn and postTl/Tn = posirn o ... o postTi. 

Given a sequence of transitions 6, the functions pre*e and posi^ are the re- 
flexive transitive closures of pree and poste, i.e. given a set of configuration C, 
pre*e(C) (resp. post*e(C)) is the set of predecessors (resp. successors) of configu- 
rations in C obtained by iterating an arbitrary number of times 9. 

We define the functions pre* and post* as the reflexive transitive closures of 
pre and post. The function pre* (resp. post*) yields the set of all predecessors 
(resp. successors) of a given set of configurations. 

4    Constrained Queue Description Diagrams 

In this section we introduce representation structures for sets of queue contents. 
These structures consist of a combination of finite-state automata (restricted 
deterministic simple automata) with linear constraints on the number of times 
transitions in these automata are taken. This combination allows to represent 
nonregular sets of queue contents. 

4.1     Definition 

Constrained Queue Description Diagrams (CQDD's) are a particular case of con- 
strained simple automata. For any n > 1, a n-dim constrained simple automa- 
ton (CSA) is a set of accepting components C = {(Ai,fi), ■■■, (Am, fm)} where, 
for every i € {1,..., m}, A is a tuple of n simple automata (A\,..., Al

n) over 
£ and fc is a Presburger formula over a set of variables Vi containing the set 
Xt = {xt  : t € Ti}, where % is the set of all the transitions of the automata in 

At, i.e., Ti = U"=i -►;■• 
The CSA C accepts a n-dim multi-language, i.e., a set of tuples of n words. 

For every« £ {1,... ,m}, the multi-language of the accepting component (A,/»>, 
denoted by L((A,/i» is the set of tuple of words (wi,... ,wn) 6 (S*)n for which 
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there are accepting runs (pi,.. .,/?„) of the automata (A],..., A?) respectively, 
such that 3{Vi \Xt). ft is satisfied by the valuation {uPl,...,vPn) (i.e., the valu- 
ation associating with each variable xt the integer |pi... pn\t, where t G %). The 
multi-language of the CSA C, denoted by L(C), is the union |J™ j L{(Ai,fi)). 

A n-dim CDSA is a n-dim CSA such that all its automata are determinis- 
tic. A n-dim CQDD is a n-dim CDSA such that all its automata are restricted 
(DRSA's). For every n > 1, we denote by n-CQDD (resp. n-CDSA) the class of 
all n-dim CQDD's (resp. n-dim CDSA's). We say that a n-dim multi-language C 
is CQDD (resp. CDSA) definable if there exists a n-dim CQDD (resp. CDSA) C 
such that L(C) = £. A n-dim multi-language £ is CQDD (resp. CDSA) reverse 
definable if its reverse image, denoted by LR, is CQDD (resp. CDSA) definable. 

4.2    Expressiveness 

CQDD's allow to define nonregular multi-languages. For instance, consider the 
context-sensitive language Ly = {anbmanbm : n,m > 1}. To define Lu we use 
the automaton A\ represented by the following picture: 

aba 

Sb 9° ^A 
go <?1 °2 93 

Then, Lx is defined by the 1-dim CQDD {(Ai,/i)} where /i is given by 
zfo-a,«) = *(93,a,M) A *(«,»,«) = Hi**,**)- Consider the 2-dim multi-language 
L-2 = {(anbmanbm, cmdnam) : n,m> 1}. To define this multi-language, we use 
two automata, the automaton A1 above and A2 given by the following picture: 

c d 

&A^_ o  
q'o Q[        4 

Then, L2 is defined by the 2-dim CQDD {((A1,A2),h)} where f2 is given by 

(X(91,a,Ql) =E(93,a,<!3) = X(q'2,d,q'2) =
n)   A   (*(,2,6,92) = X(q4,b,<14) ~ X{q[ ,c,q\ ) = X (l'3,a,q'3) = m) ■ 

These examples show that CQDD's can be used to express nonregular multi- 
languages involving constraints on number of occurrences of symbols at some 
positions that may be in a same word (as in Li), or even in different words (as in 
L2). This allows to represent sets of queue contents such that there are counting 
constraints relating the contents of different queues. 

4.3     Basic operations and decision problems 

Here we give the main results about boolean operations on CQDD's. We show 
that they are closed under union, intersection, concatenation and left-derivation, 
but their complementation yields CDSA's. Concatenation and left-derivation are 
useful operations in the construction of sets of successors and predecessors (see 
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Section 5). Moreover, the intersection of a CQDD with a CDSA is a CQDD. 
Finally, we show that the membership and inclusion are decidable for CQDD's. 

Let £1 and £2 be two n-dim multi-languages. The concatenation of £1 and 
£2, denoted by £1 • £2, is the set {w E (E*)n : 3u £ Cx. 3v E £2. ü? = u#} 
where m7 is the component-wise concatenation of u and v. The left-derivative of 
£1 by £2, denoted by £2"1 ■ £1, is the set {w E (E*)n : 3w' € £2. w'w € £1}, 
i.e., the set of multi-words allowing to extend elements of £2 to elements of C\. 

Proposition 4.1 For every n > 1, n-CQDD is closed under union, intersection, 
concatenation and left-derivation. 

It can be observed that the product of a DRSA with a DSA is a DSA. Hence: 

Proposition 4.2 For every n > 1, the intersection of an n-CQDD with an n- 
CDSA is an n-CQDD. 

Because the simple automata in a CQDD are deterministic we can show: 

Proposition 4.3 For every n>l, the complement of a n-CQDD is a n-CDSA. 

Let C = {(A,f)} be a CSA. Clearly, L(C) ^ 0 if and only if the Presburger 
formula [A] A / is satisfiable. Hence: 

Proposition 4.4  The emptiness problem is decidable for CSA's. 

From Propositions 4.2, 4.3, and 4.4 we deduce: 

Corollary 4.1 For every n>l, the membership problem as well as the inclusion 
problem are decidable for n-dim CQDD's. 

5    Representing and manipulating sets of configurations 

Let M = (S, K, E, T) be a CFSM. Every set of configurations C C Conf can 
be written as a union LUsW x £* where the £s's are |Ä"|-dim multi-languages. 
We say that C is CQDD representable (resp. reverse representable) if for every 
seS, the multi-language £s is CQDD definable (resp. reverse definable). Let us 
consider as an example the system M: 

{ni?a,K2
].b} 

{K2\a,K3\a} 

The set of configurations of M reachable from the (s0, e, e) is given by: 

{s0}x{(an,(ba)m,am)  : n,m > 0} U {Sl} x {(on, (ba)mb,am)  : n,m>0}  (1) 

and is clearly CQDD representable. 
In the sequel, we present results allowing to manipulate and to reason about 

sets of configurations that are CQDD representable or reverse representable. First 
of all, by Propositions 4.1, 4.4 and Corollary 4.1, we deduce: 
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Theorem 5.1 The class of CQDD representable (resp. reverse representable) 
sets of configurations is effectively closed under union and intersection, and has 
decidable emptiness, membership and inclusion problems. 

The closure property under concatenation and left-derivation of CQDD's 
(Proposition 4.1) allows us to show: 

Theorem 5.2 For every CQDD representable (resp. reverse representable) set 
of configurations C, the set of configurations post{C) (resp. pre(C)) is CQDD 
representable (resp. reverse representable) and effectively constructible. 

Now, we give our main results. 

Theorem 5.3 For every CQDD representable set of configurations C, and every 
cycle 9, the set of configurations post*9(C) is CQDD representable and effectively 
constructible. 

We give hereafter a rough scheme of the proof: Let C be a set configurations 
given by a m-dim CQDD of the form {((Aj,..., Am), /)} (this is not a restriction 
since post is distributive w.r.t. union). The principle of the construction is to 
compute the effect of n successive executions of the cycle 9 on each queue, n 
being a parameter. 

Then, for every i £ {1,... ,771}, we construct several automata A\ and con- 
straints gt. These constraints depend on n (considered as a new free variable), 
and relate variables corresponding to the transitions of A\ with those correspond- 
ing to the transitions of A{. The set post*e{C) is then represented by a union of 
CQDD's {((Ai,..., A'm), f A A™ 1 9i)}- Note that> since a11 the ^'s depend on 
the variable n, this expresses the fact that the number of executions of 9 must 
be the same for every queue. 

The construction of the automaton A[ and the constraint gi is done by iden- 
tifying the configurations from which the cycle 9 can be executed an unbounded 
number of times and those allowing only a bounded number of executions. Then, 
we show that in each case, A- and gt are obtained from Ai using basic operations 
on CQDD's such as concatenation and left-derivation. 

We can also prove that the class of CQDD reverse representable sets of con- 
figurations is effectively closed under the pre*e function, for every cycle 9. 

Theorem 5.4 For every CQDD reverse representable set of configurations C, 
and every cycle 9, the set of configurations pre*e{C) is CQDD reverse repre- 
sentable and effectively constructible. 

6    Forward and backward reachability analysis 

The basic (safety) verification problem consists in checking that a bad configu- 
ration can never be reached from an initial configuration. Thus, given a set of 
initial configurations I and a set of bad configurations B, this problem can be 
formulated either as 
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- (PI) BDpost*(I) = 0, or 
- (P2) lr\pre*(B) = 0. 

The first formulation consists of a forward reachability analysis of the configura- 
tion space whereas the second one consists of a backward reachability analysis. 
Hence, given a set of configurations C, we wish to compute the set of its successors 
and predecessors, i.e., post*(C) and pre*(C). By definition, for 4> £ {post,pre}, 
we have 

p(C) = \JCi 
i>0 

where 

C0 = C 

Ci+1 =Ciö (j){Ci)   for every i > 0. 

In the case <j> = post (resp. 0 = pre), if C is CQDD representable (resp. reverse 
representable), it can be deduced from Theorems 5.1 and 5.2 that all the Cj's are 
CQDD representable (resp. reverse representable). Hence, the equations above 
yield a semi-algorithm for calculating $* (C) based on a iterative calculation of 
the Ci's. Since the sequence of the Cj's is increasing, the limit is reached if for 
some i we have d = Ci+i. Then the algorithm stops and returns C». We can 
detect this since the inclusion problem is decidable for CQDD representable (resp. 
reverse representable) set of configurations (by Theorem 5.1). Then, if the set of 
initial and bad states is also CQDD representable (resp. reverse representable), 
the problem PI (resp. P2) above can be solved by Theorem 5.1. 

Of course, since the reachability problem is undecidable for CFSM's, an index 
i such that d = Ci+X does not exist in general, and the (naive) algorithm 
described above may never stop. 

We propose to tackle this divergence problem by performing an "exact ac- 
celeration" of the iterative calculation of the limit cf>*(C). The idea is as follows: 
Given a set of cycles in the transition graph of the system, say 0, add at each 
step the set of successors (or predecessors) by each of the cycles in 6. This op- 
eration is sound (exact) since all the added configurations belongs to <j>*{C). So, 
we compute <j>*{C) as the limit of another increasing sequence of configurations 
(Di)i>0 given by: 

D0 = C 

Di+i =DiU 4>{Di) U (J (p*g(Di)   for every i > 0 

Clearly, for every i > 0, we have d C £>*. Hence, the chance to reach the limit 
(j>* (C) in a finite number of steps is greater (or at least equal) by considering the 
Dj's instead of the Cj's, and this chance should increase with the size of 6. 

Therefore, using Theorems 5.1, 5.2, 5.3 and 5.4, we obtain a generic reacha- 
bility analysis semi-algorithm which computes (when it terminates) the exact set 
of successors (resp. predecessors) of a given CQDD representable (resp. reverse 
representable) set of configurations. This algorithm is given by: 
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Reachability (6>, C): 
X :=C ; 
repeat 

Y •= X " 
I:=lU^(I)UU9ee«W 

until X = Y ; 
return(X) 

end Reachability 

A variety of reachability algorithms can be derived from the generic algorithm 
above by determining adequate strategies for choosing the set of cycles Q. 

For instance, the forward reachability analysis algorithm given in [5] can be 
seen as a possible instance of our algorithm1. Indeed, in [5] the authors con- 
sider the set of cycles that are of one of the following three forms: (s, {K\W}, S), 

(S,{K?W},S), or (S,{KI?Iü}, «')(*'. {«2^}.*)- These kind of cycles d0 n0t intr°~ 
duce counting constraints on queue contents. Hence, starting from a regular set 
of configurations (finite-state automata definable), the set of reachable configura- 
tions by these cycles is also regular. Then, a representation structure based only 
on finite-state automata (QDD's) can be used and allows to analyze some signifi- 
cant systems. But considering QDD's and only cycles of the form specified above 
does not allow to reason about systems with nonregular sets of configurations like 
the system M given in Section 5. However, it is easy to see that our algorithm 
terminates and computes the exact set of configurations of the system M (given 
by 1) if we consider as 0 the set of the two elementary cycles (s0,{Ki!a},s0), 
and (so, {/«i?a,K2\b},si){si,{K2\a, K3\a},s0)}. 

7    Conclusion 

We have applied the symbolic analysis principle to fifo-channel systems (commu- 
nicating finite state machines). These systems have in general nonregular sets of 
configurations. We have proposed a representation structure for their sets of con- 
figurations combining finite-state automata with counting constraints expressed 
in Presburger arithmetics. We have shown that this structures allow to com- 
pute the exact effect of the repeated execution of any fixed cycle in the transition 
graph of a system. We have defined a generic reachability analysis semi-algorithm 
which is parametrized by a set of cycles. This semi-algorithm computes iteratively 
the set of successors (or predecessors) by considering these cycles as additional 
"meta-transitions" in the graph, following the approach adopted in [6, 5]. 

It can be seen that our reachability analysis procedure computes a fixpoint of 
a function on set of configurations which is of a very particular form. Actually, 
this procedure can be generalized to a mo del-checking procedure for any positive 
fixpoint formula constructed using disjunctions, conjunctions, and the successor 
(predecessor) function, starting from basic CQDD (reverse) representable sets. 

1 In the definition of QDD's, any deterministic finite-state automata can be used. How- 
ever, it can be checked that, starting from an initial configuration with empty queues, 
the constructed QDD is a union of DRSA's. 
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Abstract. Milner proposed an axiomatization for the Kleene star in basic pro- 
cess algebra, in the presence of deadlock and empty process, modulo bisimulation 
equivalence. In this paper, Milner's axioms are adapted to no-exit iteration z"\ 
which executes i infinitely many times in a row, and it is shown that this axio- 
matization is complete for no-exit iteration in basic process algebra with deadlock 
and empty process, modulo bisimulation. 

1    Introduction 

Kleene [15] defined a binary operator x'y in the context of finite automata, which denotes 
the iterate of x on y. Intuitively, the expression x*y can choose to execute either x, 
after which it evolves into x*y again, or y, after which it terminates. A feature of the 
Kleene star is that on the one hand it can express recursion, while on the other hand 
it can be captured in equational laws. Hence, one does not need meta-principles such 
as the Recursive Specification Principle [10]. Kleene formulated several equations for his 
operator, notably the defining equation x'y = x{x*y)+y. In later years it became more 
fashionable to consider the unary version x* of the Kleene star. In the presence of the 
empty process, the unary and the binary Kleene star are equally expressive. 

Salomaa [22] presented a finite complete axiomatization for the Kleene star in language 
theory, modulo completed trace equivalence, which incorporates one conditional axiom, 
namely, if x = y ■ x + z, and y cannot terminate immediately, then x = y*z. Salomaa's 
completeness proof basically consists of two steps: first he shows that the solutions of a 
guarded recursive specification are all provably equal to the same term, and next he shows 
that if two terms are completed trace equivalent, then there exists a guarded recursive 
specification for which both terms are solutions. 

Milner [17] was the first to study the (unary) Kleene star modulo bisimulation, and 
proposed an axiomatization for it, being an adaptation of Salomaa's axiom system. Milner 
[17, page 461] raised the question whether his axiomatization is complete for the Kleene 
star in process theory, and remarked that this question may be hard to answer: "The 
difficulty is that the method [...] of Salomaa's original completeness proof cannot be 
applied directly, since -in contrast with the case of languages- an arbitrary system of 
guarded equations [...] cannot in general be solved in star expressions". 

In this paper the instantiation x*5 of the binary Kleene star is studied, which carries 
two names: perpetual loop and no-exit iteration. Since the deadlock 5 blocks the exits, 
this construct executes x an infinite number of times in a row. The perpetual loop is 
closely related to the Kleene star, and shares several of its characteristics. In this paper 
no-exit iteration, which is denoted by x", is studied in Basic Process Algebra [9] with 
deadlock and empty process, denoted by BPA^(.4). No-exit iteration can be used to 
formally describe programs that repeat a certain procedure without end. A significant 
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advantage of iteration over recursion as a means to express infinite processes is that does 
it not involve a parametric process definition, because the development of process theory 
is easier if parametrization does not have to be taken as primitive (see e.g. Milner [18, page 
212]). Since the syntax of process algebra with iteration has an inductive term structure, 
it allows simpler axiomatizations than recursion, and it does not need a guardedness 
restriction to locate the class of meaningful terms. Therefore, the Kleene star is used 
for example in the specification and verification of Grid protocols [7], which describe 
parallel computations in a grid-like architecture, and in the ToolBus [8], which enables 
to link separate tools. In both cases, iteration is used almost exclusively in the form of 
the perpetual loop. No-exit iteration is also used in the educational vein [21], because it 
enables to specify and verify infinite processes in a simple and intuitive way. 

The three axioms for the unary Kleene star in Milner's axiom system (being Kleene's 
defining equation, Salomaa's conditional axiom and an equation which describes the in- 
terplay of Kleene star and empty process) have obvious counterparts for no-exit iteration. 
It turns out that these three axioms, together with the standard axioms for BPA^£(A), 
make a complete axiomatization for BPA^S(A) modulo bisimulation. The completeness 
proof is based on a strategy that originates from [11]. It also uses new techniques, which 
will hopefully turn out to be applicable in a possible proof of Milner's conjecture (see 
Section 4 for a discussion on this topic). For a detailed presentation of the completeness 
proof for BPAj£(A), and for omitted proofs in this paper, the reader is referred to [12]. 

This paper focuses on the process algebra BPA'g(A), in which the empty process is not 
present. This setting allows a more concise presentation of the ideas that are used in the 
completeness proof for the perpetual loop in process algebra. We will see that Kleene's 
defining equation and Salomaa's conditional axiom for the the perpetual loop, together 
with the standard axioms for BPAi(A), are complete for BPA^(A) modulo bisimulation. 

Sewell [23] proved that there does not exist a complete finite equational axiomatization 
for the Kleene star in combination with deadlock modulo bisimulation, due to the fact 
that a" is bisimilar to (an)u for n = 1, 2,.... Since these equivalences are also present in 
BPA^., Sewell's argument can be copied to conclude that there does not exist a complete 
finite equational axiomatization for BPA" (A). Hence, the adaptation of Salomaa's con- 
ditional axiom for the perpetual loop is essential for the obtained completeness results. 

The requirement ly cannot terminate immediately' in Salomaa's conditional axiom can 
be defined inductively on the syntax. According to Kozen [16] this requirement is not 
algebraic, in the sense that it is not preserved under substitution of terms for actions. 
He proposed two alternative conditional axioms which do not have this drawback. These 
axioms, however, are not sound with respect to bisimulation equivalence. 

Bergstra, Bethke and Ponse [6] suggested a finite equational axiomatization for BPA*, 
i.e, for basic process algebra with the binary Kleene star without the special constants 5 
and e, modulo bisimulation. Their conjecture that it is complete was solved by Fokkink 
and Zantema [14]. (In contrast with this result, Aceto, Fokkink and Ingölfsdöttir [3] 
showed that there does not exist a complete finite equational axiomatization for BPA* 
modulo any process semantics in between ready simulation and completed traces.) In 
[11], a new proof for the completeness result from [14] was presented. This new proof 
technique was was applied successfully not only in this paper, but also in a paper on a 
restricted version of iteration called prefix iteration, which is better suited for a setting 
with prefix multiplication or with communication [2], and in a paper on a more expressive 
variant of iteration called multi-exit iteration [1]. 

Acknowledgements. This research was initiated by a question from Alban Ponse. Luca 
Aceto, Jaco van de Pol, Alban Ponse and an anonymous referee provided useful com- 
ments, and Jan Bergstra is thanked for stimulating discussions. 
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2    The Perpetual Loop in Process Algebra 

2.1 Syntax 

We assume a non-empty alphabet A of atomic actions, with typical elements a, b, c. We 
also assume two special constants 6, which represents deadlock, and e, which represents 
the empty process, and f ranges over .4 U {<5,e}. Furthermore, we have two binary op- 
erators: alternative composition x + y, which combines the behaviours of x and y, and 
sequential composition x-y, which puts the behaviours of x and y in sequence. Finally, we 
have the unary operator xu, which executes x infinitely many times in a row. We will refer 
to this operator both as perpetual loop and as no-exit iteration. The language BPA£e(A), 
with typical elements p,q,...,w, consists of all the terms that can be constructed from 
the atomic actions, the two special constants, the two binary composition operators, and 
the perpetual loop. That is, the BNF grammar for the collection of process terms is: 

p   ::=   a\5\e\p + p\p-p\pu. 

BPA£(A) is obtained by deleting the empty process e, and BPA"(A) is obtained by delet- 
ing the deadlock S and the empty process s from the syntax. The sequential composition 
operator will often be omitted, so pq denotes p ■ q. As binding convention, alternative 
composition binds weaker than sequential composition and no-exit iteration. 

Remark: The presence of the special constant 5 in BPA^(A) is redundant, because it can be 
expressed in BPA^(A) modulo bisimulation: s" is bisimilar with S, because both processes do 
not exhibit any behaviour. However, S is maintained in the syntax as a standard abbreviation. 

2.2 Operational Semantics 

Table 1 presents an operational semantics for BPA£(A) in Plotkin style [20], where 

x -1+ x' represents that process x can evolve into process x' by the execution of action 
a, and i A 7 denotes that process x can terminate by the execution of action a, and 
the unary predicate x -^ yj denotes that process x can terminate immediately. 

V "-W 

X —> \J 
a.   i x —> X 

x + y -^ V y + x -^ y/               x+y 
a        /           .           a        1 —>■ x    y + x —> x 

x —> yj  y —> v x —> V   y —>y 
a.   / 

x-y —>y 

a        i                         &        / 
x —► v           x —> x 

x-y —> v 
x-y -^y     x-y -^+ x' -y 

x-^V 
a.    / x —> X 

x1 ■ (x") 

Table 1. Transition rules for BPA£e(A) 
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Definition 1. p' is a derivative of p if p can evolve into p' by zero or more transitions, 
p' is a proper derivative of p if p can evolve into p' by one or more transitions. 

Note that a process term can be a proper derivative of itself, for example, a"b —>• a*b. 
In the sequel, p' and p" will denote derivatives of process term p. The following lemma 
can easily be deduced, using structural induction. 

Lemma 2. Each process term in BPAgE(A) has only finitely many derivatives. 

Process terms are considered modulo bisimulation equivalence from Park [19]. Intuitively, 
two processes are bisimilar if they have the same branching structure. 

Definition 3. Two processes p and q are bisimilar, denoted by p i± q, if there exists a 
symmetric binary relation B on processes which relates p and q, such that: 

- ifrßs and r -^ r', then there is a transition s -^ s' such that r' B s'; 

- if r B s and r —> •/, then 5 —> y/. 

Bisimulation equivalence is a congruence with respect to all the operators, which means 
that if p j± p' and q j± q', then p+q <±p'+q' and pq ±± p'q' and pu i± (p')w'• Namely, the 
transition rules in Table 1 are in the 'path' format, which guarantees that the generated 
bisimulation equivalence is a congruence, see [5, 13]. 

2.3    Axiomatizations 

Table 2 presents the standard axioms Al-9 for BPAje(.A). Furthermore, Table 3 contains 
the denning equation NEU together with the conditional axiom RSP" for the perpetual 
loop. The axiomatization A1-7+NEI1+RSP1" is sound for BPA^(A), i.e., if p = q in 
BPAj (A) is provable from these axioms, then p j±q. Since bisimulation equivalence is 
a congruence for BPA£(A), soundness can be verified by checking this property for each 
axiom separately, which is left to the reader. 

Al x + y — y + x 
A2 (x + y) + z = x + (y + z) 
A3 x + x = x 
A4 {x + y)-z = x-z + y-z 
A5 (x ■ y) ■ z = x ■ (y ■ z) 
A6 x + 5 = x 
A7 5-x = 5 
A8 x ■ £ = x 
A9 c • x = x 

Table 2. The axioms for BPA<5t(A) 

NEU  x-{x") =x" 
RSP" x  =  y ■ x  =>  x  =  y" 

Table 3. The axioms for the perpetual loop in the absence of e 
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However, the axiom RSPW is not sound in the presence of the empty process. Namely, 
due to the'axiom A9, x = ex, it then implies x = e", which is clearly unsound. There- 
fore, in Table 4 an adaptation RSP^ is introduced, where the condition y # expresses 
that y cannot terminate immediately. This condition, which is similar to the so-called 
guardedness restriction in the Recursive Specification Principle from Bergstra and Klop 
[10], can be defined unductively on the syntax: 

ay 
sy 

x¥Ay¥=>(x + y)¥ 

Table 4 contains the defining equation NEU, and an extra equation NEI2 which de- 
scribes the interplay of no-exit iteration with the empty process. The axiomatization 
A1-9+NEI1.2+RSP" is sound for BPA£(A). 

NEU i.(i") = i" 
NEI2 (x + e)" = x" 
RSP" x = yx A y Y   =»• x = yu 

Table 4. The axioms for the perpetual loop in the presence of e 

The purpose of this paper is to present the following three completeness results. 

Theorem4. The axiomatization Al-9+NEIl,2+RSP" is complete for BPA^(A) with 
respect to bisimulation. 

That is, if pi±q for process terms p and q in BPA^(A), then p = q can be derived from 
the axioms Al-9+NEIl,2+RSP". 

Theorem5. The axiomatization Al^+NEIl+RSP1" is complete for BPA£'{A) with re- 
spect to bisimulation. 

Theorem 6. The axiomatization Al-5+NEIl+RSPw is complete for BPA" (A) with re- 
spect to bisimulation. 

This paper focuses on the completeness proof for BPAf(A). The completeness proof for 
BPA%4) is closely related to the one for BPA£(.A) (missing only some minor cases for 6 
in the construction of basic terms in Lemma 17). The completeness proof for BPA^(A) 
also uses the same proof strategy, but, due to the presence of the empty process, the 
technical details are considerably more complicated. The reader is referred to [12] for a 
detailed exposition on the completeness proof for BPA^e(A). 

3    Proof of the Main Theorem 

This section presents preliminaries that are needed in the proof of Theorem 5, together 
with the completeness proof itself. Many preliminary definitions in this section originate 
from [11]. For omitted proofs the reader is referred to [12]. 
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3.1 Expansions 

From now on, process terms in BPAg(A) are considered modulo associativity and com- 
mutativity of the +, that is, modulo the axioms Al,2. We write p =Ac 9 if P and q can 
be equated by axioms Al,2. As usual, £?=i p; represents the term pi + ... +pn, and the 
Pi are called the summands of this term. The empty sum represents 6, where £Ig0 Pi + <7 
is not considered empty. 

Definition 7. For each process term p, its collection of possible transitions is finite, say 

{p-^Pi I i-l,-.n}\j{p-% y/\j = l,-.,m}. The expansion of p is 

n m 

Lemma 8. üJacft process term p in BPAg(A) is provably equal to its expansion, using 
A4-7+NEI1. 

Proof: By structural induction with respect to p. 

3.2 Normed Processes 

The following terminology stems from [4]. 

Definition 9. A process term p is called normed if it can terminate in finitely many 

transitions, that is, p —> pi —*■ ■ ■ ■ —»■ pn —>• v • 

The class of normed processes in BPA£ (A) can be defined inductively as follows: 

- a G A is normed; 
- if p or g is normed, then p + q is normed; 
- if p and q are normed, then pq is normed. 

LemmalO. 7/p M not normed, then pq = p is provable using A4,5,7+NEI1+RSP"'. 

Proof. By structural induction with respect to p. 

3.3 An Ordering on Pairs of Terms 

The following weight function on process terms in BPA^(^4), which represents the max- 
imum nesting of ui's in a term, will be used to formulate an ordering on pairs of terms. 

9(a) = 0 
g(5) = 0 

g(p + q) -max{g(p),g(q)} 
g(pq) =max{g(p),g(q)} 
g(p")=g(p) + l. 

Note that p-value is invariant under axioms Al,2. The following lemma can easily be 
deduced, using structural induction. 

Lemma 11. If p' is a derivative of p, then g{p') < g(p). 

We consider pairs of process terms modulo commutativity. The ordering < on pairs of 
process terms is defined as follows. 
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Definition 12. The ordering < on pairs of terms is obtained by taking the transitive 
closure of the union of the three relations below. 

1. (r,s) < [p,q) if g(r) < g(p) and g(s) < g(p); 
2. (r,s) < (p,q) if S(r) < g{p) and g(s) < g{q); 
3. {p',q') < (p,q) if p' is a derivative of p, and not vice versa, and q' is a derivative of q. 

The proof of the completeness theorem is based on induction with respect to this ordering, 
so we need to know that it is well-founded. 

Lemma 13.  The ordering < on pairs of process terms is well-founded modulo =Ac- 

Proof. Omitted. 

3.4 Basic Terms 

We construct a set 1 of basic process terms, such that each process term is provably 
equal to a basic term, and the derivatives of basic terms are basic terms. We will prove 
the completeness theorem by showing that bisimilar basic terms are provably equal. 

Definition 14. The set 1 of basic process terms is defined inductively as follows: 

1. if oi,...,a„,6i,...,6me Aandpi,...,p„eB, then £"=1 mpi + Y!J=i bJ € B; 
2. ifp€ B thenp1" € B; 
3. if p 6 B and p' is a proper derivative of p, then p'(pu) 6 B. 

For notational convenience, we distinguish the following set C of cycles in B. 

Definition 15. C = {pu,p'(pw) | P 6 B, p' proper derivative of p}. 

The following facts for basic terms will be needed in the completeness proof. 

Lemma 16.    1. If p £ C and p -^ p', then p' € C. 
2. If p e B and p -^ pi, then p' 6 B. 
3. //pel and p is a proper derivative of itself, then p 6 C. 

Lemma 17. For each termp there exists a basic term q with g{q) < g{p) such that p = q 
is provable using A4-7+NEI1+RSP". 

3.5 The Auxiliary Function <p 

Before starting with the completeness proof, first we need to develop some theory. The 
proposition that will be proved at the end of this section makes an important stepping 
stone to obtain the desired completeness result for BPA£(A). 

p'ip") i± P"^"). with P' and P" derivatives of p, does not imply p' j± p". For example, 
clearly adaa)") j± aaKaa)"), but a <£ aa. In order to solve this ambiguity, we define an 
operator <j>p on basic terms, where intuitively the term <j>p(q), for q £ C, is obtained from 
the argument q as follows: all proper derivatives q' of q with q'(p") ±± p" are removed in 
4>p(q). We will see that if p'ip") ±tp"(p") then (f>p(p?) j± <t>p{p")- 

Definition 18. Given q £ B, the term op(q) is defined as follows, using structural in- 
duction. We distinguish two cases: either q € C or q £ C. 

- CASE 1: q e C. Then put 
Op{q) =AC q- 



578 

- CASE 2: </ £ C, so that 
q =AC 22a.iqi + 2_,bj- 

iei j€J 

Then define J0 = {i 6 / | qdp") i£ Pw}> and put 

<^(<?) =AC X] a^p(?i) +   Y,  ai + J2 bi- 
ie/o i€/\/o        ieJ 

Lemma 19. For g £ 1 we ftaue g{(j>p{q)) < g(q)- 

Proof: By structural induction with respect to q. 

The proofs of the next two technical lemmas are quite involved, and therefore omitted. 

Lemma 20. Assume that for some natural number iV0: 

A. for all terms u with g(u) < N0 we have p" +£ u. 

Letq,r£B andg{q + r) < N0. If q(p") i±r{pu) then 

4>P{q) ±± Mr)- 

Proof. Omitted. 

Lemma 21. Assume that for some natural number N0: 

A. for all terms u with g{u) < N0 we have p i£_ u; 
B. for all pairs (u,v) of bisimilar terms with g(u + v) < N0 we have u-v. 

Let p, q € 1 and g(p + q) < N0. Then 

q^viPT) = MtifaiP)")- 

Proof. Omitted. 

Proposition 22. Assume that for some natural number N0: 

A. for all terms u with g{u) < N0 we have p" j£ u; 
B. for all pairs (u, v) of bisimilar terms with g(u + v) < N0 we have u = v. 

Let g{p + q + r)< N0 and q(pu) i± r(p"). Then 

q(p") = r(pw). 

Proof. By Lemma 17 
p = s (1) 

with s £ B and g(s) < g{p) < N0. Since conditions A and B hold, Lemma 21 can be 
applied to derive s(^(sD = 0,(s)(^(s)") = Ms)" ■ RSP" then yields 

su = MB)"- (2) 

According to Lemma 17 there exist basic terms t and u with g(t) < g{q) < No and 
g(u) < g{r) < N0 and 

q — t (•>) 
r = u. iv 

Since t{s") j± q(pu) ±± r{pu) ±> u(su), and since g(t + u) < N0 and requirement A of 
Lemma 20 is satisfied, it implies <£,(*) i± <£,(«)• Since s(0s(<) + <£,(«)) < No (Lemma 
19), condition B yields 

Mt) = My)- (°) 
Hence, 

,(p-) (1L(3) t(sn (=> t(M*r) Le=21 MtUMsr) 
(4> MuKMsT) L' = 21 u(Msr) (=> u(s») (1)^4) r{p-).     G 
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3.6    Completeness Proof 

Proof of Theorem 5: Assume p, q 6 B with p $±q; we show that p = q can be derived 
from A1-7+NEI1+RSP", by induction on the well-founded ordering < on pairs of terms. 
So suppose that we have already dealt with pairs of bisimilar basic terms that are smaller 
than (p, q). By symmetry it is sufficient to consider two cases: either p £ C or p,q g C. 

- CASE l-.p&C 
According to Lemma 8 p and q are provably equal to their expansions. Since p ±¥ q, 
these expansions can be adapted, using axiom A3, to obtain: 

n m n m 

where p; f± qt for i = 1,..., n. Since p 0 C, Lemma 16.3 says that p is not a derivative 
of pi for i = l,...,n. Since the p4 and the <ji for i = l,...,n are derivatives of p and 
<? respectively, it follows that {pi,qi) < (p,q) for i = 1, ...,n (by item 3 in Definition 
12). So induction yields p* = qi for i = 1, ...,n. Hence, p = q. 

- CASE 2:p,q£ C. 
Since p € C, either p =AC ru - r{r") or p =Ac r'(ru), where r € I and r' is a 
proper derivative of r. In both cases p = r'(r") with r € 1 and r' a derivative (not 
necessarily proper) of r. Even so, q = s'(s") with s € 1 and s' a derivative of s. 
By symmetry, it is sufficient to distinguish two cases: either r' is not normed, or both 
r' and s' are normed. 

* CASE 2.1: r' is not normed. 
Then by Lemma 10 r'(ru) = r'. Since g(r') < g{r) < g(p), item 2 in Definition 
12 yields (r',q) < (p,q). So, since r' ±±r'(ru') *±q, induction yields r' = q. Hence, 
p = /(r") = r' =q. 

* CASE 2.2: Both r' and s' are normed. 
For convenience of notation put iV0 = max{g(p),g(q)}. Again, we consider two cases: 
either there exists or there does not exist a term t with g(t) < N0 and p «t 

o CASE 2.2.1: There exists a term t with g{t) < N0 and p $±t (and so q j± £). 
Since by the assumption at case 2.2 r' is normed, and r'(ru) 4±t, there exists a 
derivative t' of t with ru ±±f, and so rt' j± t'. Furthermore, Lemma 11 implies 
g(t') < g(t) < N0, and so g(rt' + t') < N0. So after using Lemma 17 to reduce rt' 
and t' to basic form, we can apply induction, by item 1 in Definition 12, to conclude 
rt' = t'. RSP" then yields ru = t', so p = r't'. By Lemma 17 r't' = u with u 6 I and 
g(u) < N0. Thus, p = u. Even so, q — v for some basic term v with g(v) < No- Then 
u i± P ±± 9 i± "i so since ff(u+«) < A^o, induction yields u = v. Hence, p = u = v = q. 

o CASE 2.2.2: For each term t, if #(£) < N0 then p <£_ t (and so q <£ £). 
Since p i±q, the assumption of this case implies #(p) = g(q). 
Note that the requirements A and B for Proposition 22 are satisfied, by the assump- 
tion at case 2.2.2 together with the induction hypothesis (item 1 of Definition 12). 
So we are allowed to apply Proposition 22 in this case. 
By the assumption at case 2.2 r' is normed, so since r'(ru) i±s'(su), there exists a 
derivative s" of s such that r" ±> s"(s"). Even so, s" *+ r'^r") for some derivative 
r" of r such that r"(ru) +± s". 
Since s"r"{r") tts"^") ±± r" ±±r(r"), and #(s"r" + r) < JV0, Proposition 22 yields 

s"r"(r") = r(rJ) N=U ru. RSP" then yields 

r- = {s"r")^. (6) 
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Even so, 
a" = (r"s'T- (7) 

Since s"((r"s"y) "=" s"((r"s")((r"s"r)) = (s"r")(s"((r"s'T)), RSP" yields 

s"((r"s")u) = (s"r'T- (8) 

Since /«"(a") i± r's"((r"s")u) ±± r'((«"r")w) ±± r'{r") i±s'(s"), and 5(rV + s') < 
iV0, Proposition 22 yields 

rV'(*") = s'(sn- (9) 
So finally, 

P=AC r (r") (=> r'((s"r")u) = r's"((r"s")") = r's'V) ® s'(sw) =Ac <?•       O 

3.7    An Example 

We give an example as to how the construction in the completeness proof acts on par- 
ticular pairs of bisimilar basic terms. 

Example 1. {a.8 + b){{c(a5 + b))u) ±± {aS + bc)u. 

This equivalence belongs with case 2.2.2. It can be derived as follows. 

(aS + b)((c(a5 + b))u) NIU (aS + b)((c(a5 + b))((c(a5 + 6))")) 
Ai'5 ((a5 + b)c)((a5 + b)((c(aS + &))")). 

Then RSP" yields 
(a5 + b)((c(a8 + 6))") = ((aS + b)c)". (10) 

So finally, 
{aS + b){(c(a5 + b))u)  (=>  ((aS + b)cr  A4=5J {a5 + bCy. 

4    Conclusion 

In this paper, Milner's axiomatization for iteration was restricted to the case of no- 
exit iteration, and it was proved that this yields a complete axiomatization for no-exit 
iteration in process algebra modulo bisimulation. The main new idea in the proof was to 
introduce a function 0 which can help to minimize the argument p of a no-exit iteration 
term pw, in such a way that p does not contain any proper derivatives p' with p'(pw) ±± pu ■ 
For example, using this function <j>, the term (aa)" can be reduced to a". 

The completeness result in this paper may be a step forward to a positive answer to 
the question whether Milner's axiomatization is complete for iteration in process algebra 
modulo bisimulation. Namely, the main problem in solving this question is to deal with 
no-exit iteration terms p" where p is not minimal. Unfortunately, it is not obvious how 
to extend the definition of the function tj> to all terms in process algebra with iteration. 
For example, consider the term 

{a((a(ba + a))*c))w 

where the argument a((a(ba + a))*c) of no-exit iteration is not minimal. Minimization of 
this argument would yield a so-called 'double-exit' term (with exits 6 and c), which cannot 
be expressed in process algebra with iteration modulo bisimulation (see [6, 1]). The only 
way to obtain a no-exit iteration term with a minimal argument in this particular case 
is to rewrite the term to 

a((a(ba + a) + ca)u) 

A minimization strategy for all possible arguments of no-exit iteration would probably 
be the key to solving Milner's question. 
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Abstract Rectangular hybrid automata model digital control programs of analog 
plant environments. We study rectangular hybrid automata where the plant state evolves 
continuously in real-numbered time, and the controller samples the plant state and 
changes the control state discretely, only at the integer points in time. We prove that 
rectangular hybrid automata have finite bisimilarity quotients when all control transi- 
tions happen at integer times, even if the constraints on the derivatives of the variables 
vary between control states. This is sharply in contrast with the conventional model 
where control transitions may happen at any real time, and already the reachability 
problem is undecidable. Based on the finite bisimilarity quotients, we give an exponen- 
tial algorithm for the symbolic sampling-controller synthesis of rectangular automata. 
We show our algorithm to be optimal by proving the problem to be EXPTIME-hard. 
We also show that rectangular automata form a maximal class of systems for which 
the sampling-controller synthesis problem can be solved algorithmically. 

1   Introduction 

Hybrid systems are dynamical systems with both discrete and continuous components. A 
paradigmatic example of a hybrid system is a digital control program for an analog plant en- 
vironment, like a furnace or an airplane: the controller state moves discretely between control 
modes, and in each control mode, the plant state evolves continuously according to physical 
laws. A natural mathematical model for hybrid systems is the hybrid automaton, which rep- 
resents discrete components using finite-state machines and continuous components using 
real-numbered variables [ACH+95]. A particularly important subclass of hybrid automata 
are the rectangular automata, where in each control mode v, the given n variables follow a 
nondeterministic differential equation of the form % G B(v), for an n-dimensional rect- 
angle B{v) CM" [HKPV95]. Rectangular automata are useful as (1) they can be made to 
approximate, arbitrarily closely, complex continuous behavior using lower and upper bounds 
on derivatives [HH95], and (2) they can be analyzed automatically using (semi)algorithms 
based on symbolic execution, such as those implemented in HYTECH [HHW97]. 

For systems that can be executed symbolically, verification and control yield to a 
(semi)algorithmic approach even if the state space is infinite [Hen96]. For such systems, a 
temporal formula can be verified automatically and a controller can be synthesized auto- 
matically by computing, using iterative approximation, a fixpoint of an operator on state 
sets [BCM+92, MPS95]. The fixpoint computation is guaranteed to terminate in the pres- 
ence of a suitable finite quotient space. For example, symbolically-executable systems with 
finite bisimilarity quotients allow symbolic LTL and CTL model checking, and symbolic 

* This research was supported in part by the ONR YIP award NOOO14-95-1-0520, by the NSF 
CAREER award CCR-9501708, by the NSF grant CCR-9504469, by the AFOSR contract F49620- 
93-1-0056, by the ARO MURI contract DAAH-04-96-1-0341, by the ARO contract DAAL03-91- 
C-0027 through the MSI at Cornell University, by the ARPA grant NAG2-892, and by the SRC 
contract 95-DC-324.036. 
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safety controller synthesis. While rectangular automata can be executed symbolically, they 
do not necessarily have finite bisimilarity quotients, and simple reachability questions are 
undecidable [HKPV95]. A noted subclass of rectangular automata with finite bisimilarity 
quotients are timed automata, where all variables are clocks with derivative 1 [AD94]. As 
a consequence, the symbolic model checking and controller synthesis problems have been 
solved for timed automata [HNSY94, MPS95]. 

While previous results on timed and hybrid automata allow edge transitions (i.e., control 
switches) to occur at any real-numbered points in time, this is not necessarily a natural 
assumption for controller synthesis, as it permits controllers that, in a single time unit, can 
interact with the plant an unbounded number of times (even infinitely often, if no special 
care is taken [AH97]). By contrast, we study the control problem under the assumption that 
while the plant evolves continuously, the controller samples the plant state discretely, at 
the integer points in time only.3 This leads to the following formulation of the sampling- 
controller synthesis problem for rectangular automata: given a continuous-time rectangular 
automaton, is there a discrete-time controller that samples the automaton state at integer 
times and switches the control mode accordingly so that the resulting closed-loop system 
satisfies a given invariant? 

To solve this problem, we study the discrete-time transition systems of timed and rect- 
angular automata, where all time transitions have unit duration. It should be noticed that all 
variables still evolve continuously, in real-numbered time; only edge transitions are restricted 
to discrete time. We prove that unlike in the case of dense time, the discrete-time transition 
system of every rectangular automaton has a finite bisimilarity quotient.4 As a corollary, we 
conclude that the standard approaches to symbolic model checking and controller synthesis 
are guaranteed to terminate when all control switches must occur at integer times. The run- 
ning times of the verification and control algorithms depend on the number of bisimilarity 
equivalence classes, which, while exponential in the description of the automaton, is less 
by a multiplicative exponential factor than the number of region equivalence classes used 
for the dense-time verification and control of timed automata. Thus, the often more realistic 
sampling-controller synthesis problem can be solved for a wider class of hybrid systems 
than dense-time control (rectangular vs. timed), at a smaller cost. 

We prove that our sampling-control algorithm is optimal, by giving lower bounds on 
the control problem for timed and hybrid systems: we show that the safety control decision 
problem (does there exist a controller that maintains an invariant?) is complete for EXPTIME 
already in the restricted case of discrete-time timed automata. We also identify the boundary 
of sampling controllability by proving that several generalizations of rectangular automata 
lead to an undecidable reachability problem, even in discrete time. The undecidability of 
dense-time reachability for rectangular automata has led [PV94] to consider the restriction 
that the flow rectangle B(v) must be the same for each control mode v. For the resulting 
class of initialized rectangular automata, reachability is decidable [HKPV95]. Our work can 
be viewed as pointing out an orthogonal restriction of rectangularity, namely, that the flow 
rectangle may change only at integer points in time. Unlike initialization, our restriction 
guarantees not only a finite language equivalence quotient but a finite bisimilarity quotient 
on the infinite state space of a rectangular automaton. 

3 The sampling rate of the controller may be any rational, but without loss of generality we assume it 
to be 1. 

4 Under the technical restriction that either the invariant and flow rectangles are positive, or the 
automaton state stays within a bounded region. 
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2   Definitions and Previous Results 

2.1    Labeled Transition Systems 

Definition 2.1 [Transition system] A transition system S = {Q,E, -s-,Q/, 77, |=) consists 
of a set Q of states, a finite set E of events, a multiset -!• C Q x E x Q called the 
transition relation, a set Qi C Q of initial states, a set 77 of propositions, and a satisfaction 
relation ^ C Q x 77. We write g 4 g' instead of (9, <r, g') G -+, and g f= * instead of 
(g, TT) G |=. The transition system 5 is/zm're if Q is finite. We assume for simplicity that 
S is deadlock-free; that is, for each state g G Q, there exists an event a 6 17 and a state 

r£Q such that g 4 r. A region is a subset of Q. Given a proposition TT £ 77, we write 

7?,r = {g £ Q I g |= T} for the region of states that satisfy it. ■ 

Verification as reachability 

Definition 2.2 [Weakest precondition] Let 5 be a transition system. For each event a G E, 
the a-predecessor operator Pre* : 2Q -» 2Q is defined by Prea{R) = {? G Q I 3r G 
7?. ? 4 r}. In particular, Prea(Q) is the set of states in which the event a is enabled. Define 
Pre : 2« -^ 2« by Pre{R) = \JaZS Prea{R). A region 7? C Q is reachable in S if 

Q/ n Pre*(7?) 7^ 0 for some k G N. ■ 
The basic verification problem for transition systems asks whether an unsafe state is un- 

reachable. 

Definition 23 [Safety verification] Let C be a class of transition systems. The safety verifi- 
cation problem for C is stated in the following way: given a transition system S G C and a 
proposition 7r G 71, determine whether the region R« is not reachable in S. ■ 

For finite transition systems, the safety verification problem is the complement of graph 
reachability, which can be solved in linear time and is complete for NLOGSPACE. The 
safety verification problem can be generalized to the safety control problem. 

Control as alternating reachability We use the following model for control: for each 
state q of a transition system, a (memory-free) controller chooses an enabled event a so 
that in state q, the controlled system always proceeds via event a. Since q may have several 
cr-successors, the controlled system may still be nondeterministic. Alternative models for 

memory-free control are equivalent. 

Definition 2.4 [Control map] Let 5 be a transition system. A control map for S is a function 

K : Q _► E such that for each state q G Q, there exists a state r 6 Q with q Ar. The 
closed-loop system K(S) is the transition system (Q,E,=>,Qi,II, (=), where q =>q' iff 

q-¥q' and K,(q) — <r. ■ 

The basic control problem for transition systems asks whether an unsafe state is avoidable 

by applying some control map. 

Definition 2.5 [Safety control] Let C be a class of transition systems. The safety control 
decision problem for C is stated in the following way: given a transition system S G C and a 
proposition K G 77, determine whether there exists a control map K such that the region R„ 
is not reachable in the closed-loop system K(S). If SO, then we say n is avoidable in 5. The 
safety controller synthesis problem requires the construction of a witnessing control map K 

when TT is avoidable. ■ 
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For finite transition systems, the safety control decision problem is the complement of 
AND-OR graph reachability, which can be solved in quadratic time and is complete for 
PTIME. 

Definition 2.6 [Alternating reachability] An AND-OR graph G = (VA, V0, Vu ->) consists 
ofafiniteset^ = VAUVo of vertices that is partitioned into a set VA of AND vertices and a 
set Vo of OR vertices, a set Vi C V of initial vertices, and a multiset -*• C V x V of edges. 
We assume deadlock freedom, namely, that for each vertex v £ V, there exists a vertex 
w £V such that v -» w. The controllable predecessor operator CPre: 2V -> 2V is defined 
by CPre{R) = {q £ Vo \ 3r £ R. q -> r} U {q £ VA | Vr £ V. q -» r implies r £ R}. A 
set R C V of vertices is alternating reachable in G if V/- D CPre* (Ä) ^ 0 for some fc 6 N. 
The alternating reachability problem asks whether a given set of vertices is alternating 
reachable in a given AND-OR graph. ■ 

Theorem 2.1 [Imm81] The alternating reachability problem is complete for PTIME. 

There is a simple correspondence between safety control and alternating reachability. Let 
5 be a finite transition system and let K be a proposition. Define an AND-OR graph Gs as 
follows: let VA = Q and Vo = Q x H and V/ = Qi\ for each vertex q £ VA and each event 
<7 £ 17, let g -+ (g, cr) in Gs iff g £ Prea(Q) in 5; and for each vertex (q, a) £ Vb, let 
(g, c) ->• r in Gs iff ? A r in S. Then the proposition n is avoidable in S iff the set Rn of 
AND vertices is not alternating reachable in Gs- 

Corollary 2.1 The safety control decision problem for finite transition systems is complete 
for PTIME. 

Moreover, a byproduct of a negative alternating reachability computation is a control map that 
avoids ff. Note that for each set R C Q of AND vertices, CPre2(R) = f]a€S{Pre<T(R) U 
(Q \ Prea{Q))). Thus the region CPre2(R) is the set of all states that no control map 
can keep out of R at the next transition. Let RF = CPre2^{Rv). Then n is avoidable 
in S iff Qi n Rp = 0. Each application of CPre2 can be computed in linear time, so 
RF can be computed in quadratic time. If n is indeed avoidable, then a witnessing control 
map may be constructed by choosing for each state q £ Q \ Rp an event a such that 
qePrea{Q)\Prea{RF). 

Theorem 2.2 [RW87] The safety controller synthesis problem for finite transition systems 
can be solved in quadratic time. 

Effectively-presented transition systems with finite bisimilarity quotients The safety 
controller synthesis problem can be solved not only for finite transition systems, but also for 
effectively-presented transition systems with finite bisimilarity quotients. 

Definition 2.7 [Effective presentation] A symbolic execution theory for the transition system 
S consists of a set T of formulas, a formula 4>i £ T, and a map f-|: T —>• 2® such that 
(1) every proposition w £ 77 is a formula: [n-] = R*; (2) for all formulas 6\,4>i £ T< the 
three expressions <j>\ A 4>i and <j>\ V fa and ~«j>] are formulas: \<j>\ A fa} = 1<P\] H [©2] and 
fei V©:] = [0i]U[0jand[-.^,]| = Q\[<?i];(3) [©/] = Q/;(4) thesetjo £ ^ | [0] = 0} 
is recursive; and (5) for each event a £ E, there is a computable map Pre^ : T -¥ T such 
that \Prea{fa\ - Prea{[<j>\) for all formulas <j> £ J7. An effectively-presented transition 
system consists of a transition system 5 together with a symbolic execution theory for S. ■ 
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Definition 2.8 [Bisimilarity] A bisimulation on the transition system S is an equivalence 
relation 2 on the state set Q such that (1) if q = r then for all propositions TT £ 77, we 
have 9 |= 7T iff r (= 7T, and (2) if ? = r and 9 A q', then there exists a state r' G Q such 
that r Ar' and q' = r'. The largest bisimulation on S is denoted by =. The bisimilarity 

quotient S/= is the transition system (<?/=, 27, ^-3 , Q3, /7, |=3), where ä43 ä' iff there 
exist two states q G R and q' G Ä' such that ? 4 q', where Ä G Q3 iff R n <?/ # 0, and 

where Ä j=3 T iff RDRV # 0. ■ 

The. controllable-predecessor operator CPre2 can be computed on any effectively-presented 
transition system. When the bisimilarity quotient has k G N equivalence classes, the RF 

computation converges in at most k iterations of CPre2. Synthesizing a control map is 
accomplished by first computing the bisimilarity quotient, and then choosing for each state 
in each equivalence class R disjoint from Rf, an event a G E such that R 0 Prea (Q) ^ 0 

and Äfl Prea(RF) = 0. 

Theorem 13 [Hen95] The safety control decision problem is decidable for effectively- 
presented transition systems with finite bisimilarity quotients. Moreover, when a proposition 

is avoidable, a witnessing control map can be computed. 

This result can be generalized to liveness verification such as /i-calculus model checking, and 
to memory-free liveness control such as control-map synthesis for Rabin chain conditions. 

2.2   Rectangular Hybrid Automata 

Definition 2.9 [Rectangle] Let X = {x,,... ,xn} be a set of real-valued variables. A 
rectangular inequality over X is a formula of the form a;,- ~ c, where c is an integer 
constant, and ~ is one of <, <, >, >. A rectangular predicate over X is a conjunction of 
rectangular inequalities. The rectangular predicate <j> defines the set of vectors {<£] = {y6 
E» | $[X := y] is true}. A set of the form [<0], where <f> is a rectangular predicate, is called 
a rectangle. Given a positive integer m G N>0, the rectangular predicate <p and the rectangle 
y>J are m-definable if \c\ < m for every conjunct x{ ~ c of <j>. The set of all rectangular 

predicates over X is denoted Rect(X). ■ 

Definition 2.10 [Rectangular automaton] [HKPV95] A rectangular automaton A consists 

of the following components: 

Variables. A finite set X = {x\,..., xn} of real-valued variables representing the contin- 
uous component of the system. The number n is the dimension of A. We write X for 
the set {it \ x{ G X} of dotted variables, and X' for the set {x'{ | x{ G X} of primed 

variables. 
Control graph. A finite directed multigraph (V", E) representing the discrete component of 

the system. The vertices in V are called control modes. The edges in E are called control 

switches. 
Invariant conditions. A function inv : V -* Rect(X) mapping each control mode to its 

invariant condition, a rectangular predicate. 
Initial conditions. A function init: V -> Rect(X) mapping each control mode to its initial 

condition, a rectangular predicate. 
Jump conditions. A function jump mapping each control switch e G E to a predicate 

jump(e) of the form <j> A <f>' A Aiiupdat*(e)(xi = x<)> where ^ e Rect{X) and <£' G 
Rect(X') are rectangular predicates, and update{e) C {1,..., n}. The jump condition 
jump(e) specifies the effect of the change in control mode on the values of the variables: 
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each unprimed variable x,- refers to a value before the control switch e, and each primed 
variable x\ refers to the corresponding value after the control switch. 

Flow conditions. A function flow: V ->■ Rect{X) mapping each control mode v to a flow 
condition, a rectangular predicate that constrains the behavior of the first derivatives of 
the variables while time passes in control mode v. 

Events. A finite set E of events, and a function event: E ->• E mapping each control switch 

to an event. 

Thus a rectangular automaton A is a tuple (X,V, E, inv, initjumpjow, E, event). The 
automaton A is m-definable if every rectangular predicate in the definition of A is in- 
definable. The automaton A is positive if for every control mode v 6 V, the invariant 
rectangle |mv(»)] and the flow rectangle \flow{v]\ are subsets of the positive orthant M£0. 
The automaton A is bounded if for every control mode v £ V, the invariant rectangle 

[z'nv(u)] is a bounded set. ■ 

The state of a rectangular automaton has two parts: a discrete (or control) part, and a 
continuous (or plant) part. The discrete state is a control mode. The continuous state is a 

valuation for the variables. 

Definition 2.11 [States of rectangular automata] Let A be a rectangular automaton. A state 
of A is a pair (v, y), where v £ V is a control mode and y £ pnv(u)] is a vector satisfying the 
invariant condition of v. Thus the set of states is Q = {{v, y) £ V x S" | y £ [mv(u)]}. A 
subset of Q is called a region of A. A rectangular state predicate for A is a function ij> from 
V to Rect(X). The rectangular state predicate ip defines the region [x/>] = {(v, y) £ Q | y £ 
[^(D)1). A region of the form [$], where ^ is a rectangular state predicate for A, is called 
a rectangular region. The initial condition map defines the rectangular region Qi = [/m'rj 

of initial states. ■ 

A rectangular automaton makes two types of transitions: jump (or edge, or control) transi- 
tions, and flow (or time, or plant) transitions. Jump transitions are instantaneous. They are 
characterized by a change in control mode, and are accompanied by discrete modifications 
to the variables in accordance with the jump condition of the control switch. During flow 
transitions, while time elapses, the control mode remains fixed and the variables evolve 
continuously via a trajectory that satisfies the flow condition of the active control mode. 

Definition 2.12 [Transitions of rectangular automata] Let A be a rectangular automaton. 
For each event a £ E, we define the jump relation A C Q2 by {v, y) A (v',y') iff there 
exists a control switch e = {v, v') £ E such that event (e) = .rand (y. y') £ [/«m/jj»]. For 
each nonnegative real 5 £ E>o, we define the flow relation ->■ C Q2 by (v, y) -> [v', y') 
iff (1) u = v1, and (2) there exists a differentiable function / : [0,d] -»■ [«nv(i>)J such 
that /(0) = y and f{6) - y', and /(e) £ [/fow(?;)J for all reals e £ (0,<5), where / 
is the first derivative of /. We say that S is the duration of the flow transition. Since the 
rectangle [j'nv(*;)] is a convex set, it follows that for 6 > 0, condition (2) is equivalent to 
y-^p- £ \flow(v)f, that is, all flows can be thought of as straight lines. ■ 

Every rectangular automaton defines two transition systems. 

Definition 2.13 [Discrete time and dense time] Let A be a rectangular automaton. Define 
the binary relation nf C Q2 by (v,y)'™ (v',y') iff {v,y) A (i/.y7) for some duration 
j e E>o. Define 77 to be the set of rectangular state predicates for A, and for all states 
(u>y) £ Q. define (v,y) \= n iff {v,y) £ [TTJ. The discrete-time transition system of .4 
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is defined by Sfc = (Q, £ U {1}, -> , <?/, 77, |=). The dense-time transition system of 
A is defined by S^"'" = (Q,EU {time}, -»•, Qj, 77, (=). Thus all flow transitions in the 
discrete-time transition system are required to have duration 1, while flow transitions in 
the dense-time transition system can have any nonnegative real duration. We refer to the 
safety verification problem for transition systems of the form Sfc (resp. S£"e), for some 
rectangular automaton A, as the discrete-time (resp. dense-time) safety verification problem 
for rectangular automata, and similarly for the control decision and controller synthesis 

problems. ■ 

Dense-time undecidability results In dense time, the verification and control of rectan- 

gular automata cannot be fully automated. 

Theorem 2.4 [ACH+95] For positive and bounded rectangular automata, the dense-time 
safety verification problem (and thus the dense-time safety control decision problem) is 

undecidable. 

Research has therefore concentrated on subclasses of rectangular automata. In [HKPV95] it 
is shown that for initialized rectangular automata, whose flow condition map is a constant 
function (i.e., all control modes have the same flow condition), the dense-time safety veri- 
fication problem (in fact, LTL model checking) can be decided. These automata, however, 
have no finite bisimilarity quotients in dense time [Hen95], and therefore further restrictions 

are desirable. 

Timed automata An important special case of initialized rectangular automata are timed 
automata. All variables of a timed automaton are clocks, which advance uniformly at rate 1 

while time elapses. 

Definition 2.14 [Timed automaton] [AD94] A timed automaton is a positive rectangular 
automaton A with the restriction thatflow(v) = /\"=1 (x; = 1) for every control mode v. A 
triangular inequality over a set X of variables is a formula of the form x:- - xj ~ c, where 
Xi,Xj G X are variables, c is an integer constant, and ~ is one of <, <, >, >. A triangular 
predicate over X is a conjunction of rectangular and triangular inequalities. A triangular 
state predicate for a timed automaton A is a function that maps every control mode of A to 
a triangular predicate over the variables of A. ■ 

The fundamental theorem for timed automata states that the dense-time transition system 
gjense 0f a tjme(j aut0maton A has a finite bisimilarity quotient and can be presented 

effectively using triangular state predicates. 

Theorem 2.5 [AD94, HNSY94] For every m-definable n-dimensional timed automaton A 
withk control modes, the dense-time transition system Sd^nse has a finite bisimilarity quotient 
withO(k(n + l)!-(2m)n) many equivalence classes. Moreover, the boolean combinations 
of triangular state predicates for A form a symbolic execution theory for Sj""'. 

Corollary 2.2 For timed automata, the dense-time safety verification problem (in fact, LTL 
and CTL model checking) can be solved in PSPACE, and the dense-time safety controller 
synthesis problem can be solved in EXPT1ME. 

As for finite transition systems, control is harder than verification. In [AD94] it is shown that 
the dense-time safety verification problem for timed automata is hard for PSPACE. From 
Theorem 3.2 below it follows that the dense-time safety control decision problem for timed 
automata is hard for EXPTIME. 
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3    Discrete-Time Rectangular Automata 

3.1   Finite Bisimilarity Quotients and Effective Presentation 

We show that the discrete-time transition system S^'sc of a positive or bounded rectangular 
automaton A has a finite bisimilarity quotient and can be presented effectively using rectan- 
gular state predicates. More precisely, in discrete time, two states of a rectangular automaton 
are bisimilar if (1) they have the same control mode, (2) corresponding variable values 
agree on their integer parts, and (3) corresponding variable values agree on whether they 
are integral. Moreover, if an m-definable rectangular automaton is positive, then it cannot 
distinguish variable values greater than m. For m-definable bounded rectangular automata, 
the continuous part of the state is contained in the cube [-m, m]n. It follows that in both the 
positive and the bounded case, the bisimilarity quotient is finite. 

Definition3.1 Define the equivalence relation «„ on Mn by y «„ z iff [y,J = [z,-J and 
\y>] = fzil for all 1 < i < n. Given m £ N>0, define the equivalence relation «™ on K" 
by y «™ z iff for each 1 < i < n, either ?/,■ «i z,-, or both yt and z,- are greater than m, 
or both yi and z,- are less than -m. For an n-dimensional rectangular automaton A, define 
the equivalence relations SA and =™ on the states of A by [v, y) =,4 (w, z) iff v - w and 
y «n z, and (v, y) =™ {w, z) iff v = w and y «™ z. ■ 

Lemma 3.1 Consider two vectors y, z £ Rn. Then y «„ z iff for every rectangle B C Kn, 
we have yeBiffzEB. Moreover, y «™ z #/or every m-definable rectangle B C E", 
we Aave y £ B ijffz £ ß. 

Theorem 3.1 Let A be an n-dimensional rectangular automaton with k control modes. The 
equivalence relation =A is a bisimulation on the discrete-time transition system SdJ?c. If A 
is m-definable and either positive or bounded, then =™ is als0 a bisimulation on Sd^sc. The 
number of equivalence classes of=™ is k ■ (4m + 3)n. 

Proof. We argue that =™ is a bisimulation for positive m-definable A; the other parts 

of the proof are similar. Suppose that (v, y) S™ (w>z) and (v> y) "^ K> v')- We must 

show that there exists a state [w1, z') such that (w, z) A {w',z') and (v', y') =™ [w1, z'). 
First, assume that a £ E. In this case there exists a control switch e with source v = w 
such that event(e) = <r and (y,y') G \jump(e]\, and y{ = y- for each i g update{e). 
Define z' by z[ = z,- for i <£ update(e), and z- = y- for i £ update(e). By Lemma 3.1, 
(z, z') € [/ump(e)l and z' £ [znu(u')l- It follows that (to, z) A (1/, z'). 

Second, assume that cr = 1 (cf. Fig. 1). In this case v' - v = w, andy'-y £ [/7ow(i>)]. 
We must show that there exists a vector z'such that z'-z £ [/?OUJ(I;)] andy' «™ z' (notice 
that by Lemma 3.1, y' «™ z' implies z' £ [mu(v)J). We do this one coordinate at a time. 
Fix 2 £ {1 , n}. Suppose that t/,- > m. It follows that y\ > m and z, > m, because /I is 
positive. Choose any c G \flow(v)\i, and define z{ = z,- + c. Since c > 0, we have yj «71 z,'. 
Now suppose that y; < m. If y,- G H then z; = j/,-, because j/,- «1 z,-. Define zj = y\. Then 
r| - z,- =(j-!(i6 [^oto («)],-. If &■ £ N then [Vi\ < Vi, z; < [y,-]. The set \flow[v)]i is an 
interval, say, with endpoints a,b G N (it is easy to extend the argument to the case b = 00). 
Thus lflow(v)]i contains the open interval (a, 6), and y'{ G [yi + a, yi + b]. We show that 
there exists a number c G (a, 6) such that y\ «1 z; + c. Since a, 6 £ N and j/; «1 z,-, it 
follows that !/,• + a «1 Zj + a and y,- + b «1 z,- + 6. Thus the closed interval [z,- + a, z,- + b] 
intersects the same «^equivalence classes as does [j/,- + a, j/,- + 6]. Since neither z,- + a nor 
z,- -(- 6 is an integer, the same is true for the open interval (z,- + a, zt- + 6). Therefore there 
exists a number c £ (a, b) such that yj «1 z» + c. ■ 
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0 12 3 4 

Fig. 1. Given a control mode v, consider the flow condition flow(v) = (1 < x, < 3 A 1 < £2 < 2). 
Let B = [3 < xi < 4 A 2 < x2 < 3J and P = [0 < x, < 3 A 0 < x2 < 2]. Then 
Prei{{v) xS) = {»} xP. 

Corollary 3.1 For every rectangular automaton A, the boolean combinations of rectangu- 
lar state predicates for A form a symbolic execution theory for the discrete-time transition 

system Sfc. 

Corollary 3.2 For positive or bounded rectangular automata, the discrete-time safety ver- 
ification problem (in fact, LTL and CTL model checking) can be solved in PSPACE, and the 
discrete-time safety controller synthesis problem can be solved in EXPTIME. 

The LTL and CTL parts of the corollary follow from the facts that both model-checking 
problems can be solved in space logarithmic in the size of the transition system and polyno- 
mial in the size of the temporal formula [Kup95]. It should be noted that while in the same 
complexity class, the actual running times of the discrete-time algorithms for rectangular 
automata are better by a multiplicative exponential factor than the running times of the 
corresponding dense-time algorithms for timed automata. This is because there, the number 
of equivalence classes of the bisimilarity quotient is Q{k-n\-(m+\)n). By providing tight 
lower bounds, the following theorem shows that our algorithms are optimal. The second part 
of the theorem follows from Theorem 3.4 below. 

Theorem 3.2 For bounded timed automata, the discrete-time safety verification problem is 
hard for PSPACE [AD94], and the discrete-time safety control decision problem is hard for 

EXPTIME. 

3.2    Sampling-Controller Synthesis 

The dense-time and discrete-time control problems are not realistic, as a controller may 
enforce arbitrarily many (even infinitely many) consecutive instantaneous jumps. A more 
natural control model for hybrid systems involves a controller that samples the plant state 
once per time unit, and then issues a command based upon its measurement. The command 
may cause a switch in control mode, after which the plant state evolves continuously for 
one time unit, before receiving the next command. We call this model "sampling control" to 
distinguish it from discrete-time control. Moreover, we wish to ensure that a proposition is 
avoided not only at the sampling points but also between sampling points. Given a rectangular 
automaton .4, we define a third transition system, Ss/mple, such that (1) any control map 
behaves in a sampling manner and (2) the prepositional regions are "large enough" so that 
they cannot be entered and left by a single flow transition of duration 1. For example, if K is 
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a rectangular state predicate that maps each control mode of A to either true or false, then 
R„ is large enough. If the region of unsafe states is not large enough, this may be correctable 
by increasing the sampling rate (i.e., by reducing the unit of time). 

Definition 3.2 [Sampling control] Let A be a rectangular automaton. A rectangular state 
predicate w £ Ü is large enough for A if there are no three states [v,y),{v,y') £ 

R„ and (v,f) G R* such that (u,y) A{v,y") and {v,y")1^ K/) for some real 

6 <= (0,1). Define IT C H to be the set of rectangular state predicates that are large 
enough for A, and define ({v,y),X) (=' n iff (u,y) (= TT. The sampling-control tran- 
sition system of yi is defined by 5^mp,tr = (Q x {control,plant}, E U {1}, => , Qi x 
{control}, II', \='), where the binary relation => is defined by: (1) for each event a € E, 
we have ({v,y), control) ?> ((v',?), plant) iff {v,y) A (i/,y'), and (2) ((v,y),plant) => 
((u',y'),co«rro/) iff (v,y) -V (f',/)- Thus in the sampling-control transition system the 
controller and the plant take turns: first the controller specifies a jump transition, then 
one time unit passes in a flow transition, and so on. We refer to the safety control deci- 
sion problem for transition systems of the form SA

mple, for some rectangular automaton A, 
as the sampling-control decision problem for rectangular automata, and similarly for the 
sampling-controller synthesis problem. ■ 

Theorem 3.3 For positive or bounded rectangular automata, the sampling-controller syn- 

thesis problem can be solved in EXPTIME. 

Proof. Consider an ra-dimensional positive or bounded rectangular automaton A. We re- 
duce the sampling-control problems to discrete-time control problems by constructing a 
rectangular automaton Ctrl(A) such that SA

mple is isomorphic to S$'^l{A). Moreover, if 

A is positive, then Ctrl{A) is positive, and if A is bounded, then Ctrl(A) is bounded. 
Let Xctri(A) = XA U \xn+\} for a clock xn+x £ XA. The control graph and events 
of Ctrl(A) are identical to those of A. Let invctri(A){v) = invA{v) A 0 < xn+\ < 1, 
let initCtri(A)(v) - mitA(v) A xn+x = 1, let jumpctrl{A)(e) = jumpA{e) A xn+x - 
1 A x'n+l = 0, and let flow ctrl{A)(v) = flowA(v) A xn+x = 1. It follows that in the 

discrete-time transition system S&rtfvi)' JumP transitions must alternate with flow transi- 

tions (of duration 1). Hence the map / : Qctri(A) -> QA X {control, plant}, defined by 
f(v, y, 0) = (v, y, plant) and f(v, y, 1) = {v, y, control), is an isomorphism between the 
transition systems S^^A) 

and SA
mpie. If A is m-definable with k control modes, by The- 

orem 3.1, the bisimilarity quotient of S$t
s

r
c
l{A) has no more than k-(4m + 3)n+i equivalence 

classes, which is singly exponential in the size of A. ■ 

Lemma 3.2 Let G={VA,V0,Vi, ->■) be an AND-OR graph, and let Rbea set of vertices 
ofG. Define the transition system SG = {VA W0,Z, ->, Vj, {n}, (=) such that (1) v \= K 

iffv £ R, (2) for all OR states v £ Vp, if v A w and v °^ w', then <r = a', and (3) for all 
AND states v£VA,ifv^w and v^r-w' and w £ w', then a ^ er1. Then R is alternating 

reachable in G iff it is not avoidable in SG- 

Theorem 3.4 For bounded timed automata, the sampling-control decision problem is hard 

for EXPTIME. 

Proof sketch. We reduce the halting problem for alternating Turing machines using polyno- 
mial space [CKS81 ] to the sampling-control decision problem for bounded timed automata. 
Let M be an alternating Turing Machine with input s so that M uses space p(\s\). Then M 
accepts s iff the unique final state uF is alternating reachable in an AND-OR graph whose ver- 
tices are configurations of M. The set of configurations of M is U x {1,..., p( \s\)} x rp(|s|), 
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where U is the state set of M, the second component of the product gives the position of 
the tape head, and F is the tape alphabet. Without loss of generality, we assume that 
r - {0,1,2}, where 0 is the "blank" symbol. We first define a bounded positive rectangular 
automaton A whose states are configurations of M, and a proposition KF, large enough 
for .4, that is true exactly in the configurations containing UF- This is done in a way consis- 
tent with Lemma 3.2, so that irF is not avoidable in S™mple iff M accepts s. Then we turn 
A into a bounded timed automaton. 

The automaton A uses p(\s\) variables xu ■ ■ ■, zp(|»|) to store the tape contents. The 
set of control modes of A is U x {1,... ,p(|s|)}. The invariant and flow conditions are 

constant functions: inv(u,i) = Aj=f(° < XJ < 2) and flow{u,i) = A^i'^i = °) 
for all u and i; thus flow transitions have no effect. The initial condition is defined by 
init(u,i) = false except when u is the initial state «/ of M and i = 1; in that case, 

imt(Ul, 1) = Ai'i.fo = sj) A A'£fij+i(*.- = °)- Each transition f of M consists of a 
source state« G U, a tape symbol 7 G r, andalistof triples (uj,jj,dj), where «_,- G t/isa 
target state, 7,- G T is written on the current tape cell, and dj G {-1,1} gives the direction 
moved by the tape head (there is exactly one transition for each source state «). For every 
transition t = (u, 7, {uh 7,-, dj)j€J) of M, every tape position 1 < i < p[\s\), and every 
j G J, we define in A a control switch et,ij with source («, i) and target (uj, i + dj). The 
jump condition jump(etiij) is a;,- = 7 A z< = 7,- A t\k^i(x'k = x<=)- If « is an AND state 
of M, then event{etli,j) = (w, i, j). If w is an OR state of M, then eveni(e£,, j) = 0. To 
turn A into a timed automaton, all variables are replaced by clocks, and between any two 
control switches of A, a sequence of p(\s\) control switches is added, one for each clock, to 
subtract p(Is|) + 1 from each clock value. ■ 

4   Beyond Rectangular Automata 

Discrete-Time Undecidability Results We show that the pleasant properties of discrete- 
time rectangular automata (Theorem 3.1) depend on both conditions, (1) positivity or bound- 
edness and (2) rectangularity. If either condition is violated, then already the discrete-time 
safety verification problem becomes undecidable. 

Definition 4.1 [Triangular automaton] A triangular automaton A has the same compo- 
nents as a rectangular automaton, except that the predicates defining .4 may be triangular 
predicates, and need not necessarily be rectangular. ■ 

Theorem 4.1 The discrete-time safety verification problem (and thus the discrete-time con- 
trol decision problem) is undecidable for the class of all rectangular automata, and also for 
the class of bounded positive triangular automata. 

Proof sketch. Both parts use areduction from the halting problem for two-countermachines. 
For the first part, the reduction is simple, as counter values can be represented by variable 
values, as in [KPSY93]. For the second part, counter values must be encoded, so that the 
counter value c corresponds to the variable value ^. For this purpose, the wrapping-clock 
technique of [HKPV95] can be modified as follows. The set {n,..., xn) of dense-time 
clocks used for encoding counter values is simulated in discrete time by variables with the 
triangular flow condition i\ — ■ ■ ■ = x„. Then the variables are enforced to represent valid 
encodings at those integer times when the wrapping clock shows 0. ■ 
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Generalized Rectangular Automata It is well-known that the pleasant properties of timed 
automata (Theorem 2.5) are preserved if rectangularity is relaxed to triangularity in invari- 
ant, initial, and jump conditions. We conclude with a similar observation for rectangular 
automata. A generalized rectangular automaton is a triangular automaton whose flow con- 
ditions are rectangular predicates. It follows from our arguments that for every generalized 
rectangular automaton A, the boolean combinations of triangular state predicates for A form 
a symbolic execution theory for the discrete-time transition system 5^"c. Consequently, if 
A is a bounded generalized rectangular automaton, then S%sc has a finite bisimilarity quo- 
tient (which is identical to the region equivalence of timed automata [AD94], and finer by a 
multiplicative exponential factor than the equivalence of Theorem 3.1). For such automata, 
we can automatically synthesize sampling controllers that avoid triangular state predicates. 
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Abstract. We present the first fully dynamic algorithm for maintaining 
a minimum spanning tree in time o{\/n) per operation. To be precise, the 
algorithm uses 0(n1/3 log n) amortized time per update operation. The 
algorithm is fairly simple and deterministic. An immediate consequence 
is the first fully dynamic deterministic algorithm for maintaining con- 
nectivity and, bipartiteness in amortized time 0{n1/3 logn) per update, 
with 0(1) worst case time per query. 

1    Introduction 

We consider the problem of maintaining a minimum spanning tree during an 
arbitrary sequence of edge insertions and deletions. Given an n-vertex graph G 
with edge weights, the fully dynamic minimum spanning tree problem is to main- 
tain a minimum spanning forest F under an arbitrary sequence of the following 

update operations: 

insert(u,v): Add the edge {u,v} to G. Add {u,v} to F if this reduces the cost 
of F, and return the edge of F that has been replaced. 

delete(u,v): Remove the edge {it, v} from G. If {u, v} G F, then (a) remove {u, v} 
from F and (b) return the minimum-cost edge e of G \ F that reconnects F 

if e exists or return null if e does not exist. 

In addition, the data structure permits the following type of query: 

connected(u,v): Determine if vertices u and v are connected. 

In 1985 [7], Fredrickson introduced a data structure known as topology trees 
for the fully dynamic minimum spanning tree problem with a worst case cost of 
0(y/m) per update His data structure permitted connectivity queries to be an- 
swered in 0(1) time. In 1992, Eppstein et. al. [3, 4] improved the update time to 
0{y/n) using the sparsification technique. If only edge insertions are allowed, the 
Sleator-Tarjan dynamic tree data structure [13] maintains the minimum span- 
ning forest in time O(logn) per insertion or query. If only edge deletions are 
allowed ("deletions-only"), then no algorithm faster than the ü(^/n) fully dy- 
namic algorithm was known. 
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Using randomization, it was recently shown that the fully dynamic connec- 
tivity problem, i.e., the restricted problem where all edge costs are the same, can 
be solved in amortized time 0(log2 n) per update and O(logn) per connectivity 
query [9, 10]. However, this approach could not be extended to arbitrary edge 
weights, leaving the question open as to whether the fully dynamic minimum 
spanning tree problem can be solved in time o{y/n). 

In this paper we give a positive answer to this question: We present a fully 
dynamic minimum spanning tree data structure that uses C^n1/3 log n) amor- 
tized time per update and 0(1) worst case time per query when update time is 
averaged over any sequence of Q{min) updates, for min the initial size of the 
graph. Our technique is very different from [7]. 

The result is achieved in two steps: First, we give a deletions-only minimum 
spanning tree algorithm that uses 0(m'1/3 log n + ne) amortized time per update 
and 0(1) worst case time per query when the update time is averaged over any 
sequence of f2(min) updates. Here e is any constant such that 0 < e < 1/3, and 
m' is the number of nontree edges at the time of the update. 

Then we present a general technique which, given a deletions-only minimum 
spanning tree data structure with a certain property, generates a fully dynamic 
data structure with the same running time as the deletions-only data structure. 
Let f(m', n) be the amortized time per deletion in the deletions-only data struc- 
ture with m' nontree edges and n vertices. The property required is that, upon 
inserting into the graph no more than m' edges at the same time (a "batch 
insertion"), the deletions-only data structure can be modified to reflect these 
insertions and up to m' subsequent deletions can be performed in a total of 
0(m'f(m',n)) time. 

Using this technique, we develop a fully dynamic minimum spanning tree 
algorithm with amortized time per update of 0(m1/3 log n), for a sequence of 
updates of length Q(min), where m is the size of G at the time of the update. In 
other words, letting m(i) denote the size of G (vertices and edges) after update 
i, the total amount of work for processing a sequence of updates of length I is 
ö

(E'=O 
m(i)1/3 logn). We then apply sparsification [3, 4] to reduce the running 

time for the sequence to 0{lnlf3 logn). 
Our result immediately gives faster deterministic fully dynamic algorithms 

for the following problems: connectivity, bipartiteness, fc-edge witness, maximal 
spanning forest decomposition, and Euclidean minimum spanning tree. See [9] 
for all but the last reduction; see Eppstein [2] for the last reduction. For these 
problems, the new algorithm achieves an 0(n1/6/ logn) factor improvement over 
the previously best deterministic running time. If randomization is allowed, how- 
ever, much faster times are achievable  [9, 10]. 

Additionally, improvements can be achieved in the following static problems 
(see [4, 3]): randomly sampling spanning forests of a given graph [6]; finding a 
color-constrained minimum spanning tree  [8]. 

The paper is structured as follows: In Section 2 we give a deletions-only 
minimum spanning tree algorithm. In Section 3, we show how to use a sequence 
of deletions-only data structures to create a fully dynamic data structure. 
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2    Maintaining a minimum spanning tree-deletions-only 

In this section, we give an algorithm which maintains a minimum spanning tree 
while edges are being deleted. The amortized update time is 0(m1/3 log n) and 
the query time is 0(1) for queries of the form "Are vertices i and j connected?". 
Let G = (V,E) be an undirected graph with edge weights. Without loss of 
generality, we assume that edge weights are distinct. 

Initially, we compute the minimum spanning forest F of G. Let m'in be the 

number of nontree edges in G initially and k = m'V3 logn. We sort the nontree 
edges by weight and partition them into m'in/k levels of size k so that the k 
lightest are in level 0, the next k lightest are in level 1 and so on. The set of edges 
in a level i is denoted by J3j. In addition, all tree edges of the initial minimum 
spanning forest F are placed in level 0. 

Throughout the algorithm, the level of an edge remains unchanged, and F 
denotes the minimum spanning forest. For i = 0,1,..., (m'in/k) -1, let Fi denote 
the minimum spanning forest of the graph with vertex set V and edgeset \Jj<iEj. 
(Initially, all Fi = F, but in later stages, an edge from any level may become 
a tree edge. Thus, F0 C Fi C ... F(m,o/fc)_i = F.) Let Ti(x) denote the tree 
in Fi which contains x and let T(x) without the subscript denote the tree in F 
containing x. 

The main idea is the following. If a nontree edge is deleted, then the minimum 
spanning forest F is unchanged. Suppose a tree edge {u, v} in level i is deleted. 
Then for each Fj, j >i, the deletion splits the tree in Fj containing u and v into 
Tj(u) and Tj(v). We search for the minimum weight nontree edge e (called the 
"replacement edge") that connects T(u) and T{v) by gathering and then testing 
a set S of candidate edges on level i. If none is found, we repeat the procedure 
on level i + 1, etc. until one is found or all levels are exhausted. We now describe 
the update operations: 

delete(u,u): Delete edge {u,v} from any data structures in which it occurs. If 
a tree edge {u,v} from level i is deleted, then remove {u,v} from F and search 
for a replacement by calling Replace^, u,u). We refer to i as the level of the 
call to Replace. 

In the algorithm below, the subroutine Search when applied to a tree in Fi 
finds all nontree edges in level i which are incident to the tree. A phase consists of 
the examination of a single edge. (Its exact definition and the details of Search 
are given in Section 2.2 below.) 

Replace(i,u, v) 

1. Alternating in lockstep, one phase at a time, Search(Tj(u)) and Search(Ti(u)) 
until kj logn phases are executed (Case A) or one of the searches has stopped 
(Case B). 
- Case A: Let 5 be the set of all nontree edges in level i. 
- Case B: Let S be the set of (nontree) edges produced by the Search 

that stopped. 
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2. Test every edge in S to see if it connects T(u) and T(v). 

- If a connecting edge is found, insert the minimum weight connecting 
edge into F and the data structures representing the Fj, j >i. 

- Else if i is not the last level, call Replace^ + l,u,v). 

2.1     Data Structures 

The idea here is to use the ET-tree data structure developed in [9]: (1) to rep- 
resent and update each tree in F, so that in constant time, we can quickly test 
if a given edge joins two trees; and (2) to represent each tree in an Ft in such 
a way that we can quickly retrieve nontree edges in Ei which are incident to 
the tree. To avoid excessive cost, we explicitly maintain only those Ft where i 
is a multiple of m'^3/logn. An unpleasant consequence of this is that when 
retrieving nontree edges in Eit other nontree edges are also retrieved. 

Below, we refer to input graph vertices as "vertices" and use "node" to mean 
a nodes of the B-tree in which we store the "ET-sequences." 

ET-trees: An ET-sequence is a sequence generated from a tree by listing each 
vertex each time it is encountered ("an occurrence of the vertex") as a tree is 
searched depth-first. Each ET-sequence is stored in a B-tree of degree d. This 
allows us to implement the deletion or insertion of an edge in the forest as follows: 
we split a tree by deleting an edge or join two trees by inserting an edge in time 
0(d\ogdn), using a constant number of splits and joins on the corresponding 
B-trees. Also we can test two vertices of the forest to determine whether they 
are in the same tree in time 0(\ogdn). See for example [1, 11] for operations on 
B-trees. If d = na, for a a positive constant, then the join and split operations 
take time 0(d) and the test operation takes time 0(1). We refer to the B-trees 
used to store ET-sequences as ET-trees. 

This data structure allows us to keep information about a vertex so that 
the cumulative information about all vertices in a tree may be maintained. For 
example, we may keep the number of nontree edges incident to a vertex at 
one designated occurrence of the vertex. Then each internal node of the ET-tree 
stores the sum of the numbers of nontree edges kept with designated occurrences 
in its subtree. In a degree d ET-tree, each split or join operation or each change to 
the number associated with an occurrence requires the adjustment of 0(logdn) 
internal nodes with each adjustment taking 0(d) timesteps. 

We maintain the following data structures. 

- Each edge is labelled by its level and a bit which indicates if it is a tree edge. 
- Let k' = max{m'V3 logn,ne}, for any constant 0 < e < 1/3. Each tree in F 

is represented as an ET-sequence which is stored in a degree k' B-tree. 
- Let c = m'l^/logn. We map each level i to the j which is the largest 

multiple of c no greater than i by the function f(i) = c[i/cj. 
For each level j such that c\j ("c divides j"): 
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• we represent each tree in Fj as an ET-sequence which is stored in a 
binary B-tree; 

• for each vertex v, we create a list Lj(v) which contains: 
(i) all nontree edges incident to v which are in any level i G /_1(i) anc*; 
(ii) all tree edges incident to v which are in any level i > j, i £ /_1(i)- 

• We mark each designated occurrence of a vertex v whose list Lj(v) is 
nonempty. Each internal node of the ET-tree is marked if its subtree 
contains a marked occurrence. 

2.2     The Search routine 

Search(Ti(:r)) returns all nontree edges in level i incident to Tt(x). It begins by 
searching Tf(i) (x) which is a subtree of Ti(x). It proceeds by examining all edges 
in Lf{i)(v) for all vertices v in the tree being searched. Nontree edges in level i 
are picked out and tree edges in levels i', f(i) <i' <i are followed to other trees 
of Ff(i) which are then searched in turn. Note that all such tree edges lead to 
other trees of Ff{i) which are subtrees of Ti(x). A phase of the algorithm consists 
of the examination of one edge e in a list L. 

Search(Ti(u)) 

1. S' <- 0; 
2. treelist-t-Tf(i)(u); 
3. Repeat until treelist is empty: 

- Remove an ET-tree from the treelist. 
- For each marked vertex u in the ET-tree and for each edge e in each 

Lf(i)(u): 
• If {u,v} is a nontree edge on level i, add it to the set of edges to 

return. 
• Else if {u, v} is a tree edge on level I such that I < i, then add Tf^ (v) 

to treelist. 

2.3     Analysis 

Initialization: We compute the minimum spanning forest F, create the ET-trees 
for Fj, for each j such that c\j, and partition the nontree edges by weight. 
Recall that m'in is the number of nontree edges in the initial graph. Let t be the 
number of edges in the initial minimum spanning forest. The creation of all the 
lists L takes time proportional to the number of nontree edges m'in. The building 
of ET-trees for F and all Fj such that c\j and the marking of internal nodes 
takes time proportional to the size of each forest or 0{{(m'in/k)/c)t + m'in) — 

0(m']l3t + m'in). 
Deletions of nontree edges: Deleting a nontree edge on any level may require 
resetting the bit of an occurrence of a vertex in some ET-tree, which may require 
resetting bits on all internal nodes on the path to the root in O(logn) time. 
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Deletions and insertions of tree edges: Deleting a tree edge takes O(k') time to 
delete it from the ET-tree of F and O(logn) time to delete it from the ET-tree 
of each F, such that c\j, for a total of 0(k' + ({m'in/k)/c) logn) time per edge. 
Inserting a replacement edge takes the same time. 

Finding a replacement edge: We first analyze the cost of Search. Let the weight 
w{T) of a tree T of some F» be £ \Lf{i){v)\ summed over all vertices v in T. It 
costs O(logn) to move down the path from the root to a leaf in an ET-tree to 
find a marked occurrence of a vertex, or to move up a tree from an occurrence to 
the root. Thus, the cost of Search(7i(z)) is O(logn) times the number of edges 
examined, or 0{w(Ti(x)) logn), if Search is carried out until it ends, and O(k) 
if it is run for k/ logn phases. 

