
./L,a# ■■>:,,: Rf A-;

^7 3fe(

üüeifD

,0 * -■» , Si j v . i '

J s-1 ' k Ll tl

S B i-ACi

r REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) REPORT DATE
15 July 1997

3. REPORT TYPE AND DATES COVERED

Conference Proceedings

4. TITLE AND SUBTITLE

Automata, Languages and Programming - 24*n International Colloquium, ICALP '97

6. AUTHOR(S)

Conference Committee

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Pisa
Corso Italia, 40
Pisa 1-56125
Italy

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

EOARD
PSC 802 BOX 14
FPO 09499-0200

5. FUNDING NUMBERS

F6170897W0210

PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

CSP 97-1038

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

A

13. ABSTRACT (Maximum 200 words)

The Final Proceedings for International Colloquium on Algorithms, Languages and Programming (ICALP), 7 July 1997-11 July 1997

The Topics covered include: Computability, automata, formal languages, new computing paradigms, term rewriting, analysis and design of
algorithms, computational complexity, symbolic and algebraic computation, cryptography, and security; data types and data structures,
theory of database and knowledge bases, semantics of programming languages, program specification and verification, foundations of logic
programming, parallel, and distributed computation, theory of concurrency, theory of robotics.

14. SUBJECT TERMS

Computers, Software

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19, SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

864
16. PRICE CODE

N/A

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
298-102

Lecture Notes in Computer Science 1256
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

Advisory Board: W. Brauer D. Gries J. Stoer

ßflC« «Ü****
S"DB

19970730 120

Springer
Berlin
Heidelberg
New York
Barcelona
Budapest
HongKong
London
Milan
Paris
Santa Clara
Singapore
Tokyo

Pierpaolo Degano Roberto Gorrieri
Alberto Marchetti-Spaccamela (Eds.)

Automata, Languages
and Programming

24th International Colloquium, ICALP'97
Bologna, Italy, July 7-11, 1997
Proceedings

Spf Springer

Series Editors

Gerhard Goor, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Pierpaolo Degano
University of Pisa, Department of Computer Science
Corso Italia 40,1-56125 Pisa, Italy
E-mail: degano@di.unipi.it

Roberto Gorrieri
University of Bologna, Department of Computer Science
Mura Anteo Zamboni 7,1-40126 Bologna, Italy
E-mail: gorrieri@cs.unibo.it

Alberto Marchetti-Spaccamela
University of Rome, Department of Computer Science
Via Salaria 113,1-00198 Rome, Italy
E-mail: alberto@dis.uniromal.it

Cataloging-in-Publication data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufhahme

Automata, languages and programming : 24rd international
colloquium ; proceedings / ICALP '97, Bologna, Italy, July 7 - 11,
1997. Pierpaolo Degano ... (ed.). - Berlin ; Heidelberg ; New York ;
Barcelona ; Budapest ; Hong Kong ; London ; Milan ; Paris ; Santa
Clara ; Singapore ; Tokyo : Springer, 1997

(Lecture notes in computer science ; Vol. 1256)
ISBN 3-540-63165-8

CR Subject Classification (1991): E E, G.2, D.l, D.3, C.2

ISSN 0302-9743
ISBN 3-540-63165-8 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,1965,
in its current version, and permission for use must always be obtained from Springer -Verlag. Violations are
liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1997
Printed in Germany

Typesetting: Camera-ready by author
SPIN 10550031 06/3142 - 5 4 3 2 1 0 Printed on acid-free paper

Foreword

The International Colloquium on Algorithms, Languages and Programming
(ICALP) is the annual conference of the European Association for Theoretical
Computer Science (EATCS). The conference aims at enabling computer scien-
tists to exchange theoretical ideas and results, as well as at stimulating cooper-
ation between the theoretical and the practical community in computer science.

The main topics of ICALP '97 included computability, automata, formal
languages, new computing paradigms, term rewriting, analysis and design of al-
gorithms, computational geometry, computational complexity, symbolic and al-
gebraic computation, cryptography and security, data types and data structures,
theory of data base and knowledge bases, semantics of programming languages,
program specification and verification, foundations of logic programming, par-
allel and distributed computation, theory of concurrency, theory of robotics,
theory of logical design and layout.

ICALP '97 was held in Bologna, Italy, July 7-11, 1997. Previous colloquia
took place in Paderborn (1996), Szeged (1995), Jerusalem (1994), Lund (1993),
Wien (1992), Madrid (1991), Warwick (1990), Stresa (1989), Tampere (1988),
Karlsruhe (1987), Rennes (1986), Nafplion (1985), Antwerpen (1984), Barcelona
(1983), Aarhus (1982), Haifa (1981), Amsterdam (1980), Graz (1979), Udine
(1978), Turku (1977), Edinburgh (1976), Saarbücken (1974), and Paris (1972).
The next ICALP will be held in Aalborg, Denmark, July 13-17, 1998.

ICALP '97 came in conjunction with the 25th anniversary of EATCS. The
celebration of the association and of its founders included a historical perspective
on the achievements of the community in the last 25 years with a talk by M.Nivat,
the first EATCS President, and a discussion on the new challenges that EATCS
will face in the future.

ICALP '97 was organised differently than before and accommodated further
events, to react positively to the new challenges that the theoretical science com-
munity faces in the information technology society. Indeed, our community has
developed and now utilizes several approaches and different methodologies that
require increased specialization. As a consequence, there is a growing number
of specialized conferences and workshops, and it is difficult for researchers to
follow the recent developments on specialized research topics. ICALP '97 was
a first step towards having a conference offering a single unifying environment
while leaving room for specialization. In such an event, the computer science
community interested in the development of formal methods and methodolo-
gies can stress the relationships that exist among different branches. The new
organization of ICALP '97 can be summarized as follows.

Invited talks There were more invited presentations than usual. The eight
talks presented the main developments occurring in a specific area and the
promising new trends.

Plenary and parallel sessions Some papers were presented in plenary ses-
sions. Parallel sessions were organised for the other submitted papers, ac-
cording to the two tracks of the Journal of Theoretical Computer Science;

VI

this reflects the main division in research topics within the community, while
making evident its unifying aspects.

Satellite workshops Seven satellite workshop were held immediately before
or after the main conference. Their specific topics were often at the inter-
face between theoretical computer science and other information technology
research areas.

Policy of research funding A panel discussion was held, with panelists in-
cluding experts responsible for governmental and industrial research and
development agencies in Europe and the U.S.

The Program Committee selected 73 papers out of 197 submissions, 183 of
which were in electronic format. Their authors are from 30 countries from all over
the world. Each submission has been sent to four Program Committee members,
assisted by their own referees.

The selection meeting took place in Bologna, March 15-16, 1997. To permit
a deeper evaluation of the papers, the Program Committee split in two parts for
a preliminary discussion, according to the division mentioned above. Then, all
the papers were evaluated again and all the decisions were taken altogether.

We would like to warmly thank all the Program Committee members and
their referees for their invaluable contribution.

We are deeply indebted with all the members of the Organizing Committee
for all their time and efforts. A special "grazie" to Vladimiro Sassone for his
excellent automatic system that supported us through all the preparation of the
colloquium, from receiving submissions and referees' reports to the preparation
of the selection meeting and of the proceedings. "Grazie" also to Chiara Bodei
for her precious help.

Finally, we gratefully acknowledge support from the UE - DG III, UNESCO
Venice Office, Italian National Council of Research (Comitati 01, 07, 12), GNIM-
CNR, IEI-CNR, the Universities of Bologna, Pisa, and Roma "La Sapienza", the
Regione Emilia-Romagna, TELECOM Italia, and the United States Air Force
European Office of Aerospace Research and Development.

April 1997

Pierpaolo Degano, Roberto Gorrieri, Alberto Marchetti-Spaccamela

VII

Invited Lecturers
R. Milner, Cambridge M.O. Rabin, Jerusalem and Harvard
C. Papadimitriou, Berkeley D.S. Scott, Pittsburgh
K.R. Apt, Amsterdam K. Mehlhorn, Saarbrücken
R.J. Lipton, Princeton D. Perrin, Marne-la-Vallee

Program Committee
P. Degano, Pisa (Co-Chair) • M. Cosnard, Lyon
W. Drabent, Warsaw & Linköping J. Diaz, Barcelona •
R. Gorrieri, Bologna» A. Fiat, Tel Aviv»
G. Gottlob, Wien» J. van Leeuwen, Utrecht •
J.W. Klop, Amsterdam» A. Marchetti-Spaccamela, Roma (Co-Chair)
T. Maibaum, London B. Monien, Paderborn»
J. Meseguer, Menlo Park T. Nishizeki, Sendai»
F. Nielson, Aarhus» J.E. Pin, Paris •
A. Pnueli, Rehovot B. Rovan, Bratislava»
P.S. Thiagarajan, Madras R. Tamassia, Providence •
P. Wegner, Providence E. Ukkonen, Helsinki»

Members marked with a • participated in the selection meeting

Organizing Committee
A. Asperti M. Bernardo
C. Bodei N. Busi
P. Ciancarini R. Davoli
R. Focardi R. Gorrieri (Chair)
S. Leonardi A. Masini
M. Roccetti P. Salomoni
V. Sassone R. Segala
G. Zavattaro

International Publicity Board
R. van Glabbeek, Stanford K. Larsen, Aalborg
J. Karhumaki, Turku T. Y. Nishida, Toyama
J. J. M. M. Rutten, Amsterdam B. Steffen, Passau

List of Referees

VIII

K. Aardal
C. Alvarez
T. Asano
Y. Azar
R. Barbuti
A. Berarducci
J. Berstel
S. Bezrukov
C. Bodei
D.J.B. Bosscher
M. Bousquet-Melou
O. Burkart
O. Carton
C. Choffrut
D. Clark
C. Coquand
P. Cousot
M. Crochemore
O. Danvy
M. Delorme
S. Domas
S. Dziembowski
E. Fachini
R. Feldmann
M. Flammini
A. Frangioni
G. Gallo
P. Gianni
B. Grämlich
D. Guijarro
T. Hagerup
M. Reichhardt Hansen
N. Heintze
H. Herbelin
R.N. Horspool
T. Ibaraki
K. Iwama
N. Jones
R. Kaivola
J. Karkkainen
C. Kenyon
J. Kivinen
E. Koehler
D. Kozen
O. Kupferman
T. Wah Lam

G. Aguzzi
K. Amano
E. Asarin
A. Bäumker
G. Barthe
P. Berenbrink
P. Berthome
J. Biccaregui
H.L. Bodlaender
V. Bouchitte
F.J. Brandenburg
N. Busi
R. Casas
S. Christensen
B. Codenotti
D. Corneil
N. Creignou
M. Dam
P. Darondeau
G. Delzanno
C.H. Cabral Duarte
A. Edalat
A. Fantechi
J. Fernandez
R. Focardi
R. Freivalds
F. Galvez
S. Gnesi
W.O.D. Griffioen
Y. Guo
S. Halevi
R. Hariharan
L. Hendren
J. Honkala
J. Hromkovic
L. Ilie
S. Iwata
Jose
G. Kant
H. Karloff
V. Keranen
R. Klasing
B. Konikowska
F. Kroeger
M. Kwiatkowska
C. Laneve

P. Alimonti
H.R. Andersen
J. Aspnes
S. van Bakel
G. Di Battista
M.T. de Berg
B. Berthomieu
G.M. Bierman
R. Bol
G. Boudol
V. Bruyere
C. Butz
G.L. Cattani
M. Chrobak
A. Compagnoni
F. Corradini
P. Crescenzi
P. Damaschke
R. Davoli
M. Devillers
P. Duris
T. Eiter
Farach
P. Ferragina
P. Fraigniaud
J. Gabarro
A. Garg
M. Grabowski
J.F. Groote
P. Gvozdjak
M.M. Halldorsson
T. Harju
F. Henglein
F. Honsell
T.Hsu
P. Inverardi
J. Jablonowski
K. Kiihnle
J. Karhumki
T. Karvi
S. Khuller
H.C.M. Kleijn
U. Koppenhagen
W. Kuich
M.R. Lagana'
K. G. Larsen

N. Alon
C. Arapis
J. Autebert
J. L Balcazar
D. Beauquier
M. Bernardo
A. Bertoni
L. Boasson
M.L. Bonet
D. Boulanger
A. Bucciarelli
A. Carpi
A. Cerny
P. Chrzastowski-Wachtel
A. Condon
B. Courcelle
S. Crespi-Reghizzi
D. R. Dams
M. Debbabi
L. Devroye
P. Dybjer
T. Erlebach
Y. Feldman
P. Flajolet
P. G. Franciosa
M. Gabbrielli
R. Gavalda
E. Graedel
S. Guerrini
M. Habib
C. Hankin
R. Heckmann
T. Henzinger
H.J. Hoogeboom
H. Hulgaard
G.F. Italiano
B. Jacobs
S. Kahrs
L. Kari
N. Katoh
T. Kimbrel
M. Knor
I. Korec
K. Narayan Kumar
J. Lagergren
M. Latteux

IX

T. Lengyel
J. Lilius
U. Lorenz
Y. Metivier
P. Malacaria
L. Margara
A. Masini
R. Mayr
S. Melzer
A. Middeldorp
U. Montanari
H. Nagamochi
P. Niebert
M. Nyknen
V. van Oostrom
M. Oyamaguchi
P. Panangaden
A. Peron
G.M. Pinna
R. Platek
C. Priami
F. van Raamsdonk
Y. S. Ramakrishna
A. Rensink
K.H. Rose
V. Rottmann
O. Sykora
D. Sands
M. Schmidt-Schauss
P. Seebold
G. Senizergues
M. Vajtersic
J. Skurczynski
X. Song
M. Srebrny
M. Steinby
M.Sudan
V. Tannen
S. Tison
L. Trevisan
F. Turini
S. Varricchio
E. de Vink
W. Vogler
K. W. Wagner
F. Winkler
G. Zavattaro

S. Leonardi
A. Lingas
A. de Luca
I. Mackie
E. Malesinska
T. Margaria
A. Mateescu
J. Mazoyer
K. Meyer
D. Miller
T. Moorhouse
P. Narbel
M. Nielsen
S. Ohta
F. Orava
P. Paczkowski
G. Pani
P. Persiano
M. Pistore
S. Prasad
H. Przymusinska
Y. Rabani
A. Rauzy
M. Riedel
A. Rosen
P. Ruzicka
D. Sacca'
D. Sangiorgi
U. Schoening
R. Segala
M. Serna
M. Siegel
S. Skyum
D. Sotteau
L. Staiger
J. Stern
K. Sunesen
M. Tatsuta
J. Tiuryn
J. Tromp
R. Uehara
H. Veith
L. Vismara
A. Voronkov
I. Walukiewicz
U. Wolter
X. Zhou

T. Lettmann
L. Lisovik
B. Luttik
A. Maggiolo-Schettini
H. Mannila
C. Martinez
G. Mauri
K. Meer
A. Kashem Mia
E. Moggi
AW. Mostowski
M. Nesi
D. Niwinski
T. Okamoto
P. Orponen
C. Palamidessi
D. Pardubska
I. Phillips
T. Plachetka
V. Pratt
P. Pudlak
A. Rabinovich
J. Rehof
M. Roettger
M. Rosendahl
A. Rubio
K. Salomaa
M. Santha
U. Schroeder
H. Seidl
E. Shahar
J. Petit i Silvestre
A. Slobodova
Spinrad
I. Stark
C. Stirling
S. D. Swierstra
G. Tel
I.G. Tollis
J. M. Troy a
W. Unger
M. Veldhorst
P. Vitanyi
F. de Vries
Warnow
M. Yamashita
W. Zielonka

F. Levi
G. Longo
H.H. Luvengreen
K. Makino
J. Marcinkowski
S. Martini
E. Mayordomo
P. Mellies
C. Michaux
F. Monin
M. Mukund
R. De Nicola
0. Nurmi
D. Olejar
Ostrovsky
P. Pananagden
D. Pedreschi
A. Pietracaprina
W. Plandowski
R. Preis
P. Quaglia
M. Saidur Rahman
R. Rehrmann
J.M.T. Romijn
G. Rosolini
J. Rutten
G. Salzer
U. Schmid
A. Schubert
A. Sen
A. Shinohara
E. Singerman
S.A. Smolka
P. Spirakis
B. Steffen
W. Streicher
R. Szelepcsenyi
B. Thomsen
Y. Toyama
S. Tschoeke
P. Urzyczyn
B. Victor
B. Voecking
1. Vrt'o
M. Westermann
H. Zantema

Table of Contents

Invited Papers

Graphical Calculi for Interaction

R. Milner 1

NP-Completeness: A Retrospective
C. H. Papadimitriou ^

The LEDA Platform for Combinatorial and Geometric Computing
K. Mehlhorn, S. Näher, C. Uhrig 7

The Wadge-Wegner Hierarchy of w-rational Sets
O. Carton, D. Perrin 17

From Chaotic Iteration to Constraint Propagation

K.R.Apt 36

DNA2DNA Computations: A Potential "Killer App"?
L. F. Landweber, R. J. Lipton 56

Session 1: Formal Languages I

Tilings and Quasiperiodicity
B. Durand 65

Enumerative Sequences of Leaves in Rational Trees
F. Bassino, M.-P. Seal, D. Perrin 76

A Completion Algorithm for Codes with Bounded Synchronization Delay

V. Bruyere "'

The Expressibility of Languages and Relations by Word Equations
J. Karhumäki, W. Plandowski, F. Mignosi 98

Finite Loops Recognize Exactly the Regular Open Languages
M. Bea,udry, F. Lemieux, D. Therien HO

Session 2: Computability

An Abstract Data Type for Real Numbers
P. Di Gianantonio 121

Recursive Computational Depth
J. I. Lathrop, J. H. Lutz 132

Some Bounds on the Computational Power of Piecewise Constant Derivative

Systems
O. Bournez 14o

Monadic Simultaneous Rigid E-Unification and Related Problems
Y. Gurevich, A. Voronkov 154

Computability on the Probability Measures on the Borel Sets of the Unit Interval

K. Weihrauch 166

XII

Session 3: Computational Complexity

Worst-Case Hardness Suffices for Derandomization: A New Method for Hardness-

Randomness Trade-offs
A. A. Andreev, A. E. F. dementi, J. D. P. Rolim 177

Results on Resource-Bounded Measure
H. Buhrman, S. Fenner, L. Fortnow 188

Randomization and Nondeterminism are Incomparable for Ordered Read-Once

Branching Programs
F. Ablayev 195

Checking Properties of Polynomials
B. Codenotti, F. Ergiin, P. S. Gemmell, S. Ravi Kumar 203

Exact Analysis of Dodgson Elections: Lewis Carroll's 1876 Voting System is
Complete for Parallel Access to NP
E. Hemaspaandra, L. A. Hemaspaandra, J. Rothe 214

Session 4: Semantics I

Game Theoretic Analysis of Call-by-value Computation
K. Honda, N. Yoshida 225

On Modular Properties of Higher Order Extensional A-Calculi
R. Di Cosmo, N. Ghani 237

On Explicit Substitutions and Names
E. Ritter, V. de Paiva 248

On the Dynamics of Sharing Graphs
A. Asperti, C. Laneve 259

Session 5: Algorithms I

Minimizing Diameters of Dynamic Trees
S. Alstrup, J. Holm, K. de Lichtenberg, M. Thorup 270

Improving Spanning Trees by Upgrading Nodes
S. O. Krumke, M. V. Marathe, H. Noltemeier, R. Ravi, S.S. Ravi, R. Sundaram,
H.-C. Wirth 281

Dynamic Algorithms for Graphs of Bounded Treewidth
T. Hagerup 292

Session 6: Calculi for Concurrency I

The Name Discipline of Uniform Receptiveness
D. Sangiorgi 303

On Confluence in the 7r-calculus
A. Philippou, D. Walker 314

A Proof Theoretical Approach to Communication
Y.Fu 325

XIII

Session 7: Formal Languages II

Solving Trace Equations Using Lexicographical Normal Forms
V. Diekert, Y. Matiyasevich, A. Muscholl 336

Star-Free Picture Expressions are Strictly Weaker than First-Order Logic
T. Wilke 347

Session 8: Calculi for Concurrency II

An Algebra-Based Method to Associate Rewards with EMPA Terms
M. Bernardo 358

A Semantics Preserving Actor Translation
I. A. Mason, C. L. Talcott 369

Session 9: Algorithms II

Periodic and Non-periodic Min-Max Equations
U. Schwiegeishohn, L. Thiele 379

Efficient Parallel Graph Algorithms for Coarse Grained Multicomputers and
BSP
E. Caceres, F. Dehne, A. Ferreira, P. Flocchini, I. Rieping, A. Roncato,
N. Santoro, S. W. Song 390

Upper Bound on the Communication Complexity of Private Information
Retrieval
A. Ambainis 401

Session 10: Logic and Verification

Computation Paths Logic: An Expressive, yet Elementary, Process Logic
D. Harel, E. Singerman 408

Model Checking the Full Modal Mu-Calculus for Infinite Sequential Processes
O. Burkart, B. Steffen 419

Symbolic Model Checking for Probabilistic Processes
C. Baier, E. M. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska,
M. Ryan 430

Session 11: Analysis of Algorithms

On the Concentration of the Height of Binary Search Trees
J. M. Robson 441
An Improved Master Theorem for Divide-and-Conquer Recurrences
S. Roura 449

XIV

Session 12: Process Equivalences

Bisimulation for Probabilistic Transition Systems: A Coalgebraic Approach
E. P. de Vink, J. J. M. M. Rutten 460

Distributed Processes and Location Failures
J. Riely, M. Hennessy 471

Basic Observables for Processes
M. Boreale, R. De Nicola, R. Pugliese 482

Session 13: Routing Algorithms

Constrained Bipartite Edge Coloring with Applications to Wavelength Routing
C. Kaklamanis, P. Persiano, T. Erlebach, K. Jansen 493

Colouring Paths in Directed Symmetric Trees with Applications to WDM Routing
L. Gargano, P. Hell, S. Perennes 505

On-Line Routing in All-Optical Networks
Y. Bartal, S. Leonard! 516

A Complete Characterization of the Path Layout Construction Problem for ATM
Networks with Given Hop Count and Load
T. Eilam, M. Flammini, S. Zaks 527

Session 14: Petri Nets and Process Theory

Efficiency of Asynchronous Systems and Read Arcs in Petri Nets
W. Vogler 538
Bisimulation Equivalence is Decidable for One-Counter Processes
P. Jancar 549
Symbolic Reachability Analysis of FIFO-Channel Systems with Nonregular Sets
of Configurations
A. Bouajjani, P. Habermehl 560

Axiomatizations for the Perpetual Loop in Process Algebra
W. Fokkink 571

Discrete-Time Control for Rectangular Hybrid Automata
T. A. Henzinger, P. W. Kopke 582

Session 15: Algorithms III

Maintaining Minimum Spanning Trees in Dynamic Graphs
M. Rauch Henzinger, V. King 594

Efficient Splitting and Merging Algorithms for Order Decomposable Problems
R. Grossi, G. F. Italiano 605

XV

Efficient Array Partitioning
S. Khanna, S. Muthuknshnan, S. Skiena 616

Constructive Linear Time Algorithms for Branchwidth
H. L. Bodlaender, D. M. Thilikos 627

Session 16: Rewriting

The Word Matching Problem is Undecidable for Finite Special String-Rewriting

Systems that are Confluent
P. Narendran, F. Otto 638

The Geometry of Orthogonal Reduction Spaces
Z. Khasidashvili, J. Glauert 649

The Theory of Vaccines
M. Marchiori 660

Session 17: Formal Languages HI

The Equivalence Problem for Deterministic Pushdown Automata is Decidable

G. Senizergues 671

On Recognizable and Rational Formal Power Series in Partially Commuting

Variables
M. Droste, P. Gastin 682

On a Conjecture of J. Shallit
J. Cassaigne 693

Session 18: Cryptography

On Characterizations of Escrow Encryption Schemes
Y. Frankel, M. Yung 705

Randomness-Efficient Non-Interactive Zero Knowledge
A. De Santis, G. Di Crescenzo, P. Peisiano 716

Session 19: Algorithms IV

Approximation Results for the Optimum Cost Chromatic Partition Problem

K. Jansen 727

The Minimum Color Sum of Bipartite Graphs
A. Bar-Noy, G. Kortsarz 738

A Primal-Dual Approach to Approximation of Node-Deletion Problems for

Matroidal Properties
T. Fujito 749

Independent Sets in Asteroidal Triple-Free Graphs
H. Bioersma, T. Kloks, D. Kratsch, H. Müller 760

XVI

Session 20: Semantics II and Automata

Refining and Compressing Abstract Domains
R. Giacobazzi, F. Ranzato 771

Labelled Reductions, Runtime Errors, and Operational Subsumption
L. Dami 782

A Complete and Efficiently Computable Topological Classification of
D-dimensional Linear Cellular Automata over Zm

G. Manzini, L. Margara 794

Recognizability Equals Definability for Partial k-Paths
V. Kabanets 805

Session 21: Biocomputing

Molecular Computing, Bounded Nondeterminism, and Efficient Recursion
R. Beigel, B. Fu 816

Constructing Big Trees from Short Sequences
P. L. Erdös, M. A. Steel, L. A. Szekely, T. J. Warnow 827

Session 22: Logic Programming

Termination of Constraint Logic Programs
S. Ruggieri 838
The Expressive Power of Unique Total Stable Model Semantics
F. Buccafurri, S. Greco, D. Sacca 849

Author Index 861

Graphical Calculi for Interaction

Robin Milner

University of Cambridge, UK

Recently there has been great interest in operational models of interactive
systems, and more recently especially in those which capture to some extent the
elusive notion of mobility. The 7r-calculus [1] is one such model, and has had
some success both in application and in prompting research in abstract models
of interaction. But it can hardly claim to be canonical, and indeed nor can any
of the other operational models.

We might consider that the quest for a canonical model of interaction is no
more likely to succeed than that for a canonical model of computation. (In the
latter case, we have to be content with many models - Turing machines, register
machines, ...- and with translating between them.) Nonetheless, it would be
timid not to seek aspects which are common to many, or even most, models of
interactive behaviour.

In around 1992 I started from the 7r-calculus and tried to separate what
seemed ad hoc from what seemed more essential. The exact communication
discipline of the 7r-calculus fell into the ad hoc category; the rest - naming,
restriction, parallel composition - have greater claim to be universal. This was
the origin of action calculi [2]. To present the 7r-calculus as an action calculus,
one starts from the common basis of action calculi and merely adds two or three
so-called "controls" - for message-passing and replication. It turns out that the
A-calculus, the object calculus of Abadi and Cardelli, and many recent calculi
can be similarly set up - and combined with each other - in the action-calculus
framework. Considerable progress has been made, for example in [3], in the
uniform treatment of models of action calculi.

In the conference lecture I shall emphasize one feature of action calculi: their
graphical presentation. Several examples will be given - including some recent
advances in calculi for representing locality - showing that this graphical element
is exactly what all action calculi have in common. These examples motivate
further development (which is certainly needed) in the general theory of action
calculi and their models.

References

1. Milner, R., Parrow, J. and Walker, D., A calculus of mobile processes, Parts I and
II. Information and Computation 100 (1992) 1-77.

2. Milner, R, Calculi for interaction. Acta Informatica 33 (1996) 707-737.
3. Milner, R., Mifsud, A. and Power, J., Control structures. Proc. IEEE Symposium

on Logics in Computation, LICS (1995).

NP-Completeness: A Retrospective

Christos H. Papadimitriou*

University of California, Berkeley, USA

Abstract. For a quarter of a century now, NP-completeness has been
computer science's favorite paradigm, fad, punching bag, buzzword, alibi,
and intellectual export. This paper is a fragmentary commentary on its
origins, its nature, its impact, and on the attributes that have made it
so pervasive and contagious.

1. A keyword search in Melvyl, the University of California's on-line library,
reveals that about 6,000 papers each year have the term "NP-complete" on
their title abstract, or list of keywords. This is more than each of the terms
"compiler," "database," "expert," "neural network," and "operating system."
Even more surprising is the diversity of the disciplines with papers referring to
"NP-completeness:" They range from statistics and artificial life to automatic
control and nuclear engineering. What is the nature and extent of the impact of
NP-completeness on theoretical computer science, computer science in general,
computing practice, as well as other domains of the natural sciences, applied sci-
ence, and mathematics? And why did NP-completeness become such a pervasive

and influential concept?

2. One of the reasons of the immense impact of NP-completeness has to be
the appeal and elegance of the class P, that is, of the thesis that "polynomial
worst-case time" is a plausible and productive mathematical surrogate of the
empirical concept of "practically solvable computational problem." But, obvi-
ously, NP-completeness also draws on the importance of NP, as it rests on the
widely conjectured contradistinction between these two classes. In this regard,
it is crucial that NP captures vast domains of computational, scientific, and
mathematical endeavor, and seems to roughly delimit what mathematicians and
scientists had been aspiring to compute feasibly. True, there are domains, such
as strategic analysis and counting, which have been within our computational
ambitions, and still seem to lie outside NP; but they are the exceptions rather
than the rule. NP-completeness has thus become a valuable intermediary be-
tween the abstraction of computational models and the reality of computational
problems, grounding complexity theory to computational practice.

3. Also crucial for the success of NP-completeness has been its surprising ubiq-
uity and effectiveness as a classification tool, and the scarcity of problems in

* christos@cs.berkeley.edu. Partially supported by the National Science Foundation.
A version of this talk was given at a meeting in the Fall of 1995 celebrating the 60th
birthday of Richard M. Karp, to whom this paper is also affectionately dedicated.

NP that resist classification as either polynomial-time solvable or NP-complete.
(Ladner's result on intermediate degrees between P and NP-completeness [12]
had been known almost as soon as NP-completeness was introduced, and thus
theoretically the world could be full of mysterious intermediate problems.) In sev-
eral occasions, extremely broad classes of computational problems in NP have
been dichotomized with surprising accuracy into polynomially solvable and NP-
complete, see [21, 22] for two early examples.

4. The founders of NP-completeness [2, 10, 13] appear to have anticipated its
broad applicability and classification power. Leonid Levin [13] wrote in 1973:
"The method described here clearly provides a means for readily obtaining re-
sults of [this type] for the majority of important sequential search problems." In
Karp's paper [10] twenty one problems were proved NP-complete, showing be-
yond any doubt the surprisingly broad applicability of the method. Significantly,
Karp seems annoyed and surprised that three other problems (linear program-
ming, primality, and graph isomorphism) resisted at the time such classification.
Primality and graph isomorphism were also mentioned by Cook [2]. Knuth was
sufficiently convinced about the importance and broad applicability of the new
concept to take early and deliberate action on the terminological front [11].

5. NP-completeness has had tremendous impact even in areas where, in some
sense, it should not have. It is now common knowledge among computer sci-
entists that NP-completeness is largely irrelevant to public-key cryptography,
since in that area one needs sophisticated cryptographic assumptions that go
beyond NP-completeness and worst-case polynomial-time computation [19]; fur-
thermore, cryptographic protocols based on NP-complete problems have been
ill-fated. Fortunately, the founders of modern cryptography did not know this.
Diffie and Hellman base their famous pronouncement "We stand today on the
brink of a revolution in cryptography" [3] on two facts: (1) Very fast hardware
and software, and (2) novel techniques for proving problems hard (they cite
Karp's paper [10]).

6. NP-completeness has also exhibited a great amount of versatility, adapting
to contexts and computational aspects beyond its original scope of worst-case
analysis of exact algorithms for decision and optimization problems. For exam-
ple, it was used early on to show that certain optimization problems cannot be
approximated satisfactorily [20], and indeed in a most ingenious and compre-
hensive way more recently [1]. By showing that even less ambitious goals than
worst-case polynomial exact solution are unattainable, NP-completeness is thus
a most useful tool for repeatedly pruning unpromising research directions and
thus redirecting research to new ones (in a manner reminiscent of the struggle
between Hercules and the monster Hydra [16]).

7. Let me illustrate this versatility of NP-completeness by a technical interlude
on an aspect of efficient computation that has interested me recently, namely,
output polynomial time. Certain computational problems require an output f(x)
on input x that is in the worst case exponential in the input. For such problems,
one would like to have algorithms that are polynomial in \x\ and \f(x)\. The class

of problems thus solvable can be called output polynomial time. One can use NP-
completeness to prove that certain functions are not in output-polynomial time,
unless P=NP. For example, consider the function MIN which maps a regular-
expression to the minimum-state equivalent deterministic finite-state automaton.
MIN can be computed by first designing a nondeterministic automaton M, then
an equivalent deterministic automaton -M', and next minimizing the states of
M' to obtain the final output; the problem is, of course, that the intermediate
result M' could be exponential in both the input and the output. It is rather
straightforward to use "traditional", NP-completeness techniques to show the

following:

Theorem 1. Unless P=NP, MIN is not in output polynomial time.

In fact, we cannot even compute in'.output-polynomial time a deterministic au-
tomaton that has at most polynomially more states than the minimum —unless,

of course, P=NP.

8. Often the required output f(x) is a.set {yi,...,yk} of strings that are related
to x via. an NP mapping; for example, if G is a graph, let AMIS(G) be the set of
all maxima/ independent sets of G. AMIS is known to be in output-polynomial
time (see [9] for an exposition and strengthening of this result, and an early
discussion of output polynomial time). For such problems we have an elegant
alternative definition of output polynomial time. A function / : S* ■-)■ 2" is
in output polynomial time if the following problem is solvable in polynomial
time: Given x and y C E*, either decide that y = /(a?), or find a string in

y 0 f[x). It is easy to see that, if such an algorithm exists, then its iteration
starting with 5 = 0 gives an output polynomial time algorithm for /; and vice-
versa, if an output polynomial time algorithm exists for /, it can be used to
produce an element of y 0 f{x). For example, AMIS is in output polynomial
time; its generalization to hypergraphs is open, but was recently shown to be
in output nclogn time [6]; see [5] for an extensive discussion of the hypergraph
generalization of AMIS. One can use again "traditional" NP-completeness to
show that the following generalization is not in output polynomial time, unless
P=NP: Given a monotone circuit, compute the set of all minimal (with respect
to the set of true inputs) satisfying truth assignments.

9. But, sometimes, "traditional" NP-completeness techniques do not seem to suf-
fice to bring out the intractability of a problem, because this problem belongs to
a class or computational mode that appears to be "between" P and NP. In such
cases NP-completeness has acted as an open-ended research paradigm, spawn-
ing variants that are appropriate for the computational context being studied;
examples are classes that capture local search [8], the parity argument [14], loga-
rithmic nondeterminism [18], the related concept of fixed-parameter tractability

[4], and approximability [17].

10. Complexity classes introduced this way, as abstractions of natural compu-
tational problems of mysteriously intermediate complexity, are in some precise
sense well-motivated, indeed necessary; they are discovered, not invented, as they

have always existed by dint of their natural complete problems. The only way to
make them go away is to collapse them with P or NP —as occasionally happens,
recall [17] and its brilliant follow-up [1].

11. NP-completeness is of course a valuable tool for demonstrating the difficulty
of computational problems. However, NP-completeness is often used "allegori-
cally;" a problem is shown NP-complete that is not, strictly speaking, a natural
computational problem, but an artificial problem created to capture a mathe-
matical concept. NP-completeness in this context suggests that a problem, area,
or approach is mathematically nasty.. Because, if we believe that efficient algo-
rithms are the natural outflow of the mathematical structure of a problem (a view
shared by all computer scientists, with the possible exception of researchers in
"metaphor-based" algorithmic paradigms such as neural nets, in which algorith-
mic behavior is thought to be "emergent"), then, contrapositively, complexity
must be the manifestation of mathematical poverty, lack of structure. See [7] for
an early example of such a use of NP-completeness in the theory of relational
databases.

12. Beyond mathematics, NP-completeness (and complexity in general) can also
be applied "allegorically" in other disciplines. It can be used as a metaphor
for chaos in dynamical systems, for unbounded rationality in game theory, for
unfairness in economics, for integrity of electoral systems in political science,
for cognitive implausibility in artificial intelligence, for genetic indeterminism in
genetics, and so on (see [16] for references).

13. NP-completeness is thus an important "intellectual export" of computer
science to other disciplines. And it does fill a void in the interdisciplinary intel-
lectual trade: It seems to me that the concept of lower bounds —and negative
results in general— is particular to computer science, and has no well-developed
counterpart in other disciplines. True, one sees isolated results in other sciences
(such as Heisenberg's uncertainty principle in quantum mechanics, Arrow's im-
possibility theorem in economics, and Carnot's theorem in thermodynamics)
which are arguably negative; however, nowhere else in science does one find such
a comprehensive methodology for obtaining negative results (with the exception
of complexity's own precursor mathematical logic, with its many incomplete-
ness, undecidability, and inexpressibility results). NP-completeness is therefore
valuable for another reason: It is one of the few precious features which give our
science its special character, which set it apart from the other sciences (see [15]
for another development of this argument).

14. In science, successful ideas are those that are pervasive and invasive, are
invitingly elegant and methodical, are open to extensions and variants, and cap-
ture an objective necessity, answer a widespread but diffuse sense of dissatisfac-
tion in the scientific community (in the case of NP-completeness, the widespread
feeling among computer scientists in the 1960s that automata theory, the previ-
ous great paradigm, had run its course as a useful abstraction of computation).
Thinking about the nature and history of NP-completeness could give us useful

hints about computer science's next great paradigm, which, for all I know, has
started being articulated somewhere else in this volume.

References

1. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, "Proof verification
and hardness of approximation problems." Proc. 33rd FOCS (1992) pp. 14-23.

2. S. A. Cook "The complexity of theorem-proving procedures," Proc. 3rd STOC,

(1971), pp. 151-158.
3. W. Dime and M. E. Hellman "New directions in cryptography," IEEE

Trans. Inform. Theory, 22, pp. 644-654, 1976.
4. R. G. Downey and M. R. Fellows "Fixed-parameter tractability and completeness

I: Basic results," SIAM Journal on Computing, 24, 4, pp. 873-921, 1995.
5. T. Eiter, G. Gottlob "Identifying the minimal transversals of a hypergraph and

related problems" SIAM Journal on Computing, 24, 6, pp. 1278-1304, 1995.
6. M. Fredman and L. Khachiyan "On the complexity of dualization of monotone

disjunctive normal forms" Journal of Algorithms, 21, 3, pp. 618-628, 1996.
7. P. Honeyman, R. E. Ladner, M. Yannakakis, "Testing the universal instance as-

sumption," Information Processing Letters, 12, pp. 14-19, 1980.
8. D. S. Johnson, C. H. Papadimitriou, M. Yannakakis "How Easy is Local Search?"

J.CSS, 1988 (special issue for the 1985 FOCS Conference).
9. D. S. Johnson, C. H. Papadimitriou, M. Yannakakis "On Generating All Maximal

Independent Sets", Information Processing Letters 1988.
10. R. M. Karp "Reducibility among combinatorial problems," pp. 85-103 in Com-

plexity of Computer Computations, R. E. Miller and J. W. Thatcher (eds), 1972.
11. D. E. Knuth "A terminological proposal," SIGACT News, 6, 1, pp. 12-18, 1974.
12. R. E. Ladner "On the structure of polynomial time reducibility," J.ACM, 22,

pp. 155-171, 1975.
13. L. Levin "Universal sorting problems," Pr. Inf. Transm., 9, pi, 265-266, 1973.
14. C. H. Papadimitriou "On the Complexity of the Parity Argument and other Inef-

ficient Proofs of Existence" JCSS, 48, 3, 498-532, 1994.
15. C. H. Papadimitriou "Database metatheory: asking the big queries," Proc. 1995

PODS Conf., reprinted in SIGACT News, spring 1996.
16. C. H. Papadimitriou "The complexity of knowledge representation," Proc. 1996

Computational Complexity Symposium.
17. C. H. Papadimitriou, M. Yannakakis "Optimization, approximation, and complex-

ity classes" Proc. 1988 STOC, and J.CSS,, 1991.
18. C. H. Papadimitriou, M. Yannakakis "On limited nondeterminism and the com-

plexity of the Vapnic-Chervonenkis dimension," special issue of J.CSS 1996 (special
issue for the 1993 Structures Conf.).

19. R. L. Rivest "Cryptography," pp. 717-755 in Handbook of Theoretical Computer
Science, J. van Leeuwen (ed), The MIT Press/Elsevier, 1990.

20. S. Sahni, T. Gonzalez "P-complete approximation problems," J.ACM, 23, pp. 555-
565, 1976.

21. T. J. Schaeffer "The complexity of satisfiability problems," Proc. 10th STOC,
(1978), pp. 216-226.

22. M. Yannakakis "Node- and edge-deletion problems," Proc. 10th STOC, (1978),
pp. 253-264.

The LEDA Platform
for

Combinatorial and Geometric Computing

Kurt Mehlhorn* and Stefan Näher** and Christian Uhrig***

Abstract. We give an overview of the LEDA platform for combinatorial
and geometric computing and an account of its development. We discuss
our motivation for building LEDA and to what extent we have reached
our goals. We also discuss some recent theoretical developments. This
paper contains no new technical material. It is intended as a guide to
existing publications about the system. We refer the reader also to our
web-pages for more information.

1 What is LEDA?

LEDA [MN95, MNU96] aims at being a comprehensive software platform for
combinatorial and geometric computing. It provides a sizable collection of data
types and algorithms. This collection includes most of the data types and algo-
rithms described in the text books of the area ([AHU83, Meh84, Tar83, CLR90,
0'R94, Woo93, Sed91, Kin90, van88, NH93]). In particular, it includes stacks,
queues, lists, sets, dictionaries, ordered sequences, partitions, priority queues,
directed, undirected, and planar graphs, lines, points, planes, and polygons, and
many algorithms in graph and network theory and computational geometry,
e.g., shortest paths, matchings, maximum flow, min cost flow, planarity testing,
spanning trees, biconnected and strongly connected components, segment in-
tersection, convex hulls, Delaunay triangulations, and Voronoi diagrams. LEDA
supports applications in a broad range of areas. It has already been used in
such diverse areas as code optimization, VLSI design, graph drawing, graphics,
robot motion planning, traffic scheduling, machine learning and computational
biology.

We discuss different aspects of the LEDA system.

Ease of Use: The library is easy to use. In fact, only a small fraction of our users
are algorithms experts and many of our users are not even computer scientists.
For these users the broad scope of the library, its ease of use, and the correctness
and efficiency of the algorithms in the library are crucial.

* Max-Planck-Institut für Informatik, Im Stadtwald, 66123 Saarbrücken,
www.mpi-sb.mpg.de/"mehlhorn

** Martin-Luther-Universität Halle-Wittenberg, FB Mathematik und Informatik,
Weinbergweg 17, 060099 Halle, www.informatik.uni-halle.de/~naeher

*** LEDA Software GmbH 66123 Saarbrücken, www.mpi-sb.mpg.de/LEDA/leda.html

The LEDA manual [MNU96] gives precise and readable specifications for
the data types and algorithms mentioned above. The specifications are short
(typically not more than a page), general (so as to allow several implementations)

and abstract (so as to hide all details of the implementation).

Extendibility: Combinatorial and geometric computing is a diverse area and
hence it is impossible for a library to provide ready-made solutions for all appli-
cation problems. For this reason it is important that LEDA is easily extendible
(see also section 4.4) and can be used as a platform for further software devel-
opment. In many cases LEDA programs are very close to the typical text book
presentation of the underlying algorithms. The goal is the equation

Algorithm + LEDA = Program.

We give an example. Dijkstra's shortest path algorithm takes a directed graph
G = (V, E), a node s G V, called the source, and a non-negative cost function on
the edges cost : E ->• R>0. It computes for each node v £ V the distance from
s. A typical text book presentation of the algorithm is as follows.

set dist(s) to 0.
set dist(v) to infinity for v different from s.

declare all nodes unreached.

while there is an unreached node
{ let u be an unreached node with minimal dist-value. (*)

declare u reached.

forall edges e = (u,v) out of u
set dist(v) = min(dist(v), dist(u) + cost(e))

}

The text book presentation will then continue to discuss the implementation of
line (*). It will state that the pairs {(v, dist(v));v unreached} should be stored
in a priority queue, e.g., a Fibonacci heap, because this will allow the selection
of an unreached node with minimal distance value in logarithmic time. It will
probably refer to some other chapter of the book for a discussion of priority

queues.
We now give the corresponding LEDA program; it is very similar to the

presentation above.

»include <LEDA/graph.h>
«include <LEDA/node_pq.h>

void DIJKSTRA(const graph *G, node s, const edge_array<double>& cost,
node_array<double>& dist)

{ node_pq<double> PQ(G);
node v;
edge e;

forall_nodes(v,G)

{ if (v == s) dist[v] = 0; else dist[v] = MAXDOUBLE;
PQ.insert (v,dist[v]) ;

}
while (!PQ. empty ())
{ node u = PQ.del_min();
forall_adj_edges(e,u)

{ v = target(e) ;
double c = dist[u] + cost [e] ;
if (c < dist[v])
{ PQ.decrease_inf(v,c); dist[v] = c; >

We start by including the graph and the node priority queue data type. We use
edge-arrays and node-arrays (arrays indexed by edges and nodes respectively)
for the functions cost and dist. We declare a priority queue PQ for the nodes of
graph G. It stores pairs [y, dist[v\) and is empty initially. The f orall jiodes-loop
initializes dist and PQ. In the main loop we repeatedly select a pair (u, dist[u})
with minimal distance value and then scan through all adjacent edges to update

distance values of neighboring vertices.

Correctness: We try to make sure that the programs in LEDA are correct.
We start from correct algorithms, we document our implementations carefully
(at least recently), we test them extensively, and we have developed program
checkers (see subsection 4.1) for some of them. We want to emphasize that
many of the algorithms in LEDA are quite intricate and therefore non-trivial
to implement. In the combinatorial domain it is frequently possible to obtain
a correct implementation by sacrificing efficiency, e.g., by using linear search in
the realization of a dictionary. In the geometric domain it is usually difficult to
obtain a correct implementation even if efficiency plays no role. This is due to the
so-called degeneracy and precision problem [MN94]. The geometric algorithms in
LEDA use exact arithmetic and are therefore free from failures due to rounding
errors. Moreover, they can handle all degenerate cases.

Efficiency: LEDA contains the most efficient realizations known for its types.
For many data types the user may even choose between different implementa-
tions, e.g., for dictionaries he may choose between afr-trees, S5[a]-trees, dynamic

perfect hashing, and skip lists. The declarations

dictionary<string,int> Dl;
dictionary<string,int,skip_list> D2;

declare Dl as a dictionary from string to mt with the default implementation

and select the skip list implementation for D2.

10

Availability and Usage: LEDA is realized in C++ and runs on many different
platforms (Unix, Windows95, Windows NT, OS/2) with many different compil-

ers.
LEDA is now used at more than 1500 academic sites. Academic use is free, see

http://www.mpi-sb.mpg.de/LEDA/leda.html. A commercial version of LEDA
is marketed LEDA Software GmbH. There are license holders in the telecommu-
nication industry (ATR (Japan), Comptel (Finland), E-Plus (Germany), France
Telecom (France), MCI (USA)), in the graphics industry (Aristo Technolo-
gies (USA), Cadabra (Canada), Compass Design (USA), Fuji (Japan), Men-
tor Graphics (USA), MUS (Germany)), in the automotive industrie (Daimler
Benz (Germany), Ford (USA), Honda (Japan)), in the computer industry (DEC
(USA), IBM (USA), Siemens AG (Germany), Silicon Graphics (USA), SUN
(USA)), and other industries (Chevron (USA), CFP (Germany), Dolphin (The
Netherlands), Howmedica (Germany), Lufthansa (Germany), Neovista (USA),
Prediction (USA), Sony (Japan), VTT (Finland)).

History: We started the project in the fall of 1988. We spent the first 6 months
on specifications and on selecting our implementation language. Our test cases
were priority queues, dictionaries, partitions, and algorithms for shortest paths
and minimum spanning trees. We came up with the item concept as an abstrac-
tion of the notion "pointer into a data structure". It worked successfully for the
three data types mentioned above and we are now using it for most data, types
in LEDA. Concurrently with searching for the correct specifications we inves-
tigated several languages for their suitability as our implementation platform.
We looked at Smalltalk, Modula, Ada, Eiffel, and C++. We wanted a language
that supported abstract data types and type parameters (polymorphism) and
that was widely available. We wrote sample programs in each language. Based
on our experiences we selected C++ because of its flexibility, expressive power,
and availability. We are even more convinced now that our choice was the right

one.
A first publication about LEDA appeared in MFCS 1989 (Lecture Note in

Computer Science, Volume 379) and ICALP 1990 (Lecture Notes in Computer
Science, Volume 443). Stefan Näher became the head of the LEDA project and
he is the main designer and implementer of LEDA.

In the second half of 1989 and during 1990 Stefan Näher implemented a
first version of the combinatorial part (= data structures and graph algorithms)
of LEDA (Version 1.0). Version 2.0 allowed to use arbitrary data types (not
only pointer and simple types) as actual type parameters of parameterized data
types. It included a first implementation of the two-dimensional geometry library
(libP) and an interface to the X-Window system for graphical input and output
(data type window). Version 3.0 switched to the template mechanism to real-
ize parameterized data types (macro substitution was used before), introduced
implementation parameters that allow to choose between different implementa-
tions, extended the LEDA memory management system to user-defined classes,
and further improved the efficiency of many data types and algorithms. Version
3.1 provided a more efficient graph data type and contained new data types

11

(arbitrary precision number types and basic geometric objects) used for robust
implementations of geometric algorithms and Versions 3.2 and 3.3 contained
more geometry and new tools for documentation and manual production.

LEDA Software GmbH was founded in early 1995.

2 Why did we build LEDA?

We had four main reasons:

1. We had always felt that a significant fraction of the research done in the
algorithms area was eminently practical. However, only a small part of it
was actually used. We frequently heard from our former students that the
effort needed to implement an advanced data structure or algorithm is too
large to be cost-effective. We concluded that algorithms research must include
implementation if the field wants to have maximum impact.

2. Even within our own research group we found different implementations of
the same balanced tree data structure. Thus there was constant reinvention
of the wheel even within our own tight group.

3. Many of our students had implemented algorithms for their master's thesis.
Work invested by these students was usually lost after the students gradu-
ated. We had no depository for implementations.

4. The specifications of advanced data types which we gave in class and which
we found in text books, including the one written by one of the authors, were
incomplete and not sufficiently abstract. They contained phrases of the form:
"Given a pointer to a node in the heap its key can be decreased in constant
amortized time". This implied that a user of a data structure had to have
knowledge of its implementation. As a consequence combining implementa-
tions was a non-trivial task. A case in point is the shortest path problem in
graphs. We taught priority queues in the early weeks of an algorithm course
and Dijkstra's algorithm for the shortest path problem in later weeks. Our
students found it difficult to combine the programs.

The goal of the LEDA project is to overcome these shortcomings by creating a
platform for combinatorial and geometric computing. The LEDA library should
contain the major findings of the algorithms community in a form that makes
them directly accessible to non-experts having only a limited knowledge in the
area. In this way we hoped to reduce the gap between research and application.

3 Did we achieve our goals?

We believe that we have reached the last goal and have at least partially reached
the first three goals.

LEDA was first distributed in the summer of 1990. Its user community has
grown ever since. LEDA is now used at more than 1500 academic and industrial
sites in over 50 different countries world-wide. Industrial use started in 1994.

12

Many users of LEDA are outside computer science and only a small fraction of
our users are from the algorithms community. We therefore believe that we have
reached our first two goals. The impact of algorithms research has increased and
there is considerable use of LEDA and hence reuse of implementations. However,
the gap between algorithms research and algorithms use is still quite large. In
particular, many of the non-expert users of LEDA complain that a tutorial is
missing. We hope that the forthcoming LEDAbook [MN] will help.

We have also partially achieved our third goal. We now do have a depository
for our students work and we have just introduced the concept of LEDA exten-
sion packages (LEPs) that will allow a wider community to contribute. We come

back to LEPs in section 4.4.
We have achieved our last goal. The specifications of our data types are

sufficiently abstract and precise so as to allow their combination without any
knowledge of implementation. We have seen an example in section 1. Many of
our specifications are based on the so-called item concept which gives an abstract
treatment of pointers into a data structure. Different components of LEDA can
be combined without knowledge of the implementation.

The project also had a number of positive side-effects which we did not fore-
see. Firstly, LEDA's wide use gives us tremendous satisfaction4. Secondly, our
experiences with the system suggested many difficult and well motivated prob-
lems for theoretical algorithms research. We will discuss program checking, run-
ning time prediction, and theoretical issues in the implementation of geometric
algorithms below. The system has changed the way we do algorithms research.

4 Recent developments

A strength of the LEDA project is its strong theoretical underpinning. We believe
that only our strong theoretical background allowed us to build LEDA. In the
last two years we paid particular attention to program checking, running time
prediction, and the correct implementation of geometric programs.

4.1 Program checking

Programming is a notoriously error-prone task; this is even true when program-
ming is interpreted in a narrow sense: going from a (correct) algorithm to a
program. The standard way to guard against coding errors is program testing.
The program is exercised on inputs for which the output is known by other
means, typically as the output of an alternative program for the same task.
Program testing has severe limitations:

- It is usually only done during the testing phase of a program. Also, it is
difficult to determine the "correct" suite of test inputs.

We stated above that algorithms research must include implementation to have max-
imal impact. We might add: without implementation algorithm research is less re-
warding.

13

- Even if appropriate test inputs are known it is usually difficult to determine
the correct outputs for these inputs: alternative programs may have different
input and output conventions or may be too inefficient to solve the test cases.

Given that program verification, i.e., formal proof of correctness of an imple-
mentation, will not be available on a practical scale for some years to come,
program checking has been proposed as an extension to testing [BK89, BLR90].
The cited papers explored program checking in the area of algebraic, numerical,
and combinatorial computing. In [MNS+96, MM95, HMN96] we discuss pro-
gram checkers for planarity testing and a variety of geometric tasks. We have
also added program checkers to some of the LEDA programs, e.g., the planarity
test provides a planar drawing for a planar graph and a Kuratowski subgraph
for a non-planar graph. A user of the planarity algorithm has thus the possibility
to verify that the output of the algorithm is correct.

4.2 Running Time Prediction

Big-0 analysis of algorithms is concerned with the asymptotic analysis of algo-
rithms, i.e., with the behavior of algorithms for large inputs. It does not allow
the prediction of actual running times of real programs on real machines and
therefore its predictive value is limited.

- An algorithm with running time 0(n) is faster than an algorithm with run-
ning time 0(n2) for sufficiently large n. Is n = 106 large enough? Asymptotic
analysis of algorithms is of little help to answer this question. It is however
true that a well-trained algorithms person who knows program and analysis
can make a fairly good guess.

- For a user of LEDA statements of asymptotic running times are almost
meaningless as he/she has no way to estimate the constants involved. After
all, the purpose of LEDA is to hide the implementations from our users.

The two items above clearly indicate that we need more than asymptotic
analysis in order to have a theory with predictive value. The ultimate goal of
analysis of algorithms must be a theory that allows to predict the actual running
time of an actual program on an actual machine with reasonable precision (say
within a factor of two). We must aim for the following scenario: When a program
is installed on a particular machine a certain number of well-chosen tests are
executed in order to learn about machine parameters relevant for the execution
of the program. This knowledge about the machine is combined with the analysis
of the algorithm to predict running time on specific inputs. In the context of an
algorithms library one could even hope to replace statements about asymptotic
execution times by statements about actual execution times during installation of
the library. In [FM97] we show for a small number of programs (Fibonacci heaps,
Dijkstra's shortest path algorithm, and a maximum weight matching algorithm)
that running time prediction within a factor of less than two and a wide range
of machines is feasible.

14

4.3 Implementation of geometric algorithms

Geometric algorithms are frequently formulated under two unrealistic assump-
tions: computers are assumed to use exact real arithmetic (in the sense of
mathematics) and inputs are assumed to be in general position. The naive
use of floating point arithmetic as an approximation to exact real arith-
metic very rarely leads to correct implementations. In a sequence of papers
[BMS94a, See94, MN94, BMS94b, FGK+96, BRMS97] we investigated the de-
generacy and precision issues and extended LEDA based on our theoretical work.
LEDA now provides exact geometric kernels for two-dimensional and higher
dimensional computational geometry [MMN+97] and also correct implementa-
tions for basic geometric tasks, e.g., two-dimensional convex hulls, Delaunay di-
agrams, Voronoi diagrams, point location, line segment intersection, and higher-
dimensional convex hulls and Delaunay diagrams.

4.4 LEDA Extension Packages

LEDA extension packages are a new feature of the LEDA project structure.
Up to two years ago, most of LEDA has been developed by a small group of
persons under the tight supervision of Stefan Näher; no code went into the system
that was not thoroughly understood by either Stefan Näher or Christian Uhrig.
The growing numbers of contributors and the fact that Stefan Näher has new
responsibilities as a professor has forced us to a change of the project structure.
We decided to split LEDA into a core system (the actual LEDA version) and to
shift enhancements into additional software packages.

LEDA extension packages (LEPs) extend LEDA into particular application
domains and areas of algorithmics not covered by the core system. LEDA ex-
tension packages satisfy requirements, which guarantee compatibility with the
LEDA philosophy. LEPs have a LEDA-style documentation, they are imple-
mented as platform independent as possible and the installation process allows
a close integration into the LEDA core library.

Currently, there are no released LEPs available, but there are several LEP un-
der construction: PQ-trees (coordinated by Sebastian Leipert, Koeln), dynamic
graph algorithms (coordinated by David Alberts, Halle), the homogeneous pla-
nar CG AL geokernel (coordinated by Stefan Schirra, Saarbrücken), a homoge-
neous rf-dimensional geokernel (coordinated by Michael Seel, Saarbrücken), and
a library for graph drawing (DFG-project Automatisches Graphenzeichnen).

References

[AHU83] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. Data structures and algorithms.
Addison-Wesley, 1983.

[BK89] M. Blum and S. Kannan. Programs That Check Their Work. In Proc. of
the 21th Annual ACM Symp. on Theory of Computing, 1989.

[BLR90] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applica-
tions to numerical problems. In Proc. 22nd Annual ACM Symp. on Theory
of Computing, pages 73-83, 1990.

15

[BMS94a] Ch. Bumikel, K. Mehlhorn, and S. Schirra. On degeneracy in geometric
computations. In Proc. SODA 94, pages 16-23, 1994.

[BMS94b] Ch. Bumikel, K. Mehlhorn, and St. Schirra. How to compute the Voronoi
diagram of line segments: Theoretical and experimental results. In
Springer-Verlag Berlin/New York, editor, LNCS, volume 855 of Proceed-

ings of ESA '94, pages 227-239, 1994.
[BRMS97] Ch. Burnikel, R.Fleischer, K. Mehlhorn, and S. Schirra. A strong and easily

computable separation bound for arithmetic expressions involving square

roots. In Proc. SODA 97, pages 702-709, 1997.
[CLR90] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms.

MIT Press/McGraw-Hill Book Company, 1990.
[FGK + 96] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr. The

CGAL Kernel: A basis for geometric computation. In Workshop on Applied

Computational Geometry (WACG96), LNCS, 1996.
[FM97] Ulrich Finkler and Kurt Mehlhorn. Runtime prediction of real programs

on real machines. In Proceedings 8th ACM-SIAM Symposium on Discrete

Algorithms (SODA '97), January 1997.
[HMN96] C. Hundack, K. Mehlhorn, and S. Näher. A Simple Linear Time Algorithm

for Identifying Kuratowski Subgraphs of Non-Planar Graphs. Manuscript,

1996.
[Kin90] J.H. Kingston. Algorithms and Data Structures. Addison-Wesley Publish-

ing Company, 1990.
[Meh84] K. Mehlhorn. Data structures and algorithms 1,2, and 3. Springer, 1984.
[MM95] K. Mehlhorn and P. Mutzel. On the Embedding Phase of the Hopcroft and

Tarjan Planarity Testing Algorithm. Algorithmica, 16(2):233-242, 1995.
[MMN+97] K. Mehlhorn, Müller, S. Näher, S. Schirra, M. Seel, C. Uhrig, and

J. Ziegler. A computational basis for higher-dimensional computational
geometry and its applications. In Proceedings of the Symp. on Computa-
tional Geometry, 1997. http://www.mpi-sb.mpg.de/~seel.

[MN] K. Mehlhorn and S. Näher. The LED A Platform for Combina-
torial and Geometric Computing. Cambridge University Press,
forthcoming. Draft versions of some chapters are available at
http://HHw.mpi-sb.mpg.de/~mehlhorn.

[MN94] K. Mehlhorn and S. Näher. The implementation of geometric algorithms.
In 13th World Computer Congress IFIP94, volume 1, pages 223-231. Else-

vier Science B.V. North-Holland, Amsterdam, 1994.
[MN95] K. Mehlhorn and S. Näher. LEDA: A platform for combinatorial and geo-

metric computing. Communications of the ACM, 38(1):96-102, 1995.
[MNS+96] K. Mehlhorn, S. Näher, T. Schilz, S. Schirra, M. Seel, R. Seidel, and Ch.

Uhrig. Checking Geometric Programs or Verification of Geometric Struc-
tures. In Proc. of the 12th Annual Symposium on Computational Geometry,

pages 159-165, 1996.
[MNU96] Kurt Mehlhorn, S. Näher, and Ch. Uhrig. The LEDA User Manual (Ver-

sion R 3.4). Technical report, Max-Planck-Institut für Informatik, 1996.
http://www.mpi-sb.mpg.de/LEDA/leda.html.

[NH93] J. Nievergelt and K.H. Hinrichs. Algorithms and Data Structures. Prentice

Hall Inc., 1993.
[0'R94] J. O'Rourke. Computational Geometry in C. Cambridge University Press,

1994.
[Sed91] R. Sedgewick. Algorithms. Addison-Wesley Publishing Company, 1991.

16

[See94] Michael Seel. Eine Implementierung abstrakter Voronoidiagramme. Mas-
ter's thesis, Max-Planck-Institut für Informatik, 1994.

[Tar83] R.E. Tarjan. Data structures and network algorithms. In CBMS-NSF
Regional Conference Series in Applied Mathematics, volume 44, 1983.

[van88] C.J. van Wyk. Data Structures and C programs. Addison-Wesley Publish-
ing Company, 1988.

[Woo93] D. Wood. Data Structures, Algorithms, and Performance. Addison-Wesley
Publishing Company, 1993.

The Wadge-Wagner Hierarchy of co-Rational Sets

Olivier Carton and Dominique Perrin

Institut Gaspard Monge
Universite de Marne-la-Vallee

93166 Noisy le Grand
France

Abstract. We present a unified treatment of the hierarchy defined by
Klaus Wagner for u-rational sets and also introduced in the more general
framework of descriptive set theory by William W. Wadge. We show that
this hierarchy can be defined by syntactic invariants, using the concept
of an ai-semigroup.

1 Introduction

The idea, of a Müller automaton was introduced by David Müller as a variant
of usual finite automata, well suited for the recognition of infinite sequences. It
was later proved by McNaughton that any recognizable set of w-words can be
recognized by a deterministic Midler automaton.

Klaus Wagner has introduced in 1979 [22] two concepts defined on Müller au-
tomata: chains and superchains. Together with an operation on automata called
derivation, he has proved that the maximal lengths of chains and superchains
(and the ones obtained on the derived automata) are enough to characterize the
classes of recognizable w-sets up to to the inverse image under a continuous func-
tion. This classification has also been investigated independently by W. Wadge.
He has studied the reduction by a continuous function in abstract topological
spaces, as a refinement of the classical Borel hierarchy. His results are based
on a particular class of games, now called Wadge games. His classification itself
is known as the Wadge hierarchy [10]. The connections between both theories
were first discovered by Pierre Simonnet [19]. The Wagner hierarchy has been
partially rediscovered several times [2, 9]. The interest in the classification of
w-rational sets was revived by the studies concerning the logic of distributed
processing [15].

Since then Thomas Wilke [24] has shown how one could use, in the case of
infinite words, algebraic methods allowing to replace finite automata by finite
semigroups. This has lead to the notion of an w-semigroup introduced in [17].
This approach has the advantage to make easier the definition of a variety along
the line of Eilenberg's theory.

Another direction was investigated by Jean-Eric Pin in [18]. He has shown
that the notion of ordered semigroup could be used to define families of rec-
ognizable sets that are not closed under complementation. This is especially
interesting in the case of infinite words since very natural families like the open
sets are not closed under complementation.

We would like to show here how Klaus Wagner's ideas fit into the present
framework using w-semigroups. In particular, we shall see that the definition of
chains and superchains can be formulated in w-semigroups, providing a clear
explanation of the fact that they do not depend on the particular automaton
used to recognize a given set but on the set itself. We shall show how the classes
of the Wagner hierarchy are defined in topological terms. We will also investigate
the link between Wagner's notions and that of ordered semigroups.

The work presented here is based on results obtained, in great part, in the
first author doctoral thesis [4]. Part of it was presented at a conference held in
Porto [6]. Those concerning the equivalence of the various definitions of chains
and superchains will appear soon in [7]. The ones concerning the hierarchy itself

will be published in a second paper [5].

2 Preliminaries

We assume a familiarity with the basic concepts of w-rational sets and automata.
For an introduction, we refer the reader to [21] or [16]. A word about notation.
The alphabet is usually denoted by the symbol A. The set A* (resp. A+) is
the set of finite words (resp. nonempty finite words) on the alphabet A. The
set of (one-sided) infinite words on A is denoted by Aw. We consider Aw as a
topological space with the usual Cantor topology.

We shall deal often with classes of sets. Since the sets considered are subsets
of the topological space Au, a class of sets is really a mapping assigning to each
alphabet A a set of subsets of Aw. The dual class of a class T is formed of the
complements (within each Au) of the sets in T. It is denoted by T. We say that

r is ambiguous ii T = T.
We shall use ordinals to index classes of sets. The symbol u will thus be used

in two ways, either to denote an ordinal in expressions like u> + 1 or to denote
an cj-rational set like (a*6)w. We hope that it will not bring confusion.

We now recall the definition of w-semigroups and Wilke algebras. For a more
detailed presentation, we refer the reader to [17]. We assume some familiarity
with the basic notions of semigroup theory. We use the notation of [8] for all
undefined notions in semigroup theory. We use the traditional notation S to
denote the semigroup obtained by adding an new neutral element 1 to S.

An w-semigroup is a pair S = {S+, Su) where S+ is a semigroup and Sw is
a set with two operations in addition to the semigroup operation of S+: A left

action of 5+ on Su:
(s, u) H-> s.u

and an infinite product

7T : S+ x 5-1- x S+ x ... ->■ Su

These operations must satisfy the following axioms:

1. The action of S+ on 5W is associative: for s,t 6 S+ and u e Su

s.(t.u) — (st).u

19

2. The infinite product is w-associative, in the sense that for any sequence
(•Sn)n>o of elements of 5+ and any strictly increasing sequence (n,-),->o °f
integers with no = 0, one has

T(SO,SI,S2, • • •) = n(t0,ti,t2 ■ ■ •)

with U = s„, . . .s„l+1_i
3. The left action is compatible with the infinite product: for elements s and

(sn)n>o of S+, one has

S.K(S0,SI,S2, .. .) = Tr(s:s0,si,s2, ■ ■ .)

The associativity of the operations allows one to denote all operations by mere
concatenation, with su instead of s.u and sis2 . . . instead of n(s%, s2, . . .).

An w-semigroup morphism from S = (S+,SU) into S' = (S'+,S'U) is a pair
(<p+, <PLO) where <p+ is semigroup morphism from 5+ into S'+ and ipw is a function
from Sw into S'w which is compatible with the w-semigroup structure, i.e., the
left action and the infinite product.

Thus an w-semigroup is not an algebra in the usual sense since one of its
operations has infinitely many arguments.

The concepts of rational expression and of w-rational expressions extend to
w-semigroups in the following way. Let S be a semigroup and X be a subset of S.
We denote by X+ the subsemigroup generated by X in S. We denote by X* the
subset of S'1 defined by X* = {1} + X+. In this way, for any s £ S and X C S,
both subsets sX* and X*s are defined as subsets of 5. Let now S = (S+,SW) be
an (^-semigroup. For X,Y C 5+, we denote by XYW the set

XY" = {xyiy2...\x£X>yi£Y}

We further introduce a variant of w-semigroups which is an algebra in the
usual sense since all its operations have finite arity and is well suited to describe
finite cj-semigroups. This concept is due to Wilke [23, 24].

A Wilke algebra is a pair S — (S+, Su) where S+ is a semigroup and S^ is a
set with two operations: A left action of 5+ on Su, and a unary operation from
51-)- into Sw denoted

The operation u> must satisfy the following axioms:

(tn)w =f

s(ts)u = {st)u

for all s,t £T and n > 1.
A Wilke algebra morphism is a pair of functions compatible with the Wilke

algebra structure.
A well-known version of Ramsey theorem says that if we define a coloring

ip : A+ —> S of all words using only a finite number of colors, then each w-word
has a factorization:

X = V0ViV2 ■ ■ ■

20

with all blocks except those involving the first one of the same color, i.e., such
that ip(vivi+i ...vi+k) = f{vjvj+1 ...Vj+i) for all i,j > 1, k,l > 0. This for-
mulation holds even if the set of colors is a finite set without a multiplicative
structure. In the case where 5 is a finite semigroup and ip a semigroup morphism,
the result implies that for any w-word x there is a pair of an element s G S and
an idempotent e = e2 G S such that s = se and x G (p~1(s)if~1{e)w.

The following result is essentially a consequence of Ramsey theorem. It shows
that a finite w-semigroup and a finite Wilke algebra are essentially the same

thing.

Theorem 1. For any finite Wilke algebra S = {S+,SW), there is a unique infi-
nite product from S+ into Sw making S an w-semigroup such that su — sss . . .

for all s in S+.

For a proof, see [24] or [17]. In the sequel, we shall not distinguish between
finite Wilke algebras and finite w-semigroups.

We say that a morphism <p : A™ ->• 5 from A°° onto an w-semigroup S =
(S+,SW) recognizes an w-set X C Aw if X = p_1(P) for some P C Sw.

The following result extends the classical concept of recognition by a finite
semigroup for a rational set to w-rational sets. The theorem can really be credited
to Biichi since he had the original idea of introducing congruences of finite index

to define rational w-sets. For a proof, see [17].

Theorem 2. A set X C Aw is to-rational iff there exists an to-semigroup mor-
phism from A°° = {A+,AU) onto a finite ^-semigroup S = {S+,SW) recogniz-

ing X.

The notion of an w-semigroup has been extended by Nicolas Bedon to count-
able ordinals in the sense that w-words a replaced by words indexed by a count-
able ordinal [3]. This generalization has the advantage to give a more uniform
structure: the operations are defined everywhere.

3 Chains and superchains

In this section, we introduce the notions of chains and superchains in automata

and in w-semigroups.

3.1 Chains and superchains in Müller automata

We recall that a Müller automaton is a deterministic finite automaton A =
(Q, E, i, T) where Q is the state set, E C Q x A x Q is the set of transitions and
i G Q is the initial state. The table T C 2Q is the set of accepting subsets of Q.
We moreover suppose a Müller automaton to be complete: for each state q G Q
and each symbol a £ A, there is a transition from q labeled by a. A set R C Q
is called positive if R G T and negative otherwise.

21

A subset T of Q is said to be admissible if there is a cycle c in A, accessible
from the initial state i, such that the set of states encountered on c is exactly T.
We say that T is the content of c.

Let A = (Q, E, i, T) be a complete Müller automaton. An A-chain of length m
is an increasing sequence

Ro C Ri C ■ • • C Rm

of m + 1 admissible subsets of Q such that, for 0 < i < m, the Ri are alternately
in T and outside T.

We say that the chain is positive if R0 <E T and negative if i?0 £ T. We
denote by ??)+(^4) (resp. m~ (X)) the maximal length of positive (resp. negative)
^4-chains and we let m(A) = max.(m+(A), m~ (A)). It is obvious by the defini-
tion that m(A) is finite for any finite Müller automaton A. One indeed has the
inequality m(A) < card(Q).

Wilke and Yoo have shown in [25] that m(A) can be computed in polynomial
time. This contrasts with the fact the computation of m(X) for an w-rational
set X given by deterministic Rabin (or Streett) automata is NP-complete [11].

Example 1. Consider the set X = (a*b)w of w-words over {a,b} which have an
infinite number of symbols b. This set X is recognized by the automaton Ai
represented in Figure 1 with T = {{2}, {1,2}}. The sequence ({1}, {1,2}) is a
negative chain of length 1. There are no positive chains of length 1 and thus
m = rn~ = 1.

Fig. 1. Automaton Ai.

An A-supercham of length n is a sequence

Co, Ci,..., Cn

of n + 1 .4-chains of length m(A) such that:

(i) Each d is accessible from Ci+1 for 1 < i < n, i.e., there exists a path from
some state in Cj_i to some state in C,-.

(ii) The .4-chains d are alternately positive and negative.

22

We say that the superchain is positive if Co is positive and negative other-
wise. Wedenote by n+(A) (resp. n~ (A)) the maximal length of positive (resp
negative) superchains and n(A) = max(n+(.4), n~ {A)). We let n+(A) = -1
(resp n~{A) = -1) if the set of positive (resp. negative) superchains is empty.
It is obvious by definition that n(.4) is finite for any finite Müller automaton A.

One indeed has the inequality n(A) < card(Q).

b b a,b

Fig. 2. Automaton Ai-

Example 2 Consider the set X = b*ahf. It is recognized by the Müller automa-
ton Ai of Figure 2 with T = {{2}}. All chains are of length 0 and m = m+ =
m- = 0. The sequence ({1}, {2}, {3}) is a negative superchain of length 2. One

has n = n~ =2 and n+ = 1.

3.2 Chains and superchains in w-semigroups

Let S = {S+,Su) be an w-semigroup and let X be a subset of Sw. Let C - 0", Z)
be a pair where Y is a non empty subset of S+ and Z = z0,zi,...,zm is a

sequence of m + 1 elements of S+. Let

Zi = zo + z\ + ... + Zi

Wi = YZ*m(Z*zir (!)

for 0 < i < m. .
We say that the pair C is an X-chain iff the sets W{ are alternately included

in X and disjoint from X.
The number m is called the length of the chain C. It is important to observe

that m is the number of alternations in the sequence W0,---,Wm rather than
the length of the sequence Z in the usual sense which would be m + 1.

We distinguish, among chains, positive and negative ones according to the
nature of the first element. A positive chain is one such that W0 C X and a
negative one such that W0C\X = 0. Two positive (resp. negative) chains are said

to be of the same sign.
We denote by m+{X) (resp. mT (X)) the maximal length of the positive (resp.

negative) X-chains and m(X) = max(m+(X),m-(X)). We set m+(X) = -1
(resp. m.-{X) = -1) if the set of positive (resp. negative) chains is empty and

23

m+(X) = m~ {X) = oo if the lengths of X-chains are unbounded. We shall see
that. ?77.(.Y) is always finite for an w-rational set X.

We now come to the definition of a superchain in an w-semigroup.
Let S = (S+,SW) be an w-semigroup and let X be a subset of Su. An X-

superchain of length n is a sequence

Co, Ci,..., Cn

of „ + i ^'-chains d = {Yi,Zi), all of maximal length m = m(X) such that,
with Zi = zi0, zu, . . ., zim, we have:

(i) Each d is accessible from d-\ for 1 < i < n, i.e., there is an element

m 6 S+ such that Yi-iZ*_xUi C Yj.
(ii) The chains C) are alternately positive and negative.

We say that the superchain is positive if Co is positive and negative other-
wise. We denote by n+(X) (resp. n~ (X)) the maximal length of positive (resp.
negative) superchains and n(X) = max(n+(X), n~(X)). We let n+(X) = -1
(resp. n~pO = -1) if the set of positive (resp. negative) superchains is empty.
We shall see that n(X) is also finite if X is w-rational.

3.3 Correspondence between the definitions

We now come to the fact that the definitions of a chain in automata and in
w-semigroups are in correspondence. This has two main consequences: first it
shows that the integers m(X) are finite and computable for any w-regular set X.
Second, it shows that the integers m(A) do not depend on the automaton but
only on the set recognized. We have the following theorem.

Theorem 3. Let X C Aw be an u-rational set recognized by a complete Müller

automaton A = (Q, E, i, T). The following equalities hold:

m+ (X) = m+ (A) and m~ (X) = m" (A) ■

Let ip : S -> S' be a morphism from an w-semigroup S = (S+, Su) onto an u-
semigroup 5" = {S'+,S'J. Let X C Sw and X' C 5^ be such that X = tp-1{X').

The image (Y',Zr) of an X-chain (Y, Z) is an X'-chain of the same length
and sign and each X'-chain is the image of an X-chain of the same length and

sign-
Thus chains can be computed in any cj-semigroup recognizing X, in partic-

ular in a finite w-semigroup when X is w-rational. We will see in Section 6 that
chains in finite w-semigroups can be defined differently.

We now come to the fact that the definitions of a superchain in automata
and in w-semigroups are also in correspondence. As in the case of chains, this
has two main consequences: first it shows that the integers n(X) are finite and
computable for any w-regular set X. Second, it shows that the integers n(A)
do not depend on the automaton but only on the set recognized. We have the

following theorem.

24

Theorem 4. Let X C Aw be an uj-rational set recognized by a complete Muller
automaton A = (Q, E, i, T). The following equalities hold:

n+(X)=n+{A) and n~ {X) = n~ (A).

4 Wagner's hierarchy

To a Müller automaton A, one associates another Müller automaton called the
derived automaton and denoted dA. It is nonempty only when n+ = n~. It is
then obtained from A by the following transformation:

1. All states that belong to a maximal positive superchain are collapsed into a
single state q+ and the set {(?+} is positive.

2. All states that belong to a negative superchain are collapsed into a single
state a 5_ and the set {?-} is negative.

It was shown by Klaus Wagner that the set recognized by A only depends
on the set X recognized by A and not on the particular Müller automaton used
to recognize X. It can therefore be denoted dX.

Fig. 3. Automaton As,.

Example 3. Consider the automaton „43 of Figure 3 with T = {{!}, {1,2}, {3}}.
We have for A3 m = m — m""" m 1 and n = n+ n = 0. The derived
automaton A4 = dA?, is represented in Figure 4. We then have for A4 m =

+ — m- — 0, n+ = 0 and n — n" = 1. Since n+ /n",we have 8A4 = 0- m m

We associate to an w-rational set X two ordinals denoted -y(X) and p(X)
which are defined as follows. The ordinal f(X) is

fnpO ifm(X)=0
71 > \iom^x\n(X) + 1) otherwise

25

a,b,c

Fig. 4. The derived automaton A4 = dAs,.

For example, we have for the sets X\ and X2 recognized by the automata A\

and A2 of the previous examples,

7(Xi)=w and 7(X2) = 2.

The ordinal p{X) is then denned by

The ordinal y.(X) is an arbitrary ordinal < u>" and moreover, since m(dX) <
m(X) as soon as m(X) > 1, the decomposition given by the definition ofj(X)
produces the Cantor normal form of the ordinal f{X).

Both ordinals *y(X) and fi(X) can be computed from any Müller automaton
A recognizing the w-set X since the integers m(A) and n(A) only depend on the

set recognized by A.
For example, we have for the w-set X3 recognized by the automaton A3 given

above

H(X3) = w + 1

We finally associate to an w-rational set X an information called its sign and
denoted sign(X). It is an element of the three elements set {a, 5, 7r} defined as
follows. We first have

)<r if n~ > n+

7T if n~ < n+
S if rC = n+ and m = 0
sign(<9X) otherwise

It is clear that sign(X) = a iff sign(^w - X) = n and that sign(X) = Jiff

sign(ylw - X) = «J.
We introduce a preorder on the set R[A) of w-rational sets defined by lexi-

cographically ordering the pair (fJ,{X), signpQ) with the convention that S > a

26

and S > 7T (er and TX being incomparable). The equivalence classes associated
with the preorder are denoted

Ea = {X£ R{A) I ii{X) = a.signpf) = cr}

Aa = {X G i?,(/L) | ^(X) = a,sign(X) = 8}

na = {X G i?(A) | ^(X) = a, sign(X) = TT}

For any ordinal a < u)w, the classes Ea and 7Ta are dual of one another and
the class Aa is ambiguous. The order defined on w-rational sets by Wagner's
theorem has the familiar shape given by Figure 5.

S\ "' Ew ■S'w+l '"' Ew.2 £w.2+l

n0 fix nw n„+1 ■■■ nw.2 nw.2+i

Fig. 5. The Wagner hierarchy

It may be useful for a reader used to Wagner's notation to realize that the
correspondence between Wagner's notation and ours is the following. Our class
En is his class Cft, our An his EQ and our 77n his DQ. For m > 1 our class U^^.n
is Wagner's C^-1, our nwm n is his D^1 and our A1^ his E^'1. Moreover if the
normal form of the ordinal a is

a = üjmk.nk + ... + tomi.n1

then Ea is denoted in Wagner's notation

pnk pn2 s-m-L + l

The idea of using ordinals instead of sequences of pairs of integers was suggested
by Jean-Pierre Resseyre (oral communication).

The order thus defined happens to completely characterize another order
called the Wadge order and defined in general as follows. Let E, F be topological
spaces and let X C E, Y C F. We say that X reduces to Y, written X < Y if
there exists a continuous function / : E —^ F such that X = f~l(Y).

We can now state Wagner's main theorem.

Theorem5. (K. Wagner) Given co-rational sets X, Y, one has the equivalence:

X <Y <=> f(X)<y(Y).

27

The statement implies that for X G R{A), Y G R{B), one has X < Y iff
there exists a function / : Aw -> Bw such that X = f~1{Y) and which is not
only continuous but also rational. This is actually the content of the theorem of
Biichi-Landweber (see [21]).

The main theorem due to Wadge is the following: in a topological space
like Aw, the order given by the reduction by a continuous function is a well
ordering [10]. Thus the classes of the associated equivalence can be indexed by
ordinals. When restricted to w-rational classes, the order type of the hierarchy

5 Topological classes

We shall give here a description in topological terms of the classes of the hierar-
chy. It allows one to prove Wagner's theorem in one direction since the topological
characterization gives a definition of the classes invariant under the inverse of a
continuous function. It is convenient to denote, for an ordinal a < u>u

ß<a

and correspondingly for IJ<a and Z\<„.
We shall see that the classes of the Wagner hierarchy can be described us-

ing differences, separated unions and biseparated unions, starting from simple
topological sets. We first describe the simple classes which happen to be classical
classes of the Borel hierarchy.

5.1 Simple classes

The first kind is the class of open sets. We shall denote here by G the class of
open sets, rational or not (and not by S\ as it is sometimes done in topology).
The following statement uses a special form of Büchi automata called weak: a
path is successful if it contains at least one terminal state.

Theorem 6. The following conditions are equivalent for an co-rational set X.

(t) X£E<L

(ii) X is open.
(HI) X < a*6(a + 6)w

(iv) X is recognizable by a weak deterministic Büchi automaton.

Condition (i) can be formulated as follows: for all x, y,z,t G A+

xyu eX^xy*ztuT\X^%

which precisely expresses that m(X) = 0 and n+ < 0. We shall see later that
this condition can formulated using an inequality in ordered w-semigroups.

28

The second class is the class of sets which are countable intersections of
open sets. We denote this class by Gs (and not by 772 as it is done sometimes
in topology, since it would contradict our use of this notation). Similarly, we
denote by Fa the class of countable unions of open sets. The following result is

originally due to H. Landweber [12].

Theorem 7. The following conditions are equivalent for an co-rational set X.

(i) xes<u.
(n) xeGs.

(m) X < {a*b)u

(iv) X is recognizable by a deterministic Biichi automaton.

The equivalence between (ii) and (iii) is a general fact of descriptive set the-
ory, independent of the hypothesis that X is w-rational. A convenient way to
prove the implications is (i) => (iv) => (iii) =>■ (ii) => (i). The first one is proved
using a well-known construction building a deterministic Biichi automaton from
a Müller automaton satisfying m+ < 0. The last one can be done by reformu-
lating condition (i) as follows: for all x,y,z £ A+

x(y + Zyy" CX^x(y*zrnX^®

which expresses precisely that m+(X) < 0.

5.2 Boolean combinations of open sets

In order to describe the boolean combinations of open sets, we introduce the
notion of a difference of sets. Let F be a class of sets. We denote by D„(F) the

class of sets A' of the form

X = Aj — A2 + • • • i Xn

where the sets A; satisfy Aj 6 F and Ax D A2 D ... D Xn. Such an expression
of A is called a difference of length n. According to a theorem of Hausdorff, if T
is closed under finite unions and intersections and contains the empty set, the
union of all the classes Dn(r) for n > 1 is the boolean closure of F. This means
that any set in the boolean closure of T is equal to a difference of sets of F. The
classes Dn(F) define a hierarchy within the boolean closure of T. As we shall
see, it turns out that, when T is the class E<\ of w-rational open sets or when
r is the class £<u of w-rational Gs sets, the classes Dn(r) coincide with classes

of the Wagner hierarchy.
We consider here the classes Sn, i.e., the classes of sets A such that 7(A) < us

or equivalently such that m(X) = 0. It is actually equivalent to assume on a con-
nected MuIIer automaton A = (Q, E, i, T) that m(A) = 0 or that each strongly
connected component R of A is saturated in the sense that S G T for all admis-
sible sets S C R or for none of them. Such an automaton is clearly equivalent
to one of the following kind, that we propose to call a weak Müller automaton.
It is a finite automaton A = (Q, E, i, T) with a definition of a successful path

29

given by the following rule: a path 7 is successful if the set of states met along 7

is in T■
The following result is originally due to Staiger and Wagner [20]. It means

that an w-rational set X belongs to the class E<„ iff it is equal to a difference

of length n of w-rational open sets.

Theorem 8. One has for all n < u>

E<n = D„(E<i)

Moreover,
E<U n n<u = \J £n

and coincides with the boolean closure of the family of rational open sets.

In the second equality, the inclusion from right to left is obvious since each
£„ is contained in E<w and in 77<w. The converse is also evident since a set
X G E<u, n n<w satisfies m+(X) < 0 and m~{X) < 0 and therefore m{X) = 0.

Theorem 8 is really a counterpart for rational sets of a theorem of Hausdorff
according to which, one has in a topological space such as Au

FanGs= U D«(G)
a<cui

where the union is on all countable ordinals (see [10] for example).

5.3 Separated classes and boolean combinations of G,s-sets

In this section, we describe the classes S<a for a = um.n. We first consider the
case of a = u>m. The following result is originally due to K. Wagner [22].

Proposition 9. For all m < w, we have the equality

£<w™ = Dm(S<u)

We now introduce the notion of a separated union. Let Xi,X2,Y C Aw be
three w-sets. Suppose furthermore that the three sets satisfy Xx l~l Y = 0 and
X2 C Y. Following a notation borrowed to Alain Louveau [14], let us denote by

Sep(Y, X\, X->) the union
X = X1 + X2

The picture is shown in Figure 6.
We say that X is the separated union of Xy and X2 or that X is the union of

Xi and X2 separated by Y (we actually exchange X\ and X2 in the notation of
[14]). We also define, for two classes f, A of w-sets, a new class Sep(r, A) as the
class of all sets of the form X = Sep(Y, Xx, X2) for Y G T, Xi G A and X2 G Ä.

The following result gives a topological description of the classes E<.um,n. It

is analogous to a statement given in [22].

Theorem 10. For each m > 1 and n>2, one has

E<u">.n - Sep(L>n_i(G),I7<u,m)

and dually
n<ujm,n =Sep(Dn-i{G),n<ulm).

30

Fig. 6. Separated union of Xi and X2

5.4 Biseparated classes

We now relate the definition of the set dX with the topological structure of X.
We borrow again a notation from Alain Louveau [14] and introduce the no-
tion of biseparated union. Let Xi,X2,Yx,Y2 and Z be five w-sets satisfying
Xi C Yu X2 C Y2, Yx n y2 = 0, Z n Y1 = 0 and Z n Y2 = 0. Let us denote
Bisep(Y!, y2, X\, X2, Z) the union

X = Xi + X2 + Z

The picture is shown in Figure 7. We say that X is the biseparated union of Xi,
Xi and Z.

Fig. 7. Biseparated union of Xi, X2 and Z.

If <P, F, A are three classes of w-sets, we denote by

Bisep(<Z>, r, A)

the class of sets X = Bisep(Y1; Y2, XUX2, Z) with Ylt Y2 G #, Ij £ f, I2 £ f
and Z e A.

The following result expresses that the elements of the class Eui™.n+ß are the
unions of sets of the same kind (but with opposite signs) separated by disjoint
open sets plus some set of lower class of the same class.

Theorem 11. For all m > 1 and n > 1 and ß < com, one has

£w*.n+ß = Bisep(G, Ew™.n,Eß)

Aw"*.n+ß = Bisep(G, I7wm.n, Aß)

nw™.n+ß = Bisep(G, I^m.n, ITß).

31

6 Finite cj-semigroups

The definition of chains an superchains in finite ^-semigroups uses the Green's
relations U and H defined as follows. For elements s, t of a semigroup 5, one has
S>K i its = t ovt e sS <md s >n t if s = t or t e sS and t G Ss. The relation
>-R is preorder and the restriction of >u to the idempotents also.

In the case of a subset X of a finite ^-semigroup S — (S+,SU), the definition
of a chain relative to X can be used in the following form. It is a sequence

(s, e0, ei,. .., em) of elements of S+ such that:

(i) For 0 < i < m, the pair (s, e,-) is linked, i.e., set = s and ef = e,-.
(ii) The sequence of idempotents e0, elt..., em is decreasing for the U order,

(iii) The elements sef are alternately in X and outside of X.

We have again the notion of a positive or negative chain according to se% G X or
not. The definition of a chain in a finite w-semigroup coincides with the definition
of a chain we gave in a general w-semigroup in the following sense. To any chain
for the former definition, can be associated another chain for the latter one with
the same length and same sign, and vice versa. The integers m+(X) and m~ (X)
do not depend on the definition of a chain considered.

The notion of a superchain is also adapted to the case of a finite w-semigroup
to be defined as a sequence u0,ui, ...,«„ of chains u, = (s,-, e^o, en, ■ ■ ■, ejm) of

length m such that:

(i) The sequence s,- is decreasing for the U order, i.e.

so >n si >n ■ ■ ■ >n s„.

(ii) The chains u,- are alternately positive and negative.

As for chains, the definition of a superchain in a finite w-semigroup is equiv-
alent to the definition of superchain we gave in a general w-semigroup.

The definition of chains and superchains on finite w-semigroups allows one
to give a characterization of the classes of Wagner's hierarchy. It would be in-
teresting to extend these ideas to classes defined for finite words.

7 Ordered cu-semigroups

An ordered w-semigroup is an w-semigroup S = (5+,5w) with a partial order
on each of the sets S+ and 5W which are compatible with all operations: for all

s, t, u, v G S
s <t =>■ usv < utv,

s <t,u<v => suw <tvw

A morphism ip : S ->■ T of ordered w-semigroup is a morphism of w-semigroups
which is also compatible with the orders: for all s,t G S, s,t G S and s < t imply

32

It has been shown by Jean-Eric Pin [18] that any w-rational set has a finite
syntactic ordered to-semigroup. The context of finite a word v with respect to an
w-set X C Aw is the the pair of sets C(u) — (Ci(u), C2(u)) where Ci(u) and
C^iu) are respectively defined by

Ci(«) = {(v,x)£A* XA
W
 \vuxeX}

C2(u) = {(v,w) G A* x A* | »(«!»)" e X}.

In the same way, the context of an w-word x with respect to the to-set X C Aw

is the set
C{x) = {u G A* | ux G X).

It is well known that if S = (5+, 5W) is the syntactic w-semigroup of X, the
elements of 5+ (resp. Su) correspond to contexts of finite words (resp. to-words).
More precisely two finite words u and u' (resp. two w-words x and x') have the
same image in the syntactic w-semigroup iff they have the same context. This
allow one to define the context of an element of S. Contexts could also have been
directly defined in S with respect to the image P of X in Su. An order can be
defined in S by

« < < iff C{s) C C(t)

This order is compatible with the operation of S. The w-semigroup S equipped
with this order is then an ordered w-semigroup. It is in fact the syntactic ordered
w-semigroup of X.

In a finite semigroup, we denote the unique idempotent which is a power of s
by s*" instead of the usual notation sw since the symbol u has another meaning
here.

The following statement gives a characterization of open sets alternative to
Theorem 6.

Theorem 12. An to-rational set X is open iff its syntactic ordered u-semigroup
satisfies the following identity

W ^ IT UJ x < x yz

The following result gives a syntactic characterization of the class £<w

Theorem 13. An to-rational set X is in 17<w iff its syntactic ordered to-semigroup
satisfies the following identity

As a consequence, we obtain the following syntactic characterization, due to
Thomas Wilke [24], of the sets in £<w D II<w, which are also the boolean com-
binations of open sets by Theorem 7.

Theorem 14. An to-rational set is a boolean combination of open sets iff its
syntactic to-semigroup satisfies the identity

{x-yyx" = {x*yy

33

Actually, the identity given in [24] is the identity

(x*y*)*xu = (*V)V

which can be shown to be equivalent to the previous one.

Conclusion

It would be interesting to investigate further on in several directions including
the followings ones.

7.1 A syntactic definition of the derivative

Klaus Wagner has introduced the notion of the derivative dX of an w-rational
set X. It is defined using a Müller automaton recognizing X. We do not know
how to define the derivative in a finite ^-semigroup in such a way that dX can
be computed in the syntactic w-semigroup of X.

7.2 Biinfinite words

The theory of w-rational sets can be developed for sets of two-sided infinite
words [16]. Such sets have also been considered in symbolic dynamics [13]. A
symbolic dynamical system is by definition a set of biinfinite words which is
topologically closed and invariant under the shift. Let S and T be two symbolic
dynamical systems. A morphism from S into T is a function / : S —> T which
is continuous and commutes with the shifts of S and T. As a particular case of
symbolic dynamical systems, a sofic system is defined by a set of forbidden blocks
recognized by a finite automaton. As a still more restricted class, a system of
finite type is a set of biinfinite words defined by a finite set of forbidden blocks.
If X, Y are symbolic dynamical systems, it is natural to say that X C Az

reduces to Y C Bz, denoted X < Y, if there exists a morphism/ from Az

to Bz such that X = /_1(Y). One thus obtains a hierarchy of subsets of Az

analogous to the Wadge-Wagner hierarchy. The three classes defined previously
are precisely preserved by inverse morphisms. It would be interesting to know
the Wadge-Wagner classes of symbolic dynamical systems.

7.3 Finite words

It is an open problem to define a hierarchy for finite words analogous to Wagner's
one. An objective for such a classification could be to obtain a refinement of the
characterization of some well known classes. For instance, the classes of locally
testable sets is the boolean closure of the class of strictly locally testable ones.
The latter are finite unions of sets of the form UA* D A*V \ A'WA* where
U, V and W are finite sets of words. If S denotes the family of strictly locally
testable sets, the family Dn(S) of differences of length n of elements of S defines
a hierarchy within locally testable sets.

34

It is possible to define Müller automata on finite words. Let indeed A =
(Q,E,T) be a finite automaton where T is a subset of Q x 2Q x Q. A finite

path 7 : i ^V t in this automaton is successful if the set R of states met along
the path is such that (i, R, t) G 7". The usual definition of locally testable sets
actually uses such automata: they are the sets recognized when the underlying

automaton is the standard local automaton.
A full parallel with Wagner hierarchy requires a choice of a topology on finite

words. A possibility would be to consider the profinite topology associated to a

pseudo-variety of semigroups [1].

References

1. Jorge Almeida. Finite Semigroups and Universal Algebra. World Scientific, 1994.
2. Rana Barua. The Hausdorff-Kuratowski hierarchy of o;-regular languages and a

hierarchy of Müller automata. Theoretical Computer Science, 96:345-360, 1992.
3. Nicolas Bedon. Automata, semigroups and recognizability of words on ordinals.

IGM report 96-5, to appear in International Journal of Algebra and Computation.
4. Olivier Carton. Mots infinis, w-semigroupes et Topologie. These, Universite Paris

7, 1993. Report LITP-TH 93-08.
5. Olivier Carton and Dominique Perrin. The Wagner hierarchy of w-rational sets.

To appear in International journal of algebra and computation.
6. Olivier Carton and Dominique Perrin. Chains and superchains in w-semigroups. In

Jorge Almeida, Grancinda Gomes, and Pedro Silva, editors, Semigroups, Automata
and Languages, pages 17-28. World Scientific, 1994.

7. Olivier Carton and Dominique Perrin. Chains and superchains for ^-rational sets,
automata and semigroups. International journal of algebra and computation, 1997.
to appear.

8. John M. Howie. Fundamentals of Semigroup Theory. Oxford University Press,
1995.

9. Micheal Kaminski. A classification of w-regular languages. Theoretical Computer
Science, 36:217-229, 1985.

10. Alexander S. Kechris. Classical Descriptive Set Theory, volume 156 of Graduate
texts in mathematics. 1995.

11. Sriram C. Krishnan, Anuj Puri, and Robert K. Brayton. Structural complexity of
a)-languages. In STACS '95, volume 900 of Lecture Notes in Computer Science,
pages 143-156, Berlin, 1995. Springer-Verlag.

12. Lawrence H. Landweber. Decision problems for w-automata. Mathematical Sys-
tems Theory, 3:376-384, 1969.

13. Douglas Lind and Brian Marcus. An Introduction to Symbolic Dynamics and Cod-
ing. Cambridge University Press, 1995.

14. Alain Louveau. Some results in the Wadge hierarchy of Borel sets. In A.S. Kechris
et al., editor, Cabal Seminar 79-81, volume 1019 of Lecture Notes in Math., pages
28-55. Springer-Verlag, 1981.

15. Zohar Manna and Amir Pnueli. A hierarchy of temporal properties. In Principles
of Distributed Computing, pages 377-408, 1990.

16. Dominique Perrin and Jean-Eric Pin. Infinite words. Version 1.4, Report LITP
97.04 (http://litp. ibp.fr/~jep/Resumes/MotsInf inis.html).

35

17. Dominique Perrin and Jean-Eric Pin. Semigroups and automata on infinite words.
In J. Fountain and V. A. R. Gould, editors, NATO Advanced Study Institute Semi-

groups, Formal Languages and Groups, pages 49-72. Kluwer academic publishers,

1995.
18. Jean-Eric Pin. A variety theorem without complementation. Russian Mathematics

(Iz. VUZ), 39:80-90, 1995.
19. Pierre Simonnet. Automates et Theorie Descriptive. These, Universite Paris 7,

1992.
20. Ludwig Staiger and Klaus Wagner. Automatentheoretische und automatenfreie

Charakterisierungen topologischer Klassen regulärer Folgenmengen. Elektron. In-

formationsverarb. Kybernet., 10:379-392, 1974.
21. Wolfgang Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Hand-

book of Theoretical Computer Science, volume B, chapter 4. Elsevier, 1990.
22. Klaus Wagner. On w-regular sets. Information and Control, 43:123-177, 1979.
23. Thomas Wilke. An Eilenberg theorem for oo-languages. In ICALP '91, volume

510 of Lecture Notes in Computer Science, pages 588-599, Berlin, 1991. Springer-

Verlag.
24. Thomas Wilke. An algebraic theory for regular languages of finite and infinite

words. Int. J. Alg. Comput., 3(4):447-489, 1993.
25. Thomas Wilke and Haiseung Yoo. Computing the Rabin index of a regular lan-

guage of infinite words. To appear in International Journal of Algebra and Com-

putation, 1997.

From Chaotic Iteration to Constraint
Propagation

Krzysztof R. Apt

CWI
P.O. Box 94079, 1009 AB Amsterdam, The Netherlands

and
Dept. of Mathematics, Computer Science, Physics & Astronomy

University of Amsterdam, The Netherlands

"Don't express your ideas too clearly. Most people
think little of what they understand, and venerate
what they do not."

(The Art of Worldly Wisdom,
Baltasar Gracian, 1647.)

Abstract. We show how the constraint propagation process can be nat-
urally explained by means of chaotic iteration.

1 Introduction

1.1 Motivation

Over the last ten years constraint programming emerged as an interesting and
viable approach to programming. In this approach the programming process is
limited to a generation of requirements ("constraints") and a solution of these
requirements by means of general and domain specific methods. The techniques
useful for finding solutions to sets of constraints were studied for some twenty
years in the field of Constraint Satisfaction. One of the most important of them
is constraint propagation, the elusive process or reducing a constraint satisfaction
problem to another one that is equivalent but "simpler".

The algorithms that achieve such a reduction usually aim at reaching some
"local consistency", which denotes some property approximating in some loose
sense "global consistency", so the consistency of the whole constraint satisfaction
problem. (In fact, most of the notions of local consistency are neither implied
by nor imply global consistency.)

For some constraint satisfaction problems such an enforcement of local con-
sistency is already sufficient for finding a solution or for determining that none
exists. In some other cases this process substantially reduces the size of the search
space which makes it possible to solve the original problem more efficiently by
means of some search algorithm.

The aim of this paper is to show that the constraint propagation algorithms
can be naturally explained by means of chaotic iteration, a basic technique used

37

for computing limits of iterations of finite sets of functions that originated from
numerical analysis (see Chazan and Miranker (1969)) and was adapted for com-
puter science needs by Cousot and Cousot (1977). In fact, several constraint
propagation algorithms proposed in the literature turn out to be instances of
generic chaotic iteration algorithms studied here.

Moreover, by characterizing a given notion of a local consistency as a common
fixed point of a finite set of monotonic and inflationary functions we can auto-
matically generate an algorithm achieving this notion of consistency by "feeding"
these functions into a generic chaotic iteration algorithm.

1.2 Preliminaries

Definition 1. Consider a sequence of domains V :— D\,..., Dn.

— By a scheme (on n) we mean a sequence of different elements from [l..n].
— We say that C is a constraint (on V) with scheme i\,..., i; if C C Dil x ■ ■ ■ x

A,-
— Let s := Si,...,Sfc be a sequence of schemes. We say that a sequence of

constraints C\,..., Ck on V is an s-sequence if each C; is with scheme s;.
— By a Constraint Satisfaction Problem (V;C), in short CSP, we mean a se-

quence of domains V together with an s-sequence of constraints C on V. We
call then s the scheme of (T>;C). □

Given an n-tuple d := d\,..., dn in D\ x ... x Dn and a scheme s := i\,..., ii
on n we denote by d[s] the tuple d^,..., dir In particular, for j G [l..n] d[j] is
the j-th element of d. By a solution to a CSP (T>;C), where V :— Di,..., Dn,
we mean an n-tuple d G Di x ... x Dn such that for each constraint C in C with
scheme s we have d[s] G C.

Consider now a sequence of schemes Si,...,Sfc. By its union, written as
(si,..., Sfc) we mean the scheme obtained from the sequences si,..., s^ by re-
moving from each s; the elements present in some Sj, where j < i, and by con-
catenating the resulting sequences. For example, ((3, 7,2), (4, 3, 7, 5), (3,5, 8)) =
(3,7,2,4,5,8). Recall that for an s\,..., s^-sequence of constraints Ci,...,Ck
their join, written as Ci M • ■ ■ M Ck, is defined as the constraint with scheme
(si,. .., Sfc) and such that

d G Ci M • • • M Ck iff d[si) G Ci for i G [l..fc].

Further, given a constraint C and a subsequence s of its scheme, we denote
by ns{C) the constraint with scheme s defined by

ns{C) := {d[s] \deC},

and call it the projection of C on s. In particular, for a constraint C with scheme
s and an element j of s, IIj(C) = {a j 3d G C a = d[j}}.

Given a CSP (D;C) we denote by Sol((V;C)) the set of all solutions to it.
If the domains are clear from the context we drop the reference to T> and just
write Sol{C). The following observation is useful.

38

Note 2. Consider a CSP (V;C) with V :=Du...,Dn and C :=d,...,Ck and

with schem.e s.

(i) Sol((V; C» = d M ■ • • IX Ck Mi6/ Du

where I := {i £ [l..n] | i does not appear in s}.
(ii) For every s-subsequence C ofC and d £ Sol((V; C)) we have d[(s)] G Sol(C).

D

Finally, we call two CSP's equivalent if they have the same set of solutions.
Note that we do not insist that these CSP's have the same sequence of domains

or the same scheme.

2 Chaotic Iterations

As already mentioned in the introduction, one of the corner stones of constraint
programming is constraint propagation. In general, two basic approaches fall

under this name:

- reduce the domains while maintaining equivalence;
- reduce the constraints while maintaining equivalence.

In what follows we study these two processes in full generality.

2.1 Chaotic Iterations on Simple Domains

In general, chaotic iterations are defined for functions that are projections on
individual components of a specific function with several arguments. In our ap-
proach we study a more elementary situation in which the functions are unrelated
but satisfy certain properties. These functions are defined on specific partial or-
ders. We need the following concepts.

Definition 3. We call a partial order (D, C) an U-po if

- D contains the least element, denoted by _L,
- for every increasing sequence

do E d\ C ^2 • ■ ■

of elements from D, the least upper bound of the set

{dg, di, d2, ■ ■ ■},

denoted by U^Lo ^« an<^ cane^ tne ^™* °f d0,di,..., exists,
- for all a,b G D the least upper bound of the set {a, b}, denoted by a U b,

exists.

Further, we say that

39

— an increasing sequence do C di C d-i ■ ■ ■ eventually stabilizes at d if for
some j > 0 we have d{ = d for i > j,

— a partial order satisfies the finite chain property if every increasing sequence
of its elements eventually stabilizes. □

Definition 4. Consider a set D, an element d G D and a set of functions F :—

{fi,---,fk} on D.

— By a run (of the functions /i, • • ■, /fc) we mean an infinite sequence of num-
bers from [l..k].

— A run ii, i2, ■ • ■ is called fair if every i £ [l..fc] appears in it infinitely often.
— By an iteration of F associated with a run i\,i-2, ■ ■ ■ and starting with d we

mean an infinite sequence of values d0, d\,... defined inductively by

do := d,

dj :=/i3.(dj-i).

When d is the least element of D in some partial order clear from the context,
we drop the reference to d and talk about an iteration of F.

— An iteration of F is called chaotic if it is associated with a fair run. □

Definition5. Consider a partial order (D, Q). A function / on D is called

— inflationary if x C. f{x) for all x,
— monotonic if x C. y implies f(x) C. f(y) for all x,y,

— idempotent if f(f(x)) — f(x) for all x.

The following observation can be easily distilled from a more general result
due to Cousot and Cousot (1977). To keep the paper self-contained we provide
a direct proof.

Theorem 6 (Chaotic Iteration). Consider an Li-po (D, C.) and a set of func-
tions F := {fi, ■ ■ ■, fk} on D. Suppose that all functions in F are inflationary
and monotonic. Then the limit of every chaotic iteration of F exists and coin-
cides with

oo

U/tj,
3=0

where the function f on D is defined by:

k

/(*):= [J £(*)
i=i

and / ti is an abbreviation for /J'(JL), the j-th fold iteration of f started at _L.

40

Proof. First notice that / is inflationary, so |_J°^0 / t 3 exists. Fix a chaotic
iteration d0: dy,... of F associated with a fair run i1; i2,.... Since all functions
/,; are inflationary, |_|°10 dj exists. The result follows directly from the following
two claims.

Claim 1 Vj 3m f t j E dm.

Proof. We proceed by induction on j.

Base, j = 0. As / | 0 = 1 = d0, the claim is obvious.

Induction step. Assume that for some j > 0 we have / | i E 4 for some
m > 0. Since

k

/tc? + i) = /(/tj) = U"Wtj),
i=l

it suffices to prove
\/ie[l..k]3mifi(ftJ)Qdmi. (1)

Indeed, we have then by the fact that di C dj+1 for I > 0

fc fc

LJ/<(/tj)E |_K< Ed™'

where m' := maa;{7nj | i £ [l..k]}.
So fix i e [l..fc]. By fairness of the considered run h,%2, ■ ■ • , for some m» > m

we have imi = i. Then dmi = /;(dmi_i). Now dm C rfm;_i, so by the monotonic-
ity of fi we have

fi(f t j) E /i(dm) E /i(c/m.-i) = dTO..

This proves (1). ^

Claim 2 Vm dm E / t ">.

Proof. The proof is by a straightforward induction on m. Indeed, for m = 0 we
have d0 — ± = / | 0, so the induction base holds.

To prove the induction step suppose that for some m > 0 we have dm C / -f
m. For some i G [l..fc] we have dm+1 = fi(dm), so by the monotonicity of / we
get

dm+i = fi(dm) E f(dm) E /(/ t m) = / t (m + 1)
D
D

In many situations some chaotic iteration studied in the Chaotic Iteration
Theorem 6 eventually stabilizes. This is for example the case when (D, C)
satisfies the finite chain property. In such cases the limit of every chaotic iteration
can be characterized in an alternative way.

41

Corollary 7 (Chaotic Iteration). Suppose that under the assumptions of the
Chaotic Iteration Theorem 6 some chaotic iteration of F eventually stabilizes.
Then every chaotic iteration of F eventually stabilizes at the least fixed point of

/■

Proof. It suffices to note that if some chaotic iteration do, d\... of F eventually
stabilizes at some dm then by Claims 1 and 2 / t rn = dm, so

u / t J = / t m. (2)
=o

Then, again by Claims 1 and 2, every chaotic iteration of F stabilizes at / t m
and it is easy to see that by virtue of (2) / t m is the least fixed point of /. D

2.2 Chaotic Iterations on Compound Domains

Not much more can be deduced about the process of the chaotic iteration unless
the structure of the domain D is further known. So assume now that (D, C)
is the Cartesian product of the U-po's (£>;, C. t), for i G [l..n], defined in the
expected way. It is straightforward to check that (D, C) is then an U-po, as well.
In what follows we consider a modification of the situation studied in the Chaotic
Iteration Theorem 6 in which each function /; affects only certain components

of D.
Consider the partial orders (£)j, C t), for i G [l..n] and a scheme s :=

i\,..., ii on n. Then by (Ds, C s) we mean the Cartesian product of the partial
orders (Dtj, C. ;.), for j G [1..1].

Given a function / on Ds we say that / is with scheme s. Instead of defining
iterations for the case of the functions with schemes, we rather reduce the situ-
ation to the one studied in the previous subsection. To this end we canonically
extend each function / on Ds to a function /+ on D as follows. Suppose that

s = ii,..., ii and
f{dil,...,dil) = (e-1,...,eij.

Let for j G [l..n]
f e'- if j is an element of s

g . ■== / J
3 \dj otherwise.

Then we set
/+(c?i,...,dn) := (ex,...,en).

Suppose now that (D, C) is the Cartesian product of the U-po's (Di, C t),
for i G [1-n], and F := {/i,..., /&} is a set of functions with schemes that are
all inflationary and monotonic. Then the following algorithm can be used to
compute the limit of the chaotic iterations of F+ :— {/+,..., f£}. We say here
that a function / depends on i if i is an element of its scheme.

42

GENERIC CHAOTIC ITERATION ALGORITHM (Cl)

rf:=(±,...,-L);
N „ •

?7, times

d' := d;
G:=F;
while G # 0 do

choose g £ G; suppose p is with scheme s;
G:=G-{g};
d'\s} := g(d{s});
if d[s] /d'[s] then

G:=GU{/6F|/ depends on some i in s such that d[i] # d'[t]};
d[s] := d'[s]

fi
od

The following observation will be useful in the proof of correctness of this
algorithm.