In Replace^, w,i), if w(T;(u)) < w(Ti(v)), then we refer to T^u) as the 
smaller component 7\; otherwise 7\ is Tt(v). The cost of a call to Replace(u, v, i) 
is the cost of the Search plus the cost of testing each edge in S. The number of 
edges in S is 0(min{fc, w(7\)}). We may use the fc'-degree ET-tree representation 
for F to test each edge at cost 0(1). Thus the cost of a call to Replace is 
0(min{fc, 10(71) logn}). 

To pay for these costs: We charge the cost of a call to Replace(u, v, i) to level 
i if no replacement edge is found on that level. In that case, a tree of Ft which was 
split by the deletion remains split. Otherwise, we charge the cost to the deletion. 
In addition, we charge the cost of modifying F to the deletion so the total cost 
charged to the deletion is 0(min{/c,w(7\)logn} + {{m'in/k)/c)logn + k') = 
0(({m'm/k)/c)\ogn + k'). 

Claim 1 0{J2w(Ti)) summed over all smaller components 7\ which split from 
a tree T on any given level during all Replace operations is 0(w(T)\ogn). 

The proof of the claim is not hard and follows [5]. The details are omitted 
here. 

There are at most k edges per level (except for level 0, which has at most 
k nontree edges). Each Lj(v) consists of edges from c levels. Since level 0 tree 
edges do not belong to any list Lj(v), the maximum weight of a tree w{T) is ck. 
Thus the total cost charged to a level is 0(ck log2 n). Summing over all levels we 
have 0((m'in/k)(ck log2 n) = 0{m!inc\og2 n), or an amortized cost per deletion 

of 0(clog2 n) = (Xm'll? logn), if Q{m'in) edges are deleted. 
The cost charged to each deletion is 0((m'in/ck){logn) + k'). For k 

max{m'\£ logn,ne} and c = m'l^/logn, this is 0(m'^3 logn + n£). 

To summarize the cost of initialization when amortized over 0(min) operations 
is 0(m'1/3) and the cost per deletion of an edge and finding replacement edges, 

'in 1  l"\ 
when amortized over Q(m'm)) operations is 0(m'^ logn + ne). Thus for a 

sequence of 0(min) operations, the amortized time per update is 0{m'\n log n + 
n£). 

Finally, we note that the query of the form "Are nodes i and j connected?" 
may be answered using the ET-tree data structure for F in 0(1) time. 

i    
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3    Allowing insertions 

As in the previous section, we assume all edge weights are unique. We refer to 
the current minimum spanning forest of G as the MST. Let m' be the number 
of nontree edges in the current graph. 

Let s = [lg m']. Initially, we build and maintain s simultaneous deletions-only 
data structures As, As-i,.., Ax and a set of edges B. We call this the composite 
data structure. We maintain the MST in a Sleator-Tarjan dynamic tree [13] and 
also in an ET-tree of degree maxjm'1/3 logn, ne}. 

Below, we distinguish between the number of edges inserted into G and the 
number of edge insertions into B, as an edge of G may be inserted more than 
once into B even though it has not been deleted and reinserted into G. The 
minimum spanning forests of the deletions-only data structures are referred to 
as local spanning forests. A local nontree edge of an Ai is an edge which is not in 
Ai's local spanning forest or the MST. We will see that every nontree edge of G 
is a local nontree edge of some Ai or B, but may also be a tree edge in a local 
spanning forest of an Aj,j ^ i. 

Initially As is the deletions-only data structure described in the previous 
section, with F = MST and the set of local nontree edges being all nontree 
edges of G, and the parameter m'in set to 2s. The set B is empty and the 
remaining Aj, 1 < j < s, are initialized ("built") as though the edges of the 
MST were the only edges in Aj, i.e., they contain no nontree edges. The set B 
is empty. 

Foii = l,...,s, let ?7ij = 2\ ki = m1/3 \ogrrii, and k • = max{m-/3 log n,ne}. 
When an edge is inserted into G, it is placed into B or into the MST. 

Let Xi be the number of local nontree edges in Uf<jA,- U B. Each Ai is built 
(or rebuilt) when i is the smallest index such that rrii > Xi and the number 
of edges in B has increased to m'1/3. At that time, B is emptied and all local 
nontree edges Uj<iAj and edges in B are removed from Aj,j < i, and B and 
placed into Ai. Then Ai becomes the deletions-only data structure described 
in the previous section, which is initialized (or reinitialized) to contain the tree 
edges of the MST and the local nontree edges previously contained in l)j<iAj 
and the edges B. Thus, throughout the algorithm, B contains fewer than m'1/3 

edges, i.e., the most recent insertions into B, which have not yet been added to 
some Aj and for j < |_lgm'1/3J Aj never contains any nontree edges. These Aj 
are maintained in the event that they will be used later, if m' is reduced. 

To insert edge e into G: Use the dynamic tree to find the maximum weight edge 
/ on the path between e's endpoints in the MST. If e is lighter than /, remove 
/ from the MST, and insert / into B. Else insert e into B. 

To delete an edge e from G: (1) Delete e from all data structures in which it 
appears. (2) For each Ai which contained e in its local spanning forest, update 
the At by determining e's local replacement edge e' (if there is one). Insert e1 

into Ai's local forest and into B, if it is not already there. (3) If e was in the 
MST, then for each local replacement edge e' and each edge in B, use the ET- 
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tree representation of the MST to determine which of those edges connect the 
two subtrees resulting from the deletion of e. Insert the lightest connecting edge 
into the MST. 

3.1     Proof of correctness 

Our algorithm maintains the following invariant: 

Invariant: Every edge in the local forest of some Ai is (1) in the MST, or (2) 
is a local nontree edge in some A3,j ^ i, or (3) is in B. 

Lemma 2. The invariant stated above holds throughout the execution of the al- 

gorithm. 

The proof of the lemma is straightforward and is omitted here. 
The correctness of the algorithm follows easily from the invariant. We use 

the well-known fact that an edge is in the minimum spanning tree iff it is not 
the heaviest edge in any cycle ("red rule" [14]). We also note that every edge in 
the composite data structure is an edge in G. 

Let e be an edge of the MST which is deleted. Let e' be the correct replace- 
ment edge. Consider the state of the composite data structures right before the 
deletion of e. By the invariant, since e' was not in the MST, it was a local nontree 
edge in some At or in B. If e' was in B it would be checked in Step 2 above. 

If e' was a local nontree edge in Au then consider the subgraph G' of G whose 
edgeset consists of edges in Ai. Since e' is the correct replacement edge for e in 
the MST then after e's deletion, e' is not the heaviest edge in any cycle of G and 
therefore is not the heaviest edge of any cycle of G'. Hence, after e's deletion, e' 
becomes a local forest edge, i.e., e' is a local replacement edge for e in At. Recall 
that e' is the minimum weight edge which connects the two subtrees of the MST 
resulting from the deletion of e. Thus, e' is the lightest connecting edge from 
among the edges of B and the set of local replacement edges, and is chosen in 
Step 2 by the algorithm. 

3.2     Implementation and analysis 

At the start of the algorithm, Ai for i < s are built. After that, Ai for i < s may 
be "rebuilt". Depending of the value of m', As+i,As+2,- may be built later. 
We first consider the (one-time) cost of building the Ai's, then the cost of their 
rebuilding, and finally the cost of maintaining the Ai between rebuilds. 

Initialization of the A{: Let min be the size of the initial graph (number of 
vertices plus edges), let m'in be the initial number of nontree edges, and for 
each operation let m be the size of the current graph. Recall that the total 
cost of initialization for a deletions-only data structure with rrn nontree edges is 
0{m\,3n + rrn) and that we are given a sequence of Q{min) operations. 

We will amortize the building of the first \\gmin] Ai's to the sequence of 
n(min) operations, even though only s Ai's are built initially. If more than 
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fig min"] Ai's are necessary at some point, we know that at this point m > 
rriin and at least rriin insertions happened. Let ASmax be the largest deletions- 
only data structure built during the execution of the algorithm where 2s'"ax > 
rriin. Then there was a sequence of ü(2Sr"ax) operations during which m was 
n((2Sn,ax) and we can amortize the initialization cost over these operations. 

The total cost of initializing the smax A'iS is 0(Ej=i" 2i/3n+2i) = 0(2'~-/3n+ 
min). The average cost over a sequence of Q(2Sma*) operations is thus 0(22s'""/3n), 
which is 0{mllz) per operation. 

Rebuilding: We create ET-trees for the new Ai by modifying the ET-trees for 
the previous Ai. For each i, we keep a list of all changes made to each ET-tree 
of Ai since the last rebuild, and a list of all changes made to the MST. We use 
this list to first restore all the ET-trees for Ai to their previous state when Ai 
was last built or rebuilt, MSTold, by undoing each change, edge by edge. We 
then transform each MST0id to MST, edge by edge. 

The cost of restoring the ET-trees of Ai to MST0u is charged to operations 
on the deletions-only data structure Ai which caused the initial change. This 
results in only a doubling of cost per operation, as the cost for inserting a tree 
edge into an ET-tree is the same as for deleting a tree edge. 

The cost of transforming MST0id to MST is charged to the update op- 
eration that causes the change in MST (each update causes 0(1) changes in 

1 /s 
MST) as follows: For each Ai, there are m/   forests of ET-trees represented 
by binary B-trees and one forest (the ET-tree for the local spanning forest F) 
represented by a degree-^ B-tree. Thus, a single tree edge insertion or deletion 

costs 0(rn\'3logn + k[) for Ai. Note that for each i one change to the MST 
contributes to the cost of only one rebuild of A4. The total cost per change over 
all levels is 0(X^=i rn1/3 logn + k[ -f-logn) = (^(m'1/3 logn + nelogn). 

Also, when A% is rebuilt, all local nontree edges from Aj,j < i and B are 
moved from Aj and inserted into Ai. That is, the edges are sorted by weight, 
assigned to levels in Ai, and put in the appropriate list L. The bits on the 
internal nodes of ET-trees for Aj ,j<i are set appropriately. Since each local 
nontree edge is stored in only one ET-tree on a level, the cost of moving a single 
local nontree edge is O(logn). Thus, the total cost is 0{rrii logn). Since A{-i is 
not rebuilt, %i-\ > rrii-i = rrii/2. We amortize this cost by charging O(logn) 
to each edge in Uj<iAj LI B, i.e. each edge that is newly added to Ai. We show 
below (type (3) charges) how to amortize these costs over the update operations. 

Maintaining the deletions-only data structures: After a rebuild in Ai there are 
at most rrii nontree edges in Ai. In Section 2, we have two types of charges: 
(1) the cost charged to each deletion in a deletions-only data structure which is 

0(m\' logn+ne) and (2) the cost charged to all the levels which is 0(7x1/ logn) 
per nontree edge. Additionally, the rebuilding of an Ai above charged O(logn) 
to each nontree edge in Ai. We call these costs type (3) charges. 

Type (1) charges: When there is a deletion in G in the fully dynamic data 
structure, an edge (or one of its copies) may be deleted from each of Ai,i = 
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1,... s. We may charge that deletion in G with the (1) charges for all levels for 

a total cost of 0(E1
mI/3 loSn + n') = 0(ma/3 logn + n£ logn). 

Type (2) and (3) charges: As a special case, the charges incurred by the first 
deletions-only data structure containing nontree edges As must be amortized 
over the initial sequence of fi{min) operations which follow its initialization. 
Since each Ai: i < s is initialized to contain no nontree edges, there are no type 
(2) and (3) for these data structures until they are rebuilt. 

Note that the Ai, i > s contain nontree edges when initialized. The type(2) 
and type(3) charges for their building and rebuilding and the rebuilding of the 
other Ai i < s are amortized over the insertions which occurred previous to its 
building or rebuilding, as analyzed below. 

Suppose Ai is rebuilt. Since Ai-i was not rebuilt, a;,_i > mj_i = rrii/2 
at the time of the rebuilding of At. Thus, ü{mi) insertions into B occurred 
since the previous rebuild of Au and f!{mi) of these occurred when the graph 
had n(mi) nontree edges. Thus, we may charge each insertion into B with 

0(Efm*/3 log n + ne) = 0(my3 logn+ ne logn) where s' = 2^-1 where 
m' is\he number of nontree edges in G when the insertion occurred. 

To amortize costs over insertions into G, rather than B, we use the following 
simple but crucial observation: When an edge is inserted into B that edge may 
contribute to the type (2) and (3) costs for Ai (when it belongs to Ai) iff it in- 

creases Xi. Note that m, > x{ > Xi-i > m;_i = mi/2. We charge 0(m\,z logn) 
to each local nontree edge inserted into Ai+i to pay for the type (2) and (3) 
charges while the edges are in Ai. 

We examine the types of insertions into B to see how they affect x{: (a) 
when an edge is first inserted into B, i.e., when the edge is inserted into G; (b) 
when an edge is replaced in the MST; (c) when an edge is deleted in G and 
it is replaced in up to s local spanning forests. The first two cases result in a 
single insertion into B. The third case may cause up to s' insertions. However, 
the s insertions do not affect all Ai the same. Each insertion in this case results 
from a local nontree edge e becoming a local forest edge. Hence if this occurs 
in some Ajtj < i, the increase of Xi resulting from the insertion of a copy of e 
into B is offset by the decrease of x; caused by the change in status of e from 
a local nontree edge to a local tree edge. Thus xs> is unchanged by a case-(c) 
insertion into B, xs,^i is changed by at most 1, and in general, xt is changed by 
at most s'-i. The type (2) and (3) cost per deletion is O^is' -i)™1/3 logn) = 

0(EJ(™W2l)1/3l°gn) = OK1/3logn) . 
Thus the deletion cost per update operation is 0(ra'1/3 logn + ne logn). 

Insertion cost: Testing a newly inserted edge to see if it should be added to 
the MST using the Sleator-Tarjan dynamic trees is an O(logn) cost operaton. 
Adding an edge to B can be done in constant time, as B is an unsorted list. 

Summary: For rebuilding and maintaining the deletions-only data structures, the 
algorithm achieves an amortized cost of 0(m'1/3 log n+n£) per update, where m' 
is the number of nontree edges in the graph, for processing a sequence of fi{mln) 
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operations, where min is the initial size of the graph (vertices plus edges). For 
the. initializations of the deletions-only data structures, the amortized cost per 
update is 0(m1//3 logn), where m is the size of the graph at the time of the 
update, for a sequence of Q(min) operations. 

Note: For unweighted graphs, a simpler fully dynamic data structure can be 
constructed which uses only one deletions-only data structure and adds levels as 
needed. The details are omitted here. 
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Efficient Splitting and Merging Algorithms for 
Order Decomposable Problems 

(Extended Abstract) 

Roberto Grossi * and Giuseppe F. Italiano ** 

Abstract. We present a general and novel technique for solving decom- 
posable problems on a set S whose items are sorted with respect to d > 1 
total orders. We show how to dynamically maintain S in the following 
time bounds: O(logp) for the insertion or the deletion of a single item, 
where p is the number of items currently in S; 0(p1-1/d) for splits and 
concatenates along any total order; 0(p1_1/d) plus an output sensitive 
cost for rectangular range queries. The space required is 0(p). We provide 
several applications of our technique ranging from two-dimensional prior- 
ity queues and d-dimensional search trees to concatenable interval trees. 
This allows us to improve many previously known results on decompos- 
able problems under split and concatenate operations, such as member- 
ship query, minimum-weight item, range query, and convex hulls. Our 
technique is suitable for efficient external memory implementation. 

1    Introduction 

Let Pbea searching problem defined on an input set S with p items, and let 
V(x, S) denote its solution for a query item x. Problem V is decomposable^ we 
can find an answer to query V(x,S) by first partitioning set S = S' U 5"' and 
computing the answers to queries V(x,S') and V(x,S") recursively, and then 
combining them through a suitable operator <>. Formally, V is said to be f(p)- 
decomposable if and only HV(x,S) = <>(V(x,S'),V(x,S")) for any partition S = 
S'US" and any query item x, where 0 is an operator whose computation requires 
0(f(p)) time. (We assume that function f{p) is smooth, i.e., f(0(p)) = 0{f(p)), 
and nondecreasing.) Some examples of 0(l)-decomposable searching problems 
include: membership queries (with 0 being the logical-or function); closest point 
queries (with 0 the minimal distance); range queries (with 0 the list append 
operation). Convex hull searching is not decomposable as the fact that a point x £ 
5 belongs to the convex hull of S" or 5" does not necessarily imply that x belongs 
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to the convex hull of S = S'liS". The definition of decomposable search problems 
can be extended also to the decomposable set problems in which the query item is 
not specified (e.g., finding the minimum-weight item, where 0 is the minimum), 
and we shall denote a generic solution to a decomposable problem V by V(S). Let 
d > 1 total orders -<i,..., -<d be defined on S, and let -<i be a given total order, 
1 < i < d. A problem V is f(p)-order decomposable with respect to total order 
<i tfV(S) = 0{V{S'),V(S")) for any ordered partition S = S'US" (i.e., x' <i x" 
for all x' e S' and x" 6 S"), where operator 0 takes 0(f(p)) time. Problem V 
is f(p)-order decomposable if it is /(p)-order decomposable with respect to any 
total order -<i, 1 < i < d. Convex hull searching is 0(logp)-order decomposable. 
Other examples of order decomposable problems include multidimensional range 
queries and Voronoi diagrams, and many other decomposable problems in basic 
data structures, computational geometry, database applications and statistics [7, 
17, 21]. 

In this paper, we present a general technique for maintaining a dynamic set 
S with d total orders, for constant d, under insertions of a single item, deletions 
of a single item, and re-arrangements of any of the total orders -<i,..., -<d on 
S by means of split and concatenate operations. Our queries involve finding the 
solution P(R) for only the items in the subset R C S identified by some ranges 
in the orders -<i,..., -<<*. More formally, we introduce the following multiordered 
set splitting and merging problem: 

split(S,z,<i): Split S into 5" and S" according to item z and the specified 
total order <i (1 < i < d). That is, x' -<i z and z -<j x" for all x' £ S' and 
x" € S". S is no longer available after this operation. 

concatenate^', S", <[,-<"): Combine S" and S" together according to their 
respective i-th total orders ^ and -<" (1 < i < d) into a new set S = 
5"US". The items in the resulting set S undergo the new order -<i obtained 
by concatenating -^ and -;". That is, x <i y in S if and only if either 
(a) x <\y and x,y 6 S"; or (b) x <" y and x, y £ S"; or (c) x G S' and 
y £ S". S' and S" are no longer available after this operation. 

insert(z, S): Insert item z into set S according to all orders -<i,..., -<d- 
delete(z, S): Delete item z from set S. 
range((ai,bi),..., (ad,bd),S): Let R = {z 6 S : a; -<i z -<i bi, for 1 < i < d}. 

Find the solution V(R) to problem V restricted to region R only. 

For d = 1, the recursive nature of order decomposable problems gives an imme- 
diate tree structure, and each of the above operations can be simply implemented 
in 0(f(j>) logp) time by using a 2-3-tree [2]. Maintaining d > 1 total orders on 
the same set S, while splitting or merging each order independently of the others, 
makes things much more complicated than this simple case. In the case of two 
or more different orders, indeed, there are some technical difficulties, which are 
mainly due to the interplay among different orders. 

Related Work. Decomposable problems were first introduced by Bentley [6] for 
dynamizing static data structures, while other dynamization techniques were in- 
troduced in [7, 15, 18, 19, 24]. All these techniques rely on two main methods, 
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the equal block method [14, 15, 18] and the logarithmic method [6, 7, 24], in which 
a big data structure is decomposed into small data structures, called blocks; the 
number of blocks is properly tuned so as to obtain a good tradeoff between quer- 
ies and updates. Some lower bounds on the best possible tradeoff were given 
in [7, 16]. Optimal solutions were obtained by combining the equal block and the 
logarithmic method by means of the amortized solution in [19] and by the global 
rebuilding technique yielding worst-case bounds in [23, 25]. The notion of order 
decomposable problems was first introduced in [20] by generalizing the results 
of [22] and was independently presented in [10]. Solving an ordered decompos- 
able problem only for the items contained in an input rectangular region can be 
done by range queries on quad-trees [9] and k-d trees [5], but it is difficult to 
keep them balanced (e.g., see [26, 27]). Many other elegant data structures for 
range queries were devised subsequently and we refer the reader to [8] for a com- 
prehensive survey on this topic and a list of references. Among them, [28] and [29] 
show how to combine decomposable problems and range queries together so as 
to add some range restrictions to dynamic data structures. Split and concatenate 
operations were subsequently introduced in [11, 13] for a set of multidimensional 
points in addition to the standard operations: range queries, insertions and de- 
letions. Specifically, the divided k-d trees [11] for a set of p items supported 
a range, a split or a concatenate operation in 0(p1_1/dlogly'dp) time and an 
insertion or a deletion in O(logp) time, with 0(p) space. In [13], a general tech- 
nique, based on the ordered equal block method, was described for solving order 
decomposable problems and producing efficient concatenable data structures in 
0(p) space. The following time bounds were obtained for a split or concatenate: 
0(y/p\ogp) in concatenable interval trees, 0(p1_1/dlogp) in d-dimensional 2- 
3-trees and 0{y/p\ogp \ogp) in a data structure for convex hulls. The bound for 
insertions and deletions of items is O(logp) amortized, except for the 0(log2p) 
amortized bound in the data structure for convex hulls. The range query bounds 
equal the split/concatenate cost plus an output sensitive cost 0(occ), where occ 
is the size of the output reported by the query. Although the range queries in [28] 
and [29] are faster than the ones in [13], the solutions in [13] support efficient 
splits and concatenates, require less space and can be used to obtain an efficient 
dynamic version of static data structures. 

Our results. In this paper, we present a novel technique for solving order de- 
composable problems on S under insertions, deletions, splits, concatenates and 
range queries, yielding new and efficient concatenable data structures for dimen- 
sion d > 1. All these data structures are based on a new multidimensional data 
structure, which we call the cross-tree. Differently from the approach of [13], our 
general technique is based more on simple geometric properties rather than on 
underlying sophisticated data structures, and exploits the fact that some data 
structures can be built on sorted items more efficiently. By using our technique 
we maintain a set S of p items in 0(p) space with the following worst-case time 
bounds: O(logp) for the insertion or the deletion of a single item, and 0(p1_1/d) 
for splits and concatenates along any order. We use this new technique in a 
simple way for a wide range of applications to shave some log factors from the 
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best known bounds [11,13]. We obtain new multidimensional data structures im- 
plementing two-dimensional priority queues, two-dimensional search trees, and 
concatenable interval trees. We achieve the following time bounds for a split or 
concatenate: 0(y/p) in concatenable interval trees, 0(p1-1//d) in d-dimensional 
2-3-trees (or divided k-d trees) and 0(y/p\ogp) in a data structure for the 
convex hull. We also improve the query bounds because they are equal to the 
split/concatenate cost plus an 0(occ) cost due to the output. Furthermore, we 
make the bounds for insertions and deletions of a single item worst-case rather 
than amortized. The new data structures work for many other order decompos- 
able problems under split and concatenate operations. For example, point inser- 
tions and deletions in a planar Voronoi diagram of p points take 0(p) time in 
0{p\og\ogp) space [21] (a result in [1] is a semi-dynamic algorithm with 0(p) 
deletion time and space). We obtain an 0(p) cost also for range, split and con- 
catenate operations in O(ploglogp) space (the techniques in [13, 28, 29] require 
more time or space). This solves a problem posed in [1] (i.e., compute the Voronoi 
diagram for any given subset R C S of points in less than G(p\ogp) time) for the 
special case in which R is defined by range queries on a dynamic set S. Our tech- 
nique for order decomposable problems is suitable for efficient external memory 
algorithms. For the case d = 1, B-trees [4] are very popular data structures 
that can be successfully employed in decomposable search problems analogously 
to concatenable 2-3-trees. For d > 1, no provably good external memory data 
structures for splitting and concatenating along any dimension were previously 
known in the literature. In this extended abstract, many details are omitted for 
lack of space. 

2    Splitting and Merging Data Structures 

In this section, we describe how to maintain d = 2 total orders, which we denote 
by -<x and -<y, under split and concatenate operations. Let p be the number of 
items in S. Each item z € S can be associated with a dynamic point (X(z), Y(z)) 
in the Cartesian plane, such that X(z) is the rank of z in S with respect to current 
order -<x and Y(z) is the rank of z in S with respect to current order -<y • Starting 
from p items in 5, we obtain p points in the Cartesian plane, which can be stored 
in the form of a p x p sparse and dynamic matrix M. 

The operations in S can be simulated by a certain number of operations in 
M. Operation split{S,z,<x) corresponds to splitting matrix M horizontally at 
a certain position X(z), which is the rank of z in S with respect to -<x, while 
doing the same according to its order -<y is equivalent to handling M vertic- 
ally at position Y(z). Concatenating is analogous. Operations insert(z,S) and 
delete(z, S) require a new operation which sets entry M[X(z), Y(z)} to item z or 
to an empty value, respectively. Finally, solving problem V in the region specified 
by range((ax,bx), (ay, by), S) can be done by solving V for the points contained 
in the rectangular part of M defined by the ranks of ax,bx,ay,by in their 
corresponding order. We can state our multiordered set splitting and merging 
problem by using our sparse matrix M. Formally, for any integers hi,h,2,Vx,V2 
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(1 < hi < h,2 < p, 1 < vi < V2 < p), we use M[hi,h,2',vi,V2] to denote the sub- 
matrix of M that contains entries M[i,j] with h\ < i < h2 and vi < j < V2- We 
call this submatrix a region. We can disassemble and reassemble a single matrix 
M in many different ways by using any sequence of the following operations: 

hsplit(M,i): Split M horizontally at row i and obtain two new matrices Mi 
and A4 2, such that M\ = A4[l,i; l,p] and M2 = M[i + l,p; l,p]. In other 
words, A4i is given by the first i rows of M and M2 is given by the last 
(p — i) rows of A4. M is no longer available after the operation. 

/i_conca£ena£e( A41, A4 2)-' Let Mi have size m xp and M2 have size nxp. We 
meld Mi and A4 2 horizontally and produce a matrix M of size (m + n) xp, 
such that M[l,m; l,p] = Mi and M[m + \,m + n; l,p] = A42- In other 
words, the first m rows of M are given by Mi and the last n rows of M 
are given by M2- This operation assumes that Mi and A42 have the same 
number of columns. Mi and AI2 are no longer available after the operation. 

set(i,j,w,M): Update M by setting A4[i,,j] = w. This corresponds either to 
an insertion (if w is nonempty) or to a deletion (if w is empty). 

range(hi,h2,Vi,v2,M): Find the solution V(R) to problem V restricted to 
the nonempty entries contained in region R = M[hi,fi2;vi,V2]- 

Operations v.concatenate(Mi, M2) and v.split(M,j) are similarly defined. We 
restrict ourselves to the special case where each row or column of M contains a 
constant number of points but our technique works for a general matrix M. We 
need some preliminary definitions. Let X = {xx, x2, ■. ■, xq} be a sorted sequence 
of q elements, according to a total order <: xi -< x2 -<■•■-< xq. Let Ii,..., Is be 
a partition of X into adjacent intervals, so that for 1 < i < s — 1 all the elements 
in Ii precedes all the elements in Jf+1. For 1 < i < s, let |7i| denote the size of 
interval Ii, defined as the number of elements in /;. 

Definition 1. (Size Invariant) Let k > 1 be a positive integer. The adjacent 
intervals Ii,..., Is satisfy the size invariant of order k if the following two con- 
ditions are met: (a) |I;| < k, 1 < i < s; and (b) |/j| + \Ii+i\ >k,l<i<s-l. 

The size invariant of order k in Definition 1 implies that the number s of intervals 
is 0(q/k). Moreover, the size invariant can be maintained in O(logfc) time when 
an element is deleted from X or a new element is inserted into X. 

We now introduce the cross-tree, which is a 2-dimensional data structure 
supporting efficient split and concatenate operations. Intuitively, a cross-tree de- 
scribes a balanced decomposition of a 2-dimensional set, and it is based upon 
a variant of 2-3-tree [2], which we call 1-2-tree. A 1-2-tree satisfies two con- 
ditions: (a) All the leaves are on the same level and each internal node has at 
most two children, (b) The children of all the internal nodes on the same level 
satisfy the size invariant of order 2 according to Definition 1. It follows that no 
two adjacent nodes can have a single child. It can be shown that 1-2-trees are 
balanced and that a 1-2-tree with n leaves can be modified by means of split, 
concatenate, insert and delete operations in O(logn) time per operation, with 
each operation involving at most 0(1) nodes and parent pointers per level. 
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Definition 2. (Cross-Tree) Let T and S be two 1-2-trees, having the same 
height. The cross-tree CT(T x S) is the cross product of T and S defined as 
follows. For each node u in T, there is a node auv in CT(T x S) for every node v 
in 5 on the same level as u. For each edge (u, u) in T, there is an edge (auv,otüv) 
in CT(T x S) for every edge (v, v) in S, such that u and v are on the same level. 

A cross-tree has either 1, 2 or 4 children and it is balanced (i.e., its height is 
logarithmic with respect to the number of its leaves). We can update a cross-tree 
CT(T x S) by modifying either T or S (i.e., we can split, concatenate, insert or 
delete in one of the 1-2-trees) and obtain the corresponding cross-tree efficiently. 
We can show: 

Theorem 3. We can split a 1-2-tree T into T\ and T2 in order to obtain cross- 
trees CT(Ti x S) and CT(T2 x 5) from cross-tree CT(T x S) in 0(\S\) time. 
We can concatenate 1-2-trees Ti and T2 into T to obtain CT(T x S) from 
CT(Ti x S) and CT(T2 x S) in 0{\S\) time. 

2.1    The General Technique 

We now treat our splitting and merging problem for a matrix M. We refer to 
the p nonempty entries of M as the points of M and let k be a slack parameter, 
where k is an integer with 1 < k < p. We handle the sparse pxp matrix M as 
if it were a dense 6(p/k + k)x 9(p/k + k) matrix. We then tune k according to 
the chosen problem V and the cost f(p) of operator <>. We proceed as follows. 
We group adjacent rows and columns of matrix M into respectively horizontal 
and vertical stripes, such that the stripes satisfy the size invariant of order k 
(Definition 1), where the size of a horizontal (respectively vertical) stripe is given 
by its number of rows (respectively columns). The size invariant guarantees that 
each stripe contains at most 0{k) points and that the total number of horizontal 
and vertical stripes is 0(p/k). The partition into horizontal and vertical stripes 
induces a partition of M into 0(p2/k2) squares, such that each square intersects 
no more than k rows and k columns. We call these the basic squares in M. We 
maintain the solution to V for each such basic square and store these solutions in 
the leaves of a cross-tree CT(TH x Tv), which describes recursively the partition 
of M into its basic squares. For this purpose, we employ two 1-2-trees, denoted 
by TH and Ty, whose leaves are in one-to-one correspondence to the horizontal 
and vertical stripes, respectively. Trees TH and Ty have 0(p/k) leaves, one for 
each stripe of M, and a total oiO(p/k) nodes. Consequently, cross-tree CT{TH x 
Tv) has height 0(log(p/fc)) and 0(p2/k2) leaves, one for each basic square of 
M, and a total of 0(p2/k2) nodes. Its leaves corresponding to the nonempty 
basic squares in either a horizontal or vertical stripe can be retrieved in 0(p/k) 
time, and the points in the stripe can be retrieved in additional 0(k) time. We 
then percolate the solutions from the leaves of the cross-tree towards its internal 
nodes in a heap-like fashion by means of operator 0- If the solutions occupy 
more than 0(f(p)) space, we save space whenever 0 is invertible: We say that 
0 is invertible if we can keep 0(f(p)) additional information associated with 
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any solution V{R) = <}(V(R'),V(R")) so that we can compute <>-1(7'(i?)) = 
{V(R'),V(R")} in 0(f(p)) time. For example, if V is the range query problem 
and 0 is the destructive list append with cost /(p) = 0(1), we can simply keep a 
pointer to the last item in the appended lists to "de-append" them in 0(1) time. 

Our data structure has the following additional features. For each nonempty 
basic square of M, we keep its points sorted according to a total order -<p (not 
necessarily equal to -<x or -<y) by means of a threaded binary search tree, whose 
nodes are linked together in symmetrical order. Searching, inserting and deleting 
a point takes O(logfc) time. Scanning the points in a basic square in their -<p- 
order takes constant time per scanned point. We introduce order -<p because 
some data structures can be built more efficiently on a sorted set of points. 
Each node in cross-tree CT(TH X Ty) corresponds to a region R of matrix M. 
The cross-tree leaves correspond to the basic squares (leaves corresponding to 
the empty basic squares can be ignored). An internal node p corresponds to 
region R = M[hi,h,2;vi,V2] and has no more than four children p\, p2, pz, 
and p\ corresponding to four subregions of R (if a child pi is empty then the 
corresponding subregion is empty.) We store the solutions to V in the following 
way. For each nonempty basic square of M, we store the solution for its points 
in the corresponding cross-tree leaf. For each internal node p of the cross-tree, 
we use that fact the V is order decomposable to store 0(si,..., Sj) in p, where 
si,..., Sj are the solutions stored in its j < 4 children. This is indeed the solution 
V{R) for the points in the region R corresponding to p, and is stored in an efficient 
way depending on the problem V. 

We now show how to use our data structure for solving problem V. We denote 
by P(k) the cost of preprocessing an 0(fc)-point stripe to solve problem V for 
every basic square in the stripe. We will exploit the fact that the basic squares 
are already -<p-ordered to determine P(k) and we assume that P(k) > k is a 
smooth nondecreasing function. Furthermore, we use U(k) to denote the cost of 
updating the solution to problem V for a basic square in an 0(/c)-point stripe 
after its preprocessing. We assume that U(k) > log k, since we have to update 
at least the threaded search tree in the basic square. Finally, we denote by S(k) 
the space occupied by an 0(fc)-point stripe. We also assume that S(k) > k 
is a smooth nondecreasing function. In most of our applications, we will have 
P(k),S(k) = 0(k) and U{k) = 0(f(k)\ogk). In the preprocessing, we put (k + 
l)/2 rows (columns) per stripe except for the last one, which has some dummy 
rows (columns) added, and build the cross-tree. This takes 0(plogp + P(p) + 
f(p) P2/k2) time. We now describe in some details how to perform a vsplit(M,j). 
Column j might fall inside a vertical stripe er, which must necessarily be split. 
We examine the basic squares of a. Given a basic square, we scan its points 
according to their -<!p-order and produce two -<p-ordered lists in linear time: 
one list contains all the points whose second coordinate is smaller than or equal 
to j and the other list contains the remaining points, i.e., the points whose second 
coordinate is larger than j. We split this basic square into two squares and build 
two threaded search trees for them in linear time by using the two -<p-ordered 
lists. Since each stripe consists of 0(p/k) basic squares and contains 0(k) points, 
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we can examine stripe a square by square in 0(k+p/k) time and split it into new 
stripes o\ and a2, such that o\ contains all the points of a before and including 
column j, and a2 contains all the points of a after column j. This creates 0(p/k) 
smaller squares and costs 0(k+p/k) time. We check to see if we can combine <j\ 
and <72 with their neighbor stripes to maintain the size invariant of order k. For 
any two such stripes to be merged, we examine their basic squares in pairs (a 
square per stripe), such that the two squares are on the same horizontal stripe. 
We take their two -<p-ordered lists of points and merge them to build a threaded 
search tree on the resulting list in linear time. Again, this requires 0(k +p/k) 
total time. It is worth noting that splitting and merging stripes preserves the 
order of their presorted points. Next, we determine the solutions for the basic 
squares in the 0(1) stripes involved at a total cost of P(k) time. It remains 
to split cross-tree CT(TH x Tv) to reflect the split operation on the vertical 
stripes. We first focus on the cross-tree topology and discuss later on how to 
maintain the solutions to V in its nodes. We have to split the 1-2-tree Ty at 
the leaf w corresponding to stripe a. We split w into two new leaves wi and w2, 
corresponding to the split of a into the new stripes o\ and a2. If o\ or <r2 are 
combined with their neighbor stripes, we should do the same on w\ and w2 and 
their neighbor leaves. We check to see if the 1-2-tree Tv satisfies the size invariant 
of order 2 along a leaf-to-root path and update the corresponding 0(p/k) cross- 
tree leaves. Globally, we create no more than 0{p/k) leaves corresponding to the 
new basic squares in 0(1) stripes and we traverse and reorganize their ancestor 
nodes all the way up to the cross-tree root by Theorem 3 (with T = TH and 
S = Tv). Consequently, maintaining the cross-tree topology takes 0(p/k) time. 
Next, we recompute the solutions to V in the traversed cross-tree nodes by 
applying operator 0 to them upwards, in 0(f(p)) time per node (we show in the 
full paper how to do this with <>_1 if 0 is invertible). Since we traverse a total of 
0(p/k) nodes, it takes 0(f(p) p/k) time to recompute their solutions. It therefore 
takes a total of 0(k + f(p) p/k + P(k)) = 0(f(p) p/k + P(k)) time to execute 
v.split, as P(k) > k. The implementation of hsplit is completely analogous. We 
do not discuss here the other operations due to lack of space and refer the reader 
to the full paper. There, we prove the following main theorem: 

Theorem 4. The splitting and merging problem on p points can be solved with 
the following time bounds for a parameter k (I < k < p) and an operator cost 
f{p): range, hsplit, v.split, h.concatenate, v^concatenate: 0((p/k)f(p) + P(k) + 
P{p)/p), with P(k) > k; set: 0(\og{p/k)f(p) + U(k) + (p/k2)f{P)+P{p)/p), with 
U(k) > logifc. The space required is 0(S(p) + (p2/k2)f(p)) and the preprocessing 
time is 0(p\ogp + P(p) + (p2/k2)f(p)). 

Theorem 4 states the bounds needed for solving a general decomposable prob- 
lem V in terms of the parameter k, 1 < k < p. In most of our applications, 
f(p) = 0(pe) for a non-negative constant e < 1 and the preprocessing cost of 
a stripe is P(k) = 0{k) because we have presorted points. In this case, since 
U(k) = 0(f(k)logfc) and S(k) = 0(k) [20, 21], we can tune k = \y/p f(p)]: 
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Theorem 5. The splitting and merging problem on p items can be solved with 
the following time bounds whenever the cost of operator 0 is f(p) = 0(pe) for a 
non-negative constant e < 1; range, hsplit, v.split, h-concatenate, v.concatenate 

in 0 ( A/P f(p) ),' set in 0(log(p)f(p)). The space required is 0(p) and the pre- 

processing time is O(plogp). 

The analysis in Theorem 4 is overly pessimistic when f(p) = 6>{p). Using 
weighted balanced B-trees [3] in place of 1-2-trees yields a different analysis 
and better bounds: 

Theorem 6.  The splitting and merging problem onp items can be solved with the 
following time bounds when f(p) = 0(p): set, range, hsplit, vsplit, h-concatenate, 
v-concatenate in 0(p). The space required is 0(p\oglogp) and the preprocessing 
time is O(plogp). 

3    Some Applications 

In this section we list few applications of Theorems 4-6. The problems in Theor- 
ems 7-9 are all 0(l)-order decomposable; the problem in Theorem 10 is 0(logp)- 
order decomposable while the one in Theorem 11 is 0(p)-order decomposable. 
Most of the worst-case bounds reported in this section improve the best previ- 
ously known bounds for the same problems [11, 13]. The improvement consists 
of shaving a logarithmic factor from the previous bounds and of making some 
bounds worst-case rather than amortized. We omit the details. 

Theorem 7. A two-dimensional priority queue for a set ofp items can be main- 
tained in the following time bounds: an item insertion or deletion in 0(logp); 
a split or concatenate of any order in 0(y/p); and a minimum-weight query in 
a region in 0(y/p). The space required is 0(p) and the preprocessing time is 
O(plogp). 

Theorem 8. A two-dimensional 2-3-tree storing p points can be maintained 
with the following bounds: a point insertion or deletion in O(logp); a split or 
concatenate along any coordinate in 0{s/p); a range search in 0(y/p + occ), 
where occ is the number of points reported by the search. The space required is 
0(p) and the preprocessing time is O(plogp). 

Theorem 9. An interval tree that stores n (overlapping) intervals from the line 
can be maintained with the following time bounds: an interval insertion or dele- 
tion in O(logn); a stabbing query (i.e., find all the intervals containing a given 
point) retrieving only the intervals whose lengths are between two input values 
l\.. .£2 in 0(i/n + occ), where occ is the number of such intervals; a split or 
concatenate of the intervals according to a perpendicular stabbing line in 0(y/n). 
The space required is 0{n) and the preprocessing time is 0(n log n). 
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Theorem 10. The convex hull for p points in the Cartesian plane can be main- 
tained with the following time bounds: a point insertion or deletion in 0(log p); 
a split or concatenate along one coordinate in 0(\/p\ogp); a query checking if 
a point is inside or outside the convex hull in O(logp); a query reporting the 
convex hull for the points in any input region in 0(^plogp + h), where h is the 
output size. The space required is 0(p) and the preprocessing time is 0(plogp). 

Theorem 11. The Voronoi diagram for p points in the Cartesian plane can be 
maintained with the following worst-case time bounds: a point insertion or dele- 
tion: 0(p); a split or concatenate along one coordinate: 0(p); a query reporting 
the Voronoi diagram for the points in an input region: 0{p). The space required 
is 0(ploglogp) and the preprocessing time is O(plogp). 

The above results show that our technique is a general paradigm on which we 
can cast many other split-and-concatenate data structures in some basic prob- 
lems (e.g., member searching, predecessor, ranking), computational geometry 
(e.g., neighbor queries, union and intersection queries), database applications 
(e.g., partial match queries, range queries) and statistics (e.g., maxima queries). 
We refer the interested reader to [7, 17, 21] for more decomposable problems. 
We only mention here that our technique can be extended to d > 2 total orders 
-<i,..., <d and can be efficiently implemented in external memory. Details will 
be given in the full paper. 
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Abstract. We consider the problem of partitioning an array of n items 
into p intervals so that the maximum weight of the intervals is minimized. 
The currently best known bound for this problem is 0(n+p1+e) [HNC92] 
for any fixed e < 1. In this paper, we present an algorithm that runs in 
time 0(n log n); this is the fastest known algorithm for arbitrary p. 
We consider the natural generalization of this partitioning to two dimen- 
sions, where an n x n array of items is to be partitioned into p2 blocks by 
partitioning the rows and columns into p intervals each and considering 
the blocks induced by this partition. The problem is to find that parti- 
tion which minimizes the maximum weight among the resulting blocks. 
This problem is known to be NP-hard [GM96]. Independently, Charikar 
et. al. have given a simple proof that shows that the problem is in fact 
NP-hard to approximate within a factor of two. Here we provide a poly- 
nomial time algorithm that determines a solution at most O(l) times the 
optimum; the previously best approximation ratio was 0{s/p) [HM96]. 
Both the results above are proved for the case when the weight of an 
interval or block is the sum of the elements in it. These problems arise 
in load balancing for parallel machines and data partitioning in parallel 
languages. Applications in motion estimation by block matching in video 
and image compression give rise to the dual problem, that of minimizing 
the number of dividers p so that the maximum weight of a block is at 
most S. We give an O(logn) approximation algorithm for this problem. 
All our results for two dimensional array partitioning extend to any 
higher fixed dimension. 

1     Introduction 

The problem of partitioning a set of items into roughly equal weight subsets is 
a fundamental one. We study two dual versions of this, namely, (a) given B, 
partition a given array into at most B blocks so as to minimize the maximum 
weight of any block in the partition, and (b) given S, partition a given array 
into minimum number of blocks such that their individual weight is no larger 
than S. The definition of the weight function for a block, the type of partitions 
allowed, the dimensionality of the arrays, and the relevant version depends upon 
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the application at hand. The problems we consider arise in load balancing for 
parallel processing, compilers for high-performance parallel languages, and mo- 
tion estimation in videos by block matching, and hence have been extensively 
researched in several communities. In this paper, we present algorithms for these 
problems which are more efficient than the best ones so far, and give improved 
approximations over those previously known. In what follows, we describe the 
setting of the problems (Section 1.1), and describe various application scenar- 
ios where three such problems arise (Section 1.2). We state our results for such 
problems in Section 1.3 and present the technical details in sections 2, 3 and 4. 

1.1     Problems 

We begin with the one dimensional version. Consider an array A[l ■ ■ ■ n] of non- 
negative numbers, and a weight function / that maps intervals of A to non- 
negative integers. The function / is trivially assumed to be 0 on empty intervals. 
The p-partition of A is a division of A into p intervals, that is, setting dividers 
d0 = 0 < di < d2 < ■ ■ ■ < dp-i < dp = n. Here the ith interval is [di_i + 1 ■ • • di] 
if di_i ^ di and is denoted empty otherwise. The MAX norm of a partition is 
max*^ f(A[di-i + 1 • ■ -di]). Two weight functions arise commonly in practice: 

the additive weight function F(A[i,j]) = St=MW and the Hamming weight 
function Hc for a given parameter c, relative to another array B of size n, given 
by Hc{A[i,j)) = mm_c<k<cn(B[i + k,j + k],A[i,j\) where U{X,Y) gives the 
Hamming distance between two segments X and Y of identical length. 

The ID p-partition problem. Given p, find the p-partition that minimizes 
the MAX norm. □ 

This notion can be naturally extended to a p x p partition in two dimensions as 
follows. Consider an n x n array A. Divide the rows [1, n] into p intervals given by 
horizontal dividers h0 = 0 < hi < h2 < ■ ■ ■ < /ip_i < hp = n, and the columns 
[1, n] into p other intervals given by the vertical dividers vo = 0 < vi < v2 < • ■ • < 
vp-i <vp = n. This induces p2 blocks given by A[hi-!+l ■ ■ -hi, Vj-i + 1 ■ ■ -Vj] for 

each i, j. The MAX norm of a partition is max)~^j^ f(A[hi-i + 1 • • • hi, u,_i -f- 
1 • • -Vj]). Again, the common weight functions on blocks are F and Hc defined 
analogously as above for intervals. 

The 2D p X p-partition problem. Given p, find the p X p partition that 
minimizes the MAX norm. □ 

The 2D 5-weight partition problem. Given S, find the minimum p for which 
there exists a p x p partition of the array with the MAX norm of at most 5.     O 

Remarks. There are many different ways to partition 2D arrays, as discussed 
in [GM96, KRW95, MS96, MM+96]. Here we consider only the p x p partition. 
These problems can be naturally generalized to higher dimensions. Our solutions 
for the 2D case extend to higher dimensions in a straightforward way. However, 
the ID and 2D cases are fundamentally different, and they will be contrasted 
later. 
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1.2     Application Scenarios 

Array partitioning problems arise in load balancing, scheduling, data layout, 
video compression, etc. We focus on three specific array partitioning problems. 
Here we briefly describe the application context for each; further details of mod- 

eling will be discussed in the journal version. 

One dimensional case under F. This problem was abstracted for load bal- 
ancing in pipelined, parallel environments in [B88] and studied in [OM95, AF91, 
HL92, MS95, M93, CN91, HNC92, N91] etc. 

Two dimensional case under F. This problem arises in balanced data dis- 
tribution as implemented in the Superb environment [ZBG86] and HPF2 [HPF] 
(High Performance Fortran). See [M93, CM+95] for more applications to particle- 
in-cell computations and sparse matrix computations. 

Two dimensional case under Hc. This arises in motion-compensated video 
compression by block matching. Roughly this involves compressing a frame in a 
video sequence by cutting it into rectangles each of which is encoded in terms of 
a block in the previous frame. See [MM+96] and then references therein for the 

precise setting. 

1.3     Results 

We state our results for each of the three problems of our interest. 
ID p-partition under F. This problem has been extensively researched. We 
summarize the previous work and our results in the table below, providing all 
citations where identical bounds were obtained independently. 

Reference Bound 
Bokhari [B88] 0(n*p) 
Anily k Federgruen [AF91] 0{n2p) 
Hansen k Liu [HL92] 0{n2p) 
Manne k Sorevik [MS95] 0(np\ogp) 
Choi k Narahari [CN91] 0(np) 
Olstad k Manne [OM95] 0(np) 

Nicol [N91] 0(n + p2 log2 n) 

Charikar, Chekuri k Motwani [CCM96] 0(n + p2 log2 n) 
Han, Narahari k Choi [HNC92] 0{n + p1+e),e< 1 
This paper O(nlogn) 

Our result relies on a binary search over a space of 0(n?) items. However, at 
each test, an approximate median among these items is identified in only 0(n) 
(as opposed to 0(n2)) time by exploiting the structure in our search space. In 
particular, we design and use an algorithm that finds an approximate median of 
the 0(n2) elements which are organized into n sorted lists in only 0(n) time. 

Throughout we have made no assumptions on the range of F's. However, 
improved bounds may be obtained if the F's lie in a restricted range; we omit 

the details here. 
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The 2D (5-weight problem under Hc. A number of algorithms are known for 
block matching, and in particular, for the 2D tJ-weight problem under Hc. These 
essentially work by splitting subareas greedily until each subarea has weight at 
most S and do not provide any guarantees on the number of blocks used. Building 
on the result of Grigni and Manne [GM96], this problem can in fact be shown 
to be NP-hard. 

Here we provide an O(logn) approximate polynomial time algorithm. We 
obtain our result by a rather simple reduction to the classical set cover problem. 
Our algorithm works for a general class of metrics including F and Hc. 

The 2D pxp partition problem under F. Grigni and Manne [GM96] showed 
that the 2D problem is NP-hard even when the given array consists of 0/1 entries. 
Independently, Charikar et. al. have given a simple proof that this problem is 
APX-hard, that is, the problem is in fact NP-hard to approximate within a 
factor of two. While a number of natural heuristic algorithms are known for 
this problem (See for example [MS96]), most of them can be shown to be bad 
(typically Q(<Jp)) approximations. One such heuristic has been recently shown 
to have a performance guarantee of 0{^/p) by Halldorsson & Manne [HM96]. 
This is the currently best known approximation for this problem. 

Reference Result 
Grigni & Manne [GM96] 
Charikar et. al. [CCM96] 
Halldorsson & Manne [HM96] 
This paper (Section 4) 

NP-Hardness 
APX-Hardness 

0{y/p) approximation 
0(1) approximation 

We observe that using our result for the 2D cf-weight problem above, one 
can easily obtain an 0((logn)2) approximation algorithm for the 2D p x p- 
partitioning problem under F. But our main contribution is an 0(l)-factor ap- 
proximation for this problem which builds on an inherent connection between 
"independent" rectangles of large weight within the array and the cost of the 
optimal solution. Surprisingly, we are able to show that after a suitable prepro- 
cessing of the input array, a locally optimal collection of independent rectangles 
can be used to generate a solution which is at most a constant factor away from 
the optimal. 

2     The One Dimensional Case Under F 

We assume for convenience that .F(.<4.[i]) ^ 0 for any i; this assumption can be 
easily removed and we omit that detail. Define the Boolean function MA(1, k, v) 
to be true if and only if there exists a partition of the elements A[t, n] into k 
intervals, such that the MAX norm of these intervals is < v. In our analysis 
below, we count only the complexity of calls to the F oracle; F can be simulated 
in constant time after linear preprocessing. 

Lemma 1. Mji(l,k,v) can be determined using 0(n) calls to the F oracle for 
arbitrary k, I, and v. 
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Proof. Note that without loss of generality the (j + l)st divider can be placed as 
far to the right of the jth divider such that F value of the elements in that interval 
is < v. By incrementally inserting dividers from left to right so as to prevent 
the total in any interval from exceeding v, we find the minimum number of 
dividers required in 0{n) time. If this total exceeds k, then MA(l,k,v) = false. 

Otherwise, MA{1, k, v) = true. D 

In the optimal partitioning with k dividers, there will be an interval A[i, j] 
which will prove the bottleneck of the partitioning: an interval is a bottleneck to 
the partitioning if it is the largest weight interval that results from this partition- 
ing. There are Q) candidates for this bottleneck interval. Performing a binary 
search on these candidates, using the linear-time oracle of Lemma 1, would yield 
an 0(n log n) algorithm to search for the ^-partition. However, this requires a 
method to efficiently compute the sequence of (approximate) median candidates 
to support the binary search. Conventional linear-time median-finding is clearly 
inadequate, since we have only 0(n) time to find the median of 0(n2) elements. 

We take advantage of the fact that this collection of 0(n2) elements is not 
arbitrary, but has rather been derived from interval sums over n elements. We 
partition the (") intervals f{A[i,j]) into n columns, where column c consists of 
the elements f{A[i,c]), 1 < i < c. Let Cc[i) = f{A[i,c\) denote the ith element 
of column c. The subcolumn Sc[i,j] comprises elements Cc[x], i < x < j. These 

definitions are illustrated in Figure 1(a). 

Lemma 2. Cc[i] > Cc[j] iffi<j- Further, the median element of any subcolumn 

Sc[i, j] can be determined with one call to the F oracle. 

Proof. The first claim follows since the elements of each column are monoton- 
ically non-increasing. The second claim follows since the median of Sc[i,j] is 

F(A[[(i + j)/2\,c]). ° 

Theorem 3.   The ID p-partition problem under F can be solved in 0(n log n) 

time. 

Proof. As per the above discussion, we effectively perform a binary search over 
the set of (") interval values. For each column, we will maintain one subcolumn 
containing the range of intervals which might include the optimum. Let U be 
the set of elements representing the union of the elements in all the active sub- 
columns. A splitter for U is an element m such that the rank of m in U, say rm, 

satisfies 
\U\/c<rm<\U\(c-l)/c 

for some constant c. The following algorithm finds a splitter for the active sub- 

columns in 0(n) time: 

1. We find m, the median element of the set of < n median elements of the 
active subcolumns. Using Lemma 2, this set of median elements can be iden- 
tified in 0(n) time. The median of this collection, m, can now be identified 
in 0{n) time using the standard linear-time median finding algorithm. 
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Fig. 1. (a) Columns and subcolumns of A. (b) The median of medians is not necessarily 
a splitter. 

2. We divide the active subcolumns into two sets according to whether their 
median is < m or not. Let C\ (Cr) denote the set of elements in subcolumns 
whose medians are < m (> 771). If min(|Cj|, \CT\) > (|C/| +|Cr|)/8, we return 
TO as a good splitter. 

3. As illustrated by Figure 1(b), this median of medians is not necessarily a 
good splitter. If not, we recur on the appropriate set of subcolumns (the ones 
containing the larger number of elements) for the splitter search. Because 
the set of subcolumns under consideration is halved on each iteration, the 
total search time remains linear. 

If MA(1,P, m) = true, then m is a lower bound on the optimal partitioning. 
Half of the elements in each subcolumns in Ci may be eliminated, by replac- 
ing subcolumn Cc[i, j] with Cc[[(i + j)/2\, j]. If MA(1,P, m) = false, then m 
is an upper bound on the optimal partitioning. Half of the elements in each 
subcolumns in CT may be eliminated, by replacing subcolumn Cc[i,j] with 
Cc[i, [(i + j)/2j]. In either case, a constant fraction of the elements are elim- 
inated in each linear-time round, and hence the optimal partition is identified in 
0(n log n) time. D 

3    2D ^-weight partition under Hc 

We begin by considering the following geometric problem. We say that a rect- 
angle is stabbed by a line if the line passes through the interior of the rectangle. 

Stabbing Problem. Given a set of axis-parallel rectangles in the [1, n] x [1, n] 
two dimensional integer grid, determine a set R of grid rows and C of grid 
columns such that each rectangle is stabbed by one of the rows in R or one of 
the columns in C and furthermore, s = max{|Ä|, |C|} is minimized. G 

Lemma 4.  The stabbing problem is O(log n)-approximable. 

Proof. The proof is by reduction to set cover; the details are deferred to the final 
version. D 
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Theorem 5. There exists a polynomial time O(logn) factor approximation for 

the 2D S-weight partition problem under He- 

Proof. We reduce this problem to the stabbing problem above. Consider the 
collection of all possibly overlapping minimal rectangles where the F value of 
each rectangle is > 6; rectangles are minimal in the sense that if two rectangles 
have F value > S and one is contained in the other, we retain the smaller one. 
Now the 2D J-weight partition problem is precisely the stabbing problem for 

which a O(logn) factor approximation exists. D 

4    2D p X p-partition under F 

Grigni and Manne [GM96] have shown that the 2D p x p-partition problem under 
F is NP-Complete. Charikar et al [CCM96] proved that it is NP-Complete even 
to approximate the solution within a factor of 2. In this section, we present a 
polynomial time heuristic which provides an 0(1) factor approximation. 

The following lemma is crucially used in our arguments. 

Lemma 6. Let c and d be two positive integers, c,d<k. If there exists akx k 
partitioning such that MAX norm of the blocks is B under F, then there exists 
a k/c x k/d partitioning with MAX norm < cdB under F. 

Proof. Consider a ife x k partitioning with MAX norm B and take every cth row 
as well as every dth column. The maximum F value of a block of this k/c x k/d 
partitioning is at most cdB since each new block contains cd of the previous 

blocks. 

This lemma can be combined with the observation that Theorem 5 holds for 
2D J-weight partition problem under F as well, to get the following. 

Theorem 7. There exists a polynomial time O{log2 n)-approximation for the 

ID p x p-partition problem under F. 

We omit the proof in this extended abstract. 
The main result in this section is a substantially improved approximation 

algorithm; our algorithm computes an 0(1) factor approximation. 
Let a (W, £)-partition be a I x ^-partition such that the MAX norm of the 

blocks is at most W. We will now show that given an input instance for which 
a (W, ^-partition exists, we can construct in polynomial time a {0(W),£}- 
partition. The basic idea behind our algorithm is the notion of independent 

rectangles: 

Definitions. Two axis-parallel rectangles are said to be independent if their 

projections are disjoint along both the E-axis and the y-axis. 
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Clearly, no single horizontal or vertical line can stab a pair of independent 
rectangles. So if an array has a (W, -£)-partition, then it may contain at most 
2£ independent rectangles of weight strictly greater than W. As a result, inde- 
pendent rectangles constitute a useful tool in establishing a lower bound on the 
optimal solution value. The algorithm presented below builds on this idea to 
construct a partition whose cost is 0{W). 

4.1     The Algorithm 

Let W be the optimal solution value. We assume a knowledge of this value in 
the presentation below - this value will be determined by performing a binary 
search over the interval [0, YA,J Mh j]]- Observe that W > maxij A[i,j]. Our 
algorithm constitutes of the following five steps: 

Step 1. We obtain an £ x £ partition of the array such that each row or column 
within any block in the partition has weight at most 2W. □ 

This can done by performing independent horizontal and vertical scans. Dur- 
ing the horizontal scan, we keep a running sum of the weight of each row since 
the most recent vertical partition and set down the next vertical partition when 
the weight of any one of the rows exceeds W. Likewise, we set horizontal parti- 
tions based on running sums of the weights of columns during the vertical scan. 
Since each time a new column (row, respectively) is considered, the weight of 
the rows (columns, respectively) can increase by at most W, it follows that the 
weight of any row (column, respectively) within any block induced by the ver- 
tical and horizontal partitions does not exceed 2W. Henceforth we consider the 
array with this £ x £ partition which we refer to as the partition P. 

Step 2. We construct the set 5 of all minimal rectangles whose weight exceeds 
W and which are entirely contained within the blocks induced by the partition 
from Step 1. A rectangle is minimal if there does not exist another rectangle 
properly contained in it with weight larger than W. □ 

This can be done by starting from each location within a block and consid- 
ering rectangles with their top left corner at that location in turn in the order 
of increasing sides until all minimal rectangles of weight strictly greater than W 
are discovered. 

Step 3. We determine a local 3-optimalset M C S of independent rectangles. M 
is a local 3-optimal set if there does not exist i £ {1, 2, 3} independent rectangles 
in S — M which can be added to M by removing at most (i — 1) rectangles from 
M without violating the independence condition. □ 

Such a set can be easily constructed in polynomial time by repeatedly per- 
forming swaps which increase the size of the current independent collection. Each 
swap takes polynomial time and the procedure terminates in polynomial time 
since any independent collection can have at most 0(n) rectangles. 

Step 4. We now introduce another partition based on M. For each rectangle 
in M, we set two straddling horizontal and two straddling vertical partitions so 
as to induce that rectangle. In all, this introduces at most 2M horizontal and 
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IM vertical partitions. The partition P from Step 1 together with this partition 
induced by rectangles in M is our new partition now. a 

Step 5. We now have a partition of the input array which uses h < 2M + £ 
horizontal lines and v < 2M + I vertical lines. To get a I x t partition from 
this, we simply retain only every \h/l]th horizontal line and only every \v/l]th 
vertical line. By Lemma 6, this increases the maximum block weight by at most 

a factor of \h/l]\v/l]. 

4.2     Analysis: Approximation Guarantee and Correctness 

We need to establish two properties of the above algorithm: (a) given a choice W 
for which the input array has a (W, ^-partition, the weight of any block in the 
partition constructed by the above algorithm is 0(W), and (b) the smallest value 
W for which the analysis of the algorithm holds, identified via binary search, 
is upper bounded by the optimum solution value. We begin by establishing the 
first property above; the following lemma is central to the analysis here. 

Lemma 9. Let b be a block contained in some block of the partition P constructed 
in Step 1 above. Then if the weight of block b is at least 27W, it can be partitioned 
into 3 independent rectangles, each with weight strictly exceeding W. 

Proof. Given a block of weight at least 27W, we construct three independent 
rectangles of weight exceeding W as follows. First we perform a vertical scan, 
placing a horizontal cut as soon as the weight of the slab seen thus far exceeds 
TW; we place two horizontal cuts in all. This gives us three slabs each of weight 
strictly greater than 1W. Now we perform a horizontal scan from right to left 
placing the first vertical cut as soon as one of the horizontal slabs exceeds weight 
W. Without loss of generality assume that it is the top slab. Then the top right 
block has weight greater than W but does not exceed 3W', and the two lower 
horizontal slabs to the left ofthat vertical cut have weight greater than AW each. 
Now in a similar manner we place a second vertical cut to obtain two independent 
blocks of weight exceeding W from these two horizontal slabs. Thus we get three 

independent rectangles of weight greater than W each. □ 

Lemma 10. The weight of any block in the partition constructed at the end of 

Step 4 is 0{W). 

Proof. We begin by observing the following easily verifiable properties of the 
solution: (a) each block of the solution is completely contained in some block of 
the partition P, and (b) given a block b G M and another block b' £ M, their 
projections on the z-axis or the y-axis have either completely disjoint or have a 

perfect overlap. 
Now consider a block b in the solution; using the preceding observations, it 

is readily seen to fall into one of the following categories: (1) the block b belongs 
to M, or (2) the block b does not belong to M but has a perfect overlap along 
one of the axes with a block b' G M, or (3) the block b does not belong to M but 
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has a perfect overlap along the x-axis with a block b' £ M and a perfect overlap 

along the z-axis with a block b" £ M. 
In Case 1, the weight of b is 0(W) since the set S as defined in Step 2 has 

the property that any rectangle r in it has weight at most 3W. This is because 
otherwise, we can always remove either a row or a column (of weight at most 
2W) from r to obtain a rectangle r' of weight greater than W, contained in r, 

which violates the minimality of the rectangles in S. 
In Cases 2 and 3, each block has weight at most 27W; this follows from an 

application of Lemma 9. We observe that at most two blocks in M, say b' and 
b", may not be independent of a block which falls into these two cases. So if 
b has weight greater than 27W, we can replace b' and b" with at least three 
independent rectangles which are constructible from b (and are contained in S). 
But this contradicts the local 3-optimality of the collection M constructed in 

Step 3. Hence b must weight at most 27W. □ 

Lemma 11. The number of rectangles in M is 21 for any choice W for which 

there exists a (W, £)-partition of the input array. 

Proof. If M had x rectangles, then each of those rectangles must be stabbed 
in the optimal solution since the optimal solution value is bounded by W and 
every rectangle in M has weight strictly greater than W. Stabbing x rectangles 
requires at least x/2 horizontal or vertical partitions and hence x must be at 

most 21. D 

Lemma 12. The weight of any block in the final solution returned in Step 5 is 
at most 0(W) for any choice W for which there exists a (W,£)-partition of the 

input array. 

Proof. Lemma 11 tells us that the number of horizontal and vertical partitions at 
the end of Step 4 is 0(£) each. This fact, along with an application of Lemma 6, 
allows us to conclude that the weight of every resulting block in the £ x £ partition 

is 0{W). D 

This completes the proof of the first property of our algorithm that it gives 
a solution of weight 0(W) whenever a (W, ^-partition exists. To conclude, we 
observe that the least value W for which the algorithm either fails to construct 
the partition P in Step 1 or yields a collection M in Step 3 with more than 2£ 
rectangles, must exceed the optimum. Thus the binary search procedure works 

to identify a suitable W. 

Theorem 13. There exists a polynomial time algorithm that computes an 0(1)- 
factor approximation to the two dimensional block partitioning problem. 
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Abstract. Let Qk be the class of graphs with branchwidth at most k. 
In this paper we prove that one can construct, for any k, a linear time 
algorithm that checks if a graph belongs to Qh and, if so, outputs a branch 
decomposition of minimum width. Moreover, we find the obstruction set 
for & and, for the same class, we give a safe and complete set of reduction 
rules. Our results lead to a practical linear time algorithm that checks if 
a graph has branchwidth < 3 and, if so, outputs a branch decomposition 
of minimum width. 

1    Introduction 

This paper considers the problem to find branch decompositions of graphs with 
small branchwidth. The notion of branchwidth has a close relationship to the 
more well-known notion of treewidth, a notion that has come to play a large 
role in many recent investigations in algorithmic graph theory. (See Section 2 
for definitions of treewidth and branchwidth.) One reason for the interest in this 
notion is that many graph problems can be solved by linear time algorithms, 
when the inputs are restricted to graphs with some uniform upper bound on 
their treewidth. Most of these algorithms first try to find a tree decomposition 
of small width, and then utilise the advantages of the tree structure of the 

decomposition. 
The branchwidth of a graph differs from its treewidth by at most a multiplicative 
constant factor (see Theorem 1.) As branchwidth is also reflecting some optimal 
tree structure arrangement, it is possible to have algorithmic applications anal- 
ogous to those of treewidth. Hence, instead of using tree decompositions, one 
also can use branch decompositions as starting point for the linear time algo- 
rithms for problems restricted to graphs with bounded treewidth (and hence also 
bounded branchwidth.) In fact, in some cases, it appears that branchwidth is 
more convenient to use, and seems to give better constant factors in the imple- 
mentation of the algorithms; for instance, Cook used branch decompositions as 
an important ingredient in a practical approximation algorithm for the Travelling 

* The secont author was supported by the Training and Mobility of Researchers (TMR) 
Program, (EU contract no ERBFMBICT950198). 
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Salesman Problem [11], and remarked that branchwidth was the more natural 
notion (instead of treewidth) to use for that problem [10]: where tree decompo- 
sitions primarily are concerned with vertices, branch decompositions deal more 
with edges (in a loose sense.) We also mention that the branchwidth of planar 
graphs can be computed in polynomial time (see [20]). As both treewidth and 
branchwidth are NP-complete parameters (see [2, 20]), it appears an interesting 
task to find algorithms solving the following problems (k is assumed to be a fixed 
constant). 

n£(B) (IJf.(T)): Check if for some input graph has branchwidth (treewidth) 

< k. 
nc

k{B) (ni(T)): Given a graph with branchwidth (treewidth) at most k, output 
a minimum width branch (tree) decomposition. 

According to the results of Robertson and Seymour, for any minor closed class 
of graphs there exist a finite set of graphs, its obstruction set, such that a graph 
G belongs to the class iff no element of the obstruction set is a minor of G. It is 
also known that for, any k, the class of graphs where treewidth (or branchwidth) 
is bounded by a fixed k is minor closed (see also Theorem 1). An immediate 
consequence of this fact (using results from Robertson and Seymour and the 
algorithm from [6]) is the existence of a linear time algorithm solving IJf(B) or 
n£(T). Unfortunately, in this way, we only get a non-constructive proof of the 
existence of such an algorithm, but in order to construct the algorithm, we must 
know the corresponding obstruction set. Additionally, we would like to have 
an algorithm that does not only decides on branchwidth, but also constructs 
corresponding branch decompositions. 
Much research has been done towards the construction of linear time algorithms 
solving nf{T) and nc

k(T). In [6], a linear (on the size of the input) time algo- 
rithm for treewidth was constructed. As this algorithm appears to be heavily 
exponential on k (and thus impractical, at least without considerably optimisa- 
tions in the implementation), more practical algorithms have been presented for 
small values of k: (treewidth 1 and 2 [14, 22], treewidth 3 [4, 12, 14], treewidth 
4 [18].) Also, the obstruction sets for treewidth 1, 2, and 3 are known [5, 19, 22]. 

In this paper, we find analogous results to those of [4, 5, 6, 19, 12, 14, 19] for 
the parameter of branchwidth. Namely, for any fixed k, one can construct: 
• A linear time algorithm that solves nk(B) and IIl(B). 

• A parallel algorithm that solves IIk(B) in 0(lognlog*n) time on a EREW 
PRAM or O(logn) time on a CRCW PRAM and needs 0(n) operations. 

• A sentence in monadic second order logic expressing whether a graph has 
branchwidth at most k or not. 
• The obstruction set of the graphs of branchwidth at most k. 
As, (similarly to the case of treewidth) the algorithms above appears to be non- 
practical we provide special results for the case where k < 3. More specifically, 
for the class of graphs with branchwidth < 3, we identify the obstruction set 
and we give a set of safe and complete reduction rules enabling the construction 
of a practical linear time algorithm that checks if a graph has branchwidth < 3 
and, if so, outputs an minimum width branch decomposition. 
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The paper is organised as follows. In Section 2 the basic definition and prelim- 
inary results are presented. In Section 3 we give several graph theoretic results 
on Q3. These results concern the obstruction set of Q3 and the identification of 
a complete and safe set of reduction rules for G3 leading to the construction 
of a practical linear time algorithm solving i7|(5) and I7|(5). In Section 4 we 
present a general (for any fixed value of k) solution for II^(B) and 111(B). 

2     Definitions and Preliminary Results 

We consider undirected graphs without parallel edges or self-loops. (It is easy 
to extend the results to graphs with parallel edges and/or self-loops.) Given a 
graph G = (V, E) we denote its vertex set V and edge set E with V(G) and E(G) 
respectively. For any vertex v G V(G), we define as NG(v) the set of vertices in 
V(G) adjacent with v. Also, given a set 5 C V(G) we denote as G[S] the graph 
induced by S. We also denote as Kr the complete graph with r vertices. 

Given two graphs G, H we say that H is a minor of G (denoted by H < G) if 
H can be obtained by a series of vertex/edge deletions and/or edge contractions 
(a contraction of an edge {u, v} in G is the operation that replaces u and v by a 
new vertex whose neighbours are the vertices that were adjacent to u and/or v). 
Let Q be a class of graphs. We say that Q is closed under taking of minors when 
all minors of any graph in Q belong also to Q. Robertson and Seymour proved 
(see e.g. [16]) that any class of graphs Q contains a finite set of minor minimal 
elements. We call such a set the obstruction set of £. It follows that if Q is closed 
under taking of minors, then, for any graph H, G G Q iff there is no graph in 

the obstruction set of Q such that H < G. 
A tree decomposition of a graph G is a pair ({Xt | i G I},T = {I,F)), where 
{Xi | i G /} is a collection of subsets of V and T is a tree, such that 

. U ^ = V(G), 

.for each edge {v, w} G E(G), there is an i G / such that v, w G Xit and 

.for each v G V the set of nodes {i \ v G Xi} forms a subtree of T. 

The width of a. tree decomposition ({Xi \i£l},T= (I, F)) equals maxi€J{\Xi\ - 
1}. The tree width of a graph G is the minimum width over all tree decompositions 

of G. 
A branch decomposition of a graph G is a pair (T,T), where T is a tree with 
vertices of degree 1 or 3 and r is a bijection from the set of leaves of T to 
E(G). The order of an edge e in T is the number of vertices v G V(G) such that 
there are leaves ti,t2 in T in different components of T(V(T), E(T) - e) with 
r(ti) and r(t2) both incident with v (we also say: v belongs to e.) The width of 
(T, r) is the maximum order over all edges of T, and the branchwidth of G is the 
minimum width over all branch decompositions of G (in case where \E(G)\ < 1, 
then we define the branchwidth to be 0; if \E(G)\ = 0, then G has no branch 
decomposition; if \E(G)\ = 1, then G has a branch decomposition consisting of 
a tree with one vertex - the width of this branch decomposition is considered to 

beO). 
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Instead, we can use different types of functions r. If r is a surjective function 
that maps every leaf of T to an edge e 6 E(G), then we have an amplified branch 
decomposition: for each edge e G E(G) there exist at least one leave v of T with 
T(V) = e. If, instead, we have a partial function r, mapping only some leaves to 
an edge, but that is injective (every edge has a unique leaf), then we have an 
extended branch decomposition. 

In what follows we denote as Bk (71) the obstruction set of the graphs with 
branchwidth (treewidth) at most k. 

Theorem 1 ([17]) The following statements hold, (a) The class of graphs with 
bounded branchwidth is closed under taking of minors, (b) branchwidth(G) < 
treewidth(G) + 1 < [§branchwidth(G)J. (c) A graph has branchwidth 0 (< 1) 
iff each connected component contains at most one edge (vertex of degree > 2). 

(d) B2 = {IU}. 

The results from [17] give algorithms for nf{B) and nc
k{B) for k = 0,1,2; for 

instance, graphs have branchwidth 2 if and only if they have treewidth 2, and a 
tree decomposition of width 2 can be transformed into a branch decomposition 
of width 2 in linear time. The following lemma is easy to show. 

Lemma 1 There exist an algorithm that given an amplified branch decompo- 
sition (T, T) of a graph G with width < 3, outputs a branch decomposition of 
G with width < 3, in 0(\V(T)\) time. Moreover, there exist an algorithm that 
given a branch decomposition (T, r) of a graph G with width < 3, outputs a 
branch decomposition of any subgraph of G with width < 3 in 0(\V(G)\) time. 

A reduction R is a triple (H,S,f), where H is a graph S C V(H),S ^ 0 
and / : V(H) -> w + 1 is a labelling of vertices in H by ordinals (finite ones 
and w), such that V« G S f(v) — 0. We say that a reduction R = (H,S,f) 
occurs in G if H is a subgraph of G and for any v G V{H) the degree of v in 
G[V(G) - V(H) U {v}] is at most f(v). The result of applying R on G is the 
graph arising from G if we remove the vertices in S and connect as a clique in G 
all vertices in V(H)—S. Given a graph class Q, we say that a set 11 of reductions 
is safe if, for any R G H and for any G such that R occurs in G, the result of 
applying R on G is a graph in Q if and only if G G Q- Also, U is called complete 
for Q, if for every non-empty graph G G Q, there is a reduction in 11 occurring in 
G. Clearly, if a set 11 of reduction rules is safe and complete for a graph class Q, 
then, for any graph G, it holds that G ell if and only if there exist a sequence of 
reduction rules in H that, when successively applied, can reduce G to the empty 
graph. 
We denote as 1Zt<3 the set of reduction rules shown in Figure 1. For any R = 
(H,S,f) G 1Zt<3, S is represented by the white cycles and the values of / are 
shown only when they are not u> and correspond to vertices not in S. 

Theorem 2 ([4, .12, 15]) Ht<3 is a safe and complete set of reduction rules 
for the class of graphs with treewidth < 3. 
We call a graph G chordal when it does not contain any induced cycle of length 
> 4. We call a vertex v G V(G) simplicial if G[NG{V)] is a clique. Let k be an 
integer. A fc-tree is a graph which is defined recursively as follows. A clique with 
k + 1 vertices is a fc-tree. Given a fe-tree G with n vertices, a fc-tree with n + 1 



631 

O^i)   null 
graph 

(Ui) o<^   ^  I 

Fig. 1. The reduction rules for the class of graphs with treewidth < 3. 

vertices can be constructed by making a new vertex adjacent to the vertices of 
a fc-clique in G. A graph is a partial fc-tree if either it has at most k vertices or 
it is a subgraph of a fc-tree G with the same vertex set as G. k-Tiees are chordal 
graphs with w(G) =fc + l (w(G) is the size of the maximum clique in a graph G). 
It can be easily proved that a graph has treewidth < k iff it is a partial fc-tree 

(see e.g. [21]). Also, if G is a lb-tree, then \E(G)\ = 0{k\V{G)\). A set S C ^(G) 
is an s-t-separator in G (s, t 6 V), if s and f belong to different connected 
components of G[V - S\. S is a minimal s-t-separator, if it does not contain 
another s-i-separator as a proper subgraph. S is a minimal separator, if there 
exist vertices s, 2 £ V for which 5 is a minimal s-t-separator. It is known that 
any minimal separator of a chordal graph induces a clique. We call a graph G" 
a triangulatwn of G if G' is chordal and V{G) = V(G'). We call a triangulation 
of G with a minimum number of edges minimal triangulation. 
Theorem 3 ([9]) Let G' be a minimal triangulation of a graph G. Then any 

minimal separator in G' is also a minimal separator in G. 

Fig. 2. The graphs Kb, M6, Ms, Mi0, and Q3 

Theorem 4 ([5, 19]) T3 = {K5, M6, M8, M10} (graphs K5,M6,M8, and M10 

are shown in Figure 2). 
The following can be proved using Theorems l.b and 4. 
Lemma 2   The following three statements hold. 
a. There are no graphs in B3 with treewidth < 2. 
b. Q.3 G B3 and treewidth(Q3) = 3 (graph Q3 is shown in Figure 2). 
c. The set {K5,M6,M8} contains all the graphs of B3 that have treewidth > 4. 
Let G be a graph and S C V{G), \S\ = 4. We call S = {vltv2,V3,v4} a cross 
if the sets Si = S - {«;}, 1 < i < 4 are all minimal separators of G. We also 
define as att(G, S,) the set of all the vertices of the connected components of 
G[V(G) - Si] that do not contain the single vertex in S - Si. If a graph does 
not contain any cross then we call it crossless. 

Using Theorem 3 we can easily prove the following. 
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Lemma 3 Let G be a crossless graph of treewidth at most 3 and G' be a minimal 
triangulation of G. Then, G' is a crossless chordal graph with LO(G) < 4. 
Let G be a 3-tree G. A tree TG is the clique tree of G if each vertex in V(TG) 
represents a 4-clique in G and where two vertices v = {^i, V2, i>3, V4}, u = 
{y-i, «2, «3, «4} £ V(TQ) are connected by an edge {v,u} in TG iff |vf~lu| = 3, 
i.e., they have exactly 3 vertices in common (notice that each such triple of ver- 
tices is a minimal separator of G). Given an edge e = {v, u} £ E(TG) we define 
the separation set of e as sep(e) = v D u. 

We will need the following results which we present without proof. 

Lemma 4  There exist an algorithm that given a 3-tree G constructs the clique 

tree of G in 0{\V{G)\) time. 

Lemma 5 There exists an algorithm that given a crossless chordal graph G with 
LO(G) < 4, outputs, in 0(\V(G)\) time, a crossless 3-tree G' such that G' is a 
subgraph of G where V(G) = V{G'). 

3     Graphs with branchwidth at most 3 

In this section we will identify the set B3 and find a complete and safe set of 
reduction rules for the class of graphs with branchwidth < 3. Our results lead to 
the construction of a linear time algorithm testing whether a graph has branch- 
width < 3 and, if so, computes a branch decomposition of minimum width. 
According to Theorem l.c, it is trivial to check in linear time if G has branch- 
width < 1 and, if so, to construct a branch decomposition of minimum width. 
Also, from Theorem l.d, we can check in linear time if a graph has branchwidth 
> 3 or not. In what follows, we examine the non trivial case where the input is 
a graph with branchwidth > 3. We omit the case where we are given a graph 
with branchwidth 2 as it is a very similar (and much easier) version of the non 

trivial case. 
The following lemma defines the notion of the labelled clique tree of a crossless 
3-tree (the proof is omitted). 
Lemma 6 Let TQ be the clique tree of a crossless 3-tree G. Let also, for any 
v £ V(TG), Ev = {e £ E(TG) : v is incident to e}. Then, for each v £ V{TG), 
|{sep(e) : e £ Ev}\ < 3. Moreover, it is possible in 0{n) time to compute 

a labelling function I : \E(TG)\ ->■ {1,2,3} such that Vv £ V{TG) Vei,e2 £ 
Ev (sep(ei) = sep(e2) iff l(e\) = l(e.2)), i.e. edges in Ev xuith the same separa- 
tion set have the same label. We call such a clique tree 3-labelled and we denote 
it as (TQ , /). 
Given a labelled clique tree (TG, I) we define the span degree of a vertex v to be 
equal to |{/(e) : e £ Ev}\. We also call a leaf u of TG that is adjacent to a vertex 
v simple if |{e £ Ev : 1(e) = /({u, v})}| = 1. 

The following can be easily proved by induction on |V(TG)|- 

Lemma 7 Let (TG,l) be a labelled tree with more than 3 vertices. Then one of 
the following holds: (i) There exist no simple leaves, (ii) There exist a simple 
leaf u in TG adjacent to a vertex v of span-degree 2. (Hi) There exist two simple 
leaves ui and u2 in TG adjacent to a vertex v of span-degree 3. 
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Using now Lemma 1 we have a proof of the following Lemma which provides 
the basic algorithm of this section (the proof is long and is omitted due to space 

limitations). 

Lemma 8 There exist a linear time algorithm that, given a 3-labelled clique tree 
of a crossless 3-tree G constructs a branch width decomposition of G of width 3. 

Combining Lemmas 1, 4, 5, 6, and 8 gives the following result. 

Theorem 5 Any crossless chordal graph with u{G) < 3 has a branch decom- 
position of width 3. Moreover it is possible to construct an algorithm that finds 

such a branch decomposition in 0(\V(G)\) time. 

Using Theorems 1 and 5 and Lemma 2, we can now proof the following. 

Theorem 6 The following two propositions hold: (i) branchwidth(G) < 3 O- 
treeivulth(G) < 3 A Q3 £ G <£> treewidth(G) < 3 A G is crossless. (ii) Th' 
obstruction set of the graphs of branchwidth three, B3 equals {K5, Me, M8, Qz) 

We denote as 7?.j<3 the set of reduction rules shown in Figure 3. 

(M  null      „       _     (M    m       r^»     {kin 

e 

graph 
< 2?'I 

Fig. 3. The reduction rules for the class of graphs with branchwidth < 3. 

Using Theorems La, 2, and 6, we can prove the following. 

Lemma 9 ^(,<3  is a safe set of reduction rules for the class of graphs with 

bounded branchwidth. 

Also, using the case analysis of Lemma 7, we can prove the following. 

Lemma 10 The following two propositions hold: (i) If G is a crossless 3-tree 
then, there exists one reduction rule in 1Zb<3 occurring in G. (ii) If there exist 
some reduction rule in 1Zb<3 occurring in a graph G, then, for any subgraph G' 
ofG where V(G) = V{G'), there exist also some rule in TZb<3 occurring in G". 

Using now Lemmas 3, 5, 9, and 10, we can proof the following. 

Theorem 7 7?.6<3 is a safe and complete set of rules for rewriting graphs of 

branchwidth< 3. 

Using now Theorems 7 and 5, we can prove the following. 

Theorem 8 One can construct an algorithm that tests if a given graph has 
branchwidth at most 3 and, if so, outputs a branchwidth decomposition of mini- 

mum width, and that uses 0(n) time. 
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4     A linear time algorithm for graphs with branchwidth 
< k 

In this section, we will show the following theorem. 

Theorem 9 For every k, one can construct an algorithm, that given a graph 
G = (V,E), decides whether the branchwidth of G is at most k, and if so, 
constructs a branch decomposition ofG of minimum width, and that uses 0(\V\) 

time. 

(Note that if the branchwidth of a graph is bounded by a constant, then \E\ = 
0(| V|).) While the theorem generalises the result of the previous Section, it 
should be noted that the algorithm here has a large (exponential) constant factor, 
making it (at least without considerably optimisations in the implementation) 
not practical, whereas the algorithm in the previous section for the case that 
k — 3 is a practical and efficient algorithm. 
Note that a non-constructive version of Theorem 9 can almost directly be ob- 
tained from the results in [16] and [6] as, for every k, the class of graphs with 
branchwidth at most k is closed under taking of minors. Also, note from the 
result in [6], that it is sufficient to prove the following result: 

Lemma 11 For every k, I, one can construct an algorithm, that given a. graph 
G = (V, E), with a tree decomposition of G of width at most I, decides whether 
the branchwidth of G is at most k, and if so, constructs a branch decomposition 
of G of minimum, width, and that uses linear time. 

A terminal graph is a triple G = (V, E, X) with G = (V, E) a graph, and X an 
ordered set of vertices from V. If \X\ = k, we call (V, E, X) a Är-terminal graph. 

Given an extended branch decomposition, we can build a branch decomposition 
of the same graph with the same width as follows: repeatedly remove leaves 
that have no edge associated with them and contract over nodes of degree 2 in 
the tree. We call the obtained branch decomposition the shrunken form, of the 
extended branch decomposition. 

Let G — (V, E) be a graph, and let H = (V, E') be a subgraph of G. A branch 
decomposition (T, r) of G is an extension of a branch decomposition (T", r') of 
H, if (T',T') can be obtained as follows: let r" be the restriction of r to those 
leaves that map to an edge in E'. (T, r") is an extended branch decomposition 
of H. Now let (V, r1) be the shrunken form of (T, r"). 

The full model of a branch decomposition (T, r) of a terminal graph G — 
(V, E, X) is the 4-tuple (T, r, ß, 7), where ß is a function, that maps each edge e 
of T to the set of vertices in X that belong to e, and 7 is a function that maps 
each edge in T to its order. 

A model of a branch decomposition (T, r) of terminal graph G = (V, E, X) is a 
4-tuple (T',r',ß,j), that is obtained by the full model of {T,T) by applying 0 
or more of the following operations: 
• Suppose {v, w} and {v, x} are edges in T, w, x leaves in T, and ß({v,iv}) C 
ß({v,y}), ß({v,x}) C ß({v, y}); y the third neighbor of v in T. Then remove 
edges {v,w}, and {v,x} from T, and restrict r, /?, and 7 to the edges in the 
smaller tree. 
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. Suppose vi,vo,..., vr form a path in T, with all vertices v2,...vr-i adjacent to 
a leaf (^ vuvrj in T. Suppose that ß{{vuv2}) = ß{{v2,v3}) = ■ ■ ■ ß{{vr-i,vr}). 
Suppose also that j({vi,v2}) < min{j({v2, v3}, • ■ •, l{{vr-2, Vr-i}) and that 

7(K_i,rv)} < max{j{{v2,v3}),..., 7(K-2,tV-i})- Then, identify v2 and 
LV-i, remove vertices v3, . . ., iV-2, their adjacent edges, their leaf-neighbors, 

and the leaf-neighbor (^ vi) of v2- 
The characteristic of a branch decomposition (T, r) of terminal graph G - 
(V,E, X) is the model of the characteristic that cannot be reduced by applying 
one of these two operations. One can show that the characteristic of a branch 

decomposition is unique. 

Lemma 12 Let k be fixed. There are functions fi, such that each characteristic 
of a branch decomposition of a terminal graph G = {V, E, X) of width at most 
k has at most fi(\X\) nodes on its tree, and each terminal graph G = (V, E, X) 
has at most f2{\X\) different characteristics of branch decompositions of G of 

width at most k. 

Lemma 13 Let d = {VUE^X), G2 = (V2,E2,X) be terminal graphs with 
the same set of terminals. If H = (V3,E3,X) is a terminal graph, and (Ti,n), 
(T2,T2) are branch decompositions, respectively of G\ and G2, with the same 
characteristic, then there is an extension o/(Ti,n) that is a branch decomposi- 
tion ofGi®H of width < k, if and only if there is an extension of {T2,T2) that 

is a branch decomposition of G2® H of width < k. 

The two lemmas above imply together that the property that a graph has branch- 
width at most k is finite state, or regular (see e.g. [1]). (A class of graphs Q is 
finite state, if the equivalence relation on /-terminal graphs G ~ H o- (VA' : 
G © K G Q O- H © K e Q) has a finite number of equivalence classes, for each 

fixed /.) 
Combining the above results, and results and techniques from [1, 3, 6, 7, 13], we 
obtain the following result. (The results show that each of these is computable, 
although real practical efficiency and doabily is not guaranteed.) 

Theorem 10  One can construct, for each k, 
. linear time algorithms that decide whether a graph has branchwidth at most k 
(these algorithms can either use a tree- or branch decomposition and dynamic 

programming, or use graph reduction), 
.parallel algorithms that decide whether a graph has branchwidth at most k, 
that use 0(log?}log* n) time on a EREW PRAM or O(logn) time on a CRCW 

PRAM and 0(n) operations, 
. a sentence in monadic second order logic expressing whether a graph has 

branchwidth at most k or not, 
. the obstruction set of the graphs of branchwidth at most k. 

However, we do not only want to decide whether the branchwidth is at most k, 
but also to build a corresponding branch decomposition. 

A model (Tx, T1: A,71) is dominated by a model (T2, r2,/?2, 72), if {T2, i~2, ß2, 72) 
can be obtained from (Tu rlt ßi, 71) by 0 or more of the following operations: 
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. Contract some edges in T\. 

. Remove vertices from sets ßi(e), for some edges e in T. 

. Decrease numbers ß\ (e) for some edges e in T. 

Lemma 14 Let G\ = (Vi,Ei,X), Gi — (V2, E2, X) be terminal graphs with the 
same set of terminals. If H = (Vz,Ez,X) is a terminal graph, and if the charac- 
teristic of branch decomposition (T\, T{) ofG\ is dominated by the characteristic 
of branch decomposition (T2,r2) of G2, then if there is an extension of {T\,T\) 
that is a branch decomposition of G\® H of width at most k, then there is an 
extension of (T2, r2) that is a branch decomposition of G2 © H of width at most 
k. 

A full set of characteristics (for branchwidth = k) of a terminal graph G = 
(V, E, X) is a set of characteristics S of branch decompositions of G of width at 
most k, such that each characteristic of a branch decomposition of G of width 
at most k is dominated by an element of S. 

Suppose we have a tree decomposition ({Xi | i £ I},T — (I, F)) of a graph G, 
with T a rooted binary tree. To each i 6 /, we associate the terminal graph G{ = 

(Vi,Eit Xi), with Vi = U ■ is a ascendant of i or j = iX^ and E* = E(GiVi\)- 

The following lemma (with a proof that resembles a technique from [8]) gives us 
a method to compute full sets of characteristics. 

Lemma 15 Let k, I be constants. Let ({Xi \ i G I},T = (I, F)) be a tree decom- 
position of G of width at most I. For any node i £ I with at most 2 children in 
T, we can compute a full set of characteristics for branchwidth = k of Gi, given 
full sets of characteristics for branchwidth = k of all terminal graphs associated 
with the children of i. 

Using the algorithm of the lemma above, we can compute full sets of charac- 
teristics for all graphs associated with nodes in the given tree decomposition of 
the input graph, in time, linear in the size of T (process nodes in a bottom-up 
order). When the full set of the root node is non-empty, the branchwidth of the 
input graph is at most k, otherwise not. Finally, by extra bookkeeping, we can 
build a branch decomposition of width at most k (when existing), in linear time. 
As the details are cumbersome, they are omitted here. 
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Abstract. We present a finite, special, and confluent string-rewriting 
system for which the word matching problem is undecidable. Since the 
word matching problem is the non-symmetric restriction of the word uni- 
fication problem, this presents a non-trivial improvement of the recent 
result that for this type of string-rewriting systems, the word unification 
problem is undecidable (Otto 1995). In fact, we show that our undecid- 
ability result remains valid even when we only consider very restricted 
instances of the word matching problem. 

Keywords: matching, unification, equational theory, string-rewriting systems 

1    Introduction and basic definitions 

Equational unification and matching have generated a lot of interest recently, 
mainly due to their importance in term-rewriting systems and equational rea- 
soning. Historically, one of the earliest equational unification problems that have 
been studied extensively is word unification, which is the problem of solving word 
equations3. The general question of whether the solvability of a word equation 
is decidable or not remained open for a long time, until it was finally settled 
positively by Makanin [Mak77]. 

Since Makanin's paper appeared, his algorithm has been the subject of many 
research activities. The objectives have been to simplify the proof of the ter- 
mination and correctness of his algorithm [Pec81, Sch93], to develop simpler 
algorithms for deciding the solvability of word equations [Jaf90, Sch90], and to 
compute a description for the set of all solutions of a solvable word equation 
[MaAb94]. Observe that a word equation can have a minimal complete set of 

* Partially supported by the NSF grants CCR-9404930 and INT-9401087. 
3 This is also known as Markov's problem or Löb's problem. 
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most general unifiers that is infinite, that is, the theory of associativity is of 

unification type infinitary. 

Makanin also extended his result further by showing that the word unifica- 
tion problem is decidable for finitely generated free groups [Mak83, Mak85]. Since 
finitely generated free groups can be specified by finite, special, and confluent 
string-rewriting systems, this leads naturally to the question of whether the solv- 
ability of word equations modulo finite, special, and confluent string-rewriting 
systems is decidable in general. Here a string-rewriting system is called special, 

if it only contains rules of the form £ -+ A, where A denotes the empty string. 
Obviously, rewriting modulo such a system is particularly simple, since it simply 
amounts to the deletion of substrings. A special system R is called confluent, 
if each string has a unique irreducible descendant with respect to the reduction 
relation induced by R. In this situation the set IRR(Ä) of irreducible strings 
modulo R forms a set of unique representatives for the Thue congruence in- 
duced by R (see, e.g., [BoOt93]). But here the answer to the solvability question 
turned out to be negative as shown by Otto [Ott95], who presents a particular 
finite, special, and confluent string-rewriting system for which the word unifica- 

tion problem is undecidable. 

Now where exactly is the borderline between the decidable and the undecid- 
able cases of the problem of deciding the solvability of word equations? On the 
one hand, one could try to restrict the finite string-rewriting systems considered 
even further. A reasonable candidate would be the class of finite, special, and 
confluent string-rewriting systems that present groups. Is the solvability of word 
equations in general decidable or undecidable for this class of string-rewriting 

systems? (This question is still open.) 

Here we follow a different approach. Instead of restricting the class of string- 
rewriting systems considered even further, we put an additional restriction on the 
form of the word equations that we admit. While a typical instance of the word 
unification problem consists of a pair of strings (u, v), where both u and v contain 
variables that must be instantiated in order to get instances 9{u) and 9(v) that 
are congruent modulo the system R considered, we look at word equations of the 
form (u,v), where only one side, say u, contains variables. Hence, such a word 
equation has a solution modulo R if and only if there exists an instantiation 9 
such that the strings 9(u) and v are congruent modulo R. This restricted version 
of the word unification problem is known as the word matching problern. 

Here we strengthen the above-mentioned undecidability result by showing 
that there is a finite, special, and confluent string-rewriting system for which 
the word matching problem is undecidable. In fact, we consider rather restricted 
instances of the word matching problem, since we look at word equations of 
the form (w,A). Recall that A is used to denote the empty string. Such a word 
equation has a solution modulo R if and only if there exists an instantiation 
9 of the variables occurring in u such that the string 9(u) is congruent to the 
empty string A modulo R. We present a finite, special, and confluent string- 
rewriting system for which this restricted variant of the word matching problem 

is undecidable. 
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This paper is organized as follows. In Section 2 we present a finite, special, 
and confluent string-rewriting system K for which the word matching problem 
is undecidable, thus establishing a weak version of the intended undecidability 
result. In the following section we extend 11 to a finite, special, and confluent 
system 7?-i for which even the above-mentioned restricted variant of the word 
matching problem is undecidable. 

One may ask why we actually give both these proofs, since the latter result is 
clearly stronger than the former. However, the proof of the former is simpler and 
therefore, it illustrates the key ideas used in the reductions more clearly. Further, 
the technical results on the system H established in Section 2 are needed anyway 
in proving the stronger result in Section 3. 

We close this section by providing the main definitions and notation necessary 
to follow our arguments. For a more detailed treatment of the basics and for 
additional information on the notions introduced, we refer the interested reader 
to the following surveys - [BaSi94, JoKi91] for unification, [DeJo90] for term- 
rewriting, and [BoOt93] for string-rewriting. 

A string-rewriting system (often called a 'Thue system') on an alphabet E is 
a finite set of pairs of strings R C E* x E*. In this note we will only be dealing 
with string-rewriting systems that are length-reducing, that is, we assume that 
\(\ > \r\ for each pair (£, r) 6 R. These pairs are often referred to as rewrite rules 
and are sometimes represented as £ —► r. A string-rewriting system R is said to 
be special if r = A for each pair (£, r) in R. As mentioned before, A denotes the 
empty string. 

By -^R we denote the single-step reduction relation that is defined by the 
string-rewriting system R: -*R := {{u£v, urv) \ {£, r) G R,u,v G E*}. Its re- 
flexive and transitive closure —>R is the reduction relation induced by R. The 
relation ^*R := (—*R U —»R

1
)* is called the Thue congruence generated by R. By 

IRR(fi) we denote the set of irreducible strings modulo R, that is, u G IRR(Ä) 
if and only if u —►# v does not hold for any string v. 

Let V be a set of variables that range over E*. A string equation or word 
equation is an equation of the form u = v where u and v are strings over (EUV)*. 
An assignment or substitution 6 : V —> E* is a solution of the equation u — v 
modulo R if and only if 9(u)^*R8(v). Here 6 is extended to a morphism 8 : 
(VUE)* -* E* in the obvious way. 

The word matching problem for a string-rewriting system R is the following 
decision problem: 

INSTANCE : A string u G (V U E)* and a string v G E*. 
QUESTION : Is there a substitution 8 satisfying 8(u) ^*R vl 

2    Undecidability of the word matching problem 

The announced undecidability result will be proved by a reduction from the 
following undecidable problem. 
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Theorem 1.  [NaOt90] 
There exists a set of pairs of non-empty strings P = {(x,,yi) \i = 1,..., n} C 
{a,b}+ x {a,b}+ such that the following problem is undecidable: 

INSTANCE : Two non-empty strings x0,yo G {a,b}+- 
QUESTION: Do there exist indices ii,...,ik,  each ij from {l,...,n}, such 

that XQXixXi2 ■ ■ ■ xik = yoyiiVi? ■ • • 2/ü? 

We reduce this problem, which is a specialized form of the well-known Mod- 
ified Post Correspondence Problem (MPCP), to the word matching problem 
modulo a particular finite, special, and confluent string-rewriting system. The 
system we construct is on the alphabet consisting of the letters a and b, symbols 
for each of the numbers 1 to 7?., and special symbols S, #, and $. In other words, 

let 

P := {a,6}U{l,...,n}U{5,#,$}. 

The rules of our system are divided into three classes. The first class corre- 
sponds to the Xi's, the first components of the pairs in P, the second to the y,-'s, 
and the third class is to ensure that a string is indeed from {a,b}*. 

The rules from Class I are 

XiSi —»-'A, i £ {1,.. .,n}. 

Class II consists of 

y{iS-> \,        ie{l,...,n}. 

Class III consists of the rules 

a##-*A,    6##^A,    a$$-+A,    6$$ -► A. 

Observe that the string-rewriting system PL that consists of the above three 
classes of rules is a finite special system that is in addition confluent. In fact, 
there are no non-trivial critical pairs at all for this system (see, e.g., [BoOt93]). 

We will show that the simultaneous variant of the word matching problem is 
undecidable for this system 11, which is the following decision problem: 

INSTANCE : A finite sequence (ux, vx),..., (um, vm) of pairs of strings from 

(vury x r*. 
QUESTION :Is there a substitution 9 satisfying 0(u,-) *-+k v, simultaneously 

for all i = 1, . .., ml 

Since this simultaneous variant of the word matching problem is reducible to 
the (single) word matching problem by introducing a new letter, say {, this will 
give our intended undecidability result. 

Lemma 2.  Let X be an irreducible string from i~"\ Then 

X#Yx -+*n A, XY!# —k A, X%Y2 -^*n A, and XY2% -^ A, 

for some Y\, Y2 G P* if and only if X £ {a, 6}*. 
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Proof: The 'if-part is trivial. The proof of the 'only if'-part is by contradiction. 
Let Zbea shortest counterexample, that is, a shortest irreducible string such 

that 
Z#Y! -^ A, ZYX# -^ A, Z%Y2 -^ A, and ZY2% -^ A, 

for some Y\, Y2, where Z <£ {a, b}*. Clearly Z cannot end in a S or a #, for if 
Z = Z'%, then Z'$#Yi will not be reducible. Thus Z has to end in either an a 

or a 6. 
Let Z - Z'a, where a E {a,b}. For Z'a#Yi to be reducible, the leftmost 

symbol of Yi must be a #. Because of the second condition ZY\# -*\ A, the 
next (that is, second from the left) symbol in YL must also be a #. In other 
words, Yi = ##Y3 for some Y3. By similar reasoning, Y2 = $$Y4 for some Y4. 

Now, 

Z'a###Y3 -+K Z'#Y3 -k A, 
Z'a##Y3# -w Z'Y3# -fc A, 
Z'a$%$YA     -*n Z'$Y4  -^*n A, and 
Z'a$%YA§     -+n Z'YA%  -+fc A, 

which shows that Z' is a shorter counterexample. This contradicts the choice of 
Z, and hence, we conclude that there is no such counterexample. □ 

Lemma3.  Let x0,y0 E {a,b}+. Then, for XX,X2 E {a,b}*, 

XiSY -^*n x0S    and   X2Y ^*n y0 

for some Y if and only if there exist indices ji,...,jt E {1,. • •, «} such that 

Xi = x0xjl ■ ■ ■ xjt    and    X2 — y0yj, ■ ■ ■ Vje■ 

Proof: The 'if part is straightforward. By examining the rules from Classes I 
and II, we can easily see that by taking Y := jiS ■ ■ -jiS we can reduce XXSY 
by Class I rules to x0S, and X2Y by Class II rules to y0. 

We prove the 'only if part by contradiction. Let U\,U2E {a, b}* be minimal 
counterexamples in terms of their combined length. Obviously, we may assume 
without loss of generality that Y is irreducible. Clearly Y ^ A: if Y were A, then 

UiS = x0S and U2 = yo,. 
If Y / A, then the only rules that are applicable to U\SY are the rules from 

Class I. Thus there must be a rule xpSp —► A and strings U[ and Y' such that 
Ui = U[xp, Y = pY', and UiSY -+K U[Y' ->*n x0S. 

Then U2Y = U2pY' must also be reducible, and it can be seen that only the 
rule yppS -* A from Class II can apply. In other words, U2 = U2yp, Y' = SY" 

for some W2, Y", and U2pY' ->w U^Y" -►£ yo- 
Thus we get 

U[SY" ^\x0S    and    U'2Y" -^ y0, 

and this contradicts the minimality of U\ and U2. 
n 

The following result is now immediate. 
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Lemma4.  Let x0,y0 G {a,b}+. Then there is a string X G {a,b}* satisfying 

XSY -^ x0S    and    XY -^ y0 

for some Y if and only if the instance {{x0,y0)} of the MPCP has a solution. 

Combining the technical results obtained we arrive at the following result. 

Theorem5.  For all x0,yo G {a,b}+, the following two statements are equiva- 
lent: 

(a.) the MPCP has a solution for {(x0, 2/o)}/ 
(b.) there exist strings X, Y, ZUZ2€ r* such that the following congruences are 

satisfied simultaneously: 

1. XSY ^*n x0S, 
2. XY «-f*j y0, 
3. X#Z1 ~*n X, 

5. X%Z2 ^*n A, and 
6. XZ2% ^n X. 

Thus, we have the following undecidability result. 

Corollary 6.   The simultaneous variant of the word matching problem, is unde- 
cidable for the finite, special, and confluent string-rewriting system U. 

Now consider the extended alphabet A := T U {{}, and the following two 
strings u E{AU V)* and v G A*: 

v := x0S{yo{{{{, 

where v\,... ,v4 G V. 
Then there exists a substitution 9 : {vx,..., v4} -► A* satisfying 8(u) <-+^ v 

if and only if the following congruences are satisfied simultaneously, where X := 
0(vi),Y := e(v2), Zx := 6(v3), and Z2 := 9{v4): 

1. XSY ~*K x0S, 
2. XY ~*n y0, 
3. X#ZX ^ A, 
A.XZ^^X, 
5. X$Z2 <->k A, and 
6. XZ2% ^ A. 

By the theorem above this means that the instance (it, v) of the word match- 
ing problem for H has a solution over A if and only if the MPCP has a solution 
for {(x0,yo)}- Hence, we obtain our first main result. 

Corollary 7.   Over the alphabet A the word matching problem is undecidable for 
the finite, special, and confluent string-rewriting system 11. 
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3    A restricted variant of the word matching problem 

As described in the introduction we are interested in the following restricted 
variant of the word matching problem, which we call the special word matching 

problem: 

INSTANCE: A string u e (V ü S)*. 

QUESTION: Is there a substitution 9 satisfying 6(u) ^*R A? 

Here we present a finite, special, and confluent string-rewriting system Hi for 
which this problem is undecidable. We obtain Hi from the system H constructed 
in the previous section by adding three new rules. 

Let a',b',@, and (j: be four additional symbols, let r0 :=fU {a', b'} (= 
{a, b, a', b'} U {1,..., n} U {S, #, $}), let A0 := T0 U {@, t}, and let Hi be the 
following string-rewriting system on AQ\ 

UI :=RU {aa1 -► A, bb' ->• A, @t -► A}. 

It is easily seen that Hi is a finite, special string-rewriting system that is 

confluent. 
Now, for given strings x0, y0 G {a, &}+, we consider the following instance of 

the special word matching problem for Hi: 

viv2Sy'0~@viSv2x'^li@vi#v3li@viv3#k@vi$vilt@viV4$$viV4$, 

where ' : {a,b}* —► {a',b'}* denotes the canonical isomorphism induced by 
ana' and b i-s- 6', and u~ denotes the reversal of the string u. Here vi, v2, v3, v4 

are variables. 

Lemma 8. If the instance {(x0,y0)} of the MPCP has a solution, then the above 
instance of the special word matching problem has a solution for Hi- 

Proof. Let n,.. .,4 G {1,2,.. .,n} such that x0xilxi2 ■ ■ -xik = yoy^y^ ■ ■ -y%k- 
Let wi := xox^x^ ■■■xik, w2 :-ikSik-iS ■ ■-i2Sii, w3 := #2'l1"il-1, and w4 :- 
cj;2|iui|-i   -phen We have the following reductions modulo Hi: 

iuiiv2Sy'0~ =y0yi1-■-yikikS■■■i2SiiSy'0~  -»*  y0y'f  —►*  A, 
iuiSiu2x'^ = x0xil ■ ■ -XikSikSik-i ■ ■ -iiSiix'^ 

u>i#w3      =wiw3# =  Ko^n •••a;u#2'1"'11   - 
Wi$lU4 = WiW4$  =   X0Xi1 ■ ■ -Xik$

2''Wl'   —>" 

Thus, if ip denotes the morphism defined by {vi <— W{ \ i = 1,.. .,4}, then 

<p(viv2Si/o~@- • ■ ttWB) = wiw2Sj/0~@ ■ ■ -{wiw4$ -►£, (@i)5 -^ A. 

D 

We claim that also the converse implication holds. So let p be a morphism 
satisfying ip(viv2Sy'^ © ■ ■ ■ ^1^4$) +-+^1 A, and let W{ := f{vi), i = 1,...,4. 
Without loss of generality we can assume that u>i,..., w4 are irreducible modulo 
Hi, that is, wi,..., w4 £ IRR(Tei). Denote ip(viv2Sy'(p'@ ■ ■ ■ ^viv4$) simply by 

w. 

2/oS/o~   -** 
X0XQ 

* A, and 
A. 



645 

Lemma 9.  w\,. . ., W4 G -Tg . 

Proof. 

Claim 1. |Iü4|@ = 0. 

Proof. Assume that w4 = gi@g2 for some gi G A*0 and g2 G (Ä0 ^ {@})*- 
Since w ends in w4$, and since @{ -» A is the only rule of U\ containing an 
occurrence of the symbol @, we see that w -+*Ul ^ implies that \g2\i > 0, that 

is, g2 = gzkgA for some g3 G r$. Hence, w4 = gi@g3{g4, and g3 -+*Ui A. This, 
however, contradicts our assumption that w4 G IRR(7?-i). Thus, \io4\@ = 0.      □ 

Claim 2. |iui|i = 0. 

Proof. This follows analogously. D 

Claim 3. |u>i|@ = 0. 

Proof. Assume that wx = gi@hx for some gi G (A) ^ {i})* and hx G ro*. Since 
tu ends in w1w4$, this implies that w4 - h2i[g2 for some g2 G -T0* satisfying 
/z1/i2 —^ A. Since u; also contains the substring wi$w4, and therewith the 

substring @hi$h2{, 
we see that also /ii$/i2 —^ ^ must h0^- T*le system ^1 

contains only two rules that involve occurrences of the symbol $ : a$$ —»• A and 
6$$ -> A. Hence, hx$h2 -**ni A implies that \hrh2\% = 1 mod 2, while /ii/i2 -+7^ 
A implies \hih2\% = 0 mod 2. This contradiction yields |u>i|@ = 0. □ 

The string w begins with the prefix wi<w2. Since \wi\@ = 0, we obtain the 

following analogously to Claim 1. 

Claim 4. \w2\i = 0. 

Claim 5. \w3\@ = 0. 

Proof. Assume that w3 = gi@hx for some gx G A*0 and hi G (A0 ^ {@})* • Since 
w3 is irreducible, we see that \hi\i = 0, that is, hi G r0*. Since tu contains the 

substrings w3{ and tü3#i, we conclude that hi —»^ A and /ii# —^ A. But 
w3 being irreducible yields hi = A, which in turn implies that hx# = # ■^■7^1 A. 

Thus, |«73|@ = 0. G 

Claim 6. \w3\\ = 0. 

Proof. Let w3 = gx^hx for some gx G ro* and hi G (A0 \ {@})*- Since tu 
contains the substrings @wi#w3 and @wiiv3, we see that tu —>%1 A and tfi G -T0* 
imply that wi#gi -+K A and u>i0i —»-^i A. The only rules of 7?-! that contain 
occurrences of the symbol # are the following two: a## —► A and 6## —► A. 
Hence, wi#gi —^ A implies that |wiffi|# = 1 mod 2, while u^gri —>^i A implies 
that \wigi\# = 0mod2. Thus, \w3\< =0. □ 

Because of wi G f0* and w —^ A, the fact that w contains the substrings 
@u>i$u>4 and @wiw4 implies analogously the following. 

Claim 7. \w4\i = 0. 
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By Claims 2, 4, 6, and 7 wi,w2,w3,w4 G (zl0^{i})*- Thus, \w\^ = 5. Hence, 

we also have \w\® = 5, and so w1} w2) w3, w4 G T0*. This completes the proof of 

Lemma 9. 

Since iv <-*%,   X, we can conclude the following from Lemma 9: 

(1.) wiw2Sy'0~ 
(2.) ■wiSw2x'^ 

(3.) Wl#W3 
,*    \ 

(4.) •wiw3# 

(5.) Wi$U>4 —^   A, and 

(6.) WiW4$ 

From Lemma 2 and its proof we see that the reductions (3.) to (6.) imply 

that W! G {a,b}*. 

Lemma 10.  Let i0,t/0£ {a,b}+. Then, forX1,X2 G {a, b}*, 

X^SYxf^X    and    X2YSy'Q~ -^ A 

/or so?7?.e Y G r0* i/ emrf only if there exist indices iu...,ii G {1,..., n} sucA 

/Aoi 
A'i = zoZj, • • • x%t    

and    X2 = yoVi, ■ ■ ■ y%t■ 

Proof. If Xi = x0xil ■ --xit and X2 = yoy^ •■•&*, choose Y := ieS---i2Sii. 

Then 

A'ISTVO- = xox{l ■ ■ ■ xitSiiS ■ ■ ■ i2Siix'0~ -**n x0x'0~ -^ A and 

X2YSy'0~ = 2/07/,:, • ■■yuiiS---i2Si1Sy'0~ -+£> 2/o2/o~ ^, A- 

We prove the converse implication by contradiction. Let U\,U2 G {a, b}* be 
minimal counterexamples in terms of their combined length such that UiSYx'f 

—^ X and U2YSy'0~ -^ A for some y e ro- Obviously, we may assume 
without loss of generality that Y G -T0* is irreducible modulo Tlx. Clearly, Y ^ A, 

since [/iSa-'cT G {«, b}* ■ S • {a', 6'}+ C IRR(fti). 

Claim 1. Yx'0~ G IRR(fti). 

Proof. If Yx£ is reducible modulo Hy, then Y = Yic and x'f = cV for some 
c G {a, 6}- However, then U2YSy'0~ ends in c5j/0~, and we see from the form of 
the rules of Ui that each descendant of U2YSy'0~ then also ends in c5y0~.      G 

Claim 2. YSy'0~ G IRR(fti). 

Proof. If YSyf is reducible modulo Tli, then Y = Yij/jJ for some i G {1,..., n}. 
Hence, [/ISY:E0~ ends in 2/oV0~, and therewith each descendant of U\SYx'^ also 
ends in J/,-IV0~, since j/,- G {a, 6}+. Thus, YSy'0~ G IRR(fti). □ 

Thus, the only rule that is applicable to UiSYx'f is of the form xpSp —► A, 
that is, Ui = U[xp, Y = pV, and 

UtSYx'o- -« U[Y'x'0~ Sni A. 
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Hence, U2YSy'0~ = U2pY'Sy'0~, and since Y'Sy'0~ is irreducible by Claim 2, we 
see that the rule yppS —► A must apply, that is, U2 = U2yp, Y' = SY", and 

UipY'Stfr -^n Up"Sifr -^ A. 

Thus, U[,Ui G {a, 6}* satisfy [/{YVQ- = [/{SY'V0~ —^ A and U!,Y"Sy'0~ 
—r*n A for some string Y" £ T0*. This, however, contradicts the minimality of 

[/iand£y2. ° 

Lemma 10 applied to the reductions (1.) and (2.) above implies that there 
exist, indices ii, . . ., it G {1,. . ., n} such that w\ = x0xil ■ ■ ■ Xit = t/oJ/»i ■ ■ -yit, 
that is, the instance {(zo,2/o)} of the MPCP has a solution. This observation 
together with Lemma 8 yields the following equivalence. 

Corollary 11. The instance {(x0,y0)} of the MPCP has a solution if and only 
if the above instance of the special word matching problem has a solution for Hi. 

The choice of P thus implies the intended undecidability result. 

Theorem 12. For the finite, special, and confluent string-rewriting system 1Z\ 
the special word matching problem is undecidable. 

4    Conclusion and open problems 

We have shown that extending Makanin's result to the general case of all finite, 
special, and confluent string-rewriting systems is even 'more impossible' than we 
thought. The simplicity of special confluent string-rewriting systems is deceptive; 
they are powerful enough to even make word matching problems undecidable. 

However, there is still one interesting case that remains open, the case of 
finite, special, and confluent string-rewriting systems that present groups. Note 
that the systems constructed above do certainly not present groups, since sym- 
bols like a do not have left-inverses. A helpful factor for attacking this open 
problem is the fact that the class of groups that are presented by finite, special, 
and confluent string-rewriting systems can be characterized algebraically: they 
are exactly those groups that are isomorphic to the free products of a free group 
of finite rank and finitely many finite cyclic groups [Coc76]. In any case, even 
if this problem should turn out to be decidable, its complexity is likely to be 
very high, since Makanin's algorithm for free groups is itself not even primitive 
recursive [KoPa], 
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Abstract. We investigate mutual dependencies of subexpressions of a com- 
putable expression, in orthogonal rewrite systems, and identify conditions for 
their concurrent independent computation. To this end, we introduce con- 
cepts familiar from ordinary Euclidean Geometry (such as basis, projection, 
distance, etc.) for reduction spaces. We show how a basis for an expression 
can be constructed so that any reduction starting from that expression can 
be decomposed as the sum of its projections on the axes of the basis. To 
make the concepts more relevant computationally, we relativize them w.r.t. 
stable sets of results, and show that an optimal concurrent computation of 
an expression w.r.t. S consists of optimal computations of its 5-independent 
subexpressions. All these results are obtained for Stable Deterministic Resid- 
ual Structures, Abstract Reduction Systems with an axiomatized residual 
relation, which model all orthogonal rewrite systems. 

1     Introduction 

Efficient evaluation of expressions requires concurrent evaluation of subexpressions. 
In computation in general, it is normal that intermediate results of computation 
of different subexpressions are used by other subexpressions, and contribute to 
creation of new computable subexpressions. In concurrent languages like the ir- 
calculus [Mil92] this is expressed explicitly by value-passing, while in sequential lan- 
guages computations in different subexpressions can only interact by joint creation 
of new redexes. Our aim in this paper is to give a formal numerical characterization 
of dependencies of subexpressions of an expression (or subprograms of a modu- 
lar program), and in particular to identify conditions for independent evaluation 
of subexpressions. Computation of different independent subexpressions can be con- 
ducted in isolation from computations elsewhere in the expression, concurrently, and 
the results can then be combined to yield the final result. 

We restrict our attention to functional languages, and consider their operational 
model - orthogonal rewrite systems - of which the A-calculus [Bar84] is the prime ex- 
ample, although we believe that our results can be generalized to the non-orthogonal 
case and cover concurrent languages as well. To remain as general as possible, and 
at the same time to avoid syntactic structure of computable expressions (terms, 
graphs, etc.), which is irrelevant for our purpose, we assume that the rewrite sys- 
tem is given in the form of a Stable Deterministic Residual Structure, SDRS [GK96]. 

" Part of this work was supported by the Engineering and Physical Sciences Research 
Council of Great Britain under grant GR/H 41300 
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SDRSs are Abstract Rewrite Systems with an axiomatized residual relation, which 
model all orthogonal rewrite systems. Standard important results like the Standard- 
ization and Normalization theorems can already be proven in SDRSs [GK96, KG96]. 
Furthermore, via Deterministic Family Structures, DFSs [GK96], which are SDRSs 
with an axiomatized family relation on redexes, one can prove optimality results 
of Levy [Lev80], and achieve Prime Event Structure [Win89] style semantics for or- 
thogonal rewrite systems in a uniform way [KG97a]. 

The idea we want to pursue is very simple and natural, and the concepts we 
introduce have their counterparts in ordinary Euclidean Geometry, although there 
will be some differences. For expository purposes, let us assume first that the given 
SDRS is linear - there are no duplication or erasure of redexes. The main analogy 
is the following. In a Euclidean 3-dimensional space, one can decompose a vector as 
the sum of its projections on the axes X, Y and Z, which form a Euclidean basis. 
Similarly, we can construct a basis at any expression t, consisting of independent 
reductions P, starting from t, such that any reduction P starting from t can be 
decomposed as the sum of its projections on Pt. Here Pi and Pj are independent 
if no finite initial parts of them can interact, i.e., by joint creation of a new redex. 
In the basis that we construct, every reduction Pi is a maximal reduction internal 
to Ui, i.e, Pi contracts residuals of redexes in U and created redexes; every Z7; is 
independent, i.e., no reduction internal to Ui can interact with a reduction internal 
to the complement Ü of U, which consists of redexes of t not in U; Ui are pairwise 
non-overlapping, and cover all redexes of t. 

Further, the distance \P,Q\ between co-initial reductions P,Q is the number of 
their 'different' steps, and characterizes 'how far apart' the reductions have pro- 
gressed. Here 'different steps' means that they cannot be related by the zig-zag rela- 
tion (which is the transitive and symmetric closure of the residual relation) [Lev80], 
so they are in different zig-zag families. \P,Q\ coincides with the minimal number 
of reduction steps needed to reach a common reduct from the endpoints of P and 
Q. This is different from the Euclidean measure of distance. For example, in the 

simplest case, if two vectors P and Q are orthogonal (say parallel to axes X and Y 

^_     rzi   Zl 
respectively), then the distance is \P, Q\ = y \P\ + \Q\ , while the distance between 

reductions P and Q that contract redexes in different families is \P,Q\ = \P\ + \Q\- 
However, this is because the Euclidean space is continuous and allows 'shortcuts'. 

If we were to allow joining of the endpoints of the vectors P and Q only by moves 
parallel to X and Y, then we would get the same distance measure as for reductions! 

Finally, the independence degree of a redex set U of an expression t is the length 
of a shortest reduction P internal to U such that there is a reduction Q internal to U 
that interacts with P, and is oo otherwise. So at least \P\ steps can be performed in 
U independently from the rest of the computation, after which results of computing 
U and U must be combined in order for the computation to proceed 'as concurrently 
as possible'. Note that if and only if U is independent, its independence degree is oo. 

These concepts can very naturally be explained in terms of Prime Event Struc- 
tures (PES) [Win89], which in the conflict-free case (in which we are interested) 
are simply event sets E partially ordered by a causal dependency relation <, such 
that every event e € E can only dominate a finite number of others. Computations 
in a linear SDRS 11 are interpreted as left-closed sets of events (i.e., closed under 



651 

<), called configurations, in the PES £ = (E,<) whose events correspond to (the 
zig-zag classes of) redexes in H. Those event sets Xi C E that are closed under 
> are independent, as they correspond to independent reductions in 11. Further, if 
{Xi | i 6 1} are disjoint independent sets covering E, they form a basis for E, as for 
any configuration a, a = U,€/a n Xr. Here a n Xi is the projection of a on XM and 
coincides with the restriction of a to the set X° of all initial (i.e., minimal w.r.t. <) 
events of Xi. And the set {X°}iei is an independent covering of the set of initial 
events of E. Further, the distance between configurations a and ß is defined as the 
cardinality of a U ß \ a n ß (as is usual for sets), and it precisely corresponds to the 
distance measure for reductions in linear SDRSs - \P,Q\ - \ap,ctQ\, where aP,aQ 

are configurations corresponding to P,Q. The independence degree of a set OQ of 
initial events is the cardinality of the smallest configuration a, whose initial events 
are in ct0, such that there exists a configuration ß not containing elements of oo and 
an event e such that a U ß U {e} is a configuration, while neither a U {e} nor ß U {e} 
are (i.e, a and ß both contribute to creation, or enabling, of e, and they interact to 

create e). 
Most of the technical difficulties come from the erasure of redexes in SDRSs. 

To cope with the erasure problems, and to have (most of the) concepts invariant 
under Levy-equivalence, we work with standard reductions, which in SDRSs are 
reductions in which later steps 'do not erase' the preceding ones [KG96]. If the SDRS 
is duplicating, concepts like 'restriction of P to a redex-set IP cannot be defined 
correctly for arbitrary P - we need P to be a family-reduction, that is, a multi-step 
reduction contacting all members of a (zig-zag) family in parallel, in every multi-step. 
However, as we have shown in [KG97a], duplicating SDRSs can be interpreted via 
non-duplicating, also called affine, SDRSs, and the family-reductions in the former 
become reductions in the latter. Therefore, via that encoding, the results obtained 
here for affine SDRSs are applied to all SDRSs. (Restriction to family-reductions 
is inevitable when one studies adequate simulation of a duplicating system with an 
affine one [KKSV94].) 

In order to make the introduced concepts more meaningful computationally, we 
relativize them w.r.t. the semantics one may be interested in. For example, in the 
A-calculus, one might be interested in computing normal forms, head-normal forms, 
weak-head-normal forms, etc. In [GK96], we have characterized all reasonable sets 
of finite '(partial) results' as stable sets 5 of terms, and have shown that (only) 
w.r.t. stable sets 5, 5-needed reductions are 5-normalizing. This allows us to ignore 
5-unneeded redexes, and for example, we can define P, Q to be S-independent if 
there is no joint creation of 5-needed redexes. So reductions that interact may be 
5-independent. This is profitable since redex sets that are not independent may 
become 5-independent, and this allows for finer independent splitting of redex-sets 
of terms, implying more parallelism in the computation. And indeed, if {t/;};e/ is 
an 5-independent covering of an 5-normalizable term t, we show that an optimal 
5-normalizing reduction is the sum of maximal 5-needed reductions internal to L\. 

In Section 2, we recall SDRSs and DFSs. In section 3, we introduce the restric- 
tion and projection concepts and prove the Decomposition theorem. In section 4, 
we define the geometry of orthogonal reduction spaces, and prove the Independent 
Decomposition theorem. In section 5, we relativize the geometry w.r.t. stable sets of 
results 5, and show that optimal computation w.r.t. 5 can be achieved by combining 
optimal computations of 5-independent redex-sets. Conclusions appear in section 6. 
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2    Deterministic Residual and Family Structures 

Let us recall some basic theory for DRSs and DFSs developed in [GK96, KG96, 
KG97]. DRSs are Abstract Reduction Systems (ARSs) with axiomatized notions of 
residual. A definition and a survey of results about ARSs can be found in [Klo92]. 
Our definition is slightly different, and follows that of Hindley [Hin69]. 

An ARS is a triple A = (Ter,Red,->) where Ter is a set of terms, ranged over 
by t, s, o, e; Red is a set of redexes (or redex occurrences), ranged over by u, v, w: and 
-+: Red >-> (Ter x Ter) is a (total) function such that for any t € Ter there is only 

a finite set of u € Red such that -+ (u) = (t, s), written t^*s. This set will be known 
as the redexes of term t, where tiCf denotes that u is a member of the redexes of 
t and U C t denotes that U is a subset of the redexes. Note that one can identify u 
with the triple t^*s. A reduction is a sequence i-+i2-+ — 

P 
Notation Reductions are denoted by P, Q, N. We write P : t -»sort -»• s if 

P denotes a reduction (sequence) from t to s, write P : t —►+ if P may be infinite, 
and write P : t -** oo if P is infinite (i.e, of the length w). P + Q denotes the 
concatenation of P and Q. u also denotes the reduction that contracts u. The final 
term of a finite reduction P is denoted by ft(P). If U C t, then U will denote the 
complement of U, i.e., the set of redexes in t not in U. 

DRSs model orthogonal rewrite systems. They are similar to Stark's Determi- 
nate Concurrent Transition Systems (DCTSs) [Sta89] and ARSs of Gonthier et 
al. [GLM92]. Unlike DCTSs, the residual relation in DRSs may be duplicating, and 
unlike ARSs of [GLM92], we do not have a nesting relation on redexes. Several re- 
fined concepts of abstract rewriting are studied in [Oos94, Mel96, Raa96]. 

Definition 2.1 A DRS is a pair 11 = (A, /), where A is an ARS and / is a residual 
relation on redexes relating redexes in the source and target term of every reduction 
t^g g ^ SUch that for v C t, the set v/u of residuals ofv under u is a set of redexes 
of s; a redex in s may be a residual of only one redex in t under u, and u/u = 0. If 
v has more than one u-residual, then u duplicates v. If v/u — 0, then u erases v. A 
redex of s which is not a residual of any v C t under u is said to be u-new or created 
by u. The set u/P of residuals of u under P is defined by transitivity. 

A development of U C t is a reduction P : t -»■ that only contracts residuals 
of redexes from U; it is complete if U/P = Uu6£/u/P = 0. Development of 0 is 
identified with the empty reduction. U will also denote a complete development of 
U C t. The residual relation satisfies the following two axioms: 

• [FD] ([GLM92]) All developments are terminating; all complete developments 
of U C t end at the same term; and residuals of a redex tC( under all complete 
developments of U are the same. 

• [weak acyclicity] ([Sta89]) Let u,vCt,u^v, and u/v - 0. Then v/u # 0. 

We call a DRS 11 stable (SDRS) if: 

• [stability] If u,v C t are different redexes, t-^-e, t^>s, and u creates a redex 
w C e, then the redexes in w/(v/u) are not u/u-residuals of redexes of s, i.e., they 
are created along u/v. 

We call a DRS 11 non-duplicating or affine if a redex may have at most one 
residual under contraction of another redex. Affine SDRSs will be called ASDRSs. 
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In a DRS 71, the residual relation on redexes is extended to all co-initial finite 
reductions exactly as in syntactic orthogonal rewrite systems [HL91, Lev80, Sta89]: 
(Pi + P2MQ = Pi/Q + P2KQ/P1) and P/iQ, + Q2) = (P/Qi)/Q2, and Levy- 
equivalence or permutation-equivalence, «L, is defined as the smallest relation on 
co-initial reductions satisfying: U + V/U »L V + U/V for any U, V C t, and Q «£ 
Q' => P + Q + N^LP + Q' + N. Further, one defines P < Q iff P/Q - 0, and can 
show that P «L Q iff P < Q and Q < P; and P < Q iff Q xL P + N for some N. 
The following Strong Church-Rosser property can be proved: for any co-initial finite 
reductions P, Q, P U Q *L Q U P, where P U Q = P + Q/P. 

The relations <,«/, and / are extended to co-initial possibly infinite reductions 
N, N' as follows. N <N', or equivalently, N/N' = 0 if, for any redex v contracted 
in'N, sa,yN = N1+v + N2, v/{N'/Ni) = 0; and N tsL N' iff N < N' and N' < N. 
Here, for any infinite P, u/P = 0 (called u is erased in P or u is P-erased) if 
u/P' - 0 for some finite initial part P' of P, and P/Q is only defined for finite Q, 
as the reduction whose initial parts are residuals of initial parts of P under Q. 

The essence of stability is better understood by the following lemma, which ex- 
tends [stability] axiom from one step reductions to any co-initial external reductions, 
that is, reductions that do not contact redexes having common residuals. 

Definition 2.2 ([GK96]) • Let u e U C t and P : t -» . We call P external to U 
(resp. u) if P does not contract residuals of redexes in U (resp. residuals of u). 

• Let P : t0 -%♦ ti^U+i -»• and Q : t0 = s0 %* s^Sj+i -» . We call P 
external to Q if for any i,j, u./iQj/Pi) n Vj/iPi/Qj) = 0. 

Lemma 2.3 (Stability [GK96]) Let P : t -+> s be external to Q : t -+»• e, in an 
SDRS, and let P create redexes WCs. Then the residuals W/{Q/P) of redexes in 
VF are created by P/Q, and Q/P is external to W. 

Definition 2.4 ([KG96]) • Let P : t -** and ti C t. We call u P-needed if there is 
no Q «i P that is external to u, and call it P-unneeded otherwise. 

pi 
• Let Q : t -» , P : t -» s -** , and u C s. We call u (or more precisely, « 

with creation history P', denoted by P'u) Q-needed if u is Q/P'-needed. We call P 
Q-needed if so is every redex contracted in P. 

• We call P self-needed or standard if it is P-needed. We write Q «5 P if Q ~z, P 
and Q,P € 5T^, where STA denotes the set of all standard reductions. We call N 
a standard variant of P if P »L N and iV € 5TA. 

Note that P-neededness does not depend on the choice of a reduction in the class 
of reductions Levy-equivalent to P, but this is not true for the externality concept. 

The following is a relativized standardization algorithm for reductions in AS- 
DRSs. Let P, Q : t -+» . The canonical P-needed variant of Q, STp(Q), is defined as 
follows: let v C t be such that it is P-needed and its residual is contracted in Q first 
among P-needed residuals of P-needed redexes in t. Then STp(Q) = v+STP/v(Q/v). 
If there is no such a redex in t, then STP{Q) = 0. We write ST(P) for STP(P). 

The Standardization theorem [KG96], when restricted to ASDRSs, states that, 
for co-initial reductions Q,P, finite or infinite, STP(Q) is a standard P-needed 
reduction whose length coincides with the number of P-needed steps in Q, and 
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STp{Q) < Q,P. Further, if Q is finite, then Q xL ST{Q); otherwise, Q xL ST(Q) 

need not hold. 
It has been shown in [KG97] that, in ASDRSs, all standard variants of a finite 

reduction P can be constructed effectively (as P-neededness is decidable and there 
are only a finite number of such reductions, all of the same length), and that «s is 
decidable. So standard reductions can be used as canonical representatives of their 
Levy-equivalence classes (which may have an infinite number of elements). 

Next we recall an axiomatization of Levy's concept of redex-family for DRSs. 
All family and sharing concepts for orthogonal reduction systems known to us (such 
as [Lev80, Mar92, AL94, Oos96]) satisfy our family axioms, which allow for abstract 
proofs of Relative Normalization and Optimality Theorems [GK96]. 

Definition 2.5 ([GK96]) A Deterministic Family Structure (DFS) is a triple T = 
(11, ~, <-+), where U is a DRS; ~ is an equivalence relation on redexes with histories; 
ancj <_» is the contribution relation on co-initial families, defined as follows: 

(1) For co-initial reductions P and Q, a redex Qv in the final term of Q (read as v 
with history Q) is called a copy of a redex Pu if P < Q, i.e., P + Q/P «L Q, and v is 
a Q/P-residual of u; the zig-zag relation ~2 is the symmetric and transitive closure 
of the copy relation. The family relation ~ is an equivalence relation among redexes 
with histories containing ~2. A family is an equivalence class of the family relation; 
families are ranged over by <f>, ip,.... Fam( ) denotes the family of its argument. 

(2) Further, ~ and <-> satisfy the following axioms: 
• [initial] Let u,v C t and u ^ v, in Tl. Then Fam.(®tu) ^ Fam(<btv), where 0t 

is the empty reduction starting from t. 
• [contribution] <j> <-►<£' iff for any Pu € <f>', P contracts at least one redex in <j>. 

• [creation] if e 4* t^s and u creates v C s, then Fam(Pu) <-» Fam((P + u)v). 
• [FFD] (Finite Family Developments) Any reduction that contracts redexes of 

a finite number of families is terminating. 

It is shown in [GK96] that every DFS is a stable DRS. Further, we have proven 
in [KG97] that the zig-zag relation ~z, as well as the zig-zag contribution relation 
<->z, are decidable in ASDRSs, and that ~z is a family relation. 

Below, FAM(P) (resp. SFAM(P)) denotes the set of zig-zag families, or simply 
families, whose member (resp. P-needed) redexes are contracted in P, in an ASDRS. 
Further, for any U C t, FAM0(U) denotes the set of families (relative to t) of redexes 
in U, and FAM+(U) will denote the minimal set of families containing FAM0(U) 
and closed under the contribution relation <—>2. 

3    Decomposition of Reductions in ASDRSs 

In this section, we introduce restriction of a reduction to a redex-set, and its pro- 
jection onto another reduction, study their properties, and use them to decompose 
reductions as the sum of their restrictions to non-overlapping redex sets. 

Let p ■ t _H be a reduction in a DRS, and let U C t be a set of redexes in t. 
We call P internal to U or a V'-reduction if it is external to U, that is, if it contracts 
residuals of redexes in U and created redexes. We call such redexes U-redexes. 

Definition 3.1 We call STP(ST(Q)) the projection of Q onto P, written Q\P. 
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Definition 3.2 (1) Let t be a term in an ASDRS 11, let U C t, and let P : t -»■ s 
be standard. The concepts P respects U and the restriction of P to U, written P\U, 
are defined by induction on n = \P\ as follows. If n = 0, then P respects U_a.nd 
P\U = 0. Now let P = P' + u and let P^jrespect 17. Assume that P'\U and P'|7 are 
defined as reductions internal to U and U, respective]y, such that P1 =ss P'\UuP'\U. 
Then we say that P respects U if either u = u'/{P'\U/P'\U) for u' C /£(P'|C/) such 
that (P'\U) +u' is still internal to 17, or u = u'/{P'\U/P'\U) for v! C /t(P'|!7) 
such that (P'|i7) + w' is still internal to U. In the first case (depicted on the picture 
below), we_define P\U = P'\U + u' and P\U = P'\U, and define P\U = P'\U and 
P\TJ = P'\U + u' in the second case. 

P'\U/P'\U u 

(2) We say that a finite reduction Q respects U if so does ST(Q), and define Q\U = 
ST{Q)\U. We say that Q respects ö = {Ui}iei if it respects every Ui. 

One can easily show that Definition 3.2 is correct, that is, ST(P) «s P\UuP\U. 
The intuition is that, P respects U iff 5T(P) contracts only redexes to which either 
only redexes in U contribute, or only those in U, but not redexes in both U and 
U. More precisely, if U_ C t and P : t ^* s, then P respects J7 iff SFAM{P) C 
FAM+(«7) U PAM+(T7), and in the latter case, (S)FAM(P\U) = SFAM{P) n 
F^lM+(7) and SFAM{P) = (S)PAM(P|/7)U (5)PAM(P|t/). Further, if P,Q are 
co-initial, then (S)FAAf(SZ>(Q)) = (5)FAAf(Q) n SFAM(P). It follows that the 
restriction and projection concepts for finite reductions are invariant under «£. 

In the above definition, we need to take a standard variant of Q before restricting 
it to U to ensure that the restriction notion is invariant under Levy-equivalence. As 
shown by the following simple example, this is necessary. Let R = {/(x) -► a, g(x) -+ 

x), let P : f(g{x))^*f{x)^a, and let U = {v}. Then 'direct restriction' of P to U is 
u, while P\U = 5T(P)|7 = 0, and u 56z, 0. 

We call a 7-reduction P U-fair if each *7-redex is erased in P, and call strongly 
U-cofinal if, for any ^-reduction Q, Q < P. If U is the set of all redexes in t, then 
U-faii reductions are fair, and strongly [7-cofinal reductions will be called strongly 
cofinal. One can show that a 7-reduction P is strongly f7-cofinal iff it is 7-fair. 
(Recall that if P is fair, then it is cofinal, but not conversely [KI08O].) 

If Q\P is finite, then so is P\Q and P\Q «s Q\P- Further, for any P : t -» 
internal to J7 C * such that SFAM(P) = FAM+{U), and any finite Q : t -** s, 
Q\U = Q\P. If the SDRS is linear, then every /7-fair reduction is such. 

Let If, with i £ I be nonempty sets of redexes in t such that U1(=/J7i contains 
each redex of t and Ux nUj = <D when t # j. Then we call the set 3 = {7,}ie/ a 
(redex-)covering of t. 

The restriction concept enjoys nice algebraic properties: If P : t -** s respects 
L\,Ui C t, then P respects t/t u U2 and t/j n U2; and Pl^ U J72 sss P|^i U P|J72 

and P\Ui n 72 «s (P|f7i)|^2- This allows us to prove the following 
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Theorem 3.3 (Decomposition) Let 9 = {Ui}iei be a redex-covering of a term t 

in an ASDRS 1Z. 
(1) Let P be finite reductions internal to Lr;, and let P = U;P. Then P respects 

9 and P|*7i «s P|P- 
(2) Let P : t -» s respect 9. Then P «t UiP|[/;. 

4    The Geometry of Reduction Spaces 

In this section, we introduce the Reduction Geometry and prove the Independent 
Decomposition theorem, which reflects the main analogy of orthogonal reduction 
spaces with the Euclidean Geometry. 

Let p : t —» . We call the strict domain of P, written SDom(P), the minimal 
set of redexes U C t such that P is internal to £/. We call the domain of P, written 
Dom(P), the set UQ~LpS.Dom(<2), i.e., the minimal set of redexes U C t such that 
any Q that is Levy-equivalent to P is internal to U. And we call the minimal domain 
of P, written MDom(P), the set nQ~Lp5Z)om((5). 

It is easy to see that Dom(P) is SDom(P) augmented by all P-erased redexes 
not contracted in P, and MDom(P) is the set of all P-needed redexes in t. Ob- 
viously P xL Q implies Dom(P) = Dom(Q) and MDom(P) = MDom(Q), but 
not SDom(P) = SDom(Q). It follows from the Standardization Theorem that 
MDom(P) = SDom(ST{P)) for any P. 

Definition 4.1 (The Reduction Geometry) Let t be a term in an ASDRS U. 
• Let P : t -» s and Q : £ -+> e. We say that P and Q are independent or <fo 

no* interact, written P ± Q, if MDom(P) C\ MDom{Q) = 0 and any created redex 
in ft(P U Q) is a residual of a redex either from /£(P) or from ft(Q). 

• We call a. set II = {Pi}iei of reductions starting from £ independent if P/ 1 
U^jP' for every i € / and any finite initial parts P[ of P». We call iT a basis of 71 
at £ if II is independent and for any Pit —» s, P < UP;. 

• The distance \P,Q\ between co-initial finite reductions P,Q : t -** is the 
number of families whose essential member redexes are contracted either in P or 
in Q (but not in both). Here a redex v C s is essential [Kha93] (or Maranget- 
needed [Mar92]) if in any fair reduction starting from s a residual of v is contracted. 

• The independence degree of U C t is the length of a shortest finite P internal 
to U such that there exists a reduction Q external to U that interacts with P, and 
is oo otherwise. _ 

• We call U C t independent if every pair of finite U- and t/-reductions is so. 
We call a redex-covering 9 = {Ui}iei of t an independent covering if each Ui is 
independent. 

Example 4.2 (Bases) Consider a term t containing three redexes u,v,w, let w/(uU 
v) = 0, w/u jt 0, w/u ^ 0, and assume no redexes can be created by contraction of 
these redexes. Then TTi = {u,w},iJ2 = {u,v,w},II3 = {u, wUv} and 774 = {U.DUW} 

are all bases at t (there are others too), as all reductions are independent, and 
u U v K,L u U v U w «/, « U (w U u) «i u U (v U w) are all normalizing, hence strongly 
cofinal. For Z7i, the strict domains of the axes do not form a covering of t, while 
for other bases they do. Note also that for IJ4, u erases the second step ofcUto- 
(w/v)/(u/v) = 0. 
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Note that, in the definition of P ± Q, a created redex in ft(P U Q) cannot 
be a residual of redexes from both ft(P) and ft(Q), as otherwise the same re- 
dex would be a residual of redexes from ft(ST(P)) and ft(ST(Q)), which is im- 
possible by the Stability Lemma (since MDom(P) n MDom{Q) = 0 implies that 
ST(P) and ST(Q) are external; the converse implication need not hold). Note also 
that, if P -L Q, Dom(P) n Dom(Q) = 0 need not hold. Indeed, consider the mod- 
ified example from [Lev80]: let t = (\x.Ka(xY))Kb, where Ka = Xx.a, Kb = Xx.b, 

and Y = (\x.f(xx))(Xx.f(xx)), and let P : t^Ka{KbY)^Ka(Kb(fY))^Kab and 

Q : t^{\x.Ka{x{fY)))Kb
!^{\x.a)Kb. Then y € Dom(P), Dom(Q), but y £ 

MDom(P), MDom(Q), since y is not needed either in P or in Q. 
In the definition of distance between reductions P and Q, one might think that 

it would be more appropriate to consider P U Q-needed redexes only. The following 
example shows that the distance would not be a metric. Indeed, take t = Kxu, P : 

t^t^t^t^t, Q : t^t, and N : &&&&t$x. Then \P,Q\ = 3 and \P,N\ = 
\N, Q\ = 1. It is easy to check that our distance measure on finite co-initial reductions 
satisfies the triangle inequality. To make it a metric, we define for co-initial finite 
reductions P,Q, P «/ Q iff FFAM(P) = FFAM(Q), where FFAM(P) denotes 
the set of families of essential redexes in P. Clearly, «/ is an equivalence relation, 
and the (co-initial) reduction space quotiented w.r.t. it is a metric, as \P,Q\ = 0 
implies P ä/ Q. Note that «iC«/, but not conversely. 

The independence degree of U C t, if finite, characterizes the minimal amount of 
work that can be performed in U independently from the rest of the computation. 

It follows easily from Definition 3.2 and Definition 4.1 that U C t is independent 
iff any finite reduction P : t -» s respects it. Now, using Theorem 3.3.(2), we can 
prove the following 

Theorem 4.3 (Independent Decomposition) Let 9 = {Ui}i€r be an indepen- 
dent redex-covering of a term t in an ASDRS 11, let P : t -** s, and let Pi be Unfair. 
Then P at UiP\Ui. Further, B = {Pijiel is a basis at t, and there are reductions 
PI < Pt such that P «L UP/. 

We have seen in Example 4.2 that not all bases are of the form described in 
Theorem 4.3. That is, if {Pi}iel is a basis at t, Pz need not be an J7»-fair reduction for 
some independent covering 9 = {Ui}ieI of t, as it is the case for 77i (since w/u # 0 
and w/v ^ 0). We could exclude this situation, by requiring in the definition of 
independence of U C t that for any pair of finite reductions P, Q respectively internal 
and external to U, Q does not erase any steps of P, that is, \P\ = \P/Q\. We have 
chosen not to do so, since also in the relativized bases which we introduce in the 
next section, axes do not need to be maximal reductions on their strict domains. 

Note that every term t in an ASDRS has an independent redex covering - {U(t)}, 
where U(t) is the set of all redexes of t, and has an independent basis - a fair 
reduction starting from t. One can construct finer bases from existing ones, as if 
9 = {Ui]ieI and ö' = {U'}}]€j are bases, then 3n9' = {l7,n L/j}(ij)e(/,j) is a 
basis too. It is interesting to note that for any P : t -** s and a created redex tiCs, 
any 'smallest' reduction needed to create u, obtainable by extraction of Pu [Lev80], 
which for ASDRSs is defined in [KG97], is internal to some finest independent set 
of redexes in t. 
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5 The Optimal Decomposition Theorem 

Next we show that an optimal computation of a term, w.r.t. a stable set 5 of results, 
can be decomposed into optimal computations of its <S-independent redex-sets. 

The concepts introduced in Definition 4.1 (independence of reductions and redex 
sets, covering, basis, etc.) immediately relativize w.r.t. any stable set 5, simply by 
replacing 'independence', 'covering', 'basis', etc. with '5-independence\ '5-covering', 
'5-basis', etc., respectively, and by replacing '(essential) redex' and 'reduction' with 
'5-needed redex' and '5-needed reduction'. Recall that, for any set of terms 5, a 
redex u C t S-needed iff at least one residual of it is contracted in any reduction 
from t to a term in 5, and 5 is called stable if (a) it is closed under reduction (this 
condition can be relaxed slightly), and (b) any step entering 5 is 5-needed. The Rel- 
ative Normalization theorem [GK96], for ASDRSs, states that any 5-normalizable 
term t g 5 contains an 5-needed redex, any 5-needed reduction starting from t is 
eventually 5-normalizing, and is a shortest 5-normalizing reduction starting from t. 

Let U C t. We call a ^/-reduction P:t -** (U, S)-fair if each 5-needed J7-redex is 
erased in P (P need not be U-iaix). It is not difficult to show that, if 9 = {Ui \ i € '/} 
is an 5-independent covering of an 5-normalizable term t g 5, in an ASDRS, then 
P : t -» s is an 5-normalizing 5-needed reduction iff Pi = P\Ui : t -» s; are 
(LA, 5)-fair 5-needed t/i-reductions; and Pi ia an optimal (?7;,5)-fair ^-reduction 
iff it is an 5-needed (E/i,5)-fair ^-reduction. Hence we have from the Relative 
Normalization theorem that 

Theorem 5.1 (Optimal Decomposition) Let 5 be a stable set of terms in an 
ASDRS H, let 9 = {Ui}iei be an 5-independent covering of an 5-normalizable term 
t in 11, let 9' = {Uj}jejci contain all Ui that contain at least one 5-needed redex 
of t, and let Pj be internal to Uj. Then Pj are optimal (i.e., shortest) (Uj, S)-fair 
reductions iff P = UjPj is an optimal 5-normalizing reduction starting from t. 

6 Conclusions 

We have defined concepts similar to those in Vector Spaces for orthogonal rewrite 
systems, and described how these can be used in distributed evaluation of sequential 
programs. The constructed Reduction Geometry is not just a nice piece of mathe- 
matics. Obviously, (relative) independence of redex-sets is undecidable in general, 
as is neededness. However, we hope that decidable approximations for independence 
can be defined which will yield decidable concepts for large classes of rewrite sys- 
tems, as is the case for the neededness [HL91]. For example, all the introduced con- 
cepts are decidable for Recursive Program Schemes, both in first [Kha93] and higher 
order [Kha94] cases, but the latter do not have full computational power (as the 
if - then - else operator is only evaluated semantically). Actually, because of a 
specific simple form of redex-creation in such systems, one has maximal possible 
independence there - any redex forms an independent redex-set. Further, TRSs in 
which there is no upwards creation of redexes (such as Klop's TRS which models a 
Turing machine, in Exercise 2.2.21 of [Klo92]) do have full computational power, and 
any set consisting of all redexes occurring inside an outermost redex is independent. 

Acknowledgements We thank J.R. Kennaway, V. van Oostrom and F.-J. de Vries 
for useful comments. The diagram was drawn using Paul Taylor's Diagram package. 
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Abstract 
Despite the major role that modularity occupies in computer science, all the 
known results on modular analysis only treat particular problems, and there 
is no general unifying theory. In this paper we provide such a general theory of 
modularity. First, we study the space of the criteria for modularity (the so-called 
modularity space), and give results on its complexity. Then, we introduce the 
notion of vaccine and show how it can be used to completely analyze the modular 
space. It is also shown how vaccines can be effectively used to solve a variety 
of other modularity problems, providing the best solutions. As an application, 
we successfully apply the theory to the study of modularity for term rewriting, 
giving for the first time optimality results, and show how modularity problems 
can be completely solved. 

1     Introduction 

The field of modular analysis is of fundamental importance, and is nowadays attracting 
increasing interest by the scientific community. In essence, modularity allows to study 
a complex object by studying his smaller subparts: given a 'big' object composed by 
smaller subparts (via some composition operator), we want to state that it enjoys a 
certain property by simply investigating its smaller subcomponents. Hence, modular 
analysis allows to develop correct complex objects 'bottom-up', just building correct 
smaller submodules, and even dually to verify the correctness of a complex object by 
decomposing it into its submodules and verifying them. 

Besides for the theoretical relevance, the increasing complexity of nowadays appli- 
cations has made modularity analysis a task of primary importance from the practical 
side as well. 

At the present moment, the field of modular analysis consists of several results that 
study the modularity of a particular property for a certain specific paradigm (see e.g. 
[7, 2, 20, 13, 8, 16, 5, 18]). However, there is no general theory on modular analysis. 
In this paper, we introduce such a theory. 

Given the property to be verified, and the 'composition operator' that builds com- 
plex objects from smaller submodules, we analyze the corresponding modularity space, 
that is to say the collection of all the criteria for the modularity of the property w.r.t. 
the composition operator. 

First, a complete description of this space by means of its maximal criteria is pro- 
vided (roughly speaking, the 'best' results that can be obtained), and its complexity 
is studied (how many maximal criteria can exist). Next, we introduce the notion of 
vaccine, which is used for analyzing in an effective way the modularity space. Intu- 
itively, a vaccine extracts from a possibly non-modular property a maximal modular 
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sub-property, that is a maximal criterion of the modularity space for that property. 
Therefore, vaccines provide a convenient way to represent the modularity space. We 
propose a methodology for finding vaccines (and so the optimal modularity criteria). 
Moreover, we provide suitable conditions that ensure that the analysis of the modular- 
ity space is completely solved, i.e., it covers all the optimal criteria, and consequently 
every possible modularity criterion (being all the others subsumed by the maximal 
criteria). 

Furthermore, it is shown that an analysis which is completely solved, is relevant 
for the study of the class of the disjunctive criteria (cf. [13, 20]), because it provides 
the best disjunctive criterion. 

Finally, we consider also the other side of the coin, namely the case when modularity 
does not hold. We introduce the notion of counterexample structure, which is used 
together with the notion of vaccine for recovering the best description of the failure of 
modularity. The above results are successfully applied to the study of the modularity 
of important properties of term rewriting systems: termination, completeness and 
uniqueness of normal forms (the only main properties of TRSs that are not modular). 
In particular, we show that Cf-termination (cf. [5, 15]) is a maximal criterion, and 
provide a formal justification in terms of complexity of the difficulty of the study of 
the modularity of termination in TRS. Moreover, we completely solve the problem 
of the modularity of termination for left-linear TRSs, providing the only two optimal 
criteria. We give analogous results for the other major properties of completeness and 
uniqueness of normal forms, thus not only improving on all the works on the modularity 
of these properties, but completely solving the problem of their modular analysis. 

The paper is organized as follows. Section 2 starts with some short preliminaries. 
Soon afterwards, Section 3 presents the notion of modular analysis and of a criterion 
for modularity. Then, Section 4 introduces the modularity space and gives some results 
on its complexity. In Section 5 the concept of vaccine is introduced. Next, Section 
6 shows how vaccines can be successfully employed for the study of the modularity 
space via the notion of vaccines basis. Section 7 analyzes another kind of criteria, 
the so-called disjunctive criteria, and shows how they can be successfully analyzed via 
vaccines. Section 8 performs the same task for the study of counterexample structures, 
giving a complete analysis of the failure of modularity. Sections 9 successfully presents 
practical applications of the theory for the field of term rewriting. Finally, Section 10 
ends with some other remarks on the further applications of the theory. 

2    Preliminaries 

Ö denotes the class of generic objects we will consider: every object is understood to 
be in O, As usual, properties of objects will be identified with the classes of objects 
that belong to them. So, we will write equivalently Qi A Q2 or Qi fl Q2 to denote 
the intersection of two properties Q\ and Q2. We will also write -iQ to indicate the 
complement property of Q (i.e. T G ->Q iff T & Q). 

As far as TRSs are concerned, we only require knowledge of the basic notions (see 
e.g. [3, 7]). The reader interested in modularity topics of TRSs can find extensive 
surveys in [14, 16]. 
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3    Modularity 

Suppose we want to perform the modular (w.r.t. some composition operator 0) analysis 
of the property V: given a complex object Ti© • • • QTn we want to infer it belongs to 

V by separately analyzing its smaller submodules Ti,... , T„. 
The best case occurs when the property V is modular (w.r.t. a binary composition 

operator ©): whenever n objects Ti,... ,T„ are in V, their composition Ti©... ©T„ is 
in V as well. Thus, to check a complex object Ti© ...Tn belongs to V, it just suffices 
to check its submodules Ti,... ,T„ belong to V. In general, however, V may not be 
modular, and so we need a more general concept to formalize modular analysis. We so 

define what is the notion of a criterion for modularity: 

Definition 3.1 Q is a criterion (for the Q-modularity ofV) if Q / 0 and VTi,.. . ,Tn. 
T1€Q,...,TneQ=>T1Q...QTn€V. □ 

In the sequel we will often talk simply of criterion, omitting V and 0. 
So, having a criterion Q we can perform modular analysis of a complex object 

T\Q . . . QT„ just by separately checking that every submodule belongs to Q. 

3.1     Assumptions 

Given the property P(/ 0) whose modular behaviour we want to analyze, we call 
healthy the objects in V, and sick the others (the reasons for this terminology will 
become clear when we will introduce vaccines in Section 5). We say that two objects 
A and B are compatible (resp. incompatible) w.r.t. V and 0, if AQB is healthy (resp. 

sick). 

Since the observable of interest is the property V, we introduce the following notion: 
two objects A and B are said to be V-equivalent {A =v B) if A £ V •& B e V. 

Recall from algebra that a groupoid (S, r) is a set <S equipped with a binary op- 
eration r. Although this is not strictly needed for the development of our theory, for 
simplicity we suppose that in every groupoid we talk about there is a neutral element 
(if it is not the case, one can always be added by the standard lifting technique). 

We say that a groupoid (5, r) is a V-semilattice if for every objects A, B and C in S 
we have that (ATB)TC =V AT(BTC), ATB =V BTA, and AT A =v A. That is to say, 
a "P-semilattice is like a semilattice, but for the fact that the equations for associativity, 
commutativity and idempotence are weakened by considering =p -equivalence in place 

of equivalence. 
Another crucial definition is the following: 

Definition 3.2    A groupoid (S,r) is said to be V-dense if VTi,T2  G S. Ti r Ti € 

V => Ti 6 V A T2 € V. n 

Roughly speaking, density corresponds to the very reasonable assumption that 

objects constituting a healthy object are themselves healthy. 
Now we have all the ingredients to define this main notion: 

Definition 3.3 A V-acid groupoid (briefly, a V-acid), is a groupoid (S,r) that is a 

"P-dense "P-semilattice. LJ 

The name "acid" stems from the fact a semilattice can equivalently be seen as an 
aci-groupoid (viz. a groupoid that is associative, commutative and idempotent), and 

so acid stands for aci and dense. 

Assumption: Throughout the paper, we assume that (0,0) is a 'P-acid. 
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We remark that for most of the results all of the above assumptions are not neces- 
sary. We take all of them at once to simplify readability (for discussions on the minimal 
required hypotheses, see e.g. [10, 12]). 

4 The Modularity Space 

The study of modularity for a given healthiness property is tantamount to the study of 
the criteria for its modularity. We are so interested in the modular space (m-space), that 
is in the collection of all the criteria for modularity. A way to express this information 
is to consider only the most significant objects in this space. The m-space has a natural 
partial ordering, namely the set inclusion; the idea is so to consider only the tops of 
the m-space: 

Definition 4.1 The modular basis (m-basis for short) is the collection of all the 
maximal criteria. The modular dimension (m-dimension) is the cardinality of the m- 
basis. '-' 

The modular basis is a good representative of the modular space, since from it 
we can build up the whole modular space (the maximal criteria entail all the other 
criteria): 

Theorem 4.2    Every criterion is contained in a maximal criterion. 

4.1     fc-counterexamples 

The m-dimension gives an abstract measure of the complexity of the modular space. 
It is not difficult to see that the m-dimension is one iff V is modular, and if V is not 
modular the m-dimension is at least two. We now give more precise results on the 
m-dimension, introducing the concept of fc-counterexample. 

Given an ordinal k, a k-counterexample (to the ©-modularity of V) is a collection 
Ai,..., Ah of pairwise uncompatible healthy objects. 

Usually, a 2-counterexample will be simply called a counterexample. 

The next two lemmata provide the link between ^-counterexamples and the m- 
dimension. The first result gives a lower bound: 

Lemma 4.3    Ifthere is a k-counterexample (k<ui), then the m-dimension is at least k. 

The second result, dually, gives an upper bound: 

Lemma 4.4    If there is not a k-counterexample (k < u>), then the m-dimension is less 
than k. 

Combining the above bounds gives the following characterization of the m-dimension 
in the finite case: 

Corollary 4.5 The m-dimension is k (k < w) iff there is a k-counterexample but 
there is no k + 1-counterexample. 

5 Vaccines 

We said the basic notion of the theory is that of vaccine. A vaccine is "a preparation 
of living attenuated organisms, or living fully virulent organisms that is administered 
to produce or artificially increase immunity to a particular disease" (Webster's 7th 
Collegiate Dictionary). So, suppose we want to ensure an organism enjoys a particular 
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property. We can inject a specific vaccine for this property to it: if it does not get sick, 
due to collateral effects, we are sure it is immunized and enjoys that property. 

In this paper, we utilize the notion of vaccine in a formal setting to study mod- 
ularity. Therefore, suppose we want to study the modularity behaviour of the class 
of objects V. The idea is to consider V as a 'healthiness condition', and select some 
representative objects that make things go wrong (i.e. that cause modularity to fail), 
using them as a vaccines: we can 'inject' one of them, say A, to any other object in V 
via the composition operator 0: in case there are no collateral effects, i.e. in case the 
object is still healthy (belonging to V), it will become 'immunized' to that particular 
disease that made modularity fail. 

More formally, an object A is a vaccine if for the class of its vaccinated objects 

({T-.TQA € V}), V becomes ©-modular. 
The nice fact, as said in the introduction, is that we will show that the criteria 

defined by vaccines are optimal (i.e. maximal). This way, vaccines provide a tool to 
completely describe the modular space, providing the best criteria. 

We now start giving rigorous formal definitions. 

Definition 5.1    The class of objects vaccinated via A with injection operator 0 and 

healthiness property V is 
Y?(7>) = {T-.TQA eV} □ 

That is, we take every object T and inject A to it, obtaining the healthy object 

TQA. 

The operator 0 and the healthiness property V will be mostly omitted and con- 
sidered understood, hence we will also write simply ~VA- 

Now, we can define what a vaccine for modularity is: 

Definition 5.2    A is a vaccine (for the Q-modularity ofV) if Y4 is a criterion for the 

0-modularity of V. LJ 

That is to say, 

0 i= Yi, Ti G Vi,... ,Tk € VA => Ti0 . .. QTk € V 

Vaccines can be composed to get new vaccines, as the following results show: 

Lemma 5.3    (Composition) Suppose A is a vaccine for V\ and B is a vaccine for 

V2 ■ If AQB £?IAP2, then AQB is a vaccine for Vi A V2■ 

Corollary 5.4    If A and B are compatible vaccines, then AQB is a vaccine. 

Vaccines are only representatives of the corresponding criteria. It is therefore im- 
portant to ask when different vaccines are representative of the same class. The fol- 

lowing lemma gives a neat answer to this question: 

Lemma 5.5    Let A and B be vaccines.  Then, VA = "VB & A and B are compatible 

6     Vaccines Bases 

Every vaccine for modularity defines a criterion for modularity given by the class YA. 

The most important reason that makes vaccines attractive to study is that this criterion 
is optimal in the sense that cannot be improved. 

Theorem 6.1    (Optimality) If A is a vaccine, then Vk is a maximal criterion. 
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The m-basis is an abstract concept. Anyway, we have just seen that vaccines 
can conveniently represent the maximal criteria. So, we introduce a new manageable 
representative of the m-space: 

Definition 6.2 A vaccines basis (v-basis) is a collection of vaccines {Ai}i=i...k (k an 
ordinal) such that every maximal criterion is represented by exactly one vaccine.      D 

Hence, Ai,. . . , Ak is a v-basis iff VAl, ■ ■ ■ , VAk is the m-basis. 
A v-basis does not only give a complete description of the modular space. It also 

allows to easily derive that a property is indeed a criterion by proving that it is weaker 
than an optimal criterion. The precise technique is described in the full paper. This 
also holds for the other kind of criteria, namely d-criteria (cf. Section 7). Hence not 
only easy proofs of the previously existing results on modularity can be given, but also 
investigation of new practical criteria is possible. 

6.1     v-Bases versus fc-Counterexamples 

We now analyze the tight relationships between v-bases and fc-counterexamples. First 
we introduce the notion of partial v-basis, which formalizes the uncomplete knowledge 

of a v-basis. 

Definition 6.3 A partial vaccines basis is a collection Ai,... ,Ak (k an ordinal) of 
vaccines giving pairwise different maximal criteria. U 

Lemma 6.4    Every partial vaccines basis {Ai,..., Ak} is a k-counterexample. 

As a corollary, we get that every v-basis {Ai,..., Ak} is a fc-counterexample. The 
next important result shows that also the other direction holds, thus providing a way 

to find the v-bases: 

Theorem 6.5 // the modular dimension is k <ui, then every k-counterexample is a 

v-basis. 

Combining these results, we get the following characterization of the v-bases: 

Corollary 6.6    (Characterization)  If the modular dimension is k < w, then the 
v-bases are exactly the k-counterexamples. 

Therefore, the above results suggest a way to find the optimal criteria: seek for 
vaccines produced by objects in fc-counterexamples. 

In fact, Theorem 6.5 says much more: if we know that the m-dimension is k < w 
(e.g. via Corollary 4.5), then a v-basis is automatically provided by a fc-counterexample. 

Another immediate consequence of Theorem 6.5 is about the existence of v-bases: 

Corollary 6.7    If the modular dimension is k <u>, there is a v-basis. 

In order to effectively find a v-basis, Theorem 6.5 requires the knowledge of the 
m-dimension, which as said can be computed using Corollary 4.5. Anyway, there is 
another fundamental result that, starting from a not complete knowledge of it (a partial 
v-basis), ensures that we have found a v-basis: 

Theorem 6.8 (Covering) LetAi,...,Ak (k < w) be a partial v-basis. It is a v-basis 
iff every healthy object belongs to at least one VAi: U^I^YA; = V (i.e. the criteria 
'cover' the healthy objects). 
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The above theorem thus provides an alternative powerful methodology to find a v- 
basis: build up a fc-counterexample with k as great as possible; prove that its elements 
are vaccines (Theorem 6.5); check if the criteria cover the healthy objects (Theorem 
6.8). 

We will later (Section 9) successfully employ this methodology in the applications 
of the theory to term rewriting. 

7 Disjunctive Criteria 

The notion of criterion for modularity that we have given in Definition 3.1 is not the 
only one which has been studied. Another kind of criteria, e.g. studied in [13, 20], 
requires only one of the objects to be constrained in order to ensure their combination 
is healthy. So, we introduce this concept: 
Definition 7.1 Q is a disjunctive criterion (for the Q-modularity ofV), or d-criterion 
for short, if VTi,...,r„.Ti G QV ... VT„ G Q=>TiQ...QTn eV. D 

The motivation for the adjective 'disjunctive' should be clear from the definition; 
analogously, the usual criterion of Definition 3.1 could be dubbed 'conjunctive'. 

Unlike the standard criteria, the d-criteria space is linearly ordered, since only one 
object instead of all objects is constrained. The following definition formalizes the top 
object in this space: 
Definition 7.2 The kernel K, is the greatest disjunctive criterion, that is K, = {T G 
V : VT" G V. TOT' €V3 T'QT}. □ 

It is easy to prove that, rather interestingly, the kernel has an important algebraic 
meaning, since it is just the class of =-p -neutral elements (i.e. those elements N such 
that for every T we have TON =v T =v NOT). 

Nicely, from a v-basis we can obtain right away the kernel: 

Theorem 7.3    Suppose {Ai}i-i...k is a vaccines basis.  Then the kernel is n;=i...fcYAi. 

8 Counterexample Structures 

In this section we turn our attention to the other side of the coin: when modularity 
fails. We formally study what happens when two objects give a counterexample to 
modularity. 

Definition 8.1 A couple of classes {Qi, Q2} is a counterexample structure (c- structure), 
(w.r.t. 0 and V) if in every counterexample one of the two objects belongs to Q\ and 
the other to Q2. □ 

The canonical ordering on structures is: {Qi,0.2} Qstruct {Si, Q'2} iff (Si Q 
Si A Q2 C Q'2) V (Qi C Q'2 A Q2 C Qi). Then, we say that a structure {Qi,Q2} is 
better than another structure {Qi, Q'2} if {Qi, Q2} Ctruct {Qi, Q'2}: this means we 
can provide with {Qi, Q2} a more precise (smaller) description than with {Qi, Q2}- 
The best structure is so the minimum w.r.t. Qstruct- 

From a v-basis we can recover the best counterexample structure, as the next result 
shows: 

Theorem 8.2 If{Ai,A2} is a vaccines basis, then {~>Y4j AV,->VA2 AP} is the best 
counterexample structure. 

Actually, more can be proved, i.e. that such c-structure is perfect in the sense that 
it provides a characterization of the counterexamples (cf. [12]). 

Analogous results can be stated for v-bases of higher dimension. 
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9     Applications to Term Rewriting 

We now provide some applications of the theory to the study of the modularity of 
termination for Term Rewriting Systems. 

So, we let O =TRSs and consider as usual the combination operator O to be the 
disjoint sum (e) of two TRSs: when the signatures overlap the TRSs are renamed 
to get disjoint signatures, and then their (disjoint) union is taken. The healthiness 
property is V =Termination (Termination will be also indicated with the acronym SN, 
after Strong Normalization). We have that 

Lemma 9.1    {TRSs,®) is SN-acid. 

Among the many results on the modularity of termination (see e.g. [14, 8, 16, 
18] for a panoramic), the best results so far obtained are the ones in [15] and [9]. 
We will come back to the result of [9] in the next subsection. In [15] Ohlebusch, 
generalizing a previous result of Grämlich for finitely branching TRSs ([5]), proved that 
X£-termination' is modular. It is straightforward to see that the class of Cf-terminating 
TRSs coincides with the class of TRSs vaccinated via {or(X, Y) -> X, or(X, Y) -+ Y}. 
This, a posteriori, implies that the above TRS is a vaccine (for the modularity of 

termination). 
Hence, using Theorem 6.1 we obtain right away: 

Theorem 9.2    Cs-termination is a maximal criterion. 

That is to say, the result of [15] cannot be improved. 

But what is the complexity of the modular space for termination?  The following 
result gives a formal confirmation that the topic is quite intricated: 

Theorem 9.3    The m-dimension is at least three. 

The proof of the above result makes use of Lemma 4.3. 
Whether the m-dimension is indeed three, is still one of the most important open 

problems (we conjecture it is). 

9.0.1     The Left-Linear Case 

As just seen, the situation for termination is quite complicated, since we have proved 
that the m-dimension is at least three, and only one vaccine has been found so far. In 
the left-linear case we will be able to completely solve the problem, finding a v-basis. 

There are two best results on the modularity of termination for left-linear TRSs. 
The first stems from the one seen above: in the left-linear case, {or(X, Y) -* X, 
or(X, Y) —» Y} is a vaccine. 

So, by Theorem 6.1 we can infer that C£-termination is a maximal criterion even 
for left-linear TRSs. 

The second is the result proved in [9]. Recall that a TRS is said consistent (with 
respect to reduction), briefly CON", if no term reduces to two different variables. In 
the aforementioned paper it has been shown that termination is modular for left-linear 
and consistent TRSs. 

We have seen in Section 4 that there are deep relationships between fc-counterexamples 
and v-bases. The most famous counterexample to the modularity of termination 
has been given by Toyama in [19]: {F(0,1,X) -> F{X,X,X)} and {or{X,Y) -► 
X,or(X,Y) -* Y}. As seen above, {or{X,Y) -> X,or(X,Y) -* Y} is a vaccine. 
Hence, a stimulating hypothesis is that {F(0,1,X) — F{X,X,X)} is a vaccine as 
well. Amazingly, this turns out to be true: 
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Theorem 9.4    For left-linear TRSs, ~V{F(O,I,X)^F(X,X,X)} = SN A CON^. 

That is to say, the class of left-linear TRSs vaccinated by {F(0,1, X) —» F(X, X, X)} 
is just the criterion found in [9]. 

Corollary 9.5    In the left-linear case, {F(0,1,X) —> F(X, X, X)} is a vaccine. 

Hence, we get 

Corollary 9.6    In the left-linear case, SNA CON-* is a maximal criterion. 

Thus, the result of [9] cannot be improved. 

The remarkable thing is that with these two vaccines we have completed the analysis 
of the modular space, since they form a v-basis: 

Theorem 9.7    The m-dimension for left-linear TRSs is two, and a vaccines basis is 
given by {F(0,1, X) — F{X, X, X)}, {or(X, Y) -► X, or(X, Y)-*Y}. 

That is to say, the above two optimal criteria completely solve the problem of 
modularity of termination for left-linear TRSs: there are no other optimal criteria and 
all the other criteria are subsumed by one of the two. 

Also, being the m-dimension 2, by Corollary 6.6 we have a characterization of the 
v-bases: they are just the counterexamples. 

As far as d-criteria are concerned, Middeldorp in [13] showed that whenever one of 
two terminating TRSs is both non-collapsing and non-duplicating, then their disjoint 
sum is terminating; that is to say, he proved that "terminating and non-collapsing and 
non-duplicating" is a disjunctive criterion. Toyama, Klop and Barendregt showed in 
[20] that whenever one of two terminating TRSs is confluent and non-collapsing, then 
their disjoint sum is terminating (hence, they proved that "terminating and confluent 
and non-collapsing" is a d-criterion). 

Using the result on d-criteria (Theorem 7.3), we can properly generalize both of 
these results in the left-linear case, giving the best d-criterion (the kernel): 

Theorem 9.8    For left-linear TRSs, CON-* A Ce-termination is the greatest disjunc- 
tive criterion for the modularity of termination. 

We now consider c-structures. Ohlebusch in [15] (again, extending a result of Gräm- 
lich in [5] for finitely branching TRSs), showed that in every counterexample one of the 
TRSs is not Cf-terminating and the other is collapsing (hence, in our terminology, he 
showed that { Ce -termination, non-collapsibility } is a c-structure). Schmidt-Schauß, 
Marchiori and Panitz showed in [18] that, in the left-linear case, in every counterexam- 
ple one of the TRSs is CON^ and the other is -.CON^ (that is, { CON^, -.CON"* } 
is a c-structure). Both of these results require a not easy proof. Via Theorem 8.2, we 
can easily not only generalize all of these results in the left-linear case, but also provide 
the best c-structure: 

Theorem 9.9    {-iCON-1 A SN, ->Ce-termination A SN}  is the best counterexample 
structure. 

The above theorem gives the following result: in every counterexample to the mod- 
ularity of termination, one of the TRSs is non consistent and the other is non Ce- 
terminating. 

Other applications, as mentioned in Section 6, include the possibility to give easy 
proofs of previously existing results on modularity (for example the results in [17] and 
[13] can be provided, in the left-linear case, with an easy proof). 
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Finally, the optimality of the v-basis allows to infer right away results on the relative 

strength of other criteria. 
For instance, it has been directly proved with some effort in [5] that Simple Ter- 

mination implies (^-termination, and that termination plus non-duplication imply C£- 

termination. These results immediately follow from Theorem 9.2, once noticed that 
Simple Termination ([8]) and termination plus non-duplication ([17]) are criteria, and 
that {or(X,Y) -> X,or(X,Y) -> Y} is both simply terminating and non-duplicating. 

10    Remarks 

In this extended abstract we have sketched the core of the theory of vaccines, and 
presented as a particular instance some successful applications to modularity in term 
rewriting. However, so far the theory of vaccines has been employed to obtain a 
variety of other results. For instance, we have applied it to study the modularity 
problem for completeness and uniqueness of normal forms w.r.t. reduction (UN-*), 
finding vaccines for their modularity, and this way improving many existing results so 
far obtained in the literature. Also, besides many other results which are variations and 
generalizations of the main results here presented, we have investigated the major topic 
of multimodularity, where other combinations of more than two objects are studied 
(see [10, 12]). Again, via a v-basis we can obtain precise information on what kind of 

multimodular behaviour a certain property satisfies. 
Currently, we are investigating practical applications of the theory to the study of 

modularity for other paradigms, like functional or logic programming (cf. [2]). Note 
that even in the rewriting field there are still many other modularity topics to which 
the theory of vaccines can be applied, including e.g. more involved combinations of 
TRSs (like composable ones, cf. [16] for a survey), higher order rewriting in its various 
forms (see e.g. [7, 6]), conditional rewriting ([7, 14]), combinations with A-calculus and 
systems in the A-cube (cf. e.g. [1]), and so on. For instance, the theory of vaccines 
can be applied to the criterion developed in [4] for conditional rewriting, showing that 
it is optimal for finitely branching CTRSs. Also, we have shown that the theory of 
vaccines nicely interacts with unraveling theory (cf. [11]), and shown how one can thus 
automatically translate a lot of modularity results from term rewriting to conditional 
rewriting: for instance, we have lifted the result of Theorem 9.7, showing that, for 
left-linear normal CTRSs, the same two TRSs provide a v-basis for decreasingness. 
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Abstract. The equivalence problem for deterministic pushdown au- 
tomata is shown to be decidable. We exhibit a complete formal system for 
deducing equivalent pairs of deterministic rational series on the alphabet 
associated with a dpda A4. 
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1    Introduction 

The so-called "equivalence problem for deterministic pushdown automata" (dpda for short), is the fol- 

lowing decision problem: 

INSTANCE: two dpda A, B.    QUESTION: L(A) = 1(B)? 

where 1(A) (resp. L(5)) is the language recognized by A (resp. B). (This problem is often denoted by 
Eq(D, D), where D stands for the class of all dpda). The question of whether this problem is decidable or 
not is raised in [GG66] and has received much attention since this time. Beside the fact that this question 
was natural from the point of view of formal language theory, it appeared later as Turing-equivalent with 
other equivalence-problems for different types of recursive program schemes (see [Cou90] for a survey ). 
Some other Turing-equivalent problems on semi-Thue systems were also found (see [Sen94] for a survey) 
and formulations in terms of bisimulation equivalence of infinite graphs (or processes) have been found 

too (see [Cau95] for a survey). 
Among a large number of papers let us only quote [Val74, VP75, Bee76, Rom85, Oya87, Sti96] which 

proved decidability of Eq(D',D') for subclasses D' of the full class D of dpda. (We refer the reader 
to the surveys ([Cou90, Cau95, Lis96]) for other results on problems related to Eq(D,D)). The work 
[Mei89, Mei92] is an attempt to solve the general problem. On account of its incompleteness (see for 
example the comment in [Lis96, p.219]) it does not provide a full solution; nevertheless it introduced a 
fundamental new idea: the notion of linear independance for languages. 

We prove here that the equivalence problem for dpda is decidable (theorem 9.3). 
We obtain this result by providing a complete formal system V0 for equivalence identities between 

deterministic rational series (we use here a type of formal system inspired by [Cou83] and a notion of 
deterministic series inspired by [HHY79]). The proof of this completeness property leans on three types 

of arguments: 

- in section 3 we develop around the fundamental idea of [Mei89, Mei92] an algebraic theory of "d- 

spaces", 
- in sections 5.7 these structure results are turned into a construction of strategies for the formal system 

I>o. 
- in section 8 we analyze the infinite trees generated by some strategies associated with XV 
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2     Preliminaries 

2.1 Pushdown automata 

A pushdown automaton on the alphabet A' is a 6-tuple M = < A..Z, Q,S, qa,z0 > where Z is the finite 
stack-alphabet, Q is the finite set of states, qo € Q is the initial state, z0 is the initial stack-symbol and 
& :QZ x (A U {c}) — Vf{QZ"), is the transition mapping. 

Let q,q' £ Q.u.u' 6Z",iSZ,/6 A" and a £ A U {e} ; we note (qzu,af) i—,w (q'u'u.f) 

if (j'u)' 6 (5(ijz,a). i—^yn is the reflexive and transitive closure of i—>M ■ For every qu,q'ui' £ QZ" 

and / 6 A", we note qu —i» q'u' iff (?u,/) i—~->M (?'"'>0- ■M 's said deterministic iff, for every 
z€Z,?£<3: 

either Card(%z, c)) = 1 and for every x £ A, Card(%z, i)) = 0, (1) 

or Card(%2, e)) = 0 and for every x € A, Card(%z, x)) < 1. (2) 

M is said real-time iff, for every qz £ QZ, Card(%z, e)) = 0. A dpda A4 is said normalized iff, for every 

qz <=QZ,x€X: 
q'u' £ %z, x) =>| a/ |< 2, and q'u' £ %z, E) =>| u' |= 0 (3) 

Given some finite set F C QZ* of configurations, the language recognized by M with final configurations 

F is defined by l(M,F) = {w £ A* | 3c g F, q0z0 —^M C}- 

2.2 Deterministic context-free grammars 

Let M be some deterministic pushdown automaton ( for sake of simplicity 3, we suppose here that M is 
normalized). The variable alphabet VM associated to M is defined as: VM = {[p. z,q}\ p,q € Q,z e Z}. 
The context-free grammar GM associated to M is then GM =< X,V,P > where V =VM and P is the 
set of all the pairs of one of the following forms: 

({P,z,q},x\p',z1,P"}lp''^2,q]) or (\p,z,q],x'\p'tz',q]) or (\p,z,q],a) (4) 

where p,q e Q,z € Z,x,x' e X,a £ A U {e},p'ziZ2 € 6(pz,x),p'z' £ 6(pz,x'),q 6 i5(pz,a). GM is 
a strict-deterministic grammar. (A general theory of this class of grammars is exposed in [Har78] and 
used in [HHY79]). We call mode every element of QZ U {e}. For every q £ Q, z 6 Z, qz is said (-bound 
(respectively e-free) iff condition (1) (resp. condition (2)) in the above definition of deterministic automata 
is realized. The mode <r is said c-free. We define a mapping p : V* —► QZ U {e} by 

p(f) = f and ^([p, z, q]-ß)= pz, 

for every p, q £ Q, z £ Z, ß € V*. For every w £ V* we call /i(tu) the mode of the word w. 
For technical reasons ( which will be made clear in section 7), we suppose that Z contains a special 
symbol e such that, for every q £ Q, 6(qe, e) = {q} and im(i5) C Vj(Q(Z - {e})"). 