Note 8. Consider the partial orders (A, E i), for i G [l..n], a sc/ieme s on n
and a function f with scheme s. Then

(i) f is inflationary iff f+ is,
(ii) f is monotonic iff f+ is.

The following result summarizes the properties of the CI algorithm.

Theorem 9.
(i) Every terminating execution of the CI algorithm computes in d the least fixed

point of the function f on D defined by

f{x):=\Jf?(x).
»=i

(ii) If all (Di, E i), where i <E [l..n], satisfy the finite chain property, then every
execution of the CI algorithm terminates.

Proof. It is simpler to reason about a modified, but equivalent, algorithm in
which the assignments d'[s] := g(d[s]) and d[s] := d'[s] are respectively replaced
by d' := g+(d) and d := d! and the test d[s] / d'[s] by d ± d!.
(i) Note that the formula

I~VfeF-Gf+(d) = d

is an invariant of the while loop of the modified algorithm. Thus upon its ter-
mination

(G = 0) A /

43

holds, that is
VfeFf+(d) = d.

Consequently, some chaotic iteration of F+ eventually stabilizes at d. Hence d
is the least fixpoint of the function / defined in item (i) because the Chaotic
Iteration Corollary 7 is applicable here by virtue of Note 8(i) and (ii).

(ii) Consider the lexicographic order of the partial orders (-D,3) and (N,<),
defined on the elements of D x N by

{di,ni) <iex (d2,n2) iff di 3 d2 or (di — d2 and nx < n2).

We use here the inverse order I] and N denotes the set of natural numbers.
By Note 8(i) all functions /+ are inflationary, so with each while loop iter-

ation of the modified algorithm the pair

(d, card G)

strictly decreases in this order <lex. Howver, in general the lexicographic order
(D x N, <iex) is not well-founded and in fact termination is not guaranteed.
But assume now additionally that each partial order (£>;, C ;) satisfies the fi-
nite chain property. Then so does their Cartesian product (D, C.). This means
that (D, Zl) is well-founded and consequently so is (D x N, <iex) which implies
termination. n

When all considered functions /; are also idempotent, we can reverse the
order of the two assignments to G, that is to put the assignment G :— G — {g}
after the if-then-fi statement, because after applying an idempotent function
there is no use in applying it immediately again. Let us denote by CII the
algorithm resulting from this movement of the assignment G := G — {g}.

More specialized versions of the CI and CII algorithms can be obtained by
representing G as a queue. To this end we use the operation enqueue(F, Q)
which for a set F and a queue Q enqueues in an arbitrary order all the elements
of F in Q, denote the empty queue by empty, and the head and the tail of a non-
empty queue Q respectively by head(Q) and tail(Q)- The following algorithm
is then a counterpart of the CI algorithm.

GENERIC CHAOTIC ITERATION ALGORITHM WITH A QUEUE (CIQ)

d:=(±,...,±);

n times
d! := d;
Q := empty;
enqueue(i?, Q);
while Q / empty do

g :— head(Q); suppose g is with scheme s;
Q := tail(Q);
d'[s] := g(d[s]);

44

if d[s] ^d'[s] then
enqueue({/ G F \ f depends on some i in s such that d[i] ^ d'[i]},Q);

d{s] := d'[s]
fi

od

Denote by CIIQ the modification of the CIQ algorithm that is appropriate for
the idempotent functions, so the one in which the assignment Q :- tail(Q) is

performed after the if-then-fi statement.
It is easy to see that the claims of Theorem 9 also hold for the CII, CIQ and

CIIQ algorithms. A natural question arises whether for the specialized versions
CIQ and CIIQ some additional properties can be established. The answer is pos-
itive. Namely, for these two algorithms the following result holds which shows
that the nondeterminism present in these algorithms has no bearing on their

termination.

Theorem 10. If some execution of the CIQ algorithm terminates, then all the

executions of the CIQ algorithm terminate.

Proof. We first establish the following observation.

Claim 1 If some chaotic iteration of F+ eventually stabilizes, then all the exe-

cutions of the CIQ algorithm terminate.

Proof. We prove the contrapositive. Consider an infinite execution of the CIQ al-
gorithm algorithm. Let iy, i2, ■ ■ ■ be the run associated with it and f := d0, d\,...
the iteration of F+ associated with this run. By the structure of this algorithm

£ does not stabilize. (3)

Let A be the set of the elements of [l..fc] that appear finitely often in the run
ii,i2,.... For some m > 0 we have ij £ A for j > m. This means by the
structure of this algorithm that after m iterations of the while loop no function
fi for i £ A is ever present in the queue Q.

By virtue of the invariant / used in the proof of Theorem 9 we then have
f+(dj) = dj for i e A and j > m. This allows us to transform the iteration £ to
a chaotic one by repeating each element dj for j >m card A times.

Assume now that a chaotic iteration of F+ eventually stabilizes. Then by the
Chaotic Iteration Corollary 7 the just constructed chaotic iteration stabilizes, as
well. So the original iteration £ also stabilizes which contradicts (3). O

Construct now a chaotic iteration of F+ the initial prefix of which corre-
sponds with a terminating execution of the CIQ algorithm. By virtue of the
invariant i" this iteration eventually stabilizes. This concludes the proof thanks

to Claim 1. D

An analogous result holds for the CIIQ algorithm. On the other hand, it is
easy to see that this result does not hold for the CI and CII algorithms.

45

3 Constraint Propagation

Let us return now to the study of CSP's. We show here how the results of the
previous section can be used to explain the constraint propagation process.

3.1 Domain Reduction

In this subsection we study the domain reduction process. First we associate
with each CSP an U-po that "focuses" on the domain reduction.

Consider a CSP V := (Du .. ., Dn; C). Let for X,YCDi

X C iY iff X D Y.

Then for i £ \l..n] {V{D,), E i) is an U-po with U = Dt and X U{ Y = X n Y.
Consequently, the Cartesian product {DO, C) of (V{Di), Q t), where i e [l..n],
is also an U-po. We call {DO, C.) the domain U-po associated with V.

As in in Subsection 2.2, for a scheme s := ii,..., i\ we denote by {DOs, C s)

the Cartesian product of the partial orders {V{Di:j), C »,-). where 3 e I1--']-
Note that DOs - V{Dil) x • • ■ x V{Dit). Because we want now to use con-

straints in our analysis and constraint are sets of tuples, we identify DOs with

the set
{Xi x • • • x Xt | XjC Di. for j G [1..1]}.

In this way we can write the elements of DOs as Cartesian products X± x ■ ■ • x Xt,
so as (specific) sets of Z-tuples, instead of as {Xi,..., Xi), and similarly with DO.

Note that because of the use of the inverse subset order D we have for X\ x

■ • • x Xi £ DOs and Yx x ■ • • x Yt € DOs

X1 x • • ■ x Xt C sYi x • • ■ x Yi iff Xi x • • • x Xt 2 Yt x • • • x Yx

{iftXiDYi forie [1..1]),

(i1x---xi,)us(y1x.--xy,)=(i1x.-xi,)n(71x---x y,)
{={x1nY1)x---x(x,nYl)).

Moreover, D\ x • • • x £>n is the least element of DO.
So far we have defined an U-po associated with a CSP. Next, we introduce

functions by means of which chaotic iterations will be generated. These functions
are associated with constraints. Constraints are arbitrary sets of fc-tuples for
some k, while the Q s order and the Us operation are defined only on Cartesian
products. So to define these functions we use the set theoretic counterparts D
and Pi of C s and Us which are defined on arbitrary sets.

Definition 11. Consider a sequence of domains D\,..., Dn and a scheme s on
n. By a domain reduction function for a constraint C with scheme s we mean a

function / on DOs such that for all D G DOs

- D3/(D),
- CnD = Cn/(D). n

46

The first condition states that / reduces the "current" domains associated
with the constraint C (so no solution to C is "gained"), while the second condi-
tion states that during this domain reduction process no solution to C is "lost".
In particular, the second condition implies that if C C D then C C /(D).

Note that for the partial order (DOs, C. s) a function / on DOs is inflationary
iff D D /(D) and / is monotonic iff it is monotonic w.r.t. the set inclusion.

Example 1. As a simple example of a domain reduction functions consider a
binary constraint C C Dx x D2. Define now the functions /i and f2 on DOit2 ■=

V{Di) x P{D2) as follows:

f1(XxY):=X'xY,

where X' = {a £ X | 3b £ Y (a, b) £ C}, and

f2(X xY):=Xx Y',

where Y' — {b £ Y \ 3a e X (a,b) £ C}. It is straightforward to check that /2

and f2 are indeed domain reduction functions. Further, these functions are mono-
tonic w.r.t. the set inclusion and idempotent. d

Take now a CSP V :— {Dx, ...,Dn;C) and a sequence of domains D'1:...,D'n

such that D\ C Di for i £ [l..n]. Consider a CSP V obtained from V by replacing
each domain D\ by D{ and by restricting each constraint in C to these new
domains. We say then that V is determined by V and D[X ... x D'n.

Consider now a CSP V := (D±, ...,£>„;C) and a domain reduction function
/ for a constraint C of C. Suppose that

/+(£>! x---xDn) = D[x---xD'r n>

where /+ is the canonic extension of / to DO defined in Subsection 2.2. We now
define f{V) to be the CSP determined by V and D[x ... x D'n. The following
observation holds.

Lemma 12. Consider a CSP V and a domain reduction function f. Then V

and f(V) are equivalent.

Proof. Suppose that D\,..., Dn are the domains of V and assume that / is a
domain reduction function for C with scheme i\,..., i\. Let

f(Dh x---xDil)=D'li x---xD'ir

Take now a solution d to V. Then d[ii,.. .,ii] £ C, so by the definition of /
also d[ix,..., ii] £ D[i x ■ • • x D'ir So d is also a solution to f(V). The converse
implication holds by the definition of a domain reduction function. D

When dealing with a specific CSP we have in general several domain re-
duction functions. To study their interaction we can use the Chaotic Iteration
Theorem 6 in conjunction with the above Note. After translating the relevant
notions into set theoretic terms we get the following direct consequence of these
results. (In this translation DOs corresponds to Ds and DO to D.)

47

Theorem 13 (Domain Reduction). Consider a CSP V := (Di,..., Dn;C).
Let F := {fi, ■ ■ ■, fk}, where each fi is a domain reduction function for some
constraint in C. Suppose that all functions fi are monotonic w.r.t. the set inclu-

sion. Then

— the limit of every chaotic iteration of F+ := {/+,.. .,f£} exists;
— this limit coincides with

oo

f]fi(D1x---xDn),
3=0

where the function f on DO is defined by:

/(D):=n/t(D),
i=l

— the CSP determined by V and this limit is equivalent to V. □

Informally, this theorem states that the order of the applications of the do-
main reduction functions does not matter, as long as none of them is indefinitely
neglected.

Consider now a CSP V and suppose that the domain U-po associated with
it satisfies the finite chain property. Then we can use the CI, CII, CIQ and
CIIQ algorithms to compute the limits of the chaotic iterations considered in
the above Theorem. We shall explain in Subsection 4.1 how by instantiating
these algorithms with specific domain reduction functions we obtain specific
algorithms considered in the literature. In each case, by virtue of Theorem 9 and
its reformulations for the CII, CIQ and CIIQ algorithms, we can conclude that
these algorithms compute the greatest common fixpoint w.r.t. the set inclusion
of the functions from F+.

3.2 Constraint Reduction

We now study the constraint reduction process. As in the previous subsection
we begin by associating with each CSP an U-po that "focuses" on the constraint
reduction.

Consider a CSP V := (V; d,..., Ck). Let for X,YCd

X QiY iSXDY.

Let now (CO, C) be the Cartesian product of the U-po's (V(Ci), C. t), where
i 6 [l..n]. We call (CO, C.) the constraint U-po associated with V.

Following the notation of the previous subsection, for a scheme s :— i\,..., %i
on k we denote by (COs, C. s) the Cartesian product of the partial orders
(ViCij), C ,;.), where j G [1../], and identify COs with the set

{XjX-.-x^l Xj<Zd3 for j€[l..Z]},

and similarly with CO.
Next, we define functions that will be used to generate chaotic iterations.

Definition 14. Consider a CSP (£>; d,..., d) and a scheme s on k. By a con-
straint reduction function with scheme s we mean a function g on COs such that

for all C £ COs

- CDj(C),
- SoZ(C) = SoZ(s(C)). D

C is here a Cartesian product of some constraints and in the second condition
and in the example below we identified it with the sequence of these constraints,
and similarly with g(C). The first condition states that g reduces the constraints
Ci, where i is an element of s, while the second condition states that during this
constraint reduction process no solution to C is lost.

Example 2. As an example of a constraint reduction function consider the fol-
lowing function g on some COs:

g(CxC) :=C"xC,

where C" = nt{Sol{C, C)) and t is the scheme of C. To see that g is indeed a
constraint reduction function, first note that by the definition of Sol we have
C" C C, so C x C D g(C x C). Next, note that for d e Sol(C, C) we have d[t] G
nt(Sol(C, C)), so d G Sol(C, C). This implies that Sol{C, C) = Sol(g{C, C)).

Note also that g is monotonic w.r.t. the set inclusion and idempotent. D

Example 3. As another example that is of importance for the discussion in Sub-
section 4.1 consider a CSP (£>i, ...,£>„; C) of binary constraints such that for
each scheme i,j on n there is exactly one constraint, which we denote by d,j-

Define now for each scheme k,l,m on n the following function g%t on COs,
where s is the triple corresponding to the positions of the constraints Ck,i, Ck,m

and Cmj in C:

5£)(xM x xKm x xm>l) := (xktl n nk:l(xkim x xro,,)) x xKm x xm,z.

To prove that the functions g™{ are constraint reduction functions it suffices
to note that by simple properties of the X operation and by Note 2(i) we have

xk,i n nk,i(xktm M xm>i) = nKl{xk,i M xk,m N xm,i)
— nkti(Soi(xkti,xktm,xmj)),

so these functions are special cases of the functions defined in Example 2. D

Take now a CSP V := (X>; d, ■ ■ -, Cfc) and a sequence of constraints C{,..., C'k

such that C; C d for t G [l..fe]. Let V := (2?; CJ,..., C'k). We say then that V
is determined by V and C[x ... x dk.

Consider now a CSP V := {V; d, ■ ■ ■, d) and a constraint reduction function
g with scheme s. Suppose that

g+(dx---xCk)=d1x---xdk,

49

where g+ is the canonic extension of g to CO defined in Subsection 2.2. We now
define

g(V):=(V;Ci,...,C'k).

We have the following observation.

Lemma 15. Consider a CSP V and a constraint reduction function g. Then V

and g(V) are equivalent.

Proof. Suppose that s is the scheme of the function g and let C be an element
of COs. C is a Cartesian product of some constraints. As before we identify it
with the sequence of these constraints. For some sequence of schemes s, C is
the s-sequence of the constraints of V.

Let now d be a solution to V. Then by Note 2(ii) we have d[{s)} £ Sol(C),
so by the definition of g also d[(s)] £ Sol(g(C)). Hence for every constraint
C" in g(C) with scheme s' we have d[s'] £ C" since d[(s)][s'] = d[s'\. So d is a
solution to g(V). The converse implication holds by the definition of a constraint
reduction function.

D
As in the case of the domain reduction we can now apply the results of

Section 2 to study the outcome of the constraint reduction process. To this
end it suffices to translate the relevant notions into set theoretic terms. (In this
translation COs corresponds to Ds and CO to D.) We get then the following
counterpart of the Domain Reduction Theorem 13.

Theoreml6 (Constraint Reduction). Consider a CSPV :— (V;Ci,.. .,Ck).
Let F := {gi,..., gk}, where each gi is a constraint reduction function. Suppose
that all functions gi are monotonic w.r.t. the set inclusion. Then

— the limit of every chaotic iteration of F+ :— {gf,..-,gk} exists;
— this limit coincides with

oo

f]gj(C1x---xCk),
3=0

where the function g on CO is defined by:

k

5(C) := fV(C).
»=i

— the CSP determined by V and this limit is equivalent to V. □

When the constraint U-po associated with a CSP V satisfied the finite chain
property, we can use the algorithms discussed in Subsection 2.2 to compute the
limits of the chaotic iterations considered in the above Theorem. We return to
this issue in Subsection 4.1. Also here, as in the previous subsection, we can
conclude by virtue of Theorem 9 that these algorithms compute the greatest
common fixpoint w.r.t. the set inclusion of the functions from F+. So the limit of

50

the constraint propagation process could be added to the collection of important
greatest fixpoints presented in Barwise and Moss (1996).

Next, we show how specific provably correct algorithms for achieving a local
consistency notion can be automatically derived. As it is difficult to define local

consistency formally, we illustrate the idea on an example.

Example 4. We consider here the notion of relational consistency proposed re-

cently in Dechter and van Beek (1997).
To define it need to introduce some auxiliary concepts first. Consider a CSP

(D1,...,Dn;C). Take a scheme t := ii,...,ii on n. We call d e Dh x • • • x Dit a
tuple of type t and say that d is consistent if for every subsequence s of t and a
constraint C e C with scheme s we have d[s] G C.

A CSP V is called relationally m-consistent if for any s-sequence C1;..., Cm

of different constraints of V and a subsequence t of (s), every consistent tuple of
type t belongs to IIt(d M • • • M Cm).

As the first step we characterize this notion as a common fixed point of a
finite set of monotonic and inflationary functions.

Consider a CSP V := {Du ..., Dn; Cu ..., Ck). Assume for simplicity that
for every scheme s on n there is a unique constraint with scheme s. Each CSP
is trivially equivalent with such a CSP — it suffices to replace for each scheme
s the set of constraints with scheme s by their intersection and to introduce
"universal constraints" for the schemes without a constraint.

Consider now a scheme ii,...,im on k. Let s be such that C^,.. .,Cjm is
an s-sequence of constraints and let tbea subsequence of (s). Further, let Gio

be the constraint of V with scheme t. Put s := ((io), (h, ■ ■ -, im))- (Note that
if t0 does not appear in ilt..., im then s = i0, i±, ...,im and otherwise s is the
permutation of ilt..., im obtained by transposing iQ with the first element.)

Define now a function gs on COs by

gs(Cx C) :=(CnZZt(XC)) x C.

It is easy to see that if for each function gs of the above form we have

g+(d x ■ • • x Ck) = d x ■ • • x Cfc,

then V is relationally m-consistent. (The converse implication is in general not
true). Note that the functions gs are inflationary and monotonic w.r.t. the inverse
subset order D and also idempotent.

Consequently, by virtue of Theorem 9 reformulated for the CII algorithm,
we can now use the CII algorithm to achieve relational m-consistency for a CSP
with finite domains by "feeding" into this algorithm the above defined functions.
The obtained algorithm improves upon the (authors' terminology) brute force
algorithm proposed in Dechter and van Beek (1997) since the useless constraint
modifications are avoided.

As in Example 3, by simple properties of the M operation and by Note 2(i)
we have

c n 7it(M c) = nt(c M (M c)) = nt{soi(c, c)).

51

Hence, by virtue of Example 2, the functions gs are all constraint reduction
functions. Consequently, by the Constraint Reduction Theorem 16 we conclude
that the CSP computed by the just discussed algorithm is equivalent to the

original one.

It is perhaps worthwhile to note that the domain reduction process can be
seen as a special case of the constraint reduction process. To this end it suffices
to introduce unary constraints each of which coincides with a different domain
of the given CSP and replace the reduction of the domains by the reduction of
these unary constraints followed by the restriction of the other constraints to
these reduced unary constraints. So the domain reduction functions can be seen
as special cases of the constraint reduction functions.

We decided to consider the domain reduction process separately, because, as
we shall see in the next section, it has been extensively studied, especially in
the context of CSP's with binary constraints and of interval arithmetic. Con-
sequently, it is useful to analyze it directly, without any introduction of new

constraints.

4 Concluding Remarks

4.1 Related Work

It is illuminating see how the attempts of finding general principles behind the
constraint propagation algorithms repeatedly reoccur in the literature on con-
straint satisfaction problems spanning the last twenty years.

As already stated in the introduction, the aim of the constraint propagation
algorithms is most often to achieve some form of local consistency. As a result
these algorithms are usually called in the literature "consistency algorithms" or
"consistency enforcing algorithms".

To start with, in Mackworth (1977) a unified framework was proposed to ex-
plain the so-called arc- and path-consistency algorithms. Also the arc-consistency
algorithm AC-3 and the path-consistency algorithm PC-2 were proposed and the
latter algorithm was obtained from the former one by pursuing the analogy

between both notions of consistency.
The AC-3 consistency algorithm can be obtained by instantiating the CII

algorithm with the domain reduction functions defined in Example 1, whereas
the PC-2 algorithm can be obtained by instantating this algorithm with the
domain reduction functions defined in Example 3.

In Dechter and Pearl (1988) the notions of arc- and path-consistency were
modified to directional arc- and path-consistency, versions that take into account
some total order <d of the domain indices, and the algorithms for achieving
these forms of consistency were presented. These algorithms can be obtained as
instances of the CIQ algorithm as follows.

For the case of directional arc-consistency the queue in this algorithm should
be instantiated with the set of the domain reduction functions fx of Example 1
for the constraints the scheme of which is consistent with the <Q order. These

52

functions should be ordered in such a way that the domain reduction functions
for the constraint with the <d-large second index appear earlier. This order
has the effect that the enqueue operation within the if-then-fi statement has
always the empty set as the first argument, so it can be deleted. Consequently,
the algorithm can be rewritten as a simple for loop that processes the selected
domain reduction functions /i in the appropriate order.

For the case of directional path-consistency the constraint reduction functions
g^ should be used only for k,l <dm and the queue in the CIQ algorithm should
be initialized in such a way that the functions g^{ with the <Q-large m index
appear earlier. As in the case of directional arc-consistency this algorithm can

be rewritten as a simple for loop.

In Montanari and Rossi (1991) a general study of constraint propagation was
undertaken by defining the notion of a relaxation rule and by proposing a general
relaxation algorithm. The notion of a relaxation rule coincides with our notion
of a constraint propagation function instantiated with the functions defined in
Example 2 and the general relaxation algorithm is the corresponding instance
of our CI algorithm.

In Montanari and Rossi (1991) it was also shown that the notions of arc-
consistency and path-consistency can be defined by means of relaxation rules
and that as a result arc-consistency and path-consistency algorithms can be
obtained by instantiating with these rules their general relaxation algorithm.

Van Hentenryck, Deville and Teng (1992) presented a generic arc consistency
algorithm, called AC-5, that can be specialized to the known arc-consistency
algorithms AC-3 and AC-4 and also to new arc-consistency algorithms for specific

classes of constraints.
In Benhamou, McAllester and Hentenryck (1994) and Benhamou and Older

(1997) specific functions, called narrowing functions, were associated with con-
straints in the context of interval arithmetic for reals and some properties of
them were established that in our terminology mean that these are idempo-
tent domain reduction functions. As a consequence the algorithms proposed in
these papers, called respectively a fixpoint algorithm and a narrowing algorithm,
become respectively the instances of our CIIQ algorithm and CII algorithm.

The importance of fairness for the study of constraint propagation was no-
ticed in Montanari and Rossi (1991), while the relevance of the chaotic iteration
was independently noticed in Fages, Fowler and Sola (1996) and van Emden
(1996). In the latter paper the generic chaotic iteration algorithm CII was formu-
lated and proved correct for the domain reduction functions defined in Benhamou
and Older (1997) and it was shown that the limit of the constraint propagation
process for these functions is their greatest common fixpoint.

The idea that the meaning of a constraint is a function (on a constraint store)
with some algebraic properties was put forward in Saraswat, Rinard and Panan-
gaden (1991), where the properties of being inflationary (called there extensive),
monotonic and idempotent were singled out.

It is unrealistic to expect that all constraint propagation algorithms presented
in the literature can be expressed as direct instances of the algorithms discussed

53

in this paper. For example the AC-4 algorithm of Mohr and Henderson (1986)
associates with each domain element some information concerning its links with
the elements of other domains. As a result this algorithm operates on some
"enhancement" of the original domains.

We noted, however, that even in this case the analysis here provided can
be used to explain this algorithm. To this end one needs to reason about the
translation of the original CSP to a CSP defined on the enhanced domains. This
analysis allows us to reduce the proof of the correctness of this algorithm to the
proof that specific functions are monotonic domain reduction functions.

4.2 Idempotence

In each of the above papers the (often implicitly) considered semantic, domain
or constraint reduction functions are idempotent, so we now comment on the

relevance of this assumption.
To start with, in our study Apt (1997) of linear constraints on finite integer

intervals we found that natural domain reduction functions are not idempotent.
Secondly, as noticed in Older and Vellino (1993), another paper on constraints
for interval arithmetic on reals, we can always replace each non-idempotent in-
flationary function / by

r(x):=\Jf(x).
i=l

The following is now straightforward to check.

Note 17. Consider an U-po (D, C) and a function f on D.

— If f is inflationary, then so is f*.
— If f is monotonic, then so f*.
— If f is inflationary and (D, C.) has the finite chain property, then f* is

idempotent.
— If f is idempotent, then f* = f.
— Suppose that (D, C) has the finite chain property. Let F :— {/i,..., fk} be

a set of inflationary, monotonic functions on D and let F* := {/x*,..., /£}.
Then the limits of all chaotic iterations of F and of F* exist and always

coincide. n

Consequently, under the conditions of the last item, every chaotic iteration
of F* can be modeled by a chaotic iteration of F, though not conversely. In
fact, the use of F* instead of F can lead to a more limited number of chaotic
iterations. This may mean that in some specific algorithms some more efficient
chaotic iterations of F cannot be realized when using F*.

4.3 Semi-chaotic Iterations

The results of this paper can be slightly strengthened by considering the following
generalization of the chaotic iterations.

54

Definition 18. Consider a set of functions F :— {/i,..., fk) on a domain D.

- We say that an element i 6 [l..fc] is eventually irrelevant for an iteration

do,di,... of F if 3m > 0 Vj > m fi{dj) = dj.
- An iteration of F is called semi-chaotic if every i £ [l..k] that appears finitely

often in its run is eventually irrelevant for this iteration. □

So every chaotic iteration is semi-chaotic but not conversely. Now, in all the
results of this paper chaotic iterations can be replaced by semi-chaotic iterations.
The reason is that, as shown in the proof of Theorem 10, every semi-chaotic
iteration f can be transformed into a chaotic iteration f with the same limit
and such that £ eventually stabilizes at some d iff f' does. The proof of Theorem
10 also shows that every infinite execution of the CIQ algorithm is associated
with a semi-chaotic iteration of F+.

However, the property of being a semi-chaotic iteration cannot be determined
from the run only. So, for simplicity, we decided to limit our exposition to chaotic

iterations.

Acknowledgements

This work was prompted by our study of van Emden (1996). Rina Dechter
helped us to clarify (most of) our initial confusion about constraint propagation.
Discussions with Eric Monfroy helped us to better articulate various points put
forward here. Nissim Francez provided us with helpful comments.

References

Apt, K. (1997). A proof theoretic view of constraint programming, Technical report,
CWI, Amsterdam. In preparation.

Barwise, J. and Moss, L. (1996). Vicious Circles: on the mathematics of circular phe-
nomena, CSLI-Lecture Notes, Center for the Study of Language and Information,
Stanford, California.

Benhamou, F. and Older, W. (1997). Applying interval arithmetic to real, integer and
Boolean constraints, Journal of Logic Programming. Technical report 1994. To
appear.

Benhamou, F., McAllester, D. and Hentenryck, P. V. (1994). CLP (intervals) revisited,
in M. Bruynooghe (ed.), Proceedings of the 1994 International Logic Programming
Symposium, pp. 124-138.

Chazan, D. and Miranker, W. (1969). Chaotic relaxation, Linear Algebra and its
Applications 2: 199-222.

Cousot, P. and Cousot, R. (1977). Automatic synthesis of optimal invariant asser-
tions: mathematical foundations, ACM Symposium on Artificial Intelligence and
Programming Languages, SIGPLAN Notices 12 (8), pp. 1-12.

Dechter, R. and Pearl, J. (1988). Network-based heuristics for constraint-satisfaction
problems, Artificial Intelligence 34(1): 1-38.

Dechter, R. and van Beek, P. (1997). Local and global relational consistency, Theoret-
ical Computer Science 173(1): 283-308.

55

Pages, F., Fowler, J. and Sola, T. (1996). Experiments in reactive constraint, logic
programming, Technical report, DMI - LIENS CNRS, Ecole Normale Superieure.
Submitted for publication.

Mackworth, A. (1977). Consistency in networks of relations, Artificial Intelligence

8(1): 99-118.
Mohr, R. and Henderson, T. (1986). Arc-consistency and path-consistency revisited,

Artificial Intelligence 28: 225-233.
Montanari, U. and Rossi, F. (1991). Constraint relaxation may be perfect, Artificial

Intelligence 48: 143-170.
Older, W. and Vellino, A. (1993). Constraint arithmetic on real intervals, in

F. Benhamou and A. Colmerauer (eds), Constraint Logic Programming: Selected
Research, MIT Press, pp. 175-195.

Saraswat, V., Rinard, M. and Panangaden, P. (1991). Semantic foundations of concur-
rent constraint programming, Proceedings of the Eighteenth Annual ACM Sympo-
sium, on Principles of Programming Languages (POPL'91), pp. 333-352.

van Emden, M. H. (1996). Value constraints in the CLP scheme, Technical Report
CS-R9603, CWI, Amsterdam. To appear in the Constraints journal.

Van Hentenryck, P., Deville, Y. and Teng, C. (1992). A generic arc-consistency algo-
rithm and its specializations, Artificial Intelligence 57(2-3): 291-321.

DNA2DNA Computations: A Potential "Killer App"?

Laura F. Landweber1

Department of Ecology and Evolutionary Biology

Princeton University

Richard J. Lipton2

Department of Computer Science

Princeton University

and

Bellcore Research

1. Introduction

Ever since Adleman's seminal paper [1] there has been a flood of ideas on how one could use
DNA to compute. Lipton was the first to show that DNA could be used to solve more than
just a variation of the famous travelling salesman problem [12]. Since then there have been
many other papers on using DNA to solve various computational problems. [3,5,4,6,7,15]

At the top level all these papers are similar: they all attempt to use DNA computation
to solve some large search problem. Since a liter of water can hold 1022 bases of DNA, there
is the possibility that one can outperform electronic machines.

However, this is currently problematic. There are several reasons for this. First, elec-
tronic machines are very fast; moreover, they are getting faster every day. Second, there are
many models of how to do DNA computations. Yet, it is unclear if any of these models will
be practical. The problem is mainly that DNA technology is not perfect. DNA operations
are not error free.

Finally, there is the lack of a killer app. A killer app is an application that fits the DNA
model; cannot be solved by the current or even future electronic machines; and is important.
The latter is critical: to be a killer app the problem must be one for which people are willing
to "pay money" for solutions. To date there are no viable candidates for the killer app.

We propose a new way to use DNA computations. This way allows us to use DNA com-
putations to solve important and potentially killer applications. The potential applications
include:

(1) DNA sequencing;
(2) DNA fingerprinting;
(3) DNA mutation detection or population screening;
(4) Other fundamental operations on DNA.

The key new idea is to use DNA computation to operate on unknown pieces of DNA. This is
a fundamental change in the way that we use DNA computation. We call these DNA2DNA
computations: DNA to DNA computations. This idea was first proposed in [8] and called
'"analog" DNA computations there.

The key idea is the following. Suppose that one has a test tube that contains multiple
copies of some unknown strand X of DNA. By unknown we mean that we do not known

1 a Burroughs Wellcome Fund New Investigator in Molecular Parasitology.
2 Supported in part by NSF CCR-9633103 and AFOSR F49620-97-0190.

57

the sequence of the strand. Suppose further that we wish to compute some property of X,
i.e. for some function /() we wish to obtain the value of f{X). The current way to do this
is: (i) sequence the strand X in the laboratory; (ii) then, determine the value of f(X) on a
PC. The difficulty with this method is that it requires the sequencing of the strand X.

Our new idea is to avoid the expensive step of sequencing the strand X. In particular,
we plan to operate as follows: We will add to the test tube certain known strands of DNA
and use these to perform a DNA computation on X. The result of this computation will be

the answer f(X).
The advantage of this method is that it avoids the sequencing step. Our hope is that

this direct method of computing with unknown strands of DNA could be the key to finding

"killer app's".
There is one huge advantage to our approach: since the problems we are solving are

not digital, there is no way that electronic machines can compete. It's not that DNA
based computation is faster, but that there is no way for electronic computers to do the
the problems at all. One way to say this dramatically is that there is no place on a PC to
"pour" in the unknown test tube of DNA. Without input, the problem cannot be solved at

all on a PC.
Our method is based on a new transformation that allows us to "encode" an unknown

piece of DNA. All of the DNA computations to date use special redundant codes. It is critical
that the DNA be redundantly encoded. Without such a coding the computations cannot
be performed. Indeed the main contributions of [1,12] were the construction of methods for

creating and managing such codes.
Of course naturally occuring DNA is not coded in this redundant manner. This is a

major roadblock: without codes the methods of DNA computation do not apply. However,
we propose a method that allows us to transform DNA. This transformation causes the
DNA to be re-coded into any redundant code that we choose.

There are many advantages to this re-coding. Mainly, it is now possible to apply all of
the "tricks" of DNA computation to problems that involve unknown DNA. Since the DNA
is coded the way that we choose we can operate on it much more freely. For example, one
important application of this method is the following: (Note, the exact theorem statements

are in section 3.)

Theorem: Suppose that X and Y are unknown strands in distinct test tubes. Then, it
zs possible to check whether or not X = Y in 0(log(n)) bio-steps where both strands are at

most length n.
Note, we mean that we test exactly whether or not X and Y are equal: the method will

discover if they differ in even one base. Further, this is only a simple example of a more

general type of theorem:

Theorem: Suppose that X(1\ . . ., X(i) are unknown strands of length at most n that
are in distinct test tubes. Then, in 0(log(n)) bio-steps we can compute the value of
F{X(i\ ..., Xlk)) where F{) is an NC1 function.

It is important to point out that our results avoid one of the key difficulties that face
"classic" DNA computations. By "classic" we mean DNA computations that attempt to do
purely digitial problems. The advantage is that our results are much more error tolerant.
The reason is that in classic DNA computations there is often "one" strand that the exper-
imenter seeks to find. In our new type of DNA computations, there are many many copies.
Thus, small error rates or partial rates of completion for some of the operations should not

be a problem.
We prove these results by combining our re-coding methods with a generalization of

the pretty simulation method of Ogihara and Ray [13]. Other methods could be used but
their method is perfect for our needs. Note, in [2] there is a criticism of [13] for using
an unreaslistic model. We feel that this criticism is interesting but misses the essential
point. They feel that the cost of the pour operation is not correctly included in [13]. The

58

answer seems to be two-fold: First, even if the methods are linear in "pour" it's so fast that
essentially the time is still logarithmic. Second, one can imagine using robots so that the
pours can actually be done all at once.

2. Model

In this section we introduce our model of DNA computations. It is related to, but fundamen-
tally different from, the models used in papers on classic DNA computations [3,5,4,6,7,15].
The key point is that in DNA2DNA computations the operations need not work perfectly.
For example, we will only require assumptions about how selective DNA is when single
strands anneal/ligate together. This is a major advantage of DNA2DNA computations. Of
course the hope is that this weakening in the required models will make DNA2DNA com-
putations really work in the laboratory. (Note, we are just beginning experiments in Laura
Landweber's laboratory at Princeton University that we hope will show that this is correct.)

All our computations are described in terms of operations that are performed on test
tubes. The state of a test tube is, thus, a critical concept. At any time a test tube will contain
a multi-set of different pieces of DNA. Some pieces will be single strands, some double strands
and others more complex structures. Clearly, in order to describe mathematically such a
state, we need to supply the following information:

(1) The types of pieces of DNA that are in the test tube;
(2) The total number of pieces that are in the test tube;
(.?) The number of pieces of each type that are in the test tube.

We will use string terminolgy to describe single strands of DNA. More precisely, we will
identify strings S over the alphabet {A, T, C, G} with the single strand of DNA of the form:

O J\ , . . . , JJI o .

Also by the Watson-Crick complement of 5 we will mean the string that is the reverse of S
with each element changed into its complement, i.e. "A" with "T" and "C" with "G".

Suppose that a test tube T only contains single strands of DNA: note, this is an important
special case. Clearly, its mathematical definition requires that we supply the following:

(1) A collection of that correspond to the single strands in T, i.e. S^\ ..., S^;
(2) A integer M that is the total number of strands in T;
(3) A collection of frequencies qi,..., qk so that the ith strand S^ occurs <j;M times

where qt + .. . + q^ = 1.
One of the key insights about DNA2DNA computation is that we can simplify this definition:
we do not need to supply M. That is we need not worry about the exact number of strands
that are in the test tube. We need only to keep track of the frequency of each strand.

This is an important point about the difference between some classic DNA computations
and DNA2DNA computations. In classic computations the number of types of strands k is
the same order of magnitude as the total number of strands M. This is because in classic
computations each strand is performing a separate computation: we need to have both k
and M as large as possible.

On the other hand, in DNA2DNA computations k will often be relatively small. For
example, k = 1, 000 and M — 1015 are quite reasonable parameters. Since M/k is so large we
can essentially ignore the exact value of M. Of course it is critical for all DNA computations
that there be enough material available to make the operations feasible. Note, if in some
situation M became too small, then a standard "trick" is to use PCR to increase the number
of total strands and thus restore M to a large enough value.

In summary, for the rest of the paper we will only supply the frequencies of each piece not
the total number of pieces in describing a test tube. A common situation is the following:

59

Say that a test tube T contains S{i\ . . ., S(k) in equal amounts provided T contains the
same number of copies of each the given single strands of DNA.

Now let us turn to consider the class of operations that we require: (Each is a bw-step

in our computations.)
(1) Cut. This operation cuts or cleaves double strands of DNA at a certain pattern.

This is done by using a restriction enzyme.
(2) Gel Separate. This operation uses denaturing polyacrylamidegel electrophoresis

to separate DNA molecules by length.
(3) Anneal. This operation allows single strands to form double strands based on

Watson-Crick pairing, i.e. "A" with "T" and "C" with "G".
As stated earlier we do not assume that each operation works perfectly. Let us now discuss
the exact error model that we assume. Let r > 0 be a fixed small constant: we expect that
it will be smaller than lfT3. We will use r to bound the error rate of all the operations
that we perform. Note, we really have a collection of r's: one for each operation. However,
to avoid statements that are overly complex we will lump all the error rates together. Of
course, one can in principle unravel this and get the exact dependence on each error rate, if

one needs finer resolution. .
Now let us turn to discuss the error rates of each type of operation. A cut can fail in

two basic ways. First, a pattern that should be cut may not be cut. Second, some place
that does not match the pattern may be incorrectly cut. We assume that at least 1/2 of
the correct sites are cut; we assume that at most r of the incorrect ones are cut. Note,
the action of most restriction enzymes are usually stated in terms of how long they take to
cut 1/2 of the population. One can increase this amount by either adding more enzyme or

increasing the time of incubation.
Next let us discuss the separation of DNA by length. As in other papers we will arrange

things so that no separation is ever required to separate strands that are too close m length.
Further, we will arrange it so that the lengths are quite short. Gel methods work best for
very short lengths. For lengths below several hundred one can tell i from i+ 1. We will
assume that at least 1/2 of the strands of the given length are correctly extracted; we also
assume that at most r strands of the wrong length are also extracted. Note, this means that
we do not assume that strands are not lost in performing the gel. As long as approximately

1/2 of the correct strands are not lost the operation fits our model.
Finally, we must discuss the error model used for annealing. This is the most complex.

There are two cases. The first case is the "far-apart" case. In this case the single strands ei-
ther exactly Watson-Crick bond or are such that they agree in at most 1/4 of their positions.
Furthermore we assume that the length of the match is above a fixed threshold. In this case
we assume that at least 1/2 of the correct pairs form; we assume that effectively none of the
incorrect ones form. Note, that we are implicitly asssuming that there are enough of the
DNA strands for these reactions to actually take place. However, we have already stated

that there will always be "enough" material.
The second case is the "near" case. In this case, the correct and incorrect strands agree

in more than 1/4 of their positions. Now we can no longer assume that incorrect pairs will
not form. For example, if two strands a and ß are Watson-Crick complements except for
one position, then they will likely bind each other. This is even more likely if the one place
they differ is at the end. In this case they will bind almost as well as a perfectly matched
pair. Thus, in this case we cannot assume that the rates of formation are vastly different

for the correct and the incorrect case.
In this case we make the following weak assumption. We assume only that the rate

or probability for a perfect match is strictly bigger than that of a partial match. This is
themodynamically reasonable: More matches will be better. We make no assumption about
the exact difference. However, it is important to make a small assumption that the gap is

at least 8 > 0 for a fixed small value of 8.
In summary, the error model is as follows:

60

Operation Correct Incorrect

cut 1/2 T

gel separate 1/2 T

anneal far-apart 1/2 0
anneal near Pi Vl

where all that is claimed is that in each case, p\ is strictly larger than pi by an amount that
is at least S. This is analogous to a selection coefficient. The big surprise, perhaps, is that
we can assume so little about annealing accuracy in the near case. It is unclear that such a
weak assumption is enough to get any results. However, it turns out that it is enough: how
is the subject of the next section.

3. Re-Coding of Unknown DNA

In this section we will show how to re-code an unknown strand of DNA X by one that is
coded as we wish. Suppose that we have a test tube that contains X. We must show how to
create a new test tube that contains a re-coded version of the strand X. We will do this in
two stages. Since our operations are only approximate we will not be able to do this exactly.
Rather, we will be able to construct a test tube that "approximates" the desired one.

Definition: Let test tube T contain the single strands S^\...,S^k^ with frequencies
3i,..., g* and let T" contain S^\ ..., S^ with frequencies q[,...,q'k. Then, say that T

£-approximates T" provided J2i=i I?» — l'i\ < £-
Next a string definition:

Definition: A string a is in the string S provided a occurs as a consecutive substring of
S, i.e. that for some i,

a = Si,.. .,Si+i

where / is the length of the string a. A string a is in the strand X provided a is in X.
There are two "tricks" that allow us to improve the quality of our basic operations. The

first is that we can repeat a length separation multiple times. Clearly, less "correct" DNA
is selected but also less "incorrect" DNA gets by. For example, the following is useful:

Lemma 1: Suppose that test tube T contains equal amounts of S^\ ■ ■., S^ where each
string is a different length. Then, for any e > 0 and each i we can in logl/T(l/e) bio-steps

construct a test tube that is an e-approximation to the test tube that only contains S^.
We do not know in general how to get a similar lemma for cuts. Repeating a cut, for

example, will cause more correct material to be cut but will also cut more incorrect material.
However, there is a very important case where we can essentially do this. Suppose that we
have a test tube T and we plan to first apply a cut step and then a separation step. If all
the pieces from the cut have the same length then we can apply Lemma 1 after the cut.
The effect of this will be that incorrectly cut material will be filtered out. In a sense we
have made the cut appear to have an error rate of e rather than r.

61

Theorem 1: Suppose that a test tube contains the unknown strand X. Also let I = 0(log(n))
and let /() be a function that is defined on length I strings. Then, for any e > 0 in
0(log(n) + log(l/e)) bio-steps we can create a test tube V that is an (-approximation to
the test tube that contains in equal amounts the strands thai correspond to f(a) where a

ranges over the length I consecutive substrings of X.
Thus, we can go from a test tube that contains one string to another that contains re-

coded versions of all the consecutive pieces of X. This is not enough but is an important
first step. We describe the complete method elsewhere [8]. (Here we will only sketch the
proofs of the thorems. The full proofs will be in the final paper.)

Proof of Theorem 1: Recall that T is a test tube that contains many copies of the strand
X. Our plan is to add to this test tube additional pieces of DNA. These will be from a
set we call the probe set. In particular, assume that we have already created the following
probe set in another test tube. The probe set will contain for each string a of length /, the
strand that corresponds to the Watson-Crick complement of af(a). We then will anchor
the strands of the test tube T to a surface of another test tube V. Then, add the probe set
and allow them to anneal. Now, wash off the excess. Next elute the bound probes from the
solid support. Then, allow them to re-attach. Repeat these steps, i.e. perform a molecular
selection procedure and call this collection of probes T".

The result is that V will contain those probes that survived the repeated washing steps.
We claim that these will be almost totally the correct ones, i.e. a probe af{a) that survives

will have with high probability a in X.
Let us calculate the survival probability in the correct and the incorrect case. In the

correct case the probability that a probe survives is p™ where m is the number of iterated
cycles of selection by binding; in the incorrect case it is p™. Here pi> P2 + 6.

Note, this assumes that only the a part of the probes are available for bonding. We can
easily arrange this in a number of ways. The simplest is to add additional material that
block the f(a) part of the probes. We assume that this is done. See [8] for details.

Since p2 is bounded below px for m = 0(log(n) + log(e)) we will expect that the fraction
of incorrect probes that survive is at most e.

Finally, we can arrange the probes so that we can cut away the /(a) part. Then, provided
we have arranged that the length of the /(a) is much larger than /, a separation yields the
desired test tube of DNA. In order to the error rate low we use Lemma 1 to repeat the

separation. |
We plan now to use Theorem 1 to allow us to re-code the whole of the unknown X.

Note, however, that already the transformation is quite useful. For example, in [8] we show
how it can potentially be used to increase the power of "DNA chips". These chips attempt

to sequence unknown DNA via hybridization.
Our plan is to use Theorem 1 to build a special test tube of DNA. It will contain pieces

for each / consecutive substring of X. Moreover, these pieces will be able to anneal together
to form the encoding of X. The key is that this method will only work on "reasonable"
X's. The problem is that Theorem 1 only allows us to work with short parts of X. So that
we need X to have the property that it's determined by it's short pieces. If X is not, then
this approach cannot succeed.

Definition: Say that a string X is I-determined provided that X is uniquely reconstructible
from its / long subsequences.

Note, if A' is random then certainly for I about 2 log(n) all the / pieces are likely to be
unique; in this case A" is trivially /-determined. However, subsequences can be repeated and
A" can still be /-determined. This notion is already in use in DNA chips [16]. The method of
sequencing via hybridization only can work for sequences that are /-determined for a small
value of /. Also, we do not require that it is easy to find X from its pieces, only that it is

possible.

62

Let us fix two functions hr,(ß, i) and hn(,3, i) where ß is a string of length / — 1 and i is
from 1 ton. These functions are the "re-coding" or "hashing" functions that we will use.
We assume that they hash values so that distinct values in their range agree in at most 1/4
of their positions. Thus, one can think of them as assigning a hash to a length / — 1 string
and an index i.

Theorem 2: Suppose that T is a test tube with unknown DNA X that is l-determined for
I = 0(log(n)) where n is Us length. Suppose also that hi() and hn() are hash functions
as above. Then, for any e > 0 in O(log(n) + log(e)) bio-steps we can form the test tube T"
that is an (.-approximation to the test tube that contains in equal amounts the strands of the
form:

■■■hL{ß[i\,i)hR{ß\i],i+ !)■■■

where ß[i] is the ith substring of X of length /— 1.

Proof of Theorem 2: Again we plan only to sketch the proof. The basic idea is as follows.
Suppose that ß[i] is the / — 1 long substring of X starting at index i. Then, we plan to put
into a test tube the following pieces of DNA for each index i in the range 1 to n:

(J) if i is odd, hL(ß[i\,i)hR{ß[i+l},i+l);
(2) if i is even, the Watson-Crick complement of hi(ß[i], i)hji(ß[i + 1], i + 1).

We do this by appealing to Theorem 1.
If Theorem 1 were perfect, then because we are in the far-apart case only the correct

strands would form. The key is that as long as X is /-determined one can prove that no
other strand will form that is of the correct length. Then, we could finish up the proof by
using Lemma 1 to perform a length separation.

However, Theorem 1 only creates an approximation to the test that contains the pieces
according to (1) and (2). Thus, we need to take into account the fact that e of the test tube
is incorrect.

Consider how the pieces anneal and ligate together to form the one correct long strand
of the correct length. If there are errors sometimes incorrect pieces will asemble. Call these
"miracle steps". The point is that these occur but the frequency is at most e. Thus, the
expected fraction of ways to assemble 2 correct pieces together with a miracle step is at
most (")f. In general with / miracle steps it is (")f'- An easy calculation, then shows that
the fraction of incorrect strands allowing miracle steps is at most 0(ne). Thus, for i small
enough this will prove the theorem. |

Essentially, the proof of this theorem uses the same method Adleman used in his original
paper [1]. The main difference is that we do not place the pieces explicitly into the test
tube. Rather they are generated by the action of the molecular selection step of Theorem
1. Another kev difference is that we allow errors.

4. Applications

Once DNA is re-coded the full power of DNA computation can be used to solve many
interesting problems. In particular, we can now show that any reasonable computation can
be efficiently performed on unknown DNA.

Theorem 3: Suppose that X^1', X^ > are unknown strands of length at most n thai
are in distinct test tubes. Moreover, assume thai they are 0(\og{n))-deiermined. Then, in
0(log(n.)) bio-sieps we can compute the value of F(X^\ ..., X^) where FQ is an NCl

function.

63

Proof of Theorem 3: We will only sketch the main ideas. Our plan is to use Theorem
2 to construct a test tube that contains the information required by [13] to compute F.
Think of the input as kn bits and select a coding method as required by [13]. Then, by
Theorem 2 we can replace each of the test tubes by an approximation to one that contains
A'(j) as one long strand. Then, we cut this into n pieces: one for each of its bits. We pour
equal amounts of these k test tubes together. Then, we perform the operations as in [13] to
compute the value of F. A key point is that while we only have an approximation to the
test tube, [13] is sufficiently robust that it will still compute correctly. |

Note, we needed a new operation here: the ability to take test tubes Ti,...,Tk and
create a new test tube T that contains equal amounts of material from each test tube. We
claim that this is a reasonable operation that can be done again with error rate at most r.

Corollary 4: Suppose that X and Y are unknown strands in distinct test tubes. Moreover
assume that they are 0(log(n))-determined. Then, it is possible to check whether or not

X = Y in 0(log(n)) bio-steps where both are at most length n.

5. Conclusions

Before discussing whether or not these results are practical, there is a generalization that
should be mentioned. The main one is the case of partially unknown DNA. In many in-
teresting situations the DNA in a test tube is not unknown. Rather we know that it is a
equal to a known X0 except for perhaps a few bases. This occurs in the case of mutation
detection, for example. In this case the same theorems of section 4 can apply. However,
now the probe set can be dramatically reduced in size. The full details of this will be in the

final paper.
There are a number of issues that must be solved before we can claim that these methods

are practical. We view them as the start of a new direction for DNA computation. We
believe that they should be viewed as an "existence" proof. That is our results are not
going directly into the laboratory. However, the idea of re-coding unknown DNA and then
directly computing with it, DNA2DNA computations, are potentially important.

Some of the practical issues are the following:
(1) How can we build the probe sets?
(2) Can we weaken the assumption on annealing in the far-apart case?
(.?) Can we weaken the assumption that the DNA is /-determined?

Clearly, one cannot use DNA synthesis machines directly to build large probe sets. At least
two interesting methods seem possible. For one, we may be able to use the same technology
that is used to create DNA chips. The micro-robotic methods used to create these chips
might be useful for generating our probe sets. For another, we may be able to exploit
the structure of the probe sets. The probe sets we need are very regular sets. Indeed the
following seems to be an important open problem: Given a set of strings what is the cost in

bio-steps to create a test that contains only those strings?
Second, an important question is how far can we weaken the assumption of how far-

apart strands anneal and ligate? One of the most important questions for much of DNA
computation is to better model annealing and ligation. Obviously, the more realistic we are
in modelling how strands mis-pair, the more practical our results will be. In particular, can
we prove Theorem 2 in the case where incorrect annealing/ligations occur but with a low

probability?
Finally, there is the problem of the assumption we made that the DNA is /-determined.

As stated earlier, random or even approximately random strings are / = 0(log(n))-determined.
However, there are two problems with this. First, the size of / may be logarithmic but too
large for practice. Second, real DNA is not random. Can the methods of Theorem 2 be
improved to handle real DNA? We are currently investigating these questions.

64

Acknowledgement: We thank Chris Dunworth for a number of comments about this paper. We also
like to thank Dan Boneh for his help in creating he original idea of "re-coding" DNA.

References

[I] Leonard M. Adleman. "Molecular Computation of Solution to Combinatorial Problems".

Science , 266:1021-1024, 1994.

[2] M. Amos, A. Gibbons, P. Dunne. "The Complexity and Viability of DNA Computations",
CTAG-97001.

[3] S. Roweis, E. Winfree, R. Burgoyne, N. Chelyapov, M. Goodman, P. Rothemund, L.
Adleman, "A Sticker Based Architecture for DNA Computation", draft 1996.

[4] E. Bach, A. Condon, E. Glaser and C. Tanguay, DNA Models and Algorithms for NP-
Complete Problems, Proceedings of the 11th Annual IEEE Conference on Computational
Complexity, 1996.

[5] D. Beaver. Molecular Computing. Penn State University Tech Report CSE-95-001.

[6] D. Boneh, C. Dunworth, R. Lipton, "Breaking DES Using a Molecular Computer",
Princeton CS Tech-Report number CS-TR-489-95.

[7] D. Boneh, C. Dunworth, R. Lipton, J. Sgall, "On the Computational Power of DNA",
CS-TR-499-95.

[8] D. Boneh, L. Landweber, R. Lipton. "Analog DNA Computations", unpublished manuscript,
July 1996.

[9] D. Boneh and R. Lipton, "Making DNA Computers Error Resistant", Princeton CS
Tech-Report CS-TR-491-95.

[10] R. Dramanac, "DNA sequence determination by hybridizationn: a strategy for efficient
large-scale sequencing", Science, 263, 596-596, 1994.

[II] R. Karp. C. Kenyon, and O. Waarts. "Error-resilent DNA computation". In Pro-
ceedings of the 7th ACM-SIAM Symposium on Discrete Algorithms, pages 458-467. ACM
Press/SIAM, 1996.

[12] Richard J. Lipton. "DNA Solution of Hard Computational Problems". Science , 268:542-
545, 1995.

[13] M. Ogihara and A. Ray. "Simulating Boolean Circuits on a DNA Computer", University
of Rochester Technical Report 631, August 1996.

[14] C. Papadimitrou, private communication, 1994.

[15] J. Reif, "Parallel Molecular Computation: Models and Simulations". Seventh Annual
ACM Symposium on Parallel Algorithms and Architectures, 1995.

[16] M. Waterman, Introduction to Computational Biology, Chapman Hall, 1995.

Tilings and Quasiperiodicity

Bruno Durand

LIP, ENS-Lyon CNRS, 46 Allee d'ltalie, 69364 Lyon Cedex 07, France.

Abstract. Quasiperiodic tilings are those tilings in which finite patterns
appear regularly in the plane. This property is a generalization of the
periodicity; it was introduced for representing quasicrystals and it is also
motivated by the study of quasiperiodic words. We prove that if a tile
set can tile the plane, then it can tile the plane quasiperiodically —a sur-
prising result that does not hold for periodicity. In order to compare the
regularity of quasiperiodic tilings, we introduce and study a quasiperi-
odicity function and prove that it is bounded by x i->- X + c if and only
if the considered tiling is periodic. At last, we prove that if a tile set can
be used to form a quasiperiodic tiling which is not periodic, then it can
form an uncountable number of tilings.

1 Introduction

Matching rules in tilings are local constraints. Thus, tile sets have been used
to model atomic positions in materials denned by short-range interactions. A
traditional approach is then to focus on the periodicity or quasiperiodicity prop-
erties of tilings that can be formed. This study has been revived by quasicrystals
(see [7] for an overview on the subject and pertinent references such as [9]). A
relation between the quasiperiodicity property and the notion of self-similarity

is established in [5].
In another hand, tilings can be considered as 2-dimensional infinite words

with a local constraint. For 1-dimensional structures, an overview of results
concerning infinite words can be found in [12]; bi-infinite words are studied
in [10, 11], and the problem of quasiperiodicity is strongly related to the study
of Sturmian words (see for instance [14] — references within).

We present in this paper three main results. First, a tile set that can tile
the plane can always be used to form a quasiperiodic tiling of the plane. It is
surprising because the same property for periodic tilings was conjectured by
Wang in 1961 (see [15]) and was proved false by his student Berger in 1966
(see [1]). Furthermore it has been proved that there exists a tile set that can tile
the plane but although possible tilings are non-recursive.

To prove this first result (in Section 3), we introduce a preorder between
tilings of the plane that we call an extraction preorder. We show that quasiperi-
odic tilings are exactly the minimal elements of this preorder.

We introduce also a function to measure the regularity of a quasiperiodic
tiling (Section 4). We prove that a quasiperiodic tiling is periodic if and only if
this function is of the form x >-> x + c. We present some open problems in this
field.

66

Our third main result (in Section 5) is that if a tile set can be used to form a.
strictly quasiperiodic tiling of the plane (i.e. non-periodic), then it can be used
to form an uncountable number of different tilings. A corollary of this result
is that if a tile set is aperiodic (i.e. cannot be used to form a periodic tiling)
then it can form an uncountable number of different tilings. To prove this we
are inspired by Dolbilin in [4] to introduce a tree representation for tile sets.

In our last Section, we present a topological approach of tilings. This ap-
proach allows us to give another point of view on our results of Section 3. We
have not proved yet any new result using topology but we think that this ap-

proach may be fruitful.
Due to the page limit, some proofs are ommited.

2 Preliminaries

A tile is a square with color sides. Colors belong to a finite set C. A tile set
T is a subset of C4. All tiles have the same (unit) size. A configuration is a
mapping from the plane 1? into the tile set. We call pattern a partial function
of finite domain from 1? into the tile set. We say that a pattern appears in a
configuration, if the configuration is an extension of the image of this pattern
by a shift. A tiling of the plane is a configuration in which all pairs of adjacent,
sides have the same color. Notice that it is not allowed to turn tiles.

The tiling problem consists of a tile set as input, and the question is whether
it can be used to tile the plane. It was formulated by Wang in 1961 [15] for
some logical purposes: a tile set can be reduced into some formula such that
the formula is satisfiable if and only if the tile set can tile the plane. This tiling
problem was conjectured decidable but was proved undecidable by Berger [1] in
1966; a simplified proof was given in 1971 by Robinson [13] (see also [2] for the
consequences in logics —Hilbert's well-known Entscheidungsproblem).

A periodic configuration is formed by the juxtaposition of copies of the same
rectangle. In other terms a periodic configuration should be periodic with respect
to both axes. Thus, a periodic tiling is a periodic configuration which is also a
tiling. This definition is justified by the following result of Wang: if a tile set can
form a tiling which is periodic in only one direction, then it can form a tiling
which is periodic. This property was one of the reasons why Wang conjectured
that the tiling problem was decidable. The other reason was that he did not
know any aperiodic tile sets, i.e. tile sets that can tile the plane but cannot form
any periodic tiling. If such aperiodic tile sets did not exist, then one could decide
the tiling problem by the following algorithm: try to tile a square of size n; if you
cannot, then halt and answer "no", else if you can tile the square periodically,
then halt and answer "yes", else add 1 to n and restart the same process. This
algorithm does not halt if and only if the considered tile set is aperiodic. In the
proof of Berger's theorem an aperiodic tile set is constructed with more than
20000 tiles, and in Robinson's simplified proof an aperiodic tile set containing
approximatively 50 tiles is constructed. The smallest known aperiodic tile set
contains 13 tiles and is due to Culik and Kari ([3, 8]).

67

The periodic tiling problem consists of a tile set as input, and the question
is whether it can be used to tile periodically the plane. It has been proved
undecidable by Gurevich and his student Koriakov in 1972 [6]. They furthermore
proved that you cannot recursively separate tile sets that cannot tile the plane
from tile sets that can tile the plane periodically. This result is very important
because in the previously mentioned reduction, tile sets that can tile the plane
periodically correspond to formula having a finite model. Such reductions are
called conservative in [2]. This book contains an appendix by ourself devoted to
the proof of all these undecidability results.

It is often convenient to use other notions of tiles sets that differ slightly from

above:

- one can use arrows on tiles; a tiling is considered as valid if and only if all
pairs of adjacent sides have the same color, and if, for each arrow of the
plane, its head points out on the tail of an arrow in the adjacent cell;

- one can replace squares by polygons of the plane and ask that two adjacent

polygons neither overlap nor create holes;
- one can put a color not only on the sides of the squares put also on their

corners; four corners in contact should have the same color;
- one could just assign a state (out of a finite set) to each considered cell and

fix a neighborhood. The matching condition is replaced by a relation between
states that should be verified in the neighborhood of each cell.

It is folklore that all these notions are equivalent: there exist transformations
of tile set from one notion into another that preserve existence of valid tilings,
periodicity or non-periodicity, quasiperiodicity, etc.

We could have considered tilings of the continuous plane M2 by polygons such
as in the well known Penrose tilings. This notion of tilings is not equivalent to
Wang tiles because the centers of the considered polygons may not have rational
coordinates. Anyways, for these tilings, our theorems 6 and 13 are still valid if
one consider that two tilings (or patterns) are equal if they can be superim-
posed using translations and rotations. The needed changes in the proofs are
straightforward. Our study of the regularity of quasiperiodic tilings (Section 4)
is slightly changed in this case: the size on a pattern — and thus quasiperiodicity
functions — should be define up to a multiplicative constant.

3 Extraction and quasiperiodicity

Before defining quasiperiodic tilings, we introduce a partial preorder relation be-
tween configurations. We call this preorder the "extraction" preorder and prove
that it has good properties with respect to the notion of tilings and —later—
those notions of periodicity and quasiperiodicity.

68

3.1 Extraction

Definition 1. Let us consider two configurations cx and c2. We say that c\ is
extracted from c2 if and only if any pattern that appears in cx also appears in
c2. We denote this relation by c\ -< c2.

Note that if c\ -< c2, and if c2 is a tiling of the plane, then c\ is also a tiling
of the plane. In other terms, a configuration which is extracted from a tiling is
also a tiling: if ci had a defect, then this defect should also appear in c2.

Let us now define what can be called a diagonal extraction process. We use

it in order to prove the following proposition.

Proposition 2. Assume that a sequence of patterns (M;);6H is given, that their
domains increase (dom(Mi) C dom(Mi+1)), and, that they cover the whole plane

([J dom(Mi) = 7L2). Then there exist a configuration d such that any pattern

that appears in d also appears in an infinite number of Mi's. If all the Mt 's have
been chosen in a configuration c, then the obtained configuration d is extracted
from c (d -< c). Furthermore, if c is a tiling, then d is also a tiling.

Note that this diagonal extraction process is not effective; it is not an algo-

rithmic procedure.

3.2 Quasiperiodicity

Definition3. A quasiperiodic configuration is a configuration c with the follow-
ing property: for all pattern M that appears in c, there exists an integer n such
that M appears in all n x n squares in c.

A periodic configuration is also quasiperiodic. We call strictly quasiperiodic
those configurations that are quasiperiodic but not periodic. The quasiperiodicity
is a regularity property: a patterns that appears somewhere in a quasiperiodic
configuration must appear regularly.

wt
1

m

«S
m

Ar m
W ■■■■■ m

H
« tm

m

Fig. 1. Quasiperiodic configurations

If a tiling (resp. a configuration) is not quasiperiodic, then there exists a
pattern in this tiling that can be associated to an infinite number of growing

69

squares that belong to the tiling, and in which the pattern does not appear. In
the sequel, we call such a pattern critical for the considered tiling (resp. for the
configuration).

Lemma 4. If pattern M is critical for a configuration c, then there exist at least
one configuration CM extracted from, c in which the pattern M does not appear.

Proof Consider an infinite sequence of patterns in where M does not appear.
Then make a diagonal extraction process to obtain a new configuration in which
M does not appear. As this configuration is obtained by a diagonal extraction,
then it is extracted from c.

Note that M is not critical in CM since it does not appear in it.

Propositions. Quasipemodic tilings (resp. configurations) are exactly the min-
imal elements for the extraction preorder. More formally, c is quasiperiodic if
and only if\/d d -< c => c -< d.

Proof. Consider a quasiperiodic configuration c. Assume that d -< c; let us prove
that c -< d i.e. that any pattern of c can be found in d. Let us consider a
pattern M in c; it can be found in all sufficiently large squares of c because of
the quasiperiodicity hypothesis. Let us consider a square of the same size in d.
As d -< c, it appears somewhere in c and thus contains M. Hence M appears in
d. The converse is straightforward using Lemma 4.

Theorem 6. If a tile set admits a tiling, then it admits a quasiperiodic tiling.

Before proving this theorem, we need to explain why the quasiperiodicity
property is compatible with the extraction preorder.

Lemma 7. If a pattern M is critical for a configuration c, and if c is extracted
from a configuration d, then M is also critical for d.

Proof Consider d such that c -< d. If M is critical for c, then it appears in c thus
in d. Furthermore, the infinite family of rectangles in which M does not appear
can be found in c hence in d. Thus M is critical for d.

Proof of Theorem. 6. Remember that a tile set is given, that it can be used to
tile the plane, and that our goal is to prove that one can form a quasiperiodic
tiling of the plane with it.

Let t be a tiling of the plane using this tile set. Assume that it is not quasiperi-
odic. It contains some critical patterns. Among them, we consider the smallest
pattern M\: it is not difficult to define a total ordering of patterns; first order
them by the size of their domain (more precisely by the size of the smallest
square that contains their domain) and then by alphabetic order. Also note that
the set of all patterns is countable. Using Lemma 4, we can construct a tiling
t-Mi -< t in which M\ does not appear. Because of Lemma 7, all critical patterns
of <M, (if any) are also critical for t.

70

lit Mi is not quasiperiodic, then we repeat this process: we choose the smallest

critical pattern M2 in IM^ and obtain %M2 -< %i -< t-
If after a finite number of steps of this process, we obtain a quasiperiodic

tiling, then the theorem is proved. Else, we obtain an infinite sequence of tilings
(tMk) such that ...tMk -< ...tMl -< t- Let us consider now a 1 x 1-square in
tMl, a 2 x 2-square in tMa, a k x fc-square in tMk--- With a diagonal extraction
process, we obtain a tiling d which is extracted from all the *Mfc's: d -< .. -tMk -<
...tMl -< t. If this tiling had a critical pattern, then this pattern should be
critical for all the tMk's. But in the pattern ordering, one of the patterns Mk is
greater than this critical patterns which contradicts our choice of the smallest
possible pattern. Hence d is quasiperiodic and d -< c.

Note that this proof is not constructive and uses the axiom of choice.

4 Quasiperiodicity functions

In this section, we introduce a quasiperiodicity function in order to measure the
regularity of a quasiperiodic tiling.

Let us consider a quasiperiodic configuration. Coming back to the definition
of quasiperiodicity (Definition 3 and Figure 1), it is natural to consider the func-
tion that maps a pattern to the smallest integer n such that the pattern appears
in all squares of size n x n. This function is not defined on those patterns that
do not appear in the tiling. Since in the sequel we are only interested in upper
bounds, we can restrict this function to square patterns —other patterns can be
included in larger squares. Thus we can consider the maximum of this function
on all patterns of size x: we map x to the minimal size of squares n in which
one can find all those patterns of size x that appear in the tiling. We call it the

quasiperiodicity {unction of the tiling.
Intuitively, if this function grows slowly to infinity, then the quasiperiodic

tiling is rather regular, but if it grows fast, then the regularity is weak. Using
this function we can characterize which quasiperiodic tilings are periodic:

Theorem 8. A quasiperiodic tiling is periodic if and only if its quasiperiodicity

function is bounded by x >->■ x + c where c is a constant.

Proof Let us consider a periodic tiling of period a. It is not difficult to prove
that its quasiperiodicity function is bounded by x H4 X + a. Such a situation is

illustrated by Figure 2.
Let us consider now a quasiperiodic tiling of function bounded byi^i + c.

Let us consider a pattern Px of size xx much larger that c. Let us consider a
window of size xx + c such that its left border is just 1 cell to the right of the
left border of Px (see Figure 3). A copy of Pi must appear in this window and
overlaps Pi. Note that there are at most c2 possible positions for this copy — it

is essential in the rest of the proof.
Now let us consider a pattern F2 of size x2 > xi containing Pi. Let us

consider a window of size x2 + c such that its left border is just 1 cell to the right

71

■I

gf .1

Fig. 2. The quasiperiodicity function of a periodic tiling

7tZX=XZ

ZSffi

Fig. 3. The converse

of the left border of P2. We find another copy of P2 and there are at most im-
possible translations from P2 to this copy. Note that such a translation is also
valid for P\ since P\ is embedded in P2.

By iteration, we prove that there exist a common translation vector for all
the (Pi)i£®. Thus the tiling is periodic in at least one dimension. We use the
same reasoning to find another periodicity vector: the difference is that instead
of shifting the window to the right, we shift it in a direction which is orthogonal
to the first periodicity vector. Note that this vector may not point exactly to the
right: we can just say that it more or less points to the right.

Quasiperiodicity functions of the form x i-> ex are not difficult to obtain. An
example is any of the quasiperiodic tilings that can be formed using Robinson's
aperiodic tile set (see [13] or [2] for the definition). Furthermore all these tilings
have exactly the same multiplicative constant. For Penrose tilings, the study is a
little more complicated since Penrose tiles cannot be placed on the vertices of 1?.
There are several ways to measure sizes of patterns: we can consider the distance
in E2 or the number of tiles included in it. These distances lead to different
quasiperiodicity functions but each of them is bounded by a multiplicative non-
zero constant times the other one. Anyway, all quasiperiodicity functions of
quasiperiodic Penrose tilings are of the form x >-4 ex.

Some important questions are still open: what are all quasiperiodicity func-
tions that can be observed in quasiperiodic tilings? By "observed" we mean that

72

all quasiperiodic tilings that can be formed with the considered tile set should be
of the desired form. Otherwise it is not difficult to construct such tilings with a
trivial tile set. Our last open problems are the following: is it possible to observe
non-recursive quasiperiodicity functions? If a quasiperiodicity function is non-
recursive and grows faster than any recursive function then the quasiperiodic

tiling is regular but this regularity cannot be measured...

5 Counting

In this section, we introduce two structures: trees associated to tile sets, and
trees associated to tilings of the plane; we are inspired by [4] to introduce them.
We then combine these structures with the quasiperiodicity notion in order to
prove the main result of this section (Theorem 13).

5.1 Trees

In the rest of this section, we only consider valid square patterns (the matching
condition for the edges of the tiles is true inside the pattern). We call ??-pattern
any 2n x In square pattern and we say that a (n + l)-pattern extends a n-pattern
if the n-pattern is the center of the (n + l)-pattern. In other words, the (n + 1)-
pattern is obtained from the n-pattern by putting tiles around its border. Note
that it is not always possible to do this because the matching condition must
be true in this new border. A unique 0-pattern exists for all tile sets: it is the

pattern with the empty domain.

Defiiiition9. The tree associated to a tile set r is the tree AT such that the
vertices of AT are n-patterns formed using the tiles of r; the root is the 0-
pattern; the children of a n-pattern node are those (n+ l)-patterns that extend

the n-pattern.

The tree such defined can be finite or infinite. All nodes are of finite degree but
these degrees may not be bounded. Note that an infinite path in AT corresponds
to a tiling of the plane with r. Conversely, let us consider a tiling of the plane
with r, and all n-patterns centered in the cell (0,0). These patterns correspond

to an infinite path in AT.
If the height of AT is not bounded, using König's infinity lemma one can

claim that it contains an infinite path and thus that it is possible to tile the

plane (see also Proposition 2).

Definition 10. Let c be a valid tiling for tile set r. The tree associated to the
tiling c is the tree Ac such that Ac is the restriction of AT containing all n-

patterns of AT that can be found in c.

All branches of the tree Ac are infinite since a pattern that appears some-
where in c can always be extended. Any infinite path of Ac corresponds to a
tiling that can be extracted from c. Thus we obtain the following proposition:

73

Proposition 11. Let c and d be two tilings of the plane with r. Ac C Ad tf and
only if c -< d. If c is quasiperiodic, and if there exist d such that Ad C Ac, then

Ad = Ac.

Another interpretation of the previous proposition is the following: one can
restrict Ac into some Ad if and only if c is not quasiperiodic.

5.2 Periodicity and quasiperiodicity

Let us now explain the difference between the tree associated to a periodic tiling
and the tree associated to a strictly quasiperiodic one. Let us call chain of a
tree an infinite path in the tree in which every node has exactly one child; the
starting node of the chain is a node of the tree (usually not the root).

Proposition 12. If c is quasiperiodic and if Ac contains a chain, then c is

periodic.

Proof Consider the starting node of the chain —more precisely, the pattern M
that is associated to it. There is no branching on this node and below hence if the
pattern M appears in c centered in (0,0) and in (i,j), then (i,j) is a periodicity
vector of c. As c is quasiperiodic, the pattern c appears in all sufficiently large
regions of c. Hence we can find 2 periodicity vectors for c of different directions;
c is periodic.

Now we can present our main theorem. Its proof is easy with the help of the

previous properties.

Theorem 13. // a tile set can be used to form, a strictly quasiperiodic tiling of
the plane, then it can form an uncountable number of different tilings.

First remark that this result is unchanged if we consider that two tilings that
can bo superimposed are equal. In this case, one can transform one of the tilings
into the other by a translation. The set of translations is countable hence the

theorem is still valid.

Proof. Let c be a strictly quasiperiodic tiling of the plane. Ac does not contain
any chain otherwise c would be periodic (Proposition 11 et 12). Thus Ac contains
an uncountable number of infinite paths. We can associate to each of these paths
a tiling if we consider that all the patterns of the path are centered in the origin.
Two different paths are associated to two different tilings thus the number of
different tilings that can be formed is not countable.

Note that the uncountable set of tilings that is obtained in this proof consist
of quasiperiodic tilings that can be mutually extracted; all these tilings can be
obtained from c by extraction.

A corollary of this result is that one cannot separate quasiperiodic tilings with
any computing device (computing devices usually belong to countable sets).

74

6 Topology

We present in this section another approach to tiling problems. This approach
is based on the topological properties of the set of configurations.

Let. us endow a tile set r with the discrete topology for which all subsets are
open. A configuration is a mapping of the plane 1? into the tile set. Thus, the
set of all configurations r^ is a countable product of sets that we endow with
the product topology: an open subset of rz is a union of finite intersections of

sets of the form Oita = {c <E T
%
\ c(i) = a}.

In this topological approach, the notion of patterns is very natural since they
correspond with basic open sets. More precisely, we can define a basic open set
associated to a pattern as the set of all configurations equal to the pattern on

its domain: r 2 1
Op = [cerz , c |dom,ln(p) =pj.

Note that Op's (and Oii0's which are special Op's) are both open and closed:
their complements are finite union of the Ov> where domain (p) = domain(p1)
and p ^ p'. Any open set U can be written as a union of basic open sets:

U= U 0P.
p pattern

Proposition 14. rK is a compact metric space.

We shall use very often in the rest of this section the compactness of rK and
more precisely the compactness of the set of tilings that can be formed using
T. Let us denote by TT this particular subset of configurations (which can be

empty).

Proposition 15. Let T be a tile set. The subset TT of T%
 consisting of tilings

of the plane by r is compact.

Furthermore, our process of diagonal extraction (Proposition 2) can be seen
as a consequence of the compactness and of the shift invariance of TT.

Now let us interpret our relation of extraction (see Definition 1) in topological
terms. To do that, let us consider the horizontal and vertical shifts ah and av.
Let us define T(c) as the topological closure of the set of all images of c by any
shift. It is natural to construct such a set since we tend to consider that two
configurations that can be superimposed are the same. In the following formal
definition, the topological closure is denoted by an over line:

Proposition 16. Our relation of extraction corresponds exactly to the inclusion
of our sets T(c). More formally the following properties are equivalent:

(a) ci -< c2,
(b) Cl e r(c2),
(c) r(Cl)cr(c2).

75

Note that if -T(ci) C F(c2) and if c2 is a tiling then ci is also a tiling. It can
be interpreted as a monotonicity property of tilings.

Let us come back now to the quasiperiodicity. We obtain from Section 3.2
that q is quasiperiodic if and only if F(q) is minimal for the inclusion relation
among all T(c)'s. Let us come back to our Theorem 6: "if a tile set can tile
the plane, then it can be used to form a quasiperiodic tiling of the plane". In
our context, it corresponds to the existence of a minimal r(q) among all -T(c)'s
corresponding to tiling. Assume that it is possible to tile the plane; then using
the monotonicity property of tilings and Zorn's lemma, we obtain the existence
of a quasiperiodic tiling.

We do not know how to prove our combinatorial theorem (Theorem 13 of
Section 5), or to interpret quasiperiodicity functions of Section 4 using only topo-
logical arguments.

References

1. R. Berger. The undecidability of the domino problem. Memoirs of the American
Mathematical Society, 66, 1966.

2. E. Borger, E. Grädel, and Y. Gurevich. The classical decision problem. Springer-
Verlag, 1996.

3. K. Culik. An aperiodic set of 13 Wang tiles. Discrete Mathematics, 160:245-251,
1996.

4. N. Dolbilin. The countability of a tiling family and the periodicity of a tiling.
Discrete and Computational Geometry, 13:405-414, 1995.

5. B. Durand. Self-similarity viewed as a local property via tile sets. In MFCS'96,
number 1113 in Lecture Notes in Computer Science, pages 312-323. Springer Ver-
lag, 1996.

6. Y. Gurevich and I. Koriakov. A remark on Berger's paper on the domino problem.
Siberian Journal of Mathematics, 13:459-463, 1972. (in Russian).

7. K. Ingersent. Matching rules for quasicrystalline tilings, pages 185-212. World
Scientific, 1991.

8. J. Kari. A small aperiodic set of Wang tiles. Discrete Mathematics, 160:259-264,
1996.

9. L. S. Levitov. Commun. Math. Phys., 119(627), 1988.
10. M. Nivat and D. Perrin. Automata on infinite words, volume 192 of Lecture Notes

in Computer Science. Springer, 1985.
11. M. Nivat and D. Perrin. Ensembles reconnaissables de mots biinfinis. Canadian

Journal of Mathematics, 38:513-537, 1986.
12. J-E. Pin and D. Perrin. Mots infinis. (to appear) LITP repport 9340, 1993.
13. R.M. Robinson. Undecidability and nonperiodicity for tilings of the plane. Inven-

tiones Mathematicae, 12:177-209, 1971.
14. P. Seebold. On the conjugation of standard morphisms. In MFCS'96, volume 113

of Lecture Notes in Computer Science, pages 506-516, 1996.
15. H. Wang. Proving theorems by pattern recognition II. Bell System Technical

Journal, 40:1-41, 1961.

Enumerative Sequences of Leaves in Rational Trees

Frederique Bassino1 and Marie-Pierre Beal2 and Dominique Perrin1

1 Institut Gaspard Monge, Universite de Marne-la-Vallee
2 Institut Gaspard Monge, Universite Paris 7 et CNRS

http://www-igm.univ-mlv.fr/~{bassino,beal,perrin}

Abstract. We prove that any IN-rational sequence s = (s„)„>i of non-
negative integers satisfying the Kraft strict inequality Yln>i s™k~" < 1
is the enumerative sequence of leaves by height of a rational fc-ary tree.
Particular cases of this result had been previously proven. We give some
partial results in the equality case.

1 Introduction

This paper is a study of problems linked with coding and symbolic dynamics.
The results can be considered as an extension of the old results of Huffman,
Kraft, McMillan and Shannon on source coding. We actually prove results on
rational sequences of integers that can be realized as the enumerative sequence
of leaves in a rational tree.

Let. s be an ISf-rational sequence of nonnegative numbers, that is a sequence
s = (s„)„>i such that sn is the number of paths of length n going from an initial
state to a final state in a finite multigraph or a finite automaton. We say that s
satisfies the Kraft inequality for a positive integer k if J2n>i sn^~n < 1-

A rational tree is a tree which has only a finite number of non-isomorphic
subtrees. If s is the enumerative sequence of leaves of a rational k-ary tree, then
s satisfies Kraft's inequality for the integer k.

In this paper, we study the converse of the above property. Consider for

example the series s(z) = 33^?. We have s(l/2) = 1 and we can obtain s as
the enumerative sequence of the tree of the figure below associated with the
prefix code X = (aa)*(ab + ba + bb) on the binary alphabet {a,b}. We dont
know however if the same can be done for the series s(z) = z2{j—^ + t_2z3)-

Fig. 1. Tree associated to 3z2l 2\

Known constructions allow one to obtain a sequence s satisfying Kraft's in-
equality as the enumerative sequence of leaves of a &-ary tree, or as the enumer-
ative sequence of leaves of a (perhaps not fc-ary) rational tree. These two con-
structions lead in a natural way to the problem of building a tree both rational
and fc-ary. This question was already considered in [9], where it was conjectured

77

that any UN-rational sequence satisfying Kraft's inequality is the enumerative
sequence of leaves of a k-ary rational tree.

In this paper, we prove this conjecture in the case where the sequence satisfies
Kraft's inequality with a strict inequality, and we give some partial results in
the equality case. For example, we state the following weaker property for such
a sequence: If s is an IN-rational sequence of nonnegative numbers satisfying

Kraft's equality, then there is a positive integer m such that ms = J2i<i<mri>
where each r; is the enumerative sequence of the leaves of a fc-ary rational" tree.

Proofs and algorithms used to establish the results are based on automata
theory and symbolic dynamics. In particular, we use the state splitting algorithm
which has been introduced by R. Adler, D. Coppersmith and M. Hassner in [1]
to solve coding problems for constrained channels by constructing finite-state
codes with sliding block decoders. This was partly based on earlier work of B.

Marcus in [7].
A variant of the problem considered here consists in replacing the enumera-

tive sequence of leaves by the enumerative sequence of all nodes. Soittola ([11])
has characterized the series which are the enumerative sequence of nodes in a
rational tree. The problem of a similar characterization for rational ft-ary trees
remains open in the general case.

In [9], a particular case is treated. It allows to solve the problem for the enu-
merative sequence of leaves in the equality case under the additional assumption

of a unique pole of minimal modulus.
The paper is organized as follows. We first give basic definitions and prop-

erties of rational objects, sequences and trees. We then give some definitions
coming from the theory of symbolic dynamics. We define the notions of state
splitting, approximate eigenvector and recall the algorithm of [1]. In section 3,
we establish the announced results and give examples for the constructions.

2 Definitions and background

2.1 Rational sequences of nonnegative numbers

We denote by G a directed graph with E as its set of edges. We actually use
multigraphs instead of ordinary graphs in order to be able to have several distinct
edges with the same origin and end. Formally a multigraph is given by two sets
E (the edges) and V (the vertices) and two functions from E to V which define
the origin and the end of an edge. An edge in a multigraph going from p to q
will be noted (p, x,q) where x £ IN. This is equivalent to number the edges going
from p to q in order to distinguish them. We shall always say "graph" instead
of "multigraph".

In this paper, we consider sequences of nonnegative numbers. Such a sequence
s — (s„)„>o will be said to be JN-rational if sn is the number of paths of length
n going from a state in / to a state in F in a finite directed graph G, where /
and F are two special subsets of states, the initial and final states respectively.
We say that the triple (G, I, F) is a representation of the sequence s.

78

This definition is usually given for the series J2n>os™z" instead of the se-
quence s. Any IN-rational sequence s satisfies a recurrence relation with integer
coefficients. However, it is not true that a sequence of nonnegative integers sat-
isfying a linear recurrence relation is IN-rational. An example can be found in

[5] p. 93.
A well known result in automata theory allows us to use a particular repre-

sentation of an IN-rational sequence s. One can choose a representation (G, i, F)

of s with a unique initial state i and such that :

— no edge is coming in state i
- no edge is going out of any state of F.

Such a representation is called a normalized representation. Moreover, it is pos-
sible to reduce to one state the set of final states (see for example [10] p. 14).

We now give some basic definitions about trees. A tree T on a set of nodes
N with a root r is a function T : N - {r} —> N which associates to each node
distinct from the root its father T(n) in such a way that, for each node n, there
is a nonnegative integer h such that Th(n) = r. The integer h is the height of the
node n. A tree is fc-ary if each node has at most k sons. A leaf is a node without
son. We denote by l(T) the enumerative sequence of its leaves by height, that is
the sequence of numbers sn, where sn is the number of leaves of T at height n.
A tree is said to be rational if it admits only a finite number of non isomorphic
subtrees. If T is a rational tree, the sequence l(T) is an IN-rational sequence.

The sequence s = 1{T) of a Ar-ary tree is the length distribution of a prefix

code over a ^-letter alphabet. The associate series s(z) =]Cn>is«z" satisfies

then Kraft's inequality : s(l/Ar) < 1. We shall say that Kraft's strict inequality
is satisfied when s(l/k) < 1. The equality is reached when each node of the tree
has exactly zero or Ar sons. Conversely, the McMillan construction establishes
that for any series s satisfying Kraft's inequality, there is a Ar-ary tree such that
s = l[T). Moreover, if the series satisfies Kraft's equality, then the internal nodes
will have exactly A- sons. But the tree obtained is not rational in general.

It is also easy to see that an IN-rational sequence is the enumerative sequence
of the leaves of a rational tree. A normalized representation can be used to do
that by "developing" the tree. The root will correspond to the initial state of
the graph. If a node of the tree at height n corresponds to a state i in the graph
which has r outgoing edges ending at states ji,j2, • • -Jr, it will admit r sons at
height n + 1, each of them corresponding respectively to the states j\,J2, ■ ■ -,jr
of the graph. The leaves of the tree will correspond to the final states of the
normalized representation. The maximal number of sons of a node we get is
then equal to the maximal number of edges going out of any state of the graph
of this representation.

If s satisfies Kraft's inequality, the above construction does not lead in general
to a Ar-ary rational tree. The aim of this paper is to get a Ar-ary rational tree T
such that s = l(T). This result was conjectured in [9]. We solve it for all IN-
rational sequences satisfying Kraft's strict inequality and give a weaker result

for the equality case.

79

2.2 Approximate eigenvector and state splitting

Let s be an IN-rational sequence and let (G, i, F) be a normalized representation
of s. If we identify the initial state i and all_final states of F in a single state
still denoted i, we get a new graph denoted G, which is strongly connected. The
sequence s is then the length distribution of the paths of first returns to state i,
that is of finite paths going from i to i without_going through state i. Using the
terminology of symbolic dynamics, the graph G can be seen as an irreducible
shift of finite type (see, for example, [3], [4] or [6]). _

We denote by M the adjacency matrix associated to the graph G, that is the
matrix M = (niij)i<ij<„, where n is the number of nodes of G and where mtj
is the number of edges going from state i to state j. By the Perron-Frobenius
theorem (see [6]), the positive matrix M associated to the strongly connected
graph G has a positive eigenvalue of maximal modulus denoted by A, also called
the spectral radius of the matrix. Actually, A only depends on the series s, 1/A
is the minimal modulus of the poles of y^. The dimension of the eigenspace of
A is equal to one. There is a positive eigenvector (componentwise) associated to
A. Moreover, if there is a positive eigenvector associated to an eigenvalue p, then

p = X.
When A is an integer , the matrix admits a positive integral eigenvector. When

A < k, where k is an integer, the matrix admits a k-approximate eigenvector,
that is, by definition, a positive integral vector v with Mv < kv.

For example the left side of the figure below gives a representation (G, i, F)

of the serie s(z) = yr^, ar>d the right side gives the associated graph G. The

adjacency matrix of G is

M -

Its maximal eigenvalue is A = 2. The components of a positive integral eigenvec-
tor are written on the nodes.

-0O0

0O0OO
Fig. 2. Representation (G, i, F) Fig. 3. Graph G

Proposition 1. If s satisfies Kraft's inequality s(l/k) < 1, then A < k. In the
equality case where s(l/k) = 1 we have A = k.

For a proof, we refer the reader to [3], [4] or [6].
We now define the operation of output state splitting in a graph G = (V, E).

Let q be a vertex of G and let / (resp. O) be the set of edges coming in q (resp.
going out of q). Let 0 = 0' + O" be a partition of O. The operation of (output)

80

state splitting relative to (0',0") transforms G into the graph G' = {V',E')
where V = (V \ {q}) U q' U q" is obtained from V by splitting state q into two
states q' and g", and where E' is defined as follows:

1. all edges of E that are not incident to q are left unchanged.
2. the both states q' and q" have the same input edges as q.
3. the output edges of g are distributed between q' and g" according to the

partition of O into O' and O". We denote U' and ?7" the sets of output

edges of q' and q" respectively :
U' = {(q',x,p) | (q,x,p) € O'} and !7" = {(q",x,p) \ (q,x,p) £ O"}.

Fig. 4. Graph G Fig. 5. Graph G'
Let us now assume that v is a fc-approximate eigenvector for the graph G.

We denote by vp the component of index p of v. All components up are positive
integers. A state splitting of a state g is said to be admissible according to k, if
the partition in O' and O" is such that O' and O" are not empty and:

k divides y. vr
(q,x,r)eO'

If the state splitting is admissible (according to k), the vector v' defined as
follows will be a fc-approximate eigenvector for the new graph G'. Up is a state
distinct from q' and q" then v'p = vp. For states q' and q" we have:

(g,i,r)eO'

and

By the state splitting construction, one can check that M'v' < Arv', where M'

is the adjacency matrix of G'.
The state splitting algorithm of [1] ensures that there is a finite number of

state splittings leading to a /e-ary graph, that is a graph such that at most k
edges are going out of any state. For the sake of completeness, we briefly recall
the proof. If there is a state q which admits more than k edges going out of it,
we choose k of them and denote by ri, r2, ..., rk the sequence of end states of
these edges. We then choose a subset O' of these k edges such that k divides

J2< x r)eO' vr ■ T'"13 ^S always possible. Indeed, by considering the k + 1 numbers
t'n . Wj + v,.2, . . ., vri + i'r2 + ■ • • vrk , we can see that at least two of them are equal
modulo k, and then their difference is equal to zero modulo k. The partition of
the output edges of q in O' and O" leads to an admissible state splitting and v'q

is strictly less than vq. This point ensures that the process stops after a finite
number of splits, the final number of states being bounded by the sum of the

81

components of the initial approximate eigenvector. The final graph obtained is
fc-ary.

We shall compute approximate eigenvectors for the strongly connected graphs
G associated to normalized representations (G, i, F) of sequences. We shall then
perform admissible state splittings that can be seen either on the graph G or
on the graph G. To do that, we shall associate to each node of G a value equal
to the corresponding component of the approximate eigenvector of the graph G.
The initial and the final states will have same value since they correspond to the
same state of G.

3 The results

We now state the result in the case of Kraft strict inequality.

Theorem 2. Let s = (sn)n>i be an JN-rational sequence of nonnegative integers
et let k be an integer such that J2n>i snk~n < 1. Then there is a k-ary rational
tree such that s is the enumerative sequence of its leaves.

In order to prove this result, we first prove one lemma that remains true in the
equality case. We therefore consider an IN-rational sequence s and an integer k
such that ^n>1 snk~n < 1. We begin with a normalized representation (G, i, F)
of the IN-rational sequence s. We denote by M the adjacency matrix of G and by
A its spectral radius. Then X < k. We then compute a ^-approximate eigenvector
v = (vi, «2, • • •, vny of the graph G. By definition, we have Mv < kv. Without
loss of generality, we can assume that state 1 is the initial state in all normalized
representations.

Lemma 3. If k divides v\, then there is another normalized representation for
s and a new corresponding approximate eigenvector v' with v[= v\ div k.

Proof. We denote by P the set of states q such that there is in G an edge denoted
(g, x,f) going from q to a final state t of F. Remark that, as state t is equal to
state 1 in G, the value of state t is equal to the value of state 1.

Let us first suppose that the initial state 1 does not belong to the set P. If
there is in P a state q which admits more than one (say n) outgoing edges, we
split q in q' and q" according to partition (C, O") where O' = {(q,x,t)}. Since k
divides v\, this state splitting is admissible and v', — v\ div k. Moreover, in the
new graph G', q' admits only one outgoing edge (going to t) and q" is either not
in P or admits less than n outgoing edges. By successive state splittings of all
states in P having more than one outgoing edges, we will get, in a finite number
of steps, a representation such that all states with one outgoing edge ending in
F have no other outgoing edges. Under the hypothesis that state 1 does not
belong to P, the initial state has not been split during this processand so each
new computed graph is still a normalized representation of the sequence. We
denote again by (G, 1, F) the final representation obtained for s and by Piast the
set of states having one outgoing edge ending in F in this graph. Remark that

82

the values of states of Piast are greater than or equal to v\ div k. We turn all
values of states of Piast greater than vi div k into vi div k; the vector v remains
a ^-approximate eigenvector.

We then transform the representation (G,l,F) in a new one, (H,i,Piast),
where H is the graph obtained from G by adding a state i, an edge from i to
1 and by removing all edges of G going out of a state of Piast- If we look at
paths in G going from 1 to F, we have just cut the last edge and added one
at the beginning. We assign to state i the value v\ div k, and the values of all
states correspond now to a new fc-approximate eigenvector for H. We call this
tranformation the "shift" transformation.

Let us now suppose that the initial state 1 belongs to P. We first split, as
explained above, all states of P having more that one outgoing edge. In this
case, state 1 may have been split. We denote by l(i), 1(2), 1(3), • • • l(r) the copies
of state 1 obtained by successive state splittings of the initial state 1. We still
denote by G the graph obtained by this transformation and by Piast the set of
states having one outgoing edge ending in F in this graph. We then transform
the representation (G,1,F) into a new one, (H,i,Piast), where H is the graph
obtained from G by adding a state i, an edge from i to each l(j), 1 < j < r and
by removing all edges of G going out of a state of Piast- Remark that (r - 1)
states among 1(1), 1(2), 1(3), • • • l(r) belong to Piast. We again assign to the state
?' the value v\ div k, and the values of all states correspond now to a new k-

approximate eigenvector for H.

Corollary 4. If vi is a power of k, then there is another normalized represen-
tation and a new corresponding approximate eigenvector v' with v[= 1.

Proof. If vi = km, we iterate the construction given in previous lemma and get
v1 = 1 in m steps.

Example
Let s be the following series:

s(z)=2z3 + 2z2(z2(z2r)*

Here, k = 2 and s(l/2) = 1.
In the following pictures, the nodes are
labeled with their value.

Fig. 6. Initial normalized
representation

83

First step

Fig. 7. First state splitting

Second step

Fig. 8. First "shift"

Fig. 10. Second "shift" Fig. 9. Other state splittings

The last step is described in the proof of
Theorem 2.
It corresponds here to a state splitting of
all states of the graph of value different
from 1.

Fig. 11. Last representation

We now prove another lemma which is true only in the case of Kraft strict

inequality.

Lemma 5. Let M be a nonnegative integral matrix. If its spectral radius is
strictly less than k, then there is a k-approximate eigenvector w of M such

that Wi is a power of k.

84

Proof. Let A (A < k) be the positive real eigenvalue of maximal modulus of M
and let v be an eigenvector associated to A. We denote by P the set of positive
vectors w such that Mw < kw. The set P is an open set and v belongs to
P. By dividing all components of v par v1: we can assume that vi is equal
to 1. As P is open, there is a positive real e such that B(v,e) C P, where
B(v, f) = {w | V, - e < Wi < Vi + c}. Let us now choose an integer m such that
\/km < e. As B(v, l/km) C P, we have {fcmw | w G B{v, l/km)} C P. This set
is {w | kmVi - 1 < Wi < kmVi + 1} and contains w where wt = \kmVi]. This
vector is a positive integer vector w with Mw < kw : it is a ^-approximate

eigenvector. Moreover wi = km.

Proof. (Theorem 2) We begin with a normalized representation of s and com-
pute, by Lemma 5, a ^-approximate eigenvector whose component for the initial
state is a power of k. We then compute, by Corollary 4, a normalized representa-
tion (G, l,F) of s which admits a ^-approximate eigenvector of component 1 for
the initial state. Finally, we apply to G the state splitting algorithm described
in the previous section to obtain a fc-ary graph. As the component of the ap-
proximate eigenvector on the initial state is 1 and as the state splittings have to
be admissible, this state will never be split during the process. A state splitting
of a state of G different from state 1 leads by construction to a graph G' still
representing the same sequence. The result follows then from the fact that the
final normalized representation has a fc-ary graph.

We can apply the construction given above to the case of Kraft equality when
it is possible to find a representation of s which admits a ^-eigenvector with a
power of k as component on the initial state. This may perhaps not always be

the case. We do not know, for example, if the series s(z) = jjzr^) + (i-5z3)
(communicated to us by Christophe Reutenauer) has such a representation for

k = 2:
As a consequence of the previous result, we get the following proposition in

the equality case, where an ultimately fc-ary tree is a tree where all nodes but a

finite number have at most k sons.

Proposition6. Let s = (sn)n>i be an JN-rational sequence of nonnegative in-
tegers and let k be an integer such that J2n>i snk~n = 1- Then there is an ulti-
mately k-ary rational tree such that s is the enumerative sequence of its leaves.

Proof. If we remove one term of the sequence, the remainder satisfies Kraft's
strict inequality and is still IN-rational. This proves that one can construct a
rational tree T for s which will be &-ary for all nodes except the root which will

have k + 1 sons.

We now state another result for the equality case which is weaker than the
previous theorem. We show that if s is an IN-rational sequence of nonnegative
integers satisfying Kraft's equality for an integer k, then there is an integer m
such that ms is the sum of in enumerative sequences of leaves of m fe-ary rational

trees.

85

Theorem 7. Let s be a an JN-rational sequence satisfying J2n>is"^ n = 1-
There is a positive integer m and m k-ary rational trees T\,. . ., Tm such that

ms = l{T1) + --- + l{Tm).

Proof. We begin with a normalized represention of s : (G, 1,F). Let v be a posi-
tive integral eigenvector associated to the spectral radius k of the adjacency ma-
trix of G. The component vj on the initial state 1 is denoted by m. If m — krm',
where m' and k are relatively prime, we compute, by Corollary 4, a normalized
represention of s such that v\ = m! in order to get a smaller integer m. After
this step, m and k are relatively prime. If m = 1, we finish by the same proof as
the proof of Theorem 2.

Otherwise, we denote by r the positive integer such that kr~1 < m. < kr

and x = kr - m. We define a new graph H by adding to G (r + 1) new states
ii, i2, . ■ ■, ir and j, and with the following new edges :

h —> h —> ■ ■ ■ ir —► 1

and x edges (in the multigraph) going from ir to j :

ir —> j (x edges)

We assign to state i; the value kl~l and to state j the value 1 (state 1 has value
m). For each state t in F we make the following transformation. We replace t by
m copies of this state and we duplicate each edge entering t in m edges entering
the m copies oft. We give to all copies oft the value 1. We denote by g the new
sequence which admits as normalized representation (H,i\,F\J {j}). Note that
the values of states of H correspond now to a k-integer eigenvector of H which
admits 1 as component on the initial state i\. Using the series notations, one
can verify that

g(z) = ^2 9nZn = xzr + mzrs(z),
n>l

and by construction: g(l/k) = 1.
Since the representation of g has an eigenvector of component 1 at the initial

state, g is the height distribution of leaves of a k-ary rational tree (by applying
the construction of theorem 1 in the case where the value of the initial state is
1). The series g is either equal to 1 or to zg1 + zg2-\ h zgk, where gi are again
series of this type (gi is the height distribution of the leaves of the subtree rooted
by a son of the root of the tree representing g). By iterating this decomposition

for each gi, we can write

g(z) = zr(h(z) + f2(z) + ■■■ + fkr(z)) = xzr + mzrs{z),

where /; are height distributions of leaves of fc-ary rational trees, which we

simplify into:
/i + h + \- fkr = x + ms

As all ft have nonnegative integer coefficients and satisfy fi(l/k) — 1, this implies
that x series among /i, /2,..., fk<- are equal to 1. The m remainding series that
we renumber f\, f2, ■ ■ ■, fm verify the equality : f\ + /2 + h fm = ms, which
is the announced result.

86

Example Let s be the following series:

~2 2z2

s(z) =
1

+
2z3

We get that 3s = /A + /B+/C, where fx

is the height distribution of the leaves of
the tree rooted by the node X in the last
picture.

Fig. 13. The sequence g

Fig. 14. The sequence g after state
splittings

References

1. R. L. Adler, D. Coppersmith, and M. Hassner. Algorithms for sliding block codes.
I.E.E.E. Trans. Inform. Theory, IT-29:5-22, 1983.

2. F. Bassino. Series rationnelles et distributions de longueurs. These, Universite de
Marne-La-Vallee, 1996.

3. M.-P. Beal. Codage Symbolique. Masson, 1993.
4. M.-P. Beal and D. Perrin. Symbolic dynamics and finite automata. In

G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages. Springer-
Verlag, 1997.

5. J. Berstel and C. Reutenauer. Rational Series and their Languages. Springer-
Verlag, 1988.

6. D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding. Cam-
bridge, 1995.

7. B. Marcus. Factors and extensions of full shifts. Monats.Math, 88:239-247, 1979.
8. D. Perrin. Arbres et series rationnelles. C.R.A.S. Paris, Serie I, 309:713-716,

1989.
9. D. Perrin. A conjecture on rational sequences. In R. Capocelli, editor, Sequences,

pages 267-274. Springer-Verlag, 1990.
10. D. Perrin. Finite automata. In J. V. Leeuven, editor, Handbook of Theoretical

Computer Science, volume B, chapter 1. Elsevier, 1990.
11. A. Salomaa and M. Soittola. Automata-theoretic Aspect of Formal Power Series.

Springer-Verlag, Berlin, 1978.

A Completion Algorithm for Codes
with Bounded Synchronization Delay

Veronique Bruyere

University of Mons-Hainaut, 15 Avenue Maistriau,
B-7000 Mons, Belgium.

Veronique.Bruyere6umh.ac.be

Abstract. We show that any rational code with bounded synchroniza-
tion delay is included in a rational maximal code with bounded synchro-
nization delay.

1 Introduction

The theory of codes is originated from Shannon's works on information theory.
It is now a well-developed branch of theoretical computer science. We refer to
[7, 31] for a systematic exposition of the topic, to [6, 21] for application of codes
in symbolic dynamics and coding for constrained channels, and to [17] for a
survey on codes used in the context of information transmission systems.

A lot of beautiful properties provide a good understanding of the structure of
codes. Nevertheless, several problems on codes remain unsolved despite the effort
of researchers [8, 9]. In this paper, we are interested in the following problem :
given a code A' with some property V, find (if it exists) an effective procedure to
embed X into a maximal code Y with the same property V. Effective embedding
procedures exist for rational codes [14], rational codes with bounded deciphering
delay [10, 3], rational biprefix codes [23, 33]. The case of finite codes is particular :
there exist finite codes included in no finite maximal codes [27, 19]. One of the
main open problems on codes is whether the inclusion of a finite code in a finite
maximal code is decidable.

We here show that any rational code with bounded synchronization delay is
effectively embeddable into a rational maximal code again with bounded syn-
chronization delay. Codes with bounded synchronization delay [16] are part of
the family of circular codes, i.e., codes defining a unique factorization of words
written on a circle [20] or of biinfinite words [12]. Circular codes and codes with
bounded synchronization delay have numerous interesting properties. For in-
stance, sequences of integers which are the length distribution of a circular code
are completely characterized [30, 28, 4]; codes appearing in factorizations of free
monoids are necessarily circular [29] (see also [32, 18, 13] for the description of
circular codes used in finite factorizations); codes with bounded synchronization
delay satisfy the commutative equivalence conjecture [24]; encoding digital data
for transmission through constrained channels involve circular codes [15, 1, 5];
recently a set of codons constituting a circular code has been identified in the
study of the repartition of trinucleotides in the protein of coding genes [2].

88

2 Codes with bounded synchronization delay

For the notions given in this section and the next one, we refer to [7] and [6].
Given a finite alphabet A, a code X C A* is a set of words such that for all

x-i, ■ ■ -,xn,yi, ...,ymeX,

x\---xn=yi---ym =» n = m, xt = y, V«.

This definition means that any coded message x\ ■ ■ -xn is uniquely decoded into
the code-words x\,..., xn.

We are here interested in codes with bounded synchronization delay. Such
codes allow to easily localize a position into a coded message through which the
decoding must pass, and thus to decode the two parts separately. Formally, a
code has a bounded synchronization delay if there exists a > 0 such that (see
Figure 1)

uxyv E. X*, with x, y £ X" => ux,yv £ X*. (1)

The smallest integer u satisfying (1) is called the synchronization delay of the
code X.

Fig. 1. Synchronization delay a. Fig. 2. Synchronization delay a when
counting with letters.

Example 1. The code X = a*b has synchronization delay 1, since the letter b only
occurs at the end of the code-words. On the opposite, the code X = ab*cL)b has
no bounded synchronization delay, because b2a is factor of the word ab2ac of X,
for any cr.

There is another way to define the synchronization delay of codes. Instead
of counting with words as done in Definition (1), one can count with letters as
follows. We denote by P(X*) the set of the prefixes of the words of X*, and by
Pa(X*) the set P(X*)r\A°'. For suffixes we use the notations S(X*) and Sa{X*).
A code X C A* has a bounded letter-synchronization delay if there exists a > 0
such that (see Figure 2)

uxyveX*, vrithxeSa{X*),y€Pa(X*) => ux,yv£X*. (2)

The smallest integer <r satisfying (2) is called the letter-synchronization delay of
the code X.

For finite codes, both synchronization delays (on words or on letters) are
bounded simultaneously. This is no longer true for infinite codes.

89

Example 2. Let A = {a, b, c] and X C A* equal to a*böca*ba*b.The code A" has a
synchronization delay 2 if counting with words, but no bounded synchronization

delay if counting with letters.

The family of codes of bounded synchronization delay or bounded letter-
synchronization delay is included in the one of circular codes. We recall that a

code is circular if

■V = 2/1 • • -Dm, Xi rn, v = 1, Xi = yt Vi.

In the case of finite codes X C A*, the concepts of circular code, code with
bounded synchronization delay, code with bounded letter-synchronization delay
coincide. Moreover, these code properties are equivalent to :

X* = PU (CM* DA*V\ A*WA*)

with P, U, V, W finite subsets of A*.
However for rational codes (that is, codes recognized by a finite automaton),

there exist circular codes with an infinite synchronization delay, as the code
X = ab*c U b mentioned in Example 1. As a matter of fact, a rational circular
code has a bounded synchronization delay if and only if 3p, X D A*Xp A* — 0.

Remark. Any code X C A* with synchronization delay 0 (on words or on letters)
is necessarily included in the alphabet A. From now on, we suppose that a > 1
in a way to discard such trivial codes.

3 Completion's problem

In this paper, we solve Problem 8 of [9] about the completion of codes with
bounded synchronization delay.

Recall that complete codes X C A* are codes such that any word over A is
factor of a coded message :

Vu-G/T, A*wA*DX* ^9.

It is well-known [7] that for rational codes, this combinatorial property is equiv-
alent to the extremal property of being a maximal code (with respect to the

inclusion).
We here prove that codes with bounded synchronization delay (on words or

on letters) can be embedded into a complete one. The case of bounded letter-
synchronisation delay is solved separately, since the two notions of delay differ

for infinite codes (see Example 2).

Theorem 1. Let X C A* be a code with synchronization delay a. Then X can
be embedded into a complete code Y C A* with synchronization delay a' < 2a.
Moreover if X is rational, then Y is also rational.

90

Theorem 2. Let X C A* be a code with letter-synchronization delay a. Then X
can be embedded into a complete code Y C A* with letter-synchronization delay
cr' < 3<T — 2. Moreover if X is rational, then Y is also rational.

The method given in [14] for embedding a rational code X into a rational
maximal code Y, also works for rational circular codes [11, 4]. Hence any rational
circular code is included in a maximal one. However this method is not able to
keep the bounded synchronization delay from X to Y.

The proofs of Theorems 1 and 2 are given below in the next two sections.
They are based on the following propositions which state a simple combinatorial
property of complete codes with a bounded synchronization (letter-synchronization
resp.) delay.

Propositions. Let X C A* be a code. Then X is a complete code with syn-
chronization delay < a if and only if X° A*X" C X*. O

Proposition 4. Let X C A* be a code. Then X is a complete code with letter-
synchronization delay < a if and only if Pa(X*)A* Sa(X*) C X*. □

The next example shows that the bound 2<r of Theorem 1 is tight. The bound
3<r - 2 of Theorem 2 is also tight, but the example, more elaborated, is omitted.

Examples. Consider the alphabet A = {a,b, c, d) and an integer a > 1. The
set X = {a,ca2cr~lb,ba2a~1d, cb4a~2d} is a code over A with synchronization
delay a. Assume that X can be included in a complete code Y C A* with a
synchronization delay a' < 2<r - 1. By Proposition 3, one has Y° A*Ya CY*.
Then

aa'ca2°-1 er, a2a-lda° G Y*.
The word a"'ca2a~1ba2<7~1daa' decomposes into words of Y* as indicated in
Figure 3. As Y is a code, b must belong to Y. But b2a' is factor of the word
cbAa~2d of Y, in contradiction with the synchronization delay a' of Y.

Fig. 3. The bound 2<r is tight. Fig. 4. z is not factor of x.

4 Embedding when counting with words

In this section, X is a given code over the alphabet A with a bounded synchro-
nization delay a. The way to embed X into the code Y mentioned in Theorem 1
is done in two steps : construct

M = {X2aA* n A*X2a) U X*,

Y = Base(M) = (M \ 1) \ (M\ l)2. (3)

91

In addition of X*, the monoid M contains all the words beginning and ending
with markers z £ X2a. The use of markers already appears in the method of
[14] : one marker only is used, given by an unbordered word which is factor of

no word of X* .
The following simple lemmas, together with Proposition 3 lead to a proof of

Theorem 1 : Lemmas 5 and 6 show that Y is a code containing X. This code is
proved to be complete with synchronization delay a' < 2<r thanks to Lemma 7
and Proposition 3. Clearly if X is rational, so is Y.

Lemma 5. Y is a code.

Proof. To prove that Y is a code, we show that the monoid M is stable (see [7]) :
if u, wv, uw, v £ M, then w G M. Assume that this is not the case, and consider

a word uwv of minimal length such that

u, wv, uw, v £ M but w £ M. (4)

We begin with three claims concerning u and wv. Symmetrically they hold

for v and uw.
Claim 1. If u - rz with z £ X2" and uw = sx with x £ X*, then z is not

factor of x (see Figure 4).
If z is factor of x, then due to the synchronization delay a of X, we get z = zxz2,
x = xxx2 with zx,z2 e Xer, xi,x2 G X* and rzx = sxu z2wv = x2v. The
second equality links shorter words satisfying a relation similar to (4). This is

impossible.
Claim 2. If wv = zr with z G X2° and uw = sx, v = x's' with x,x' G X*,

then z is not factor of xx' (see Figure 5).

Fig. 5. z is not factor of xx'. Fig. 6. w is a proper prefix of z.

Assume that z is factor of xx' and let z = zxz2 with z\, z2 G Xa. If w is prefix
of 2i, we get the same contradiction as done in Claim 1. So zx is prefix of w.
By the synchronization delay a of X, we have x = X\x2 with xi,x2 G X* and
uzi = sxi. It follows that w = zxx2 belongs to X*, a contradiction with (4).

Claim 3. If wv = zr with z G X2°, then w is a proper prefix of z (see

Figure 6).
Assume the contrary, i.e., z is prefix of w. By Claim 2, uw belongs to M \ X*.
Moreover any suffix z' G X2a of uw is a proper suffix of w, again by Claim 2. It
follows that w G X2aA* n A*X2" C M, a contradiction with (4).