2.3 Free monoids acting on semi-rings 

Semi-ring B < W > Let (B, +, ■, 0,1) where B = {0,1} denote the semi-ring of "booleans". Let W be 
some alphabet. By (B < W >, +, •, 0, e) we denote the semi-ring of boolean series over W: every boolean 
series S £ B < W > can be written in a unique way as: S = EW£\ySw ■ w, where, for every w £ W", 
S„, £ B. The support of S is the language 

supp(5) = {w € W* | S„ ^ 0}. 

In the particular case where the semi-ring of coefficients is B ( which is the only case considered in this 
article) we sometimes identify the series S with its support. We recall that for every 5 £ B < W >, 
S* is the series defined by: S* = £0<n S". Given two alphabets W, W, a map ^:B<W> — B< 
W > is said cr-addiiive iff it fulfills:Tor every denumerable family (S;)jgiN of elements of B < W >, 
iiiJ2j £KSi) = Z!ieiN V'(Si). A map 4: :B <W > — B < W > which is both a semi-ring homomorphism 
and a <r-additive map is usually called a substitution. 

but without, loss of generality for the equivalence problem 
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Actions of monoids Given a semi-ring (S,+, •, 0. 1) and a monoid (M, •, l.i/), a map o : S x M — S is 
called a right-action of the monoid M over the semi-ring S iff, for every S, T £ S, m, m' £ M: 

0om = 0,   5ol,v/ = S,   (S + T)om = (Som) + (Tom)    and 5 o (m ■ m') = (S o m) o m'      (5) 

In the particular case where S = B<W>,°is said to be a <r-right-action if it fulfills the additional 

property that, for every denumerable family (Si)igiN of elements of S and m £ M: 

(^Si)om=53(5iom). (6) 

The action of W on B < W > We recall the following classical cr-right-action • of the monoid W" 

over the semi-ring B < W > : for all S, 5' € B < W >, u £ W 

s. u = s' «• V«; e w,(s; = 1 iff S„.„ = 1). 

(i.e. S.uisthe left-quotient ol S by u , or the residual oi S by u ). For every S € B < W > we denote by 
Q(S) the set of residuals of 5: Q(5) = {5»u|u€ W }. We recall that S is said raiiona/ iff the set Q(S) 
is finite. We define the norm of a series 5 £ B < W >, denoted ||5|| by: ||5|| = Card(Q(S)) £ IN U {oo}. 

The action of X' on B < V > Let us fix now a deterministic (normalized) pda M and consider 
the associated grammar G. We define a <r-right-action © of the monoid (X U {e})- over the semi-ring 

B< V > by: for every p,qeQ,AeZ,H € V*,/?G V",x€X 

[p, A, ?] • ß ® i = ff • ,0 iff ([p, A, q], x ■ H) € P,   [p, A, ?] ■ /? ® e = H ■ ß iff ([p, .4, ?], ff) G P       (7) 

e®r = 0,   e®e = 0. (8) 

A series 5 € B < V > is said e-/ree iff Vw £ V, 5„ = 1 =>■ /i(ui) is e - free. We denote by Be < F > the 
subset of e-free series. We define the map p, : B < V >— B < V > as the unique tr-additive map such 

that, for every p€Q,z £ Z, q £<2,/?£ V", 

/)£([p, z, ?]•/?) = p£(([p.2. ?] ® e) • ß) if P« is £ - bound,  p£([p, z, ?]•/?) = [p, -", ?] • /? if P-' is £ - free, 

and p((f) = (. The above definition is sound because, by hypothesis (3), every \p,z,q]®e is either the 
unit series £ or the empty series 0. One can notice that for every w £ V*, pc(w) £ V" U {0}. We call p£ 

the f-reduction map. We then define © as the unique right-action of the monoid X' over the semi-ring 
B < V > such that: for every S £B < V >,x € X, S O x = pc(pt(S) ® x). One can notice that if u / e, 
then S © u is e-free. Let us consider the unique substitution <p :B <V >— B < X > fulfilling: for every 
p,q £ Q,z £ Z, ip(\p, z, q]) - {u £ X" \ [p, z, q] © u = e], (in other words, if maps every subset L <ZV 
on the language generated by the grammar G from the set of axioms L). 

Lemma 2.1 <p is a morphism of right-actions i.e. for every S £ B < V >,u £ A'*, ^(S0u) = <p(S) • u . 

We denote by = the kernel of p i.e.: for every 5,T£B<V>,5sTo ^>(S) = <p(T). 

3     Series and languages 

3.1     Deterministic series and matrices 

We introduce here a notion of deterministic series which, in the case of the alphabet V associated to a 
dpda M, generalizes the classical notion of configuration of M. The main advantage of this notion is 
that, unlike for configurations, we shall be able to define nice algebraic operations on these series (this 
is done in section 3.2). Let us consider a pair (W, ~) where W is an alphabet and ~ is an equivalence 
relation over W. We call {W, ~) a structured alphabet. The two examples we have in mind are: 

- the case where W = V, the variable alphabet associated to M and [p, A.q] ~ [p',A',q'] iff p = p' and 

.4 = A' (see [Har78]) 
- the case where IF = A', the terminal alphabet of M and x ~ y holds for every x, y £ A (see [Han 8]). 
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Definition 3.1  Let 5 6 B < W >. S is said left-deterministic iff either (1)   5 = 0 or (2)   S = c or 
(3) Vu\ u>' 6 W", S„, = S„,< = 1 => 3A, .4' € W, u>i, w[ € W", A ~ A', to = A ■ wx and w' - A' ■ w[. 

Definition 3.2 Let S € B < W >. S is said deterministic iff, for every u e W, S*u is left-deterministic. 

This notion is the straighforward extension to the infinite case of the notion of (finite) set of associates 

defined in [HHY79]. 
We denote by DB < W > the subset of deterministic boolean series over W. Let us denote by B„]m < W > 
the set of (n, m)-matrices with entries in the semi-ring B < W >. 

Definition 3.3 Let m € IN, S 6 Bi>m < W >: S = (Si, ■ ■ ■, Sm). S is said left-deterministic iff either 
(1) Vie [l,m],Si = 0 or(2) 3i0 € [1, m], 5,-0 = e and Vi ^ i0l5j = 0 or (3) Vto, ui' € r,W, j € 
[l,m],(Sv)„, = (Sj)w, = 1^3A,A' € VV.wi.to'i 6 V',A~ A',w = A-w1 and w' = A' ■ w[. 

The right-action • on B < W > is extended componentwise to B„,m < V7 >: for every 5 = (s.'.j), 

« S W, the matrix T = 5 • u is defined by Uj = <s, j • u. 

Definition 3.4 Let S S Bi,m < W >. S is said deterministic iff, for every u 6 W, S • u is left- 

deterministic. 

We denote by DB! m < W > the subset of deterministic row-vectors of dimension m over B < W >. 

Definition 3.5 Let S € B„,m <W >. S is said deterministic iff, for every i 6 [1, n], Si,, is a determin- 

istic row-vector. 

The following property is crucial for establishing a correct theory of deterministic spaces (see §3.2 

below). 

Lemma 3.6 For every S € DB„,m <W>,T £ DBm>J < W>,S-T 6 DB„,„ < W >. 

W=V Let (W,~) be the structured alphabet (V,~) associated with M and let us consider a bijective 
numbering of the elements of Q: (?i,?2,.. .,«n0). Some particular "vectorial" notions turn out to be 

useful: 

- we define a Q-series to be a family (5,),SQ such that the row-vector (5fl, SfI,..., Sf„0) is determin- 

istic 
- we define a Q-form to be a family * = (@q)«eQ of deterministic series. 

Given a Q-series 5 and a Q-form #, their Q-product 5 * # is the deterministic series defined by 5 * 0 = 
£ 6<3 S, ■#,. If the Q-series (5,),6<j is identified with the row-vector (Sfl, S„ S,.g) and the Q-form 

(&q),€Q with the column-vector (*!:j)j6[i,ng]>tnen tne Q-product appears to be just the ordinary product 
of matrices. 

Let us define here handful notations for some particular row-vectors or Q-series. Let us use the 
Kronecker symbol 6jj meaning e if i = j and 0 if i # ;'. For every 1 < n, 1 < i < n, we define the 
row-vector ef as: t? = (f",-)i<j<n where V;', e?j = Sij. We call unit row-vector any vector of the form e?. 
For every ui £ Z",p,q € Q, \puq] is the deterministic series defined inductively by: 

\peq] = 0 if p # ?, [pe«] = f if p = ?, 

[pug] = V] [p./lr] ■ [rw'ij] it u = A -u' for some A6Z,u'6Z'. 

By \pu] we denote the Q-series: [pw] = ([p"?]),ecj- (In particular [?,•] = c"°). By [u] we denote the 
Q-matrix: [u] = ([pw?]) €Q   €o- The next lemma relates the right-action 0 with the right-action •. 

Lemma 3.7 Let S € DB < V >, u € X". One of the three following cases must occur: (1)  5© u = 0, or 
(2) 5 0 « = f, or (3) 3«i,«2 € X", vi € V*,? € Q, A € •£,# Q -form such thai u = ui • «a, 5 0 «i = 
5 • i>i = [qA] *& and SOU = {[qA] O u2) * 0. 

Corollary 3.8 Let S £ DB < V>,u6.Y". Then S O « € DB < K > . 

The particular letters [p, e, q] for p.q € Q play a special role in sections 7 and 8: we use them as marks 
in the series ( somehow like the ceilings of [Val74]). We define below a map pe which removes the marks 
in the series. Let us define pe : DB < V >— B < V > as the unique substitution such that: 

Pe([p,e,q]) = e    ifp = tf,   pc([p, e, g]) = 0   ifp^g. 

Lemma 3.9  For every S € DB < V >. p,(S) E DB < V > and \\p,(S)\\ < \\S\\. 
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Rational series, norm Let us generalize the definition of rationality of series in B < W > to matrices. 
Given M G B„,m < W > we denote by Q(A/) the set of residuals of M: Q(.V) = {A/ • u | u € W}. 
Similarly, we denote by Qr(Af) the set of row-residuals of M: Qr(Af) = UKK» Q(-W'.-)- -v-f is said rational 
iff the set Q(A/) is finite. One can check that it is equivalent to the property that every coefficient A/,j is 
rational, or to the property that Qr(M) is finite. We denote by DRB„,m < W > the set of deterministic, 
rational matrices over B < W >. For every M G DRB„,m < W >, we define the norm of M as: 

||A/|| = Card(Qr(A/)). 

Lemma 3.10 Lei A G DB„,m <W >,B& DBm,, < W >. Then \\A ■ B\\ < \\A\\ + \\B\\. 

3.2    Deterministic spaces 

We adapt here the key-idea of [Mei89, Mei92] to series. 

Definitions Let (W,~) be some structured alphabet and let us consider the set E = DRB < W >. A 
series U = £"=1 ji ■ Ui where 7 G DRB1>n < W >, £/,- G DRB < W > is called a linear combination of 
the Ui's. We call deterministic space of rational series ( d-space for short) any subset V of £ which is 
closed under finite linear combinations. Given any set Q = {Ui\i G I}, one can check that the set V of 
all (finite) linear combinations of elements of Q is a d-space ( by lemma 3.6) and that it is the smallest 
d-space containing Q. Therefore we call V the d-space generated by Q and we call Q a generating set of V 
( we note V = V({(/;|! G /})). ( Similar definitions can be given for families of series). 
We let now W = V. Following an analogy with classical linear algebra, we develop now a notion cor- 
responding to a kind of linear independence of the images by ip of the given series Let us extend the 
equivalence relation = to d-spaces by: for every d-spaces Vt, V2, V! = V2 <S- Vi, j G {1,2}, VS € V;,35' G 

\lj,S = S'. 

Lemma 3.11 Let Si,..., S,■,..., Sm G DRB < V >. The following are equivalent 

1. 3a,/3GDRBi,m< V>,a£ß, such that Ei<j<m
ai ' si = Ei<,-<mft ' SJ' 

2. 3jo G [l,m],37G DRBi,m < V>,7^e£, such that Su =Y,i<j<m7i -Sj< 
3. 3j0 G [1, m], 37' G DRB1]m < V >, -/h s 0, such that Su = Ei<,<m Ty ■ ■?;, 
I Bjo G [l,m], sucA that V((5j)i<,-<m) = V((SJ)i<j<m,;>i;o). 

The equivalence between (1),(2) and (3) was first proved in [Mei89, Mei92], in the case where the Sj's 
are configurations qjui, with the same u. 

4    Deduction systems 

4.1     General deduction systems 

We follow here the general philosophy of [HHY79, Cou83]. Let us call deduction system any triple 
V =< .4, H, I— > where A is a denumerable set called the set of assertions, H, the cost function 
is a mapping A — IN U {00} and |— , the deduction relation is a subset of Vj(A) x A ; A is given 
with a fixed bijection with IN (an "encoding" or "Gödel numbering") so that the notions of recursive 
subset, recursively enumerable subset, recursive function, ... over A,Vj(A),... are defined, up to this fixed 
bijection ; we assume that V satisfies the following axioms: 
(A 1) ]— is recursively enumerable 
(A 2) V(P,A) G I— , (min {H(p),Pe P] < H(A)) or (H(A) = 00). (We let min(0) = 00). 

In the sequel we use the notation PI— A for (P. A) € |— . We call proof m the system V, any subset 
P C A fulfilling : Vp 6 P, (3Q QP,Q\— p). Let us define the total map \• : .4 ->• {0,1} and the partial 
map Y:i-j0.1) by : 
X(A) = 1 \{H(A) = x,x(A) = 0 if H(A) < 00. \(.4) = 1 if H{A) = 00. \ is undefined if H(A) < 30. 
(\ is the 'truth-value function", x 's tne "1-value function"). 

Lemma 4.1  Let P be a proof and A G P- Then \(A) = 1. 
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In other words : every provable assertion is true. The deduction system V will be said complete iff, 
conversely, VA G A. x(A) = 1 =*• there exists some finite proof P such that .4 € P. (In other words, V 
is complete iff every true assertion is "finitely" provable). 

Lemma 4.2 : IfV is complete, \ « a recursive partial map. 

In order to define deduction relations from more elementary ones, we set the following definitions. Let 
I— c V,(A) x A- For every P, Q G Vt(A) we set: 

rnf HI <°> [0! <l> 

Pl±QiRPDQ-    P\-QiK\/qeQ,3RCP,R\--q;    P\-QiSP[-Q;    P |-0 iff V« e 

Q. (3Ä CP,üh 9) or (q G P);    P^^Q iff 3Ä G 7>/(^). P (— P and P |— Q (for every n > 1).; 
<-> <"> 
I  M |  

Given 1-1-° |—, C Vj(A) x VS{A), for every P,Q G P/(-4) we set : P( (—i ° |—2)0 iff 3Ä S 
>1,(P(—,P)A(Äi—2Q). 

4.2    System T>„ 

Let us define here a particular deduction system V0 "Taylored for the equivalence problem for dpda's". 

Given a fixed dpda M over the terminal alphabet X, we consider the variable alphabet V associated 
to M (see section 3.1) and the set DRB < V > (the set of Deterministic Rational Boolean series over 
V). The set of assertions is defined by : A = IN x DRB < V > xDRB < V > i.e. an assertton is here a 
weighted equation over DRB < V >. 
The "cost-function" H : A - IN U {oo} is defined by : H(n, 5, S») = n + 2 • Div(5,S>), where Div(5, 5 
the «to^en« between 5 and S', is defined by : Div(5,5') = min{| u || u G A(v»(S), v(S ))}. (We recall 
min(0) = oo). 
Let us notice that here : x("> 5,5') = 1 <=> 5 = 5'. _ 

We define a binary relation ||— CV/(A)x A, the elementary deduction relation, as the set of all 
the pairs having one of the following forms: 

(PO)  {(p,S,T)} If— (p + hS,T) 
(PI) {(p,S,T)} II— (P,T,S) 
(R2) {(p,S,S'),(p,S',S")} II— (P,S,S") 
(P3) 0 Ir- (0,5,5) 
(fl'3)0 II— (0,fozr],0 (for?,rG<3,-*GZ,[<;zr] = e) 
(A4)  {(p+l,SQx,TQx)\x&X}  II— (p,5,T) (for5^eAT#e) 
(Ä5)  {(p,S,S')} II— (p + 2,5©x,5'©a:)(forzGX) 
(P6) {(p,ST' + T,T')} II— (P- 5" ■ r,r) (for 5 ^ e) 
(Ä7) {(p,5,5')} II- (p,5 + T,5' + r) 
(i?8) {(p,5,5')} II- (P,S-T,S'T) 
(fl9) {(p,5,5')} \\- (p,U-S,US') 

where p € IN, 5, S',T, T' € DRB < V >, U G RB < V >. (By set of "all" these pairs we mean, all the 
pairs which fulfill both properties "to belong to Vj(A) x A" and "to have one of these 11 possible forms" 
; but of course, for example, not all the triples (p, S + T,S' + T) belong to A because DRB < V > is not 
closed under sum). 

Lemma 4.3 : Let P S V,(A),A G A such that P ||— A. Then min{H(p) | p G P} < H(A). 

<->       (il <*> 
Let us define (—  by : for every P G Vf(A),A G -4, P |— ^ «=*• P II— ° l|— 0,3.4° ll~  i-4)- 

„■here  ||— 0,3,4 is the relation defined by R0, R3, R's, R* on[Y- We let Vo =<A,H,\—  > 

Lemma 4.4 : VQ is a deduction system. 

The kev-statement of this work is that V0 is complete (theorem 9.2). We prove this completeness result 
bv exhibiting a "strategy" S which, for every true assertion (n,S,S'), constructs a finite XVproof of 
this assertion. Notice that, by lemma 4.2. we do not need to prove that 5 is computable in any sense to 
establish that \ is partial-recursive. 
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4.3    Strategies 

Let V =< A, H, |— > be a deduction system. We call a strategy for V any partial map S : A+ — A" 

such that : 
(51) ilS(AiA->---An) = Si ■■■Bm then 3Q C {At | 1 < i < n - 1} such that 

{Bj I 1<J <m}UQ\— A„, 

(52) if S(A1A2   ■An) = Bi--Bm then 

min{# (A,) [ 1 < i < n} = oo => min{tf(Bj) | 1 < j < m} = oo. 

Given a strategy 5, we define T(S, A), the proof-tree associated to the strategy S and the assertion A 
as the unique tree t such that : 
€ G dom(t), t(e) = A, and, for every path xo^i, ■ --Zn-i in t, with labels t(ii) = Aj+i (for 0 < i < n-1) 
if x„_i has m sons r„_i ■ 1,■ • • .i„-i ■ m £ dom(t) with labels i(z„_i ■ j) = Sj (for 1 < ;' < m) then 

5(yli ■••/!„) = Bi ---Bm or (m = 0 and Ai--An $ dom(5)). 

Let us say that S terminates iff, VA £ x_1(l).7"(<S./I) is finite; S is said c/osed iff, VW <= A+,W e 
(X-1(1))+ => W 6 dom(S) (i.e. 5 is defined on every non-empty sequence of true assertions). 

Lemma 4.5 : If S is a closed strategy for V, then, for every true assertion A, the set of labels ofT(S,A) 

is a V-proof. 

Lemma 4.6 ; IfV admits some terminating, closed strategy then V is complete. 

5    Triangulations 

Let Si, S2, • • •, Sd be a family of deterministic series over the structured alphabet V ( we recall V is the 
alphabet associated with some dpda Ai as defined in section 2.2). 
Let us consider a sequence S of n "weighted" linear equations : 

d d 

(Si) ■Pi,J2ai'iSi • ZXJ5.»' 

where p; € IN, and A = (ctij),B = (ßij) are deterministic rational matrices of dimension (n,d), with 
indices m < i <m + n - 1,1 < j < d. For any weighted equation, £ = (p, 5,5'), we recall the "cost" of 

this equation is : H(E) = p + 2 ■ Div(y?(S), ip(S')). 
We associate to such a system another system of equations, INV(S), which "translates the equations of 
5 into equations over (a{j,ßi,j) only". This function INV is in some sense an "elaborated version" of 
the inverse systems defined in [Mei89, Mei92]. The general idea of the construction of INV consists in 
iterating the transformation used in the proof of (1) => (2) => (3) in lemma 3.11, i.e. the classical idea 
of triangulating a system of linear equations. Of course we must deal with the weights and relate the 
construction with the deduction system V0. Let us assume here that 

V;G[l,cf],S;-^0. (9) 

For every S 6  B < X  > (resp. 5' G  Bid <  X >), we define v(S) = min{|u|,u G supp(S)}  (resp. 
u(S') = min{|ti|,uGUi<j<<,supp(5j)}). Let us define INV(5), Vf(S) G IN U {L}, D(5) G IN by induction 
on n. W(S) is the weight of S. D(S) is the weak codimension of S. 
Case 1 : tfi{am.) = >?(ßm,.) or n = 1 

INV(S) = ((W(S),amj,ßmJ))liJ<d, W(S) = pm-l, D(5) = 0. 

Case 2 : >p(am..) ^ *(8m,.),n > 2,pm+i - pm > 2 ■ v(A(<p(am,.),tp(ßm,.))) + 1 
Let u = mmA{ip{a,„_.),<p(ß,„,,)). Suppose u G A(ip(amja), f(ßmj0)). 
Subcase 1 : Qm.ja 0 " = s, ßm.j0 0 u = 0. 
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Let us consider the equation (pm,S,-0,£*=1(A» j ® u)Sj) and define a new s-vstem of weiShted equations 

S' = (^/)m + l<i<m + n-l   by : 

(£,') : Pi, £(«<,, + <*.jo(A,j © "))$ ,  £(Aj + Äj„(/Vj 0 «))$ 

where the above equation is seen as as an equation between two linear combinations of the Si's where 

the j'o-t.h coefficient is 0 on both sides. We then define : 

INV(S) = INV(S'). W(5) = W(5'), D(5) = D(S') + 1. (10) 

Subcase 2 : am,jo Qu = s, ßm,ja © u ^ 0. 
Let us consider the w-equation (pm,S,„ ,  £-=1(Anj„ © «)*(Anj © «)$) and define a new system of 

weighted equations 5' = (£j)m+i<i<m+n-i by : 

We then set the same definitions (10) as above. 
Subcase 3 : amj-„ © « = Mm jo © « = e. (Analogous to subcase 1). 
Subcase 4 : am j„ © u # 0, An jo © « = £■ (Analogous to subcase 2). 
Case 3 :¥>((»„.) ^¥>(An,.).n> 2,Pm+i-Pm< 2 •i/(A(v('»m,*).(v(^m,«)))- 
We then define: INV(5) = JL, W(5) = X, D(5) = 0, where 1 is a special symbol which can be understood 

as meaning "undefined". 

Lemma 5.1 : Let S be a system of linear equations. If INV(S) ± -L then INV(S) = (£j)i<j<d fulfills: 

j   \jj g [l,d],£j is a linear equation with deterministic coefficients, 

2. {Sj | 1 <j <d}U{£i \m<i<m + D(S)-l}\—£m+D(s), 
If, in addition, n> d then : 

3. min{H{£i) \ m < i < m + D(S)} = oo =>• mm{H{£j) \ 1 < j < d} = oo. 

Let us consider the function F defined by : 

F(n) = max{v{V(A)t\?(B)) \ A, B e DRBM < V >, || A ||< n, || B \\< n, <p(A) # <p(B)}. 

For every integer parameters A'i, A'2, K3, A"4 £ W-{0}, we define integer sequences («;,<,-, i,-,»,-, 5,-, r,)m<,<m+r—i 

by : 

,5m = 0,*m = 0, £m = Ä2, sm = A's ■ Ki + IU,Sm = 0, Sm = 0, (11) 

and for every m<z'<m + rc — 2, 

«i+i = 2 ■ F(sj + Si) + 1, 4+1 = 5 ■ (5,-+i + 14, Li+i = A'i • (ii + 4+i) + A'2, 

*,-+i = A3L,+i + A4,   Si+1 = Si + £i+\Q\F(si + Ei),   Si+1 = T,- + S,-+i. (12) 

For every weighted, deterministic rational linear equation £ = (p,T.j=iaiSJ • Ej=i A'5j)' vve deRne 

|||£|||=m<w{||a||,||0||}. 

Lemma 5.2  Let S = (&)m<i<m+d-i  6e a system of d weighted linear equations such thai : 

(7;v;e[m,m + rf-i],|||& |||<s,- 
(2) Vi e [m. m + rf - 2], W(£,+i) - W(&) > Si+1. 

Then INV(6") /-L. D(5) < d- 1,V£ S IN'V(S). ||| £ |||< Em+D(S) +sm+D(£i- 
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6    Constants 

The following constants will be used in the sequel. 

ibo = max{v([pAq]) \p,q€Q,Ae Z, \pAq] £ 0}, Jfci = max{2i0 + 1,3}, jfc2 = 4*i + 2(ii)2 + t0, 
01 = 4ifco + 2, A"i=*i + 1, A'2=2(ii)3 + 3(t1)

2 + ii + l, 
A3 = k0\Q\, A4 = iolQI2 + (h + 6)|Q|, 
<io = 2|Q|Card(.Y^'')- 

We consider now the integer sequences (b~i,U, £i, «i, Si, £i)m<i<m+n-i denned by the relations (11,12) 
of section 5 where the parameters K\,..., A4 are chosen to be the above constants, the functions F is 
associated with d — do and m = 1, n = do. 

D2 = rdo+sdo. 

7    Strategies for T>0 

Let us define strategies for the particular system 2V 
We define first auxiliary strategies Tcm, Tj, XE, TU, TB , Tc and then derive some closed strategies from 
them. Let us fix here some total ordering on X : x\ < x? < ■ ■ ■ < xa and also some total ordering < of 
type uon^l (inherited from the usual well-ordering of IN by the fixed encoding). From these orderings 
one can construct in the usual way an ordering of type u on the sets X* ,A~ and IN* x (DRB < V >)". 

Let us adapt the usual notion of stacking derivation to derivations of series. For every u 6 X" we 
define the binary relation } {u) over DB < V > by: for every S,S' S DB < V >,S f (u)S' <S> 3A € Z,u e 
Z+,p,qeQ,#e DBQil < V > such that 

S = [pA]* <P, \pA] 0 u = [qu],S' = [qu] * 9. 

A sequence of deterministic series So, Si,. ■., 5„ is a derivation iff there exist xi,..., x„ 6 X such that 
So 0 xl = Si,.. . ,Sn_1 Qx„ = S„. If u = Xi ■ X2 ■... ■ xn we call So,S\,.. .,Sn the derivation associated 
with (5, u). A derivation So, Si,..., S„ is said to be stacking iff it is the derivation associated to a pair 
(5, u) such that S = So and So T (u)S„. 

Tc,u:   Tcut(A1---An) = Bl---Bm iff 3i € [1, n - 1], 35, T, 

Ai = (pi, S,T). An = (p„,S,T),Pi < pn and m = 0 

Tt:   T^AiA? ■■■A„) = B1---BmiS3S,T,An = (p, 5, T),p > 0,5 = T = 0 and m = 0 
Ts:   Ts(Al--An) = Bl-Bm iff A„ = (p, S,T),p > 0, 5 = T = e and m = 0 
7^:   TA(,4I--yt„) = Si---Smiff 

An = (p,S,T),m=\X\,B1 = (p+l,SQx1,TQxl),---,Bm = (p+l,SQxm,TOxm), 

where 5^;,r^; 
r|:    T^(.41---J4„) = ß1---ßm iff n > fci,.4n_tl =(w,Ü,U'), (where !7 is unmarked) 

u' = Y1 &Aq] 'v? (for some (P€Q) 

Ai = (ir + &! + i - n, Ui,U{) for n — fci < i < n, (C/'i)„_tl<i<„ is a "stacking derivation" (see the 
above definition), 

V'n = 'Yl\pT<l]-vqi    for some pS Q,r£Z+, 

m = 1, Si = (* + h - 1, V, V"), V = C/n, V" = £,6<3,[pr,] • [?e?] • (f/0 «,), 
_where Q' = {q € Q \ \pAq] £ IS}, V? e Q', u, = min(^([pA?])). 

Tg :    Tg  is defined in the same way as Tg by exchanging the left series (S~) and right (5+) series in 
every assertion [p, 5~,S+). 
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Tc:   Tc(Ai---An) = Bx-Bm iff there exists d€ [l,d0},Si,S2,-■ ■ ,St € DRB < V >,1 < «i < K2 < 

... < «d = n, such that, 
(Cl) every equation & = AK, is a weighted equation over Si, So, ■ ■ ■, St, 

(C2) 5 = (£i)i<i<d fulfills the hypothesis of lemma 5.2, 
(C3) [KUKo,---,Kd,Si,---,Sd) 6 IN" x (DRB < V >)' is the minimal vector satisfying conditions 

(C1,C2) for the given sequence (Ai ■ ■ ■ A„) and 
(C4) Si • • ■ Sm = Pe(INV(S)) ( where pe is the obvious extension of p. to pairs of series and then 

to sequences of weighted equations; in other words the result of Tc is INV(S) where the marks 

have been removed). 
Let us notice that, by lemma5.2 and lemma3.9, for every j £ [l,m], ||| Bj \\\< Zm+D(s) + *m+D(,S) < 
£m+d0 + Sm+d„ = Do. This inequality is independent of the sizes of the series appearing as lefthand 

sides ( or rhs) of the initial equations Ai - • • A„. 

Lemma 7.1 : Tcut,Tt,Tt,TA,TB,Tc areVQ strategies. 

Let us define the strategy SAB by : for every W = A^Ai ■ ■ -A„, 

(0) if W € dom(T,ul), then SAB(W) = Tmt(W)    (1) elsif W € dom(Ta), then SAB(W) = T,(W) 
(2) elsif W e dom(Tt), then SAB(W) = TC{W)   (4) elsif W € dom(T+), then SAB{W) = TB (W) 
(5) elsif W € dom(Tä), then SAB(W) = Tg{W)    (6) elsif W € dom(TA), then SAB(W) = TA(W) 

(7) else SAB{W) is undefined. 

The strategy SABC is obtained by inserting "(3) elsif W € dom(Tc), then SABC{W) = TC(W)" '" the 

above list of cases. 

Lemma 7.2 SABc,SAB <""e c/oseii. 

8 Tree analysis 

This section is devoted to the analysis of the proof-trees r produced by the strategy SAB defined in 
section 7. The main results are [Sen97, lemma 8.14 , 8.15] whose combination asserts that if some path 
( from a node x to a node y) of r is such that its origin has a "small norm" and its length is "large 

enough", then the transformation Tc is defined at some ancestor of y. 4 

9 Completeness of VQ 

Lemma 9.1  : SABc « terminating. 

The proof leans on the two delicate lemmas [Sen97, lemma 8.14 , 8.15] mentioned above. 

Theorem 9.2  The system T>0 is complete. 

Pi-oof: By lemma 7.1 SABC is a strategy for V0, by lemma7.2 SABc is closed , by lemma 9.1 it is termi- 

nating and by lemma 4.6, V0 is complete. D 

Theorem 9.3   The equivalence problem for deterministic pushdown automata is decidable. 

Proof: Let M be some dpda. The equivalence relation = on DRB < V > (where V is the structured 
alphabet associated to the given M) has a recursively enumerable complement (this is well-known). By- 
theorem 9.2 and lemma 4.2 = is recursively enumerable too. Hence s is recursive. In addition, the system 

Vn associated with M is computable from M, hence the theorem follows. O 

4 Technically speaking, this is the most difficult part of the full proof; we cannot sketch it here due to the lack of 

space. 
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Abstract. We will describe the recognizable formal power series over 
arbitrary semirings and in partially commuting variables, i.e. over trace 
monoids. We prove that the recognizable series are certain rational power 
series, which can be constructed from the polynomials by using the oper- 
ations sum, product and a restricted star which is applied only to series 
for which the elements in the support all have the same connected al- 
phabet. The converse is true if the underlying semi-ring is commutative. 
Moreover, if in addition the semiring is idempotent then the same re- 
sult holds with a star restricted to series for which the elements in the 
support have connected (possibly different) alphabets. It is shown that 
these assumptions over the semiring are necessary. This provides a joint 
generalization of Kleene's, Schiitzenberger's and Ochmanski's theorems. 

1    Introduction 

In the theory of automata and formal languages, Kleene's foundational theorem 
on the coincidence of regular and rational languages in free monoids has been 
extended in many ways. Schützenberger [15] investigated formal power series 
over arbitrary semirings (e.g., like the natural numbers) and the free monoid, 
i.e. in noncommuting variables, and showed that the recognizable formal power 
series coincide with the rational ones. This was the starting point for a large 
amount of work on formal power series, cf. [14,9,2,8] for surveys. The concept 
of recognizable formal power series has also been defined for arbitrary monoids 
instead of the free monoid, but it was clear and has been stressed by several 
authors (cf., e.g. [14]) that in general then the recognizable and the rational 

series do not coincide. 
On the other hand, Mazurkiewicz [10,11] introduced an important mathemat- 

ical model for the behaviour of concurrent systems: trace monoids (or free par- 
tially commutative monoids), see also [3,1,4-6] for their well-developed theory. 
They are monoids whose generators are partially commutative. Again, their rec- 
ognizable languages do not coincide with the rational ones, but by Ochmanski's 

* This research was partly carried out during a stay of the first author in Paris and 
another stay of the second author in Dresden. 
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theorem [12] they coincide with the c-rational languages where the iteration is 

restricted to connected languages. 
It is the aim of this paper to investigate recognizable formal power series over 

trace monoids, thereby obtaining a generalization of both Schützenberger's and 

Ochmahski's results. 
We denote by K((M)) the set of all formal power series over the semiring K 

and the free partially commutative monoid M. It is known that in general the 
recognizable series in A'((M)) form a proper subclass of the rational ones. We 
therefore dehne the subclasses of c-rational and mc-ra,tiona,l series. We say that 
a series S is connected, if each element of its support is connected, and S is mono- 
alphabetic, if all elements of its support have the same set of generators. The c- 
rational series are obtained from the polynomials by allowing the operations sum, 
product, and star, but the latter applied only to proper and connected series. 
The mc-rational series are constructed in the same way, but using star only for 
series which are proper, mono-alphabetic and connected. In view of Ochmahski's 
result, one might expect that the recognizable series in K((M}) coincide with the 
c-rational ones. However, we will show that this fails in general even for the 
semiring (N,+, x). Our main result is the following: 

Theorem 1. Let M be a trace m.onoid and K a semiring. 
(a) Each recognizable series in K((Mj) is mc-rational. 
(b) If K is commutative, each m,c-rational series in K((M)) is recognizable. 
(c) If K is commutative and id.emyote.nt, each c-rational series in A'((M)) is 

recognizable. 

The fact that the recognizable series in K((Mj) are closed under the product 
operation was proved before already by Fliess [7], but only for very specific 
semirings K (strong Fatou semirings or the Boolean semiring). By Theorem 1(b), 
this holds for arbitrary commutative semirings, and we show by example that 

the commutativity of K is needed for this. 
Theorem l(b,c) is proved in section 3. There we also show that if the star S* 

of a recognizable proper series S is connected, then it is also recognizable. This 
gives another closure property of the recognizable series under the star-operation. 
Part (a) of Theorem 1 is proved in section 4, and in section 5 we give examples 
and discuss the relationship with Schützenberger's and Ochmahski's results. For 
lack of space, most proofs are not contained in this extended abstract. 

It seems a very interesting research road to investigate which other results 
from the theory of formal power series over non-commuting variables can be 
extended to series over partially commuting variables, i.e. over trace monoids. 

2    Background 

Here we recall the necessary notation and background for formal power series 
and of trace theory. For more details, we refer the reader to [14,2,4,6]. 

Let M be any monoid and K = (K, +, -,0,1) any semiring, i.e., (Ji\+,0) 
is a commutative monoid, (K, -,1) is a monoid, multiplication distributes over 
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addition, and 0 • x = x ■ 0 = 0 for each x £ K. If multiplication is commutative, 
we say that K is commutative. If the addition is idempotent, then the semiring 
is called idempotent. For instance, the semiring (EU {oo},min, +,oo,0) is both 
commutative and idempotent. 

Mappings S from M into K are called formal power series. They are de- 

noted as formal sums S = J2meM(^^m)-m wnere (S,m) = S(m) £ K. The set 
supp(S) = {m £ M | (S,m) ^ 0} is called the support of S, and if it is finite, 
then S is called a polynomial. The collection of all formal power series is denoted 
by K((M}), and its subset of all polynomials by K{M). We consider elements 
of K also as polynomials in the natural way, having a non-zero entry only at 
1 £ M. If L C M, we define the characteristic series of L by l/_, = Y^meL 1' m- 

Let n > 1 and [n] = {1,...,??,}. We let Knxn be the monoid of all (n x n)- 
matrices over K (with matrix multiplication as usual). A series S £ K((M)) 
is called recognizable, if there exists an integer n > 1, a monoid morphism /./. : 
M —> Knxn and vectors A £ A'lxn,7 £ A'nxl such that 

(5, m) = A • (fim) ■ 7 =   ^   A^pm),-^ 
ij'e[n] 

for each m G M. In this case, the triple (A,//.,7) is called a representation of 
S, and we often shortly write S = (A,//,7) to denote this. If «,j e [n], we also 
al^l^reviate (fim)ij =: firnij. We let Krec({M)) denote the set of all recognizable 
formal power series. 

With componentwise addition, K((M)) becomes a commutative monoid. Now, 
the (Cauchy) product of two series S, S' in K((M)) is the series defined for m £ M 

by (5 • S',m) = 2m=m, •m2(
5'>mi) ' (5')m2) provided the sum is defined (e.g. 

when the sum is finite). With this, K{(M)) is a semiring. The powers S"(n > 0) 
are defined in the natural way. We call S proper, if (5,1) = 0, and then we put, in 

the natural way, S* = J2n>o ^"'tne star (or iteration) of 5, and S+ = J2n>i ^"J 

provided it is defined. We" let Krat((M)) denote the smallest subset of K((M)) 
which contains all polynomials and is closed under the operations sum, product 
and star, where the latter is only applied to proper series. Its elements are called 
rational formal power series. Now Schiitzenberger's theorem states the following 
equivalence between recognizable and rational series over the free monoid. 

Theorem 2 (Schützenberger, [15]). Let £ be any finite set and K any semi- 

ring. Then 
Krcc((E*)) = Kral ((£*)). 

From this, Kleene's theorem on the coincidence of regular and rational lan- 
guages follows by considering the Boolean semiring B = {0,1} (with 1 + 1 = 
1-1 = 1) and noting that a language L C E* is regular iff its characteristic series 
If, £ B((-£"')) is recognizable, and similarly for rationality. 

Later we will also need the Hadamard product S 0 T of two series S,T £ 
K((M)). It is defined by (S 0 T, m) = (S, m) • (T, m) for all m £ M. 

Next we recall basic notions from trace theory. A pair (£, I) is called a trace 
alphabet, if S is a finite set and / is an irreflexive symmetric binary independence 
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relation on E. Let ~ denote the smallest congruence on E* containing {(ab,ba) : 
a I b}. The quotient monoid M = M(E,I) := E* / ~ is called the trace monoid 
(or free partially commutative monoid) over (E,I). If w; £ E*, we let [w] denote 
the equivalence class of w in ML Also, let a(w) be the set of all letters of E 
occurring in w.\ called the alphabet of w. Since equivalent words have the same 
alphabet, we may put o:([w}) = a(w). If A,B C E, we write A I B to denote 
that a I b for all a £ A,b £ B. We also write w I A or [w] I A to abbreviate 
that n(w) I A, similarly, w I w' for a(w) I <*(«/), etc. A subset A C E is called 
connected, if it cannot be split A = AöB into two non-empty subsets such that 
AI B. Again, u> and [w] are connected, if a(w) is connected. A language L CM 
or L C E" is called connected, if each of its elements is connected, and mono- 
alphabetic, if a(m) - a(m') for all m, m,' £ L. Then the collection of all c-rational 
languages in M (respectively, in E*) is defined as the smallest set of languages 
of M (respectively, of E*) containing all finite languages and which is closed 
under the operations union, product and star, where the latter is applied only 
to connected languages. The following characterizes the recognizable languages 
of M (recall that a language LCMis recognizable iff it is accepted by some 
finite M-automaton, or, equivalently, iff its syntactic monoid is finite). 

Theorem 3 (Ochmariski, [12,4,6]). Let (E,I) be any trace alphabet and M 
its trace monoid. Then a language L CM is recognizable iff it is c-rational. 

Again, one should note that the Kleene's theorem mentioned above is a spe- 
cial case of Theorem 3 since when the independence relation is empty, the trace 
monoid M(E, 0) is the free monoid E* and in this case all languages are con- 
nected, hence rational sets are also c-rational. 

The goal of this paper is a common generalization of Theorems 2 and 3, 
that is, a characterization of the recognizable formal power series in K((M)) 
where K is a semiring and M a trace monoid. Let S £ K((M)). We. say that S 

is connected, if snpp(S) is a connected language in M, and mono-alphabetic, if 
supp(S) is mono-alphabetic. In the latter case, we put a(S) = a(m) if S ^ 0 
and m £ supp(S). Now let Kmc~rai ({M)} (mono-alphabetic-connected rational) 
be the smallest subset of K((M)) which contains all polynomials and is closed 
under the operations sum, product and star, where the latter gets applied only 
to proper, mono-alphabetic and connected series. Similarly, we let Kc"ral'((M)) 
(connected rational) be the collection of series obtained from the polynomials 
by allowing the operations sum, product and star, where now star is applied to 
all proper and connected series. Similarly, we define connected series in K({E*)) 
and the collection of mc-rational series in K((E*)). 

3    Mc-rational series are recognizable 

In this section, let (E, I) be a trace alphabet and M = M(E, I) its trace monoid. 
We will prove Theorem l(b,c). This will require a more particular notion of 
representations which we introduce first. 
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Definition 4. Let 5* = (A,//,-/) € K((M)) be a recognizable series with fj. : 
M —> Knxn. The representation (A,/;,, 7) is alphabetic, if there exist two func- 

tions a, a : [n] —> V(E) such that for all u e M, the following three conditions 

are satisfied: 
(1) Whenever fj.ii.ij ^ 0, then o.(j) = a.(i) U 0.(11) and a(i) = o.(j) U a(u); 

(2) whenever A,- / 0, then a(i) = 0; 

(3) whenever ~/j ^ 0, then a(j) = 0. 

We call (X,fi,-/-.a,a) an alphabetic representation of S. Here, a(fc) describes 

the pn.it. alphabet of k and ra(fc) the future alphabet, of fc. We say that k is wwtinZ, 

if a(fc) = 0, and k is /mriZ, if a (A;) = 0. 

We will often use the fact that if (A,//,7) is alphabetic and fiuij ^ 0, then i 

initial implies that a(j) = «(»/), and j final implies a(«) = a(u). Moreover, if 
;/. / 1, then i initial implies fiuki = 0, and j final implies fmjk = 0, for any k. 

Proposition 5. Let S € #((M)) 6e a recognizable series. Then there exists an 

alphabetic representation of S. 

First we want to show that the product of two recognizable series in K{(M)} 
is again recognizable. For more particular semirings K (strong Fatou semirings 
or the Boolean semiring), the result has been obtained already by Fliess [7, 
Prop. 2.2.14 and 2.2.15]. Our proof will not use the full notion of alphabetic 
representation, since it can be based either on the past alphabets (the function 

a) or the future alphabets, only. The full notion of alphabetic representation 
will come into use when we deal with iteration. 

Theorem 6. Let K be a commutative semiring and let Si,S2 S -K"((M)) be two 
recognizable series.  Then their product S = Si ■ 52 is also recognizable. 

Proof. Let (X1 ,^,-f1) be a representation of S1 and let (A2,/y,2,7
2; «, <*) be an 

alphabetic representation of S2 (Proposition 5). We assume that m : M ■—> 
Kn'xni for i. = 1,2, and let n = nx • n2. Subsequently we identify [n] with 
[m] x [n2]. Next, we define /;, : E* —► KnXn by 

l'ia){U,h)(h,h) = Sh,J2I(a^i2)l'i(a)iuh +siu}Jlz(a)h,h 

if i=j [l      \iula(i) 
and    1(11,1) = < 

otherwise [0     otherwise 

Note that /(o, j2)/'2(a);2,h = °' hence at most one of the two terms is non-zero. 
One can prove that //(«) • fi(b) = fi(h) ■ fi(a) for all (a, b)  £ I. Hence, // 

factorizes to a morphism p. : M —> Knxn. Next we claim that this factorization 

is given by the explicit formula 

Kw)(i,,i2)Uuh) =  J2 I(u,i2)lJ.i(u)iujiH2(v)h,h 
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Finally, define A e Alx",7 G A"xl by \{iuh) = X}^, !(*,,*,) = 7*,7fc3- We 
can verify that 5 = (A,//.,7) which proves the theorem. 

The following result shows that a mono-alphabetic recognizable series has 
an alphabetic representation (A,//, 7; a, a) with an even more specific form. For 

this, let <?! = (1,0,... ,0) G Alx" and en = (0,... ,0,1)'' G Anxl. 

Proposition 7. Lei 5 G A'({M)) be recognizable, proper and mono-alphabetic 

with a(S) = A. Then there exists an alphabetic representation (ei,//,e„; a, a) 

ofS with a{l) = a{n) = A. 

We will now prove the following essential closure property of recognizable 
series. Note that Theorem 1(b) follows easily from Theorems 6 and 8. 

Theorem 8. Let K be a, commutative semiring and let S G A'((M)) be a proper, 
connected, mono-alphabetic and recognizable series. Then, S* is recognizable. 

The proof of this theorem is based on a rather involved construction. Let 
S G A"((M)) be a proper, recognizable, connected and mono-alphabetic series 

with a(S) = A. Let 5 = (ei,//,en\ a, a) be an alphabetic representation with 

a(l) = a{n) = A (Proposition 7). Let m > 1. We identify [nm] with the set [n]m 

of all m-tuples with entries from [n\. We use 1 as abbreviation for such an m-tuple 
(?!,... , im), similarly j, k. Now we define functions //,..., ym : E* —> A""™' x "™ 

by 

.0        _\lMUn       if J= (*2,---,*m,l) 

0 otherwise 
// «j; = 

lmiPjP     
if if = *' for all/ 7^ p 

0 otherwise 
^flr,-=r:,';' "--;'""-- (p>i) 

Also, let 

' 1      if a(ip) U a(ip) = A = a(S) for all p,  a(h) / 0 and 

-firT = { ft(»'p) / «(*g) for all p < q 

^ 0     otherwise 

Let. H G A"'" x "'" be given by Hrj = H-t ■ H-„ and define y." : E* —> An™ x"™ 
by //* = ff 0 (/i° + • • • + //m), where (H 0 //P)(««)TJ = % • t>?mj for any w G E* 
and ?,JG [n]m. 

Theorem 8 results clearly from the following two essential results. 

Proposition 9. Let K be a commutative semiring and assume that m, > \A\. 
Then )i'{ob) = fi*(ba) for all a,b £ E such that a I b. 

Hence //* factorizes to a morphism from M to #"'"*"'", and we have: 
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Proposition 10. Let, K be a commutative semiring and assume, that m > \A\. 
Then S~ = (Aj,//.*,7j) where Aj,7j are the row respectively column vectors which 

have a 1 only at entry 1 = (1,... , 1), and. 0 otherwise. 

Next we wish to derive a further closure properties of Krcc((M}). 

Definition 11. Let S G K((M)) or S G K{(S*)) and ACS. Then the restric- 
tion of S to A is the series SA defined by 

f(S,w)     if «H= A 
(SA,w) = < 

10 otherwise 

First we show that the restriction preserves both recognizability and mc- 

rationality of series. 

Proposition 12.  Let S G A'{{M)) he recognizable. Then SA is also recognizable. 

Proposition 13. Let S G K((£*)) or S G K((M)) be mc-rational. Then SA is 

also mc-rational. 

The following lemma generalizes a result of Pighizzini [13] for trace languages. 

Lemma 14. Let S G A'((M)} be proper and AC S be non.em.pty. Then {S*)A = 

Z+X where X = £BC/,(S*)B and Z={X-S)A- 

Next we derive another sufficient condition which implies that the star of a 
recognizable series is again recognizable and, also, that the star of an mc-rational 

series is again mc-rational. 

Theorem 15. 

1. Let K be. a commutative, semiring and S G K((M)) be proper and recognizable 
such that S" is connected.  Then S* is recognizable. 

2. Let A" be any semiring and S G K((S*)) or S G A'«M})  be proper and mc- 
rational such that S* is connected.  Then S* is mc-rational. 

For positive semirings, the condition S* connected is stronger than S con- 
nected. This latter condition is actually sufficient to obtain the closure properties 
stated in Theorem 15 when the semiring is commutative and idempotent. This is 
an easy consequence of Theorem 1(a) and of Theorem 17 for which the following 
lemma is crucial. 

Lemma 16. Let K be a commutative and idempotent semiring. Let S G A'((M)) 
be a connected series and. let B,C C S be independent subsets of the alphabet. 

Then, {S*)BUC = (S*)B-(S*)C. 

Theorem 17. Let K be a comm.uta.tive and idempotent semiring. A series in 

A"((M)) is mc-rational iff it, is c-rational. 
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Proof. One direction is clear and for the converse, it snfSc.es to show that the 
star of an mc-rational connected series S is still mc-rational. We will first show 
by induction on the size ofiCX that if S is an mc-rational connected series 
then (S*)A is mc-rational. The theorem follows directly since S* =Y,ACE(

S
~)A- 

Clearly, (5")0 = 1 is mc-rational. Now, assume A ^ 0 and let Au... ,An 

be' the connected components of A: A = Ai U • ■ ■ U An and Ai I Aj for i / j. 
By Lemma 16, we obtain {S*)A = {S*)A, ••■(S")yi„ and we are reduced to 
the case A connected. Now, using Lemma 14 we obtain (S*)A = Z+X where 

X = *ERCA(
S

*)V 
and Z = (X ■ S)A- 

Then X is mc-rational by induction 
hypothesis. By Proposition 13, it follows that Z is also mc-rational. Since we 
have assumed A connected, we deduce that (S*)A = Z ■ Z* ■ X is mc-rational. 

Note that Theorem 1(c) follows from Theorem 1(b) and Theorem 17. 

4    Recognizable series are mc-rational 

Thoughout this section, let K be an arbitrary (possibly non-commutative) semi- 
ring and {S,I) a trace alphabet. We will prove that all recognizable series in 
A"((M)) are mc-rational. This uses the concept of lexicographic normal forms of 
traces and LNF-representations of series which we introduce first. For this, fix 
any linear order < on E. We extend this to the lexicographic linear order, also 
denoted by <, on E'. We say that a word w is the lexicographic normal form 
of [?<;], if it is the smallest element of [u>] with respect to <. Then LNF is the 
set of all words which are lexicographic normal forms. Note that LNF is closed 
under prefixes (and suffixes). Now let .Ar,NF = (Q,^^,q0,Q) be the minimal 

(reduced) automaton for LNF. 

Definition 18. We will call a morphism fi : E* —>• Knxn an LNF-morphism, 
if there exists a function n : [n] —> Q such that for all a G E and all i,j £ [n], 

fiaij / 0 implies x(i) -^ %(j) in ANF- Then any representation (A,//,7) with 
an LNF-morphism /./. of a series S G K((E*)) will be called an LNF-representation 

of S. 

Proposition 19. Let S' G K({E*)) be recognizable. Then S = S' 0 1T,NF has an 

LNF-representation. 

Next we note that for any n > 1 there is a canonical isomorphism # between 
the semiring of n x n-matrices K((E*))nxn and the semiring of formal power 
series Knxn({E*)), given by (*(A),u>) = ((Aihw)) if A = {Ai}) G A'((^-))"xn. 
Subsequently, we will often identify A with its image #(A). 

We will also use the following result. 

Lemma 20 (Ochmanski, [12,4]). Let w G E* be a word such that. w,w2 G 
LNF. Then w; is connected. 

Proposition 21. Let // : E" —> KnXn be an LNF-morphiim, and let M = 

Y;aprtm ■ n S Knxn(E*). Then the entries of M* are mc-rational series. 
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Proof. We first, show, by induction on the length of w, that (M*,w) = fiw for 
any word M:. Indeed, clearly (M*, 1) = 1 = //l and (M*,wa) = (l + M*M,wa) = 
(M"M,wa) = (M",w)(M,a) = ftw ■ pa = (i(wa). 

By lack of space we only give the proof for n — 1, which already shows several 
connections between all the results. Hence, assume that n = 1. Then M G K(S*) 
is proper and mc-rational. Now, let w G S*. If (M*,w) - fj.w ^ 0, since /./, is an 

LNF-morphism, we have a path 7r(l) -^> TT(1) in ANF- Therefore, w,w2 G LNF 
and by Ochmahski's lemma 20, w is connected. Hence M* is connected and so, 

by Theorem 15, mc-rational. 

Theorem 22. Let S G K{{£*)) be recognizable.  Then S 0 1LNF « mc-rational. 

Proof. By Proposition 19 we can choose an LNF-representation (A,//, 7) of S' = 

5" 0 1T,NF- Let M = Y,aes lm ' a- ^e ^lave seen *n t'-le Pro°f °f Proposition 21 
that (M~,w) = fiw for any word w. 

Now, A and 7 are vectors with entries in K, and M* has only mc-rational 
series as entries by Proposition 21. Hence AM*7 G K{{£*)) is an mc-rational 
series. Finally, observe that for any word w, 

i,3 ',3 

- ^2,^illwijli = Vw7 = (S',w). 

Therefore S 0 1T,NF = S' = \M*j is mc-rational. 

Corollary 23. Let 5 G K{(£*)) be recognizable with supp(S) C LNF. TAßre 5 
is mc-rational. 

Let M, A' be two monoids and h : M —>• Ar be a morphism. Then h"1 : 
K((N)) —> K((M)) given by (/i_1(5),w) = (S,h(w)) («; G Ar) is a semiring mor- 
phism. Moreover, if S = (A,//,7) G Krec{(N)), then (V^S*),™) = (5,A(w;)) = 
A//./7.(w;)7, hence (of. [14, p.32]) 

h-1(S) = {\,fioh,y)eKre°((M)). 

Let 92 : E* —> M be the canonical epimorphism. Then <p extends naturally 
to a mapping, denoted by #, from K((E*)) to K((M)) given by 

#(S) =   £ (S,«,M«;) = E f     E    (5'";)) ■*• 
wGU* (€M  \toe^-'(/,) / 

As is well-known from general results (cf., e.g., [14, pp.13,14]), # is a semiring 
morphism and if S is proper, then #(S*) = #(5)*. Furthermore, if 5 is connected 
(respectively, mono-alphabetic), then #(5) is also connected (respectively, mono- 
alphabetic). From this, it is clear that if S is mc-rational, then #(5) is also 
mc-rational. Now we prove Theorem 1(a). 
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Theorem 24. Let S G A'((M)) be recognizable. Then S is mc-rational. 

Proof. Let S = (A,//,7) G A'rec((M)). As noted before, ^(S) G Jircc«r*)). 
By Theorem 22, '^(S) 0 ILNF is mc-rational. Hence also $((^"1(S') (•) 1T,NF) is 

mc-rational. Now for each f£Mwe have 

Wf-HS) 0 1LNF),0 =     Y    (^_1(5) 0 1
I-NF,W) 

Y      (<p-\s),u!)=       Y      (SM">)) = (S,t). 
u-S^-HOnLNF u>€v_,(')nLNF 

Therefore, 5 = $(^_1(S) (•) 1T,NF) is mc-rational. 

5    Examples and consequences 

Here we will give two examples to show that the assumptions in Theorems 6 and 8 
(hence, in Theorem l(b,c)) are necesssary. We also indicate the relationship with 
the results of Schützenberger and Ochmanski. First, we show that, in Theorem 6 

the commutativity of K is necessary. 

Example 25. Consider the trace alphabet (E,I) with E = {a,b} and a I b, and 
let A" = 1(37"). Let S = £n an.on,T = £„ bn.bn G K((M)). Then S and T are 
recognizable. Indeed, if // : E* —> K is defined by fi(a) = a and /./,(6) = 0 and 
A = 7 = 1, then S = (A,//,7). However, we can show that S ■ T G K({M}) is not. 

recognizable. 

Secondly, we want to show that in general Krec((Mj) is properly contained in 
Kc~rat{(Mj). That is, we show that the star of a connected recognizable series 
may not be recognizable. (Thus by Theorem 15, the star of this series will not 

be connected.) 

Example 26. Again consider the trace alphabet (E, I) with E = {a, b} and a I b, 
and let S = a + b G N(M). Then, obviously, S is a connected polynomial and 

(£-, t) = ("1^1'!") for all * € M Hence, S* = En.meN ("+„>r- We can Prove 

that S~ is not recognizable. 

Let E he any finite alphabet. If I = 0, the trace monoid M(E, I) is isomorphic 
toT-. Hence, by Theorem 24 we have Krec((E*)) C K

mc-ral((E*)) C Kral((E')). 
Now, using one inclusion of Theorem 2, we obtain Krcc((E*)) = Kmc-ra'((E*}) = 
Kral((E*}) which is in fact a strengthening of Theorem 2. 

Now we show how to deduce and actually strengthen Theorem 3 from our 
results. The following can be proved in the same way as classically for the free 

monoid (of. [14,2]). 

Proposition 27. L CM is recognizable (resp. rational, c-rational, mc-rational) 

ifflj, G 1((M)) is recognizable (resp. rational, c-rational, mc-rational). 
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Since the boolean semiring B is both commutative and idempotent, we de- 
duce from Theorem 1 that a series in B((M)) is recognizable iff it is c-rational iff 
it is mc-rational. Using Proposition 27, we deduce that a trace language L CM 
is recognizable iff it is c-rational iff it is mc-rational. The first equivalence is 
precisely Ochmahski's theorem. The second one is a strengthening of a result 
by Pighizzini [13] which characterizes the recognizable languages as those lan- 
guages obtained from finite sets of traces using union, concatenation, restriction 
to mbalphabet and star restricted to monoalphabetic and connected languages. 
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Abstract. We solve a conjecture of J. Shallit related to the automaticity 
function of a unary language, or equivalently to the first occurrence function 
in a symbolic sequence. The answer is negative: the conjecture is false, but 
it can be corrected by changing the constant involved. The proof is based 
on a study of paths in the Rauzy graphs associated with the sequence. 

1    Introduction 

In a recent paper [6], Shallit proposed a conjecture on the automaticity func- 
tion of a unary language, i.e. the size of the minimum finite-state machine that 
correctly decides membership in the language for words of length at most n. 
See [9] for more details on the automaticity function and its applications; in 
short, it measures how close the language is from a regular language. The con- 
jecture arises from a natural question: apart from regular languages (which have 
bounded automaticity), what is the lowest possible automaticity that a language 
can have? Shallit rephrased his conjecture in combinatorial terms as follows: 

Conjecture 1. Let u = Uiu2ud ... be an infinite word over a finite alphabet 
that is not ultimately periodic. Define S{n) to be the length of the longest suffix 
of uiu2 ■ ■ ■ un+i that is also a factor of U\u2 ...un. Then 

liminf £M < 2 _ v = ^-^ ~ .381966 
n—>oo        n £ 

where <p = (1 + VE)/2 ~ 1.61803 is the golden ratio. 

He also proved that if it is true, then this conjecture is optimal as the value 2-ip 
is attained for the famous Fibonacci word, 

0100101001001010010100100101001001010010100100101001010... 

which is the fixed point of the substitution 0 *-+ 01, 1 H-+ 0. 
Allouche and Bousquet-Melou [1] noticed a similarity between this conjecture 

and an older conjecture of Rauzy [7], also involving the golden ratio: 

Conjecture 2. Let u be an infinite word over a finite alphabet that is not ul- 
timately periodic. Let R(n) be the recurrence function of u, i.e. the size of the 
smallest window containing an occurrence of every factor of u of length n what- 
ever its position on u, or oo if no such window exists. Then 

limsup ^H > y + 2 = 11^ ~ 3.61803 . 
n—>oo n 6 
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They proposed a modified ("Rauzy-like") conjecture, and proved that it was 
equivalent to Shallit's conjecture: 

Conjecture 3. Let u be an infinite word over a finite alphabet that is not ulti- 
mately periodic. Let R'{n) be the length of the shortest prefix of u containing an 
occurrence of every factor of u of length n. Then 

limsup^>v> + l = ^-^2.61803. 
7i—»oo       ri £ 

Using Rauzy graphs, we have been able to prove Conjecture 2 [3]. We then 
tried to adapt the proof to Conjecture 3. In principle, Conjecture 3 should have 
been easier to prove in this way than Conjecture 2, as the constant is smaller 
and the number of different cases to study is therefore reduced. However we did 
not succeed in this attempt, and we resolved to first restrict to the case of Stur- 
mian words, which we had previously dismissed as trivial, following Allouche and 
Bousquet-Melou: "[...] the case of the Sturmian words [...] can certainly be ad- 
dressed by adapting the arguments of [5] for the computation of lim sup R(n)/n, 
but we have not written the details." We did not try to use the method of Morse 
and Hedlund [5] which is specific to Sturmian words, but our general method 
with (pointed) Rauzy graphs. And it appeared that contrarily to what we ex- 
pected, the Fibonacci word is not optimal for R'(n)/n. Indeed, the infinite word 

z3 = 0100101001001001010010010100100100101001001... 

defined as the fixed point of the substitution 0 H- 01001010, 1 M- 010 satisfies 

R'(n)      29-2VTÖ     0,ro,0^     J_1 hm sup —— = ~ 2.51949 < <p + 1 . 
n—YOO      ri y 

Conjectures 1 and 3 are therefore false. However, we are now able to prove a 
modified conjecture, with a different constant: 

Theorem 1. Let u be an infinite word over a finite alphabet that is not ulti- 
mately periodic. Let R'(n) be the length of the shortest prefix of u containing an 
occurrence of every factor of u of length n. Then 

R'(n)      29-2V10 
lim sup —^ > —-— ~ 2.51949 , 

n—^oo      ri y 

and this value is optimal. 

Fortunately, Allouche and Bousquet-Melou [1] proved much more than the 
equivalence of Conjectures 1 and 3: they proved that the numbers liminf S{n)/n 
and lim sup R'(n)/n are inverses of each other. Therefore, we immediately deduce 
a modified version of Shallit's conjecture, where the constant is optimal for the 
same Sturmian word Z3 as above: 

Corollary 1. Let u = U1U2U3... be an infinite word over a finite alphabet that 
is not ultimately periodic. Define S(n) to be the length of the longest suffix of 
W1W2 • • • «n+i that is also a factor of U1U2 ■. ■ un. Then 

lim.nf5M< 29 + 2^0^ 396905j 

n-)-oo     n 89 
and this value is optimal. 
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In Section 2, we define precisely the tools that we will use in the proof. We 
then study in Section 3 the case of Sturmian words, and the word z3 occurs 
naturally in this process. Finally, we explain in Section 4 how the general case 
can be reduced to the Sturmian case. 

2    Preliminaries 

2.1     Complexity and First Occurrence Functions 

Let S be a finite alphabet, and S" the set of one-way infinite sequences over 
S. If u = M1U2M3... is an element of Sw, and n is a non-negative integer, 
we denote by Fn(u) the set of factors (also called subwords) of length n of 
u, i.e. of words of length n consisting of letters occurring consecutively in u: 
F!(U) = {ufcUfc+iUfc+2 • • -ufc+n-i I k > 1}, and we denote by F{u) the union of 
these sets. We also denote by prefn(u) the prefix of length n of u, i.e. the word 
UiU-2 ■ ■ .«„• 

The complexity function of u is then defined as the function mapping a non- 
negative integer n to the number of factors of length n of u: pu(n) = #F„(u). 
When there is no ambiguity on the sequence u, we shall write p(n) instead of 
pu(»i). It is clear that for all n > 0,1 < p(n) < (#£)n; moreover, it is well-known 
that p(n) > n + 1 when the sequence u is not ultimately periodic [5]. 

To study Shallit's conjecture, we will use the first occurrence function £u (or 
simply t) defined as follows. For any word w £ F(u), let £{w) be the smallest 
positive integer m such that w = umum+i.. .um+\w\-i, so that for instance 
£(prefn(u)) = 1, and let £(n) = max{f(w) | w G Fn(u)}. 

Proposition 1. The function R' defined in Conjecture 3 satisfies the relation 

R'(n) =l(n) + n-l. 

Proof. The function R'(n) is defined as the length of the shortest prefix of u 
containing every factor of length n of u. A factor w £ Fn(u) occurs in prefm(u) 
if and only if l(w) < m - {n - 1), therefore prefm(u) contains all factors if and 
only if m > t(n) +n-l. a 

Defining A(u) = lim sup i(n)/n, we get as a corollary that 

lim sup —^- = A(u) + 1 . 
n—+00 Tl 

Proposition 2. The first occurrence and complexity functions satisfy the in- 
equality £(n) > p{n). 

Proof. For two distinct factors v and w of the same length n, £{v) and £(w) are 
two distinct positive integers. The set {£(w)\w 6 Fn(u)} contains therefore p{n) 
distinct positive integers, hence its maximum £{n) is at least p(n). D 

If the sequence u is ultimately periodic, then it is easy to see that the function 
£ has a finite limit (it is the minimum value of \uv\, where u and v are words 
such that u = uvu), hence A(u) = 0. Otherwise, the complexity is at least n + 1 
[5], therefore £(n) > n+ 1 by Proposition 2, and A(u) > 1. Theorem 1 says that 
in fact A(u) > (20 - 2>/lÖ)/9 ^ 1.51949. 
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2.2    Rauzy Graphs 

To study the structure of the factors of a sequence u, it is usually convenient to 
define a sequence of graphs G„, called Rauzy graphs or factor graphs, as follows. 
For any non negative integer n, let Gn be the directed graph with p(n) vertices 
labelled with elements of Fn(u), and with an edge from u to v if and only if 
there exist two letters i,j/£S such that uy = xv G Fn+1(u). The graph Gn has 
therefore p(n + 1) edges. 

Unlike other problems for which only F(u) is important, for Shallit's con- 
jecture we need to know which factors occur first in the sequence. We shall add 
this information to the Rauzy graphs by singling out one vertex, the one labelled 
with the prefix of length n of u. We will therefore consider the pointed Rauzy 
graph (G„, prefju)). 

We choose to label edges of Gn with letters, in the following way: if uy = xv 
with x,y G S, then the edge (u,v) is labelled with the letter x. We then define 
the label of a finite path of length k in Gn as the word of length k obtained by 
concatenating the labels of the edges in the order they are met, and similarly 
the label of an infinite path as an infinite word. 

With this definition, there is a unique infinite path in Gn labelled with u and 
starting in prefn(u): it is the path (toi, w2, w3,...) where wk is the fc-th block 
of length n of u, i.e. wk = ukuk+i ...uk+n-i (in particular, wx = pref„(u)). 
Knowing this path, we can now read £(n) on the graph. 

Propositions. Let (wi, w2, w3,...) be the path labelled with u in Gn. Then 
£{n) - 1 is the length of the shortest prefix of this path that goes through every 
vertex of Gn, and £(n + 1) is the length of the shortest prefix of this path that 
goes through every edge of Gn. 

Proof. For a given w G Fn(u), we have £{w) = min{A; > l\wk = w}. Conse- 
quently, a prefix (w1,w2, ■ ■ ■ ,wk) of length k - 1 of the path labelled with u 
goes through the vertex w if and only if k > £(w), and it goes through every 
vertex if and only if k > £{n). Similarly, for a given edge (u,v) labelled with 
x G S, we have £(xv) — min{k > 1 | wk = u and wk+i — v}. Consequently, a 
prefix (wi,w2, ■ ■ ■ ,wk+i) of length k of the path labelled with u goes through 
the edge (u,v) if and only if k > £{xv), and it goes through every edge if and 
only if k>£(n + l). □ 

It should be noted that in the graph Gn, every vertex has outdegree at least 
one (i.e. has at least one outgoing edge), and every vertex except possibly the 
one labelled with prefn(u) has indegree at least one. The sequence is said to be 
recurrent if every factor occurs infinitely often; in this case prefn(u) has also 
indegree at least one. If u is not recurrent, then for n large enough the prefix 
prefn(u) occurs only once, and therefore the corresponding vertex in Gn has 
indegree zero. 

A vertex v of Gn is called bispecial if both its indegree and its outdegree are 
greater than 1 (the word v is then a bispecial factor of u [4]). 
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2.3    From G„ to Gn+i 

The reader is warmly encouraged to construct the Rauzy graphs G„, for small 
n, for a simple sequence like the Fibonacci word, to get acquainted with the 
manipulation of these graphs. One crucial point, on which the rest of this article 
relies heavily, is the relation between Gn and Gn+i, which is explained in detail 
in [2, 4, 8] and summarized below. 

Knowing Gn, one constructs its line graph D{Gn) as follows: for every edge 
(u, v) labelled with x in Gn, there is a vertex in D(Gn) labelled with xv; and for 
every pair of consecutive edges ((u,v), {v,w)) in Gn labelled with x and y, there 
is an edge (xv,yw) in L>(Gn) labelled with x. 

Proposition 4.   The Rauzy graph of order n+l is a subgraph ofD(Gn). Namely: 
— If Gn has no bispecial vertex, then Gn+i = D(Gn). 
— IfGn, has bispecial vertices, then some (possibly none) edges (xv,vy), with v 
bispecial, have to be removed from D(Gn) to obtain Gn+\. 

3    The Sturmian Case 

In this section, we assume that u is a Sturmian sequence, i.e. a sequence with 
complexity p{n) = n +1. As p(l) = 2, the alphabet S has only two letters. Rauzy 
graphs of Sturmian sequences are described by the following proposition [2]. 

Proposition5. If u is a Sturmian sequence, then the Rauzy graphs are of one 
of the following two types (vertices with indegree and outdegree 1 are not repre- 

sented). 

(i) (ii) 

Moreover, both types occur infinitely often. 

We shall give a particular importance to graphs of the second type, which we 
number G„0 = G0, Gni, G„2, etc. Adding the initial vertex prefju) (marked 
with a black triangle), we get the following pointed graph Gnk. 

(1) 

The three branches are labelled with the words ak, bk, ck (in the case where 
the initial vertex is also the bispecial one, ak is the empty word and the loop 
labelled with bk is the first one used in a path labelled with u). They satisfy 
p(nk + 1) = nk + 2 = \akbkck\. 

We are now interested in the evolution of the graphs when n grows from nk 

to nfc+i- 



698 

Proposition 6. For every k, the transition between Gnk and Gnk+1 is of one of 
the following three types: 
transition A: nk+\ = nk + \akbk\, ak+i = ak, bk+i = bk, ck+i = akbkck; 
transition B: nk+i = nk + \akbk\, ak+i = ak, bk+i = bkck, ck+i = akbk; 
transition C: nk+i = nk + \ck\, ak+1 = ckak, bk+i = bk, ck+i = ck. 

Proof. We have to construct the graphs Gn for nk < n < nk+i, using Propo- 
sition 4 repetitively. Let w denote the bispecial factor of length nk. Let x, y, z 
respectively denote the last letters of ak,bk, ck (note that y ^ z). The line graph 
D(Gnk) is then 

(2) 

CLZ' 

To obtain Gra,.+i, which is a graph of type (i), one of the two dotted edges 
has to be removed from (2). (Note that the other two central edges cannot 
be removed because the resulting graphs would only have ultimately periodic 
paths.) Therefore, Gnt:+i is either 

yck 

(3) 

(4) 

In the first case, the next graphs Gn have the same morphology until n = 
nk + \bk\, where we get 

(5) 

Then the next graph (n = nk + \bk\ + 1) depends on which branch contains the 
prefix. There are therefore two subcases, 

(6) 

xbkck 
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which then evolves to Gn,+1, at nk+l = nk + \akbk\ (transition A) 

a 

(7) 

and 

(8) 

akbkck 

l\ 

x b. 
bkck 

-•^K 
which then evolves to Gn,+1, also at nk+1 = nk + \akbk\ (transition B): 

(9) 

In the second case, the following graphs have the same morphology until 
n = nk + |cfc|, where we get directly Gnk+1 (transition C): 

(10) 

We observe that there are three possible transitions, corresponding to the 
three transformations A, B, and C. a 

Proposition 6 allows us to define a new representation of the sequence u. Let 
A be the alphabet A = {A,B,C}; the adic representation of u is the sequence 
t = ht2t3 ... G A", where tk indicates which kind of transition occurs between 
Gn,_, and Gn,,. The adic representation is related to similar representations 
studied in [10], and also (in the case of Sturmian words only) to the usual 
continued fraction expansion of real numbers [5]. 

Proposition 7. Given a sequence t G A" \ A* (A" U C"), there exists a unique 
Sturmian sequence u (up to renaming of the letters) such that t is the adic 
representation of u. 

Proof. We first take the graph Gno = G0 to be the graph with one vertex and 
two loops of length 1, labelled with the two letters of S (b0 will be the first 
letter of u, and c0 the other letter), and a0 = e since the starting vertex is the 
bispecial one. Then ak, bk, and ck are entirely defined by the sequence t, using 
the recurrence relations of Proposition 6. We thus know the labels of the edges 



700 

of the graphs Gnk, and from this information we can also find the labels of the 
vertices (the label of a vertex in Gn is the label of any path of length n starting 
at this vertex). In particular we obtain the words prefnjl(u), which as a limit 
give a sequence u. 

We still have to check that u is indeed a Sturmian sequence. Its Rauzy graph 
of order nk is a subgraph of Gnk, but it may not be exactly Gnk in the event 
where the path associated with u never reaches certain branches of the graph. 
In this case the sequence would be ultimately periodic, which implies that for n 
large enough, all graphs Gn have a loop of the same size (equal to the period). 
This occurs only when t e A*A" or t G A*CJJ (words in A*BU define legal 
Sturmian sequences, for instance Bw is the adic representation of the Fibonacci 
sequence). G 

We can now turn to the study of A(u). Knowing a few consecutive terms of t, 
we are able, using the corresponding graphs, to evaluate certain values of l(n) as 
a function of |a^|, \bk\, and |cjt|. In some cases, we can prove that it is more than 
ipn. If these terms occur infinitely many times in t, we deduce that A(u) > <p. 

Proposition8. If t contains infinitely many occurrences of the words BCm A 
(with in > 0), AC A, ACC, CBCB, CBCC, BBCCB, BBCCC (i.e. if either 
t contains infinitely many occurrences of one word in the list, or if t contains 
BCmA for infinitely many values of m), then A(u) > <p. 

Proof. We shall study in detail only the case of the word BCA\ the other words 
are dealt with similarly. Suppose that tk+i — B, tk+2 — C, and tk+3 = A; let 
n — nk, a = ak, b = bk, and c = Ck- Then we have : 

i n-k+i Ok+i bk+i Ck+i 

0 
1 
2 
3 

n 
n + \ab\ 
n + 2\ab\ 

n + 4\ab\ + \c\ 

a 
a 

aba 
aba 

b 
be 
be 
be 

c 
ab 
ab 

ababcab 

Note that all paths of Gnk+3 starting at the pointed vertex begin with 
bcababcabab. Thus bcababcabab is a prefix of u. This gives the beginning of 
the path followed by u in the graphs G„< for n' > n. In particular, in Gn+i 
(see (3)), the shortest prefix going through every edge has length \bcab\, hence 
£(n + 2) = |6ca6|; in Gn+|{,|+1 (see (8)), this shortest prefix has length \bcaba\, 
hence £(n+\b\ + 2) = \bcaba\; and in Gn+|aft|+1 (see (4), with k replaced by 
k+ 1), t(n+\ab\+2) > \bcababcab\. Now let di = £(n+|6|+2) - <p(n+\b\+2) and 
<^2 = i(n+\ab\ + 2) — (p(n+\ab\ + 2), and let us compute d\ + <pd2, recalling that 
n + 2 = \abc\, and c/?2 = <p + 1: 

d!+<pd2    =    (n+\b\ + 2) - >p(n+\b\ + 2)) + (p(e(n+\ab\ + 2) - >p(n+\ab\ + 2)) 

> (\bcaba\ — <p\bcab\) + <p{\bcababcab\ — <p\bcaba\) 

> (1 + tp - (p2) \bcaba\ = 0 

This shows that at least one of di and d2 has to be non-negative, i.e. that 
t{n') > ipn' for n' = n + \b\ + 2 or ri = n + \ab\ + 2. 



701 

Similarly, for each occurrence in t of a word in the list, there is a length 
n' for which i(ri) > ipn'. If there are infinitely many such occurrences, then 
A(u) > <p. . D 

Most sequences t satisfy the conditions of Proposition 8; the only words 
that do not satisfy them are the elements of the set A*{CB2B*Y UA'B". If 
t G A*BU, then u is a morphic image of the Fibonacci sequence and it is easy to 
see that A(u) = <p\ for the other set however, the method of Proposition 8 does 
not seem to work. 

It is then natural to study the simplest examples of these sequences, for which 
t is periodic with a short period. Namely, take t = (CBm)u, with m > 2. The 
recurrences for ak,bk, and ck can be solved; taking the limit of (bk), one finds in 
particular that the associated Sturmian sequence, zm, is the fixed point of the 
substitution fm o g, where /(0) = 01, /(l) = 0 (/ is the substitution defining 
the Fibonacci word) and g(0) = 01, g(l) = 1. Computing £ for these sequences, 
although rather technical, is not very difficult, as the lengths of the paths in the 
Rauzy graphs can be computed from the lengths of ak, bk, and ck- If only A(zm) 
is of interest, this amounts to computing the eigenvectors of the matrix of the 
substitution fmog, combining them in several ways, and taking the maximum. 
Proposition 9 summarizes the results for the first values of m. 

Proposition 9.   The sequences zm> 2 < m < 5, yield the following limits: 

A(z2) = ^^ * 1.57735 , 

A^i»^, 1.51949, 

A(z4) = 
18t/24 ^ 1-52660 

415 + 3^65 
yb> 280 

Among these four examples, the sequence z3 appears to give the lowest value; 
it is indeed possible to compute explicit formulas for all A(zm) and to prove that 
they are increasing for m > 3. This observation suggests that A(z3) could be the 
lowest possible value for Sturmian sequences. 

To prove this, we proceed as in Proposition 8, loosening the researched in- 
equality by replacing <p with 1.52. 

Proposition 10. //1 contains infinitely many occurrences of one of the words 
B5, B3CB4, B2CB2CB4 or CB3CB2CB, then A(u) > 1.52 > A(z3). 

The only sequences t satisfying neither Proposition 8 nor Proposition 10 are 
elements of the set A*(CB2)U U A*(CB3)U, i.e. the corresponding Sturmian 
sequences are morphic images of z2 or z3, among which z3 is optimal according 
to Proposition 9 (changing a finite prefix of t does not change the value of A(u)). 
We have thus finished the proof of Theorem 1 in the Sturmian case. 
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It should be noted that when t £ A*(CB3)U, then A(u) > 1.52 > A(z3): the 
spectrum of possible values for A(u) for Sturmian sequences is not continuous. 
We have not tried to find what the next attainable value is, and 1.52 is just a 
rough minoration. 

4    The General Case 

Let us now turn to the general case. As noted in [1], sequences with large enough 
complexity can be easily eliminated. 

Proposition 11. If there is an integer no such that the sequence u satisfies 
p(n + 1) - p(n) > 2 for all n > n0, then A(u) > 2. 

Proof. If this is the case, then p(n) > p(n0) + 2(n - n0) for n > n0, hence there 
is a constant C such that p(n) > 2n - C for all n. According to Proposition 2, 
£(n) > p(n), hence 

A(u) = lim sup ^ > lim sup ^ > 2 . 
n n 

We can therefore suppose that p(n + 1) - p(n) = 1 for infinitely many n, 
which implies that for infinitely many n, the Rauzy graphs are of the types 
of Proposition 5, at least if the sequence is recurrent (non-recurrent sequences 
have slightly different graphs, the initial vertex being connected by an additional 
branch to the main part of the graph, but they can be handled similarly). As for 
Sturmian sequences, we can define the sequences n^, a^, bk, and Ck, and study 
the possible transitions. There are infinitely many possible transitions (including 
A, B, and C), as the intermediate graphs can be very complicated. However, in 
most cases we will obtain a sufficiently large minoration for A(u). 

The graph Gnjt+i may be graph (3) or graph (4), in which case we find 
the same transitions A, B, and C as with Sturmian words, but it may also be 
graph (2), the complete line graph D(Gnic). In this graph, the shortest paths 
starting from the pointed vertex and going through every edge are bccab and 
babcc (for simplicity, we now note n = nk,a = a^, etc.) hence £(n+2) > |a|+2|6c|. 
What happens next depends on the respective sizes of b and c. If b is shorter, 
we get the following graph of order n + \b\ 

(11) 
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where c = c'b', \b'\ = |fr|. There are then two possibilities for n + \b\ + 1, 

zb' 
ax c z~ 

ax 

(12) 

and 

(13) 

x b 
In both cases, a path starting from the pointed vertex and going through every 
edge has length at least 2\abc\, i.e. tin + \b\ + 2) > 2\abc\. As in the proof of 
Proposition 8, let di = t{n + 2) -<p(n + 2) and d2 = l(n+\b\ + 2)-tp(n+\b\ + 2), 
and let us compute di + ipd2, using \abc\ = p(n + 1) > n +2 : 

di+tpd*    =    {l(n + 2)-v(n + 2))+v(l{n+\b\+2)-v(n + \b\ + 2)) 

>    (\a\ + 2\bc\ - <fi\abc\) + <p(2\abc\ - <p\bcab\) 

=    (1 + <p - ^2)\abc\ + \bc\ - ¥>|&| = \bc\ - <p\b\ 

As \b\ < \c\, this number is positive, hence also one of di and d2, i.e. £(n') > <pn' 
for n' = n + 2 or n' = n + |b| + 2. If this transition occurs infinitely often, then 
^(u) > ip; we can therefore assume that this transition does not occur when k is 
large enough. 

If c is shorter than b or has the same length, several subcases are possible, 
most of which can be eliminated with the same kind of arguments. The only 
transitions that remain are those where the loop labelled with c is taken a fixed 
number of times j > 2 by every path, with (j - l)|c| < \b\. We eventually get at 
order n + \b\ the graph 

(14) A 

which is essentially the same as graph (5) except that c is repeated j times. This 
gives rise to transitions Aj and Bj analogous to A = Ai and B = Bx. 

We can now define the adic representation of a sequence u that satisfies 
A(u) < <p: it is a sequence t = tkotko+\tko+2 • • • on the infinite alphabet A' = 
{Aj,Bj \j > 1}U{C}, where tk indicates the transition between G^^ and Gnk. 
As replacing A and B by Aj and Bj may only increase the values of I, the rest 
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of the proof for Sturmian words works with the general case as well, and we can 
conclude that Theorem 1 is true for any recurrent binary sequence. 

As noted above, the case of non-recurrent sequence uses graphs with a slightly 
different morphology, but does not cause any additional problem. The case of an 
arbitrary finite alphabet can be easily reduced to the binary case with a simple 
projection argument, and this completes the proof of Theorem 1. 
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Abstract. Designing escrow encryption schemes is an area of much re- 
cent interest. However, the basic design issues, characterizations and dif- 
ficulties of escrow systems are not fully understood or specified yet. This 
paper demonstrates that in public-key based escrow, the combination of 
(1) two different receivers (intended receiver and potentially law enforce- 
ment); and (2) on-line verified compliance assurance by the sender which 
ensures that law enforcement can decrypt ciphertext upon court order, is 
equivalent to a "chosen ciphertext secure public-key system" (i.e., one se- 
cure against an adversary who uses the decryption oracle before trying to 
decipher a. target ciphertext). If we further add measures to ensure that 
law enforcement is given access to messages only within an authorized 
context and law enforcement is assured to comply as well (i.e., it can- 
not frame users), then the escrow system is equivalent to "non-malleable 
encryption schemes". The characterizations provide a theoretical under- 
pinning for escrow encryption and also lead us to new designs. 

1    Introduction 

The intent of escrow encryption schemes is to enable strong cryptography for 
users while protecting society from criminal behavior. Namely, users can send en- 
crypted messages while enabling law enforcement (when and only when allowed 
by the court) to read their clear messages. The first scheme was the Escrow En- 
cryption Standard (EES) and its Clipper implementation [19], after which many 
systems have been suggested world-wide [10, 19, 25]. Governments, industry and 
international organizations are all investigating escrow encryption solutions. 

Many of the early and recent designs focused on various specific aspects of 
escrow encryption, but no rigorous investigations of the technical issues have 
been clone. One of the basic issues that the initial Clipper implementation [10] 
and the EES gave rise to, is the notion of "compliance assurance and verification" 
implemented through the use of a LEAF authentication field in Clipper. This was 
only based on an intuitive understanding drawn from an obvious need, and, in 
fact, due to design errors and lack of understanding of requirements, some severe 
flaws were found [6, 20]. Here we attempt a step in the direction of theoretical 
understanding of escrow systems. 

Research performed while at Sandia National Laboratories. This work was performed 
under U.S. Department of Energy Contract number DE-AC04-76AL85000. 
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Our Results: 
An escrow encryption system can be viewed as a system providing private mes- 
sages for a regular receiver and a potential additional "shadow receiver" called 
law-enforcement. We concentrate on "public key based" schemes, i.e. where the 
sender and receiver do not have to meet. We have collected available requirements 
and we formally model "escrow systems" based on these basic requirements. We 
concentrate on a very basic property of "compliance and its verification" in our 
modeling. This property assures that a message sent is made available for future 
authorized law enforcement access; it is discussed by several documents and pro- 
posed systems. As an example, the Law Enforcement Activation Field (LEAF) 
in Clipper has the purpose of enforcing availability of "sufficient information" 
that enables the shadow receiver to read the messages when a proper escrow 
procedure takes place, connecting the availability to the decoding availability. 
Another example motivating us to investigate compliance issues is a statement 
in a NIST (The US National Institute of Science and Technology) document [34] 
which says: "To meet these criteria, encryption products will need to implement 
key escrow mechanisms that can not be readily altered or bypassed so as to 

defeat the purpose of key escrowing". ^ ^ 
To model compliance verification, we add a formal entity called a "gateway 

G that assures that messages sent into the systems (from a sender to the receiver 
and the potential "law enforcement") are in compliance; G is less obtrusive than 
the recently suggested "Trusted Third Party entity" [25]. We then ask: Given the 
escrow encryption system models with the basic property of compliance, what 
type of cryptosystems and security notions characterize them? Such character- 
ization helps in understanding the requirements and may also help in future 
designs. It may potentially allow implementations to exploit available crypto- 

graphic knowledge and prevent flaws in future system designs. 
We call schemes which provide the sender's compliance checking capability 

compliance verifiable escrow encryption systems. These systems, which have a 
seemingly necessary ingredient required for full-fledged escrow encryption, are 
shown to be strongly related to chosen ciphertext secure encryption public-key 
systems which were first introduce by Naor and Yung [33] and further developed 
in various works [35, 9, 40, 28, 4, 21]. We concentrate on systems with formal 
proof of security and we prove that under quite a broad definition of the respec- 
tive systems (avoiding narrow scenarios and limiting resources, concentrating on 

the principle security requirements), the following holds: 

A compliance verifiable escrow encryption exists iff a chosen ciphertext 

secure cryptosystem exists 

Furthermore, if we require more from the escrow system and also assume 
that the system has to limit untrusted law enforcement as well, then we get 
what we call basic escrow encryption systems. These systems require compliance 
verification and in addition they ask for the binding of a message to a proper 
limitation of context (namely time, sender and receiver identities). Context is 
required to be checked (by an authority- escrow agents) before messages are 
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opened to law enforcement (as advocated in the recent design in [27] and by 
formal documents). For secure basic escrow systems we show that: 

A basic escrow encryption system exists iff a non-malleable encryption 

system exists 

Non-malleable systems in essence do not allow an attacker to modify chosen 
ciphertexts to create a new meaningful ciphertext and were introduced by Dolev, 

Dwork and Naor [16]. 
Our results demonstrate inherent complexities in implementing systems like 

the key recovery (by the US government) and trusted third party (by some 
European governments) on top of a public key infrastructure. They show that the 
difficulties of assuring compliance in such systems is not only a property of the 
current ad-hoc designs, but rather they are inherent to any system attempting 
to build key escrow with compliance in the available infrastructure. 

On Reductions between Cryptosystems: 
We note that in "one-way function based cryptography," a characterization was 
completed and its various primitives (one-way functions, digital signatures, ran- 
dom generators, private cipher systems) have been shown to be equivalent (in 
a long research program which is reviewed in [29]). In "public-key encryption 
systems" (our subject) the picture is much less clear. A sufficient condition for 
a secure public key communication (i.e., secrecy without the parties sharing a 
key) is either "trapdoor function" or "key exchange protocol". These imply the 
existence of "one way function" since they enable an authentication protocol 
[23], but there are indications that one-way functions by themselves, cannot 
easily imply (based on black-box reductions) "public-key cryptography" (since 
such a construction separates NP from P) [24]. Necessary conditions beyond this 
are not known, and, therefore, equivalence among various public-key notions is 

mostly open and intriguing. 
Another issue is the quality of the cryptographic reduction. In [29] a reduction 

is quantified by the amount it reduces the security parameter of a problem 
when a problem is reduced to another one (an idea attributed to L. Levin). Our 
reductions are high quality in this sense, they are linear preserving. 

Related Work: 
Various designs have been suggested concentrating on several important aspects 
and crucial stages of escrow schemes. Most of these aspects are orthogonal to the 
issue of compliance as investigated here. In [30] the issue of key distribution to 
trustees was discussed, while a more rigorous approach to a distribution channel 
with minimization of various potential exposures was given in [26]. In [14] tracing 
receivers was discussed (this is criticized in [15, 20]), and in [31] the distribution 
of pseudorandom functions was discussed. The issue of limiting time and context 
of escrow was discussed in [5, 27]. Also, a few alternatives to escrow based on 
partial key has been put forth [37, 3, 2]. Opening of ciphertexts based on small 
(message by message) granularity was put forth in [11]. Characterizing universal 
escrow trapdoor using public-key systems was presented in [7]. Issues for systems 
design, based on findings of initial failures were discussed in [20]. 
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2    Compliance-Verification Systems 

We first concentrate on a system with minimal requirements for escrow encryp- 
tion, assuming honest law enforcement. As motivated by [34], the system satisfies 
the following requirements: (1) compliance verification: the messages sent are 
assured to be open-able by law enforcement when the sender actually employs 
the system for privacy; and (2) "limiting surveillance": as said in [34]: "in- 
formation both sent and received by the user can be decrypted without release 

of keys of other users." 
We note that we allow the systems in our definitions to use all available 

resources such as interaction and perhaps inefficient constructions as long as 
they are polynomial. We are interested in relations and we do not necessarily 

limit ourselves to restricted models. 
Remark: We note that the sender may use another mechanism to encrypt 

the message (pre-encryption) or employ a covert channel. Our definition does not 
attempt to prevent such transmissions; all we argue about is that if a certain 
message is generated by the system and is sent via the gateway to the receiver- 
it should be the case that law enforcement gets this message when needed. 

The parties: There are four parties which are polynomial-time and each has 
its respective key: S is the sender and G is the gateway, through which messages 
are passed, R is the receiver, and L is law enforcement. The sender and gateway 
may be active at message sending and are probabilistic algorithms. (We explain 

the motivation/source of the gateway below). 

Basic properties and definition 

- Based on the above two requirements, in order to satisfy the compliance 
verification the gateway G is introduced here which does not allow a cipher- 
text that does not pass the verification (of compliance) to be opened (or 
received) by the receiver. Such assurance seems to be a minimal require- 
ment in a mandatory escrow process. Physically, this gateway may reside at 
the sender module, receiver module (as the LEAF checker in Clipper), or 
anywhere on the communication channel (the network router, the firewall, 
etc.). The gateway is a checking function of the sender and is similar but less 
involved than the recently suggested "trusted third party" [25] endorsed by 
a number of European government and financial institutes. 

- To satisfy the minimal surveillance requirement, the law enforcement key 
must be different than the receiver's key. 

Definition 1. Compliance verifiable escrow encryption system (CV- 
EES): Let k be the security parameter for an encryption system which for any 
Law enforcement (L) with a randomly chosen public key e^ (and corresponding 
private key d^), for any public key e# (chosen at random) and corresponding 
private keys dR of the Receiver (R), and a verification key vG for a compliance 
Gateway (G), for any Sender (5), the following holds. 
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Let a be the encryption of a message m generated by S, namely S(eR, e^, m) = 
a, then there is a protocol between S and G, and then ß acts on a (to get the 
message), L may apply to a later. We are assure that: 

Certification of Compliance: for any a, let G(va,a) the result of a protocol 
between G and 5 computed by G, then £?(*;<?, a) = 1 implies that there exists 
an m such that: R(dR,a) = m and L(d,L,a) = m with probability. 1 - p- for 
any constant d, for parameter fc large enough. 

Security: The system is polynomially secure [22], namely for any two messages 
mo, mi computed by a message finder, for any ciphertext a that encrypts one of 
the message raj (6 G {0,1} chosen at random), for any message distinguisher that 
is given (eR,eL,VG,m0,mi, a) returns 6' = {0,1}, then 6=6' with probability 
less than ^ + JJ for any constant d, for k large enough. 

Note that we can have a number of variations that do not change the system 
in a fundamental way: we can assume that the ciphertext generated is performed 
interactively with the gateway; also, the order of choice and publication of the 
keys does not matter as a receiver cannot help itself by using ex in its key 
generation so CR is actually drawn at random to be secure. 

2.1     Chosen ciphertext security 

Let us recall the definition of chosen-ciphertext secure systems [33]. 

Definition 2. Chosen ciphertext secure encryption system (ccs sys- 
tem): Let k be the security parameter for a public key encryption system 
which generates public/private key pair (e,d) for each user of the system. The 
adversary attacking a user (A CC-attacker) is a sender who is allowed the fol- 
lowing attack: It generates a history tape h from 1*, e and input/output pairs 
from (poly in k) ciphertext queries it provides adaptively to a decryption oracle 
which has d. Then, the following holds: 

Security: Two messages mo, mi from the message space are generated from a 
probabilistic polynomial time called a message finder on input lk and auxiliary 
input tape which may include h and e and other public information. Let a be the 
encryption of m\, with e for some randomly chosen bit 6. Lastly, a message dis- 
tinguisher given (e, mo, mi, h, a) returns 6' = {0,1}. A system is secure against 
chosen ciphertext if it is polynomially secure after the attack namely, for any 
CC-attacker, for any message finder, for any message distinguisher, then 6=6' 
with probability less than \ + JJ for any constant d and k large enough. 

Remark: the definition above assumed non-adaptive attacker in the sense 
that the target ciphertext was not available to it when producing h, we may also 
allow adaptive attacker (that gets to see the challenge first, but is not allowed 
to query the oracle on it). 
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2.2     Equivalence of the systems 

Next, we compare the systems above: the first, motivated by requirements of an 
escrow encryption environment, and the second which assures level of security. 
We prove the following: 

Theorem 3. The following are equivalent: (1) Existence of compliance verifiable 
escrow system, and (2) Existence of chosen cipheriext secure encryption system. 

To prove the theorem we will show reductions in the next two Lemmas: 

en Lemma 4. If there exists a compliance verifiable escroiu system CV-EES th 
there exists chosen cipheriext secure (CCS) encryption system- 

Proof. (Sketch) We assume that there exists a CV-EES and build a CCS 
system. Let G be the gateway and vG be the verification key for the CV-EES. 
Let eR, eL be the public keys and dL be the law enforcement key corresponding 
to eL for the CV-EES. 

In the following we will use a "tinkering argument" that will move keys and 
components around to have a public-key system based solely on the components 
available to us from the CV-EES system. We demonstrate that the following is a 
CCS system in a complete public-key environment where every participant has 
a key (as in Rackoff and Simon [35]). The following is done 

- Each user u publishes a public key as a receiver eu which is drawn from the 
family of receivers' public key; 

- in addition it publishes a sender key which is from the family of Law en- 
forcement keys e\. 

Let V be the sender and U the receiver, we define them as following: 
Encryption of m: a = S(eu, eL , m) 
Decryption of a: If G(vG,a) = 1 then return m = L(du,a) else return NULL. 

First note that the system is polynomially secure, this is derived from the 
security definition of the CV-EES system. To prove that this is secure against 
a chosen ciphertext attack we use the following argument. When G returns 1 
it means that the two decryptions (under dv and under dv

L) retrieves the same 
message with overwhelming probability. Thus, in a similar argument to [35], 
if G(vG,a) = 1 then the sender must have known the input which generated 
ciphertext a (by knowing and applying d\ to retrieve the message. Observe 
that this key is the sender private key drawn from the family of law enforcement 
keys which is corresponding to e\. Since "the sender" already knew the value 
that is encrypted we are sure that revealing it after the check "the sender" won't 
learn anything new since "the sender" already must have known this information. 
Hence, the attacker being the sender was reduced to a "known plaintext attack" 
which is taken care of by the property of polynomial security. In fact we can 
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show is that by providing the ciphertext queries and getting a corresponding 
cleartext answer in a CC-attack producing history h, the attacker has no more 
power than the (message only) attacker that produces by itself (without the help 
of the oracle) a cleartext message and then produces its ciphertext and produce 
a history h' of ordered ciphertexts and their corresponding messages. 

The above reduction is direct (using the same keys used in the original sys- 
tem) and thus one does not lose in the size of the security parameter when 
translating the CV-EES to the CCS cryptosystem. This implies that a success 
ratio in breaking the CCS cryptosystem implies the same ration for the escrow 
related scheme (CV-EES) which means a linear preserving reduction. 

Lemma 5. If there exists a chosen ciphertext secure (CCS) encryption system 
then there exists compliance verifiable escrow system. 

Proof. (Sketch) First, we have an encryption scheme which is polynomially 
secure (by definition of CCS-cryptosystem); in fact all we need is a secure en- 
cryption for proving the lemma. So L can publish a public key e^ in such a 
system, and R publishes another public key eR in this system. Then note that 
since we have chosen ciphertext secure encryption system we have a one-way 
function (we can use the encryption function for authentication protocol among 
two parties, thus by [23] one-way function exist). 

We continue by a simple version of a construction of [33] to construct the CV- 
EES. To send a message m, a sender first generates two encryptions of m one 
for the receiver under eR and one for law enforcement under ej,. The verification 
algorithm of G is done by a zero-knowledge proof of knowledge of the fact that 
"The sender (i.e., prover) knows a unique message m such that the two ciphertext 
are encryptions of it under their respective keys". This is an NP statement and 
can be proven to G interactively in a zero-knowledge fashion by the sender (that 
knows the preimages) using the availability of one-way functions. This proof 
assures that the message opened by the receiver using his public key is the 
same message available to law enforcement if they wish to open it using their 
key, thus G can allow the two ciphertexts to be transmitted together over the 
communication line. (In the next version we will formally recall the definition of 
proof of knowledge [17, 38, 1] and use it to show that the system has the required 
properties and that with very high probability both security and certification of 
compliance hold). 

Using amplification of one-way functions [39] we can have the probability 
of extracting any computational advantage in the CV-EES system based on 
the zero knowledge proof, inverse exponential in the security parameter for any 
polynomial-time computation. Thus, breaking the system based on breaking the 
ZK proofs adds a negligible value to the time-success ratio. Now observe that the 
reduction just uses two CCS encryption systems, and the above zero-knowledge 
proof (which has the inverse exponential success probability). Breaking the CV- 
EES encryption means that in most of the time (at least 1/2 of the cases) we 
break one of them. Therefore, this reduction is linear preserving. 
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3    Basic escrow encryption systems and non-malleability 

CV-EES systems are not sufficient to protect individuals' privacy rights from 
unlawful search and seizure as they impose no compliance restriction on opening 
of ciphertext by law enforcement. For example, it was shown that with Clipper 
it is possible to modify the ciphertext so that it appears the ciphertext was 
generated by (or for) a Clipper chip different from the actual participants [20]. 
Let us review what we want from a "basic escrow encryption". 

- First, we want "basic escrow encryption systems" to assure compliance of 
senders (as in CV-EES), and to be secure (as in CV-EES). 

- In addition, it has been concluded by many that we need to have some con- 
text associated with a ciphertext which determines if law enforcement has 
the right to open that message. Then, an authorization body (judge, escrow 
agents, etc.) can use this context to determine whether to allow law enforce- 
ment to open or not to open a ciphertext (This is context-limited escrow). 
This is motivated by various designs [6, 20, 30, 8, 27, 5] and primarily by 
the correspondences on Clipper [18, 10, 19]. The ciphertext context includes 
the sender and receiver identity since, formally, "Law enforcement agencies 
require (1) information from the service provider to verify the association of 
the intercepted communications with the intercept subject, ..." [18]. This 
seems a reasonable minimal requirement. Note that "context limitation" is 
a double-edge sword. Namely, the sender who knows that law enforcement is 
allowed to escrow based on restricted context, can attach "wrong context" 
to evade legal escrowing. Thus, the sender's compliance has to be revised 
and to include also compliance with "a correct context" which is assured by 
extended compliance assurance which includes (context certification). 

- Next, from a security point of view, we would need to be able to identify 
a sender with the message and not enable law enforcement to modify the 
sender's ID nor the other content and context (opening of messages is allowed 
only within a context). This makes the system spoofing-free (with respect 
to law enforcement that tries to modify messages or fabricate ones based 
on past opened messages and even when it can control some of the earlier 

messages sent in a conversation). 

The notion of spoofing-freeness looked to us related to the one of non- 
malleability (defined in [16]). The later helped the formalization of the above 
requirements as following: 

Definition 6. Basic Escrow encryption system (B-EES): Let k be the 
security parameter for an encryption system which for any Law enforcement (L) 
with a randomly chosen public key eL (and corresponding private key dL), for 
any verification key vG for a compliance Gateway (G), and a legal authority J 
with authorization key aj = aj(eL,dL), for any randomly chosen public key 
eR and private keys dR of the Receiver (R) (each of the keys drawn from a 
corresponding key family with parameter k), then, for any Sender (S): 
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Let KT be the context of a message which at minimum includes the identity of 
the sender KTS and receiver KTT. Let a be the encryption of a message m gener- 
ated by S using receiver's key CR, namely S(eR,eL, KT, m) = a then: 

(1) Compliance and Context Certification and Correctness: for any a, 
let G(vG,a) the result of a protocol between G and S computed by G, then 
G(vG,a) = 1 implies that with probability 1 - kd for any d, for k large enough: 

- there exists an m such that: R((1R, a) = m, KT, and 
- the result of J(aj, a) = context, key and context = KT and L(CIL, a, key,...) = 

77!., KT. (We may assume that the context is part of the message). 

(2) Context-Limited Escrow: For any ciphertext a and an authorized con- 
text KT, Let J(aj,a) = context,key. If context = KT then L is activated and 

L{di, a,key) = m, KT. 

(3) Spoofmg-freeness: We define poly-time adversary A which may try 
to produce a message by modifying another message according to some poly- 
time relation REL (REL different from the identity relation), thus spoofing the 
system (and generating a message out of context or with different content that 
may be opened by the judge and in effect will frame the user); formally: 

- The adversary A first generates a history tape h\ from lk, e, e^, d^, eR and 
input/output pairs from (poly in k) queries it provides to the authorizing 
authority with authorized contexts; For any ciphertext at and an authorized 
context KTi, Let J(aj,ai) = contexti,keyi. If contexti = KT; then L is 
activated and L(dL,ai, keyi) = ra^/cr,-. The record (cn,KTi,keyi,m.i) is put 
on the history tape. 

- Then, A produces a distribution M on messages (and contexts). 
- Then A receives the challenge ciphertext a e« S(e, ei,KT, m) for m GR M 

and some knowledge about the message (e.g., its context) called hint(m) 

which is polynomial time computable from m. 
- A again generates a history tape h2 from 1*, e, ej,, di, eR and input/output 

pairs from (poly in k) queries all different from a that it provides to the 
authorizing authority with authorized contexts; For any ciphertext a,- and 
an authorized context KTJ, Let J(aj,aj) = contextj,keyj. If contextj = KTJ 

then L is activated and L{dL,otj, keyj) = mj,KTj. 
The record (a,-, KTJ, keyj, m,j) is put on the history tape. 

- A now produces polynomially many ciphertexts /, such that /,• is an encryp- 
tion of ßi. Then A succeeds if REL(m, /?,•) holds for some i. 

The system is called spoofing-free if for any polynomial^ for any polynomial 
modification relation REL the probability of success is smaller than l/kd for any 
constant d, for k large enough. This concludes the definition. 

We note that spoofing-freeness is modeled after non-malleability and implies 
polynomial security. In fact, we can show more strongly (proof omitted) that 
following the proof strategy of the Theorem 3 gives: 
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Theorem 7.   The following are equivalent: (1) Existence of basic escrow encryp- 
tion systems, and (2) Existence of non-malleable encryption systems. 

Designs: 
The characterizations have led us to a number of designs based on secure 

public key systems (and their relaxations). The designs introduce various ways 
to implement the compliance verifying gateway. 

Based on private key system we can consider a server-based key distribution 
system (where users do not meet but each user shares a permanent key with 
a server). We can adapt our results and conclude that by augmenting such a 
system we can have an escrow system in this model. What we need is the notion 
of "publicly certified key distribution" where each key given to a user has also 
a publicly announced version which is encrypted or one-way processed by the 
trusted server. Now, each key distribution to a pair of users can be on-line 
verified by a gateway G for compliance. Unlike [25], this design needs only one 
way functions. We get (proof omitted): 

Theorem 8.  Based on a trusted server and the existence of a one-way function 
(only), there exists a basic escrow system. 

References 

1. M. Bellare and O. Goldreich,  On Defining Proofs of Knowledge, Crypto '92. 
2. M. Bellare and O. Goldwasser, Verifiable Partial Key Escrow, ACM, 4-th 

Symp. on Computer and Comm. Security, 1997. 
3. M. Bellare and R. Rivest, Translucent Cryptography - an alternative to key 

escrow and its implementation via fractional oblivious transfer, a manuscript. 
4. M. Bellare and P. Rogaway, Random Oracles are Practical: a paradigm for 

designing efficient protocols, ACM, 1-st Comp. and Com. Sec. 1993. 
5. T. Beth, H.-J. Knobloch, M. Otten, G.J. Simmons and P.Wichmann, Towards 

Acceptable Key Escrow Systems, In the Proceedings of The 2nd ACM Symp. 
on Comp. and Comm. Security, 1994 51-58. 

6. M. Blaze, Protocol failure in the Escrowed Encryption Standard, In the Pro- 
ceedings of The 2nd ACM Symp. on Comp. and Comm. Security, 1994, 59-67. 

7. M. Blaze, J. Feigenbaum and T. Leighton, Master-Key Cryptosystems, 
Crypto-95 Rump session. 

8. Building in Big Brothers: the cryptographic policy debate, ed. L.J. Hoffman, 
Springer Verlag, 1995. 

9. I. Damgärd, Towards practical public key cryptosystems secure against chosen 
ciphertext attacks, Crypto '91. 

10. D. E. Denning and M. Smid, Key Escrowing Now, IEEE Communications 
Magazine, Sep. 1994, pp. 54-68. 

11. A. De Santis, Y. Desmedt, Y. Frankel and M. Yung, How to Share a Function 
Securely, ACM STOC 94. 

12. A.  De  Santis,  and  G.  Persiano,   Non-Interactive Zero-Knowledge Proof of 
Knowledge, FOCS 93. 

13. Y. Desmedt and Y. Frankel, Threshold cryptosystems, Crypto '89. 



715 

14. Y. Desmedt, Securing Traceability of Ciphertexts: Towards a Secure Software 

Key Escrow Systems, Eurocrypt 95. 
15. L. Knudsen and T. Pedersen, On the Difficulty of Software Escrowing, Euro- 

crypt 96. 
16. D. Dolev, C. Dwork and M. Naor, Non-Malleable Cryptography, STOC 91. 
17. U. Feige, A. Fiat and A. Shamir, Zero-Knowledge Proofs of Identity, Journal 

of Cryptology, vol. 1, 1988, pp. 77-94. (Originally: STOC 87). 
18. The FBI, Law Enforcement requirements for the Surveillance of Electronic 

Communications, June 1994. 
19. FIPS PUB 185, Escrowed Encryption Standard Feb.94. (Dep. of Commerce). 
20. Y. Frankel and M. Yung, Escrow Encryption Visited: Attacks, Analysis and 

Designs.   Crypto '95. 
21. Y. Frankel and M. Yung, Cryptanalysis of the immunized LL public key sys- 

tems.   Crypto '95. 
22. S. Goldwasser and S. Micali, Probabilistic Encryption, J. Com. Sys. Sei. 28 

(1984), pp 270-299. 
23. R. Impagliazzo and M. Luby, One-way Functions are Essential for 

Complexity-Based Cryptography FOCS 89. 
24. R. Impagliazzo and S. Rudich, Limits on the Provable Consequences of 

Oneway Permutations, STOC 89. 
25. N. Jefferies, C. Mitchell and M. Walker, A Proposed Architecture for Trusted 

Third Party Services, in Cryptography: Policy and Algorithms, Springer Verlag 
LNCS 1029, 1996. (Also: Royal Holloway, U. of London Report, 95). 

26. J. Kilian and F.T. Leighton, Fair Cryptosystems, Revisited, Crypto '95. 
27. A. Lenstra, P. Winkler and Y. Yacobi, A key escrow system with warrant 

bounds, Crypto '95. 
28. C. H. Lim and P. J. Lee, Another method for attaining security against adap- 

tive chosen ciphertext attacks, Crypto '93. 
29. M. Luby, Pseudorandomness and its Cryptographic Applications, Princeton 

Univ. Press, 1995. 
30. S. Micali, Fair public-key cryptosystems, Crypto '92. 
31. S. Micali and R. Sidney, A simple method for generating and sharing pseu- 

dorandom functions with applications to clipper-like key escrow systems, 

Crypto '95. 
32. M. Naor and M. Yung, Universal One-way Hash Functions and their Crypto- 

graphic Applications, STOC 89. 
33. M. Naor and M. Yung, Public-key cryptosystem provably secure against chosen 

ciphertext attack, STOC 1990. 
34. NIST, Issues: Export of software key escrow encryption, August 1995. see: 

http://csrc.ncsl.nist.gov/keyescrow/ 
35. C. Rackoff and D. Simon, Non-Interactive Zero-Knowledge Proof of Knowl- 

edge and Chosen Ciphertext Attacks, Crypto '91. 
36. J. Rompel One-way Functions are Necessary and Sufficient for Secure Signa- 

tures, STOC 90. 
37. A. Shamir, Partial Key Escrow, Crypto 95 Rump Session. 
38. M. Tompa and H. Woll, Random Self-Reducibility and Zero-Knowledge Inter- 

active Proofs of Possession of Information, FOCS 87. 
39. A. C. Yao, Theory and Applications of Trapdoor functions, FOCS 82. 
40. Y. Zheng and J. Seberry, Immunizing public key cryptosystems against chosen 

hertext attacks, IEEE JSAC 93. 



Randomness-Efficient Non-Interactive Zero Knowledge 
(Extended Abstract) 

Alfredo De Santis,1 Giovanni Di Crescenzo,2 Pino Persiano1 

1 Dipartimento di Informatica ed Applicazioni 
Universitä di Salerno, 84081 Baronissi (SA), Italy 

E-mail: {ads,giuper}@dia.unisa.it 

2 Computer Science and Engineering Department 
University of California at San Diego, La Jolla, CA, 92093, USA 

E-mail: giovanni@cs.ucsd.edu 
(Part of this work was done while at Universitä di Salerno, Italy) 

Abstract. The model of Non-Interactive Zero-Know ledge allows to ob- 
tain minimal interaction between prover and verifier in a zero-knowledge 
proof if a public random string is available to both parties. In this pa- 
per we investigate upper bounds for the length of the random string for 
proving one and many statements, obtaining the following results: 

- We show how to prove in non-interactive perfect zero-knowledge any 
polynomial number of statements using a random string of fixed 
length, that is, not depending on the number of statements. Pre- 
viously, such a result was known only in the case of computational 
zero-knowledge. 

- Under the quadratic residuosity assumption, we show how to prove 
any NP statement in non-interactive zero-knowledge on a random 
string of length &(nk), where n is the size of the statement and k is 
the security parameter, which improves the previous best construc- 
tion by a factor of 0(k). 

1     Introduction 

Zero-knowledge proofs [19, 17] require quite a rich scenario in terms of resources 
needed and much effort has been devoted to presenting alternative poorer set- 
tings in which zero-knowledge proofs were possible. 

In [5, 6, 12], the shared-string model for non-interactive zero-knowledge was 
put forward. Here, the prover and the verifier share a random string and the 
mechanism of the proof is mono-directional: the prover sends one message to the 
verifier. Non-interactive zero-knowledge proofs have found several applications in 
Cryptography (most notably the construction of cryptosystems secure against 
chosen-cyphertext attacks [24]) and can be employed in any setting in which 
communication is a precious and scarce resource. Thus, the shared-string model 
trades the need for interaction with the need for shared randomness. Since non- 
interactive zero-knowledge proofs from scratch can be obtained only for BPP 
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languages [18], the shared-string model provides a minimal enough setting for 

non-interactive zero-knowledge. 
Randomness has played a major role in several theoretical and applied fields 

of Computer Science. Several are the examples of computational tasks which are 
impossible to execute deterministically or whose efficiency is greatly enhanced 
if a source of random bits is available. Unfortunately, good random sources are 
difficult to find and this has motivated the study of the minimal amount of ran- 
domness needed for certain tasks (e.g., computing the sum in a secure way [7]), 
of techniques for reducing the number of random bits used by probabilistic algo- 
rithms (see for instance [20]) and the construction of pseudorandom generator 
specific for certain computational tasks: pseudorandom generator for constant- 
depth circuits [1, 25], space bounded computation [26, 27] and network compu- 
tation [23] have been presented. The randomness in interactive proof systems 

has been studied in [2] and [3]. 
In this paper we consider the shared string model for non-interactive zero 

knowledge of [5, 6] and study the amount of shared randomness needed for zero- 

knowledge proofs. 

Perfect zero-knowledge on a fixed random string. The first problem we 
investigate is the possibility of proving many statements using a random string 
of fixed length, i.e., not depending on the number of statements. This problem 
has found early solutions for the case of computational zero-knowledge in [5], 
assuming the intractability of quadratic residuosity, and, later, in [15], assuming 
the existence of certified one-way permutations. The certification requirement 
for one-way permutations was later removed in [4]. In [15, 13] the case of many 
provers was solved. Unfortunately, these constructions do not preserve perfect 
zero knowledge and thus cannot be used in our context. Before the current paper, 
no indication had been given that this problem might have a positive solution 
in the case of perfect zero-knowledge. The state of this problem was particularly 
unclear also because not many non-interactive perfect zero-knowledge protocols 
have been found in the literature (see [11]). 
OUR RESULTS . We show how to prove many statements in non-interactive perfect 
zero-knowledge using a fixed random string. First we give a protocol for the lan- 
guage of quadratic non residuosity. Then we identify a general class of languages, 
called Simulator-Rankable languages, for which we give a protocol. Finally, we 
show that all languages known having a non-interactive perfect zero-knowledge 
proof system are Simulator-Rankable. 

Non-interactive zero-knowledge for all NP on a short random string. 
Another problem we investigate is the possibility of proving any NP statement 
using a random string of short length. Many non-interactive zero-knowledge 
proof systems for NP-complete languages have been given in the literature, mo- 
tivated by attempts both of reducing the complexity assumption necessary and 
of increasing the efficiency of the proof system. The first proof system for all NP 
was given in [6], under a specific number-theoretic assumption, and used a ran- 
dom string of length 0(kn3), where by k we denote the security parameter, and 
by n the size of the input. The proof system in [5, 12] reduced the assumption to 
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the intractability of deciding quadratic residuosity modulo composite integers, 
and used a string of length 0(kn3). The proof system in [15] reduced the assump- 
tion to the intractability of inverting one-way permutations, and used a string 
of length 0(kn55). Under the same assumption, [21] and [22] obtained proof 
systems using a string of length 0(k2n log n) and 0(k2n), respectively. Under 
the quadratic residuosity assumption, [9] and [8] obtained proof systems using 
a random string of length 0{k2n). As a result, the best known proof system for 
all NP before this paper uses a random string of length 0(k2n). 
OUR RESULT. Under the quadratic residuosity assumption, we show how to prove 
any NP statement in non-interactive zero-knowledge using a random string of 
length 0(kn), thus improving the previous best result by a factor of &{k). 

Lower bounding the length of the random string. In order to best esti- 
mate the efficiency of our proof systems, we have also looked at the question 
of finding lower bounds on the length of the random string necessary to obtain 
a non-interactive zero-knowledge proof. Previously, a result in [18] showed that 
non-interactive (computational or perfect) zero-knowledge proofs without the 

random string are possible only for languages in BPP. 
OUR RESULT. We can show that non-interactive (computational or perfect) zero- 
knowledge proofs on a random string of length less than max(fc, clogn), for any 

constant c, can be given only for languages in BPP. 

Organization of the paper. In Section 2, we review the definitions for non- 
interactive zero-knowledge proofs. In Section 3, we present our results on proving 
multiple non-interactive perfect zero-knowledge on a fixed random string. In 
Section 4, we present our result on proving any NP statement in non-interactive 
zero-knowledge on a short random string. Formal proofs and descriptions of some 
protocols are omitted from this extended abstract for lack of space. For the same 
reason, we follow the notation of [5] without explictly repeating it and advise 
the reader to refer to [28] or [5] for the necessary number-theoretic background. 

2     Non-Interactive Zero-Knowledge 

We review the definition of non-interactive zero-knowledge proof systems of [5], 
referring the reader to the original paper for motivations and discussions. We 
start with the definition of non-interactive proof systems. 

Definition 1. Let P a probabilistic Turing machine and V a deterministic Tur- 
ing machine that runs in time polynomial in the length of its first input. We say 
that (P,V) is a Non-Interactive Proof System with security parameter k > 1 for 
the language L if there exists a constant c such that the following hold: 

1. Completeness. \/x G L, \x\ = n, and for all sufficiently large n, 

Pr(<r<-{0, l}nC; Proof ^P(<T,X) : V{<r,x, Proof) = 1) > 1 - 2~fc. 

2. Soundness. Mx £ L, \x\ = n, for all Turing machines P', and for all sufficiently 

large n, 

Pr((7 *-{0,l}nC; Proof <-P>\<T, x): V{a, x, Proof) = 1) < 2~k. 
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We will call the random string a, input to both P and V, the reference string. 
Now we recall the definitions of non-interactive computational and perfect zero- 
knowledge proof systems. We will denote by View(n,x) the probability space 
View(n, x) = {erf- {0, 1}"°; Proof <—P(a, x) : (<x, Proof)}, where c is a constant. 

Definition^. Let (P,V) be a non-interactive proof system for the language L. 
We say that (P,V) is Computational Zero-Knowledge if there exists an efficient 
algorithm 5, called the Simulator such that Va; G L, 'ar| = n, for all efficient 
non-uniform (distinguishing) algorithms D„,Vd> 0, and all sufficiently large n, 

Pr(s<-View{n,x) : Dn{s) = 1) - Pr{s<-S(ln, x) : Dn(s) = 1] < n 

Definition3. Let (P,V) be a non-interactive proof system for the language L. 
We say that (P,V) is Perfect Zero-Knowledge if there exists an efficient algorithm 
5, called the Simulator such that Va; £ L, \x\ = n, and all sufficiently large n, 
the two probability spaces 5(1", x) and View(n, x) are equal. 

3     Perfect zero-knowledge on a fixed random string 

In this section we show how to prove any polynomial number of statements in 
non-interactive perfect zero-knowledge using a reference string of fixed length. In 
Subsection 3.1 we present our technique with respect to the language of quadratic 
non residuosity. In Subsection 3.2 we give a result that will be useful when prov- 
ing this result for a more general class of languages: a transformation between 
any non-interactive zero-knowledge proof system with expected polynomial time 
simulator to one with strict polynomial time simulator. In Subsection 3.3 we 
describe a protocol that applies to a more general class of languages, that we 
call Simulator-Rankable languages. 

Some simplifications. For simplicity, in our protocol for quadratic non resid- 
uosity we will assume that the modulus x is already known (or has already been 
proven) to be a Blum integer and, unless explicitly specified, that the reference 
string is made of integers in Z+1, instead than of just rc-bit integers. Techniques 
used, for instance, in [5] and [11], allow to deal with the general cases by los- 
ing only a constant factor in the length of the reference string, and preserving 
perfect zero knowledge. 

3.1     Quadratic non residuosity 

We present a perfect zero-knowledge proof system (A,B) with security parameter 
k that uses a reference string of length 0{nk) for proving that any polynomial 
number m(n) of elements yi, ■ ■ ■ ,ym(n) are quadratic non residues modulo an 
integer x of length n. 

The proof system of [5] for one statement. The non-interactive perfect 
zero-knowledge proof system of [5] for proving one quadratic non residuosity 
statement of size n uses a reference string of length nk. On input a pair (x,y), 
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where x is a Blum integer and y an element of Z+1, the reference string is 
viewed as the concatenation of k elements zi o • • • o zk of Z+1. If y is a quadratic 
non residue, then for each j, exactly one of ZJ and yzj mod x, call it UJ, is a 
quadratic residue and the prover gives a random square root of Uj. The soundness 
of the proof system relies on the fact that if y is a quadratic residue and Zj is 
a quadratic non residue then neither Zj and yzj mod a; is a quadratic residue 
and thus the prover cannot satisfy the verifier's verifications. Since the Zj's are 
chosen at random and since exactly half of the elements in Z+1 are quadratic 
non residues, the prover has probability 2~fe of making the verifier accept when 

y is a quadratic residue. 

Proving many statements. We modify the above described proof system 
in such a way that the following two properties are satisfied: 1) the prover can 
generate exactly one proof for each input and each reference string; 2) each proof 
has the same distribution as the reference string. We use the following definition. 
Let x be a Blum integer; for z £ Z+1 and 6 G {0,1}, define u = sqrt(x, z, b) as 
the integer u <E Z+1 such that (a) u2 = z mod x and (b) if b = 0 then u < x/2 
else u > x/2. Now we give a formal description of our proof system (A,B). 

Input to A and B: 

• A k(n + l)-bit reference string a = z\ o • • • o zk ° bi o • • • o 6*, where ZJ G Zx   , 
bj G{0,1}, for .7 = 1,..., fc. 

• An (m + l)-tuple {x, yi,..., ym), where \x\ = n, y, € Zj"1, for i = 1, ..., m. 

Input to A: x's factorization. 

Instructions for A. 

A.l  Set «i,j = ZJ, 6i,j = bj, for j = 1,..., k. 
A.2  For i = 1,... ,m, 

for j = 1,. .. ,k, 
if Uij € QRx then 

compute ui+i,y = sqrt(x,u,j,bil3) and set 6;+i,j = 0; 
if tiij € NQRX then 

compute u,-+i,j = sqrt(x,y ■ uil3 mod x,bij) and set b,+i]3 = 1; 
set Proof, = (ui+i,i, • • •, ««+i,fc,bi+i,ii • • • ,bi+i,k)- 

A.3  Send {Proof i,..., Proofm) to B. 

Input to B: A sequence of proofs {Proof i,..., Proofm), where Proof, = 
(u,-+i,i,..., «,•+!,*, bi+i,i,...,fe;+i,*). u.+i.j e^j"1, bi+ij €{0,1}, for j= l,...,k. 

Instructions for B. 

B.l  Set «i,j = ZJ, bij = bj, for j = 1,..., k. 
B.2  For i = 1,..., m, and j = 1, ..., k, 

verify that uf+1:J - ybi+1-:i ■ ui:J mod x. 
B.3  If all verifications are satisfied then output: ACCEPT else output: REJECT. 

Completeness, Soundness and Perfect Zero Knowledge: intuition. The 
completeness property is not hard to check. To prove soundness and perfect 
zero-knowledge, the following characterization of the distribution of a proof for 
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a quadratic non residue is useful. The i-tti proof Proofc is a string of k in- 
tegers ui+ij in Z+1, and k bits bi+ij, such that the each u,-+i,j is uniformly 
distributed (and so is its quadratic residuosity) and each bit 6,+i,j is also uni- 
formly distributed. The soundness of (A,B) can then be proved by induction on 
the number m of integers yt. The base case is simple; for the inductive case, we 
assume that yi,..., y,-_i are quadratic non residues modulo x, and that ?/,• is a 
quadratic residue, and use the above characterization of the distribution for the 
proof for y,:-i, that is also the reference string to be used for proving j/j. The 
perfect zero-knowledge of (A,B) can be proved by generating the m proofs start- 
ing from the last one, using the above characterization. Here the main difficulty 
consists in simulating the generation of a square root ui+ij of 2/

6'+1^ • uitj mod x 
which is less than x/2 or not, according to the value of the random bit 6,- j taken 
from the reference string. The generation is accomplished as follows. The sim- 
ulator will first choose bit bij at random and ui+1J G Z+1 and then compute 
mj such that «?,- = yb'+1'j ■ tii+ijmod x; now, the value of bit bij is then de- 
termined depending on whether u; j is greater or smaller than x/2. It is possible 
to see that if x is a Blum integer and y is a quadratic non residue, then bit bij 
(or in other words, the predicate saying whether utj < x/2 or not) is uniformly 
distributed, no matter how quadratic residues are distributed in Z+1. We obtain 

the following 

Theorem 4. (A,B) is a non-interactive perfect zero-knowledge proof system, with 
security parameter k that can prove any polynomial number of quadratic non 
residuosity statements, each of size n and uses a reference string of length &(kn). 

3.2     Expected vs. strict polynomial time simulators 

The zero-knowledge requirement in the definition of a non-interactive zero- 
knowledge proof system requires the simulator associated to the proof system 
to run in expected polynomial time. We can transform any non-interactive zero- 
knowledge proof system into one having the additional property that the sim- 
ulator runs in strict polynomial time. The transformation preserves the kind of 
zero-knowledge, i.e., computational or perfect.   We obtain the following 

Theorems. Let L be a language having a non-interactive zero-knowledge proof 
system. Then L has a non-interactive zero-knowledge proof system such that the 
simulator associated runs in strict polynomial time. 

3.3     A general class of languages 

In this subsection we show a non-interactive perfect zero-knowledge proof system 
for proving many statements on a fixed reference string, which applies to some 
general class of languages, not necessarily depending on number-theoretic prop- 
erties. We start with an informal discussion, and then define a class of languages 
and give a protocol for all languages in such class. 
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An informal discussion. Generalizing the proof system of previous section, an 
idea to construct a randomness-efficient protocol for proving many statements in 
non-interactive perfect zero-knowledge would be the following: a first statement 
xi is proved on a given reference string a\ and then the proof itself is used in 
order to compute a new reference string for the next statement x%, and so on. 
Specifically, instead of using the proof, whose structure is not known in general, 
we would like to use the randomness needed by the simulator to simulate a 
proof for a;i in order to compute a new reference string for the next statement x2- 
Notice that because of Theorem 5, we can assume that the amount of randomness 
needed by the simulator to simulate a proof is a fixed and well defined quantity. 
Simulator-Rankable languages. Let L be a language and let (A,B) be a non- 
interactive perfect zero-knowledge proof system for L; also, denote by M the 
simulator associated to (A,B), by <r the reference string, by x the common input, 
and by SM,a,x the set {R\M(R,x) = {a, Proof)}. If \x\ = n, let \R\ = r(n), 
\a\ = s(n) and \SM,O,X\ = 2'(") (we can assume a fixed length r(n) for string R 
because of Theorem 5). We say that (A,B) is simulator-rankable if there exists a 
polynomial-time computable function F : {0, l}n x {0, l}r(n) -* {0,1}'(") such 
that if x e L then F(x, R) is the rank of R in set SM,<T,X, where cr is such that 
M(R,x) = (a, Proof). We say that language L is simulator-rankable if there 
exists a non-interactive perfect zero-knowledge proof system (A,B) for L which 
is simulator-rankable. 
A protocol for any simulator-rankable language. Let L be a simulator- 
rankable language; now we describe a non-interactive perfect zero-knowledge 
proof system (P,V) for proving any polynomial number m = m{n) of membership 
statements of size n to L which uses a fixed reference string. By ranks(x) we 
denote the rank of element x in set 5. Now we give a formal description of (P,V). 

Inpl it to P and V: n-hit string 'S xu.. ■ , 3*m, and an r (ra)-bit string a 

Inst ■uctions for P: 

P.l Set T\ = IT. 

P. 2 For i = - 1,..., m 5 

write T, = 7, o indi, where M = s(n) and \indi\ — r(n) — «(«); 
compute Ri € SM,~I ,!■ such that rank SM,- „..,(*) = indi; 
set Tv+i = Ri. 

P. 3 Send ( T\ , . . ■ , T,r +i) to V. 

Input to V: a sequence of r(n) -bit strings (TI,... >Tm+l)- 

Instructions for V: 

V.l  Set n = a. 
V.2  For i = m,..., 1, 

write ri = 7i o indi where |7;| = s(n) and \indi\ = = r(n) — s(n); 
set R, = T, +i and o , = M(R„ £«); 

check that T, = 1i < wid F(x, R i) = inc i • 
V.3  If all verifications are successful then output: ACCEPT and halt, else output: 

REJECT and halt. 
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We obtain the following 

Theorem 6. Let L be a simulator-rankable language and let (A,B) be a simulator- 

rankable non-interactive perfect zero-knowledge proof system for L. Then (P, V) 
is a non-interactive perfect zero-knowledge proof system that can prove any poly- 
nomial m = m(n) number of membership statements each of size n and uses a 

reference string of length r(n), (that is, not depending on m), where r(n) is the 
length of the random string used by the simulator M associated to (A,B). 

Examples of simulator-rankable languages. A first example of a simulator- 
rankable language is the language of quadratic non residuosity modulo Blum 
integers. This can be seen by using the protocol in [5], revised in Section 3.1: for 
each reference string <r, there exist exactly 2k random strings R in set SM,V,X, 

since each integer z{ 6 Z+1 might have been generated from two different square 
roots: r; and -r,- mod x. This allows to compute the rank of any random string 
in SM,<7,X, for any reference string a. Later, in Section 4.2 we show that the 
language of all l-out-of-3 thresholds over quadratic non residuosity is simulator- 
rankable. Using this fact, we can show the same for the language of fc-out-of-m 
thresholds over quadratic non residuosity [11] and for the language of all secret- 
sharing based compositions over quadratic non residuosity [10]. Also, it is easy 
to see that the language of all elements in a family of trapdoor permutations 
[4] is simulator-rankable. This implies that all known languages having a non- 
interactive perfect zero-knowledge proof system are simulator-rankable. 

4    A randomness-efficient protocol for NP 

We start by reviewing the non-interactive zero-knowledge proof system for the 
NP-complete language 3SAT given in [5]. We will denote by k the security pa- 
rameter of the proof system, by n the number of variables and by m the number 
of clauses of the 3-SAT input formula <j>. Also, we choose the size of the Blum 

integer used as a modulus to be equal to k. 

The protocol in [5] for 3SAT. The non-interactive zero-knowledge proof 
system for 3SAT given in [5] uses a reference string of length 0(kn3) and can be 
divided into three steps. 

1. Committing to truth values. First of all the prover uniformly chooses a It- 
bit Blum integer x and a quadratic non residue y. Then, using x,y, and 
a satisfying assignment t for variables in <j>, the prover assigns an integer 
Vi G Z+1 to each literal /,• in <f> in such a way that if y is a quadratic non 
residue modulo x, then the following is true: y; is a quadratic non residue 
modulo x if and only if literal /,• is true under the assignment t. 

2. Proving that the commitments are consistent. Here the prover sends a non- 
interactive zero-knowledge proof that a; is a Blum integer and y is a quadratic 

non residue modulo x. 
3. Proving that clauses are satisfied. For each clause (In V h2 V Z,^) of <f>, the 

prover proves that at least one of t/»i, JA2,2/»3 is a quadratic non residue 
modulo x, where integer ytj was assigned to literal Uj. 
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Our contribution. We give a significantly different implementation of the first 
and third step in the above protocol, and obtain the following 

Theorem 7. Under the quadratic residuosity assumption, there exists a non- 
interactive computational zero-knowledge proof system with security parameter 
k for 3SAT, using a reference string of length 6(nk), where n is the number of 

variables of the input formula. 

Now we informally describe our implementation of the first and third steps of 
the above protocol, omitting a formal description. We remark that our protocol 
satisfies also the requirement of strong soundness, that is, it is sound also if a 
malicious prover chooses the statement after seeing the reference string. 

4.1 Committing to the truth values of the literals 

Let t be an assignment for variables vi,..., vn in the 3SAT formula <j>; let x be the 
input modulus and let w\ o ■ • •om„ be a portion of the random string, where each 
u'i e Z+1. Also, denote by q, the quadratic residuosity of iu,-, for each i = 1,..., n. 
Then the prover P commits to each Vj and Uj as follows. For each i= 1,..., n, 
P sets di = t(v,)(B qi, tcom, = yd' ■ w, mod x and nconn — y-tconn mod x. The 
commitments are then (vi,tcom.i), (vi,ncorrii), for i = 1,...,«. It is easy to check 
that, tconii (nconii) is a quadratic non-residue if and only if variable u,- (T7;) is 
true under assignment t. We remark that the above commitments are generated 
using integers from the reference string, while in [5] they were generated from 
the prover by using some private randomness. In our analysis, this will decrease 
significantly the cheating power of a dishonest prover and will allow us to use 
a shorter reference string in the proof system for proving that the clauses have 

been correctly constructed. 

4.2 Proving that the clauses are satisfied 

In order to prove that a single clause is satisfied, we use a non-interactive perfect 
zero-knowledge proof system for the language 3-OR(NQRr) of triples (y1, y2, 2/3) 
such that at least one out of 2/1,2/2,2/3 ls a quadratic non residue modulo the Blum 
integer x. We do not yet know whether such language is simulator-rankable, since 
it is not clear how to use the two protocols given in [14, 11] for this language 
in order to derive such property. Here we describe a non-interactive perfect 
zero-knowledge proof system (A,B) for language 3-OR(NQRa;), which allows to 
conclude that such language is simulator-rankable, and thus allows to prove all 
m clauses of formula (f> on one fixed random string. 

An informal description. We start with some definitions. Let x be a Blum 
integer and 6i,62,63 G {0,1}; we say that a triple (zi,z2,z3) of integers in 

Z+1 has quadratic character (61,62,63), if Qx{zi) = &». for i = I,2, 3. Also, 
we say that two triples (2/1,2/2,2/3) and {zi,z2,z3) of integers in Z+1 have dif- 
ferent quadratic characters if the two triples of bits representing the quadratic 
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characters of (j/i, y2,2/3) and (zltz2, z3) are different. Finally, we define the 0R- 
frip/es of (yi, y2,2/3), for any triple (2/1, 2/2,2/3) of integers in Z+1, as the 7 triples 
(2/1,2/2,2/3), (yi 2/2 2/3,2/12/3, 2/1), (2/2,2/3,2/12/2), (2/3,2/12/2,2/22/3), (2/12/2,2/22/3,2/12/22/3), 
(2/22/3, 2/12/22/3, 2/12/3), (2/i2/3> 2/1,2/2), where all computations are done modulo a;. 
We will use the following 

Fact 1 Le£ idea ß/«m integer, and let 2/1,2/2,2/3 e Z+1. ^/ien ifte OR-triples 

of (2/1,2/2,2/3) satisfy the following properties: 

1- //(2/i,2/2,2/3) has quadratic character (0,0,0) then allOR-tnplesof(yi,y2,y3) 
have quadratic character (0,0,0); 

2- U (2/1,2/2,2/3) /»öS quadratic character different from (0,0,0) tfjen 
- each OR-triple 0/(2/1,2/2,2/3) ^a« quadratic character different from (0, 0, 0), 
- eac/i too OR-triples 0/(2/1,2/2,2/3) ^<™e different quadratic character. 

The proof system (A,B) uses a reference string of length 9(nk), viewed as the 
concatenation of triples (ziA, zii2,zi>3) of integers in Z+1, for i = 1,..., [fc/3]. On 
input (x,yi, 2/2,2/3), the prover A computes the quadratic character (d,-,i, d»,2, ^,3) 
of each triple (ziA, zi>2, zii3). Now, if (ditl,dii2,dii3) = (0,0,0) then A computes 
and sends to B square roots of ziyi, zi)2, zi%3. Instead, if (diti,di)2, di>3) ^ (0, 0, 0), 
A computes and sends to B square roots of zit\ ■ vx mod x, zii2 ■ v2 mod x, 
and Zii3 ■ v3mod x, where (vx,v2,v3) is the OR-triple with quadratic character 
(di,i,di}2,dii3). The verifier B checks that the square roots are correctly com- 
puted. A formal description of (A,B) is omitted. Similarly as done for the lan- 
guage of quadratic non residuosity, we can show that the language 3-OR(NQRx.) 
is simulator-rankable.  Using Theorem 6, we obtain the following 

Theorem 8. There exists a non-interactive perfect zero-knowledge proof system 
with security parameter k for proving any polynomial number m(n) of member- 
ship statements for the language 3-OR(NQRx) of size n, which uses a reference 

string of length 0(kn). 
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Abstract. In this paper, we study the optimum cost chromatic partition 
(OCCP) problem for several graph classes. The OCCP problem is the 
problem of coloring the vertices of a graph such that adjacent vertices 
get different colors and that the total coloring costs are minimum. 
We prove that there exists no polynomial approximation algorithm with 
ratio O(\V\0b~e) for the OCCP problem restricted to bipartite and in- 
terval graphs, unless P = NP. 
Furthermore, we propose approximation algorithms with ratio 0(\V\ ' ) 
for bipartite, interval and unimodular graphs. Finally, we prove that 
there exists no polynomial approximation algorithm with ratio 0(\V\ ~£) 
for the OCCP problem restricted to split, chordal, permutation and com- 
parability graphs, unless P = NP. 

1    Introduction 

In this paper, we study the optimum cost chromatic partition (OCCP) problem 
for several graph classes. The graph classes used in this paper are defined e.g. in 
[5]. The OCCP problem can be described as follows: Given a graph G = (V, E) 
with n vertices and a sequence of coloring costs (ki,...,kn), find a feasible 
coloring f(v) for each vertex v £ V such that the total coloring costs Ylvev kf(v) 
are minimum. A coloring / : V -»■ {1,. .., n} is feasible if adjacent vertices 
have different colors. Alternatively, the OCCP problem can be formulated as 
follows: Given a graph G = (V, E) with n vertices and a sequence of coloring 
costs (ki,...,kn), find a partition into independent sets Ui,...,Us such that 

J2l=i kc ' l^cl is minimum. We may assume that kc < kd whenever c < d. 
C A VLSI layout problem introduced by Supowit [11] with terminals on a circle 

or on two opposite parallel lines corresponds to the OCCP problem restricted 
to circle or permuation graphs. Another application is given by Kroon et al. 
[9]. The OCCP problem for interval graphs is equivalent to the Fixed Interval 
Scheduling Problem (FISP) with machine dependent processing costs. It is not 
difficult to see that the OCCP problem is NP-complete for arbitrary graphs. Sen 
et al. [10] proved that the OCCP problem for circle graphs is NP-complete. 

Kroon et al. [9] studied the OCCP problem for interval graphs and trees. They 
showed that the problem restricted to trees can be solved in linear time and that 
the problem restricted to interval graphs is NP-complete even if there are only 
four different values for the coloring costs. If there are only two different values 
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for the coloring costs, then the OCCP problem is equivalent to the maximum 
g-colorable subgraph problem. Suppose that the first q costs are equal and that 
the last n — q costs are equal (k\ = ... — kq < kq+i = ... = k„). Then, we get 
an optimum solution if the maximum g-colorable subgraph is colored with the 
colors 1,..., q and if the other vertices are colored with the remaining colors. 
The maximum g-colorable subgraph problem has been studied extensively by 
Frank [3], Gavril [4], Yannakakis and Gavril [12], Jansen et al. [6] and Chang et 
al. [2]. Further complexity results for the OCCP problem can be found in [7]. 

We give several approximation results for the OCCP problem restricted to 
bipartite, chordal, comparability, interval, permutation, unimodular and split 
graphs. We prove that there exists no polynomial approximation algorithm with 
ratio O(|V[0-5~f) for the OCCP problem restricted to bipartite and interval 
graphs, unless P = NP. Furthermore, we propose approximation algorithms 
with ratio 0(|V|0,5) for both graph classes and for unimodular graphs. Finally, 
we prove that there exists no polynomial approximation algorithm with ratio 
OdV7!1-6) for the OCCP problem restricted to split, chordal, permutation and 
comparability graphs, unless P = NP. 

2    Bipartite graphs 

In this section we prove that OCCP is hard to approximate 0(|y|°-5_£) for 
bipartite graphs. After that, we propose an approximation algorithm with ratio 
o(|vf-5). 

2.1     Non-Approximability result 

We use the precoloring extension problem that is NP-complete for bipartite 
graphs proved by Bodlaender, Jansen and Woeginger [1]. Given a bipartite graph 
G = (V, E) with vertex set V = A U B, edge set E C {{v, w}\v G A, w G B} and 
three specified vertices 01,02, az G A, the 1-PrExt problem is to decide whether 
there exists a 3-coloring of G with f{a\) = 1, /(ß2) = 2 and /(013) = 3. 

First, we show the NP-completeness of the OCCP problem using an integer 
parameter K. Later, we specify the parameter K to achieve our non - approx- 
imability result. 

Theorem 1. The OCCP problem for bipartite graphs is NP-complete if there 
are at least four different cost values. 

Proof. The theorem is proved by a reduction from 1-PrExt restricted to bipartite 
graphs. We may assume that G = (A U B, E) contains three further vertices 
bi,bo,b3 G B with {a»,6;} G E for 1 < %i ^ j < 3. Let n be the number of 
vertices in G. 

Let / be an instance of 1-PrExt containing the bipartite graph G = (AUB, E) 
with 0,1,0-2,03 G A and 61,62,63 G B as described above. Let K be a positive 
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integer with A  >  1. An instance V of the OCCP problem is constructed as 
follows. First, we define a bipartite graph G' = (V',E') with vertex set 

V = {vhj,v2lj\l < 3 < 2000A2n}U 
{t>3j-',«4j'|l < f < lOOA'n} U {«5, v6} 

and edge set 

E' = {{wi ,-,«3i'},{«2j,t;4j-}|l < 3 < 2000A2n, 1 < j' < 100An}U 
{{^5,w3,i'},{^6,^4,i'}|l < / < 100A'n}U 
{v<S,V6}- 

Vl, 

m>—m. 
"3, Vs V6 "4,. ü2,> 

Fig. 1. The constructed graph G' and a feasible 2-coloring of G'. 

The bipartite graph G' illustrated in Figure 1 contains 4000A2n + 200An + 2 

vertices. Then, we connect G and G' using the following edges: 

E = {{auv3,j>}, {bi, v4JI}, {6i, v5}, {a2, v2j}, 
{{&2, ^lj}, {&2, v5}, {a3, v3tjl}, {a3, v2,j}, 
{b3, vu), {b3, v4ij,} | 1 < j < 2000A2n, 1 < j' < lOOAn}}. 

In total, the bipartite graph G for V is given by 

G = (AUBUV',EUE'\JE). 

The cost values are kx = 1, k2 = 10A, k3 = 100A2 and k4 = 15000K3n. A 
cheap coloring of G has to use only three colors; otherwise the costs would be 

more than 15000A3n. 
We can prove the following statements: 7 is a yes instance of 1-PrExt if 

and only if the minimum total costs of coloring all vertices in I' don't exceed 
6100A2ra+100A2 + l. 
If there is no solution of the 1-PrExt problem, then we have either four colors 
in G with coloring costs of at least k4 = 15000A3n or a 3-coloring with coloring 

costs of at least 10000A3«. a 

Theorem2. For each e < \, there exists no polynomial approximation algo- 
rithm, with ratio O(\V\05~e) for the OCCP problem restricted to bipartite graphs, 

unless P = NP. 
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Proof. Let H be an approximation algorithm for the OCCP problem that com- 
putes a coloring with costs H(I') < c\V\°-5~eOPT(I'), where c is a constant and 
OPT(I') are the minimum costs of a solution /'. 

We construct for an instance / of the 1-PrExt problem an instance /' of the 
OCCP problem as described in the proof above. We obtain a graph with at most 
4300K2n vertices. If there exists a solution of the 1-PrExt problem, the optimum 
solution of the OCCP instance I' has costs of at most 6200A"2n. In this case, our 
approximation algorithm produces the value H(I') < 6200A'2cn|V|°-5_£. Since 
the number of vertices in I' is at most 4300A2n, we have 

c|y|0.5-e < (4300)°-5A'1-2ecn0-5. 

If there exists no solution of the 1-PrExt instance, then OPT(I') > 10000K3n 
and, therefore, algorithm H generates a solution with costs greater than 
10000A3n. Next, we consider the inequality 

10000A3n > (4300)°-56200A3-2£cn1-5. 

This inequality is satisfied if and only if 

2£     c(4300)°-56200   05 
A   >      loooo • 

We define 

K ,«/C(4300)°-56200n0.5] 

10000 
+ 1. 

Since c and e are constant, A is a polynomial in n and, therefore, the instance /' 
can be constructed in polynomial time. If there exists no solution of the 1-PrExt 
problem, then H generates a solution with costs of at least 

10000A3n > (4300)°'56200A3_2fcn1-5 > 6200A2cn|F|°-5_f. 

Therefore, by using the polynomial time approximation algorithm H, we could 
decide the existence of a solution for the 1-PrExt problem, which would imply 
P = NP.O 

2.2     Approximability result 

The key idea of the approximation algorithm is to compute two colorings for the 
problem and to choose the cheaper one. 

Algorithm A 
given: Instance / of the OCCP problem containing a bipartite graph G = (V, E) 

and cost vector {k\,..., &|v|)- 
(1) Compute a 2-coloring of G with ri\ vertices colored with color 1 and \V\ — n\ 

vertices colored with color 2 such that riy is maximum and, therefore, n\ > 
y. The costs of the first coloring are A\{I) = niki + (\V\ — ni)&2- 
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(2) Compute a maximum independent set U in G with a(G) vertices and color 
the vertices in [/ with color 1. Then, compute a 2-coloring of G[V \ U] 
with n\ vertices colored with color 2 and \V\ - a{G) - n[ vertices colored 
with color 3 such that n[ > |K|~°(G). The costs of the second coloring are 
,42(7) = a(G)h + n[k2 + (\V\ - a(G) - n't)k3. 

(3) Choose the cheaper coloring among the two colorings. 

We note that the costs of the second coloring are bounded by 

a{G)kl + ]Xlz^l{k2 + k3) < a(G)h + (\V\ - a(G))k3. 

Theorem 3. Algorithm A computes a solution of the OCCP problem restricted 
to bipartite graphs with approximation ratio < \V\°- . 

Proof. Let I be an instance of the OCCP problem containing a bipartite graph 

G = {V, E) and cost vector (ifei,..., V|). Then' we have two lower bounds for 

the optimum value OPT(I): 

(l)OPT(I) > \V\ku 

(2) OPT(I) > a(G)h + (\V\ - a(G))k2. 

We consider two cases k3 < \V\05k2 and k3 > \V\05k2 and can prove that 
A(I) < \V\05OPT(I). ü 

3    Interval graphs 

In this section we prove that the OCCP problem restricted to interval graphs 
is hard to approximate with ratio 0(|V|0-5_e)- Furthermore, we propose an ap- 
proximation algorithm with ratio O(\V\05) for interval graphs and also for uni- 
modular graphs. 

3.1     Non-Approximability result 

The NP-completeness proof uses a reduction from Numerical Three Dimensional 
Matching (N3DM) and is a modification of the pure NP-completeness proof of 
the OCCP problem given by Kroon et al. [9]. 

Theorem4. For each e < \, there exists no polynomial approximation algo- 
rithm with ratio 0(\V\°rj-e) for the OCCP problem restricted to interval graphs, 
un less P = NP. 

Proof First, we give a reduction from N3DM with variable parameter K G M 
and, later, we specify the parameter K E M to achieve our non-approximability 
result. Let h be an instance of N3DM with integer t and rational numbers 

0 < ai,bi, Ci < 1 for 1 < i < t with E!=I(°* + bi + c») = *• The N3DM Problem 

is to decide whether there exist permutations p and 6 of {1,...,<} such that 
at + bp(i) + c6(i) = 1 for 1 < i < t. 
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We choose further rational numbers Ai, Bj and X{j such that all these num- 
bers are different and that 4 < A, < 5 < Bj < 6 and 7 < Xij < 9 for 1 < i, j < t. 
Next, we construct an instance J2 of the OGCP problem. We use the intervals 
given in Table 1 for the interval graph. 

interval interval numbers 

(0,   By (ll-cfc,13] 1 < j < t or 1 < k < t 
(1,2] (2, A.-] t times or 1 < i; < t 

(A„Xt]] (Xij,10 + at+b}] 1 <i,j<t 
(Bj,Xjj] (Xij, 14] 1 < i,j <t 

(3, Bj] (O.Aj] t — 1 times and l<j<torl<i<< 

?oon^'2t T,3] 
( I SI 

(12,14- 3 At'    1 
u<-2fl t   — < times 

t times, 0 < I < 2000Ä"V ti l (13 + 13 + ~m~ 

.?nnnr>-aH ' ?.nnnK2f*. t2 - t times, 0 < I < lOOKt2 

Table 1. The intervals in the interval graph 

Furthermore, there are t colors with costs 1, t2 — t colors with costs lOKt2, 
t2 colors with costs 100AT2t4 and all other colors have costs 20000A'3it6. 

The first claim (see also [8]) is to prove the following statement: I\ is a yes 
instance of N3DM if and only if the minimum total costs of coloring all intervals 
of I2 do not exceed 

costs(K) := 2000K2t5 + 5« + 2300K2t6 + 50Kt4 - 50Kt3. 

If I\ is a no instance of N3DM, then the total costs of coloring all intervals of I2 
are greater than IQQOOKH6. We notice that the value costs(K) is bounded by 
4355/i2*6. 

The second part of the proof is the specification of the parameter K to 
achieve our non-approximability result. We define 

(4208)054355j9 K 

10000 
-t1 

and get our non-approximability result (see also [8]). □ 

3.2     Approximability result 

Next, we propose an approximation algorithm A with ratio 0(|V|°"5) for the 
OCCP problem restricted to interval graphs or to unimodular graphs. The key 
idea is to analyse the structure of the optimum solution and to solve a special 
coloring problem. 

Suppose that the optimum solution consists of bopt > x{G) colors. Further- 

more, we assume that the colors aopt,aopt + l,...,bopt cover at least |"v|V|] 
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vertices and that the colors aopt + 1,..., bopt cover less than fvl^ll vertices of 
G. This implies that aopt G {1, • • ■, bopt}. Let naoptibopt-aopt be the number of 
vertices colored with colors l,...,aopt and let naopUbopi-aopi be the number of 
vertices colored with the other colors aopt + 1,..., bopt. Therefore, naopUbopi-aopt 

is bounded by \/|V|. 
Using these assumptions, we obtain the following lower bounds for the min- 

imum costs OPT(I) of a coloring: 

(l)OPT(I)>\^\V\\-kaoptl 

(2)OPT(I)>khopi. 

The first inequality is satisfied, since \^/\V\] vertices are colored with the colors 
aopt,aopt + l,...,bopt and since kaopi < kaopt+1 < ... < hopt. The second in- 
equality follows from the fact that color bopt occurs at least once in the optimum 

coloring. 
For our approximation algorithm we have to solve the following graph theo- 

retical problem (called maximum (a,b - a)-colorable subgraph problem). 

Maximum (a, b - a)-colorable subgraph 
Given: A graph G = (V, E), and numbers a, b G NI with a < b and 6 > \(G). 
Question: Compute a partition (V',V\ V) of V such that V has maximum 

cardinality and can be colored with a colors and V\V can be colored with 

b — a colors. 

Let H be an optimum algorithm to solve the maximum (a, b - a)-colorable 
subgraph problem. A call of this algorithm with parameters a and 6 is denoted 
by H(a, b - a). Note, that the maximum (a, b - a)-colorable subgraph problem 
is harder as the maximum g-colorable subgraph problem. This implies that the 
decision problem corresponding to the maximum (a, b - a)-colorable subgraph 
problem is NP-complete for e.g. split graphs, undirected path graphs and their 

complements and for &-trees with unbounded k. 

We have proved the following results: 

Theorem 5. (1) The maximum (a, 6 - a)-colorable subgraph problem for inter- 
val graphs is solvable in polynomial time using a mincost flow algorithm. 

(2) The m.axim.um, (a, b - a)-colorable subgraph problem for unimodular graphs 

is solvable in polynomial time using a linear program. 

We denote by aaib-a(G) the maximum cardinality of such a subset V and 
with äa:b-a(G) the number of vertices in V \ V. Clearly, aaopUbopi-aop,(G) > 
n i „ and an h n (G) < n„ ,4 ,-a ,. Given a solution with sets 
V (and V\V), a coloring with at most a (and b - a) colors can be computed 
with an optimum coloring algorithm for several classes of graphs (e.g. interval 
or unimodular graphs). Since the colors aopt + 1,.. -,b0pt cover less than \J\V\ 
vertices in the optimum solution and since äaoptibopt-aopt(G) < naoptibopi-aopt, 

the value aaopubopt-aopt{G) is bounded by ^/\V\. 
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Let Cniiopt, bopt — aopt) be the costs of a coloring computed by a call of the 
algorithm H(aopt, bopt — aopt) and a corresponding coloring algorithm. Then, we 
can bound the costs Cff(aopt,6op4 — aopt) using the lower bounds (1) and (2) as 
follows: 

CH(aopt, b0pt — d0pt) < aaopt,bol,i-aort{G) ■ kaopt + äaopt,bop,-aopt{G) • K0opt 

<\v\-kao^JW\-h 

< 2^/\V\OPT(I). 

For the approximation algorithm for the OCCP problem the values a and 
b — a can be bounded by x(G). If aopt > x(G), the optimum costs OPT(I) are 
greater than [^/l^ll^x(G)- ^n this case> we get an approximate solution with 
a — x(G) and b = a using 

CH(X(G),0) < ax{G)fi{G)kx(G) < y/\VW\V\kx{G) < s/\V\OPT(I). 

If b0pt > x(G) + a-opt and aopt < x{G), then the optimum costs OPT(I) > 
kx(G)+aor,- In this case, we get an approximate solution with a = aopi and 
b = a + \{G) using 

CH(aopt,X(G)) < \V\kaopi + y/\V\kx(G)+aort < 2y/\V\OPT(I). 

These arguments imply that at most 0(x(G)2) calls of the maximum (a, b—a) 
- colorable subgraph are sufficient for our approximation algorithm. In the next 
part of this section we improve this bound. We show that at most 0(logx(G)) 
calls of the maximum (a, b — a) colorable subgraph algorithm H are needed. 

For each a £ {l,...,x{G) — 1}, let x be the smallest integer with x 6 
{1,.. .,x(G)} (if possible) such that äa<x(G) < \\^\V\]. We notice that 
öa,x(G)(G) can be greater than [\/|V|] and that 

äa,i(G) > äa^(G) > ... > äa,x(G)(C?)- 

For a £ {!,..., x{G) — 1} we define 

first{a) = [X   if <x(c)(G)< \VW\] 
[ oo otherwise 

Since G can be colored with x{G) colors, we define first(x{G)) = 0. 

Lemma 6. If a < a' and first(a), first(a') ^ oo then first(a')+a' < first(a)+ 

The smallest a with first(a) < oo can be found using binary search with calls 
H(a,x(G)). Therefore, ä can be found with 0(logx(G)) calls of the maximum 
a-colorable subgraph algorithm. We notice that first(a') < oo for each a' £ 
{ö,..., x(G)}- This implies that the mapping ip : a —► first(a) + a is non- 
increasing. 
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first(a) + a 

large(a) 

large(x{G)) 

first(X(G)) + x(G) 

 _ a 

5i t    t B2 

Fig. 2. The mappings <p : a -+ first(a) + a and ip : a -* large(a) 

For each a £ {1,..., y(<?)}, let a; be the smallest number in {a + 1,..., |V|} 
(if existent) with kx > y/\V\ka. Notice that k\V\ can be smaller than y/\V\ka. 

We define 

. / i if fc|V| > vn7^ largeia) = < , '   ' .    v 
v '      ^ oo otherwise 

For x(G) = |V"|, we define large(\V\) = oo. 

Lemma 7.  If a < a' then large(a) < large(a'). 

This Lemma implies that the mapping ip : a —> large(a) is non-decreasing. 
Next, we define two regions Bx = {a G {ä, ... ,x(G)}\large(a) < first (a) + a] 
andB2 = {a G {ä,... ,x{G)}\large(a) > first(a) + a}. We define ax = max(Bi) 
and a2 = m.in(B2) (if the corresponding sets are non-empty). In Figure 2, we 
have illustrated the mappings ip : a -» large(a) and ^ : a -+ first(a) + a. 
Since the mappings ^ and V are non-increasing and non-decreasing, for each 

pair a G B\, a' G B2 we have a < a'. 
Consider an optimum solution with parameters (aopt,b0pt) where aopt < 

X(G). We prove that is sufficient to compute at most two solutions using a 
(ai,first(aij) and a (o2, first(a2)) maximum colorable subgraph. 

Lemma 8.  Let (V',V\V) be an optimum solution with parameters (aopt,bopt) 

such that aopt < x(G). If'Bx # 0 and B2 / 0 then 

m.in(CH(a1,first(a1)),CH(a2,first(a2)) < 2y/\V\0PT(I) 

If Bi = 0, then a2 = ä and 

CH(äJirst(ä)) < 2y/\V\0PT(I). 
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Proof. We analyse the case with B\ ^ 0 and B2 ^ 0; the other case with B\ — 0 
follows then directly. Clearly, we have 0,2 = a\ + 1. We have to consider three 
cases. 

Case 1: large(aopt) < first(aopt) + aopt and aopt > ä. In this case, the 
optimum solution lies in the first region B\. Notice that first(aopt) + aopt < bopt- 
Since the mapping ip : a —> first(a) + a is non-increasing and ai > aopt, we 
have first(ai) + a\ < first(aopt) + aopt. Moreover, it holds that large(a\) < 
first(ai) + ax and that k,arge^ai) > \f\V\kai- 

The costs Cff(ai,/irsi(ai)) < \V\kai + ^/\V\kJirst(ai)+ai- Using ^/\V\kai < 
kiarge(ai) and large(a,\) < first(ai) + ax < first(aopt) + aopt < bopt, we obtain 

CH(ai,first(ai)) < 2^\V\kiort < 2y/\V\OPT(I). 

Case 2: large(aopt) > first(aopt) + aopt and aopt > ä. In this case, the opti- 
mum solution lies in region B2 and similar as above we get CH(<12, first(02)) < 
2^/\V\OPT(I). 

Case 3: aopt < ä. In this case, we get a contradiction. □ 
The next Lemma implies how the values ai and 0,2 can be computed using 

binary search and calls H(a, large(a) — a) and H(a, large(a) — a — 1). 

Lemma9. Let a £ {ä,... ,x(G)}. Using calls H(a,large(a) — a) and 
H(a, large(a) — a — I) we can decide whether a 6 Bi or a £ #2- 

Now, we are ready for our approximation algorithm. 

Algorithm B 
(1) compute large(a) for each a £ {l,...,x(G)} (using preprocessing in 

0(x(G)+\V\)time), 
(2) compute a first solution with the call H(x(G),0) (this is an arbitrary col- 

oring for the case aopt > x{G)), 
(3) find the smallest a with first{a) < 00 using binary search with calls 

H(a,x(G)) (these are maximum a - colorable subgraphs), 
(4) compute a\ (if existent) and 02 using binary search with calls 

H(a,large(a) — a) and H(a,large(a) — a — I) (these are maximum (a,x)- 
colorable subgraphs), 

(5) compute first(ai) (if ai exists) and first(a,2) using binary search with calls 
H(cii,x) (these are maximum (a;, a;)-colorable subgraphs), 

(6) choose the cheapest solution among the solutions with costs CH{O-\, 

first(ai)) (if ai exists), CH(CI2, firstfa)) and CH(X(G), 0). 

Using the calculations above, we obtain the following result. 

Theorem 10. The approximation algorithm B above computes a coloring of the 
OCCP problem restricted to interval graphs (and unimodular graphs) with ap- 
proximation ratio 0(\V\    ). 

The time complexity of this algorithm for interval graphs is given by 
0(log\'(G)) calls of a minimum cost flow algorithm. For unimodular graphs, 
we need at most Oi\ogx{G))) calls of a linear programming algorithm. 
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4    Other perfect graphs 

In [8], we have proved the following further results for the OCCP problem re- 
stricted to chordal, comparability, permutation and split graphs. 

Theorem 11. For each e < 1, there exists no polynomial approximation al- 
gorithm with ratio 0(|V|1_f) for the OCCP problem restricted to permutation 
graphs (and to comparability graphs), unless P = NP. 

Theorem 12. For each e < 1, there exists no polynomial approximation algo- 
rithm with ratio 0(\V\l~e) for the OCCP problem restricted to split graphs (and 
to chordal graphs), unless P = NP. 

Acknowledgement. I thank Thomas Erlebach (TU München) for his help- 
ful comments and many fruitful discussions. 

References 

1. Bodlaender, H.L., Jansen, K., Woeginger, G.: Scheduling with incompatible jobs. 
Graph Theoretic Concepts in Computer Science, LNCS 657 (1992) 37-49 

2. Chang, M.S., Chen, Y.H., Chang, G.J., Yan J.H.: Algorithmic aspects of the gen- 
eralized clique-transversal problem on chordal graphs. Discrete Applied Mathe- 
matics 66 (1996) 189-203 

3. Frank, A.: On chain and antichain families of a partially ordered set. Journal 
Combinatorial Theory (B) 29 (1980) 176-184 

4. Gavril, F.: Algorithms for maximum k-colorings and k-coverings of transitive 
graphs. Networks 17 (1987) 465-470. 

5. Golumbic, M.C.: Algorithmic graph theory and perfect graphs, Academic Press, 
New York (1980) 

6. Jansen, K., Schemer, P., Woeginger, G.J.: Maximum covering with D cliques. 
Fundamentals of Computation Theory, LNCS 710 (1993) 319-328 

7. Jansen, K.: The optimum cost chromatic partition problem. Algorithms and Com- 
plexity, LNCS 1203 (1997) 25-36 

8. Jansen, K.: Approximation results for the optimum cost chromatic partition prob- 
lem. Universität Trier, Forschungsbericht 1 (1997) 

9. Kroon, L.G., Sen, A., Deng, H., Roy, A.: The optimal cost chromatic partition 
problem for trees and interval graphs. Graph Theoretical Concepts in Computer 
Science, LNCS (1996) 

10. Sen, A., Deng, H., Guha, S.: On a graph partition problem with an application 
to VLSI layout. Information Processing Letters 43 (1992) 87-94 

11. Supowit, K.J.: Finding a maximum planar subset of a set of nets in a channel. 
IEEE Transactions on Computer Aided Design CAD 6, 1 (1987) 93-94 

12. Yannakakis,  M.,  Gavril,  F.: The maximum k-colorable  subgraph  problem for 
chordal graphs. Information Processing Letters 24 (1987) 133-137 



The Minimum Color Sum of Bipartite Graphs' 

Amotz Bar-Noy**       Guy Kortsarz*** 

Abstract. The problem of minimum color sum of a graph is to color the 
vertices of the graph such that the sum (average) of all assigned colors 
is minimum. Recently, in [BBH+96], it was shown that in general graphs 
this problem cannot be approximated within n1_£, for any e > 0, unless 
NP = ZPP. In the same paper, a 9/8-approximation algorithm was pre- 
sented for bipartite graphs. The hardness question for this problem on 
bipartite graphs was left open. In this paper we show that the minimum 
color sum problem for bipartite graphs admits no polynomial approxima- 
tion scheme, unless P = NP. The proof is by L-reducing the problem of 
finding the maximum independent set in a graph whose maximum degree 
is four to this problem. This result indicates clearly that the minimum 
color sum problem is much harder than the traditional coloring problem 
which is trivially solvable in bipartite graphs. As for the approximation 
ratio, we make a further step towards finding the precise threshold. We 
present a polynomial 10/9-approximation algorithm. Our algorithm uses 
a flow procedure in addition to the maximum independent set procedure 
used in previous results. 

1    Introduction 

One of the most fundamental problems in scheduling theory is scheduling 
efficiently (under some optimization goals) dependent tasks on a single 
machine. At any given time, the machine is capable to perform (serve) 
any number of tasks as long as these tasks are independent. When the 
serving time of each task is the same, this problem is identical to the well 
known coloring problem of graphs. The vertices of the graph represent the 
tasks and an edge in the graph between vertices v and u represents the 
dependency between the two corresponding tasks. That is, the machine 

*The    full    version    of    this    extended    abstract    can    be    found    in    URL 
http://www.eng.tau.ac.il/ amotz/publications.html. 
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'"Department of Computer Science, The Open University of Israel, Ramat Aviv, 
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cannot perform the tasks corresponding to vertices u and v concurrently. 
Another important application arises in the context of distributed re- 
source allocation. Here, the vertices represent processors each has one 
job to execute. An edge between two vertices indicates that the jobs be- 
longing to the corresponding processors cannot be executed concurrently 
since they require the usage of the same common resource. This problem 
is known in the literature as the dining (drinking) philosophers problem 
([LYN81, CM84]). 

More formally, the coloring problem can be defined as follows, let G = 
(V, E) be an undirected simple graph with n vertices, where V denotes 
the set of n vertices and E denotes the set of edges. A coloring of the 
vertices of G is a mapping into the set of positive integers, / : V H-> Z+, 
such that adjacent vertices are assigned different colors. We refer to f(v) 
as the color of v. 

The traditional optimization goal is to minimize the number of dif- 
ferent assigned colors. We call this problem the minimum coloring (MC) 
problem. In the setting of tasks system, this is equivalent to finding a 
schedule in which the machine finishes performing all the tasks as early 
as possible. In the setting of resource allocation, this is equivalent to find- 
ing a schedule in which the last processor finishes executing its job the 
earliest. This is an optimization goal that favors the system. However, 
from the point of view of the tasks (or processors) themselves, we might 
wish to find the best coloring such that the average waiting time to be 
served (or to execute the job) is minimized. 

Clearly, minimizing the average waiting time is equivalent to minimiz- 
ing the sum of all assigned colors. The minimum color sum (MCS) problem 
is defined as follows. Let G = (V, E) be an undirected simple graph with 
n vertices. We are looking for a coloring in which the sum of the assigned 
colors of all the vertices of G is minimized. That is, the value of J2vev f(v) 
is minimized. 

The minimum color sum problem was introduced by Kubicka in [K89]. 
In [KS89] it was shown that computing the MCS of a given graph is NP- 
hard. A polynomial time algorithm was given for the case where G is a 
tree. In [KKK89] it was shown that approximating the MCS problem within 
an additive constant factor is NP-hard. In a recent paper, [BBH+96], it 
was proven that the MCS problem cannot be approximated within n1_£, 
for any e > 0, unless NP = ZPP. On the other hand, this paper showed 
that an algorithm based on finding iteratively a maximum independent 
set is a 4-approximation to the MCS problem. This bound yields a 4p- 
approximation polynomial algorithm for the MCS problem for classes of 



740 

graphs for which the maximum independent set problem can be polyno- 
mially approximated within a factor of p. 

A special and important sub-class of graphs is the class of bipartite 
graphs. In a bipartite graph the set of vertices V is partitioned into two 
disjoint sets VJ and Vr such that both sets are independent. That is, all 
the edges of E are between vertices of V; and Vr. Coloring Vt by 1 and 
Vr by 2 yields a 2-coloring of any bipartite graph. Obviously this is the 
best possible solution for the MC problem. However, for the MCS problem 
the answer is not straightforward. Denote by MBCS the MCS problem on 
bipartite graphs. 

Coloring the largest set between Vt and Vr by 1 and the other set by 
2 yields a solution to the MBCS problem the value of which is at most 
3n/2. Obviously the value of the optimal solution is at least n, and there- 
fore this solution is at least a 3/2-approximation to the optimal solution. 
The paper [BBH+96] presents a better approximation of 9/8 using as a 
sub-procedure the algorithm for finding a maximum independent set. In 
bipartite graphs, finding maximum independent set can be done in poly- 
nomial time. Therefore, their approximation algorithm is also polynomial. 

New results: The contributions of this paper are the following two results: 

- We prove the first hardness result for MBCS. We show that the MBCS 
problem admits no polynomial approximation scheme, unless P = 
NP. The proof is by L-reducing the problem of finding the maximum 
independent set in a graph whose maximum degree is four to the 
MBCS problem which implies that MBCS is MAXSNP-hard [PY88]. This 
result indicates clearly that the MCS problem is much harder than the 
traditional coloring problem. 

- We improve the approximation ratio for the MBCS problem by present- 
ing a 10/9-approximation algorithm. Our algorithm introduces a new 
technique. It employs a flow procedure in addition to the maximum 
independent set procedure used in [BBH+96]. 

Max-type vs. sum-type problems: Our impossibility result raises the gen- 
eral question of the connection between "max-type" and "sum-type" 
problems. The MC problem is a max-type problem whereas the MCS prob- 
lem is a sum-type problem. The input and the feasible solutions for both 
problems are the same, the difference lies in the optimization goal. In the 
full version of this paper ([BK97]) we examine the "max-type" and the 
"sum-type" of the Traveling Salesperson problem (TSP). The discussion 
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there raises the interesting question of classifying problems according to 
the relationship between their "max-type" version with the "sum-type" 
version. The coloring problem and the traveling salesperson problem each 

belongs to a different class. 

2    Preliminaries 

Given a graph G(V, E) we use the following notations. Let MIS(G) denote 
the largest independent set in G. For any set S CV, let N(S) be the set 
of neighbors of S and MIS(S) denotes the maximum independent set in 
the graph induced by S. We also use the term 5 to denote the size of S. 
Given any coloring / of a graph, we denote by SC(/) the sum of colors 

in /, i.e., SC(/) = T,vevf(v)- When all the vertices in a set S C V are 
colored by the same color c, we say that S is colored by c. 

We say that problem P admits a polynomial approximation scheme, 
if for any e > 0 there exists a polynomial time approximation algorithm 
for P, whose approximation ratio is bounded by (1 + e). 

L-reduction The L-reduction ([PY88]) is a tool that helps proving hard- 
ness results. Unlike the usual iVP-hardness reductions, it "preserves" ap- 
proximation ratios. In order to define L-reduction we need the following 
notations. Let P be an optimization (either minimization or maximiza- 
tion) problem. Denote by I(P) the set of instances for problem P, by 
sol(P) the set of feasible solutions of problem P, and by cP(s) the cost 
function of any feasible solution s for P. Suppose now that P and Q are 
two optimization problems. In order to construct an L—reduction we need 
to define two (polynomially computable) functions K : I(P) i-» I(Q) and 
S : sol(Q) H> sol(P). For any instance x G I(P) let COPT(X) be the value 
of the optimal solution for x and let COPT(R-{

X
)) be the value of the op- 

timal solution for IZ(x). The two functions TZ and S are an L—reduction 
from problem P to problem Q, if there exist two constants a and ß such 
that the two following properties hold: 

1. C0PT{T^(X)) < a ■ COPT(X). 

2. For any feasible solution s G sol(Q) of TZ(x), S(s) is a feasible solution 

for x and \COPT(X) - cP(S(s))\ < ß ■ \COPT(K{X)) - CQ(S)\. 

Theorem 1 [PY88]. Suppose that Problem P admits no polynomial ap- 
proximation scheme and that Problem P can be L—reduced to problem Q. 
Then Problem Q admits no polynomial approximation scheme. 



742 

The MIS and 4-MIS problems The Maximum Independent Set (MIS) prob- 
lem is the following. Given an undirected graph G(V, E) with n vertices, 
the goal is to find a maximum independent set. I.e., a maximum sized set 
S CV such that no two vertices of S share an edge. The 4-MIS problem 
is the MIS problem restricted to graphs with maximum degree 4. 

Theorem2 [ALM+92]. There exists some e > 0 such that the 4-MIS 
admits no (1 + e)-approximation algorithm, unless P = NP (and hence 
4-MIS admits no polynomial approximation scheme). 

Known algorithms for the MBCS problem We recall the approximation al- 
gorithm presented in [BBH+96]. For a given bipartite graph G, denote by 
Ji the maximum independent set in G, by J2 the maximum independent 
set in G \ h, by J3 the maximum independent set in G \ {h UI2), and so 
on. The algorithm of [BBH+96] is best explained by the definition of a se- 
quence of (roughly) logn possible algorithms. Let A(2) be the algorithm 
that colors the vertices of G with two colors, the larger side of V by 1 
and the smaller side by 2. Let A(3) be the following algorithm: color the 
vertices of h by 1, and then color the vertices of G \ h by 2 and 3 (i.e., 
color the larger side in the remaining graph by 2 and the smaller side by 
3). In general, for i > 3 and for 1 < j < i - 2, algorithm A(i) colors the 
sets Ij with color j, and then colors the larger side of the remaining graph 
by i - 1 and the smaller side by i. All together, algorithm A(i) uses i 
colors. Note that we have defined at most LlognJ algorithms, because the 
maximum independent set in any bipartite graph with n vertices contains 
at least n/2 vertices. Let A' be the last possible algorithm in this family of 
algorithms. Since G is a bipartite graph, it follows that h > n/2. There- 
fore, algorithm A(2) is a 3/2-approximation algorithm. Consider now the 
following algorithm, denoted by B, that runs algorithms A(2) and A(3) 
and picks the best solution. 

Theorem 3 [BBH+96]. Algorithm B is a 9/8-approximation algorithm 
to the MBCS problem. 

An algorithmic tool We now describe the new tool used in our approxi- 
mation algorithm. Define the 2-Neighborhood problem as follows. Given 
a bipartite graph G{Vi,Vr,E) we look for a set S C Vt such that ds = 
2S - N(S) is maximum. We note that the order in which Vt and Vr are 
specified in the problem-presentation is important, that is the solution S 
is a subset of Vt. Polynomial time solutions for problems of this nature 
are known (see, e.g., [GGT89]). 
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3    A hardness result for the MBCS problem 

In this section, we prove that (unless P = NP) the MBCS problem has no 
polynomial approximation scheme. We do that by proving an L—reduction 
from the 4-MIS problem to the MBCS problem (hence showing that the 
MBCS problem is MAXSNP—hard). By Theorems 1 and 2 the hardness re- 
sult is implied. 

3.1     The construction - the function 72. 

Let G(V, E) be an instance of the 4-MIS problem. The 1Z function should 
map G into a graph G which is an instance of the MBCS problem. First, 
G contains a vertex corresponding to each vertex in V. In G, V is an 
independent set. We assume an order on the vertices of G. Whenever we 
consider an edge (x, y) 6 E we assume that x < y. The construction 
involves adding a gadget for each edge e = (x,y) G E. Each gadget is 
composed of twelve independent sets of vertices containing no internal 
edges (edges only cross from one different set to the other). The sets of 
vertices corresponding to different edges are disjoint. 

Before describing the sets of vertices and the edges of any gadget we 
need some definitions. We say that two (independent) sets A and B are 
cliqued, if every vertex in A is connected to every vertex in B that is, the 
sets A and B induce a complete bipartite graph. We say that the two sets 
are matched if \A\ = \B\ and every vertex x in A has a single neighbor 
m{x) in B, that is, the sets A and B induce a perfect matching. The 
sets and edges in the gadget corresponding to the edge e = (x, y) are as 
follows. 

Main and matched sets: 

1. A set XYX of 3 vertices and a matched set m(XYX) of 3 vertices. 

2. A set XYY of 3 vertices and a matched set m(XYY) of 3 vertices. 

3. A set XY of 6 vertices and a matched set m(XY) of 6 vertices. 

Imposing sets: 

1. A set Ii(XYX) of 18 vertices and a cliquedset tyXYX) of 9 vertices. 

2. A set I\{m{XYX)) of 6 vertices and a cliqued set l2(m(XYX)) of 3 
vertices. 

3. Two sets h{XY) of 24 vertices and h{m{XY)) of 12 vertices. 
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Additional edges between the sets: 

1. The vertex x (y) is connected to all 3 vertices of XYX (XYY). 

2. The sets XYX and XYY each is cliqued with XY. 

3. The sets XYX (m(XYX)) and I2(XYX) (I2(m(XYX))) are cliqued. 

4. The sets XY {m{XY)) and h(XY) (h(m(XY))) are cliqued. 

This completes the description of the gadget corresponding to each 
edge e = (x, y) and the description of the ^-function. The above sets 
depend on e, that is, there is such a gadget for every edge e £ E. We 
avoid adding e as a subscript in these sets, for the simplicity of notation. 
In order for the 11 function to be valid we demonstrate a 2 coloring for G 
proving that the graph G is a bipartite graph. 

Lemma 4.  The graph G is bipartite. 

The intuition behind the construction: The goal of the construction is to 
enable us to define the right function S. The role of the imposing sets is to 
force a situation in which some sets cannot be colored by a specific color. 
For example, it will be shown that in an optimal coloring the imposing set 
I2(XYX) is colored by 2. Consequently, the set XYX cannot be colored 
by 2. In general, in an optimal solution, all the sets of type h are colored 
by 1 and all the sets of type J2 are colored by 2. The role of the matched 
sets is to assure that the sum coloring of two matched sets is fixed in 
any optimal coloring. For example, if a vertex in XYX is colored by 1, 
then its matched vertex is colored by 3, and vice versa (recalling that 
these two sets can not be colored by 2). Thus every pair in XYX and 
m(XYX) adds exactly 4 to the sum coloring in an optimal coloring and 
the contribution of XYX and m(XYX) is fixed. Now let us explain the 
main idea in the construction. Let x and y be two vertices adjacent in G 
(i.e., (x,y) G E). We will show that we lose in the sum coloring if both x 
and y are colored by 1. Indeed, say that both x and y are colored 1, and 
consider the colors of XY, XYX, XYY. In the best coloring XYX is 
colored by 3 and XYY by 2. Therefore, since the set h(XY) is colored 
by 1, it follows that XY is colored by at least 4. On the other hand, if 
one of x and y is not colored by 1, we may gain by assigning XY a color 
less then 4. This follows since XYX and XYY will "waste" only one of 
the colors 2 and 3. Hence, it is possible to color XY with either 2 or 3. 
Therefore, a "good" sum coloring colors as large as possible independent 
set in G by 1. Thus, a "good" approximation for the MBCS problem implies 
a "good" approximation for the 4-MIS problem. 
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3.2 The function S 

A coloring / of the vertices in G is proper, if the two following properties 
hold for every edge. 