We now end the proof. In (4), at least one of the words u, wv, uw and v is in

M \X* since X is a code.
Assume that u G M \ X* and let u = rz with z G X2°. It follows by Claim 1

that uw £ M\ X*. Let uw = r'z' with z' G X2a. Again by Claim 1, we get

92

\r\ < \r'\. Consider now the word tow. It must belong to M \ X* by Claim 2
applied to uw. Let wv = z"r" with z" £ X2°. Then \z"\ > \w\ by Claim 3. But
this is in contradiction with Claim 2 applied to uw.

Assume that u £ X* and wv £ M \ X*. Then wv = zr with z £ X2° and
\z\ > \w\ by Claim 3. Claim 2 applied to uw shows that uw £ X*. It follows that
v € M\X* again by Claim 2 applied to tut;. Let v — z'r' with z' £ X2<7. Claim 1
applied to v leads to z being factor of «wz' 6 X*. This is in contradiction with
Claim 2.

The other cases are symmetrical. Therefore, assumption (4) is false, w £ M
showing that Y is a code. D

Lemm,a 6. X CY.

Proof. Assume the contrary, that is, some word x £ X factorizes as yi ■ ■ -y„
with n > 2 and t/i,..., yn £ Y. At least one of these words, say yi, belongs to
Y\X since X is a code. As j/,- £ X2<M* r\A*X2a and j/,- is factor of a;, this leads
to a contradiction with the synchronization delay a of X. G

Lemma 7. y2(7A*Y2a C Y*.

P?w/. By (3), we have Y2aA*Y2a C X2cM*X2<T C M = Y*. D

5 Embedding when counting with letters

In this section, X C A* is a code with letter-synchronization delay <r. We show
how to construct the complete code Y of Theorem 2 and we prove the correctness
of the construction. We denote by r the constant 3cr — 2.

The algorithm uses a particular operation Z{M) defined by (see Figure 7)

Z[M)= {w£ A*\X* \w = zu = u'z',with
zePT(M),z' eST(M)}

U {w £ A* \ X* | there exist u £ S(M), u' £ P{M) with
z = wu' e PT(M),z' = MW £ 5T(M)}.

Notice that Z(M) D X* — $ and that Z(M) is the union of two sets, one with
words of length greater than or equal to r, the other with words of length less
than or equal to r. As done above in Section 4, the operation Z uses markers z
in PT{M) or ST{M) (instead of X2a).

Fig. 7. Operation Z.

The algorithm works as follows :

93

M = X*
Repeat

M' = M
M = (Z(M)UM)*

until M - M'
Y = Base(M)

The proof of Theorem 2 is done in a similar way as for Theorem 1. We begin

with a technical lemma.

Lemma 8. M \ X* C Pa{X*)A* n A*Sa{X*).

Proof. We are going to prove the next four statements. Lemma 8 is a corollary

of (4) since la — 1 > a.

1. Let w G Z[M) with length \w\ < r and u G S{M), u' G P(M) such that
z = wu' G PT{M) and z' = ww G ST(M). Then uimi' has no factor in
5CT(X*)PCT(X*).

2. Any w E Z(M) has length at least equal to 2a - 1.
3. For any w G Z(M), let 2 = iu if \w\ < T, let 2 be the prefix of length r of w

otherwise. Then either z G P(X*) or z has a proper prefix in X*(Z(M) f)

P[X*)).
Symmetrically, let z' = w if |io| < r, let z' be the suffix of length r of w
otherwise. Then either z' G S(X*) or z' has a proper suffix in (Z(M) (~1

5(A"*))X*.
4. For any w G M \ A'*, u> has a prefix (resp. suffix) with length 2<r - 1 in

P(X*) (resp. S(X*)).

The four statements are proved by induction on the passes through the repeat
instruction of the previous algorithm. We denote by M,- the value of M at the
beginning of the repeat instruction at pass i. Initially Mi = A*. Notice that

Mi C Mi+i Vf.

• Pass 1. At this stage, consider Z(M\) = Z(X*).

(1) As A has letter-synchronization delay a and r > a, we have |w|, |u'| < cr
otherwise w G A*. Assume that uwu1 has a factor in 5CT(A*)PCT(A*), i.e.,

uwv! = ra;ia;2r' with x\ G 5t7(A*),a;2 G PcrfA*).

Then \u\ < \rx\\, \u'\ < |x2r'|. Let w = W1W2 such that uwi — rxi, w2u' — x2r'.
By the letter-synchronization delay a of A, we get Wi,iv2 G A*, a contradiction

with w £ X*.
(2) The statement holds for words w of Z(X*) with length |u>| > r. For the
other words we use the notations of (1). We already know that \u\, \u'\ < a. As
|MW)| = \wu'\ = T, it follows that |w| > la — 1.

(3) Clearly z G P(X*) (resp. z' G S(X*)).

(4) Asaconsequenceof(2)and(3),anywordof(2:(Mi)UM1)*\A* = M2\A*
has a prefix in P2CT-I(A*) and a suffix in 52CT_i(A*).

94

• Pass i, with i > 1. We suppose that Z(Mi-i) satisfies (l)-(3) and (Z(Mi_i)U
Mj_i)* = M{ satisfies (4). Let us consider Z(M,-).

(1) Let u e S{Mi), u' G P{M{) such that z = wv! G PT(M,-) and z' = «to G

5T(Af,-).
Assume that uwu' has a factor in Sa(X*)Pa(X*), i.e.,

www.' = rx\x2r' with xj G Sa(X*),x2 G Pff(X*).

To get a contradiction, the idea is the following. We first suppose that \u\ < \rxi\
and |w'[< |a;2r'|. Let w = w\w2 such that uu>i = rx\ and w2u' = x2r'. We will

prove that
wi,w2 G X*

showing that w G X*, which is impossible. If |w| > \rxi\ or |w'| > |a;2r'|, the
contradiction is obtained in the same way. Indeed, suppose that |M| > \rx\\ > a.
Let x[(resp. x'2) be the suffix of u (resp. prefix of z) with length <r. By induction
hypothesis (4), x[G 5ff(A"*), a:'2 G Pa{X*). We then replace a;ia;2 by x[x2 and
we repeat the situation just described, showing that w £ X*.

So, consider that |u| < |ra;i| and |«'| < \x2r'\. Let us show that wx G X*
(a symmetrical argument shows that w2 G X*). Since \x2\ = cr and |z| = r, we

have
jrt?i | <2a - 1.

Let w" = u if |w| < (T, let u" be the suffix of u with length <r otherwise. Then

u" eS(X*)

by induction hypothesis (4). This situation is summarized in Figure 8.

r r'

"""*/ ; ^~
u" wl : w2 u'

Fig. 8. Case \u\ < \rxi\, \u'\ < \x2r'\.

If z G P(X*) = P(Mi), then nu is factor of u"z G S(X*)P(X*). By the
letter-synchronization delay a of X, it follows that W\ E X*.

If z £ P(X*), let z = arw's such that x G X*, w' G 2(M,-_i) and s G P(M,-).
By induction hypothesis (1), w' has no factor in Sa(X*)Pa{X*). Hence either

|r| < \ux\ or |wa;w'| < |ra?iar2|-
Consider the first case. We know that w' has a prefix p of length 2cr — 1

in P(X*) by induction hypothesis (4). Therefore, we have done as just before
because x\x2 (of length 2a) is factor of the word u"xp G S(X*)P(X*).

Suppose now that

\ux\ < \r\ and |ua;u/| < |ra;ia;2|

95

and let us show that this case cannot occur (see Figure 9). By induction hypoth-
esis (2), we have \w'\ > 2<r - 1 and then |s| < <r. Thus \rxx\ < \uxw'\ because
lu'il < 2<r - 1.

Fig. 9. Case |«a;| < \r\, \uxw'\ < |ra7ia721-
Fig. 10. Construction of w'.

By induction hypothesis (4), w' - ty with y G S2a-i(X*). Similarly, s G
P{X*) since \s\ < a. Therefore xxx2 is factor of ys E S{X*)P(X*). By the
letter-synchronization delay a of X, it follows that y = yxy2 with uxtyx = rxx,
y2s = x2r' and y2 £ X*.

As w' E Z(Mi-i) and \w'\ < r,

vw' E ST(Mi-i) and w'v' E PT(M,-_i)

for some v G ^(Mi-i), «' G P(Mj_i) (see Figure 10).
We have a < \tyi\ < 2<r — 1 because X\ is factor of yi and \w\\ < 2a - 1.

Hence <r < |«/2w'| < 2<r - 1 since \y2v'\ = |U)'D'| - It^l, and v' E P(X*) by
induction hypothesis (4). It follows that ty\ has a suffix xi E Scr(X*) and j/2^'
has a prefix in PCT(J^*). This is impossible with respect to induction hypothesis
(1) applied to vw'v'.

This concludes the proof.

(2) We only have to give the proof for words w of Z(M,-) with length \w\ < T.

Let u E S(Mi), u' E P(MS) such that z = wu' E PT{Mi) and z' = uw E ST(Mi).
Assume that \w\ < 2<r- 1, then \u\, \u'\ > a. By induction hypothesis (4), z' has
a suffix in Sa{X*) and u' has a prefix in Pa{X*). This is impossible by (1).

(3) Either z E P(MX) = P{X*) or z = xw's with x E X*, w' E Z{Mi^l) and
s E P(Mt). By induction hypothesis (3), w' is either in P{X*) or has a proper
prefix in X*{Z(Mi-2)C\P{X*)).

(4) Consequence of (2) and (3). D

Lemma 9. Y is a code.

Proof. We show that the monoid M constructed by the algorithm is stable.
Let u,wv,uw,v E M. If \wv\, \uw\ > r, then w E Z(M) C M. Otherwise, we
obtain the same conclusion with the word w'uwvw' such that w' E M has length
\w'\ >T. □

Lemma 10. X C Y.

96

Proof. By construction, X CM. Assume that some x EX belongs to Y+, i.e.,

x = y\---yn with yi, • • ■, yn G Y and n > 2.

At least one of these words, say y», is in Y \ X since X is a code.
Suppose that i # 1. By Lemma 8, y,- has a prefix in P„{X*). Take y e X* such

that lyj/! ••■y,-_i| > o". Either yyi ••■y!_i G X* or yyi---yi-i G A*(Y\X)X*.
In both cases, this word has a suffix in S<j(X*) (Lemma 8). Then the word yx
of X* has a factor in S^X^P^X*). Due to the letter-synchronization delay a

of X, it follows i£l+. This is impossible.
The case i = 1 is solved in a similar way, by working with y;+i • • • y„ instead

of yi •••y;-i. D

lemma 11. PT(Y*)4*ST(Y*) C Y*.

Proof. Immediate since PT(Y*)A*ST{Y*) C 2(M) C M = Y*. D

Lemmas 9, 10 and 11 together with Proposition 4 show that Y is a complete
code with letter-synchronization delay < r. The property that Y is rational if
X is rational is proved below. Consequently, Theorem 2 is proved.

Lemma 12. If X is rational, then Y is rational.

Proof. It is enough to show that Z(M) is rational, and the execution of the
algorithm needs a finite number of passes trough the repeat instruction.

The set Z(M) is composed of two subsets. The first one equals PT(M)A* f)
A*ST(M)\X* which is rational since PT(M) and ST(M) are finite. The second
one is composed of some words with length less or equal to T. It is therefore

rational.
Inside the repeat instruction, we have M' ^ M if the operation Z gives new

words of length less than r. Such words are in finite number, showing that the
repeat instruction is executed finitely many times. □

References

1. R.L. Adler, D. Coppersmith, and M. Hassner. Algorithms for sliding block codes.
IEEE Trans. Inform. Theory, IT-29:5-22, 1983.

2. D. Arques and C. Michel. A possible code in the genetic code. In STACS'95
Proceedings, volume 900 of Lecture Notes in Comput. Sei., pages 640-651, 1995.

3. J. Ashley, B. Marcus, D. Perrin, and S. Tuncel. Surjective extensions of sliding
block codes. SIAM J. Discrete Math., 6:582-611, 1993.

4. F. Bassino. Series rationnelles et distributions de longueurs. PhD thesis, Univer-
sity of Marne-La-Vallee, 1996.

5. M.-P. Beal. The method of poles : a coding method for constrained channels.
IEEE Trans. Inf. Theory, 36:763-772, 1990.

6. M.-P. Beal. Codage symbolique. Masson, 1993.
7. J. Berstel and D. Perrin. Theory of codes. Academic Press, 1985.

97

8. J. Berstel and D. Perrin. Trends in the theory of codes. Bull. EATCS, 29:84-95,

1986.
9. V. Bruyere and M. Latteux. Variable-length maximal codes. In ICALP'96 Pro-

ceedings, volume 1099 of Lecture Notes in Comput, Sei., pages 24-47, 1996.
10. V. Bruyere, L. Wang, and L. Zhang. On completion of codes with finite decipher-

ing delay. European J. Combin., 11:513-521, 1990.
11. J. Devolder. Codes, mots infinis et bi-infinis. PhD thesis, University of Lille I,

1993.
12. J. Devolder. Precircular codes and periodic biinfinite words. Inf. Comput.,

107:185-201, 1993.
13. G. Duchamp and J.-Y. Thibon. Bisections reconnaissables. RAIRO Inform.

Theor. Appi, 22:113-128, 1988.
14. A. Ehrenfeucht and G. Rozenberg. Each regular code is included in a regular

maximal code. RAIRO Inform. Theor. Appi, 20:89-96, 1985.
15. P.A. Franaszek. A general method for channel coding. IBM J. Res. Dev., 24:638-

641, 1980.
16. S.W. Gordon and B. Gordon. Codes with bounded synchronization delay. Inf.

Control, 8:355-372, 1965.
17. H. Jiirgensen and S. Konstantinidis. Handbook of Formal Languages, chapter

Codes. Springer-Verlag, 1997. to appear.
18. D. Krob. Codes limites et factorisations finies du monoi'de libre. RAIRO Inform.

Theor. Appi., 21:437-467, 1987.
19. N.H. Lam. On codes having no finite completions, preprint, 1996.
20. V.l. Levenshtein. Some properties of coding and self-adjusting automata for de-

coding messages. Problemy Kibernet., 11:63-121, 1964.
21. D. Lind and B. Marcus. Symbolic Dynamics and Coding. Cambridge University

Press, 1996.
22. R. Montalbano. Local automata and completion. In STACS'93 Proceedings, vol-

ume 665 of Lecture Notes in Comput. Sei., pages 333-342, 1993.
23. D. Perrin. Completing biprefix codes. Theoret. Comput. Sei., 28:329-336, 1984.
24. D. Perrin and M.-P. Schützenberger. Un probleme elementaire de la theorie de

l'information. In Theorie de ('Information, Colloques Internat. CNRS, volume
276, pages 249-260, Cachan, 1977.

25. A. Restivo. On a question of McNaughton and Papert. Inf. Control, 1:1, 1974.
26. A. Restivo. A combinatorial property of codes having finite synchronization delay.

Theoret. Comput. Sei., 1:95-101, 1975.
27. A. Restivo. On codes having no finite completions. Discrete Math., 17:309-316,

1977.
28. R.A. Scholtz. Codes with synchronization capability. IEEE Trans. Inform. Theory,

IT-2:135-142, 1966.
29. M.-P. Schützenberger. On a factorization of free monoids. Proc. Amer. Math.

Soc, 16:21-24, 1965.
30. M.-P. Schützenberger. Sur une question concernant certains sous-monoi'des libres.

C. R. Acad. Sei. Paris, 261:2419-2420, 1965.
31. H.J. Shyr. Free Monoids and Languages. Hon Min Book Company, Taichung,

second edition, 1991.
32. G. Viennot. Algebres de Lie libres et mono'ides libres. PhD thesis, University Paris

7, 1974.
33. L. Zhang and Z. Shen. Completion of recognizable bifix codes. Theoret. Comput.

Sei., 145:345-355, 1995.

The Expressibility of Languages and Relations
by Word Equations

Jnhaui Karhumäki*1 and Wojciech Plandowski ***
and Filippo Mignosi ***2

1 Turku Centre for Computer Science and
Department of Mathematics, Turku University, 20 014, Turku, Finland.

2 Dipartimento di Matematica ed Applicazioni,
Universitä di Palermo via Archirafi, 90 123 Palermo, Italy

Abstract. Classically, several properties and relations of words, such
as "being a power of a same word", can be expressed by using word
equations. This paper is devoted to study in general the expressive power
of word equations. As main results we prove theorems which allow us to
show that certain properties of words are not expressible as components
of solutions of word equations. In particular, "the prirnitiveness" and
"the equal length" are such properties, as well as being "any word over
a proper subalphabet".

1 Introduction

Several authors in the existing literature, cf. [16], used word equations in order
to describe properties and relations of words, but, to our knowledge no attempt
to synthesis or of a systematization of this topic has been done. This was em-
phasized also in a recent survey [6] where some results of the field were collected.

Classical relations on words that are characterized as solutions sets of word
equations are for instance, "two words X and Y are powers of a same word"
if and only if they constitute a solution of the equation XY — YX, and "two
words X and Y are conjugates" if and only if they constitute a solution of the
equation XZ = ZY. In the first case we need no extra variables, while in the
second case an additional variable seems to be needed. As above we identify
names of variables and particular solutions of an equation.

Motivated by above, we say that a property of words - either a language
£ C E* or a ß-ary relation TZ C (S*)k - is expressible by a word equation, if
there exists an equation e with t > k variables over £ such that

* Supported by Academy of Finland under grant 14047. Email:karmimak(8cs.utu.fi.
* Supported partially by the grant KBN 8T11C01208. On leave from Instytut

Informatyki, Uniwersytet Warszawski, Banacha 2, 02-097 Warszawa, Poland.
Email: wo jtekpl@mimuw.edu. pi.
Supported by
Academy of Finland under grant 14047. Email: mignosiSaltair.math.unipa.it.

99

£ coincides with the values of a fixed component of all solutions of e,

- 1Z coincides with the values of k fixed components of all solutions of e.

Obviously, languages are fc-ary relations with k = 1, but, due to the impor-
tance of this particular case, we have chosen to define those separately. We allow
e to contain constants from E. An important feature here is also that t can be
larger than k, i.e. additional variables are allowed. This increases essentially the
expressive power of equations, and in particular makes it much easier to express
certain properties by equations.

As an illustration we recall the following. The union of solution sets of two
equations can be expressed as a solution set of one equation, as was shown in [4]
using 4 additional variables, and later improved to require only 2 additional ones
by [8], cf. also [6]. Similarly, the inequality, that is the set of ^-tuples of words
which does not satisfy a given equation e with t variables, can be expressed as
a union of the solution sets of a finitely many equations each of those using 3
extra variables, cf. e.g. [6], and consequently the inequality is expressible by one
equation if additional variables are allowed.

This way of expressing relations on words using word equations is very nat-
ural and resembles the way of expressing enumerable relations on integers by
diophantine equations. However, the expressive power of our method is weaker.
Namely, while diophantine equations can express all recursively enumerable sets
(of integers), cf. [18], the word equations can express only recursive relations on
words due to Makanin's result, cf. [17]. And actually our results show that not
even all of those can be expressed.

A central problem in the study of the expressive power of word equations is
to show that some relations are not expressible. A similar situation - a need to
show that certain languages are not generated by a certain type of devices - was
encountered at the early stages of the formal language theory. By now there are
a lot of tools for the latter problem, while there seems to be none for the former.

As the main contribution of this paper we introduce such tools for word
equations. More precisely, we prove theorems resembling pumping lemmas of
formal languages, which allow to prove the nonexpressibility. Very intuitively,
we show that if a given equation defines a certain language, or, in fact, just a
certain word of it via a variable X, then X actually contains some "unfixed parts"
which can be filled arbitrarily, and thus leads outside the considered language.

The contents of this paper are summarized as follows. In the next section we
state several properties of words which are expressible by equations, including
some closure properties of expressible languages, such as the closure under cate-
nation, union and Kleene star of a word. Most of the material in this section can
be considered as a folklore, although we have at least one new proof.

Then in Section 4 we prove our main results, namely tools for showing the
nonexpressibility. In Section 5 we use our theorems to show that particular lan-
guages or relations, such as "the set of primitive words", "the language (o U b)*

100

over {a,6,c}" or "the relation equal length", are not expressible. As a conse-
quence we conclude that expressible languages are not closed under operations
of Kleene star, complementation or shuffle. In Section 6 we compare the family
of expressible languages to a few much studied families, and finally, in Section 7

we state several open problems.
Due to a limited space all proofs are omitted; a complete version of the paper

can be found in http://www.tucs.abo.fi/publications/techreports.

2 On the power of expressibility

In this section we give — without trying to be exhaustive — several examples
of properties of words which are expressible as solutions of word equations and
some closure properties of languages and relations. All results presented here are
either very simple or presented before, however, some of those seem to be not
very generally known, and moreover we seem to have a simplified proof.

Let E be an alphabet of constants and 0 be an alphabet of variables. We
assume that these alphabets are disjoint. We use the convention that lower case
letters represent constants and capital letters represent variables.

A word equation is a pair of words (u,v) £(£U 0)* x (E U 0)* usually
denoted by u = v. A size of an equation is the sum of lengths of u and v. A
solution of a. word equation u = v is a morphism h : (E U 0)* —► E* such that
h(a) - a, for a £ E, and h(u) = h(v). We say that a language L is expressible,

if there is an equation e and a variable X such that

L = {h(X) : h is a solution of e}.

Similarly, we say that a property 11 G (E*)k is expressible by an equation e if
there are variables X\, . . ., Xk such that

H = {(h(Xi),..., h(Xk)) : h is a solution of e}.

The property of the expressibility depends on the sizes of the alphabets E and 0.
In this paper we concentrate to the case when the alphabet E is finite. We also
assume that \E\ > 2. In the case of a unary alphabet all expressible languages
are trivially regular. Denote by C(E) the family of expressible languages over
the alphabet E.

Example 1. The properties:

- W is not square-free, and
- those words W in {a, b, c}* which contain a letter c

are expressible. Indeed, the former is obtained from the equation W = XUUY
under the extra condition U ^ e, so that, by Theorem 2, the whole property
can be encoded into one equation. The latter one is expressed by the equation

W = XcY.

101

Example 2. Every finite and co-finite language over a finite alphabet £ is ex-
pressible. Indeed, for L = {u>i,..., wt} C S*, L and S* - L are expressed by
the formulae

*

(\/ x = w)ov(V x = wy),

where TV = max{|u;;| : i = 1, ...,<}. As above Theorem 2 makes it possible to
express these formulae using only one equation.

Example 3. The properties

- W is imprimitive, and
- W is not minimal in its conjugacy class with respect to the lexicographic

ordering -<

are expressible, too. This follows, as above, from the formula

WZ = ZW and Z = WT and T ^ 1

and
W = UV and W' = VU and W <W

after the observation that the relation W -< W is expressible by the formula

\J{W = RaT and W = RbT').

After these examples we formulate several closure properties of expressible
languages and relations. Our first result is very easy.

Theorem 1. The family of expressible languages is closed under the following
operations: catenation, cyclic closure, and Klenee star of a single word.

Our second result, which we have already used several times, deals with the
closure properties under Boolean operations.

Theorem 2. Let e : u = v and e' : u' = v1 be two equations. Then

1. A property expressible by e and e' is expressible by a single equation without
any additional variables.

2. A property expressible by e or e' is expressible by a single equation using hvo
additional variables.

3. The relation satisfying u ^ v is expressible by a single equation using a finite
number of additional variables.

102

Theorem 2 deserves a few comments. First, we have a new proof of case 2
which is a simplification of the proof presented in [6] which, in turn, was based
on ideas of S. Grigorieff [8]. Second, it clearly gives more closure properties of
expressible languages and relations, such as

Corollary 3. Any language or relation of words expressible by a formula built
on word equations using operations of conjunction, disjunction and negation is

expressible by a single equation.

Third, with the case 3 one has to be carefull. It says that the complement of
the relation defined by an equation u = v using all variables of the equation
is expressible by a single equation (using additional variables). This, however,
does not mean that expressible languages are closed under the complementation.
In fact, they are not, as we shall show in Section 5. Of course, in some special
cases, such a closure might hold.

We conclude this section by stating two more closure properties of the family
of expressible languages.

Theorem 4. The expressible languages are closed under

1. finite intersections, and
2. finite unions.

3 Expressibility of languages by equations with two
variables

In this section we introduce technical tools and apply those to languages ex-
pressible using only two variables. First, given a vector z of natural numbers, we
define an equivalence relation 1ZZ on positions in words determined by solutions
specified by a vector z of lengths of words constituting a solution of an equation.
The intuition behind the definition of Tlz is as follows. Consider a fixed equa-
tion u = v, and fix the lengths of the components of a solution by the vector
z. This fixes the lengths of both sides of h(u) = h(v). But this is an identity in
S+ so that corresponding positions on both sides must be filled with the same
letter. This induces via TZZ the equivalence classes X above. These classes may
contain constants, i.e. pairs of the form (I, a) with a € 17, or unfixed parts of
the variables, i.e. pairs of the form (i,X) corresponding to the i-th letter of X.
Of course, in a concrete solution the second components of an equivalence class
must coincide.

Assume that an equation e contains t variables X\, X2, •■■ Xt and z =
(zi,..., zt) is a vector oft natural numbers. We say that h is a z-solution of e if
h is a solution of e and \h(Xj)\ = Zj, for 1 < j < t. For a vector z = (z\,..., zt)

we define a function | • |z : (0 U 17)* —»• N by

{zm if u = xm e 0,
1 if «e 17,

Ylk=i \Uk lz if u = aifl2 • • • a« with aj G 0 U S.

103

In other words \w\z is the length of the word h(w) if h is a z-solution of some

equation.
Now, assume that we are given an equation ui . ..Uk = v\ ...vs over t vari-

ables and a vector z G N* such that \u\z = \v\z- We define a function leftz:

{1,..., |u|z} —»■ iV x (0 U E) in the following way:

leftz(j) = (r,x) iff
|ui . . .up\z < j < |«i ...up+i\z and r = j - \ui .. .up\z and wp+i = x

Similarly, we define the function rightz '■

rightz(j) = (r,x) iff

\vi .. -vp\z < j <\vi .. • Vl-ilz and r = i_ K ■••V
PIZ and vp+i = a;

An equivalence relation Hz on positions {1... |u|z} is the transitive closure
of the relation TZ'Z defined by

iJl'zi iff leftz(i) = rightz{j) or leftz(i) = leftz(j) or rightz(i) = rightz(j).

We say that a position i belongs to a variable A if either leftz(i) = (j,A) or
rightz(i) = (j, A'), for some j. Let ^f be an equivalence class of the relation 7?-z-
We say that X corresponds to a constant a if there is a position i in X such that
either leftz(i) — (I, a) or rightz(i) = (I, a).

Example 4- Consider an equation e : aXiX^bXi = A3A4A3. Let z = (2,4,5,0).
Then the values of the functions leftz and rightz are listed below.

1 2 3 4 5
leftz
rightz

(l,a)
(2, A3)

(2,*i)
(3, A3)

(i.*0
(4, A3)

(2^2)
(5, A3)

6 7 8 9 10
leftz
rightz

(3,A2)
U.*3)

(4,A2)
(2, A3)

(1.6)
(3, A3)

(l.*i)
(4, A3)

(2,A0
(5, A3)

Then the equivalence classes of 7£z are X = {1,6}, y = {3,5,8,10} and
Z — {2, 4, 7, 9}. The equivalence classes X and ^ correspond to the constants a
and b since leftz(l) = (1, a) and leftz(8) = (1,6), respectively. The equivalence
class -Z does not correspond to any constant. Hence, the positions in Z can be
filled with any letter and, by case 4 of Lemma 5, they can be replaced by any
word as well. This gives the following family of solutions of the equation e:

Ai = ßa, A2 = ßbaß, A3 = aßbßb, A4 = s,

where ß can be replaced by any word.

104

The above procedure, illustrated in Example 4, can be seen as a method of
filling the positions of the variables in an equation. This simple method, which
was first used in [15], can be used, for example, to give a very illustrative proof
for the periodicity theorem of Fine and Wilf, cf. e.g. [6].

Now the following lemma is obvious. Denote by w[i] the i-th letter of the

word w.

Lemma 5. Let C be an equivalence class of the relation TZz connected to an
equation e : u = v. Then the following conditions are satisfied:

1. For any two positions i, j G C and a z-solution h of e, h(u)[i] = h(u)[j].
2. If C corresponds to a constant a, then for each z-solution h of e, h(u)[i] = a.
3. If C corresponds to two different constants a and b, then the equation e has

no z-solution.
If. If C does not correspond to any constant and e has a z-solution, then replac-

ing the positions in C by any word produces a new solution of e.

Note, that in case 4 the new solutions obtained need not be z-solutions any-
more.

Ina formulation of our results we need a notion of a pattern language from [2],
cf. also [11]. A pattern is a word over the alphabet 0 U E. A pattern language
generated by a pattern w is the set of all words which are morphic images of
■w under all morphisms h : (0 U E)* —► E* satisfing h(a) — a, for a in E. In
particular, it is natural to denote by p((E*)k) the pattern language generated
by a pattern p(X\, X2,. . ., Xk) containing k variables X\, X2, . . ., Xu- We have
an obvious connection:

Example 5. Each pattern language is expressible. Let u be a pattern and Z be
a variable which does not occur in u. A variable Z in equation Z = u expresses
the pattern language generated by u.

We also need an auxilary lemma which follows rather straightforwardly from
Lemma 5 and which holds for any number of variables.

Lemma 6. Let L be an expressible language via a variable X in an equation e.
Suppose that there is no one variable pattern p(Y) such that p(2J*) C L. Then
for each vector z there is a word w 6 L such that for each z-solution h of e
h(X) = w.

Now denoting by #L(W) the number of words of length n in the langauge L,
we are ready to prove the main result of this section.

Theorem 7. Let L be an expressible language by an equation on two variables.
Then either #i(n) = 0{n) or there is a pattern p(Y) with one variable such

thaip(E*) C L.

As a straightforward consequence of Theorem 7 we obtain a gap theorem for
possible complexities of the function #L(TI). Note here that for each language L
wehave#L(n) = 2°(n).

Corollary 8. Let L be expressible by an equation with two variables. Then either
#i(n) = O(n) or #L(an + b) = 2n(n\ for some constants a, b.

105

4 Main results

This section is devoted to prove some pumping-like properties of expressible lan-
guages. These are achieved by using the tools of the previous section, and, more
importantly, by considernig special types of factorizations of words to generalize
a technique in [5], cf. also [14], which was used to prove an upper bound for an
index of the periodicity of a minimal solution of a word equation.

We recall that an F-factorization of a word w is any sequence wi, ..., Wk of
words from a language F such that w = w\ .. .wu- We generalize it as follows.
Let T be a property of sequences of words. We say that a sequence w\, ..., wu
is an /-factorization of w if w = wi ... wk and the sequence w\, ..., Wk satisfies
/. The factors w\ and Wk are called outer factors of w and the other factors are
called inner factors of w. Further we say that a property / defines synchronizing
factorizations, or briefly that T is synchronizing, if the following holds:

1. Each word admits a unique /-factorization.
2. If a word w admits an /-factorization v\,...,Vk then, for each symbol a

in E the word aw admits either an /-factorization u, v, V2, ■ ■ ■, v*, where
uv = av\, or an /-factorization avx,..., Vk, and the word wa admits either
an ^-factorization v\,..., Vk-i,u, v, where uv = v^a or an /"-factorization

vu...,vka.

Note that our notion of an /-factorization is connected to but not the same as
that of a factorization of a free monoid, cf. [3, 16]. These factorizations are used to
decompose free monoids, while in our considerations a focus is on factorizations
of a single word. Note also that the above conditions (1) and (2) could be named
separately: factorizations satisfying (1) could be called uniquely deciphering and
those satisfying (2) synchronizing. We prefered the chosen terminology since all
factorizations considered here satisfy (1). Finally note that conditions (1) and
(2) could be defined with respect to a language L: each word of L should satisfy
these conditions.

With the above notions we have the following obvious lemma.

Lemma 9. Assume that a property T defines a synchronizing factorization and
that xi, X2,...,Xk and y\, y2,...,yi are T-factorizations of words x and y,
respectively. Then, if y is a subword of x and the factor y\ of y ends inside
factor xi of x and factor y\ starts inside a factor Xj, then j — i = I — 1 and

2/2 = xi+i, 2/3 = xi+2, ■ ■., yi-\ — Xj_i.

We say that an /"-factorization is synchronizing with a finite delay, if there
are numbers q, r such that for each word x with an /-factorization x\, ..., x^
and each subword y of x with an /-factorization y\, ..., y\ if the factor y\ of
y ends in factor X{ of x and the factor y\ starts in Xj, then y% is a suffix of

xmax{i-g,i} ■■■Xi and yi is a prefix of Xj .. .a:min{j+r,jfc}-
Let w\, ..., u>k be a factorization of w. We say that this factorization of

w synchronizes with a pattern p iff p — u\U-2 ...«<, where, for all i, either w,;
is a variable or «; = »,-. Let njr(w) be the number of different words in the

106

factorization of w. For a language L, denote nyr(L) = max{n^(io) : w G L}.
Now we formulate the first tool to show the nonexpressibility.

Theorem 10. Let. L be an expressible language and T a property definining
finite delay synchronizing factorizations. Then there exists a number k such that
for each w 6 L satisfying n^(w) > k there is a pattern p(Xi,...,X„) with
s = n?(w)-k variables synchronizing with a T-factorization ofw and satisfying

p({S*Y)CL.

Next we define, for each primitive word P, particular factorizations which
turns out to be synchronizing. Let P be a primitive word. Then, as is well-known,
each word w can be uniquely written in the form w = w1P

Xlw2 ■ ■ ■ PXk~1wk,

where

- iui does not contain P2 as a subword,
- P is a proper prefix of W{, for 1 < i < k,
- P is a proper suffix of W{, for 1 < i < k,
- Xi > 0, for 1 < i < k- 1.

These conditions clearly defines an instance of an ^"-factorization, we call it Tp-
factorization. Moreover, as is straightforward to see it is synchronizing and with

a finite delay. Next we set

T(w) — {xi : Px' is a factor in a P-factorization of w}

and define the index of w with respect to P, by the formula

expp(w) = max{a:; : a;,- G T(w)}.

Now we formulate our second tool to show the nonexpressibility.

Theorem 11. Let L be an expressible language and P be a primitive word.
Then there exists a natural number k such that for each word u in L satisfy-
ing expp(u) > k there is a word w in L with expp(w) < k and which is obtained

from u by removing some occurrences of P.

Theorem 11 can be used to prove the following characterization of expressible

relations concerning lengths of variables.
Let / be a function f :Nr ^ N.We say that a property /(|Xi |,..., \Xr |) = 0

is expressible, if the relation

{(Wl,...,wr) :/(K|,...,K|) = 0}

is expressible.

Corollary 12. Let Xlt X2, ■ ■ ■, Xr be r different variables. If a property

f{\X1\,\X2\,...,\Xr\) = Q

is expressible, then there is a constant k such that if f{i\,i2, ■ ■ ■ ,ir) = 0, for

some ?'i,.. ., ir, and is > k then also

f(ii,i2,...,i,-i,P,i,+i,---,ir) = 0, for some p< k.

107

5 Applications of main results

In this section we apply our results of the last section to achieve our original
goal: to prove that several very natural properties of words are not expressible.
We recall that to our knowledge no such result is known in litterature except for
the property "X being a prefix of Y" that cannot be expressed without using

additional unknowns, cf. [19].

Example 6. The language L\ = {anbn : n > 1} is not expressible. We prove it
by a contradiction applying Theorem 11, for P = a. Let He a constant from
Theorem 11. Take a word w = ak+1bk+1. Since w £ L2 and expa(w) > k there
is a word u in Ii, which is obtained from w by removing some occurrences of
the word a. A contradiction.

Example 7. The property "w is primitive" is not expressible. Now we can apply
Theorem 10. Let T be a factorization defined by dividing word into blocks of the
same letters. Clearly, T has the synchronizing property. Assume the property "tu
is primitive" is expressible and let He a constant from Theorem 10. Consider
a word tu = ak+1bakb.. .ab which admits the factorization ak+1, b, ak, b, ..., 6,
a, b. Since nyr(w) = k+ 2, by Theorem 10, there is a pattern with two variables
and one of them corresponds to a factor of w of the form a'. Since each factor
of this form occurs in w exactly once, the variable occurs exactly once in the
pattern. The results now follows from the fact that the word wiXw2 is a square
if X = w2w\.

Example 8. The language L2 = (aUb)* over three-letter alphabet S = {a, b, c} is
not expressible. In the same way as in the previous example we prove that if L2

is expressible, then there is a pattern p(X) such that p{S*) C L2- Substituting
X = c we obtain a contradiction.

Example 9. The relation "x and y are of equal length", i.e.

T = {(x,y)eS*xS* : M-|2/l = 0}

is not expressible. This is due to Corollary 12. Observe here, that the relation T
is expressible if \S\ = 1.

As a consequence of the above examples we easily obtain.

Theorem 13. The family of expressible languages is not closed under the oper-
ations of complementation, morphic image, inverse morphic image and shuffle.

We conclude this section by emphasizing that the combination of closure
and nonclosure properties of expressible languages, especially closure under in-
tersection and union and nonclosure under complementation and morphic image,
makes the family quite different from usually considered families of formal lan-
guages.

108

6 Comparisons with other families of languages

We already pointed out that the nonclosure and closure properties of C(S)
makes this family different from most of the usually studied families of languages.
We further emphasize this fact by the following theorem which is proved by
considering particular languages.

Theorem 14. 1. C(E) is a proper subset of the family of recursive languages

over S.
2. C(E) is incomparable with the families of DOL, regular and context-free lan-

guages.

7 Concluding remarks

As a major contribution of this paper we introduced - according to our knowl-
edge - first tools to show that certain properties of words are not expressible as
solutions of word equations, or more precisely as values of some components of
solutions of word equations. Our tools were based on special factorizations of

words, which we called synchronizing.
As applications of our results several concrete properties of words were shown

to be nonexpressible by word equations, as well as several nonclosure properties
of expressible languages were obtained.

On the other hand, we also stated many known closure properties of express-
ible languages, and in particular gave a shorter proof for the fact that expressible
properties are closed under disjunction.

Finally, it is worth mentioning that there remains a lot of research to be
done on this interesting and fundamental field. We point out here just a few
open problems:

- Problem 1. Is the relation "u is a sparse subword (subsequence) of v"
expressible?

- Problem 2. Are the properties "w is square-free" and "w is a Fibonacci
word" expressible? Recall, that Fibonacci words are defined by recurrence
formulae w0 — a, wi = b, w„+2 = wn+iwn, for n > 2.

- Problem 3. When is the complement of an expressible language expressible?
- Problem 4. Is our gap theorem true for languages expressible by word

equations with more than two variables?

References

1. Albert, M.H., and Lawrence, J., A proof of Ehrenfeucht's Conjecture, Theoret.
Comput. Sei. 41, 121-123, 1985.

2. Angluin D., Finding pattern common to a set of strings, in Proceedings of
STOC'79, 130-141, 1979.

3. Berstel, J., and Perrin D., Theory of Codes, Academic Press, 1985.

109

4. Büchi, R. and Senger, S., Coding in the existential theory of concatenation, Arch.

Math. Logik, 26, 101-106, 1986/87.

5. Bulitko, V.K., Equations and inequalities in a free group and a free semigroup,

Tul. Cos. Ped. Inst. Ucen. Zap. Mat. Kafedr. Geometr. i Algebra, 2, 242-252, 1970
(in Russian).

6. Choffrut, C, and Karhumäki, J., Combinatorics of words, in G.Rozenberg and
A.Salomaa. (eds), Handbook of Formal Languages, Springer, 1997.

7. Culik II, K., and Karhumäki, J., Systems of equations and Ehrenfeucht's conjec-
ture, Discr. Math., 43, 139-153, 1983.

8. Grigorieff, S., Personal comunication.
9. Guba, V., The equivalence of infinite systems of equations in free groups and free

semigroups to their finite subsystems, Matem.Zametki, 40 (3), September 1986 (in
Russian).

10. Harrison, M.A., Introduction to Formal Language Theory, Addison-Wesley Pub-
lishing Company, 1978.

11. Jiang T., Salomaa A., Salomaa K., Yu S., Decision problems for patterns, J. Com-
put. Sys. Sciences 50, 53-63, 1995.

12. Khrnelevski, Yu. I., Solution of word equations in three variables, Dokl.Akad.Nauk.

SSSR, 177, 1023-1025, 1967 (in Russian).
13. Khrnelevski, Yu. I., Equations in free semigroups, Trudy Mat. Inst. Steklov, 107,

1971 (English translation: Proc. Steklov Inst. of Mathematics 107 (1971), American

Mathematical Society, 1976.)
14. Koscielski, A., and Pacholski, L., Complexity of Makanin's algorithm, J. ACM

43(4), 670-684, 1996.
15. Lentin, A., Equations dans des Monoides Libres, Gouthiers-Villars, 1972.
16. Lothaire, M., Combinatorics on Words, Addison-Wesley, 1993.
17. Makanin, G.S., The problem of solvability of equations in a free semigroup, Mat.

Sb., Vol. 103,(145), 147-233, 1977. English transl. in Math. U.S.S.R. Sb. Vol 32,
1977.

18. Matijasevich, Y., Enumerable sets are diophantine, Soviet. Math. Doklady 11, 354-
357, 1970. English transl. in Dokl. Akad. Nauk SSSR 191, 279-282, 1971.

19. Seibert, S., Quantifier hierarchies and word relations, Springer LNCS 626, 329-338
(1992).

Finite Loops Recognize Exactly the Regular Open
Languages*

Martin Beaudryf Frangois Lemieux4 Denis Therien§

Abstract

In this paper, we characterize exactly the class of languages that are
recognizable by finite loops, i.e. by cancellative binary algebras with an
identity. This turns out to be the well-studied class of regular open lan-
guages. Our proof technique is interesting in itself: we generalize the
operation of block product of monoids, which is so useful in the associative
case, to the situation where the left factor in the product is non-associative.

1 Introduction
The algebraic approach in the study of regular languages, based on consider-
ing finite monoids as language recognizers, certainly is the most powerful tool
available for understanding computations realized by finite-state automata. It has
developed into a rich and coherent framework to relate combinatorial descriptions
of regular languages and algebraic properties of their recognizers [10, 16]. An
early example of such relationship is the famous theorem of Schiitzenberger [24]:
a subset of A* is star-free (i.e. can be obtained from finite sets using Boolean
operations and concatenation) iff it can be recognized by a group-free monoid
(i.e. in which no subset forms a non-trivial group).

In much the same way that monoids can be used to recognize languages,
one may also consider other types of algebras and study their computational
power. For example, non-associative binary algebras, usually called groupoids,
are exactly the recognizers needed for context-free languages: this relationship
has been well-known in theory of tree automata (see [12]) and can be traced
back to the paper of Mezei and Wright [15]. It has also been used in complexity
theoretic work (e.g. see [26, 5]). In view of this connection, it is natural to
try to characterize the languages recognized by various specific subclasses of
finite groupoids. One such class, that has been extensively studied in the past

»Work supported by FC AR (Quebec) and CRSNG (Canada)
tDepartement de mathematiques et d'informatique, Universite de Sherbrooke, Sherbrooke

(Qc) Canada, J1K 2Rl,beaudry@dmi.usherb.ca
'School of Computer Science, McGill University, 3480 rue University, Montreal (Qc)

Canada, H3A 2A7, lemieux@cs.mcgill.ca
SCorresponding author: School of Computer Science, McGill University, 3480 rue Uni-

versity, Montreal (Qc) Canada, H3A 2A7, denis@cs.mcgill.ca

111

[7, 8, 1, 6], consists of loops, i.e. groupoids with an identity and for which every
row and every column of the multiplication table contains every element. In [9] it
was proved that any language recognized by a finite loop must be regular. The
main result of our paper gives an exact characterization of which languages can
be recognized by loops.

The answer is surprizing and elegant: a language L C A* can be recognized
by a finite loop iff L is regular and open in the group topology on A*. This
topology, introduced by [21, 22], is the smallest one such that every morphism
from A* onto a. finite group is continuous; investigations of its properties were
motivated early on by several deep connections with important questions about
finite monoids [17, 18]. Our result thus adds on a new perspective to a class of
languages which already has a significant history.

The paper is organized as follows: in section 2, we introduce most of the
relevant definitions that will be needed. In section 3, we present some tools
that are useful in constructing loops to recognize languages. In section 4, we
show that loops recognize only regular open languages. In section 5, we prove
that every regular open language is recognizable by a finite loop. We derive some
consequences of this theorem in the last section where we also present some ideas
for further applications of our techniques.

2 Preliminaries

In this section, we introduce our notation and review some elementary facts about
monoids and groupoids.

Let A be a finite set: we write A* for the free monoid generated by A,
i.e. for the set of all words of finite length over the alphabet A, concatenation
being the associative operation. The length of a word x is denoted by \x\ and e
stands for the unique word of length 0, which is the identity element of the free
monoid. A congruence on A* is an equivalence relation a that is compatible with
concatenation, i.e. x\ a j/i and x-i a x/2 imply x\X2 a j/ij/2- The quotient A*/a
is then an yl-generated monoid, and every A-generated monoid is of this form.
A language L C A* is recognized by the monoid M iff there exist a morphism
<t> : A* ->■ M and a subset F of M such that L = {x £ A* : <j>{x) G F}\
equivalently we can view the morphism as going from A* to M*, transforming
a word x into a string of monoid elements which is then evaluated in M; in
this point of view, only alphabetical morphisms need to be considered, that is
morphisms mapping letters to letters. We observe that when L is recognized
by M, <p(A*) is a submonoid of M isomorphic to A*/a for some congruence a
and L is a union of a-classes. It is well-known that a language is regular iff it
can be recognized by a finite monoid, i.e. iff it is a union of a-classes for some
congruence a of finite index. We will say that L C A* is a group language iff L
can be recognized by a finite group.

The notions above have natural counterparts in the non-associative world.
A groupoid is given by a set and a binary operation: we will assume here that
every groupoid contains a 2-sided identity element. The free groupoid generated

112

by A will be denoted by Aw. It will be convenient to think of an element in
A(t) as a pair (t,x) where i is a word in the free monoid and t is a rooted
binary tree with \x\ leaves; in particular, the identity of the free groupoid is then
(0,e). The product of (tuxi) with {t2,x2) is then the pair (tlt2,xlx2) where
i1t2 - ti if t2 is empty, t1t2 = t2 if ti is empty, and otherwise txt2 = t is the
tree obtained by joining the root of U and the root of t2 to a new node, which
becomes the root of t. If g G A^ is identified in this way with a pair (t,x)
we define Tree (g) = t and Yield (g) = x. We say that gX)g2 G ^4(*J are yield-
equivalent if Yield (gi) = Yield (#2)- We can view each row and each column in
the multiplication table of the groupoid G as defining a mapping from G to G.
The closure of these mappings under the operation of composition is called the

multiplicative monoid of G, denoted by M(G).
Congruences on A^ are defined in the same way as in the associative case. If

a is a congruence on A^*\ the quotient A^/a is an A-generated groupoid, and
every ^-generated groupoid arises in this way. A loop G is a groupoid whose
multiplication table contains every element in each row and in each column;
clearly, this will be the case iff M(G) is a group. Equivalently, a loop is a
groupoid that is left and right cancellative, i.e. ab = ac implies b = c and

ba = ca implies b = c, for any a, b, c G G.
We now wish to use groupoids to recognize subsets of ^4*; note that if G

is not associative, the notion of a morphism from A* to G is not well-defined.
We say that the language L C A* is recognized by the groupoid G if there
exist an alphabetic morphism <j> : A* ->• G* and a subset F of G such that
L = {x G A* : G((j>{x)) D F ^ 0}, where G(0(a:)) is the set of elements of G
obtained by evaluating the string <j>{x) of G* in all possible ways. Note that if
G is associative, there is only one way of evaluating <f>(x) and we are back to the
definition given for monoids. We will say that L C A* is a loop language iff L can
be recognized by a loop. In terms of congruences, the groupoid G recognizes the
language L iff there exist an ^-generated subgroupoid of G isomorphic to A^/a
and a subset F of this subgroupoid such that x G L iff there is some tree t such
that [(t, x)]a is in F. One pleasant feature of this notion of language recognition

is

Lemma 2.1 [5] L is recognizable by a finite groupoid iff L is context-free.

The finite group topology on A* is the smallest topology such that every
morphism from A* onto a finite group is continuous. It is equivalent to say
that, the group languages form a basis for this topology. It was first introduced
by Hall [13] for the free group, and by Reutenauer for the free monoid [21, 22].
Connections were soon discovered between some classical problems about finite
monoids and computing the closure of a given regular language for this topology
[17, 18]; it thus became an important question to characterize which regular
languages are open or closed. A sequence of deep results [2, 3] finally led to the
following combinatorial characterization for the regular open sets [19].

Lemma 2.2 A regular language is open iff it is a finite union of languages of the

form Laa-iLi ... akLk where the at 's are letters and the Lt 's are group languages.

113

3 Recognizing languages with loops

The aim ofthis section is to prove that any language of the form B'aYB' ■ ■ ■ B'akB",
where B is a finite alphabet and a; G B, can be recognized by a finite loop. This

result will be of great help in proving Theorem 5.3.
In general, it is not an easy task to construct directly a loop B that recognizes

a given language L. What can be done instead, is to construct a partially defined
loop G that recognizes L, and then, embed G into a loop B. This motivates the

following definition.
A groupoid G with an absorbing element, denoted 0, is weakly cancellative if

for any a,x,y <EG, the two properties (ax = ay ^ 0) => (x = y) and (xa = ya ^
0) => (x = y) are satisfied.

The Cayley table of a weakly cancellative groupoid is such that in each row
and each column no nonzero element appears twice. Hence, the nonzero elements
of such a groupoid form a partially defined groupoid which we call an incomplete

loop. This terminology is justified by the following lemma.

Lemma 3.1 ([11]) An incomplete loop containing n elements can be embedded

in a loop containing t elements, for any t >2n. n

Recall that if Q is a loop and w G Q+ then Q(w) is the set of elements that
result from evaluating w using all possible bracketings.

Lemma 3.2 Let Q be a loop and let u,v,w G Q+■ Then, the cardinality of

Q(uwv) is at least as large as that of Q(w).

Weakly cancellative groupoids will be useful to prove that a language can be
recognized by a loop. This is a consequence of the following lemma.

Lemma 3.3 Any language recognized by a weakly cancellative groupoid, with 0
in the accepting set, is also recognized by a loop.

Proof. Let G be a weakly cancellative groupoid, and let L C G* be a
language recognized by G. Assume that 0 belongs to the accepting set. Let
B - G - {0}, let ßW be the free groupoid over the set B, and let ß be the
cardinality of B. We also denote by B the incomplete loop induced by the

elements of B in G.
We will define a sequence of incomplete loops Bit for i > 0. Let B0 = B and

define Bi+i from B, as follows. All products defined in Bt are defined identically
in Bi+i. Moreover, for any undefined product a ■ b in Bt, we define a ■ b = (ab)

in Bi+1

Remark. Observe that for any a,b G B, if the product ab is not defined in
Bk, then c = ab is a new element in Bk+1. Moreover, for any d G Bk+i, the
products cd and dc are not defined in Bk+\. Those products generate two new
elements in Bk+2, and so on. This and Lemma 3.2 imply that for any u,v G B*
such that k = |u| + |u|, Bk+i(uabv) contains at least k elements.

114

Let k = ß+2 and let Bk be embedded in a finite loop H. We will argue that
L is recognized by H with the accepting set containing all nonzero elements of
the accepting set of G plus all elements not in B.

If«) G B* can be evaluated to a nonzero element in G, then w can be evaluated
to the same element in H using the same parenthesization. This shows that if
«; G B* cannot be evaluated to 0 in G, then w is accepted by G if and only if it

is accepted by H.
Suppose that w can be evaluated to 0 in G. Then, there exists a segment u

of w of minimal length that can be evaluated to 0, i.e. w = sut, 0 G G(u) and
for any strict segment v of u, 0 £ G(u). So, there exist «i, «2 G 5+ and a, b G 5
such that M = «i«2l a G G(ui), 6 G G(w2) and ab = 0 in G, but a^O and
6^0. This implies that w can be partially evaluated to sabt both in G and in
H. Now, there are two possibilities. First, if \s\ + \t\< k, then s(ab)t can only be
evaluated, in H, to an element in B^ — B: in this case H accepts w. Otherwise,
by the above remark, H(w) contains at least ß + 1 different elements, and so, at
least one of them is not in B. Thus, H accepts w if and only if G accepts w. □

As an example of application of Lemma 3.3, we can show that any cofinite
language is recognized by a finite loop. Since it is easy to see that no finite
language can be recognized by a finite loop, the class of loop languages is not
closed under complement.

Loops can also recognize languages that are not cofinite and are not recog-
nized by a group. A simple example is the set OR C {0,1}*, composed of all
words that contain at least one 1. This language is recognized by U\, the mon-
oid defined by 00 = 0 and 01 = 10 = 11 = 1. Here, 0 is an identity and 1
is absorbing. Since U\ is a weakly cancellative groupoid, the language OR can
be recognized by a finite loop. It is easy to verify that the complement of OR
cannot be recognized by any finite loop.

We close this section with a lemma that will play an important role in the

proof of Theorem 5.3.

Lemma 3.4 Let A be a finite alphabet and let a\,...,ak be elements of A (k >
0). Then Lk = A* ax A* ■ ■ -A* ak A* is recognized by a finite loop.

Proof. The proof is by induction on k. Observe first that L\ = A*a\A*
can be recognized by the weakly cancellative groupoid U\ discussed above. By
Lemma 3.3, L\ can also be recognized by a finite loop.

Let k = i+j, where i,j > 0. Then, there exists a finite loop Qi that recognizes
Li = A* ax A* ■ ■ ■ A*atA* with the accepting set F, C Qi and there exists a
finite loop Qj that recognizes Lj = A*ai+XA* ■ ■ ■ A*akA* with the accepting set

FjQQj-
Consider the weakly cancellative groupoid Q defined as the loop Qi x Qj

except that (a,b)(c,d) = 0 whenever a £ Fi and d G Fj. Then, Q recognizes
the language Lk = A*a\A* ■ ■ ■ A*akA* with 0 as the accepting element. By
Lemma 3.3, L is also recognized by a finite loop. □

115

4 Finite loops recognize only open regular lan-
guages

In [9], it is shown that finite loops only recognize regular languages. In this
section we refine this result by showing that only open regular languages can be
recognized by such algebras. The following can be observed.

Lemma 4.1 Any language L C A* of the form L0 ■ ■ -Lk, where Li is recognized

by a finite group, is open.

To prove the next theorem, we will use the following definition. Let A be an
alphabet and S a set of variables. A special tree t over A with variables in S is
a binary tree where each element of S appears exactly once as a label of a leaf.
We will use special trees in two particular situations: when S contains a single
variable A"; and when each leaf of t is labeled with a variable in S. In this last
case we say that t = t(xlt . . ., xn) is a special tree with n leaves.

Let t be a special tree over A with the variable X and let t' be any tree. We
denote by t ■ t' the tree obtained when the leaf in t labeled with X is replaced by
t'. Observe that when t' is also a special tree with variable X, the result is still

a special tree with variable X.
Observe also that • is an associative operation. Hence, for any special trees

*i,..., tk over Q with variable X, the expression ti-t2 tk defines the same
special tree no matter which parenthesization is used. This will be denoted by

Similarly, if s(xi,..., xn) is a special tree with n leaves and t\,...tn are
arbitrary trees, then s(ti, ...,tn) is the tree obtained by substituting the tree U

for the leaf labeled with Xi, for all i.

Theorem 4.2 Finite loops recognize only open regular languages.

Proof. We will use the technique of [9].
Let Q be a finite loop. We define a comb over Q recursively as follows. Any

a G Q U {e} is a comb. If a G Q and u G Q^ is a comb then w = (au) is also a
comb. No other element of QW is a comb. Hence, a comb c E Q^ corresponds
to the left-to-right bracketing of Yield (c).

Any t G Q^ can be decomposed into t = s(t\,... ,t„), where n > 1,
s(x\,. . ., xn) is a special tree with n leaves, and t{ is a comb over Q. Let
comb(i) be the smallest n for which such a decomposition exists.

We will show that, for any tree t G Q^ , there exists a yield-equivalent tree
s G Q'*) evaluating to the same element and such that comb(s) is bounded by a
constant. By Lemma 4.1, this will prove the theorem because the set of words in
Q* that left-to-right evaluate to a given element forms a language recognized by
the multiplication group of Q.

More precisely, we will show that for any tree t G Q^ such that comb(i) > 89,
where q is the order of Q, we can find a yield-equivalent tree t' G Q^ evaluating
to the same element as t and such that comb(i') < comb(i).

116

Suppose that t G Q^ is such that comb(t) = n > 8q, and let t = s(ti,..., tn)
be decomposed as explained above. Since s has more than 8q leaves, it must
possess a path of length k > 3g. Let the nodes on this path be d0,di,... ,dk,

where do is the root of s and <f!+i is a child of ds-.
For 0 < i < q, let s,- be the tree rooted at d3i. Moreover, for 0 < i < q,

let in be the special tree constructed from s,- by substituting the variable X for
Sj+i. Hence, for each Vj there exist four indices 1 < a; < /?; < 7,- < 4' < «
such that the leaves at the left of X in v, are labeled with xai,..., xßi and those
on its right are labeled with xlit..., £<5,. Moreover, the leaves of sq are labeled

with £„,,••■, xPq for some 1 < aq < ßq < n. We have s = (UlZo v') ' s<3- where

t;; = viP(xai,...,xßi,X,xli,...,xsi), and sq = sq(xaq,..., xßq).

We can thus write: t = (üfco ^')'zg' where zt- = Vi{tai,..., tßt, X,tlit..., tgt)
and [zq = Sq(taq,...,tßq).

Let Wi = Yield (U) and define Z,- to be the comb whose yield is wai ■ ■ ■ wßi, and
r; the comb whose yield is wlv ■■•wsi. Then £,• = ((/j-X)r,-) is yield equivalent to
Zi. Using the fact that our loop is both cancellative and finite, it is easily verified
(Lemma 7 of [9]) that there exist two integers a and b such that t and t' evaluate to

<?• the same element, where t' is defined as t' = (Y\i=o Zi) • (Hi=a **)' (Il»=6+i z>)'z<
We observe that comb(zi) > 3 while comb(i,-) < 2. This implies that comb(t') <
comb(tf), proving the theorem.

D

5 Every regular open language is recognized by
a finite loop

In this section, we will conclude the proof of our main result by establishing the
converse of Theorem 4.2. In order to do so, we will introduce the block product of a
monoid with a groupoid. If the second operand is also a monoid, our construction
reduces to the known notion of block product applied to associative structures
[23, 25], which have proved itself to be extremely useful as a decomposition
tool for finite monoids. Note that the block product is a two-sided version of
the classical notion of wreath product: our construction below can be trivially
modified to define the wreath product of a monoid with a groupoid. Actually,
the wreath product is sufficient to prove our main result. We choose to give the
more general construction as the potential for future applications seems more
important.

Let a be a finite-index congruence on A*, let B be the finite alphabet A*/a x
A x A* /a and let ß be a finite-index congruence on the free groupoid B^*>.
For any u,v in A*, we define the mapping 0U|„ : A* -¥ B* by 6U)V{e) — e and
9u,v{a\ . . .a.n) = 6i . . .&„, where bt — ([uai . . .aj_i]a,a,-, [a,-+i . . .anv]a).

We now define a binary relation on A1-*';

117

(t,x) ßOa {s,y) iff 1) x a y and

2) (t,eUiV(x))ß{s,9u,v(y)) (orallu,veA*

Lemma 5.1 ßO a is a congruence of finite index on A^*>.

Proof. That it is an equivalence of finite index is easily checked. Suppose
now that. (*i,zi) ßUa (si,yi) and (t2,x2) ß^a (s2,y2); we want to show that

{t\U,xix2) ß^a (sis2,j/ij/2)-
Since a is a congruence, we have that xix2ayiy2. Fix now u and v arbitrarily

in .4*; we have

(t1t2,Ou,v(XiX2)) = {ti,0u,X2v(xi)){t2,0UXl>v{x2))

- {tl,du,y2v{xi)){t2,euyuV(x2))

ß (si,8Uiy2V{yi))(s2,6UyuV(y2))

= (sis2,9UtV(yiy2))-

The next lemma says that the cancellation properties are preserved by the

block product.

Lemma 5.2 If A*/a is a group and B^/ß is a loop, then A^/ßDa is a loop.

Proof. It is clear that the /?Ga-class containing the identity of A^ is
an identity for the groupoid A^/ßOa. We next show that ßUa is a left-
cancellative congruence, i.e. (t,x)(s, y)ßOa (t, x){q, z) implies (s, y)ßOa (g, z).

The hypothesis says that (ts, xy) ß G a (tq, xz); hence xy a xz and because a
is a group congruence, hence left-cancellative, we deduce y a z.

Consider some arbitrary u and v in A*: we now need to show that
{s,0u,v{y))ß{q,Qu,v{z))- Choose w e A* suchthat wxau (such w exists since a is
a group congruence). The hypothesis implies that [ts,9WiV(xy)) ß (tq,9WtV(xz)),
hence (t,0w,yv{x)){s,ßwx,v(y)) ß {t,9WiZV(x)){q,9WX}V(z)). Since y and z are a-
congruent, we have {t,9w>yv(x)) = (t,9WtZV{x)). Since ß is a left cancellative
congruence, we infer (s,9WXjV(y)) ß (q,9WXtV(z)), i.e. (s,9UiV(y)) ß (g,0U|„(z)).

Hence (s,y) /?□ a (q, z).
By symmetry, we get that ß □ a is right cancellative as well, so that A^*'/ß □ a

is a loop. E

We are now ready to complete the proof of our main result.

Theorem 5.3 If L C A* is a regular open language, then L can be recognized

by a finite loop.

118

Proof. Suppose that L is an open regular language; by Theorem 2.2, L is a
finite union of languages of the form L0axLi .. .akLk, where each Li is recognized
by a group. Using the classical construction for the associative case, it is readily
verified that the class of loop languages is closed under union, so it suffices to
prove that any language of the above form is recognized by a loop. If k = 0, the

claim is clearly true.
Let now k > 1; without loss of generality we can assume that all L, 's are

recognized by the same group G, e.g. by taking the direct product of the syntactic
monoid of each language Lt. Let G = A* /a, so that each £,,- is a union of a-
classes; since concatenation distributes over union, and using once more closure
under union, it suffices to consider the case where each U is a single class of the
congruence, i.e. L; = [«,-]„ for some u{ in A*. Let B = A*/a x A x A*/a and
H = B^/ß be the loop recognizing the language B*biB* . ..B*bkB*, as given

by lemma 3.4, where 6; = ([M0«I«I ••■ «i-i]o, ai, Kas+iu;+i ■• •«*]<*)■ We claim
that L is recognized by the loop A^/ßOa; in fact we will show that x G L iff
there is some tree t with \x\ leaves such that [(t, 9eiC(x))]ß is an accepting element

of H.
Let first x be in L; thus x = x0aixi . . .akxk, with x{ a u, for each i. Thus

6c,e{x) is in B*biB* . ..bkB*, hence for some tree t, [(t, 6iti(x)))ß is an accepting

element of H.
Conversely, suppose x G A* is such that, for some tree t, [(t,0eie(x))]p is an

accepting element of if. Thus (t,0et£(x)) = j/o&ij/i • --hyk, where
bj = ([«oaiui •. .Wj_i]a, a,-, [wiai+iu,-+i . ..«*;]«). Therefore x = x0ai*i • ■ -akxk)

where a;0aia;i .. .xt-i a u0ai«i • • -«fc-i for i = 1,..., fc, and also xk a uk. Using
the fact that a is a group congruence, we deduce xt a u,- for each i, so that a- is

in L. D

6 Conclusion

Our characterization has a number of consequences, from the point of view of
algebra, language theory and computational complexity.

First, we get a new combinatorial description of the regular open languages.

Corollary 6.1 Any regular open language is a finite union of languages of the
form L\ . . .Lk, where each Li is a group language.

Proof. By the proof of theorem 4.2, every loop language is of this form,
hence by Theorem 5.3, this is also true for regular open languages. □

It is also appropriate to note the following structural representation that we
get for loops. By the proof of theorem 4.2, we see that a loop G recognizes
only regular open languages where the group languages that are needed are
recognizable by the multiplication group of G. By the proof of theorem 5.3, any
language of the form L0aiLi ... akLk, where each L{ is recognized by the group

119

M{G), can be recognized by a loop of the form A^/ßOa, where A*/a ~ M{G)
and ß is the loop congruence induced by the construction of Lemma 3.4. Thus,
in some sense, computing over the loop G is similar to computing over the group
M(G), the non-associativity being taken care of by the very simple loops given
in 3.4. It would be very interesting to see to what extent this phenomenon holds

for groupoids in general.
Another consequence of this work is that the computational complexity of

testing membership in a language recognized by a loop G can be infered from the
algebraic structure of its multiplication group M(G). Any language L recognized
by G is a finite union of languages of the form LiL2---Lk where the Li's are
recognized by M(G). When M{G) is solvable, each of these languages is in
ACC° ([4]), where ACC° is the class of languages that are recognized by a
family polynomial-size constant-depth Boolean circuits using NOT, AND, OR,
and modular gates. In such a case, it is easy to see that L is also in ACC . This
shows the following corollary.

Corollary 6.2 Any language recognized by a loop whose multiplication group is

solvable belongs to ACC .

Note that when G is a group, it can be shown that M{G) is solvable precisely
when G is solvable. Hence, the above result naturally fits in the structural com-
plexity framework of [4].

It is remarkable that non-associative algebras such as loops could be related
to such natural class of languages as the regular open languages. Our generaliz-
ation of the block product yields a loop decomposition that shows that absence
of associativity does not necessarily imply absence of structure. This is also
confirmed by other recent works, such as [6]. We strongly believe that a better
understanding of non-associative algebras, in particular finite groupoids, could
have important consequences in language theory and computational complexity.

References

[1] A.A. Albert, Quasigroups I, Trans. Amer. Math. Soc., 54 (1943) 507-519. Quasig-
roups II, Trans. Amer. Math. Soc, 55 (1944) 401-419.

[2] C.J. Ash, Inevitable sequences and a proof of the type II conjecture, Proc. of the
Monash Conf. on Semigroup Theory, World Scientific, Singapore (1991) 31-42.

[3] C.J. Ash, Inevitable graphs: a proof of the type II conjecture and some related
decision procedures, Int. J. Alg. and Comp. 1 (1991) 127-146.

[4] D. Barrington and D. Therien, "Finite Monoids and the Fine Structure of NCl ",
JACM 354(1988)941-952

[5] F. Bedard, F. Lemieux and P.McKenzie, Extensions to Barrington's M-program
model, TCS 107 (1993), pp. 31-61.

[6] J. Berman, A. Drisko, F. Lemieux, C. Moore, and D. Therien, Circuits and Ex-
pressions with Non-Associative Gates, Submitted to 12th Annual Conference on
Computational Complexity (CCC'97)

120

[7] R.H. Brück, Contributions to the Theory of Loops, Trans. AMS 60 (1946) 245-354.

[8] R.H. Brück, A Survey of Binary Systems, Springer-Verlag, 1966.

[9] H. Caussinus and F. Lemieux, The complexity of computing over quasigroups,

Proc. 14th annual FST&TCS, 1994, pp.36-47.

[10] S. Eilenberg, Automata, Languages and Machines, vol. B, Academic Press, New

York, 1976.

[11] T. Evans, Embedding Incomplete Latin Squares, Amer. Math. Monthly, 67 pp.958-

961, 1960.

[12] F. Gecseg and M. Steinby, Tree Automata, Akademiai Kiado, Budapest, 1984.

[13] M. Hall Jr., A topology for free groups and related groups, Ann. of Maths 52 (1950)

127-139.

[14] F. Lemieux, Finite groupoids and their applications to computational complexity,

Ph.D. Thesis, McGill University, May 1996.

[15] J. Mezei and J.B. Wright, Algebraic automata and context-free sets, Inform, and

Contr. 11 (1967) 3-29.

[16] J.-E. Pin, Varieties of Formal Languages, Plenum Press, New York, 1986.

[17] J.-E. Pin, A topological approach to a conjecture of Rhodes, Bulletin of the Aus-

tralian Mathematical Society 38 (1988) 421-431.

[18] J.-E. Pin, Topologies for the free monoid, Journal of Algebra 137 (1991) 297-337.

[19] J.-E. Pin, Polynomial closure of group languages and open sets of the Hall topology,

21th ICALP, Springer-Verlag, LNCS 820, 1994, 424-435.

[20] J.-E. Pin, BG = PG: A Success Story, Proc. of Intern. Conf. on Groups, Semig-
roups, and Formal Languages, York 1993, Kluwer Publisher.

[21] C. Reutenauer, Une topologie du monoide libre, Semigroup Forum 18 (1979), 33-

49.

[22] C. Reutenauer, Sur mon article "Une topologie du monoide libre", Semigroup

Forum 22 (1981), 93-95.

[23] J. Rhodes and B. Tilson, The kernel of monoid morphisms, J. Pure and Applied

Algebra 62 (1989) 227-268.

[24] M.-P. Schiitzenberger On finite monoids having only trivial subgroups, Information

and Control 8 (1965) 190-194.

[25] D. Therien, Two-sided wreath product of categories, J. Pure and Applied Algebra

74 (1991) 307-315.

[26] L.G Valiant, General context-free recognition in less than cubic time, J. Comput.

System Sei. 10 (2) (1975) 308-315.

An Abstract Data Type for Real Numbers. *

Pietro Di Gianantonio

Dipartimento di Matematica e Informatica, Universitä di Udine
via delle Scienze 206 1-33100 Udine Italy

E-mail: digianantonio@dimi.uniud.it

Abstract. We present a PCF-like calculus having real numbers as a
basic data type. The calculus is defined by its denotational semantics.
We prove the universality of the calculus (i.e. every computable element
is definable). We address the general problem of providing an operational
semantics to calculi for the real numbers. We present a possible solution
based on a new representation for the real numbers.

keywords: real number computability, domain theory, denotational and
operational semantics, abstract data types.

1 Introduction

The aim of this work is to relate two different approaches to computability on
real numbers: a practical approach based on programming languages, and a more
theoretical one based on domain theory. Several implementations of exact com-
putations on real numbers have been proposed so far ([BC90], [MM], [Vui88]).
In these works, real numbers are represented by programs generating sequences
of discrete elements, e.g. digits. On the other hand, different theoretical works
on computability on real numbers are based on domain theory: [Lac59,ML70],
[EE96], [DG96]. In all these works domains of approximations for the real num-
bers are considered. A point in these domains represents either a real number or
the approximation of a real number. Approximated reals are normally described
by intervals of the real line.

The relation existing between the two approaches is described in several steps.
First we present a domain of approximations which is directly derived from a
representation for the real number used in some implementations of the exact
real number computation ([BC90,MM]). From this domain of approximations we
derive a calculus for the real numbers. The calculus we present is an extension
of PCF having the real numbers as ground type. We call it Cr. We define Cr

giving its denotational semantics.
The next natural step consists in giving an operational semantics to the cal-

culus, possibly using the representation for the real numbers we start with. If
this would be possible, we will have established a close connection between the

* Work partially supported by an EPSRC grant: "Techniques of Real Number Com-
putation" at Imperial College of Science, Technology and Medicine, London and by
EEC/HCM Network "Lambda Calcul Type".

122

domain of approximations for the real numbers and the implementations. We will
have a calculus that is for many aspect similar to the calculi used in the imple-
mentations and whose terms can be directly interpreted in the approximations
domain. Unfortunately we prove that it is impossible to define the operational
semantics in this way. We prove this negative result in a general manner, the im-
possibility holds not only if we consider the particular representation for the real
numbers we chose, the domain of approximations obtained from it and the cal-
culus Cr. The negative result holds for a large class of representations, domains,
and calculi.

Finally we define an operational semantics for Cr. In order to do this how-
ever we need to introduce a new representation for the real numbers. This new
representation is quite different from the classical ones, in it real numbers can
be represented also by sequences of digits undefined on some elements. In order
to compute with this new representation is absolutely necessary to use parallel
operators. The use of parallel operators is the price we need to pay to have a
faithful calculus for the real numbers.

Acknowledgements: I would like to thank Abbas Edalat, Martin Escardo,
Peter Potts and Michael Smith for several discussions on the subject.

2 Real Number Computation in PCF

We consider the following representation for real numbers:

Definition 1. A real number x is represented by a computable sequence of
integers (so, • • ■, Sj,...) such that:

(i) Vn . 2sn - 1 < sn+i < 2sn + 1

[ii) x = [|nSN I ™2n > ~°2n I

In this representation a sequence of integers is used to describe a sequence of
rational intervals. The intervals in the sequence are contained one into the other.
For practical purposes this representation is quite convenient. It allows to reduce
exact real number computation to computation on integers. In this way it is
possible to exploit the implementation of integer arithmetic already available on
computers. In [BCR086] and [MM] a similar representation has been used to
develop quite efficient algorithms for the arithmetic operations.

We refer to [Plo77] for a definition of PCF. In order to represent real numbers
in PCF it is sufficient to translate in PCF the representation of Definition 1. In
the following, given a type a, Ca

PA+3 indicates the set of closed terms in £PA+3

having type a.

Definition 2. A partial representation function Evaljj : £-PA+3 —*" IR is defined
by: EvalR(Mt_>1) = x if there exists a sequence of integers s such that:
(i) VneN.Eval(M(^tn)) = s„;
(ii) Vn. 2sn - 1 < sn+i < 2sn + 1

A real number x is said C-computable, if belongs to the image of the Eval«.

123

We indicate with ffi/ the set of the /^-computable real numbers. The definition
of computability can be extended to functions on real numbers.

Definition 3. The function EvalR : £^+3+('~K) ~" (^ ~+ ^) is defined by:

EvalR(M) = / iff
Vi G Ki .VW G ££X+3 . EvalR(W) = a; => EvalR(MW) = /(i).
A function / : !/ -> 1; is said C-computable if belongs to the image of EvalR.

It is worthwhile to observe that the sequential operators are sufficient to define
every computable function. That is every ^-computable function on reals can be
defined by a term not containing the parallel test or the existential quantifier.
The form of computation presented in this section, is very similar to the one used
in implementations of exact real number computation and described in [BC90]
and in [MM].

3 A Domain of Approximations for Real Numbers

In the literature there are several approaches to computability on real numbers
which use of domain theory. Early works in this ambit are [Lac59], [ML70],
and [Sco70]. In all these approaches the real line is embedded in a space of
approximations where a notion of computability can be defined in a natural way.
Many results concerning the computability theory on real numbers are given in
these contexts. Here we are going to present a space of approximations that is
similar in many respects to the ones mentioned above but has two important
differences. First, we base our construction on the representation of Definition 1.
As result our space has less approximation points and is more closely related to
the computation describe in [BC90] and [MM]. A second important difference
is the following: our space of approximations turns out to be a Scott-domain.
The other approaches use spaces of approximations that are continuous but not
algebraic epos. The space of approximations presented here has been extensively
studied in [DG96]. Here we resume the main results without giving the proofs.

The domain of approximations defined next is called Reals Domain (RD). We
present a construction of RD starting with the integer sequence representation
for real numbers. Let (sj)ieN be a sequence of integers defining a real number x
according to Definition 1 and let (si)i<n be an initial subsequence. (si)i<n gives
partial information about the value x. Examining (si)i<n we can deduce that
the value x is contained in an interval of real numbers.

Definition 4. Let S be the subset of sequences of integers defined by:

S = {(si)i<n | Vi < n - 1. 2Si - 1 < si+i < 2Si + 1}.

The function <j> from S to the set of rational intervals is defined by:

0((so, si,.. ■, sn)) = ["2n , "2„])

124

The set S contains the "valid" sequences of integers. The function <f> associates to
any finite sequence {s{)i<n the interval [a, b] containing the real numbers that can
be represented by sequences having as initial subsequence (si)i<n. The interval
[a,b] represents the information contained in the sequence (si)i<n.

Let (DI, C) denote the partial order formed by the set of rational intervals in
the image of the function <f>. The order relation C. on DI is the superset relation,
that is [a, b] C [a',b'] if [a1, b'] C [a,b] (if [a'b'} is a more precise approximation
of a real number that [a, b]). The set DI forms the base of the domain RD.

Definition 5. Let RD be the cpo obtained by the ideal completion of {DI, C).

Proposition 6. RD is a consistently complete oj-algebraic cpo (Scott-domain).
RD is an effective Scott-domain when we consider the following enumeration of
finite elements:
er(0) = ± er(((n1,n2),n3) + 1) =4- [(m - "2 - l)/2"3, (nx - n2 + l)/2n"].
Where () is an effective coding function for pairs of natural numbers.

The elements of RD can be thought as equivalence classes of (partial) sequences
of integers. Each equivalence class is composed by sequences containing identical
information about the real value they approximate. The relationship existing
between the real line and the infinite elements of RD can be clarified by means
of following functions:

Definition 7. A function q-p : RD ->■ V(R) is defined by:

qp(d)= f| [a, b]
[a,b]ed

Conversely, three functions e,e~,e+ : K —> RD are defined by:
e(x) = {[a,b] £ DI \x £ (a, b)}
e~(x) = {[a, b]eDI\xe (a, 6]} e+(x) = {[a, b] £ DI | x £ [a, b)}
where (a, b) indicates the open interval from a to b and (a, b] and [a, b) indicate
the obvious part open, part closed intervals.

Proposition 8. The following statements hold:
i) for every infinite element d £ RD there exists a real number x such that
q-p(d) = {x}
ii) for every real number x, {x} = q-p o e{x) = q-p o e~(x) = qv ° e~(x),
Hi) for every non-dyadic number x £ E/D, e{x) = e~(x) = e+(x),
iv) for every dyadic number x £ D, e(x) C e~(x), e(x) c e+(x) and e~(x) is
not consistent with e+(x),
v) e(E) U e~(E) U e+(E) is equal to the set of infinite elements of RD.

We can say that the infinite elements of RD are a close representation of the
real line, the set of infinite elements in RD looks like the real line except that
each dyadic number is triplicated.

In [DG96] it is shown how to solve the problem of multiple representations
by means of a retract construction.

125

■(0) e+(0)

Fig. 1. The diagram representing RD.

4 PCF Extended with Real Numbers

In this section we use the domain RD introduced above, to define an extension
of the language PCF having a ground type for the real numbers. We call Lr

this extension. We will prove that any computable function on RD is definable
by a suitable expression in Cr. A programming language similar to Cr has been
introduced in [DG93]. An extension of PCF based on a different domain of
approximation for the real numbers has been presented in [Esc96].

Compared with the real computation described in Section 2, the real com-
putation in Cr has several advantages. Given a closed term M G £('-►<■)-►(<■-►<•)
the value Eva^M)1 can be undefined for several reasons. For example:
(i) there can be a term N representing a real number such that the sequence of
((MiV)O),..., ((MN)n),.. . does not define a real number,
(ii) there can be two terms Ni and N2 defining the same real number and such
that (MiVi) and {MN2) define different real numbers.

The language £r is free from these inadequacies. Terms of type r in £r can
always be interpreted as an (approximated) real and more importantly terms
of type r -> r preserve the equivalence between different representations of the
same real number. We can say that £r defines an abstract data type for real
numbers. It defines a collection of primitive functions on reals which generate
any other computable function.

The types of £r are the PCF types extended with a new ground r. The set
T of type expressions is defined by the grammar:

a := i\ o a —► r

126

The terms of Cr are the terms of CPA+3 extended with the new constants:

(-1), (+1), (x2), (-=-2), PR : r-+r,
(< 0) : r -> o pifr : o —> r —^ r —> r,

We define £r giving its denotational semantics. To this end we use the set of
Scott-domains, UD = {Da \a £T}, where DL = Z±, D0 = {tt,ff}x, Dr = RD
and Dfj-^r = [Da —> DT].

The denotation of the new constants is the following:
the constants (+1), (—1), (x2), (-r2) realize the corresponding functions on reals.

l(+l)Ud) = {[a+l,b+l]\[a,b]ed}
[{-l)Ud) = {[a-l,b-l]\[a,b]ed}
[(x2)jp(d) = {[a x 2,6 x 2] | [a,b] Ed A [a x 2,b x 2} e RI}
[(-2)]p(d)=UM]ed;[a-2,6-2]

The constant (< 0) tests if a number is smaller or larger than 0.

{tt if it exists [a, b] £ d, b<0
ff if it exists [a, b] £ d, 0 < a
J_ otherwise

The constant PR defines a kind of projection on the interval [—1,1].

{dU I [—1,1] if d is consistent with J, [—1,1]
e+(-l) if3[o,6]6d.6<-l
e-(l) if 3[a, b] £ d.a > 1

The constant pifr defines a parallel test.

{d if e = tt
d' if e = ff
dud1 if e = ±

If the boolean argument is undefined the function [pifr]p gives as output the
most precise approximation of the second and third argument.

It is not difficult to prove that for every closed expression M" and environ-
ment p, lMaJp is a computable element of Da. Next we prove the universality
of Cr, that is, we prove that every computable functions on RD is definable
by a suitable term in Cr. In order to do this we present a generalisation of the
universality theorem for PCF [Plo77, Theorem 5.1]. The generalisation applies
to any extension of PCF where ground types are denoted by coherent domains.
The proof in [Plo77] works only for flats domains. An equivalent generalisation
has already been given in [Str94]. In that work the proof is based on categorical
arguments and uses as a lemma the original result in [Plo77]. Our proof follows
the line of the original proof and it is more direct. Some definitions and lemmata
are necessary here.

127

Definition 9. A subset A of a partial order P is coherent if any pair of elements
has an upper bound. A coherent domain is a Scott-domain for which any coherent
subset has an upper bound.

Coherent domains are closed for many semantics functors. In particular if A
and D2 are coherent domains then [A ->• D2] is a coherent domain. Moreover
the domain RD is coherent.

A fundamental step in the proof of universality consists in showing that for
every type a it is possible to define three functions, namely, ca, pa and #a.
Where ca and pa are respectively a test and a projection function for the types
a, while #a(n){d) cheeks if the element d is inconsistent with the finite element
ea(n) (where ea is the effective enumeration of the finite elements of the domain
Da ([Plo77, page 249])). Formally:

Definition 10. A partial function / : An ->■ ... Dan ->■ AT is definable in
Cr if there exists a closed term M such that for all di G Ar, ...dn G Ar„ if
f[di).. • (d„) is defined then [M]p(di)... (d„) = /(di)... (dn).

Definition 11. Given a coherent-domain Da the function
cCT : J3j_ -» Dff ->■ £>(,-)■ AT, and the partial functions #CT : Zi -> AT -^ B±,
Pc : 7Ly_ -T AT -^ Ar are defined by:

[dx ifb = tt

c,(6)(d1)(d2) = { d2 i/6 = fF
I di n d2 i/ 6 = ±

#a(n)(d) = <^

f ff if n e N, ea (n) C d
tt if n G N, e0" (n) and d are inconsistent
undefined if n is a negative number
J_ otherwise

J d U e17 (n) if n G N, d, ea (n) are consistent
PCT(«)(d) - | uncjefined otherwise

Lemma 12. //, in a language extending CPA+3 with new ground types, for every
ground type r the function cT,pT, #r are definable by some terms pifr ,PT,TT then
for any other type a the functions ca,pa,ta are definable by some suitable terms

pif<r, Pa,Ta.

Lemma 13. // in an extension of the language C for a type a the function p„
is definable then every computable element in Da is definable.

Theorem 14. For every computable element d in Da there exists a closed ex-
pression M in Cr such that: [M]p = d.

128

5 Operational Semantics, a First Attempt

In this section we discuss the problem of defining an operational semantics for
Cr In Section 3 the elements of RD are constructed as equivalence classes of
partial sequences of integers. One can use functions in [Zx —> Zx] to represent
sequences of integers and hence elements in RD. Following this approach one
can use higher order function of [Zj_ —>■ Zx] to represent functions on RD. The
construction is the following. Let S" be the subset of [Zx —> Zx] defined by,
S' = {s | Vi e N. (s{i +1) ^ ± => (s(0 # ± A 2s(i) -1 < s(i +1) < 2(t) +1))}
the elements of 5" define the partial sequences of digits representing elements in
RD. Let <£':£"-» i?D be the function,

Given a function g on #£>, for example, g : RD -» i?D —>■ ÜLD, we say that g is
represented by a function / : [Zx -» Z J -> [Z± -> ZJ -»■ [Zx -> Zx] if for all
Sl,*2 6 5', fi(0'(*l))(^(S2)) = 0'(/(*i)(s2)).

The above representation for functions on .R.D suggests the following ap-
proach to operational semantics: for each new constant c in Cr one try to find a
computable function fc on [Zx -> Zx] representing the function [cj. If the func-
tions /c would exist then a set of closed £p^+g-terms Mc such that ffMcJp = fc,
would define an operational semantics for £r. The operational semantics would
be given by the reductions rules c —> Mc. In fact the operational behaviour of Mc

is in accordance with the denotational semantics of c. Unfortunately this natural
approach is doomed to failure. In fact the function [pifr]p cannot be represented
by any functional on integers. We state this negative result in a more general
setting, considering not only the real number representation of Definition 1 and
the corresponding domain RD but a large class of real number representations
and domains of approximations.

In almost all the representations considered in the literature a real number
is represented by a sequence of elements of a countable set C. For example C
can be a set of digits, the set of integers, the set of p-adic rational numbers, the
set of rational numbers, the set of rational intervals.

Definition 15. A sequence representation for the real numbers is given by a
countable set C, a subset S of N —> C and a representation function v : S —> K.
The set S is the subset of sequences defining real numbers.

Repeating the construction of Section 3 we map finite sequences to subsets of
reals.

Definition 16. Given a sequence representation v : S —> E, its extension to
partial sequences v : [N —>■ C±] —> V(M), is defined by,

v(s) = {v(t) \teS,sQt}.

Given a sequence s and a natural number n we indicate with s \n the partial
sequence containing the first n elements of s: s\n (m) = s(m) if m < n,
s\n (m) = X otherwise. In [Wei87, pages 479-482] it has been introduced the

129

notion of admissible representation for real numbers. That definition can be
reformulated as follows.

Definition 17. A sequence representation (S,v) is admissible if it satisfies the
following conditions,
(i) VsG5.VtGl.3ng N.U(s|n) is contained in an interval having width e,
(ii) For each real number x there exists a sequence s such that for each n, x is
contained in the interior of v(s\n).

Condition (i) states that the function v : S ->• K is continuous, w.r.t. the Cantor
topology on S and the Euclidean topology on E. Almost all the representation
functions used in computable analysis are admissible.

Any sequence representation induces an information order on partial se-
quences: s is below t in the information order iiv(s) 3 v(t). We have the following
negative result.

Theorem 18. For any admissible representation v, and there is no continuous
functional g : [N ->• Cx] -> [N -» Cj_] -» [N -> C_L] swcft tAat;
(%) 5 implements addition, that is: for all s,t in S, v(g(s)(t)) = u(s) + u(t))
(ii) g respects the induced order relation on partial functions that is: for all
s,s',t,t' in [N -> Cx], v(s) D ü(s') and v{t) D v(t') implies v(g(s){t)) 2
tJ(5(S)(t)).

The previous theorem implies that, if we use an admissible then the operational
semantics of Cr cannot be given in terms of computations on sequences. This
result generalises to any domain derived from an admissible representation and
to any calculus define on the derived domain. There are two possible solutions
to this problem. The first one consists in introducing non deterministic or inten-
sional operators in the language. The second one consists in using representations
that are not admissible, but that are suitable for real number computations. The
first approach has been followed in [Esc96], there the operational semantics of a
language similar to Cr is given using a non deterministic operator. Here we will
follow the second approach.

6 An Operational Semantics

The notations considered so far in the literature represent real numbers using
sequences that are completely defined. It is possible to represent real numbers
using sequences that are undefined on some elements. An example is the follow-
ing.

Definition 19. A real number x in the interval [-1,1] is represented by a se-
quence s of digits —1,1 such that: x = Yl,ieN Ilo<j<i sife

This notation is similar to the binary digit notation. The main differences con-
sist in the use of the digit -1 instead of the digit 0 and in the fact that in
this notation the value of a digit affects the weights of all the consecutive dig-
its. In this notation the real number 0 has two representations: the sequence

130

(-1, -1,1,1,1...) and the sequence (1, -1,1,1,1...). The two representations
differ just for the first digit. Hence 0 can also be represented by the sequence
(±,-1,1,1,1...) undefined on the first element. Moreover examining the finite
initial parts of the incomplete sequence it is possible to determine the number
represented by it with an arbitrary precision. Similar considerations hold for
any other dyadic rational number. Every real number that is not rational dyadic
has exactly one representation. If we allow as possible representations for the
dyadic rational numbers also the sequences undefined on one element we obtain
a representation suitable for the real number computation.

In order to represent the whole real line we consider the following notation.

Definition 20. A representation function v : (N -> {-1,1}) -► K is defined by:

v(s) = 8(0) x (k + J2 n *Ü)/2)
i>kk<j<i

where k = min{i \ i > 0, s(i) = —1}

This is a sort "sign, integer part, mantissa" notation for the real numbers.
The first digit gives the sign, the next consecutive positive digits determine the
integer part, the remaining part of the sequence is the mantissa. Also in this case
every dyadic rational number is represented by two functions that differ just for
one element and every real number that is not rational dyadic has exactly one
representation.

Definition 21. The extension of v to partial functions is the function
v : (N -> {-1,1}±) -> V(R) defined by:

v(s) = {v(t) | t:N->{-l,l},»Ct}.

The set v(s) is an interval if and only if

Vn.(s(n)t As(n + 1)4,)
=>Vm< n.s(m)l A s(n + 1) = -1 A Vm > n + l.(s(m)t V s(m) = 1).

Let S°° denote the set of partial functions s such that v(s) is an interval. S°°
is a complete partial order. If we repeat the construction of Section 3, with the
representation v and the set S°° of partial elements we obtained a new domain
for real numbers. We call the new domain RD'. In this case no pair of elements
in S°° contain the same information. It follows that S°° and RD' are isomorphic.
The structures of RD and RD' are quite similar. The main difference consists
in the fact that RD' contains for each natural number n the intervals [—oo, — n]
and [n, +oo] and, as a consequence, the infinite points —oo and +oo.

Proposition 22. There exists an effective embedding-projection pair (e,p) from
500 to [N -> {-1, 1}JJ, p : [N -> {-1, 1}JJ -> S°° is defined by:

p(s) = \J{s' e S°° | s' r s}

e : S°° -> [N ->•{-!, l}j_] ->• S°° is the identity functions.

131

It follows that there exists an effective embedding-projection pair (er,pr) from
RD' to [Z± -» {tt, ff}±]. The embedding-projection can be extended to the
functions spaces.

e<7->r(/) = eTo f oqa

Qa^rif) =qT°f°ea

Repeating the considerations presented in Section 5, it is possible to represent
elements in RD' by theirs embeddings in [Z± -> {tt,ff}j_] and functions on RD'
(S°°) by the corresponding embeddings on functions spaces of [Z± -» {tt,ff}_ij.
Let C be the set of the new constants in Cr, for each ca £ C let Mc° be a term in
CpA+3 defining the function eCT([c<r]p). By the universality of CPA+3 the terms
Mc« exists. An operational semantics for Cr can be given adding to the set
single-step reduction rules for CPA+S the new set of rules {c ->• Mc \ c € C).
For lack of space we do not present the actual set of rules.

References

[BC90] H.-J. Boehm and R. Cartwright. Exact real arithmetic: formulating real
numbers as functions. In David Turner, editor, Research topics in functional
programming, pages 43-64. Addison-Wesley, 1990.

[BCR086] H.-J. Boehm, R. Cartwright, M. Riggle, and M.J. O'Donell. Exact real
arithmetic: a case study in higher order programming. In ACM Symposium
on lisp and functional programming, 1986.

[DG93] P. Di Gianantonio. A functional approach to real number computation. PhD
thesis, University of Pisa, 1993.

[DG96] P. Di Gianantonio. Real number computability and domain theory. Infor-
mation and Computation, 127(l):ll-25, May 1996.

[EE96] A. Edalat and M. Escardo. Integration in real pcf. In IEEE Symposium on
Logic in Computer Science, 1996.

[Esc96j M. Escardo. Pcf extended with real numbers. Theoret. Comput. Sei, July
1996.

[Lac59] D. Lacombe. Quelques procedes de definitions en topologie recursif. In
Constructivity in mathematics, pages 129-158. North-Holland, 1959.

[ML70] P. Martin-Löf. Note on Constructive Mathematics. Almqvist and Wiksell,
Stockholm, 1970.

[MM] V. Menissier-Morain. Arbitrary precission real arithmetic: design and algo-
rithms. Submitted to the Journal of Symbolic Computation. Available at
http://pauillac.mria.fr/ menissier.

[Plo77] G.D. Plotkin. Lcf considered as a programing language. Theoret. Comput.
Sei., 5:223-255, 1977.

[Sco70] Dana Scott. Outline of the mathematical theory of computation. In Proc.
4th Princeton Conference on Information Science, 1970.

[Str94] T. Streicher. A universality theorem for pcf with recursive types, parallel-or
and 3. Mathematical Structures for Computing Science, 4(1):111—115, 1994.

[Vui88] J. Vuillemin. Exact real computer arithmetic with continued fraction. In
Proc. A. CM. conference on Lisp and functional Programming, pages 14-27,
1988.

[Wei87] K. Weihrauch. Computability. Springer-Verlag, Berlin, Heidelberg, 1987.

Recursive Computational Depth

James I. Lathrop and Jack H. Lutz

Department of Computer Science
Iowa State University

Ames, Iowa 50011
U.S.A.

Abstract. In the 1980's, Bennett introduced computational depth as a
formal measure of the amount of computational history that is evident
in an object's structure. In particular, Bennett identified the classes of
weakly deep and strongly deep sequences, and showed that the halting
problem is strongly deep. Juedes, Lathrop, and Lutz subsequently ex-
tended this result by defining the class of weakly useful sequences, and
proving that every weakly useful sequence is strongly deep.
The present paper investigates refinements of Bennett's notions of weak
and strong depth, called recursively weak depth (introduced by Fenner,
Lutz and Mayordomo) and recursively strong depth (introduced here). It
is argued that these refinements naturally capture Bennett's idea that
deep objects are those which "contain internal evidence of a nontrivial
causal history." The fundamental properties of recursive computational
depth are developed, and it is shown that the recursively weakly (re-
spectively, strongly) deep sequences form a proper subclass of the class
of weakly (respectively, strongly) deep sequences. The above-mentioned
theorem of Juedes, Lathrop, and Lutz is then strengthened by proving
that every weakly useful sequence is recursively strongly deep. It follows
from these results that not every strongly deep sequence is weakly useful,
thereby answering a question posed by Juedes.

1 Introduction

Computational depth was introduced by Bennett [2,3] as a formal measure of
the amount of computational history that is evident in the structure of a com-
putational, physical, or biological object. Roughly speaking, if x is an object
(such as a computer program, a point in a phase space, or a DNA sequence)
that can be encoded in binary in a natural way — in which case we identify x
with its encoding — then the computational depth of x is the amount of time
required for a computation to derive x from its shortest binary description. Like
Solomonoff [13], Bennett regards a description of z as a formal analog of a sci-
entific explanation of x. By Occam's razor, then, the shortest description of x

* This research was supported in part by National Science Foundation Grant CCR-
9157382, with matching funds from Rockwell, Microware Systems Corporation, and
Amoco Foundation.

133

is the most plausible explanation of x, and the computational depth of x is the
amount of time required for an effective process to generate x from its most
plausible explanation. Bennett thus says that a deep object is "one whose most
plausible origin, via an effective process, entails a lengthy computation," and,
more succinctly, that a deep object is one that contains "internal evidence of a
nontrivial causal history" [3].

In order to avoid undue sensitivity to the underlying computational model,
Bennett's definition of depth refers not only to an object's shortest description,
but to all descriptions of the object that have nearly minimal length. This is
achieved by adding a significance parameter to the definition. Specifically, for
c € N, the computational depth of an object x at significance level c is the time
required for a computation to derive x from a binary description w that is itself
compressible by no more than c bits. (That is, every description of 7r consists of
at least |-7r| — c bits.)

For (infinite, binary) sequences, Bennett [2,3] introduced two interesting
depth conditions, strong depth and weak depth. A sequence S is strongly deep if,
for every computable time bound t: N -» N and every constant c £ N, for all but
finitely many n 6 N, the ra-bit prefix S[0..n - 1] of S has depth greater than t(n)
at significance level c. If we regard a description TT from which S[0..n - 1] can be
derived in at most t(n) computation steps as a t(n)-compression of S[0..n - 1],
then this says that, for all computable time bounds t and constants c, for all but
finitely many n, every t(n)-compression of S[0..n - 1] is itself compressible by
more than c bits. Thus a sequence is strongly deep if no computable time bound
suffices to compress infinitely many of its prefixes to within a constant number
of bits of the optimal compression.

To put the matter more fancifully, no matter how (computably) much time is
spent looking for inner structure (i.e., basis for compression) in a strongly deep
sequence, an unbounded quantity of such inner structure remains undiscovered.
A strongly deep sequence is thus analogous to a great work of literature for which
no number of readings suffices to exhaust its value.

It was shown by Bennett [3] (and also in [7]) that no sequence that is either
decidable or random (i.e., algorithmically random in the sense of Martin-Löf [10])
can be strongly deep. However, strongly deep sequences do exist. For example,
Bennett [3] noted that K, the diagonal halting problem, is strongly deep. This
is because K, unlike a decidable or random sequence, can be used (as an oracle)
to decide any decidable sequence within a computable (in fact, polynomial) time
bound that does not depend on the sequence.

This relationship between depth and usefulness (as an oracle) was investi-
gated more explicitly and generally by Juedes, Lathrop, and Lutz [7], who defined
strong and weak usefulness conditions for sequences. A sequence S is strongly
useful if there is a fixed computable time bound t : N -» N such that the set
DTIMES(£), consisting of all sequences that can be decided in t(n) time using
the oracle S, contains every decidable sequence, i.e., REC C DTIMEs(i), where
REC is the set of all decidable sequences. A sequence S is weakly useful if there
is a fixed computable time bound t: N -» N such that the set DTIMEs(i) does

134

not have measure 0 in REC, i.e., DTIME5(£) f~l REC is a nonnegligible subset of
REC in the sense of the recursive case of the resource-bounded measure theory
developed by Lutz [9]. That is, S is weakly useful if a nonnegligible set of decid-
able sequences can be decided within a computable time bound that may depend
on S but does not depend on the sequence being decided. By the above remark,
K is strongly useful. It is evident that every strongly useful sequence is weakly
useful, and Fenner, Lutz, and Mayordomo [4] have shown that the converse does
not hold, so the set of strongly useful sequences is properly contained in the set
of weakly useful sequences.

Juedes, Lathrop, and Lutz [7] proved that every weakly useful sequence is
strongly deep. This generalized Bennett's observation that K is strongly deep
and gave formal support to Bennett's informal arguments relating depth and
usefulness. Strong depth is a necessary condition for weak usefulness. Juedes
[6] subsequently asked whether the converse is true, i.e., whether strong depth
actually characterizes weak usefulness.

In this paper, we show that weakly useful sequences have a strictly stronger
depth property than strong depth, thereby answering Juedes's question nega-
tively. In fact, this stronger depth property, a constructive refinement of strong
depth called recursively strong depth, is the main topic of this paper.

In the terminology used above to describe strong depth, a sequence S is
recursively strongly deep (briefly, rec-strongly deep) if, for every computable time
bound t and constant c, there exists a computable time bound I such that,
for all but finitely many n, every i(n)-compression of S[0..n - 1] is itself l(n)-
compressible by more than c bits. It is the existence of this computable time
bound I that distinguishes rec-strong depth from strong depth. Returning to the
more fanciful language used earlier, no matter how (computably) much time is
spent looking for inner structure in a rec-strongly deep sequence, and no matter
now much additional structure (any constant number of bits) one wishes to find,
there is always a greater (computable) amount of time that suffices to find that
much more structure. A rec-strongly deep sequence is thus analogous to a great
work of literature with the property that, no matter how many times it has
been read, there is a greater number of readings from which one can derive
significantly more value.

In this paper, we establish the existence of sequences that are strongly deep
but not rec-strongly deep. Such a sequence S must have the following two prop-
erties.

(i) There exist a fixed computable time bound t0 : N ->• N and a fixed constant
Co £ N such that, for every computable time bound I : N —> N, there are
infinitely many prefixes S[0..n - 1] of S that have £0(«^-compressions that
are not ^(n)-compressible by Co or more bits.

(ii) For every constant c e N (no matter now much larger than Co), for all but
finitely many prefixes S[0..n - 1] of S, every £o(™)-compression of S[0..n - 1]
is itself compressible by more than c bits.

By (i), none of the additional compression (beyond c0 bits) promised in (ii) can be
realized within any computable time bound. Once again comparing a sequence

135

to a work of literature and taking a number of readings as an analogy for a
computable time bound, a sequence that is strongly deep but not rec-strongly
deep is analogous to a work of literature for which no number of readings exhausts
its value, but some number of readings does exhaust all the value that can be
exhausted by any number of readings.

Using Bennett's terminology, a rec-strongly deep sequence S shows evidence
of a nontrivial causal (computational) history in the constructive, incremental
sense that every explanation of S that can be realized by an effective process of
computable duration is significantly less plausible than some other explanation
of S that can also be realized by an effective process of some greater computable
duration. In contrast, a sequence that is strongly deep but not rec-strongly deep
has an explanation that (i) can be realized by an effective process of computable
duration, and (ii) is as plausible as any other explanation that can be realized
by an effective process of computable duration. Although such a sequence does
have a more plausible explanation, there is no constructive evidence of this fact.

None of the above should be taken to imply that rec-strong depth is a better
(or worse) notion than strong depth. Both notions merit further investigation.
In the case of rec-strong depth, there are several reasons for this. First, as noted
above, rec-strongly deep sequences show evidence of a "nontrivial causal his-
tory" in a natural, constructive, incremental sense. Second, as we show in this
paper, rec-strong depth enjoys the same useful slow-growth property (and con-
sequent upward closure under truth-table reductions) that Bennett [3] proved
for strong depth. Third, as we show in this paper, rec-strong depth can be used
to separate weak usefulness from strong depth, thereby answering Juedes's ques-
tion. Fourth, as developed below, rec-strong depth is based on a recursive depth
function (with an additional latency parameter), and therefore provide a use-
ful model for the design and analysis of implementable depth measures such as
the compression depth introduced by Lathrop [8]. Fifth, and perhaps most com-
pelling, we show that the relationships among rec-strong depth, the notion of
rec-weak depth introduced by Fenner, Lutz and Mayordomo [4], and the notion
of rec-randomness that has been investigated by Schnorr [11,12], van Lambal-
gen [14], Lutz [9], Wang [15], and others correspond closely to the relationships
among strong depth, weak depth and algorithmic randomness.

This paper is largely self-contained. It can be read independently of [3,7],
but we assume that [7] is at hand for reference. At the end of this section, we
introduce a small amount of terminology and notation. Section 2, the main sec-
tion of this paper, presents rec-strong depth, rec-weak depth, and our results on
these notions. Section 2 is divided into a preamble and four (sub-)sections. In the
preamble, we develop the above-mentioned recursive depth function, depthc(w).
In section 2.1 we use this function to introduce rec-strong depth. In section 2.2
we prove the deterministic slow growth law for recursive computational depth
and establish the basic inclusion relations among the weak, strong, rec-weak,

136

and rec-strong depth classes, namely,

rec-wkDEEP

rec-strDEEP wkDEEP.

strDEEP
<*

In section 2.3 we prove that all these inclusions are proper by proving that the
classes rec-wkDEEP and strDEEP are incomparable. Both directions of the in-
comparability proof are nontrivial. One direction yields the stronger fact that
rec-random sequences can be strongly deep, while the other direction uses the
recursive version of the first Borel-Cantelli lemma [9] in a Baire category argu-
ment. In section 2.4 we prove that every weakly useful sequence is rec-strongly
deep, thereby answering Juedes's question. Proofs of our results appear in the
full version of this paper.

We work in the Cantor space C, consisting of all (infinite, binary) sequences.
A string w G {0,1}* is a prefix of a sequence S G C, and we write w C. S if there
is a sequence A G C such that S = wA. For S 6 C and n G N, we write S[n] for
the nth bit of S and S[0..n - 1] for the n-bit prefix of S. The complement of a
set X C C is the set Xc = C - X.

We write REC for the set of all decidable sequences in C and rec for the set
of all computable (total) functions from {0,1}* to {0,1}*. Identifying strings sn

with their indices n in the standard enumeration of {0,1}*, we also write rec for
the set of all computable functions from N to N.

2 Recursive Computational Depth

As noted by Bennett [3], the value depthc(w) - the computational depth of a
string w at significance level c - is not computable from w and c. The following
definition remedies this at the expense of introducing an additional variable.

Definition. For w G {0,1}* and c, / G N, the recursive computational depth of
w at significance level c with latency I is

depth'c(w) = min h G N (3?r G PROG*(w)) |TT| < Kl(ir) + cj .

That is, depth^.(w) is the minimum amount of time required to obtain w from
a program 7r that cannot itself be obtained in time / from a program that is c
or more bits shorter than 7r. It is clear that depth'c(w;) is computable from w,
c, and I; this is why it is called the recursive computational depth. Two other
properties of depthj.(w;) are immediately evident. For each w G {0,1}* and c£N,
depthl

c(w) is nondecreasing in I, and lim/_>.oo depthl
c(w) = depthc(w). For each

w G {0,1}* and I G N, the value depth'c(w) is, like depthc(w), nonincreasing in
c.

137

2.1 Recursive Depth Classes

We begin by defining the recursive analogs of the depth classes D* (n) and Dl
g

introduced in [7].

Definition. For t,g,l : N -> N and n G N, define the sets

D^'(n) = {S G C | depth^(5[0..n - 1]) > t(n)}

and

CXI oo

Ds'=U flD^(n) = {5GC (V°°n)5eD^(n)}.
771=0 n=m

Note that

Bl
g'

l(n) = {S G C I (VTT G PROG'(S[0..n - 1])) #/(n)(7r) < |vr| - </(n)} .

(It is crucial here that the left-hand side of the inequality is K1^ (IT) , not Kl(ir),
i.e., that the time bound is l(n), not /(|TT|).)

Definition. Let t,g : N -> N. A sequence 5 € C is recursively t-deep at sig-
nificance level g, and we write S G D^rec, if there is a computable function
I :N->Nsuch that S G D*-'.

It is clear that, for a\\t,g,l:N^N with I computable, D*-' C D*-rec C D*.
To define recursively strong depth, we substitute D*>rec for D* in the definition
of strong depth.

Definition. A sequence 5 G C is recursively strongly deep (or, briefly, rec-
strongly deep), and we write S G rec-strDEEP, if for every computable time
bound t : N -> N and every constant c G N, S G D*'rec.

We note that every rec-strongly deep sequence is strongly deep. Since REC l~l
strDEEP = 0 [3] (see also [7]), it follows immediately that no recursive sequence
can be rec-strongly deep.

Recall that a sequence S is strongly deep if, for every computable time bound
t and constant c, all but finitely many prefixes of S can be described at least
c bits more succinctly without a time bound than with the time bound t. In
contrast, a sequence S is rec-strongly deep if, for every computable time bound t
and constant c, there exists a computable time bound / such that all but finitely
many prefixes of S can be described at least c bits more succinctly with the time
bound I than with the time bound t. Very informally, a sequence is strongly deep if
it has more regularity than can be explained by a causal (computational) history
of any computable duration. For a sequence to be rec-strongly deep, it must also
be the case that, for every computable duration t there is a larger computable

138

duration I such that more of the sequence's regularity can be explained by a
causal history of duration I than can be explained by a causal history of duration
t.

Our next result states that rec-strongly deep sequences cannot be rec-random.

Theorem 1. RAND(rec) l~l rec-strDEEP — 0. In fact, there exist a computable
function t{n) = O(nlogn) and a constant c £ N such that RAND(rec)nD*'rec =

0.

Recursively weak depth was introduced by Fenner, Lutz, and Mayordomo
[4]. We write rec-wkDEEP for the class of all rec-weakly deep sequences.

2.2 Class Inclusions

In this section, we establish the basic inclusion relations that hold among the
weak and strong depth classes defined in [7] and section 2.1. For this and later
purposes, we need a technical lemma. This result, called the deterministic slow-
growth law for recursive computational depth, places a quantitative upper bound
on the ability of a time-bounded oracle Turing machine to amplify the depth of
its oracle. Details appear in the full version of this paper.

An easy consequence of the Slow Growth Lemma is the fact that the class
of rec-strongly deep sequences is (like the class of strongly deep sequences [7])
closed upwards under tt-reductions.

Theorem 2. Let A,B £ C. If B <tt A and B is rec-strongly deep, then A is
rec-strongly deep.

We now come to the main result of section 2.2. The following theorem gives
the inclusion relations that hold among the weak, strong, rec-weak, and rec-
strong depth classes.

Theorem 3. The following diagram of inclusions holds.

rec-wkDEEP

rec-strDEEP wkDEEP

strDEEP
<*

2.3 Class Separations

We now show that all four inclusions in Theorem 3 are proper. It is most efficient
(and most informative) to prove this by proving the two non-inclusions

strDEEP g rec-wkDEEP

139

and

rec-wkDEEP g strDEEP.

We prove these in succession.
We prove that strDEEP C rec-wkDEEP by proving the much stronger fact

that strongly deep sequences can be recursively random. We do this by examining
the Kolmogorov and the time-bounded Kolmogorov complexities of recursively
random sequences.

We first prove that rec-random sequences have very high time-bounded Kol-
mogorov complexities.

Theorem 4. Assume that S is rec-random and that t, g : N -> N are computable
functions with g nondecreasing and unbounded. Then, for all but finitely many
neN,

if*(S[0..n - 1]) >n-g(n).

The function g above may be very slowly growing, e.g., an inverse Acker-
mann function. Theorem 4 thus says that, for every rec-random sequence S
and computable time bound t, all but finitely many of the prefixes of S have
/^-complexities that are nearly as large as their lengths.

We next show that the situation is very different in the absence of the time
bound t.

Definition. A sequence S £ C is ultracompressible if, for every computable,
nondecreasing, unbounded function g : N -> N, there exists ng e N such that,
for all n >ng,

K(S[0..n-l])<K(n)+g(n). (1)

It is clear that every n-bit string w must satisfy K(w) > K(n) — 0(1). A
sequence S is thus ultracompressible if, for every computable, nondecreasing,
unbounded (but perhaps very slowly growing) function g, for all but finitely
many n, the n-bit prefix of S has if-complexity that is within g(n) bits of the
minimum possible X-complexity for an n-bit string.

We now show that a rec-random sequence can be ultracompressible. Simi-
lar results have been proven by Wang [15] and Ambos-Spies and Wang [1] for
the monotone Kolmogorov complexities of rec-random sequences. The present
result is slightly stronger than these results in that it gives a single rec-random se-
quence S that has property (1) for every computable, nondecreasing, unbounded
function g. The proof is based in part on a simpler, unpublished construction
by Gasarch and Lutz [5] of a rec-random sequence that is not algorithmically
random.

Theorem 5. There is a rec-random sequence that is ultracompressible.

140

We now note that rec-random sequences can be strongly deep.