Imposing properties: The sets h{XYX), h(m(XYX)), h(XY), and 
h{m{XY)) are colored by 1. The sets h(XYX) and I2(m(XYX)) 
are colored by 2. 

Independence property: All the vertices of G that are colored by 1 in 
/ form an independent set in G. 

The process of constructing S is as follows. We start with any feasible 
coloring / of G. We then show in five stages that / can be transformed to a 
proper coloring / such that the sum of colors in / is no larger than the sum 
of colors in / (SC(/) < SC(/)). The mapping S is now defined by choosing 
the set of vertices in G that are colored by 1 by / denoted by h{f). Note, 
that by the independence property, h (/) is also an independent set in G. 

In the first stage we transform / into fx such that all the vertices in 
any independent set in any gadget are colored by the same color. In the 
second stage, we transform /i into a coloring f2 that is locally minimal, 
that is a coloring such that each set in the gadget is colored by no more 
than k + l where k is the number of neighboring sets to this set. In the 
third stage, we show how to transform /2 into a coloring /3 such that 
the imposing properties hold. In the forth stage, we transform /3 into a 
coloring /4 in which all the sets XYX and XYY in all the gadgets are 
colored by no more than 3. Finally, in the fifth stage we transform fo 
into the desired coloring / by showing how to achieve the independence 
property. In all five stages the new coloring has no worse sum coloring 
then the previous one. The full proof appears in [BK97]. 

3.3 The L—reduction properties 

We now turn to prove the two L—reduction properties. Let OPT be the 
minimum sum coloring in G and let MIC = SC(OPT). The next lemma 
proves the first property of the L-reduction. 

Lemma5.  There exists a constant a such that MIC < a ■ MIS(Gr). 

For the second property of the L-reduction, we need to show the exis- 
tence of a constant ß such that for any legal coloring f of G the following 
holds: MIS(G) - S(f) < ß{SC(f) - MIC). We prove this inequality with 
ß = 1. The proof uses the following two lemmas. Let h be the maximum 
independent set in G. 
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Lemma 6. MIC < 135 • E + 2n - h ■ 

Now let / be an arbitrary coloring of G and let / be its corresponding 
proper coloring. Let h{j) be the set of vertices colored by 1 in /, and 
thus S(f) = h(f). 

Lemma7. SC(/~) > 135 • E + In - h(f). 

The following lemma states the second property of the L-reduction. 

Lemma8. MIS(G) - S{f) < SC(/) - MIC. 

We completed constructing a valid ^-reduction from the 4-MIS prob- 
lem to the MBCS problem. The following theorem follows from Theorems 
1 and 2. 

Theorem 9. There exists an e > 0 such that there is no (1 + e)—ratio 
approximation algorithm for the MBCS problem unless P = NP. 

4    Improved approximation algorithm for MBCS 

In the previous section we have shown that there exists some e > 0 such 
that the MBCS problem has no (1 + e)-approximation algorithm. How- 
ever, the precise threshold for the approximation is yet to be determined. 
We take a further step in this direction. In this section, we present a 
new algorithm C that utilizes a new procedure Neig. We prove that this 
procedure, combined with algorithms A(2), A(3), and A(4) yield a 10/9- 
approximation algorithm for the MBCS problem. 

4.1     Procedure Neig and Algorithm C 

Procedure Neig utilizes the solution to the 2-Neighborhood problem. It 
uses the following subsets and subgraphs of G. 

1. h - the maximum independent set in G. l[ = I\C\Vi and I[ = I\ nVr. 

2. Z - the larger side of G\/i and W - the smaller side of G\/i. Without 
loss of generality, assume that Z C VJ and W C Vr. 

3. Gz = (Z,I[,Ez) - the (bipartite) subgraph induced by Z and I[. 
Gw = (W, l[,Ew) - the (bipartite) subgraph induced by W and l[. 

4. Sz - the set maximizing dsz = 2Sz — N(Sz) in Gz- 
Sw - the set maximizing dsw = 2Sw — N(Sw) m Gw- 

5. N^Sz) = N(SZ) n /[ and N^Sw) = N{SW) n /{. 
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Procedure Neig: 

If dsz > dsw then color: If dsz < dsw then color: 
1. l[uSzU (/[ \ N^Sz)) by 1. 1. /{ U Sw U (I[ \ Ni{Sw)) by 1. 
2. WUN^Sz) by 2. 2. Z U iVi(5w) by 2. 
3. Z \ Sz by 3. 3. W \ Sw by 3. 

For the case dsz > dsw, procedure Neig can be described as follows. 
Start with the initial coloring of A(3), that is h is colored by 1, Z (the 
larger of the two remaining sides) is colored by 2 and W by 3. Thus 
SC(A(3)) = /{+/[ + 2Z + SW. Next, re-color Z by 3 and W by 2, losing 
Z — W in the sum coloring. Next, change the color of Sz from 3 to 1 
gaining 2Sz in the sum coloring. This forces all the neighbors of Z in 
h, Ni(Sz), to be colored by a color different than 1, thus color them by 
2. Here we lose Ni(Sz) in the sum coloring. The net profit in the sum 
coloring is therefore 2SZ - Nx{Sz) + W - Z = dSz +W - Z. Similarly, 
it can be shown that for the case dsw > dsz, the net profit is dsw ■ (This 
case is better for us since we do not need to switch the colors of Z and 
W, loosing Z — W.) Thus, we proved the following proposition. 

Proposition 10. 
(!)■ IfdSz > dSw then SC(Neig) = SC(A(3)) - dSz + (Z-W). 
(2). IfdSw > dSz then SC(Neig) = SC(A(3)) - dSv ?w ■ 

We conclude this subsection with the description of algorithm C. It 
clearly follows that the algorithm has a polynomial running time. 

Algorithm C 

- Run algorithms A(2), A(3), A(4), and Procedure Neig. 

- Pick the solution whose sum coloring is the minimum among the four 
coloring solutions. 

4.2     Analysis 

All through the analysis, let Z = (n—Ii)/2+ed,n and W = (n—Ji)/2—e^n. 
The term e^n quantifies the extent in which the graph induced by Z U W 
is unbalanced. This is the graph resulting once the maximum independent 
set I\ is deleted from G. 
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Outline of the analysis: If Z - W = 2edn is "large" enough, then the 
10/9-ratio is already yielded by min {SC(A(2)), SC(A(3))}. Otherwise, Z- 
W is not too "large". If h is "large" enough, then this time already 
min{SC(A(2)),SC(A(4))} yields the 10/9-ratio. Otherwise, W is almost 
as "large" as Z and I2 is not too "large". If W is "small" enough and 
therefore Z is also "small" and h is "large" enough, then SC(A(3)) alone 
yields the 10/9-ratio. Otherwise Z - W and I2 are not too "large" and W 
is not too "small". If the optimal algorithm does not deviate much from 
algorithm A(3), then again min{SC(A(2)), SC(A(3))} yields the 10/9- 
ratio. Finally, if all the previous conditions do not hold, we use the new 
procedure Neig and show that min{SC(A(2)),SC(Neig)} yields the 10/9- 
ratio. The analysis is partitioned into the above five cases. The complete 
analysis appears in [BK97]. 

Theorem 11. Algorithm C is a polynomial 10/'9-approximation algorithm 
for the MBCS problem. 
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Abstract. This paper is concerned with the polynomial time approx- 
imability of node-deletion problems for hereditary properties. 
We will focus on such graph properties that are derived from matroids 
definable on the edge set of any graph. It will be shown first that all the 
node-deletion problem for such properties can be uniformly formulated 
by a simple but non-standard form of the integer program. A primal- 
dual approximation algorithm based on this and the dual of its linear 
relaxation is then presented. 
When a property has infinitely many minimal forbidden graphs no con- 
stant factor approximation for the corresponding node-deletion problem 
has been known except for the case of the Feedback Vertex Set (FVS) 
problem in undirected graphs. It will be shown next that FVS is not the 
sole exceptional case and that there exist infinitely many graph (heredi- 
tary) properties with an infinite number of minimal forbidden graphs, for 
which the node-deletion problems are efficiently approximable to within 
a factor of 2. Such properties are derived from the notion of matroidal 
families of graphs and relaxing the definitions for them. 

1    Introduction 

This paper is concerned with the polynomial time approximability of node- 
deletion problems for hereditary properties. The node-deletion problem for a 
graph property TT (denoted ND(7r) throughout the paper) is a typical graph opti- 
mization problem; that is, given a node-weighted graph G, find a node set of the 
minimum weight sum s.t. deletion of it (along with all the incident edges) from 
G leaves a subgraph satisfying the property 7r. A graph property TT is hered- 
itary if every subgraph of a graph satisfying n also satisfies TT. A number of 
well-studied graph properties are hereditary such as independent set, planar, 

* This work is partially supported by a grant from the Okawa Foundation for Infor- 
mation and Telecommunications. 
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bipartite, degree-constrained, circular-arc, circle graph, chordal, comparabil- 
ity, permutation, perfect. Consequently, many well known graph problems fall 
into this class of problems when desired graph properties are specified appropri- 
ately. Lewis and Yannakakis proved, however, that whenever IT is nontrivial and 
hereditary on induced subgraphs ND(TT) is JYP-hard [LY80]. When this general 
AT-hardness result was established in 1980, almost nothing was known about 
the approximability of ND(?r)'s except for good approximation algorithms for 
the Vertex Cover (VC) problem (i.e., TT = "independent set"). Moreover, their 
generic reductions from VC to other ND(7t)'s are approximation preserving, and 
as such, no ND(TT) can be approximated better than VC can be. One question 
posed therein was thus concerned with the other direction of approximability: 
Can other node-deletion problems be approximated as good as VC can be ? 

It has been long known that VC can be approximated with ratio 2 (achievable 
by a simple maximal matching heuristic [Gav74] for the unweighted case) and 
a better approximation has been a subject of extensive research over the years. 
Yet the best constant bound has remained the same at 2 while the best known 
heuristics can accomplish only slightly better (2 - ^^p of [BE85, MS85]). On 

the other hand very few other ND(TT)'S have been shown to be approximate 
within a factor of c, for any constant c, not to mention a constant of 2. As 
observed in [LY93] whenever hereditary IT has only a finite number of minimal 
forbidden graphs ND(7r) can be efficiently approximated to within some con- 
stant factor of the optimum. It was in fact conjectured therein that those with 
finitely many minimal forbidden graphs axe the only hereditary properties which 
yield constant factor approximable node-deletion problems (see also [Yan94]). It 
was found later, however, that this conjecture does not hold as is when the (un- 
weighted) Feedback Vertex Set (FVS) problem (i.e., IT = "acyclic*') in undirected 
graphs was shown to be approximable to within a factor of 4 [BGXR94] (Xote: 
every simple cycle of each length is a minimal forbidden graph for this -). Until 
now this problem has been the only known exception to the Lund-Yannakakis' 

conjecture. 

1.1    Our results 

In this paper we will show that there exist infinitely many XD(TT)'S for IT with an 
infinite number of minimal forbidden graphs, each of which approximable to a 
factor of 2. For that purpose we shall concentrate on such hereditary properties 
that can be derived from (independent sets of) matroids definable on the edge 
set of any graph (details given later). The class of XD(TT)'S for such properties 
includes VC, FVS, and many others. It will be shown first that all XD(TT)'S in 
this class can be uniformly formulated by a simple but non-standard form of 
the integer program using matroid rank functions. A primal-dual approximation 
algorithm for such XD(TT)'S is then designed based on this formulation and the 
dual of its linear programming relaxation, which is simpler than those algorithms 
for FVS given in [BBF95, BG94, CGHW96]. In particular our algorithm does 
not look into nor modify explicitly, unlike the previous algorithms for FVS, any 
special structure in graphs under consideration. An analysis of this algorithm 
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reveals that its performance ratio can be reduced to the combinatorial bound 
arising from the underlying structures of the problems. 

It will be shown next, as an application of the current primal-dual approach, 
that FVS is not the sole exceptional case: i.e., there exist other (hereditary) 
properties 7r*s with an infinite number of minimal forbidden graphs, s.t. XD(^)'s 
are efficiently approximate to within a factor of 2, the best constant factor 
known for either VC or FVS. In fact, we will show, there are infinitely many 
of them (at least countably many). Such properties are derived from the notion 
of matroidal families of graphs and relaxing the definitions for them (details 
later). The infinite sequence of these properties will be constructed having those 
for both VC and FVS at its basis and thus providing a proper generalization 
of them. It is also worth pointing out that our formulation for these XD(7r)'s 
introduces the integrality gap of at most 2 unlike the more natural "covering" 

formulations for them. 

1.2    Other related work 

Every ND(7r) for nontrivial hereditary IT is MAX SNP-hard, as pointed out 
in [LY93], due to the reductions of [LY80] and the result of [PY91]. Thus, no 
polynomial time algorithm can approximate ND(7r) to within a factor of l + e for 
some positive f. unless P = NP [ALM+92]. Yet a better lower bound is provided 
by the one in approximation of VC as it, serves as a lower bound for every XD(TT) 

for hereditary IT. Such a bound for VC has been continuously improved in the 
last few years, and currently it is known to be as large as | [Has97]. 

The approximation ratio of [BGNR94] for the unweighted FVS was subse- 
quently extended to the one for the weighted FVS and was further improved 
to 2 in [BBF95, BG94], matching the best constant factor known for VC. Re- 
cently Chudak et al. [CGHW96] gave a primal-dual interpretation of these 2- 
approximation algorithms of [BBF95, BG94]. They also provided a new primal- 
dual algorithm for FVS, which has the same performance ratio but is slightly 

simpler than the previous two. 

2    Preliminaries 

2.1    Notation and Definitions 

For any graph G let V{G) and E(G) denote the vertex set and the edge set, 
respectively, of G. The subgraph of G = (V. E) induced by X C V is denoted by 
G[X\. Let E[X] denote the set. of edges induced by X C V, and conversely, let 
V[F] for F C E denote the set, of vertices incident to some edge in F. E[X, Y] is 
the set of edges with one end in X and the other in Y. The set of edges incident 
to some node of A" is denoted S(X) and when those edges are restricted to the 
ones in a subgraph G[Y] we denote it by 6Y(X)(= 6{X)nE[Y}). Let, 5{it) {5Y(u), 
resp.) be a shortening of S({v.}) (dy({?/.}), resp.). 

A graph property n is nontrivial if infinitely many graphs satisfy - and in- 
finitely many graphs fail to satisfy it. It, is here.dit.ary (on induced subgraphs) if, 
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in any graph satisfying TT, every (node-induced, resp.) subgraph also satisfies 
TT. For a hereditary property n any graph which does not satisfy TT is called a 
forbidden graph for TT, and it is a minimal one if, additionally, every "proper" 
(induced, resp.) subgraph of it satisfies jr. Any hereditary property JT is equiva- 
lently characterized by the set of all minimal forbidden graphs for TT. 

It is customary to measure the quality of an approximation algorithm by its 
performance ratio, which is the worst, case ratio of the optimal solution value to 
the value of an approximate solution returned by the algorithm. 

2.2 Matroidal Properties 

One way to represent a matroid M is by a pair of a ground set E and a rank 

function r defined on 2E. A set F C E is called 

- independent, if r(F) = \F\ (and conversely, r(F') is the cardinality of a largest, 
independent subset of F' for an arbitrary F' C E), 

- dependent, if r(F) < \F\, 
- a base if it, is a maximal (and hence, maximum in any matroid) independent, 

set, and a circuit if it is a minimal dependent set, 

- spanning if r(F) = r(E). 

For any matroid M = (E, r) there is the dual m.atroid Md = (E, rd) defined on 
the same ground set E. The rank functions r and rd are related s.t. 

rd(E-F) = (\E\-r(E))-(\F\-r(F)) 

for any F C E (For more on matroid theory see, for instance, [Wel76]). 
Let M be a matroid which can be defined on the edge set of any graph (called 

an edge set. m.atroid) and denote by M(G) the matroid defined by M on the edge 
set of G. To avoid any possible anomaly we stipulate that for any subgraph H 
of G. M{H) is the restriction of M{G) onto E(H). This means that the rank 
function of M(H) is that of M(G), but its domain restricted to subsets of E{H). 

We say that, a graph property 7r is matroidal if for some edge set matroid 
M a (subgraph G satisfies TT iff its edge set, is independent in M{G) (Such a 
property is said to be derived from the matroid M). Such a property is hereditary 
on induced subgraphs because a subset of an independent set is independent in 
any matroid. Therefore, node-deletion problems for any nontrivial matroidal 
properties are iVP-hard and MAX SiVP-hard according to the results of [LY80] 
and [LY93]. Also note that the family of minimal forbidden graphs for such a 
property TT corresponds to the family of circuits of the corresponding matroid 

M(G) for all possible G. 

2.3 Matroidal Families of Graphs 

A matroidal family of graphs is a non-empty collection P of finite, connected 
graphs with the following property: given an arbitrary graph G. the edge sets of 
the subgraphs of G that are isomorphic to some member of P are the circuits 
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of a matroid on E(G). The matroid defined this way by the matroidal family P 

on the edge set of graph G will be denoted by P(G). 
The following four matroidal families, P0, Pi, P2, and P3, are those that were 

discovered first [Sim72, Sim73]. The family P0 consists of one graph only, namely 
two nodes with one edge in between. This is also the only finite matroidal family. 
The family Px consists of all the cycles: thus, PX(G) is the cycle matroid defined 
on E{G). The family P2 consists of all the bicycles, where a bicycle is a graph 
formed by minimally connecting two independent, cycles. These two cycles can 
be joined together by either (1) sharing only a single node, (2) sharing only a 
connected path, or (3) having a simple path attached only at each end of it. 
The family P3 consists of all the even cycles (i.e. cycles of even length) and the 
bicycles with no even cycle. The matroidal properties derived from these families 
thus correspond, respectively, to "a graph has no edge" (P0), "a graph contains 
no cycle" (Pi), "every connected component contains at most one cycle'1 (P2), 
and "every connected component contains at most one odd cycle and no even 
cycle" (PJV Therefore, ND(TT) is actually the VC (FVS, respectively) problem 
when iv is the matroidal property derived from P0 (Pi, respectively). 

It has been known that in fact there exist infinitely many (uncountably many) 
matroidal families of graphs, and the first description of them (countably many 
matroidal families) was obtained by Andreae: 

Proposition 1 [And78]. Let s and t be integers, s > 0 and -2s + 1 < t < 1. 

Let PS:i be the set of all graphs G s.t. 

(i) s\V(G)\ + t=\E(G)\, and 
(ii) G is minimal with respect to -property (i); i.e., no graph isomorphic to a 

proper subgraph of G satisfi.es property (i). 

Then PSit is a matroidal family. 

It is not so hard to verify that Pi = P1|0, P2 = Pi,i, and P0 = P3.-2s+\ (ft is 

not of the form Ps.i)- 

3    Primal-Dual Approximation for Matroidal Properties 

One of the most natural integer program formulations of ND(7r), presented here 
for the sake of comparison, is the one for a "covering problem": 

Min y_V'u.xu 
u€V" 

subject to: 
]T   xu > 1 H e nG(* 

u€V(ff) 
.ru€{0,l} u € V 

where i?(y(~) is the set of minimal forbidden graphs of ND(?r) contained as 
subgraphs in G. It was indicated in [EXSZ96] that in case of the FVS problem 
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the linear relaxation of the formulation above introduces the integrality gap (i.e., 
the ratio between the integer and fractional optima) of size as large as J?(log |V'|). 
We shall show later that there exists another formulation of which integrality gap 
is bounded by 2 for many XD(TT)'S including FVS (see Corollary 9). Chudak et 
al. gave new primal-dual formulations and the algorithms based on them for the 
FVS problem in undirected graphs [CGHW96]. These algorithms are not new 
ones but actually are primal-dual "interpretations" of the algorithms previously 
known from [BBF95, BG94]. We shall show below that in fact every XD(TT) with 
matroidal ir has a simple and identical primal-dual formulation as well as an 
algorithm based on it. Chudak et al. also gave a new algorithm for the FVS 
problem which is a slight simplification of the previous algorithms cited above. 

Our algorithm for ND(7r) is even simpler than theirs. 
We claim that ND(TT) on graph G = (V, E) can be formulated by the following 

integer program when 7r is a matroidal property derived from M = (E(G),r): 

Min y"Vyru 
u€V 

subject to: 

(IP) jyd(8s(u))xu > rd(E[S])        S C V 

x„ € {o, 1} « e v 

Theorem 2. When n is a matroidal property, F is a solution of ND(TT) iff X G 
{0,1}v (incidence vector of F) is a feasible solution to (IP). 

Consider now the dual of the linear programming relaxation of (IP): 

Max Y,rd(E\S\)Vs 
scv 

subject to: 

(D) J2 rd(ss(u))ys < »•"      «e v 

S:u€S 

vs > o s £ v 

The primal-dual approximation algorithm, based on (IP) and (D) above, for 
XD(~) with matroidal TT is presented in Fig. 1. We elaborate more on it. The 
algorithm starts with F = 0, the original graph G[S'] = (V, E) and the dual 
feasible solution y = 0. Given F, if it is not yet a solution of ND(;r) there must 
exist some set SCV corresponding to a violated constraint of (IP). In particular 
the set of all the remaining nodes S'{= V - F) must be always such a set, and 
thus we can always choose S' as a "violated set". The algorithm then increases 
the dual variable ys> as much as possible until for some node u in S" the dual 
constraint for u becomes tight; i.e., Y.S:ue.srd(5s{n))ys = "-V Notice that ys> 
here can be indeed increased because S' is the collection of all those nodes whose 
corresponding dual constraints were not yet tight. The algorithm adds u into a 
solution set F and at the same time removes it from 5". Clearly F eventually 
becomes a solution of XD(-) (and to (IP)) while y is kept feasible to (D). Lastly, 
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Initialize F = 0. 5' = V.. y = 0, / = 0. 
While F is not a solution of ND(7r) do 

/<-/ + l. 
Increase yS' until for some u € S' the dual constraint corresponding to u 

becomes tight. 
Let ui <- u. 
Add ui into F and remove u from S'. 

For j = / downto 1 do 
If p _ {Uj} is a solution of ND(JT) in G then remove u> from F. 

Output F. 

Fig. 1. Primal-Dual Approximation Algorithm for ND(7r) 

the nodes in F are examined one by one, in the reverse order of their inclusion 
to F, and whenever any of them is found to be extraneous it is thrown out of F. 

The algorithm clearly constructs a feasible solution F of ND(TT) and a solution 
y feasible for (D). These two solutions are related such that 

E '"» = EE A*s(«))Vs = E(  E   r'iWMvs (1) 
u€F u€FS:u6S SCVuSSnF 

An analysis of this algorithm reduces its performance ratio to the following 

combinatorial bound. 

Theorem 3. Let n be a matroidal property derived from, M = (E(G),r). Then 

the performance ratio of the prim,al-dual algorithm, is bounded by 

E ^») 
maxi   r*(E(G))   * 

■where max is taken over any minimal solution X of ND(TT) in any graph G. 

4    Uniformly Sparse Graph Properties 

It was shown in [Fuj96] that when it is derived either from P0 or Px (i.e., the VC 
or FVS property) (an essentially same algorithm as) the primal-dual algorithm 
delivers a solution with approximation ratio of 2. We add here one more to this 

list: 

Theorem 4. When n is derived from, P3 the primal-dual algorithm for ND(TT) 

has performance, ratio of 2. 

The case of P2 = A,i wm ^e- subsumed by the general result given below. 
We now turn our attention to a -relaxation', of the matroidal families of 

graphs, dropping the connectivity requirement on graphs in the families. Recall 
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the countably many matroidal families P,tl (s > 0, -2s + 1 < t < 1) of graphs 
from Proposition 1. Fix .* to 1, let t be any integer > -2s +1 = -1, and consider 
the sets of graphs, that are no longer necessary to be connected, using the same 
set of the definitions for Psy. i.e., PM is the set of all graphs G s.t. 

(i) |V(G)| + *=|£(G)|,and 
(ii) G is minimal with respect to property (i); i.e., no graph isomorphic to a 

proper subgraph of G satisfies property (i). 

Let Qk =f Pi,i+i for k > -2. 

Proposition 5.  Qk defines the set of circuits of a matroid on any (edge set of) 

graph for all k. 

It is useful to observe here what graph properties are actually derived from Qt's. 
A graph G = (V, E) satisfies the property iff for every F C E, \F\ - \V[F]\ < k, 
and thus we may call a graph with such a property uniformly k-sparse. 

We should also note: 

Proposition 6. Qk consists of an infinite number of distinct graphs for all k > 

-1. 

The next is a key lemma of the present paper, proof of which is postponed till 

Sec. 5. 

Lemma 7. Let IT be a property derived from Qk = (E{G), r). Suppose X C V(G) 

is any minimal solution of ND(n) in any G. Then, 

Y, rd(S(u)) < 2 • rd{E(G)). 

Finally, observe that given G = {V, E) we can compute efficiently the rank r{F) 
of any F C E (and thus rd(5(u.)) for each u € V) under Qk{G) (for instance, 
using the formula (2)). Therefore, our primal-dual algorithm runs in polynomial 
time for every Qk- Now from Lemma 7 and Theorem 3 it easily follows that 

Theorem 8. When ir is the property derived from, Qk for any fixed k the primal- 
dual algorithm, computes a solution of ND(ix) in polynomial time: its performance 

ratio is bounded above by 2. 

And hence, there exist at. least countable many nontrivial hereditary properties 
with an infinite number of minimal forbidden graphs, for which the node-deletion 
problems are efficiently approximate to within a factor of 2. 

We also deduce from Lemma 7, (1), and the fact that F f*l S is a minimal 
solution in G[S] whenever ys is nonzero, that the integrality gap in our formu- 
lation is at most 2 when n is derived from Qk- Let Z'IP and Z"D be the optimal 
values of (IP) and (D), respectively. And then, for any F and y computed by 
the primal-dual algorithm, 

Z,V < J2 «-•< = E "•'" = E (   E   Assays < £ 2rd(E{S])ys 
uev u€F 5cv uesnF scv 

<2Z'D. 
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7* 
Corollary 9.   When r is the rank function of Qk for any k, -jff- < 2. 

5    Proof of Lemma 7 

Definitions. Let C be a connected component. Define the surplus of C by 

sp(C) d= \E(C)\ - \V(C)\ and the bounded surplus s'p of C by sp(C) = 
mm{k, sp{C)}. Let C+{F) (C~{F)) denote the set of components, induced by an 
edge set F, with a positive bounded surplus (with a negative bounded surplus, 
respectively). When E' is an edge subset of E define sp(E') to be the surplus of 

the graph induced by E'. 

Notice that C~{F) consists of all the acyclic components, each with a 
(bounded) surplus of -1, induced by F. Also notice that for any component 
C and for any E' C E(C), sp(E') < sp{C). The rank function of the matroid 

Qk(G) defined on G = (V,E) can be given by 

r{F) = \V[F]\+xwn{k,    £     sP(C)} - \C~(F)\ (2) 
C€C+(F) 

for any F C E. 
Assume throughout that k > 0 (the case of k < -1 is no harder). Consider 

first the edge set E[V - X], which must be an independent set of Qk(G), since 

A" is a solution of ND(TT). Using (2) we have 

\E[V-X]\ = r(E[V-X]) 
— | V — A"| — (# of acyclic components in G[V — X]) + I     (3) 

for some 0 < / < k. We shall use the following auxiliary lemma in proving 

Lemma 7. 

Lemma 10. Assume (3). If X is a minimal solution of ND(ir) then 

\E[X,V-X]\>(k-l + l)\X\ + 

y2(# of acyclic components, in G[V - X], adjacent to u)(4) 

Suppose G contains an acyclic component T. Then since X contains no node 
of T. due to its minimality, we can restrict ourselves w.l.o.g. to G without T. 
So assume that G contains no acyclic component. Now suppose r(E) < \V\ + k. 
Then E must be independent in Qk{G) and G satisfies n. But then a solution 
A" minimal in G must he. empty and the inequality in question trivially holds. 

So assume that r(E) = |V'| + k, and using (3) we can write 

rd(E) = \E\ - r(E) 

= \E[X\\ + \E[X, V - X}\ - (r(E) - \E[V - X}\) 

= \E[X]\ + \E[X,V-X]\ 

— (\X\ + k — I. + (# of acyclic components in G[V - X}))       (5) 
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Assume that |A"| > 2 (the case of |„Y| < 1 is more straightforward and 
omitted here). Call such a component in G[V — X] that is adjacent to a single 
node in X as a leaf component. Recall that the dual rank of any E' C E under 
a matroid M can be equivalently defined by 

rd(E') = max{|£" - B\ : B is a base of M] 

Take any node u of A". To estimate the value of rd(5(u)) we observe how many 
edges incident to u must belong to a base of Qk{G). Let I,JCE be mutually 
disjoint sets s.t. / is an independent set and sp( J) < 0. And then, IllJ in general 
is an independent set of Qk(G). This observation allows us to argue that, for 
every acyclic leaf component T which is adjacent only to u, any base B of Qk(G) 
must use all the edges in T and (at least) one edge connecting u and T. Besides 
them B must use at least one more edge from S(u). To see why notice first that if 
no other edges of S(u) belong to B the component of B containing u is a tree at 
best. As observed above, however, it is always possible to extend this component 
by one more edge incident to it if it exists. So it remains to see that at least, one 
more edge is incident to u, and this is easy to do for, otherwise, u belongs to an 
acyclic component of G, which we've excluded at the beginning of the current 
analysis. Therefore, we can write 

rd(5(u)) < \S(u)\ — ((# of acyclic leaf components adjacent to u) + 1) 

and hence, 

£ rd(5(u)) < 2\E[X}\ + \E[X, V - X]\ - \X\ 
u€.V 

— (# of acyclic leaf components) (6) 

Notice that, since there is no isolated acyclic component in G. we can reduce (4) 
to 

\E[X, V -X]\>(k-l + 1)| A"| + 2(# of acyclic non-leaf components) 

+(# of acyclic leaf components) (7) 

Combining (5), (6) and (7), 

2rd(E) - £ rd(S(u)) 
uex 

> \E[X, V - X]\ - 2(\X\ + k - I + (# of acyclic components in G[V - A"])) 

+\X\ + (# of acyclic leaf components in G[V — X}) 

= \E[X,V-X]\-(\X\ + 2(k-l)) 

— (2(# of acyclic non-leaf components) + (# of acyclic leaf components)) 

> (k - l)(\X\ - 2) 

>0 
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Abstract An asteroidal triple is a set of three vertices such that there is a path between 
any pair of them avoiding the closed neighborhood of the third. A graph is called AT- 
free if it does not have an asteroidal triple. We show that there is an 0(n2 ■ (m + 1)) 
time algorithm to compute the maximum cardinality of an independent set for AT- 
free graphs, where n is the number of vertices and m is the number of non edges 
of the input graph. Furthermore we obtain 0(n2 ■ (fn+ 1)) time algorithms to solve 
the INDEPENDENT DOMINATING SET and the INDEPENDENT PERFECT DOMINATING SET 
problem on AT-free graphs. We also show how to adapt these algorithms such that 
they solve the corresponding problem for graphs with bounded asteroidal number in 
polynomial time. Finally we observe that the problems CLIQUE and PARTITION INTO 

CLIQUES remain NP-compIete when restricted to AT-free graphs. 

1    Introduction 

Asteroidal triples were introduced in 1962 to characterize interval graphs as those chordal 
graphs that do not contain an asteroidal triple (short AT) [20]. Graphs not containing an AT 
are called asteroidal triple-free graphs (short AT-free graphs). They form a large class of 
graphs containing interval, permutation, trapezoid and cocomparability graphs. Since 1989 
AT-free graphs have been studied extensively by Corneil, Olariu and Stewart. They have 
published a collection of papers presenting many structural and algorithmic properties of 
AT-free graphs (see e.g. [6, 7]). Further results on AT-free graphs were obtained in [18, 23]. 

Up to now the knowledge on the algorithmic complexity of NP-complete graph problems 
when restricted to AT-free graphs was relatively small compared to other graph classes. The 
problems TREEWIDTH, PATHWIDTH and MINIMUM FILL-IN remain NP-complete on AT-free 
graphs [1, 25]. On the other hand, domination-type problems like CONNECTED DOMINATING 
SET [7], DOMINATING SET [19] and TOTAL DOMINATING SET [19] can be solved by polyno- 
mial time algorithms for AT-free graphs. However there is a collection of classical NP- 
complete graph problems for which the algorithmic complexity when restricted to AT-free 
graphs was not known. Prominent representatives are INDEPENDENT SET, CLIQUE, GRAPH 
fc-COLORABILITY, PARTITION INTO CLIQUES, HAMILTONIAN CIRCUIT and HAMILTONIAN PATH. 

A crucial reason for the lack of progress in designing efficient algorithms for NP- 
complete problems on AT-free graphs seems to be that none of the typical representations, 
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that are useful for the design of efficient algorithms on special graph classes, is known to 
exist for AT-free graphs. Contrary to well-known graph classes such as chordal, permutation 
and circular-arc graphs, AT-free graphs do not seem to have a representation by a geometric 
intersection model, an elimination scheme of vertices or edges, small separators, a small 
number of minimal separators etc. However it turns out that the design of all our algorithms is 
supported by a structural property of AT-free graphs, that can be obtained from the definition 
of AT-free graphs rather easily. 

Our approach in this paper is similar to the one used to design algorithms for problems 
such as TREEWIDTH [14, 17] MINIMUM FILL-IN [17] and VERTEX RANKING [18] on AT-free 
graphs. However these algorithms have polynomial running time only under the additional 
constraint that the number of minimal separators is bounded by a polynomial in the number 
of vertices of the graph. (Notice that all three problems are NP-complete on AT-free graphs.) 
Technically, for the three different independent set problems in this paper, we are able to 
replace the set of all minimal separators, used in [14, 17, 18] - which might be 'too large' 
in size - by the 'small' set of all closed neighborhoods of the vertices of the graph. 

Finding out the algorithmic complexity of INDEPENDENT SET on AT-free graphs is a 
challenging task. Besides the fact that INDEPENDENT SET is a classical and well-studied NP- 
complete problem, the problem is also interesting since, contrary to well-known subclasses 
of AT-free graphs such as cocomparability graphs, not all AT-free graphs are perfect. Thus 
the polynomial time algorithm for perfect graphs of Grötschel, Loväsz and Schrijver [11] 
solving the INDEPENDENT SET problem does not apply to AT-free graphs. 

We present the first polynomial time algorithm solving the NP-complete problem IN- 
DEPENDENT SET, when restricted to AT-free graphs. More precisely, our main result is the 
0(n2 ■ (m + 1)) algorithm to compute the maximum cardinality of an independent set in an 
AT-free graph. Furthermore we present an 0(n2 ■ (m + 1)) time algorithm to solve the prob- 
lem INDEPENDENT DOMINATING SET. A similar algorithm solves the problem INDEPENDENT 
PERFECT DOMINATING SET in time 0(n2 ■ (m + 1)) [3]. We also observe that the problems 
CLIQUE and PARTITION INTO CLIQUES remain NP-complete when restricted to AT-free graphs. 

A natural generalization of asteroidal triples are the so-called asteroidal sets. Structural 
results for asteroidal sets and algorithms for graphs with bounded asteroidal number were 
obtained in [15, 21]. Computing the asteroidal number (i.e., the maximum cardinality of an 
asteroidal set) turns out to be NP-complete in general, but solvable in polynomial time for 
many graph classes [16]. Furthermore the results for problems as TREEWIDTH and MINIMUM 
FILL-IN on AT-free graphs can be generalized to graphs with bounded asteroidal number [15]. 
We show how to adapt our algorithms to obtain polynomial time algorithms for graphs 
with bounded asteroidal number solving the problems INDEPENDENT SET, INDEPENDENT 
DOMINATING SET and INDEPENDENT PERFECT DOMINATING SET. 

2   Preliminaries 

For a graph G = (V, E) we denote \V\ by n, \E\ by m and the number of edges of the 
complement of G, which is equal to the number of non edges of G, by rn. 

Recall that an independent set in a graph G is a set of pairwise nonadjacent vertices. 
The independence number of a graph G denoted by a(G) is the maximum cardinality of an 
independent set in G. 
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For a graph G = (V, E) and W C V, G[W] denotes the subgraph of G induced by the 
vertices of W; we write a(W) for a(G[I-F]). For convenience, for a vertex x of G we write 
G - x instead of G[V \ {x}}. Analogously, for a subset XCFwe write G - X instead of 
G[V \ X\. We consider components of a graph as (maximal connected) subgraphs as well 
as vertex subsets. For a vertex x of G = (V, E), 'JV(x) = {y 6 V : {x,y} S £} is the 
neighborhood of a: and N[x] = N(x) U {x} is the closed neighborhood of x. For W C V, 
N[W) = \JxeWN[x]. 

A set S-C V is a separator of the graph G = (V, E) if G - S is disconnected. 

Definition 1. Let G = (V, E) be a graph. A set Q C V is an asteroidal set if for every 
x € J? the set Q \ {x} is contained in one component of G - N[x). An asteroidal set with 
three vertices is called an asteroidal triple (short AT). 

Notice that every asteroidal set is an independent set. 

Remark. A triple {x, y, z} of vertices of G is an asteroidal triple if and only if for every two 
of these vertices there is a path between them avoiding the closed neighborhood of the third. 

Definition 2. A graph G = (V, E) is called asteroidal triple-free (short AT-free) if G has 
no asteroidal triple. 

It is well-known that the INDEPENDENT SET problem 'Given a graph G and a positive inte- 
ger k, decide whether a(G) > k\ is NP-complete [9]. The problem remains NP-compIete, 
even when restricted to cubic planar graphs [13]. Moreover the independence number is 
hard to approximate within a factor of n1_e for any constant e > 0 [12]. Despite this dis- 
couraging recent result on the complexity of approximation, the independence number can 
be computed in polynomial time on many special classes of graphs (see [13]). For example, 
the best known algorithm to compute the independence number of a cocomparability graph 
has running time 0(n + m) [24]. 

The main result of this paper is an 0(n2 - (m + 1)) algorithm to compute the maximum 
cardinality of an independent set in a given AT-free graph. The structural properties enabling 
the design of our algorithms are given in the next three sections. In this extended abstract, 
we restrict ourselves to the cardinality case of the problems. Nevertheless our algorithms can 
be extended in a straightforward manner such that they solve the corresponding problems 
on graphs with real vertex weights (see [3]). 

3    Intervals 

Let G = (V, E) be an AT-free graph, and let x and y be two distinct nonadjacent vertices of 
G. Throughout the paper we use Cx (y) to denote the component of G — N[x] containing y, 
andr(x) to denote the number of components of G — N[x}. 

Definition 3. A vertex z € V \ {x, y} is between x and y if x and z are in one component 
of G - N[y] and y and z are in one component of G — N[x\. 

Equivalently, z is between x and y in G if there is an x, z-path avoiding N[y] and there 
is a y, z-path avoiding N[x}. 

Definition 4. The interval I = I(x, y) of G is the set of all vertices of G that are between 
x and y. 

Thus I(x. y) = Cx{y) n C^(x). 
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4   Splitting intervals 

Let G = (V, E) be an AT-free graph, let I = I(x, y) be a nonempty interval of G and let 
sei. Let J, = I(x, s) and J2 = I{s, y)- 

Lemma 5. The vertices x and y are in different components ofG - N[s\. 

Proof. Assume x and y would be in the same component of G - N[s\. Then there is an 
x, y-path avoiding N[s\. However s£l implies that there is an s, y-path avoiding N[x] and 
an s, i-path avoiding N[y]. Thus {s, x, y} is an AT of G, a contradiction. D 

Corollary 6. Ij n/2 = 0- 

Proo/ Assume z G /i n 72. Then z£/, implies that there is a component Gs of G - N[s] 
containing both x and z. Furthermore z e h implies that also y G Cs, contradicting 
Lemma 5. 

Lemma 7. I\ C I and h Q I- 

Proof. Let z e I\. Clearly sei implies s e Cx(y). Thus z e I, implies z G Cx(y). 
Clearly z G Cs(x) since z G I\. By Lemma 5, Cs(x) is contained in a component of 
G - N[y] and obviously this component contains x. This proves z e I. Consequently 

h a. 
hQI can be shown analogously. D 

Theorem 8. There exist components C?, C%,..., C} ofG - N[s\ such that 

t 

/\iV[5] = J1uJ2uUc/. 
i=\ 

Proof. By Lemma 7, we have /, C I \ N{s) and I2 Q I \ N[s}. By Lemma 5, x and y 
belong to different components Cs{x) and Cä(y) ofG - N[s]. Let z G J \ N[s). 

Assume z G Cs{x). There is a z, y-path avoiding N[x]. This path must contain a vertex 
of N[s\, showing the existence of a z, s-path avoiding N[x\. Hence z e I\. 

Similarly z G Cs(y) implies z G /2- 
Assume z 0 Gs(x) and z g Cs{y). Since z 0 JV[s], z belongs to the component 

Cs{z) of G - JV[s]. For any vertex p G Gs(z), there is a p, z-path avoiding N[x], since 
Gs(z) 7^ G3(x). Since z € I, there is a z,y-path avoiding N[x\. Hence there is also a 
p, y-path avoiding N[x\. This shows Gs(z) C J \ N[s\. n 

Corollary 9. £very component of G[I \ (N[s\ U Ji U J2)] « a component ofG - N[s}. 

5   Splitting components 

Let G = {V, E) be an AT-free graph. Let Cx be a component of G - iV[i] and let y be a 
vertex of Cx. We study the components of the graph Cx - N[y]. 

Theorem 10. Let Dbea component ofCx - N[y). Then N[D] n [N[x] \ N[y\) = 0 if and 
only if D is a component of G - N[y\. 
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Proof. Let D be a component of Cx - N[y] with N[D] n (N[x\ \ N[y]) = 0. Since no 
vertex of D has a neighbor in N[x] \ N[y], £> is a component of G - N[y). 

Now let D C Cx be a component of G - i%]. Then AT[£>] n N[x) C iV[j/]. G 

Corollary 11. Lef 5 6e a component of Cx - N[y\. Then N[B] n (iV[i] \ JV*[y]) ^ 0 i/and 
onlyifBQCy(x). 

Theorem 12. Let B\,..., Be denote the components of Cx - N[y] that are contained in 
Cy(x).ThenI(x,y) = [jei=lBl. 

Proof. Let / = I(x, y). First we show that Bi Q I for every i S {1, ...,£}. Let z G Bi. 
There is an x, z-path avoiding 7V[j/], since some vertex in Bi has a neighbor in JV[x] \ iV[y]. 
Clearly, there is also a z,y-path avoiding N[x], since z and y are both in Cx. This shows 
that z € /. Consequently (Ji=1 ßj C /. 

Supposez S /\Ui=i -Si-Sincez ^ U^_, S,, the component!) of Cx-N[y] containing 
z does not contain a vertex with a neighbor in N[x]\N[y}. Thus z £ Cv(x), implying z 0 i", 
a contradiction. □ 

6    Computing the independence number 

In this section we describe our algorithm to compute the independence number of an AT-free 
graph. The algorithm we propose uses dynamic programming on intervals and components. 
All intervals and all components are sorted according to nondecreasing number of vertices. 
Following this order, the algorithm determines the independence number of each component 
and of each interval using the formulas given in Lemmas 13, 14 and 15. 

We start with an obvious lemma. 

Lemma 13. Let G = (V, E) be any graph. Then 

r(x) 

a(G) = l+m«(j>(Cf)), 
It V       ' 

i=\ 

where Cx, Cx,..., Cx,s are the components ofG — N[x\. 

Applying Lemma 13 to the decomposition given by Theorems 10 and 12, we obtain the 
following lemma. 

Lemma 14. Let G — (V, E) be an AT-free graph. Let x £ V and let Cx be a component of 
G - N[x}. Then 

a(Cx) = 1+ max (a(I(x,y)) + £>(.Df)), 

where the D\ 's are the components ofG — N[y] contained in Cx. 

Applying Lemma 13 to the decomposition given by Theorem 8, we obtain the following 
lemma. 
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Lemma 15. Let G = {V, E) be an AT-free graph. Let I = I{x, y) be an interval ofG. If 
I = 0 then a(I) = 0. Otherwise 

a(I) = 1 + max (a(I(x, s)) + a(I{s, y)) + £ a(C?)), 
sei i 

where the Cf 's are the components ofG - N[s] contained in I{x, y). 

Remark. Notice that the components Dy and Cf as well as the intervals I{x, s) and I(s, y) 
on the right-hand side of the formulas in Lemma 14 and Lemma 15 are proper subsets of 
Cx and I, respectively. Hence a{Cx) (resp. a{I)) can be computed by table look-up to 
components and intervals with a smaller number of vertices. 

Consequently we obtain the following algorithm to compute the independence number 
a(G) for a given AT-free graph G = (V, E), which is based on dynamic programming. 

Step 1 For every x £ V compute all components Cf, Cf,..., Cx
{x) of G - N[x}. 

Step 2 For every pair of nonadjacent vertices x and y compute the interval I(x, y). 
Step 3 Sort all the components and intervals according to nondecreasing number of vertices. 
Step 4 Compute a{C) and a{I) for each component C and each interval / in the order of 

Step 3. 
Step 5 Compute a(G). 

Theorem 16. There is an 0(n2 • (m + 1)) time algorithm to compute the independence 
number of a given AT-free graph. 

Proof. The correctness of our algorithm follows from the formulas of Lemmas 13, 14 and 
15 as well as the order of the dynamic programming. 

We show how to obtain the stated time complexity. Clearly, Step 1 can be implemented 
such that it takes 0(n(n + m)) time using a linear time algorithm to compute the components 
of the graph G - N[x] for each vertex x of G. For each component of G - N[x], a sorted 
linked list of all its vertices and its number of vertices is stored. For all nonadjacent vertices 
x and y there is a pointer P(x, y) to the list of Cx(y). Thus in Step 2, an interval I(x, y) 
can be computed using the fact that I(x, y) = Cx{y) n Cy(x). Hence a sorted vertex list 
of I(x, y) can be computed in time 0(n) for each interval. Consequently the overall time 
bound for Step 2 is 0(n ■ (rn+ 1)). There are at most n2 components and at most n2 intervals 
and each has at most n vertices. Thus using the linear time sorting algorithm bucket sort, 
Step 3 can be done in time 0(n2). 

The bottleneck for the time complexity of our algorithm is Step 4. First consider a 
component Cx of G - N[x] and a vertex y € Cx. We need to compute the components 
of G - N[y] that are contained in Cx. Each component D of G - N[y] except C(x) is 
contained in Cx if and only if D n Cx ^ 0. Thus the components D of G - N[y] with 
D C Cx are exactly those components of G - N[y] addressed by P(y,z) for some z G Cx. 
Thus all such components can be found in time 0{\CX\) for fixed vertices x and y € Cx. 
Hence the computation of a{C) for all components C takes time Y.{x,y}iE °{\cx{v)\) = 
0{n-{m+ 1)). 

Now consider an interval / = I{x, y), and a vertex s € I. We need to add up the 
independence numbers of the components C* of G - N[s] that are contained in /. The 
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components of G — N[y] that are contained in / are exactly those components addressed by 
P(y, z) for some z e. I, except Cs(x) and Cs{y). Thus all such components can be found 
in time 0(\I(x, y)\) for a fixed interval I(x, y) and s € I(x, y). Hence the computation of 
a(I) for all intervals I takes time E{x.y}^s Ese/(*,y) 0(\I(x, y)\) = 0(n2 • (m + 1)). 

Clearly Step 5 can be done in 0(n2) time. Thus the running time of our algorithm is 
0{n2 ■ {m + 1)). D 

7    Independent domination 

The approach used to design the presented polynomial time algorithm to compute the 
independence number for AT-free graphs can also be used to obtain a polynomial time 
algorithm solving the INDEPENDENT DOMINATING SET problem on AT-free graphs. The best 
known algorithm to solve the weighted version of the problem on cocomparability graphs 
has running time 0(n2376) [4]. 

Definition 17. Let G - (V, E) be a graph. Then S C V is a dominating set of G if every 
vertex of V \ S has a neighbor in S. A dominating set S C V is an independent dominating 
set of G if S is an independent set. 

We denote by ~/j (G) the minimum cardinality of an independent dominating set of the 
graph G. Given an AT-free graph G, our next algorithm computes 7i(G). It works very 
similar to the algorithm of the previous section. 

We present only the formulas used in Step 4 and 5 of the algorithm (which are similar to 
those in Lemma 13, Lemma 14 and Lemma 15). 

Lemma 18. LetG = (V, E) be a graph. Then 

r(x) 

7i(G) = l + min(^7i(GJ)), 

where Cf, C*,..., C*,x-, are the components ofG — N[x\. 

Lemma 19. Let G = (V, E) be an AT-free graph. Let x e V and let Cx be a component of 
G - N\x\. Then 

Tl(Cn = 1 + min (7i(/(x,t/)) +^7i(D})), 
j 

where the DVj 's are the components ofG — N[y] contained in Cx. 

Lemma 20. Let G = (V, E) be an AT-free graph. Let I = I(x, y) be an interval. If I = 0 
then 7i(J) = 0. Otherwise 

7i(/) = 1 + mir, (T,(/(I,S)) + r,(I(s,v)) + I><C'))' 
3 

where the Cj 's are the components ofG — N[s] contained in I{x, y). 
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Design and analysis of the algorithm is done similar to the previous section. We obtain 
the following theorem. 

Theorem 21. There exists an 0{n2 ■ (m + 1)) time algorithm to compute the independence 
domination number 71 of a given AT-free graph. 

In the full version [3] we also show how to obtain an 0{n2 • (m + 1)) algorithm to 
compute a minimum cardinality independent perfect dominating set for AT-free graphs. 

8   Bounded asteroidal number 

In this section we show that the independence number of graphs with bounded asteroidal 
number can be computed in polynomial time. 

Definition 22. The asteroidal number of a graph G is the maximum cardinality of an 
asteroidal set in G. 

Hence a graph is AT-free if and only if its asteroidal number is at most two. Furthermore 
the asteroidal number of a graph G is bounded by a(G), since every asteroidal set is an 
independent set. 

Definition 23. Let Si be an asteroidal set of G. The lump L{Si) is the set of vertices v such 
that for all x £ Si there is a component of G - N[x) containing v and Si \ {x}. 

Let Si = {xi,..., xK} be an asteroidal set of cardinality K > 2 and consider the lump 

L = L{Si). 
Let s be an arbitrary vertex in L. In this section we show how N [s\ splits the lump 

analogous to Theorem 8. 
Consider the components of G-iV[s]. These components partition ß into setsß,,..., SiT, 

where each Si% is a maximal subset of Si contained in a component of G - N[s). 

Lemma 24. For each i = 1,..., r, the set Si* = ß4 U {s} is an asteroidal set in G. 

Proof. Consider a: £ Sii. Then, by definition, Si\{x} and s are contained in one component 
0fG _ N[x]. Hence, Si* \ {x} is contained in one component of G - N[x\. This proves the 

claim. 

Lemma 25. Let z £ L be in some component C* ofG- N[s] that contains no vertices of 

Si. Then C* C L. 

Proof. Let p £ C* \ {z}. There is a p. z-path avoiding N{x\ for any vertex x £ Si. This 
proves the claim. 

First we consider the case where r = 1, i.e., where Si is in one component of G - N[s}. 
Then Si U {s} is an asteroidal set. 

Lemma 26. If Si is contained in one component C ofG - N[s], then L{SiU {s}) = L n C. 
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Proof. Clearly L(Q U {s}) C L n C. Let z £ L n C and consider a vertex iefi. Clearly, 
there is an x, z-path avoiding iV[s], since z and a; are in the component C of G — iV[s]. 
Hence z is in the component of Q of G — N[s]. Consider any other vertex j6ß. (Such 
vertices exist since \Q\ > 2). There exists a z, y-path avoiding N[x] since z £ L. But also, 
there exists a y, s-path avoiding N[x] since J? U {s} is an asteroidal set. Hence z is in the 
component of (Q U {s}) \ {x} of G - N[x}. 0 

Now we consider the case where r > 1. Let Li = L(J?,u{s}) fori = 1,..., r. Clearly, 
Lj D Lj = 0 for every i 7^ j. 

Lemma 27. Assume r > 1 a«if /er C £e the component of G — N[s] containing ß;. Then 
Li = LnC. 

Proof. First let z € L n C. Then for all x and y in i?i there is a z, x-path avoiding N[s] since 
z £ C (showing that z and /?* are in one component of G — N[s\), and there is a z, z-path 
avoiding N[y] since z6L, For y' € i?, for any j^j there is a z, y'-path avoiding N[x], 
since z £ L. Such a path contains a vertex of N[s], and consequently there is a z, s-path 
avoiding N[x]. This shows that z, s and J?i \ {x} are in one component of G - N[x] and 
hence L f~l C C Lj. 

Now let z € £i. This clearly implies z € C. For a vertex y € fij, j ^ i, s and the set 
Q \ {y} are in one component of G — N[y] since s G L. There is an s, z-path avoiding iV[y] 
since y and z belong to different components of G — N[s}. Consequently, z and Q \ {y} are 
in one component of G — N[y\. 

For a vertex x 6 flu there is a component of G — N[x] containing s and Q \ {x}, since 
s £ L. Since z € Li, there is an s, z-path avoiding N[x\. Hence also z is in this component 
of G - N[x\ and therefore I.CinC. D 

Theorem28. There exist components C\,... ,Ct of G — N[s] which contain no vertex of 
Q such that 

t T 

L\N[s} = [jCiU\jLj. 
i=\ j=\ 

Proof Let C\,..., Ct be the components of G — N[s] which contain a vertex of L but no 
vertex of Ü. Then by Lemma 25 we have (J!=i Gi C L\ N[S], and by Lemmas 26 and 27 
we have [fj=] Lj C L\ N[s]. 

Now let I s £ \ iV[s]. If Hs in a component containing l?i, 1 < i < r, then Z € Lj by 
Lemma 26 or 27. Otherwise there is an index i, 1 < i < t such that I £ Ci. This completes 
the proof. Ü 

Theorem 28 enables us to generalize Lemmas 15 and 20 in the following way. 

Lemma 29. Let L = L{Q) be a lump ofG. IfL = 0 then a(L) = 7i(L) = 0. Otherwise 

t T 

a(L) = 1 + max (53a(Cj) + £>(Li)), 

t r 

7)(I) = 1 + min (^7,(^) + ^7i(^)), 
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where C\,... ,Ctare the components ofG - N[s] which contain no vertex ofQ, L\,...,LT 

are the lumps L{Qi + 5) as used in Lemma 24. 

Together with Lemmas 13 and 14, 18 and 19, the formulas of Lemma 29 lead to 
recursive algorithms computing a{G) and 71(G) for a graph G. For any positive integer k, 
these algorithms can be implemented to run in time 0(nk+2) for all graphs with asteroidal 
number at most k. Analogously to the proof of Theorem 16, the time complexity is now 
dominated by the term Y,n ZseL(n) OQL(f2)\) = 0(nk+2), where the sum is taken over 
all asteroidal sets Q of G and all s € L{Q). 

As before, our algorithms for graphs with a bounded asteroidal number can be extended 
to the weighted cases of the problems and the corresponding algorithms have the same 
timebounds. 

9    Conclusions 

In this paper we have shown that the independence number as well as the independence 
domination number of an AT-free graph can be computed in time 0{n2 ■ (m+ 1)). The same 
approach can be used to obtain an 0{n2 ■ (m + 1)) algorithm to solve the INDEPENDENT 
PERFECT DOMINATING SET problem on AT-free graphs. We have shown how to adapt the 
algorithm computing the independence number in such a way that the new algorithm com- 
putes the independence number of a graph with a bounded asteroidal number in polynomial 
time. 

In the full version [3] we show how to extend our algorithms for the problems INDEPEN- 
DENT SET and INDEPENDENT DOMINATING SET to AT-free graphs with real vertex weights. 
Both algorithms run in time 0(n2 ■ (m + 1)). Furthermore our algorithms can also be mod- 
ified such that they compute a maximum weight independent set and a minimum weight 
independent dominating set in time 0(n2 ■ (m + 1)). 

Contrary to the independent set problems considered so far, the NP-complete graph 
problems CLIQUE and PARTITION INTO CLIQUES, that are closely related to INDEPENDENT 
SET, both remain NP-complete when restricted to the class of AT-free graphs. Concerning 
CLIQUE recall that Poljak has shown that INDEPENDENT SET remains NP-complete on triangle- 
free graphs [9]. Consequently CLIQUE remains NP-complete on graphs with independence 
number at most two, and thus on AT-free graphs. Similarly, it follows from a recent result 
due to Maffray and Preissman (showing that GRAPH fc-COLORABlLlTY remains NP-complete 
when restricted to triangle-free graphs [22]), that the problem PARTITION INTO CLIQUES 
remains NP-complete on AT-free graphs. 

Consequently CLIQUE and PARTITION INTO CLIQUES are the first NP-complete graph prob- 
lems (known to us) which are NP-complete on AT-free graphs, but solvable in polynomial 
time on the class of cocomparability graphs. The latter graph class is the largest well-studied 
subclass of AT-free graphs which is also a class of perfect graphs. 

It would be interesting to find out the algorithmic complexity of the following well-known 
NP-complete graph problems when restricted to AT-free graphs: GRAPH fc-COLORABiLiTY, 
HAMILTONIAN CIRCUIT, HAMILTONIAN PATH. These three problems are all known to have 
polynomial time algorithms for cocomparability graphs [8, 10]. 
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Abstract. In the context of Cousot and Cousot's abstract interpreta- 
tion theory, we present a general framework to define, study and handle 
operators modifying abstract domains. In particular, we introduce the 
notions of operators of refinement and compression of abstract domains: 
A refinement enhances the precision of an abstract domain; a compres- 
sion operator (compressor) can exist relatively to a given refinement, and 
it simplifies as much as possible a domain of input for that refinement. 
The adequateness of our framework is shown by the fact that most of the 
existing operators on abstract domains fall in it. A precise relationship of 
adjunction between refinements and compressors is also given, justifying 
why compressors can be understood as inverses of refinements. 

1     Introduction 

It is well known that abstract domains play a fundamental role in abstract inter- 
pretation [5, 6], since the precision of an abstract interpretation-based program 
analysis strongly depends on the expressive power of the chosen abstract do- 
main. Much work has been therefore devoted to define systematic operators for 
enhancing the precision of representation of abstract domains. Relevant examples 
are Cousot and Cousot's reduced product, disjunctive completion and reduced 
cardinal power [6], Nielson's tensor product [18], Giacobazzi and Ranzato's de- 
pendencies and dual-Moore-set completion [13], the open product and pattern 
completion of Cortesi et al. [4], to cite the most known ones. The basic idea is 
that richer abstract domains can be obtained by combining simpler ones or by 
lifting them by adding new information. These operators on abstract domains 
provide high level facilities to tune the analysis in accuracy and cost, and some 
of them have been included as tools for abstract domain design aid in modern 
systems for program analysis, like for instance in System Z [22] and in PLAI [1]. 

We carry on this idea of operators enhancing the precision of abstract do- 
mains and we present in Sect. 3 a general and precise framework to handle these 
operators, which encompasses and improves the ideas sketched in [9]. The cen- 
tral notion is that of abstract domain refinement, that intuitively is any operator 
performing an action of refinement on abstract domains, with respect to their 
standard ordering relation of precision. There exists a strong link between refine- 
ments and closure operators, and many lattice-theoretic properties of closures 
are inherited by refinements. We introduce a generic pattern of definition for 
domain refinements, which allows to recover most of the important refinements 
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listed above. Moreover, as an instance of this scheme, we present a new refine- 
ment of completeness. Roughly speaking, an abstract domain D is complete for 
a semantic function / defined on the concrete domain when no loss of precision 
is introduced by approximating / in the best possible way (i.e. by considering its 
best correct approximation, cf. [5, 6]) with respect to D. Thus, for a domain D, 
our refinement of completeness provides the most abstract domain which is more 
precise than D and complete for a given continuous concrete semantic function. 

Recently, also operators of simplification of abstract domains have been de- 
fined and studied, like the operations of complementation in [3] and least dis- 
junctive basis in [14]. As well as refinements, we show in Sect. 4 that these 
operators can be expressed in a formal and precise way in our framework. Ac- 
tually, these operators are instances of our notion of operator of compression 
(or compressor). Roughly speaking, for a given abstract domain refinement 5ft, 
its relative compressor simplifies a domain D of input for 5ft, by returning the 
domain (if this exists) which contains the least amount of information required 
as input by 5ft to reach the same enhancement obtainable from D. This is some- 
how similar to the operation of compression on files - hence our terminology. 
In more precise terms, if 5ft is a unary refinement and D is an abstract domain, 
then an abstract domain A is the optimal basis of D for 5ft, if A is the most 
abstract solution to the equation 5ft(X) = 5ft(D). Obviously, if an optimal basis 
exists then it is necessarily unique. We say that 5ft is invertible on a given class 
of abstract domains if there exists the optimal basis of any domain D in the 
class. In this case, the compressor 5ft- relative to 5ft (also called the inverse of 
5ft) provides the optimal basis 5ft~(£>) of D for 5ft. The problem of inverting a 
refinement is often hard to solve in a satisfactory way, and, in general, not all 
domain refinements admit a corresponding compressor defined for a significant 
class of abstract domains. We show that complementation and least disjunctive 
basis give rise, respectively, to the compressors relative to reduced product and 
disjunctive completion refinements, and we give a generic scheme for defining 
invertible refinements. Moreover, we show that invertible refinements provide 
solutions to the problem of decomposing abstract domains into simpler factors. 
If 5ft is an n-ary refinement and D = 5ft(A,..., Dn), then the tuple (Di,...,Dn) 
can be considered as a decomposition of D relative to 5ft. We then present a 
general iterative method which starting from any decomposition relative to an 
invertible refinement provides minimal decompositions, i.e. decompositions in- 
volving the most abstract factors. 

It is important to note that our notion of inversion of a refinement does not 
correspond to the more customary inversion in the sense of adjunctions - on 
the contrary, we observe that, in general, this is not possible. However, we show 
in Sect. 5 that this asymmetry can be overcome by considering a modified or- 
dering relation between abstract domains, that is induced in a natural way by 
the refinement itself. We prove that for this lifted order on abstract domains, 
an invertible refinement and its compressor do constitute an adjunction. This 
provides a firm mathematical relationship between refinements and compressors, 
and gives a more precise justification to the use of the term "inverse". 
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2 Preliminaries 
The structure (uco(C), C., U, n, Xx.T,Xx.x) denotes the complete lattice of all 
upper closure operators (shortly closures) on a complete lattice (C, <, V, A, T, _L), 
where p C 77 iff Vx £ C. p(x) < r)(x). The complete lattice of all lower closure 
operators on C is denoted by lco(C) and is dual-isomorphic to uco(C). Recall 
that each closure operator p £ uco(C) is uniquely determined by the set of its 
fixpoints, which is its image, i.e. p{C) = {x 6 C \ p(x) = x}, that p C. r\ iff 
77(C) C p(C), and that a subset X C C is the set of fixpoints of a closure iff 
X — {AY \ Y C X} (note that T e X). {p{C), <) is a complete meet subsemi- 
lattice of C but, in general, it is not a complete sublattice of C. 

In the standard Cousot and Cousot abstract interpretation theory, abstract 
domains can be equivalently specified either by Galois connections or by closure 
operators [6]. In the first case, concrete and abstract domains are related by 
a pair of adjoint functions. This provides a way to relate domains containing 
objects having different representation. In the second case instead, an abstract 
domain is specified as (the set of fixpoints of) an upper closure on the concrete 
domain. Thus, the closure operator approach is particularly convenient when 
reasoning about properties of abstract domains independently from the repre- 
sentation of their objects, as in our case. Hence, we will identify uco(C) with 
the complete lattice of all possible abstract domains of the concrete domain (i.e. 
any complete lattice) C. The ordering on uco(C) corresponds precisely to the 
standard order used in abstract interpretation to compare abstract domains with 
regard to their precision: D\ is more precise than D2 iff D\ Q D2 in uco(C) (c 
denotes strict ordering). The lub and gib on uco(C) have therefore the following 
meaning as operators on domains. Suppose {A}ie/ ^ uco(C): (i) U{ejDi is the 
most concrete among the domains which are abstractions of all the A's, i.e. it 
is their least common abstraction; (ii) HiejDi is (isomorphic to) the well-known 
reduced product of all the Di's, and, equivalently, it is the most abstract among 
the domains (abstracting C) which are more concrete than every £>;. Whenever 
C is a meet-continuous complete lattice (i.e., for any chain FCC and x £ C: 
x A (VF) = Vj/6y(a; A y)), uco(C) enjoys the lattice-theoretic property of pseu- 
docomplementedness (cf. [12]). This property allowed to define the operation of 
complementation of abstract domains (cf. [3]), namely an operation which, start- 
ing from any two domains C C D, where C is meet-continuous, gives as result 
the most abstract domain C~D, such that (C~ö)nZ)= C. 

3 Abstract Domain Refinements 

Intuitively, an abstract domain refinement is an operator that, for any tuple 
(Dl)i<i<n of domains of input (ranging on a given domain of definition), provides 
as output a domain more precise than each D{. It is also very reasonable to 
expect that such an operator is monotone. These observations naturally lead to 
the definition below. In the following, a generic tuple of objects is denoted by 
O, 7Tj(0) denotes its i-th component, and 0[X/i] denotes the tuple obtained 
from O by replacing 7TJ(0) with X. Also, C is a complete lattice acting as 
the concrete domain and U C uco(C)n, n > 1, is a given tuple of sets of 
domains abstracting C (for simplicity, we only consider refinements of finite arity 
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- actually those having a practical meaning - although a generalization would be 
straightforward). When n = 1 we denote U as the set U C uco(C). We extend 
on tuples the gib of uco(C): For any tuple of domains D, nD = ni<»<n7r;(D). 
Definition 3.1 A map ft : U -»• uco(C) is a (n-ary abstract domain) refinement 
if: (i) ft is monotone; (ii) ft is reductive: VD G U. ft(D) C nD. □ 

The kernel of definition of any refinement ft : U -)■ uco(C) is given by 
Ku = ni<i<„7ri(U). Often, refinements are defined on any tuple of abstract 
domains, i7e.7 ft : uco{C)n -»■ uco(C), as in the case of reduced product and 
disjunctive completion, later considered. We will call them full refinements, in 
order to distinguish them from generic ones as allowed by Definition 3.1. Any 
n-ary refinement ft : U -> uco(C) induces a family of refinements of lower arity 
obtained by fixing some of the domains of input. For instance, by fixing n - 1 
domains, we get the unary refinements \XM(D[X/i]) : 7r,(U) -> uco(C). Also, 
ft induces the canonical unary self-refinement ftj : Kn -> uco{C) defined as 
fti(D) = ftp, ...,D). Conversely, any n-uple R = (ft,)i<»<n of unary refine- 
ments ft» : Ui ->■ uco(C) induces an n-ary refinement ftR : UiX...xUn ->■ uco(C) 
defined as ftR(D) = n^^MD)), and called attribute independent. 

It is important to remark that Definition 3.1 lacks of any requirement of 
idempotence. For instance, for a unary refinement ft : U -► uco(C) may well 
happen that a refined domain ft(£>) G U can still be object of further refinement, 
i.e. ft(ft(I>)) C ft(-D). Due to lack of space, in the paper we will only consider 
examples of idempotent refinements, although a relevant example of nonidem- 
potent refinement can be given by the dependencies between abstract domains 
of [13]. However, it is worth noting that, by monotonicity, any refinement can 
be lifted to an idempotent one as the limit of a possibly transfinite Kleene fix- 
point iteration sequence. It is therefore reasonable requiring idempotence for 
refinements, i.e. that a refinement upgrades abstract domains all at once. 

Definition 3.2 An n-ary refinement ft : U -> uco(C) is idempotent if for any 
i G [1, n] and D G U such that ft(D) G Ku, ft(D) = ft(D[ft(D)/i]). □ 
Proposition 3.3 For any ft : U ->• uco(C), the following are equivalent: 

(a) ft is idempotent; 
(b) For any D G U such that ft(D) G KU; »(D) = fti(ft(D)). 
//Ku is a (finitely) meet subsemilattice of uco(C) then (a) is equivalent to: 
(c) ftn is idempotent and for any DGU such that ft(D) £%, ft(D) = fti(nD). 

The following example yields a generic and useful pattern of definition for 
full idempotent refinements. 
Example 3.4 Consider any property P of abstract domains, i.e. a subset of the 
lattice of abstract interpretations P C uco(C). For any fixed n G IN, define the 
operator ftP : uco(C)n ->■ uco(C) as ftp = AD. U {A G uco(C) | A G P, A C 
nD}. Thus, ftp(D) is the least common abstraction of all domains that satisfy 
P and are more concrete (viz. precise) than every TT;(D) for i G [l,n]. It is 
immediate to observe that ftp is monotone and reductive. Also, it is!easily seen 
that ftp satisfies the condition (c) of Proposition 3.3. Thus, ftp always defines a 
full idempotent refinement. However, in general, ftp(D) may not satisfy P. On 
the other hand, the following characterization holds. 
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Proposition 3.5 VD. KP(D) € P O P <E lco{uco(C)) =» 5ftP = AD.P(nD). 

Thus, for a property P which is a lower closure, 5ftP(D) is the most abstract 
domain which satisfies P and is more concrete than every 7r;(D), or, equivalently, 
5ftP(D) is the least extension of nD that satisfies P. It is also worth noting that 
5ftP(D) is the greatest fixpoint of the equation X = P(X) n (nD) in uco(C). □ 

Note that any unary idempotent refinement 5ft : U ->• uco(C) such that 
$l(U) C U (we say in this case that 5ft is well-defined on U) actually is a,lower 
closure operator on the poset (U,C), with the order inherited from uco(C), i.e. 
5ft £ lco{ U). In particular, any unary full idempotent refinement 5ft is a lower clo- 
sure on uco(C), i.e. K e fco(Mco(C)), a case already considered in [9]. Also, for 
any n-ary full idempotent refinement 5ft : uco(C)n -» uco(C), we have that any 
unary refinement AX.5R(D[X/«]) (i G [1, n]) induced by 5ft is a lower closure op- 
erator on uco(C), as well as the self-refinement 5ftj. It would be straightforward, 
although notationally tedious, to generalize this latter observation to generic 
n-ary (possibly nonfull) idempotent refinements that satisfy a suitably general- 
ized condition of well-definedness. These observations are fairly important, since 
unary idempotent refinements inherit all the lattice-theoretic properties of lower 
closures (see [23] for a few of them). For instance, whenever the domain of defini- 
tion (U, Q is a complete lattice, we get that these refinements well-defined on U 
form a complete lattice (lco(U), C) (by a slight abuse of notation, we always use 
the ordering symbol C for any kind of closures), where 5fti C. 5ft2 iff for any A e U, 
5RI(J4) C R2(A) iff the set of abstract domains refined by 5fti is contained in the 
set of those refined by 5ft2. Thus, analogously to the case of abstract domains, 
the complete ordering C between idempotent refinements can be interpreted as 
a relation of precision among refinement operators, where 5fti is more precise 
than 5R2 iff 5ft i Q 5ft2. Moreover, any unary idempotent refinement well-defined 
on a complete subsemilattice U of uco(C) enjoys the following properties of 
compositionality w.r.t. the reduced product and least common abstraction. 

Proposition 3.6 If U is a complete meet (join) subsemilattice of uco(C), 5ft : 
U -)■ U is an idempotent refinement, and {Di}iej C p(U), then 5ft(nis/A) = 
5R(nlG/5R(A)) (5R(u!6/5ft(A)) = Ui6/K(A);. 

Reduced Product Refinement. The simplest and probably most familiar ex- 
ample of abstract domain refinement is the reduced product [6], which is the gib 
in the lattice of abstractions. For simplicity, we consider it as a binary refinement. 
For any fixed concrete domain C (i.e., any complete lattice), reduced product is 
obviously an idempotent full refinement 5ftn : uco(C) x uco{C) ->■ uco(C). Thus, 
the unary refinement induced by 5ftn, i.e. AX. A n X is a lower closure, and for 
it the properties discussed above hold. It is worth noting that 5ftn is the simplest 
instance of the family of refinements defined in Example 3.4, since 5ftn is 5ftp for 
the trivial property P = uco(C). Also, 5ftn is the attribute independent combi- 
nation of the trivial identity refinements. Reduced product has been successfully 
applied as a domain refinement in program analysis e.g. in [1, 16, 21]. 

Disjunctive Completion Refinement. The disjunctive completion [6] en- 
hances an abstract domain so that its disjunction operation (i.e. lub) becomes 
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precise (as that of the concrete domain). Abstract domains with a precise dis- 
junction (also called disjunctive abstract domains) correspond to additive clo- 
sure operators. Disjunctive completion can be given as an instance of the gen- 
eral scheme of Example 3.4, where the property P is given by additivity: P = 
ucoa(C), the subset of uco(C) of additive closures. Hence, the disjunctive com- 
pletion 5Rv : uco(C) ->• uco(C) is defined as 5cv(£>) = U{^ G ucoa(C) | A C D). 
Thus, Kv is an idempotent full refinement. It is easy to observe that ucoa(C) 
defines a lower closure on uco{C). Then, by Proposition 3.5, SRV(-D) is the most 
abstract disjunctive domain that is more concrete than D. The disjunctive com- 
pletion refinement has been applied in program analysis e.g. in [8, 15, 10]. 

Negative Completion Refinement. Assume the concrete domain C be a 
complete Boolean algebra. It is easy to verify that if p G uco°(C) then -.p = 
{-.re G C | x G p) G ucoa(C). The negative completion refinement is then 
defined on disjunctive abstract domains, SR^ : ucoa{C) ->■ uco(C), as follows: 
3?_,(.4) = A n -ü4. Thus, 5R-, lifts a given disjunctive abstract domain A to the 
reduced product of A with its negative abstract domain, namely to the most 
abstract domain containing both A and -iA. It is now simple to check that 
K-, : ucoa(C) ->■ uco(C) is an idempotent refinement. It is worth noting that, in 
general, 3l^(A) may not be disjunctive (i.e., 3^ is not well-defined on ucoa(C)). 

The Refinement of Completeness. Abstract interpretation is intended to 
create sound approximations of the concrete semantics of programs. If the pro- 
gram semantics is specified as the least fixpoint of a monotone semantic op- 
eration / : C 4 C on a complete lattice C, then, in the closure operator 
approach, the soundness criterion for an abstract domain given by p G uco(C) 
and for an abstract monotone semantic operation /" : p(C) ->■ p(C), is Vc G 
C p{f(c)) < /"(/3(c)). This ensures the global soundness of the abstract se- 
mantics, i.e. p{lfp(f)) < Ifpif1) (cf. [5]). Completeness is the dual relation 
Vc G C. fHp(c)) < P(f(c)i- Because soundness is always required in abstract 
interpretation, in the following we abuse terminology and say that /" is complete 
for / if p o f = /» o p. In this case p(lfp(f)) = lfp{P)- Completeness in abstract 
interpretation is a quite rare ideal situation, where for a given abstract domain 
no loss of precision is introduced by abstract semantic operations. Completeness 
is especially recurrent between (concrete) semantics of programming languages 
(cf. [2, 7, 11]). Issues of completeness and related notions have also been studied 
in [17, 19, 20]. Completeness can be made a property of abstract domains, by 
making this notion independent on the choice for /". Recall that the best correct 
approximation of/ w.r.t. p is given by p o / : p{C) -> p(C). Thus, we consider 
completeness of the best correct approximation: p G uco(C) is complete for / if 
pof = pofop. For example, let us consider the canonical 4-point abstract do- 
main Sign = {0, Z<o, 2>0, Z}, which is an obvious abstraction of (p(Z), C). It is 
simple to show that Sign is complete for the monotone operation of integer mul- 
tiplication XX.n-X : p(Z) -4 p(Z) (where n G Z and n-X = {n-m | me X}). 
On the other hand, p = {2>0,7L) (with Sign C. p) is not complete for XX. n ■ X 
with n < 0: In fact, e.g., p(n ■ {-3}) = Z>0, but, because p({-3}) = Z, 
p{n ■ p({-3})) = p{7L) = 2. The property of completeness for a semantic func- 
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tion / is therefore given by T(/) = {/)£ uco(C) | pof = pofop}. Following the 
scheme of Example 3.4, we can define an idempotent full refinement of complete- 
ness 5ftr(/) : uco{C) -> uco(C) as 5ftr(/)(p) = U{r) £ uco(C)  \ r) £ T(/), r) C p}. 

Theorem 3.7 /// is continuous then T(f) € lco(uco(C)). 

Thus, by Proposition 3.5, we have that for a continuous /, 5Rr(/)(-D) actually is 
the (unique) most abstract domain which includes D and is complete for /. For 
instance, it is possible to check that for n < 0, $ir(\X.nX)({'%->0, Z}) = St^n. 

4    Abstract Domain Compressors 

We have introduced the notion of abstract domain refinement as a formalization 
(and generalization) of many existing operators devoted to enhance the expres- 
siveness of abstract domains. However, no operator performing a dual action of 
simplification on abstract domains has been proposed up till now. We now for- 
malize the idea of a simplifying operator that gives as input to a fixed refinement 
the simplest domains (i.e. most abstract) which can be object of that refine- 
ment. Let 5ft : U -»■ uco(C) be a (possibly nonidempotent) refinement. Define 
5ft^ : U ->• uco(C), k £ [1, n], as 5ft^ = AD.U{,4 £ nk(U) \ X(T>[A/k]) = 5ft(D)}. 
For D £ U, 5ft^(D) is the least common abstraction of all domains in 7rfc(U) 
that, when substituted to 7rfc(D) as fc-th input for 5ft, do not change the output. 

Definition 4.1 ift^ (D) is the k-th optimal basis of D £ U for 5R if 5R^(D) £ 
nk(V) and 5ft(D) = 5R(D[3^(D)/fc]). The refinement 5R is k-invertible (or admiis 
the ifc-ift inverse) on V C 7rfc(U) if for all D e U[7/fc], 3^(D) is the fc-th optimal 
basis of D for 5ft. When 5ft is fc-invertible, the map 5ft" : U[F/fc] -> 7rfc(U) is 
called the fc-t/i compressor for 9?. n 

Note that if the domain of definition V C 7rfc(U) of the fc-th compressor 5ft^ is 
a complete join subsemilattice of uco(C), then the condition 5ft)T(D) £ ^(U) in 
the above definition can be omitted. For K C [1, ra], we say that 5R is if-invertible 
on a |Ä"|-tuple V, where Vi £ if. 7Ti(V) C 7Tj(U), if it is fc-invertible on ^(V), 
for any k £ Ä". In particular, 5ft is /u% invertible on V C U if it is [l,n]- 
invertible on V. For the simpler case of a unary refinement 5ft : U -> uco(C), we 
have that 3?" : [/ -> uco(C) is defined as »-(2?) = U{A £ U \ fft{A) = »(D)}, 
and 5ft is invertible on V C C/ iff for any Z? e V, 5ft(5ft-(£>)) = 5ft(£>). It is 
simple to observe that the above definition of fc-invertibility can be formulated 
by using the unary refinements induced by a (ra-ary) refinement. More precisely, 
if 5ft : U -> uco(C) is a refinement, then we have already seen that for any 
fc € [l,n] and TT^D) £ 7rt(U) (i ^ fc), AX.5ft(D[X/fc]) : 7rfc(U) -»• uco(C) is a 
unary refinement. It is then easily seen that 5ft is fc-invertible in FC 7Tfc(U) iff 
XXM(D[X/k]) is (l-)invertible on V C 7r4(U). In this case, for the compressor 
(AX.5R(D[X/fc]))_ : 7 -»■ 7r*(U) and the fc-th compressor 5ft^" of 5R, the following 
mutual equality result holds: VD £ V. {XXM(D[X/k]))~(D) = 5ft^(D). 

Not all domain refinements are invertible in a satisfactory way. An example is 
provided by the negative completion refinement 3ft-, of Sect. 3. In fact, as observed 
in [9], the optimal basis of the domain Sign (in Sect. 3) for 5ft^ does not exist. 
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Since Sign enjoys all most important lattice-theoretic properties, this means that 
5ft^ is not invertible on any really significant class of abstract domains. 

As the following result says, compressors relative to idempotent refinements 
are extensive and idempotent. 

Proposition 4.2 //5ft : U -* uco(C) is idempotent and k-invertible in V, then 
the compressor Jft^ : XJ[V/k] ->• 7rfc(U) is extensive (i.e. nk(D) C 5ftj^(D)J and 
idempotent (i.e. 5ft^(D) £ V => 5R^ (D [3^ (D )/*;]) = 5ft^ (D)j. 

In general, compressors are neither monotone nor antimonotone: [14] proves 
that the least disjunctive basis operator is neither monotone nor antimonotone, 
and later we will show that the least disjunctive basis is the compressor relative 
to the disjunctive completion refinement. On the other hand, as expected, a 
compressor applied to a refined domain performs no further simplification. 

Proposition 4.3 //5ft : U -> uco(C) is idempotent and k-invertible in V then 
for any D G U[V/k] such that 5R(D) G V, Sf£(D[H(D)/*]) = R* (D). 

An n-ary refinement 5ft : U -> uco(C) is commutative if for any permutation 
r of {l,...,n}, sR(7iY(1)(D),...,7rT(n)(D)) = 5ft(D) holds. For instance, the re- 
duced product refinement 5ftn is obviously commutative as well as any attribute 
independent refinement. For commutative refinements, the following result holds 
(this result admits a straightforward, although notationally tedious, generaliza- 
tion for generic if-commutativity and invertibility). 

Proposition 4.4 // 5ft : U -> uco(C) is a (possibly nonidempotent) commu- 
tative refinement and k G [l,n] then, 5ft is fully invertible on V C U iff 5ft is 
k-invertible on 7rfc(V) iff for all D G V, XXM(D[X/k]) : irk(U) -S- uco(C) is 
(l-)invertible on 7rjfe(V). 

Not all refinements are commutative. Examples of noncommutative refine- 
ments are reduced power [6], dependencies [13], and tensor product [18]. Due to 
lack of space, we do not formalize these operators as refinements. In the following, 
we show how the results in [3, 12, 14] on complementation and least disjunctive 
basis of abstract domains, actually permit to define the compressors relative 
to reduced product and disjunctive completion respectively. These results also 
suggest a generalization towards a general pattern of invertible refinements. 

The Inverse of Reduced Product. Since 5ftn is commutative, by Proposi- 
tion 4.4, 5ftn is fully invertible on some V x V C uco(C)2 iff for any D G V, 
XX.(D n X) is invertible on V. As recalled in Sect. 2, for any meet-continuous 
complete lattice C and D G uco(C), one can define the complement abstract 
domain C~D. Moreover, it is immediate to note that, for any complete lattice 
C, if Di,D2 E uco{C) satisfy the ascending chain condition (to be ACC, for 
short; DCC is dual) then Di n D2 is ACC as well, and hence meet-continuous. 
These observations directly imply that we can invert the reduced product on the 
ACC abstractions of any concrete domain C (i.e. a plain complete lattice). Let 
us define ACC(C) = {D G uco(C) \ D is ACC}, for any complete lattice C. 

Theorem 4.5 If D £ ACC(C) then XX.D n X is invertible on ACC(C), and 
the corresponding compressor (XX.D n X)~ : ACC(C) ->■ uco(C) is defined as 
(XX.DnX)-(E) = (D\1E)~D. 
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Thus, 5ftn is fully invertible on ACC{C) x ACC(C). For instance, if D1,D2 G 
ACC(C), we have that the first compressor is (^n)^(Di,D2) = (DxnD2)~D2. 

The Inverse of Disjunctive Completion. Giacobazzi and Ranzato defined 
and studied in [14] the operator of least disjunctive basis on abstract domains, 
that corresponds exactly to the compressor for the disjunctive completion re- 
finement. Hence, the results in [14] can be reformulated as follows. 

Theorem 4.6 
(i) // C is co-algebraic completely distributive then !RV is invertible on all uco(C). 

(ii) // C is distributive then 5ftv is invertible on {A G uco(C)  \ A is finite). 

Compressing Lower and Upper Refinements. Define an upper (lower) im- 
provement on C as any map 1 : p(C) -> p(C) such that MS G p(C).Ms G 
S.Ms' G 2(5). s < s' (s1 < s). Gib and lub are obvious examples of lower 
and upper improvements. We prove that upper and lower improvements in- 
duce invertible refinements in a natural way. This provides a general pattern for 
defining new invertible refinements. For an upper (lower) improvement I on C, 
define the corresponding upper (lower) set-refinement 5ft1 : p(C) -»■ p(C) as: 
UT(X) = Xö (UscxZ(S)). It turns out that 5ftz is a lower closure on (p(C), 2). 
However, in general, for a closure p G uco(C), "$¥(p) may not be in uco(C). 
But, when a unary full idempotent refinement 5R G lco(uco(C)) is the restriction 
on uco(C) of an upper (lower) set-refinement, i.e. there exists an upper (lower) 
improvement I on C such that 5R = ^\uco(c) (in tnis case> we cal1 ^ an uPPer 

(lower) refinement), the following general theorem of inversion for 5ft holds. 

Theorem 4.7 // C is a complete lattice satisfying the DCC (ACC), then any 
upper (lower) refinement -ft G lco(uco(C)) is invertible on all uco(C). 

For instance, if C is distributive and X = V, we get for free the inversion of 
disjunctive completion of Theorem 4.6 (ii). By Proposition 4.4, the attribute in- 
dependent refinement induced by a family of upper or lower refinements is invert- 
ible under suitable hypotheses derived by Theorem 4.7. By this last observation, 
it would be possible (but we omit the details) to derive as a consequence of 
Theorem 4.7 the result of inversion for the reduced product of Theorem 4.5. 

Minimal ift-decompositions. For a given refinement üft : U ->■ uco(C) of arity 
n > 1, we say that D G U is a 5ft-decomposition of D G uco(C), if D = 5ft(D). 
If D,E G U are two ^-decompositions of D then D is better than E if E C D 
componentwise.1 The intended meaning is that D is better than E because 
it is a less costly decomposition (in particular, YA=I KiWI < Sr=i l71"»^)!)- 
Obviously, this relation induces a partial ordering between ^-decompositions 
of D, but, in general, optimal (i.e. least) ^-decompositions for this order do 
not exist. For instance, (D,{T}) and ({T},D) are uncomparable minimal 5ftn- 
decompositions of D. It is easy to see that, if 5ft is idempotent and fully invertible 
on V C U and D is a ^-decomposition of D, then for any k G [1, n] the tuple 
D[5ft^(D)/fc] (*) is still a ^-decomposition of D which is better than D, and 

1 For commutative refinements, both this definition and the successive development 
would identify decompositions up to permutation - however, we omit the details. 
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fun 5R-min  (D: array [1, n]   of domains) 
J   :=   {1,...,«}; 
repeat 

A;   :=   choose(J); 
J  ■=  J\{k}; 
D  := D[R£(D)/A] 

until J = 0 
output  D 

that D is a minimal ^-decomposition of D iff Vfc G [1, n]. 7rA(D) = 3?fc (D). 
Thus, each ^-decomposition can be improved by iterating the above step (*) as 
shown in the following nondeterministic function 3?-min, where choose selects 
an arbitrary element from its input set.        TheQrem 4>8 Let JJ be an idem_ 

potent and fully invertible refine- 
ment on V. If, for any k G [l,n], 
3?^ is anti-monotone then for any 
D G V, SR-min(D) is a minimal 3ft- 
decomposition of 5R(D). 

Note that, for a ^-decomposition D 
of D, we can get at most n! different 
minimal ^-decompositions of D. 

For instance, if K(A,D2) = D then (3^(A,^{DUD2)), S%(A, D2)) is a min- 
imal ^-decomposition of D. Theorem 4.8 generalizes the results of [3, Sect. 4], 
since the compressor relative to reduced product is anti-monotone (cf. [3]). 

5     A Relation of Adjunction between Refinements and Compressors 

Assume that 3? is an idempotent n-ary refinement 52 : U -> uco(C) that is 
fc-invertible on V C irk(U) C uco(C), for some k G [l,n]. We saw in Sect. 4 
that any (jfc-th) unary refinement XXM(D[X/k\) : 7rfc(U) -»• uco(C) induced by 
3? is invertible in V, and the corresponding compressor (of type V ->■ 7rfc(U)) 
is defined as (AX.3?(D[X/A;]))- = XX £ V.^(D[X/k]). In general, the re- 
finement \X.$t(D[X/k]) and the relative compressor XXMk (D[X/k]) do not 
constitute an adjunction on the poset of domains (V, C) of invertibility, i.e. for 
all A G 7rfc(U) and B e V, $(D[A/k]) C 5 O 4 C JR-(D[5/fc])) may not 
hold. This is due to the fact that compressors, in general, are not monotone, 
as observed after Proposition 4.2. Since, by Proposition 4.2, compressors are 
idempotent and extensive, this also implies that compressors XXMk (D[X/k}), 
well-defined on V, are not upper closures on (V, 0, as instead we would expect 
by viewing compressors as inverses of refinements. 

We solve this asymmetry between abstract domain refinements and compres- 
sors by modifying the standard ordering C of precision between domains, so as 
to keep into account the role of 3?. We maintain the above scenario and also sup- 
pose that the refinement AX.3?(D[X/A;]) is well-defined in 7rfc(U), namely for any 
D G 7Tfc(U), &(D[D/k]) G 7Tfc(U), and that (TT^U), C) is a complete sublattice 
of (uco(C),C>. These hypotheses imply that XX.$l(D[X/k]) is a lower closure 
on the complete lattice (7rfc(U),Q. Then, we define the following relation CR 

(that actually depends also on the fixed arguments 7Tj(D), i ^ k) on irk(U): 

ACm B iff St(]D[A/k]) C K(D[5/*]) & QR(B[Bß]) C fft(D[A/k]) ^AQB). 

Theorem 5.1  (7r*(U), Cs) «5 a complete lattice. 

Note that AQB => AC® B. Thus, we call CK the lifling of C »ia R. This 
lifted complete partial order reflects precisely the relative precision of domains 
with respect to the refinement XX.9t(D[X/k]): A is more precise than B in the 
lifted order if the refinement of A is more precise than the refinement of B in the 
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Standard sense and, when they are the same (i.e. (!R(D[B/fc]) = $t(D[A/k])), 
then A contains more information. For this ordering CK, we get back a relation 
of adjunction between the invertible refinement and its compressor. 

Theorem 5.2 VA £ 7rfc(U), fl € V. K(D[A/*]) E^^^E" ^ (B[B / k])). 

As a consequence, AX. ?ft~(D[X/A;]) is an upper closure operator on (V,C^) 
(provided it is well-defined on V). For example, we get an adjunction between 
reduced product and complementation w.r.t. the lifted order. For any complete 
lattice C and D £ uco{C), the lifted order on uco(C) is defined as follows: For 
all A, B€ uco(C), ACn B iff DnAQDnBk(DnBCDnA => AQB). 
Hence, the adjunction between refinement (reduced product) and compressor 
(complementation) is the following: For any A G uco(C) and B G ACC(C), 
DnAQnB & ACP(Dr\B)~D. 
Acknowledgments. We are grateful to Francesca Scozzari for her contribution 
to Theorem 3.7 and to one anonymous referee for many helpful suggestions. 
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1     Introduction 

Consider the "name-switching" function F = \x.{h = x.l2,h = x-h} in a A- 
calculus with records. Most type systems would reject program {F{h = 3})./2 

because the type of F is {lx : X,l2 ■ Y] ->• {h ■ Y,h : X} and {h : X,l2 ■ Y} 
cannot be unified with {h : Int}, the type of the record argument. However 
this program reduces to 3 without error. This shows that the common notion of 
"erroneous" terms, as implemented in most typed languages, is sometimes over- 
restrictive. Here we propose a general framework for studying the semantics of 
programs containing "uncatchable" errors, and a language-independent classifi- 
cation of error propagation properties; this is then applied to a comparison of 
various A-calculi. In this approach, errors (written e) can be passed around as 
any other value, sometimes in a lazy way, and therefore an error occurring inside 
a term is not necessarily propagated to the top level; a term is considered "er- 
roneous" if and only if it always generates s. We define an operational ordering 
of terms, called "subsumption", which gives a formal foundation for the notion 
of "substitutability" or "safe replacement" often used informally in the object- 
oriented literature: a term subsumes another iff it generates fewer errors in all 
program contexts. Subsumption often implies and sometimes equals the usual 
approximation ordering (Theorems 21, 26); its main interest is to directly inter- 
pret subtyping in a term model, which is simpler than the partial equivalence 
relations (PERs) of [6] or the coercion functions of [5]. Since we require that 
errors are "absorbing" (any attempt to interact with an error yields an error 
again), e is the top element. Therefore the semantic structure is a lattice, like in 

the original work of Scott [19]. 
For the technical development below we make heavy use labelled reductions, 

an old idea used in the A-calculus to restrict the interaction behaviour of a 
term to a finite number of steps. Here this is generalised in an abstract way to 
other reduction systems. Labelled reductions allow us to classify both terms and 
contexts according to the number of interaction steps they can perform, and 
therefore introduce an operational notion of finite approximation. This in turn 
can be used as an alternative to the contractive maps of [15] or the embedding- 
projection pairs of [7] for solving recursive type equations. 
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2    Basic definitions: error generation and preservation 

This section defines a number of abstract notions, independent of any partic- 
ular language. However, since some concepts need illustrations, informal ex- 
amples will be drawn from the standard A-calculus extended with constants 
and records. Precise definitions for this calculus and other calculi will be given 
later in Section 5. Prior knowledge of the A-calculus and the notions of call- 
by-name (CBN), call-by-value (CBV) and lazy evaluation is assumed; standard 
references are [3,17,1]. As a reminder, common abbreviations for A-terms are 

I dä Xx.x,Kd^ \xy.x,AdM Xx.xx,Qd^ AA,Y ^ Xf.(Xx.f(xx))(Xx.f(xx)); 

furthermore /ix.a abbreviates Y(Xx.a). 

Notation. We consider languages of the form (T, V, ->) where T is a set of 
terms, V C T is the set of values, and ->■ is a binary relation on terms (one-step 
reduction) satisfying V»eV,i)-H)' => v' € V . The letters a, 6, c range over 
arbitrary terms, v, u range over values. We assume a set X C T of variables 
and standard notions of bound and free variables; the function FV : T ->■ 2' 
gives the free variables of a term; letters x, y, z range over X. Tc and Vc denote 
the sets of closed terms and values, i.e. those for which FV returns the empty 
set. The substitution of b for free occurrences of x in a is written a[x := b] 
Contexts are terms possibly containing occurrences of a "hole" [-]; if C[—] is 
a context, then C[a] is the term obtained by filling the hole in C[-] with a, 
possibly capturing variables. The set of contexts is written T[-]; since there is 
no restriction on the number of holes, we have T C T[-]. A subterm of a is 
a term a' such that a = C[a'] for some C[-]. The reflexive, transitive closure 

of ->. is written A and = is its symmetric closure; (a ->) is an abbreviation 
for 36, a -> b. Finally, if \Ze is one of the operational ordering relations defined 
below, with 6 representing any collection of subscripts/superscripts, then =g is 
its symmetric closure and \Ze is its strict restriction, i.e. the relation C.g\=g. 

Definition 1 (Reduction properties). For a language £ = (T, V, ->) we say 

that 

- a is stuck iff a ^ V and -<(a —>■) 
- a diverges (written a ff) iff, for each b such that a A 6, we have ((6 £ 

V) A (6 —)•)). Conversely, a converges (a JJ-) iff 3v £ V, a —► i>. 

 > is Church-Rosser (CR) iff ((a A 6) A (a A c))  =>  3d.((6 A d)h{c A rf)) 

 >■ is compatible iff a -> 6 =>  C[a] A C[6] for any context C[-] 

Definition 2 (Relevant contexts). A context C[-] is relevant iff a ff ==>- 

C[a] ff and there is a term 6 such that C[b] Jj-. 

Example 3. Contexts [-], ([-]a6), ((Ax.[-])a6), [-].l are relevant. The context 
(K[-]a) is relevant with CBV evaluation, but not with CBN. The context Aa:.[-] 
is relevant with both CBV and CBN, but not with lazy evaluation. 
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Definition 4 (Solvable terms). A term a is solvable iff, for every term b, there 

is a relevant, context C[—] such that C[a] -> b. 

Definition 5 (Language properties). A language (T, V,-») 

- /zas divergence iff there is at least a term ß£T\V such that Q ff. 
- is stuck-free iff T contains no stuck terms. 
- has errors iff there is a nonempty subset £ C V of error values satisfying 

v e £ => ->(v ->■). Most often we will consider a singleton set and write e 

to denote the single error value. We write at0 if a -» w G £ • 
- is error-generating iff there is an a G T such that at0 and for every subterm 

a' of a, a' ££. 
- is error-complete iff, for every value »gVc, there is a relevant context C[—] 

such that C[v]f. 
- is error-preserving iff there are no relevant context C[—] and error value 

v G £ such that C[ü] ft- 

Some comments are of order. Absence of stuck terms is easily obtained by adding 
an error term e and completing the reduction relation so that stuck terms ex- 
plicitly reduce to e. In that case the language is also error-generating. Error- 
completeness is a closely related, but different property: we will show examples 
of languages which are error-generating but not error-complete, or vice-versa. 
Finally, error-preservation ensures that errors are not observable internally; in 
other words, there is no "catch" construct to recover from errors. 

Example 6. The pure A-calculus with an added error constant e has stuck terms: 
(sa) does not reduce and is not a value. With an added reduction rule Ma,ea -> 
£ the language becomes stuck-free; however it is not error-generating. Error- 
completeness varies with the evaluation strategy: with CBN evaluation, all values 
are solvable, and therefore can become errors in some context. By contrast, lazy 
evaluation admits values which are unsolvable, so then the language is not error- 
complete: there is no relevant context which can turn Xx.Q into an error. 

Example 7. The A-calculus with integers and integer operators is error-complete, 
independently of the evaluation strategy: this is because there are contexts such 

as ([_][_]) and ([_] + [-]) which discriminate between functional values and 

integer values, even if they are unsolvable. 

Example 8. A language like the one in [16], containing constructs isnat, islam, 
ispr,. . . for identifying various syntactic classes of values such as numbers, A- 
abstractions or pairs, is not error-preserving: for example the context 

if (islam([—])) then + 1 else - 1 

returns —1 for all terms which are not A-abstractions, including s. By contrast, 
the approach of [2], who discriminate between syntactic classes through a single 

construct 
cases a nat : ax fun : a2 pair : a3 ... end 
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is error-preserving, provided of course that the cases construct has no "default" 
clause and no clause to recognize errors. 

Example 9. The A-calculus extended with e, with records {h = ai .. An = a.n} 
and with a field selection construct a.I, together with the obvious reduction and 
error generation rules, is stuck-free, error-generating, error-complete and error- 

preserving. 

Following [1,13,16], we can define approximation in an operational way: 

Definition 10 (Contextual approximation). Contextual approximation C^ 

is defined as: 
(aC46)  <=*  (VC[-],C[a]^=>  C[b]!).) 

In error-preserving languages, since e always converges, then ü Qj. a CJJ. e 

for any a. 

3    Labelled reduction 

This section borrows from Chapter 14 of [3] the idea of labelled reductions. La- 
belled terms are obtained from usual terms by decorating subterms with natural 
numbers which limit the number of reduction steps they can perform. For ex- 

ample 

(((\x.xY)(\yz-y3)/ 

is a labelled A-term. Subterms without any label are implicitly labelled with oo. 
We write a,(,bt,..., Ci[—], Dt[—],... for labelled terms and contexts, and Tt for 
the set of labelled terms. Given a set V of values, we define Vt as the set of 

labelled values satisfying 

vt = Ct[{at)°]  <=>  C[Ü] G V 

In other words, labelled values can contain 0 labels only in places where the 
corresponding subterm, replaced by a divergent term, still yields a value in the 
original language: this is typically the case in lazy computation systems [12], in 
which the outermost term constructor is enough to determine whether a term is 
a value or not. 

For defining labelled reduction we assume that the original reduction relation 
—y is given by a set of rules [Ihs —> rhs) in some form of rewrite system (possibly 
dealing with bound variables, as in [14,12,20]). Operators (function symbols) in 
the left-hand side of a rule which are not at the outermost level are called 
internal. Given a. left-hand side Ihs of a rule, a labelling ^(Ihs) is obtained 
by decorating internal operators in Ihs with labels in N. Each original rule 
[Ihs —> rhs) generates labelled rules of shape 

e{n+i\neN}(lhs)^rhs""nW 



786 

Labelled reduction is the relation on Te given by all such labelled rules, together 

with the label elimination rules 

{labl) {am)n -►/ a™"(m>") 
\lab2)        a0 ->< Ü 

Example 11. /^-reduction on A-terms is expressed in [14] as @(\([x]Z(x)),Z') ->• 
Z(Z'). The only internal operator is A, so the corresponding rule for labelled /?- 
reduction is @{Xn+1{[x]Z(x)), Z') -* {Z{Z'))n, which in more familiar notation 

is written 
(\x.a)n+1b-+{a[x:=b])n 

This is not exactly like the definition of [3], which reads: 

{\x.a)n+1b-+{a[x:=bn])n 

so our labelled reductions are not strongly normalizing, because b could be a di- 
vergent term. Nevertheless for the current purpose this is not a problem: labelled 
reductions still introduce an appropriate notion of finite approximation, as will 
be shown below. Hence these are intended as a general, abstract mechanism to 
replace the language-dependent finite projection functions of [2,16,1]. 

Example 12. In a record calculus, the field extraction rule {/; = a,-}./* ->• a& has 

corresponding labelled rule {/; = a,-}"    .h —>• a£ 

Proposition 13. If{T, V,->■) is stuck-free, with compatible and Church-Rosser 

reduction, then so is its labelled extension (Ti,Vi,-*t)- 

Note that Ct is never error-preserving, as can be seen easily by a context like 

([—]*I) which diverges when filled with e. 

Definition 14 (it-relevant contexts).    1. A context C[-\ is k-relevant iff (a ft 
=> C[a] ft) and there is a term b such that C[bk+1] 4- 

2. The relevance index for C[-], written RI(C[-]), is the smallest k such that 
C[—} is fe-relevant, or undefined if there is no such k. 

3. Ck denotes the set {C[-] G T[-]\RI(C[-]) = k}. 

The notion of Ar-relevance captures the number of interaction steps between a 
context and the term filling it. 0-relevant contexts are contexts which only carry 
the hole around without interacting with it, like [-],(I[-]) or ({/ = [-]}•/); 
1-relevant contexts include the 0-relevant ones, but in addition also include con- 
texts like ([-]I) or ([-]./) which perform one single interaction step with the 
hole. More generally, we have: 

Lemma 15.    1. Any k-relevant context is also (k + 1)-relevant. 
2.  A context is relevant iff it is k-relevant for some k > 0. 

Lemma 16 (context decomposition). 

c[-] e ck+1 =±> 3Ci[c2H] = c[-],Ci[-] e c1 AC2[-] G ck 
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Proof. If k - 0, there is an easy solution Ci[-] = C[-],C2[-] = [-]■ If k > 0, 

we know i) 3a,v,C[ak+2} A v and ii) V&,C[6fc+1] ft. Suppose v = C'[a'k+2}, 

with C[-] A C"[-],a A a'. Then by definition C'[a'k+1] must be a value, 
contradicting ii). So necessarily 

C[a"+2] A D1[I>2[a
,*+2]] -> Di[6fc+1] A « 

where D2[a
//c+2] ->■ &fc+1 is an instance of a labelled reduction rule. Now by rule 

(labl), D1[(D2[a'k+2])k+1] A v, so £>i[-] G Ck; moreover U2[a
/2] -+ 61 ^, which 

implies D2 G C1. D 

Now we can use relevance indices of contexts to measure the interactivity of 
terms; intuitively, a term is ^-interactive if it can performe k interaction steps. 

Definition 17 (^-interactivity).    1. every term is ^-interactive 
2. a is (k + I)-interactive iff 3C[-] G Ck,C[a] JJ.. 
3. the interactivity index of a term a, written 11(a), is the biggest k such that 

a is fe-interactive, or oo if a is ^-interactive for every k. 

4. T* denotes the set {a G T|//(a) < k}. 

Example 18.    - In the lazy A-calculus [1] all A-abstractions are values, so the 
term Xx.Q is 1-interactive, as well as (Xx.a)1 for any function Xx.a. 

- In the standard call-by-name A-calculus, the term Xx.xQ is 1-interactive. 

As demonstrated by these examples, the notion of ^-interactivity not only applies 
to labelled terms, but also to unlabelled ones. Labels are used as an auxiliary 
study tool, but then the results can be extracted and give information about the 

unlabelled language. 

4    Erroneous Terms and Subsumption 

We want to allow some errors to occur inside terms, because of the assumption 
that these will not necessarily be propagated to the top level. However, if a 
term contains only errors, then it is observationally not different from an error 
itself. For example, the term Xx.e is not /?-equal to e, but only yields errors in any 
context . By contrast, lazy systems admit unsolvable values like fix.Xy.x, fix.{l — 
x} which can interact without ever generating errors. Hence we come to define 
the erroneous terms are those which always yield errors after a finite number of 
interaction steps: 

Definition 19 (Erroneous terms). A term a is k-erroneous, written a\k, iff 

C[a] A e for every context C[—] G Ck. A term a is erroneous, written at, iff it is 
fc-erroneous for some k. 

Clearly 0-erroneous terms must belong to the class {a\a —> e}. Examples of 
1-erroneous terms are Xx.e or {I = e}. . 
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Definition 20 (Subsumption). A term a subsumes another term b, written 
a Ge 6, iff it generates fewer errors in all program contexts: 

a\Z£b <=$» VC[-],C[a]t => C[6]f 

As for Qiy, we have Q \ZC a C£ e for any a in error-preserving languages. The 
obvious question then is how the two orderings relate. This in general depends on 
the language properties, as shown through several examples in the next section. 
Nevertheless, a general result can be stated already: 

Theorem 21. In an error-complete language, a\Zc b   =>   a C^ 6. 

Proof. We will show (a E£ b) => (VC[-],C[6] ft => C[a] ft), from which 
(a Qj. b) directly follows by definition. Suppose a C£ b. For any context C[-], 
furthermore suppose C[b] ft and C[a] i).. If the language is error-complete, then 
there exists a relevant context £>[-] with D[C[a]]t°; but since D[-] is relevant, 
D[C[6]] ft, contradicting a G£ b. Hence C[a] must diverge. G 

5     Comparing various lambda calculi 

We will now apply our abstract framework to several languages, all related to the 
A-calculus, but with various kinds of extensions, and with two different notions of 
values: head normal forms (terms withouth a head redex) or lazy values (terms 
with an outermost abstraction construct). These are described by fairly standard 
rules, given in the appendix. Head and lazy versions are distinguished by the 

superscripts H and L. 
For the pure A-calculus A the relation =£ clearly is inconsistent since there 

are no errors. By contrast, Qj. on AH is the usual approximation relation, and its 
reflexive closure =4 is the sensible theory of [3], equating all unsolvable terms; 
= y. on AL is the semi-sensible, lazy theory of [1], which equates unsolvable terms 
of the same order. So in AH we have Q £% YK Qj. a for every a, while in AL 

we have Q C.^ a Q^ YK. A detailed discussion of these different relations can 

be found in [1]. 

Lemma 22.    1. Xx.a Qj. Xx.b <^=> a Qj. 6 

2. Xx.a \Zsyb =>  (6 4 Xx.b1) A (a G^ b') 

5.1     Standard A-calculus with e 

Ae is the pure A-calculus with an added constant e and corresponding reduction 

rule ea. —>■ e. 

Lemma 23.  In Ac, at  <=>  a A Xxi .. .xn.e 

Proof. (•€=): easy, Xxi .. .xn.e is rc-erroneous. (=>■): a must be fc-erroneous for 
some i, so we can use induction on k. □ 
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Lemma 24.    1. Ac is not error-generating, but is error-preserving. 

2. AL
t |= YK % s. 

3. /if is error-complete, but not A\. 

Proof. 1: Easy by inspection of rules ß and £.2: Both are ever-convergent. 3: 
Values in /if are A-terms in head normal form, or e. Since HNFs are solvable, 
for every v there is always a context C[-] such that C[v]]°. By contrast, value 
Xx.n in A\ never reduces to an error. □ 

Lemma 25. /if \= a Qc b <^=> A\ \= a CE 6. 

Proof. By the Lemma 23 the error terms in both calculi are the same. D 

Theorem 26.    1.  In both /if and ylf a C4 6 =» aCj 
2.  7n /If, a Q| 6 «=>  nC£4 

Proof. 1: suppose a C^ b. By Lemma 23, for any context C[-\, if C[a]f then 
C[a] A Axi ... £„.£. Therefore by Lemma22 C[b] A A«i ... a;„.6' with s Cj^ 6', so 
C[6]f. 2: (=>) preceding part of the theorem. {<=): from Theorem 21, knowing 
that /if is error-complete. n 

5.2     A-calculus with records 

The A-calculus is now extended with records, i.e. collections of bindings from 
names to terms. As usual, these are written with curly braces; we use the vector 
notation {/,- = a;} to denote the record with finite list of fields 1% = ay,..., ln = 
a„, with all h distinct. The expression (U = a{ \l) denotes removal of field / (if 
present) in a collection of bindings. Here all records are considered as values, 
which is perhaps a debatable choice, but conforms to an often similar choice in 
calculi with tuples [16]. 

Lemma 27.    1.  As\   is error-generating,  error-complete and error-preserving 
for both the head and the lazy calculus. 

2. Af} |= a C£ b ^=> Af} \= a C£ b. 

Proof 1: Error-generating: obvious. Error-complete: each closed value is either of 
record shape or of functional shape. In each case there is a context ([—]a) or [-]./ 
which generates an error. Error-preserving: easy by inspection of the reduction 
rules. 2: As for As (Lemma 25): the error terms are the same (although the proof 
here is slightly more complex, as error terms may also be of record shape).     D 

Since now even the lazy calculus is error-complete, the "ogre"  YK has a 
different status than in At: 

Proposition 28. In AQ,->(YK =% s) 
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Proof. Because /if, is error-complete and because of Theorem 21, it suffices to 

show -.(YK S£ e). In the empty context [-], there is no k such that YK is 
fc-erroneous, because it can consume an infinite number of arguments without 

yielding an error. E 

On the other hand there is a new term which is erroneous, namely the empty 

record: 

Proposition 29. In /1{}, {} =e e 

Proof. By inspection of the reduction rules, {} cannot interact without yielding 

an error, so it is 1-erroneous. C 

However if the calculus is augmented with a record extension construct 
a4=/ = b (like in [18,21]) then the empty record becomes solvable: for any value 
v there is a relevant context ([-]<=/ = v).l yielding that value, so in that case 

{} is not equal to e. 

6     Types 

This section illustrates the usefulness of both subsumption and labelled reduc- 
tions for the semantics of types : subsumption is a natural foundation for inter- 
preting subtyping, and labelled terms are a natural foundation for interpreting 
recursive types, following the approach of [7]. This is just an appetizer, as lack of 
space prevents us from going through full technical developments. Nevertheless 
the general approach borrows well-known techniques and therefore should be 

easy to follow. 
Types are interpreted as non-empty, downward-closed subsets of terms in 

the Ce ordering. Let Tset denote the set of such subsets. For any t G Tset, tn 

denotes the set {an\a G t} (finite projection). A type environment r\ is a mapping 
from Tvar to Tset. Given a type environment, a type interpretation function 
Ti[-] maps types to members of Tset. We will illustrate this approach on the 
AQ calculus of the previous section, considering types of the following syntax. 

T,U ::=T\X\T^U\{U: T;} | /xX.T 

Type assignment rules and subtyping rules are not displayed here: standard rules 
are assumed (see for example [8]). We also assume a rule (top) assigning type 
T to any term. Figure 1 gives the type interpretation. A well-known difficulty 
associated with recursive types is the fact that arrow types are contravariant on 
the left. The ideal model of [15] solves the problem through contractive maps on 
ideals in the semantic domain; this requires some conditions on the syntax of type 
expressions to enforce contractiveness. By contrast we follow here the idea of [7], 
using a family of indexed type interpretations, where the index denotes finite 
approximations. In this approach non-contractive type expressions are naturally 
mapped to the bottom type (the one containing only divergent terms), without 
any syntactic constraints. With labelled terms this can be done in an operational 
way, without needing to resort to denotational semantics. 
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Ti[T]° = {a\a \ZC Ü} 

Ti[T]^+1 = Tn+1 

Ti[X]^+1 = n(X)n+1 

Tip -> Utf+1 ={a€ Tn+1\b € Tip]^  =*• a(6) € Ti[[/]£} 

Ti[{I7TTT}]^+1 = {a € T^+'IVi.a.Zi € Ti[T,]£} 

Ti[>iA'.T]™     = Ti[T]^[Xh+Ti[/iX-p]»] 

Ti[T]r, = {a|VnSa;,aneTi[r]^} 

Fig. 1. Type interpretation for functions and records 

Lemma 30. \/T,r],Ti[T\v G Tset. 

Lemma 31. T < U  =>•  Tip1],, C Ti[tf]„. 

Definition 32. A closing substitution a satisfies a basis T, written <r \= T, iff, 

V7?,Vx- £ dom(r), <r(a:) G Tip»],,. 

Theorem 33. r \-a : T =>-  (V<r |= r, acr G Tip1]). 

Definition 34 (Trivial types). The set Triv of trivial types is defined induc- 

tively as: 

Triv = T U {T -> U\U G Triv} U {{TTTTT}|Vi, 7i G Triv} U {/i(X)T|T G Triv} 

Lemma 35. In any non-trivial type environment, non-trivial types do not con- 
tain erroneous terms, (n is non-trivial iff e g rj(X) for each type variable X in 

dom(n)) 

Theorem 36.  If T \- a : T and T <£ Triv, then V<T |= T, -(ao-f). 

Proof. Consequence of the preceding lemma and of subject reduction, shown 

using standard techniques. d 

Lemma 37.   The following equality between record types is sound: 

{l:T,hTTi}={J7TTi} 

Proof. Since e G Ti[T], the condition a.lt G Tip}] on field / is always satisfied, 
even for records where field / is absent. □ 

Example 38. The example of the introduction 

(Xx.{li = x.l2,h = x-h}){li = 3} 

has type {h : T,/2 : Int}, which is equal to {l2 : Int} and is non-trivial. 
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A     Language Rules 

A.l     Standard A-calculus with e 

Syntax 

Red. Rules 

Values 

(0 
x G X 
x er (A)- 

€X,aeT     ro,a,beT 
Ax.a G T (ß)- ab)£T     y~'e£T 

(ß) (Ax.a)6->• a[x := 6]      VK>|; Ax.a -» Xx.b     "~'(sa)->£ 

m\y ac) -¥ {be) 
(|/?2|) 

(|A|)- 

a -» b 
(ca) ->■ (cb) 

a -¥ b w-t 

. .x£X,a£T,x$FV{a) 
^' Ax.ax -¥ a 

(0- x&n 
la.v eu,aeT    , ,ven 
iß)     ,..„\ r- ay M-  (va) e ft «ev 

(A"> Ax.u G v (Az> Ax.a € V (*)T GV 

A.2     A-calculus with records 

Syntax 
,    V», a,- G T 

W,!ET 

Red. Rules 

/i „i\ 

,    >      3j,l = h Vj./^Z,- 
KUpl {/,- = a<}.Z-> a. 

vu,;{/,- = a,-}.Z->e 

f/3  \                              - 
1  AJ(Ax.a)i->j 

a* —> a; 

lW({/,=a,}&)->e 

fid)   a^a' llPI) r ij,...}            ll^a.Z^a'./ 

^£./^£ 

Values 
{li = a,) G /c 

a G 72.      .  .  a G 7{ 
aGV    ^ a.i en 
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Abstract. We study the dynamical behavior of D-dimensional linear 
cellular automata over Zm. We provide easy-to-check necessary and suf- 
ficient conditions for a D-dimensional linear cellular automata over Zm 

to be sensitive to initial conditions, expansive, strongly transitive, and 
equicontinuous. 

1     Introduction 

Cellular Automata (CA) are dynamical systems consisting of a regular lattice 
of variables which can take a finite number of discrete values. The global state 
of the CA, specified by the values of all the variables at a given time, evolves 
in synchronous discrete time steps according to a given local rule which acts 
on the value of each single variable. CA have been widely studied in a number 
of disciplines (e.g., computer science, physics, mathematics, biology, chemistry) 
with different purposes (e.g., simulation of natural phenomena, pseudo-random 
number generation, image processing, analysis of universal model of computa- 
tions, cryptography). For an introduction to the CA theory and an extensive 
and up-to-date bibliography see [7]. 

CA can display a rich and complex temporal evolution whose exact determi- 
nation is in general very hard, if not impossible. In particular, some properties 
of the temporal evolution of general CA are undecidable [3, 4, 10]. Despite their 
simplicity that makes it possible a detailed algebraic analysis, linear CA over Zm 

(CA based on a linear local rule) exhibit many of the complex features of general 
CA. Several important properties of linear CA have been studied during the last 
few years [1, 5, 8, 9, 12, 13] and in some cases exact characterizations have been 
obtained. As an example, in [9] the authors present criteria for surjectivity and 
injectivity of linear CA, while in [2] the authors present criteria for topological 
transitivity and ergodicity. 

In this paper we investigate the topological behavior of linear D-dimensional 
C A over Zm. We focus our attention on a number of topological properties which 
are widely recognized as fundamental in the determination of the qualitative be- 
havior of any discrete time dynamical system, namely sensitivity to initial condi- 
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Property Characterization Reference  

Surjectivity gcd(m, Ai,..., As) = 1 L9J 
Injectivity (VpG7>) (BIA.^p/A, [9] 
Transitivity gcd(m, A2,.. ., Aa) = 1 [2] 
Sensitivity (3p€V): p/gcd(A2,..., A.) This paper 
Expansivity gcd(m, au ... , ar) = gcd(m, a_i,..., a_r) = l This paper 
Equicontinuity (Vp G 7>) p| gcd(A2,..., A.) This paper 
Strong Trans. (Vp€7>) (3A,, A,):p/A, Ap/A, This paper  

Fig. 1. Characterization of set theoretic and topological properties of linear CA over 
Zm in terms of the coefficients A;'s (for D-dimensional CA) or en's (for 1-dimensional 
CA). V denotes the set of prime factors of ra- 

tions, expansivity, equicontinuity, and strong transitivity. The main contribution 
of this paper consists in efficiently computable criteria for deciding whether a 
linear CA satisfies one of the above four properties. Our criteria are reported in 
Fig. 1 and are given in terms of the coefficients of the linear local map associated 
to the CA. Note that, using our criteria, one can easily construct a linear CA 
which satisfies any combination of the above properties. The criteria we propose 
require only gcd computations and can be checked in polynomial time in the 
number of coefficients and in the logarithm of the cardinality of the alphabet. 
The dimension of the lattice does not explicitly affect the computational cost of 
our criteria. The results of this paper hold for every dimension D > 1 and for 
every m > 2. Our results show that linear CA over Zm have dynamical aspects 
that linear CA over finite fields, such as Zp with p prime, cannot have. 

2    Basic definitions 

Let Zm, m > 2, denote the ring of integers modulo m. We consider the space of 

configurations 

C° = {c\c:ZD-+Zm}. 

which consists of all functions from lP into Zm. Each element of C% can be 
visualized as an infinite D-dimensional lattice in which each cell contains an 
element of Zm. A special configuration is the null configuration 0 which has the 

property that 0(v) = 0 for all v£ZD. 
Let s > 1. A neighborhood frame of size s is an ordered set of distinct vectors 

ui,u2,...,u, <E TP■ Given any function f:Z'm -> Zm, a D-dimensional CA 
based on the local rule f is the pair (C°,F), where F:C° ->• C°, is the global 
transition map defined as follows. For every c 6 C% the configuration F{c) is 

such that for every v£Zfl 

[F(c)](v) = / (c(v + ui),. . ., c(v + u,)) , (1) 
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In other words, the content of cell v in the configuration F(c) is a function of 
the content of the cells v + Ui,..., v + us in the configuration c. Note that the 
local rule / and the neighborhood frame completely determine F. 

A map /: Tjsm —>■ Zm, is linear if and only if there exist Ai,...,As £ Zm 

such that f(xi,.. .,xs) = Yli=i^ix' (mod m). From now on, we say that a 
CA defined over Zm is linear if the local rule on which it is based is linear over 
Zm. Note that for a linear D-dimensional CA, equation (1) becomes 

s 

[F(c)](v) = ^2 AJC(V + Uj) mod m. 
»=i 

We define the radius of the linear CA (C®, F) as 

p(JF)=max{||u!||00, 1 < i < s}, (2) 

where the maximum is restricted to the indices i such that A,- ^ 0 (mod m). As 
usual, [|v||oo denotes the maximum of the absolute value of the components of v. 
For linear 1-dimensional CA we use a simplified notation. A local rule of radius r 
is written as /(x'_r,..., xr) — Y^i=-r a*x' m°d m, where at least one between 
a_r and ar is nonzero. Using this notation, the global map F of a 1-dimensional 
CA with p(F) = r becomes 

r 

[F(c)](i) — 2_j aic(J' + i)  mod m, c G Cx
m, i£Z. 

j = -r 

In order to study the topological properties of D-dimensional CA, we intro- 
duce a distance over the space of the configurations. Let A: Zm x Zm —f {0,1} 
defined by A(i,j) = 0 if i = j and A(i,j) = 1 otherwise. Given a,b 6 C^ the 
Tychonoff distance d(a,b) is given by 

rfM)=  2^ —2IMÜ—• (3) 

veZD 

It is easy to verify that d is a metric on C® and that the topology induced by d 
coincides with the product topology induced by the discrete topology of Zm. 

2.1     Topological Properties 

In this section we recall the definitions of some topological properties which de- 
termine the qualitative behavior of any general discrete time dynamical system. 
Here, we assume that the space of configurations X is equipped with a distance 
d and that the map F is continuous on X according to the topology induced by 
d (for CA, Tychonoff distance satisfies this property). We denote by B(x,e) the 
(open) set {y 6 X: d{x, y) < e}. 
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Definition 1 (Sensitivity). A dynamical system {X,F) is sensitive to initial 
conditions if and only if there exists 8 > 0 such that for any x £ X and for any 
e > 0, there exists y £ B{x,e) and n > 0, such that d{Fn{x), Fn(y)) > 8. The 

value 8 is called the sensitivity constant. □ 

Intuitively, a map is sensitive to initial conditions, or simply sensitive, if there 
exist points arbitrarily close to x which eventually separate from x by at least 
8 under iteration of F. Note that not all points near x need eventually separate 
from x under iteration, but there must be at least one such point in every 

neighborhood of x. 
A property stronger than sensitivity is expansivity. Expansivity differs from 

sensitivity in that all nearby points must eventually separate by at least 8. It is 
easy to verify that expansive CA are sensitive to initial conditions. 

Definition2 (Expansivity). A dynamical system {X,F) is expansive if and 
only if there exists S > 0 such that for every x,y £ X there exists n > 0 such 
that d(Fn(x),Fn(y)) > 8. The value 8 is called the expansivity constant. D 

If a dynamical system is sensitive to initial conditions or, even worse, expan- 
sive, then its dynamics defies numerical approximation. As an example, round-off 
errors may become magnified upon iterations of F and the results of the numeri- 
cal computation of an orbit, no matter how accurate, may be completely different 

from the real orbit. 

Definition3 (Equicontinuity at x). A dynamical system (X,F) is equicon- 
tinuous at x £ X if and only if for any 8 > 0 there exists e > 0 such that for any 

y £ B(x, e) and n > 0 we have d{Fn{x), Fn{y)) <8. □ 

Definition4 (Equicontinuity). A dynamical system (X, F) is equicontinuous 

if and only if it is equicontinuous at every x £ X. □ 

The notions of sensitivity and equicontinuity are related. In fact, by compar- 

ing the definitions one can easily see that 

F is not sensitive      «=>•     3a;: F is equicontinuous at x. (4) 

Definition5 (Strong transitivity). A dynamical system (X,F) is strongly 

transitive iff for all nonempty open set U C X we have (JjS) Fn(U) = X.       D 

A strongly transitive map F has points which, under iteration of F, move 
from one arbitrarily small neighborhood to all the space of configurations X. 
A weaker notion is transitivity: a map F is transitive iff for all nonempty open 
set U the set \J*=0F

n(U) is a dense subset of X. Clearly, strongly transitive 
maps are transitive, and in view of [2, Theorem 6] ergodic with respect to the 

normalized Haar measure. 
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3     Statement of the new results 

In this section we state the main results of this paper. The same results are 
summarized in Fig. 1. 

Theorem6. Let. F denote the global transition map of a linear D-dimensional 

CA over Zm defined by 

s 

[F(C)](V) = J2 A«'c(v+u0mod m- (5) 
! = 1 

Assume ui = 0, that is, Xi is the coefficient associated to the null displacement. 
The global transition map F is sensitive if and only if there exists a prime p such 

that. 
p\m    and   p/gcd^, A3,..., Xs). (6) 

In other words, F is sensitive unless every prime which divides m divides also 

all the coefficients A,- 's with i ^ 1. □ 

Note that we can check the above condition without knowing the factorization 
of m. In fact, (6) holds if and only if gcd(A2, A3,..., As) does not contain all the 
prime factors of m. Since each prime appears in m with a power at most [log2 mj, 

F is sensitive if and only if [gcd (A2, A3, . . ., Xs)] ^ OS2 m* ^ 0    (mod m). 

Theorem 7. Let F denote the global transition map of a linear 1-dimensional 
CA over Zm with local rule f(x-r,...,xr) = ^__r Oji; mod m. The global 
transition map F is expansive if and only if 

gcd(m,a_r, . . ., a_i) = 1 and gcd(m, ai,..., ar) = 1. (7) 

D 

Note that by Theorem 5.3 in [6] we know that expansive CA, whether linear or 
not, do not exist in any dimension D > 2. 

Theorem 8. Let F denote the global transition map of the linear D-dimensional 
CA over Zm defined by (5). The following statements are equivalent: (i) F is 
equicontinuous in at least one point, (ii) F is equicontinuous at every point, and 

(Hi) for each prime p such that p\m we have p\ gcd(A2, A3,..., A5). D 

By Theorem 8 and (4), a linear CA is either sensitive or equicontinuous. Hence, 

F is equicontinuous if and only if [gcd(A2, A3,..., As)]L °Sa mJ = 0    (mod m). 

Theorem 9. Let F denote the global transition map of a linear D-dimensional 
CA over Zm defined by (5). The global transition map F is strongly transitive if 
and only if for each prime p such that p\m, there exist at least two coefficients 
Xi,Xj such thatp/(Xi and p j{Xj. Ü 

We can check whether F is strongly transitive without knowing the factorization 
of m. In fact, the above condition is equivalent to gcd(m, Ai, A2,..., As_i) = 
gcd(?7z, Ai, A2,..., As_2, Xs) = • • • = gcd(m, A2, A3,.. .-■, Xs) = 1. 
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4    Proof of the main theorems 

We now prove the results stated in Sect. 3. Due to limited space the proof of The- 
orem 8 is reported in [11]. In our proofs we make use of the formal power series 
(fps) representation of the configuration space C% (see [9, Sec. 3] for details). For 

D = 1, to each configuration c 6 Cx
m we associate the fps PC(X) = EigZ C(J')^- 

The advantage of this representation is that the computation of a linear map 
is equivalent to power series multiplication. Let F:Cl

m ->■ C^ be a linear map 
with local rule /(x_r,..., xT) = EL-r«^'- We associate to F the finite fps 

Af{x) = Ei=-r aix~l- Then>for anyc e C™ we have 

PF{c)(X)=Pc{X)Af(X)    (modm). (8) 

Note that each coefficient of PF(c)(X) is well defined since Af(X) has only 
finitely many nonzero coefficients. Note also that the finite fps associated to Fn 

is AVX). More in general, to each configuration c G C,£ we associate the formal 

power series 

PC(X1,...,XD)=      J2      c{il,...,iD)X\^--Xi
D°. 

»1I...,»D£Z 

The computation of a linear map F over C® is equivalent to the multiplication 
by a finite fps A(XU.. .,XD) which can be easily obtained by the local rule / 
and the neighborhood frame ux,..., us. The finite fps associated to the map F 

defined by (5) is A{XU. ..,XD)= £'=i XiX^Ui{1) ■ • -X~U,(ß) where u,-(j) de- 

notes the j-th component of vector u;. 
Throughout the paper, given a fps H(X)  and i £ Z, we use (H(X))i t 

denote the coefficient of X' in H{X). 

4.1     Sensitivity 

In this section we characterize sensitive linear CA. We prove our results only in 
the 2-dimensional case, since the proofs for the other dimensions are similar. 

Let F:C2
m ->■ C2

m denote the global transition map of a 2-dimensional CA. 
For any integer k > 0, let Vk denote the set of configurations c G C2

m such that 
c(v) = 0 for Hvlloo < k. It is straightforward to verify that F is sensitive if and 
only if there exists S > 0 such that for any configuration c G C2

m we have 

Vfe    3c' e Vt:     d{Fn(c+c'),Fn(c))>6     for some n > 0. (9) 

In fact, (9) implies that we can find a configuration, arbitrarily close to c, whose 
distance from c exceeds 6 after a sufficiently large number of iterations. 

If F is linear we can get rid of the initial configuration c. In fact, we have 

d(Fn(c + c'),F"(c)) = d(Fn(c) + Fn(c'),Fn(c)) = d(Fn(c'),0). 

Hence, F is sensitive if and only if 

Vk    3c' G Vk:     d{Fn{c'): 0) >S     for some n > 0. (10) 

This observation leads to the following lemma. 

:.o 
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Lemma 10.  Let F denote the global transition map of a linear D-dimensional 

CA over Zm. F is sensitive if and only if 

limsup/>(Fn) = oo; (11) 
n—foo 

(the radius p of a CA is defined by (2)). 

Proof. We prove the result for D = 2. If (11) does not hold, there exists M such 
that p(Fn) < M for all ??.. Thus, if k > M, for all c G Vk we have Fn{c) G Vk-M- 

Elementary calculus shows that c G Vt =>■ d(c,0) < 8^2'. Hence, for any 8, 
if k is large enough c G Vk implies d(Fn(c),0) < 6 for all n, and F cannot be 
sensitive. 

Assume now (11) holds. Then, for every k we can find n such that p(Fn) = 

z > k. Let A.-    , u"' denote the coefficients and the displacements of the local 
( \ 

map associated to Fn. p(Fn) = z implies that there exists j, such that Xy   ^ 0 

and ||uSn)||oo = z- Let c be such that c(-ujn)) = 1, and c(v) = 0 for v ^ -ujn). 

Clearly, c G V/c and [Fn(c)](0) = AJn) ^ 0 which implies (10). D 

Proof of Theorem 6 Let F denote the global transition map of a linear 2- 
dimensional CA, and let 

A(X,Y)=   Yl   "iJxiYi, 
y<j<' 

denote the finite fps associated to F. Assume (6) holds. Then, there exist a prime 
p and a coefficient as>u such that p\m, p/a5i„ and at least one between s and u 
is nonzero. We now prove that, as a consequence, lim supp(Fn) = oo. Without 
loss of generality, we can assume s ^ 0, and that for i < s we have p\aitj. 

Let Ä(X, Y) = A(X, Y) mod p. By our assumptions, Ä(X, Y) can be written as 
X'G(Y) + £.<,■<«, X'if^y), with G(Y) jL 0. Hence, 

(An(A',y)modp) = in(x,y) = xnsG"(y)+   ^   x*'^(y). 
ns<i<nw 

Since Zp is an integral domain, we have Gn(Y) ^ 0 which implies p(Fn) > n\s\. 

Assume now p\m => p\X{ for all i ^  1. Let m = Pj1 • • -pjj" denote the 
factorization of m, and let k — max,- fej. We prove that p(Fn) < p(F)(k — 1). Let 
bij denote the coefficients of the fps associated to Fn. We have 

■l + --- + 'n=i 
JlH \-3n-3 

If max(|?'|, \j\) > p{F)(k — 1), each term ai1j1ai2j2 ■ ■ -ainjn contains at least 
k coefficients aihtjh with max(|j'/,|, \jh\) / 0. Hence, p\m =>■ p^la^j! • • -ainjn, 
and each term in the sum (12) is a multiple of m. Hence, p(Fn) < p(F)(k — 1) 
and by Lemma 10 F is not sensitive. Ü 
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4.2     Expansivity 

In this section we characterize expansive linear CA. Since expansive CA do not 
exist in dimension D > 2 (see [6, Theorem 5.3]) we can restrict ourselves to the 
1-dimensional case. 

Let F-.C^ —> C1, denote the global transition map of a 1-dimensional CA. It 
is straightforward to verify that F is expansive if and only if there exists 8 > 0 
such for any configuration c £ C^ we have 

Vc' G Cl
m    3n > 0:     d{Fn(c + c'),Fn{c)) > 8. 

Reasoning as in Sect. 4.1, if F is linear we can get rid of the particular configu- 
ration c. We have 

d(F"(c + c'),Fn(c)) = d(Fn(c) + Fn(c'),Fn(c)) = d(Fn(c'), 0). 

Hence, F is expansive if and only if for any c' G Cl
m we have d(Fn(c'), 0) > 8 

for a sufficiently large n. Clearly, this is equivalent to assuming that there exists 
M > 0 such that 

VC'GC    3n > 0:     [Fn(c')](i) # 0 for some i with |i| < M. 

For any integer Ar > 0, let Wk denote the set of configurations c G Cx
m such that 

c(i) — 0 for |i| < k and at least one between c(k) and c(—AT) is different from 
zero. Since 8 can be chosen arbitrarily, we have that F is expansive iff 3k such 
that for all k > k 

Vc' G Wk    3n > 0:     [F"(c')](i) ^ 0 for some i with \i\ < M. (13) 

If we visualize each configuration as a biinfinite array, (13) tells us that the 
essential feature of expansive maps is that any pattern of nonzero values can 
"propagate" from positions arbitrarily away from 0 up to a position i with |i| < 
M. Informally, we say that any nonzero pattern can propagate for an arbitrarily 
large distance. For a comparison, sensitive 1-dimensional linear CA can be seen as 
those CA in which for each t > 0 there exists a nonzero pattern which propagates 
by at least t positions. 

Proof of Theorem 7 (sketch) First we prove that (7) is a necessary condition 
for expansivity. Assume for example gcd(ai,. . ., ar) = q\ > 1, and let <?2 = mjq\. 
For any integer k > 0 let ck G Wk denote the configuration defined by ck(i) = q-i 
if i = k and ck (i) = 0 otherwise. We show that for every n > 0 and i < k we have 
[Fn(ck)](i) = 0 which implies that F is not expansive. Let A(X) = Y^i=-r a-i^ 

be the finite fps associated to /. Since the fps associated to ck is q2Xk, we have 

[Fn(ck)](i) = (q2X
kA"(X)). = g2(An(X))i_k . 

By hypothesis, for j < 0, (A(X))- is a multiple of q\. Since the same is true for 
A"(X), for i < k we have [Fn(ck)](i) = 0    (mod m) as claimed. 

Now we prove that condition (7) implies expansivity. Let c G C^ such that 
c(v) ^ 0 and c(i) = 0 for i > v. We show that gcd(m, a_i,..., a_r) = 1 implies 
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w. that for any integer w there exists n such that [Fn(c)](i) ^ 0 for some i > 
This proves that any one-sided nonzero pattern can propagate arbitrarily far 
away to the right. Similarly, gcd(ra, au ..., ar) = 1 implies that any one-sided 
nonzero pattern can propagate arbitrarily far away to the left. Combining these 
two facts we get (13) (the details will be given in the full paper). 

Let c € Cl
m such that c(v) # 0 and c(i) = 0 for i > v, and let C(X) = 

J2i<v CiX{ be the associated fps. Since mj{cv, there exists a prime p and an 

integer k such that pk\m and pk/c„. Let A{X) = YZ=-r a_;X!' denote the finite 
fps associated to /. Since gcd(m,a_i,.. .,a_r) = 1, we can find t, 0 < t < r, 

such that 
p/a_j        and        p|a_; for t < i < r. (14) 

Under these assumptions we show that if n is a multiple of pk(k - 1)! then 

[Fn(c)]{v + nt) = (C(X)An (X))v+nt £ 0    (mod m). 

Clearly, this proves our claim that every one-sided nonzero pattern propagates 
arbitrarily far away to the right. Let Ä(X) = A{X) mod pk. By (14) we know 
that Ä(X) satisfies the hypothesis of Lemma A.4 of [11]. Hence, if n is a multiple 
of p*(fc - 1)!, we have Än{X) = £"!_„,. äiX{ with gcd(änt,p

fc) = 1. We have 

[Fn{c)](v + nt) = (in(X)C(X))^  ^     (mod pk) 

^((Ent   ^')(E-< ^')>      (modpfc) 

= antcv     (modp*). 

Since pk \cv and pßnt, [Fn(c)](v + nt) is not a multiple of pk. We conclude that 

[Fn(c)](v + nt) ^ 0    (mod m) as claimed. □ 

4.3     Strong transitivity 

In this section we give a characterization of strongly transitive linear CA. The 
proof is quite complex and we will need some preliminary lemmas. To simplify 
the notation we consider only the 1-dimensional case; the proof for dimensions 
D > 1 is analogous and will be given in the full paper. Let Vfc = {x G C^\ x(i) = 

0 for |«| < k}. For any x^Cx
m let 

V(x,k) = x + Vk = {y£C1
m\y = x + z, z£Vk}. 

For any nonempty open subset U C Cx
m we can find x e X and e > 0 such that 

B(x, e) C U. Elementary calculus shows that 

2)(j!,3+[log(l/£)l)CB(Z,f)Cl/, 

hence F is strongly transitive if and only if 

VzVfc     [JFn(V(x,k))=C1
m. (15) 

n = 0 

We are now ready to establish a simple condition which, for linear maps, implies 

strong transitivity. 
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Lemma 11. Let F be a linear 1-dimensional map over Zm. //, for all k, there 
exists nk such that Fn"(Vk) = C}n, then F is strongly transitive. 

Proof. For all x £ C}n and k > 0 we have 

+ oo 

(J Fn{V{x, k)) D Fn«(x + Vk) = Fnk(x) + Fn*(Vk) = Cx
m. 

n = 0 

O 

We prove the "if" part of Theorem 9 using Lemma 11 and the power series 
representation of CA. Lemma 12 establishes the result for the special case in 
which the cardinality of Zm is a prime power, while Lemma 13 proves the result 

in the general case. 

Lemma 12. Let A(X) - E-r<i<r aixi denote a finite fps over 7,pk (p prime). 
Suppose there exist two coefficients a,-,^- such that gcd(p, a,-) = gcd(p, ay) = 1, 
and let n be any multiple of pk(k - 1)!. Then, for each fps C{X) we can find 

B(X) = Ei6Z hiXi such that B(X)An(X) = C{X)    (mod pk) and 

b-[n/2\  = b-[n/2\ + l = ■■■ = &[n/2j-2 = &|n/2j-l = 0. 

Due to limited space we do not report the proof of Lemma 12 here (see [11]). 

Lemma 13. Let A{X) - £-r<i<r a,-Xi denote a finite fps over 1m. Suppose 
that for each prime p which divides m there exist two coefficients a,-, a,- such that 
gcd(p, a,-) = gcd(p, a.j) = 1. Then, for any integer z > 0 there exists n such that 

for each fps C(X) = J2i€Z C»X' we can find a & B^ = £«eZ ^ such that 

b_z+1 = -.- = 63_2 = 6,_1 = 0!     and    B(X)An{X) = C(X)    (mod m).  (16) 

Proof. Let m = p\lpk
2
2 ■■■pt", 1i = pfS and k = max; kt. Let n denote a multiple 

of m(k-i)l such that n > 1z. Clearly n is a multiple of #(&,--1)! for i=l,...,h. 

By Lemma 12 we know that given C{X) we can find Bt{X) = J2jeZ bf X:i such 

that 

6^a+1 = - • • = 6^22 = 6^1 = 0, and        Bi(X)An(X) = C(X)    (mod Qi) 

Since gcd(g,;, m/qi) = 1, we can find /?; such that ßi(m/qi) = 1     (mod </,;). Let 

h 

i=i     qi 

For i = l,...,h, we have B{X) = B{{X) (mod qt). Hence, B(X)An{X) = 

C(X)    (mod qt) for all i, which implies (16). □ 
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Proof of Theorem 9 The "if" part follows directly from Lemmas 11 and 13. To 

prove the "only if" part we use again the power series representation. Let A(X) = 

Y    s-s   a{X
l denote the finite fps associated to the map F, and assume there 

exist a prime p and an integer j such that p\m and p|a,- for all i ^ j. Let at , 

-rn < i < rn, denote the coefficients of An(X). It is straightforward to verify 

that, for i ^ jn, we have that p|a|n). Consider now any configuration 6 £ Vi. 

The corresponding fps B(X) = J2iez biX' is such tllat b° = °- We have 

rn 

[Fn(b)](nj) = (An(X)B(X))nj =   J2   a^h 

t=-rn 

Since b0 = 0, all terms in the summation are multiple of p and p\ [Fn(b)](nj). 

Hence, the configuration c such that c(i) = 1 for all i £ Z clearly does not belong 

to Fn{Vi), and by (15) F cannot be strongly transitive. □ 
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Recognizability Equals Definability for Partial 
fc-Paths* 

Valentine Kabanets 

School of Computing Science, Simon Fräser University, Vancouver, Canada 

Abstract. We prove that every recognizable family of partial fc-paths 
is definable in a counting monadic second-order logic. We also show the 
obstruction set of the class of partial fc-paths computable for every k. 

1    Introduction 

In 1960, Biichi [1] showed that a language is regular iff it is definable by some 
formula in a monadic second-order logic, MS. Here, MS is the extension of the 
first-order logic that allows quantification over set variables. A set of objects is 
definable by an MS-formula if the formula is true exactly on the members of the 
set. Thus Biichi established that recognizability is equivalent to MS-definability 
for words. Doner [7] then extended this result to ranked trees. 

Graphs are algebraic objects since any graph can be constructed from smaller 
graphs using certain graph operations. They are also logical structures since any 
graph is completely determined by the set of its vertices and the adjacency 
relation on this set. Thus the notions of recognizability and definability can be 
extended to finite graphs. Courcelle [2] proved that every MS-definable set of 
finite graphs is recognizable, but not conversely. However, he was able to extend 
the result of Doner to unordered unbounded trees using a counting monadic 
second-order logic, CMS, an extension of MS that allows modular counting. 

The question remained whether there was a sufficiently large class of graphs 
for which recognizability would imply CMS-definability. In their study of graph 
minors, Robertson and Seymour [10] introduced the notion of the tree-width of a 
graph. A graph of tree-width k exhibits certain tree-like structure. Such a graph 
can be decomposed into subgraphs of size k + 1 arranged as nodes of a tree 
(tree-decomposition) so that the nodes containing a given vertex form a subtree. 

The class of graphs of tree-width at most k coincides with that of partial k- 
trees. Among other classes of graphs of bounded tree-width are trees and forests 
(tree-width < 1), series-parallel graphs and outerplanar graphs (< 2), and Halin 
graphs (< 3). 

The class of graphs of bounded tree-width plays an important role for another 
reason. Courcelle showed in [2] that the MS-theory of the class of partial fc-trees 

This research was done while the author was at Simon Fräser University [8]. The 
author's present address is Department of Computer Science, University of Toronto, 
Toronto, ON, Canada M5S 3G4; kabanets@cs.utoronto.ca. 
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is decidable. Seese [11] proved that if the MS-theory of a class of finite graphs 
Q is decidable, then the graphs in Q have uniformly bounded tree-width. Thus, 
tree-width "characterizes" classes of finite graphs having decidable MS-theories. 

Strictly speaking, the above results hold for so-called MS2 logic, where MS2 

denotes the monadic second-order language using quantification over both vertex 
sets and edge sets of graphs; MSi is the language that uses quantification over 

vertex sets only (see [5, 6]). In this paper, we are using MS2 and CMS2. 
For graphs of tree-width at most k, recognizability is defined using a tree 

automaton working on the corresponding tree-decompositions: A set Q of partial 
fc-trees G is recognizable if there is a tree automaton that accepts any tree- 
decomposition of each graph G e Q, and rejects tree-decompositions of graphs 
not in Q. Courcelle [3] showed that a recognizable set of partial fc-trees is CMS- 
definable for fc = 1 and k = 2, and conjectured that recognizability implies 
CMS-definability of partial fc-trees for every k. Kaller [9] proved the case of 
k = 3 and the case of fc-connected partial fc-trees. 

We establish that every recognizable set of partial fc-paths is CMS-definable, 
thereby proving a special case of Courcelle's conjecture. A partial fc-path, or 
graph of bounded path-width, is a partial fc-tree for which the corresponding 
tree-decomposition is a path-decomposition. Partial fc-paths are recognized by 
finite automata working on the corresponding path-decompositions. 

Our second result deals with computing the obstruction sets of minor-closed 
graph families. The class of partial Ar-trees (fc-paths) is minor-closed and its 
obstruction set can be determined from the MS-formula defining that class [4]. 
We describe how to construct the MS-formula defining the class of partial k- 
paths for every given k. As a consequence, the obstruction sets of the classes of 

partial fc-paths are computable for each k. 
The remainder of this article is organized as follows: In Sect. 2, we give 

the necessary definitions. In Sect. 3, we show that recognizability implies CMS- 
definability for a generalization of the class of ^-connected partial fc-paths, the 
class of (k, l)-paths. This is a base case of our solution for arbitrary partial 

it-paths which is outlined in Sect. 4. 

2    Preliminaries 

2.1     Partial fc-Paths 

We consider finite and simple graphs G = {V,E), where V is the vertex-set 
and E is the edge-set of G. A path-decomposition (or decomposition) of G is a 
sequence B = (5i,.. .,Bm) of vertex-subsets, called bags, such that 

1. every vertex v £V belongs to some bag Bi (1 < i < m), 
2. for each edge e£ E, there is a Bt (1 < i < m) containing both ends of e, 

3. for any i, /, j £ {1,..., m) such that i < I < j, Bi D B, C Bt. 

The path-width of a decomposition B = (Bi,...,Bm) is maxi<i<m{|5,-|}-l. 
A decomposition of path-width at most k will be called a k-decomposition. The 
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path-width of a graph G is the minimum path-width over all decompositions of 
G. A partial k-path is a graph of path-width at most k. 

Example 1. Graphs d (Fig. 1) and G2 (Fig. 2) are partial 1-path and 2-path, 
respectively, with possible decompositions: B(G\) = ({1, 2}, {2, 3}, {3,4}, {3, 5}, 
{3,6}) and 5(G2) = ({1,1', 2}, {1,2,3}, {2,3,4}, {2,3,5}, {2,3,6}). 

^ 6 It 

Fig. 1. A partial 1-path G\. Fig. 2. A partial 2-path G2. 

For a partial fc-path G = (V, E) with a decomposition B = (Bi,...,Bm), 
first(f) is the number of the bag where a vertex v G V appears for the first 
time, i.e., first(v) = mini<i<m{/|u G Bi}, new(5,-) (i G {1, • • •, rn}) is the set of 
vertices in B{ that appear in the decomposition for the first time, i.e., new(S2) = 
{u G ,B,-|first(u) = i], and o\d(Bi) is the set of vertices in 5,- that also appear in 
some earlier bag, i.e., old(5j) = 5;\new(Bj). 

For G and B as above, a vertex u G Br (1 < r < m) is called a drop vertex 
of Br iff for every IU G V \U[=15,-, {u, w} (£ E. The set of all drop vertices of 
Br (1 < r < m) is denoted by drop(5r). The remaining vertices of Br are called 
non-drop vertices of Br, the set of which is denoted by non-drop(5r). 

2.2     CMS-Definability 

A graph G = (V, E) can be viewed as a relational structure (VöE, {pv, pe, Inc}), 
where p„ and pe are unary predicates that define the vertex-set and the edge-set, 
respectively, and Inc is the ternary incidence predicate, i.e., for any e G E and 
u, v G V, Inc(e, u, v) = True iff e = {«, v}. 

The language of counting monadic second-order logic corresponding to graphs 
G has the usual logical connectives: -i ("not"), A ("and"), V ("or"), => ("if- 
then"), and O ("if and only if"), universal (V) and existential (3) quantifiers, 
equality symbol =, a sequence u, v, w, ..., of individual variables, a sequence 
U, V,W,. . ., of set variables, the membership symbol G, the unary predicate 
symbols inodpg, p < q are non-negative integers, and the predicate symbols p„, 
pe, and Inc. In our interpretation, modP)9(V) = True iff |5| = p mod q, where 
S is the set denoted by the set variable V. 

A graph property P is called CMS-definable over a class of graphs Q iff there 
is a CMS-formula # such that for each G EQ, G satisfies P iff <P is true on G. 

Example 2. Connectedness of a graph G is an MS-definable property: 
Connected = W, VV2   (V! ^ 0 A V2 ^ 0 A Vx U V2 = V) => Adj(Vi, V2), 
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Adj(Vi,V2) = 3v! 3v2  viGVi  A v2 G V2 A adj(v1,v2), 
adj(v!,v2) = 3e Inc(e,vi,v2), 
where (V,- ^ 0) = 3v p„(v) AvGV;   (t = 1, 2) and 
(Vi UV2 = V)EVV p„(v) ^(VGVI V V G V2). 

Using mod0]2, we can express in CMS the property that a given vertex subset 
of a graph has even cardinality. This cannot be done in MS alone [2]. 

2.3     Recognizability 

We define the notion of recognizability of partial Ar-paths in terms of deterministic 
finite automata A = {E,Q,8,q0,F) working on extended decompositions. A 
decomposition B = (Bi,5f,..., Bm,B~) is called «tended iff dropping old 
vertices and adding new vertices occur separately, i.e., Bi = non-drop(ßj)> 
1 < i < m. 

Example3. Here is an extended 1-decomposition of the graph G\: B(Gi) = 
({1,2},{2},{2I3},{3},{3,4},{3},{3,5},{3},{3,6},{}). 

Let G = (V, E) be a partial Ar-path with an extended Ar-decomposition B = 
(Bi,..., Bm). Let ß : V ->• {1,..., k + 1} be a labeling function such that any 
two distinct vertices in the same bag or in two consecutive bags have different 
labels. We call such labeling functions admissible by B. It is not difficult to see 
that k + 1 labels always suffice in the case of extended decompositions. For the 
labeling function ß and any set of vertices W C V, ß(W) = üw£wß(w). 

For B and ß described above, we define the following string <Tß(B) of colored 
undirected graphs on at most Ar + 1 vertices: aß(B) = (o-ß(Bi),..., <rp(Bm)), 
where for a bag Bi (1 < i < m), <rß(Bi) = (Vß(Bi),Eß(Bi)) such that Vß{B{) = 
ß{B{), and for every u,u' G Bit {ß{u),ß{u')} G EP(B{) iff {«,«'} G E. Let Sg 

be the set of all colored (with colors 1,..., k + 1) undirected graphs on at most 
Ar + 1 vertices. Clearly, \Sg\ is bounded by a function of Ar. 

A family Q of partial Ar-paths G is called recognizable iff there is an automaton 
A with the input alphabet Eg such that for any G, G G Q iff <rß{B) G L{A) for 
any extended Ar-decomposition B of G and any labeling function ß admissible 
by B, and G <£ Q iff aß{B) £ L{A) for any B and ß as above. Here L(A) denotes 
the language accepted by A. 

3    The Case of (fe, i)-Paths 

3.1     (fe, i)-Paths and fe-Generative Orders 

A connected partial A--path is called a (Ar, l)-path if it allows a Ar-decomposition 
B = (Bi,..., Bm) satisfying the following conditions: 

1. old(Si) = non-drop(5,_i) for every i G {2,..., m}, 
2. drop(5i) ^ 0 for every ie{l,..., m}, 
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3.  |new(5,-)| = 1 for every i G {2,.. .,m}. 

Here (1) says that vertices are dropped from a bag as soon as possible, (2) 
that each bag contains at least one drop vertex, and (3) that exactly one new 
vertex is added to form the next bag. Note that every Ar-connected partial Ar-path 

is a (k, l)-path. 

Example 4- The graphs G\ and G2 described earlier are (Ar, l)-paths. 

To show that a recognizable family Q of (Ar, l)-paths G is CMS-definable, it 
suffices to define in CMS some extended decomposition for every G and then 
use Biichi's result for sets of words. A decomposition of G can be defined if some 
linear order on V is known. Let < be an arbitrary linear order on V, and let 
(vi,..., vn) be the sequence of vertices in V ordered according to <. We define 
the sequence B< = (J5i,..., 5„), where Bt = {vt} U {vj\j < i and there is f > 
i s.t. {VJ, Vji] G E}. Clearly, B< is a decomposition of G. For a partial Ar-path 
G, a linear order < on V is called k-generative if B< is a ^-decomposition. 
Conversely, from a (k, l)-decomposition B of G, one can define a ^-generative 
linear order on G by setting u to be less than v iff first(w) < first(n), u, v G V, 

and ordering the vertices in B\ arbitrarily. 
Thus, to show that recognizability implies CMS-definability for (AT, l)-paths, 

it would suffice to define in CMS a Ar-generative linear order for every given (A-, 1)- 
path. However, there are (Ar, l)-paths for which no linear order can be defined in 
CMS. Consider the family of G„ - ({0,1,..., n}, En), where En = {{0,j}\l < 
j < n}. No linear orders can be CMS-defined on G„, since these graphs have 
nontrivial automorphisms, and the size of Gn can be arbitrary large. So, in 
general, we cannot CMS-define a Ar-decomposition of a partial As-path. 

For a partial A;-path G, a partial order on V is called k-generative if every 
completion to a linear order on V is A;-generative. We will describe a certain 
A--generative partial order, which is MS-definable over a suitably colored (k, 1)- 
path Gc. Given such a partial order, one can MS-defme a tree-decomposition of 
G of a special form. Since we cannot MS-define a path-decomposition but only 
a tree-decomposition, we need CMS to get the formula for recognizability of 
Gc, using an extension of Biichi's theorem. To convert the corresponding CMS- 
formula into a formula for the underlying uncolored (Ar, l)-paths G, we "guess" 
some coloring of G using a constant number of 3 quantifiers, check in MS if it 
induces the required structure, and apply our CMS-formula to the colored graph. 

To MS-define a Ar-generative partial order on a (Ar, l)-path G with a (Ar, 1)- 
decomposition B = (B\,..., Bm), we convert G into the directed graph Gd

B = 
(V, Ed) using the following algorithm. For a bag Br = old(ßr) Unew(ßr) (1 < 
r < m), where old(Br) — {«i,.. .,ws} and new(Br) = {v}, if {v,Uj} G E, then 
(v, Uj) G Ed. That is, we direct the edges from new to old vertices. To simplify 
the notation, we will often omit the superscript in Ed and the subscript in Gd

B. 

Now we label Gd as follows. For v G new(Br) and every u G old(Br) f) 
dTop(Br) (1 < r < m), we color the arc v —* u with some new color. This 
colored arc will be denoted as a double arrow v =$> u, and the set of them as E^. 
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If {v} = new(J3r) = drop(5r), we color v with some new color, the same color 
for all such vertices; v will be denoted by having a loop arrow. 

Example 5. For G2 defined earlier, the (Ar, ^-decomposition B(G2) induces the 

labeled digraph G\ (Fig. 3). 

Fig. 3. The labeled digraph Gd, with double arrows shown as thick single arrows. 

3.2     A fc-Generative Partial Order 

Given the digraph Gd induced by a (Ar, ^-decomposition B of a (Ar, l)-path G, we 
s 

define the following binary relation of strong precedence, denoted by -<, on the set 

V: for any u, v G V, u A v iff either (v, u) G E or there is some w G V such that 

(u, iv) G E and (v, w) G JEW- The reflexive and transitive closure of -<, denoted 
by <, is called precedence. Semantically, u -< v means that first(w) < first(v). 
We extend -< so that for any two vertices u G -Bi and v <£ B\ incomparable 
with respect to <, u is less than v. Let ^ denote the transitive closure ofthat 
extension. Obviously, ^ is a Ar-generative partial order on G. 

To define the required CMS-formula for recognizability of (k, l)-paths, we 
need a certain refinement of X1. We color Gd so that the precedence relation -< 
is completed to a linear order on the set non-drop(5i). We do so by coloring the 
non-drop vertices of Bx with colors 1,..., k so that no two vertices are colored 
the same. We denote this new colored digraph by Gdl. 

Using Gdl enables us to define the following Ar sets Plt..., Pk. For any v G 
Vt v G Pi (1 < i < Ar) iff i is the minimum over the labels of the vertices 
u G non-drop(-Bi) such that there is a path of double arrows in the digraph Gdl 

from v to u. The set N of nodes is defined as N = UfL^P,-, the set L of /ea^es is 

defined as L = V\{N U Bx). 

Example 6. The digraph G\ from Example 5 can be viewed as Gf with the two 
sets of nodes Px = {1, 3, 6} and P2 = {2}, and the set of leaves L = {4, 5}. 

Since no vertex in Gd can have more than one incoming double arrow, each 
set Pi: 1 < i < Ar, induces a path of double arrows in Gdl. Therefore, each Pi is 
linearly ordered by <. Using this fact, we can MS-define a Ar-generative partial 
order on G that is a linear order on the set of nodes N. We denote this partial 
order by <n. Note that we could MS-define a tree-decomposition of G using <n. 
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We need to order the leaves that are incomparable with respect to <n. By 
the definition of a (k, l)-decomposition, each leaf w G L has at most k outgoing 
single arrows pointing to some nodes from different sets P\,. ..,Pk- For a leaf 
w G L, P(w) denotes the set of nodes to which there are arrows from w, i.e., 
P(w) = {v G N\(w, v) 6 E}. We associate with each leaf w G L its characteristic 

vector x(w) = {xi(w), ■ ■ ■ ,Xk{u))), where for each 1 < i < k, Xi{w) = 1 if 
P(w) n Pi ± 0, and Xi(w) = 0 otherwise. We extend <n to a new partial order 
on V, denoted by <nl, by ordering the leaves incomparable with respect to <n 

lexicographically according to their characteristic vectors. 
For two vertices w\, w2 G V, we say that wi and w2 are p-equivalent, denoted 

by iui ~ w2, iff wi, w2 G L and P(w{) = P(w2). For the quotient graph Gp = 

G/~= (Vp, Ep) we extend <ni to the set Vp in the standard way. Clearly, <nl is 

a linear order on the set (NöL)/~. Ordering the drop vertices of B\ arbitrarily 
yields a ^-generative linear order on Gp, denoted by <p. We will denote the 

digraph Gdl with ordered drop vertices of B\ by Gdl . 

Example 7. For G2, the (k, 1 ^decomposition of the corresponding quotient graph 
is B'p = ({[1], [1'], [2]}, {[1], [2], [3]}, {[2], [3], [4]}, {[2], [3], [6]}), where [„] denotes 
the set of vertices p-equivalent to u, u G V. 

3.3     A CMS-Formula 

Let B' = {B[,..., B'm) be the (k, l)-decomposition of the graph Gp induced by 
<p. We can construct a (k, l)-decomposition of the original graph G as follows. 
In the sequence B'p, replace B[ with Bx. For every !6{l,...,m}, replace B\ = 
{[MI]P ,..., [US,]P , [tf]p}, where [w]p is the new vertex of B\ such that [w]p = 
{wi,..., wti] (t{ > 1), with the sequence of bags B(wi) = {u\,.. .,MS,, ifi},..., 
B(wtt) — {«i, • • •, MS,, wti}- Let B' denote thus constructed decomposition of G. 

Example8. For G2, two decompositions B' are possible: ({1,1', 2}, {1, 2,3}, 
{2, 3,4}, {2, 3,5}, {2,3,6}) or <{1,1',2}, {1,2,3}, {2,3,5}, {2,3,4}, {2,3, 6}). 

Let us convert B' into the extended decomposition B'p and color Gp with 

some labeling function ßp : Vp -+{!,. ..,k+l} admissible by B'p. Let us also 
convert the decomposition B' of G into the extended decomposition B' and color 
the graph G with the labeling function ß :V -¥ {\,.. .,k + l} such that, for every 
v G V, ß(v) = ßp([v]p )• The labeling function ß is admissible by B' since no leaf 
appears in two consecutive bags. Note that the symbols in the alphabet Sg that 

correspond to the bags B'(wi) and B'(tV2), for any two ~-leaves wi and w2, are 
identical. Let <Tßp{B'P) = (o"i, <rv, ■ ■ ■, <rm, <rm')- Then (Tß(B') can be obtained 
from aßp(B'p) by repeating every subsequence (o-,-, ov) (2 < i < m) |[u>]pj times, 

where new(ßj') — {[w]^}. It can be shown that <Tßp(B'p) is MS-definable. 
Let A = (Eg, Q, 5, go, F) be the automaton recognizing a family Q of (k, 1)- 

paths G. To obtain the required CMS- formula for recognizability of Q, we use an 
extension of Biichi's result to words that are defined as sequences of substrings 
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given with their multiplicities (in our case, the sequences aßp(B'P) with the 
cardinalities of the corresponding p-equivalence classes). By finiteness of A, to 
determine the behavior of A on a substring u> repeated t times, it suffices to 
know t mod a for some constant a dependent on A. Therefore, every recognizable 

family of colored (k, l)-paths Gdl' is CMS-defmable. 
Let $ be the CMS-formula checking the recognizability of suitably colored 

(k, l)-paths. We state without proof that there is an MS-formula #adm verifying 
that a given coloring c of a (k, l)-path G is such that G is recognized by A 
iff 0 holds for G colored by c. Then the required CMS-formula for uncolored 
(k, l)-paths G is the following: 3 "coloring c of G" <?adm(c) A #(GC). 

Theorem 1. Every recognizable family of (k,l)-paths is CMS-definable. 

4    The General Case 

4.1     Nice Decompositions 

In general, a partial fc-path is not necessarily a (k, l)-path; consider the partial 
2-path Gn from Example 1 with the new edge connecting vertices 4 and 5. We 
generalize our definition of (k, 1 ^decomposition as follows. A decomposition B = 
(Bi,..., Bm) of G is called nice iff all of the following conditions hold: 

1. old(J3,-) = non-drop(S,-_i) for every * G {2,..., m), 

2. drop(Sj) # 0 for every i G {1,..., m), 
3. for any i G {2,. ..,m}, if |new(B,-)| > 1, then 

(a) for any v G U™=inev/(Bj), each decomposition (Bi,..., 5j_i,old(5,-) U 
{v},d,..., Cs) of G is such that drop(old(J3i) U {v}) = 0, and 

(b) for any subset S C new (Bi), each decomposition (Bi,... ,5.-_i,old(5,-)U 
S, Ci,..., Cs) of G is such that drop(old(Si) U S) = 0. 

Here (1) and (2) are as those for (k, ^-decompositions, and (3) says that if 
more than one new vertex is added to form Bi, then both (a) there was no single 
non-added vertex to choose instead of the set new(Sf) so that Bi contained a 
drop vertex and (b) new(B,) is a minimal set with respect to set inclusion such 

that Bi contains a drop vertex. 
It is not difficult to show that every ^-decomposition can be converted into 

a nice ^-decomposition. We call a nice ^-decomposition B — (Bi,... ,Bm) a 
(k,p)-decomposition for some 1 < p < k iff |new(5,-)| < p for all 1 < i < m. A 
partial fc-path allowing a (k,^-decomposition will be called a (k,p)-path. 

Let B = (Bi,..., Bm) be a nice ^-decomposition of a partial fc-path G. The 
family of sets new(S,) (1 < i < m) forms a partitioning of the vertex-set V of G. 

We call the corresponding equivalence on V the 1-equivalence, denoted by ~. The 

decomposition B also induces a linear order on the quotient set V/~, denoted 

by <!. Clearly, given the pair (~, <i), we can reconstruct the decomposition B 
of G. Although we can MS-define the 1-equivalence when G is suitably colored, 

it is impossible to MS-define <i. 
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We will divide a ^-decomposition of a partial fc-path G into a sequence of 
monotonic pieces whose structure resembles that of (k, l)-decompositions. For- 
mally, a contiguous subsequence (£?;,..., B{+i) (1 < i,i + l < m) of a decomposi- 
tion B = (Bi,..., Bm) is called monotonic iff |new(B,)| > 1 and |new(5r)| = 1 
for each i < r < i + I. The nice decomposition B can then be viewed as a se- 
quence of monotonic pieces (Mi,..., M4), where Ms = (5,-,,..., Bjs) for each 
1 < s < d. Note that a nice decomposition is defined so that it is monotonic as 
long as possible, then there is a "jump" — more than one new vertex is added 
to a bag — which starts a new monotonic piece, and so on. 

We define the sets new(Ms) = U^l,- new(5r) (1 < s < d) the family of which 
forms a partitioning of the vertex-set V of G. The corresponding equivalence on 

2 
V is called 2-equivalence and denoted by ~. This sequence of monotonic pieces 

2 
also induces a linear order on the quotient set V/ ~, denoted by <2. Some k- 

1      2 
decomposition of G (possibly different from B) can be constructed given ~, ~, 
and <2- Again, we can MS-defme the 2-equivalence on a suitably colored graph, 
but not <o. 

4.2     fe-Generative Structures 

1'   2' 1' 2' 
For a partial fc-path G, a triple (~ ,~ , <2), where ~   and ~   are equivalences 

2' 
on V and <'2 is a linear order on V/ ~ , is called a linear k-generative structure 

1' 2' 
on G iff there exists some nice ^-decomposition B of G such that ~  and ~  are 
the 1-equivalence and 2-equivalence, respectively, induced by B, and <2 is the 
linear order on 2-equivalence classes induced by B. For a partial fe-path G, a 

i'   2' 1' 2' 
triple (~ ,~ ,^2)' where ~   and ~   are equivalences on V and <'2 is a partial 

2' 
order on K/~ , is called a partial k-generative structure on G iff any completion 
of <2 to a linear order yields a linear ^-generative structure on G. 

Let ~ and ~ be the 1-equivalence and 2-equivalence, respectively, induced 
by some nice ^-decomposition of a partial fc-path G. Let -< be the precedence 

2 
relation defined similarly to the case of (k, l)-paths, and let < be the extension 

2 12^ 
of < to the quotient set V"/~ in the standard way. The triple (~,~,^) is not 

2 
necessarily a partial ^-generative structure on G. One reason is that each ~-class 
[u] 2 (u £ V) contains several vertices all of which must be put in the same bag. 

The other reason is that [u] 2 can "contribute" more non-drop vertices than drop 

vertices. We did not have the latter problem in the case of (k, l)-paths, because 
there adding a new vertex always produced at least one drop vertex. 

To get around these problems, we put consecutive monotonic pieces of the 
^-decomposition B of G into sequences of minimal length such that the num- 
ber of non-drop vertices produced by each sequence, except the first one, is 
at most that of drop vertices. More formally, let /j, = {Ms,.. .,Mt) be a con- 
tiguous subsequence of a nice ^-decomposition B that corresponds to the se- 
quence of bags (B,lt..., Bjt). We define the balance of p, bal(/z), as bal(/j) = 
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|non-drop(ßj()| - |old(S,J|. A contiguous subsequence LI of monotonic pieces 
is called balanced if bal(/*) < 0 and no proper non-empty prefix of LI is of non- 
positive balance. 

Let B = (Mi,...,Md), where Ms, 1 < s < d, is a monotonic piece. We 
divide B into disjoint subsequences of monotonic pieces ii1:...,Lir such that 
B = m .. .fir, A*i = <Mi>> and each W. 2 < * < r> is balanced. It can be shown 
that every //,-, 2 < i < r, corresponds to a (k, k- l)-subdecomposition of G. The 
sets new (//i), 1 < i < r, defined in an obvious way induce a partitioning of V. The 

corresponding equivalence is called 3requivalence and is denoted by ~. Recur- 
sively, we partition each ia,l<i<r, into fi\,..., n\ and define 32-equivalence 
classes. Each //}, 2 < j < s, corresponds to a (k, k - 2)-subdecomposition of G. 
We stop after Jk steps when every (not necessarily balanced) sequence ft consists 
of a single monotonic piece and corresponds to a (k, l)-subdecomposition of G; 
also note that 3fc-equivalence coincides with 2-equivalence. 

Then we define partial orders on these 3,-equivalence classes, denoted by 

A, 1 < i < k, satisfying the following condition: for any completions of ^ to 
linear orders <*', 1 < i < k, such that <j is a refinement of <*' for every j > i 

(i.e., the restriction of <j to 7/~ coincides with <*'), the triple (~,~,<fc) is a 
linear ^-generative structure on G. These partial orders as well as 3;-equivalences 
can be MS-defined for suitably colored connected partial fc-paths thanks to the 
properties of nice decompositions. 

4.3     Defining a CMS-Formula 

We partition our set of 3j-equivalence classes into the sets of 3,-nodes and 3,- 

leaves, 1 < i < k. Then we refine each partial order A, 1 < i < k, to a linear order 
on the set of 3,-nodes within each 3,_i-equivalence class; every two vertices of 
G are 30-equivalent. However, we cannot order leaves in the same way as we did 
in the case of (k, l)-paths, because now they are not necessarily single vertices 
but, instead correspond to sequences of bags, and hence to words over Eg. 

Let A = (Eg, Q, S, q0, F) be an automaton recognizing our family of partial 
fc-paths. We call two incomparable 3,-leaves within the same 3,-_i-equivalence 
class, 1 < i < k, Si-equivalent if the corresponding words wi and w2 over Eg 

are such that for each q G Q, S*(q,ui) = S*(q,üj2), where S* is the extended 
transition function of A. To determine if two leaves are ^-equivalent, we need to 
know the behavior of A on the sequences of bags corresponding to those leaves. 

The above discussion suggests the following "bottom-up" procedure which 
can be encoded in CMS. We define the sequence of bags corresponding to each 
3fc-equivalence class as in the case of (k, l)-paths, since each 3ft-equivalence class 
is the set of new vertices of a monotonic piece. Then we convert this sequence 
into the word u> over Eg and compute the behavior ofionu. This behavior is a 
map from Q to Q, which can be presented as a state-vector q(u>) of length \Q\. For 

each 3^-1-equivalence class C, two 3fc-leaves C" and C" in C/~ are ^-equivalent 

iff q(C') - q(C"). We extend the partial order on the set C/~ to a linear order 
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on Cs = (C/~)/~ by ordering incomparable leaves lexicographically according 
to their state-vectors. Let (Ci,..., Cs) be thus ordered sequence of elements of 
Cs- The behavior of A on C is denned as q(C) = q{Ci)u o • • • o q{CsY', where 
;,- = \d\, 1 < ? < s, and o is the composition. By finiteness of Q, q{C) can be 
defined in CMS. Continuing in this manner will give us, after k steps, the vector 
q(G) describing the behavior of A on the entire ^-decomposition of G. The graph 
G is recognized by A iff q(G) maps q0 to some final state of A. 

Thus, we can define a CMS-formula for recognizability of suitably colored 
connected partial fc-paths. As in the case of (k, l)-paths, there is an MS-formula 
#'adm so that recognizability implies CMS-definability for connected partial k- 
paths. Note that the formula 3 "coloring c of G" #'adm(c) is true on G iff G is a 
partial fc-path, so the obstruction set of the class of partial fc-paths is computable. 

For a disconnected partial fc-path G, we compute the state-vectors for its 
connected components, order these vectors lexicographically, and compute their 
composition in CMS. Together with Courcelle's result this yields our main claim. 

Theorem 2. Recognizability equals definability for partial k-paths. 
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Nondeterminism, and Efficient Recursion 

Richard Beigel1* and Bin Fu2** 
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Abstract. The maximum number of strands used is an important mea- 
sure of a molecular algorithm's complexity. This measure is also called 
the space used by the algorithm. We show that every NP problem that 
can be solved with b(n) bits of nondeterminism can be solved by molec- 
ular computation in a polynomial number of steps, with four test tubes, 
in space 26("). In addition, we identify a large class of recursive algo- 
rithms that can be implemented using bounded nondeterminism. This 
yields improved molecular algorithms for important problems like 3-SAT, 
independent set, and 3-colorability. 

1.    A model of molecular computing 

Molecular computation was first studied in [1, 17]. The models we define were 
inspired as well by the work of [3, 23]. A molecular sequence is a string over 
an alphabet E (we can use any alphabet we like, encoding characters of £ by 
finite sequences of base pairs). A test tube is a multi-set of molecular sequences. 
We describe the allowable operations below. Where set notation is applied to 
multi-sets, multiplicities are respected. In the definitions T\, T2, and T3 denote 
distinct test tubes, c denotes a character, and i denotes a positive integer. 

Separate(7\, c, i, T2, T3) 
T2 := the multi-set of all strings in T\ whose ith character is c; 
T3 := the multi-set of all strings in T\ whose ith character is not c; 

Tx := 0. 
Pour(Ti,T2) 

Ti := 0. 
Append(jT, c) 

T := {xc : x € T}. 
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Merge(TuT2,T3) 

T3 

T2 

TiUT2; 

Others have proposed a variant of operation separate, which we will call Sep. 
It checks whether a string contains the character c anywhere. If we represent the 
ith symbol zt of a string z by the symbol (i, Zi) instead, then the standard Sep 
operation can simulate our Separate operation with no additional overhead. The 
use of polynomial-size alphabets is standard practice in molecular computing. 
We prefer the Separate operation for convenience in programming. 

The running time for a molecular algorithm is proportional to the number 
of operations on test tubes. An important complexity measure is the solution 
space size (also called simply space), i.e., the maximum number of strings in all 
test tubes at any time, counting multiplicities. Adleman [2] has speculated that 
molecular computation with a solution space of size 270 (about 0.002 moles) 
might be possible. Recent papers [3, 19] attempt to optimize solution space size 
for particular combinatorial problems. 

Problem instances are associated with a parameter n called their size. In 
complexity theory, n is the length of a suitable encoding of the instance. However, 
in analysis of algorithms, n is usually a more natural representation-independent 
parameter, such as the number of vertices in a graph or number of variables 
in a formula. Although the n's of complexity theory and the n's of analysis of 
algorithms are usually polynomially related, it can make a phenomenal difference 
when n appears in the exponent. For that reason we take n to be a problem- 
dependent but representation-independent notion of size through this paper. We 
write \x\ to denote the size of a problem instance x rather than its length, and 
we usually identify n with |ai|. 

We consider a highly restricted model of i(n)-time, s(n)-space molecular 
computation, which we think has a good chance of eventually being practical. 
On input x, one test tube T0 is initialized to hold encodings of the numbers 
1,..., s(\x\). A sequence of molecular operations o\,..., ot(\x\) = f(x) is then 
performed, where / is a conventional polynomial-time computable function (that 
is, the program is uniform in a weak but appropriate sense). The computation 
accepts if T0 is nonempty after the last operation is performed. MOL(s(n)) is 
the class of languages accepted by such a computation where the running time 
t(n) is polynomial bounded. 

We give the most space-efficient molecular algorithms known for several prob- 
lems. See Table 1. 

2.     Bounded Nondeterminism 
NP computation with a limited amount of nondeterminism was introduced 
in [14, 15, 16] and studied further in [10, 11, 20, 9, 12, 25, 13, 7]. The class 
NPbits(6(n)) consists of all languages recognized by an NP machine that make 
at most b(n) binary nondeterministic choices on each computation path on in- 
puts of size n. (Actually, prior treatments allowed O (b(n)) binary choices, but 
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Results Previously In This Paper 
Problem Space Limited Model Reference Space | Limited Model 

Hamiltonian Path n\ V [1] 
SAT 2" V [17] 
QBF 2" XX [23] 

3-SAT 1.62" X [19] 1.50" V 
3-Colorabilit.y 1.89" V [3] 1.35" V 

Independent Set 1.51" V [3] 1.23" V 
(3, 2)-system 1.39" V 

Table 1. Results for particular problems 

the constant factor turns out to be very important in connection with molecu- 
lar computation.) We define a refinement of these classes: NPinit(s(n)) consists 
of all languages recognized by NP machines that nondeterministically choose a 
number between 1 and s(n) on inputs of size n and then behave deterministically. 

Clearly, NPbits(6(n)) = NPinit(26(n)). 

3.    NPinitO(n)) C MOL(*(n)) 

In this section we show how to simulate bounded nondeterministic computa- 
tion via bounded-space molecular computation. Results of this type appear in 
[4, 23, 24, 29], but they assume models of molecular computation with more pow- 
erful operations, such as Amplify, that may be harder to implement in practice. 
Independently, Boneh et al. [8] obtained a result similar to ours. 

Lemma 1. Let TT be a circuit with m gates. Given a tube To, a molecular al- 
gorithm using only the operations Pour, Append, and Merge, running in time 
O(m), and using only four test tubes can create tubes T\ and T2 such that Ti 
contains all strings z from, tube T0 that satisfy w(z) = 1 and T2 contains all 

strings z from, tube To that satisfy TT(Z) = 0. 

Proof. Let 7r's input gates be gi,...,gn and internal gates be gn+i, ■ ■ -,9m in 
topological order; in particular gm is the output gate. We will use four tubes 
T0,T

,
1,T2,T3. For each i, let g{ compute fi(gj(i),gk(i)) where j(i) < i, k(i) < i, 

and /,; is a binary function. We perform the following algorithm: 

for i := n. + 1 to m do 
Separate(T0, 0, j(z'),Ti,T2) 
Separate(Ti, 0, k(i),TQ, T3) 
Append(To,.A(0,0)) 
Append(r3,/,:(0,1)) 
MergeCTo.Ta.Ti) 
Separate(T2, 0, k(i), To, T3) 
Append(To,/i(l,0)) 
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Append(T3,/?:(l,l)) 
Merge(T0,T3,T2) 
Merged, T2l To) 

Separate(T0, 0, m, T\, T2) 

At completion, T\ contains all strings that satisfy 7r and T2 contains all strings 

that, do not satisfy TX. * 

Theorem2. NPinit(s(n)) C MOL(s(n)). 