Theorem 6. There is a rec-random sequence that is strongly deep.

Theorem 6 contrasts sharply with Theorem 1 and the fact that RAND n
strDEEP = 0. There is of course nothing paradoxical in this contrast. It is
merely a consequence of the strong, quantitative separation of RAND(rec) from
RAND given by Theorem 5.

We now have the first of the desired noninclusions.

Corollary 7. strDEEP £ rec-wkDEEP.

The following known theorem says that the set of strongly deep sequences is
small in the sense of Baire category.

Theorem 8 (Juedes, Lathrop, and Lutz [7]). The class strDEEP is mea-
ger.

We show that rec-wkDEEP £ strDEEP by showing that rec-wkDEEP is
comeager. Our proof of this fact is somewhat more involved than the proof by
Juedes, Lathrop, and Lutz [7] that wkDEEP is comeager.

Theorem 9. For each uniform reducibility F, the class rec-F-deep is rec-comeager,
hence comeager in REC.

Theorem 10. The class rec-wkDEEP is comeager.

Corollary 11. rec-wkDEEP <£ strDEEP.

We now have the main result of section 2.3.

Theorem 12. The following diagram of proper inclusions holds.

rec-wkDEEP

■df" &

rec-strDEEP wkDEEP

strDEEP

By Theorem 12, there exist sequences that are strongly deep, but not rec-
strongly deep. Let S be such a sequence. Since S is not rec-strongly deep, there
exist a fixed computable time bound t0 : N ->■ N and a fixed constant c0 G N
such that, for every computable time bound I : N -> N, there are infinitely many
prefixes of S that cannot be described c0 bits more succinctly with the time
bound I than with the time bound to- Nevertheless, since S is strongly deep, it
must be the case that, for every constant c G N (even when c is much greater

141

than co), all but finitely many prefixes of S can be described at least c bits more
succinctly without a time bound than with the time bound t0- None of this
additional succinctness (beyond c0 bits) can be realized within any computable
time bound; all of it requires greater-than-computable running time. The depth
of such a sequence S appears not to come from so much from a nontrivial causal
(computational) history as from something utterly noncomputational.

If F is a uniform reducibility that is (like all standard reducibilities) reflexive,
then the measure and category of the class rec-F-DEEP are of some interest.
First, rec-F-DEEP must be disjoint from RAND(rec), so rec-F-DEEP must be
a measure 0 subset of C. Also, by Theorem 9, rec-F-DEEP must be comeager.
Thus, the class rec-F-DEEP is small in the sense of measure, but large in the
sense of Baire category. This state of affairs is not unusual and would not be
worth mention, were it not for the fact that the situation changes when we look
at the measure and category of rec-F-DEEP in REC. By [4] and Theorem 9,
rec-F-DEEP is large in REC in the senses of both measure and category. The
class rec-F-DEEP is thus one concerning which measure and category agree in
REC, but disagree in C.

2.4 Weakly Useful Sequences

Juedes, Lathrop, and Lutz [7] defined the class of weakly useful sequences and
proved that every weakly useful sequence is strongly deep. Fenner, Lutz, and
Mayordomo [4] subsequently proved that every weakly useful sequence is rec-
weakly deep. In this section, we strengthen both these results by proving that
every weakly useful sequence is rec-strongly deep. Our argument closely follows
that of [7].

Definition (Juedes, Lathrop, and Lutz [7]). A sequence A e C is strongly useful,
and we write A e strUSEFUL, if there is a computable time bound s : N -» N
such that REC C DTIMEj4(s). A sequence A £ C is weakly useful, and we write
A € wkUSEFUL, if there is a computable time bound s : N -> N such that
DTIMEyl(s) does not have measure 0 in REC.

Thus a sequence is strongly useful if it enables one to solve all decidable
sequences in some fixed, computable amount of time. A sequence is weakly useful
if it enables one to solve all elements of a nonnegligible set of decidable sequences
in some fixed, computable amount of time.

Recall that the diagonal halting problem is the sequence K whose nth bit is

K[n) = {Mn{n) halts],

where M0,Mi,... is a standard enumeration of all deterministic Turing ma-
chines. It is well-known that K is polynomial-time many-one complete for the
set of all recursively enumerable subsets of N, so K is strongly useful.

It is clear that every strongly useful sequence is weakly useful. Fenner, Lutz,
and Mayordomo [4] used martingale diagonalization to construct a sequence that
is weakly useful but not strongly useful, so strUSEFUL C wkUSEFUL.

142

We now establish the rec-strong depth of weakly useful sequences.

Theorem 13. Every weakly useful sequence is rec-strongly deep.

Juedes [6] asked whether every strongly deep sequence is weakly useful. We

now answer this question negatively.

Corollary 14. wkUSEFUL C strDEEP

Acknowledgments

We thank Bas Terwijn, David Juedes, Bill Gasarch, and Giora Slutzki for useful
discussions. We also thank David Juedes for helpful remarks on a preliminary
draft of this paper.

References

1. K. Ambos-Spies and Y. Wang. Algorithmic randomness concepts: a comparison.
Talk by K. Ambos-Spies at the Workshop on Information and Randomness in
Complexity Classes, Schloss Dagstuhl, Germany, July 17, 1996.

2. C. H. Bennett. Dissipation, information, computational complexity and the defini-
tion of organization. In D. Pines, editor, Emerging Syntheses in Science, Proceed-
ings of the Founding Workshops of the Santa Fe Institute, pages 297-313, 1985.

3. C. H. Bennett. Logical depth and physical complexity. In R. Herken, editor,
The Universal Turing Machine: A Half-Century Survey, pages 227-257. Oxford
University Press, 1988.

4. S. A. Fenner, J. H. Lutz, and E. Mayordomo. Weakly useful sequences. In Pro-
ceedings of the 22nd International Colloquium on Automata, Languages, and Pro-
gramming, pages 393-404. Springer-Verlag, 1995.

5. W. I. Gasarch and J. H. Lutz. Unpublished manuscript, 1991.
6. D. W. Juedes. The Complexity and Distribution of Computationally Useful Prob-

lems. PhD thesis, Department of Computer Science, Iowa State University, 1994.
7. D. W. Juedes, J. I. Lathrop, and J. H. Lutz. Computational depth and reducibility.

Theoretical Computer Science, 132:37-70, 1994.
8. J. I. Lathrop. Compression depth and the behavior of cellular automata. Complex

Systems, 1997. To appear.
9. J. H. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer

and System Sciences, 44:220-258, 1992.
10. P. Martin-Löf. On the definition of random sequences. Information and Control,

9:602-619, 1966.
11. C. P. Schnorr. A unified approach to the definition of random sequences. Mathe-

matical Systems Theory, 5:246-258, 1971.
12. C. P. Schnorr. Zufälligkeit und Wahrscheinlichkeit. Lecture Notes in Mathematics,

218, 1971.
13. R. J. Solomonoff. A formal theory of inductive inference. Information and Control,

7:1-22, 224-254, 1964.
14. M. van Lambalgen. Random Sequences. PhD thesis, Department of Mathematics,

University of Amsterdam, 1987.
15. Y. Wang. Randomness and Complexity. PhD thesis, Department of Mathematics,

University of Heidelberg, 1996.

Some Bounds on the Computational Power of
Piecewise Constant Derivative Systems

(Extended Abstract)

Olivier Bournez

Laboratoire de l'Informatique du Parallelisme
Ecole Normale Superieure de Lyon

46, Allee d'Italie F-69364 Lyon Cedex 07, France
obournez@lip.ens-lyon.fr

Abstract. We study the computational power of Piecewise Constant
Derivative (PCD) systems. PCD systems are dynamical systems denned
by a piecewise constant differential equation and can be considered as
computational machines working on a continuous space with a continu-
ous time. We show that the computation time of these machines can be
measured either as a discrete value, called discrete time, or as a continu-
ous value, called continuous time. We prove that the languages recognized
by PCD systems in dimension d in finite continuous time are precisely
the languages of the d — 2th level of the arithmetical hierarchy. Hence we
provide a precise characterization of the computational power of purely
rational PCD systems in continuous time according to their dimension
and we solve a problem left open by [2].

1 Introduction

There has been recently an increasing interest in the community of control and
verification theory about hybrid systems. A hybrid system is a system that com-
bines discrete and continuous dynamics. Hybrid systems can be also be consid-
ered as computational machines: they can be seen either as machines working on
a continuous space with a discrete time or as machines working on a continuous
space with a continuous time.

The first point of view has been investigated in [1, 2, 4, 5]. In particular, in
[1, 2, 3] the attention is focused on a very simple type of hybrid systems: Piece-
wise Constant Derivative Systems (PCD systems) are dynamical systems defined
by a piecewise constant differential equation. It is shown that the reachability
problem for PCD systems is decidable in dimension d = 2 and undecidable in
dimension d > 3 [1, 3] . In [4], the computational power of Piecewise Constant
Derivative systems is characterized as P/poly in polynomial discrete time, and
as unbounded in exponential discrete time.

This paper deals with the second point of view that considers hybrid systems
as machines that work on a continuous space with a continuous time. The study
of computational machines that work in a continuous time is only beginning: in
[6], Moore proposed a recursion theory for computations on the reals in contin-
uous time. Recently, Asarin and Maler [2] showed, using Zeno's paradox, that

144

every set of the arithmetical hierarchy can be recognized in finite continuous
time and in finite dimension by a PCD system: every set of the arithmetical
hierarchy in Ek U /Ifc can be recognized by a rational PCD system in dimension
5k 4- 1. Unfortunately, no precise characterization of the PCD recognizable sets
was given in [2]. In this paper, we improve the results of Asarin and Maler and
we provide a full characterization of the sets recognized by purely rational PCD
systems: we show that the sets that are recognized by purely rational PCD sys-
tems in dimension d are precisely the sets of the d - 2th level of the arithmetical

hierarchy.
Section 2 is devoted to some general definitions: PCD systems, computations

on PCD systems, discrete and continuous time. In section 3, we improve 5 times
the result of Asarin and Maler: any arithmetical set in Ek can be recognized
in dimension 2 + k. In section 4 we prove that this bound is optimal for purely
rational PCD systems: no other set can be recognized in that dimension.

2 Definitions

A convex polyhedron of Md is any finite intersection of open or closed half spaces
of Rd. A polyhedron of Md is a finite union of convex polyhedral of M.d. In
particular, a polyhedron may be unbounded or flat. For V C ffirf, we denote by
V the topological closure of V. We denote by d the Euclidean distance of Md. A
rational point of Md is a point of Md with rational coordinates.

Definition 1 PCD System [1, 2]. A Piecewise Constant Derivative (PCD)
system, of dimension d is a couple U = {X, f) with X = M.d, f : X -> X, where
the range of / is a finite set C C X, such that for any c e C (c is called a slope)
/_1(c) is a finite union of convex polyhedral sets (called regions). A trajectory
of 7i starting from x0 is a continuous solution to the differential equation id =
f(x), with initial condition x0, where id denotes the right derivative: that is
^ : D C K+ ->■ X where D is an interval of 1R+ containing 0, #(0) = x0, and
W G D,Sd(t) — f($(t)). Trajectory # is said to continue for ever if D = M+.

In other words a PCD system consists of partionning the space into convex
polyhedral regions, and assigning a constant derivative c, called slope, to all the
points sharing the same region. The trajectories of such systems are broken lines
with the breakpoints occuring on the boundaries of the regions [2]. See figure 1.
The signature of a trajectory is the sequence of the regions that are crossed by
the trajectory.

Definition2 Rational, purely rational PCD systems. - A PCD system
is called rational if all the slopes as well as all the polyhedral regions can
be described using only rational coefficients.

- A PCD system is called purely rational, if in addition, for all trajectory
<P starting from a rational point, each time # enters a region in a. point x,
necessarily x has rational coordinates.

145

Fig. 1. A PCD system in dimension 2.

Some comments are in order: one must understand that a trajectory $ can
enter a region either by a discrete transition or by converging to a point of the
region: see figure 2. Thus, in other words, in a purely rational PCD system any
converging process converges towards a point with rational coordinates. Note
that one can construct a rational PCD system of dimension 5 that is not purely
rational.

We can say some words on the existence of trajectories in a PCD system: let
xo G X. We say that x0 is trajectory well-defined if there exists a e > 0 such
that f(x) = f(x0) for all x G [x0, x0 + e * f(x0)]. It is clear that, for any x0 G X,
there exists a trajectory starting from xo iff x0 is trajectory well-defined. Given
a rational PCD system ri, one can effectively compute the set N oEvolution(ri)
of the points of X that are not trajectory well-defined. See that a trajectory can
continue for ever iff it does not reach NoEvolution(7i).

Definitions Computation [2]. - Let ri = (X,f) be a PCD system of di-
mension d. Let I — [0,1] and let r : N ->■ / be an injective coding func-
tion, let x1,x° be two distinct points of Rd. A computation of system H =
(Md, /, 7-, /, xl,x°) on entry n G N is a trajectory that can continue forever
(defined on all M+) of % = (X, f) starting from (r(n), 0,..., 0). The compu-
tation is accepting if the trajectory eventually reaches a;1, and refusing if it
reaches x°. It is assumed that the derivatives at x1 and x° are zero.

- Language L C N is semi-recognized by H if, for every n G K, there is a
computation on entry n and the computation is accepting iff n G L. L is
said to be (fully-)recognized by H when, in addition, this trajectory reaches
X° iff 77. £L.

Definition4 Continuous and Discrete time. Let <Pn : M+ —> X be an ac-
cepting computation on entry n G N.

- The continuous time Tc(n) of the computation is T = minj^ G M.+/0n(t) =

- Let T„ = {t/<Pn(t) crosses a boundary of a region at time t}. It is easy to see
that Tn is a well ordered set. The discrete time Td(n) of the computation is

146

defined as the order type of well ordered set Tn (= the ordinal corresponding

to Tn).

Note that Zeno's paradox appears: to a continuous finite time can correspond

a transfinite discrete time: see figure 2.

(-1,1) (-1,1/2)

/ x/ > "»V.

•it/2 x

\ /
(1,-1) (1,1)

Fig. 2. Zeno's paradox: at finite continuous time 5a; = 2.5(a; + x/2 + x/4 + ...) the
trajectory is in (0,0), but it takes a transfinite discrete time u to reach this point.

We recall the following definition:

Definition5 Arithmetical hierarchy [8, 7]. The classes Ek,nk,Ak, for k G

N, are defined inductively by:

- E0 is the class of the languages that are recursive.
- For k > 1, Ek is the class of the languages that are recursively enumerable

in a set in Ek-i (that is semi-recognized by a Turing machine with an oracle

in Ek-i)
- For k G N, Ilk is defined as the class of languages whose complement are in

Ek, and Ak is defined as Ak = IIkC\Ek.

Several characterizations of the sets of the arithmetical hierarchy are known:
see [7, 8]. In particular we will assume the reader familiar with Tarski-Kuratowski
computations: assume a first order formula F, over some recursive predicates,
characterizing the elements of a set 5 C N, is given. Then S is in the arithmetical
hierarchy and the Tarski-Kuratowski algorithm on formula F returns a level of
the arithmetical hierarchy containing S: see [7, 8] for the full details.

3 PCD Systems can Recognize Arithmetical Sets

It was shown in [2] that every set of the arithmetical hierarchy can be recognized
in finite continuous time: more precisely, it is shown that L £ Ek U IIk can be
recognized by a PCD system of dimension 5k + 1. Therefore, five dimensions
are used in [2] to climb each level of the arithmetical hierarchy: one for a timer,
one used for the divisions by 2, one used to do the homogenization, and two
dimensions used to go from quantifier elimination to semi-recognition. We show
here that only one dimension is needed (the one used to do the homogenization),
and that the construction only requires purely rational PCD systems.

147

Theorem 6. - Any language L of Uk is semi-recognized by a purely rational

PCD system, in dimension 2 + k.
- Any language L of Ak is fully-recognized by a purely rational PCD system

in dimension 2 + k.

The proof is rather technical: timers are suppressed by using machines that
cross a given hyper-plane at regular time, divisions by two are done by reusing
the variables defining the machines, and the two variables used in [2] to go
from quantifier elimination to semi-recognition are suppressed by storing some
information in the variable used to do the homogenization.

4 PCD Systems Cannot Recognize Any Other Set

4.1 Local dimension

We define:

Fig. 3. From left to right: x* is of local dimension 1+, 2+, 3 in a PCD system of dimen-
sion 3.

Definition 7 Local dimension. Let % = {X, /) be a PCD system in dimen-
sion d. Let x* be a point of X. Let A be a polyhedral subset A C X of maximal
dimension d - d! (1 < d' < d) such that there exists an open convex polyhedron
V C X, with x* e A n V, and such that, for any region F of %, F n V / 0
implies A C F (F is the topological closure of F).

If d' < d then x* is said to be of local dimension d'+. If d! - d then x* is
said to be of local dimension dl and we can always_choose V small enough such
that x* is the only point of local dimension d' in V: see figure 3.

Note that given a rational PCD system U = (X, /) and k = d' or k = d'+

one can effectively compute LocDim{'H, k) defined as the set of the points iEl
that have a local dimension equals to k.

The main idea behind definition 7 is given by the following lemma: see figure

4.

148

PCD system H PCD system W

Fig. 4. Proposition 8: if x* is of local dimension 2+ in a PCD system % of dimension
3, the projections on P of the trajectories of H in neighborhood V of x* are precisely
the trajectories of some PCD system %' of dimension 2.

Proposition 8. Let rt = (X, /) be a PCD system in dimension d. Let x* be a
point of local dimension (d')+ with d' < d. Call P the affine variety of dimension
d1 which is the orthogonal of A in x*. It is possible to construct a PCD system
%' — (X' = Rd',f) in dimension d! such that the trajectories of rt' are the
orthogonal projections on P of the trajectories ofH in V.

For any point x*, the corresponding V is denoted by 14«. %', A are respec-
tively denoted by rix> and Ax>. If d' < d we denote by px- and qx* the functions
that map all point x £ X onto its orthogonal projection on P and onto its
orthogonal projection on A respectively. If d' = d, we define px> and qx> as
respectively the identity function and the null function. We assume the natural
order 1< 1+ < 2 < 2+ <

Lemma 9. Let % = (X, f) be a PCD system of dimension d. Let $ be a tra-
jectory of 71 that reaches x* at finite continuous time Tc. Assume that x* is
of local dimension k = d' or k = (d')+. For any I, denote by Si the set of the
points x £ X that are reached by <P at some time 0 < t < Tc and that have local
dimension I. Assume Si = 0, for all I > k.

- Sk is a finite set.
- Assume Sk = 0- Fix the origin in x*. Then either S(#-!)+ 2S a finite set

or there exist y\, y-± G X that are reached by <£, there exists 0 < A < 1
such thatpx'ivi) = ^Px'ivi) and such that, for all n > 1, <? reaches at a
time tn < Tc the point yn defined by px*{yn) = ^nPx'(yi) and qx>{yn) =

?*• (yi) + E"=i Ai(^*(2/2) - ix-(2/1))-

Proof. Let m < k. We prove first that if Sm is not a finite set, then # reaches
a point of local dimension > m at some time < Tc: assume that Sm is not a
finite set. Tm = {t\<P(t) G Sm} is a well ordered set. Denote its elements by
t'l\q\...,t™,.... Take i£ = supi€Nt?. We have i£ < Tc. Consider 3™ =
<P(t™). By continuity of <2>, there exists tm < t™ such that t G [*m,C] => ^(0 G

149

Vxm . Take t G [tm,?£>] n ^m- From considerations of dimensions about point
$(t) of local dimension m in 14S, we get that the local dimension d" of ,-r™ is
> m. From the definition of i™, we get d" / m. Hence d" > m and our claim is
proved: if Sm is not a finite set then <2> reaches some x™ of local dimension > m.

The first assertion of the lemma is an easy consequence of this claim with

»n. = k.

For the second assertion, take m = (d' — 1) + , and assume that 5(d-_i)+ is
not a finite set. From Sk = 0, we must have x™ = x* and <™ = Tc- K k < d
denote W = 'Ux> else take W = U. Define 0' as ?*.(#). From time im up to
time Tc> <P' is a trajectory of %' = {X', f) (apply proposition 8 for k < d),
reaching px- (x*) at time Tc. Let £ be the set of the one-dimensional regions of
%' that intersect Vx. = px. (Vx>). We claim that each time $' reaches a point of
,S(d/_!)+, <P' reaches an element of C: if 0' reaches some point x*' € -f of local
dimension (d - 1)+ at some time t G [tm, Tc], then px> {Ax») is an element of C

and contains x* . See figure 5.

L

Trajectory

Fig. 5. Proof of lemma 9: here d = d' = 3. £ defined as the set of the one dimensional
regions that intersect px' (Vx-). C is made of a finite number of segments. Each time
the trajectory reaches a point of local dimension 2+, it reaches £. If the trajectory
reaches two times C in a same segment then the trajectory is ultimately cycling.

Since <P' converges to px> (a;*), since £ is a finite set, since 5(<j/_i)+ is infinite,
pX'(<P) reaches two times the same element of C in pX'{y\) and pX'{y'i) with
px.(y2) — Xpx'(yi) for some 0 < A < 1, at some times tyi,ty3 with tm < tVl <
tyn < Tc. Now see that by definition of Vx. all the regions of?/' intersecting Vx.
contain px*(x*) in their topological closure. Hence we have f'(x) = f'(px), for
all x £ Vx.,p G (0,1]. If $'(t) is solution to differential equation xd = f'(x),
&'(t) — \$'(t/\) is also solution. As a consequence trajectory <£' must reach
Xlpx> (j/i) for all ??.. From the definition of %' this implies that $ reaches the yn

of the lemma for all n : see figure 5.

150

4.2 Problems Reach and Conv

Define the following problems:

Definition 10 Problems Reachd', Reachd,+ . Let k be either of type k = d' or
of type k = dl+, where d' is an integer.

- Instance: A purely rational PCD system % = (X, f) of dimension d, a poly-
hedral convex subset V C X, a rational polygon a;1 C X, a rational number
iä«p € Q, a rational number *,-„/ G Q, a rational point ar0 G X.
Question «Reachk(H,V,XQ,xl ,tinl ,tsup)": "Do all the following conditions

hold simultaneously:
• trajectory $ starting from a;0 reaches a:1 at some finite continuous time

Tc

• for any 0 < t < Tc, x = $(t) is in V and is of local dimension < k."
~ Instance: A purely rational PCD system ri - (X, f) of dimension d, a poly-

hedral convex subset V C X, a rational point x* £ X, a rational number
tsup G Qi a rational number t,-„/ G Q, a rational point x0 <E X.
Question "Convk(H,V,x0,x*,tinf,tiup)": "Do all the following conditions
hold simultaneously:

• the trajectory <L> starting from x0 reaches point x* at some finite contin-

uous time Tc

• x* is of local dimension k and is in V

• tinf ^ -*■ c S: ^sup
• for any 0 < t < Tc, x = <t>(t) is in V and is of local dimension < Ar."

4.3 Case d - 3

Using topological considerations (the sphere of K3 verifies Jordan Theorem and

the arguments of [3]) we prove:

Lemma 11. Let % = (X, f) be a PCD system of dimension d. Let <P be a
trajectory ofrl of finite continuous time Tc and discrete time Td > OJ converging
towards x* = <£(TC). Assume that x* is of local dimension < 3+. Then necessarily
the signature of' $ is ultimately cyclic.

Lemma 12. The following problem is decidable:
Instance: a rational PCD system ri = (X, f) of dimension d, a finite sequence

of distinct regions (F0, F\,..., Fj) of %, a rational point x0 G X.
Question: "Does the trajectory <P starting from x0 have a periodic signature

of type (F0,Fi,..., Fj)w and then reach some point x* G X of local dimension
< 3+ at some finite continuous time t* "

Moreover, given a positive instance, one can effectively compute t* and x* as

a function of the coordinates ofxo.

With these lemmas, we prove:

151

Theorem 13. The problems Reach3 and Reach3+ are in Si.

Proof (sketch). We prove the assertion by providing a Turing machine algorithm
that (semi-)computes the predicates: to reply to Reach3+(7i, V,x0, x

1, tinf,tsup),
the general idea is the following: we simulate step by step the evolution of the
trajectory $ starting from x0. Simultaneously, if we detect that <P crosses for
the second time a given region, we use lemma 12 to see if the signature of # is
entering or not an infinite cycle. If it is so, still by lemma 12, we compute directly
the limit of the cycle x* and the corresponding time t* and the simulation goes
on directly from new position x* and time t*. We stop if we reach x1 or the
complement of V, or if the time reaches a value greater than tsup. From lemma
9, we know that every point of local dimension k = 3 or k = 3+ can only be
reached using a. finite number of points of local dimension k. From lemma 11
each such point x of local dimension k is reached by a cyclic signature and is

dropped by the algorithm.

4.4 Case d > 4

We generalize theorem 13 to higher dimensions. We prove first:

Lemma 14. Let d' > 4. Assume that Reach(d'-i)+ G %P and that Reach(di_2)+ G
Sq for some integers p,q. Then

- ConVd' G Emax{p,q+2)-
- Convd>+ G 5m(1I(Pi9+2).

Proof Denote by B(x*, 1/ni) the ball of radius 1/ni centered in x* for the norm
of the maximum. For a subset U C X, denote its complement by Uc. Let k = d'

or k = d . We claim:

ConvkCH, V,x0,x*,tinf,tsup)
O x* G LocDim.(7i,k) A x* G V A tinj < tsup

A3j/i eQd3t.i,t2 GQ 2/1 G Vx- A Reach{d,_1)+(U,V,x0,yi,ti,t2)

32/2 GQd3i3,<4GQ 3AGM+
(Reach(d,_!)+(%, V C\VX>, j/i, y2,t3, U)

Px'{V2) - *Px>(yi)
x< 1

t'2 + /Ji = i "^4 5: ^sup
lfe*(yi) + Efci *''(?*• (2/2) - ix-{yi)) = ?*••'*"

A <

Wni GN -Reac/).(d,_2)+(^,l/,2/i,5(a:*,l/ni),^n/-ii,/ sup h)

Assume that we have a positive instance to formula Conv^: use the notations
of definition 10. Denote by S the set of the points that are reached by <P before
time Tc and that have local dimension (d' - 1)+. Since <P converges to x*, there
must exist an j/i = ${tyi) G Vx*, tyi < Tc that is reached by <P, and such that

152

<P stays in Vx> between time tVl and time Tc. y\ is reached using points of local
dimension < (d' - 1)+. If S is not a finite set, by lemma 9 the first clause of the
disjunction is true. Assume now that S is a finite set: we can assume that tyi is
chosen big enough such that # does not reach any point of S between time tyi

and time Tc. For all n\ G N we get that the trajectory starting from j/i reaches
B(xt, 1/ni) using only points of local dimension < (d' - 2)+. Hence the second
clause of the disjunction is true.

Conversely, assume that the right hand side of the formula is true. If the first
clause of the disjunction is true, the trajectory is cycling and the formula Convk

should be true. Assume now that the second clause is true. For all «i G N, we get
that there exists tni such that $(tni) G B(x*, l/«i). Denote Tc = sup„l€Ntni.
From the continuity of 0 we get that1 #(TC) = x*. Hence # reaches x* of local

dimension k and formula Convk must be true.
The result is now immediate by applying the Tarski-Kuratowski algorithm

on the formula [8].

We also prove in a similar way:

Lemma 15. Let d' > 4. Assume Reach(di_1)+ G Ep for some integer p. Then

Convd' G Sp+i-

Proof (sketch). For a point x* G X of local dimension d, define Outx. as the
set of the points x G X such that the trajectory starting from x intersects the
complement of Vx> at a discrete time less or equal to one. We prove that, now,
the following formula holds:

Convd'CH, V,x0,x*,tinf,tsup)
<£> x* G LocDim{%,k) A x* G V A tinf < tsup A dimension{%) = a"

A 3t/! eQd 3ti,t2 eQyi e Vx- A Reach(d,_l)+{U,V,xa,yi,ti,t2)
Reach^d,_^+{H,X,yi,X,tinf -ti,tinf - ti + 1)

, -<Reach{dl_i)+{'H, X, yi,VcL) NoEvolution(n) U Outx., 0,)
^Reach^d,^i)+CH,X,yi,X,tSUp — t2,tSuP — h + 1)

tsup)

We get:

Theorem 16. Let d1 > 3.

- Reachji is in £d'-2-
- Reachdi+ is in Ed'-i if d' is even.
- Reachdi+ is in Ed'-2 if d' is odd.

Proof The assertion is proved by recurrence over d' using theorem 13, lemmas
15 and 14, by Tarski-Kuratowski and the fact that we have for k = d' or k = d! :

1 Note that if function $ is not defined on value Tc, since $ is continuous with a
bounded right derivative, # can always be extended to a continuous functions defined
on value Tc.

153

ReachkCH, V,x0, x
1 ,ti„f,tsup)

<£> fieac/i(d/_i)+('H, V,xo,x1,tinf,tSUp)
V 3?7, € N 3 < x*0, x\, x*2,..., i* >£ Qd 3 < t0, ■ ■ ■, K >

3 < t0,..., tn >
' x*0 = x0

VO < i < n Convk{U,V,x*^x*^,^^)
< Reachid,_l)+{'H,V,x*n,x

l,tn,tl
n)

to + ti + ... + tn> tinf

([l + ^ + '-'+'n — '■sup

By Tarski-Kuratowski on formula n Gio3<iGN Reachd(7i,X, r{n), a:1, 0, ii),

we get the main result of this section:

Corollary 17. - If L is semi-recognized by a purely rational PCD system of

dimension d, then L £ Sd-2-
- If L is recognized by a purely rational PCD system of dimension d, then

L £ <4d-2-

And by using theorem 6:

Corollary 18. - The languages that are semi-recognized by purely rational
PCD systems of dimension d in finite continuous time are precisely the lan-

guages of Sd-2
- The languages that are recognized by purely rational PCD systems of dimen-

sion d in finite continuous time are precisely the languages of Ad-2

References

1. Eugene Asarin and Oded Maler. On some Relations between Dynamical Systems
and Transition Systems. In Proceedings of ICALP, pages 59-72, 1994. Lecture
Notes in Computer Science, 820.

2. Eugene Asarin and Oded Maler. Achilles and the Tortoise Climbing Up the Arith-
metical Hierarchy. In Proceedings of FSTTCS, pages 471-483, 1995. Lecture Notes
in Computer Science, 1026.

3. Eugene Asarin, Oded Maler, and Amir Pnueli. Reachability analysis of dynami-
cal systems having piecewise-constant derivatives. Theoretical Computer Science,

138:33-65, 1995.
4. Olivier Bournez and Michel Cosnard. On the computational power of hybrid and

dynamical systems. Theoretical Computer Science, 168(2):417-459, 1996.
5. Michael S. Branicky. Universal computation and other capabilities of hybrid and

continuous dynamical systems. Theoretical Computer Science, 138:67-100, 1995.
6. Cristopher Moore. Recursion theory on the reals and continuous-time computation.

Theoretical Computer Science, 162:23-44, 1996.
7. P. Odifreddi. Classical Recursion Theory, volume 125 of Studies in Logic and the

foundations of mathematics. Elsevier, 1992.
8. H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-

Hill, 1967.

Monadic Simultaneous Rigid 22-Unification and
Related Problems

Yuri Gurevich1* and Andrei Voronkov2**

1 EECS Department
University of Michigan

Ann Arbor, MI, 48109-2122, USA
2 Computing Science Department, Uppsala University

Box 311, S-751 05 Uppsala, Sweden

Abstract. We study the monadic case of a decision problem know as
simultaneous rigid ^-unification. We show its equivalence to an exten-
sion of word equations. We prove decidability and complexity results for
special cases of this problem.

1 Introduction

Simultaneous rigid .©-unification is a combinatorial problem in equational logic
which is closely connected with some formulations of the Herbrand theorem and
with automated theorem proving by the tableau method and the connection
(or mating) method. In this section we define simultaneous rigid ©-unification,
discuss its connection with several decision problems in logic and survey some
known results.

We shall consider equational logic, i.e. logic whose only predicate is the equal-
ity predicate ~. Let si,ti,... ,sn,tn,s,t be terms. All atomic formulas in equa-
tional logic are equations, i.e. expressions of the form s ~ t. We do not distinguish
an equation s ~ t from the equation t ~ s. We write si ~(i,...,sn~f„hs~t
to denote that the formula V(si~£i A.. .Asn~tn D s~t) is true, i.e. it is provable
in first-order (classical or intuitionistic) logic. Equivalently, we can say that s
and t lie in the same class of the congruence induced by {si~£i,..., s„~in}.

A rigid equation is an expression £ r~v sat, where £ is a finite set of equations.
The set £ is called the left-hand side of this rigid equation, and the equation s ~ t
— its right-hand side. A solution to a rigid equation {si~ii,... ,sn~tn} l-y S—t
is any substitution 6 such that s\6 ~ t\9,... ,sn6 ~ tn6 h sO ~ tö. A system
of rigid equations is a finite set of rigid equations. A solution to a system of
rigid equations TZ is any substitution that is a solution to every rigid equation in
7?-. The problem of solvability of rigid equations is known as rigid E-unification.
The problem of solvability of systems of rigid equations is known as simultaneous
rigid E-unification, in the sequel abbreviated as SREU.

Partially supported by grants from NSF, ONR and the Faculty of Science and Tech-
nology of Uppsala University.

** Supported by a TFR grant.

155

We shall denote sets of equations by £, systems of rigid equations by 11 and
rigid equations by R. We shall sometimes write the left-hand side of a rigid
equation as a sequence of equations, for example x~a hv g(x)~x instead of
{z~a} hv g{x)~x.

In [2] it is shown that the decidability of SREU is equivalent to the decid-
ability of some other fundamental problems, for example the decidability of the
prenex fragment of intuitionistic logic with equality. We refer to [2, 6] for the
discussion of these problems.

Best known (un) decidability results on SREU are the following: (i) SREU
with ground left-hand sides, two variables and three rigid equation is undecidable
(Veanes [16]); (ii) SREU with one variable is DEXPTIME-complete (Degtyarev,
Gurevich, Narendran, Veanes and Voronkov [3]). The last two results imply a
complete classification of decidable prenex fragments of intuitionistic predicate
calculus with equality: the 33 fragment is undecidable and the V*3V* fragment
is decidable. All the above mentioned undecidability results require that the
signature contain a function symbol of arity > 2.

The special case of SREU when all function symbols have arity < 1, is called
monadic SREU. The decidability of monadic SREU is an open problem. The
following facts are known about monadic SREU (Degtyarev, Matiyasevich and
Voronkov [4]).

• The word equation problem is effectively reducible to monadic SREU. (This
fact shows that if this problem is decidable, its decidability should be uneasy
to prove.)

• Monadic SREU with one function symbol is decidable (this fact has a non-
elementary proof).

• Monadic SREU is decidable if and only if it is decidable in the signature
with two function symbols.

This paper studies monadic SREU. Although the general case remains an
open problem, we prove its equivalence to a combinatorial problem of words
defined in Section 5. This problem is defined in terms of ideals on the set of
pairs of words and called the ideal equation problem. We prove

Theorem 4 Monadic SREU is decidable if and only if the ideal equation prob-
lem is decidable.

We also prove the decidability of some special cases of monadic SREU. In
Section 4 we prove a result similar to the main result of [3]:

Theorem 3 Monadic SREU with one variable is PSPACE-complete.

Plaisted [13] proved that SREU with ground left-hand sides is undecidable.
The corresponding monadic case is shown to be decidable in Section 3:

Theorem 2 Monadic SREU with ground left-hand sides is decidable.

156

The complexity of monadic SREU with ground left-hand sides is not known.
We prove

Theorem 1 Monadic SREU with one variable and ground left-hand sides is
PSPACE-hard.

2 Preliminaries

In this section we introduce basic definitions concerning terms, equations, words,
word equations, automata and rewrite rules. We have to define so many concepts
since it is unreasonable to expect the reader to know everything. We also assert
some statements proved elsewhere and prove some properties of the introduced
notions which will be used in subsequent sections.

The symbol ^ means "equal by definition".

Terms and equations. The set of all variables of a term t is denoted var{t). A
term is ground iff it has no variables, i.e. var(t) = 0. The symbol h denotes prov-
ability in first-order logic. When we write ip\,..., ipn h ip, where ipi,... ,ipn, <p
are formulas, it means provability of the formula tp1 A... A ipn D ip. Substitutions
of terms ti,... ,tn for variables x\,... ,xn are denoted {h/xi,... ,tn/xn}. The
application of such a substitution 0 to a term t, is the operation of simultane-
ous replacement of all occurrences of Xi by ti. The result of the application is
the term denoted tB. We shall also apply substitutions to equations and sets of
equations and use the same notation for the result of the application.

For any expression E (for example, term, or a set of equations), we denote
by E^ the expressions obtained from E by the replacement of all occurrences of
the constant c by a term t. We write s[t] to denote a particular occurrence of a
subterm t of a term s.

In this paper, we shall only consider monadic signatures consisting of a finite
set T of unary function symbols and a finite set C of constants. Such signatures
are denoted (J7, C). The set of ground terms of this signature is denoted by T^,c) ■
We always assume C ^ 0 and hence T(T,C) ¥" $■ F°r anv set of equations £ we de-
note by T(£) the set of all terms occurring in £ and their subterms. For example,
if £ = {f(x)~g(c),c~g(f(x))}, then T{£) = {x,f(x),c,g(c),g(f(x))}.

We shall denote variables by x,y,z, constants by a,b,c,d, function symbols
by /, g, h, terms by r, s, t and substitutions by 6.

We shall use the following statement proved in Kozen [9] or Shostak [15].

Lemma 1 (Derivability of equations is in PTIME) There is a polynomi-
al-time algorithm checking, by a given finite set of equations £ and terms s, t,
whether £ h s ~ t.

We write £' h £ iff for any equation (s ~ t) 6 £ we have £' h s ~ t. In the
sequel we shall use the following lemma whose proof is standard.

Lemma 2 (Lemma on constants) Let £ and £' be sets of equations. For any
constant c and term t, if £V £', then £\ h £'c.

157

Words and finite automata. This section defines words and finite automata.
We shall also introduce a notation for monadic terms which allows us to easily
come from terms to words and back.

Let T be a finite non-empty set, called the alphabet. Its elements are called
letters. Words are finite sequences of letters. We denote words by a juxtaposition
of its letters, as W = axa2 ■ ■ .a„. The natural number n is called the length of
the word W and denoted \W\. We denote by e the empty word, which is the
unique word of length zero. The set of all words with letters in T is denoted by
T*.

It will be convenient for us to use the alphabet T also as the set of unary
function symbols of a monadic signature (T, C). Every term s in such a signature
has the form /i(/2(- ■ • /„(<) • • ■)) where n > °. /i> ■•■./« are unaiT function
symbols and t is a constant or a variable. We shall denote such a term s in the
reversed Polish notation, i.e. as tfn... hh- Thus, every term can be represented
in the form tW, where t is a constant or a variable and W is a word. Similarly,
any term of the form /i(/2(- ■ ■ /«(*) • • •))> where l is an arbitrary term, will be
written as tfn.. ■ fif\-

A finite automaton A on the alphabet T is a quadruple (Q,I,T,E), where
Q is a finite set, called the set of states, I and T are distinguished subsets of Q,
called the sets of initial and terminal states, respectively. The setECQxFxQ

is i/ie sei 0/ edges of A. An edge (p, /, g) is also denoted p -)■ 7. The automaton
is deterministic iff whenever (p,f,qi) € E and (p,/,^) £ £. then gi = <?2-

A word fi.-.fn is recognized by an automaton (Q,I,T,E) iff there is a
/.

sequence of states q0...qn such that q0 e I, qn e T and ft-i -V ^ for all
i e {1,. ■ • ,n}. A set of words is reffwiar iff it is the set of words recognized by
some automaton.

The intersection nonemptyness of deterministic finite automata problem is
the following decision problem. Given any finite set {Ai,..., An} of deterministic
finite automata, is there a word recognized by each automaton in this set. The
following statement is proved in Kozen [10]:

Lemma 3 The intersection nonemptyness of deterministic finite automata prob-
lem is PSPACE-complete.

Word equations. In addition to the alphabet T, we shall also consider a count-
able set V of word variables, denoted u,v,w. A word equation is any expression
of the form V ~ W, where V, W G {T U V)*. A word substitution is any expres-
sion a = {Vi/t»i, • • •, Vn/vn), where vt are word variables and Vi are words in
T*. Its domain, denoted dom(a) is the set {vi,.. .,vn}- The application of such
a word substitution 9 to a word W € (T U V)*, is the operation of simultaneous
replacement of all occurrences of Vi by Vi. The result of the application is the
word denoted Wa. A word substitution a is a solution to a word equation U ~ V
iff all variables in U, V belong to dom{a) and we have Ua = Va. A system of
word equations is any finite set of word equations, its solution is any substitu-
tion solving all equations in the system. Words will be denoted by U,V,W, word

158

variables by u,v,w and word substitutions by p,a,T.
Makanin [11] proved that word equations are decidable. Analyzing Makanin's

algorithm, Schultz [14] proves the following result.

Lemma 4 (Decidability of word equations with regular constraints)
The problem of solvability of word equations where every word variable U{ ranges

over a regular set Si, is decidable.

It is known that the problem of solvability of word equations is NP-hard. No
good upper bound for the complexity of this problem has been obtained so far,
it is only known that the problem is in 3-NEXP (Koscielski and Pacholski [7, 8]).

Equational logic and rigid equations. Let TZ be a system of rigid equations.
The signature of TZ is defined as the signature consisting of all constants and
function symbols occurring in TZ; and in addition a fixed constant if TZ contains
no constants. A solution 9 to TZ is called grounding for TZ iff for every variable x
occurring in TZ the term x6 is ground. A substitution 6 is called relevant for TZ
iff for every variable x the term x9 is in the signature of TZ.

In the sequel, we shall need the following technical property of systems of
rigid equations.

Lemma 5 (Existence of relevant grounding solutions) Let TZ be a solv-
able system of rigid equations. Then there exists a solution 6 toTZ that is ground-
ing and relevant for TZ.

We shall introduce one particular kind of rigid equations that will be used as
a technical tool for proofs in this paper. For any monadic signature (!F,C), any
variable x and any constant c € C introduce the following rigid equation:

Gr{Tfi)(x) ^ {d ~ c | d £ C} U {cf ~ c | / <= F} hv x ~ c

We shall use the following obvious lemma:

Lemma 6 A substitution 6 is a solution to Gr^ß) (x) iff xB £ T^,c) ■

As a consequence, we have

Lemma 7 For any system TZ of rigid equations there is a system TZ' of rigid
equations such that for any substitution 9, 9 is a solution to TZ1 if and only if 9
is a grounding relevant solution to TZ. In addition, TZ' can be found by TZ using
a polynomial-time algorithm; and TZ' has ground left-hand sides ifTZ has ground
left-hand sides.

Proof. Let ii,...,i„ be all variables in 72 and (T,C) be the signature of 72.. Define
TZ' ^ 72. U {Gr(^riC)(xi) | i £ {1,... ,n}}. Then apply Lemma 6.

159

Rewrite rules. This section introduces a technique standard in the theory of
ground systems of rewrite rules. However, we shall use ordinary equations instead
of rewrite rules.

Introduce an ordering y on terms in T^fi) in the following way. Let > be
any total ordering on TU C and s = c/i... fm, t = dgi... gn- Then s y t iff one
of the following conditions is true:

1. m > n;
2. m = n and the string c/i... fm is greater than dgi ... gn in the lexicographic

ordering induced by >.

The ordering >- is total, noetherian and can be extended to a simplification
ordering [1]. Some properties of the ordering formulated below are simple con-
sequence of standard statements in the theory of rewrite systems. Their proofs
may be found in e.g. [1]. Note that the ordering y depends on the ordering of
>. In the definitions below we assume that we have chosen a fixed ordering >
on T U C, and hence y is also fixed.

Let £,£' be finite sets of ground equations and £ contains distinct equations
s ~ t and r[s] ~ u. We say that £' is obtained from £ by simplification from
s ~ t into r[s] ~ u, denoted £ —> £' iff

£' = {£\ {r[s\ ~ «}) U {r[t] ~ u}

The reflexive and transitive closure of the relation -> on sets of ground equations
is denoted by -»*. A set of equations £ is called irreducible iff there exists no £'
such that £—►£'.

Let £ be an irreducible set of ground equations. We write t -»£■ t' if there
exists an equation (r ~ s) E £ such that r y s, and t' is obtained from t by the
replacement of one occurrence of the subterm r by s. The relation ->■£ is the
reflexive and transitive closure of ->•£. A term t is called irreducible with respect
to £ iff there is no term s such that t -t£ s. The normal form of a term t w.r.t.
£, denoted t \.£, is the term s such that t -*•£ s and s is irreducible w.r.t £.
The normal form of any term exists and is unique. We shall use the following
statements which are easy to prove.

Lemma 8 Let £ be an irreducible set of ground equations and s, t be terms. Then
£ h s ~ £ if and only if s \.£— t \.£.

Mixing words and rigid equations. We call a word term, or simply w-term,
in the signature (T, C) any expression of the form cW such that c € C and
W E (JFU V)*. A w-equation is any expression cV ~ dW, where cV and dW
are w-terms. A rigid w-equation is any expression of the form W r-y cV ~ dW,
where W is a finite set of w-equations, cV and dW are w-terms. A system of
rigid w-equations is any finite set of rigid w-equations. The signature of a system
of rigid w-equations is defined similar to that of a system of rigid equations. Sets
of w-equations will be denoted by W, and sets of rigid w-equations by S.

160

A solution to a rigid w-equation W hy cV ~ dW is any word substitution a
whose domain contains all word variables in W, V, W such that Wer h cVa ~
dWa. A solution to a system S of rigid w-equations is any word substitution
that is a solution to every rigid w-equation in S.

Note that a ground w-equation is also an ordinary equation.
In Lemma 9 below we show that one can consider systems of rigid w-equations

instead of systems of rigid equations. The following technical lemma is proved

in [6]:

Lemma 9 The problem of solvability of systems of rigid w-equations is polyno-
mial-time reducible to monadic SREU. Monadic SREU is effectively reducible to
the problem of solvability of systems of rigid w-equations.

3 Ground left-hand sides

In this section we prove that monadic SREU with ground left-hand sides is
decidable and PSPACE-hard.

SREU with ground left-hand sides is PSPACE-hard.

Lemma 10 Let A = (Q,I,T,E) be a deterministic finite automaton over T.
There exists a system TZ of two monadic rigid equations of one variable x with
the following properties:

1. TL has ground left-hand sides;
2. for every solution 9 to TZ we have x6 = cW, where W £ T* and c is a fixed

constant;
3. for any word W € T, the substitution {cW/x} is a solution to TZ if and only

if W is recognized by A.

In addition, TZ can be effectively constructed from A using a polynomial-time
algorithm.

Proof. Without loss of generality we can assume that / consists of one state (see e.g.
[12]). By renaming states, we can assume that I = {c}. Let F be a unary function
symbol fresh for T and d be a constant fresh for Q. Define TZ as {Ri, R2}, where

fii = {pf ~ q I (p 4 q) e E} U {rF ~ d | r 6 T} hv xF ~ d
R-2 = Gr(T<{c)){x)

Consider any substitution 8 = {t/x}. By Lemma 6, 9 is a solution to -R2 if and only
if t has the form cW such that W € T*. Consider when such substitution {cW/x} is
also a solution to R\. By definition, this means

{pf ~ q I (p -4 q) 6 E} U {rF ~ d | r € T} I- cWF ~ d (1)

Since the automaton is deterministic, the left-hand side of (1) is irreducible. Using
Lemma 8, one can see that (1) holds if and only if W is recognizable by A. Evidently,
TZ is constructed by A in polynomial time.

161

Lemma 11 The intersection nonemptyness of deterministic finite automata
■problem is polynomial-time reducible to monadic SREU with one variable and

ground left-hand sides.

Proof. Let Ai,...,An be deterministic finite automata. Let Hi, where i G {1,... ,n}
be the system of rigid equations constructed by A, as in Lemma 10. Define 1Z =
\Jn

=1 Hi. By Lemma 10, every solution to H has the form {cW/x} and any substitution
{cW/x} is a solution to H if and only if W is recognized by each Ai. Hence, H is solvable
if and only if there is a word recognizable by all Ai. Evidently, H is constructed by
Ai,.. . , An in polynomial time.

Combining Lemmas 3 and 11 we obtain

Theorem 1 Monadic SREU with one variable and ground left-hand sides is

PSPACE-hard.

Monadic SREU with ground left-hand sides is decidable. A finite set £

of equations is in the automaton form iff

1. every equation in £ has the form cf ~ d;
2. for every two w-equations cf ~ d\ and cf ~ d2 in £ we have d\ = d2;

Note that any set of equations in the automaton form is irreducible. The

following statement is proved in [6]:

Lemma 12 Given any rigid w-equation S with ground left-hand side, one can
effectively find in polynomial time a rigid w-equation S' with ground left-hand

side such that

1. S and S' have the same solutions;
2. the left-hand side of S" is in the automaton form.

Let £ be a set of equations in the automaton form and c, d be any constants.
Denote by A(£, c, d) the following automaton (Q, I, T, E). Its alphabet is the set
of function symbols occurring in £. The set of states Q is the set of all constants
occurring in £,c,d. The sets of initial states and terminal states are defined by
7" # {c} and T ^ {d}. Finally, the set of edges is defined by

E ^ {a 4- b | (of ~ b) 6 £}.

Lemma 13 A word W is recognized by A(£, c, d) if and only if £ h cW ~ d.

Proof. Immediate by Lemma 8.

Lemma 14 Let £ be a set of equations in the automaton form, W, W £ T* and
c, c' be constants. Then £ h cW ~ c'W if and only if there is a constant d and
words U, U', V such that W = UV, W = U'V, U is recognized by A(£, c, d) and

U' is recognized by A(£,c',d).

162

Proof.

;=>) We have £ V- cW ~ c'W. By Lemma 8 we have cW U= c'W' U- Choose d and V
such that cW U= dV. Define U and U' such that W = UV and W = U'V. We
have £ h cU ~ d and 5 h c'C' ~ d. By Lemma 13 words £/ and 17' are recognized
by -4(£,c, d) and .4(£,c',d), respectively.

;<=) We have W = C/V, W = U'V, U is recognized by A(S,c,d) and [/' is recognized
by A(£,c',d). By Lemma 13 we have £ h c!7 ~ d and £ h c'(7' ~ d. Hence,
f h cf/F ~ dV and f h c't/'F ~ dV. Then £T h cUV ~ c'C/'K, i.e. £hcW~ c'W.

D

Lemma 15 T/ie problem of solvability of systems of rigid w-equations with gro-
und left-hand sides effectively reduces to word equations with regular constraints.

Proof. Let S — {Si,... ,Sn] be such a system of rigid w-equations. By Lemma 12
we can assume that the left-hand sides of all Si are in the automaton form. Let Si =
(£, hv CiW, ~ c'iW'i), for all i£{l,...,n}. Let m,... ,un, vi,... ,vn and «i, ...,«'„ be
word variables fresh for S. By Lemma 14, the system 5 is solvable if and only if there
are constants d; occurring in Si, for all i € {1,... ,n} such that the following system
of word equations and regular constraints is solvable:

W\ ~ u\V\ «i is recognized by A{£\,c\,d\)

Wn — unvn «n is recognized by A{£n,cn,dn)
W[~ u'ivi u'i is recognized by A(£i,c[,di)

Wn ~ u'nvn u'n is recognized by A(£n,c'n,d„)

To conclude the proof we note that there is only a finite number of choices for d;.

Theorem 2 Monadic SREU with ground left-hand sides is decidable.

Proof. By Lemma 9 monadic SREU with ground left-hand sides is effectively reducible
to the problem of solvability of systems of rigid w-equations. By Lemma 15 the latter
problem is effectively reducible to word equations with regular constraints. Then apply
Lemma 4.

4 One-variable case

In this section we consider rigid equations with one variable x. We shall write
£(x) to denote all occurrences of a variable x in £, and write £{t) to denote the
set of equations obtained from £ by replacement of all occurrences of x by t.
We shall use similar notation for terms, for example s(x). Using this notation,
we can write any rigid equation of one variable x as £(x) hy s(x) ~ t(x). The
following statement is proved in [6]:

Lemma 16 Let £{x) be a finite set of equations of one variable x and s{x),t{x)
be terms of one variable x such that £{x) \f s(x) ~ t(x). Let c be a constant fresh
for £(x),s(x),t(x) and r be a ground term such that c does not occur in r. If
£{r) h s(r) ~ t(r), then there exists a ground term r' £ T(£(c) U {s(c) ~ t(c)})

such that £{c) h r ~ r'.

163

Lemma 17 Let £(x) hv s(x) ~ t(x) be a rigid equation of one variable x, c be a
constant fresh for this rigid equation, r be a ground term in which c does not occur
and £{x) \f s(x) ~ t{x). Then the substitution 9 = {r/x} is a solution to this
rigid equation if and only if there is a ground term r' G T{S{c) U {s(cj ~ t(c)})
such that £{c),£(r') h s(r') ~ t(r') and 9 is a solution to £(c) hv r' ~ x.

Proof.

=4- We have that 6 is a solution to 5(x) hv s{x) ~ t(x). Then £(r) h s(r) ~ <(r). By
Lemma 16 there is a term r € T{£(c) U {s{c) ~ t(c)}) such that £(c) h r ~ r'.
Then 5(r),5(c) hs(r')~((r'),

<= We have 5(c), 5(r') h s(r') ~ i(r') and 5(c) hv r' ~ r. Then 5(c), 5(r) h s(r) ~
i(r). By Lemma 2 we can substitute r for c obtaining 5(r) h s(r) ~ t(r). D

Lemmas 16 and 17 also hold for non-monadic signatures [3].

Lemma 18 Monadic SREU with one variable is in PSPACE.

Proof. We shall give a non-deterministic algorithm reducing monadic SREU with one
variable to the intersection nonemptyness of deterministic finite automata problem.

Let V, be a system of rigid equations of one variable x whose signature is (T, C). It
has the form

£\ r-v si(x) ~ ti{x) ■■■ £n r-v s„(x) ~ t„(x)

By Lemma 5 we can restrict ourselves to relevant grounding solutions 9 = {r/x} only.
Let c be a variable fresh for {T,C). By Lemma 17 0 is a solution to ft if and only if
there are ground terms r\ € T(£i(c) U {s;(c) ~ £i(c)}), where i€{l,...,n} such that
5(c), £(r') h s(r') ~ f(r') and 6 is a solution to the system

5i(c) r-v ri ~ x ••• 5n(c)r-vr^~x

Nondeterministically select such ri,..., r'n and verify the condition £(c),£(r') h s(r') ~
t(r') (it can be checked in polynomial time using Lemma 1).

Such 6 is a solution to this system of rigid equations if and only if there is a constant
d 6 C such that the following system of rigid w-equations is solvable:

£i (c) hv r[~ dx ■■■ £n(c) r-v r'n ~ dx

Nondeterministically select such d. By Lemma 12 we can equivalently replace this sys-
tem with a system

£[hv ci ~ d\x ■ ■ ■ £'n hv c„ ~ dnx

where 5- are in the automaton form. By Lemma 13, this system is solvable if and only
if the intersection of automata A{£[, d\, c\),..., A{£'„, dn, c„) is non-empty.

We have given a non-deterministic algorithm reducing monadic SREU with one
variable to the intersection nonemptyness of deterministic finite automata problem.
On each branch, the algorithm makes polynomially many steps. Applying Lemma 3
on the complexity of the intersection nonemptyness of deterministic finite automata
problem we get that monadic SREU with one variable is in NPSPACE, and hence in
PSPACE.

Combining Theorem 1 and Lemma 18, we obtain

Theorem 3 Monadic SREU with one variable is PSPACE-complete.

164

5 General case

Denote by W the set of pairs of words on T. Introduce on W a binary function
*, a unary function r and a binary relation < in the following way:

m Tr\ ,T/ T/^J(EW, ^2) if ^i has the formtfi W
(t/i, U2) *{V1,V2)r\ (K} y2) otherwise

(Ui, U2) <(V1:V2) ^ there is a word W such that (Vi, V2) = {UXW, U2W)

An ideal on W is any set of pairs containing (e,e) and closed under *, r and
upward closed under <. The ideal generated by a set of pairs S, denoted ideal (S)
is defined as the least ideal containing 5.

An ideal equation is an expression

(U,V) e ideal{{{UuVl),...,{Un,Vn)}),

wheren > 0 and U, V, Uu ... ,Un,Vi,..., Vn £ (fUV)*. A solution to such ideal
equation is any word substitution a such that

1. words Ua, Va, Uia,..., Una, Via,..., Vna are words over T;
2. the word (Ua, Va) belongs to the ideal generated by

{(U1<r,V1a),...,(Una,Vna)}.

A system of ideal equations is any finite set of ideal equations. Solutions to
a system of ideal equations are substitutions that solve each equation in the
system. The ideal equations problem is the decision problem of solvability of
systems of ideal equations. The aim of this section is to show that monadic
SREU is equivalent to the ideal equations problem.

The following lemma proved in [6] is the main reason for introducing the
notion of an ideal.

Lemma 19 Let Uu ... ,Un,Vi,... ,Vn,U,V be words on T and a be any con-
stant. Then alii ~ aV1:...,aUn ~ aVn h all ~ aV if and only if (U,V) G
ideal({(U1,V1),...,(yn,Vn)}).

Theorem 4 Monadic SREU is decidable if and only if the ideal equation problem
is decidable.

Proof. See [6].

Technical report [6] discusses ideal equations in more detail. In particular, it
is shown that ideal equations are decidable if and only if word equations extended
by a family of predicates behaving like a greatest common divisor on word are
decidable. In addition, the following statement is proved:

Lemma 20 Ideal equations are decidable if and only if ideal equations with reg-
ular constraints and the inequality constraints U ^ V are decidable.

165

Acknowledgments. We thank Anatoli Degtyarev and Gennadi Makanin.

References

1. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. Van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, volume B: Formal Methods and
Semantics, chapter 6, pages 243-309. North Holland, Amsterdam, 1990.

2. A. Degtyarev, Yu. Gurevich, and A. Voronkov. Herbrand's theorem and equational
reasoning: Problems and solutions. In Bulletin of the European Association for
Theoretical Computer Science, volume 60, page ??? October 1996. The "Logic in
Computer Science" column.

3. A. Degtyarev, Yu. Gurevich, P. Narendran, M. Veanes, and A. Voronkov. The de-
cidability of simultaneous rigid ^-unification with one variable. UPMAIL Techni-
cal Report 139, Uppsala University, Computing Science Department, March 1997.

4. A. Degtyarev, Yu. Matiyasevich, and A. Voronkov. Simultaneous rigid 2?-unifica-
tion and related algorithmic problems. In Eleventh Annual IEEE Symposium on
Logic in Computer Science (LICS'96), pages 494-502, New Brunswick, NJ, July
1996. IEEE Computer Society Press.

5. A. Degtyarev and A. Voronkov. The undecidability of simultaneous rigid E-
unification. Theoretical Computer Science, 166(l-2):291-300, 1996.

6. Yu. Gurevich and A. Voronkov. Monadic simultaneous rigid .E-unification and
related problems. UPMAIL Technical Report 137, Uppsala University, Computing
Science Department, February 1997.

7. A. Koscielski and L. Pacholski. Complexity of unification in free groups and free
semigroups. In Proc. 31st Annual IEEE Symposium on Foundations of Computer
Science, pages 824-829, Los Alamitos, 1990.

8. A. Koscielski and L. Pacholski. Complexity of Makanin's algorithm. Journal of
the Association for Computing Machinery, 43(4):670-684, 1996.

9. D. Kozen. Complexity of finitely presented algebras. In Proc. of the 9th Annual
Symposium on Theory of Computing, pages 164-177, New York, 1977. ACM.

10. D. Kozen. Lower bounds for natural proof systems. In Proc. 18th IEEE Sympo-
sium on Foundations of Computer Science (FOCS), pages 254-266, 1977.

11. G.S. Makanin. The problem of solvability of equations in free semigroups. Mat.
Sbornik (in Russian), 103(2):147-236, 1977. English Translation in American
Mathematical Soc. Translations (2), vol. 117, 1981.

12. D. Perrin. Finite automata. In J. Van Leeuwen, editor, Handbook of Theoretical
Computer Science, volume B: Formal Methods and Semantics, chapter 1, pages
1-57. Elsevier Science, Amsterdam, 1990.

13. D.A. Plaisted. Special cases and substitutes for rigid ^-unification. Technical
Report MPI-I-95-2-010, Max-Planck-Institut für Informatik, November 1995.

14. K.U. Schulz. Makanin's algorithm: Two improvements and a generalization. In
K.U. Schulz, editor, Word Equations and Related Topics, volume 572 of Lecture
Notes in Computer Science, Tübingen, Germany, October 1990.

15. R. Shostak. An algorithm for reasoning about equality. Communications of the
ACM, 21:583-585, July 1978.

16. M. Veanes. Uniform representation of recursively enumerable sets with simulta-
neous rigid ^-unification. UPMAIL Technical Report 126, Uppsala University,
Computing Science Department, 1996.

Computability on the Probability Measures on
the Borel Sets of the Unit Interval

Klaus Weihrauch

FemUniversität, D-58084 Hagen, klaus.weihrauch@fernuni-hagen.de

Abstract. While computability theory on many countable sets is well
established and for computability on the real numbers several (mutually
non-equivalent) definitions are applied, for most other uncountable sets,
in particular for measures, no generally accepted computability concepts
at, all have been available until now. In this contribution we introduce
computability on the set M of probability measures on the Borel sub-
sets of the unit interval [0; 1]. Its main purpose is to demonstrate that
this concept of computability is not merely an ad hoc definition but has
very natural properties. Although the definitions and many results can
of course be transferred to more general spaces of measures, we restrict
our attention to M in order to keep the technical details simple and con-
centrate on the central ideas. In particular, we show that simple obvious
reqirements exclude a number of similar definitions, that the definition
leads to the expected computability results, that there are other nat-
ural definitions inducing the same computability theory and that the
theory is embedded smoothly into classical measure theory. As back-
ground we consider TTE, Type 2 Theory of Effectivity [KW84, KW85],
which provides a frame for very realistic computability definitions. In
this approach, computability is defined on finite and infinite sequences
of symbols explicitly by Turing machines and on other sets by means
of notations and representations. Canonical representations are derived
from information structures [Wei97] . We introduce a standard represen-
tation 8m :C E" —► M via some natural information structure defined
by a subbase a (the atomic properties) of some topology r on M and
a standard notation of er. While several modifications of 8m suggesting
themselves at first glance, violate simple and obvious requirements, 8m

has several very natural properties and hence should induce an impor-
tant computability theory. Many interesting functions on measures turn
out to be computable, in particular linear combination, integration of
continuous functions and any transformation defined by a computable
iterated function system with probabilities. Some other natural repre-
sentations of M are introduced, among them a Cauchy representation
associated with the Hutchinson metric, and proved to be equivalent to
<§,„. As a corollary, the final topology r of Sm is the well known weak
topology on M.

167

1 Introduction

Measure and integration is a central branch of mathematics pervading almost
all parts of abstract analysis. Several authors have already considered ques-
tions of effectivity, constructivity, computability or computational complexity
in measure or integration theory. Kushner [Kus85] studies computability and
Ko [Ko91] computational complexity of integration. Bishop and Bridges [BB85]
present constructive measure theory extensively. Although they do not consider
computability, certainly many of their concepts and results have computational
counterparts. Edalat gives a domain theoretic approach to effective integration
[Eda95, Eda96]. He also does not consider computability, but it should be pos-
sible to extend his topological approach by computability concepts. Traub et al.
[TWW88] investigate the computational complexity of numerical algorithms for
integration in the real number model of computation. However, this model is
unrealistic in many situations and therefore not generally accepted. A system-
atic study of computability in integration and measure theory does not yet exist.
In this paper we introduce a very natural and realistic computability theory on
probability measures. We achieve this by extending TTE, Type 2 Theory of Ef-
fectivity, to measure theory. TTE has been introduced by Kreitz and Weihrauch
[KW84, KW85] as a general framework for studying effectivity, i.e. continuity,
computability and computational complexity, in Analysis. For details the reader
is referred to the introduction [Wei95] and a recent short survey [Wei97] con-
taining most of the notations we shall use in this paper. More details can be
found in [KW85, Wei87]. Since this paper is a first attempt, we consider only
the space of probability measures on the Borel subsets of the real unit interval.

By / :C A —► B we denote a partial function, i.e. a function from a subset
of A to B. Throughout this paper let E be a sufficiently large finite alphabet.
Let E* be the set of finite and Ew = {p \ p : u —► E] the set of "e^a-words
over E. On E* we consider the discrete topology and on Ew the cantor topol-
ogy defined by the basis {wEu \ w <E E*}. For Y0, Yu ..., Yk G {£*,£"}, a
function / :C Y\ x ... x Yk —► Yo is called computable, iff it is computed
by a Turing machine with a one-way output tape. Every computable function
is continuous. The basic idea of TTE is to use finite or infinite sequences as
names of "abstract" objects. As naming systems we consider notations, i.e. sur-
jections v :C E* —► S, and representations, i.e. surjections 6 :C Eu —► M.
Continuity and computability concepts are transferred from E* and Ew via no-
tations and representations, respectively, to the named sets straightforwardly,
see [KW85, Wei87, Wei95, Wei97]. Mainly notations or representations which
are compatible with some relevant structure on the set under consideration are
of practical interest. We do not discuss this for notations (see [RW80, Wei87] and
Appendix C in [Wei95]), but we will introduce "effective" notations explicitly
whenever necessary. In particular, for the rational numbers let VQ :C E* ► Q
be the standard representation via fractions of integers in binary notation. We
shall abbreviate VQ(W) by w. Standard notations of the natural numbers, pairs
of rational numbers etc. will be used without further definitions. For uncount-
able sets M we shall consider mainly representations derived from "information

168

structures" (M,a,v), where a is a countable subset of 2M of "atomic proper-
ties" which identifies points, and v is a notation of a [Wei97]. It is assumed that
a. computer (Turing machine) manipulates //-names of atomic properties. As a
name of an object x G M we consider any infinite list of all properties i£ff
which hold for x. Concretely, the standard representation 8V :C Sw —► M is

defined by
6„(p) - x <^> p = w0$w4 ... and {ivt \ i G LO} = {w \ x G v(w)}.

Every finite prefix of a <5„-name p of x contains finitely many atomic properties
of x which "approximate" x. Mathematically, this kind of approximation is de-
scribed by the topology ra on M, which has a- as a subbase. Computability on a
and via. 8V on M are fixed by the notation v which expresses how atomic prop-
erties can be handled concretely. Thus, for any information structure (M,a,v),
a characterizes approximation and v computability on M. The topology r„ and
the standard representation 8V are closely related: iGr, «=^ K X is open in
dom{bv) (for all X C M), i.e. ra is the final topology of S„. Let 8 :C 2* —> M
and 5' :C S* —> M' be representations and let / :C M —► M' be a function.
An element x e M is called ^-computable, iff S(p) = x for some computable
sequence p £ T. By definition, 6 <t 6' (6 < 8'), iff 8 = 8'g for some con-
tinuous (computable) function g :C S* —- S*, and / is (8, «')-continuous
(-computable), iff f8 = 6'fif for some continuous (computable) function g :C
JP* , r;*. (Accordingly for functions with two or more arguments.) By the
"main theorem for admissible representations" [KW85] a function is continuous
relative to standard representations, iff it is continuous w.r.t. the associated final
topologies in the usual sense. For more details see [KW85, Wei87, Wei95, Wei97].
For the real numbers, we need three representations p<,p>,p -Q £"" —> HI,
derived from information structures. They can be defined explicitly as follows

[Wei87, Wei97]:

p<(p) =x : <=> p = iüoNi|t... with {wi \ i E u} = {w \ w < x},

p>(p) = x :<=^ p = wowx... with {to,- | i G w} = {w | w > x},
p(p) -x : <=> p = volwoMwi ... with {(vi,Wi) \ i £w} = {(v, w) | v < x < w}.

The final topologies are r< = {(j/;oo) | y G M} U {IR}, r> = {(-oo;y) | y G
IR}U{IR} and the set TJR, of ordinary open subsets of IR, respectively. Notice that
p induces the standard computability theory on the real line. The translatabihty

or reducibility properties [Wei87, Wei97] p < p<, P < P>, P< & P, P> it P,

P< it P> > P> it P< can be proved easily.

In Section 2 we introduce a standard representation 8m of the set M of
probability measures on the Borel sets of the interval [0; 1] by a very natural
information structure. We prove a stability theorem for this definition. We dis-
cuss some further modifications of the definition and show that that they have
undesirable properties. The results indicate that the computability theory on M
induced by the representation 8m is indeed very natural. In Section 3 we prove
computability of several interesting functions on measures, in particular linear
combination and integration of continuous functions. Also the measure trans-
formation induced by a computable iterated function system with probabilities

169

[HutSl, Bar93] is computable. Finally in Section 4, we introduce representations
based on other natural information structures and a Cauchy representation for
the Hutchinson metric [Hut81, Bar93] . We prove that all these representations
are equivalent and that their final topology is the well known weak topology

[Bau74].

2 The standard representation of measures

In this section we introduce the standard representation 6m of the probability
measures and show that it induces a very natural computability theory. Let
Int := {(a;6),[0;a),(6;l],[0;l] | a, b £ Q, 0 < a < b < 1} be the set of open
subintervals of [0; 1] with rational boundaries, and let / :C E* —► Int be some
standard notation of Int with dom(I) C (£"\{fr, jj})*. We write Iw for I(w). By B
we denote the set of Borel subsets of [0; 1], i.e. the smallest cr-algebra containing
Int. By M we denote the set of probability measures ß : B —> IR on the
space ([0; 1],B). By a basic theorem of measure theory [Bau74], every measure
ß £ M is defined uniquely by its values on the generating set Int. We introduce
a standard representation of M via an information structure. The informations
available from some standard name of a measure pi shall be all (r, J) with r £ (Q
and J £ Int such that r < /z(J).

Definitionl. Define an information structure (M,<r, v) by a := range (v) ,
where /.< £ v(u£v) : <^=> ü < ß(Iv) for all u £ dom(vq), v £ dom(I) and
fi £ M. Let Tm be the topology on M with subbase a and let 6m be the standard
representation of M derived form v.

It remains to show that a identifies the points of M. Consider measures fi, // £ M
such that r < pt(J) <^> r < pt'(J) for all r £ Q and J £ Int. Then obviously,
n(J) = p'(J) for all J £ Int, i.e. \x = //. The definition of the representation 6m

looks somewhat arbitrary. By the next stability lemma, we obtain an equivalent
representation, if we replace VQ and / by adequate other notations. For any
X C IR let cls(X) be the closure of X.

Lemma 2. (stability of6m) Let v,s -Q -S1* y S be a notation of a set S which is

dense in IR such that {(u,v) \ vs(u) < '/Q(^)} end {(u,v) | VQ{U) < vs{v)} are
r.e. . Let D be a countable dense subset o/[0, 1] and let I1 be a notation of Int' :=
{(o;6),[0;a)(a;l],[0;l] | a, b £ D, 0 < a < b < 1} such that {(u,v) \ cls(I'u) C
/„} and {(u,v) | cls(Iu) C I'v} are r.e. Define r,'n and S'm by substituting vs for
VQ and I1 for I in Definition 1.
Then T'm - T,„ and 6'm = 6m.

If we replace, for example, rational numbers by finite binary fractions or by finite
decimal fractions in the definition of the set Int and in Definition 1, we obtain
an equivalent representation with the same final topology.
If we replace the relation "<" in Definition 1 by "<", ">" or ">", we obtain

170

rerpesentations which violate Lemma 2. Remember that by definition, the topol-
ogy Tm has the subbase a = {Ur<j \ r G Q and J G Int} where UTtj = {p G
M | r < p(J)} . We prepare the proof of the theorem by two lemmas. First, we
consider the cases "r < //(J)", "r > yu(J)".

Lemma 3. For Q CM let T(Q) be the topology on M generated by the subbase

a(Q) := {UrJ\reQ,J€ Int}, where UrJ = {p G M | r < p(J)}.
Then T{P) % r(Q), ift£P\Q for some t G (0; 1) (for all P, Q C M).
The statement holds accordingly, if "<" is replaced by ">".

The next lemma considers the case "r > v{J)" ■

Lemma4. For D C (0; 1) let Int(D) := {(a; 6), [0; a), (a; 1], [0; 1] | a, 6 G D, 0 <
a < b < 1}. Zetf 7"(-D) *e Me topology on M generated by the subbase a(D) :=
{£4,J | '• G Q, J G Int (D)} where Ur,j = {/< G M | r > p(J)}. Then

D C E <=> r(£>) C r(£) (/or all D,EC (0; 1)).

Theorems. If in Definition 1 the relation "ü < p(Iv)" is replaced by "ü >
p(Iv)", "ü > p(Iv)" or "ü < p(Iv)", the resulting representations 8m violate the

stability lemma 2.

By Definition 1 and Lemmata 3 and 4, many different more or less natural
representations and hence computability theories for the set M of probability
measures on ([0;1],B) can be introduced. The "user" has to decide, which of
them is adequate for his application. The stable representation 8m from Defini-
tion 1 is certainly the most important one, since its computability theory will
occur most frequently. We shall study it in the following exclusively.
As a simple consequence of Definition 1, all rational lower bounds of p(J) can
be obtained from any <5m-name of p. and any /-name of J. This property char-
acterizes the representation 8m except for equivalence: The representation 8m is
<-complete in the set of all representations 6 of M, for which (p, J) >->■ p(J) is

(8,1, p<)-computab!e.

Theorem 6. For any representation 8 ofM: 8 < 8m -<=» (,V,J) ^ v{J) is

(8, I, p^-compxdable.

Notice, that in particular (p, J) H-> p(J) is (b~m, /./^-computable. Computing
only lower rational bounds does not seem to be satisfactory. We would like to
compute also arbitrarily close upper bounds of p(Iv). We prove a negative and
a positive answer. For any x G [0; 1] define px G M by px(A) := (1 if x G A,0
otherwise). For any good and useful representation 8 of M it should be possible
to determine a 5-name of the measure px effectively from a name of x. Let

M':={tix\xe[0;l]}.

Theorem 7. For any representation 8 o/M, for which x i—<■ px is (p, 8)-coniinuous
on (0; 1), p H-> ^[0; 1/2) is not (8,p>)-continuous on M'. 6m is such a represen-

tation.

171

Therefore, for reasonable representations 8 of M, in particular for our stan-
dard representation 8m, arbitrarily close rational upper bounds of measures
of open intervals cannot be computed. Although this contradicts intuition at
first glance, it has to be accepted as a matter of fact. Notice, that for prov-
ing Lemma 3, Lemma 4 and Theorem 7 we have used measures p £ M with
p{x) > 0 for some x £ IR. Since the arguments have been purely topological
without reference to computability, we have also shown that the final topology
rm of the representation 8m, which formalizes a concept of "approximation"
on the set M of measures, is quite natural. If we exclude measures p with
//{a:} > 0 for some x £ [0;1], (p,J) >->• p(J) becomes (<5m, 7, ^-computable.
Let M° := {p £ M | \/x £ [0; l].p{x) = 0}

Theorem 8. The function (p,J) >-* p(J) is (8m, I, p)-computable for J £ Int

and p £ M°.

3 Computable Functions on Measures

In this section we prove computability of some interesting functions on prob-
ability measures. By the next theorem, the linear combination of measures is
computable in all variables.

Theorem9. The function (a, p, p') \—*• ap+(l —a)fi' is (p,6m,6m,6m)-computable
for 0 < a < 1

By Theorem 6, (ft, J) >-> p(J) is (8m, J,p<)-computable on M x Int. We extend
this result to TM = {U n [0; 1] | U £ m.}, the set of all open subsets of [0; 1].
First we need a representation of this topology. For the set TR of open subsets of
IR, the following information structure (TJR,<T,I') and its derived representation
S0 and topology r0 are natural (see [Wei97]): For any U E TU and u,v £ E*
let U £ i/(u£v) iff [ü;v] C U. Consequently, 60(p) — U iff p is a list of all
closed intervals with rational boundaries contained in U. We define our standard
representation of TM accordingly: 8'0(p) = U : <==? p is a list of all w £ S* with
cls(Iw) C U (p £ S^,U £ Tj^). Let pi £ M be the Lebesgue measure on

([0;1],B).

Theorem 10. (1) (p,U) i-+ p(U) for p, £ M and U £ TM IS (5m,^,p<)-
computable. (2) (p,U) >—>■ fi(U) for p = pL and U £ TM IS not (6m,S'0, />>)-
continuous.

For uniform formulations in the next theorems we need a standard representation
6-r of the set C[0; 1] of continuous functions / : [0; 1] > IR. We define 8^
and the corresponding final topology T^ by the following information structure
(C'[0;l],o-,i/): / £ v{umw) : <=> ü < f(clslv) < w for all / £ C[0; 1]
and u,v,w £ S*. Properties of 8^ are discussed in [Wei87, Wei95, Wei97]. In
particular, r_» is the compact-open topology on C[0; 1], which is also generated
by the metric d(f, g) := max{|/(a;)—ff(s;)||0 < x < 1} on C[0; 1]. For any measure
p. £ M and any continuous function / : [0; 1] —► [0; 1] define the measure Tj{p)
by Tj{p){A) := pf~l{A) for every Borel set A C [0; 1] (see [Bau74], page 42).

172

Theorem 11. The function (/, p) i-+ Tf(p) for continuous f : [0; 1] -► [0; 1] and

p G M is (6-n 6m, Sm)-computable.

We apply this theorem to iterated function systems with probabilities [Hut81,
Bai-93]. An interated function system (IFS) on [0; 1] with probabilities is a tuple

S = ([0; 1], /i,.. •, A,Pi, • • • ,Pk) where A, ...,/*: [0; 1] —+ [0; 1] are continuous
functions and pi, ■ ■ ■ ,pk are positive real numbers with pi + ■■■ + pt = 1- With

k

S one associates the function Ts : M —► M defined by Tg(/i) := £ PiT}t{p)
i = \

Corollary 12. Let S = ([0; 1], /i, . . ., fk,Pi, ■ ■ ■ ,Pk) be an IFS with probabilities
such that fi,...,fk are 5^-computable and p\,...,Pk are p-computable. Then
Xg : M —> M is (6m,6m)-computable.

Therefore, for any computable iterated function system S with probabilities, the
associated measure transformation Tg : M —► M is a (<5m, <5m)-computable
function. We shall show below (Theorem 23) that its unique fixed point ^g G M
is ^„-computable, if the system S is hyperbolic [Hut81]. We shall show that in-
tegration of continuous functions is computable in both arguments. The integral
of a continuous function can be defined via summations over finite partitions.
Consider y € M and / G C[0;1]. Let Part be the set of all finite partitions
Z of [0; 1] into intervals with rational boundaries (remember: \]Z — [0; 1] and
1 n .7 = for I,J £ Z). For Z £ Part define s+(Z) := J2 KJ) ' sup/(a;) and

J£Z x£j

s„(Z) :- Y, P(J) ' inf/(a:). Since / is continuous, we have sup s-(Z) =
j aZ ar€^ ZfzPart

inf s+(Z) =: f fdß. The following lemma is the key to the next proof.
Z£Part

Lemma 13. For any ß, 7 > 0 there are a finite set T C Int of (pairwise disjoint)
open intervals and a finite set L of closed intervals such that T U L G Part,
length(.J) < 7 for every J G T and p([jL) < ß. (L can be chosen, such that

each J G L has length 0.)

Theorem 14. The function (f,n) ^ J fdp. for f G C[0; 1] and y G M is

(6^, Sm, p)-computable.

Proof: For any T C Int let s_(T) := Ei/^C-7) ' inf f(J) I J e T>- Consider
/ G C[0; 1] and e > 0. By uniform continuity of / there is some 7 > 0 such
that \x - y| < 7 =>• \fx - fy\ < e/4. Let M := max{|/(a:)||0 < x < 1}, choose
ß := t/(4(l + M)). By Lemma 13 there is some set T C Int of pairwise disjoint
intervals such that 1 - ß < p\jT < 1 and VJ G T.length(J) < 7. Furthermore,
there are z3 G Q such that zj < y{J) for J G T and 1 -/? < £{zj U G T} < 1.
We describe a procedure for determining from (p, q, n) a number r £ JJ with
\r - J fdfi\ < 2~n where 8^(p) = / and Sm(q) = /i.

- Fromp and n determine some k G u such that \x-y\ < 2~k =^> |/a; —/y| <
2-»-2 [Wei95, Wei97].

- From p determine some integer upper bound m of M.

-n —2

173

- Let/?:=2-"-2/(l + m).
- By systematic search find a finite set T C Int of pairwise disjoint intervals

and rational numbers zj (J G T) with length(J) < 2~k and zj < //(J) for
J £ T and 1-/?<^{ZJ | /GT}.

- Determine some r G Q such that | £{zj ' inf f(J) | J G T} - r| < 2"

The existence of T and the numbers zj has already been shown. We prove
|r _ J fdfi\ < 2-". Let L be the set from Lemma 13 and let T" := T U L. We
have:

|//V//,-S_(T')| <|s+(T')-s-Cni
<IE{A*(J)(sup/(J)-inf/(J))||JGT'}
<E{/-W-2- 2|JGT'}
^- n —n —2

|s_(T') - s_(T)| < ZML) -inf /(J)|J € £}
< p (J L • m
< /? ■ m

r^ —n — 2

l*-(r) - £{*■/ ■ inf/(J)|J e r}| < E{(M<0 - */)inf/(./) U e T}
< ß ■ m
< 2-n~2

By the triangle inequality we obtain | / fdp — r\ < 2~n.
There is a computable procedure for determing r, i.e. there is some computable
function g :C Ew x £*" x E* —> E* such that for / = MP)> A« = M?) and
n = ü we have |ü - / /dp| < 1~n where u = g(p, q, u). Using a machine for g
one can define easily a machine for a function h :C Ew x Ew —> Ew such that
J 6^(p)d6m(q) = ph(p, q) for all p G dom(S^) and 5 G dom(Sm).
D
As a corollary of Theorem 7, Theorem 14 cannot be extended from C[0; 1] to
the measurable functions, not even to step functions.

Corollary 15. Let f : [0; 1] —> IR &e the characteristic function of [0; 1/2).
TAen p >-► //dp is not (6m,p>)-continuous on M.

4 Further Representations of Measures

In Definition 1 we have used atomic properties r < p(J) with r G Q and J G
7?ii for identifying measures. By Theorem 14, (/, p.) H^ //dp is (<$_., <5m,/>)-
computable for continuous functions. In the following we indentify measures p
by atomic properties r < J tdp or r < j tdp < s, where r, s G Q and * is from a
set of simple continuous "test functions".

Definition 16. For n G w and 0 < m < 2" define the triangle function tnm G
C[0; 1] by

(x-(m- l)2"n if (m - 1)2-" < x < m ■ 2~n

tnm(x) := < (m + l)2"n - x if m • 2"n < x < (m + 1) ■ 2"n

I 0 otherwise.

174

Let 6'm and 6'^ be the standard representartion of M induced by the informa-
tion structures (M, <r',;/) and (M, <r", J/"), respectively, defined as follows: y, G
i/'(0"tOmtu) : <=> ü < Jtnmdß, p G z/"(OntOmt«tv) : <=> ü < /<nmd/i < ö
for all // G M, n G w, 0 < m < 2" and u, v G dom(vQ).

We have not yet shown, that the systems <r' and a" from Definition 16 identify
points, i.e. 6'm and 5," may still be representations of partitions of M which are

coarser than {{//} [\i G M}.

Theorem 17. 6'm and 6'^ are representations ofM such that Sm = 6'm = 6'^.

By definition, the weak topology TW on the set M of probability measures on
([0;1],B) is the coarsest, i.e. smallest, topology r, such that ß >-+ J fdp is
(r, T]R)-continuous for every / G C[0; 1] [Bau74]. As a corollary of Theorem

17 we obtain:

Corollary 18. The weak topology TW IS the final topology Tm of the representa-

tion <">,„,.

The weak topology TW on ([0; 1],B) can be generated by a metric [Bau74].

Definition 19. (Hutchinson metric) Let Lip := {/ G C[0; 1] | f(x) = 0 and
\/x,y.\f(x) - f(y)\ < \x- y\}. Define dH : M x M —> IR by dH(n,fi') :=

sup{|//dA*-//d/i'||/G Lip}.

The metric dH is called the Hutchinson metric [Hut81, Bar93].

Lemma20. dH is a metric on M.

Theorem21. dH : M x M —> IR is (5m,6m, p)-computable.

By Lemma. 2.1 from [Wei93], the metric space (M,^) has a countable dense
subset. By Corollary 45.4 from [Bau74], the discrete measures are dense. We shall
use the discrete measures determined by rational numbers as a dense subset. Let
MQ. be the set of all probability measures /IEM such that there are a finite set
A" and rational numbers rk,sk G [0; 1] for all k G K such that Y^isk \ k E K} = 1
and fi = Yl skPrk, where nx{A) = (1 if x G A, 0 otherwise). Let vd be a standard
notation of M„. A computable metric space is a quadruple (M,d,A,v) such
that (M, d) is a metric space, A is a dense countable subset and v is a notation
v :C S* —► A of A such that the set {(u,v,w,x) | ü < d(v(v),v{w)) < x} is
r.e. [Wei93]. This definition is somewhat stronger than that in [Wei87]. For a
computable metric space (M,d,A,v), the Cauchy rerpesentation 6C [Wei97] is
defined as follows (we assume w.l.o.g. dom(v) C (S \ {jj})*) : b~c(p) = x : <=>
p = woth'itt • ■ • such that Vi > k d(v(ui), v(uk)) < 2_i and x = lim i/(«j).

Theorem 22. (1) vd < 6m (2) (M, dH, Md, vd) is a computable metric space.
(3) The Cauchy representation 6^ for this space is equivalent to Sm.

175

Since 6m = S'm = <*>," = 6^, these four representations of the probability mea-
sures M on the space ([0; 1],B) induce the same computability theory and in
particular have the same final topology, which is the topology r generated by the
Hutchinson-metric. As a consequence, for a hyperbolic [Hut81] computable IFS
with probabilities as in Corollary 12 the unique invariant measure is computable
w.r.t. any of these representations. For a domain-theoretic approach see [Eda96].

Theorem 23. Let S = ([0; 1], fu ..., fk,Pi, ■ ■ ■ ,Pk) be a hyperbolic IFS with
probabilities such that fi, ■ ■ ■, fk &rz 6^-computable and pi,.. ..pk are p-computable.
Then the unique fixed point pg of the operator T§ : M —► M defined by

k

Ts(p)(A) ■= Y. Vif-Ur1 (A)) is 6m-computable.
8 = 1

In measure theory not only probability measures but arbitrary measures \i :
B —► IR U {oo} are studied. Let Mb be the set of all measures fi : B —► Ht,
i.e. all bounded measures on ([0;1],B). Let 6< be the representation of Mb

obtained from Definition 1, where M is replaced by Mb. While 5m(p)[0; 1] = 1,
6<(p)[0\ 1] may be any non-negative real number. An easy proof shows that p, >—^
//[0; 1] is only (6<, p<)-computable and not (6<, p)-continuous. This means, that
informations about upper bounds of 6<(p)[0; 1] are not available from prefixes of
p. As a consequence, Theorem 14 on integration fails for 6<. Only the following
weak version can be proved: (f,fi) ^ / fdp for non-negative / € C[0; 1] and
H G M'' is (6-,, 5<,p<)-computable. We can, however, include informations
about upper bounds of /x[0; 1] in the names. Let 6b be the representation of
M4 defined by the following notation v of atomic pieces of information: \i £
v{u\.v\:.w) <^^> ü < t-i(Iv) and /x[0; 1] < w. Then the theorems we have proved
for Sm hold accordingly for 6h, in particular Theorem 14 on integration. The
connection to 6m is given by the following lemma.

Lemma 24. The function ß >-► /i[0; 1] on Mb is (6b, p)-computable, and the
function fi i-s- p/fi[0; 1] is (b~b, 6m)-computable for fi £ Mb, //[0; 1] ^ 0.

5 Conclusion

In this paper we have introduced and discussed a very natural and canonical com-
putability theory on the set M of probability measures on the Borel subsets of
the unit interval [0; 1]. In particular, we have shown that simple obvious require-
ments exclude a number of similar definitions, that the definition leads to the
expected computability results, that there are other natural definitions induc-
ing the same computability theory and that the theory is embedded smoothly
into classical measure theory. Although we have only stated the existence of
computable functions throughout the paper, all the proofs provide algorithms,
which can be realized by programs from some common programming language
like PASCAL or C. Of course the basic definitions and many results can be
transferred from the space M to more general spaces of measures.

176

References

[Bar93] M.F. Barnsley. Fractals everywhere. Academic Press, Boston, 1993.
[Bau74] Heinz Bauer. Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie.

de Gruyter, Berlin, 1974.
[BB85] Errett Bishop und Douglas S. Bridges. Constructive Analysis, Band 279

der Reihe Grundlehren der mathematischen Wissenschaft. Springer, Berlin,

1985.
[Eda95] Abbas Edalat. Domain theory and integration. Theoretical Computer Sci-

ence, 151:163-193, 1995.
[Eda96] Abbas Edalat. Power domains and iterated function systems. Information

and Computation, 124(2):182-197, 1996.
[Hut81] J. Hutchinson. Fractals and self-similarity. Indiana University Journal of

Mathematics, 30:713-747, 1981.
[Ko91] Ker-I Ko. Complexity Theory of Real Functions. Progress in Theoretical

Computer Science. Birkhäuser, Boston, 1991.
[Kus85] Boris Abramovich Kushner. Lectures on Constructive Mathematical Analy-

sis, Band 60 der Reihe Translation of Mathematical Monographs. American

Mathematical Society, Providence, 1985.
[KW84] Christoph Kreitz und Klaus Weihrauch. A unified approach to construc-

tive and recursive analysis. In M.M. Richter, E. Borger, W. Oberschelp,
B. Schinzel und W. Thomas, Hrsg., Computation and Proof Theory, Band
1104 der Reihe Lecture Notes in Mathematics, Seiten 259-278, Berlin, 1984.
Springer. Proceedings of the Logic Colloquium, Aachen, July 18-23, 1983,

Part II.
[KW85] Cristoph Kreitz und Klaus Weihrauch. Theory of representations. Theoret-

ical Computer Science, 38:35-53, 1985.
[RW80] Angelika Reiser und Klaus Weihrauch. Natural numberings and general-

ized computability. Elektronische Informationsverarbeitung und Kybernetik,

16:11-20, 1980.
[TWW88] Joseph F. Traub, G.W. Wasilkowski und H. Wozniakowski. Information-

Based Complexity. Computer Science and Scientific Computing. Academic

Press, New York, 1988.
[Wei87] Klaus Weihrauch. Computability, Band 9 der Reihe EATCS Monographs on

Theoretical Computer Science. Springer, Berlin, 1987.
[Wei93] Klaus Weihrauch. Computability on computable metric spaces. Theoretical

Computer Science, 113:191-210, 1993. Fundamental Study.
[Wei95] Klaus Weihrauch. A foundation of computable analysis. Bulletin of the Eu-

ropean Association for Theoretical Computer Science, 57:167-182, Oktober

1995. The Structural Complexity Column by Juris Hartmanis.
[Wei97] Klaus Weihrauch. A Foundation for Computable Analysis. In Douglas S.

Bridges, Cristian S. Calude, Jeremy Gibbons, Steve Reeves und Ian H. Wit-
ten, Hrsg., Combinatorics, Complexity, and Logic, Discrete Mathematics and
Theoretical Computer Science, Seiten 66-89, Singapore, 1997. Springer. Pro-

ceedings of DMTCS'96.

Worst-Case Hardness Suffices for Derandomization:
A New Method for Hardness-Randomness Trade-Offs

Alexander E. Andreev1, Andrea E. F. Clementi2, Jose D. P. Rolim3

1 Dept. of Mathematics, University of Moscow,
andreevQmntn. msk.su

2 Dip. di Scienze delPInformazione, University "La Sapienza" of Rome
clementiQdsi.uniromal.it

3 Centre Universitaire d'Informatique, University of Geneva, CH,
rolimQcui.unige.ch

Abstract. Up to know, the known derandomization methods have been
derived assuming average-case hardness conditions. In this paper we in-
stead present the first worst-case hardness conditions sufficient to obtain
P = BPP.
Our conditions refer to the worst-case circuit complexity of Boolean op-
erators computable in time exponential in the input size. Such results
are achieved by a new method that departs significantly from the usual
known methods based on pseudo-random generators.
Our method also gives a worst-case hardness condition for the circuit
complexity of Boolean operators computable in NC (with respect to their
output size) to obtain NC = BPNC.

1 Introduction

1.1 Motivations and previous results. A major goal in complexity the-
ory is the study of the real power of randomized algorithms, that is algorithms
that make decisions based on the output of a random source of bits. To this aim,
several recent works have been focused on the design of general methods that de-
crease (or remove) the amount of random bits used by these algorithms. A central
question in this area is the relationship between the existence of computationally-
hard functions and the existence of efficient derandomization methods. Yao [12],
and Blum and Micali [5] introduced the concept of Pseudo-Random Genera-

tor (PSRG), any Boolean operator G = {Gn : {0, l}k(n) -> {0,1}", n > 0},
(denoted by G : k(n) ->■ n) that, for a.e. n and for any Boolean function
/ : {0,1}" -> {0,1} whose circuit complexity L(f) is at most n, satisfies:
|Pr (/(y) = 1)- Pr (/(Gn(x)) = 1)| < 1/n (where y is chosen uniformly at ran-

dom from {0,1}", and x from {0,l}fc(n)). The output sets of PSRG are also
called discrepancy sets for circuits of linear size.

According to the definition used in [10], a Boolean operator Op : k{n) -» n
is quick if it can be computed in time polynomial in n (note in passing that
if k(n) = O(logn) then the "quick" condition is equivalent to assume that Op

178

belongs to EXP). It is not hard to show [10] that the existence of a quick PSRG
G : k(n) -*■ n with k(n) = O(logn) implies P = BPP. Nisan and Wigderson [10]
showed a method to construct quick PSRG based on the existence of Boolean
functions in EXP that have exponential hardness [10]. The hardness condition
used by Nisan and Wigderson requires the existence of a function in EXP that
not only has a hard worst-case circuit complexity4 but also a hard average-case
circuit complexity. More formally, a function / : {0,1}" —> {0,1} is (e,L)-hard
if, for any circuit C of size at most L, |Pr (C(x) = /(x)) - 1/2| < e/2. Given
a Boolean function F = {Fn : {0,1}™ -> {0,1}, n > 0}, the hardness at n of
F (denoted as Hpiji)) is defined as the maximum integer hn such that Fn is
(l/hn, /in)-hard. Then, F has exponential hardness if Hp{n) > 2n(-n\ Nisan and
Wigderson showed a fundamental "Hardness vs Randomness" result.

Theorem 1. [10] If a Boolean function F exists such that i) F 6 EXP, and
ii) F has exponential hardness, then there exists a quick PSRG G : k(n) -4 n
where k{n) = O(logn), and consequently P = BPP.

The hardness required by Nisan and Wigderson's construction of quick PSRG
thus refers to average-case complexity. Then a consequent and natural question
is the following: Does any "worst-case" hardness assumption on the circuit com-
plexity of Boolean functions computable in time exponential in the input size
exist which allows to derive an efficient derandomization method (in particular,
to obtain P = BPP)?

We give two answers to this question. Both answers make use of a new method
(informally described in Section 1.3) that relies on a particular class of Boolean
operators (different from PSRG), denoted as Hitting Set Generators, which have
been recently introduced in [3]. Let L(f) denote the circuit complexity of a finite
function / : {0,1}™ ->• {0,1} and, given any positive number dp, the term Ldp{f)
denotes the minimum size of circuits of depth dp which are able to compute /.

Definition2. Let e(n), ß(n), and 7(71) be polynomial-time computable func-
tions such that for any n > 1: 0 < e(n) < 1, n < ß(n) < 2n, and 7(71) > logn.
Then, a Boolean operator H : k{n) —> n is an (e(n), ß(n), j(n))-Hitting Set Gen-
erator (in short, (e(n), ß(n), j(n))-HSG) if, for any Boolean function / such that
L7(n)(/) < ß(n) and Pr (/ = 1) > e(n), H is required to provide one "example"

y for which /(y) = 1, i.e., there exists a 6 {0,1} (n' such that f(Hn(a)) = 1.
When no depth constraint 7(71) is imposed, we will use notation (e(n),ß(n))-
HSG.

By making a simple comparison between the definition of discrepancy sets
and that of hitting sets it should be clear that HSG satisfy a property signifi-
cantly weaker than that of PSRG. Nevertheless, Andreev et al [3] proved that,
given any ßPP-algorithm A, the output of any quick HSG can be transformed
into an ad hoc discrepancy set for A by means of a deterministic polynomial-time
algorithm.
4 As circuit complexity of a finite Boolean function /, we will always mean the size of

the smallest circuit that computes /.

179

Theorem 3. [3] Let k(n) = O(logn) and let e be any constant such that 0 <
6 < 1. If there exists a quick (e,n)-HSG H : k(n) -» n then P - BPP.

As we will describe in Section 1.3, the polynomial-time algorithm in [3] is
of independent interest and it is used in this paper to obtain Theorem 5. On
the other hand, more recently (after the submission of our paper), a different
algorithmic proof of Theorem 3 has been given in [4]. This algorithm is simpler
and runs in NC1.
1.2 Our results. We give two worst-case hardness conditions which are suffi-
cient to construct quick HSG that satisfy Theorem 3 thus obtaining P = BPP.
The circuit complexity of a Boolean operator H will be denoted as Lop(H).
Observe that if Lop(k,n) denotes the worst-case circuit complexity of Boolean
operators H : k{n) ->■ n, then it is known [9, 11] that, for any logn < k < n,
L°p(k,n) = (1 + o(l))(2kn)/(k + logn). Furthermore, for a.e. Boolean opera-
tor H : k -> n, we have Lop{H) = 6((2kn)/(k + logn)). The first condition
deals with the worst-case circuit-complexity of characteristic functions of sets
generated by Boolean operators.

Theorem4. Let S be such that 0 < S < 1/2, and let k{n) = (1 + 0(1)) logn. If
there exists a quick operator H : k(n) -> n such that the characteristic function
of its output sets FH = {F? : {0,1}" ->■ {0,1} , where F? (x) = 1 »/ 3 y £

{0, l}k{n) s.t. Hn(y) = x, n > 0} satisfies

L(F?) > (1/2 + S)(2k^n)/(k(n) + logn),

then it is possible to construct a quick operator H1 : fc'(n) -> n where k'(n) -
0(logn) such that H' is an (e,n)-HSG for some constant 0 < e < 1, thus
P = BPP.

Another way to state the above theorem is the following. Assume that there
exists a sparse language S = {Sn C {0,1}", n > 0} that can be generated by
an uniform algorithm which runs in time polynomial in n, and such that the
worst-case circuit complexity of deciding S is not smaller (up to some constant
factor) than the worst-case circuit complexity of generating languages S' having
the same sparsity factor of S. Then P = BPP.

The second sufficient condition to obtain a quick HSG refers directly to the
worst-case circuit complexity of Boolean operators instead of the characteristic
functions of their output sets.

Theorem5. Let k(n) = 6(logn). Let H : k(n) -5> n fee a quick operator such
that for a.e. n,

L°p(Hn) > Lop(k,n) - (2k^)/(k(nf).

Then, for any constant 0 < e < 1, and for any positive integer q, it is possible to
construct a quick (1 - e,nQ)-HSG H' : k'(n) ->• n, where k'(n) = ©(logn), thus
obtaining P = BPP.

180

Furthermore, using the new "parallel" proof of Theorem 3, we provide here
a worst-case hardness condition for Boolean operators sufficient to derandomize
any BPNC algorithm (i.e. to obtain BPNC = NC).

Theorem 6. A constant 0 < Co < 1 exists such that if an operator H : k(n) —> n
with k(n) = O(logn) exists such that 1) H is an NC operator5, and 2) for any
d > 1 there exists a constant c with 0 < Co < c < 1 such that the characteristic
function FH of its output sets satisfies LXogdn{F") > c(2fc(")n)/(A;(n) + logn),
then NC = BPNC.

1.3 Our method and further connections with other works. All of our
proofs share a common method based on the following fact. There is a precise
trade-off between the worst-case circuit complexity of partial Boolean functions
and the number of l's in their outputs. In particular, we formalize the intuitive
fact that a partial Boolean function having a hard worst-case circuit complexity
cannot return 0 for a "large" number of inputs. This property is used to construct
the preliminary versions of our HSG which are then combined with a convenient
use of the properties of expanders graphs [2] (to obtain Theorem 4) and with
a new analysis of the performances of the already mentioned Andreev et al's
algorithm [3] (to obtain Theorem 5).

Finally, we remark that hardness vs randomness results similar to those ob-
tained in our paper have been obtained, independently from our work, by Im-
pagliazzo and Wigderson in [6]. Their method (based on the derandomization
of the XOR-lemma) achieves a trade-off which is stronger than ours in the case
of sequential algorithms (i.e. BPP algorithms). However it is not clear, to our
present knowledge, whether their method can be applied to obtain trade-offs
for parallel computation (like ours) since they use, in a rather envolved way,
expander walks which seem to be hard to parallelize.

Due to the lack of space, proofs will be given in the full version of this paper.

2 Preliminary results on the circuit complexity of partial
Boolean functions

Let T(n, N, m) be the set of all partial Boolean functions /(xi,..., xn) defined
on N < 2" inputs and assuming 1 on m < N inputs. Furthermore, L(n,N,m)
denotes the worst-case circuit complexity of functions from F{n,N, m), and
Ldepth(n,N,m) denotes the maximum value Ldepth(f) among all functions /
from J-(n, N, m). Lupanov [9] obtained the asymptotical bounds result for the
case of total Boolean functions.

However, in order to construct quick HSG we need that Lupanov's results
hold also for partial Boolean functions. In particular, the generalization of the
upper bounds cannot be derived directly from the proofs in [9]. Then we give a

5 With "NC operator", we will always mean an operator which is computable in NC
with respect to the size of its output

181

reduction from general Boolean functions to the restricted case of total Boolean
functions which is based on a probabilistic construction of suitable linear oper-
ators.

Theorem 7.

L(n,N,m) = (1+ o(l)) (log (^)) / (loglog (£[))+O(n) .

Furthermore a constant c > 0 exists such that

Lclogn(n,N,m) = (1+ o(l)) (log (*))/(loglog (£[))+O(n) .

3 Hard characteristic functions and HSG

The following theorem provides a first trade-offs between the hardness of char-
acteristic functions of Boolean subsets and their hitting properties6.

Theorem8. Let 0 < C2 < 1 be a constant [and d > 1], and let Sn C {0,1}
be any subset such that \Sn\ < bn, where bn = ne^. Suppose that for the
characteristic function Fn of Sn we have

» L(K) * ^log^+logn [V) L^n(Fn) > C2logfen
&n;iogJ-

Then, for any constant cx, such that 0 < cx < c2, for any Boolean function
f{x\,... ,xn) such that

ii) Pr (/ = 1) > 1 - 2(C1"1)T\ and in) L(f) < bn [iii') L]ogan(f) < bn],

there exists a € Sn for which /(a) = 1.

Sketch of the proof. Suppose, by contradiction, that / satisfies conditions ii) and
iii) but for any a e S„ we have /(a) = 0. Let Z C {0,1}" be the subset of
all inputs on which / = 0. Clearly, we have Sn C Z C {0,1}". Then consider
the partial Boolean function g(xi ,...,xn) defined as follows: g(a) = 1 if a £ Sn,
g(a) = 0iiaeZ\Sn, and g(a) is not defined if a £ {0,1}"\Z. Since \Z\ < T^n

and \Sn\ < bn, from Theorem 7, we have

L(g) < (1 + o(l)) (log (2^")) / (loglog (2^)) + 0(n)

< (l + o(l))ci(6„n)/(login + logn) .

From Sn C Z, it is easy to prove that, given any a, Fn(a) can be computed as
g(a) A ->/(a). Hence

6 Each result will be given in both sequential and "parallel" version. The latter will
be included in square brackets.

182

b 72
L(Fn)<L(g) + L(f) + 0(l) < (1 + o(l))Cl ^^ ^ + bn + 0(1) <

< (l + o(l))ci-
" log &„ +logn

For sufficiently large n, this last upper bound is in contradiction with hypothe-
sis (i) of our theorem. The "parallel" version of the theorem can be easily derived
using the same contradiction argument. □

In which follows, we will consider HSG which always have a monotone func-
tion prize k(n) such that, for any n > 0, k(n+l)-k(n) < 1 and na > k(n) > logn
where 0 < a < 1. Let H : k(n) -> n be a Boolean operator with k{n) = 0(logn),
and let FH = {F£ : {0,1}" ->■ {0,1}, n > 0} be the corresponding family of
the characteristic functions.

Corollary 9. Suppose that a quick [NC] operator H : k(n) -* n exists such that
k(n) = (1 + 0(1)) logn and a constant 0 < c2 < 1 exists such that, for a.e. n,
L{F») > c2(2k^n)/(k(n)+\ogn) [Llog,+1 n(F*) > c2(2k^n)/(k(n) + logn)
for some d > 1]. Then, for any positive constant q and for any constant C\ such
that 0 < ci < c2, it is possible to construct a quick [NC] operator H1 : k'(n) -4- n
with k'(n) = ©(logn) and such that H' is an {l-2^-Vn,nq)-HSG [H1 is an
(1 _ 2(Cl-1)n,n«,logdn)-iJ5(?].

3.1 Improved HSG using expanders

Corollary 9 gives a quick HSG for the class of polynomial size circuits (functions)
C that have a very large fraction of l's, i.e. Pr (C = 1) > 1 - 2~cn for some
positive constant smaller than 1. However, this hitting property does not suffice
to derandomize BPP-algorithms (see Theorem 3). It is in fact required to hit all
linear-size circuits having "only" a constant fraction of l's. To this aim, we will
combine the HSG in Corollary 9 with a random walk on expanders, a tool that
has been often used in decreasing randomness in probabilistic algorithms.

An undirected graph G(V, E) is a (d, c)-expander if the maximum degree of a
vertex is d, and for every set W C V of cardinality \W\ < \V\/2, the inequality
\N(W) — W\> c\W\ holds, where N(W) denotes the set of all vertices adjacent
to some vertex in W. The expanding properties of a graph can be established by
determining the value of its second largest eigenvalue. Indeed, if A is an upper
bound on the second largest eigenvalue of any <i-regular graph G(V,E), then
G is a (d,c)-expander for c = (d — X)/2d. Expander graphs have the following
important "hitting" property proved by Ajtai et al [1].

Theorem 10. Let G(V,E) be a d-regular graph, and assume that its second
largest eigenvalue is at most A > 0. Given any subset W CV such that \W\ = an
(a < 1). Then, for every t > 0, the number of walks of length t in G that avoid
W is at most n(l - a)1/2((l - a)d2 + A2)4/2.

183

In [7], a polynomial-time algorithm is presented that, given n > 0, and d < n,
constructs a d'-regular expanders G such that d' = 0(d), \V\ = 0(n), and its
second largest eigenvalues A > 0 is such that A < 2y/d-l (such graphs are
called Ramanujan graphs).

For any n > 0, consider a d-regular Ramanujan expander EPn = (Vn,Xn)
where 2n < \Vn\ < 2n+1 [7]. Observe that the Boolean strings with last compo-
nent equal 0 correspond to the input set of the function we want to hit. This as-
sumption is required when EPn cannot be constructed on vertex sets whose size
is exactly a power of 2. Let I = [log d]. We suppose that d is a large but constant

value. Then, we consider the operator EPRntt ■ {0,1}" ->■ {0, l}n,
such that

£PiZnit(a,u1)...,u2«_1)s) , a €{0,1}", u* G {0,1}' , s G {0,1}* ,

are the first n components of the 0(s)-th vertex of the £Pn-walk of length 2*
which starts from vertex (a, 0) and is uniquely determined by the sequence of
edge choices in the neighborhood of each vertex: </>(ui),... ,</>(u2t_i). Observe
that if t = 0(logn), the operator EPRn:t can be computed in time polynomial
in n. Consider now a Boolean function g(xi ,...,xn), and the operator EPRg

nt :

{0, \}n+l2t ->. {0,1} that performs the OR among the values of g computed on
the input points visited by a fixed £Pn-walk of length 2', i.e.,

PPJR»>t(a,u1,...,U2<) = V 3 (PPPn.t (a, ui,...,u2<_i,s)) . (1)

s6{0,l}'

As consequence of Theorem 10, we can prove the following bound.

Lemma 11. I/Pr(5 = 0) <c<\, then Pr (PPP£,t = 0) < (c + $
2i -2

Theorem 12. Assume that there exists a quick operator H : k(n) -> n, such
that k(n) = (1 + 0(1)) log n and the characteristic functions of its output sets
SQ/tisflGS

L(F") > ((log(4A)/(logd) + 6)(2k^n)/(k(n) + logn)

for some constant 6 > 0. Then it is possible to construct a quick operator H" :
k"{n) -> n with k"(n) = 0(logn) and such that H" is an (1 - e,n)-HSG for
some constant 0 < e < 1, thus P = BPP.

4 Hitting Set Generators for BPNC

Ramanujan's graphs cannot be used to derive NC Hitting Set Generators since
no efficient parallel method to perform random walks on such graphs is presently
available. However, Zuckermann [13] recently introduced an NC construction of
samplers [13] which can replace the role of expanders in our construction. In
particular, we can use the following result.

184

Theorem 13. [13] Any BPNC algorithm that uses n random bits and has error
probability bounded by 1/3 can be simulated by a BPNC algorithm that uses
r(n) = 0(n) random bits and has error probability bounded by (1/2)™.

Informally speaking, this result allows us to consider only "parallel" circuits
having a fraction of l's not smaller than 1 - 2~cn for some fixed constant 0 <
c < 1. By using the same method of Section 3.1, we can combine Corollary 9
and Theorem 13 to obtain the following result

Theorem 14. A constant 0 < cz < 1 exists such that the following holds. As-
sume that there exists an NC operator H : k(n) -» n with k(n) = (1 + 0(1)) logn
and such that, for any constant d > 1, the characteristic functions of its out-
put sets satisfy LXogd+in{F") > 6(2k^n/(k(n) + logn), for some constant
6 > cz. Then it is possible to construct an NC operator H' : fc'(n) —>• n with
fc'(n) = 0(logn) and such that H' is an (1 - e,n,logdn)-HSG for any constant
0 < e < 1 and d>\.

In the next corollary, the above HSG is combined with the new "parallel"
proof of Theorem 3 given in [4].

Corollary 15. A constant 0 < cz < 1 exists such that if an NC operator H :
fc(n) —> n exists that satisfies the same conditions of Theorem 14 then NC =
BPNC.

Note. In the previous version of this paper (when the new proof of Theorem 3
was still unknown) we were able to provide only sufficient hardness conditons
to obtain ZNC = BPNC. The proof of this weaker result is of independent
interest and has been used in [4] to obtain some results in the context of weak
random sources. A new version of this proof can be found in [4].

5 Hitting sets from hard Boolean operators

The construction of an efficient HSG from a Boolean operator which has hard
circuit-complexity is based on the following "contradiction" argument. Suppose
that a Boolean operator T : {0, l}m —> {0, l}n is not a HSG for a certain class
of circuits defined by the parameters e(n) and ß{n) (see Def. 2). Roughly speak-
ing, this negative fact implies that the output sequence of T can be represented
by a new binary sequence which contains a "large" number of 0's (this number
depends on e(n) and ß(n)). Then, using Andreev et a/'s technique shown in [3],
it is possible to compress this new binary sequence in order to prove an upper
bound on the circuit complexity of T. This bound is obtained by a new analysis
of the compression rate achieved by this technique and by applying the upper
bound for the Shannon function L(n,N,m) in Theorem 7. If T is supposed to
have a hard circuit complexity, we get a contradiction.

185

5.1 Compressing Boolean operators

Let T : {0, l}m -> {0,1}" and C(xi,..., xn) be a circuit with n inputs. Given
a e {0, l}n, consider the function Med{f,T,a) = 2~m Eue{o,i}m C(T(U) © a)
(as in the proof of Corollary 15). It is easy to prove that E (Med(C,T,a)) =
Pr {C{xi,..., xn) = 1) where the expected value is computed with respect to a.
We briefly describe here the Andreev et al's technique introduced in [3]. Let ax

and a2 be two different elements in {0,1}". Define dx = Med{C, T, aj) and d2 =
Med{C, T, a2) and assume that D = d2 -dx > 0. The j-th component of a will be
denoted as [a]J'. Since we are considering the case in which D > 0, we can assume
that there exists an index s for which [QI]

S
 ^ [a2]s■ Consider the operator

T# ■ {0; x}™ _> {o, l}n defined as follows T#(u) = T(u) © ([T(u)]s • (aj © a2))
where the operation "•" is the standard scalar product. The s-th component of
T*(u) satisfies the following equations:

[T*(u)]s = [T(u)Y © ([T(u)]s ■ ([«i]s © [a2]s)) = [T(u)]» © [T(u)]s -1 = 0 . (2)

Observe also that the set {T#(u) © ai,T#(u) © a2} is equal to the set
(T(u)ffiai , T(u)ffia2}. Let

N {a, fa, fa) = |{u : iT(u-)Y = °, C(r(u)eai) = fa and C(T(u)©a2) = fa}\ .
(3)

We can now introduce the function which approximates the s-th component
of T(u). Consider the function Q defined as follows:

QN(<T,<f,u4>i)(xiy) —

' x if x / y
lifx = 2/ = 0 and JV(1,0,0) > JV(0,0,0)
0ifx = y = 0 and N(1,0,0) < N{0,0,0)
li{x = y = l and N(l, 1,1) > JV(0,1,1)
Q]fx = y = l and N{1,1,1) > iV(0,1,1)

In which follows we will consider the function N as a fixed parameter, and
thus we will omit the index N(a, fa, fa) in the definition of Q. Then the approxi-
mation function for the s-th bit of T(u) is Z(u) = <5(C(T#(u)©a1),C(T#(u)ffi
a2))5 i = 1,..., m. Our next goal is to estimate the number of errors generated
by Z(u). Let ND(a,fa,fa) be the number of inputs u such that the follow-
ing conditions are satisfied: i) [T(u)]s © Z(u) = 1 (i.e. there is an error); ii)
[T(u)Y = a; Hi) C(T(u) © ax) = fa; iv) C(T(u) © a2) = fa.

The following Lemma gives an upper bound on the number of errors in ap-
proximating the s-th bit of T(u).

Lemma 16. [3] £(,,^2)e{o,i}3 ND(a, fa, fa) < m (f - ^) .

186

Some new hardness-compression trade-offs Using Lemma 16, we are now
able to give an useful bound on the circuit complexity of T. Observe that function
U(u) = [T(u)]s © Z(u) with u G {0, l}m, singles out the positions in T for which
an error occurs.

Lemma 17. L(T) < L°?(m,n - 1) + L{U) +0{L(C)) + 0(n) .

Lemma 18. If for some constant c\ we have that D > c\, then there exists a
constant c2 < 1 such that L(U) < C2(2m/m).

5.2 The Hitting Set Generator

In order to derive our HSG, we will make use of the following result given by
Lupanov (see also [11]). Let Lop(k,n) denote the worst-case circuit complexity
of Boolean operators having k variables and n outputs. Then L°p(k,n) = (1 +
o(l)) (2* n)/(k + log n).

Theorem 19. Assume that a quick operator H : k(n) —> n exists such that
k{n) = (1 + 0(1)) log n, andfora.e.nL°r(Hn) > L(k(n),n) - (2k^)/(k(n)2).
Then, it is possible to construct a (l/2,n)-HSG H' : k'(n) -» n such that
jfc'(n) = <9(logn). Hence, P = BPP.

Acknowledgements. We are grateful to Luca Trevisan for several interesting discus-

References

1. Ajtai M, Komlos J, and Szemeredi E. (1987), Deterministic simulation in
LOGSPACE, Proc. of 19th ACM STOC, 132-140.

2. Alon N. (1986), "Eigenvalues and Expanders", Combinatorica, 6, 83-96.
3. Andreev A., Clementi A., and Rolim J. (1996), "Hitting Sets Derandomize

BPP", in XXIII International Colloquium on Algorithms, Logic and Programming
(ICALP'96), LNCS. Also available via ftp/WWW in the electronic journal ECCC
(TR95-061)

4. Andreev A., Clementi A., Rolim J and Trevisan L. (1997), Weak Random Sources,
Hitting Sets, and BPP Simulations", Manuscript, February 1997.

5. Blum M., and Micali S. (1984), "How to generate cryptographically strong se-
quences of pseudorandom bits", SIAM J. of Computing, 13(4), 850-864.

6. Impagliazzo R., Wigderson A. (1997), "P=BPP unless E has subexponential cir-
cuits: Derandomizing the XOR Lemma", to appear in 29th ACM STOC.

7. A. Lubotzky, R. Phillips, and P. Sarnak. (1988), "Ramanujan graphs", Combina-
torica, 8(3):261-277, 1988.

8. Lupanov, O.B. (1956) "About gating and contact-gating circuits", Dokl. Akad.
Nauk SSSR 111, 1171-11744.

9. Lupanov, O.B. (1965), "About a method circuits design - local coding principle",
Problemy Kibernet. 10, 31-110 (in Russian).

10. Nisan N., and Wigderson A. (1994), "Hardness vs Randomness", J. Comput. Sys-
tem Sei. 49, 149-167 (also presented at the 29th IEEE FOCS, 1988).

187

11. Wegener, I. (1987), The complexity of finite Boolean functions, Wiley-Teubner Se-
ries in Computer Science.

12. Yao A. (1982), "Theory and applications of trapdoor functions", in 23th IEEE
FOCS, 80-91.

13. Zuckermann D. (1996), "Randomness-Optimal Sampling, Extractors, and Con-
structive leader Election", in 28th ACM STOC, 286-295.

Results on Resource-Bounded Measure

Harry Buhrman*1, and Stephen Fenner**2, and Lance Fortnow***3

1 Centrum voor Wiskunde en Informatica
2 University of Southern Maine

3 CWI & The University of Chicago

Abstract. We construct an oracle relative to which NP has p-measure
0 but Dp has measure 1 in EXP. This gives a strong relativized negative
answer to a question posed by Lutz [Lut96]. Secondly, we give strong
evidence that BPP is small. We show that BPP has p-measure 0 unless
EXP = MA and thus the polynomial-time hierarchy collapses. This con-
trasts with the work of Regan et. al. [RSC95], where it is shown that
P'i'poly does not have p-measure 0 if exponentially strong pseudorandom
generators exist.

1 Introduction

Since the introduction of resource-bounded measure by Lutz [Lut92], many re-
searchers investigated the size (measure) of complexity classes in exponential
time (EXP). A particular point of interest is the hypothesis that NP does not
have p-measure 0. Recent results have shown that many reasonable conjectures
in computational complexity theory follow from the hypothesis that NP is not
small (i.e., //P(NP) ^ 0), and hence it seems to be a plausible scientific hypoth-

esis [LM96, Lut96].
In [Lut96], Lutz shows that if yup(NP) ^ 0 then BPP is low for A%. He shows

that this even follows from the seemingly weaker hypothesis that nP{A%) / 0.
He asks whether the latter assumption is weaker or equivalent to ^P(NP) ^ 0.
In this paper we show that, relative to some oracle, the two assumptions are not

equivalent.
We show a relativized world where Dp = EXP whereas NP has no P-bi-

immune sets. This immediately implies, via a result of Mayordomo [May94a],
that in this relativized world, NP has p-measure 0 and Dp, and hence Z\f, has
measure 1 in EXP, and thus does not have p-measure 0, or even p2-measure 0.

* URL: http://www.cwi.nl/cwi/people/Harry.Buhrman.html. E-mail:
buhrman@cwi.nl. Partially supported by the Dutch foundation for scientific research
(NWO) by SION project 612-34-002, and by the European Union through Neuro-
COLT ESPRIT Working Group Nr. 8556, and HC&M grant nr. ERB4050PL93-0516.

** URL: http://www.cs.usm.maine.edu/~fenner/. Email: fenner@cs.usm.maine.edu.
Partially supported by NSF grant CCR 92-09833.

** URL: http://www.es.uchicago.edu/~fortnow. Email: fortnow@cs.uchicago.edu. Sup-
ported in part by NSF grant CCR 92-53582, the Dutch Foundation for Scientific
Research (NWO) and a Fulbright Scholar award.

189

This shows in a very strong way that relativized measure for NP and PNP

differ: /ip(NP) = 0 whereas /iP(PNP[2]) ± 0- Here PNPI2l is the class of sets
recognized by polynomial time Turing machines that are allowed two queries to
an NP oracle. We show that our results cannot be improved to PNPM.

Secondly, we investigate the possibility that BPP does not have p-measure
0. Intuitively BPP is a feasible complexity class close to P and therefore it
should be the case that BPP is small. We give very strong evidence supporting
this intuition. We show that /JP(BPP) = 0 unless EXP = MA and thus the
polynomial-time hierarchy collapses.

Since BPP C P/poly our result contrasts with the one by Regan, Sivakumar
and Cai [RSC95], where it is shown that pp(P/poly) ^ 0, unless exponentially
strong pseudorandom generators do not exist.

2 Preliminaries

We let £ = {0,1} and identify strings in £* with natural numbers via the
usual binary representation. We fix Nx, N2, ■ ■ . to be a standard enumeration of
all nondeterministic polynomial-time oracle Turing machines (NOTMs), where
for each i and input of length n, Ni runs in time n* for all oracles. All our
machines run using symbols 0, 1 and blanks. Fix a deterministic oracle TM M
which accepts some standard ^-complete language for EXP for all A C £*.
We may assume that M runs in time 2". We let (•, •) be the standard pairing
function, and we note that x,y < (x, y) for all x,y £ £*. A set is in Dp if it can
be expressed as the difference of two sets in NP.

The notations H, Q, TZ+ and Q+ denote the real numbers, the rational num-
bers, the positive real numbers and the positive rational numbers respectively.

2.1 Resource Bounded Measure

Classical Lebesque measure is an unusable tool in complexity classes. As these
classes are all countable, everything we define in such a class has measure 0. Yet,
we might wish to have a notion of "abundance" and "randomness" in complexity
classes. Lutz [Lut87, Lut90] introduced the notion of resource bounded measure,
and gave a tool to talk about these notions inside complexity classes.

Definition 1. A martingale d is a function from £* to 1Z+ with the property
that d(w0) + d(wl) = 2d(w) for every w £ £*.

Definition 2. A p-martingale is a martingale d : £* >->• Q+ that is polynomial
time computable.

Definition3. A martingale d succeeds on a language A if

lim sup d(xA [0 ... n - 1]) = +00
nt-4-oo

We write S°°[d] = {A | d succeeds on A}

190

Definition 4. Let X be a class of languages.

- X has p-measure 0 (ßp{X) = 0) iff there exists a p-martingale d such that
X C S°°[d]. _

- X has p-measure 1 (fip(X) = 1) iff fip(X) = 0
- X has p-measure 0 in EXP {nP(X\EXP) = 0) iff fip(Xn EXP) = 0
- A- has p-measure 1 in EXP (ßp(X\EXP) = 1) iff ßp(X n EXP) = 0

One often defines measure in EXP using p2-measure where the martingale
can use 2Iog n time. All of our results also hold in this weaker model.

3 Measure of NP versus Measure of PNP

In this section we concentrate on the question posed by Lutz [Lut96]. We show
that relative to some oracle pp(NP) = 0 does not imply that /ip(P

NP) = 0. We
do this in a very strong way by constructing an oracle such that NP does not
contain P-bi-immune sets and Dp = EXP.

Theorem 5. There exists an oracle A such that, relative to A, NP has no
P'-bi-im.mv.ne sets and Dp = EXP.

Proof. We will code EXP into Dp on one "side" of the oracle and prevent P-bi-
immunity on the other, i.e., strings in E*0 = {x0 \ x £ E*} will be used to code
EXP into Dp, while strings in 17*1 = {xl | x £ E*} will code the information to
find an infinite subset of each NP set or its complement. Some diagonalization
will also be necessary to force certain NP computations.

To mix coding with diagonalization, we employ a simplified version of the
trick used to construct an oracle for PNP = NEXP [BT94, FF95]. For each x, we
reserve two potential regions—left and right—in which to code MA{x), only one
of which will actually be used. To code correctly in a region we must let exactly
one string in the region enter A. We will code in the left region unless we have
to diagonalize against some NP machine, which may necessitate adding several
strings of the left region to A. If this happens, we scrap the left region and code
in the right region, but we can do this only if our diagonalization hasn't already
put strings of the right region into A.

We now proceed with the formal treatment. For every x £ E* with \x\ = n
and b S E, we call s an (x,b,left)-coding string (respectively, an (x,b,right)-
coding string) if s = xybOO (respectively, s = xyblO) for some y £ E* of length
3n. We identify left and right with 0 and 1, respectively. We build the oracle A
in stages, each successive stage extending a finite portion of A's characteristic
function. If a: E* —> E is some partial characteristic function, iV an oracle
machine, and x G E*, then the computation Na(x) is defined as usual, except
that when TV makes any query outside domain(a), it is answered negatively. As
is customary, we regard a as a set of ordered pairs. If ß is another characteristic

191

function, we write ß >; a to mean that ß extends a. Finally, define the "tower
of 2's" function t(n) for n > 0 by

*(0) = 1
t(n + l) = 2*<n>.

Stage — 1.
a_i:=0.
£W Stage.

Stage n > 0.
We are given a„_i. Set a:=a„_i.

1. (Forcing an NP computation) Yinj^ t(k) for any fc, then set

' right if a(s) = 1 for some (x, b, left)-coding string s with \x\ = n,
"' "* left otherwise,

and go to step 2. Otherwise, let n = t(k) for some k = (i,j). If there exists
a minimal /3 >^ a such that both
(a) JVf (0n) has an accepting path in which all queries are in domain(/3), and
(b) for no a; with |x| > n and no (x,6,right)-coding string s does /3(s) = 1,
then set a:=ßU {(0n' 1,1)} and set dn:=right (note that ß is only defined on
strings no longer than nl). Otherwise, set a:=aU{(0n*l,0)} and set dn:=left.

2. (Preserving computations of M) For all x of length n, run Ma(z), and ex-
tend a with just enough 0's to "cover" all queries made by Ma(x) not in
domain(a).

3. (Coding computations of M) For all x £ S* of length n, let y £ £* be the
lexicographically least string (if one exists) such that \y\ = 3n and neither
the (z,0,dn)-coding string nor the (x, l,dn)-coding string corresponding to
y is in domain(a). If Ma accepts, set a:=a U {(xyldn0,1)}; otherwise, set
a:=aU{(xy0dn0,l)}.

4. Set an to be a extended with just enough 0's to cover all remaining (x, b, d)-
coding strings for all b € E, d £ {left,right}, and x of length n.

End Stage.

Let A be such that \A extends an for all n (XA(X) = 0 for any x £ \Jn an).
For any B C £*, define the language LB by

{if either B contains an (x, l,right)-coding string, or
B contains no (a;,0,d)-coding strings for any d G {left, right},

0 otherwise.

Clearly, LB G coDp'B. We now show that LA(x) = MA(x) for all x G S*, and
hence coW>A = EXPA = W'A.

Pick an n large enough, and fix an input x of length n. In Step 3 of Stage
n, such a y must exist: there are at most 2" • (2n+1 - 1) (x, b, d)-coding strings

192

queried by M on inputs of length < n, because of the running time of M, and
less than n ■ nlog*n < 2(logn)2 total strings queried by the AT, in Step 1 of Stages
0 through n. Thus there are less than 23n (x,b,d)-coding strings in domain(a)
at Step 3 of Stage n.

The fact that

MA(x)=LA{x) (1)

is now easily seen: first we observe that no (x, b, right)-coding string (for any
b G E) gets into A in Steps 1 or 2 of any stage. Thus we have two cases:

dn = left: For any b G E and d G {left,right}, the only (x, b, <i)-coding string
that ever enters A does so in Step 3 of Stage n. This unique string is an
(x, l,left)-coding string if MA(x) accepts, and is otherwise an (x, 0, left)-
coding string; thus, (1) is satisfied.

dn = right: Exactly one (x, 6, right)-coding string enters A. It is an (x, 1, right)-
coding string iff MA(x) accepts. Again, (1) is satisfied.

It remains to show that NP"4 has no PA-bi-immune sets. This will be done if
we can show that for any L G NPA, there exist PA sets Q and R with Q infinite,
such that L n Q = R (or at least the symmetric difference of L n Q and R is
finite). Let L = L(NA) for some fixed i. Let

Q = {0n\(3j)n = t((i,j))},

i? = Qn{0n|0nil £A}.

The sets Q and R are clearly in PA. Pick n = t((i,j)) for j large enough so that
t((i,j) + 1) = 2" > n\ and consider Step 1 of Stage n. If ß exists, then Nf{0n)
accepts and 0"' 1 G A, so 0" G Ä. If no such /3 exists, then 0" ^ Ü. To see that
NA(0n) rejects, we simply observe that dn = dn+\ = • • • = dn;_i — dni — left, so
no (x, b, right)-coding strings enter A in any of the stages n through nl. Therefore,
A preserves our conditions on the nonexistence of ß, and so NA(0n) rejects.

Corollary 6. There exists an oracle relative to which NP has p-measure 0 and
Dp = EXP (and thus has p-measure 1 in E and in EXPj.

We actually get something more from the construction above: relative to A,
we have EXP C (NP n coNP)/l. That is, EXP can be computed in NP n coNP
with one bit of advice for strings of length n, namely dn. On input x of length n,
an NP"4 machine accepting L(MA) (respectively L{MA)) simply checks if there
is some (x, l,dn)-coding string (respectively, some (a;, 0, d„)-coding string) in A.

A natural question is whether Theorem 5 and Corollary 6 are tight. It could
still happen that /zp(NP) = 0 and /zp(P

NPM) / 0. The next theorem discards
this possibility.

Theorem 7. //pp(PNPW) ^ 0 then /ip(NP) ^ 0.

193

Proof. nP(PNPW) ^ 0 implies that SAT is weakly ^„-complete for EXP. Ambos-
Spies, Mayordomo, and Zheng [ASMZ96] have shown that the weakly <\tt-
completeness notion coincides with weakly ^-completeness for EXP. Hence
SAT is weakly ^-complete for EXP and thus /zp(NP) ^ 0.

Corollary 8. Relative to the oracle constructed in Theorem 5 it holds that Dp —
CODP^PNP[I]

4 BPP likely has measure 0

In this section we investigate the consequences of BPP not having p-measure
0. We will see that this is unlikely since it would collapse the polynomial-time
hierarchy. Hence we provide strong evidence that /JP(BPP) = 0.

Theorem9. 7//xp(BPP) ^ 0 then EXP = MA.

Since MA G Zp
2 n JIf [BM89], EXP = MA implies that PH = S?2.

We use the following Theorem from Babai, Fortnow, Nisan and Wigder-
son [BFNW93] stating that if EXP ^ MA then BPP can be simulated in subex-
ponential time for infinitely many input lengths.

Theorem 10 [BFNW93]. If EXP ^ MA then for all L G BPP, and for all e
there exists a set V G DTIME(2n') such that for infinitely many n, Lf\En =
L'nsn.

We will see that if BPP can be simulated in subexponential time for in-
finitely many input lengths, then it has p-measure 0. Taking this together with
Theorem 10 yields that EXP ^ MA implies that /ip(BPP) = 0, which proves
Theorem 9.

Theorem 11. If for all languages L G BPP there exists an e < 1 and a set
V G DTIME(2n') such that for infinitely many n, L n Sn = V n En, then
^P(BPP) = 0.

Proof. (Sketch) We will construct a martingale that succeeds on all sets in BPP
that runs in time nk for some fixed k. Let L G BPP and let My be the machine
that runs in subexponential time and accepts V. If we are betting on strings of
length n such that L n Sn = V n Un then we can use ML> to predict exactly
the next bit, and hence we win 2" times. The problem however is that we do
not know for which n, My is going to be correct. We overcome this problem by
the following strategy.

Assume that our initial capital is 1. We reserve 2~n to bet against the strings
of length n, using ML> to predict the next bit (i.e. whether the next string of
length n is in V). We bet everything won so far on the strings of length n to
the outcome of My. At the last string of length n we set aside what (if any) we
have won betting on the strings of length n.

194

Observe that if n is a length such that LC\En = L'f)En then we win 22" *2~n

and this is greater than n. So for infinitely many n we add n to our capital and
hence the lim-inf of this martingale goes to infinity.

To make the construction work uniformly for all L € BPP we simulate all
the DTIME(2n) machines with a single DTIME(22n) machine allocating 2-i of
our initial capital to machine i (see [Lut92, May94b]).

Acknowledgment

We thank Leen Torenvliet for comments on an earlier version and Dieter van
Melkebeek for helpful discussions on the writeup of the proof of Theorem 11.

References

[ASMZ96] K. Ambos-Spies, E. Mayordomo, and Xizhong Zheng. A comparison of
weak completeness notions. In Proeceedings of Eleventh Annual Conference
on Computational Complexity, pages 171 - 178, 1996.

[BFNW93] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponen-
tial simulations unless EXPTIME has publishable proofs. Computational
Complexity, 3:307-318, 1993.

[BM89] Läszlö Babai and Shlomo Moran. Proving properties of interactive proofs
by a generalized counting technique. Information and Computation,
82(2):185-197, August 1989.

[BT94] Buhrman and Torenvliet. On the cutting edge of relativization: The re-
source bounded injury method. In Annual International Colloquium on
Automata, Languages and Programming, pages 263-273, 1994.

[FF95] S. Fenner and L. Fortnow. Beyond PNP = NEXP. In STACS 95, volume
900 of Lecture Notes in Computer Science, pages 619-627. Springer, 1995.

[LM96] J. Lutz and E. Mayordomo. Cook versus Karp-Levin: Separating complete-
ness notions if NP is not small. Theoretical Computer Science, 164(1-
2):141-163, 1996.

[Lut87] J. Lutz. Resource-Bounded Category and Measure in Exponential Complex-
ity Classes. PhD thesis, Department of Mathematics, California Institute
of Technology, 1987.

[Lut90] J. Lutz. Category and measure in complexity classes. SIAM J. Comput.,
19(6):1100-1131, December 1990.

[Lut92] J. Lutz. Almost everywhere high nonuniform complexity. J. Computer and
System Sciences, 44:220-258, 1992.

[Lut96] J. Lutz. Observations on measure and lowness for Z\f. In STACS 96,
volume 1046 of Lecture Notes in Computer Science, pages 87 - 98. Springer,
1996.

[May94a] E. Mayordomo. Almost every set in exponential time is p-bi-immune. The-
oretical Computer Science, 136(2):487-506, 1994.

[May94b] E. Mayordomo. Contributions to the study of resource-bounded measure.
PhD thesis, Universität Politecnica de Catalunya, 1994.

[RSC95] K. Regan, D. Sivakumar, and J. Cai. Pseudorandom generators, measure
theory, and natural proofs. In 36th Annual Symposium on Foundations of
Computer Science, pages 26 - 35, 1995.

Randomization and Nondeterminism Are Comparable
for Ordered Read-Once Branching Programs

Farid Ablayev1*

Dept. of theoretical cybernetics Kazan University Kazan 420008, Russia

Abstract. In [3] we exhibited a simple boolean functions /„ in n vari-
ables such that:
1) /„ can be computed by polynomial size randomized ordered read-once
branching program with one sided small error;
2) any nondeterministic ordered read-once branching program that com-
putes fn has exponential size.
In this paper we present a simple boolean function gn in n variables such
that:
1) gn can be computed by polynomial size nondeterministic ordered read-
once branching program;
2) any two-sided error randomized ordered read-once branching program
that computes /„ has exponential size.
These mean that BPP and NP are incomparable in the context of or-
dered read-once branching program.

1 Preliminaries

Branching programs is well known model of computation for discrete functions
[14]. Many types of restricted branching programs have been investigated as
important theoretical model of computations [9]. Ordered read-once branching
program or ordered binary decision diagrams (OBDD) [4, 15] also important for
practical computer science. They are used in circuits verifications. But many
important functions cannot be computed by determinsitc read-once branching
programs of polynomial size [4, 13, 8].

In [2] we introduced the model of randomized branching programs and showed
that randomized ordered read-once branching programs can be more effective
than determinstic ones. In [3] we defined exclusive boolean function fn in n
variables which can be computed by polynomial size randomized ordered read-
once branching program, but any nondeterminstic ordered read-once branching
program needs exponetial size to compute fn. Martin Sauerhoff [10] considered
function from theorem 3 [6]. He proved that this function needs (also as in the
deterministic case) exponetial size randomized read-once branching programs for

Work done in part while visiting Steklov Mathematical Institute in Moscow. The
research supported by Russia Fund for Basic Research 96-01-01962. ablayev@ksu.ru
http: //www. ksu. ru/"ablayev

196

one-sided error. In this paper we presented exclusive function gn which is "sim-
ple" for nondeterminstic ordered read-once branching programs, but is "hard"
for randomized read-once branching programs with two-sided error of computa-
tion.

Together with the result from [3] this proves that complexity classes BPP and
NP are incomparable in the context of ordered read-once branching programs.

Note that the results of the paper for ordered read-once branching programs
are true for a more common model — weak-ordered branching program that
we define in the paper. Informaly speaking weak-ordered property for branching
program P means existence of partition of its set {xx,x2, ■ ■ ■ ,x„} of variables
into two parts X1 and X2, X1f]X2^ 0, such that for any computation path of
P the following is true. If a variable from X2 is tested then no variable from Xx

can be tested in the rest part of this path.
A deterministic branching program P for computing a function g : {0, l}n ->■

{0,1} is a directed acyclic multi-graph with a distinguished source node s and a
distinguished sink node t. The out degree of of each non-sink node is exactly 2 and
the two outgoing edges are labeled by xt = 0 and Xj = 1 for variable Xj associated
with the node. Call such node an x,-node. The label axt = 5" indicates that only
inputs satisfying xt = 6 may follow this edge in the computation. The branching
program P computes function g in the obvious way: for each a 6 {0, l}n we let
/(cr) = 1 iff there is a directed s - t path starting in the source s and leading to
to the accepting node t such that all labels x; = en along this path are consistent
with a — ai,a2,... ,an.

The branching program becomes nondeterministic [5] if we allow "guessing
nodes" that is nodes with two outgoing edges being unlabeled. Unlabeled edges
allow all inputs to produced. A nondeterministic branching program P computes
a function g, in the obvious way; that is, g{a) = 1 iff there exists (at least one)
computation on a starting in the source node s and leading to the accepting
node t.

Define a randomized branching program [2] as a one which has in addition to
its standard inputs specially designated inputs called "random inputs". When
values of these "random inputs" are chosen from the uniform distribution, the
output of the branching program is a random variable.

Say that a randomized branching program (a, 6)-computes a boolean function
/ if it outputs 1 with probability at most a for input a such that /(ex) =0 and
outputs 1 with probability at least b for inputs a such that f(a) = 1.

As usual for a branching program P (deterministic or random), we define
size(P) (complexity of the branching program P) as the number of internal
nodes in P. Define, following [5], the size(P) of the nondeterminstic branching
program P as the number of internal nodes in P minus the number of guessing
nodes.

Read-once branching programs is branching program in which for each path
each variable is tested no more than once. An ordered read-once branching pro-
gram is a read-once branching program which respects a fixed ordering 7r of
the variables, i.e. if an edge leads from an Xj-node to an Xj-node, the condition
Tt(i) < -K(J) has to be fulfilled.

197

2 Results

We specify a boolean function fn of n = 41 variables as follows. For a sequence
a G {0, l}4' call odd bits a "type" bits and even bits a "value" bits. Say that
even bit at G a, i G {2,4,..., 4Z}, has type 0 (1) if corresponding odd bit CTJ_I is
0 (1). For a sequence a G {0, l}4' denote <r° (cr1) subsequence of a that consists
of all even bits of type 0 (1).

For every a G {0,1}" boolean function /„ : {0,l}n ->■ {0,1} is defined as
fn(<T) = litioa = <r1.

Definition 1. Call branching program a n-weak-ordered branching program if
its respects a partition n of variables {xx, x2, ■ ■ ■, xn} into two parts Xi and X2

such that if an edge leads from an £;-node to an £j-node, where Xi G Xt and
Xj G Xm, then the condition t < m has to be fulfilled.

Call branching program P an weak-ordered if it is 7r-weak-ordered for some
partition ir of the set of variables of P into two sets.

Clearly that ordered read-once branching program is also weak-ordered. We
proved the following result in [3] (we use here a restrictive variant of this result).

Theorem 2. For the function fn the following is true:
1. fn can be (e{n), 1)-computed by randomized ordered read-once branching

program of the size

_ / n6 , 2
n

0 ^- log2

e3(n) e(n)

2. Any nondeterministic ordered read-once branching program that computes
function fn has the size no less than 2ra'4_1.

Now define function gn which is "hard" for randomized computation but is
"simple" for nondeterminstic computation for our model of branching program.
This boolean function presented in [11]. Let n be an integer and let p[n] be the
smallest prime greater or equal to n. Then, for every integer s, let uin(s) be
defined as follows. Let j be the unique integer satisfying j = s mod p[n] and
1 < j < P[n}- Then, wn(s) = j, if 1 < j < n, and w„(s) = 1 otherwise.

For every n, the boolean function gn : {0,1}" ->■ {0,1} is defined as gn(a) =
o-j, where j = w„(^"=1 io-t).

We will use the following notations in the rest part of the paper. Let h :
{0,1}™ -» {0,1} be a boolean function. Consider a partition 7r of variables
{xi,xo, ...,xn} into two parts Xi = {xt : i G /} and X2 = {XJ : j G J}, where
/ C {1, 2,..., n}, \I\ = I and J = {1,2,... ,n}\/}, \J\ = t.

Denote L, R sets of binary sequences of length I and t with indexes from /
and J respectively. For u G L and w G R let (u, w) mean the sequence a from
{0,1}" in wich bits with indexes from / respectively J have the same values as

198

in u respectively w. We will also use the notation h(u,w) instead of h(a) where
it will be convenient.

Consider one-way randomized communication computation. We use the fol-
lowing standard model of one-way randomized communication computation for
function h. Two players A and B receive respectively u e L and w e R- In the
randomized one-way model, A sends the messages ßi,ß2,...,ßd with probabilities
Pi,P2, —,Pd respectively {Yfi=iPi = 1)- B, on the receipt of ßt, outputs 1 with
probability qt and 0 with probability l-qt- The probability distribution on the
set of messages sent by A is entirely determined by the input at A alone, and
is not influenced by the input at B. Similarly, the probabilities qt at B depend
only on its input and the message ßi received.

In the computation T^(u,w), the probability of outputting the bit 6=1 is

T,Li Pi(u)Qi(w) and the bit 6 = 0 is 1 - Efci Pi(u)qi(w).
Let p = | + £ for 0 < e < 1/2. Say that the probabilistic protocol 4> p-

computes a function h if for every input a = (u, w) it holds that h(a) = b iff the
probability of outputting the bit b in the computation T^,(u,w) is no less than

P-
Let a set U C {0,1}" be such that U = L x R. The randomized communi-

cation complexity C{4>) of the probabilistic protocol cj> on the inputs from U is
[log | M (0)|], where M{<j>) is the set of messages used by 4> during computations
on inputs from U. For p € [1/2,1] the randomized communication complexity
PCpn (h) of a boolean function h is

min{C(0) : protocol (f> p-computes h for the partion 7r of inputs from U}.

The proof of following lemma is based on simulation technique of weak-
ordered branching program by communication protocol and is similar to simu-
lation technique from [1] (lemma 6.1).

Lemma3. Let e £ [0,1/2], p = 1/2 +e. Let randomized IT -weak-ordered branch-
ing program P (l—p,p)-computes function h : {0,1}" -> {0,1}. Let U C {0, l}n

be such that U = L x R, where L and R are defined in according to partition TX

of inputs. Then

size(P)>2pc?-W-1.

Proof. Describe the following communication protocol #, which p-computes
function h for the partion 7r of inputs.

Let a e U be a valuation of x, a = (u,w), u e L, w £ R. Players A and B
receive respectively u and w in according to partition IT of inputs. Let vi,...,Vd
be all internal nodes of P that are reachable during paths of computation on the
part u of input a with non zero probabilities Pi(u),... ,Pd(u).

During the computation on the input u, player A sends node Vi with prob-
ability pi(u) to player B. Player B on obtaining message vt from A starts its
computation (simulation of the branching program P) from the node vt on the
part w of the nput a.

199

From the definition of the protocol $ results the statement of the lemma. |

We use the lower bound for probabilistic one-way complexity from [1] in the
proof of the theorem 6 below. Recall notations and the statement we need from
[1] in the convinient for us form.

For U — L x R with a boolean function h we associate a \L\ x \R\ communica-
tion matrix CM whose (u, w)-th entry, CM[u, w] is h(u, w) for all (u, w) G LxR.
As it is mentioned in [16] the one-way deterministic communication complex-
ity DC^(h) for partition -K of inputs from U of a boolean function h is easily
seen to be \\og(nrow(CM))], where nrow(CM) is the number of distinct rows
of communication matrix CM of the function h.

Consider w.l.g. the case when all rows of CM are different, nrowiCM) = \L\.
Choose a Y C R such that for an arbitrary two words u,u' G L there exists

a word y £Y such that h(u, y) ^ h(u', y). The set Y is called the control set for
the matrix CM.

Denote

ts(CM) = min{|y| : Y is a control set for CM}.

It is evident that [log nrow{CM)] < ts(CM) < nrow(CM).

For number p G [1/2,1], define pccu
p{h) = l08^

(f^M)g(p), where H(p) =
-p\ogp-(l-p) log(l-p) is the Shannon entropy. Call pcc^(/i) the ^-probabilistic
communication characteristic of the function h.

Theorem4. [1] Let e G [0,1/2], p = 1/2 + e. Let U C {0,1}" be such that
U = L x R, where L and R are defined in according to partition TT of inputs of
function h : {0,1}" -> {0,1}. Then

PC^(h) > DCV{h)(l-pccu
v{h)) - 1.

In the proof of the theorem 6 below we use the following result from number
theory (see [7] and [12] for additional citation).

For every natural number n let p(n) be the smalest prime greater or equal
than n. Consider Zp(„) the field of the residue classes modulo p.

Lemma 5. For every n large enough, the following is true. If A C Zp^ and
\A\ > 2>y/n, then, for every t G Zp(n), there is a subset B C A such that the sum
of the elements of B is equal to t.

Theorem 6. Let e G [0,1/2], p = 1/2 + e. Then for arbitrary S > 0 for every n
large enough it holds that any randomized ordered read-once branching program
that (1 — p,p)-computes function gn has the size no less than

1/4 ——-

200

Proof. Let P be a randomized ordered read-once branching program with an
ordering r of variables which computes function gn. For ordering r = {ii,i2, ■ ■ • >»n}
consider the partition 7r of variables x of gn into two parts X\ = {x^ ,...,£;,}
and X2 = {xil+1 ,...,xin}, where I = n - \Sy/n\■ Denote t = [3^/"]•

Describe below a subset C7 C {0,1}" in the form U = Lx R where |L| = I,
\R\=t.

Denote by I and J sets of indexes of variables from sets Xi and X2 respec-
tively. For s e {1, • • •, n} denote Ls a subset of binary sequences of length I with
indexes from I such that Ls = {u : un(Y,i€i iui) = sl- Denote L a maximum
among sets Li,...,Ln.

\L\ = max {\LS\}.
*6{l,...,n}

Clearly that

\L\>

Let L = Ls. Then denote R = {w : Un(Y,jej3wj +s) = k,k€ I}. From the
definition of it! we have the following properties:

l)|Ä|=i;
2) for arbitrary u and v! from L there exists w G R such that gn{u,w) ^

gn(u',w).
We will prove the second property (the first one is evident). Let i e I be

an index such that i-th bits in sequences u and u' are different, ut ^ u[. From
the lemma 5 it follows that for every n large enough, for our number s and the
number i there exists a sequence w £ R such that s + Y^jej Jwj = i modp(n).
Then from the definition of gn it follows that gn(u, w) ^ gn(u', w).

Now define set U as U = L x R. From the above it follows that for the set U
\L\ x \R\ communication matrix CM of gn has the following properties:

1) nrow{CM) = \L\;
2) the set R is the control set for CM.

This means that DCu(gn) - log |L| and that for ^-probabilistic communication
characteristic of pcc^(gn) of function gn it is true that

pccu
p{gn) = (l/\og\L\)H(p) < ((n-\3y/ü\)/(n-{3y/K\-logn))H(p).

From this it follows that for arbitrary S > 0 for every n large enough it holds
that

pc$(gn)<(l + 8)H(n).

From the above property and the theorem 4 it follows that for every n large
enough the following is true

PC%(gn) >(n- fSv^ - logn)(l - (1 + S)H(p)) - 1.

201

From this and the lemma 3 the lower bound for size(P) results. |

Note that in the proof of the theorem 6 from the property of P that it
is ordered read-once we use only the following fact. Set x of variables of P
can be partition into two parts Xi and X2 such that |Xi| = n — \S^/n\ and
|X2| = [3^/^! • The cardinality of X2 is essential for application of lemma 5.
This means that the following statement is true.

Theorem 7. Lets £ [0,1/2], p = l/2+£. Let P be a randomized i\-weak-ordered
branching program that (1 - p,p)-computes function gn. Let % be a partition of
x in two two parts X\, X2 such that \X2\ = t > \2>y/n\ and \XX\ = I = n - t.
Then for arbitrary S > 0 for every n large enough it holds that

size(P) > 1/4
2(X l-(l+ö)H(p)

n

Theorem 8. There is polynomial size nondeterministic ordered read-once branch-

ing program that computes function gn.

Proof. The proof is simple. For arbitrary input a nondeterministic ordered
read-once branching program P that computes function gn works as follows.
On the first (nondeterminstic) phase P nondeterministicaly selects number s £
{l,...,n}. Then on the second (deterministic) phase P reads inputs in the
order xi,...,xn. During computation path on input a P 1) counts number

a = Lon(Y,7i=i i°i) and 2) store s-ths bit as. If a — s then P ouputs bit as of the
input a else P outputs 0. Clearly, that P has polynomial size. |

Acknowledgments. I would like to thank Sasha Razborov for his invitation
to me to spend my sabbatical semester in Steklov Mathematical Institute and for
a number of valuable discussions on the subject of the paper, to participants of
Complexity seminar in Steklov Mathematical Institute and Moscow University
for listening to results presented in this paper.

References

1. F.Ablayev, Lower bounds for one-way probabilistic communication complexity and
their application to space complexity, Theoretical Computer Science, 157, (1996),
139-159.

2. F. Ablayev and M. Karpinski, On the power of randomized branching programs, in
Proceedings of the ICALP'96, Lecture Notes in Computer Science, Springer-Verlag,
1099, (1996), 348-356.

3. F. Ablayev and M. Karpinski, On the power of randomized branching programs,
manuscript (generalization of ICALP'96 paper results for the case of pure boolean
function), available at http://www.ksu.ru/~ablayev

4. R. Bryant, Symbolic boolean manipulation with ordered binary decision diagrams,
ACM Computing Surveys, 24, No. 3, (1992), 293-318.

202

5. A. Borodin, A. Razborov, and R. Smolensky, On lower bounds for read-fc-times
branching programs, Computational Complexity, 3, (1993), 1-18.

6. Y. Breitbart, H.Hunt III, and D. Rosenkratz, On the size of binary decision dia-
grams representing Boolean functions, Theoretical Computer Science, 145, (1995),
45-69.

7. J. Dias da Silva and Y. Hamidoune, Cyclic spaces for Grassmann derivatives and
additive theory, Bull. London Math. Soc, 26, (1994), 140-146.

8. S. Ponsio, A lower bound for integer multiplication with read-once branching pro-
grams, Proceedings of the 27-th STOC, (1995), 130-139.

9. A. Razborov, Lower bounds for deterministic and nondeterministic branching
programs, in Proceedings of the FCT'91, Lecture Notes in Computer Science,
Springer-Verlag, 529, (1991), 47-60.

10. M. Sauerhoff, Lower bounds for the RP-OBDD-Size, manuscript, personal com-
munication.

11. P. Savicky, S. Zak, A large lower bound for 1-branching programs, Electronic Col-
loquium on Computational Complexity, Revision 01 of TR96-036, (1996), available
at http://www.eccc.uni-trier.de/eccc/

12. P. Savicky, S. Zak, A hierarchy for (1, +&)-branching programs with respect to k,
Electronic Colloquium on Computational Complexity, TR96-050, (1996), available
at http://www.eccc.uni-trier.de/eccc/

13. J. Simon and M. Szegedy, A new lower bound theorem for read-only-once branching
programs and its applications, Advances in Computational Complexity Theory, ed.
Jin-Yi Cai, DIM ACS Series, 13, AMS (1993), 183-193.

14. I. Wegener, The complexity of Boolean functions. Wiley-Teubner Series in Comp.
Sei., New York - Stuttgart, 1987.

15. I. Wegener, Efficient data structures for boolean functions, Discrete Mathematics,
136, (1994), 347-372.

16. A. C. Yao, Some Complexity Questions Related to Distributive Computing, in
Proc. of the 11th Annual ACM Symposium on the Theory of Computing, (1979),
209-213.

Checking Properties of Polynomials *
(Extended Abstract)

Bruno Codenotti,1 Funda Ergiin,2 Peter Gemmell,3 and S Ravi Kumar2

1 IMC-CNR, Via S. Maria 46, 56126-Pisa, Italy. (codenottiOimc.pi.cnr.it)
2 Cornell University, Ithaca, NY 14853. ({ergun, ravi}@cs. cornell.edu)

3 Sandia National Labs, Albuquerque, NM 87185. (psgemmefics.sandia.gov)

Abstract. In this paper we show how to construct efficient checkers
for programs that supposedly compute properties of polynomials. The
properties we consider are roots, norms, and other analytic/algebraic
functions of polynomials. In our model, both the program H and the
polynomial p are available to the checker each as a black box. We show
how to check programs that compute a specific root (e.g., the largest) or
a subset of roots of the given polynomial.
The checkers, in addition to never computing the root(s) themselves,
strive to minimize both the running time (preferably o(deg2p)) and the
number of black box evaluations of p (preferably o(degp)). We obtain de-
terministic checkers when a separation bound between the roots is known
and probabilistic checkers when the roots can be arbitrarily close. We
then extend the checkers to handle the situations when the program II
returns an approximation to the root and when the evaluation of the
polynomial p is approximate. Our results translate into efficient check-
ers for matrix spectra computations both in the exact and approximate
settings, operating in the library model of [BLR93]. Next we show that
the usual characterization of norms using the triangle inequality is not
suited for self-testing in the exact case, but surprisingly, could be used
in the approximate case.
Our results are complementary to most of the existing results on test-
ing polynomials. The testers in the latter have the goal of determining
whether a program computes a polynomial of given degree, whereas we
are interested in checking the properties of a given polynomial.

1 Introduction

The paradigm of program checking and its extensions, self-testing, and self-
correcting, have received considerable attention (e.g., [Blu88, BK89, BLR93,
Lip91, GLR+91, RS96, ABC+93, GGR96, EKR96].) The results in this field

This work was done while the first, second, and fourth authors were visiting Sandia
National Labs. The second and fourth authors are also supported by the NSF Career
Award CCR-9624552, the Alfred P. Sloan Research Award, and the NSF grant DMI-
91157199.

204

have practical value as tools for efficient, verification of the correctness of pro-
grams. Furthermore, they have been applied to develop efficient probabilistically
checkable proofs [ALM+92].

In this paper we investigate the problem of checking and testing (both in
the exact and approximate cases) programs that compute properties (i.e., func-
tions or relations) of polynomials. The properties we consider include the set
of all roots, the largest root, the smallest root, norms, multiplication, differen-
tiation, resultants, etc. Our checkers for root-finding problems only assume an
oracle access to the polynomial p. Note that this is a weaker requirement than
the availability of an explicit representation of p. This model lets us view the
checkers for matrix spectra computations in the library setting of [BLR93]. In
this framework, checkers call already tested programs in the library, counting
each call as a unit time call. Such calls naturally correspond to the evaluation
of the polynomial in our model. Consequently, it is imperative that the number
of evaluations of p be minimized.

Our approach is complementary to previous work on checking and testing
polynomials. The main difference is the following. Most of the existing results are
concerned with checking/testing programs purportedly evaluating polynomials.
In this paper we are interested in checking programs that take a polynomial as
an input and compute its properties.

Our Results. We describe efficient checkers for programs that compute one,
few, all, or specific roots (e.g., the largest) of a polynomial p. We address at
length the checking of programs computing the largest root. For this problem, we
construct some checkers that run in time o(deg2 p) and make only o(degp) calls to
p (thus ruling out an explicit interpolation) using powerful tools from analysis.
This translates into more efficient checkers than ones offered by several other
methods that use explicit interpolation. We obtain deterministic checkers when a
separation bound between the roots is known and probabilistic checkers when the
roots can be arbitrarily close (Section 3). We also consider the situations where
(i) the program 77(p) is computing an approximation to the root(s) of polynomial
p and (ii) the oracle returns an approximate evaluation of the polynomial p
(Section 4). In these cases, we provide checkers for some of the problems.

Next we consider programs that claim to compute some (unspecified) norm
on the domain (Section 5). There are several norms for polynomials (see [Z93]);
the goal is to test whether there exists a norm that agrees with the program on
most inputs. We show that the standard characterization of norms (using trian-
gle inequality) cannot be used to construct exact testers. I.e., there are extremely
"bad" programs (those that do not agree with any one norm for any non-trivial
fraction of the inputs) that still pass the test. The same test, however, can be
used to verify that the program approximates some norm for a non-trivial frac-
tion of the domain. Our result, which applies to norms defined on any domain, is
intriguing because most of the current techniques for testing use an exact char-
acterization to build an exact tester and an approximate characterization (where
the equalities are relaxed to approximations, see [ABC+93, EKR96] for further
exposition) to build an approximate tester. The exact characterization for norms

205

is too lenient to lead to an exact tester, however, surprisingly, is strong enough
for an approximate one (even without resorting to an approximate characteri-
zation). Additionally, this is the first instance where an unbounded inequality
(i.e., an inequality of the form \h(-)\ > 0, where h is an expression) has been
addressed in testing.

The nature of these properties entails the use of techniques from several
disciplines (like numerical and complex analysis, geometry, and in particular,
geometry of polynomials) that are new to checking.

Applications. We show how to check programs that perform matrix spectra
computations, which are fundamental in scientific computing (Section 6). We
exploit the fact that the. eigenvalues of a matrix are the roots of its characteristic
polynomial. The characteristic polynomial is evaluated using a library program
for the determinant that has been tested, for instance using the exact checker
of [Kan90] or the approximate checker of [ABC+93]. Several vital parameters
in control theory (e.g., stability of a system) are related to the location of the
roots of certain polynomials. Programs that compute these parameters are very
common in practice [BCL82]; our checkers could be used to check such programs.
Another application of property testing of polynomials is in verifying parts of
computational algebra systems. We have taken an initial step in this direction
but many interesting questions remain.

Previous and Related Work. The problem of testing root-finding programs is
considered as early as 1975 in [JT75]. Here, the authors lay down some concrete
requirements for an efficient testing of such programs. The setting proposed,
however, is very different from ours and is mostly heuristic and informal.

A number of papers deal with testing whether a program is computing a low-
degree polynomial in the exact [GLR+91, AS92, GLR+91, RS96] and approx-
imate [EKR96] settings. Testing certain polynomial functions like polynomial
multiplication and FFT is investigated in [BLR93, Erg95]. Checkers for several
linear algebra computations like matrix rank, determinant, matrix multiplica-
tion are given in [Fre79, BK89, Kan90, BLR93]. Approximate testers for several
linear algebra computations can be found in [ABC+93]. Testing graph properties
is considered in [GGR96].

2 Preliminaries

Our Model. We consider properties / of polynomials p. In this context, we
assume that properties are relations such as those binding p to one or more of
its roots. For shorthand, we sometimes use af(p)" to denote one of the values
to which / binds p.

Although checkers are defined for properties and are otherwise independent
of the programs that they check, we sometimes refer to a checker for a program
II. Implicit in these references is that the checker is for the property / that U
purports to compute, i.e. that the checker verifies that II(x) £ f(x) for the input
x in question.

206

Definition 1. Let II be a program that purports to compute a property /. Let
ß > 0 be a security parameter. Then, a (q(n),t(n);e1,e2)-checker for / is a
(probabilistic) oracle program Tn'p that has oracle access to both II and p such
that it

1. makes 0(q(n)) oracle accesses to p (i.e., it evaluates p at 0(q{n)) points)
2. runs in time 0(t(n)), counting oracle calls as one unit of time
3. if 3y £ f[p) : \ü(p) - y\ < t\, outputs "PASS" with probability > 1 - ß
4. if Vy £ f\p) : \n{p) -y\> «2, outputs "FAIL" with probability > 1 - ß.

To simplify notation, we adopt the following conventions: (i) if q(n) = t{n), we
omit one of them, (ii) if ei = e2, we omit one of them, and (iii) if ex = e2 = 0,
we omit both from the checker's parameters.

Note that the above model is more general than the standard checking model
in that p is available as an oracle rather than in an explicit form. (It is often un-
realistic or less efficient to assume that an explicit representation of p is available
to T.) We will see that this model (i) captures the library setting of [BLR93]
and helps us build efficient checkers, (ii) is useful in our applications to check-
ing matrix spectra computations, and (iii) elegantly extends our checkers to the
approximate setting.

Variations of the Model. Our model permits the following variations and
their combinations: (i) The program purports to return an approximation to /.
In this case, the program is denoted by II. (ii) Each oracle call to evaluate p
returns an approximation. In this case, the oracle is denoted by p. and (iii) p is
"close" to a polynomial (as in the PCP setting). We will address the first and
second variations. They make the problem more appealing since in practice we
are seldom guaranteed an exact answer to any numerical question. In this paper,
we will call a checker for the second scenario an approximate checker.

Self-Testing, Self-Correcting, Checking, and Libraries. Self-testing en-
sures that II equals the target function / (from a function family F) on most
inputs. A self-tester usually has two stages [BLR93]: (i) testing if II is a mem-
ber of F (the property test) and (ii) testing if FI is the specific member, i.e., /
(the equality test). Self-correction involves taking a FI that is correct on most
inputs and converting it into a program that is correct on all inputs. A self-
tester together with a self-corrector gives a result-checker. In the library setting,
a collection of previously checked programs is used to build checkers for new
functions. For details see [BLR93].

Mathematical Notation. We consider polynomials over a field T. Let R de-
note the real numbers and C denote the complex numbers.

Let Tn[x) denote the ring of polynomials of degree < n with coefficients
from T. Let p(-) be a degree n polynomial (i.e., p £ Tn[x\). Assuming p factors
completely in JF, let the roots of p be |Ai | > • • • > |A„|. When T = R, we call p a
real polynomial and if all the roots of p are real, we call p a real-root polynomial.

For any a £ C, let ä e C denote its complex conjugate. For any curve (line
segment, interval) C, let \C\ denote its length and intC its interior. For x,y e R2,

207

let xy denote the line segment between x and y. A convex curve in R2 is called
a contour if it encloses the origin. A curve C : [0,2n) —> R2 is called star-shaped
if it is an injective closed curve.

Let p(x) = Yli=1(x - A;) = E"=oaiX'>a™ — 1- Then, it easily follows that

P'(z) = Er=ilW(*-A;)-
g(x): We will use g(x) to denotep'(x)/p(x) = E™=i l/(z-A;) = d\n\p(x)\/dx.
Ainf, Amax: Cauchy's inequality [BCL82] gives bounds on the roots of p as A;nf

= |an|/(|an| +maxilla;!}) < |Amin| < |Amax| < 1+ max?=1{|ai|}/|a0| = Asup.
6: A separation bound between the roots of p is given by [BCL82] as 6 —

minA^Aj |Ai-A;-| > v
/37j,-("+1)/2||p||1-n

v/disc(p), where the discriminant disc(p)
= lliw(A< - A;)| = |res(p,p')| and ||p||2 = £?=0 M

2 [Z93]. Here, resultant

res(p, q) = IIi=giP <?(Ai) where A; is a root of p. Some of our checkers assume that
a lower bound on 6 is known.

Problem Definitions. Let 77 be a program that purports to compute one or
more roots of p and let {m} be the value(s) computed by 77. Let {A;} be the
actual root(s) that 77 should have output. (Thus for instance, 7Tmax, which pur-
ports to compute Amax, outputs /imax to be the largest root.) Given a polynomial
p of degree n, let:

- H\(p) be a relation mapping p to any one of its roots. We refer to programs
that purport to compute a value 7£i(p) as 77i.

- Hr(p) be a relation mapping p to any r of its roots. We refer to programs
that purport to compute a set lZr(p) as 77,..

~ T^{k){p) be the feth largest root of p in absolute value (i.e., A*,). 77(fe) refers
to a program that purports to compute TZ(k)-

- Rmai = Tl(\),Tlm\n = ^(n> and 77max, 77min refer to programs that suppos-
edly compute TZmax,Tlmin.

In general, we use a tilde to denote programs that purport to return approxima-
tions to the corresponding exact relation (e.g., 77max).

3 Checking Roots: Exact Setting

Checkers for TZi,TZr,TZn,TZmax.

Theorem 2. Let \T\ > n + Q{n). There is:

1. a {!)-checker for 1Zi(p),
2. a (1, n)-checker for 1Zn(p), and
3. a (min{r,n — r},max{r,n — r})-checker for 1Zr(p).

In the exact setting, given /imax, it is trivial to verify that it is a root of p. It is
non-trivial to verify the maximality claim. Theorem 3 below states a checker for
nmax{p)- In the next section, we will show more efficient checkers (that avoid
explicit interpolation) for 77max(p).

208

Theorem 3. Ve > 0, there is an (n, n2;e)-checker for 1lm-m{p). Ifp is a real-root
polynomial, Ve > 0, there is an (n,n2;e)-checker for TZmax(p).

A checker for i7max is constructed from a checker for i7min in an obvious manner
by observing that 1/A, are the roots of xnp(l/x). Note that the checkers given
by Theorem 3 can also be used to check 77(fc).

Improved Checkers for fcmax: S known. For the rest of this section, we will
take either T = C or T = R. We use the following theorems from complex
analysis (see [Con78]). Let n(C\ z) be the number of times C "winds" around the
point z £ C.

Theorem 4 Cauchy's Residue Theorem. Let G be an open subset of the
plane and f : G -> C an analytic function. If C is a closed rectifiable (fi-
nite length) curve in G such that n(C; z) = 0 Vz € C\G, then for A € G\C,
2wif(\)n(C;\) = fcf(z)/(z-\)dz.

Corollary 5. Let G be an open subset of the plane and f be an analytic func-
tion on G with zeros Ai,...,A„ (repeated according to multiplicity). If C is a
closed rectifiable curve in G which does not pass through any point \k, and
n(C;z) = 0,Vz € C\G, then fcf'(z)/f{z) dz = 27ri£"=1 TI(C; A;) counts (with
multiplicities) the number of roots of f(z) within C.

Theorem6. There is a {{\ßmax\/S)3/2;S/2)-checker for Tlma.x(p).

Proof. If C is a circle, then by Corollary 5, Jcp'(z)/p{z)dz computes 2wi times
the number of zeros of p that are within C (noting that C winds once around
each root). So, our goal is to check that Jcp'(z)/p(z)dz = 2irn, where C(t) =
(|/Wx| + «5/2)6**. Recall that g(z) = p'(z)/p{z). We compute an approximation
5 to Jc g{z)dz, which must satisfy \S - 2im\ < IT. If we use trapezoidal rule,

we have fc g(z)dz - £?=1 atg(zi) < (\C\3/N2) max*eC \g"{z)\, where a;'s are

constants and N is the number of points of evaluation.
Since we can only approximate p' (z), we actually en

(g(zi) + fj). Therefore, we can evaluate the overall error as

g(z)dz -^Tai(g(zi) + e

Since we can only approximate p'(z), we actually end up computing S.=i ai

I' \C\3

where ci is a small constant and e = maxi |e;|. Our goal is to find conditions
under which (\C\3/N2) maxz \g"{z)\ + ciel^maxj < *, such that rounding always
gives the correct value. We first find a bound on e for which cie|/imax| < 7r/2. lip'
is approximated by finite differences, then e = maxc \(p((+ A) -p(())/(Ap(()) -
g{()\ < Ap'^(C,')/p{Cj, for some C' £ (C,C + A)- An uPPer bound on A is

dictated by these conditions. Now, we have Pmax(C')MC) = E;^(C - Ai)_1(C -

^■)"1IIfe^Ij(C' - xk)/{(- Afc) < enA/6{n2/62). Thus, A must satisfy A <
(c2^

2)/(ra2|/timax|), where c<i is a small constant.
The other error term (|C|3/7V2)maxz \g"(z)\, can now be upper bounded as

(|C|3/Ar2)maxz \g"(z)\ < (c3|/imax|
3)/(Ar2(53), from which the number of evalua-

tion points N = 0(|Mmax|/<5)3/2-

209

For real-root polynomials, the number of oracle calls to p can be reduced by
stronger bounds on maxz |#"(<z)|- The proof is omitted.

Corollary 7. If p is a real-root polynomial, then there exists a (V^lMmaxI +
(l/5)i/2+o(i). s/2)-checker for ftmax(p).

If 6 — 0(11n), then the above corollary yields asymptotically better checkers
than those given by Theorems 3 and 6. We also give a different checker (proof
omitted) that can be extended to work in the approximate setting.

Theorem8. There is a ({\lnp-\ßmeLx\2)/(85/2e);6/'2)-checker forTZm!iX{p) where
e<l/\p"{x)\,Vx.

Improved Checkers for 7£max: 6 unknown. We obtain the following checkers
for the case when 6 is not known. The proofs of the theorems are omitted.

Theorem 9. Letp be a real-root polynomial. Ve,/3 > 0, there is a (^/n\og3'2(n/e)
log(l//3); e/2,e)-checker for TZma,x(p) that is correct with probability >l-ß.

The above theorem can be extended to the case when the roots are complex. The
checker is still attractive in terms of its running time, but has more evaluations
of p.

Corollary 10. Ve,/3 > 0, there is an (n3/2/e\og(l/ß);e/'2, e)-checker for 7£max(p)
that is correct with probability > 1 — ß.

The checkers in this section can be extended to check i7<fc).

4 Checking Roots: Approximate Setting

So far, we have been using the assumption that the programs being checked
should return the exact root(s) and the oracle returns the exact value. As we
stated in the description of our model, we have two variants - II and p. The
former turns out to be easier than the latter.

Case I: II. Suppose Öi(p) returns an e-approximation (i.e., it claims |/z, - A;| <
e < 6). When p is real-root, with two oracle calls to p we can check if there is
a sign-change in [m - e, m + e]. For lin(p) (resp. Ür(p)), we can extend the
above checker with 2n (resp. 2r) calls to p. Since we do not have a nice analog
of Rolle's theorem in complex analysis, the problem becomes harder when p is
not real-root.

All our checkers for 7£max in Section 3 can be extended to this approximate
setting. This can be done as follows: (i) first we check if /xmax is an approximate
root and (ii) then we check if it is indeed the maximum root. The former is
accomplished by checking if there is a root inside a small circle around ßmax

(see previous paragraph) and the latter is accomplished by selecting two curves
separated by e and then performing the numerical integration twice. Thus, we
obtain the following theorem:

210

Theoremll. Ve,/3 > 0, there is (i) a ((\fJ,max\[6)3/2;6/2)-checker for Üm&x(p)
and (ii) an (n3/2/elog(l//3); e/'2, e)-checker for ^.max(p) <Äa< « correci with prob-
ability > 1-/3- I/j> is a real-root polynomial, Ve, /3 > 0, i/iere is a (%) (v/"'|/Wx| +
(l/<5}1/2+e;(5/2)-cÄecÄ;er/or7lmax(p), ^;(v^log3/2(n/e)log(l//?);e/2,e)-c/iecfer
/or ^max(p) ^a< is correct with probability > 1 — ß-

Case II: p. Theorem 8 can be extended to the case when we have only p (i.e.,
the evaluation of p is approximate). The proof is omitted.

Corollary 12. There is a ((A2
up - \fJ,ma.x\2)/(S5^e);S/2)-approximate checker

forlii(p).

The checkers in Section 3 are not directly usable in this case because of the
instability of numerical derivative computation in the presence of errors.

5 Testing Norms

A function / : V(T) -> K+, where V is a vector space over T, is called a norm
if it satisfies: (i) /(x) = 0 <^> x = 0, (ii) Vx e V, k € T, f(kx) = kf(x)
(scalability), and (iii) Vx,y 6 V,/(x + y) < /(x) +/(y) (triangle inequality).

In this section we investigate the problem of checking whether the function
computed by a program nnoTm is close to a norm (i.e., there is a norm that agrees
with IInorm on most inputs). In the specific case of vector p-norms on E™, which
are of the form |x|p = (E"=i x^)1/p> tne problem reduces to the well-studied
problem of multivariate degree-testing [AS92, RS96]. In fact, matrix spectral
norms can be checked using our techniques in Section 3 and Section 4. In the
more general case of checking whether the function is close to any norm, we
show that the properties characterizing a norm are not usable for exact self-
testing. This result is already interesting in that our tests are almost exactly
the same as the standard linearity test except for an inequality in the second
test. This, however, makes a big difference in the validity of the test, which leads
us to believe that inequalities in general do not lead to (exact) self-testers. In a
striking contrast, we show that these properties characterizing norms can lead to
approximate self-testers. The following discussion is for IR2 and can be extended
to Kn.

Exact Testing. To check scalability of nnoim, note that along a vector x,
scalability defines the same set of functions as linearity. Checking iTnorm(ax) +
nn0tm(bx) = nnoTm((a + b)x) for x, |x| = 1 will determine if 77norm is scalable
along x (this is the linearity test of [BLR93]). By performing this test at many
x, we can ensure that i7norm 1S scalable for many x. Therefore, for the rest
of this discussion, we can assume that i7norm is scalable. Vi € E, define the
"concentric" contours d = {x | iInorm(x) = i}. We first show that checking
the triangle inequality is equivalent to checking the convexity of C{ in E2 for any
ieR.

211

Lemma 13. Let f be a scalable function, i.e., /(fex) = fc/(x). Then, 3a, b e V,
sucÄ that /(a + b) > /(a) + /(b) «=*> Vi, tte i-ift contour d is not convex (the
non-convexity occurs along a + b.j

We show in Theorem 14 that random sampling of condition 3 does not work:
there are extremely "bad" programs that pass it.

Theorem 14. VO < 6 < I, there exists a scalable i7norm that is at least 6 away
from, the nearest convex function g, i.e., PrfC[i7norm(a;) ^ g(x)] > 6, but i7norm

passes the test for condition 3 with arbitrarily high probability.

Approximate Testing. In contrast to exact testing, we show that the proper-
ties characterizing norms can be used to test if a program approximately com-
putes a norm at a non-trivial fraction of the inputs.

For a given star-shaped C, let the diameter be diam C = supi2)<2{|C(£i) -
C(t2)\}. Given two curves Ci,C2, let the distance between them be |Ci - C2| =
supt{|Ci(t) - C2{t)\}. For two contours Ci,C2 and for any other star-shaped C,
let the deviation measure be devCl,c2(C) = Prt[C(i) > C1(t),C2(t) or C{t) <
Ci{t),C2(t)\. This measures the fraction of C not lying between d and C2. For a
star-shaped C, let A = A{C) = Pr^^-^^[z £ C UintC]. In other words, A
is the probability that, if we pick random s,t e C and a random point z on the
line joining them, then z lies outside C . Testing condition 3 on random x,y, we
can estimate A corresponding to the contour defined by LTnoTm (assuming it is
star-shaped, which is easy to check).

Theorem 15. Given p > 0, 3e = t{p) < 1,7 = l{e) > 0 such that for any
star-shaped C with diam C < 1, if A(C) < 7 then there is a contour C such that
Pvt[\C(t) - C{t)\ > p] < e.

6 Some Applications: Matrix Computations

In this section, we show applications of our checkers for polynomial roots to
matrix spectra computations. Let the eigenvalues of A e Tn*n be vl(a) = {A; |
1 < i < n] with |Amax = Ai| > • ■ • > |An|. It is easy to find an upper bound Asup

on Amax (e.g., set Asup = ||A||oo). We denote by 8 a separation bound between
the eigenvalues of A. Let DET be a correct program available in the library for
computing the determinant of a matrix. DET corresponds to the oracle p in our
model.

Eigenvalues in the Exact Setting. All the checkers in Section 3 and Section
4 translate to checkers for eigenvalues. We now illustrate more efficient checkers
for some special cases which are of interest in practice:

Lemma 16. Let A £ Knxn with A = AT. There is an (n)-checker for program
computing the largest eigenvalue of A. If A is tridiagonal, there is an (n)-checker
for a program computing the k-th largest eigenvalue of A.

212

These checkers can be used to check programs designed for computing the second
largest eigenvalue of a regular graph (or the largest eigenvalue of its Laplacian),
which is related to the expansion of the graph. Another natural application of
these checkers is to check programs that decide whether a matrix is positive
definite.

Eigenvalues in the Approximate Setting. All of our approximate checkers
for roots can be used in this case. We consider an interesting special case of this
problem. Let (A,x) be an exact eigenvalue-eigenvector pair of A with ||z|| = 1.
Let Tii be a relation that binds matrix A to pairs (j*,x) with \p - A| < ei and
||x - x|| < €2. Let Hi be a program that, on input A, purports to compute a
{fjb, x) e Üi (A). The most natural way of checking 7li would be by checking that
11 Ax - /ixj| < e, for a certain threshold e, and passing fl\ if the above inequality
is satisfied. Unfortunately, from perturbation theory [GV89] we have that the
value of e above can be small, but \fi - A| be as large as e/|yffx|, where yH is
a unit length left eigenvector of A (yHA = Xy11), assuming A to be a simple
eigenvalue. Thus, we might need to set e to a very small value if we want to
make sure that |/J - A| < ei for a reasonably small value t\. Note however that
for normal matrices , ly^xl = 1 so that ||A/z - z/i\\ < e =^ |A - fi\ < e. Thus, we
have the following lemma:

Lemma 17. TZi(A) can be approximately checked when A is normal.

In general, if we do not make assumptions on the problem condition, the ap-
proximate checker may yield very poor bounds. This is because the determinant
of a matrix can be very close to zero (e.g., 1/2") despite all eigenvalues being
well-separated from zero (e.g., A^ = 1/2).

Singular Values. Suppose MULT is a correct library program for matrix mul-
tiplication. If ITsing is a program that purports to compute the singular values
(Ti,... ,an of A, construct a checker for using as follows: (i) check if a > 0,1 <
i < n, (ii) compute the matrix ATA e jmxn us;ng MULT, and (iii) use the
checkers for eigenvalues to verify if {of,... ,a„} = yl(ATA). The correctness of
this construction is from the definition of singular values (see [GV89]).

7 Further Work

All of our checkers are assumed to perform exact arithmetic. This assumption
is not always true in practice. It will be interesting to design checkers when the
checker's numerical errors are critical. Many issues are still unresolved in the
case of p. Are there efficient checkers for programs that compute Gröbner bases,
programs that solve Diophantine problems and lattice problems? Such checkers
would find numerous applications in computational algebra systems. Can we
get efficient checkers for sparse-matrix computations?

213

Acknowledgements

We thank Richard Allen (Sandia), Bruce Hendrickson (Sandia), Mahan Mitra (Berke-
ley), Ronitt Rubinfeld (Cornell), Nick Trefethen (Cornell), Divakar Vishwanath (Cor-
nell), and Richard Zippel (Cornell) for interesting discussions and suggestions.

References

[ABC+93] S. Ar, M. Blum, B. Codenotti, and P. Gemmell. Checking approximate
computations over the reals. Proc. 25th STOC, pp. 786-795, 1993.

[ALM+92] S. Arora, C. Lund, R. Motwani,M. Sudan, and M. Szegedy. Proof verifica-
tion and hardness of approximation problems. Proc. 33rd FOCS, pp. 14-23,
1992.

[AS92] S. Arora and S. Safra. Probabilistic checking of proofs: A new characteri-
zation of NP. Proc. 33rd FOCS, pp. 2-13, 1992.

[Blu88] M. Blum. Designing programs to check their work. TR 88-009, ICSI, 1988.
[BK89] M. Blum and S. Kannan. Program correctness checking ... and the design

of programs that check their work. Proc. 21st STOC, pp. 86-97, 1989.
[BLR93] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applica-

tions to numerical problems. JCSS, 47(3):549-595, 1993.
[BCL82] B. Buchberger, G.E. Collins, and R. Loos. Computer Algebra - Symbolic

and Algebraic Computation. Springer-Verlag, 1982.
[Con78] J.B. Conway. Functions of One Complex Variable. Springer-Verlag, 1978.
[Erg95] F. Ergiin. Testing multivariate linear functions: Overcoming the generator

bottleneck. Proc. 27th STOC, pp. 407-416, 1995.
[Fre79] R. Freivalds. Fast probabilistic algorithms. Proc. 8th MFCS, LNCS 74, pp.

57-69, 1979.
[EKR96] F. Ergiin, S. Ravi Kumar, and R. Rubinfeld. Approximate checking of poly-

nomials and functional equations. Proc. 31th FOCS, To appear.
[GLR+91] P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson. Self-

testing/correcting for polynomials and for approximate functions. Proc.
23rd STOC, pp. 32-42, 1991.

[GGR96] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connec-
tion to learning and approximation. Proc. 37th FOCS, pp. 339-348, 1996.

[GV89] G.H. Golub and C. Van Loan. Matrix Computations. Johns Hopkins U.
Press, 1989.

[JT75] M.A. Jenkins and J.F. Traub. Principles for testing polynomial zero-finding
programs. ACM Trans, on Mathematical Soßware, 1:26-34, 1975.

[Kan90] S. Kannan. Program Result Checking with Applications. PhD thesis, U. of
California at Berkeley, 1990.

[Lip91] R. Lipton. New directions in testing. Proc. DIM ACS Workshop on Dis-
tributed Computing and Cryptography, pp. 191-202, 1991.

[Mar66] M. Marden. Geometry of Polynomials. AMS, 1966.
[PTV92] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Nu-

merical Recipes in C. Cambridge U. Press, 1992.
[RS96] R. Rubinfeld and M. Sudan. Robust characterizations of polynomials and

their applications to program testing. SICOMP, 25(2):252-271, 1996.
[Wil65] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, 1966.
[Z93] R.E. Zippel. Effective Polynomial Computation. Kluwer Academic Press,

1993.

Exact Analysis of Dodgson Elections: Lewis Carroll's
1876 Voting System is Complete for Parallel Access to NP*

Edith Hemaspaandra,1** Lane A. Hemaspaandra,2*** and Jörg Rothe3t

1 Department of Mathematics, Le Moyne College, Syracuse, NY 13214, USA
2 Department of Computer Science, University of Rochester, Rochester, NY 14627, USA

3 Institut für Informatik, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany

Abstract. In 1876, Lewis Carroll proposed a voting system in which the winner
is the candidate who with the fewest changes in voters' preferences becomes
a Condorcet winner—a candidate who beats all other candidates in pairwise
majority-rule elections. Bartholdi, Tovey, and Trick provided a lower bound—NP-
hardness—on the computational complexity of determining the election winner
in Carroll's system. We provide a stronger lower bound and an upper bound
that matches our lower bound. In particular, determining the winner in Carroll's
system is complete for parallel access to NP, i.e., it is complete for Q\, for which it
becomes the most natural complete problem known. It follows that determining the
winner in Carroll's elections is not NP-complete unless the polynomial hierarchy
collapses.

1 Introduction

The Condorcet criterion is that an election is won by any candidate who defeats
all others in pairwise majority-rule elections ([Con85], see [Bla58]). The Condorcet
Paradox, dating from 1785 [Con85], notes that not only is it not always the case that
Condorcet winners exist but, far worse, when there are more than two candidates,
pairwise majority-rule elections may yield strict cycles in the aggregate preference even
if each voter has non-cyclic preferences.4 This is a widely discussed and troubling
feature of majority rule (see, e.g., the discussion in [Mue89]).

In 1876, Charles Lutwidge Dodgson—more commonly referred to today by his pen
name, Lewis Carroll—proposed an election system that is inspired by the Condorcet

* A full version of this paper, including all proofs, can be found at http://www.cs.rochester.edu/trs
as UR-CS-TR-96-640. Supported in part by grants NSF-CCR-9322513 and NSF-INT-9513368/
DA AD-315-PRO-fo-ab, and a University of Rochester Bridging Fellowship.

** edith@bamboo.lemoyne.edu. Work done in part while visiting Friedrich-Schiller-
Universität Jena and the University of Amsterdam.

*** lane@cs.rochester.edu. Work done in part while visiting Friedrich-Schiller-Universität
Jena and the University of Amsterdam.

f rothe@informatik.uni-jena.de. Work done in part while visiting Le Moyne College.
4 The standard example is an election over candidates a, b, and c in which 1/3 of the voters have

preference {a < b < c), 1/3 of the voters have preference (6 < c < a), and 1/3 of the voters
have preference (c < a < b). In this case, though each voter individually has well-ordered
preferences, the aggregate preference of the electorate is that b trounces a, c trounces 6, and
a trounces c. In short, individually well-ordered preferences do not necessarily aggregate to a
well-ordered societal preference.

215

criterion,5 yet that sidesteps the abovementioned problem [Dod76]. In particular, a
Condorcet winner is a candidate who defeats each other candidate in pairwise majority-
rule elections. In Carroll's system, an election is won by the candidate who is "closest"
to being a Condorcet winner. In particular, each candidate is given a score that is the
smallest number of exchanges of adjacent preferences in the voters' preference orders
needed to make the candidate a Condorcet winner with respect to the resulting preference
orders. Whatever candidate (or candidates, in the case of a tie) has the lowest score is
the winner. This system admits ties but, as each candidate is assigned an integer score,
no strict-preference cycles are possible.

Bartholdi, Tovey, and Trick, in their paper "Voting Schemes for which It Can Be
Difficult to Tell Who Won the Election" [BTT89], raise a difficulty regarding Car-
roll's election system. Though the notion of winner(s) in Carroll's election system is
mathematically well-defined, Bartholdi et al. raise the issue of what the computational
complexity is of determining who is the winner. Though most natural election schemes
admit obvious polynomial-time algorithms for determining who won, in sharp contrast
Bartholdi et al. prove that Carroll's election scheme has the disturbing property that it
is NP-hard to determine whether a given candidate has won a given election (a prob-
lem they dub CarrollWinner—they use the name "Dodgson" throughout, but we
treat this as if they had written the equivalent "Carroll"), and that it is NP-hard even
to determine whether a given candidate has tied-or-defeated another given candidate (a
problem they dub CarrollRanking).

Bartholdi, Tovey, and Trick's NP-hardness results establish lower bounds for the
complexity of Carrol lRanking and Carrol lWinner. We optimally improve their
two complexity lower bounds by proving that both problems are hard for Q\, the class
of problems that can be solved via parallel access to NP, and we provide matching
upper bounds. Thus, we establish that both problems are Q\-complete. Bartholdi et
al. explicitly leave open the issue of whether Carrol lRanking is NP-complete:
"...Thus Carrol lRanking is as hard as an NP-complete problem, but since we do not
know whether Carrol lRanking is in NP, we can say only that it is NP-hard" [BTT89,
p. 161]. From our optimal lower bounds, it follows that neither Carrol lWinner nor
Carrol lRanking is NP-complete unless the polynomial hierarchy collapses.

As to our proof method, in order to raise the known lower bound on the complexity of
Carroll elections, we first study the ways in which feasible algorithms can control Carroll
elections. In particular, we establish a series of lemmas showing how polynomial-time
algorithms can control oddness and evenness of election scores, "sum" over election
scores, and merge elections. These lemmas then lead to our hardness results.

We remark that it is somewhat curious finding "parallel access to NP"-complete
(i.e., 0?-complete) problems that were introduced almost one hundred years before
complexity theory itself existed. In addition, CarrollWinner, which we prove com-
plete for this class, is extremely natural when compared with previously known com-
plete problems for this class, essentially all of which have quite convoluted forms,
e.g., asking whether a given list of boolean formulas has the property that the number
of formulas in the list that are satisfiable is itself an odd number (see the discussion

5 Carroll did not use this term. Indeed, Black has shown that Carroll "almost beyond a doubt"
was unfamiliar with Condorcet's work [Bla58, p. 193-194].

216

in [Wag87]). In contrast, the class NP, which is contained in ©\, has countless natu-
ral complete problems. Also, we mention that Papadimitriou [Pap84] has shown that
UniqueOptimalTravelingSalesperson is complete for PNP, which contains
el

2 Preliminaries

In this section, we introduce some standard concepts and notations from com-
putational complexity theory [Pap94,BC93]. NP is the class of languages solvable
in nondeterministic polynomial time. The polynomial hierarchy, PH, is defined as

PH = P U NP U NPNP U NPNpNP U • • • where, for any class C, NPC = [Jcec NpC>
and NPC is the class of all languages that can be accepted by some NP machine that is
given a black box that in unit time answers membership queries to C. The polynomial
hierarchy is said to collapse if for some k the kth term in the preceding infinite union
equals the entire infinite union. Computer scientists strongly suspect that the polynomial
hierarchy does not collapse, though proving (or disproving) this remains a major open
research issue.

The polynomial hierarchy has a number of intermediate levels. Of particular interest
to us will be the level Q\. Q\ is the class of all languages that can be solved via
D{\og n) queries to some NP set (see [Wag90]). Equivalently, and more to the point for
the purposes of this paper, ©\ equals the class of problems that can be solved via parallel
access to NP, as explained formally below. Q\ falls between the first and second levels
of the polynomial hierarchy: NP C 6P

2 C PNP C NPNP. Kadin [Kad89] has proven that
if NP has a sparse Turing-complete set then the polynomial hierarchy collapses to Q\,
Wagner [Wag90] has shown that the definition of ©\ is extremely robust, and Jenner
and Torän [JT95] have shown that the robustness of the class ©\ seems to fail for its
function analogs.

Problems are encoded as languages of strings over some fixed alphabet 2 having
at least two letters. 2* denotes the set of all strings over 2. For any string x E 2*,
let \x\ denote the length of x. For any set A C 2*, let A denote 2* \ A. For any set
A C 2*, let ||v4|| denote the cardinality of A. For any multiset A, \\A\\ will denote
the cardinality of A. For example, if A is the multiset containing one occurrence of
the preference order (w < x < y) and seventeen occurrences of the preference order
(u> < y < x), then \\A\\ = 18. As is standard, for each language A C 2* we use XA

to denote the characteristic function of A, i.e., XA{X) = 1 if a: € .A and XA(%) = 0
if x £ A. Let (• • •) be any standard, multi-arity, easily computable, easily invertible
pairing function. We will also use the notation (• • •) to denote preference orders, e.g.,
(w < x < y). Which use is intended will be clear from context.

In computational complexity theory, reductions are used to relate the complexity of
problems. Very informally, if A reduces to B that means that, given B, one can solve
A. For any a and b such that <b

a is a defined reduction type, and any complexity class
C, let Rb

a(C) denote {L | (3C E C) [L <b
aC]}. We refer readers to the standard source,

Ladner, Lynch, and Selman [LLS75], for definitions and discussion of the standard
reductions. However, we briefly and informally present to the reader the definitions
of the reductions to be used in this paper. A <p

m B ("A polynomial-time many-

217

one reduces to B") if there is a polynomial-time computable function / such that
(V.X- e E*)[x G A ^=> f(x) € B]. A <p

tt B {"A polynomial-time truth-table
reduces to B") if there is a polynomial-time Turing machine that, on input x, computes
a query that itself consists of a list of strings and, given that the machine after writing
the query is then given as its answer a list telling which of the listed strings are in
B, the machine then correctly determines whether a; is in A (this is not the original
Ladner-Lynch-Selman definition, as we have merged their querying machine and their
evaluation machine, however this formulation is common and equivalent). Since a <T

U-
reducing machine, on a given input, asks all its questions in a parallel (also called
non-adaptive) manner, the informal statement above that 0\ captures the complexity
of "parallel access to NP" can now be expressed formally as the claim Q\ = R?t(NP),
which is known to hold [KSW87,Hem89].

As has become the norm, we always use hardness to denote hardness with respect
to <v

m reductions. That is, for any class C and any problem A, we say that A is C-hard if
(VC* G C)[C <p

m A].¥or any class C and any problem A, we say that A is C-complete if
A is C-hard and A&C. Completeness results are the standard method in computational
complexity theory of categorizing the complexity of a problem, as a C-complete problem
A is both in C, and is the hardest problem in C (in the sense that every problem in C can
be easily solved using A).

3 The Complexity of Carroll Elections

Lewis Carroll's voting system ([Dod76], see also [NR76.BTT89]) works as follows.
Each voter has strict preferences over the candidates. Each candidate is assigned a score,
namely, the smallest number of sequential exchanges of two adjacent candidates in the
voters' preference orders (henceforward called "switches") needed to make the given
candidate a Condorcet winner. We say that a candidate c ties-or-defeats a candidate d if
the score of d is not less than that of c. (Bartholdi et al. [BTT89] use the term "defeats" to
denote what we, for clarity, denote by ties-or-defeats; though the notations are different,
the sets being defined by Bartholdi et al. and in this paper are identical.) A candidate
c is said to win the Carroll-type election if c ties-or-defeats all other candidates. Of
course, due to ties it is possible for two candidates to tie-or-defeat each other, and so it
is possible for more than one candidate to be a winner of the election.

Recall that all preferences are assumed to be strict. A candidate c is a Condorcet
winner (with respect to a given collection of voter preferences) if c defeats (i.e., is
preferred by strictly more than half of the voters) each other candidate in pairwise
majority-rule elections. Of course, Condorcet winners do not necessarily exist for a
given set of preferences, but if a Condorcet winner does exist, it is unique.

We now return to Carroll's scoring notion to clarify what is meant by the sequential
nature of the switches, and to clarify by example that one switch changes only one voter's
preferences. The {Carroll) score of any Condorcet winner is 0. If a candidate is not a
Condorcet winner, but one switch (recall that a switch is an exchange of two adjacent
preferences in the preference order of one voter) would make the candidate a Condorcet
wi nner, then the candidate has a score of 1. If a candidate does not have a score of 0 or 1,
but two switches would make the candidate a Condorcet winner, then the candidate has

218

a score of 2. Note that the two switches could both be in the same voter's preferences, or
could be one in one voter's preferences and one in another voter's preferences. Note also
that switches are sequential. For example, with two switches, one could change a single
voter's preferences from (a < b < c < d) to (c < a < b < d), where e < f will denote
the preference: "/ is strictly preferred to e." With two switches, one could also change a
single voter's preferences from {a < b < c < d) to (6 < a < d < c). With two switches
(not one), one could also change two voters with initial preferences of {a < b < c < d)
and (a. < b < c < d) to the new preferences (b < a < c < d) and (b < a < c < d). As
noted earlier in this section, Carroll scores of 3,4, etc., are defined analogously, i.e., the
Carroll score of a candidate is the smallest number of sequential switches needed to make
the given candidate a Condorcet winner. (We note in passing that Carroll was before his
time in more ways than one. His definition is closely related to an important concept
that is now known in computer science as "edit-distance"—the minimum number of
operations (from some specified set of operations) required to transform one string into
another. Though Carroll's single "switch" operation is not the richer set of operations
most commonly used today when doing string-to-string editing (see, e.g., [SK83]), it
does form a valid basis operation for transforming between permutations, which after
all are what preferences are.)

Bartholdi et al. [BTT89] define a number of decision problems related to Carroll's
system. They prove that given preference lists, and a candidate, and a number k, it is
NP-complete to determine whether the candidate's score is at most k in the election
specified by the preference lists (they call this problem CarrollScore). They define
the problem CarrolIRanking to be the problem of determining, given preference
lists and the names of two voters, c and d, whether c ties-or-defeats d. They prove that
this problem is NP-hard. They also prove that, given a candidate and preference lists, it
is NP-hard to determine whether the candidate is a winner of the election.

For the formal definitions of these three decision problems, a preference order is
strict (i.e., irreflexive and antisymmetric), transitive, and complete. Since we will freely
identify voters with their preference orders, and two different voters can have the same
preference order, we define a set of voters as a multiset of preference orders.

We will say that (C, c, V) is a Carroll triple if C is a set of candidates, c is a
member of C, and V is a multiset of preference orders on C. Throughout this paper,
we assume that, as inputs, multisets are coded as lists, i.e., if there are m voters in the
voter set then V = (P\, Pj,..., Pm), where P, is the preference order of the ith voter.
Score((C, c, V)) will denote the Carroll score of c in the vote specified by C and V.

Decision Problem: CarrollScore

Instance: A Carroll triple (C, c, V); a positive integer k.

Question: Is Score({C, c, V)), the Carroll score of candidate c in the election specified
by (C, V), less than or equal to kl

Decision Problem: CarrollRanking

Instance: A set of candidates C; two distinguished members of C, c and d; a multiset
V of preference orders on C (encoded as a list, as discussed above).

219

Question: Does c tie-or-defeat d in the election? That is, is Score({C, c, V)) <
Score{(C,d,V))l

Decision Problem: CarrollWinner

Instance: A Carroll triple (C, c, V).

Question: Is c a winner of the election? That is, does c tie-or-defeat all other candidates
in the election?

We now state the complexity of Carrol lRanking.

Theorem 1. Carrol lRanking is Q\-complete.

It follows immediately—since (a) G\ = NP => PH = NP, and (b) R£,(NP) =
NP—that Carrol lRanking, though known to be NP-hard [BTT89], cannot be NP-
complete unless the polynomial hierarchy collapses quite dramatically.

Corollary 2. //CarrollRanking is NF-complete, then PH = NP.

Wagner has provided a useful tool for proving ©£-hardness, and we state his result
below a°s Lemma 3. However, to be able to exploit this tool we must explore the structure
of Carroll elections. In particular, we have to learn how to control oddness and evenness
of election scores, how to add election scores, and how to merge elections. We do so as
Lemmas 4, 5, and 7, respectively. On our way towards establishing Theorem 1, using
Lemmas 3^ 4, and 5 we will first establish 0f-hardness of a special problem that is
closely related to Carrol lRanking. This result is stated as Lemma 6 below. It is
not hard to prove Theorem 1 using Lemma 6 and Lemma 7. Note that Lemma 7 gives
more than is needed merely to establish Theorem 1. In fact, the way this lemma is stated
even suffices to provide—jointly with Lemma 6—a direct proof of the &\-hardness of
CarrollWinner.

Lemma 3. [Wag87] Let A be some NP-complete set, and let B be any set. If there
exists a polynomial-time computable function g such that, for all k > 1 and all strings
xu..., x2k e E* satisfying XA (a?i) > XA (X2) > ■ ■ ■ > XA («2fc)> it holds that

\\{i\xi EA}\\isodd <=> g(x],...,x2k) G B,

then B is&\-hard.

Lemma 4. There exists an NF'-complete set A and a polynomial-time computable func-
tion f that reduces A to CarrollScore in such a way that, for every x G S*,
f(x) = {{C,c,V),k) is an instance of CarrollScore with an odd number
of voters and (1) if x G A then Score{(C, c, V)) = k, and (2) if x £ A then
Score{(C,c,V)) = k+\.

Proof of Lemma 4. Bartholdi et al. [BTT89] prove the NP-hardness of
CarrollScore by reducing ExactCoverByThreeSets to it. However,
their reduction doesn't have the additional properties that we need in this
lemma. We will construct a reduction from the standard NP-complete problem

220

ThreeDimensionalMatching (3DM) to CarrollScore that does have the ad-
ditional properties we need. Let us first give the definition of 3DM:

Decision Problem: ThreeDimensionalMatching (3DM)

Instance: Sets M, W, X, and Y, where M C W x X x Y and W, X, and Y are
disjoint, nonempty sets having the same number of elements.

Question: Does M contain a matching, i.e., a subset M' C M such that ||M'|| = ||W||
and no two elements of M' agree in any coordinate?

We now describe a polynomial-time reduction / (from 3DM to CarrollScore)
having the desired properties. Our reduction is defined by f(x) = f'(f"(x)), where /'
and /" are as described below. Informally, /" turns all inputs into a standard format
(instances of 3DM having ||M|| > 1), and /' assumes its input has this format and
implements the actual reduction.

Let /" be a polynomial-time function that has the following properties.

1. If a; is not an instance of 3DM or is an instance of 3DM having ||M|| < 1, then/"(a:)
will output an instance y of 3DM for which \\M\\ > 1 and, furthermore, it will hold
that y e 3DM «=>■ x 6 3DM.

2. If x is an instance of 3DM having ||M|| > 1, then f"(x) = x.

It is clear that such functions exist. In particular, for concreteness, let f"(x)
be ({(d,e,p),(d,e,p')},{d,d'},{e,e'},{p,p'}) if x is not an instance of 3DM or
both x g 3DM and a; is an instance of 3DM having ||M|| < 1; let f"(x) be
({(d,e,p),(d',e',p')},{d,d'},{e,e'},{p,p'}) if x is an instance of 3DM having
\\M|| < 1 and such that x G 3DM; let f"(x) be x otherwise.

We now describe /'. Let x be our input. If x is not an instance of 3DM for which
||M|| > 1 then f'(x) = 0; this is just for definiteness, as due to /", the only actions
of /' that matter are when the input is an instance of 3DM for which ||M|| > 1. So,
supposes; = (M, W, X, Y) is an instance of 3DM for which ||M|| > 1. Let q = \\W\\.
Define f'{(M, W, X, Y)) = ((C, c, V), 2>q) as follows: Let c, s, and t be elements not
in W U X UY.LetC=WUX\jYU {c, s, t} and let V consist of the following two
subparts:

1. Voters simulating elements of M. Suppose the elements of M are enumerated as
{(wi,Xi,yi) | 1 < i < ||M||}.(TheWj are not intended to be an enumeration of W.
Rather, they take on values from W as specified by M. In particular, WJ may equal
Wk even if j ^ k. The analogous comments apply to the a;,- and j/,- variables.) For
every triple (u>i, a:,, y,-) in M, we will create a voter. If i is odd, we create the voter
(s < c < Wi < Xi < yi <t < ■ ■ •), where the elements after t are the elements of
C \ {s, c, wt:, Xi, yi, t) in arbitrary order. If i is even, we do the same, except that we
exchange s and t. That is, we create the voter (t < c < Wi < xt < yi < s < ■ ■ •),
where the elements after s are the elements of C \ {s, c, Wi,Xi, yi,t} in arbitrary
order.

2. 11M11 - 1 voters who prefer c to all other candidates.

221

We will now show that / has the desired properties. It is immediately clear that /"
and /', and thus /, are polynomial-time computable. It is also clear from our construction
that, for each x, f(x) is an instance of CarrollScore having an odd number of voters
since, for every instance (M,W,X,Y) of 3DM with ||M|| > 1, f'((M, W,X, Y)) is
an instance of CarrollScore with ||M|| + (||M|| - 1) voters, and since /" always
outputs instances of this form. It remains to show that, for every instance (M, W, X, Y)
of 3DMwith ||M|| > 1:

(a) if M contains a matching, then Score({C, c, V)) = 3q, and

(b) if M does not contain a matching, then Score((C, c, V)) = 3q + 1.

Note that if we prove this, it is clear that/has the properties (l)and (2)ofLemma 4, in
light of the properties of /". Note that, recalling that we may now assume that \\M\\> 1,
by construction c is preferred to s and t by more than half of the voters, and is preferred
to all other candidates by ||M|| - 1 of the2||M|| - 1 voters.

Now suppose that M contains a matching M'. Then ||M'|| = g, and every el-
ement in W U X U Y occurs in M'. 3q switches turn c into a Condorcet winner
as follows. For every element (wi,Xi,yi) G M', switch c upwards 3 times in the
voter corresponding to (w{, xt, yi). For example, if i is odd, this voter changes from
(s<c< Wi < Xi < y, < t < • • •) to (s < Wi < Xi < yi < c < t < ■ ■ ■). Let z be an
arbitrary element of W U X U Y. Since z occurs in M', c has gained one vote over z.
Thus, c is preferred to z by ||M|| of the 2||M|| - 1 voters. Since z was arbitrary, c is a
Condorcet winner.

On the other hand, c's Carroll score can never be less than 3q, because to turn c into
a Condorcet winner, c needs to gain one vote over z for every z eW UX UY. Since c
can gain only one vote over one candidate for each switch, we need at least 3q switches
to turn c into a Condorcet winner. This proves condition (a).

To prove condition (b), first note that there is a "trivial" way to turn c into a Condorcet
winner with 3q + 1 switches: Just switch c to the top of the preference order of the first
voter. The first voter was of the form (s < c < w\ < xt < y] <t < ■■■), where the
elements after t are exactly all elements in W U X U Y \ {wi, x\, y\}, in arbitrary order.
Switching c upwards 3q + 1 times moves c to the top of the preference order for this
voter, and gains one vote for c over all candidates inWLiX öY, which turns c into a
Condorcet winner. This shows that Score(C, c, V) < 3q + 1, regardless of whether M
has a matching or not.

Finally, note that a Carroll score of 3q implies that M has a matching. As before,
every switch has to involve c and an element of W U X U Y. (This is because c must gain
a vote over 3q other candidates—W U X U Y—and so any switch involving s or t would
ensure that at most 3q - 1 switches were available for gaining against the 3q members
of^Uluy, thus ensuring failure.) Thus, for every voter, c switches at most three
times to become a Condorcet winner. Since c has to gain one vote in particular over
each element in Y, and to "reach" an element in Y it must hold that c first switches over
the elements of W and X that due to our construction fall between it and the nearest
y element (among the ||M|| voters simulating elements of M—it is clear that if any
switch involves at least one of the ||M|| - 1 dummy voters this could never lead to a
Carroll score of 3q for c), it must be the case that c switches upwards exactly three times

222

for exactly q voters corresponding to elements of M. This implies that the q elements of
M that correspond to these q voters form a matching, thus proving condition (b). |

Lemma 5. There exists a polynomial-time computable function CarrollSum such that,
for all k and for all (C,, c,, V,), <C*2, c2, V2), .. , {Ck,ck, Vk) satisfying (Vj)[||V} II
is odd], it holds that CarrollSum(((C\, c\, V\), (C2, c2, V2), • • • , (Ck, ck, Vk))) is a
Carroll triple having an odd number of voters and such that J2 ,• Score((Cj ,Cj,Vj)) =
Score(CarrollSum(((C,, c\, V\), (C2, c2, V2), ■ ■. , (Ck, ck, Vk)))).

Lemma 3, Lemma 4, and Lemma 5 together establish the Q\-hardness of a spe-
cial problem that is closely related to the problems that we are interested in,
CarrolIRanking and CarrollWinner. Let us define the decision problem
TwoElectionRanking (2ER).

Decision Problem: TwoElectionRanking (2ER)

Instance: A pair of Carroll triples ((C, c, V), (D, d, W)) both having an odd number
of voters and such that c ^ d.

Question: Is Score((C, c, V)) < Score((D, d, W))l

Lemma6. TwoElectionRanking is Q\-hard.

We note in passing that 2 ER clearly is in Rft(NP), and so from the fact that Q\ =
Rff (NP), it is clear that 2ER is in Qv

2. Thus, in light of Lemma 6, 2ER is Q\ -complete.
We also note in passing that, since one can trivially rename candidates, 2 ER remains Q\-
complete in the variant in which "and such that c ^ d" is removed from the problem's
definition.

In order to make the results obtained so far applicable to Carrol IRanking
and Carrol lWinner, we need the following lemma that tells us how to merge two
elections into a single election in a controlled manner.

Lemma 7. There exist polynomial-time computable functions Merge and Merge' such
that, for all Carroll triples (C, c, V) and (D, d, W)for which c/ d and both V and W
represent odd numbers of voters, there exist C and V such that

(i) Merge((C,c,V),(D,d,W)) is an instance of CarrollRanking and
Merge''((C, c, V), (D, d, W)) is an instance o/CarrollWinner,

(ii) Merge{(C, c, V), (D, d, W)) = (C, c, d, V) and
Merge1 ({C, c, V), (D, d, W)) = (C, c, V),

(iii) Score((C, c, V)) = Score((C, c, V)) + 1,

(iv) Score((C, d, V)) = Score((D, d, W)) + 1, and

(v) for each e£C\ {c, d}, Score((C', c, V)) < Score((C, e, V)).

223

The results we now have established suffice to prove both Theorem 1 above and
Theorem 8 below—which states that CarrollWinner is Q\-complete, the main
result of this paper. Full proofs of the results in this paper can be found in the full

version [HHR96].6

Theorem 8. Carrol lWinner is O^-complete.

Corollary 9. //CarrollWinner is NP-complete, then PH = NP.

Acknowledgments: We are indebted to J. Banks and R. Calvert for recommending Car-
roll elections to us as an interesting open topic worthy of study, and for providing us with
the literature on this topic. We thank D. Austen-Smith, J. Banks, R. Calvert, A. Rutten,
M. Scott, and J. Seiferas for helpful conversations and suggestions. L. Hemaspaandra
thanks J. Banks and R. Calvert for arranging, and J. Banks for supervising, his Bridg-
ing Fellowship at the University of Rochester's Department of Political Science, during

which this project was started.

References

[BC93] D. Bovet and P. Crescenzi. Introduction to the Theory of Complexity. Prentice Hall,
1993.

[Bla58] D. Black. Theory of Committees and Elections. Cambridge University Press, 1958.

[BTT89] J. Bartholdi III, C. Tovey, and M. Trick. Voting schemes for which it can be difficult
to tell who won the election. Social Choice and Welfare, 6:157-165,1989.

[Con85] M. J. A. N. de Caritat, Marquis de Condorcet. Essai sur VApplication de UAnalyse a
la Probabilite des Decisions Rendues ä la Pluraliste des Voix. 1785. Facsimile reprint
of original published in Paris, 1972, by the Imprimerie Royale.

[Dod76] C. Dodgson. A method of taking votes on more than two issues, 1876. Pamphlet printed
by the Clarendon Press, Oxford, and headed "not yet published" (see the discussions
in [MU95,Bla58], both of which reprint this paper).

[Hem89] L. Hemachandra. The strong exponential hierarchy collapses. Journal of Computer
and System Sciences, 39(3):299-322, 1989.

[HHR96] E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Exact analysis of Dodgson elec-
tions: Lewis Carroll's 1876 voting system is complete for parallel access to NP.
Technical Report TR-640, University of Rochester, Department of Computer Science,
Rochester, NY, October 1996.

et al. [BTT89] have stated without proof that CarrollRanking <^
CarrollWinner. Theorem 1 plus this assertion would yield Theorem 8. However, as we
wish our proof to be complete, we have proven Theorem 8 without relying on their assertion
(see [HHR96]). We note in passing that our full paper implicitly provides an indirect proof of
their assertion. In particular, given that one has proven Theorem 1 and Theorem 8, the assertion
follows, since it follows from the definition of ©^-completeness that all ©^-complete problems
are <JL-interreducible.

224

[JT95] B. Jenner and J. Torän. Computing functions with parallel queries to NP. Theoretical
Computer Science, 141 (1—2): 175—193,1995.

[Kad89] J. Kadin. pNptk>enl and sparse Turing-complete sets for NP. Journal of Computer and
System Sciences, 39(3):282-298, 1989.

[KSW87] J. Köbler, U. Schöning, and K. Wagner. The difference and truth-table hierarchies for
NP. RA1RO Theoretical Informatics and Applications, 21:419-435,1987.

[LLS75] R. Ladner, N. Lynch, and A. Selman. A comparison of polynomial time reducibilities.
Theoretical Computer Science, 1(2): 103-124, 1975.

[MU95] I. McLean and A. Urken. Classics of Social Choice. University of Michigan Press,
1995.

[Mue89] D. Mueller. Public Choice II. Cambridge University Press, 1989.

[NR76] R. NiemiandW. Riker. The choice of voting systems. Scientific American, 234:21-27,
1976.

[Pap84] C. Papadimitriou. On the complexity of unique solutions. Journal of the ACM,
31(2):392^t00, 1984.

[Pap94] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[SK83] D. Sankoff and J. Kruskal, editors. Time Warps, String Edits, and Macromolecules:
The Theory and Practice of Sequence Comparison. Addison-Wesley, 1983.

[Wag87] K. Wagner. More complicated questions about maxima and minima, and some closures
of NP. Theoretical Computer Science, 51 (l-2):53-80, 1987.

[Wag90] K.Wagner. Bounded query classes. SIAM Journal on Computing, 19(5):833-846,
1990.

Game Theoretic Analysis
of Call-by-Value Computation

KOHEI HONDA NOBUKO YOSHIDA

ABSTRACT. We present a general semantic universe of call-by-value computation
based on elements of game semantics, and validate its appropriateness as a semantic
universe by the full abstraction result for call-by-value PCF, a generic typed pro-
gramming language with call-by-value evaluation. The key idea is to consider the
distinction between cal!-by-name and call-by-value as that of the structure of in-
formation flow, which determines the basic form of games. In this way call-by-name
computation and call-by-value computation arise as two independent instances of
sequential functional computation with distinct algebraic structures. We elucidate
the type structures of the universe following the standard categorical framework de-
veloped in the context of domain theory. Mutual relationship between the presented
category of games and the corresponding call-by-name universe is also clarified.

1. INTRODUCTION

The call-by-value is a mode of calling procedures widely used in imperative and functional
programming languages, e.g. [1, 30], in which one evaluates arguments before applying
them to a concerned procedure. The semantics of higher-order computation based on
call-by-value evaluation has been widely studied by many researchers in the context of
domain theory, cf. [35, 23, 32, 12, 40, 11], through which it has become clear that the
semantic framework for the call-by-value computation has a basic difference from the one
for call-by-name computation (see [15, 42] for introduction to the topic). The difference
between the semantics of call-by-value and that of call-by-name in this context may
roughly be captured as the difference in the classes of involved functions: in call-by-
name, we take any continuous functions between pointed epos, while, in call-by-value,
one takes strict continuous functions. The latter is also equivalently presentable as
partial continuous functions between (possibly bottomless) epos. This distinction leads
to a basic algebraic difference of the induced categorical universes, cf.[ll, 12].

The present paper offers a semantic analysis of call-by-value computation from a
different angle, based on elements of game semantics. In game semantics, computation
is modelled as specific classes of interacting processes (called strategies), which, together
with a suitable notion of composition, form a categorical universe with appropriate type
structures. One may compare this approach to Böhm trees or to sequential algorithms [6,
22], in both of which computation is modelled not by set-theoretic functions of a certain
kind but by objects with internal structures which reflect computational behaviour of
the concerned class of computation. Game semantics has its origin in Logics [7, 10]
and has been used for the semantic analysis of programming languages, especially for
characterising the notion of sequentiality [8, 34]. By concentrating on specific forms of
interaction which obey a few basic constraints, the approach makes it possible to extract
desired classes of interacting processes at a high-level of abstraction, offering suitable
semantic universes for varied calculi and programming languages, cf. [2, 3. 4, 19, 20, 24].
The forms of interaction in these universes are however inherently call-by-name: it has

LFCS, Department of Computer Science, University of Edinburgh, e-mail: kohei@dcs.ed.ac.uk.
,• Odcs.ed.ac.uk. Supported in part by EPSRC Fellowships and JSPS Research Fellowships.

226

not. been clear how the call-by-value computation can be captured in the setting of game
semantics, in spite of its equally significant status as a mode of computation.

f

CBN |
nat =i> nat nat =* nat

^^OQ-~ OA(n)
PQ ^PA(2n).

OA(n).
PA(2n)-

(a) (b)

Figure 1

In the present work it will be shown that a general semantic universe of the call-
by-value higher-order computation can indeed be simply constructed, employing basic
elements of the foregoing game semantics, but with a key difference in the structures
of interaction. More specifically, we find that the distinction between call-by-name and
call-by-value in game semantics arises as the one in the form of the flow of information.
Let us illustrate this point by simple examples. Figure 1 (a) depicts how a function
which doubles a given natural number is modelled in the foregoing game semantics ("O"
for Opponent, "P" for Player, "A" for Answer, and "Q" for Question). Computation
starts when Opponent asks a question on the right, requesting an answer: then Player
(the function) asks what the argument is on the left, from which the number is received,
and finally it returns to the right to answer the initial question by the double of the
received number. In Figure 1 (b), the same function is modelled in the call-by-value
game. This time the flow starts at the left component, which already carries a value:
then the function just returns the answer on the right. One may notice that this means
the interaction should start from an answer, which might be regarded as an anomaly in
the preceding convention in game semantics. However, it turns out that this parameter
of games — whether one initiates a game by answers or by questions — is orthogonal
to other basic elements of the game semantics, leading to a simple construction of a
categorical universe in which representative functional calculi based on call-by-value
evaluation can be faithfully interpreted. The independence of the parameter suggests
we may obtain a suitable universe to model, say, imperative call-by-value computation
by simply altering other parameters, cf. [4, 21]. We also note that the possibility to
model "data-driven computation" in contrast to "demand-driven computation" as games
is discussed in an early paper on game semantics by Abramsky and Jagadeesan [2].

The main technical contribution of the present work is the validation of the semantic
exactness with which the induced universe captures the call-by-value sequential higher-
order computation through the full abstraction result for the call-by-value version of
PCF [35, 40], a paradigmatic functional calculus. The result seems the first one in this
context1 and is easily extendable to other languages as we shall indicate in Section
6. We also clarify the relationship between the present universe of games and the
corresponding call-by-name universe by showing they are faithfully embeddable to each
other. These results indicate, together with the preceding results on call-by-name PCF
[3. 19]. that the two basic notions of calling procedures in higher-order computation are
representable in the game-based semantic framework in an exact way, and that they

1 Independently and concurrently Riecke and Sandholm [38] obtained a similar result, see Section 6.

227

arise as two independent, though mutually related, semantic universes with equal status
(which parallels the findings in domain theory, cf. [11]). It is also notable that, as we
clarify later, the universe of call-by-value games assumes basic type structures which
have arisen through the categorical analysis of domain-theoretic universes for call-by-
value, or partial, computation, cf.[ll, 12, 23, 31, 32, 36, 39], though with a strong
intensional flavour. This suggests an abstract notion of "call-by-value computation'"
may be delineated apart from the standard domain theoretic constructions, cf. [11, 12].

The structure of games we shall use is a conservative extension of the construction
by Hyland and Ong [19]. The relationship is detailed in [18].

This is an extended abstract of [18]. The reader may refer to [18] for proofs and
detailed technical discussions. In the remainder, Section 2 introduces the basic notion of
games and strategies. Sections 3 and 4 outline the algebraic structures of the category
of games and its extensional quotient. Section 5 establishes the main result of the paper,
the inequational full abstraction for call-by-value PCF. Section 6 discusses further results
and remaining topics. Appendix briefly reviews call-by-value PCF.

2. GAMES AND STRATEGIES

This section introduces the basic construction of games and strategies which are to
become objects and morphisms in the categorical universe. We start from sorting (the
terminology is from [29]), from which call-by-value types arise as its specific subclass.

2.1. Sorting and Type.
(i) (sorting) A sorting § is a triple of: (1) §, which is a collection of mutually disjoint

non-empty sets ranged over by S, S',... each called a sort, (2) A : § -» { [, (,],) }.
a labelling function and (3) Obs:§ —¥ 2-, the justification relation (if 5"' € Obs(S)
we say S justifies S'), where 5' € Obs(S) implies:

. A(S) = [then A(S') €{(,]}• Dually X(S) = (then A(S') €{[,)}•
• \(S) =] then A(S') = [always. Dually A(5) =) then A(S') = (always.

Elements of a sort are called actions, denoted x,y,..., writing e.g. i5 when x £ S.
The set of initial sorts, denoted init(S), is given as {S | for no 5' 6|.5€ Obs(S')}.

(ii) (type) A cbv-type, or simply a type, is a sorting such that all initial sorts are
labelled by "]" and any of its sorts is reachable from some initial sort, where
reachability is understood regarding sortings as graphs (nodes are sorts, directed
edges are given by 06s). Types are denoted by A,B,C, —

An action of a sort labelled by each of ~ (,[,],)" is called, respectively, Player Question.
Opponent Question, Player Answer, and Opponent Answer, the first two collectively
Question, the last two Answer, the first and third P-action, and the second and fourth
O-action. Answers of initial sorts are often called signals. On labels we define a self-
inverse function (•), giving the dual of a label, satisfying: [= (and] =).

2.2. Examples, (sorting)

(i) 0 is the empty sorting, which is a type. 1 is a sorting whose unique]-labelled sort
is a singleton, which is again a type, nat is made as 1 replacing a singleton with
LJ (the set of natural numbers), similarly bool with {true, false}.

(ii) Given S, write S for the sorting which is the result of changing labels by (■). So
nat is the sorting with the same sort as nat which is however labelled by ")". Next,
given Si and §2: let Si t+l S2 denote their disjoint union, i.e. the sorts are the
disjoint union of Si and §2, inheriting labelling and justification. Then nat W nat
is the sorting with two copies of JJ labelled by ")" and "]".

228

(Hi) We define nat^nat as a type with three sorts, one is a singleton written]na na ,

another a copy of u written [nat. and the third again a copy of w written]na ,
for which labels are given as these notations indicate. The justification is given so

that]nat^nat only justifies [nat, which in turn only justifies]nat.

By a sequence from, a set X we mean a partial function from w to X defined for a finite

initial segment of u (called indices) and undefined for the rest. As an example, abc has
{0.1, 2} as its indices. We often confuse elements and their occurrences in a sequence.
£ denotes the empty sequence. We are interested in sequences of actions representing a

certain kind of interaction between an agent (Player) and the outside (Opponent).

2.3. Action Sequence. Given a sorting S, an action sequence in S or often simply a
sequence in S is a sequence from actions in § (let is be x0xi...xn_i), together with the

relation on its indices denoted i-¥ (writing x; i-+ Xj for i i-» j), satisfying:

(consistency) (1) x,- i-> Xj => i < j, (2) (x,- n- xk A Xj M- xk) => i = j, (3)

x? i-> x£' => S' £ Obs{S), (4) -a**. Xi H+ xj => S initial (then XJ occurs free),

(linearity in answers) (5) (x,- ►-»• xj A x,- H-» xk A xk an answer) =>■ j = k, (6) A
free O-answer (resp. a free P-answer) occurs at most once, and:

(strict alternation) (7) If x,- is a P-action (resp. O-action), then x;+x is an O-action

(resp. P-action) for 0 < i < n — 2.

s, s',... range over action sequences, often leaving the associated >->■ implicit. We say x,-
justifies Xj when x,- ►-*■ XJ. On action sequences we define two functions, rsn, the P-view
of s, and LSJ, the O-view of s, as, inheriting i->- whenever possible: (pvO) rsn = e,
(pvl) rsx;"1 = Xi when xt- is a free O-action, (pv2) rs0x,siXj"1 = rs0'

tXiXj when
x,- i-j- Xj and xj is an O-action, and (pv3) rs0xi~

[= rs0~[xi if x,- is a P-action; LSJ is
defined dually, i.e. by exchanging "O-action" and "P-action" throughout. We then say:

(i) s is well-bracketed when: ifs0XiSiXj is a prefix of s such that (1) x,- is a question
(2) XJ is an answer and (3) either XJ occurs free or XJ is justified by a question in

s0, then x; justifies an answer in s\.