Proof. Let L be accepted by an NPinit(s(n)) machine M. Construct a determin- 
istic machine M' that takes as inputs a string x and a positive integer z < s(n) 
and accepts iff M accepts input x with nondeterministic guess z. Obtain M'x by 
fixing the input x, so the only input to M'x is the number z. Construct a circuit 
7T equivalent to M'x in the usual way (see [21]). Apply Lemma 1 to 7r to see that 

L is in MOL(s(n)). ' 

4.    Implementing Recursion with Bounded 
Nondeterminism 

In this section we show how to enumerate search spaces using bounded non- 
determinism. In many nondeterministic searches, some paths are longer than 
others, which can be inefficient. However, if we can compute the size of subtrees, 
then we can balance nondeterministic search trees, which reduces the amount of 

nondeterminism needed. 
Recursive algorithms for NP problems usually take the form of d-self- 

reductions ("d" for disjunctive). Self-reductions were defined in [27] and d-self- 

reductions were defined in [28]. 

Definition3. Let \y\ denote the size of the problem instance y. A partial order 
-< is polynomial well-founded if there exists a polynomial-bounded function p 

such that 

- Vm< < 2/i => m<p(\yi\) 
- ym < —< 2/1 =>■ \ym\ <p(|j/il) 

For technical simplicity we will consider only languages L containing the 

emptystring, A. 

Definition^ A d-self-reduction for a language L consists of a polynomial time 
computable function h(x) = {xy,..., xm} and a polynomial-well-founded partial 

order -< on problem instances such that 

- A is the only minimal element under -< 
- for all x ^ A, x £ L <=> h(x) n L / 0 
- for all x, Xi £ h(x) => Xi -< x 

Definitions. Let (h, ^} be a d-self-reduction and let i be a problem instance. 
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- Tht<{x) is the unordered rooted tree that satisfies the following rules: (1) the 
root is a;; (2) for each y, the set of children of y is h(y). 

- |T/lX(x)| is the number of leaves in Th^(x). 

If (h, -<) is a self-reduction for L, then the corresponding recursive algorithm 
for L runs in time \x\°W \Tht<{x)\. The analysis of such an algorithm usually 
provides a bound on \Th><(x)\ that is suitable for use in constructing a molecular 
algorithm for L. We formalize this below: 

Definition 6. Let T be a polynomial-time computable function. A language L 
is in REC(T(z)) if there is a d-self-reduction (h, -<) for L such that for all x 

(1) \Th^(x)\<T(x),aad 

(2) T(x) > E*j€fc(*) T(^)- 

Lest conditions (1) and (2) above seem restrictive, we argue that they are 
quite natural. We consider the typical analysis of a recursive algorithm. One 
introduces a function T and proves by induction on \x\ that \Thi<(x)\ < T(x), 
which is (1). The inductive hypothesis is that \Thi<(w)\ < T(w) if \w\ < \x\. 
Inspection of the algorithm yields 

\Th,*(*)\=    E   TK<i*i) 

<    y^   T{xi)        by the inductive hypothesis 
Xi£h(%) 

The last step in the induction consists of showing that T satisfies E^ehO) ^(^0 < 
T(x), which is (2). The only other requirement on T is that T be polynomial-time 
computable. We will deal with that later in this section. 

The function T above depends on problem instances rather than their size 
because the analysis of the algorithm may depend on two or more parameters. 
We will need an analogous variant of NPinit(). 

Definition 7. NPinit'(5(a;)) consists of languages recognized by NP machines 
that nondeterministically choose a number between 1 and S(x) on input x and 
then behave deterministically. 

Clearly, if S(x) < s(\x\) then NPinit'(5(a:)) C NPinit(s(n)). 

Theorem 8. REC(T(a:)) C NPinit'(T(aj)). 

Proof. Let L 6 REC(T(x)) via (h, -<). We will define a deterministic polynomial- 
time computable function path(f, x) taking values in {0,1, yl} such that 
path(l,;r) • • -path(T(a;),a;) is equal to the sequence of values at the leaves of 
Thi<(x) in canonical order. The proof is completed by having the ith path of an 
NPinit'(T(x-)) machine compute path(i, x); clearly that machine accepts L. The 
function path(i, x) will be computed via tail recursion. 
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function path(i, x) 
if x = A then return true 
else if h(x) = 0 then return false 
else 

{xi,...,xm} :- h(x) 
for j := 1 to m do 

if i < T(xj) then return path(i, Xj) 
else i := i — T(XJ) 

return A * 

Now we give sufficient conditions for T to be polynomial-time computable. 

Definition9. We say that a partial order -< on problem instances is parame- 
tenzable if there are a function m from problem instances to a set M, a partial 

order -<' on M, and a polynomial p such that 

- m(x) is computable in time polynomial in |a;|, and 
- x -< y => m(x) -<' m(y), and 
- \\{i:i<'m(x)}\\<p(\x\). 

In many examples we will take m(x) = \x\ and <' to be the standard lin- 
ear order on natural numbers. In other examples, m{x) will be a tuple of pa- 
rameters (such as the number of 2-clauses and the number of 3-clauses in a 
Boolean formula); in many (but not all) of these examples we use the partial 
order (a1:...,ak) -<' (bi,...,bk) if (Vi)[a,- < &»] and (3i)[a,- < h}. 

Definition 10. Given h and m, define 

- mh(x-) — the multi-set {m(xi) : X{ G h{x)} 
- MH(i) = the set {mh(y) : m(y) = m(x)} 

Definition 11. A d-self-reduction (h, -<) is by cases if -< is parameterizable via 
(m, -<') in such a way that MH(a;) is computable in time polynomial in |x|. 

Lemma 12. Let (h, -<) be a d-self-reduction by cases with parameter function 

m(). Let To be the least function T such that 

(1) \Th^(x)\<T(x) 

(2) T(x) > E.,6hW T(xi) 
(3) T(x) is a function of m{x) 

Then TQ exists and TQ(X) is computable in time polynomial in \x\. 

Proof. Let (/i,-<) have a parameterization (m, -<'), where m(x) and MH(a:) are 
computable in time polynomial in |a;|. Define a partial function t from M to 
natural numbers recursively: 

( 1 if \i is a minimal element under -<' 

W> ~ \ maxra(j)=(1 EJ/^äCJ,) 
f(TO(s/0) otherwise 
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If n is in the range of m, then t(/i) is defined because MH(i) is a finite set for 
every x. Now it is easy to see that lomis the least function satisfying (1,2,3). 

By Definition 9, \{i : i <' m(x)}\  < p(\x\). If we compute t(m(x)) by the 
obvious recursion, at most p(\x\) different subproblems will arise. If we use a 
table to avoid recomputation, the recursion will run in polynomial time. I 

4.1.     3-SAT 

In this section, we apply our results to the classic 3-SAT algorithm of Monien and 
Speckenmeyer [18] and a recent unverified 3-SAT algorithm of Schiermeyer [26]. 
The former yields a simple MOL(1.62") algorithm, and the latter (assuming that 
Schiermeyer's paper is correct), yields a MOL(1.497") algorithm. 

Monien and Speckenmeyer's Algorithm The size of a satisfiability instance 
is the number of variables. Consider the 3-SAT algorithm of Monien and Speck- 
enmeyer. Let f\t denote the formulas obtained by replacing in / the literal £ 
by true and £ by false. A fc-clause is a disjunction of k literals. The function 
3SAT takes a formula / consisting of some 3-clauses and at least one 1-clause 

or 2-clause. 

function 3SAT(/) 
if / is the empty set of clauses then return true 
else if / contains an empty clause then return false 
else if some variable v appears only in positive literals then return 3SAT(f\v) 
else if some variable v appears only in negative literals then return 3SAT(f\ü) 
else if/ contains a clause C consisting of a single literal £ then return 3SAT(f\i) 
else if / contains a clause C consisting of two literals £i, £2 then 

return 3SAT(f\tl) V iSATU\j^\i,) 
else 

let v be the first variable to appear in / 

return 35i4T(/|„) V 3SAT(fk) 

The last case in the recursion is ostensibly the worst, yielding two subprob- 
lems of size n — 1, but it only occurs on the first call or immediately after 
eliminating a single variable, which yields a single subproblem of size n - 1; 
unrolling the recursion, we see that the last case gives two subproblems of size 
n - 2. The worst case is the second to the last, which yields subproblems of size 
77 — 1 and n - 2. Thus the number of leaves in the self-reduction is at most 2/(n) 
where f(n) is given by the recurrence f(n) = f(n - 1) + f(n - 2); in particular 

2f(n) < 1.62" for almost all n. 
The algorithm above is clearly a d-self-reduction for 3-SAT. The value 

function h for a formula is the set of subformulas generated by the recur- 
sive algorithm. Let m(x) = n, where n is the number of variables in the for- 
mula x. < is the normal order for the integers. From the analysis above we 
know mh(i) is either {n - l},{n - 2,rz - 2} or {n - 2,n - 1}. MH(i) is 
{{rc-1}, {n-2,n-2}, {n-2,n-l}} that is clearly polynomial time computable. 
Let t(n) = 1.62". 2/(n) < t(n). Hence t(n) is an upper bound of the number 
of leaves of computation tree for the recursive algorithm. It is easy to see that 
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t(n) >i{n-2)+t(n-l) >t(n-2)+t(n-2). Hence, T3S{x) = t(m(x)) satisfies 
the conditions of Lemma 12 and 3-SAT is in REC(T0(F)) for some T0 < T3S. By 
Theorem 8 and Theorem 2, 3SAT £ NPinit(t3S(n)), so 3-SAT is in MOL(1.62"). 
The same space bound for 3-SAT was obtained previously by Ogihara [19], but 
in a model that allows more powerful operations like Polymerization, which can 

implement the Amplify operation. 

Schiermeyer's Algorithm Schiermeyer [26] reports a 1.497" time algorithm 
for 3-SAT problem. His algorithm is a d-self-reduction for the 3-SAT problem. 
We will prove that 3SAT £ REC(T(F)), where the function T(F) < 1.497" 
and will be defined below. We follow [26] to define F3 and F£. For a formula 
F with n variables, let p be the maximum number of 1-clauses and 2-clauses 
(with preference of 1-clauses) such that no variable occurs more than twice. 
Let q be the number of remaining 2-clauses and define m = p + min(2, q). Let 
F3(n) = cßn ■ fi and F^n) = cßa-m, where ß = 1.4963, a = 1.04855 and c is a 

sufficiently large constant. 

/ F3(n) if F has no 1-clauses or 2-clauses 

^ \ F3(n) otherwise 

Schiermeyer states that F^n) > \Tht<(F)\ if F has at least one 1-clause or 
2 clause, and that F3(n) > \TK<(F)\ for all F. Hence, T(F) > \Th<<\, since 
\Thi<\ < the number of recursive calls. The inequalities that Schiermeyer gives 
in the proofs of his Lemma 4.3 and Lemma 4.4 imply that our T(F) satisfies the 
conditions of Definition 6. Hence, 3SAT £ REC(T(F)) C MOL(1.497n). 

4.2.     3-Coloring and (3, 2)-System 

Beigel and Eppstein [6] give algorithms for (3, 2)-system and 3-coloring. In the 
(a,6)-system problem, we are given a collection of n vertices, each of which 
can be given one of a different colors. However certain color combinations are 
disallowed: we are also given a set of constraints, each of which forbids one 
coloring of some 6-tuple of variables. (3,2)-system generalizes 3-coloring, 3-SAT 

and 3-edge-coloring. 

(3, 2)-System Algorithm The size of a (3, 2) system is the number of variables 
in it. Beigel and Eppstein's [6] (3, 2)-system algorithm can be sketched as follows: 

function 32SYS(F) 
if \F\ < 5 then return brute-force(F) 
else 

(Fl)...,Fk) = h32(F) 

return Vr=i32SYS(F')' 
In the algorithm above, brute-force(F) means "use the brute force method 

to solve the (3,2)-system F;" k < 3; h32 is polynomial-time computable; and 
|Fj| < \F\. Let h = h32 and let -< be the standard linear ordering on the natural 
numbers. Then (h, -<) is a d-self-reduction for (3, 2)-system. Define m(F) = \F\. 

In case 1, mh(F) = {n - (4 + i), n - 1}, where i > 0. 
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In cases 2a, 2c, and 3, mh(F) = {n - (3 + t),» - 2). where * > °- 
In cases 2b, 2d, 6, 8c and 9, mh(F) = {n'}, where n' < n. 

In case 4, mh(F) = {n - 5, n - 3, n - 3}. 

In case 5, mh(F) = {n - 4, n - 4}. 

In case 7, mh(F) = {n - 3, n - 3}. 
MH(F) is polynomial-time computable by the case analysis above. Let t(n) = 

1.38028". It is easy to see that for every input x with {ni,..., nk} = mh(;c) and 

m(F) = n, t(n) > i(m) + • • ■ + <("*)• Define T(F) = *(m(F))- By Lemma 12, 
there is a polynomial-time computable function T0 such that T0(F) < T(F) 
and To, h, and -<; satisfy the conditions of Definition 6. Thus, (3, 2)-system is in 

REC(T0(F)). So, 

(3, 2)-system G NPinit'(T0(F))        by Theorem 8 

C NPinit'(T(F))        because T0(F) < T(F) 

= NPinit(<(n))        because T(F) = t(\F\) 

= NPinit(l.38028")        because t(n) = 138028" 

C MOL(l.38028")        by Theorem 2. 

3-Coloring Algorithm There are two parts to Beigel and Eppstein's algo- 
rithm. The first part runs in polynomial-time and finds an independent set S 
with a lot of neighbors. Let r(S) denote the set of vertices in G that are not 
in S but are adjacent to an element of S. The second part 3-colors S in all 
possible ways. Each of these 3'sl partially-colored graphs is transformed into an 
equivalent (3, 2)-system with n - \S\ - \r(S)\ variables, which is solved by call- 
ing 32SYS. Their algorithm runs in time 3|s|1.38028"-lSHr(s)l, which is less 
than 1.345" for sufficiently large n. Thus we have the following NPinit(1.345") 

algorithm: 

choose a natural number m < 1.345" 

construct Beigel and Eppstein's set S 

let c = m mod 3'5' 
color S with the cth 3-coloring in the lexicographical ordering 

form the corresponding (3, 2)-system F 

let b = [7?V3|S|J 
run 32SYS(i?) using the nondeterministic choices dictated by b 

Therefore 3-coloring is in MOL(1.345"). 

4.3.     Independent Set 

For a graph G, an independent set 5 is a subset of G"s nodes such that there is 
no edge between any two nodes in S. The independent set problem is "given a 
graph G and a number k, does G contain an independent set of cardinality at 

lest k?" 
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Tarjan's Algorithm Consider the following simple algorithm due to Tar- 
jan [30]. (d(v) denotes the degree of v, and N(v) denotes the neighbor set of 
v. max(5,T) denotes the larger of the two sets S and T, with ties resolved 

arbitrarily.) 

function MIS(G) 
pick any vertex v in G 
if d(v) < 1 then return {v} U MIS(G -v- N(v)) 
else return max(MIS(G - v), {v} U MIS(G -v- N(v))) 

This is a self-reduction with at most T(n) leaves where T(n) satisfies T{n) = 
T(n - 1) + T(n - 3) where T(n). The recurrence can be solved in polynomial 
time by an explicit formula or by dynamic programming so the independent set 
problem is in MOL(1.47"), which is better than prior results [3]. Because the 
algorithm is particularly simple, the molecular algorithm can even be made to 

run in linear time. 

Robson's Algorithm The best published purely recursive algorithm for the 
independent set problem is due to Robson [22] and runs in time 1.229" for suf- 
ficiently large n. A d-self-reduction with 1.229" leaves is evident from Robson's 
paper, so we have we have a MOL( 1.229") algorithm for the independent set 

problem. Details will be given in the full version of this paper. 
Robson has a faster dynamic programming algorithm for independent set, but 

we see no way to adapt it to molecular computing. Molecular computing may 
motivate the search for efficient recursive algorithms that do not use dynamic 
programming. Towards that end we have found a recursive 1.223" time (for 
sufficiently large n) algorithm for independent set [5] that is based on a d-self- 
reduction and hence is directly adaptable to molecular computing. 
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Abstract. The construction of evolutionary trees is a fundamental 
problem in biology, and yet methods for reconstructing evolutionary trees 
are not reliable when it comes to inferring accurate topologies of large 
divergent evolutionary trees from realistic length sequences. We address 
this problem and present a new polynomial time algorithm for recon- 
structing evolutionary trees called the Short Quartets Method which is 
consistent and which has greater statistical power than other polyno- 
mial time methods, such as Neighbor-Joining and the 3-approximation 
algorithm by Agarwala et al. (and the "Double Pivot" variant of the 
Agarwala et al. algorithm by Cohen and Farach) for the L<x> -nearest 
tree problem. Our study indicates that our method will produce the cor- 
rect topology from shorter sequences than can be guaranteed using these 

other methods. 

1    Introduction 

Evolutionary trees indicate how species evolved from a common ancestor and are 
of fundamental concern to biologists. There are many methods for reconstruct- 
ing trees from biomolecular sequences, and all potentially competitive methods 
are evaluated according to their accuracy for topology prediction [11]. However, 
reconstructing this topology is a difficult task for at least two reasons. First, 
all accepted optimization problems in this area are NP-hard, so that methods 
which are efficient typically do not provide good performance on large sets of 
sequences. More importantly, even if we could solve some of the NP-hard op- 
timization problems in this domain, the sequence length required in order to 
be able to guarantee an accurate topology estimation can be beyond what is 
available or even possible. A polynomial time algorithm that can only be guar- 
anteed to be accurate on unavailable sequence lengths is simply not reliable, 
and it must either not be used, or if used its output must not be believed. On 
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the other hand, a method which is accurate on realistic length sequences can 
be used even if it requires more computational resources. We may simply need 
to use more machines, wait longer, employ more sophisticated techniques to im- 
plement the same basic objective, etc. Thus, the sequence length needed by a 
method imposes a significantly more severe limitation than its computational 
requirements. The importance to biologists of this measure of accuracy (called 
efficiency or power in the systematic biology literature [14]) is reflected in the 
extensive performance analysis literature in systematic biology in which meth- 
ods are analyzed according to their performance on model tree reconstruction 
under various stochastic models of evolution [12]. Initially these studies focused 
on consistency [7], i.e. the question of whether a method would be guaranteed to 
produce the correct topology given long enough sequences. Since the discovery 
around 1970 [13] of consistent distance transformations (which produce "cor- 
rected distances"), it has been clear that all reasonable distance-based methods 
can recover the true tree with high probability given long enough sequences when 
applied to corrected distances computed on sequences generated by binary trees. 
All this is well-understood in the systematic biology community. What is not so 
well-understood is the sequence length needed to obtain an accurate topology 
with high probability using a given method on a given model tree. Unfortunately, 
sequence lengths are limited, and especially so when the tree to be reconstructed 
is large and contains widely divergent sequences. 

This paper contains several results: 

— We present a probabilistic analysis of the depth and diameter of random trees 
under two distributions. 

— We describe a framework based upon topology-invariant neighborhoods which 
permits the comparison of the statistical power of different distance-based 
tree reconstruction methods. 

— We develop a new consistent polynomial time method, the Short Quartet 
Method for reconstructing evolutionary trees, and provide an analytical study 
of its convergence rate for inferring trees under the Cavender-Farris model. 
(This analysis extends to a large class of r-state Markov models.) We show 
that this method has superior statistical power to Neighbor-Joining, the most 
popular distance-based method of phylogenetic tree reconstruction, and to 
new results from the theoretical computer science community by Agarwala 
et al. (STOC 1996) [1] and Cohen and Farach (SODA 1997 and RECOMB 
1997) [5]. 

Due to space constraints, we cannot give proofs in this extended abstract. 

2    Basics 

We begin by describing a simple model of sequence evolution, called the 
Cavender-Felsenstein model, or sometimes the Cavender-Farris model. The 
Cavender-Felsenstein model of evolution for binary sequences associates to ev- 
ery edge e in a model tree T a mutation probability pe with 0 < pe < .5, and 
the mutations on each edge are independent. The sites (i.e. positions within 
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the sequences) are assumed to evolve identically and independently, with the 
state at the root selected according to some distribution (usually uniform). If 
k sites evolve under this model, then the tree generates a set of sequences of 
length k at the leaves. We allow the input to our method to be any symmetric 
zero-diagonal non-negative matrix, and we will abuse the notation and call such 
matrices distance matrices. 

Definition 1. A distance matrix D is additive if and only if there exists a 
tree T with non-negative edge weighting w such that for all leaves i,j, Dij = 
HeeP- w(e)' where pij is the Path between i and j in T. The L^ distance be- 
tween two distance matrices A and B is defined by L^A, B) = max^\Atj -Bij\. 
The Loo-nearest tree problem takes as input a distance matrix d and returns an 
additive distance matrix D minimizing Los(d,D). The 6-neighborhood around d, 
denoted N(d,S), is the set of all distance matrices d' such that Loo(d,d') < S. 
A distance-based method M for phylogeny construction is a mapping from nxn 
distance matrices tonxn additive distance matrices. A tree 7\ is said to refine 
a tree T if T can be obtained from Ty by contracting some of the edges in Ti. 
A method M is said to be combinatorial^ consistent if M{D) = D for all ad- 
ditive distance matrices D, and continuous at D if for every e > 0 there exists 
a <5 > 0 such that if d € N(D,S) then M(d) € N(M(D),e). We will say that a 
distance-based method is reasonable if it is both combinatorially consistent and 
continuous at every additive distance matrix defining a binary tree. 

An interesting characterization of additive matrices D is the following: 

Theorem 2. Four Point Condition, from [4]: A distance matrix D is an additive 
matrix if and only if for all i,j, k, I, of the three pairwise sums D^ + Dki,Dik + 
DjijDu +Djk, the largest two are identical. 

The proof of the theorem shows that the ordering on the three pairwise sums 
indicates the topology induced by the quartet. Thus, if Dtj + Dki is strictly 

. smaller than the other two sums, then the topology induced by the quartet 
i,j,k,l is a resolved binary tree; otherwise all three sums are identical, and the 
topology induced by i,j, k, I is a star. Since we assume that T is binary, all such 
quartets induce resolved subtrees. We will denote this topology by ij\kl when 
the pairs that are separated by an internal edge are ij and kl. 

We now present a characterization of additive distance matrices which define 
the same topology. 

Theorem 3. Two additive distance matrices D and D' define the same topol- 
ogy if and only if for all quartets, the relative orders of the pairwise sums for 
that quartet are identical in the two matrices. Therefore, for every reasonable 
distance-based method M and for every binary tree T defining additive distance 
matrix D, there will be a 5 > 0 such that M is guaranteed to reconstruct the 
topology of T when applied to any d G N(D,S). Consequently, any reasonable 
distance-based method M will be consistent on every binary tree when applied 
to corrected distances. However, for every edge-weighted tree T with minimum 
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edge weight x, there is a tree V with a different leaf-labelled topology such that 
Loo(D,D') = x/2, where D is the additive distance matrix for T and D' the 
additive distance matrix for X". 

We will now describe a method we call the Naive Method, based on Bune- 
man's Four-Point Condition. For each quartet of species i,j,k,l, compute the 
topology on that quartet by computing the three pairwise sums (this is called 
the four-point method (FPM) for reconstructing a tree on a single quartet.) If 
the three sums are distinct and the minimum is attained at £>„• + Dki, then set 
the topology on i, j, k, I to be ij\kl. If the minimum sum is not unique, constrain 
the topology to be a star. Construct the tree (if it exists) consistent with all the 
constraints on the topologies of quartets. If no tree exists consistent with all the 
constraints, output a star tree. (A similar procedure was described by Fitch in 
[9].) Constructing a tree consistent with all quartet topologies is easily done in 
polynomial time through a variety of techniques, hence this is a polynomial time 
method. 

We now present a comparison of various distance based methods based upon 
topology invariant neighborhoods. 

Theorem 4. Let D be an additive n x n distance matrix defining a binary tree 
T, d be a fixed distance matrix, and let 5 = Loo(d,D). Assume that x is the 
minimum weight of internal edges of T in the edge weighting corresponding to 
D. 
(i) A hypothetical exact algorithm for the L^-nearest tree is guaranteed to return 
the topology of T from d if S < x/4. 
(ii) (a) The 3-approximation algorithm for the Loo-nearest tree is guaranteed to 
return the topology of T from d if 6 < x/8. (b) For all n there exists at least one 
d with 5 - x/6 for which the method can err. (c) If 6 > x/4, the algorithm can 
err for every such d. 
(iii)  The Naive Method is guaranteed to return the topology of T from d if 5 < 
x/2, and there exists a d for any S > x/2 for which the method can err. 

In other words, given any matrix d of corrected distances, if an exact al- 
gorithm for the Loo-nearest tree can be guaranteed to correctly reconstruct the 
topology of the model tree, then so can the Naive Method. Thus, an exact al- 
gorithm for the Loo -nearest tree can err on longer sequences than the Naive 
Method, when applied to corrected distances, for any model tree T. This sug- 
gests an inherent limitation of the Loo-nearest tree approach to reconstructing 
evolutionary tree topologies. 

3    The Short Quartet Method 

The Short Quartet Method is similar in spirit to the Naive Method, in that 
it is based upon reconstructing trees for quartets, and then combining these 
trees if possible. However, the essential difference is that we attempt to avoid 
reconstructing the trees for the difficult quartets. Instead, we attempt to con- 
struct topologies only on those quartets that are close within the tree; these 
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are called the short quartets. The reconstruction of the tree from these short 
quartets involves solving a special case of a problem which is in its general form 
NP-complete [15]. The method we use to reconstruct the topology on each quar- 
tet is not specified; if we can afford the time, we may elect to use maximum 
likelihood which has great statistical power, but which is computationally too 
expensive to use for all but small trees. However we do not know apriori which 
quartets are short quartets. Thus, the method we actually employ is a greedy 
method, which surprisingly can be shown to have high probability of accurate 
reconstruction of the topology provided that the sequence length is adequate, 
even if we reconstruct topologies on quartets using the same (simple and not 
particularly statistically powerful) method used by the Naive Method! 

3.1     Short Quartet Consistency 

We begin by defining the notion of an edi-subtree. 

Definition5. The topological distance between two leaves i and j in a tree T 
is the number of edges on the path between i and j, and the topological length 
of a path P is the number of edges on P. Consider the subtrees of a binary 
T obtained by deleting a single edge e in T but not the endpoints of e; call 
such subtrees edi-subtrees (for edge-deletion-induced). Each such edi-subtree can 
be considered a rooted tree, by rooting it at the endpoint of e to which it was 
originally attached. Given an edi-subtree t, rep(t) denotes a leaf in t closest to 
the root of t. Two edi-subtrees which are disjoint and whose roots are distance 2 
apart are said to be sibling edi-subtrees. In order to simplify the discussion, we 
may abuse the notation and let t also denote the leaf set of the edi-subtree t. 

We give some more definitions. 

Definition 6. Let the depth of an edi-subtree in T be the number of edges on 
the path from e to the nearest leaf, and let the depth of T (denoted by d(T)) be 
the maximum depth of any edi-subtree in T. We say that a path P in the tree 
T is short if its length is at most 2d(T) + 2. The quartet i,j, k, I is said to be a 
short quartet if it induces a subtree which contains a single edge connected to 
four disjoint short paths. 

Thus, the depth of a complete binary tree of n leaves is log2 n - 1 but the 
depth of a caterpillar (a tree consisting of a long path with leaves hanging off 
the path) is just 1. Consequently, every quartet in a complete binary tree on n 
leaves is a short quartet, but there are only 0{n) short quartets in a caterpillar. 

We now proceed with the description of the algorithm which we will use to 
construct binary model trees from a set of topologies on quartets. Our algorithm 
operates by determining siblinghood, first of leaves, and then of larger and larger 
rooted edi-subtrees, until the tree is constructed from the leaves inward. The 
determination of siblinghood of edi-subtrees is based upon detecting witnesses 
and anti-witnesses among the quartets, which we now define. 
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Definition 7. Given a quartet {i,j, k,l} of leaves, we will denote by ij\kl the 
induced topology on i, j, k, I in which i and j are separated in T from k and / via 
a path. Let £1 and £2 be two edi-subtrees. A witness to the siblinghood of t\ and 
£2 is a short quartet {u,v,w,x} with topology uv\wx such that u £ ti, 1; 6 £2, 
and {w,a;}n(£1 U^) = 0- We call such quartets witnesses. An anti-witness to the 
siblinghood of ti and £2 is a short quartet {p, 9, r, s} with topology p#|rs, such 
that p € ti, r e t2, and {g,s} n (£1 U£2) = 0- We will call these anti-witnesses. 

We now present the property upon which the algorithm is based: 

Axiom 1 Let t\ and £2 be disjoint edi-subtrees of T and assume T — t\ — £2 has 
at least two leaves. Then t\ and £2 are siblings if and only if the following two 
conditions hold: 

1. There are leaves y and z such that the quartet {rep(t\),rep(t2),y,z} is a 
witness to the siblinghood of t\ and £2, and 

2. If there is an antiwitness to the siblinghood of £1  and £2, then there is a 
witness for it as well. 

This axiom provides the basis for determining if there is at least one tree 
consistent with the constraints in the set of quartets, but may not be enough 
to verify that there are not two such trees. Verifying uniqueness of the solution 
turns out to be easy, fortunately, but it is also necessary due to the way in which 
we selectively apply the short quartet consistency algorithm. 

In each edi-subtree, there may be more than one leaf that is closest to the root 
of the subtree (in terms of the number of edges on the path from the leaf to the 
root). However, among all such closest leaves in each edi-subtree, there is a unique 
leaf which has a smallest label, if the species are labelled by 1,2, ...,n. We call this 
leaf the smallest representative of the edi-subtree. This allows us to define 
a special set of short quartets, which we call the representative quartets, as 
follows. Each short quartet is composed of a single edge e = (a, b), so that if we 
delete both a and b from T we create four edi-subtrees. We will say that a short 
quartet is a representative quartet if its leaves are the smallest representatives 
of the four edi-subtrees created in this manner. Then the following can be shown: 

Theorem 8. If a binary tree T is consistent with a set Q of quartet topologies 
such that Q contains all representative quartets, then T is uniqely consistent with 

This observation and the axiom above suggests the following algorithm: 

— Start with every leaf of T (i.e. the taxa) defining an edi-subtree. 
— While the graph has more than three edi-subtrees, do: 

• Form the graph on vertex set given by the edi-subtrees, and with edge 
set defined by siblinghood; i.e., (x, y) is an edge if and only if edi-subtrees 
x and y satisfy the conditions of Axiom 1 for siblinghood. 
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* Make a sibling pair out of each connected component, and make the 
roots of the edi-subtrees in that connected component children of 
a common root r, and replace the pair of edz-subtrees by one edi- 
subtree. 

* If no new sibling pairs are found, then return fail. 
• If there are at most three ed«-subtrees left, connect their roots each to 

one internal node, and call the resultant tree T. 
- Verify that T satisfies all the constraints given in the input, and that Q 

contains the representative quartet for every edge in T. If so, return T, and 
else return fail. 

The correctness of this algorithm follows from the discussion above, and the 
runtime of this algorithm depends upon how the two edi-subtrees are found that 
can be siblings. It is obvious that this can be achieved in polynomial time, but 
the details of the implementation are omitted due to space constraints. 

Theorem 9. Given a set Q containing all short quartets of a tree T and satis- 
fying Axiom 1, we can determine T in 0(\Q\ logn + n2logn) time. 

3.2     The entire method 

We now describe how we use the short quartet consistency algorithm to construct 
the tree. One issue we address is how we select the set of quartets to consider. 
As it turns out, this is done in a greedy fashion, which we now describe: 

Definition 10. We define the similarity between sequences i and j to be 
s(jj) = i _ 2H(i,j)/k, where k is the sequence length, and H(i,j) is 
the Hamming distance of sequences i and j. Let Q be the set of all pos- 
sible quartets on [n], and let Qw be those quartets a,b,c,d such that 
min{s(a, b), s(a, c),s(a, d),s(b, c),s{b, d), s{c, d)} > w. 

On a given set Qw, the result of applying the Short Quartet Consistency algo- 
rithm will either be a binary tree that is uniquely consistent with all the topology 
constraints in Qw, or fail. This permits us to define our method as follows. The 
structure of the method is to do a "halving" search among the w by applying the 
Short Quartet Consistency algorithm to Qw. starting with w = 1/2,1/4, etc., 
until we either find a tree that is uniquely consistent with the Short Quartet 
consistency algorithm or realize that no such tree can be found (this evidence 
of failure occurs when w < l/k). We can show that with high probability, given 
adequate sequence length this search will examine a set Qw which contains all 
short quartets and which also satisfies Axiom 1. Consequently, in polynomial 
time we will reconstruct the tree topology. 

Theorem 11. The Short Quartets Method takes 0(n4 logn log k + n2k) time in 
the worst case. On any input d of distances derived from sequences generated on 
a model tree T, if the Naive Method accurately reconstructs the topology of T 
from d then SQM will also accurately reconstruct the topology of T from d. 
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A more realistic analysis of the running time of the Short Quartet Method is 
based upon analyzing typical trees can be obtained by using Theorem 13. Typical 
trees under both the uniform and Yule-Harding distributions have 0 (log log n) 
depths. If the pe probabilities on the edges of a tree of depth 0(log log n) are 
equal or almost equal, then certain Qw's with \QW\ = 0(n polylogn) will yield a 
tree through the consistency algorithm, and the halving search will hit such a w, 
with probability 1 — o(l). Consequently, for typical tree shapes and for mutation 
probabilities that just slightly vary, applying the Short Quartet Method is likely 
to take only 0(n2k + n2 logn) time. 

We now state our main result: 

Theorem 12. Suppose k sites evolve under the Cavender-Farris model on a 
binary tree T, so that for all edges e, pe £ [/, g], where we allow f,g to be 
functions of n. Assume that g is separated from 1/2. The Short Quartet Method 
returns the tree T with probability 1 — o(l), if 

fc> 
c'lQgn  m 

(1 - VT^7)2(1 - 25)«eptft(T) ^   I 

where c is a fixed constant. 

4    Depth vs. Diameter of Random Trees 

We have shown that the sequence length needed by our method depends expo- 
nentially upon the minimum of the depth or the diameter of the tree it attempts 
to reconstruct. We study these topological quantities in this section. 

Two simple models for describing semi-labelled binary trees are the uniform 
model, in which each tree has the same probability, and the Yule-Harding model, 
studied in [2, 3, 10]. This distribution is based upon a simple model of speciation, 
and results in "bushier" trees than the uniform model. 

The following results are needed to analyse the performance of phylogeny 
reconstruction algorithms on random binary trees. Recall the definitions of depth 
and diameter from Section 3. 

Theorem 13. a) For a random semilabelled binary tree T with n leaves under 
the uniform model, d{T) < (2 + o(l)) log2 log2(2n) with probability 1 — o{\), 
and diam(T) > e^/n with probability 1 — 0(e2). 

b) For a random semilabelled binary tree T with n leaves under the Yule-Harding 
distribution, d(T) — O(loglogn) and diam(T) = (9(logn), with probability 
l-o(l) 

4.1     Analysis of the Short Quartet Method 

In [6], Farach and Kannan proposed a method (FK) for reconstructing Cavender- 
Farris trees based upon applying the 3-approximation of Agarwala et al (dis- 
cussed in Section 2) for the Loo-nearest tree problem to corrected distances. 
They proved that the method converged quickly for the variational distance (a 
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related but different concern than the topology estimation), but did not analyze 
the convergence to the topology of the model tree. Recently, Kannan extended 
the analysis (personal communication) and obtained the following counterpart 
to (1): If T is a model tree with mutation probabilities in the range [f,g], and if 
sequences of length k' are generated on this tree, where 

k'> 
■ logn 

/2(1 - 2g)2diam(T)' 
(2) 

and c' is some constant, then with high probability the result of applying Agar- 
wala et al to Cavender-Farris distances will be a tree with the same topology as 
T. 

We now compare the sequence length requirements for the Short Quartet 
method as compared to the 3-approximation algorithm for the nearest Loo-tree. 
Comparing this formula to (1), we note that the the comparison of depth and 
diameter is the most important issue. We always have diam(T) > 2depth(T) +1. 
The constants do not affect the comparison unless the depth and the diameter 
are close to each other, which in general they are not (from our earlier results, 
for almost all trees, the depth is O(loglogn) while the diameter is 0(y/n), under 
the uniform distribution, while for the Yule-Harding distribution, the depth is 
still O(loglogn) and the diameter is J?(logn). Consequently, the Short Quartet 
Method requires much shorter sequence lengths than the Agarwala et al algo- 
rithm for almost all binary trees. 

We summarize these results in the following table. 
range of mutation probabilities on edges: 

[f,g] 
/, g are constants 

1     log log n 
log n'    log n 

binary trees 
worst-case 

SQM 
FK 

polynomial 
superpolynomial 

polylog 
superpolynomial 

random binary trees 
(uniform model) 

SQM 
FK 

polylog 
superpolynomial 

polylog 
superpolynomial 

random binary trees 
(Yule-Harding) 

SQM 
FK 

polylog 
polynomial 

polylog 
polylog 

This comparison establishes that our method requires significantly shorter 
sequences in order to ensure accuracy of the topology estimation than the algo- 
rithm of Agarwala et al, for almost all trees under both probability distributions. 
The trees for which the two methods need comparable length sequences are those 
in which the diameter and the depth are as close as possible - such as complete 
binary trees. In these cases, the previous analysis given in Section 3 indicates 
that SQM will nevertheless need shorter sequences than Agarwala et al will need 
to obtain the topology with high probability. 

Although their running time is likely to be faster than ours on most data 
sets, our method is fast enough to be useful for all data sets that we might wish 
to analyze (even up to several thousand sequences). The real advantage of this 
method is its increase in accuracy on sequences of realistic length. 
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However, both algorithms are fast enough to make real-time computation of 
evolutionary trees feasible even for very large (n = 500 to 1000) data sets. This 
means that the issue of accuracy realistically is the most important issue, and 
needs to be the focus of the study. 

5 Lower bounds 

A careful analysis of the table above concerning the sequence length needed by 
the short quartet method reveals that for almost all trees under either distribu- 
tion, the required sequence length grows polylogarithmically in the number of 
taxa for each fixed range of mutation probabilities. In this section, we show that 
this is a polynomial of the minimum possible sequence length for any method, 
whether deterministic or randomized. 

We will henceforth assume that all trees we consider are binary trees bi- 
jectively leaf-labelled by the elements of {l,2,...,n} = [n]; we will call these 
semi-labelled binary trees. Since the number of semi-labelled binary trees on n 
leaves is (2n - 5)!!, encoding deterministically all such trees by binary sequences 
at the leaves requires that the sequence length, k, satisfy (2n - 5)!! < 2nk, i.e. 
k = J?(logn). We now show that this information-theoretic argument can be 
extended for arbitrary models of evolution and arbitrary deterministic or even 
randomized algorithms for tree reconstruction. For each semi-labelled binary 
tree, T, and for each algorithm A, whether deterministic or randomized, we will 
assume that T is equipped with a mechanism for generating sequences, which 
allows the algorithm A to reconstruct the topology of the underlying tree T from 
the shortest possible sequences with constant probability. 

Theorem 14. Let T be a tree with n leaves labelled by sequences of {0, l}k, and 
let A be an arbitrary algorithm, deterministic or randomized. For A to be able 
to reconstruct the topology of T from the sequences at the leaves with probability 
greater than 1/2 (respectively greater than e), it must hold that (2n - 5)!! < 2nk 

(respectively, (2n - 5)!!e < 2nk), and so k = J?(logn). 

The Theorem above shows that model and algorithm have to be a very good 
match, if not much more than logn length sequences suffice for tree reconstruc- 
tion with high probability for each trees. In view of the very mild conditions, it 
is amazing, that this bound basically can be attained by our SQM, applied to 
the Cavender-Farris model! 
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Abstract. In this paper, we introduce a method for proving universal 
termination of constraint logic programs by strictly extending the ap- 
proach of Apt and Pedreschi [1]. Taking into account a generic constraint 
domain instead of the standard Herbrand univers, acceptable (CLP) pro- 
grams are defined. We prove correctness and completeness of the method 
w r t the leftmost selection rule for the class of ideal constraint sys- 
tems, including CLP(fcii„), CLP(ftT), and CLP(^T) among the oth- 
ers. Moreover, we investigate the problems arising in extending those 
results to non-ideal constraint system, by specifically designing sufficient 
conditions for termination of CLP(7i) programs. 

1     Introduction 

Motivations for the termination analysis of logic programs are related to sev- 
eral topics, including systematic program development, control generation, non- 
monotonic reasoning, decidability issues, applications to abstract interpretation, 

program transformation and testing. 

There are many contributions in the literature on termination of logic and Prolog 
programs (see [9] for a recent survey). However, research has been mainly focused 
on Prolog programs. Only recently other logic programming (LP) paradigms 
have been considered, including logic programs with delay declarations, and 

constraint logic programming (CLP). 

Jaffar and Malier claim in their survey [6], that "the CLP Scheme provides a 
framework in which the lifting of results from logic programming to CLP is al- 
most trivial". As shown in [7], that statement is certainly true for many results, 
including the equivalence of declarative, functional and operational semantics. 
However, we will show that a well-known declarative proof method for termina- 
tion of logic programs can be easily extended only to a restricted class of systems, 
namely ideal constraint systems. In those systems, the consistency test is cor- 
rect and complete, in the sense that a computation proceeds iff the accumulated 

constraints are satisfiable. 

Although the class of ideal constraint systems includes CLP (Hun), CLP(UT), 
PJSC-CLP(Real) and CLP(JT) among the others, several real systems are not 
ideal. As the most representative example, in CLP(fc) [5] non-linear constraints 
are delayed until some variables in these constraints get unique values during 
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the further computation process so that the constraints become linear. If a com- 
putation stops with some delayed non-linear constraints, the system generates 
a "maybe" answer, i.e. the test cannot ensure consistency of all the answer con- 
straints since the test has been performed only on the linear ones. The delaying 
of passive constraints is a mechanism for bounding the computational complexity 
of the constraint solver. Unfortunately, this prevents an early failure detection 

and may be the cause of infinite derivations. 

In this paper, we introduce a method for proving universal termination of con- 
straint logic programs with respect to a leftmost selection rule. We extend the 
approach of Apt and Pedreschi [1], which declaratively characterize the class of 
logic programs such that every LD-derivation starting with a ground query is 
finite, namely acceptable logic programs. On the one hand, we lift their results 
to ideal constraint systems, by taking into account a generic constraint domain 
instead of the standard Herbrand univers. On the other hand, we improve the 
method by providing a stronger completeness theorem even in the case of pure 

logic programming. 

Concerning non-ideal constraint systems, we study termination of CLP(7?.) pro- 
grams by specifically designing two sufficient conditions. Both of them are aimed 
at preventing the involvement of non-linear constraints in the termination anal- 
ysis, either by removing them from the analysis, or by imposing a notion of 
well-modedness which ensures that non-linear constraints become linear at run- 

time. 

Preliminaries We will use throughout the paper the terminology of JafFax and Mä- 
her [6]. By a program we mean a constraint logic program, i.e. a set of clauses of 
the form A <— Bi ,... , Bn where A is an atom and each B,,i € [l,n], is either an 
atom or a constraint. A flat program is a program in which every atom has the form 
p{X\ ,... , Xn ), where X\ , ... , Xn  are (not necessarily distinct) variables. 

A constraint domain V is a first order structure on the signature E of the con- 
straints. We denote with D the domain of V. A ^-interpretation of a program P is 
an interpretation of P with the same domain as V and the same interpretation for the 
symbols in E as V. It can be represented as a subset of B^,, where B% is the set of 
atoms of the form p(ai ,... ,an ), with a; £ D for i £ [l,n], and p n-ary predicate 
symbol appearing in P. When P is clear from the context, we write 5p. A X>-model 
of P is a P-interpretation of P which is also a model of it. 

We write V \= cd when the constraint c is true in V w.r.t. the valuation ■&. Given 
an atom p(ti ,... , tn ) and a valuation ■&, p(t% ,... ,t„)d stands for p(ii$,... ,tnd), 
where t,$ is the value of t, in the valuation ■&. Analogously for queries and clauses. 
A X>-ground instance of a clause C is then any C$, where D is a valuation. For a V- 
interpretation / and a X>-ground atom A, we write / |= A iff A € /• For a ©-ground 
constraint c, we write / |= c iff T> \= c. 

Those definitions easily extend to a many-sorted language. 
The operational semantics of a constraint system is characterized by a transition 

relation —>■ defined in terms of the relations —► r, —► c, —* i, —► s and of the functions 
infer and consistent, as described in [6]. infer is required to satisfy infer(C,S) = 
(C',S')^V\= CAS»C"AS'. 
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consistent is required to satisfy consistent(C) =>■ V \= 3C. 
N is the set of natural numbers. 7V°° is N U {oo}. The list-length function // is 

defined as follows: ll(f(ti ,...,<„)) is 0 if / # [.|.] and ll{t2) + 1 if f(h ,... ,tn) = 
[h\t2]. In particular, the length of an infinite list is oo. size(t) is the number of symbols 
occurring in a term t. For a pair {C,S), we define the projection on the first element 

(C,S)1=C. 

2    Termination in LP 

A largely acknowledged termination proof method for logic programs was pro- 
posed by Apt and Pedreschi in [1], where the class of acceptable logic programs 
was introduced. First of all, we recall the basic notions of level mappings and 
ground instances of logic programs. 

Definition 1. Given a logic program P 

- a level mapping for P is a function \ \: BP -+ N  of ground atoms to natural 

numbers. | A |  is called the level of A. 
- ground(P)   denotes the set of ground instances of clauses from P. □ 

Intuitively, a program is acceptable if every time a clause is used in a LD- 
derivation, the level of the head of any of its ground instances is greater than 
the level of each atom in the body which might be selected further. 

Definition2. Let P be a logic program, and 7 C BP a Herbrand interpreta- 

tion. 

- P is acceptable by \ |: BP -»■ N   and I iff 7 is a model of P, and for every 
A <— Bi ,... , Bn in ground(P) :     for i G [1, n] 

7 |= B\,..., 5,_!    implies    \ A\    > \ B, | 

- A query Q is acceptable by \ | and I iff there exists k G N such that for every 
ground instance A\ ,... , An of it:     for i G [1, n] 

7 |= Ai,..., Ai-i    implies    k > \ Ai \ D 

We summarize the main termination properties of acceptable programs in the 
following Theorem (see [1] for a proof). 

Theorem 3. Every LD-derivation for a logic program P and query Q both ac- 

ceptable by | | and I is finite. 
Conversely, if every LD-derivation for P and Q and for P and every ground 

query is finite then P and Q are acceptable by some | | and I. □ 

Intuitively, a generalization of acceptability to the CLP Scheme has to consider 
©-ground instances of clauses, in order to involve the constraint domain to the 
proof level. As an example, MEMBER 
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member(X,   [X I   Xs]). 
member(X,   [YI   Xs])   *-   member(X,  Xs). 

and the query Xs = [aI Xs] , member(b, Xs) show different termination be- 
haviors when considering finite trees or rational trees as the underlying constraint 
domain. 

Definition4. Given a program P defined on a constraint system V, 

- a level mapping for P is a function | | : B-p —>• N°° of X>-ground atoms to 
natural numbers plus infinitum. | A |   is called the level of A. 

- groundv(P) denotes the set of X>-ground instances of clauses from P.       □ 

Though it is clear why we consider now B-p, it is less obvious why we include 
oo in the codomain of level mappings. The underlying objective is to be able 
to partly reason on termination of programs and a restricted class of queries. 
In the case of MEMBER, for instance, it is still legitimate to consider queries of 
the form member(2, t) where t is a finite list, since non-termination arises only 
for infinite lists. To this end, we extend the > order on natural numbers to the 
relation > , defined as follows: 

n> m     iff     n = oo ov n > m 

Therefore, oo> a for every a £ 7V°°, and for n £ N, n> m iff m € N and 
n > m. It is worth noting that although > is not an ordering relation, there is 
no infinite descending chain n\ > n^ > ... when n\ £ N. 

3     From LP to ideal CLP 

Acceptability extends to constraint logic programs by replacing the Herbrand 
univers with the constraint domain, and the ordering > with the relation > . 

Definition5. Let P be a program on the constraint system V, I C B-p a V- 
interpretation and | | a level mapping for P. 

- P is acceptable by | | and I iff I is a P-model of P, and for every 
A <— B\ ,... , Bn  in groundz>(P): for i £ [1, n], if Bi is an atom then 

/ |= B\,..., Bi-i    implies    \ A \   > | 5, | 

- A query Q is acceptable by | | and I iff there exists k £ N such that for every 
D-ground instance A\ ,... , An  of it:     for i £ [1, n], if A' is an atom then 

I \= Ai,... ,Ai-i    implies    k>\A(\ n 
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The definition above is quite similar to Definition 2, except for the fact that now 
we consider atoms whose level is infinitum, and do not require the decreasing of 
the level mapping from the head of a £>-ground clause to the constraints in the 
body. The latter choice is only a matter of convenience, since the most natural 

level of a constraint should be always 0. 
Relation > plays two roles. On the one hand, it prevents us from reasoning about 
badly-typed clauses, i.e. those for which the level of the head is infinitum. In fact, 
if the level j^4j of the head of a £>-ground clause is infinitum, the requirement 
\A\> \B{\ in Definition 5 is trivially satisfied for every r. On the other hand, > 
plays the same role of the > order on naturals when the level of the head is 

finite. 
We recall from [6] the definition of ideal constraint systems. We denote with 
{C,S) a. pair of sets of active and passive (i.e., delayed) constraints. 

Definition 6. A constraint system with operational semantics defined by —► , 

consistent and infer is called ideal if 

(l) —'   =   —' ris T       'r eis i 

fiij     for every (C, S),     infer(C, S) = (C U S, 0) 
(Hi)   for every C,     consistent(C) o£> |= 3C. D 

Therefore, the operational semantics of ideal constraint systems is defined in 
terms of —► ris and —► cis transitions, the inferred active constraint set Cö S 
gathers all the information of the pair (C,S), and the consistency test is com- 
plete. CLP(7eKn), CLP(TIT),CLP(JT), RISC-CLP(fc) fall in this class. On the 
contrary, full CLP(ft) [5] is not ideal, since non-linear constraints are delayed 

until they become linear. 

As an example, let us consider the clp(ftT) (alias Prolog without occur check) 
program CURRY, which implements the rules of a simple Curry's type system. 
The query type(E,M,T) is intended to calculate the type T of a term M in 
the environment E. Since the elements of the domain are rational trees, recursive 
polymorphic types are allowed, such as the solution of the equation a = a —>/?. 
The answer constraint for the query 

type(0, lambda(x, apply(var(x), var(x))), T). (1) 

binds T to the type a. 

type(E,var(X),T)   <-   in(E,X,T). 
type(E,apply(M,N),T)   «-   type(E,M,arrow(S,T)) ,  type(E,N,S). 
type(E,lambda(X,M),arrow(S,T))   <-   type([(X,S)|E],M,T). 

in([(X,T)|E],X,T). 
in([(Y,Tl)|E],X,T)    ^X  ^  Y,   in(E,X,T). 

CURRY and the query (1) are both acceptable by | | and B-RT, where 

|type(£, M,  T)\ = 11(E) + size(M) 
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|in(£, X,  T)\ = 11(E) 

On the other hand CURRY and a query such as 

M - lambda(x,M),type(0,lambda(x,M),T) 

are not acceptable by a same level mapping and interpretation. In fact, they 
have an infinite LD-tree. In general, CURRY and a query type(£, M, T) may 
not terminate when M is an infinite term. The use of oo in the codomain of 
level mappings covers the situations in which we are interested to reason on 
termination of a restricted class of queries. As another example, consider the 
well-known test & generate programming technique: 

program(X,  Y)    <-test(X,   Y),  generate(X,  Y). 

test creates a network of constraints between the variables, whilst generate 
instantiates the variables. When reasoning on termination, we have to show the 
decreasing of the level mapping from the head to the generate atom in the body 
only for those P-ground instances that pass the constraint network. Thus, we 
should not be worried about the possible divergence arising for generate atoms 

that do not satisfy the test constraints. 

The following theorem states termination of acceptable programs and queries. 
It extends the first part of Theorem 3 to ideal constraint systems. 

Theorem 7. (Termination Correctness) Consider an ideal constraint system, 
and a program P and a query Q both acceptable by | | and I. Then every LD- 

derivation for P and Q is finite. a 

Consider again CURRY. By the theorem, we conclude that the LD-tree of the 

query (1) is finite. 

Focusing on termination completeness, we present a result that extends the 
second part of Theorem 3. It is even more general, since we relax the hypothesis 
that the LD-tree of the program and every ground query is finite. In other words, 
our notion of acceptability is a correct and complete characterization of universal 
termination with respect to leftmost selection rules. 

Theorem 8. (Termination Completeness) Consider an ideal constraint system, 
a program P and a query Q such that every LD-derivation for P and Q is finite. 
Then there exist | | and I such that P and Q are both acceptable by | | and I. O 

4    From ideal CLP to CLP(7£) 

Let us consider now the following program FACT for computing factorial numbers: 
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fact(0, 1). 
factd, 1). 
iact(N,   N  *  F)    *-F >=   1,   N  >=  2,   fact(N-l,   F) . 

A query such as fact(4,F) is intended to compute the 4th factorial number, 
i.e. 24. Moreover, the same program can be used to check whether a number is 
factorial, by means of a query such as Q = fact(N, 24). We point out that 
FACT and Q are both acceptable by | | and B-R. where 

|fact(n, f)\ = int(f) 

where int{f) is the integer part of a real /. From Definition 5, the only proof 

obligation we have to show is that 

int(n ■ f) > int(f) 

when / > l,n > 2. 

Running the program and the query Q on a RISC-CLP(Real) system, the result- 
ing LD-tree is finite. In fact, as RISC-CLP(Real) is ideal, termination is a conse- 
quence of Theorem 7. On the contrary, the LD-tree built by the CLP(fc) system 
is infinite, since the system eventually runs into an infinite loop by applying the 
third clause again and again. As CLP(ft) delays the non-linear constraints, their 

unsatisfiability is never checked. 

As often it happens, real programming language implementations deviate from 
theoretically desirable properties. They often sacrifice completeness of the con- 
sistency test for efficiency reasons. The consistency test on passive constraints 
is delayed until they are sufficiently instantiated. This is the case, for example, 
of non-linear constraints in CLP(ft). As a consequence, the computation may 
proceed even in the case that the accumulated constraints are unsatisfiable. 

A simple extension of our approach to generic systems is then to prevent the use 
of any declarative reading of programs in the termination proofs. 

Definition 9. A program P is recurrent by | | iff for every A<— B\ ,... ,Bn in 
groundv(P):     for i G [1, n], if 5; is an atom then \ A \   > \ Bt \ . □ 

The definition of recurrent queries is derived accordingly. It can be easily shown 
that any derivation is finite with respect to any selection rule, when considering 
programs and queries both recurrent by a same level mapping. Recurrent pro- 
grams extends recurrent logic programs introduced by Bezem [2]. As an example, 

consider the program MAP, defined in CLP(7?.). 

map([],   []). 
map([X|Xs],   [YlYs])   <-   Y = X * X,  map(Xs,   Ys) . 

It is easy to see that it is recurrent by defining |map(Z,s, Rs) | = ll(Ls). However, 
if we rewrite MAP in a flat form, namely the following MAPFLAT 
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map(A,  B)    <-   A =   [] ,   B =   [] . 
map(A,  B)    <-   A =   [XlXs],  B  =   [Y|Ys],  Y = X * X,  map(Xs,  Ys). 

we obtain a program that is not recurrent. 

In the rest of this section, we give some sufficient conditions specially designed 
for termination of CLP(7?.) programs together with a generalization of the un- 
derlying insights to other non-ideal constraint systems. 

A first idea is to exclude non-linear constraints from the termination analysis. 
Next theorem states that if a program and a query with their non-linear con- 
straints removed terminate, then the original program and query do terminate. 

Theorem 10. Consider the CLP(TZ) system. The LD-tree for a program P and 
a query Q is finite if P' and Q' are both acceptable by | | and I, where P' (resp., 
Q') is obtained by deleting all non-linear constraints from P (resp., Q). □ 

Intuitively, the conclusion follows since adding constraints to a clause implies 
having shorter derivations. 
Consider again the MAPFLAT program. It is immediate to observe that the non- 
linear constraint Y = X * X does not play a relevant role in termination of a 
query such as map( [X,3,5] ,Z). In fact, termination is given by the decreasing 
of the length of the list in the first argument of map. By deleting Y = X * X we 
get the program MAPFLAT' 

map(A,  B)   <-   A =   [],  B =   [] . 
map(A,  B)    <-   A =   [X|Xs],  B  =   [Y|Ys],  map(Xs,  Ys). 

which is acceptable by | | and B-JI, where | map(Ls, Rs) | = ll(Ls). Therefore, 
we conclude that the LD-tree for MAPFLAT and map( [X,3,5] ,Z) is finite. 

In general, we have a stronger result for a large class of constraint systems. 

Definition 11. A constraint system with operational semantics defined by —+ , 
consistent and infer is called incremental if —*■ = —► ris + -^ds, and 

[M]for every 5" C S,     consistent{infer{^,S)\) => consistent(infer($, S")i) 
[I]   for S, S' sets of constraints, and C set of active constraints 

consistent(infer(infer(C, S) U (0, S'))0 & consistent(infer(C, S U S )i)    D 

As an example, ideal constraint systems and CLP(7£) are incremental. Basi- 
cally, [M] requires monotonicity of consistent and infer - a condition naturally 
satisfied in all practical systems. 

[I] is an incrementality requirement. Starting from a pair (C, S), if applying 
infer first, then adding the constraints in 5" and then re-applying infer we 
obtain a consistent state, then the state obtained by applying infer only once 
to (C, S U S') should be consistent as well, and vice-versa. 
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Theorem 12. Consider an incremental constraint system. The LD-tree for a 
program. P and a query Q is finite if the LD-tree for P' and Q' is finite, where 
P' (resp., Q1) is obtained by deleting some constraints from P (resp., Q).       D 

However, this approach is not sufficient to prove termination when it depends on 
non-linear constraints. Consider the program SqRT for computing square roots 

of naturals. 

srqt(X,  R)    <-   A =  0,   sqrt2(X,  A,   R). 

sqrt2(X,  A,   A)    <-   (A+1)*(A+1)  > X. 
sqrt2(X,   A,   B)    <-    (A+1)*(A+1)   <  X,   Al  =  A  +   1,   sqrt2(X,   Al,   B) . 

If we remove the non-linear constraints, we get a program that has an infinite 
LD-derivation for any query by applying the third rule again and again. In 
addition, the non-linear constraints become linear at run-time iff sqrt2 is called 

with the second argument ground. 

To properly reason on programs containing non-linear constraints that become 
linear at run-time, we introduce a notion of moding. Without any loss of gener- 

ality, we restrict to consider flat programs. 

Definition 13. 

- Consider an n-ary predicate symbol p. A mode for p is a function dp from 
{1,.. ., n] in {+, -, )*}• If dp(i) =' +' we call i an input position. If dv(i) =' 
-' then i is called an output position. If dp(i) =' ft then i is called a blank 
position (with respect to dp.) We write dp in the formp(dp(l),.. .,dp(n)). 

- A mode for a constraint c(Xi ,... ,Xn) whose variables are X\ , ■ ■ ■ , X„ 
is a function dp from {Xi ,... , Xn } in {+, -, JJ}. We write dp in the form 
c(A'id;,(l),...,Xndp(n)). 

- For an atom or a constraint A, we write A(X,Y, Z) to denote that X are 
the variables occurring in input positions, Y are those occurring in output 
positions, and Z are those occurring in blank positions. 

- We say that a flat program P is well-moded iff for every clause 

A0(Y0,Xn+1,Z0)*-A1(X1,Y1,Z1),...,An(Xn,Yn,Zn) 

of P,     for i € [1, n + 1]        X;CU k<iYk ■ 
- We say that a flat query A^X^YuZy),.. .,An{Xn,Yn, Z„) is well-moded 

ifffori€[l,n]        X,- C Ut<,-Yt. 
G 

The intuition underlying this definition is to force the input variables in an atom 
or a constraint selected along a LD-derivation to be grounded by the active 
constraints. Variables not involved in the input-output relation are marked as 

blank. 

Suppose now that the moding of the constraints is consistent with the operational 
semantics, i.e. if a constraint c(X,Y,Z) is selected and the active constraints 
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imply X = a for some tuple a of elements of the domain, then the active con- 
straints of the resolvent (if exists) imply Y = b for some tuple b. Under this 
assumption, when a non-linear constraint is selected then the input variables 
are grounded by the active constraints. We can exploit this fact to impose that 
non-linear constraints become linear at run-time. 

Definitionl4. A moding for a program P (resp., a query Q) is consistent w.r.t. 
CLP(7?.) if for every constraint c(X, Y,Z) in P (resp., Q) either 

(i) Y is an empty tuple and c(X, Y, Z) is linear in Z, or 
(ii) Y is a tuple of only one variable, Z is an empty tuple and c(X, Y, Z) is an 

equation linear in Y. n 

It is worth noting that both well-modedness and consistency w.r.t. CLP(7?.) are 
syntactic notions. Consider again the program SQRT. It is immediate to see that 
it is well-moded with the moding 

sqrt(>,   }),   sqrt2(>,   +,   JJ),   A-  = 0 
(A++1)*(A++1)   >  Xjf,   (A++1)*(A++1)   <  Xjf,   Al-  =  A+  +   1. 

Moreover, the moding for the constraints is consistent w.r.t. CLP(TZ). Next the- 
orem relates modings, acceptability and termination by providing a sufficient 
condition for termination of well-moded acceptable CLP(7£) programs. 

Theorem 15. Consider the CLP(U) system. Let P and Q be well-moded flat 
program and query and let the moding be consistent w.r.t. CLPfTZ). Suppose P 
and Q are both acceptable by I and \ |. Then every LD-derivation for P and Q 

is finite. n 

The program SQRT and the query sqrt(n, R) for n £ TV are acceptable by B-JI 

and | |, where 

...      ( maxfx - a,0)  ifx,aeN 
sqrt2(x,  a,   b) \ = { v +u       • 1   ^ '       I oo otherwise 

I ,_(x + lifxeN 
'  ^ ' — (^ oo       otherwise 

Therefore, Theorem 15 allows us to state that the LD-tree for SQRT and sqrt(n, 
R) is finite when n £ TV. 

Theorem 15 can be used together with Theorem 12 in order to prove termination 
of programs P and queries Q defined on CLP(7?.), by means of the following 
strategy: 

(i)  delete some (non-linear) constraints from P and Q, and 
(ii) show that the resulting program and query are well-moded and acceptable by 

the same model and level mapping. 

Finally, we point out that this approach is extendible to a generic non-ideal 
constraint system by appropriately defining a notion of consistency of constraint 
moding w.r.t. the system. 
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5    Conclusions 

There is still little work on the extension of termination approaches to constraint 
logic programming. The only papers we are aware of are [3] and [8]. [8] provides 
sufficient conditions based on approximation techniques, with the aim of autom- 
atizing the termination proof. [3] presents a necessary and sufficient condition for 
termination based on a radically different approach from ours, which is inspired 
by the works of Floyd on termination of flowchart programs. We also cite [4], 
where a class of programs is characterized with no delayed constraints at the 
end of successful computations. Also, that method is able to discover possible 
sources of non-termination due to delaying of non-linear constraints. 

We presented an extension to the CLP Scheme of a largely acknowledged ap- 
proach to termination of logic programs. For a large class of constraint systems, 
namely ideal constraint systems, we extend and improve on the results of [1], 
showing stronger forms of correctness and completeness even in the case of pure 
logic programming. In the second part of the paper, we investigated termination 
specifically for the CLP(ft) system, by proposing two sufficient conditions. 
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Abstract. This paper investigates the expressive power of DATALOG-1 

queries under unique T-stable model semantics, i.e., a query on a given 
database yields an answer if and only if there exists a unique T-stable 
model. Under this semantics DATALOG-1 queries are shown to express ex- 
actly all decision problems with unique solutions. Obviously, unique T- 
stable model semantics is the 'natural' semantics for queries with at 
most one T-stable model or with exactly one T-stable model for every 
database. The expressive powers of of these two classes of queries are 
investigated as well but it turns out that any practical language for such 
queries cannot get to an expressive power higher than DATALOG with 
stratified negation. 

1    Introduction 

Total stable models (T-stable models) [9] provide a simple, yet powerful se- 
mantics to DATALOG-', i.e., logic programming with negation but without function 
symbols. One of the properties of stable models is their multiplicity: a program 
may have from 0 to n T-stable models, where n can grows exponentially with 
the size of the universe. 

Multiplicity has been recognized by some authors as an important opportu- 
nity for either expressing non-determinism or for increasing the expressive power 
while preserving determinism (e.g., by taking the union or the intersection of all 
models). On the other hand, multiplicity has been strongly criticized by many 
other authors mainly because the canonical meaning of a logic program is tradi- 
tionally based on a unique model. This criticism explains the great deal of inter- 
est for special classes of DATALOG-1 programs with 'unique' T-stable models such 
as stratified model [3] or total well-founded model [23], notwithstanding their 
reduced expressive power (indeed, only a proper subset of polynomial problems 
are expressible by such programs). 

An interesting question is the following: is there any class of DATALOG-1 queries 
which preserves the T-stable model uniqueness property but it has an expressive 
power higher than stratified DATALOG-1? To anwser this question, we investigate 
the classes Qo,i and Qi of DATALOG-1 queries admitting, respectively, at most 
one T-stable model and exactly one T-stable model for every input database. 
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We show that, the expressive powers of these two classes is bound by MV H IM> 
and MV n coMV respectively. But AfP C\ UW and MV D coMV as well as all 
their meaningful subclasses from V over are not know to be expressible by a 
(recursively enumerable) query language [13]. Moreover, although total well- 
founded semantics is capable to express all fixpoint queries as recently shown m 
[8], no language is known which has the same power of fixpoint queries and only 
generates queries having total well-founded models for every database. Thus, it 
appears that any practical language for queries with unique T-stable model is 

not more expressive than stratified DATALOG"! 
To get more expressive power using a semantics based on a unique total stable 

model, it probably remains to take the whole class ofDATALOG" queries and to 
check uniqueness a-posteriori. To this end, we introduce the unique T-stable 
model semantics: a ground literal is true if both it is in a T-stable model and 
there exists no other T-stable model — informally multiplicity corresponds to a 
negative answer. We show that the class of all DATALOG" queries under unique 
T-stable model semantics is able to express all the decision problems that can 
be defined using an existential second-order formula of the form (3!S)#(S) with 
unique witnesses for the second-order quantifiers, i.e., there are unique relations 
si,..., sm in S satisfying the first-order formula 4>(S) — we call this class UW. 
This is an interesting class which consists of most of all decision problems with 
unique solutions. Observe that T-stable models under a popular version of T- 
stable model semantics, certain semantics, capture coNV; so, as coAfP C UW, 
unique T-stable model semantics turns out to be more expressive than certain 

semantics. 
The paper is organized as follows. Background and basic definitions on T- 

stable model semantics for DATALOG" queries are given in Section 2. The ex- 
pressive power of unique T-stable model semantics for the class of all DATALOG" 
queries is investigated in Section 3. The analysis of the subclasses Q0,i and Qi 
as well as the conclusion are presented in Section 4. 

2    Total Stable Models and DATALOG Queries 

Let us start by recalling basic concepts and notation of the DATALOG"1 lan- 
guage, that is logic programming with negative goals in the rules but without 

function symbols [1, 21]. 
A rule r is a formula of the language of the form Q <— Qi,..., Qm, where Q 

is a atom (head of the rule) and Qu ...,Qm are literals (goals of the rule). A 
ground rule with no goals is called a fact; a rule without negative goals is called 
positive. A DATALOG" program is a finite set of function-free rules and it is called 
positive (or, simply, DATALOG) when all its rules are positive. 

Given a DATALOG" program £P, some of the predicate symbols (EDB pred- 
icates) do not occur in the rule heads as they are defined by a number of facts 
stored into a database — the other predicate symbols are called IDB predicates. 
EDB predicate symbols form a relational database scheme VScp, thus they are 
also seen as relation symbols. A database D on VSCP is a set of finite relations 
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D(r) on a countable domain U, one for each r in VS cp ■ Given a database D on 
I>5rp, CPD denotes the program obtained from CP by adding the facts corre- 
sponding to the relation tuples in D. Observe that the Herbrand universe and 
the Herbrand Base for CP D (denoted by UCPD and BcpD, respectively) are both 
finite; moreover, UcpD 

ls a finite subset of U as possible constants in CP are also 
taken from the domain U. Any subset of BcpD is called an interpretation. 

Let, M be an interpretation of the program CPD- Let pos(CPo,M) be the 
positive program obtained from the ground instantiation of CPD by deleting (a) 
each rule that has a negative goal -iA for which A £ M, and (b) all negative 
goals from the remaining rules. Then M is total stable (T-stable) model [9] if and 
only if T°°OS(CPD M)(§) = M, where the operator T is the classical immediate 
consequence transformation. The existence of a T-stable model for any program 
is not guaranteed. 

Fact 1 [9, 17] Given a DATALOG" program CP, a database D on VS CP , and an 

interpretation M for CPD, then 

1. deciding whether M is a T-stable model for CPD is ?n V i 
2. deciding whether there exists a T-stable model for CPD is MV-complete.   G 

Three versions of deterministic semantics for T-stable models are known in 
the literature: the possible (or credulous or brave) semantics [2, 20, 6], the certain 
(or skeptical or cautious) semantics [9, 2, 20, 6], and the definite semantics [19]. 
We now introduce a fourth version: the unique T-stable model semantics. 

Definition 1. Given a DATALOG"1 program CP, a database D on VScp and a 
ground literal A, then 

1. A is & 'IS3 (possible) inference of CPD if A is true in some T-stable model 

of CPD; 
2. A is a T«SV (certain) inference of CPD if A is true in each of the T-stable 

models of CPD ; 
3. A is a TSvl (definite) inference of CP if CPD ha at least one T-stable model 

and A is in each of these models; 
4. A is a TSl (unique) inference of CPD if CPD ha exactly one T-stable model 

and A is true in this model. G 

The above version of T-stable model semantics will be denoted by TSV, where 
v is 3, V, V!, or 1. 

Definition2. A (bound DATALOG"1) query Q is a pair (CP,G), where CP is a 
DATALDG"1 program and G is a ground literal (the query goal) — possible con- 
stants in G are in U as well. The set of all queries is denoted by Q. 

Given any T-stable model semantics TSV, the database set of Q under TSV, 
denoted by £XPrsv{Q), is the set of all databases D on VScp for which G is a 
TSV inference of CPD ■ Moreover, the expressive power of the TSV semantics is 
measured by the family of the database sets of all possible queries and is denoted 

by EXPTS*[Q] = {£XPTS*{Q)\Q G Q}- D 
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It is well known that for each query Q and for each T-stable model semantics 
TSV, £XPTS*{Q) is indeed a generic database set [5, 1], i.e., it is closed under 
renaming of constants in (U-C), where C is the set of constants occurring in £P 
and in G — thus the constants not in C are not interpreted and relationships 
among them are only those explicitly provided by the databases. From now 
on any generic set of databases on the same scheme will be called a database 

collection. 
The expressive power of any T-stable model semantics will be measured w.r.t. 

classes of database collections defined as follows. Given a (not necessarily Turing 
machine) complexity class C of decision problems and a database collection D, D 
is C-recognizable if the problem of deciding whether a database D is in D is in C. 
The database complexity class DB-C is the family of all C-recognizable database 
collections — for instance, DB-V is the family of all database collections that are 
recognizable in polynomial time. Observe that any two database collections in a 
database complexity class do not in general share the same database scheme. 

We stress that our expressive power measure follows the data complexity 
approach of [5, 24] for which the query is assumed to be a constant whereas the 
database is the input variable. The following results are known in the literature: 

Fact 2 Given a DATALOG" program CP, a database D on VScp, and an inter- 

pretation M for JCPD, ihen 

1. SXPTS* = DB-MV I17!» 
2. £XPTS* = DB-coMV [20]; 
3. £XPTS>"- =DB-VP [19]. D 

Example 1. Let VSK = {v, e} be a database scheme defining directed graphs and 
T)K be the set of all databases on VSK corresponding to graphs with a kernel 
— recall that a kernel of a graph G is a subset Vi of V such that (a) for any two 
x, y G Vi, the edge (x, y) is not in E, and (6) for any y G V2 = V - V\ there is 
an x G Vi such that (x,y) G E. Consider the following DATALOG" program K: 

vl(X) «-v(X),   -v2(X). 
v2(X) <-v(X),   -ivl(X). 
joined_to_Vl(X) <-vl(Y),   e(Y,X). 
no_condition_a <— vl(X),   joined_to_Vl(X). 
no_condition_b <-v2(X),   -goined_to_Vl(X). 
kernel <— -nio_condition_a,   -mo_conditionJb. 
T.constraint <— -"kernel,   -iT_constraint. 

Given any database D on VSK, say corresponding to the graph G, any possible 
T-stable model M of KD must make T-constraint false because of the last rule 
(otherwise, T-constraint would be undefined); then M must make true kernel, 
i.e., the vertices selected for Vi by M through the first rule form a kernel for 
G Hence, KD has exactly one T-stable model for each kernel of the graph. 
Given the query QK = (K,kernel), £XPTss(QK) = £XPTsv<{QK) = &K, i.e., 
under both possible and definite T-stable model semantics QK defines the MV- 
complete problem of whether a graph has a kernel. Moreover, Z?CPrsAQ   ) = 
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D ^, that is the set of all graphs with exactly one kernel; i.e., under unique T- 
stable model semantics, QK defines the problem of whether a graph has exactly 
one kernel. On the other hand, as kernel is a T<SV inference also when there is 
no T-stable model, the database set of QK under TSV semantics consists of all 
graphs, i.e., the query is meaningless under this semantics. 

Let A"' be obtained from K by removing the last rule. Now, there are T-stable 
models for K'D also when D corresponds to a graph without kernel. Consider now 

the query QK' = {K', -^kernel). We have that £XPTsv{QK') = SXPTsV:{QK') = 

D , that is the set of all graphs without kernel; i.e., under both certain and 
definite T-stable model semantics, QK' defines the coA/"P-complete problem of 
whether a graph has no kernel. This query is meaningless under possible and 
unique T-stable model semantics. D 

From Fact 2 it follows that, as far as the expressive powers are concerned, 
definite semantics subsumes the other two semantics which, in turn, are incom- 
parable with each other (unless NV = coMV). In the next section we characterize 
the expressive power of unique T-stable model semantics. 

3    Expressive Power of Unique Stable Model Semantics 

In this section we prove that unique T-stable model semantics captures the whole 
class DB-ltW, consisting of all database collections D that can be defined using 
an existential second-order formula of the form (3!T)#(T) with unique witnesses 
for the second-order quantifiers, i.e., there are unique relations in T satisfying 
the first-order formula &(T) on a finite structure VS. Obviously every problem 
in UW is also in US (the class of problems with unique solution [4]); however, 
not every problem in US can be written in the above logic form [15]. The class 
UW includes coMV whereas it is not known whether it also includes MV\ the 
latter question is equivalent to the question of whether Vp equals to UW (and 
to US as well). 

The formula (3!T)<£(T) is in Skolem normal form if the first-order formula 
#(T) is in the following format: 

*(T) = (Vx)(3y)(Ö1(TIx)y)V...V0t(T(x)y)). 

Next we show that any existential second-order formula with unique witnesses 
can be brought into Skolem normal form as it happens for formulas with multiple 
witnesses. 

Lemma 3.   Given a second order formula r = (3!T)#(T), there ts a a Skolem 
normal form formula which is equivalent to r. 

Proof. We first bring &(T) in prenex normal form and then apply repeatedly 
the equivalence 

(Vu)(3v)0(u, v) o (3!5){(Vu)(Vv)[5(u, v) <- 0(u, v)] A (Vu)(3v)5(u, v)} 
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Observe that our "Skolemization" differs from the classical one for existen- 
tial second order formulas with multiple witnesses [7 16] essentially because 
<J(u v) -> 0(u,v) is replaced by S(u, v) - ö(u, v). Thus, we require that the 
chosen relation for S be maximal, i.e., it exactly contains all the tuples (uv) 
satisfying 0 in addition to have at least one of such tuples for every « as m the 
cLsiIAolemization. Therefore, as the maximal relation for 5^^bv^ly 
unique also 35 of classical Skolemization can be replaced by 3!S Note that oui 
procedure of Skolemization in general requires more steps than the.classical one 
because the implication S(u, v) - 0(u, v) corresponds to S(u, v) V ^0(u, v) so 
that negation must be suitably propagated inside 0 by inverting quantifiers and 

logical connectives. 

Theorem4. SXPTS^[Q\ = DB-UW. 

Proof. [Proof of £XPTs>[Q] Q DB-UW] Take any query Q = (£P,C^ 
without loss of generality assume that G is a zero-arity atom g Given D - 
TlT^iQ) we have to show that D is in DB-UW, i.e., there exists an existen- 
ä border formula defining D of the format (3! S)*(S) where *(S) is 

a first order formula. By the definition of unique T^abl« .^ode! 8^1"tl™'.! 
database D on VSCP is in D if and only if the following conditions hold: (i) he 
exists exactly one T-stable model for CPD and (n) g is m exactly one T-stable 
model for CPD. To complete the proof, it is sufficient to show that each of the 
above two conditions is in UW. Observe that Condition (i) is not subsumed by 
Condition (ii); in fact, the latter condition does not forbid to have other T-stable 

models containing-iff. ni^r/sUvpr 
Condition (i) can be expressed by the second-order formula (3 ! S)r(S) over 

the database scheme VSCP as follows. S has a relation symbol for each^ IDB 
predicate symbol of CP and selecting relations s for S defines a set M(s) of 
ground literals {s(t)\ s G S and t is a tuple in the relation of s corresponding to 

s}. We define r in such a way that, for each database D on VSCP, f\s) *_true it 
and only if M(s) is a T-stable model of CPD; therefore, the formula (3 ! S) T (S) is 
satisfied if there exists a unique T-stable model for CPo -But testing T-stabihty 
is in V by part 1 of Fact 1. So, as V C coAfP C UW, T(s) can be expressed by a 
second-order formula (3! S2)ß(s1; S2) where fl(Bl Sa) is a.first order formula. 

Hence, Condition (i) is defined by the formula: (3 ! Su S2) U (Si, b2j. 
It is now easy to see that also Condition (ii) is in WW. Indeed, take the above 

formula (3 ! S)r(S) with the following extended condition: for each database U 
on VSCP -T(S) is true if and only if both (i) M(s) is a T-stable model ofCPD 

and (ii) g is in M(s). Let s be the relation symbol in s corresponding to ..Then 
r(s) can be now expressed by a second-order formula (3 ! S2) (J/(s, b2) A t j), 
where ß, defined as above, tests T-stability of M(s) and 5 checks membership 

of q to Mis). „    ±.       „ 
\Proof of DB-UW   C   £XPTs>[Q]-] Take any database collection D on a 

database scheme VS whose recognition is in UW. Then, by Lemma 3 D can 
be defined by a Skolem normal form second order formula, say: 

(3 ! S)(Vx)(3y)(6>i(S,x,y) V ... V 0*(S,x,y)). 
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It is now easy to prove that D is the datab ase set of a query un der uni que 

'T- stable model semantics. Indeed, consider the query Q = <£P,-ff) wh ere CP 

IS: 

''1 sjiWj) <- ->ij(Wj). (1 < j < m) r4 :  g <- --g(X). 
SjiWj) <- -ns,-(Wj). (1 < j < m) r5: p^g, ->p 
g(X)      «-0,-(X,Y). (1 <i<k) 

Let D be a database on VS = £><S,CP- We construct a T-stable model for £PD as 
follows. For each tuple Wj, the first two groups of rules make true either SJ(WJ) 

or Sj (WJ ); using these rules, we perform a non-deterministic selection of relations 
for S. For each x, rules 3 makes q(x) true if there exists some y for which one of 
&i is satisfied. By rules 4, g is false if and only if the selected relations for S are 
witnesses for #(S) (i.e., for each x, g(x) is true). By rule 5, p is not undefined if 
and only if g is made false; so the role of this rule is to invalidate any selection for 
S that does not make g false. Therefore, the program CPD admits a number of 
T-stable models, one for every witness for #(S). Hence, if D G D then there is a 
unique witness for #(S) and, therefore, a unique T-stable model of CPD , say M; 
since -*g G M, D £ &YPTsi(Q) as well. On the other hand, if D £ D then CPD 

admits either no T-stable model or multiple T-stable models, so D $_ £XVrsi (Q). 
It turns out that D = £XPTsi(Q); therefore, DB-UW C £*PT5i[Q]. ° 

We point out that this is not the first time that a relationship between 
DATALOG"1 and the class UW is discovered: DATALOG"1 programs with unique fix- 

point are characterized in terms of UW in [16]. 
As coNV C UW C Vp, from Theorem 4 and Fact 2 we derive that, measured 

in terms of expressive powers, unique semantics subsumes certain semantics and, 
in turn, it is subsumed by definite semantics. The relationships among the various 

versions of T-stable model semantics is depicted in Fig. 1. 

TS*] = DBVV 

TS1 = DBUW 

TS3 = DBNP T5V = DBcoAfV 

Figure 1: Relationships among T-stable semantics 

Example 2. In Example 1, we have shown that, under the unique T-stable model 
semantics, the query QK = (K, kernel) defines the problem of whether a graph 
has exactly one kernel — this problem is a typical problem in UW. Since coMV C 
UW, according to Theorem 4 unique T-stable model semantics is also able to 
express the cojVP-complete problem of whether a graph has no kernel. We next 
show how to modify the query QK to formulate this problem. 
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Let K" be the program obtained from K by modifying the first two rules into: 

vl(X)*-b,   v(X),   -.v2(X). v2(X)^b,   v(X),   -.vl(X). 

and by adding the following three rules: 

a <— -ib. b <— -ia. kernel <— a. 

Under the unique T-stable model semantics, the query QK" = (K", kernel) 
expresses the problem of whether a graph has no kernel. In fact, the interpre- 
tation M - {a, kernel} U D3 is a T-stable model for K£ for any database D. 
Moreover, the program has an additional T-stable model for every kernel in the 
graph G corresponding to D; for such models a is false and b is true. Therefore, 
KQ has a unique T-stable model (that is, M) if and only if G has no kernel. D 

4     Subclasses of Queries with Unique T-stable Model 

So far we have analyzed various types of deterministic semantics for the 
class Q of all DATALOG"1 queries. In this subsection we consider two interesting 
subclasses of Q for which the unique T-stable model semantics is the natural 

semantics: 

- Q1 = {Q = (CP, G) I VD on VScp,CPD admits a unique T-stable model} 
- Qo,i = {Q= (CP,G)\VD on VSCP,£PD admits at most one T-stable model} 

Obviously, Qi C Qo,i C Q- Note that, while Q is a recursive query language, 
the two sub-classes are not recursively enumerable as it is not in general decidable 
whether a DATALOG"1 program has a unique T-stable model for every database. 
Therefore, Qi and Q0,i are not query languages in the sense of [13]. 

The two subclasses blur the differences among the various T-stable model 

semantics. 

Proposition5. 

1. For each Q G Qi, £XPTs*{Q) = £XPTsAQ) = £XPTSAQ) = SXPTsl{Q); 
2. For each Q G Qo,i, £XPTs<Q) = £XPTS*'{Q) = €XPTsi(Q). 

Proof. . Let Q = {£P,G) and D be a database on VSa>■ If Q is in Qi 
then JCPD has exactly one T-stable model: so all semantics coincide. Suppose 
now that Q £ Q0,i: if CPD has no T-stable model then only certain semantics 
behaves differently from the other semantics. D 

Next we characterize the expressive power of T-stable model semantics for 
the two subclasses of queries. To this end we need to consider further database 

classes, first introduced in [15]: 

3 The database D is seen as a set of ground atoms, one for each tuple. 
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1. DB-UE\ denotes the subset of DB-UW consisting of each database collection 
D which is defined by a formula (3!T)#(T) such that for each D £ D, 
(3!T)#(T) is false, i.e., for each D, either the formula is satisfied by exactly 
one witness (and, then, D e D) or it is not; 

2. DB-UA\ denotes the subset of DB-UE\ of all database collections D for 
which the complementary database collection D' is in DB-UE\ as well. 

As discussed in [15], UE\ is related to the complexity class UP that has 
been introduced by Valiant [22] and consists of all unambiguous computations. 
Indeed UE\ captures UP if an order on the universe is available; in this case, 

UA\ captures UP C\ coUP. 

Lemma6.  Given a second order formula T = (3T)$(T) in UE\, there is a 
Skolern normal form formula mUE\ which is equivalent to r. 

Proof. We first bring <P(T) in prenex normal form and then apply repeatedly 
the Skolemization introduced in the proof of Lemma 3. If is easy to see that every 
relation symbol added by the skolemization admits at most one witness. □. 

Theorem 7. 

1. DB-UA\ C £VPrsi[Qi] C DB-MP D DB-coMP; 
2. DB-UA\ C £*7>TS'[QO,I] C DB-MP n DB-UW. 

Proof. (1) Since £XPTS3 [Q] = DB-MP by Fact 2 and Qi C Q, £XPTsa[Qi] Q 

DB-MP; so, as &FPrs3[Qi] = SXPTsi[Qi] by Proposition 5, SXPTs i[Qi] Q 
DB-MP. By replacing 3 with V and MP with coMP and repeating the pre- 
vious argument we obtain £XPTsl[Qi] C DB-coMP. Hence, £XPTsi[Qi] C 
DB-MPnDB-coMP■ Let us now prove the other relationship. Let D be a database 
collection in DB-UA\, say with database scheme VS. Let D' be the complemen- 
tary database collection of D. Then, by definition oiUA\, D and D' are defined 
by two formulas in UE\, say (BS)^(S) and (3S')^'(S'), respectively. By Lemma 
6, we can assume that both formulas are in Skolem format say: 

<KS)   = (Vx)(3y)(0i(S, x, y) V ... V 0k(S, x, y)), 
tf'(S') = (Vx')(3y')(©i(S', x', y') V ... V e'k,(S', x', y')). 

Consider the program CP": 

r\ :  a +— ->b. r^:  b «— ->a. 

^a,^Sj(W3). (l<j<m) 
«-a.-.s^Wj-J-Cl^J <m) 
^0,-(X,Y).     (1 <»<*) 
- -?(X). 

^6,-«'j(Wj).(l<i<m') 
-&,-.sj(w;.). (l<j<m') 
-08'(X',Y').   (1 <»<*') 
--g'(x'). 

''3 s;(W,-) 
''4 %(w,) 
»•5 ?(X) 
''6 5 

Tl sJ(W<) 
»'8 *'i(Wj) 
^9 g'(x') 
?'10 :   </' 
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'•li :  a" <- ^9- ru :  g" <- V ■ ri3 :  P <- V, -7> 

The program £P" consists of two subprograms: £P (rules 3-6) and CP' (rules 
7-10) plus the first two rules which enable one of the two subprograms plus 
the rules 11-13 which make p undefined iff neither g nor g' is false. Observe 
that, under the TS3 semantics, the queries Q = {£P,->g) and Q' = (£P',^g'} 
defines D and D', respectively; moreover for each D, if D £ D (resp. D') then 
there exists exactly one T-stable model M for JCPD (resp., CP'D) such that 
-.# G M. It is then easy to see that for each D, EP"D has exactly one T-stable 
model. Therefore, the query Q" = (CP",^g) is in Qi and £XPTsx{Q") = D; so 

DB-UA\ C£tPr<si[Qi]. 
(2) AsQi C Qo,i,byPart(l),jQB-Wzil C £XPTsi[Q0,i}- Concerning the sec- 

ond relationship, we have that £XPTS*[Q] = DB-NV and £XPTsi[Q] = L®-ZM> 
by Fact 2 and Theorem 4. Therefore, as EXPTsn[Qot±}= £XPrsx [Qo,i] by Propo- 
sition 5, we derive that £XPTsi [Q0,i] CDB-AfV n DB-UW. □ 

Note that classes of queries whose expressive power is bounded by MVC\coMV 
have been studied in [12, 11, 10] and that also such classes are characterized by 

similar uniqueness conditions. 
The above results are rather negative with respect to the possibility to single 

out a subclass of Qx or Q0,i which can be expressed by a query language more 
powerful than stratified DATALOG". In fact, as the classes UP DWV and MV D 
coMV as well as any known subclass of them over V are not syntactic unless 
something surprising is true (e.g., MP C UW, NT = coNV or HV n coAfP = V) 
[13], it turns out that any query language in QrSi or Qrs0tl cannot express 
more than V■ But it is not know either whether V is expressible by a query 
language and whether there exists a language for total well-founded semantics 
preserving the capability of expressing all fixpoint queries [1, 10]. Flum et al. have 
recently shown in [8] that total well-founded semantics has the same expressive 
power as 'partial' well-founded semantics. However, this result refers to database 
equivalence in the sense that a 'partial' query on a database can be replaced by 
the same query on a different database yielding a total model. Thus they have 
not proved the existence of a language L with the power of fixpoint queries which 
only generates queries whose well-founded models are total for every database. 
So follows our conjecture that any practical language for DATALOG"1 queries with 
unique T-stable model is not more expressive than stratified DATALOG"1: 

Conjecture 1 Given any subset Q' of QrSj, if Q' is recursively enumerable 

then £XPTs*[<}'] Q f-XPrs^Q"], where Q" is the class of all DATALOG"1 queries 
ivith stratified negation. E 
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