(ii) s satisfies the visibility condition when, in any of its prefix s0X{ where x; is a P-
action (resp. O-action) which is %• s.t. yj H-J- XJ always occurs in rs0"1 (resp. LS0J).

An action sequence is legal when it is well-bracketed and satisfies the visibility condition.

Legal action sequences are sometimes called legal positions. We can verify the set of legal
sequences of any sorting is closed under prefix and view constructions.

We are now ready to give the main definition of this section, which determines the
class of interacting processes we are concerned with in the present study.

2.4. Definition, (strategy) An innocent strategy from A to B, or simply a strategy

from. A to B, is a prefix-closed set a of legal positions in A ttl B, such that:

(O-initial) s £ o~ implies the initial action of s (if any) is an O-action.

(contingency completeness) s £ a and sx; is legal for an O-action x; imply sx; £ <r.

(innocence) If sxx, s2 £ cr, x is a P-action and rsi"1 = rs2"1, then s2y £ cr such that (1)
rs1x

n = rs2y^ and (2) s2z £ cr => s2z = s2y.

We write a : A ->■ B when a is a strategy from .4 to B. fa denotes the partial function
determined by <r, mapping even-length P-views to next actions (if any) with justification.

Given a,r : A-^-B, we set cr < r when cr C r, equivalently when fa C fT-

Using the function representation, it is easy to see the set of strategies from .4 to B forms
a dl-domain under <, where compact elements are those with finite graphs. Further,

229

given sxjA'i+i 6 er : A —>• B, if X{ and i'I + i come from different types then z;+i is
necessarily a P-action (switching condition). Also the projection of s G <r : Aj. —)■ A2
onto .4,- (i = 1,2), written s f .4,-, is always legal in .4;.

2.5. Examples, (strategies)

(i) (undefined) For each A and B, there is a strategy from .4 to B which is totally
undefined, so that it is least w.r.t. the ordering <. We write this strategy LA-+B-

(ii) (first-order function) The set of strategies from nat to nat precisely correspond to
the set of partial functions from w to u>.

(iii) (higher-order function) We describe a strategy a : nat^nat —► nat which corres-
ponds to the behaviour of an open call-by-value PCF-term, x : 1 —¥ i>succ(;r3) : t.
After receiving a signal on the left, which is a function, <r asks the result of ap-
plying 3 to that function, and, on receiving the answer, returns its successor to
the right. Except the last free answer, each action is justified by the preceding one.

Strategies denote a certain kind of deterministic processes, and are, as such, precisely
representable as (name passing) synchronisation trees, see [18]. The presentation is
often useful for describing, and reasoning about, strategies: indeed the full abstraction
result was originally obtained in this setting [17]. The following inductive definition of
composition of strategies is suggested by such representation.

2.6. Definition, (composition) Given a : A—>B and r : B-+C, we set:

{s\\ s2 \ si e a, s2 e T, si \ B = s2 \ B}

where s\;s2 with «x and s2 as above is given: (1) e;e = £, (2) sixB;s2x
B — s\\s2

(xB is the corresponding dual action of a;5), and (3) s\xA\s2 = (si;s2)x
A, Si;s2x

c =
(s\; s2)x

c, in each case inheriting the justification relation from the original pair.

(3) above is well-defined since two cases are always disjoint due to the switching condi-
tion. We can also verify: (i) a; r is a strategy from A to C, (ii) ; is associative with
identity given by the copy-cat strategy, i.e. that which exactly copies actions between
A and A, and (iii) ; is bi-continuous with respect to <. Thus we define:

2.7. Definition. CBV denotes the category of cbv-types and innocent strategies.

By the preceding discussions, CBV is enriched over CPO, the category of possibly bot-
tomless epos and continuous functions. Each homset has a least element J. for which
the composition is left strict, that is X; a = ± always.

3. INTENSIONAL UNIVERSE

Type structures of a semantic universe offer the basic articulation of its algebraic struc-
tures needed, for example, for interpreting various programming languages in it. This
section clarifies the basic type structure of CBV in the light of the distinction between
total and partial maps. We first introduce the notion of totality, cf. [13].

3.1. Definition, a is total when r; a = JL implies r = _L. We write a J). when a is total.

The totality of a : A —► B is equivalent to any one of: (1) Vr : 1 —► .4. r Jj. => r; a -IJ-.
(2) the square (0 —>• .4 —> B, 0 —>■ 0 —> B) is a weak pullback (notice 0 is initial and
weakly terminal), and (3) cr immediately emits the P-signal for each initial O-signal. (1)
relates to a familiar idea of totality. (2) is a categorically basic one, and (3) gives the
behavioural characterisation, clarifying the dynamic aspect of totality.

230

3.2. Examples, (total maps)
(i) The unique arrow _L from 0 to any type is total, by definition. All isomorphisms

are total. Also, there is no total map to 0. except from itself,

(ii) There is a unique total map !A : A-*l for each A. It reacts to the initial signal
(if any) by the unique P-signal at 1, and no more action is possible,

cr : nat-+nat is total iff the underlying number-theoretic function is total. in

Let us denote CBVt for the category of types and total strategies. Since totality is closed
upwards w.r.t. <, CBVt again CPO-enriches. It has finite products: 3.2 (ii) above shows
1 is terminal, while the product of A and B is given by a type A®B whose sorts are the
disjoint union of non-initial sorts of A and B together with, for each pair of 5 € init(.4)
and S' e init(B). a sort]s'5' = S x S' (the set theoretic product), which justifies what
5 and S' justify in A and B, the rest as in A and B (A ® 0 and 0 ® A are set as 0).
Projection maps are evidently given. ® is often denoted x in CBVt- We also note that
CBVt has arbitrary (small) products and co-products, but we do not need them here.

The relationship between total maps and usual (often called partial) maps is clarified
by the notion of lifting. Write A± for the type given by adding two singleton sorts to A.
one initial which justifies the other one, the latter justifying all S £ init(A), the rest as
in A. Then we can see the set of total arrows from 1 to Ax is order-isomorphic to the set
of partial arrows from 1 to A. These two are mediated by two copy-cat like strategies.
Up : _4->-,4J_ and dn : A± -* A, with obvious behaviours (up reacts to an initial action at
A by going though two added actions at A± then does the copy-cat: dn just does the
dual). In a familiar way this induces the adjoint situation as described below.

3.3. Proposition.
(i) Let F be the inclusion functor from CBVt to CBV. Then F has the right adjoint T,

with T(A) = A±, the unit rjA = up, and the co-unit € = dn, which CPO-enriches.
The monad <T, 77,1, T(dn)) is denoted T, which has a tensorial strength stA,B

and a co-strength (in the sense of [37]) st'^^.

(ii) The Kleisli category of T on CBVt is isomorphic to CBV. We write <rt for
up; T(a) : A -» B±. where cr : A -»■ B is partial, and <rt for cr; dn : A -¥ B where
cr : A—*B± is total.

Using the monad T, we can now present the basic type structures of CBV. In (iii) below
A-=±B is a type whose sorts are the disjoint union of those of A and B together with
new]A=^B which is a singleton, with the label of each 5 € imt(A) changed into [and
those of A's non-initial sorts dualised. Justification is as in A and B, with the addition
of]A=^B justifying what were in 'imt(A), each of which in turn justifying what were in
init(ß) (0-^B is set as 1). Notice the similarity with the construction of .4 ö B.

3.4. Definition and Proposition.

(i) (partial pairing [32]) Given <rx : C ->• A and cr2 : C -¥ B, their left pairing.
<<o-i, <r2))i ■ C-> A ® B, and the right paring, ((cru cr2))r : C ->■ -4 S B are given

as: {{<Ji,<r2))l = (M, <T\)\4>A,B)I _and {(cru cr2))r = {(cr\, a\):vA,B)\ where
ipAiB = st'4 rB;T(st,4,B;dn) and WA,B = stAtTB',T(st'AB;dn).

(ii) (premonoidal tensor [37]) Given .4. we define A® and ®A by: (i) .4 S -B = A® B

and B ■ ®A = B ® A, and (ii) A® a d= «-x, TT2; a)), and a® A d= {{~i\<r, TC2)}

where 7r, denote projections. Then A® and ®A both define functors on CBV

231

which CPO-enrich. We then define, for a : A^B and r : C —>• D: (i) a Qi r =
(a © C); (B ® r) and (ii) <x ®r r = (.4 ® cr); (r ® C).

(iii) (partial exponential [23]) The functor :® .4 : CBVt ->CBV has the right adjoint
A^>- : CSV ->CSVt, which CPO-enriches. Equivalently, there exists an arrow
ev : (A-=±B) 0 A —>• B such that, for any a : C ® A-+ B, there is a unique total
arrow pA(cr) : C->B satisfying (pA(<r)®id); ev = cr, and pX is a continuous operator.

An outstanding fact on partial pairing is that the right and left pairings of the same
tuple do not coincide in general. This exhibits a strongly intensional character of CBV,
substantiating Moggi's remark that ((<Ti, (T2)); and ((o-j, er2))r reflect the "order of evalu-
ation" [32]. This also implies the tensor in CBV does not give a bifunctor, cf. Corollary
4.3 of [37]. We write ((0^, o-2)) when two versions coincide (as when either is total).

The final structure we need is recursion, here presented as an operator on each homset.
[18] gives an alternative presentation as constants. Below we say A is pointed when it
has a unique initial sort which is a singleton, equivalently when hom(l, .4) in CBVt is
a pointed cpo. For such A, dn'A : TA —>• A denotes the unique total map such that
up^dn'^, = id^. Pointed types are precisely objects in the category of Eilenberg-Moore
algebra of the monad T. Also, any type of form A-=±B is pointed.

3.5. Proposition. Let A be pointed and cr : C x A —¥ A. Then there is a strategy
rec(<r) : C—>A which satisfies: (i) r; rec(<r) = r;((idc, rec(<r)));<7 for r : 1—J-C (if <r
is total we can take off r from the equation), (ii) rec(r ® id^; cr) = r;rec(<r) for each
T : B-+C, and: (iii) Given r : 1 —> C, if {pt : l->A},£u, is defined as: (1) po = -L, (2)
pi+1 = ({r, pj;dn'));cr, then {p,} is an increasing aj-chain such that Up,- = r;rec(o-).

4. EXTENSIONAL UNIVERSE

CBV represents an abstract notion of execution of call-by-value computation. For the
interpretation of programming languages at the same abstraction level as in the standard
semantic universe like the category of domains, we may need a more abstract universe,
which we construct from CBV by a simple quotient construction. The universe is also
useful for understanding the behaviour of arrows in CBV in an abstract way. Below we
briefly outline the basic structure of this universe, leaving details to [18]. We start from
the following ordering (cf. [36, 11]):

crx<cr2
A4 VC, C", r-.C^-A, T':B->C. r; <TI; r'JJ. => r;cr2;r'|L.

Immediately ^ is a preorder for which the composition is monotone (thus the quotient is
well-defined), and <C^. We now define CBV as the category of types and ^-equivalence
classes of strategies. f,g,... range over arrows in CBV. The induced partial order is still
denoted ^. CBV is enriched over Poset, the category of posets with monotone maps,
since monotonicity carries over from CBV. Observing 0 is the zero object in CBV (i.e.
both terminal and initial), we define -L : A—±B as the unique map that factors through
0, cf. [13]. Then ± is indeed the least element in each homset, and the composition
is strict at both sides. We can then define total maps as before: / JJ- when g; f = J_

implies g = A. for each g, equivalently when the square (0 —¥ A -+ B, 0 -> 0 —» B)
is a pullback, from which all properties of total maps as in CBV follow. Notice also
/ Jj. <=> Vu G /. <j |L <» 3a £ f. a JJ-- We write CBVt for the subcategory of total maps.

We can then show CBVt is well-pointed, with finite products (indeed all small products
and co-products) inducing Poset-enriched bi-functors, all inheriting from CBVt. Again
as in CBV. the inclusion functor from CBV\ to CBV has the right adjoint inheriting

232

constructions from T, which we write again T, which Poset-enriches. The corresponding
monad, again denoted T, has strengths and is now commutative, i.e. yA,B - PA,B in 3.4
(i). Again the Kleisli category of T on CBVt isjsomorphic to CBV. Using the monad,
we can now clarify the basic type structures^ CBV. Thus, again from the general result
by Power and Robinson [37], we know CBV is a Poset-enriched symmetric monoidal
category, which has all type structures as given in Proposition 3.4 (i)(ii)(iii) inheriting
the constructions from CBV, wherejeft and right pairings are identified. Finally the
recursion in CBV carries over to CBV, though all r : 1->• C in 3.5 can be replaced with
idc. We also note that CBV allows the treatment of recursive types for a large class of
functors, but we do not use them in the present paper.

5. INTERPRETATION OF PCFV

PCFV[35, 36] is a typed programming language based on call-by-value evaluation. The
syntax and evaluation rules can be found in the standard literature, cf.[15, 42, 40], which
are briefly reviewed in Appendix (following [15] except the recursion is only defined for
function types, cf.[42, 40]). CBV and its extensional quotient are conceived to represent
call-by-value, or partial, higher-order functional computation. Moreover it has a type
structure which does include that of PCFV. Thus we may seek to represent PCFv-terms
and its computation in these universes. We primarily consider the interpretation in CBV,
and only move to CBV at the last step. The interpretation follows.

5.1. Definition. First we define the mapping from the set of types and environments of

PCFv to objects in CBV as: [»] =f nat, [o] d= bool, [a => ßj = [a]^[/3], [s] = 1 and

[r, x : a] =f [r] ® [a]. Then the mapping from PCFv-terms to arrows in CBV is given
inductively as follows, assuming either of the left/right pairings is selected uniformly.

(i) [F, x : a, At> x : aj d= ?r: [r] ® [a] ® [A], where TT is an appropriate projection.

(ii) [F > Xxa.M :a^ß\ = p\{<r) : [T] -+ [/?], where [T, * : a > M : ß[= er.

(iii) [T > MN : 0\ = <(<ri, 0-2»; ev : [T] -»• \ß\, where [T > M : a => 0\ = <TI and
[F > N : a] = <r2.

(iv) [F > fixa.M : a] d= rec(<r) : [r] -+ [a], where [F, x : a > M : a] = a

(v) [r>cond L Nh M2 : a] ^ («r, {{<r\, 4)»);7T(M))t = P1">W where IF > L :

o] = r, [r o A/i : a] = au \T > M2 : a] = <r2 and 7A : bool ® ^1 ® A -)■ yl is a
strategy with an appropriate behaviour.

(vi) For a constant c of type a, we set: [r > c : a] =f ![r]; c : [F] ->■ 1 -)• [a] where
c : 1 —> [a] is given as a strategy with obvious behaviour for each c.

The descriptions of 7 and c for each c are given in [18]. As basic properties of the
mapping, we know {T>V : a} is always total, where V denotes a value, i.e. an abstraction
or a non-fi constant; [T>M{V/x}:ßJ = ((id[r], r});<r : JT]-*■[/?] for any r = [V>V :
a] and a = {T. x : a > M : ßj; and that T > M Ü-V implies [Af] = [Vj. We can then
verify the following key properties of the interpretation.

5.2. Proposition.

(i) (computational adequacy) [AfJ ^ J- iff 3V". M JJ. V for a closed M.

(ii) (adequacy) [A/] ^ [yV] implies A/ ^ Ar for closed Af, N of the same type.

233

Given the adequacy result, if we show its converse, i.e. <0b, implies < via the inter-
pretation, then we obtain the full abstraction. For the purpose it suffices to prove all
compact elements of appropriate types are PCFv-definable, cf.[25, 35]. The definability
argument is carried out using a subset of PCFv-terms defined as follows.

5.3. Definition. Finite canonical forms (FCFs for short) are inductively given as:

(i) r > Q : a and V > n : i are FCF's.

(ii) T>\ya.M :a-s-/3 is a FCF if T,y:a>M:ß is.

(iii) T>letya = :VmN :ß is a FCF if (1) T,y: a>N:ß is a FCF, (2) z has a
type ß => a in T, and (3) T > V : ß is a FCF (which is also a value),

(iv) T > (case x of nx: Mi ["2 : A/2 Q..[| nk : Mk) ■ a is a FCF if x : L e T and, for
each /, F > Mi : a is a FCF.

where, in (iii), let ya = zM in N stands for (\ya.N)[zM), and, in (iv), case y of n^
Mi\\..\\nk:Mk stands for cond (y = m) A/i(...(cond (y = nk) Mk 0.)..) , the latter
assuming the equality check is suitably encoded in PCFv-

FCFs faithfully capture the behaviour of compact strategies of PCF-types:

(i) 0. denotes ±. m : i immediately returns m after an initial O-signal.

(ii) \xa.M : a => ß represents a strategy which, after an initial O-signal, does a
sequence of actions]aT=^ [a (here an annotated label denotes an action of that
kind) where]a^" i-»- [a, then behaves as M.

(iii) T, Xi : 7i => 72, A>let ya — XiM in N : ß first interacts at x,- by (7\ then Oppon-
ent may ask at M (when 71 is a higher-order type) which, after some interactions,
will be answered by Player, followed by an Opponent Answer)72. Then the ac-
tions move to N. Here the "let" construct is used to make the order of evaluation
explicit (see [32] for a similar use of the construct in a different context),

(iv) The case statement corresponds to the situation when a strategy acts according
to the received ground values (here natural numbers). A vector of values can be
handled by nesting the construct.

Using FCFs we can prove:

5.4. Theorem, (definability) For each compact element a : 1 -> [a] for any PCFv-type
Q in CBV, there is a FCF F : a such that \F : a\ = a. Conversely, the interpretation
of any FCF is a compact element in the respective type.

The proof is by induction on the cardinality of compact elements, translating the beha-
viour of strategies into the corresponding FCFs based on the correspondence between
actions and strategies we illustrated above. We note that, like FCFs themselves, the
argument is much simpler than the corresponding one in call-by-name PCF. cf.[19]. See
[18] for details. Write [F > M : a}e for [[T> M : a]]-j. From the definability result we
can now conclude:

5.5. Theorem, (full abstraction) For closed PCFv-terms M : a and A* : a, we have
M : a <obs Af : Q iff [M : a]e £ [A/ : a]e.

6. DISCUSSIONS

6.1. Further Results. First we briefly outline how call-by-name universe and the call-
by-value universe are mutually embeddable. as in the context of domains. Let cbn-types
be sortings in which (1) initial sorts are all opponent questions and (2) each sort is
reachable from some initial sort. The strategies are then as in Definition 2.4 with an

234

added condition which ensures the switching condition. The composition of strategies is
just as in Section 2, based on which we obtain the category of cbn-types and innocent
strategies which is cartesian-closed and is enriched over CPO, which we denote CBN.
There is a full embedding of CA of [19] in CBN and its extensional quotient allows
interpretation of call-by-name FPC as in the category in [24]. Now we say a CBN' type
is pointed when it has a unique initial sort which is a singleton, just as in CBV. Let us
also say a strategy in CBN is linear when, after the initial question at the codomain, it
immediately asks the question at the domain, and never asks an initial question at the
domain again. Writing CBN\ for the subcategory of CBN of pointed types and linear
strategies, the embedding result says (i) CBN is isomorphic to the full subcategory of
CBVt of pointed types, and (ii) CBV is isomorphic to the full subcategory of CBNi of
pointed types whose initial questions justify no questions. The proof is by the translation
of information flow. See [18] for details.

Next we discuss how we would extend the full abstraction result in Section 5 to
other call-by-value programming languages. Firstly it is straightforward to extend the
argument in Section 5 to PCFV with sums and products or to the untyped call-by-value
A-calculus. Recursively typed languages such as FPC [15] can also be handled (though
the premonoidal tensor in CBV poses a problem), as observed by Fiore and as will be
reported elsewhere. For the interpretation of imperative constructs, we would consider,
as noted in Introduction, variants of the present universe by changing parameters of
games following [4, 21], which does lead to coherent semantic universes. One interesting
topic in this context would be whether one needs refined type structures as in [4] for
the interpretation of the impure constructs: indeed a much simpler, and more direct,
approach seems possible in the present setting. Some results on these topics will be
reported elsewhere.

6.2. Related works. After completing the full version of this paper [18], the authors
were informed of an independent (and essentially concurrent) work by Riecke and Sand-
holm [38] in which they obtained a full abstraction for call-by-value FPC (which easily
implies that of PCFV). The construction is based on Kripke logical relations on pCPO,
and is thus quite different from the present one. No quotienting is necessary to reach
the semantic universe, while the construction of the universe itself is substantially more
complicated. In a brief comparison, one may say that their approach would give better
insights for understanding why some (continuous) function is not sequential; while their
construction does not directly model the dynamic aspects of sequential call-by-value
computation, thus may not lead to the insights in that context. Thus tw^o methods
would play different roles in semantic analysis.

In game semantics, Abramsky and McCusker are working on game semantics on call-
by-value languages, based on McCusker's early idea and also suggested by the present
work, which tries to extract call-by-value strategies from the universes of call-by-name
games in [24, 4] (personal communication).2 In another vein, Harmer and Malacaria
are working on game semantics for call-by-value computation based on games originally
introduced in [3]. [16] gives a preliminary study in this direction.

6.3. Intensionality and relationship with process theories. The strongly inten-
sional character of CBV is not at the same level of abstraction as, say, pCPO. The same
can be said about its call-by-name counterpart and other categories of games, in the sense

2At the final stage of preparation of this camera-ready version, we obtained their typescript [5].
which exploits the type structures of the original universe in [4] to interpret a functional language
with a certain imperative feature. Detailed discussions, especially the comparison with an approach we
mentioned in 6.1. should be left for a future occasion.

235

that they reflect some notion of execution, albeit abstractly, cf. [9, 19]. From the view-
point that the primary purpose of semantic representation of programming languages
lies in giving (in)equations over programs as general as possible, this feature may be con-
sidered as a drawback. However we can take a different perspective, and ask whether
this novel way of representing programs can be put to a significant use, especially once
given the full abstraction result as the semantic justification of the representation. As
a first such step, one may exploit the representation for the development of abstract
theory of execution, including the formal optimisation techniques. Type structures as
we studied in Section 4 may be put to an effective use in this context. One interest in
this regard is that our interpretation of PCFV in CBV already gives a concise abstract
implementation of the language in the form name passing processes. The representation
is comparable to Milner's direct encoding in [27], performing the /3„-reduction by three
name passing interactions. Such a "physical" character of the abstract universe suggests
we may study the execution of, say, call-by-value programming languages from a new
level of mathematical abstraction (this is in line with Girard's studies on the semantics
of cut elimination [14]). Relatedly the induced encodings also suggest the possibility of
relating game semantics and process theories at the fundamental level. The study of
behavioural types by Milner [28] may suggest possible directions (from which the present
study actually started).

Acknowledgments. Special thanks go to Marcelo Fiore for his suggestions concerning
pertinent categorical structures. We thank Samson Abramsky, Paul Mellies, Pasquale
Malacaria, Guy McCusker, Jon Riecke and anonymous referees for comments and/or
discussions, and N. Raja for his hospitality in Bombay.

REFERENCES

[l] Abelson, H., Sussman, G.J., Structure and Interpretation of Computer Program, MIT Press, 1985.
[2] Abramsky. S. and Jagadeesan, R., Games and Full Completeness for Multiplicative Linear Logic,

Journal of Symbolic Logic, 59(2), pp. 543-574, 1994.
[3] Abramsky, S., Jagadeesan, R. and Malacaria, P., Full Abstraction for PCF, 1994. To appear.
[4] Abramsky, S. and McCusker, G., Linearity, Sharing and State: a fully abstract game semantics for

Idealized Algol with active expressions, ENTCS, Vol.3, North Holland, 1996.
[5] Abramsky, S. and McCusker, G., Call-by-value games, a typescript, 12p, Apr. 1997.
[6] Berry, G. and Curien, P. L., Sequential algorithms on concrete data structures. TCS\'ol.20, pp. 265-

321, North-Holland, 1982.
[7] Blass, A., A game semantics for linear logic, Annuals of Pure and Applied Logic, 56:183-220, 1992.
[8] Curien, P. L., Sequentially and full abstraction. In Proc. of Application of Categories in Computer

Science, LNM 177, pp.86-94, Cambridge Press, 1995.
[9] Danos, V. and Regnier, L-, Games and abstract machines. LICS'96, IEEE, 1994.

[10] Felshcer, W., Dialogue games as a foundation for intuitionistic logic, Handbook of Philosophical
logic, Vol.3, pp.341-372, D. Reidel Publishing Company, 1986.

[11] Fiore, M., Axiomatic Domain Theory in Category of Partial Maps, PhD thesis, ECS-LFCS-94-307,
Univ. of Edinburgh, 1994.

[12] Fiore, M. and Plotkin, G., An Axiomatisation of Computationally Adequate Domain Theoretic
Models of FPC, LICS'94, pp.92-102, IEEE, 1994.

[13] Freyd, P., Algebraically Complete Categories, In Proc. of Como. Category Theory Conference,
LNM 1488, pp.95-104, Springer Verlag, 1991.

[14] Girard, J.-Y., Linear Logic, TCS, Vol.50, pp.1-102. North-Holland, 1987.
[15] Gunter, C, Semantics of Programming Languages: Structures and Techniques, MIT Press, 1992.
[16] Harmer. R., Malacaria, P., Linear foundations of game semantics, a typescript, Sep. 1996.
[17] Honda. K.. Yoshida. N., Name-Passing Games: a functional universe, a typescript. 35p. Nov. 1996.
[18] Honda, K. and Yoshida, N., Game-theoretic Analysis of Call-by-value Computation (full version of

this paper), ftp-able at ftp.dcs.ed.ac.uk/export/kohei/cbvfull.ps.gz, Feb, 1997.
[19] Hyland, M. and Ong, L., On Full Abstraction for PCF: I, II and III, 130 pages, ftp-able at

theory.doc. ic.ac.uk/papers/Qng, 1994.
[20] Hyland, M. and Ong. L., Pi-calculus, dialogue games and PCF, FPCA'93, ACM. 1995.

[21
[22
[23;

[24;
[25
[26
[2 ■'

[28;
[29;

[30'
[31
[32;
[33'

[3<

[35;
[36

[3T;

[3s;
[39;
[40;

[41

[42;

236

Laird, J.. Full abstraction for functional languages with control, LICS'97, IEEE, 1997.
Kahn, G. and Plotkin, D., Domaines Goncrets. INRIA Report 336, 1978.
Longo. G. and Moggi, E., Cartesian closed categories of enumarations for effective type-structures,

LNCS 173, Springer-Varlag, 1984.
McCusker, G., Games and Full Abstraction for FPC. LICS'96, IEEE, 1996.
Milner. R. Fully abstract models of typed lambda calculi. TCS, Vol.4, 1-22, North-Holland, 1977.
Milner, R, -4 Calculus of Communicating Systems, LNCS 76, Springer-Verlag, 1980.
Milner, R., Functions as Processes. MSCS, 2(2), pp.119-146, 1992.
Milner, R., Sorts and Types of ir-Calculus, a manuscript, 43pp, 1990.
Milner, R., Polyadic ir-Calculus: a tutorial. Proceedings of the International Summer School on
Logic Algebra of Specification, Marktoberdorf, 1992.
Milner, R., Tofte, M. and Harper, R., The Definition of Standard ML, MIT Press, 1990.
Moggi, E., Partial morphisms in categories of effective objects, Info.&Comp., 76:250-277, 1988.
Moggi, E., Notions of Computations and Monads. Info.&Comp., 93(l):55-92, 1991.
Nickau. M., Hereditarily Sequential Functionals, LNCS 813, pp.253-264, Springer-Verlag, 1994.
Ong, L., Correspondence between Operational Semantics and Denotational Semantics, Handbook
of Logic in Computer Science, Vol.4, pp.269-356, Oxford University Press, 1995.
Plotkin, G., LCF considered as a programming language, TCS, 5:223-255, North-Holland, 1975.
Plotkin, G., Lecture on Predomains and Partial Functions. Notes for a course given at the Center
for the Study of Language and Information, Stanford, 1985.
Power, J., Robinson, E., Premonoidal Categories and Notions of Computation, To appear in MSCS.
Riecke. J., and Sandholm.A. Relational Account of Call-by-value Sequentiality, LICS'97, 1997.
Robinson, E. and Rosolini, P., Categories of Partial Maps, Info.&Comp., 79:95-130, 1988.
Sieber, K., Relating Full Abstraction Results for Different Programming Languages, FST/TCS'10,

pp. 373-387, LNCS 472, Springer-Verlag, 1990.
Winskel. G., Synchronization Trees, TCS, Vol.34, pp. 33-82, North-Holland, 1985.
Winskel, G-, The Formal Semantics of Programming Languages, MIT Press, 1993.

APPENDIX: PCFV

We give a brief review of syntax and operational semantics of the call-by-value PCF
[15, 42. 40]: our treatment is nearest to [15]. Given an infinite set of variables, ranged
over by x, y, z,..., the syntax of the language is given as follows.

a ::= t | o | a => ß M ::= x \ Xxa.M | MM | cond L M1 M2 \ px^P.M | c

where c is a constant. An environment is a list of pairs of a variable and a type, where
all variables are distinct, ranged over by T, A,... The typing rules of PCFv is given as:

c is a constant of type a V > M : a => ß T > N : a
T,x : a,T > x : a = r .,Wl 0

T > c : a 1 > MIS : p

r, x : a > M : ß T>L:o T > M : a T > N : a T,x : a => ß> M : a => ß
T>\xa.M :a=>ß T > cond L M N : a T> px.M : a => ß

As a set of constants, we assume: n : 1 for each numeral n, Q : a for each a, succ : 1 =>■ t,
and zero? : 1 => o. Terms of form >M : a (often written M : a) are called closed terms.
Abstractions and constants except Q are called values.

On the set of terms we define an evaluation relation JJ- in the style of natural semantics.

M Ü- Xx.Mo N JJ- V Mo{V/x} I), U M{fxx.M/x} ij. V M#n
V 4 V MN 4 U fix.M !)■ V succ M JJ- n + 1

A/JJ.0 MJJ.n + 1 L JJ. true M, IJ. V X JJ false M2$U
zero?A/ JJ true zero?M JJ false cond L Mi M2 JJ V cond L Mi M2 JJ U

Finally an observational preorder on closed terms is defined as follows: M ^0bs N iff,
for any well-typed context of a program type C'[-], we have C[M] JJ n iff C[N] JJ n. We
note that this is the same thing as considering convergence at all types, a situation quite
different from the case of call-by-name evaluation.

On Modular Properties of Higher Order Extensional
Lambda Calculi

Roberto Di Cosmo Neil Ghani

DMI-LIENS (CNRS URA 1327)
Ecole Normale Superieure - 45, Rue d'Ulm - 75230 Paris, France
e-mail:dicosmo@dmi.ens.fr, nxgScs.bham.ac.uk

Abstract. We prove that confluence and strong normalisation are both modular properties for the addi-
tion of algebraic term rewriting systems to Girard's F" equipped with either /3-equality or /3rj-equality.
The key innovation is the use of ^-expansions over the more traditional ^-contractions.

We then discuss the difficulties encountered in generalising these results to type theories with dependent
types. Here confluence remains modular, but results concerning strong normalisation await further basic
research into the use of ^-expansions in dependent type theory.

1 Introduction

A property P is modular for the combination of rewrite systems 71 and 72 iff whenever both 7i
and T2 satisfy P, then so does the combined rewrite system 7i U %. This paper studies the modu-
larity of confluence and strong normalization for combinations of higher order lambda calculi and
algebraic term rewriting systems. That is, does the addition of a confluent algebraic TRS to a higher
order lambda calculus (with or without rewrite rules for 77-conversion) produce a system which is
still confluent? Similarly, is the combination of a strongly normalising algebraic TRS and a higher
order lambda calculus (again, with or without rewrite rules for 77-conversion) still SN? And do
these results generalise to dependent type theories such as the Calculus of Constructions? These
questions are important from both a theoretical point of view, where one looks for general results
on combination of rewriting systems, and from a practical point of view, when one develops higher
order semi-unification algorithms, or establishes the formal properties of algebraic-functional lan-
guages.

Tannen [9] showed that strong normalization and confluence are both moldular properties for
the combination of algebraic TRS's with the simply typed lambda calculus equipped with ß-
reduction. Gallier and Tannen [10, 11] extended these results to System F. Although strong nor-
malisation remains modular in these type theories if we work with both ß- and ^-reductions, con-
fluence is no longer a modular property. For example, if s is a base type with constants / : s -> s
and * : s and with a rewrite rule fx =$> *, then =>■ is confluent. However, the combination of
=>• with the contractive 77-rewrite rule fails to be confluent: \x.* 4= Xx.fx => /. Because
of these problems with ^-contractions, later research was restricted to adding more expressive
TRSs to systems equipped only with /3-reduction. In particular, translations into intersection type-
assignment systems [3,29,26,6,5,7,4] were used to prove the modularity of strong normalisation
and completeness, i.e. the property of strong normalisation and confluence together, with conflu-
ence following from strong normalisation by Newman's lemma. As far as the authors are aware,
modularity of confluence alone was not pursued any further and no attempts were made to study
modularity results for calculi equipped with /377-equality.

This paper extends the works of Tannen and Gallier in several ways. Firstly, we shall consider
more expressive calculi such as Girard's Fu and Coquand and Huet's Calculus of Constructions,
henceforth denoted CoC We show that confluence is modular for the combination of algebraic
TRS's with these calculi (without ^-conversion). As mentioned earlier, these results are surpris-
ingly missing in the literature. Our second contribution is to extend these modularity results to
calculi equipped with /3r/-equality. This is done by replacing the problematic interpretation of 77-
conversion as a contractive rewrite relation with its more recent interpretation as an expansionary

238

rewrite rule. Eta-expansions in the simply typed A-calculus were first studied in the 70's but only
recently they made the object of accurate study in a number of papers [1, 16, 13, 19, 27, 17] (for
an up-to-date survey, the interested reader can refer to [15]). This paper relies on Ghani's recent
results on ^-expansions in Fu [23] and CoC [22].

2 Extensional and Non-extensional Fw

We use the standard notions of substitutions, reduction, normal form, confluence, normalization,
etc., from the theory of A-calculus and rewriting systems [8, 14]. Tht free variables of a term M
are denoted FV{M) and we write M6 for the result of applying a substitution 6 to the term M.
The domain of a substitution 9 is denoted dom(ö). If K is a rewrite relation with unique normal
forms, then reduction to ft-normal form is denoted Tl \, and the unique ft-normal form of t is
denoted Tl{t). Finally, a relation R commutes with S iff (R*)~u, 5* C 5*; (A*)-1 where ; is
the usual composition of relations. If two confluent relations commute, then their union is also
confluent.

In this section, two versions of Fu will be defined. Extensional Fu uses /^-equality for type
conversion while non-extensional Fu has only ,0-equality for type conversion — our presentation
is based on Gallier's [21]. Formally, let * be a distinguished symbol and let TVar and Var be
disjoint sets of type variables and term variables. These variables are used to define the kinds,
types (also called type constructors) and terms of Fu as follows:

{Kinds) K := *\K -*• K

(Types) T := t\T-+T\Vt: K.T\\t : K.T\TT

[Terms) M := x\\x : T.M\MM\At: K.M\M[T]

where t € TVar is a type variable and x 6 Var is a term variable. A term is called an abstraction
iff it is of the form \x : T.M or At: K.M. In order to ensure that types inhabit unique kinds, we
assign to each type variable t a unique kind and denote the set of type variables having kind K as
TVar (if). This kinding information is used to define the kinding judgements of Fu as follows

iGTVar(i<:) s : K2 t € TVar(Ä"i) t : Kx -> K2 s : Kx

t:K (At : Kx.s) :Kl^-K2 ts : K2

t e TVar(K) s : * t: * s : *

Vt : K.s : * t-*s : *

In order to give the typing judgements of extensional Fu we define the usual ß^-equality relation
on well-kinded types; if two types t and s are ßrj-equal, we denote this by writing t =ßn s. The
following lemma is proved in [23]

Lemma 1. ßr]-eqitality over types can be generated by a confluent, strongly normalizing reduction
relation containing ß reduction and restricted ^-expansions. The unique normal form of a type A
is its long ßn-normal form and is denoted NF(A).

The typing judgements of extensional Fw are defined by the following rules, while the typing
judgements of non-extensional Fu use only /3-equality for type conversion.

x:T e dom(r) F\- M:t t =0TI s s : K

rv-x-.T r\-M:s

r,x:h\- M :t2 r\-M:ti-^t2 F \-N : h

Fh (Xx-.h.M) :ti-±t2 FhMN:t2

239

.-r,ti:K\-M:t2 r \- M : Vtj : K.t2 r h s : K

rV ylfj : A-.M : V*i : Ä\i2 ^ I" M[s] : t2[s/h]

In the rest of this paper, we confine our attention to only those types that kind check and those
terms that type check. In addition, we increase legibility by dropping all reference to the context
in which a typing judgement occurs whenever there is no danger of confusion arising.

2.1 Eta-expansions in Fu

As argued in the introduction, any robust result concerning the modularity of confluence in the
presence of 77-conversion requires its interpretation as an expansion. In the simply typed A-calculus,
one permits an expansion t => Ax : A.tx providing that t is neither a A-abstraction nor applied to
another term. This restricted expansion relation is SN, confluent and its reflexive, symmetric and
transitive closure is /^-equality. Thus /377-equality can be decided by reduction to normal form in
this restricted fragment.

However, defining 77-expansion in Fu requires further care so as to avoid pitfalls caused by
the presence of multiple typings for terms. For instance, if an expansion M n s Xx : A.Mx
is permitted providing M : A -» B, then 77-expansion alone is not even confluent as there are
rewrites

Ax : A'.Mx -JL- M -JL~^ \x : A.Mx

where we only know that A =ßTj A' in the type-conversion relation. Worse, 77-expansion defined
this way does not have unique normal forms and hence the usual strategy for computing long
normal forms (first contract ß redexes and then perform all remaining expansions) would no longer
be valid. For these reasons we define a type normalised form of 77-expansion as follows

{x fresh
M : A-+C, with A-tC in type normal form
M is not a A-abstraction
M is not applied

Note that the existence of type normal forms is assured by lemma 1. There is no need for a type-
normalised form of the higher order 77-rewrite rule because if a term inhabits the types Vt : K.A
and Vt : K'.A', then we must have K = K'. Hence our higher order 77-expansion is:

t fresh
M:(\/t: K.A)
M is not a polymorphic A-abstraction

M -*-*■ {At: K.M[t\) if <

M is not applied

Definition 2. Let ß be the rewrite relation consisting of all /3-reductions on types and term. Also,
let 77 be the rewrite relation consiting of all restricted expansions on types and those expansions
given in rules 1 and 2. The relation 77 is defined by ommiting the restriction to type normal forms
in rule 1. Finally define ßfj = ß U 77 and ßr) = ß U 77.

Results such as the modularity of confluence and strong normalisation are proven first for ßfj and
then lifted to the more general ßr\ via the following lemma.

Lemma 3. The reflexive, symmetric and transitive closure of —^ and 2^ are both the
usual ßr\-equality over terms of Fu.

Proof. Firstly, all r\ equalities M = Xx : A.Mx that seem to be forbidden by the restrictions of
—'-^ can be obtained by /^-reduction of Xx : A.Mx. Thus the reflexive, symmetric, transitive

closure of — is /377-equality. For the second part of the lemma, notice that —-^-expansions
are examples of —^ -expansions. In addition, if M —""^ Ax : A.Mx, but A is not a type
normal form, then both of these terms —^ -reduce to Ax : NF(A).Ma;.

240

The major theorems concerning ßrj and ßrj are

Theorem 4. The rewrite relations ßrj and ßr] are confluent and strongly normalizing to the long
ß-q-normal forms. The long ßrj-normal form of a term may be calculated by first contracting all
B-redexes and then performing any remaining type-normalised rj-expansions.

3 Modularity Results for Fu

In this section we define algebraic TRSs and show the modularity of confluence and strong nor-
malisation for the unions of algebraic TRSs with Fu. First some definitions.

Definition 5. A signature E consists of disjoint sets T of base types and T of function symbols
together with a function which assigns to every function symbol / G T, a typing of the form
f . ai _>..._> an ->■ a, where ai,..., an, a £ T and n > 0. We say the arity of / is n.

Definition 6. An algebraic rewrite rule is an ordered pair (T, U) of algebraic terms such that T is
not a variable, and every variable of U also appears in T. An algebraic term rewriting system T is
a finite set {(T;, C/i)}"=1 of algebraic rewrite rules.

Definition?. Given an algebraic TRS T, the associated algebraic rewrite relation is the least
binary relation —2L^ on terms such that if (T, U) 6 T, 9 is a substitution and C is a context,
then C[T9] -^ C[U6]

Given an algebraic TRS, its union with calculi such as Fu is defined as expected. A term of the
union of an algebraic TRS and Fu is algebraic if it is either a variable of base type or has the form
fh...tn, where / € T has arity n, and every t; is an algebraic term. Note that an algebraic term
is always of base type. The key concept in modular term rewriting is the layer structure, i.e. the
ability to decompose a term constructed from symbols in the union of two disjoint signatures into
a term constructed from symbols in only one signature and strictly smaller subterms whose head
symbol comes from the other signature. We follow [10] in using the following defintions relating
to layer structure.

Definition 8. A typing judgement F h M : s is called trunk iff M is of the form /Mi, ...,Mk

where / is a constant of arity k, otherwise it is called non-trunk.

Definition 9. An algebraic trunk decomposition of a typing judgement r V- M : s consists of a
typing judgement A h A : s, where A is an algewbraic term, and a term-valued substitution <j>
such that M = A<j>, dom(0) = FV{A) and

- Each free variable in A occurs only once

- For each x 6 FV(A), the typing judgement F h <f>(x) : s is non-trunk.

Note that all judgements r \- M : s are either trunk or non-trunk because M is of base-
sort. Induction shows that all typing judgements r r- M : s have algebraic trunk decompositions
which are unique upto the renaming of the free variables of A. We therefore write M = A[<fi] for
an algebraic trunk decomposition of M and refer to A as a trunk of the term M.

Example 1. If / is a binary function symbol and a is a non-trunk term, then a trunk decomposition
for the term faa is fxy[a/x, a/y]. If g is a unary function symbol and a is a constant, then a trunk
decomposition of g((\x ■ s.x)(a)} is gy[{Xx : s.x)(a)/y]

Definition 10. A reduction M = A[<j>] —^ N is a trunk reduction iff the redex contracted is not
a subterm of one of the 61 x) 's, otherwise it is a non-trunk reduction.

241

Example 2. Using the terms of example 1, and given a rewrite rule fxx —r^ x, there is a trunk
reduction faa —r^ a. There is a non-trunk reduction g{{Xx : s.x)(a)) " ga.

Example 2 show two undesirable properties of reduction. Firstly, the presence of non-left linear
rewrite rules means that trunk reductions do not induce reductions of the trunk of the redex. For
instance faa —^ a but there is no reduction fxy ~r^ x. Also /^-reduction may collapse the
laver structure of a term and hence a non-trunk reduction need not preserve the trunk of the redex,
eg the trunk of g((\x : s.x){a)) is gy but the trunk of ga is ga. We solve the first problem by
introducing a special term variable f for each sort and then defining a special substitution j which
maps every term variable of type s to f. There is also solution for the second problem.

Lemma 11. Let A<j> be a trunk decomposition for M

-IfM —21i- N is not a trunk reduction, then there is an algebraic trunk decomposition N -
A<t>' such that for some x £ FV(A), <f>(x) -^ 4>'(x), while for all other y € FV{A),

4>(y) = 4>'(y)-

-IfM —^^ N is a trunk reduction, then there is an algebraic trunk decomposition N = A'<f>'
such that A] -^^ A'j and for every y 6 FV(A'), there exists an x £ FV{A) such that

<P'(y) = 0M-

-IfM —^ N, then there is an algebraic trunk decomposition N = A'<t>' and for every y 6
FV(A'), there exists an x 6 FV{A) such that either <p{x) —^ Nx and <j>'{y) is a subterm

ofNx,or4>{x) = <P'{y)

Proof. The lemma is proved by induction on the term M.

3.1 Modularity of Confluence

The proof strategy of [11] is used to show the modularity of confluence for the combination of
algebraic TRSs with both extensional and non-extensional Fu. In particular, reduction to long
/37/-normal form in Fu commutes with algebraic reductions.

Lemma 12. IfT is a confluent algebraic rewriting system (over algebraic terms), then it is con-
fluent over the terms ofFuUT (mixed terms).

Proof. This proof of [11] generalises to Fu and CoC because the only property required of mixed
terms is that the trunk of a term is preserved by non-trunk, algebraic reductions, as proven in

lemma 11.

Lemma 13. Reduction to ß normal form commutes w.r.t. algebraic reduction, i.e.

01

T „
I

-JL^.r

Proof See lemma 31 in the appendix for the proof.

These lemmas allow us to derive our first modularity result, namely that of confluence for the
addition of algebraic TRSs to non-extensional Fu. This is a new result as it shows modularity of
confluence alone, and not of confluence and strong normalization together as in [7]:

Corollary 14. The union of non-extensional F'^ with a confluent algebraic TRS is confluent.

242

Proof. By lemma 13, if t =ßur f, then ß(t) —r 0(f)- By lemma 12, T is confluent over mixed
terms. Hence ß{t) and ß(t') have a common 7"-reduct and hence t and t' have a common reduct.

Proving that confluence is modular for the addition of algebraic TRSs to extensional Fu re-
quires us to relate algebraic rewriting to expansive normal forms, extending [17]:

Lemma 15. Reduction to fj normal form commutes w.r.t. algebraic reduction, i.e.

T .

Vl

I

Y

Proof. The proof is by induction on the structure of terms. The fact that the 77 normal form of a
term is unique is necessary for the lemma to hold with arbitrary TRSs and not only left-linear ones.

As a consequence of the previous lemmas, we have the following

Corollary 16. Reduction to ßrj normal form commutes with algebraic reduction, i.e.

T „

ßvl

1

Y

Proof By theorem 4, the long /377-normaI form of a term can be computed by first contracting
all /3-redexes and then performing any remaining (restricted) 77-expansions. Thus the corollary
follows from lemma 13 and lemma 15.

Theorem 17. The union of ßrj with a confluent algebraic TRS is confluent.

Proof. As in corollary 14 using corollary 16.

Corollary 18. The union of ßrj {where 77 is not restricted to type normal forms) with a confluent
algebraic TRS T is confluent.

Proof. If two terms are T U ßrj equivalent, they are T U ßrj equivalent and hence by theorem 17
there is a T U ßrj completion for these terms. But this is also a T U ßrj completion.

3.2 Modularity of Strong Normalization

The relations ßrj and ßr\ were proved confluent and SN in [23] by a modified reducibility ar-
gument, adapted from traditional reducibility proofs to cope with the presence of expansionary
77-rewrite rules. Reducibility arguments are designed to cope with the higher order features at the
level of kinds and type constructors, while the effect of adding algebraic TRSs is only felt at the
level of base types. Thus these reducibility arguments generalise to prove the modularity of strong
normalisation for the combination of algebraic TRSs with extensional Fu.

Lemma 19. IfT is a SN algebraic TRS, then its extension to Fu is also SN.

Proof. The lemma is proved by induction on the structure of terms with the only interesting case
being a trunk term M = A<p. By lemma 11, any infinite reduction sequence of M induces either an
infinite reduction sequence of a (fi(x), or an infinite reduction sequence of Aj. The first possiblity
is impossible by the induction hypothesis, while the second possibility is also impossible as T is
SN on algebraic terms and Aj is algebraic.

243

We now prove the main result of this section, namely that the union of a SN algebraic TRS
and /^-reduction in Fu is SN. The proof follows the modified reduciblity argument of [23] and
thus we only sketch the general reducibility argument and concentrate instead on the particular
novelties which arise via the addition of algebraic TRSs. One defines a notion of reducibility
candidate and reducibility parameter exactly as in [23] and proves that if T is a type and 9 is a
reducibility parameter, then TO is a reducibility candidate. The only new case is when T is a sort
s and here the reducibility candidate s9 is defined to be the SN terms of type s. The following pair
of lemmas are the key to completeing the proof.

Lemma 20. If the terms t\,... ,tnare SN, then so is fti... tn.

Proof. That there are no infinite ßfj reduction sequences is proved in [23]. By corollary 16, a
rewrite ftx...tn = M —^ N induces a sequence of rewrites M0 —^ N0 where M0 and N0

are the long /3r/-normal forms of M and N. Close inspection of the proof shows that if the initial
rewrite is of the trunk, then this induced rewrite sequence is of length at least one. Hence there
can be no infinite reduction sequences containing an infinite number of trunk rewrites. By lemma
11, all other infinite reduction sequences of ft\... tn induce infinite reduction sequences of one
of the terms U which is prohibited by assumption.

Lemma21. IfU is a SN term of sort s< for i = l,---,m, and f has type si ->...->• sn where
m <n, then fti... tm is reducible.

Proof. The proof is by induction on the type of the term ft\... tm. If this type is a sort, then
we must show that ft\... tm is SN under the assumption that each of the U are SN. But this is
precisely lemma 20. If however the type of fh... tm is of the form s-*T, then we must show
that if t is a reducible term of type s, then /i,... tmt is reducible. Since the reducible terms of
type s are exactly the SN ones, this follows from the induction hypothesis.

Lemma 22. IfT is a SN algebraic TRS, then so are ßfj U T and ß U T.

Proof. Having defined reducibility candidates as in [23], the proof concludes by showing that if i
is an arbitrary term, 9 is a reduciblity parameter, the free term variables of t are among Xj : Tj and
UJ are members of the reducibility candidate TjB, then t[|0|][i*j/a:j] is a member of the reducibility
candidate TO (note \0\ is the type-valued substitution underlying the reduciblity parameter 9).

The only new case is when t is of the form fti... tn and one must show (/tx... tn)[|0|][uj/a:j]
is reducible when each of the terms *i[|ö|][uj/xj] is reducible. But this follows from lemma 21.
Strong normalisation of ßrjl)Tfollows by taking the identity substitution and identity reducibility
parameter, while strong normalisation of ß U T follows as this is a subrelation of ßfj U T.

There is a simple trick to extend strong normalisation of ßfj U T to ßr\ U T. If t is a term,
let TNF(t) be the type normal form of t, ie the term that is obtained by normalising all the types
occuring as subterms and in A-abstractions in t. A reduction t —^ t' is called type induced iff
the redex contracted occurs inside a subterm of t which is actually a type.

Lemma 23. If there is a rewrite t—^V, then there is a rewrite TNF(t) -jSi'rTNF(i')- If the
original rewrite is not type induced then the final rewrite sequence is not of zero length.

Proof. The lemma is proved exactly as in [23]

Corollary 24. IfT is a SN algebraic TRS, then ßr}l_lT is also SN.

Proof. There are no infinite sequences of type induced reductions because reduction on types is
SN. In addition, if t -^^ t' is type induced, then TNF(t) = TNF(i'). Thus any infinite ßr/UT
reduction sequence is mapped by type normalisation to an infinite ßfjliT reduction sequence.

244

4 Modularity for Algebraic TRS and CoC

We have proven a series of modularity results concerning the addition of algebraic TRSs to F".
The next logical step is to apply the same ideas to the much more powerful Calculus of Con-
structions [12]. Due to lack of space, we cannot introduce it here in detail, but we recall that the
most important feature is that the distinction between types and terms is blurred and types can
contain terms embedded within them; let ß and rj refer to the Calclulus of Constructions rules
in this section. Type dependency introduces infinite reduction sequences which are not present in
non-dependent type theories. For example, if we define expansions by

r\-t: Tlx: A.B
r h t => Ax : A.tx

and define the term B(x) = (\z : X -> X.X)(x), then there is a typing judgement X : *,x :
X->Xhi: Tiz : B(x).X and hence an infinite reduction sequence

X :*,x:X -> Ihi=> Xz : B{x).xz => Xz : B(Xz : B(x).xz).xz => ...

Notice that this example does not use any higher order types and so can be formulated in simpler
dependent type theories such as LF. The existence of infinite reduction sequences such as the one
above forces us to restrict our attention to a type normalised form of restricted ^-expansion which
we again denote by fj. Further, let ßfj be the rewrite relation containing all /^-reductions and type
normalised restricted expansions and ßrj be defined as in ßfj but without the type normal form
requirement.

In Fu the existence of type normal forms is easy to prove as reduction at the level of types is
defined independently to reduction at the level of terms. However in a dependent type theory such
as CoC the existence of long ^ry-normal forms is much harder to prove. One can either use the
standard theory of //-contractions as in [20] or prove their existence while simultaneously devel-
oping the theory of expansions as in [22]. The following lemma is proved in [22] - we conjecture
that ßfj is actually SN but a proof awaits further research.

Theorem 25. ßfj and ßr\ are confluent and weakly normalising to the long ßr\-normal forms.

4.1 Modularity of Confluence

As we have described above, the theory of strong normalization for ^-expansions in Coc is not
settled. Nevertheless, we can use confluence and weak normalization of ßfj to good avail and get
the modularity of confluence for the union of algebraic TRSs with CoC.

Lemma26. Algebraic reduction commutes with ß-normalization in CoC.

Proof. As in [11]. Again, see lemma 31.

Corollary 27. If T is a confluent algebraic TRS, then ßUT is also confluent

Proof. As in corollary 14 and using lemma 26

Proving that confluence is modular for the union of algebraic TRSs with extensional CoC
requires another commutation lemma.

Lemma28. Algebraic reduction commutes with fj-normalisation.

Proof. Similar to lemma 15.

Corollary 29. IfT is a confluent algebraic TRS, then ßfjUT and ßr)L)T are also confluent.

Proof, ßfj U T is proven confluent by a similar argument to theorem 17 using the commutation
lemmas 26 and 28. The confluence of ßrj U T is proved as in corollary 18.

245

5 Conclusions •■

We have proved a variety of modularity results for the combination of algebraic TRSs with higher
order typed A-calcuIi. In generalising the previous results in the literature, our key innovation is
the use of ^-expansions instead of the more problematic 77-contractions.

There are several directions in which we wish to persue this research. Most importantly we
want a modularity result for strong normalisation for the addition of algebraic TRSs to CoC. As
we remarked in the paper, this research awaits further basic research into the use of ^-expansions
in CoC. In particular we conjecture that ßrj is SN and we further conjecture that the combination
of a SN algebraic TRS with ßrj remains SN.

Acknowledgements

The first author would like to thank Delia Kesner and Adolfo Piperno for many enlightening
discussions on all these matters, without which this paper would not have seen the light.

References

1. Y. Akama. On Mints' reductions for ccc-Calculus. In Typed Lambda Calculus and Applications, number 664 in
LNCS, pages 1-12. Springer Verlag, 1993.

2. F. Barbanera. Combining term-rewriting and type-assignment systems. In Third Italian Conference on Theoretical
Computer Science, Mantova, 1989. World Scientific Publishing Company.

3. F. Barbanera. Combining term rewriting and type assignment systems. Int. Journal of Found. ofComp. Science,
1:165-184, 1990.

4. F. Barbanera and M. Fernandez. Intersection type assignment systems with higher-order algebraic rewriting. The-
oretical Computer Science. To appear.

5. F. Barbanera and M. Fernandez. Modularity of termination and confluence in combinations of rewrite systems
with A„. In A.Lingas, R.Karlsson, and S.Carlsson, editors. Intern. Conf. on Automata, Languages and Program-
ming (ICALP), number 700 in Lecture Notes in Computer Science, Lund, 1993.

6. F. Barbanera and M. Fernandez. Modularity of termination and confluence in combinations of rewrite systems
with the typed lambda-calculus of order omega. Technical report, Universit Paris Sud, 1994.

7. F. Barbanera, M. Fernandez, and H. Geuvers. Modularity of strong normalization and confluence in the algebraic-
A-cube. In Proceedings of the Symposium on Logic in Computer Science (LICS), Paris, 1994. IEEE Computer
Society Press.

8. H. Barendregt. The Lambda Calculus; Its syntax and Semantics (revised edition). North Holland, 1984.
9. V. Breazu-Tannen. Combining algebra and higher order types. In IEEE, editor, Proceedings of the Symposium on

Logic in Computer Science (LICS), pages 82-90, July 1988.
10. V. Breazu-Tannen and J. Gallier. Polymorphic rewriting preserves algebraic strong normalization. Theoretical

Computer Science, 83:3-28, 1991.
U.V. Breazu-Tannen and J. Gallier. Polymorphic rewiting preserves algebraic confluence. Information and Compu-

tation, 114:1-29. 1994.

12. T. CoquandandG. Huet. Constructions: a higher-order proof system for mechanizing mathematics. EUROCAL85
in LNCS 203. 1985.

13. D. Cubric. On free CCC. Distributed on the types mailing list, 1992.
14. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. Van Leeuwen, editor, Handbook of theoretical com-

puter science, volume Vol. B : Formal Models and Semantics, chapter 6, pages 243-320. The MIT Press, 1990.
15. R. Di Cosmo. Abrief history of rewriting with extensionality. In Kluwer, editor, Proceedings ofthe 1996 Glasgow

Summer School, 1996. To appear. A set of slides is availables from http: //www. dmi.ens.fr/~dicsmo.
16. R. Di Cosmo and D. Kesner. Simulating expansions without expansions. Mathematical Structures in Computer

Science. 4:1-48, 1994. A preliminary version is available as Technical Report LIENS-93-ll/INRIA 1911.
17. R. Di Cosmo and D. Kesner. Combining algebraic rewriting, extensional lambda calculi and fixpoints. Theoretical

Computer Science, 1995. To appear.
18. D. J. Dougherty. Adding algebraic rewriting to the untyped lambda calculus. Information and Computation,

101(2):251-267. Dec. 1992.
19. D. J. Dougherty. Some lambda calculi with categorical sums and products. In Proc. of the Fifth International

Conference on Rewriting Techniques and Applications (RTA), 1993.
20. G. Dowek. G. Huet, and B. Werner. On the definition of the eta-long normal form in the type systems of the cube.

In Informal Proceedings ofthe Workshop "Types", Nijmegen, 1993.

246

21. J. Gallier. On Girbrd's "Candidats de Reductibility, pages 123-203. Logic and Computer Science. Academic

Press, 1990. Odifreddi, editor.
22. N. Ghani. Eta-expansions in dependent type theory - the calculus of constructions. In Proceedings, TLCA 97

LNCS 1210. Nancy. France 1997. Eds de Groote and JR Hindley
-13 N Ghani. Eta-expansions in F". Presented at CSL'96 Utrecht Holland. To appear in CSL'96 proceedings.
24. N. Ghani. ^-equality for coproducts. In M. Dezani-Ciancaglini and G. Plotkin, editors, Typed Lambda Calculus

and Applications, volume 902 of Lecture Notes in Computer Science, Apr. 1995.
->S N Ghani. Extensionality and polymorphism. University of Edimburgh, Submitted, 1995.
26. B. Howard and J. Mitchell. Operational and axiomatic semantics of pcf. In Proceedings of the LISP and Func-

tional Programming Conference, pages 298-306. ACM, 1990.
27. C. B. Jay and N. Ghani. The Virtues of Eta-expansion. Technical Report ECS-LFCS-92-243, LFCS, 1992. Uni-

versity of Edimburgh, preliminary version of [28].
28. C. B. Jay and N. Ghani. The Virtues of Eta-expansion. Journal of Functional Programming, 5(2):135-154, Apr.

1995. ._ . ,
29. J.-P. Jouannaud and M. Okada. A computation model for executable higher-order algebraic specification lan-

guages. In Proceedings, Sixth Annual IEEE Symposium on Logic in Computer Science, pages 350-361, Amster-

dam", The Netherlands, 15-18 July 1991. IEEE Computer Society Press.
30. G. Mints. Teorija categorii i teoria dokazatelstv.I. Aktualnye problemy logiki i metodologii nauky, pages 252-278,

1979. 17/7. . ,
V. van Oostrom. Developing developments. Submitted to Theoretical Computer Science should appear in volume

145, 1994.

A Commutation of algebraic reduction with reduction to ß or Coc normal form.

In this section we simply reformulate lemma 4.1 of [11] in the framework of non extensional Fu

and Coc. It is to be noticed that there is really nothing new in the proof, as the clever argument
used in that lemma is tight enough to only involve the first order fragment of the caculi, so that
extensions to other calculi is straightforward.

In the following, let A —c~^ B be an algebraic rewrite rule, with s being the sort of the al-
gebraic term A (and B) and ■£ = x, : si,... ,i„ : sn = FV(A) U FV{B) with the «i's
being the sorts of the variables used in the algebraic rule. Let also z be a chosen variable of type
Sl _> ... _>. $n -* s. We also suppose a given typing and kinding context that we omit for read-

ability.

We say that a term has the z-algebraic property if all occurrences of the variable z in it are
fully applied, i.e. at the head of a subterm zPx ■ ■ ■ Pn that possesses the type s with all the JVs
possessing the type S{. This property is clearly inherited by subterms.

The central property which is needed is the following (where by ß - n.f. we mean reduction
to n.f. only w.r.t. the first order rule ß while F" (resp. Coc)-n.f. is w.r.t the full non extensional
reduction system, which we will also call/«// normal form):

Proposition 30. IfZ is an Fw (resp. Coc) normal form having the z-algebraic property, then

X =ß-n.f.{Z[\-t :-?.A/z\) and Y = ß-n.f.(Z[\Tt-.-f.B/z])

are F" (resp. Coc) normal forms and moreover X "^^ Y.

Proof. This is by induction on the size of Z. Since Z is a normal form, it must be of the shape
Xvi... vk.hTi ...Tm with vi being either a term variable x, : Si with Si a normal form, or a type
variable t{ : K.
We have now two cases:

247

h£z then X = ß- n.f.{Z[Xt : lt.A/z]) = \l?.hTA ... T* and Y = ß - n.f.(Z[\l> :
-f.B/z]) = X^.hT1

B...TB withiy* = ß-n.f.(T$yf : -f.A/z]) and if = ß -
n.f.(Tl{\~$: ~f.B/z]).'Q\xtTi is still a full normal form, of size strictly smaller than Z (as at
least /i is removed), and it still possesses the z-algebraic property as it is a subterm of Z. So,
by induction hypothesis, T{

A is a full normal form and T/4 —"^ Tf, hence X is a full normal
form and X —"^ Y.

h = z In this case, k = m and we have that

Z[X* : -f.A/z}) = Al7.(Alf : -f.A)^ ...Tm -
JL^ Xf.A^/x,... Tm/xn]

and

Z[A"£ : -f.B/z]) = A1T.(A^ : ~f .B)TX ...Tm -^ AlT.B[Ti/:ri.. .Tm/ar„]

Then, since no /3-reduction can take place at the junction points of the Ti with A, as they
have as type a base sort, X = ß- n.f.(Z[Xt : -f.A/z]) = X^.A[T^/Xl... T

A/xn] and
Y = ß- n.f.{Z[\-£ : -f.B/z]) = \-f.B[T{3/xl.. .T

B/xn]. As above, the TZ
A (resp.

Tf) are smaller normal forms than X (resp. Y), so by induction hypothesis we have that the
TA and Tf are full normal forms and that T{

A —*^ if. Then, both X and Y" are full nor-
mal forms and moreover X = \T?.A[Tf/xi... TA/xn] -^ Alt.Apf/x,... TB/xn]
—^ \Tt.B[T?/xi... Tg/xn]. We are done.

Using this crucial result it is then quite easy to show the equivalent of Lemma 4.1 of [11]:

Lemma 31. Let A —c-i- B bean algebraic rewrite rule. IfM —^ N, then fnf(M) ~"^ fnf(N),
where fnf(M) is the full non-extensional normal form w.r.t. Fu or Coc.

Proof. If M —c-^ N, then M = C[A<j>] and N = C[B<t>\ with <j> a substitution [Pi /xu..., Pn/xn]
Then, for a suitable variable z of type sx ->• ... -)■ s„ -> s, we can write terms

M' = C[zPi... Pn][A^ : -f.A/z] and N' = C[zPi... P„][A^ : -f.B/z]

s.t. M' —^ M and iV' —^ N. Now, C[^Pi... Pn] has the z-algebraic property, and since
this property is preserved by the non-extensional Fu and Coc reductions, also fnf{C[zPi... Pn])
has it.
Now, we can apply the previous theorem to such a full normal form and obtain that M" =
ß - n.f,{fnf{C[zPx... Pn])[Xt : -f.A/z]) and N" = ß - n.f.(fnf(C[zI\ ... P„])[A^ :
■f.B/z]) are full normal forms and that M" —"^ N". Since M' —~- M" (resp. N' ^ AT")
and M' —^ M (resp. N' —^ N), we have, due to confluence of F" and Coc, that M" =
fnf(M) and JV" = fnf{N), and we are done.

On Explicit Substitutions and Names
(Extended Abstract)

Eike Ritter and Valeria de Paiva *

School of Computer Science, University of Birmingham

Abstract. Calculi with explicit substitutions have found widespread ac-
ceptance as a basis for abstract machines for functional languages. In
this paper we investigate the relations between variants with de Bruijn-
numbers, with variable names, with reduction based on raw expressions
and calculi with equational judgements. We show the equivalence be-
tween these variants, which is crucial in establishing the correspondence
between the semantics of the calculus and its implementations.

1 Introduction

Explicit substitution calculi (or A<r-calculi for short) first appeared in a seminal
paper by Abadi et al. [1]. The basic idea is that instead of having substitutions
as a meta-level operation, as in traditional A-calculus, we should make them
part of the object-level calculus. The advantages of this approach are twofold.
Firstly, it makes it possible to design much more efficient abstract machines as
we are allowed to delay substitutions, and secondly it makes it much easier to
prove them correct since the calculus and its implementation are closer.

There are several variants of calculi with explicit substitutions. Some of these
variants are geared towards semantics [15], [3], others are derived with imple-
mentations in mind [9], [8], [2]. Rather than listing all variants, we explain in
this paper what we take to be the principal differences between them. This way
we describe what appears at first sight as various "design choices" for lambda-
calculi. But we then justify why we have to develop calculi for each possible
choice if we want to prove semantics and syntax equivalent. Moreover, by using
the context handling of type theory as a guide, we are able to define a conflu-
ent calculus with explicit substitutions and names—something that Abadi et al.
were not able to do.

1.1 Equations first versus Reductions first

There are two main approaches when defining typed A-calculi with or without
explicit substitutions. The first one, in the spirit of Martin Löf's type theory
[10], defines the calculus with equations-in-context. Reduction is then a derived

♦Research supported under the EPSRC project no. GR/L28296, x-SLAM: The Explicit
Substitutions Linear Abstract Machine.

249

notion, obtained by orienting the equations. The second approach considers the
set of typed terms as a subset of the set of raw terms, and hence reduction is
defined on raw terms, which are not necessarily well-formed. Equality is now the
derived notion, namely it is the symmetric and transitive closure of the relation
generated by the reduction rules.

The first approach is required when giving semantics to A-calculi because
only well-formed objects have a meaning. The second approach avoids the need
to check for well-formedness during reduction, which is incorporated in the first
approach. As a consequence, this approach is well-suited for implementations,
but a semantics for terms can only be given by showing the equivalence of this
presentation to the Martin Löf-style presentation. Whereas this equivalence is
easy to prove in the case of the simply-typed A-calculus (and hence it is not
really necessary to differentiate between the two approaches in this case), the
difference becomes crucial as soon as we add, for example, dependent types [14p.
This difference becomes crucial again when we consider calculi with explicit
substitutions.

This paper presents calculi for both approaches and shows their equivalence
(see section 3). This is because we want to connect the implementation, which
is based on the second approach, with the semantics, which is based on the first
approach.

1.2 Typed versus untyped calculi

There are typed and untyped calculi with explicit substitutions, both of which
are presented already in [1]. The typing rules enforce two different restrictions:
firstly, they eliminate expressions with misuse of variables, e.g., ones where we try
to substitute two different terms for the same variable simultaneously. Secondly,
they ensure that the only well-typed A-terms are the ones of the simply-typed
A-calculus.

1.3 Names versus de Bruijn numbers

Another important kind of choice the designer of a explicit substitution A-
calculus can make concerns the difference between variable names and de Bruijn
numbers. De Bruijn numbers were initially considered, as an implementational
trick for Automath: instead of using variables like x,y,z de Bruijn proposed to
use natural numbers (that correspond to the binding level of the variable), in such
a way that a class of a-congruent terms correspond to a single syntactic object.
Hence two expressions with variable names are a-equivalent if and only if the
corresponding terms with de Bruijn numbers are syntactically equal. More than
simply an implementational trick, de Bruijn numbers are helpful when defining
the semantics of the calculus in question. The point is that a de Bruijn-number
n corresponds exactly to the n-th projection An x ■ • • x A\-^An.

1 The equivalence proofs can still be done [6], but some of the required properties of the type
theories, like confluence and subject reduction, are very hard to establish.

250

There is a trade-off between a version of the calculus with de Bruijn num-
bers and a version with names. Expressions with variable names are much easier
to read. The difference becomes apparent even for relatively small terms {e.g.,
compare the expressions \x.(\yz.x)(\z.x) and A.(A.A.3)(A.2)). The main draw-
back of the version with names is the need to identify terms which only differ in
the name of bound variables: the semantics of terms can only be defined mod-
ulo a-equivalence. This complicates the definition of the syntax significantly, as
the definition of a-equivalence is rather involved (see section 3). On the other
hand, a-conversion is not needed for the version with de Bruijn numbers, and
the absence of a-equivalence makes this better suited for implementations.

So a judicious use of both versions seems the best option: for the presentation
of results in the meta-theory, the version with names is used, and for implemen-
tations one uses de Bruijn-terms to handle variable access. Of course a good
implementation keeps the variable names as extra information during reduction
so that terms can be printed with names rather than with de Bruijn numbers.

1.4 Iterated Substitutions

The fourth choice concerns the need (or not) for composition of substitutions.
The precursor of the Acr-calculus, Curien's Ap-calculus [5], was designed to

capture environment machines and had no notion of iterated substitutions. This
is rather restrictive, as nested substitutions arise in several situations: during
reduction to normal form rather than weak head normal form, when mod-
elling sharing in environment machines, when modelling instantiation in theorem
provers, and as the counterpart of composition in the categorical semantics of A-
calculi. The Acr-calculus was developed by Abadi et al. [1] with these applications
in mind. Iterated substitutions seem to us an essential part of any Acr-calculus.

Summing up

Summarising, it seems to us that the first "design choices" are not choices at all.
We must have both the equations-in-context and the reductions-first versions,
both the typed and untyped versions and both the de Bruijn and the names
versions, as our goal is the implementation of abstract machines. It also seems
essential to have composition of substitution for the reasons outlined above.
Explicit weakening or not is, as far as this paper is concerned, a matter of taste.

The paper is structured as follows. We define our calculus of explicit sub-
stitutions and equations in context in the next section. Next we discuss issues
relating binding operations and a-equivalences in explicit substitutions calculi.
We prove the necessary syntactical properties (confluence and normalisation)
of our calculus and then we examine the equivalence between the versions of
the Acr-calculus with typed and untyped reduction rules. We conclude by briefly
discussing implementations and applications, which are mostly future work.

251

2 A calculus with equational judgements

In this section we present (with minor modifications) Martin-Löf s A-calculus
with explicit substitutions. This calculus is the Aa-calculus by Abadi et al. but
with names and equations-in-context. Tasistro [15] describes this calculus and
gives ample motivation about the form of the judgements and their interpreta-
tion. 2

2.1 Well-formed expressions

We start by presenting raw expressions and defining the judgements for well-
formed expressions and then give a few intuitions about the calculus.

Definition 1 Raw Expressions. The types of the Xa-calculus with names are
base types and function types A => B. The raw expressions of the calculus are
given by the following grammar:

t::=x | \x:A.t \ tt \ f*t /::=() | (f,t/x) \ /;/

We call expressions of the first kind terms and expressions of the second kind sub-
stitutions3. Moreover, we write (tn/xn,... ,h/xi) for {■ ■ • (({),t„/xn),tn-i/xn-i},
... ,h/xi).

We identify terms which are identical up to change of bound variables. Be-
cause not only the A-abstraction but also the explicit substitution / * t binds
variables, the definition of bound variable is significantly more complex than in
the A-calculus; for a precise definition of the notion of bound variable and of
a-equivalence see Section 3.

Judgements for well-formed expressions require an additional kind of raw
expressions, namely contexts. Such a context is a list xi: A%,... ,xn: An of
assignments of a type to a variable. (Contexts are called environments in [1].)
We call a context well-formed if no variable occurs twice in it. From now on
we tacitly assume contexts to be well-formed. We denote the empty context,
which is the special case of n = 0, by []. Note that contexts are lists rather
than multisets; in other words the order is relevant. This approach generalises
to dependent type theory and is compatible with categorical semantics. Because
contexts like x: A,y: B and y: B,x: A are not identified, there is an explicit
representation of the exchange rule. This avoids problems with the existence of
normal forms of substitutions; for details see Section 4.

We have two judgements for the well-formedness of raw expressions, namely
r h t: A, the usual "t is a term of type A in context F', and T h /: A. The last
judgement should be interpreted as "/ is an (explicit) substitution for variables
in A where the free variables of the terms to be substituted are contained in
F'. Such a substitution roughly corresponds to a list of substitutions in the A-
calculus. We call any context F arising from T by deleting some assignments
Xi: A4 a subcontext: in that case we write F C T and call T an extension of F.
2 We use the term A<r-calculus as a generic terra for any variant of the calculi presented in [1].
3 Note in particular the existence of an explicit substitution operator, denoted by *, which

takes a substitution / and a term t and returns a term f * t.

252

Definition 2 Typing Judgements. The inference rules for the judgements r h
t: A and F h /: A are as follows:

(i) On terms:

r,x: Abt: B r\-t: A=>B rh s: A r h f: A A\~t:A
r,x: A,T' h x: A fh Ax: A.t: A=> B TTlsTB r h f*t: A

(ii) On substitutions:

 ^ (r, r r] rhf-.A r\-t-.A rhf-.r' r'\-g-.r"
r\-(): r (1 - > r\-{f,t/x)-. A,X-. A r\- f;g-.r"

The new syntax is best explained by relating the terms with explicit substitu-
tions to terms with the usual implicit substitution of the simply-typed A-calculus.
The basic idea is that a substitution r r- f: y: B 4 in the Acr-calculus corre-
sponds to a list of terms t = (t±,... , t„) such that r \- ti: Bi in the A-calculus.
Moreover, the operation * models explicit substitution: a term / * t in the Xa-
calculus corresponds to a term t[i»/a;»] (with the simultaneous substitution of all
terms ti for Xi in t) in the A-calculus.

The operations ";" and "(_, _)" model sequential and parallel composition of
substitutions respectively. If r h f: (x: A) and x:Ah<(:4 and / and g corre-
spond to the lists t and s respectively, then the substitution /; g corresponds to
the list (si[t/x],... ,sm[t/x]) and hence models sequential composition of the
substitutions / and g. The substitution () acts not only as the identity substi-
tution in the sense that the term () * t corresponds to t but also as weakening:
If r h t: A and J" is an extension of r then the term i"" h () * t: A corresponds
to the A-term i~" I- t: A in the extended context F'.

2.2 Equations and Reductions

Now we turn to the equations-in-context, which are judgements r \- f — g: A
and r \- t = s: A. This notion of equality is sometimes called judgemental
equality. If a judgement J1 h / = g: A can be stated for any contexts F and A
such that r h /: A implies F h g: A, we will write / = g for J1 I- / = g: A.
Similarly, if a judgement r\- t = s: A can be stated for any context r and type
A such that F h t: A implies J1 h s: A, we will write t = s for this judgement.
In section 5 we will relate this version of the calculus to a version with equations
derived from reduction defined on raw terms.

Definition3. The equations of the Xa-calculus with names are as follows:

(i) Equations modelling (traditional) A-calculus-reductions:

(Arc: A.t)s = (Q,s/x) *t Xx: A.tx = t if x not free in t

We abbreviate a context xi: Ai,... ,xn ■ ■ ■ An to x: A. Similarly we write t[s/x] for
t[si/x\,. . . ,Sn/xn].

253

(ii) Equations for substitutions (In the third rule, y = x if y is neither a free
variable nor a substitution variable in f, or y is a variable which is neither
a free variable of t and f nor a substitution variable in f) 5:

(f,t/x)*x = t (1) (f,t/y)*x = f*x ifxj^y (2)
f*\x:A.t = \y:A.(f,y/x)*t(3) f * (ts) = (/ * *)(/ * s) (4)

();/ = / (5) Q*t = t (6)
f;(g,t/x) = (f;g,f*t/x) (7) f;{g;h) = (/;<?);/i (8)
f*(g*t) = (f;g)*t (9)

r\- J: A = x\: Ai,... ,xn: A„
r\- f= (f*Xl/X!,... ,f*x„/Xn): A

The first two equations are the equations corresponding to /3-and ^-reduction
in the A-calculus respectively. The equation for the /3-rule has a term with
an explicit substitution on the right hand side rather than an implicit sub-
stitution as in the A-calculus. This is the place where explicit substitutions
are introduced during the reduction of A-terms to normal form in order to
make the delay of substitution possible. The equations (l)-(4) push substitu-
tions over the constructors of A-terms. The equation (/, t/x) * x = x is the one
where the replacement of the term t for x actually takes place. The equations
/; (g-h) = (f;g);h and f * {g * t) = (f;g) *t express associativity of substi-
tution. The last equation for substitution expresses the fact that substitution
is determined by its effect on variables. In particular, this equation causes the
substitutions (x: A) h (): (x: A) and (x: A) h (xi/xi): (x: A) to be equal.
This equation can be thought of as an 77-rule for the explicit substitutions. It
is necessary for the definition of an extensional semantics, e.g., a categorical
semantics.

Definition 4 Reduction Relations. The (typed) reduction relations rhW
t': A (over terms), and T h / ~> /': A (over substitutions) are defined by
orienting the above equations from left to right.

Again, if a reduction rule can be stated for any contexts T, A and types A
such that r h /: A implies r h /': A and T h t: A implies J™ h t': A, we will
write / ~> /' and t-^t' respectively.

Before we investigate the meta-theoretical properties of this calculus, we
examine a-equivalence in detail in the next section.

3 a-equivalence

In this section we examine a-equivalence in a Acr-calculus with names, which is
more complex than in the A-calculus.

We aim to retain the results for the A-calculus, in particular we want two
expressions to be a-equivalent iff their corresponding de Bruijn-terms are equal,

5 the substitution variables in a substitution / are all variables x occurring in an expression
(g,t/x); for a precise definition see Section 3.

254

and reduction should preserve a-equivalence. The latter causes problems which
are not apparent in the A-calculus. If we define a-equivalence to be the smallest
congruence such that Xx: A.t = Xy: A.t[y/x], then /3-reduction does not preserve
a-equivalence: the two terms (Ax: A.t)s and (Xy: A.t[y/x])s are a-equivalent,
but the contracta (s/x) * t and (s/y) * t[y/x] are not.

Hence we have to define a-equivalence in such a way that terms like (s/x) * t
and (s/y) * t[y/x] are a-equivalent. This means that the substitution operator *
acts as another binding operator. However, this is a different kind of binding from
the one A-abstraction provides: the substitution operator binds in any expression
f * t those variables in t where there is a term contained in / which is to be
substituted in t. In the example (s/x) * t, the variable x is bound by *. Note
that the substitution operator * does not indicate the scope nor the name of the
variables that it binds.

We define the sets of free variables and substitution variables (which are
all those variables in a substitution / which are bound in a term / * t or in
a substitution /; g) by a mutual induction. The interesting cases for the free
variables are FV(A:r: A.t) = FV(i) \ {a;} and FV(/ * t) = FV(/) U (FV(t) \ SV(/)).
The substitution variables are defined by SV(()) = 0, SV((f,t/x)) = SV(/) U {x}
and SV(f;g) = (SV(/) \ FV(#)) U SV(g). A variable occurring in t is called bound
in the term t if it is not a free variable in t. A variable occurring in / is called
bound in / if it is neither a free variable nor a substitution variable in /.

In the A-calculus Curry defines substitution before he defines a-equivalence.
As the substitution has been made explicit, we only need to define renaming
(i.e., the replacement of one variable by another) as an operation in the meta-
theory to state a-equivalence. This definition of renaming requires an auxiliary
notion to change the name of the substitution variable x in (f,t/x) to y, i.e.,
we define an operation f {y/x}, which satisfies (f,t/x){y/x} = (f,t/y). This
name-changing substitution is given by () {y/x} = (); (/; g) {y/x} = f; (g {y/x})
if x e SV(ff) and f;g{y/x} = f{y/x};g if x ? SV(g); (f,t/x){y/x} = (f,t/y)
and (/, t/z) {y/x} = (/ {y/x} , t/z) iix^y.

Definition5. We define the renaming of the variable x by the variable y in t
or f by induction over the structure of raw expressions.

x[y/x] = y z[y/x\ = z if z jt x
(Ax: A.t)[y/x] = Xx: A.t (Az: A.t)[y/x] = Xw: A.t[w/z][y/x](z ^ x)

(tu)[y/x] = (t[y/x])(u[y/x}) (/ * t)[y/x] = / {«,•/„<} [y/x] * t[zi/yi][y/x]
0\y/x] = () </, t/z)[y/x] = (f[y/x],t[y/x]/z)

(f;g){y/x] = (/{*/!«})[»/*]; Grfe/wDfo/*]
In the second rule for X-abstraction, w is equal to y if x $ FV(i) or y $ FV(s),

otherwise w occurs neither free nor bound in t or s. In the rule for f * t, the
variable zi is equal to yi ifyi ^FV(s), otherwise it is afresh variable. The same
condition applies for the case f;g.

The definition of a-equivalence can now be stated.

Definition 6. We define a-equivalence in the Xa-calculus to be the smallest con-
gruence relation on raw expressions including

Xx:A.t=aXy:A.t[y/x] f * t =a f {y/x} * t[y/x] f;g=af{y/x};g[y/x]

255

The variable y is either x or it is not free in t, f and g nor is it contained in
SV(/). In the last two rules x is bound by * and ; respectively.

Next we examine the interaction between a-equivalence which is defined on
raw expressions, and the judgements. For the typing judgements, f h t: A means
there exists an a-equivalent term t' such that T h t': A according to the rules
presented in Section 2. A similar convention is adopted for all other judgements
and for reduction on raw expressions. The next theorem justifies this convention.

Theorem 7. Assume that tx and t2 are two a-equivalent Xa-terms, and assume
that /i and f2 are two a-equivalent substitutions. If T h h: A, then also T h
t2: A, and similarly if T h /i: A, then also T h f2: A. If T \- h = s: A, then
also r h t2 = s: A, and if T h /i = g: A, then T I- f2 = g: A. If t and s are a-
equivalent terms in the X-calculus, then they are a-equivalent in the Xa-calculus,

too.

The Acr-calculus with de Bruijn numbers has no variable names and hence also
no a-equivalence. The intuition is that a-equivalence is in fact only a consequence
of the existence of names and does not affect the Atr-calculus in any other way.
More precisely, equality modulo a-equivalence in the calculus with names and
equality in the A<r-calculus with de Bruijn numbers coincide. The translation
from the Atr-calculus with names into the Ac-calculus with de Bruijn-numbers
is defined by an induction over the derivation and replaces each variable i in a
context r,x: A,T' by the length \r'\ of the context f". For details, see [12].

The results of this section imply that Barendregt's variable convention can
be adopted in the rest of this paper when we prove meta-theoretic properties.
To be precise, we consider a-equivalent terms to be syntactically equal, and in
the sequel we assume that all bound variables occur nowhere else in a given
mathematical context (e.g., neither as free variables as in x(Xx: A.x) nor as
substitution variables as in (f,t/x) * Xx: A.s).

4 Confluence and Normalisation

This section investigates confluence and normalisation for the (equational)
Acr-calculus. We deduce confluence from the confluence of the simply-typed A-
calculus, using a modularity argument, first described in [7] and familiar under
the name "interpretation method". The argument is well-known, here we just
make an effort to present it in its generic form.

Definition 8 Modularity Properties. Assume that there is a translation [-]
of the extended calculus into the confluent one satisfying the following modular-
ity properties: Firstly, if t ~> s in the extended system, then also [i| ~>* [s].
Secondly, for each term t in the extended system we have t—>* [*]]. Thirdly, for
each reduction t ~~> s in the confluent system there exists a reduction sequence
t ^->* s in the extended system.

In our case, this general argument works as follows. The translation [-]
works by "carrying out the substitutions", i.e., {(U/xi) *t} = [t][|[ti]/xi].

256

All reduction rules except the /3-rule (Xx: A.t)s ~» (s/x) * t and the 7]-rule
Xx: A.tx ~~* t model explicit substitution. We call these rules cx-rules, and we
denote a cr-reduction by t ~+ s. We expect the translation from the Acr-calculus
to the A-calculus to map the redex and the contractum of a cr-reduction to the
same A-term. We obtain the modularity properties as a consequence; for details
see the technical report [12].

Note that the modularity properties do not hold for the original version of
the Acr-calculus with names. In particular, the reduction (t/x,s/y) ~> (s/y,t/x)
violates the first modularity property.

Formalising the argument given before to establish confluence of the Acr-
calculus we obtain the desired confluence.

Theorem 9 Typed confluence. Let r h t: A be any well-formed Xa-term. If
t "-»* ti and t -^** £2, then there exists a well-formed Xa-term F h u: A such that
t\ ~>* u and t<2 ~>* u. Similarly, let T \- f: A be any well-formed substitution.
If f ~~>* f\ and f ~>* fi, then there exists a well-formed substitution r h g: A
such that /1 ~>* g and fy ~>* g.

Normalisation also arises as a consequence of the modularity properties of
the translation. Because the proof consists of giving an effective normalisation
strategy, we obtain decidability of equality in the Acr-calculus as a corollary.

Theorem 10 Normalisation. Every well-formed term t and substitution f of
the Xa-calculus has a normal form, which can be effectively computed. The nor-
mal form for a term is a normal X-term, and the normal form for a substitution
is a lists of normal X-terms.

Mellies [11] shows that strong normalisation does not hold. As a counterex-
ample, he gives a A-term which reduces to the identity but which admits a
reduction sequence where a term t reduces to a term t' which contains t as a
subterm. But it is possible to show that all reduction strategies that reduce an
expression first to one in weak head-normal form (i.e., substitution is pushed
under A-abstraction only if the A-abstraction is the outermost constructor) lead
only to finite sequences of reductions [13].

5 Reduction on Raw Terms

The main part of this section examines a typed calculus with reduction defined
on raw terms. At the end we mention briefly untyped calculi.

Apart from the extensionality rule for substitution fh/^ (f*Xi/xi): x: A,
all reduction rules do not use typing information. Hence we omit this rule, and
write ~>r for the notion of reduction on raw terms given by turning all reduction
rules r h / ~> g: A except r h f ~> (/ * Xi/xi): x: A into rules / ~»r u,
and all reduction rules r h t ~> s: A into rules t ~^>r s. For this restricted
fragment, which suffices for the design of abstract machines, we show in this
section that reduction based on raw terms and the reduction derived from equa-
tional judgements (see Section 2) coincide. The important properties for this

257

proof are uniqueness of types and subject reduction, which says that well-typed
expressions reduce to well-typed expressions. The same proofs that work for the
simply-typed A-calculus with reduction defined on raw expressions work also for
the system with explicit substititution.

Now we turn to the confluence proof for the calculus based on reduction
on raw terms. The proof follows the general outline established in the previous
section but it does not work directly because the previous proof uses the fact
that every substitution reduces to a list of terms. This is no longer true if we use
reduction on raw expressions: substitutions can no longer be reduced to lists of
terms in general, but only to so-called canonical forms, i.e., lists of terms with
an additional weakening at the end. In particular, the substitution (t/x); () is a
normal form if t is a normal form.

The details and the adaptation of the confluence proof are given in the tech-
nical report [12]. We only cite the final theorem.

Theorem 11. Let r h t: A be any well-formed Xa-term. i/f ~>* h and t ~->* t2,
then there exists a well-formed Xa-termF h u: A such that t\ ~^>*r u andt2 ~>* u.
Similarly, let T \- f: A be any well-formed substitution. /// ~>* /i and f ~>* f2,
then there exists a well-formed substitution J1 h g: A such that f\ ~->* g and

h ~>* 9-

Remark Curien et al. [4] showed that confluence on open terms fails for the
untyped Aer-calculus. To obtain confluence they introduce a special syntactic
construction, which describes the effect of pushing a substitution under a A-
abstraction. (They consider a version with de Bruijn-numbers, but the idea
should work as well with a calculus with variables.)

The result of good design now follows: the judgemental equality presentation
of our Acr-calculus with names is equivalent to its presentation based on reduction
on raw terms.

Theorem 12. The Xa-calculus with judgemental equality is equivalent to the
Xa-calculus based on reduction on raw terms. Thus T \- t = s: A if and only if
r h t: A, T h s: A and t «-»* s, where ++* is the equivalence relation generated
by ~», and similarly for substitutions.

This confluence proof can also be applied to the untyped Aa-calculus. The
reason is that the translation of explicit substitutions into list of A-terms still
can be done. In this way the confluence of the untyped A-calculus can be lifted.
Obviously, normalisation fails as any counterexample to normalisation in the
untyped A-calculus can be reproduced in the calculus with explicit substitutions.

6 Conclusions

We examined choices for designing calculi with explicit substitutions. We pre-
sented our own version of a calculus of explicit substitutions, for the simply typed
A-calculus, for which we showed the equivalence between its version arising from

258

semantical (equations-in-context) considerations and syntactic (reduction on raw
term) ones. (This equivalence is crucial in establishing the correspondence be-
tween the semantics of the calculus and its implementations.) We discussed its
typed and untyped variants and the names and de Bruijn flavours of the calcu-
lus. Also we proved all the necessary, standard, properties of our calculus. The

proofs are also standard.
This calculus contains what we take to be the essential points of our approach

of using categorical type theory to inform the implementation of abstract ma-
chines. Ritter's PhD thesis is perhaps a more impressive example of the same
approach, dealing with the Calculus of Constructions. But the point of the paper
is to show how "inevitable" this calculus is, given our original goals. This is to
be contrasted with the multitude of other explicit substitution calculi. Also it
was necessary to clarify the case of the simply typed-lambda-calculus, to modify
it appropriately, to deal with the linear lambda-calculus. Linearity introduces
several new challenges that we are tackling at the moment.

References

1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Levy. Explicit substitutions. Journal
of Functional Programming, 1(4):375-416, 1991.

2. R. Bloo and K.H. Rose. Preesrvation of strong normalisation in named lambda cal-
culi with explicit substitution and garbage collection. In Proc. CSN'95—Computer
Science in the Netherlands, pages 62-72, 1995.

3. C. Coquand. From semantics to rules: A machine assisted analysis. In CSL'93,
volume 832 of LNCS, 1994.

4. P.-L. Curien, Th. Hardin, and J.-J.Levy. Confluence properties of weak and strong
calculi of explicit substitutions. Journal of the ACM, 43:362-397, March 1996.

5. Pierre-Louis Curien. An abstract framework for environment machines (Note).
Theoretical Computer Science, 82(2):389-402, 1991.

6. Herman Geuvers. Logics and Type Systems. PhD thesis, Univ. of Nijmegen, 1993.
7. Therese Hardin. Confluence results for the pure strong categorical logic CCL.

A-calculi as subsystems of CCL. Theoretical Computer Science, 65:291-342, 1989.
8. F. Kamareddine and A. Rios. A lambda-calculus a la de bruijn with explicit

substitutions. In PLILP'95, volume 982 of LNCS, 1995.
9. P. Lescanne. From Xa to \v: a journey through calculi of explicit substitutions.

POPL'94, pages 60-69, Portland, Oregon, 1994.
10. Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.
11. P.-A. Mellies. Typed A-calculi with explicit substitution may not terminate.

TLCA '95, pages 328-334. LNCS No. 902, 1995.
12. E. Ritter and V. de Paiva. On explicit substitution and names. Technical report,

Univ. of Birmingham, School of Computer Science, 1997.
13. Eike Ritter. Normalization for typed lambda calculi with explicit substitution.

CSL'93, pages 295-304. LNCS No. 832, 1994.
14. Thomas Streicher. Correctness and Completeness of a Categorical Semantics of

the Calculus of Constructions. PhD thesis, Universität Passau, June 1989.
15. A. Tasistro. Formulation of Martin-Löf 's theory types with explicit substitutions.

Licenciate Thesis, Chalmers University, Dept. of Computer Science, May 1993.

On the Dynamics of Sharing Graphs

Andrea Asperti and Cosimo Laneve

Dipartimento di Scienze dell'Informazione,
Mura Anteo Zamboni 7, 40127, Bologna, Italy

Abstract. We provide a characterization of fan annihilation rules of
Lamping's optimal algorithm through suitable paths on the initial graphs
of the evaluation. This allows to recast the computational complexity is-
sues of the algorithm in terms of statics. The fruitfulness of the path
characterization is pointed out by proving the relationship between the
computational complexity of the Krivine machine and Lamping's algo-
rithm.

1 Introduction

At the end of 80'ies, Lamping discovered a complex graph reduction technique [6]
of A-terms that was optimal in the sense that no redex is ever duplicated by the
algorithm (cf. [8]). This goal was achieved by an ingenious management of shared
contexts, using suitable sharing (fan-in) and unsharing (fan-out) nodes in the

graphs.
Recently Asperti [1] and, independently, Lawall and Mairson [7] have shown

that Lamping's management of shared expressions may have an exponential
cost with respect to the number of ß-reductions. They also conjectured that the
total number of fan-annihilations in the reduction of a term could provide a
reasonable lower bound to its "intrinsic complexity". Unfortunately, very little
is known about the dynamic aspects of Lamping's algorithm, such as the growth
of Lamping's graphs (called sharing graphs in the following), the ratio between
application-abstraction nodes and the other nodes, the exact cost of the sharing
management (which is our utmost goal).

So far, the only dynamic results concern beta-reductions. In particular, in
[3, 2] we provided a bijective correspondence between families of /3-reductions
fired along the evaluation of a term t and suitable paths in the initial graph of t.
This result has been used for proving the correctness and coincidence of several
optimal algorithms, proving the fruitfulness of our approach. In this paper, we
apply the same technique to cover other dynamic aspects of Lamping's algorithm,
giving a precise and simple description of fan-annihilations as suitable paths in

the initial term.
It turns out that the computational complexity of Lamping's abstract algo-

rithm for AI-terms is a function of fan annihilations and /3-reductions. In other
words, the computational complexity issues may be recast in terms of statics,

* This work is partly supported by the ESPRIT CONFER-2 WG-21836

260

hopefully a more easily comprehensible view. Indeed we exploit the static view
for proving that the complexity of the Krivine machine cannot be better than
the number of fan annihilations in Lamping's algorithm. This is not striking, but
just aims at emphasizing the relevance of path characterizations for reasoning

about (even different) machines.
Technical developments and proofs are missing in this extended abstract.

They may be found at ftp: //ftp. cs . unibo. it/pub/laneve/f ullicalp .ps . gz.

1.1 Lamping's abstract algorithm

We said that Lamping's algorithm implements optimality through a suitable
sharing of subexpressions, performed by explicit nodes called fan. Fan nodes,
together with application and abstraction nodes are the core set of nodes of
Lamping's algorithm. The rules governing their interaction are illustrated in

Figure 1 below.

a b
V J

cd cd
(Fan-Lambda)

cd c
(Fan-Comm)

Fig. 1. Interaction rules of Lamping's abstract algorithm

There is no space here for introducing Lamping's algorithm. The reader can
find a smooth introduction in [1]. Remark only that there are two rules for eval-
uating fan-interactions: one annihilating the two fans and the other performing
duplication. In the abstract algorithm described above we have assumed the pres-
ence of an oracle solving the problem of which rule to apply (at each time exactly
one rule may be used). Lamping's implementation of the oracle is described in
Section 2.

261

1.2 The producer/consumer analogy

The set of rules in Figure 1 may be split in two groups: annihilations and du-
plications. Annihilations and duplications are strongly related: in a sense the
first ones "consume" nodes, the latters "produce" (by duplicating) nodes. This
relation is evident in those terms of the A/-calculus whose normal form is an
atomic value (the final graph is a single edge). Let d, f and a be respectively
the number of duplications, /3-reductions and annihilations along the reduction.
Let moreover \M\ be the number of applications, abstractions and fan nodes in
M. Since each duplication adds two new nodes in the graph, each /3-redex or
fan-annihilation removes two nodes from it, and we have no nodes at the end of
the computation, the following equation holds:

|M| + 2d-2/-2a = 0

So, / + a = d+ |Af |/2. This immediately gives the following property:

Property 1. The length of the abstract Lamping-evaluation of XI-expressions
yielding constant values only depends on the families of ß-redexes and of fan-

annihilations.

1.3 Dynamics vs. Statics

By Property 1, the computational complexity of A-terms only depends on ß-
redexes and fan annihilations. In [3], /3-reductions have been successfully recast
in terms of suitable paths on syntax trees of A-terms. In this paper we are going to
apply the same methodology to fan-annihilation rules, thus covering every inter-
esting dynamic aspect of Lamping's abstract algorithm. For instance, the reader
may observe that, in the evaluation of (2 A), the rule (FAN-ANN) is used twice.
Consider one of them and, going backward along the reduction, follow the path
traversed by the two interacting fans. When you get back to the initial graph,
you will discover that each annihilation rule corresponds to a path in Figure 2.
Both paths have a very precise and similar structure: they start and terminate
at the same fan, and can be uniquely decomposed as £ A ip @ <f> @ if)r A £r, where (
is a discriminant (the path from the fan to the variable port of the A), ip is a vir-
tual redex, followed by a @-cycle <f> (see Definition 9) and ()r is the "reversing"
operation. In the present paper we prove that this decomposition is general:

Property 2. Fan-annihilations are in bijective correspondence with legal paths
in the initial graph consisting of a discriminant, a virtual redex, an ©-cycle, the
virtual redex reverted and the discriminant reverted.

1.4 The comparison with Krivine machine

Paths offer a fine grain description of the evaluation of A-terms. For this rea-
son other reduction mechanisms may be reduced to path computations. As a
consequence the characterization of fan annihilations in terms of paths becomes

262

l

//¥' yX

/// ,\

\0
i i

(£V ö
7 i

Fig. 2. Virtual fan-annihilations in (2 A)

an important step towards the comparison of Lamping's optimal algorithm with

other reduction techniques.
For instance, Danos and Regnier have recently proved that each move of

Krivine machine, a well known environment machine for functional languages,
actually corresponds to a path computation. A close inspection of this correspon-
dence, together with Property 2, allows us to draw the following consequence:

Property 3. Let M be a \I-term reducing to a constant. The length of com-
putation of M in Lamping's abstract algorithm is at most 0(n), where n is the

length of the Krivine machine computation.

We observe that this property also gives more evidence to the thesis that the
total number of fan-annihilations in the reduction of a term provides a reasonable
lower bound to its "intrinsic" computational complexity [1, 7]. We finally recall
that the Krivine machine may have an exponential slow-down with respect to
Lamping abstract algorithm (for instance the evaluation of n27c, where n and 2
are Church numbers, I is the identity and c is a constant, is 0(2") in Krivine
machines and 0(n) in Lamping's algorithm). This is not very surprising, since
the Krivine machine implements a call-by-name strategy, which is very inefficient

for evaluating terms.

2 Pairing fans: Lamping's full algorithm

In order to solve the problem of correct fan pairing, Lamping added a local level
structure to the bidimensional graphs presented in the Introduction. Each node
is decorated with an integer tag which specifies the level at which it lives: two
fans match if they meet at the same level; they mismatch otherwise. Further-
more there are two new control nodes which operate on the level structure: the
croissant, which opens or closes a level, and the bracket, which temporarily closes

a level or restores a temporarily closed one.

263

More precisely, sharing graphs are unoriented graphs built from the indexed
nodes in Figure 3.

I t
@i Xi

./ \ / \ ♦
V

application abstraction fan croissant bracket

Fig. 3. Sharing nodes

The port of a node depicted with an arrow is called its principal port. This is the
only port where a node can possibly interact with other nodes in a graph reduc-
tion rule. The other ports of each node are called auxiliary. It is convenient to
introduce particular names for the auxiliary ports of application and abstraction
nodes. In particular, the port of the application leading to the context (usual
depicted at its top) will be called context port, while the other auxiliary port
will be the argument port. In the case of an abstraction node, the port leading
to the body of the function (usually depicted at the right of the other auxiliary
port) will be called body port, while the other auxiliary port is the bound port
(since it leads to the variable bound by the abstraction).

Two nodes (nodes of the graph) annihilates if they meet along their prin-
cipal ports at the same level. In Section 1.1 we have already introduced two
annihilation rules: (BETA) and (FAN-ANN). The other two annihilation rules are
described in Figure 4.

^¥5u

(1) (2)

Fig. 4. (1) The rule (BRACKET-ANN); (2) the rule (CROISSANT-ANN)

A node at a given level can also act upon any other node / at a higher level
(reached at its principal port), according to the rules in Figure 5 (/ represents
a generic node). In these rules, the nodes are simply propagated through each

Fig. 5. Commutation rules

fa

f) j-«-1

other in such a way that their effect on the level structure is left unchanged.

264

Observe that rules (FAN-COMM), (FAN-APP) and (FAN-LAMBDA) are instances
of the leftmost rule in Figure 5.

2.1 The initial encoding of A-terms

A A-term N with n free variables will be represented by a graph with n + 1
entries (free edges): n for the free variables (the inputs), and one for the "root"
of the term (the output). The translation is inductively denned by the rules in
Figure 6. The translation function is indexed by an integer which can be thought
of as being the level at which we want the root to be; the translation starts at
level 0, i.e. [M] = [M]0. I

[x]n = An p.x.M]n = [MN]n
M„ [N] n+1

Fig. 6. Initial translation

2.2 Consistent paths and the correctness

The correctness of Lamping's algorithm was proved by means of suitable paths
called consistent paths [6]. Let us recall the notions in [5].

The (finite) contexts are the terms generated by the following grammar:

o ::= D | o -a | * -a | 8 • a \ \\ ■ a | (a, a)

We denote by An[a] a context of the form {•■■(a, an),---ai).

Definition^ (Consistent path) A consistent path in a graph [M] is a path
such that

1. every edge of the path is labeled with a context;
2. consecutive pairs of edges satisfy one of the following constraints:

An[(b, a)] An[(b, a)] A"[a]

^T^ n

An[((b, a), c)}

An[(b,o-a)] An[(b,*-a)] An[{a,n)]

A"[{b, a)]

An[(b, (a, c)>]

An[(b A-a)]

A_

An[(bJi-a)]

An[{b, a)] An[(b, a)]An[(b, (t • a)] An[(b, \\ ■ a)]An[(b, a)]

265

Consistent paths are taken equivalent up to contexts. That is, two consistent
paths having pairwise equal edges are considered equal, even if the contexts

differ.

The above definition describes how the nodes of the graphs modify the con-
texts when traversed. Notice that, the traversal of a node n can be forbidden
if the external context does not allow the transformation performed by n. As a
consequence, there are illegal (better, not consistent) paths.

In order to formalize the statement of correctness we need the preliminary
notions of residual and ancestor path. To this aim, let [M] —►* G —► G' and p
be a path in G which starts and terminates at two principal ports 2. The notion
of residual path is not defined when u is an annihilation rule and u involves the

endpoints of p.
By definition of sharing rules, it is "local", namely it involves exactly two

nodes n and n' in G and the edges starting at these nodes. Therefore, let G\, be
the subgraph of G where n, n' and the edges starting at n and n' are missing. Then
G\, is also a subgraph of G'. If p is internal to G\, of G then the residual of p is the
corresponding path in G\, of G'. Otherwise p = pieiitiiupie'j • • -ek^kupke^Pk+i
such that pi are internal to the subgraph G\, of G, pxex or e'kpk+i may miss and

{m,:,p,:} = {n, n'}. There are two cases:

(u is a commutation rule) Let us define the cases when pxei or pie^u are miss-
ing: the other cases may be defined in a similar way. In this case the residual
of p is micip'2 • • •cfcp'i.'uj,mj.c/j.p'j.+1, where p\ are the residuals of pi, c;p-u;m<c-
are the unique paths traversing the part of G' which is not in G\, such that
they connect the ports which correspond to the initial port of e; and the
final port of e\. The node mi is consecutive to the initial node of p'2 through
the port corresponding to the final port of e[.

(u is an annihilation rule) Remark that piei and e'kpk+i cannot be missing in
this case. The residual of p is p\cx ■ ■ -Ckp',.^, where p\ are the residuals of
Pi and Ci are the edges connecting the ports which correspond to the initial
port of ei and the final port of e\.

There is an obvious consequence of the above definition:

Propositions. The residual of a path (if any) is unique.

The unicity of residuals allows to define the "inverse" notion, called ancestor.
A close inspection of Lamping's graph rewriting rules reveals that they pre-

serve the consistency of paths:

Property 6. (The context semantics [5]) Let [M] A G ^* G', <p be a con-
sistent path in G and u is not an annihilation rule involving the endpoints of <p.
Then the residual of (p does exist and it is consistent. Similarly for ancestors.

2 This constraint guarantees the unicity of the ancestor. Indeed, assume p starting at
the auxiliary port of a node m, m is involved in u and u is not the first edge of p.
Then the residuals of p and up should be the same.

266

The context semantics has been remarkably used for proving the correctness
of Lamping's algorithm. In particular, in [5], the authors noticed that consistent
paths starting and terminating at root nodes (the root and the free variables) are
invariant with respect to reduction rules. Since these paths suffice for defining
the Böhm tree of a A-term, it follows that the implementation is correct.

3 Legality, fan annihilations and cycles

An alternative definition of consistency, called legality, has been provided in [3]
(the coincidence of consistent paths and legal paths is in [2]). The notion of le-
gality has the advantage (with respect to the others) of clarifying the symmetries
inside paths, which, as we will see, are crucial for defining the path character-
ization of fan annihilations. Therefore, let us recall briefly the main definitions
and properties of legal paths.

A path is straight if it traverses nodes form auxiliary to principal ports (in
particular, the path cannot "bouncing back", exiting from the same port it
entered through). A straight path is elementary if one end is connected at a
port of a @-node or a A-node, it traverses control nodes only and the other end
is connected at a A-node or a @-node or at a (free or bound) variable node. A
discriminant is an elementary path starting at a bound variable (a discriminant
represents an occurrence of the bound variable).

Definition 7. Let <p be a straight path connecting the principal port of an ap-
plication @ and an abstraction A. These two nodes are paired (along ip) if and
only if either ip is a redex, or every other application and abstraction internal to
ip is paired (along a subpath of <p).

Definition8. A straight path ip is a well-balanced path (shortly wbp) if and
only if, for each application @ and abstraction A paired along a subpath of (p,

the following conditions are satisfied:

1. ip traverses @ through the context port if and only if it traverses A through

the body port;
2. <p traverses @ through the argument port if and only if it traverses A through

the bound port.

Next we define by crossed induction two other types of paths: ©-cycles and

v-cycles.

Definition 9.

(©-cycle) Let @ be an application node in [M], u be the argument edge of @
and JV be the second argument of @. An @-cycle of @ is a path:

1. @uipur@, where ip is internal to JV;
2. or @uipi(ii/)2 • ■ •'0n£nV'n+i'"r@, where V>i are internal to N and £ are

v-cycles over some free variable in N;

267

(v-cycle) Let 7 be a discriminant of A and starting at v. A v-cycle over v is a
path vy\ipr @(j>@ilj\yr v where </> is a wbp starting at @ and terminating at

A.

Definition 10. (Legal paths) A wbp <p is a legal path if and only if, for every
@-cycle <j> contained in ip, (p can be decomposed in one one of the following

possible ways:

(l) <p = C@4>@(0rh,
(2) ^ = CiC@m<r,
(3) <p = (1yXip@(j>@(TpY A(7)r(2, where @ and A are paired along ip and 7 is a

discriminant.

In case (3), we shall say that ij> and ipT are respectively the call and return paths

of the @-cycle.

The above definition essentially says that whenever we have a ©-cycle in <p the
call and return paths, together with the associated discriminants, must be the
same. Cases (1) and (2) are used to cover the cases in which the call or return

paths are not complete.

Definition 11. A legal path @cf>\ where @ and A are paired along <j> is called a

virtual redex.

This definition is justified by the following:

Theorem 12. [3] Given a \-term M, there is a one-to-one correspondence be-
tween virtual redexes in [M] and all the possible redex families obtained by eval-

uating M.

As proved in [2] consistent paths and legal paths are strongly related:

Theorem 13. Every wbp is legal if and only if it is consistent.

The main result of the paper, namely the path characterization of (FAN-ANN)

moves is stated in Theorem 14 below.

Theorem 14. Let [M] —»* G and u be an edge in G connecting the principal
ports of two fans. The interaction u annihilates the two fans if and only if the

ancestor of u is a path £Xip@<f>@ipr \£r, where (is a discriminant, i/> is a virtual

redex and <f> is a @-cycle.

It is evident that Property 2 is a smooth statement for Theorem 14.

4 The comparison with Krivine machine

Theorem 14 looks particularly appealing since it provides a new insight for rea-
soning about dynamics of Lamping abstract algorithm. This insight relies on
path computations, which indeed is an alternative evaluation of A-tems.

268

A meaningful application of Theorem 14, which we are going to show, allows
to clarify the computational correspondence between two algorithms for evaluat-
ing A-terms: Krivine machine and Lamping's abstract algorithm. With this we
mean that it is possible to fix the relationship between the lengths of computa-
tions in the two algorithms. To this aim we use a result recently put forward by
Danos and Regnier [4]: each step of the Krivine machine is actually a suitable
path in the sharing graph. Let us give the key intuition of Danos and Regnier,
omitting the details of [4]. The intuition follows by the symmetries inside paths
and two properties about @-cycles and well balanced paths (which we omit to
recall since they are not relevant in the following discussion). Take for instance

the consistent path

where £ is a discriminant starting at a croissant at depth n, ij> is a virtual redex
between a A at depth p (p < n) and an application @ at depth q. Let also
A = (• • • (S, an), ■ ■ ■, oi) be the initial context of <p. A may be rewritten as the
following pair

on :: ■ ■ • :: &p :: c, o

where a„ ::•••:: ap :: £ is called the environment and S is called the stack. Now
we observe that:

1. By definition of £, its final context will have the shape £, a :: S, where u is
a suitable context depending on an, • • •, ap.

2. So we start ip with the context £, a :: S. Since tp is a wbp, by the Rendez-
vous property in [2], the final context of if; will have the shape £', a :: S, for

some £'.
3. Now, by the ©-cycle property in [2], if we start the @-cycle (j> with a context

£', a :: S, we shall terminate with a context £', a :: S', for some S'.
4. The reverse path of ip performs the reverse transformation on contexts. So

at the end of tfir we have the context £, a :: S'.
5. For a similar reason, the context at the end of £r has to be a„ ::•••:: ap ::

£,a::S'.

Observe that, the purpose of steps 4 and 5 is to restore the initial environment
by using the informations on the top of the stack and the environment £'. This
steps may be skipped if we were more careful in steps 1 and 2. That is, let us
save the address d of the croissant at the beginning of £ and the environment
an ■.:■■■:: ap :: £ on top of the stack S. Namely, the stack at the end of steps
1 and 2 is (d, an :: • • • :: ap) :: S. Then, at the end of the @-cycle, we have a
context £', (d, an ::•••:: ap :: £) :: S' and we may safely skip steps 3 and 4, just
by restoring what is on top of the stack and jumping to d.

It turns out that the above optimization corresponds to the step of the Kriv-
ine machine performed when a bound name is met, while the step where the pair
(d, an ::•••:: ap) is saved on the stack corresponds to the "stacking" move in the
Krivine machine. The third reduction of the Krivine machine, the /3-move, corre-
sponds obviously to subpaths which are virtual redexes. Therefore the following

result:

269

Theorem 15. [4] The optimized path computation is isomorphic to the Krivine

machine.

Since Theorem 15 gives a path characterization of steps of Krivine machine,
we may establish the computational correspondence between Krivine machine
and Lamping's abstract algorithm.

Theorem 16. Let M be a XI-term reducing to a constant. The length of com-
putation of M in Lamping's abstract algorithm is at most 0(n), where n is the
length of the Krivine machine computation.

5 Conclusions

The path characterization of fan annihilations has to be meant as the first step
towards the goal of determining the total amount of work required by Lamping's
(abstract) algorithm. We observe that a direct evaluation of this parameter looks
very problematic, especially since not all sharing-graphs can be obtained by the
reduction of a A-term, and nothing is known about the structure of these "legal
graphs". As a consequence, no reasoning by induction on the size or the structure
of these graphs seem possible. Vice-versa, computing paths in a A-term looks as
a more realistic and promising research direction, since in this case we can profit
of all the theoretical machinery of the geometry of interaction and its dynamic

algebra [2].

References

1. A. Asperti. On the complexity of beta-reduction. In Proceedings 23r ACM Sym-
posium on Principles of Programmining Languages, 1996.

2. A. Asperti, V. Danos, C. Laneve, and L. Regnier. Paths in the A-calculus. In
Proceedings 9th Annual Symposium on Logic in Computer Science, Paris, pages
426 - 436, 1994.

3. A. Asperti and C. Laneve. Paths, computations and labels in the A-calculus. The-
oretical Computer Science, 142, 1995.

4. V. Danos and L. Regnier. Reversible and irreversible computations. Autumn 1994.
5. G. Gonthier, M. Abadi, and J.J. Levy. The geometry of optimal lambda reduction.

In Proceedings 19"" ACM Symposium on Principles of Programmining Languages,
pages 15 - 26, 1992.

6. J. Lamping. An algorithm for optimal lambda calculus reductions. In Proceedings
yjth AQM Symposium on Principles of Programmining Languages, pages 16 - 30,
1990.

7. J.L. Lawall and H.G. Mairson. Optimality and inefficiency: what isn't a cost model
of the A-calculus. In International Conference on Functional Programming, 1996.
Philadelphia, Pennsylvania, USA.

8. J.J. Levy. Reductions correctes et optimales dans le lambda calcul. PhD thesis,
Universite Paris VII, 1978.

Minimizing Diameters of Dynamic Trees

Stephen Alstrup1 Jacob Holm1

Kristian de Lichtenberg1 Mikkel Thorup1

Department of Computer Science, University of Copenhagen, Universitetsparken 1,
DK-2100 Copenhagen, Denmark (e-mail : Stephen,samson.morat,mthorup@diku.dk,

www : http://www.diku.dk/~stephen.~mthorup)

Abstract. In this paper we consider an on-line problem related to min-
imizing the diameter of a dynamic tree T. A new edge / is added, and
our task is to delete the edge e of the induced cycle so as to minimize
the diameter of the resulting tree TU {/} \ {e}. Starting with a tree with
n nodes, we show how each such best swap can be found in worst-case
0(log2ra) time. The problem was raised by Italiano and Ramaswami at
ICALP'94 together with a related problem for edge deletions. Italiano
and Ramaswami solved both problems in 0(n) time per operation.

1 Introduction

The diameter of a tree is the length of a longest simple path in the tree and
such a path is called a diameter path. The unique midpoint on all diameter
paths is called the center, hence the center is the point whose maximal dis-
tance to any node is as small as possible. In 1973 Handler [4] showed how one
in linear time can compute the diameter (and center) of a tree. However, as
pointed out by Rauch [8], too little work has been done to dynamically main-
tain information about the diameter. To the best of our knowledge, the only
dynamic algorithms concerning diameters are those given by Italiano and Ra-
maswami in ICALP'94 [5], motivated by problems in high-speed wide-area net-
works (see [6, 7] for details). They consider how to minimize the diameter of
a dynamic tree T with n nodes and non-negative edge cost. Let / be a new
edge which introduce a cycle C in the dynamic tree. Then removing an edge e
from the cycle C is called a swap(ej). The best swap is the swap which mini-
mizes the diameter of the resulting tree T//e = T U {/} \ {e}. In this paper we
present an on-line algorithm for maintaining a dynamic tree, such that given a
new edge, the tree computed is the tree resulting from the best swap. Italiano
and Ramaswami [5] presented an 0(n) time algorithm for finding a best swap.
In this paper, we show how to improve the complexity to 0(log2 n) worst-case
time.

Italiano and Ramaswami [5] considered the above incremental best swap
problem as part of a fully dynamic type heuristic for maintaining a small diam-
eter spanning tree T in a dynamic connected graph G. If an edge e is added to
G, the above incremental algorithm is called to find a best swap for T with e. If
an edge e is deleted and it belongs to T, they have a complementing decremen-
tal algorithm that finds a "best swap" edge from G reconnecting T minimizing

271

the resulting diameter of T. They supported both insertions and deletions in
time 0(n). Note that the above scheme does not maintain the spanning tree of
the smallest possible diameter. As mentioned, this paper does not consider the
decremental problem.

As an intermediate step to our algorithm we show how to maintain a dynamic
forest of trees under link and cut where given a node from a tree it returns the
diameter of the tree the node belongs to. The time-complexity is O(logn) for
each operation, where n is the number of nodes in the tree(s) involved. We show
this, since to the best of our knowledge, no such algorithm has been presented
before.

All our results are based on topology trees [3, 2] (the terminology of topology
trees is recalled in Section 2). Our algorithm for maintaining the diameter is
straightforward, based on a simple observation. Our algorithm for finding a best
swap is much more involved. One complication is that when we want to merge
two clusters, we need to consider not only the information associated with the
clusters being merged, but the information associated with O(logn) sub-clusters
of each of the two clusters. This implies that a merge takes O(logn) time, and
each best swap gives rise to O(logn) merges. Thus our 0(log2 n) time algorithm
for best swap is derived.

The paper is organized as follows: In section 2 preliminaries are given. In
section 3 we present an algorithm for maintaining the diameters of trees in a
dynamic forest. Finally in section 4 we give an algorithm which compute a best
swap in 0(log2 n) time.

2 Preliminaries

In this section we give a short presentation of the topology trees by Frederick-
son [3, 2]. Our presentation differ slighty from the original topology trees. We
provide a more simple interface in order to simplify the use of the topology trees.

Let T be a tree with n nodes. For a connected subtree of T, we call a node
which has edges out of the subtree a boundary node. A cluster is a connected
subtree of T with at most two boundary nodes. The set of boundary nodes of a
cluster C is denoted dC. We say that dC = {o, b} if C has boundary nodes a
and b even if a and b are identical. Two clusters are said to be neighbours if they
intersect in exactly one node. A topology tree r of T is a binary tree such that:1

1. The nodes of r represents clusters of T.
2. The leaves of r represents the edges of T.
3. If C is represented by an internal node of r with children representing A and

B, then C = A U B and A and B are neighbours.
4. The root of r represents T.
5. The height of r is O(logn).

1 In this description all leaf clusters contains only one edge, however the simplification
presented in this paper holds for any size of the leaf clusters.

272

A tree with a single node has an empty topology tree.
In order to maintain topology trees for a forest of dynamic trees we make use

of the following operations: Merge takes two topology tree root nodes a and b and
creates a new topology tree root with children a and b. By the definition above
we have that only nodes representing neighbouring clusters may be Merged.
DeleteRoot is the reverse operation, deleting the root of a topology tree.

This presentation of the topology trees differ in the interface from those
in [2, 3]. For the topology trees presented we have made no restriction on the
degree of the tree for which the topology tree is used and we have reduced the
number of different ways clusters can be related to each other. Because of the lack
of space, we defer the description of the modification to the full journal version
in which we will show that it does not change the complexity of the topology
tree operations. From Frederickson [2, lemma 1,theorem 2] and Frederickson [3,
lemma 2.3] we have the following proposition for topology trees.

Proposition 1. A topology tree r of a tree T with n nodes, can be computed
using a linear number of Merge operations. Topology trees for a forest of trees
can be maintained under link and cut, using O(logn) Merges and DeleteRoots
per link and cut operation. D

Consequently

Theorem 2. Let info be some information of clusters in a dynamic forest with
n nodes so that

1. For any edge e, info({e}) can be computed in time t±.
2. For any neighbouring clusters d and C2, info(Ci UC2) can be computed in

time t2, given info(Ci) and info(C2).

Then we can maintain info for all trees in a dynamic forest in 0(h + t2\ogn)
time per link and cut, given the ability to use 0{n * (h + t2)) time and 0{n)
space for preprocessing. ^

3 Dynamic Diameters

In this section we will present a simple algorithm for maintaining information
about the size of diameters of trees in a dynamic forest under link and cut. The
algorithm will be used in the following section. It builds on a generalization of
former exploitations of properties of diameters and spanning trees (see e.g. [1,
4, 5]). This generalization, given in the following lemma, makes it possible to
construct efficient divide and conquer algorithms.

Let T = (V, E) be a tree with n nodes. With each edge e in E is associated a
nonnegative number cost(e). For two nodes a,b eV we then define the distance,
dist(a, b), to be the sum of costs for all edges on the simple path from a to b in the
tree. For a subset of nodes W C V we define diamT(W) = maxaj6ew dist(a, b),
hence the diameter in the tree is diamT(V). By the path from a to b, denoted
a ■ ■ ■ b, we mean both the set of edges and the set of nodes on that path.

273

Lemma3. Let T = (V,E) be a tree, {a,b} C V C V, {c,d} C V" C V, where
dist(a, b) = diamriV) and dist(c, d) = diamriV") then
diarriT(V' Li V") — diarriT({a,b,c,d}).

Proof. Assume for contradiction that diarriT({a,b,c,d}) < diamriV' U V").
Then there exists eeV'\ V", f e V" \ V, so dist(e, /) = diamT(V U V") >
diamrda, b, c, d}). Now either e g {a, b} or / £ {c, d}. Say e 0 {a, 6}. Let P de-
note the path e • • • /. Let x,y G P be the nodes, such that a- ■ -x C\ P = {x}
and b---y H P = {y}. Now assume w.l.o.g. that a,x,b,y is arranged such
that dist(e,x) < dist(e,y). We now have dist(a,x) + dist(x,b) > dist(a,b) >
dist(e,b) = dist(e,x) + dist(x,b), hence dist(a,x) > dist(e,x) which yields
dist(a, f) > dist(e, f) contradicting our assumption. We therefore conclude that
e € {a, b) and symmetrically / € {c, d}, which concludes the proof. D

We now show how to use lemma 3 with theorem 2. Given two neighbouring
clusters C\ and Ci of a tree T we can compute diamT{CiUC2) given the following
information, info(C), for each of the clusters C\ and Ci-

1. The boundary nodes dC.
2. Two nodes a,b G C with dist(a,b) = diamriC).
3. The distances between the nodes above.

As we will show in the journal version, it is now straightforward to prove:

Theorem 4. There exists an algorithm that maintains the diameters of trees in
a dynamic forest in time O(logn) under link and cut, given the ability to use
0(n) time and space for preprocessing, where n is the number of nodes in the
tree(s) involved in the operation. D

4 Best swap

Given a tree T with n nodes and an edge / = (fci,&2) not in T, we wish to find
an edge e on the cycle C = &i • • • &2 U {/} that yields the smallest diameter of
T//e=Tu{/}\{e}.

Using theorem 4 we can maintain the diameter of a tree dynamically under
link and cut using O(logn) time per operation. So when an edge / is presented
we can solve the best swap problem in O(fclogn) where k is the number of edges
on the cycle C, by simply trying them one by one. But in general this is worse
than the 0{n) algorithm given by Italiano and Ramaswami [5], however in this
section we will provide an 0(log n) time solution to the problem.

4.1 Outline of the algorithm

If we dynamically maintain the diameter of the tree, using theorem 4, we already
know the diameter of the tree T = Tf/f. Therefore we only need to concentrate
on finding the edge e on the path b\ ■ ■ ■ 62 which minimize the diameter of Tf/e.

274

If we remove an edge e G 61 ■ • • 62 from T, we divide it into two subtrees
dependent on e: Tfcl (e), T6a(e) where bx G T6l(e) and 62 G T6a(e). We know
from lemma 3 that when linking Tbl (e) and T62 (e) with /, the diameter of
the combined tree Tf/e is the maximum of diam(Tbl(e)),diam(Tb2(e)) and the
longest path in Tf/e which includes /, denoted maxpathf(e). From now on
we assume that Tbl(e) is rooted in 61 and Tb2(e) is rooted in b2. Then the
length of the longest path containing the edge / in Tf/e, maxpathf(e), becomes
height(Tbl(e)) + cost(f) + height(Tb2(e)). Since cost{f) is constant, minimizing
maxpathf(e) means minimizing height(Tbl(e)) + height(T&2(e)).

To ease the following discussion, we will introduce notation regarding the
order of edges and nodes on a path. Let a ■ ■ ■ b be a path, and let e, e' G a ■ ■ ■ b.
We then have the order relation -< with respect to a ■ ■ ■ b: e -< e' iff dist(a, e) <
dist(a,e'), similar e<e' iff dist(a,e) < dist(a,e').

The following theorem, proven in section 4.2, is the basis of our algorithm.

Theorem5. Let bx,b2 be nodes in a tree T and let f = (61,62) be an edge not
in T. Then there exists two nodes vltv2 E by-b2 such that wi ■< v2 and for any
edge e G 61 • ■ • b2:

(diam(Tb2(e)), if e G 61 • • • v\
diam(Tf/e) = < maxpathf(e), if e G vx ■ ■ -v2

{ diam(Tbl (e)), if e G v2 ■ ■ ■ b2

The algorithm consists of the following steps.

Algorithm 1
1. Find vi and v2.
2. Minimize diam(Tb2 (e)) on 61 • • • Vi.
3. Minimize maxpathf(e) on vi ■ ■ ■ v2.
4. Minimize diam(Tbl(e)) on v2- ■ -b2.
5. Compare with diam{T) and select the best swap.

In section 4.2 we prove theorem 5 and we show how to find vi, v2 and how to
minimize the diameters of the subtrees. In section 4.3 we show how to minimize
maxpathf{e), which is the difficult part of the algorithm.

4.2 What and how to minimize

In order to prove theorem 5 we now proceed to investigate the behavior of
diam(Tbl(e)), diam{Tb2(e)) and maxpathf(e) when e G h ■ ■ ■ 62. We know that
when linking two trees, the diameter of the resulting tree is greater or equal to
the diameters of both the original trees. Whereas maxpathf(e), is not a sim-
ple monotone function, it still bears some relationship with diam(Tbl(e)) and
diam(Tb2(e)) as we will show in the next two lemmas.

Lemma 6. Let Ti be a tree with root x. Let T2 be another tree and let T be the
tree rooted in x obtained by linking Tx and T2 with some arbitrary edge e. Then
height(T) - height(Ti) < diam{T) - diam(Ti) . O

275

Lemma 7. There exists a node w £ &i ■ • • b2 such that diam(Tbl (e))
< maxpathf(e) when e £ h ■ ■ ■ w and diam(Tbl(e)) > maxpathf(e) when e £
W ■ ■ ■ b'2 .

Proof. We prove it by showing that as we move the edge e from b\ to b2,
diam(Tbl(e)) grows at least as much as maxpathf(e).

Formally let e', e" £ bi ■ ■ ■ b2 be edges such that e' ^ e". Then

maxpathf(e") - maxpathf(e')

= height{Tbl{e")) + height(Tb2(e")) - height(Tbl{e')) - height{Tb2(e'))

< height{Tbl(e")) - height(Tbl(e')), since height{Th{e")) - height{Tb2{e')) < 0

< diam(Tbl(e")) - diam(Tbl (e')), by lemma 6.

Thus, if there exists an edge e = (zi, x2) such that diam(Tbl (e)) > maxpathf(e)
then diam{Tbl (e)) > maxpathf(e) for all edges e e xr ■ ■ ■ b2. By the same argu-
ment if there exists an edge e = (2/1,2/2) such that diam(Tbl(e)) < maxpathf(e)
then diam(Tbl(e)) < maxpathf(e) for all e £ h ■ ■ ■ y2. w E h ■ ■ ■ b2 is then the
node with greatest distance to foi such that diam(Tbl(e)) < maxpathf(e) for
e G b\ ■ ■ -w. O

Proof of theorem 5. By lemma 7 we know that there exists a node w2 such
that diam(Tbl(e)) > maxpathf(e) when e £ w2---b2 and diam(Tbl(e)) <
maxpathf{e) when e £ bx ■ ■ ■ w2. By symmetry there exists a node wi so
diam(Tb2(e)) > maxpathf(e) when e € &i • • • u/i and diam(Tb2(e)) < maxpathf(e)
when e e w2---b2. From this we see that if w\ < w2 on b\ ■ ■ ■ b2 then we
can choose v\ = wi,v2 = W2 and maxpathf(e) is greater or equal to both
diam(Tbl (e)) and diam(Tb2(e)) when e G vi ■ ■ ■ v2. Otherwise, if wi > w2 then
for all e £ &i • ■ ■ 62 either diam(Tbl(e)) > maxpathf(e) or diam(Tb2(e)) >
maxpathf(e) since the diameter of both the subtrees are as least as great
as maxpathf{e) when e £ w2---wi. If this is the case then there exists a
node v £ &! ■ - - 62 such that diam(Tb2(e)) > diam(Tbl(e)) when e £ 61 ••■i>
and diam(Tbl(e)) > diam{Tb2(e)) when e £ v---b2. In this case we choose
vi = v2 = v which concludes the proof. □

Propositions. The nodes v\ and v2 can be computed in 0(log n) time.

Proof. We have diam(Tb2(e)) = diam(Tf/e) for e £ 61 • • -vi and diam(Tb2(e)) <
diam(Tf/e) for e £ v\ ■ ■ ■ b2. Thus, using the topology tree structure of section 2,
vi is found by a simple binary search where each query is based on linking and
cutting trees in O(logn) time, as described in theorem 4. The node v2 is found
symmetrically. □

Proposition9. We can minimize diam(Tb2(e)) on b-y-vi and diam(Tbl(e))
on v2 ■ ■ ■ b2 in 0(log n) time.

Proof. The edge e 6 61 ■ ■ -v\ which minimizes diam(Tb2{e)) is simply the edge
with the greatest distance to &i since diam{Tb2{e)) is monotonically decreasing

276

as e moves from &i to V\. Similarly the edge minimizing diam(Tbl (e)) is the edge
with greatest distance to b2 on v2 ■ ■ • b2. These edges are easily found in 0(log n)
time, using the topology tree structure described in section 2. D

In this section we have shown that v\ and v2 can be found in 0(log2 n) time.
In fact these two nodes can be found in O(logn) time, which we will show in
the journal version, however because it is rather technical and since it would not
change the overall complexity we have only given the simple argument above.

4.3 Minimizing the sum of the heights

Recall from section 4.1 that if the new edge / is involved in the diameter of
Tf/e, e G &i ■ • -b2, then diam(Tf/e) = maxpathf(e) = height(Tbl(e)) + cost(f) +
height(Tb2(e)) and minimizing maxpathf(e) means minimizing height(Tbl (e)) +
height(Tb2(e)). By theorem 5 we know that we only need to minimize maxpathf(e)
on the path v\---v2.

For any node v and any set of edges E', let maxdistE>(v) denote the maxi-
mum distance from v reachable in E'. For any path P = p\ ■ ■ ■ p2 with px ^ p2 let
First(P) and Last(P) denote the edges on P incident to pi and p2 respectively.

Let U be the subtree of T, which consists of all the nodes reachable from vi
(and v2) without using any edges from &i • ■ • vi U v2 ■ ■ ■ b2. Then U is a cluster of
T with dU C {vi,v2}.

For any edge e £ vi • • ■ v2 we have

height(Tbl(e)) = max{dist(bi,vi) +maxdistu\{ey(v1),maxdistT\U(bi)}

= mz,-yi{maxdistu\{ey{vi),maxdistT\U{bi) — dist{b\,V\)} + dist{b\,vi)

= raax{maxdistu\^(vi),hvi} + dist{b\,vi)

where hVl = maxdistj>\u(bi) — dist(b\,vi)

height(Tb2(e)) = m&x{maxdistu\^ey(v2),hV2} + dist(b2,v2)

where hV2 = maxdistx\u(b2) — dist{b2,v2)

Thus in order to solve the problem, all we need to know about the tree outside
U, is the constant values hVl and hV2.

Definition 10. Let C be a cluster with dC = {a, b}, let e G o ■ • • b be an edge
and let ha and hb be any nonnegative numbers. Then define

hsumc{e,ha,hb) = max{m,axdistc\{e}(a),ha} + ma.x{maxdistc\{e}(b),hb}.

With this definition, we have height(Tbl (e))+height(Tb2(e)) = hsumu(e, hvi, hV2)
for e € vi ■ --V2-

Lemma 11. Let A, B and C = A U B be clusters with dA = {a, c], dB = {b, c}
and dC = {a, b}, a ^ b and let ha and hb be any nonnegative numbers. For any
edge e\ £ a- ■ ■ c and e2 G c• • • b we have:

hsumc{ei,ha,hb) = hsumA{e\,ha,max.{maxdistB{b),hb} — dist{b,c)) +dist(b,c)

hsumc{e2,ha,hi,) = /iSMmß(e2,max{maa;distJ4(a), ha} — dist(a, c), hb) + dist(a,c).

277

Proof.

hsumc{euha,hb) = max{maxdistC\{ei}(a),ha} + max{maxdistC\{ei}(b),hb}

= ma,x{maxdistA\{eiy(a),ha} +

ma,x{max{maxdistA\{eiy(c) + dist(b, c),maxdistB{b)}, hb}

= ma,x{maxdistA\{eiy(a), ha} +

max{maxdistA\{ei}(c) + dist(b,c),m&x{maxdistB(b),hb}}

= m&x{maxdistA\{eiy(a),ha} +

m&x{maxdistA\{eiy(c),max{maxdistB{b),hb} -dist(b,c)} +dist{b,c)

= hsumA{ei,ha,max{maxdistB(b),hb} - dist(b,c)) + dist(b,c)

The second equation follows by symmetry. □

Definition 12. Let C,a,b,ha and hb be defined as in lemma 11, then define
BestCutsc(ha,hb) to be the set of edges e £ a • ■ ■ b minimizing hsumc(e, ha, hb).

This definition of BestCuts satisfies the following two lemmas.

Lemma 13. Let A,B,C,a,b,c,ha and hb be as in lemma 11, then

BestCutsc(ha,hb) n A = BestCutsA{ha,max{maxdistB{b),hb} - dist(b,c))\J

BestCutsc(ha,hb) f\B = BestCutsB(max{maxdistA(a),ha} - dist(a, c), hb).

Proof. If there exists an edge eA in BestCutsc(ha,hb) n A then eA must mini-
mize hsumc(eA,ha, hb) on the path o • ■ ■ c and by lemma 11 it must also mini-
mize hsumA(eA,ha,max{maxdistB(b),hb} - dist(b,c)) on that path. But then
BestCutsc{ha,hb)r\A =BestCutsA(ha,max{maxdistB(b),hb}-dist{b,c)) as de-
sired. By symmetry, if there exists an edge eB in BestCutsc{ha,hb) H B then
BestCutsc(ha,hb)r\B =BestCutsB{mzx{maxdistA(a),ha} -dist(a,c),hb). And
since a ^ b then at least one of eA and eB must exist, yielding the desired re-
sult. D

Lemma 14. Let C,a,b,ha and hb be as in lemma 11, then

ha > maxdistcia) ^ Last(a •••&)£ BestCutsc(ha, h)

hb > maxdistc{b) =» First(a ■••&)£ BestCutsc(ha,hb).

Proof. Assume ha > maxdistc{a). Then hsumc(e,ha,hb) = ha +
max{maxdistC\{e}(b),hb} for all e G a---b. But then any edge minimizing
maxdistC\{e}(b) will also minimize hsumc(e,ha,hb) and since Last(a---b) is
such an edge we have Last(a---b) eBestCutsc(ha,hb) which proves the first
part. The second part follows by symmetry. □

With this in hand we may now proceed to provide a procedure bestcutedge
that finds an edge from BestCutsc(ha,hb). For any cluster with only one edge,
it should just return that edge. For all other clusters we have the following
proposition.

278

Proposition 15. Let A,B,C,a,b,c,ha and hb be as in lemma 11. If we define

(eA,ifb = c,(\dB\ = l)
u * * A fh h\)eB,iia = c,(\dA\ = l)
bestcutedgec(ha,hb) - < ^ -lihsurnc^haM) < hsumc(eB,ha,hb)

[eB, otherwise

{Last(a ■ ■ ■ c), if ha > maxdistA(a)
bestcutedgeA(ha,ra&yi{maxdistB(b),hb} - dist(b,c))

otherwise

{First(c- ■■ b), if hb > maxdistB(b)
bestcutedgeB(max{maxdistA(a), ha} - dist(a, c), hb)

otherwise

Then bestcutedgec(/ia)M eBestCutsc(/io,ft6)-

Proof. By lemma 13 and lemma 14 we have that either eA or eB belongs to
BestCutsc(ha,hb) and since bestcutedgec(ha,hb) picks the one minimizing
hsumG{e,ha,hb) we have bestcutedgec(ha,hb) GBestCutsc(ha,hb) as desired.

D

Proposition 15 gives us a recursive way of finding a best cut edge for a cluster
in a topology tree. The idea is now, for each cluster C, dC = {a, 6}, to save
the latest value found by a call bestcutedgec(ha,hb) together with ha, hb and
hsumc(ha,hb). Then if the next call bestcutedgec(h'a,h'b) has h'a = ha and h'b =
hb, we can immediately return the desired values in constant time. Otherwise,
if h'a > ha and h'b > hb the memorization means that we only need to do a
logarithmic number of recalculations, as stated in the following lemma:

Lemma 16. Let C be a node in a topology tree, with dC = {o, b}, let ha,hb and
h'a > ha be any nonnegative numbers and suppose the last call to bestcutedgec
was bestcutedgec{ha,hb). Then the number of recalculations needed to compute
bestcutedgec(h'a,hb) is O(logn).

Proof. From the definition of bestcutedge it is clear that whenever
bestcutedgec (h'a, hb) makes two recursive calls, so does bestcutedgec (ha,hb), and
at least one of these calls is identical to one made by bestcutedgec(h'a,hb). Fur-
thermore the one new call made by bestcutedgec(h'a,hb) only differ in one pa-
rameter, so the same argument can be applied recursively. Thus by induction at
most one recalculation can occur for each level in the topology tree, yielding a
total of O(log n) recalculations. □

Formally, for every cluster C in the topology tree, with dC = {a, b}, info(C)
should include the following information in order for each of the recalculations
to take constant time:

— dist(a, b)
— maxdistc (a), maxdistc (b)

And if C has more than one boundary node:

279

- ei = First(a■ ■ ■ 6),e-i = Last(a■■■b)
- maxdistc\{ei}(a),maxdistc\{ei}{b),rnaxdistC\{e2y(a),maxdistc\{e2}(b)
- e,ha,hb and hsumc{e,ha,hb), where e = bestcutedgec{ha,hb) was the last

call to bestcutedgec ■
Whenever a cluster C with two boundary nodes becomes the root on a topology
tree, either by a Merge or a DeleteRoot, it should be initialized with a call
bestcutedgec (0,0).

Lemma 17. TTie iime needed to update info during a Merge or a DeleteRoot is
O(logn).

Froo/. Let A and B be the clusters we want to merge, let C denote the cluster AU
B and let dA = {a, c},dB = {b, c} and dC = {a, b}. In order to do the Merge, we
need to compute bestcutedgec(0,0). By proposition 15 this can be done by com-
puting bestcutedgeA(0,maxdistB{b)-dist(b,c)) and bestcutedgeB(maxdistA{a)-
dist(a,c),0). In the structure we already have bestcutedgeA(0,0) and
bestcutedgeB{0,0), and so by lemma 16 we only need to recalculate bestcutedge
for O(logn) clusters. Using lemma 11 and proposition 15 each recalculation can
be done in constant time given the information available, yielding a total of
O(logn) time for the update.

When deleting C again, we have to recalculate bestcutedgeA(0,0) and
bestcutedgeB{0,0). The update made by the Merge operation that created C
changed at most O(logn) clusters, and using lemma 11 and proposition 15 each
value can be recalculated in constant time given the information available. Thus
updating the structure under a DeleteRoot can be done in O(logn) time. D

By theorem 2 we now have that we can maintain info for a topology tree r in
time 0(log2 n) per operation, such that if C is an internal node in r with dC =
{a,b}, and the last call of bestcutedgec was bestcutedgec(ha,hb) then for any
h'a > ha and h'b > hb we can find an edge e G a ■ ■ ■ b minimizing hsumc(e, h'a, h'b)
in time O(logn) according to lemma 16.

Given a topology tree r and an arbitrary path P = p1 ■ ■ -p2, there may not be
a cluster in r where px and p2 are boundary nodes. Thus in order for the search
described above to work for the path P, we will have to change the topology
tree to create such a cluster. To do this we will introduce the concept of external
boundary nodes.

Let r be a topology tree, let C be an internal node of r with dC = {a, b},
and let r' be the subtree of r with root C. If we restrict ourselves to looking at
T' then C has no boundary nodes in the normal sense. But the structure of r' is
still exactly as if {a, b\ were boundary nodes. Formally we say that:
- {a, 0} are external boundary nodes of C in r'.
- {a, 6} are internal boundary nodes of C in r

And we say that r' is a topology tree with external boundary nodes {a,b}. For-
mally: For any tree T, and any nodes a,b £ T there obviously exists a tree I"
with topology tree r', such that T is represented by a node in r' and dT = {a, b}.
If we let r be the subtree of r' with root T, then r is said to be a topology tree
with external boundary nodes a and b. In the journal version we will prove the
following lemma

280

Lemma 18. Given a tree T with topology tree r and two nodes p\ and P2 from
T. Then we can change r into a topology tree r' with external boundary nodes
Pi andp2, and back, using O(logn) Merge and DeleteRoot operations. D

Theorem 19. There exists an algorithm for maintaining a dynamic forest sup-
porting link, cut and best swap operations in 0(log2 n) time, given the ability to
use 0(n log n) time and 0(n) space for preprocessing, where n is the number of
nodes in the tree(s) involved in the operation.

Proof. By theorem 5 algorithm 1 solves the best swap problem. By proposition 8
we can perform step 1 in 0(log2 n) time. By proposition 9 we can compute step 2
and 4 in O(logn) time. To solve step 3 we do the following. We cut at most two
edges to obtain the subtree U containing the path i>i • • • v%. By lemma 18 we can
make v\ and v2 external boundary nodes in a topology tree structure for U using
O(logn) Merges and DeleteRoots. Then we can apply lemma 16 to find the edge
minimizing maxpathf in O(logn) time. Then we relink the topology tree back
to its normal form without external boundary nodes. This is done to rebuild the
structure that we may use it again. This can be done using O(logn) Merges and
DeleteRoots by lemma 18. Since step 5 amounts to comparing four numbers and
picking the smallest, this step clearly runs in constant time. Thus all steps in
the algorithm can be done using O(logn) Merges and DeleteRoots. By lemma 17
both a Merge and a DeleteRoot takes O(logn) time and using proposition 1 we
can update the structure in 0(log2 n) time under link and cut. By proposition 1
and lemma 17 the preprocessing takes O(nlogn) time and 0(n) space. D

References

1. Z-Z. Chen. A simple parallel algorithm for computing the diameters of all vertices
in a tree and its application. Information Processing Letters, 42:243-248, 1992.

2. G. N. Prederickson. Data structures for on-line updating of minimum spanning
trees, with applications. SIAM J. Computing, 14(4):781-798, 1985.

3. G. N. Prederickson. Ambivalent data structures for dynamic 2-edge-connectivity
and k smallest spanning trees. In IEEE Symposium on Foundations of Computer
Science (FOCS), pages 632-641, 1991.

4. G.Y. Handler. Minimax location of a facility in an undirected tree network. Trans-
portation. Sei., 7:287-293, 1973.

5. G. F. Italiano and R. Ramaswami. Mantaining spanning trees of small diameter.
In Proc. 21st Int. Coll. on Automata, Languages and Programming. Lecture Notes
in Computer Science, Springer-Verlag, Berlin, 1994.

6. G. F. Italiano and R. Ramaswami. Mantaining spanning trees of small diameter.
Unpublished revised version of the ICALP paper, 1996.

7. R. Ramaswami. Multi-wavelength lightwave networks for computer communication.
IEEE Communications Magazine, 31:78-88, 1993.

8. M. Rauch. Fully dynamic graph algorithms and their data structures. PhD thesis,
Department of computer science, Princeton University, December 1992.

Improving Spanning Trees by Upgrading Nodes

S. O. Krumke,1 M. V. Marathe,2 H. Noltemeier,1

R. Ravi,3 S. S. Ravi,4 R. Sundaram,5 H. C. Wirth1

1 Dept. of Computer Science, University of Würzburg, Am Hubland,
97074 Würzburg, Germany.

Email: {krumke,noltemei,wirth}Cinfonnatik.uni-Huerzburg.de
2 Los Alamos National Laboratory, P.O. Box 1663, MS K990, Los Alamos, NM

87545, USA. Email: madhavCc3.1anl.gov§

GSIA, Carnegie Mellon University, Pittsburgh, PA 15213. Email: ravi+Ccmu. edu11

* Dept. of Computer Science, University at Albany - SUNY, Albany, NY 12222,
USA. Email: raviCcs.albany.edu

5 Delta Trading Co. Work done while at MIT, Cambridge MA 02139. Email:
koodsCtheory.lcs.mit.edu."

Abstract. We study budget constrained optimal network upgrading prob-
lems. We are given an edge weighted graph G = (V, E) where node v £ V
can be upgraded at a cost of c(v). This upgrade reduces the delay of each
link emanating from v. The goal is to find a minimum cost set of nodes
to be upgraded so that the resulting network has a good performance.
We consider two performance measures, namely, the weight of a mini-
mum spanning tree and the bottleneck weight of a minimum bottleneck
spanning tree, and present approximation algorithms.

1 Introduction, Motivation and Summary of Results

Several problems arising in areas such as communication networks and VLSI
design can be expressed in the following general form: Enhance the performance
of a given network by upgrading a suitable subset of nodes. In communica-
tion networks, upgrading a node corresponds to installing faster communication
equipment at that node. Such an upgrade reduces the communication delay along
each edge emanating from the node. In signal flow networks used in VLSI de-
sign, upgrading a node corresponds to replacing a circuit module at the node by
a functionally equivalent module containing suitable drivers. Such an upgrade
decreases the signal transmission delay along the wires connected to the module.
There is a cost associated with upgrading a node, and there is often a budget on
the total upgrading cost. Therefore, it is of interest to study the problem of up-
grading a network so that the total upgrading cost obeys the budget constraint
and the resulting network has the best possible performance among all upgrades
that satisfy the budget constraint.

5 Supported by the Department of Energy under Contract W-7405-ENG-36.
' Supported by NSF CAREER grant CCR-9625297.
11 Supported by DARPA contract N0014-92-J-1799 and NSF CCR 92-12184.

282

The performance of the upgraded network can be quantified in a number
of ways. In this paper, we consider two such measures, namely, the weight of a
minimum spanning tree in the upgraded network and the bottleneck cost (i.e.,
the maximum weight of an edge) in a spanning tree of the upgraded network.
Under either measure, the upgrading problem can be shown to be NP-hard. So,
the focus of the paper is on the design of efficient approximation algorithms.

1.1 Background: Bicriteria Problems and Approximation

The problems considered in this paper involve two optimization objectives,
namely, the upgrading cost and the performance of the upgraded network. A
framework for such bicriteria problems has been developed in [7]. A generic bi-
criteria problem can be specified as a triple (A,B,T) where A and B are two
objectives and r specifies a class of subgraphs. An instance specifies a budget on
the objective A and the goal is to find a subgraph in the class F that minimizes
the objective B for the upgraded network. As an example, the problem of up-
grading a network so that the modified network has a spanning tree of weight at
most D while minimizing the node upgrading cost can be expressed as (TOTAL

WEIGHT, NODE UPGRADING COST, SPANNING TREE).

Definition 1. A polynomial time algorithm for a bicriteria problem (A, B, J1) is
said to have perform.ance (a, /?), if it has the following property: For any instance
of (A, B, F) the algorithm

1. either produces a solution from the subgraph class F for which the value of
objective A is at most a times the specified budget and the value of objective
B is at most ß times the minimum value of a solution from r that satisfies
the budget constraint, or

2. correctly provides the information that there is no subgraph from r which
satisfies the budget constraint on A.

1.2 Problem Definitions

The node based upgrading model discussed in this paper can be formally described
as follows. Let G = (V, E) be a connected undirected graph. For each edge e £ E,
we are given three integers d0(e) > di(e) > ^(e) > 0. The value d,-(e) represents
the length or delay of the edge e if exactly i of its endpoints are upgraded.

Thus, the upgrade of a node v reduces the delay of each edge incident with v.
The (integral) value c(v) specifies how expensive it is to upgrade the node v. The
cost of upgrading all vertices in W C V, denoted by c(W), is equal to X^eiv c(v)-

For a set W C V of vertices, denote by d\y the edge weight function resulting
from the upgrade of the vertices in W; that is, for an edge (u, v) 6 E

dw{u, v) := dj(u, v) where i = \W C\ {u, v}\.

We denote the total length of a minimum spanning tree (MST) in G with respect
to the weight function dw by MST(G, dw)-

283

Definition 2. Given an edge and node weighted graph G - (V, E) as above
and a bound D, the upgrading minimum spanning tree problem, denoted by
(TOTAL WEIGHT, NODE UPGRADING COST, SPANNING TREE), is to upgrade
a set W C V of nodes such that MST(G, dw) < D and c(W) is minimized.

We also consider the node based upgrading problem to obtain a spanning
tree with the bottleneck cost at most a given value. We denote the bottleneck
weight (i.e., the maximum weight of an edge) of a minimum bottleneck spanning

tree of G with respect to the weight function dw by MBOT(G, dw)-

Definition3. Given an edge and node weighted graph G = (V, E) as above and
a bound D, the upgrading minimum bottleneck spanning tree problem, denoted
by (BOTTLENECK WEIGHT, NODE UPGRADING COST, SPANNING TREE), is
to upgrade a set W C V of nodes such that MBOT (G,dw) < D and c(W) is

minimized.

Dual Problems The problem (TOTAL WEIGHT, NODE UPGRADING COST,

SPANNING TREE) is formulated by specifying a budget on the weight of a tree
while the upgrading cost is to be minimized. It is also meaningful to consider
the corresponding dual problem, denoted by (NODE UPGRADING COST, TOTAL

WEIGHT, SPANNING TREE), where we are given a budget on the upgrading cost
and the goal is to minimize the weight of a spanning tree in the resulting graph.

Lemma4. // there exists an approximation algorithm for (TOTAL WEIGHT,
NODE UPGRADING COST, SPANNING TREE) with a performance of(a,ß), then

there is an approximation algorithm for (NODE UPGRADING COST, TOTAL

WEIGHT, SPANNING TREE) with performance of(ß,a).

Proof. Let A be an {a, /^-approximation algorithm for (TOTAL WEIGHT, NODE

UPGRADING COST, SPANNING TREE). We will show how to use A to construct

a (ß, o/)-approximation algorithm for the dual problem.
An instance of (NODE UPGRADING COST, TOTAL WEIGHT, SPANNING

TREE) is specified by a graph G = (V, E), the node cost function c, the weight
functions df, i = 0,1, 2, on the edges and the bound B on the node upgrading
cost. We denote by OPT the optimum weight of an MST after upgrading a ver-
tex set of cost at most B. Observe that OPT is an integer such that (n-l)D2 <
OPT <{n- l)D0 where D2 := mine6£ d2{e) and D0 := maxee£i d0(e).

We use binary search to find the minimum integer D such that (n — 1)D2 <
D < (n - I)D0 and algorithm A applied to the instance of (NODE UPGRADING

COST, BOTTLENECK WEIGHT, SPANNING TREE) given by the weighted graph G
as above and the bound D on the weight of an MST after the upgrade outputs an
upgrading set of cost at most aB. It is easy to see that this binary search indeed
works and terminates with a value D < OPT. The corresponding upgrading set
W then satisfies MST(G, dw) < ßD < /30PT and c(W) < aB. D

A result similar to Lemma 4 can be shown for the bottleneck case. In view of
these results, we express our results for the problems (TOTAL WEIGHT, NODE

UPGRADING COST, SPANNING TREE) and (BOTTLENECK WEIGHT, NODE UP-

GRADING COST, SPANNING TREE).

284

1.3 Summary of Results

For the total weight MST upgrading problem, we derive our approximation re-
sults under the following assumption:

Assumption5. There is a polynomial p such that Do — Di < p(n), where
Do := m&XezE do(e) and D2 :— mmeefi o?2(e) are the maximum and minimum
edge weight, respectively, and n denotes the number of nodes in the graph.

Theorem 6. For any fixed e > 0, there is a polynomial time algorithm which, for
any instance of (TOTAL WEIGHT, NODE UPGRADING COST, SPANNING TREE)

satisfying Assumption 5, provides a performance of (1, (1 + £)20(logn)).

For the bottleneck case, we do not need any assumption about the edge weights.

Theorem 7. There is an approximation algorithm for the (BOTTLENECK WEIGHT,
NODE UPGRADING COST, SPANNING TREE) problem with performance (1, 2 Inn).

Our approximation results are complemented by the following hardness results:

Theorem 8. Unless NP C DTIME(ncl(Ioslogn)), there can be no polynomial time
approximation algorithm for either (TOTAL WEIGHT, NODE UPGRADING COST,

SPANNING TREE) or (BOTTLENECK WEIGHT, NODE UPGRADING COST, SPAN-

NING TREE) with a performance of (f{n), a) for any a < Inn and any polyno-
mial time computable function f. This result continues to hold with f(n) = 11
being any polynomial, even if Assumption 5 holds.

Due to space limitations, the remainder of this paper discusses mainly the al-
gorithm mentioned in Theorem 6 above. Proofs of other results will appear in a
complete version of this paper.

1.4 Related Work

Some node upgrading problems have been investigated under a simpler model by
Paik and Sahni [9]. In their model, the delay of an edge is decreased by constant
factors of 8 or S2, when one or two of its endpoints are upgraded, respectively.
Clearly, this model is a special case of the model treated in our paper.

Under their model, Paik and Sahni studied the upgrading problem for several
performance measures including the maximum delay on an edge and the diameter
of the network. They presented NP-hardness results for several problems. Their
focus was on the development of polynomial time algorithms for special classes
of networks (e.g. trees, series-parallel graphs) rather than on the development of
approximation algorithms. Our constructions can be modified to show that all
the problems considered here remain NP-hard even under the Paik-Sahni model.

Edge-based network upgrading problems have also been considered in the
literature [1, 4, 5]. There, each edge has a current weight and a minimum weight
(below which the edge weight cannot be decreased). Upgrading an edge cor-
responds to decreasing the weight of that particular edge and there is a cost

285

associated with such an upgrade. The goal is to obtain an upgraded network
with the best performance. In [4] the authors consider the problem of edge-
based upgrading to obtain the best possible MST subject to a budget constraint
on the upgrading cost and present a (1 + e, 1 + 1/^-approximation algorithm.
Generalized versions where there are other constraints (e.g. bound on maximum
node degree) and the goal is to obtain a good Steiner tree, are considered in [5].
Other references that address problems that can be interpreted as edge-based

improvement problems include [3, 8, 10].

2 Upgrading Under Total Weight Constraint

In this section we develop our approximation algorithm for the (TOTAL WEIGHT,
NODE UPGRADING COST, SPANNING TREE) problem. Without loss of general-
ity we assume that for a given instance of (TOTAL WEIGHT, NODE UPGRADING

COST, SPANNING TREE) the bound D on the weight of the minimum spanning
tree after the upgrade satisfies D > MST(G,d2), i.e., the weight of an MST
with respect to c/2, since node upgrading cannot reduce the weight of the min-
imum spanning tree below this value. Thus, there always exists a subset of the
nodes which, when upgraded, leads to an MST of weight at most D. We remind
the reader that our algorithm also uses Assumption 5 (stated in Section 1.3)

regarding the edge weights in the given instance.

2.1 Overview of the Algorithm

Our approximation algorithm can be thought of as a local improvement type
algorithm. To begin with, we compute an MST in the given graph with edge
weights given by d0(e). Now, during each iteration, we select a node and a subset
of its neighbors and upgrade them. The policy used in the selection process is
that of finding a set which gives us the best ratio improvement, which is defined
as the ratio of the improvement in the total weight of the spanning tree to
the total cost spent on upgrading the nodes. Having selected such a set, we
recompute the MST and repeat our procedure. The procedure is halted when
the weight of the MST is at most the required threshold D. To find a subset of
node with the best ratio improvement in each iteration, we use an approximate
solution to the Two Cost Spanning Tree Problem defined below.

Definition9 Two Cost Spanning Tree Problem. Given a connected undirected
graph G = (V,E), two edge weight functions, c and I, and a bound B, find a
spanning tree T of G such that the total cost c(T) is at most B and the total cost
l(T) is a minimum among all spanning trees that obey the budget constraint.

The above problem can be expressed as the bicriteria problem (C-TOTAL

WEIGHT, /-TOTAL WEIGHT, SPANNING TREE). This problem has been ad-
dressed by Ravi and Goemans [11] who obtained the following result.

Theorem 10. For alle > 0, there is a polynomial time approximation algorithm
for the Two Cost Spanning Tree problem with a performance of (1 + e, 1).

286

2.2 Algorithm and Performance Guarantee

The steps of our algorithm are shown in Figure 1. This algorithm uses Procedure
COMPUTE QC whose description appears in Figure 2.

ALGORITHM UPGRADE MST(ß)
• Input: A graph G = (V, E), three edge weight functions do > di > d2, a node
weight function c, and a number D, which is a bound on the weight of an MST in
the upgraded graph; a "guess value" O for the optimal upgrading cost.

1. Initialize the set of upgraded nodes: Wo := 0.
2. Let To := MST(G,dw0)-
3. Initialize the iteration count: i : = 1.
4. Repeat the following steps until for the current tree T,-_i and the weight function

dw,_l we have: div,_, (X;_i) < D:
(a) Let Ti-i := MST(G, dwi_,) be an MST w.r.t. the weight function du/,.,.
(b) Call Procedure COMPUTE QC to find a marked claw C with "good" quotient

cost q(C). Procedure COMPUTE QC is called with the graph G, the current
MST Ti-i, the current weight function dwi_i and the bound Q.

(c) If Procedure COMPUTE QC reports failure, then report failure and stop.
(d) Upgrade the marked vertices M(C) in C: Wi := W,_i U M(C).
(e) Increment the iteration count: i := i + 1.

• Output: A spanning tree with weight at most D, such that total cost of upgrading
the nodes is no more than (l+e)Q-ö(\og n), provided Ü > OPT. Here, OPT denotes
the optimal upgrading cost to reduce the weight of an MST to be at most D.

Fig. 1. Approximation algorithm for node upgrading under total weight constraint.

Before we embark on a proof of Theorem 6, we give the overall idea behind
the proof. Recall that each basic step of the algorithm consists of finding a node
and a subset of neighbors to upgrade.

Definitionll. A graph C — (V, E) is called a claw, if E is of the form E =
{ (v, w) : w G V \ {v} } for some node v £ V. The node v is said to be the center
of the claw. A claw with at least two nodes is called a nontrivial claw.

Let W be a subset of the nodes upgraded so far and let T be an MST with
respect to dw\ that is, T = MST(G, dw). For a claw C with nodes M(C) C C
marked, we define its quotient cost q{C) to be

9(g) ■■=, m „Srf V ,ifM(C)/0,
dw (T)-Mb 1(1 U C, dWuM(c))

and +oo otherwise. In other words, q(C) is the cost of the vertices in M(C)
divided by the decrease in the weight of the MST when the vertices in M(C)
are also upgraded and edges in the current tree T can be exchanged for edges in

287

the claw C. Notice that this way the real profit of upgrading the vertices M(C)
is underestimated, since the weight of edges outside of C might also decrease.

Our analysis essentially shows that in each iteration there exists a claw of

quotient cost at most d*°r)-D' where T is the weight of an MST at the beginning
of the iteration and W are the nodes upgraded so far. We can then use a potential
function argument to show that this yields a logarithmic performance guarantee.

PROCEDURE COMPUTE QC(J2)
• Input: A graph G = (V, E), a spanning tree T and a weight function d on E;
W C V is the set of upgraded nodes; a "guess" Ü for the optimal upgrading cost.

1. Let s:= riog1 + £ß].
2. For each node v <£ W and all K € {1, (1 + e), (1 + e)2,..., (1 + s)'} do

(a) Set up an instance /„,/<• of the Two Cost Spanning Tree Problem as follows:
- The vertex set of the graph Gv contains all the vertices in G and an

additional "dummy node" x.
- There is an edge (v, x) joining v to the dummy node x of length l(v, x) =

0 and cost c(v, x) = c(v) thus modeling the upgrading cost of v.
- For each edge (v,w) £ E, Gv contains two parallel edges h and hup.

The edge h models the situation where w is not upgraded:

.... (d2(v,w) if we W
(/!):=0 *^:- i J,(v,w) ifw$W 31

Similarly, hnp models an upgrade of w:
,i\ fo if we w , , c^*)~\M,n\ ;ri„dw l(h»P):=d2(v,w >) if w i W

- For each edge (u, w) £ T, there is one edge (u, w) £ E which has length
l(u, w) = d(u, w) and cost c(u, w) = 0.

- The bound B on the c-cost of the tree is set to K.
(b) Using the algorithm mentioned in Theorem 10, find a tree of c-cost at most

(1 -|_ e)/f and /-cost no more than that of a minimum budget K bounded
spanning tree (if one exists). Let TV,K be the tree produced by the algorithm.

3. If the algorithm fails for all instances /„,/<• then report failure and stop.
4. Among all the trees TV,K find a tree Tv>,K> which minimizes the ratio

c(Tv.,K')/{d(T)-l(Tv.,K.)).
5. Construct a marked claw C from T„« ,K> as follows:

- The center of C is v* and v* is marked.
- The edge (v*,w) is in the claw C if T„>,K' contains an edge between v* and

w. The node w is marked if and only if the edge in Tv*,K' between v" and
w has c-cost greater than zero.

• Output: A marked claw C (with its center also marked) with quotient cost q(C)
satisfying q(C) < 2(1 + ef d(°^g and cost c(M(C)) < (1 + e)Q.

Fig. 2. Algorithm for computing a good claw.

288

2.3 Bounded Claw Decompositions

Definition 12. Let G = (V, E) be a graph and W C V a subset of marked
vertices. Let K > 1 be an integer constant. A K-bounded claw decomposition of
G with respect to W is a collection Ci,...,Cr of nontrivial claws, which are all
subgraphs of G, with the following properties:

1- U=i V(d) = V and \Ji=1E(d) = E.
2. No node from W appears in more than K claws.
3. The claws are edge-disjoint.
4. If a claw C,- contains nodes from W, then its center belongs also to W.

Lemma 13. Let F be a forest in G = (V, E) and let W C V be a set of marked
nodes. Then there is a 2-bounded claw decomposition of F with respect to W. D

Lemma 14. Let T := 7;_i be an MST at the beginning of iteration i with W :=
Wi-i being the nodes upgraded so far. Let U C V be a set of nodes. Let T" =
MST(G, d-wuu) be a minimum spanning tree after the additional upgrade of the
vertices in U. Then, there is a bisection ip : T —>■ T' with the following properties:

1. For all edges e 6 T f~l T" we have ip(e) = e, 2. dwuu{<p{e)) < dw(e) for all
e G T, 3. the "swaps" e i-> <p(e) transform T into T", and 4- ^2e£T(dw(e) —

dwuu(<fi(e))) = dw{T) - dwuu{T'). D

Lemma 15. Let T :— T{-\ be an MST at the beginning of iteration i, i.e.,
T = MST(G,dw), where W := Ws_i is the upgrading set constructed so far.
Then there is a marked claw C (where its center v is also marked and v £ W)
ivith quotient cost q(C) satisfying

2 OPT
q(C) < and c(M(C)) < OPT.

dw\JL) - JL>

Proof. Let T = MST(G, C/IVUOPT) be an MST after the additional upgrade of
the vertices in OPT. Clearly, C?IVUOPT(7

1
') < D. Apply Lemma 13 to T' with the

vertices in Z :— OPT \ W marked. The lemma shows that there is a 2-bounded
claw decomposition of T" with respect to Z. Let the claws be C\,..., Cr. In each
claw Cj, the corresponding nodes M{Cj) := Cj ("1 Z from Z are marked. Since
the decomposition is 2-bounded with respect to Z, it follows that

r

]Tc(M(Q))< 2-OPT. (L)

i=i

Moreover, the cost c{M(Cj)) of the marked nodes in each single claw Cj does
not exceed OPT, since we have marked only nodes from Z. By Lemma L4, there
exists a bijection ip:T —)• T" such that

^2(dw(e)-dwuOPT{<p(e))j = dw(T) - dWuoPT(T') > dw{T) - D. (2)
eer

289

For each of the claws Cj with M(Cj) ^ 0 in the 2-bounded decomposition of T"
its quotient cost q(Cj) satisfies

'M < v üT^f—mrv (3)

since we can exchange the edges ip(e) (e G Cj) for the corresponding edges e in
the current tree T after the upgrade and thus decrease the weight of the tree by

at least E^^c,(dw{e) - dWu0PT(<p(e)))-
Let C be a claw among all the claws Cj with minimum q(C). Then,

9(C)- X)(dw(e)-<W>pT(p(e))) <c(M(Cj)) forj = l,...,r. (4)

Notice that the above equation holds, regardless of whether M(Cj) is empty or
not. Summing the inequalities in (4) over j = 1,..., r, and using Equations (1)
and (2), it can be seen that C is a claw with the desired properties. D

2.4 Finding a good claw in each iteration

Lemma 15 implies the existence of a marked claw with the required properties.
We will now deal with the problem of finding such a claw.

Lemma 16. Suppose that the bound Q given to Algorithm UPGRADE MST sat-
isfies Q > OPT. Then, for each stage i of the algorithm, it chooses a marked
claw C such that

OPT
g(C0<2(l+£)2

dty(r)_Z) and c(M(C')) < (1 + e)Q,

where T := TJ_i is an MST at the beginning of iteration i and W := Wi-± is
the set of nodes upgraded so far.

Proof. By Lemma 15, there is a marked claw C with quotient cost q(C) at most
9_ OPT
'j—?W—7T- Let v be the center of this claw. By Lemma 15, v is marked. Let
dw(J)-U

c(C) := c[M(C)) be the cost of the marked nodes in C and L := MST(T U
C, djyuM(c)) De the weight of the MST in T U C resulting from the upgrade of
the marked vertices in C. Then, by definition of the quotient cost q(C) we have

"c>=j^h i 2d^5- (5)

Consider the iteration of PROCEDURE COMPUTE QC when it processes the
instance Ivj< of Two Cost Spanning Tree Problem with graph Gv and c(C) <
A' < (1 + e) • c(C). The tree MST(T U C, dwuM(C)) induces a spanning tree in
Gv of total c-cost at most c(C) (which is at most K) and of total /-length no
more than L. Thus, the algorithm from Theorem 10 will find a tree TV<K

sucri

that its total c-cost C(TVJK) is bounded from above by (1 + e)K < (1 + e)2c(C)
and of total /-length 1(TV>K)

no more than L.
By construction, the marked claw C" computed by PROCEDURE COMPUTE

QC from TVIK has quotient cost at most C(TVIK)/(dw(T) — HTVJK))I which is at
most (1 + ej2c(C)/{dw(T) - L). The lemma now follows from (5). D

290

2.5 Guessing an Upper Bound on the Improvement Cost

We run our Algorithm UPGRADE MST depicted in Figure 1 for all values of

n e {1, (1 + e), (1 + e)2, ■ • -, (1 + £)'}, where t := [log1+£ c{V)].

We then choose the best solution among all solutions produced. Our analysis
shows that when OPT < Ü < (1 + e) ■ OPT, the algorithm will indeed produce a
solution. In the sequel, we estimate the quality of this solution. Assume that the
algorithm uses / + 1 iterations and denote by Ci,..., Cj,CJ+1 the claws chosen
in Step 4b of the algorithm. Let c,- := c(M(d)) denote the cost of the vertices
upgraded in iteration i. Then, by construction

d< (l+e)ß< (l + e)2OPT fori=l,...,/ + l. (6)

2.6 Potential Function Argument

We are now ready to complete the proof of the performance stated in Theorem 6.
Let MSTi denote the weight of the MST at the end of iteration i, i.e., MST,- :=
dWi (Ti). Define <f>,: := MST; - D. Since we have assumed that the algorithm uses
/ + 1 iterations, we have fc > 1 for i = 0,..., / and <j>f+1 < 0. As before, let
d := c(M(d)) denote the cost of the vertices upgraded in iteration i. Then

Lemma 16 / Cj + i \
&+1 = & - (MST,-- MST,-+1) < i1 ~ ^TOPT) **> (7)

where a := 2(1 + e)2. We now use an analysis technique due to Leighton and
Rao [6]. The recurrence (7) and the estimate ln(l - T) <-T give us

£c,-<a.OPT-ln^. (8)
=1 h

Notice that the total cost of the nodes chosen by the algorithm is exactly the

sum Y^{=i ci- By (8) and (6) we have

£ a = cf+1 +J2C'<(1 + £)2°PT + 2(x + £)2°PT •ln ^- (9)

! = 1

We will now show how to bound ln ^. Notice that <f>} = MST/ - D > 1, since
the algorithm uses /+1 iterations and does not stop after the /th iteration. We
have. 0o = MST0-£> < (n-l){D0-D2), where D0 and D2 denote the maximum
and the minimum edge weight in the graph. It now follows from Assumption 5
that ln^o e ö(log(np(n))) C O(logn). Using this result in (9) yields

J2 Ci < (i + ef ■ OPT + 2(1 + efO{\og n) ■ OPT G (1 + e)2ö(\ogn) ■ OPT. G
!=1

291

3 Concluding Remarks

Our algorithms produced solutions in which the budget constraints were strictly
satisfied. This is unlike many bicriteria network design problems where it is
necessary to violate the budget constraint to obtain a solution that is near-
optimal with respect to the objective function [7].

An open problem that arises immediately from our work is whether there is
a good approximation algorithm for the (TOTAL WEIGHT, NODE UPGRADING

COST, SPANNING TREE) problem even when Assumption 5 is not satisfied. It
is also of interest to investigate whether our results for spanning trees can be
extended to Steiner trees. Other open problems under the node-based upgrading
model can be formulated using different performance measures for the upgraded
network. Some measures which are of interest in this context include bottleneck
weight, diameter and lengths of paths between specified pairs of vertices.

References

1. 0. Berman, "Improving The Location of Minisum Facilities Through Network
Modification," Annals of Operations Research, Vol. 40, 1992, pp. 1-16.

2. U. Feige, "A threshold of Inn for approximating set cover," Proc. 28th Annual
ACM Symposium on the Theory of Computing, Philadelphia, PA, May 1996, pp.
314-318.

3. G. N. Frederickson and R. Solis-Oba, "Increasing the Weight of Minimum Spanning
Trees", Proc. 6th Annual ACM-SIAM Symposium on Discrete Algorithms, January
1996, pp. 539-546.

4. S. 0. Krumke, H. Noltemeier, M. V. Marathe, S. S. Ravi and K. U. Drangmeister,
"Modifying Networks to Obtain Low Cost Trees," Proc. Workshop on Graph The-
oretic Concepts in Computer Science, Cadenabbia, Italy, June 1996, pp. 293-307.

5. S. 0. Krumke, H. Noltemeier, M. V. Marathe, R. Ravi and S. S. Ravi, "Improving
Steiner Trees of a Network Under Multiple Constraints", Technical Report, LA-UR
96-1374, Los Alamos National Laboratory, Los Alamos, NM, 1996.

6. F. T. Leighton and S. Rao, "An Approximate Max-Flow Min-Cut Theorem for
Uniform Multicommodity Flow Problems with Application to Approximation Al-
gorithms", Proc. 29th Annual IEEE Conference on Foundations of Computer Sci-
ence, Oct. 1988, pp. 422-431.

7. M. V. Marathe, R. Ravi, R. Sundaram, S. S. Ravi, D. J. Rosenkrantz and
H. B. Hunt III, "Bicriteria Network Design Problems", In Proc. 22nd Interna-
tional Colloquium on Automata, Languages and Programming, July 1995, Vol. 944
of Lecture Notes in Computer Science, pp. 487-498.

8. J. Plesnik, "The Complexity of Designing a Network with Minimum Diameter",
Networks, Vol. 11, 1981, pp. 77-85.

9. D. Paik and S. Sahni, "Network Upgrading Problems," Networks, Vol. 26, 1995,
pp. 45-58.

10. C. Phillips, "The Network Inhibition Problem," Proc. 25th Annual ACM Sympo-
sitim, on Theory of Computing, San Diego,CA, May 1993, pp. 288-293.

11. R. Ravi and M. X. Goemans, "The Constrained Minimum Spanning Tree Prob-
lem", Proc. Scandinavian Workshop on Algorithmic Theory, Reykjavik, July 1996.

Dynamic Algorithms for graphs
of Bounded Treewidth

Torben Hagerup

Max-Planck-Institut für Informatik, D-66123 Saarbrücken, Germany
torbenCmpi-sb.mpg.de

Abstract. The formalism of monadic second-order (MS) logic has been
very successful in unifying a large number of algorithms for graphs of
bounded treewidth. We extend the elegant framework of MS logic from
static problems to dynamic problems, in which queries about MS proper-
ties of a graph of bounded treewidth are interspersed with updates of ver-
tex and edge labels. This allows us to unify and occasionally strengthen
a number of scattered previous results obtained in an ad-hoc manner and
to enable solutions to a wide range of additional problems to be derived
automatically.
As an auxiliary result of independent interest, we dynamize a data struc-
ture of Chazelle and Alon and Schieber for answering queries about sums
of labels along paths in a tree with edges labeled by elements of a semi-
group.

1 Introduction

Many graph properties can be expressed via formulas in a suitable logic. E.g.,
for given vertices s and t in a directed graph, the fact that the subgraph spanned
by a set A of edges contains a path from s to t can be expressed by saying that
every vertex set U containing s, but not t, can be left via an edge in A, i.e., by
the formula

Joins(A, s, t) = VC/((s eUAt<£U)=>

3e3u3v(tail(u, e) A head(v, e) Ae E A Au eU Av £ [/)),

where e ranges over all edges, u and v range over all vertices, U ranges over all
sets of vertices, and tail(u,e) and head(v,e) express that u and v are the tail
and the head of e, respectively. If we want the graph spanned by A to be just a
single (simple) path from s to t, we can additionally require A to be minimal,
i.e., Path(A,s,t) = Joins(A,s,t) A Vß((ß C A A Joins{B, s,t)) => B = A),
where B ranges over all sets of edges.

Expressing computational problems such as "Is there a path from s to t?"
in a formal framework holds out the prospect of deriving algorithms to solve
such problems in an automatic way. Indeed, every graph property expressible in
first-order logic can be decided in polynomial time. The catch is that first-order
logic is too weak to express most graph properties of interest (see, e.g., (Cour-
celle, 1990a)). It allows variables ranging over vertices and edges, existential and

293

universal quantification over such variables, the usual logic connectives A, V,
and -i, and predicates such as tail and head for accessing the basic connectiv-
ity structure of the graph under consideration. Very frequently, however, one is
led, as in the examples above, to introduce variables ranging not over individual
vertices or edges, but over sets of vertices or edges. Extending first-order logic
with this possibility, we arrive at monadic second-order (MS) logic. As noted by
many researchers, MS logic is a powerful language that allows the expression
of a wide range of graph properties. Indeed, the collection of decision problems
on graphs that can defined by MS formulas is so large that it includes many
NP-complete problems, leaving little hope of obtaining efficient algorithms for
the general case. Rather than reverting to a less expressive logic, one can try to
evade this problem by restricting the class of input graphs. Arnborg et al. (1991)
argue that a particularly felicitous combination is to consider problems definable
by an MS formula on graphs of bounded treewidth, i.e., on graphs drawn from
a class with a uniform upper bound on the treewidth of all graphs in the class.
Loosely speaking, the treewidth of a graph is a measure of how far the graph
deviates from being a tree. The details of the definition will be provided in the
next section.

Consider a single MS formula # with / free set variables (such as "vl" in
the formula "Path(A,s,ty) and without free simple variables. # gives rise to
several computational graph problems: First, there is the decision problem of
determining whether there are sets A\,.. .,Ai of vertices or edges that satisfy <Z>
if substituted for its free variables (e.g., "Is there a path from s to t?"). For this
first type of problem it is not necessary to allow $ to have free variables—we
might as well quantify them existentially; still, we keep the present formulation
for the sake of uniformity. Second, the counting problem of detecting the num-
ber of such tuples (e.g., "How many (simple) paths are there from s to tV).
Third, if the input additionally associates each vertex or edge a with an /-tuple
(/i(a),..., fi(a)) of real numbers, whose ith element is interpreted as the cost
of including a in Ai, for i = 1,..., /, the optimization problem of computing the
minimal cost of a tuple (A\,.. .,Ai) that satisfies <P (e.g., "What is the distance
from s to tV). Fourth, in the same setting, the construction problem, (this is
not a standard term) of actually computing a tuple (A\,..., Ai) satisfying <$>
and of minimal cost (e.g., "Which path from s to t is shortest?"). And fifth, if
fi{a) is reinterpreted as the probability of a stepping into Ai, for i = 1,...,/,
with each vertex or edge entering each set independently of all other such ran-
dom decisions, the reliability problem of computing the probability of obtaining
a tuple (Ai, ...,Ai) that satisfies # (e.g., "What is the probability of having an
operational path from s to <?").

Results by Courcelle (1990b) and Bodlaender (1996a) imply that every deci-
sion problem defined by an MS property can be solved in linear time on graphs
of bounded treewidth. Generalizations of these and related earlier results to
counting, optimization, construction, and reliability problems were investigated
by a number of authors (Arnborg et al., 1991; Bern et al., 1987; Bodlaender,
1993a; Borie et al., 1992; Courcelle and Mosbah, 1993; Stearns and Hunt, 1996).
One of the simplest and most general extensions was suggested by Courcelle

294

and Mosbah (1993), and we will essentially use their framework. In our formu-
lation, a generic algorithm is instantiated by choosing a particular commuta-
tive semiring % = (R, ®, ®, Ö, 1), i.e., an algebraic structure consisting of a set
R, equipped with two associative and commutative operations © and <g> with
neutral elements Ö and 1, respectively, such that ® distributes over © (i.e.,

a®(b®c) = {a®b)®(a®c) foralla,6,ce R) anda®0 = 0 for all a G R. Given
an input graph G with associated functions fi,...,fi (which will be called cost
functions, independently of their interpretation), the generic algorithm computes
the value of G under <£ and U, defined as the quantity

\G*,n= 0 (g)(g) /."(a).
G|=#[Ai A,] « = 1 aEAi

i.e., the "sum", over all tuples (A1:...,Ai) that satisfy #, of the "products",
over the sets A{, of the appropriate costs. With suitably chosen commutative
semirings, this can be shown to solve the problems mentioned above as well as a
number of additional problems. For example, with 11 = ({0,1,2,...}, +, •, 0,1),
we obtain a solution to the counting problem.

The problem of computing \G\$,n for fixed $ and U will be called static,
meaning that the entire input as well as the question to be answered are known
from the outset. The focus of this paper is to extend the elegant framework
of MS logic to a dynamic setting in which, following a certain initialization or
preprocessing based on the input graph, a sequence of attribute updates and
queries must be executed online, i.e., each query must be answered before the
next operation to be executed is revealed. An (attribute) update changes a single
attribute of a vertex or edge without affecting the structure of the graph. One
might also consider structural updates that insert or delete vertices or edges.
The data structures and algorithms described here can easily be extended to
allow deletions, but supporting insertions of vertices and edges appears to be
considerably more difficult; see (Bodlaender, 1993b) for results in this direction
in the case of graphs of treewidth 2. We allow boolean attributes, which take
values in {false, true}, indicate (non)membership in "user-defined" sets, and
may be tested in <P through corresponding predicates, and ring attributes, which
take values in R, together define the cost functions, and cannot be referred to
in #. A query temporarily (for the duration of the query) carries out a constant
number of updates of boolean and/or ring attributes, thereby changing G into
G", and then computes and returns |G"|#,7j, after which all attributes revert to
their values before the query. This view of a query operation may be unfamiliar,
but it is general and permits a convenient statement of our results.

Our running example centered around the the MS formula Path(A,s,t) will
be used to clarify some of the concepts introduced above. We have already seen
that Path(A,s,t) expresses that the edges in A span a (simple) path from s to
t, and if we give each edge e a ring attribute /(e) equal to its length, the length

of the path spanned by A is YuetA /(e)> which can be minimized by choosing
U = (M U {oo}, min, +, oo, 0). What is lacking is that we would like to support
queries asking for the distance from s to t (call this an (s,i)-query), where s

295

and t are variable. We can achieve this effect within the general framework by
introducing two "user-defined" sets, 5 and T, both initialized to 0, letting an
(s, i)-query temporarily change two boolean vertex attributes to make S = {s}
and T = {i}, and using instead of the original formula the formula

3s3t(Origin(s) A Destination(t) A Path(A,s,t)),

where Origin and Destination are predicate symbols corresponding to the sets
S and T. It should be clear that other traditional types of queries can be for-
mulated in a similar way. We show that for all r > 1, the dynamic version of
every problem defined by an MS formula $ and a commutative semiring H whose
operations can be carried out in constant time (call such a semiring efficient)
can be solved on n-vertex graphs of bounded treewidth with initialization time
0(n), (attribute-)update time 0(rn1/r), and query time 0(T + a(n)), where a
is a slowly-growing "inverse Ackermann" function. Alternatively, for arbitrary
integer k > 1, with the same update time, but initialization time 0(nlk(n))
and query time 0(T + k), where h, for every integer k > 1, is another slowly-
growing function. Both a and the functions Ik are defined in the next section. In
the special case of the dynamic distance and shortest-path problems considered
above, this result was obtained previously by Chaudhuri and Zaroliagis (1995)
for T = 0(1) as well as with a worse tradeoff between initialization time, update
time, and query time. In more detail, Chaudhuri and Zaroliagis indicate the fol-
lowing bounds, for all integers r > 1: Initialization time 0(crn), update time

0(c2rn2i~r), and query time 0(c2ra(n)), where c = 0(3r). In order to compare
these bounds with ours, observe, e.g., that in order to achieve an update time

of 0(2vlog") with the bounds of Chaudhuri and Zaroliagis, it is necessary to
choose r larger than |loglogn, which yields a query time of (logn)ß(loslogn),

whereas our bounds associate an update time of 0(2 vloS") with a query time
of 0(\/iogn). Our bounds are never worse than those of Chaudhuri and Zaro-
liagis, and strictly better for all nonconstant r and r. One end of the tradeoff,
with update and query times both O(logn), was demonstrated previously by
Bodlaender (1993b).

If only queries but no updates are to be supported, we achieve initialization
time 0(n) and query time 0(a(n)) or, for every integer k > 1, initialization time
0(nlk(n)) and query time 0(k). This result was found previously by Chaudhuri
and Zaroliagis (1995) for the distance and shortest-path problems and by Arikati
et al. (1995) for the problem of computing (the value of) a minimum cut sepa-
rating two given vertices. (The value of a minimum cut separating s and t can
be found by minimizing £)eeA /(e), where /(c) denotes the capacity of the edge
e, subject to VB(Path(B,s,t) => (A n B ^ 0)), where A and B range over all
sets of edges.)

In some cases, queries may become cheaper if they can be batched. We con-
sider queries that (temporarily) change at most d boolean attributes and no
ring attributes and use the term exhaustive d-dimensional query to denote a set
of all possible queries of this type (e.g., the well-known all-pairs shortest-paths
problem is to answer an exhaustive 2-dimensional query). We can show that for
all d > 1, exhaustive d-dimensional queries defined by an MS formula and an

296

efficient commutative semiring can be answered in 0(nd) time for n-vertex input
graphs of bounded treewidth. This was proved previously for d = 1 and d = 2
for the distance problem by Radhakrishnan et al. (1992) and for d = 2 for the
problem of computing (the value of) a minimum cut by Arikati et al. (1995).

All of the algorithms described above translate into parallel algorithms for
the EREW PRAM. Due to space limitations, we omit further discussion of ex-

haustive queries and parallel algorithms.

2 Definitions

As introduced by Robertson and Seymour (1986), a tree decomposition of a graph
G = (V, E) is a pair (TD,U), where TD = (VD,ED) is a tree and U = {Ux \ x G
VD} is a family of subsets of V called bags, one for each node in TD, such that

(1) \JxeV Ux = V (every vertex in G occurs in some bag);
(2) for alf u, v G V, if u and v are the endpoints of some edge in E, then there

exists an x G VD with {u, v} C Ux (every edge in G is "internal" to some

bag); • rr, ,
(3) for all x,y,z G VD, if y is on the (simple) path from x to z in TD, then

UxnUz C [/y (every vertex in G occurs in the bags in a connected part of

TD, i.e., in a subtree).

The width of a tree decomposition (TD = (VD,-ED), {£4 | x G VD}) is
max^vo \UX | -1. The treewidth of a graph G is the smallest treewidth of any tree
decomposition of G. Many important graph classes are of bounded treewidth,
including those of outerplanar and series-parallel graphs; for surveys of results
of this kind, see (van Leeuwen, 1990) and (Bodlaender, 1996b).

Define 70: W = {1, 2,...} ->• N by I0(n) = \n/2], for all n G iV. Inductively,

for k = 1, 2,..., define /* : IV ->■ JV by Ik{n) = min{i G IV | /^(n) = 1}, for
all n G IV, where superscript (i) denotes i-fold repeated application. Finally, for
all n G W, take a(n) = min{k G W | Ik{n) < 3}.

3 Static Algorithms

Given an MS formula 4> with I free set variables and without free simple vari-
ables and a commutative semiring 11 = (R,®,®,0,1), we say that a graph
G = (V, £J) is appropriate for the pair (#,7£) if each a G V U E has a boolean
attribute for each unary predicate symbol occurring in # and / ring attributes
fi(a),...,fi(a) G R. The (static) ÜM5 problem defined by # and % is, given
a graph G appropriate for (#, ft), to compute the value |G|#,TI of G under $
and ft. Courcelle and Mosbah (1993) show that every RMS problem defined
by an MS formula # without free simple variables and an efficient commutative
semiring ft can be solved in linear time on graphs of bounded treewidth. Our
dynamic algorithms are based on a different proof of their result, which uses
techniques of Arnborg et al. (1991), and which we now sketch.

297

Theorem 1. (Courcelle and Mosbah, 1993) For all constants t > 1 and all
integers n > 1, every RMS problem defined by an MS formula $ without free
simple variables and an efficient commutative semiring 1Z can be solved in O(n)
time on n-vertex input graphs appropriate for (<£, TV) and of treewidth at most t.

Proof. Let G = (VG, EG) be a n-vertex input graph appropriate for ($,7?.) and
of treewidth at most t and take Q = VG U EG- Arnborg et al. (1991) show that
O(n) time suffices to construct an MS formula \P with the same free variables as
<P, a rooted binary tree T* = (V*, E*) appropriate for (9,Tl), and an injective
function 7r : i? —> V* so that the following holds: Suppose that $ has / free set
variables. Then, for all Au ..., At C Q, G |= <P[AU ..., A{\ if and only if T* |=

W[K(A1),...,TT(A,)]; moreover, T* £ ¥[Bu...,Bi\ whenever (jLi Bi 2 K(ü)-
Intuitively, if we identify a and n(a), for all a £ Ü, then T* satisfies \P under
a particular assignment (association of free set variables with sets of vertices
and/or edges) if and only if G satisfies $ under the same assignment.

Informally, a finite tree automaton is the natural generalization of a usual
finite automaton from inputs that are strings to inputs that are binary trees.
Formally, we can take a finite tree automaton to be a 5-tuple (S, E,8,so, F),
where S is a finite set of states, E is a finite alphabet, 8 is a transition function
from S x 5 x E to S, s0 £ S is a distinguished initial state, and F C S is a
distinguished set of accepting states. Given a binary tree, each of whose vertices
is labeled with an element of E, the tree automaton assigns a state to each vertex
in the tree, working from the leaves to the root (i.e., processing each vertex after
all of its children). If the left and right children of a vertex v are assigned states
s and t, respectively, and v is labeled a, the state S(s,t,a) is assigned to v; if
one or both children are missing, the initial state so is used in place of their
states. The tree automaton accepts the input tree exactly if the state assigned
to the root belongs to F. Arnborg et al. (1991) show how to construct a tree
automaton M = (5, E,8,s0,F) with the following property: Suppose that the
unary predicates appearing in W are Pi,..., Pk- Then E — {false, true}h+l, and
for arbitrary subsets A\,...,Ai of V*, if each vertex v G V* is labeled with
the bit vector (Pi(v),..., Pk{v), b\,..., 6;) 6 E, where 6,- = true iff v E A{, for
i=l,...,l, then M accepts T" exactly if T* |= ^[A^,..., A{\.

We show how to derive from M another tree automaton M' = (5', E', 8', s'0)
to solve the RMS problem at hand. M' is not a finite automaton, since both its
alphabet and its state set may be infinite, and it will compute a value (namely,
|T* lif^) rather than just accepting or rejecting, for which reason it has no set of
accepting states; in other respects, M' behaves exactly as a finite tree automaton.

Write H = (R, ©, ®, Ö, I), let m = \S\, and identify the states of M with the
integers 1,..., m, with 1 being the initial state. We take the state set S' of M'
to be Rm, the set of vectors of length m with components in R, and define the
initial state s'0 as (1,0,..., Ö). The alphabet of M' is E' = {false, true}k x Rl,
and the label of a vertex v £ V* is (Pi(v),..., Pfc(w), fi{v),..., fi(v)), where
fi,..., fi are the cost functions copied to T* from the input graph G according
to 7T, i.e., for i = 1,...,/, f{(n(a)) = fi(a) for all a £ Ü, and /,(a) = 0 for
all a £ V* \ w(Ü). We next define the transition function 8'. Assume that the
states of the (possibly fictitious) left and right children of a vertex u £ V* are

298

(Si,...

where

and (h,..., tm), respectively. Then the state of u is (n,..., rm),

mm v

r,=00 0 {sP®iq® (g) /.(«)),
P = l 9=1 (61,...,6i)6{/a(»e,tr«e}' h.-i~'

6(p,q,(Pi(u),...,Pk(u),bu-M)=J
hi —true

for j = 1,..., m. It can be seen that the sum for the jth component (correspond-
ing to the jth state of M) is over those pairs of states of M and those choices
of (non)membership of u in Au ..., At that would lead the original automaton
to give M the state j, for j = 1,..., m. It can then be proved by induction that
for each vertex u G V* and for j = l,...,m, the jth component of the state

assigned to u is

0 (g) (g) fi{a),
Ai,...,AiCU « = 1 a£A,

M(u,i4i,...,Ai) = ;

where [/ is the set of descendants of u in T*, and M(w, ^i,..., Ai) denotes the
state assigned by M to u if the vertex labels are set according to At,..., At. If the
state of the root of T* computed by M' is (si,..., sm), this observation shows
that |G|#,-fc = \T* I*,-* = ©j6F SJ, which the automaton therefore computes and

returns. Since m is a constant (for fixed #), each application of S' takes constant
time, so that the entire processing of T* by M' can be carried out in 0(n) time.

4 Data Structures for Queries

In this section we describe data structures that support queries efficiently, but
not updates. Given an MS formula # without free simple variables, a commuta-
tive semiring Tl, and a constant d G IV, the d-dimensional RMS query problem
defined by 4> and Tl is, given a graph G appropriate for (#,72.), to preprocess G
for subsequent queries for quantities of the form \G'\$,n, where G" is obtained
from G by (temporarily) changing at most d boolean and/or ring attributes.

Let the tree T* and the machines M and M' be as in the proof of Theorem 1
and consider a vertex u£V* with left and right children v and w, respectively.
Let (n,...,rm), («!,..., sm), and (tlt...,tm) be the states assigned by M' to
u, v, and w, respectively. Then, by definition of the transition function S\ we
have rj = ®™=1CjpSp for j = 1,..., m, where

Ujj,

m. .

0 0 (*,® 0 /•■(«)).
9=1 (fc1,...,6,)6{/a'se,«™e}' ,*=*-'

«(p.^^itu)....^^)^!.....^))^ bi — true

for p = 1,..., ?7i. In other words, provided that the state of w remains constant,
the function that maps the state of i; to the state of u is premultiplication with
an m x m matrix (over the semiring Tl). We call this function the relay function
of the edge {u, v} (for the input graph G). The relay functions of edges between

299

vertices and their right children are defined in complete analogy and have the

same form.
Suppose that G is changed into G' by modifying a single boolean or ring

attribute of some vertex or edge a £ fi. This translates into a change of a single
boolean or ring attribute of v = n(a) in T* or, as seen from the point of view of
M', into a change of the label of v. We can compute |G'|$,7j by simulating the
execution of M' on the new label settings. One way to do this is to compose the
relay functions of all edges on the path from v to the root r* of T*, and then to
apply the resulting function to the new state oft;; this yields the new state of the
root, from which \G'\$tn can be computed in constant time. Similarly, a query
that changes the labels of two vertices v and w can be handled by composing
relay functions along the two paths from v and w to the children of the lowest
common ancestor (LCA) u of v and w, using the result to compute the new state
of it, and then propagating the change to r* by composing the relay functions
on the path from u to r*. Answering queries therefore essentially reduces to
composing functions along paths in T*, a problem that has been studied in a
more general setting.

Let us call a semigroup S = (5, ©) efficient if a © 6 can be computed from a
and b in constant time for all a, b G S. We can assume without loss of generality
that S contains a neutral element. In the context of a tree T, each of whose edges
is labeled by an element of a semigroup (5, ©) called its weight, we define the
weight of a (simple) path in T of length k as the quantity Ai © • • • © A*, where
A,- is the weight of the iih edge on the path, for i = 1,..., k, and we define a
path-weight query as a query that specifies two vertices u and v and asks for the
weight of the (unique) path in T from u to v. The following lemma was proved
by Chazelle (1987) and Alon and Schieber (1987).

Lemma 2. For all n,k £ IV, an n-vertex tree with edge weights drawn from
a efficient semigroup (S, ©) can be preprocessed for path-weight queries with
preprocessing time 0(nlk(n)) and query time 0{k).

A particularly interesting special case of preprocessing time 0(n) and query
time 0(a(n)) is obtained by choosing k = a(n). Similar remarks apply below.

Theorem 3. For all constants t > 1 and all integers n,k> 1, every t-dimen-
sional RMS query problem defined by an MS formula <P without free simple vari-
ables and an efficient commutative semiring TZ can be solved on n-vertex input
graphs appropriate for (<P, TZ) and of treewidth bounded by t with preprocessing
time 0(nlk(n)) and query time 0(k).

Proof. We preprocess the tree T* of the proof of Theorem 1 according to Lemma
2, the weight of each edge being its relay function and © being function com-
position (i.e., matrix multiplication over 7£). We also preprocess T* so that
subsequent queries for the LCA of two arbitrary vertices can be answered in
constant time; it is known how to do this in 0(n) time (Harel and Tarjan, 1984;
Schieber and Vishkin, 1988).

Suppose that a query changes the labels of the vertices in some set U C V*
(thus \U\ < t). Let Q = U U W U {r*}, where W is the set of all lowest common

300

ancestors of two vertices in U and r* is the root of T*; Q is still of bounded
size. Let T = (V, E) be the tree obtained from T* by contracting each vertex
in V* \ Q into its closest ancestor whose parent belongs to Q. With the aid of
still more LCA queries, to determine for all u,v G Q whether u is an ancestor
of v in T*, T can be constructed in constant time. We now process T from the
leaves to the root, for each vertex v in T computing the new state assigned to v
by M' after the label changes caused by the update. For a vertex v in Q, this is
trivial, since the new states of its children in T*, if any, will be known when v
is processed. For a vertex v in V \ Q, on the other hand, all descendants of v in
T* that belong to U, if any, are descendants of a single vertex in Q whose new
state is known when v is processed. Thus the new value of v can be computed in
O(k) time by composing relay functions according to Lemma 2. Once the new
state of r* is known, the query can be answered in constant time.

5 Dynamic Data Structures

In this section we dynamize the path-weight-query data structure of Lemma 2
to allow updates of edge weights as well as path-weight queries and state the
implications for dynamic RMS problems.

Theorem 4. For all integers n,k,r > 1, every n-edge tree with edge weights
drawn from an efficient semigroup (5, ©) can be preprocessed for path-weight
queries with preprocessing time 0{nlk{n)), query time 0(r + k), and update
timeO{TnllT).

Proof. We reuse part of a scheme developed by Chazelle (1987) in order to prove
Lemma 2. For a parameter m with 1 < m < n to be chosen below, we partition
the edge set E of the input tree T = (V, E) into at most Zn/m sets, each of
which spans a subtree of T, called a piece, with at most m edges. Chazelle shows
how to do this in O(n) time (Lemma 3). Call a vertex of T a fringe vertex if it
is shared between two or more pieces. In order to make what follows clearer, let
us assume that we separate the pieces by replacing each fringe vertex v, shared
between d pieces, by a star consisting of a central vertex, which we identify with
v, connected to d new vertices; each of the d new vertices is associated with
a different piece containing v, is called the representative of v in that piece,
and replaces v as an endpoint of each edge belonging to the piece and incident
on v. Provided that each star edge is given a weight of Ö, the neutral element of
(5, ©), this transformation does not change the weight of the path between any
two vertices in T. It at most triples the number of edges and is easily carried
out in 0(n) time.

The number of fringe vertices is bounded by 3n/m, and Chazelle shows how
to construct an edge-weighted tree T* with at most 6n/m edges that contains
all fringe vertices and assigns the same weight as T to the path between any two
fringe vertices; T* is obtained in 0(n) time from T by removing all nonfringe
vertices that have fewer than three incident edges lying on paths between fringe
vertices and replacing paths of such vertices by single edges with the same weight.

301

Each piece is preprocessed independently for path-weight queries, and the
global tree T* is processed recursively as just described. For all u,v £ V, denote
by A(u, v) the weight of the path in T from u to v. Consider two vertices u and v
in T and let x and y be the first and last fringe vertices on the path in T from u
to v, respectively, if any. If a; and y do not exist, u and v belong to the same piece,
and the weight A of the path from u to v can be obtained from the data structure
maintained for that piece. Otherwise A = A(u, x) © A(x, y) © A(y, v). If x = u
(u is a fringe vertex), A(u, x) = 0; otherwise A(u, x) = A(u, rx), where rx is the
representative of a; in the piece of u, and the latter quantity can be obtained from
the data structure maintained for the piece of u. A(y,v) is computed similarly,
and A(x,y) is obtained recursively from the data structures maintained for T*.
One small issue, how to determine x and y and possibly rx and ry, is resolved
with the help of yet another tree T+, obtained from T by replacing all edges
within each piece by edges from each (nonfringe) vertex in the piece to a new
vertex representing the piece. The vertices of interest occur among the first four
and the last four vertices on the path in T+ from «ton and can be identified
by two applications of the algorithm of Lemma 2: The weight of each edge is its
identity, considered as a string of length 1, and © is "truncated concatenation",
which concatenates its two arguments but, if the resulting string is of length
> 4, keeps only its suffix of length 3.

Without loss of generality assume that k > 2. On the first recursive level we
choose m = m0 = \\fh ("■)] and preprocess the pieces for path-weight queries
according to Lemma 2. This needs a total of 0(nlk{n)) time and provides a
query time of O(k). On all subsequent recursive levels we choose m = m\ =
maxffn1"2''], 12} and preprocess the pieces for path-weight queries according
to Lemma 2 with k = 2, ending the recursion when the number of edges drops
below 12. This provides a query time of 0(1) per recursive level, and since
mo = ü(I2(n)), the preprocessing effort sums to 0(n) over all levels. Because the
recursive depth is 0(\ogn/\ogmi) = O(r), the overall query time is 0(r+k). An
update of an edge weight requires recomputation of data structures maintained
for a single piece on each recursive level, and thus needs O(molk(n)) time on the
first level and 0{mil2{rni)) time on all subsequent levels, resulting in an overall
update time of 0(rn1'T).

Given an MS formula # without free simple variables, a commutative semiring
H, and a constant d 6 IV, the d-dimensional dynamic RMS problem defined
by $ and 1Z is, given a graph G appropriate for (#,7£), to preprocess G for
subsequent updates of single boolean or ring attributes and queries for quantities
of the form |G"|<p,7j, where G' is obtained from (the current) G by (temporarily)
changing at most d boolean and/or ring attributes. As an immediate consequence
of Theorem 4 and the methods introduced in Section 4, we obtain:

Theorem 5. For all constants t > 1 and all integers n,k,T > 1, every t-di-
mensional dynamic RMS query problem defined by an MS formula $ without
free simple variables and an efficient commutative semiring 72. can be solved on
n-vertex input graphs appropriate for ($,7?.) and of treewidth bounded by t with
preprocessing time 0(nlk{n)), query time 0(T + k), and update time 0(rn1'T).

302

References

Alon, N., and Schieber, B. (1987), Optimal preprocessing for answering on-line product
queries, Tech. Rep. No. 71/87, Tel Aviv University.

Arikati, S.R., Chaudhuri, S., and Zaroliagis, CD. (1995), All-pairs min-cut in sparse
networks, in Proc. 15th Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTfcTCS), Springer Lecture Notes in Computer
Science, Vol. 1026, pp. 363-376.

Arnborg, S., Lagergren, J., and Seese, D. (1991), Easy problems for tree-decomposable
graphs, J. Algorithms 12, pp. 308-340.

Bern, M. W., Lawler, E.L., and Wong, A.L. (1987), Linear-time computation of optimal
subgraphs of decomposable graphs, J. Algorithms 8, pp. 216-235.

Bodlaender, H. L. (1993a), On reduction algorithms for graphs with small treewidth,
in Proc. 19th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG), Springer Lecture Notes in Computer Science, Vol. 790, pp. 45-56.

Bodlaender, H. L. (1993b), Dynamic algorithms for graphs with treewidth 2, in Proc.
19th International Workshop on Graph-Theoretic Concepts in Computer Science
(WG), Springer Lecture Notes in Computer Science, Vol. 790, pp. 112-124.

Bodlaender, H. L. (1996a), A linear-time algorithm for finding tree-decompositions of
small treewidth, SIAM J. Comput. 25, pp. 1305-1317.

Bodlaender, H. L. (1996b), A partial fc-arboretum of graphs with bounded treewidth,
Tech. Rep. No. UU-CS-1996-02, Dept. of Computer Science, Utrecht University.

Borie, R. B., Parker, R. G., and Tovey, C. A. (1992), Automatic generation of linear-
time algorithms from predicate calculus descriptions of problems on recursively
constructed graph families, Algorithmica 7, pp. 555-581.

Chaudhuri, S., and Zaroliagis, CD. (1995), Shortest path queries in digraphs of small
treewidth, Proc. 22nd International Colloquium on Automata, Languages and Pro-
gramming (ICALP), Springer LNCS, Vol. 944, pp. 244-255.

Chazelle, B. (1987), Computing on a free tree via complexity-preserving mappings,
Algon'thinica 2, pp. 337-361.

Courcelle, B. (1990a), Graph rewriting: An algebraic and logic approach, in Handbook
of Theoretical Computer Science, Vol. B: Formal Models and Semantics (J. van
Leeuwen, ed.), Chap. 5, pp. 193-242, Elsevier, Amsterdam.

Courcelle, B. (1990b), The monadic second-order logic of graphs. I. Recognizable sets
of finite graphs, Inform, and Comput. 85, pp. 12-75.

Courcelle, B., and Mosbah, M. (1993), Monadic second-order evaluations on tree-
decomposable graphs, Theor. Comput. Sei. 109, pp. 49-82.

Harel, D., and Tarjan, R. E. (1984), Fast algorithms for finding nearest common an-
cestors, SIAM J. Comput. 13, pp. 338-355.

Radhakrishnan, V., Hunt, HB., Ill, and Stearns, R. E. (1992), Efficient algorithms
for solving systems of linear equations and path problems, Proc. 9th Annual Sym-
posium on Theoretical Aspects of Computer Science (STACS), Springer Lecture
Notes in Computer Science, Vol. 577, pp. 109-119.

Robertson, N., and Seymour, P. D. (1986), Graph Minors. II. Algorithmic aspects of
tree-width, J. Algorithms 7, pp. 309-322.

Schieber, B., and Vishkin, U. (1988), On finding lowest common ancestors: Simplifica-
tion and parallelization, SIAM J. Comput. 17, pp. 1253-1262.

Stearns, R. E., and Hunt, H.B., III (1996), An algebraic model for combinatorial prob-
lems, SIAM J. Comput. 25, pp. 448-476.

van Leeuwen, J. (1990), Graph algorithms, in Handbook of Theoretical Computer Sci-
ence, Vol. A: Algorithms and Complexity (J. van Leeuwen, ed.), Chap. 10, pp.
525-631, Elsevier, Amsterdam.

The Name Discipline of Uniform Receptiveness
(Extended Abstract)

Davide Sangiorgi

INRIA - Sophia Antipolis, France.

1 Introduction

The 7T-calculus [9] is a paradigmatical process calculus for message-passing con-
currency. Two processes with acquaintance of a given name can use it to interact
with each other. Names themselves may be exchanged in communications, which
can model modifications of the linkage structure among processes. These are the
basic process constructs (using lower case for names and upper case for pro-
cesses): a(b).P, the output of b at a with P as continuation; a(b).P, an input
at a with b placeholder for the name received in the input; Px | P2, the parallel
composition of the two processes; vaP, which makes name a local to P; and IP,
which denotes a potentially-infinite number of copies of P in parallel.

In this paper, we study the situation in which certain names are uniformly
receptive. A name x is receptive in a process P if at any time P is able of offering
an input at x (at least as long as there are processes that could send messages at
x). The receptiveness of x is uniform if all inputs at x have the same continuation.
Receptiveness ensures that any message sent at x can be immediately processed;
unformity ensures that there is a unique way in which a message at x may be
processed (that is, the input end of x is "functional").

These are semantic conditions, and are undecidable. To obtain decidable
conditions we impose some restrictions. Roughly, we guarantee receptiveness by
demanding that the name is available in input-replicated form as soon as created.
For instance, .T is receptive in

Px= ux{\x{p).P\Q) P2=ux{r{x).\x{V).P) (1)

(On the right, name x is created when the output r{x) is consumed since, before
this, x is frozen.1) We guarantee uniformity by demanding that there is only
one input occurrence of the name; hence in (1) name x should not occur free
in input position in P and Q. To preserve the uniformity property in a network
of processes, we then also demand that only the output capability of the name
may be transmitted; that is, as all 7r-calculus names, so uniform receptive names
can be transmitted but, in contrast with the other names, they can be used by a
recipient only in output (retransmitting the name, or sending a message at it).

In the processes Pi and Pi above, the receptiveness at x is persistent, which
is necessary if unboundedly many messages could be sent at x. It is useful to

1 Indeed Pi is behaviourally the same as vx (\x(p).P | r{x)), which is of the same
form as Pi.

304

consider separately the case in which at most one message can be sent. Then
the replication in front of the input at x is unnecessary. We call the first form
u-receptiveness, the second linear receptiveness.

Uniform receptiveness corresponds to a precise discipline in the usage of
names; it could by formulated by syntactic means, but it is easier and more
elegant to do so using a type system along the lines of type systems for the
7r-calculus. The impact of receptiveness on behavioural equivalences and process
reasoning is the main focus of this paper. We shall develop some theory and proof
techniques for processes with receptive names, and then illustrate their usefulness
by means of some non-trivial examples, like the proof of some transformations
that introduce parallelism in a resource, and the proof of the correctness of an
optimisation of the translation of higher-order process calculi into the 7r-calculus
[18, 13], which is adopted in the compiler of Pict [12].

The challenge in these examples is that the equalities implied by the trans-
formations fail in the ordinary 7r-calculus (even w.r.t. the very coarse notion of
trace equivalence). That is, there are contexts of the ordinary 7r-calculus that are
able to detect the difference between the processes of the equalities. By imposing
the type system for receptiveness, these contexts are ruled out as ill-typed.

Uniform receptiveness often occurs in the 7r-calculus. Our first example is the
coding of functions. A process Q with a local function Ar. M, accessible via a
name z, is normally written vz(\z(r,y). P \ Q) where P is the coding of M and y
is (a placeholder for) the name where the result of a function call will be delivered.
Within Q, a call of the function with argument n is written vx (z(n, x).x(p). Q')
where p is (a placeholder for) the result of the call. In the function declaration, z
is w-receptive; in the function call, x is linear receptive. Similar combinations of
linear and w-receptiveness occur in the coding of higher-order communications
and of Object-Oriented languages. Typically, w-receptiveness occurs in the mod-
elling of resources which are private to one or more client processes (above, the
resource is a function). A discipline similar to w-receptiveness is presently used
in the compiler of Pict [12], to allow optimisations of the code implementing
communications. An important example of linear receptiveness (indeed, perhaps
the most important) is found in process interactions based on the Remote Proce-
dure Call (RPC) paradigm. An RPC interaction involves two synchronisations
between a caller and a callee where, after the first synchronisation, the caller
waits the time necessary for the callee to elaborate a response. When we are
modeling RPC's in the 7r-calculus, the return name at which the callee deliv-
ers its response is used as linear receptive. (The function call above too is an
example of an RPC interaction.)

As behavioural equivalence on processes, we use barbed equivalence. This
equates processes which, very roughly, in all contexts give rise to the same pat-
terns of interactions. The main inconvenience of barbed equivalence is that it
uses quantification over contexts in the definition, and this can make proofs of
processes equality heavy. Against this, one looks for direct characterisations,
without context quantification. For instance, in CCS and in the ordinary TT-

calculus barbed equivalence coincides with the well-known labeled bisimilarities

305

[13]. (In a labeled bisimilarity the bisimulation game is played not only on silent
actions, as for barbed bisimulation, but also on input and output actions.)

We sketch the essential points of our theory for processes with receptive
names. The schema is the same for linear and for u receptiveness. We first
introduce a type system which forces the receptiveness discipline, and prove some
basic properties for it. Secondly, we isolate a subclass of the well-typed processes,
called discreet processes, roughly characterised by the property that all receptive
names which are emitted are private to the sender. Discreet processes are defined
by means of syntactic restrictions on the output prefix similar to those in the
language nl [15]. Thirdly, we introduce a simple but powerful algebraic law,
with which any well-typed process can be transformed into a discreet process.
Remarkably, this law equates a process whose first action is the output of a global
name with a process whose first action is the output of a private name. The law
is not valid in the untyped 7r-calculus, but it is valid under the receptiveness
type system. Finally, we prove a direct characterisation of barbed equivalence
on discreet processes, as a labelled bisimilarity called receptive bisimilarity. The
latter differs from the ordinary bisimilarity in the requirement for input actions,
but otherwise it can be used with the standard co-inductive techniques of labelled
bisimilarities, including proof techniques such as "bisimulation up to expansion".

For lack of space, some definitions and most of the proofs are omitted. More
examples can be found in [17].

2 Some background on the 7r-calculus

We use lower case letters p,q,r,... to range over names, and upper case letters
P, Q, R to range over the set V of processes. This is the 7r-calculus grammar (for
simplicity, we develop our theory on the monadic calculus):

P:=0 | p{q).P | p(q).P | p(q).P | \p = q]P
| Px \P2 | vpP | Pi+P2 | \p{q).P

We allow the bound-output prefix p(q).P in the syntax; often in the 7r-calculus
literature, p(q).P is given as an abbreviation for vqp{q).P. We use a to range
over substitutions; for any expression E, we write Ea for the result of applying
a to E, with the usual renaming convention to avoid captures. We assign sum
and parallel composition the lowest precedence among the operators. We write
p. P and p. P when the name transmitted at p is not important, and we often
abbreviate a. 0 as a. The labeled transition system is the usual one, in the early
style. Actions, ranged over by //, can be of four forms: r (interaction), p(q) (an
input at p in which q is received), p{q) (free output) and p{q) (bound output). In
these actions, p is the subject. Free and bound names of actions and processes are
defined as usual. In a statement, we say that a name is fresh to mean that it is
different from the names of other processes or actions in the statement. Relation

==> is the reflexive and transitive closure of —>, and => stands for => —+ =>.
P ij-p holds if there is P' and an action \i with subject p s.t. P =>• P'. A context
C is static if it has the form up (P | [•]), for some P and p.

306

Definition 1 barbed bisimulation, equivalence and congruence. Barbed
bisimulation is the largest symmetric relation « on processes s.t. P « Q implies:

1. whenever P => P' then there exists Q' such that Q => Q' and P' « Q';
2. for each name p, P Jj-P iff Q -tip-

Two processes P and Q are barbed equivalent, written P « <5, if for each static
context C it holds that C[P] « C[Q]; they are fear&ed congruent, written P ~ Q,
if C[P] « C[Q] for all contexts.

Barbed equivalence and congruence usually coincide with the ordinary la-
beled (early) bisimilarity and congruence of the 7r-calculus [13]. The proof of
this fact is simple on the class of the image finite processes (to which most of
the processes one would like to write belongs) by exploiting the n-approximants
of the labeled equivalences. We recall that the class of image-finite processes is
the largest subset I of V which is derivation closed and s.t. Pel implies that,
for all /*, the set {P' : P =^> P'}, quotiented by a conversion, is finite.

3 Linear receptiveness

The discipline of uniform receptiveness (briefly receptiveness) can be added to
any of the main existing type systems for the 7r-calculus. In this paper, our
base type system will be Milner's sorting, that we now briefly recall. Names are
partitioned into a collection of sorts. Then a sorting function is defined which
maps sorts onto sorts (in the polyadic calculus it maps sorts onto sequences of
sorts). If a sort s is mapped onto a sort t this means that names in 5 may only
carry names in t; moreover, t is the object sort of s. In the remainder, we shall
assume that there is a sorting system under which all processes are well-typed.
We separate the base type system (Milner's sorting) from the typing rules for
receptiveness so as to show the essence of the latter rules.

We begin our analysis of receptiveness from the case of linear receptiveness.
We call the non-linear-receptive names plain names. There are no constraints
on plain names except those imposed by the underlying sorting. We shall omit
the adjective "linear" when there is no ambiguity. For simplicity, we assume
that: There is a single sort L-recep of linear receptive names; linear receptive
names carry plain names. These two assumptions can be relaxed without dif-
ficulties. We also assume the existence of a sort trig of names, different from
L-recep but with the same object sort as L-recep (note that names in trig are
plain names). The sort trig will be used to derive simpler characterisations of
our bisimilarities. In the remainder, x,y, z... range over linear receptive names,
a, b,.. over plain names, and v over names in trig. We recall that p, q, r range
over the set of all names. A,P range over finite sets of linear receptive names.
We sometimes write A - x as abbreviation for A - {x} and A,x for A U {x},
and also x for {x}. The type system for linear receptiveness is in Table 3. A rule
with double conclusion is an abbreviation for more rules with same premises but
separate conclusions. Judgements have the form A; P h P. As sets, the order in

A ry-upP

x$r 0;PhP
0;P,x \-a{x).P

xgr x;T\-P

307

0-rhP . . i^r 0;r.iKP
(T"ilip-mat) »;fhaW.P,[a = tlP (T_lnP_2) 0;Pha(x).P

x?r 0; r h P ,T , 0;0l-a(b)P
(T"inp-3) x;Phx(fr).P (T_rep) 0;0Ma(fe).P

(T-res-1) — , P, ' (T-res-2)
Zl; P h i/a; P

0;PI-P (T-out-1) ■ (T-out-2)

x£P liTI-P ,_ , .
(T"°Ut-3) 0;P,xhx(b).P, x(b).P (T"b0Ut) 0; P h «(*)• P

Z\i;PihP! zl2;P2l-P2 zi!n^2=0 PinP2=0
(T_par) Ai,A2;rur2\-Pi |P2

0; P h Pi 0; PI-P2
(T"nil) Pho (T-sum) «;rHP.+ft

Table 1. Typing rules for linear receptiveness.

which names appear in A and P does not matter. Intuitively, if A; P h P then
Zi U P are the only receptive names which appear free in P; process P must
use any name in P exactly once in output position (that is, either performing
an output at that name or transmitting this capability to another process), and
names in A immediately and only once in input. This intuition is formalised in
Theorem 2, which relates types and operational semantics of processes. We say
that P is well typed if there are A, P s.t. A; P h P holds.

Theorem 2 soundness theorem. Suppose A;T h P.

x(a)
1. if x £ A then for all a there is a unique P' s.t. P —> P';

2. If P a-^ P' andxgr then A;T,x\- P';

3. if P ^ P' then x <E A and A-x;T\- P';
alb) a(b) a(b)

4. tfplip'orP—^p'orP^ P', then A;P\- P';

5. ifP -^ P' then either Z};Ph P' or there is x € AC\T and A-x\T-x h P';
x(a) x(a) a(x)

6. tfP—^P'orP^P'orP —► P', then x E P and A\T - x h P';

7.ifpa-^P'andxgAur then A,x;T\- P'.

Behavioural equivalences under linear receptiveness As usual in typed
calculi, the definitions of the barbed relations take typing into account, so that
the composition of a context and a process be well-typed. With receptiveness, an

308

additional ingredient has to be taken into account, namely the input availability
of receptive names. If a process has the possibility of using certain receptive
names in output, then a context in which the process is tested should guarantee
the input-availability at these names, otherwise the essence of receptiveness —
outputs at receptive names can be immediately consumed — is lost.

Definition 3 complete processes and contexts. A process P is complete if
A; 0 h P, for some A. We say that context C is complete on (A\T) if C[P] is
complete, for all P s.t. A; P h P.

Definition 4 barbed equivalences under linear receptiveness.
Suppose A;P\~P, Q. Then we say that P and Q are barbed equivalent under lin-
ear receptiveness at (A; r), briefly P «L ' Q, if for each static context C which
is complete on (A; r) it holds that C[P] « C[Q] (where w is barbed bisim-
ulation, Definition 1). Barbed congruence under linear receptiveness at (A;P),
briefly ~L ' , is defined similarly — just remove the constraint on C being static.

We write A;P\~D P if A;P \- P can be proved without using rule T-out-2;
in this case we say that P is discreet. In a discreet process, all receptive names
which are exported must be private: Syntactically, this means that outputs of
global receptive names are disallowed (that is, using the terminology in [15], only
internal mobility — the sending of fresh names — is allowed on receptive names).
We write p t> q as abbreviation for a process p(r).q{r}.0 (a 1-place ephemeral
buffer from p to q). We can transform well-typed processes into discreet processes
using the law

b(x). P = b(y). (y>x\P) for y fresh (2)

This law makes the output of a global name into the output of a local (i.e.,
private) name. The law is not valid in the ordinary 7r-calculus, but it is valid
under receptiveness:

Lemma 5. If A; fh b(x).P and y is fresh, then b{x).P ~f 'r b{y). (yt>x\P).

We now derive a characterisation of the receptive barbed equivalence as a
labeled bisimulation on discreet processes. We begin by defining the labeled
bisimilarity on complete discreet processes. We say that an action ß is a plain
input if ß is the input of a plain name, i.e., ß = p{a) for some plain name a.

Definition 6 linear-receptive bisimilarity, xL. Linear-receptive bisimilarity
is the largest relation xL on complete discreet processes s.t. P >;L Q implies:

1- if P —> P' with bound name of ß (if it exists) fresh for P and Q, and ß is
an output or a plain input then there is Q' s.t. Q ==> Q' and P' xL Q';

2. if P -^ P' then there is Q' s.t. Q =>■ Q' and P' xL Q';

3. if P —► P and x is fresh for P and Q then, for some fresh name v, there

are Q' and Q" s.t.: (a) Q VM Q'; (b) ux (x > v | Q1) =» Q";
(c) vx{x>v\ P') xL Q".

309

The main novelty of receptive bisimulation is the use of a process x > v in the
input clause (3). To understand this addition, recall that x represents a private
receptive name that the observer exports; if the observer behaves as a well-typed
process, then it must make x immediately available in input, as a process of the
form x(p).R. It is perhaps surprising that we do not test the behaviour of the
derivatives P' and Q' for all infinite choices of the process x(p).R, but only on
a single, simple, process, namely a link x > v.

Definition 7 linear-receptive bisimilarity on all discreet processes.
Suppose A; r hD P, Q. Let x = A n T and y = T - A (therefore P = xUy);
and let v be fresh and pairwise distinct names with | y | = | v |.

We then set P x£',r Q if (vx,y){yt> v | P) xL (i/x,y)(y> v\ Q).

The definition makes sense because processes (ux,y)(y > v \ P) and (vx,y)(y t>
v | Q) are complete and discreet, and we have already defined xL on this class.
Moreover, since on complete processes xL is preserved by structural equality and
injective renaming, the above definition does not depend on the order of names
in x, y and v, and on the choice of names v.

The closure of barbed bisimulation w.r.t. the static contexts gives the or-
dinary (early) labeled bisimulation [13]; the closure w.r.t. the complete static
contexts gives receptive bisimulation. The proofs for the ordinary bisimulation
can be adapted to receptive bisimulation. Here are further useful laws for re-
ceptive barbed equivalence that are easy to prove using the labeled bisimilarity
x^'r, and that are not valid in the ordinary 7r-calculus:

UA;r\- x(p).P, then x(p).P ^''r x(p) | P. (3)

Suppose that A;T\-P, Q, for some A and T with x e A - T, and let v be
a fresh name; then

P «f;r Q iff vx(v>x\P) ~?~x'r vx(v>x\Q) (4)

Suppose that A; r h P,Q, for some A and P with y e r - A, and let v be a
fresh name; then

P^'rQ iff vy(y>v\P)«t,r~yvy(y>v\Q)- (5)

Law (3) transforms a "synchronous" output into an "asynchronous" one; (4)
transforms a global input into a local input; (5) does the same for outputs.

4 w-receptiveness

The other interesting example of uniform receptiveness is oj-receptiveness, where:
The input of a name is always available, and always with the same continuation;
there are no limitations on the utilisation of the name in output. A simple way
of ensuring the uniformity condition on inputs is to require that the only input
occurrence be replicated, i.e., of the form \x{p).P.

310

When adapting the theory of linear receptiveness to w-receptiveness, there
are several, but not surprising, modifications to make. In the typing system, the
interpretation of a judgement A; P h P is now that P must make names in A
immediately available, in input-replicated form; whereas it may use names in P
arbitrarily many times in output. We only show the new version of rules T-par
and T-out-2, and one of the rules for replication:

Aj\r\-Pi A2-,r\-p2 A1nA2 = 9
A1,A2;PhPl \P2

xeT 0;ThP 0;TKP
9-,r^a(x).P x;r\-\x(b).P

In the definitions of the typed barbed relations, typed labeled bisimilarities
and the algebraic laws for the w-case, the main modification w.r.t. the linear
case is that the links p > q have to become persistent. Using ~^;r for barbed
congruence under w-receptiveness at A; F, law (2) becomes

b{x). P ~f;r b(y). (ly>x\ P) for y fresh (6)

5 Examples

Parallelisation of resources We can use linear receptiveness to validate trans-
formations that increase the parallelism in processes. In the processes below, we
use recursion, polyadicity and communication of integers, which are straightfor-
ward to accommodate in the theory of bisimulation previously developed (recur-
sion can be coded up). Thus m, n range over integers and variables over integers.
Consider the process:

Al {b) =f a(x). b{n, c). vd c(d). x{n). Ax(d)

A client can interrogate Ai (6) at a, and it will receive at the return channel x
an integer n that Ai(b) has received at another channel b (this channel is re-
newed at each cycle using c). Interactions between Ai and the clients are Remote
Procedure Calls (RPC), therefore the return channels are used according to the
discipline of linear receptiveness (see the discussion on RPC in the introduc-
tory section). The behaviour of A\ is strictly sequential. Let us introduce some
parallelism:

A2(b) d=a(x).b(n,c).ud (x(n).c(d) | A2(d)^j

A3{b) d= a(x).vd (b{n,c).c(d).x{n) | A3{d)^j

Process A2{b) can accept a second request at a before the answer to the fist
request has been delivered; however answers cannot overtake one another — they
are delivered in the same order in which the requests were made. Process ^3(6)
can even accept a request before receiving an integer at b; answers can overtake.

Let now I(n) be a counter I{n,b) = i/cb{n,c).c(d).I(n + l,d) and consider

the systems (n is any integer) Si(n) = vb (Ai(b) \ I(n,b)), for i G {1,2,3}.

311

All these systems are distinguished in the ordinary 7r-calculus — the different
degrees of parallelism that they exhibit are observable. We can prove that they
are equivalent exploiting the linear receptiveness of the return channels x,y. 2

For Sl(ra) «?;0 S2(n) one proves that the relation composed by all pairs of the
form

(si(n'>in^(ni>,S2(n')lII^<Tli))
i=l t=l

for some channel vx and integers m,rii,n' is a xL-bisimulation up to expansion.
The other equalities can be proved in a similar way.

The above processes are simple. A more interesting example of parallelisation
of resources is Cliff Jones's parallelisation transformation problem [5]. We analyse
this in [16], where we prove Jones's transformation using a combination of the
techniques for linear and u receptiveness.

Encoding of higher-order process calculi We now present an example with
w-receptiveness. Below x,y are supposed to be Lü-receptive names. We prove the
correctness of an optimisation of the translation of higher-order process calculi
into the 7r-calculus [13, 18]. In a higher-order calculus, terms of the languages
may be transmitted. For simplicity of presentation, we consider the simpler case
of a calculus where only processes may be communicated. The operators are those
for sending a process (p{P1).P2), receiving a process (p{X). P), process variable
(X), plus the usual operators of restriction, parallel composition, summation,
replication. This calculus, which we call HOPC, is the core of Plain CHOCS
[18], and is a second-order fragment of the Higher-Order 7r-calculus [13]. Upper
case letter X ranges over process variables. A process is closed if it does not
contain free variables. The compilation C of this calculus into the 7r-calculus in
[13, 18] acts as a homomorphism on all process constructs except input, output
prefixes and process variables where it is so defined:

C\p{P).Q] = vxp(x).(\x.C[P] \C[Q\) for x fresh

C[p{X).Q\^ p{x).C\Q\) C[X] d=if x.O

In the compilation, the communication of a process P is translated as the com-
munication of a private name which acts as a pointer to (the translation of) P
and which the recipient can use to trigger a copy of (the translation of) P. These
pointers, introduced in the compilation, are used as w-receptive names.

In [13], the correctness of compilation C is established, by proving that it is
fully abstract w.r.t. barbed congruence (that is, for all closed HOPC processes
P and Q, P ~ Q iff C[P] ~ ClQj). The optimisation that we consider acts
on outputs of process variables. Let us call Ö the optimised compilation. It is
defined as C except for the case of an output of a variable, for which we have:

0\p{X).Ql =p(x).0[Q]
2 In these definitions, also name c is linear receptive. We do not need this fact for the

proofs (and it is reasonable not to use it, because the linear receptiveness of c is
accidental — one can modify the definitions so that c is not linear receptive.)

312

For instance, when translating p(X).q{X}.0, the result of O is p(x).q{x).0 while
that of C is p(x).vyq(y). \y. x. 0. The optimisation avoids us one level of indirec-
tion through pointers. This optimisation is analysed in [13] and is shown to be
unsound for untyped barbed equivalence. However, we can show that the optimi-
sation is sound if we take into account the receptiveness of names. The proof is
an immediate consequence of law (6), since, for all P, 0{P\ can be transformed
into C\P\ by repeatedly applying the law:

Theorem 8. Let P be a HOPC process with free variables in {Xi,..., Xn}, and

let r =f {xu- • .,!«}■ It holds that C{PJ ~®jr 0{P\.

Combining this with the theorem on C in [13], we can prove: for all closed
HOPC processes P and Q, P ~ Q iff 0[P] ^f 0[Q\.

In an expanded paper [17], other examples of application of w-receptiveness
are reported: The proof of the equivalence between the target processes of Mil-
ner's two encodings of call-by-values A-calculus into 7r-calculus [8] (this is a novel
result); the proofs of some stronger versions of 7r-calculus replication theorems
[10] (these results were already proved in [10]; exploiting receptiveness we get
simpler proofs).

6 Final remarks

Several type systems have been proposed for process calculi. The most relevant
for this work are [10], where the type system has input/output modalities to dis-
tinguish between the capabilities of reading and writing on names, and the type
systems expressing linearity information [3, 7, 4]. The type system for recep-
tiveness represents a refinement of [10] and, in the case of linear receptiveness,
also of [7]. Also [10] and [7] contain studies of the effect of types on process
behaviours, using barbed congruence. The proof techniques developed in this
paper are easier to apply, mainly because based on labeled bisimilarities.

Other papers with results on behavioural consequences of 7r-calculus types
include the following. [6] defines a type system for the asynchronous 7r-calculus
that guarantees deadlock freedom in certain cases; a subsystem of this system
is similar to ours for w-receptiveness. [19] uses a type system where types have
a graph structure to prove the full abstraction of an encoding of the polyadic
7r-calculus into the monadic calculus. Graphs allow expressing sophisticated com-
munication protocols but introduce some complications in the typing. [14] uses
a type system with input/output modalities and variant types to guarantee the
adequacy of a translation of a typed object-oriented calculus into the 7r-calculus.
[11] studies the constraints imposed by parametric polymorphism.

Some of the ideas in this paper should be useful to develop reasoning tech-
niques for other type systems, in particular those with input/output modalities
and with linearity. They might also be useful in cases where either the receptive-
ness or the uniformity condition fails; for instance the calculus in [2], where all
names are uniform but not necessarily receptive, or that in [1], where all names
are receptive but not necessarily uniform.

313

Acknowledgements. The author would like to thank G. Boudol, N. Kobayashi, C.
Jones, B. Pierce, D. Walker, N. Yoshida and two of the anonymous referees for
useful discussions or suggestions. This research has been supported by FRANCE
TELECOM, CTI-CNET 95-1B-182, "Modelisation de Systemes Mobiles".

References

1. R. Amadio. Locality and failures II. To appear as a Technical Report, INRIA-
Sophia Antipolis, 1997.

2. Fournet C. and Gonthier G. The Reflexive Chemical Abstract Machine and the
Join calculus. In Proc. 23th POPL. ACM Press, 1996.

3. K. Honda. Types for dydadic interaction. In E. Best, editor, Proc. CONCUR '93,
LNCS 715, pages 509-523. Springer Verlag, 1993.

4. K. Honda. Composing processes. In Proc. 23th POPL. ACM Press, 1996.
5. C.B. Jones. Constraining interference in an object-based design method. Proc.

TAPSOFT'93, LNCS 668, pages 136-150. Springer Verlag, 1993.
6. N. Kobayashi. A partially deadlock-free typed process calculus. To appear as a

technical report, Department of Information Science, University of Tokyo, 1997. A
summary is to appear in Proc. 12th LICS Conf., 1997.

7. N. Kobayashi, B.C. Pierce, and D.N. Turner. Linearity and the pi-calculus. In
Proc. 23th POPL. ACM Press, 1996.

8. R. Milner. Functions as processes. Research Report 1154, INRIA, Sophia An-
tipolis. Final version in J. Mathem. Struct, in Computer Science 2(2):119-141,
1992.

9. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, (Parts I and
II). Information and Computation, 100:1-77, 1992.

10. B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Journal
of Mathematical Structures in Computer Science, 6(5):409-454, 1996.

11. B. Pierce and D. Sangiorgi. Behavioral equivalence in the polymorphic pi-calculus.
In 24th POPL. ACM Press, 1997.

12. B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-
calculus. In preparation, 1997.

13. D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms. PhD thesis CST-99-93, University of Edinburgh, 1992.

14. D. Sangiorgi. An interpretation of typed objects into typed 7r-calculus. Technical
Report RR-3000, INRIA-Sophia Antipolis, 1996.

15. D. Sangiorgi. 7r-calculus, internal mobility and agent-passing calculi. Theoretical
Computer Science, 167(2):235-274, 1996.

16. D. Sangiorgi. Typed 7r-calculus at work: a proof of Jones's parallelisa-
tion transformation on concurrent objects. Presented at Fourth Work-
shop on Foundations of Object-Oriented Languages, 1997. Available as
ftp://zenon.inria.fr/meije/theorie-par/davides/JonesTransform.ps.gz.

17. D. Sangiorgi. The name discipline of uniform receptiveness. (This is a slightly
longer version of the present paper.) Available as
ftp://zenon.inria.fr/meije/theorie-par/davides/RecePi.ps.Z.

18. B. Thomsen. Plain CHOCS, a second generation calculus for higher-order pro-
cesses. Ada Informatica, 30:1-59, 1993.

19. Nobuko Yoshida. Graph types for monadic mobile processes. In Proc. FST &
TCS, LNCS 1180, pages 371-386. Springer Verlag, 1996.

On Confluence in the 7t-Calculus

Anna Philippou and David Walker

Department of Computer Science, University of Warwick
Coventry CV4 7AL, U.K.

Abstract. An account of the basic theory of confluence in the 7r-calculus
is presented, techniques for showing confluence of mobile systems are
given, and the utility of some of the theory presented is illustrated via
an analysis of a distributed algorithm.

1 Introduction

Confluence arises in a variety of forms in computation theory. It was first studied
in the context of concurrent systems by Milner in [6]. Its essence, to quote [7],
is that "of any two possible actions, the occurrence of one will never preclude
the other". As shown in the works cited, for pure CCS agents confluence implies
determinacy and semantic-invariance under silent actions, and is preserved by
several important system-building operations. These facts make it possible to
guarantee by construction that certain systems are confluent and to exploit this
fact fruitfully when analysing their behaviours. A more general study was made
in [1] which in particular clarified the relationships among various notions of con-
fluence and semantic-invariance under silent actions, and illustrated the utility
of the ideas for state-space reduction and protocol analysis; see also [1] for fur-
ther references. Confluence of value-passing CCS agents was studied first in [18]
and later in [22] where consideration was given to conditions under which con-
fluent systems result from combinations of 'semi-confluent' agents and the ideas
were utilized to show determinacy of programs in a fragment of a concurrent
imperative programming language.

The elaboration of techniques for reasoning about mobile systems expressed
in the 7r-calculus [9] and variants of it has involved extension of established meth-
ods and development of new concepts specific to the richer setting. Stemming
from [8] there have been several works on disciplines of name-use respected by
agents, sometimes expressed via type systems; see for instance [2, 15, 23, 25,
20, 16]. Such disciplines contribute much to the effectiveness of 7r-calculi as de-
scriptive formalisms and analytical tools. One promising strand of development
concerns varieties of confluence. These have been used in showing determinacy
of systems prescribed by concurrent object-oriented programs [13], in justify-
ing optimizations in the Pict compiler [3, 17], and in proving the soundness of
transformation rules for concurrent object-oriented programs [4, 14]. The aims
of this paper are to give an account of the basic theory of confluence in the
7r-calculus, to develop techniques for showing that mobile systems are confluent,
and to illustrate the utility of some of the theory presented via an analysis of a

315

distributed algorithm. The extension of the theory from pure and simple value-
passing agents to mobile agents is at some places fairly straightforward: we then
proceed quickly, drawing attention only to significant points. Due to the richness
of name-passing, however, techniques for showing mobile systems to be confluent
are more involved. This paper contains a sample of results obtained on this topic
in the first author's thesis [12]. Independently, Uwe Nestmann in his thesis [11]
has developed a static type system concerned with sharing of ports (polarized
names) by mobile agents and shown that well-typed agents are confluent.

A summary of the paper follows. Preliminary material is collected in the next
section, while in section 3 the basic definitions and results on confluence in the
7r-calculus are given. Section 4 is concerned with techniques for showing that
complex systems are confluent. The final section is devoted to an illustration of
the utility of some of the theory presented: an analysis of a distributed algorithm.
Due to lack of space all proofs are omitted; see [12] for a detailed technical
account.

We are grateful to an anonymous referee for helpful comments.

2 Preliminaries

In this section we recall briefly background material on the (polyadic) 7r-calculus
[9, 8]. For undefined terms and explanation we refer to these papers.

We assume an infinite set N of names, ranged over by lower-case letters, a
partition S of N into a set of infinite (subject) sorts, and a sorting A : S —>■
S*. For S 6 S, X(S) is the object sort associated with S. The agents are the
expressions given as follows which respect the sorting A:

P ::= 0 | ir.P | P + Q | P\Q I {yy)P \ A(y).

Here n ranges over the prefixes r, x{y) and x(y), in the latter two of which x is
the subject and the tuple y is the object. In a prefix x(y) the occurrences of the
pairwise-distinct names y are binding; the occurrence of y in (i/y) is also binding.
We write fn(P) (resp. bn(P)) for the set of free (resp. bound) names of P, and
n(P) for the set of all names occurring in P. We write also fns(P) for the free

names of P of sort S. Each agent constant A has a defining equation A(x) = P
where fn(P) C x and x are pairwise distinct. We regard as identical agents which
differ only by change of bound names. We write = for structural congruence of
agents. A substitution is a sort-respecting mapping from N to N. We write Pa for
the agent obtained from P by applying the substitution a. We write {vfx} for the
substitution which maps each component of x to the corresponding component
of y and is otherwise the identity.

Here we give the behaviour of agents by the early transition rules [10, 19].
In this system there are three kinds of action: input actions of the form x(y);
output actions of the form (vz)x(y), where the set z of bound names of the
action (which is omitted when it is empty) satisfies z Cy; and the silent action
T representing communication between agents. We write bn(a) for the set of

316

bound names of the output a and set bn(a) = 0 if a is an input or r. We
write Act for the set of actions. The subject/object terminology carries over
from prefixes to visible actions. The transition rules are as follows where n(a)
is the set of names occurring in the action a. The third, fourth and fifth have
symmetric forms.

~ x(z) ~ _ „
1. x(y).P —4 P{zfy] if the sorts of the components of y and z agree.
2. n. P —> P if n is T or x(y).
3. If P -^4 P' then P + Q -?4 P'.
4. If P ^4 P' then P | Q -24 P' | Q if bn(a) n fn(Q) = 0.

5. If P ("^v> P' and Q ^4* Q' then P | Q -^ {yz){P' \ Q') if znfn(Q) = 0.
6. If P -^4 P' and j/ £ n(a) then (i/j,)P -^4 (vy)P'.

7. If P —► P and toe|/-(zU {a;}) then [vw)P —> P .

8. If P{«/E} -^4 P' and A{x) d= P then X(£) -A P'.

We write ==>■ for the reflexive and transitive closure of —>, =>■ for the compo-

sition =>■—>==>, and =>■ for =>■ if a = r and ==>■ otherwise. We further write

P -^4 Q if P -A Q, or a = r and P = Q.
We often tacitly assume that bound names of actions are fresh. (Early) bisim-

ilarity is the largest symmetric relation fa such that if P fa Q and P -^4 P', for

some <5', Q =£> Q' and P' « <3'- Branching bisimilarity is the largest symmetric
relation ~ such that if P ~ Q and P -^4 P', then either a = r and P' ~ <3, or
for some Q',Q", Q =$> Q" -^4 Q', P ~ Q" and P' ~ Q'. The standard nota-
tions for these relations have a dot to differentiate them from the congruences
defined as bisimilarity under all substitutions. Since we do not consider the latter
here we use the less cumbersome symbols. Finally, an agent P diverges, written
Pf, if P can perform an infinite sequence of r actions; otherwise P converges,
P-l; and P is fully convergent if for each derivative P' of P, P'4--

3 Confluence

In [7] confluence for pure CCS agents was defined using bisimilarity, and it was
shown that a wide range of behavioural equivalences coincide on confluent agents.
In developing a theory of confluence for the 7r-calculus we choose here to base
it on early bisimilarity. The connections between this treatment and the various
other possibilities are straightforward. In our view, in applications of the theory
there is likely to be little substantial difference between the variants. With this
choice 'determinacy' can be defined as it can for pure CCS agents.

Definition 1. P is determinate if for each derivative Q of P and action a, if

Q -^4 Q' and Q =^> Q" then Q> » Q". G

317

Note for instance that P = a(x). (x(y).a{y}.0 + b(y).0) is not determinate if x, b

have the same sort as P ^l Q = b(y).a{y).0 + b(y).0 and Q has non-bisimilar
%)-derivatives. As in pure CCS, an agent bisimilar to a determinate agent is
determinate, and determinate agents are bisimilar if they may perform the same
sequences of visible actions. The following lemma summarizes conditions under
which determinacy is preserved by operators. In the last part, sort(M) is the set
of sorts of the names in M.

Lemma 2.

1. If P is determinate so are T.P, x(y).P and (uy)P.
2. If P is determinate and for each y £ y, if y is of sort S then fns(P) C {y},

then a(y).P is determinate.
3. If each -Kt. Pi is determinate, no 7Tj is r and no two of the 7Tj are inputs or

outputs with the same subject, then Y^i ^i- Pi is determinate.
4. If Pi,P2 are determinate, fn(Pi) nfn(P2) = 0, sort(bn(P!)) nsort(n(P2)) = 0

and sort(bn(P2)) n sort(n(Pi)) = 0, then Pl | P2 is determinate. □

The condition in (2) cannot be dropped: consider R = x(y).a(y).0 + b(y).0
where x, b have the same sort. Clearly R is determinate but P = a(x).R above is
not as R{b/x} is not. Note, however, that if x, b were of different sorts, P would be
determinate. Using sorts to make distinctions among names in this way is often
helpful in applications of the calculus. Similarly, the condition in (4) cannot be
dropped: as in CCS, Pi, P2 cannot share free names (consider a. 0 | ä. 0), but in
addition in the mobile setting more must be said as that_property need not be
preserved under transition; for instance if P = w(z). z{x). b.0,Q = a(y).c. 0 and

a,z are of the same sort, then P | Q -$ R = a{x).b.O | a(y).c.O and R is not
determinate. The condition in (4) ensures that a bound name of one component
cannot be instantiated with a name free in the other.

A pure CCS agent P is confluent if for each derivative Q of it and distinct
a,ß, (i) if Q -^ Qi and Q =?* Q2, then Qj =*■ Q[and Q2 ==>• Q'2 « Q[,

and (ii) if Q -^ Qi and Q =U Q2, then Q1 =^ Q[and Q2 ^ Q'2 «
Q[. For value-passing CCS agents the definition must be refined to account
for different inputs with the same subject [18, 22]. This holds also for mobile
agents with the additional point that data received are names which may be

used for interaction: consider P = a(x).x(y}.0 which one would expect to be

determinate and the transitions P —l b{y)-0 and P ^-4 c{y}.01 In the 7r-
calculus a further consideration arises: consider P = (i/z)(a(z).0 \ b(z).O) and

its transitions P (^z> Px = b(z).0 and P (^2> P2 = a(z).0. Note that P
has no (^z)6(z)-transition, and dually for P2. In our view P should none the
less be regarded as confluent. To give the definition we introduce two pieces of
notation.

Notation 3 We write a tx ß if a and ß are different actions and are not both

318

inputs with the same subject. The weight a[ß of action a over action ß is a
except if a = (uz)ci(y) when it is {yz — bn(ß))a(y). □

Thus for instance, {vyz)a(y, z)_{pz)b(x,z) is (vy)a{y,z). We then have:

Definition 4. An agent P is confluent if for each derivative Q of P and a,ß
with a tx ß, (i) if Q -5-» Qi and Q =^> Q2, then Qi => <5'x and Q2 => Q2 ~ Q[,

and (ii) if Q -24 Qi and Q Jk Q2, then Qj M Q\ and Q2 ^ Q2 ~ Qi- D

Thus for instance P = {yz) (a{z). 0 | b(z). 0) above is confluent as after P —>

Pi = b{z).0 and P (vz-Hz) P2 = a{z).0 we have P^-Ho and P2 ^4 0.
It is easy to see that an agent bisimilar to a confluent agent is itself confluent.

An agent P is r-inert if for each derivative Q of P, if Q -^ Q' then <5' « Q.
By a generalization of the argument from the CCS case we have:

Lemma 5. If P is confluent then P is r-inert. □

The following result is a useful characterization of confluence in which only single
transitions need be considered. It holds only for fully convergent agents. In [1]
it was observed that for fully convergent ('r-well founded') agents, r-inertness
implies confluence. A similar observation is included here.

Lemma 6. Suppose P is fully convergent. Then P is confluent iff P is r-inert
and for each derivative Q of P and a,ß with a tx ß, (i) if Q —> Qi and

Q ^ Q2 then Qi « Q2, and (ii) if Q -^+ Qj and Q A Q2, then Qx % Q[

The proof shows that if P is fully convergent and r-inert and satisfies (i), then
P is determinate. The assumption that P is fully convergent cannot be dropped:

consider P = a. b. 0 + r. (a. 0 + r. P). It is easy to see that P is r-inert and
that all of its derivatives satisfy (i) and (ii). However, P is not determinate.

We record the analogues for confluence of the earlier results on preservation
of determinacy by operators.

Lemma 7.

1. If P is confluent so are r. P, x(y). P and {vy)P-
2. If P is confluent and for each y £ y, if y is of sort S then fns(P) C {y}, then

a(y). P is confluent.
3. If Pi,P2 are confluent, fn(Pi) H fn(P2) = 0, sort(bn(Pi)) n sort(n(P2)) = 0

and sort(bn(P2)) f~l sort(n(Pi)) = 0, then Pi | P2 is confluent. G

Of course here the guarded summation clause is missing.
In the following section we will consider further techniques for showing sys-

tems to be confluent. Before doing so we consider a variant of confluence based
on branching bisimilarity.

319

Definition8. P is ^-confluent if for each derivative Q of P and a, ß with
ax/?, (i) if Q -?+ Qx and Q ^^ Q2, then Qx =>• Qjjmd Q2 =^ Q2 « Q\,

and (ii) if Q -^ Qi and Q =*■ A Q2, then Qx =A Qi and Q2 =^

The following observations were made in [4]. Confluence (for non-mobile labelled
transition systems) based on branching bisimilarity was also considered in [1] and
observations similar to some of these made. An agent P is r~-inert if for each
derivative Q of P, if Q -^ Q' then Q' ~ Q.

Lemma 9.

1. If P is ~-confluent then P is T~-inert.
2. If P, Q are r-inert andPwQ then P ~ Q.
3. P is r~-inert iff P is r-inert.
4. P is confluent iff P is ~-confluent. n

In contrast to these coincidences, to obtain a satisfactory notion of 'partial'
confluence which is not r-inert it is essential to base the theory on branching
bisimilarity rather than bisimilarity; see [4].

4 Confluence by construction

A main motivation in [7] for studying confluence was to find an interesting prop-
erty implying determinacy which can be guaranteed to hold simply by confining
the use of combinators in building systems. Work elaborating this view and
showing its fruitfulness has been described in the Introduction. Here the empha-
sis is on sample results of this kind in the richer setting of name-passing. The
approach is complementary to development of static type systems as in [11, 20].
A useful definition: an agent P is o-determinate if for each derivative Q of P,
there are not two distinct output actions a, ß with the same subject such that

Q -2-> and Q ==>. The first result gives conditions under which a combination
of confluent agents is confluent.

Theorem 10. Suppose P = (vz)(Pi | ... | P„) where each Pt is confluent and
o-determinate. Suppose that for each derivative P' = {vz'){P[| ... | P^) of P,
no name occurs free in more than two components of P', and a free name of P'
occurs in exactly one component of P'. Then P is confluent. □

Note that in this theorem it is not possible to replace 'confluent' by 'determinate':
consider (va)(a. 0 | (a. 0 + b. 0)).

It is often the case that although the components of a system are not them-
selves confluent, the constraints they place upon one another's behaviour ensure
that the system itself is confluent. The second theorem is an instance of this
idea. To state it we need some definitions. We refer to a set of agents closed
under derivation as a system. For SeSwe say a system is S-closed if none of
its agents may perform an input or an output via an 5-name.

320

Definition 11. Suppose S and S = Si ... S„ are distinct sorts and the sorting
A is such that A(S) = (5) and no 5» occurs in any other A(S'). A system V is

S, S-sensitive if there is a partition {Pp | p a finite subset of Si x ... x Sn} of
P such that:

1. if P e Vv and P -^-> P' where a is not an input or output via an S-name

or an input via an 5;-name, then P' £ Pp;
2. if P £ Vp and P -^> P' where a is an output via an 5-name, then a =

(i/i)x(i)P'eF*';
3. if P £ Pp and P -^ P' where a = ar^i,..., zn) with x : 5, then at most

one of the Zi occurs free in P';
4. if P € Vv and P -^4 P' where a is an input via an S;-name, then there is

z = (zi,..., zn) e p such that the subject of a is z* and P' € Pp~fz}.

Further, V is S1, S-confluent if it is 5, S-sensitive and whenever P £ Pp, P —> Pi

and P => P2, then unless for some (zi,... ,zn) € p, a and ß are inputs via

distinct Zi and Zj, Pi % P[and P2^P^ P[. U

We then have:

Theorem 12. Suppose P = (vz)(Pi | ... | P„) and V = {Q | Q is a derivative

of a Pj} is S-closed and 5, S-confluent with partition {Vp}~. Suppose each Pj €

P0 and is o-determinate. Suppose that for each derivative P' = (vz')(P{ \ ... \
P/j) of P, no name occurs free in more than two components of P', and a free
name of P' occurs in exactly one component of P'. Then P is confluent. □

In closing this section we mention that related results of a synthetic nature can
also be obtained for useful varieties of 'partial confluence' as described in the
Introduction, and that static type systems as in for instance the papers cited
earlier complement them effectively.

5 An application

The aim of this section is to illustrate the utility of some of the theory presented
via an analysis of a distributed algorithm. It is a variant of the Propagation of
Information with Feedback protocol of [21] studied in [24]. Consider a network
of m processes connected by communication links, where the graph having the
processes as nodes and the links as edges is connected. Each process stores an
integer, its value. A distinguished process, the root, conducts the interaction
between the network and its environment. The intended behaviour of the algo-
rithm is that on receiving a request from the environment, the root should emit
to it the value of the network, i.e. the sum of the values of the m processes. We
proceed to give and explain the process-calculus description of the algorithm.

321

We use the following sorts: E, T, D, I, 0. The sorting A is as follows: A(E) =
(T,D), A(T) = (int), A(D) = (), A(l) = (0), A(0) = (int). Here int is the type
of integers; we allow simple arithmetic expressions in the descriptions - the
foregoing theory extends easily to accommodate this. It is intended that each
process passes from its initial quiescent state through some active states to a
final inactive state. The behaviour of a non-root process is described as follows,
where Q represents the quiescent state, A the active states, I the inactive state,
and e is the empty tuple.

Q(e,v) d= Ee€~e(t,d).A(t,e-e,e-e,e,e,v)

A(t,e,e,e,s,v) = t(v).I

I cHf 0

A(t,s,r,d,p,v) d= Se€7(iyt,d)e(t',d).A(t,?-ezr,d,p{t',d),v}

+ Se(~e{t',d).A{t,J,r- e,dd,p,v)

+ £dejd- A(t, s,f,d- d,p, v)

+ Z{t,4)e~ {t'(v').A{t,s,r,d,p- (t',d),v + v')

+ d.A(t,s,r,d,p- (f,d),v)).

In Q(e, v), v is the value of the process and the names e of sort E represent the
edges incident on it in the network. In the quiescent state the agent may receive
via any such name a pair of names, t of sort T and d of sort D. It discards d
and undertakes to send an integer along t which it does when it has all but
completed its activity (second and third clauses). That activity is described in
the fourth clause: A(t,s,r,d,p,v) represents the state in which the process is
storing v, has yet to send data along each E-name in s, has yet to receive^ data
along each E-name in f, has yet to send a signal along each D-name in d, and
for each T-name, D-name pair in p, has yet to receive either an integer along the
T-name or a signal along the D-name.

The behaviour of the root is given as follows:

Qo{}n,e,v) = in(out).A0(out,e - e,e - e,e,e,v)

Ao(out,e,e,e,e,v) = out(v).I0

Jo d=f 0
, i — — , — t, def

A0(out, s,r,d,p,v) = ...

where the fourth clause is as for A but with 'AQ' in place of 'A' and 'out' in
place of '£'. Thus the root behaves similarly to the other nodes except that it is
activated by receiving along the name in of sort I a name of sort 0 via which it
undertakes to send the network's value. The network is represented by

P0 = (ve)(Qo(\n,e0,vo) | n1<i<mQ{ei,vi))

where e are the E-names representing all the edges and for each i, e, those
incident on the ith process. We will prove the following correctness result:

322

Theorem 13. P0 « in(out).öüt(t;). 0, where v = E™^1 u».

The algorithm may be thought of as consisting of two phases. In the first a
spanning tree for the network is established, and in the second each non-root
process passes to its parent the sum of the values stored in its descendants, and
the root then emits to the environment the network's value. The sending by A0

or A along a name e of a pair t',doi fresh names is an invitation to the receiver
either to become a child of the sender and to undertake to send it an integer
along t', or, if the receiver is already active (and so has a parent), to decline to
do so by sending a signal via d. A process sends an integer to its parent only
when it has determined the sum of the values of its descendants.

First we give a characterization of derivatives of P0. For S G S, in an agent
of the form (i/z)IIiZi, we say there is an S-path between components Z' and Z"
if there are S-names xlt...,xp such that xt 6 fn(Zi,Zi+1) for each i, Z' = Zx

and Z" = Zp+\.

Lemma 14. If P0 -^ P where w G Act* then P = (vetd){R | ili<i<ra Nt)
where: (a) fn(P) is {in}, {out} or 0, and in and out may occur only in R (the
derivative of the root Q0); (b) no name occurs free in more than two components
of P; (c) if a T-name occurs free in a component of P, there is a unique T-
path between that component and R; (d) the sum of the integers stored in the
components which are quiescent or active is the network's value. □

Some useful notation: Pi = (i/e)(A0(out, e0,e0,e,e,v0) | Pi<i<m Q(ei,Vi)), P/> =
(ve)(A0(out,e,e,e,e,v) | /7i<«mI), and Pu = (vZ)(I0 \ JTi<i<mJ). We will
later show that P/, and Pu are derivatives of P0. We use P to range over deriva-
tives of P0. Key in proving the theorem will be the agents of the form

Q'(e,e,v) d= e(t,d).A(t,e-e,e-e,e,e,v)

where e G e. Q' is similar to Q except that it may be activated only by an
interaction along the specific name e. Note that, where ~ is strong bisimilarity,

Q{e,v)~Ee€7Q'(e,e,v). (1)

Let T be the set of agents of the form

T0
d= (i/e)(Qo(in,e0,«o> |iIi<i<mQ'<ei,Ci,i;i))

where ei,...,em_i represent a spanning tree of the graph, with e» G e, for
each i. Note that such a T0 differs from P0 just in having Q' where P0 has Q:
the edge via which each non-root node will receive its first communication is
determined; intuitively, T0 represents the fragment of the behaviour of P0 in
which the spanning tree is given by those edges. Let T0 G T. Directly from (1)
and Lemma 14 we have:

Corollary 15. If T0 -^> T where w G Act* then T = [vetd){R \ iTi<i<ro N<)
where (a)-(d) as in Lemma 14 (with 'T' for 'P') hold. □

323

Some useful notation: 7\ = (ve)(A0(out,e0,e0,e,e,v0) | ni<i<mQ'(ei,ei,Vi)),
T^ = (ve)(Ao(out,e,e,e,e,v) \ nx<i<mI) and Tu = (i/e)(J0 \ IJi<i<mI)- We
use T to range over derivatives T0. We analyse T0, noting first that it has a
specific behaviour:

T 1C rp 'n <OUt> 55t(tt) n Lemmalb. io —> ii =>!,/, —>• Ju. u

We now have the key observation whose proof appeals Theorem 12.

Lemma 17. T0 is confluent. D

^From these two results we have:

Corollary 18. T0 « in(out).öüt(t>). 0. □

Having used confluence to analyse the behaviour of T0 we now relate it to that
of P0. We say P and T are similar if they differ only in that where P has a
quiescent component Q, T has a quiescent component Q'.

Lemma 19. {(T, P) | P and T are similar} is a strong simulation. □

By Lemma 16 and 19 we have that P0 '"^ Pi => P^ °^ P*- We say that To
is compatible with a computation P0 -^ Pi -^ ... -^ Pr H for each i, if a* is r
and arises from complementary actions (vt', d)e(t', d), e(t',d) where the second
is performed by a quiescent component Q(ej,Vj), then in T0 that component is
Q'(e,ej,Vj); i.e. the E-names used to activate components in the computation
are those via which the Q'-components of T0 may be activated.

Lemma 20. If P0 -^ P then for any T0 compatible with the computation,
T0 -^ T with P and T similar. □

We can now prove the theorem. Since P0 ~ in (out). Pi it suffices to show that

Pi « öüi(v). 0. We have seen that Pi °^£ Pu ~ 0. Choose one such computation
and, by Lemma 14, choose T0 compatible with it. Then not (Px =^>) with a /
öut(w) as otherwise by Lemma 20, (Xi =^>), contradicting Lemma 18. Finally,
and for the same reason, not (Pi => P/ /-»). D

We conclude by briefly comparing this analysis with that in [24]. The latter
uses a static I/O-automaton model [5] of the algorithm and establishes that the
fair traces of the automaton representing it are included in those of an automa-
ton akin to the agent in(out).oüt(u).0. In our view name-passing and careful
use of sorts allow a very direct and perspicuous description of the algorithm's
behaviour: the construction and use of the spanning tree are manifest in the de-
scription. Moreover the use of reasoning techniques involving name-passing aids
the analysis, and the proof illustrates the idea that when studying the behaviour
of a confluent system it may suffice to examine in detail only a (small) part of
it. Finally, here the correctness criterion is bisimilarity, rather than inclusion of
fair traces.

324

References

1. J. F. Groote and M. Sellink. Confluence for process verification. In Proceedings of
CONCUR'95, pages 204-218. Springer, 1995.

2. K. Honda. Types for dyadic interaction. In CONCUR'93, pages 509-523. Springer,
1993.

3. N. Kobayashi, B. Pierce, and D. Turner. Linearity and the pi-calculus. Principles
of Programming Languages, 1996.

4. X. Liu and D. Walker. Confluence of processes and systems of objects. In Pro-
ceedings of TAPSOFT'95, pages 217-231. Springer, 1995.

5. N. Lynch, M. Merritt, W. Weihl, and A. Fekete. Atomic Transactions. Morgan
Kaufmann, 1994.

6. R. Milner. A Calculus of Communicating Systems. Springer, 1980.
7. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
8. R. Milner. The polyadic 7r-calculus: a tutorial. In Logic and Algebra of Specifica-

tion. Springer, 1992.
9. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts 1 and 2.

Information and Computation, 100:1-77, 1992.
10. R. Milner, J. Parrow, and D. Walker. Modal logics for mobile processes. Theoret-

ical Computer Science, 114:149-171, 1993.
11. U. Nestmann. On determinacy and nondeterminacy in concurrent programming.

PhD thesis, University of Erlangen, 1996.
12. A. Philippou. Reasoning about systems with evolving structure. PhD thesis, Uni-

versity of Warwick, 1996.
13. A. Philippou and D. Walker. On sharing and determinacy in concurrent systems.

In Proceedings of CONCUR'95, pages 456-470. Springer, 1995.
14. A. Philippou and D. Walker. On transformations of concurrent object programs.

In Proceedings of CONCUR'96, pages 131-146. Springer, 1996.
15. B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. In Pro-

ceedings of LICS'93, pages 376-385. Computer Society Press, 1993.
16. B. Pierce and D. Sangiorgi. Behavioral equivalence in the polymorphic pi-calculus.

In Proceedings of POPL '97, to appear.
17. B. Pierce and D. Turner. Pict language definition, 1996.
18. M. Sanderson. Proof techniques for CCS. PhD thesis, University of Edinburgh,

1982.
19. D. Sangiorgi. Expressing mobility in process algebras: first-order and higher-order

paradigms. PhD thesis, University of Edinburgh, 1992.
20. D. Sangiorgi. The name discipline of receptiveness. Technical report, INRIA, to

appear.
21. A. Segall. Distributed network protocols. IEEE Transactions on Information The-

ory, IT-29(2):319-340, 1983.
22. C. Tofts. Proof methods and pragmatics for parallel programming. PhD thesis,

University of Edinburgh, 1990.
23. D. Turner. The polymorphic pi-calculus: theory and implementation. PhD thesis,

University of Edinburgh, 1996.
24. F. Vaandrager. Verification of a distributed summation algorithm. In Proceedings

of CONCUR'95, pages 190-203. Springer, 1995.
25. N. Yoshida. Graph types for monadic mobile processes. In Proceedings of

FST/TCS'96, pages 371-386. Springer, 1996.

A Proof Theoretical Approach
to Communication*

Yuxi Fu

Department of Computer Science
Shanghai Jiao Tong University

1954 Hua Shan Road, Shanghai 200030, China

Abstract. The paper investigates a concurrent computation model, chi
calculus, in which communications resemble cut eliminations for classical
proofs. The algebraic properties of the model are studied. Its relationship
to sequential computation is illustrated by showing that it incorporates
the operational semantics of the call-by-name lambda calculus. Practi-
cally the model has pi calculus as a submodel.

1 Communication as Cut Elimination

Concurrent computation is currently an open-ended issue. The situation is in
contrast with sequential computation whose operational semantics is formalized
by, among others, the A-calculus ([2]). In retrospect, the A-calculus can be seen
as a fallout of proof theory. Curry-Howard's proposition-as-type principle allows
one to code up constructive proofs as typed terms. At the core of the construc-
tive logic is the minimal logic, whose type theoretical formulation gives rise to,
roughly, the simply typed A-calculus. Now the untyped A-calculus is obtained
from the simply typed A-calculus by removing all the typing information.

In recent years, classical proofs have been investigated in a computational set-
ting. Girard proposed proof nets ([4]) as term representations of classical linear
proofs. These classical terms are typed. The conclusion of a proof derivation is the
type of the proof net corresponding to that proof derivation. The computations
of these terms are cut eliminations modeled by rewritings of graphs. As the terms
are typed, cuts happen between nodes of correlated types. Abramsky's proof-
as-process interpretation ([1, 3]) relates proof nets to processes. At operational
level, this interpretation is supported by a cut-elimination-as-communication
paradigm. It looks like a type-erasing interpretation similar to the one found in
a constructive world.

This paper investigates a concurrent computation model obtained by revers-
ing the roles of proofs and processes in Abramsky's paradigm. That is to say
that we regard communications as cut eliminations. The way to arrive at such a
model of communication echoes that in the sequential world. First we take the
multiplicative linear logic as the 'minimal logic' in a classical framework. There
is nothing canonical about this choice. As the typed classical terms we take the

Supported by NNSF of China, grant number 69503006.

326

proof nets. The following left diagram is a proof net:

[A A B BJ B Bs

A®B ALpBL C CL

The first step towards the model is to abstract away the logical aspect of proof
nets but keep its proof theoretical content. The above proof net becomes the
right diagram in the above. There are two kinds of edge in the net. So the sec-
ond step is to transform the net into a graph with only directed arrows:

C CL

We then forget about the typing information while recording positive and nega-
tive information by labels on arrows, arriving at an untyped graph (left below).

This is the untyped version of the original classical typed term. Notice that there
are two kinds of node in the proof net: the internal nodes and the conclusion
nodes. In order to distinguish them in the untyped graph, we label the conclu-
sion nodes with small letters (above right). We call graphs of this kind reaction
graphs. In a reaction graph, a node without (with) a label is called local (global).
Reaction graphs can be seen as the underlying graphs of proof derivations in a
generalized and distilled form. Computations with reaction graphs are cut elim-
inations. Here is an example of two consecutive cut-eliminations:

o ® ® ®

o^-o o~=-o 8
In the left graph, the two upper nodes show up opposite polarities to the left
bottom node. This cut is eliminated in the first reduction. The two arrows are
removed and the two upper nodes are coerced with the resulting node labeled by
m. In the middle graph, the two bottom nodes with the arrows pointing to the
node labeled m form a cut. The second reduction eliminates the cut. The idea of
this paper is to think of these cut-eliminations as communications. To develop
the idea, we need a process-like notation for reaction graphs. Let us define graph
terms by abstract syntax as follows: G := 0 | m[x] | m[x] \ (x)G \ G\G'. Here 0 is
the empty reaction graph; m[x] and rn[x] are respectively the following graphs:

(x)G is obtained from G by removing the label x from G; G\G' is the amal-

327

gamation of G and G', coercing nodes with same labels. The two consecutive
cut-eliminations in the above can now be described by the following reductions:

(x)(y)(z)(m[x]\y[x}\y[m]\y[z}\J[y]) - (x)(y)(m[x]\y[x)\m[y]) -+ (x)(x[x}).

This term representation gives rise to a calculus of reaction graphs.
The calculus of graphs only deals with finite computations. To achieve Turing

computability, we extend the language with standard process combinators. The
resulting language will be referred to as x-calculus, where x stands for exchange
of information. The paper initiates a study of this computation model.

2 A Model for Concurrent Computation

Let J\f be a set of names ranged over by lower case letters and H = {ä \ a € -A/-}
be the set of conames. The union jV U A/" will be ranged over by a. Define ä to
be m (m) whenever a is rn (m). Let T be the set of x-terms defined as follows:

P := 0 | a[x].P | P\P' | (x)P | a(x)*P.

Here m[x].P and rn[x].P are terms that must first perform a communication
through name m and then enacts P[y/x], where y is the name received in the
communication. In (x)P, the (x)-part is a localization combinator. In both (x)P
and a(x)*P, x is local. The set of local names appeared in P is denoted by
ln(P), whereas the set of global names, or non local names, in P is designated
by gn(P). Set n(P) is the union of ln{P) and gn{P). We adopt the a-convention
saying that a local name in a term can be replaced by a fresh name without
changing its syntax.

The effect of a substitution [j/i/ari] ■ • ■ [yn/xn\ on a term is defined as follows:

P[yi/xi]...[yn/xn] =f (...P[yi/x1]...)[yn/xn\. Substitutions will be ranged
over by cr.

For simplicity, a structural congruence is imposed on the members of T.

Definition 1. The relation = is the least congruence on x-terms that contains:
(i) P|0 = P, PX\P2 = P2\Pi, and Pi\(P2\P3) = (Pi\P2)\Pa;
(ii) (*)0 = 0, (x)(y)P = (y)(x)P, and (x)(P\Q) = P\(x)Q if x $ gn(P);
(iii) P = Q if P and Q are a-convertible.

We regard = as a grammatic equality. So P = Q means that P and Q are syn-
tactically the same. The operational semantics of the language can be defined in
terms of a labeled transition system. We prefer however a reductional semantics
for x-calculus in the style of [5]:

(x)(R\a[x].P\ö{y].Q) - (x)(R[y/x]\P[y/x}\Q[y/x})

a(x)*P\ö[y}.Q — a(x)*P\P[y/x]\Q

P-+P' P-*P'
P\Q^P'\Q (x)P-r(x)P'-

328

To help understand the communication rules, we now give some examples, as-
suming x and y are distinct:

(x)(R\m[y}.P\m[x].Q) - R[y/x]\P[y/x]\Q[y/x]

rn[y).P\{x){R\m[x].Q) - P\R[y/x]\Q[y/x]

(y)(m[u].P\(x)(R\m[x].Q)) - (y)(P\R[y/x]\Q[y/x})

(x)rn[x].P\(y)m[y].Q-* (z)(P[z/x]\Q[z/y]), where z is fresh

(x)(m[x].P\m[x].Q)-+(x)(P\Q).

It is clear from these examples that the localization operator in x-calculus acts
as an effect delimiter. A communication either instantiates a local name by a
global name or identifies two local names.

Let _*+ (_►*) be the (reflexive and) transitive closure of -+. We will denote
by x a sequence xi,...,xn of names. We will also abbreviate (xi)... (xn)P to
(x)P. When the length of the sequence x is zero, (x)P is just P.

3 Algebraic Properties

To study the algebraic semantics of x-terms, a labeled transition system is de-

fined as follows, where 6 ranges over {—+, —►, —► \a £ N UJV,x £ M}:

(y)(R\a[y].P)^ (R\P)[*/y] a(y)*P —► a i(y)* P\P[x/y] a[x].PaM]P

p aM] p' p-^p'

p

ln(S) C\ gn(Q)

\Q^P'\Q

= 0 p-Lp'

(x)P-

x £ n(6)

L(x)P> ■

In the rules, ln(5) is {x} when 6 is a(x); it is the empty set otherwise. n(6) is

the set of names in 6. Let => denote relation —►*—+—►*.
A bisimulation equivalence for x-terms should take into account the distin-

guished feature of the localization operators of the language. The equivalence
we introduce in this section is based upon the old idea that two terms are con-
sidered observationally equivalent if and only if placing them in a same context
results in two observationally equivalent terms. Working explicitly with contexts
is unnecessary in our setting due to the presence of the structural equality =.

Definition2. Suppose KCTxT. The relation 1Z is a local simulation if when-
ever P1ZQ then for any term R and any sequence x of names it holds that
(i) if (x)(P\R) — P' then Q' exists such that (x)(Q\R) —• Q' and P'TZQ';

(ii) if (x)(P|Ä) -i- P' then Q' exists such that (x)(Q\R) 4> Q' and P'TZQ'.
The relation TZ is a local bisimulation if both V, and its inverse are local simu-
lations. The local bisimilarity « is the largest local bisimulation.

329

As usual, local bisimulation up to « is a useful tool for proving two x-terms
being locally bisimilar. We omit the standard definition.

In the rest of this section, we prove that « is a congruence relation. The fact
that « is closed under parasition and localization combinators can be proved
already at this point.

Propositions. IfP « Q then (i) P\0 « Q\0 and (ii) (x)P « (x)Q.

The next lemma is crucial in showing that « is a congruence relation. It is the
first indication that local bisimilarity is algebraically appropriate. The property
is not enjoyed by local bisimilarity for /[--processes.

Lemma 4. // P ss Q then Pa fa Qa for an arbitrary substitution a.

Proof. Let 7v be the union of fa and the following

((z)(P<r|Ä),(z)(Q<r|Ä))
P fa Q, R € T, za sequence of names,
a a substitution [j/i/zi] • • -[yn/xn] such
that x\,...,xn are pairwise distinct

Suppose (z)(Po-\R)K(z)(Qo-\R) and (z){Pa\R) -* P', where a is the substitution
[yi/xi] ■ ■ ■ [yn/xn] witn xi,...,x„ being pairwise distinct. Let a and b be fresh
names. Then for the sequence z of names

(z)((x)(a)(b)(b[b}.P\a[Xl] a[xn]\ä[yi] ä[yn}.b[b])\R) ^* (*)(P'\R)

■i- P'

As 6 g gn(P,Q), b[b].P « 6[6].Q follows easily. By Proposition 3,

(x)(a)(6)(6[6].P|a[a:i] a[xn]\ä[yi] ä[yn].bß)

« (x)(a)(6)(6[6].Q|a[xx] a[i„]|ä[yi] ä[y„].6[6]).

So by definition, there exists some Q' such that P' fa Q' and

(z)((x)(a)(6)(6[6].Q|a[ari] a^M^] ä[j/„].6[6])|Ä) A Q'.

During the above reduction every a[xi\ must have reacted upon ä[yi\, for 1 <
i < n, and b[b] upon &[&]. It can be easily proved that all the communications
through a and that through 6 can happen in the very beginning. That is

(z)((x)(a)(6[6].Q|a[xJ a[ar„]|S[yi] a[yn].b[b])\R) -' (z)(Q<r|P)

4 Q'.

So (z)(Po-|Ä) — P' is matched by (z)(Qcr\R) A- Q'. The case when (z)(Pa\R) —
P' is similar. So 7^ is a local bisimulation. It follows that F«Q implies P[y/x] sa
Q[y/ar]. Therefore P fa Q implies Per ss Qcr for a substitution er. D

We now come to the main result of the section.

330

Theorem 5. « is a congruence equivalence: if P « Q and O € T iAera
(i) a[x].P » a[i].Q; f»j P|0 » 0|O;
(«i«; (z)P « (x)<3; ^'»; c*(»*P « a(ar)*Q.

Proo/. We sketch the proof of (iv). The proof of (i) is simpler. Let H be

{((x)(m(y)*P|P), (x)(m(y)*Q\R)) \PmQ, ReT, m,x names}.

Suppose (x)(m(y)*P|P) — P' and that (x)(m(t/)*P|P) - P' is caused by
a communication between m(y)*P and R. Then P' is (x)(m(?/)*P|P[a/z/]|Ä')-
Similarly (x)(m(t/)*Q|P) — (x)(m(y)*Q|Q[a/y]|Ä'). By Lemma4, P[a/y] «
Q[a/y]. By Proposition 3, (x)(m(y)*Q|P[a/y]|P') « (x)(m(y)*Q|Q[a/y]|P')- I*
is then easy to see that 11 is a local bisimulation up to «. □

4 ^-Processes as %-Terms

A question naturally arises as to the relationship between 7r-calculus and X"
calculus. We give a first answer in this section. Let V be the set of 7r-processes
denned as follows: P := 0 | m(x).P | mx.P | P\P' \ (x)P | m(x)*P. We refer
the reader to [6] for background material on 7r-calculus.

There are many bisimulation equivalences on 7r-processes. What is most rel-
evant in this section is the open bisimilarity denned in [8]. Actually we will use
a version of open bisimilarity stronger than Sangiorgi's.

Definition6. Let H be a binary relation on the set of 7r-processes. The relation
U is an open bisimulation if whenever P1ZQ then for any T-process R, any
sequence x of names and any substitution a it holds that

(i) if (x)(P<r|P) A P' then Q' exists such that (x)(Q<r|P) 4- Q' and P'IZQ';

(ii) if (x)(Q<r|Ä) A Q' then P' exists such that (x)(P<r|P) A P' and P'IZQ'.
The open bisimilarity fa" is the largest open bisimulation.

«° is a congruence equivalence and is closed under substitution.
A structural translation from JT to x has as nontrivial clauses the following:

(m(x).P)0 = {x)m[x).P\

(mx.P)od=m[x}.P0.

Imposing on V a same structural congruence as given in Definition 1, one has

Theorem 7. For P,QeV, it holds that
(i) p^Qlffp°->Q°; (Ü) P^QzffP" ^_Q°;

(Hi) P^Qiff P° ^ Q°; (iv) P m^] Q iff P° "^ Q°■

Theorem8. For P,Q eV, P «° Q iff P° « Q°■

331

5 Call-by-Name in x-Calculus

A concurrent computation model has to answer the question of whether it cap-
tures sequential computation successfully. The issue is often addressed by re-
lating variants of A-calculus to the model. Our focus in this section is on the
call-by-name A-calculus ([7]), whose semantics is defined by the following rules:

M — M' M -*M'
(Xx.M)N -* M[N/x] MN — M'N Xx.M -> Xx.M''

The following translation, which is Milner's encoding of the lazy A-calculus with
modification, serves as an encoding of the call-by-name A-calculus in x-calculus:

[arju = x[u]

{Xx.M}u = (v)(x)(n[x].u[v]\lM}v)

{MNju d= (V)(X)({M}V\V[X].V[U}.X(W)*INJW).

The parasition of ü[x].ü[v] and \M\v in \Xx.M\u allows {M}v to evolve inde-
pendently, thus modeling reduction under A-abstraction. The encoding preserves
the operational semantics of the call-by-name A-calculus in the sense the oper-
ational semantics of the lazy A-calculus is preserved by Milner's encoding ([5]).
A formal treatment is omitted in this extended abstract.

The call-by-name A-calculus is one example which can not be treated suc-
cessfully in 7r-calculus.

6 Towards an Integration of x and A

There are two problems one encounters when trying to simulate the operational
semantics of the full A-calculus. The first is how to model reduction under A-
abstraction. The second is how to model reduction MN -*■ MN' caused by
TV —► N'. The former is to do with parallel computation. There is no reason why
it should pose any problem for concurrent computation. This view is supported
by the result in Sect. 5. The latter is to do with recursion because the A-term N
may be duplicated in future reduction. In any structural interpretation, this N
must be translated into the body of a replicator or guarded recursion. So if the
N induces an infinite reduction, the interpretation of MN would have no termi-
nating reduction sequences. It is our view that the second problem is orthogonal
to concurrent computation. It is caused essentially by the incompatibility of the
two recursion mechanisms.

In this section we take a look at a higher order calculus combining the com-
munication mechanism of the x-calculus and the recursion mechanism of the
A-calculus. The purpose of this investigation is to see if the two mechanisms fit
coherently and if local bisimulation suffices as a tool for studying the algebraic
properties of the language.

332

6.1 x with Call-by-Name A

Let the set H of higher order x-terms be defined by the following abstract syntax:

E := X | a[x].E \ E\E' \ {x)E \ a(X)E \ a[E],

where X is a term variable. Let 0 abbreviate (a)a(X)X. The semantics of the
higher order x-calculus is defined by the relevant rules of the first order x-calculus
together with the following rules incorporating a call-by-name mechanism:

E->F
a(X)E\ä[F) — E[F/X) a(X)E - a(X)F

A structural equality is imposed on the members of 7i, whose definition is the
same as Definition 1. Usually a bisimulation equivalence for a higher order pro-
cess calculus is defined for closed processes. This is a tractable approach. But in
the presence of the second reduction rule given above, the method breaks down.
A bisimulation equivalence for higher order x-calculus has to be defined on all
terms. For that purpose, let's say that a binary relation K on H is substitution
closed if whenever ETZF then E[Ex/Xu..., Ei/Xi\KF[ExIXu ..., E'i/Xi] for
Ei,...,E{ ETi and X\,...,Xi that are among the free variables of E\F.

Definition9. A substitution closed binary relation K on 7i is a local bisimula-
tion if whenever EKF then for any H eW and {x} C J\f it holds that

(i) if (x)(E\H) A E' then F' exists such that (x)(F\H) A F' and E'KF';

(ii) if (x)(F|tf) 4 F' then E' exists such that {x)(E\H) A E' and E'KF'.
The local bisimilarity saw is the largest local bisimulation on higher order terms.

The above definition is given in terms of a labeled transition system on H that
is defined by the relevant rules in Sect. 3. It should be remarked that «" is by
definition substitution closed.

Theorem 10. «w is a congruence equivalence: if E ww F and G (EH then
(i) a[x].E «" a[x].F; (ii) E\G «" F\G; (Hi) (x)E «w (x)F;
(iv) a(X)E «w a(X)F; (v) a[E] «w a[F].

Proof. We only prove (v). For the sake of this proof, let's define 7i0[X] to be the
set of all higher order terms E such that each occurrence of X is within a[G] for
some a G M U 77 and some G € Ti. Let K be

{{E[A/X],E{B/X}) | A ^ B, Ee H0[X], X a variable}.

Suppose E[A/X] — G. Then G = F[A] for some F € H0[X]. It can be easily
shown that some H G U exists such that E[B/X] — H and F[B/X] «w H.
It follows that K is a local bisimulation up to «". Thus a[E) «w a[F] since
a[x] e n„[x]. a

In the remaining of the section, we justify our claim that the higher order
calculus is a combination of x and A.

333

6.2 Recursion

As a test for local bisimilarity, we examine Thomsen's recursion ([9]) in this
section. Suppose that E contains free variable X and a does not occur in E. The
following abbreviations will be used:

def WX(E) = a[a]\a(X)(ä[a}.E\ä[X}),
def recX.E^1 (a)(Wx(E)\a[Wx(E)]).

We remark that rtcX.E denned here is slightly different from Thomsen's. The
idea is to make WX(E) inert. Before proving the main property concerning
recX.E, we first establish the following result.

Lemma 11. (a)(F[Wx(E)/X]\a{Wx{E)}) «<- (a)(b)(F'\ä[Wx(E)}\b{Wx(E)]),
where E and F have free variable X and F' is obtained from F[WX(E)/X] by
replacing some occurrences ofWx{E) by WX(E). Here a and b are fresh.

Theorem 12. Suppose E contains free X. Then recX.E xP E[recX.E/X].

Proof. Suppose E and F contain free variable X, a £ n(E, F) and gn(E) l~l
ln(F) = 0. Using Lemma 11, one proves that (a)(F[Wx(E)/X}\ä[Wx(E)}) sa
F[recX.E/X]. So rtcX.E «" (a)(E[Wx(E)/X]\ä[Wx(E)]) «<* E[rtcX.E/X],
which is what we are after. D

6.3 Projecting Out Guarded Recursion

In this section we show that the higher order \ can be seen as an extension
of the first order x- A fallout of the result is a justification of the claim that
the guarded recursion is completely unnecessary in the higher order x-calculus.
Let x+ be the higher order x-calculus enriched with the guarded recursion. The
language x+ can be investigated along the same line as the higher order x has
been. H+ and «+ are defined accordingly. It can also be shown that «+ is a
congruence relation. The definition of a structural translation ~ from x+-terms
to xw-terms is nontrivial only on guarded recursion:

Q(^T*i;1i:f(a)((2;)aH.(Jg|a(X)(X|ä[X]))|ä[(x)a[a;].(^a(X)(X|ä[X]))]).

The translation ~ projects the guarded recursion out, as it were.

Theorem 13. For P EH+, P «+ P.

Theorem 14. (i) Suppose P and Q are in 7i. Then P «+ Q iff P «'" Q.
(ii) Suppose P and Q are in Ti+. Then P «+ Q iff P ^ Q.

(Hi) (a) ifP^P'(P^ P') then P -L P" (P — P") such that P" «w P;

(i) ifp± P" (p _ P") then P-LP' (P — P') such that P" *y P.

334

Proof, (i) Suppose P, Q are in %. P «+ Qjlearly implies P «w Q. Suppose

P «" Q. Then (x)(P|P) = (x)(P|P) and (x)(Q\R) = (x)(Q\R), where Ä G W+.
By theorem 13, (x)(P\R) «+ (x)(P|P) and (x)(Q|P) «+ (x)(Q|P). It is now
easy to see that «w is a local bisimulation up to «+.
(ii) By theorem 13, P »+ Q iff P «+ Q. By (i) P «+ Q iff P *u Q. D

As x+ extends the first order \, so does the higher order x-calculus in view
of Theorem 13 and Theorem 14.

6.4 Full Integration

An integration of x witn tne fu^ ^ is tne higner order calculus extended with

E -* F
a[E] -* a[F]'

The operational semantics of the full A-calculus can be simulated in the fully
integrated calculus. The encoding is the following:

lxju
d^x[u]\X

l\x.M}u = (x)(v)(u[v].u[x]\x(X)[M]v)

IMN}U = (x)(v)([AqMu]tf*MW(*W\Mw)])-

Theorem 15. Suppose M is a X-ierm. If M -* N then [M]„ —+ [iV]u.

Definition 9 now gives rise to an equivalence relation on the set of all terms
of the fully integrated calculus. The results in Sect. 6.2 and Sect. 6.3 also hold
for this language. The (i) through (iv) of Theorem 10 also hold. But so far we
haven't been able to prove the (v) of Theorem 10 for the fully integrated calculus.

7 Remark on Pragmatics

In the formulation of x-calculus, we use the same set of names for both global
and local names. But conceptually the identification is not always helpful. The
standard bisimilarity ([6]) for the 7r-processes is not closed under input prefixing
operation. This is because the variable names and the free names are regarded
as semantically different in this approach. Sangiorgi's open bisimilarity is con-
gruent. But in that approach local names are treated differently. In x-calculus,
both local and global names are variable names, which is what local bisimilar-
ity assumes. The situation is similar to that in A-calculus, where both free and
closed variables are, well, variables that can be instantiated by any A-terms.

But variable names alone do not suffice in practice. This is clear from the
mobile process interpretation of object oriented languages ([10]). The usual prac-
tice is to postulate that Af consists of two parts: a set Mv of variable names and
a set M'c of constant names. We can now define a x-process to be a x-term in

335

which all variable names are localized. So in x-processes there are two kinds of
local names: local variable names and local constant names. A communication
either identifies two local variable names or replaces a local variable name by a
local or global constant name. A communication between two constant names is

prohibited. Let ß range over {—, ", °^], a^\ a e K, a £ AfcUÄTc}-

Definition 16. Let R be a binary relation on the set of x-processes. U is a

simulation if PUQ implies that if P -£• P' then there exists some Q' such that

Q A Q' and P'TZQ'. The relation H is a bisimulation if both H and its reverse
are simulations. The bisimilarity «x is the largest bisimulation.

The 7r-calculus can be reexamined in this new setting. The input prefix op-
eration restricts variable names whereas the localization operation always re-
stricts constant names, x-processes are now defined to be those processes in
which all variable names are restricted by input prefixes. Let 7 range over

Definition 17. Let 1Z be a binary relation on the set of ^-processes. U is a

simulation if PTZQ implies that if P ^* P' then there exists some Q' such that

Q^> Q' and P'TZQ'. The relation 72. is a bisimulation if both 11 and its inverse
are simulations. The bisimilarity ss*" is the largest bisimulation.

The translation given in Sect. 4 works in this practical setting. It establishes an
operational correspondence in the sense of Theorem 7. In addition one has

Theorem 18. For ir-processes P and Q, P «*' Q if and only if P" «* Q°.

So practically speaking, ir is a subcalculus of x-

References

1. Abramsky, S.: Proofs as Processes. Theoretical Computer Science 135 (1994) 5-9
2. Barendregt, H.: The Lambda Calculus: Its Syntax and Semantics. 1984
3. Bellin, G., Scott, P.: Remarks on the r-Calculus and Linear Logic. Theoretical

Computer Science 135 (1994) 11-65
4. Girard, J.: Linear Logic. Theoretical Computer Science 50 (1987) 1-102
5. Milner, R.: Functions as Processes. Journal of Mathematical Structures in Com-

puter Science 2 (1992) 119-141
6. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes. Information

and Computation 100 (1992) 1-40 (Part I), 41-77 (Part II)
7. Plotkin, G.: Call-by-Name, Call-by-Value and the A-Calculus. Theoretical Com-

puter Science 1 (1975) 125-159
8. Sangiorgi, D.: A Theory of Bisimulation for x-Calculus. Proc. CONCUR 93. LNCS

715 (1993) 127-142
9. Thomsen, B.: Plain CHOCS—A Second Generation Calculus for Higher Order

Processes. Acta Informatica 30 (1993) 1-59
10. Walker, D.: Objects in the 7r-Calculus. Information and Computation 116 (1995)

253-271

Solving Trace Equations Using Lexicographical
Normal Forms

Volker Diekert1, Yuri Matiyasevich2*, and Anca Muscholl1

1 Institut für Informatik, Universität Stuttgart,
Breitwiesenstr. 20-22, 70565 Stuttgart, Germany

2 Steklov Institute of Mathematics at St.Petersburg
Fontanka 27, St. Petersburg, 191011 Russia

Abstract. Very recently, the second author showed that the question
whether an equation over a trace monoid has a solution or not is decid-
able [11,12]. In the original proof this question is reduced to the solv-
ability of word equations with constraints, by induction on the size of
the commutation relation. In the present paper we give another proof of
this result using lexicographical normal forms. Our method is a direct
reduction of a trace equation system to a word equation system with
regular constraints, using a new result on lexicographical normal forms.

1 Introduction

Solving equations is a central topic in various fields of computer science, es-
pecially concerning unification, as required by automated theorem proving or
logic programming. A celebrated result of Makanin [10] states that the question
whether an equation over words has a solution or not is decidable: There ex-
ists an algorithm deciding for a given equation L = R, where L,R G (J? U E)*
contain both unknowns from Q and constants from E, whether an assignment
a:ü -» E* exists, satisfying a(L) = a(R). Slightly more general, the existen-
tial theory of equations over free monoids is decidable, i.e., given an existentially
quantified, closed first-order formula S over atomic predicates of the form L = R
and L ^ R, it is decidable whether S is valid over a given free monoid. Moreover,
adding regular constraints, i.e., atomic predicates of the form x £ C, where C is
a regular language, preserves decidability [14].
In this paper we prove the generalization of Makanin's result to trace monoids,
which were originally studied in combinatorics [4]. They became meaningful
for computer science in concurrency theory, where they were introduced by
Mazurkiewicz [13] in connection with the semantics of labelled Petri nets. For
an overview of trace theory and related topics see "The Book of Traces" [7].
Most results obtained so far in the area of equations on traces were restricted
to equations without constants, see [8,5]. The decidability of the solvability of
equations with constants was stated as an important open question.

* This work was done during a stay at the University of Stuttgart.

337

2 Notations, Preliminaries and Lexicographical Normal
Forms

An independence alphabet is a pair {E,I), where E is a finite alphabet and
I C E x E is an irreflexive and symmetric relation, called independence relation.
With a given independence alphabet (E, I) we associate the trace monoidM(E, I).
This is the quotient monoid 17*/=/, where =/ denotes the congruence being the
equivalence relation generated by the set {uabv = ubav \ (a,b) G /, u,v G E*};
an element t G M(E, I) is called a trace, the length |i| of a trace t is given by the
length of any representing word. By alph(i) we denote the alphabet of a trace t,
being the set of letters occurring in t.
By 1 we denote both the empty word and the empty trace. Words v,w G E*
are called independent (w.r.t. I), if alph(u) x alph(w) C I. In this case we
simply write (v,w) G I or v € I(w) where I(w) for w G E* is a shorthand for
{a G £ | {a} x alph(w) C /}.
The initial alphabet of w G E* is the set init(w) = {o G E | 3w',w" G
17* with w =/ «/ and iu' = aw"}.
A word language L C 17* is called I-closed if whenever ufi and w =i v then
we have u> G L.

Throughout the paper we will suppose that (E,I) denotes an independence
alphabet, where E has the cardinality n > 1. We suppose that E is totally
ordered by < and we identify E with the set {l,...,n}. The order on 17 is
extended to the lexicographical order on E*.
A word v G E* is in lexicographical normal form (w.r.t. / and <) if v < w holds
for all w such that v =i w. Let LNF denote the set of lexicographical normal
forms, i.e., LNF C E* is the set of minimal representatives for M(E,I). For
v G E* we denote by \ex(v) the unique word w G LNF such that w =i v. We
view lex as a mapping lex : E* —► LNF.
There is a simple characterization of lexicographical normal forms due to Anisi-
mov and Knuth:

Proposition 1 ([3]). Let E be totally ordered by <. Then a word v G E* is in
lexicographical normal form (w.r.t. I, <) if and only for every factor aub of v
with a, b G E, u G E* and (au, b) G / we have a < b.

Definition 2. Let E be totally ordered by <. For 0 ^ A C E let the height
h(A) be h(A) = max{a | a G A}. Let also /i(0) = 0. (Thus, h(A) G {0,... ,n}.)
The height h(v) of a word v G 17* is defined as h(v) = h(alph(v)).

Remark 3. Let m > 1 and s, t,u,Si,..., sro,ii,... ,tm G E* be words satisfying
the following conditions:

^ -- ^i sm ,
t ==/ *i trn ,

f ^ Siti • • • smtm ,

tj G I{SJ+I ■ ■ ■ sm) for all 1 < j < m .

Then we have st =/ v.

338

The previous remark is clear and its converse will be stated for lexicographical
normal forms in the Main Lemma below. It is the crucial correctness argument
for our reduction from trace equations to word equations. The important point
is that the value of m (given below) can be bounded as a function in the size of
the alphabet, and that the height decreases.

Lemma 4 (Main Lemma). Let s,t,v E LNF be words in lexicographical nor-
mal form such that st =i v.
Let h = h(s) denote the height of s and suppose h > 0.
Then there exist an integer m, 1 < m < l"-1)^"1) + l; and words Si,...,sm,
h,..., tm E LNF in lexicographical normal form such that the following condi-
tions hold:

s — S\ ' • • sm ,
t =i t\ • • • tm ,
V — S±tl • • • S-jjitjyi ,

Si ^ 1, for all 1 < i < m,
tj T^ 1 for all 1 < j < m ,
tj E I(sj+i ---Sm) for all l<j<m,
h(tj) < h for all 1 < j < m.

Remark 5. Before giving the proof of the Main Lemma, let us note that the
trace equality st =/ v above cannot be replaced by word equalities of type
s = Sl ■ • ■ sm, t = h ■ ■ ■ tm, v = sih ■ ■ ■ smtm. For example, consider M(S, I) =
{a, b, c}*/{ab = ba, be = cb} and s = c, t - ab. Then the lexicographical normal
form of st is v = bca.

Proof of the Main Lemma. We have st =/ v with s,t,v E LNF and h = h(s) > 0.
Consider the decomposition of v, v = sih ■ ■ ■ smtm, where m > 1 is minimal such
that s =i si • • ■ sm, t =/ h ■ ■ ■ tm, and tj E I(sj+X ■ ■ ■ sm) for all j, 1 < j < m.
Clearly, since m is minimal, we have Si ^ 1 and tj / 1 for all 1 < i < m,
1 < j < m. Moreover, the words Si,tj are in lexicographical normal form.
Let us first show that s = si • • • sTO. Assume aub is a factor of si • • • sm with
a, b E E, u E S* and b E I{au). If aub is a factor of some st, then a <b follows
by Prop. 1 and we are done. Otherwise let i < j be such that Si E S*au',
Sj E u"bE* and u = u'si+1 ■ ■ ■ Sj-xu". Since tk E I(SJ) for k < j we obtain
b E I(au'si+iti+1 ■ ■ ■ Sj-itj^iu"), hence a < b due to v being in lexicographical
normal form. Thus Si ■ • • sm is in lexicographical normal form, again by Prop. 1,
and it follows that s = si ■ ■ ■ sm.
Suppose that 1 < j < m and let b denote the first letter of sj+i. Let a E alph(^),
i.e. tj = uau' for some words u,u'. Then au'b is a factor of v E LNF satisfying
b E I(au'), thus we have a < b. Therefore h{tj) < h(b) < h for every 1 < j < m.
Finally, assume by contradiction that m > (n - l)(h - l)/2 + 1. Let h,aj
denote the first letter of sit tj respectively, 1 < i < m, 1 < j < m. Consider
the chain of alphabets I(s2 ■ • ■ sm) C I(s3---sm) C •■• C I(sm). Note that
we have I(s2 ■ ■ ■ sm) ^ 0 due to h ^ 1, and also I(sm) / £ due to sm ^ 1.
Therefore by the pigeon-hole principle there exist some indices 1 < i,j < m with

339

j -i > (h- l)/2 satisfying I{si+i ■■■sm) = I{SJ+I ■ ■ ■ sm). Consider the factor
tiSi+iU+i ■■■tjSj+i of v. Note that (tk,si) 6 / holds for every k, I such that
i < k,I - 1 < j, since tk E I{sk+i ■ • ■ sm) = I(si+1 ■■■sm). Therefore, v £ LNF
implies en < bi+i < ai+1 < ■ ■■ < a,j < bj+i and we obtain h(s) > h(bj+i) >
2(j — i + 1) > h, a contradiction.

3 Trace Equation Systems

Definition 6. Let Q denote a finite set of unknowns with E (~l fl = 0.

i) A word equation over E and Q has the form L = R, with L,R £ (E U J?)*.
ii) An assignment for an equation over E and /? is a mapping cr: 17 —> 17*

being extended in a natural way to a homomorphism cr: (17 U Q)* -t E*, by
fflr = idi>
A solution {or the equation L = i? is an assignment cr satisfying the equality
cr(L) = cr(fi) in 17*.

Makanin [10] showed in 1977 that the question whether a word equation has
a solution or not is decidable. Moreover, the solvability of a system of word
equations can be reduced by well-known techniques to the solvability of a single
equation. The problem can also be generalized by introducing regular constraints
for the unknowns, i.e. regular sets Cx C E* for x 6 Ü. Here, a solution a
for an equation is required to satisfy o(x) e Cx for all x. It has been shown
by Schulz [14] that the solvability of word equations with regular constraints
remains decidable. We are going to show that this more general result generalizes
to traces.

Definition 7. Let (E,I) denote an independence alphabet and Q a finite set
of unknowns, E D J? = 0.

i) A trace equation over {E,I) and Ü has the form L = R, with L,R £
{EUÜ)*.
A solution for the equation L = R is an assignment a: Q -> 17* satisfying
a(L) =j a(R).

ii) A system of trace equations is a formula built with the connectives and (&),
or (V), not (-i) over atomic predicates of the form L = R (trace equation)
and x G C (constraint), where C C E* denotes an /-closed regular language.
A solution for a system S over (17, /), Q is an assignment o~.Q-^tE* such
that 5 evaluates to true when the atomic predicates L = R, x G C are
replaced by the truth value of er(L) =/ cr(R), a{x) € C, respectively.

Remark 8. Later we will deal simultaneously with trace and word equations, so
we distinguish notationally between L = R for a word equation, whereas L = R
denotes a trace equation. The difference is that equality under an assignment is
interpreted in the free monoid E*, resp. in the trace monoid M(i7,7).

340

Remark 9. A system of word equations (with regular constraints) is just a special
case of Def. 7 where one takes 7 = 0. Since negations can be eliminated (see also
3.1), we note that the question whether a system of word equations has a solution
or not is decidable.

Remark 10. Adding arbitrary (i.e., not /-closed) regular constraints to a system
of trace equations makes the question of solvability undecidable. This is due to
the fact that the solvability of the equation x = y with x G C, y G C" is equivalent
to the non-emptiness of the intersection {w G E* \ w =/ v for some v e C} n
{w G E* | w =i v for some v G C"}. For regular languages C,C this last
question is known to be undecidable, see [1].

Remark 11. Similar to the word case, the solvability of a trace equations system
could be reduced to the solvability of a single trace equation (with additional
constraints). However, this would be of no use here.

The aim of this section is to reduce the solvability problem for trace equations
to word equations with regular constraints. We will give a direct proof using
lexicographical normal forms to show the following

Theorem 12 ([11,12]). Let S be a trace equation system over {E,I) and ft.
Then a set ft' 2 ft of unknowns and a system of word equations S' over E, ft1

can be effectively constructed, such that S is solvable if and only if S' is solvable.

Corollary 13. It is decidable whether a system of trace equations has a solution.

3.1 Basic Reductions

For a given trace equation system S we first eliminate constants by introducing
new unknowns xa and constraints xa G {a}, for a G E. Then we replace a by xa

in each equation L = R of S. Hence, without loss of generality atomic predicates
are of the form L = R, where L,R G ft*.
Furthermore, we may assume that the given system is written in disjunctive
normal form. Then we replace every negation not(L = R) by the disjunction of
formulas of the type

L = xy & R = xz k init(y) = A & init(z) = A' (1)

where x, y, z denote new unknowns and the disjunction is taken over all alphabets
A, A' C E such that A f~l A' = 0 and A U A1 ^ 0. Clearly, constraints of the form
init(x) = A or alph(a;) = A, A C E, can be expressed by /-closed regular
languages.
Since the set of /-closed regular languages forms an effective boolean algebra (as
the family of recognizable subsets of a monoid [9]) we may also suppose that the
formula contains no negated constraints, i.e. no formula of type not (a; G C).
Moreover, it suffices to consider trace equations of the form X\---Xk = j/i • • ■ J//
with k > I > 0, Xi,yj G ft. (The equation Xi ■ ■ ■ xu = 1 and the occurrences of
each Xi can be deleted from all equations, adding the constraints alph(a;,) = 0.)

341

3.2 From Traces to Words

The main idea for reducing trace equations to word equations will consist in
replacing a trace equation L = R by some word equations Lx = R\,..., Lu = Rk
with additional constraints and unknowns. Moreover, for every solution a for
L = R the mapping lex o a: fl ->• £* -> LNF can be extended to a solution
for the equations Li = Ri,... ,Lk = Rk- Vice versa, each solution for the new
equations will also be a solution for L = R when restricted to its unknowns.
This reduction actually goes by a chain of intermediate trace equations. By
choosing an appropriate ordering we will show that the reduction process termi-
nates yielding a system of word equations (with constraints).
We will consider in the following formulas S{T, W, C) in disjunctive normal form
with atomic predicates from some finite sets T, W, C, containing no negations.
T will denote a set of trace equations, W a set of word equations and C = {x €
Cx | x € Q) a set of constraints, where each Cx is an /-closed regular language.
Moreover, every L = R in T has the form xi---Xk = V\ ■ ■ • Vi with k > I > 1,
Xi, yj G Q. A solution for S(T, W, C) is an assignment cr:f2->£* which makes
the formula evaluate to true when (L = R) from T, (L = R) from W and
x £ Cx from C are replaced by the truth value of a{L) =/ a(R), a(L) = a(R),
and a{x) € CX: respectively.

Definition 14. A formula S(T, W, C) as above is called normalized if for every
solution a for S the mapping lex o a is a solution for S, too.

Remark 15. Note that a formula ,S(T, 0, C) with /-closed constraints C is always
normalized.

Remark 16. Suppose S = S(T,W,C) is normalized and let x = y belong to T,
where x,y G ß. Consider the new formula S' = S'(T',W',C) obtained from S
by replacing every occurrence of x = y by £ = y and letting X" = T \ {x = y},
V(/' = W' U {x = y). Then 5 is solvable if and only if S' is solvable. Note that
a solution for 5" is a solution for S, too. However, the converse is true only
because 5 is a normalized system. Without this assumption about S it cannot
be guaranteed that every solution for S also solves S', see the example below.
Moreover, 5" is a normalized system, too.

Example 17. Consider the trace equation system S = ({x = y},{x = ab,y =
ba}, 0) given as the conjunction (x = y) & (x = ab) & (y = ba), where (a, b) € /.
Then S is not normalized, but of course it has a solution. However, replacing
x = y by the word equation x = y yields a system with no solution.

Proof of Thm. 12. Recall that an equation system with /-closed constraints
S = S(T,$, {x £ Cx}xen) over (£,I),Q is a normalized system. As previously
noted it suffices to consider a formula S with trace equations of the form

Xl---xk=yi---yh k>l>l, (M)^(l,l). (2)

We suppose without loss of generality that for all unknowns x € Q some Ax C £
exists such that h(Ax) > 0, and x £ Cx implies alph(s) C Ax, for all x. Moreover,

342

let 5 be a conjunction of trace equations as in (2), of word equations and of I-
closed regular constraints x € Cx.
We define the weight of a trace equation xx • ■ • xk = Hi ■ • ■ Vi as in (2) as the
triple of natural numbers (I, h(U^AXi), k) and we consider the lexicographical
ordering on N x N x N. We will show in the following that every such trace
equation can be replaced by a formula over word equations and trace equations
of lower weight, together with some additional constraints. Concretely, we apply
the following rules.

Rule 1: Suppose I > 1 and let z denote a new unknown. Then we replace the
equation x\ ■ ■ ■ xk = j/i • • • yi by

Xi ■xk=z k yi---yi=z & alph(z) C U*=1 A^

Rule 2: Suppose / = 1 and k > 2, and let z denote a new unknown. Then we
replace the equation x\ ■ ■ ■ xk = y\ by

xiz = yi & x2 ■ ■ ■ xk = z & alph(,z) C U*=2AXi .

Rule 3: Suppose I = 1 and k = 2 and, in order to simplify notation, consider the
equation xy =■ z (rather than uniformly Xix2 = t/i)- Moreover, let h = h{Ax)
denote the height of Ax (where alph(x) C Ax follows from the constraint x£Cx).
We replace xy = z by the disjunction of the word equation

xy = z (3)

and of formulas of the type

x = xi---xm & y = yi---ym & z = xxyi ■ ■ ■ xmym &

alph(zi) C Ai & ■•• & alph(a;m) C Am &

alphd/iJCB! & ••• & alph(ym) C Bm, (4)

where xityj are new unknowns and the disjunction is taken over all values of
m such that 1 < m < [n - l)(/i - l)/2 + 1 and over all alphabets A±,..., Am,
Bi,..., Bm C E such that1

Ai ^ 0 for all 1 < i < m, and

1 < h(Bj) < h for all 1 < j < m, and

Bj x Ai C I for all 1 < j < i < m, and

Ai U ■ ■ • U Am C Ax, and Bx U ■ • • U Bm C Ay . (5)

The word equation xy = z in (3) corresponds to the case m = 1 in (4) (this is
in particular the case when h = 1 in (5)). It is actually the main case where the
number of trace equations in S decreases.
Let S" denote the formula obtained from S by applying one of the three rules
described above. Note that none of the rules adds negations.

1 Obviously some equations become redundant and they can be actually omitted in
the disjunction.

343

Lemma 18. Let S be a normalized equation system. Then the new system S" is
normalized, too. Moreover, S' is solvable if and only if S is solvable.

Proof. The claim is easily seen for the first two rules above, since there is a
natural bijection between the set of solutions of 5 and of S", respectively.
Clearly, if 5" has been obtained from S by the third rule, then every solution
for S' is a solution for S, too, see Rem. 3. Therefore, let us consider an equation
xy = z in S and a solution o-.Q-^E* for S. Then a' = lex o a is also solution
for S, since S is normalized. We show that a' can be extended to a solution for
S'. Let s = a'(x), t = a'(y) and v = a'(z). Hence, st =i v with s,t,v € LNF. If
h(s) = 1, then in the Main Lemma we have m = 1, hence v = st. Therefore a'
is a solution of the new system 5".
Suppose that st =/ v with s,t,v £ LNF, h(s) = h > 1. Then some m, 1 <
m < (n - l)(/i- l)/2 + 1, and words su ..., sm, h,... ,tm exist, satisfying the
conditions of the Main Lemma. With a'(xi) = st, a'(yj) = tj it is easily verified
that a' is a solution for 5'.
The relation between the solution set of S and the solution set of S", together
with the fact that S is normalized, imply that S" is normalized, too. This shows
the lemma.

Finally, note that the new trace equation y± ■ ■ ■ ym = y in (4) has lower weight
than xy = z due to hiVjS^Bj) <h = h(Ax). Hence the reduction rules establish
a noetherian rewriting system on trace equation systems. Applying the rules as
long as possible we end with a system of word equations S" = (0, W, C"). This
concludes our proof.

4 Computing Lexicographical Normal Forms

The aim of this section is to give a formula for computing the product of lexi-
cographical normal forms. This yields an alternative proof of Thm. 12 and the
so far best known upper bound on the number of new unknowns needed for the
reduction. We conclude the section with two remarks concerning the parallel
complexity of computing lexicographical normal forms.

Definition 19. Let ~/ be a relation on (E*)* defined as

(X\ , • . • , Xm) ~/ (Xi, . • • , Xmi)

if m = m! and there exists some i, 1 <i < m such that

Xj = x'j for all 1 < j < m, j £ {i, i + 1}, and

(xi,xi+i) = (x'i+1,x'i) and (xi,xi+1) el.

By «/ we denote the equivalence relation generated on (E*)* by ~/.

Let x e E*, by abuse of language we write {xi,... ,xm) ~i x if some words
x[,..., x'm exist such that

(zi,..., xm) «/ (xi,..., x'm) and x = x\---x'm.

344

Theorem 20. Let s,t,v G LNF be words in lexicographical normal form such
that st =i v.
Then there exist positive integers m,p with m < ^n~2 '—V 1, p < nnn\ such that

S — S\ • • • sm ,

t — X\ ' ' ' Tp ,

(Sl, . . . , Sm, t\ , . . . , tp) ~/ V ,

for some words Sj,..., sm, t\,..., tp G E*.

Proof. Let h = h(s) denote the height of s. Let m(h),p(h) denote the minimal
integers such that

S = Si ■ ■ -Sm^h) ,

t = ti ■ ■ ■ ip(ft) ,

(Si, . . . ,Sm(h),t!, . . . ,tp(h)) »/ V,

for some words Si,tj. Note that m(h),p(h) < \v\. For h = 0 we have s = 1, thus
m(0) = p(0) — 1, which satisfies the theorem.
For h > 1 we will show by induction on h that m(h) < (n — l)(h — l)/2 + 1 and
p(h) < nhh\, thereby proving the theorem.
Let h> 1. By the Main Lemma there exist an integer m < (n — l)(/i — l)/2 + 1
and words Si,... ,sm, t\,...,tm in lexicographical normal form satisfying

S — S\ Sjfi j

£ —/ 61 ' ' * trn ,

V — S\t\ ' • • smtm ,

Si ^ 1, tj ^ 1 for 1 < i < m, 1 < j < m,

tj G I(sj+i ■ ■ ■ sm) and h{tj) < h for 1 < j < m . (6)

If h = 1, then m = 1 in (6), so we can take m(h) = p(h) = 1, since t = ti G LNF,
which satisfies the claim. Hence let h,m>2.
Let t\ = t\ and ti = lex(ij_ii;) for i = 2,... ,m. Clearly, tm = t, h(ti) < h for
1 < i < m and

ti-\ti =i ti, for 1 < i < m. (7)

Now we can apply the induction hypothesis to each of the (m — 1) equivalences
(7) obtaining

i*/(ti,...,<'p)) (8)

for somep < (m — l)[m(h—l)+p(h — l)], some words t[,... ,t'p and some integers
1 — l0 < li < •■• <lm = p+1 such that

ti = t\ ■ ■ ■ t\._l for every 1 < i < m. (9)

The above claim can be verified by noting that

t «/ (ti,. ..,t'i,...,t'j,...,t'q) and t\ ■■■t'j «/ (vu . ..,vk)

345

implies that
t ~i (i'i, • ■ •, t'i_i, v1,..., vt, tj+1 ,...,tq),

for some I < j - i + k and v[,... ,v\ £ £*, such that v[■ ■ -v[= vx---vk and
each v'q is a factor of some vr. Hence, we obtain from (8), (9) for suitable words

i-i j • • • i u
p-

t - t" ■■■ t"

u «/ (si,..., sm,ii,.. -,im) «j (si, ■ ■ ■ ,sm,t1,... ,tp)

~7 (sl j • • • i smi *1 : • • • I Sp/ ■

Hence by the induction hypothesis we get

P(h) < (m - l)[m(h - 1) + p(h - 1)]

< (n - l)(/i - l)/2 [(n - l)(/i - 2)/2 + 1 + nh~\h - 1)!] < nft/i!,

which concludes the proof.

Remark 21. We can also use Thm. 20 in order to prove the main result, Thm. 12.
Recall that the main difficulty consists in replacing a trace equation of the form
xy = z, where x,y,z £ Q. By Thm. 20 we simply replace such an equation
xy = z by a disjunction over clauses of the form

x = xi---xm & y = 2/i • • • yp &
z = 2^(1) ■ • • Zn(m+P) & alph(zj) C Ai ,

for all 1 < m < {-^- + 1, 1 < p < nnn\, vr £ S^+p and A{ C 17. Here au.j/j
denote new variables and Zi = xt for 1 < i < m, resp. zm+j = yj for 1 < j < p.
S^+p denotes the set of permutations over {l,...,m+p} such that for i < j
the inequality 7r(i) > n(j) implies Ai x Aj C /. This reduction of a single trace
equation to word equations roughly yields an increase in the number of word
equations by (N+ 2)l2n<~N+l\ where N = nnn\ + (n- l)2/2 +1- Hereby we need
N additional unknowns.

We conclude this section with two remarks concerning the parallel complexity
of computing lexicographical normal forms. We consider uniform circuit com-
plexity classes like AC0 and TC°. Let /: S* -> E* be a function such that
|/(w)| = p(\w\) for some polynomial p and every w £ £*. Let k > 0. Then
/ is ACfc-computable if there is a family (Cn)n>o of polynomial-size circuits of
depth 0(logk(n)) with AND and OR gates of unbounded fan-in/out and unary
NOT gates, such that CH computes f(w) for all w £ S*. A function / is TCfc-
computable if there is a family of circuits as above which in addition to AND,
OR and NOT gates contain MAJORITY gates of unbounded fan-in/out. A MA-
JORITY gate yields 1 if and only if more than half of its inputs are 1. In order to
be able to deal with arbitrary alphabets £ one usually assumes that the circuits
have special input/output gates testing x = a for each input position x and
letter a £ £ (analogously for the outputs). Uniformity means that given n > 0

346

(a fixed coding of) the circuit Cn can be easily computed (e.g. in logarithmic
space). It is not very hard to verify that AC* C TC* C ACfc+1, k > 0. For more
details about circuit complexity see e.g. [15]. We state the results below without
proofs (being sketched in [6]). With Thm. 20 we obtain

Corollary 22. Let {S,I) denote an independence alphabet.
Then we can compute lex(st) on input s,t £ LNF in uniform AC .

Remark 23. We could apply Cor. 22 in order to compute the function lex in
AC1. However, we can do better: the mapping lex: S* ->• LNF is computable in
uniform TC°. This result can be compared with the fact that the equivalence
s =i t can be verified in uniform TC°, too (see [2]).

References

1. IJ. J. Aalbersberg and H. J. Hoogeboom. Characterizations of the decidability of
some problems for regular trace languages. Mathematical Systems Theory, 22:1-19,
1989.

2. C. Alvarez and J. Gabarrd. The parallel complexity of two problems on concur-
rency. Information Processing Letters, 38:61-70, 1991.

3. A. V. Anisimov and D. E. Knuth. Inhomogeneous sorting. International Journal
of Computer and Information Sciences, 8:255-260, 1979.

4. P. Cartier and D. Foata. Problemes combinatoires de commutation et rearrange-
ments. Number 85 in Lecture Notes in Mathematics. Springer, 1969.

5. C. Choffrut. Combinatorics in trace monoids I. In [7].
6. V. Diekert, Yu. Matiyasevich, and A. Muscholl. Solving trace equations using

lexicographical normal forms. Technical report, Universität Stuttgart, Fakultät
Informatik, Bericht 1997/01, 1997.

7. V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific,
Singapore, 1995.

8. C. Duboc. On some equations in free partially commutative monoids. Theoretical
Computer Science, 46:159-174, 1986.

9. S. Eilenberg. Automata, Languages, and Machines, volume A. Academic Press,
New York and London, 1974.

10. G. S. Makanin. The problem of solvability of equations in a free semigroup. Math.
Sbornik, 103:147-236, 1977. English transl. in Math. USSR Sbornik 32 (1977).

11. Yu. Matiyasevich. Reduction of trace equations to word equations, 1996. Talk
given at the "Colloquium on Computability, Complexity, and Logic", 5-6 Dec. 1996,
Institut für Informatik, Universität Stuttgart, Germany.

12. Yu. Matiyasevich. Some decision problems for traces. In S. Adian and A. Nerode,
editors, Proc. of the J^th International Symposium on Logical Foundations of Com-
puter Science (LFCS'97), number 1234 in Lecture Notes in Computer Science,
pages 248-257, 1997. Springer. Invited lecture. To appear.

13. A. Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMI
Rep. PB 78, Aarhus University, Aarhus, 1977.

14. K. U. Schulz. Makanin's algorithm for word equations — Two improvements and a
generalization. In K. U. Schulz, ed., Word Equations and Related Topics, number
572 in Lecture Notes in Computer Science, pp. 85-150, Springer, 1991.

15. H. Straubing. Finite automata, formal logic, and circuit complexity. Birkhäuser,
1994.

Star-Free Picture Expressions Are Strictly Weaker
than First-Order Logic

Thomas Wilke

Christian-Albrechts-Universität zu Kiel, Institut für Informatik und Praktische
Mathematik, 24098 Kiel, Germany

Abstract. We exhibit a first-order definable picture language which we
prove is not expressible by any star-free picture expression, i. e., it is not
star-free. Thus first-order logic over pictures is strictly more powerful
than star-free picture expressions are. This is in sharp contrast with
the situation with words: the well-known McNaughton-Papert theorem
states that a word language is expressible by a first-order formula if and
only if it is expressible by a star-free (word) expression.
The main ingredients of the non-expressibility result are a Frai'sse-style
algebraic characterization of star freeness for picture languages and com-
binatorics on words.

1 Introduction

There are two fundamental results connecting logical definability with concepts
in the theory of regular languages: 1) Biichi's theorem (see [1]) which states that
a word language is recognized by a finite automaton if and only if it is definable
in (existential) monadic second-order logic, and 2) McNaughton and Papert's
theorem (see [9]) which says that a word language is star-free if and only if it is
definable in first-order logic. In [6], it was shown that the first result essentially
carries over to picture (or "two-dimensional") languages in the following sense:
a picture language is recognized by a tiling system if and only if it is definable
in existential monadic second-order logic (while in [5], see also [6], full monadic
second-order logic had been proven to be strictly more powerful).

In this paper, we show that the second result does not carry over to pic-
ture languages. More precisely, we exhibit a simple, first-order definable picture
language, denoted L+ (see page 3), and show that L+ is not expressed by any
star-free picture expression. On the other hand, it is straightforward to see that
every star-free picture language is definable in first-order logic. We thus con-
clude that the class of star-free picture languages is strictly contained in the
class of first-order definable picture languages. This clarifies an interesting ques-
tion about the fine structure of the class of all recognizable picture languages,
which was brought up in [6]. It should also be noted that by a result from [5], the
class of first-order definable picture languages is strictly contained in the class
of all recognizable picture languages.

As with star-free word expressions, star-free picture expressions are built from
singleton sets using boolean combinations and concatenation. Of course, due to
the two-dimensional structure of pictures there are two kinds of concatenation:
"horizontal" and "vertical", sometimes also called "row" and "column" concate-
nation. Similarly, in first-order formulas over pictures one can use a "horizontal"

348

and a "vertical" order relation to specify spatial relations between positions. It
is the unrestricted use of these two order relations that makes first-order logic
over pictures more powerful than star-free expressions.

The proof that L+ is not star-free is based on a characterization of star-free
picture languages in the style of Frai'sse's algebraic characterization of first-order
definability ([3], see also [2]). The other ingredient of the proof is an encoding
of certain pictures by words, which allows us to apply "one-dimensional" com-
binatorial arguments. Although Frai'sse's idea is quite old, this is the first time
that it has been applied to a problem on picture languages.

The paper is organized as follows. In Section 2, basic terminology and no-
tation is introduced and the main result is stated. Section 3 then describes the
algebraic characterization of star freeness, Section 4 focuses on the encoding of
"diagonal" pictures in words, in Section 5 a combinatorial lemma about words
is established, and in Section 6, the proof of the main theorem is completed.

For a survey on picture languages, see the forthcoming handbook chapter [4].
Thanks to Kousha Etessami, Oliver Matz, and Sebastian Seibert for fruitful

discussions and comments on drafts of this paper.

2 Basic Terminology and Main Result

A picture1 over an alphabet A is a matrix with entries from A. We say (m x n)-
picture for a picture with m rows and n columns. An atomic picture is a (1 x 1)-
picture. Words can and should be thought of as (1 x n)-pictures.

There are two concatenations defined for pictures: juxtaposition and supra-
position.2 The juxtaposition of an (m x n)-picture with an (m' x ra')-picture is
defined when m = m' and is the (m x (n + n'))-picture denoted PmQ where

<'m««'={ftU'o:>": (1)

The supraposition of P and Q is defined when n = n' and is the ((m + m') x ??.)-
picture denoted P a Q where

(PÜQ)ii = {%j !!*-m' (2)

Juxtaposition and supraposition are extended to sets of pictures just as concate-
nation of words is extended to sets of words.

A star-free picture expression over an alphabet A is built from the letters of
A (each letter a standing for the singleton set with the atomic picture a) using
the additional symbols 0 (for the empty set), + (for set-theoretic union), ~ (for
set-theoretic complementation with respect to the set of all pictures over A), and
en and B. Each star-free picture expression over A defines a picture language over

1 Not to be confused with the notion of picture defined in [8].
2 "Juxtaposition" and "supraposition" are also known as "horizontal" and "vertical"

as well as "row" and "column" concatenation.

349

A in a canonical way. For instance, given an alphabet A with two letters a and
b, the expression a + (aB~0) + (am~0) + (am~0) B~0 defines the set of all
pictures whose upper left entry is a. Notice that we don't consider the empty
picture. A picture language is said to be star-free if it can be expressed by a

star-free picture expression.
The first-order vocabulary we use consists of built-in predicates <„ and <h

for horizontal and vertical order relation and a unary predicate Pa for each
letter a. First-order formulas in this language are interpreted in pictures, where
the first-order variables range over the positions of the picture in question. For

example, consider the formula

3;c3j/! ... 3y4(yi <h x <h Vi Ay3<v x <v y4 A Ptx A Pij/i A ... A Pm) • (3)

This formula defines the set of all pictures satisfying the following condition:
there is a position labeled 1 to the left and right of which there is an occurrence
of 1 and over and under which there is an occurrence of 1. We write L+ for the
picture language containing all pictures over {0,1} satisfying (3).

The main result of this paper is:

Theorem 1. The language L+ is not star-free.

Every star-free picture expression can be converted into an equivalent first-
order sentence in a straightforward way, in fact, by reusing variables one can
even show that five first-order variables are always sufficient. (The interested
reader may want to notice that in order to define L+ two variables are actually

enough.)
As a consequence, we have:

Corollary 2. The class of star-free picture languages is strictly contained in the

class of first-order definable picture languages.

In the notation of [4], we thus have: £(SFRE) C £(FO) C £(EMSO) C £(MSO).

3 Algebraic Characterization of Star Freeness

Fix an alphabet A and let k > 0. There are only a finite number of picture
languages over A that can be defined by star-free picture expressions over A of
nesting depth at most k in the concatenation operations. The set of all these
picture languages is not only finite but also a boolean algebra, i.e., there is a
finite partition of all pictures over A such that an arbitrary picture language over
A is definable by a star-free expression of concatenation depth at most k if and
only if it is a union of the blocks of this partition. In this section, we describe
this partition in terms of the corresponding equivalence relation.

Concatenation depth, denoted cd, is defined by:

cd(0) = cd(a) = 0 ,

cd(~£) = cd(£) ,

350

cd{E + F) = max(cd(£),cd(P)) ,

cd(PmP) = cd(EBF) = max(cd(£),cd(F)) + 1 ,

where a stands for an arbitrary letter and E and F stand for arbitrary picture

expressions.
We define k-equivalence, =k in symbols, as a relation over pictures inductively

as follows.

1. Pictures are O-equivalent if they are identical or both not atomic.
2. Pictures P and Q are (k + l)-equivalent if the following conditions hold:

(K) P and Q are ^-equivalent.
(J) For all pictures Pi, P2 such that P = Pi mP2 there exist pictures Qi,

Q2 such that Q = Qi mQ2, Pi =k Qi, and P2 =fc #2-
(S) For all pictures Pi, P2 such that P = PiBP2 there exist pictures Qi, Q2

such that Q = Qx BQ2, Pi =k Qi, and P2 =k Qi-
(J') & (S') Conditions (J) and (S) hold when the roles of P and Q are ex-

changed.

This means P and Q are (k + l)-equivalent if and only if they are ^-equivalent
and for any decomposition of P into two pictures, one can find a decomposition
of Q into two pictures such that corresponding "factors" are fc-equivalent, and
vice versa.

The key fact about this equivalence relation is:

Theorem 3 (correctness and completeness). A picture language L is de-
finable by a star-free expression of concatenation depth at most k if and only if

L is a union of =k-classes.

We leave out the proof, which follows proofs of similar claims in the literature,
see, e. g., [10], where the fine structure of the class of all star-free word languages
is characterized.

Thus, in order to prove that a picture language L is not star-free we only
have to show that for every k there are two pictures P and Q such that P 6 L,
Q £ L, but P =fc Q. That is what we will do in Section 6 (for L = L+).

We need some facts about ^-equivalence on words, all of which can be proven
by a straightforward induction on k.

Lemma 4 (projections). Let A and B be alphabets and n:A+ —»■ B+ a homo-
morphism. If u and v are strings over A such that u =k v, then w(u) =k ir(v).

Lemma 5 (congruence property for words). Let k > 0. The relation =k
restricted to words is a congruence relation, i. e., uu1 =t vv' whenever u =k v
and u' =k v' for words u, u', v, and v'.

Lemma 6 (aperiodicity). For each k > 0, there exists Ik > 0 such that

u ik+™. ^fe uh yor every word u and every m > 0. (4)

351

Corollary 7. Let k > 0. Assume u is a word of the form

0io10il10i2...0n210i'1-I10i" ,

where n > lk + 1 and ij > lk for every j E {1,. . ., n - 1}.

(5)

(a) lfio,in > h and v is obtained from u by changing one occurrence of 1 to 0,

then u =k v.
(b) If v is obtained by changing one inner (i. e., neither the first nor the last)

occurrence of 1 to 0, then u =k v.

We also need the following very simple (and weak) congruence-like property
of ^--equivalence over pictures, which can also be proven by induction on k.

Lemma 8. Let k > 0, / > 0. Assume A is an alphabet, a E A, P is an (m x n)-
picture over A, and Q is an {m1 x n')-picture over A. Define P' and Q' to be
the unique (m x /)- and (m' x l)-picture over the alphabet {a}. If P =k Q, then
PnnP' =k QnjQ'. The dual claim, holds for supraposition instead of juxtaposition.

4 Diagonal Pictures

As explained above, in order to prove that L+ is not star-free we have to find
pictures Pk and Qk such that Pk E L+, Qk i L+, and Pk =k Qk for every
ik. We will choose the pictures Pk and Qk from a class of specifically designed

pictures, so-called "diagonal pictures".
We will introduce diagonal pictures as certain pictures over {0,1} determined

by words over an alphabet denoted by D. This alphabet is defined to be the set
of subsets of the five-element set C = {1, n, s, w, e}, where n stands for "north",
s for "south", etc. Given an element a E C and a string u over D, the a-
projection of u, denoted u I a, is the unique string v over {0,1} of length |u|
satisfying v{ = 1 if and only if a E ut. Given a word u of length / over D, the
corresponding diagonal picture, P(u) in symbols, is given by:

«1 J. 1 u-i 4- n M3 4- n '

uo 4 w ui 4 1 0
«3 i w 0 U3 4 1 •

P(u)
Ui 4 H 0

w/_i 4 w 0 0
Ul 4 H Xl'l 4 S W3 4 S

U{ 4 n • • w/-i 4 n ui 4 n
0 • 0 «2 4 e
0 • 0 w3 4 e

Ui 4 1 • • • 0 U{ 4 e

0 • • • u;_i 4 1 u/-i I e

Ui 4 s • • • u;_i 4 s ui 4 1

(6)

Given an arbitrary (m x n)-picture P and r0, r\, r2, and r3 with 1 < r0 <
•'1 < m and 1 < r2 < r3 < n, we define the subpicture of P determined by r0,

352

r3, denoted P[r0, ?'i, r2, r3], or, P[r] for short, to be

^r0,r2 Pr0,r2 + l

Pr0 + l,r2 "i-o + l,r2 + l

-Pr0 + 2,r2 -Pr0+2,r2 + l

P ri,r2 + l

»•era

ro + l,r3

P ro + 2,r3

Pr-

(7)

As with diagonal pictures, we describe subpictures of diagonal pictures by
words. For this, we use two additional symbols: h, the horizontal clipping mark,
and v, the vertical clipping mark. We write E for the sets of subsets of CU{h, v}.

With P(u)[r] we associate the word u[r] over E defined by:

\u[f]\ = «1,
u[r]i n C = w. for i G u,- .HI.
h G u[r], iff ro = i or ri = i, and
v G u[f]i iff ?'2 = i or ?'3 = «.

The important lemma about diagonal pictures is the following.

Lemma 9. Let k > 0. Assume u and v are words over D and f and s are such

that u[r] =7fc+4 v[s}. Then P{u)[r] =k P(v)[s).

Proof. The proof goes by induction on k.
Induction base, k = 0. By symmetry, it is sufficient to show that under the

assumption u[f] =4 v[s], if P(u)[r] is atomic, then so is P(v)[s] and both pictures
are identical.

In general, a picture P(u)[f] is atomic if and only if r0 = ri and r2 = r3. This
is true if and only if u[r] contains exactly one position i such that h G u[r]{ and
exactly one position j such that v G u[f]j. Whether or not this is true is easily
seen to be determined by the 4-equivalence class of u[r]. Hence, if u[r] =4 v[s]
and P(u)[f] is atomic, then P(v)[s] is atomic as well.

Furthermore, if a picture P(«)[r] is atomic, then:

' u[f]ro 11 if r0 = r2,
u[f]r2 4-n if 1 = 7'o < r2,
u[f]ro I w if 1 = r2 < r0,
u[f]r3 I s if 1 < r2 < ?*o = |«|,
u[r]ro I e if 1 < r0 < r2 = |«|,
0 otherwise.

P(u)[r] = <

It is now easily seen that the order relation between r0 and r2 as well as which
of these two values is 1 or \u\ is determined by the 4-equivalence class of u[r],
i.e., if u[r] =4 v[s] and P(M)[r] is atomic, then we are in the same of the above
cases for both pictures P{u)[r] and P(v)[s].

Also, if u[r] =4 v[s], r0 = ?*i, r2 = r3, s0 = «l, and s2 = s3, then u[r]ro =
v[s]$0 and u[r]ri = u[s]Sl. Thus, if u[r] =4 D[S] and P(«)[?;] is atomic, then
P(u)[f] and P(v)[s] are identical.

353

Induction step. Assume that for all k' < k and all f' and s', if u[f'] =7k'+4
v[s'], then P{u)[f'] =k> P(v)[s']. Assume also that u[f] =7k+n v[s\. Write P and
Q for P(u)[r] and P(v)[s], respectively. We want to show P =fc+i Q.

First, notice that we have P =/, Q by induction hypothesis, as u[f] =7^+11
v[s] implies u[r] =7k+4 v[s\. So (K) holds. What we need to show in addition is
that (J), (S), (J'), and (S') hold. By symmetry, it is enough to consider only (J).

Let Pi and P2 be such that P = Pi m?2. There exists r4 such that r2 < r4,

?'4 + 1 < ?"3, and

Pi =P(u)[r0,r1,r2,r4] ,

P2 = P(v)[r0,r1,r4 + l,r3] .

In the rest of this proof we will only analyze the situation where r2 < r4 and
j'4 + 1 < r3; the other three cases (where r2 = r4 and r4 + 1 = r3, or r2 < r4 and
r4 + 1 = r3, or r2 = r4 and r4 + 1 < r3) are simpler and can be dealt with in a

similar way.
There exist unique (possibly empty) words «i, «2, w3, and u4 and letters ai,

a-2, 0.3, and 0,4 such that

u[r] = «i(ai U {v})u2a2a3M3(a4 U {V})M4 ,

u[ro,r1,r2,r4] = «i(ai U {v})u2(a2 U {v})a3u3a4w4 ,

u[r0, r-i, r4 + 1, r3] = wiai«2a2(a3 U {v})u3(a4 U {v})«4 .

Since we assume u[f] =7k+n v[s], we can conclude there are vi, v2, ^3, and v4

such that

- v[s] = vi(ai U {v})u2a2a3i>3(a4 U {v})v4, and
- «1 =7A:+4 ^1, «2 =7fc+4 «2, «3 =7fc+4 ^3, and W4 =7fc+4 V4.

Let s4 = |i>iaii>2a2| and define

Qi = P(u)[s0,si,s2,s4] ,

Q2 = P(v)[s0,s1,s4+ l,s3] .

Then Q = Q\ mQ2, and to finish the proof we need only show Pi =k Q\ and

P2 =* <52.
From the definition of s4, we know:

u[so,si,S2,s4] = vi{ai U {v})«2(a2 U {v})a3ii3a4V4 ,

t;[s0)si,s4 + l,s3] = ■i;iaiV2a2(a3U{v})^3(a4 U {v})v4 .

Since (7/t + 4)-equivalence is a congruence relation on words, we obtain:

«i(ai U {v})u2(a2 U {v})a3u3a4w4 =7fc+4 ^i(ai U {v})v2(a2 U {v})a3ü3a4v4 ,

uiaiU2a2(a3 U {v})u3(a4 U {v})w4 =7fc+4 via1v2a2(a3 U {v})t;3(a4 U {v})v4 .

This implies, by the induction hypothesis,

P(u)[r0,ri,r2,r4] =k P(v)[s0, «i, s2, s4] ,

P(«)[r0,ri,r4+ l,r3] =fc P(v)[r0, n, r4 + l,r3] ,

hence Px =k Qi and P2 =fc Q2-

354

5 A Combinatorial Lemma about Words

As said above, we will define the pictures Pk and Qk we are looking for as certain
diagonal pictures: we will set Pk = P{sk) and Qk - P{tk) for appropriate words
sk and tk with specific combinatorial properties. The building blocks in the
construction of these words are the words described in the following lemma.

Lemma 10. Let A be an arbitrary finite alphabet, a e A, and k,m > 0. there

exists a word uk>m such that

- all words in {ukmA)*u^m are k-equivalent,

- Uk,m £ (a>mA):a>m, and
- Uk,m € A*(bA*)m+1 for every b £ A.

Proof. By induction on Ar. Let A = {ai,..., an} and assume a = ax.
Induction base. For k = 0, the following choice is obviously correct:

u0,m = a1a1(a?a2a?a3a? ■ ■■a?ana?)m+1 .

Induction step. Suppose uk>m is a word such that the above three conditions

hold. Set

Uk + l,m. = UklmUktma\Uk]mUk,ma2Uk,mUk]m ■ ■ • «fc,m«A:,m«nWfc,m«fc,m ■ (8)

We claim that this choice is correct. The second and third condition are obviously

satisfied.
By the induction hypothesis, all words in {ul+lmA)*ul+lm are ^-equivalent.
Furthermore, if u = u'u" is a decomposition of a word from the set denoted

by (U*+l,m-4)*Ufc + l,m> then

- there exist w, w', w", and w'" such that u' = ww', u" = w"w'", w'w" £
uk,mAuk,m, and w =k uk,m =k w'" (by the induction hypothesis); or

- I«'] < \iik,m\ and tnere exists w and w' such that u'w = ukim, ww' = u",
and w' =k Uk,m (by the induction hypothesis); or, symmetrically,

- |w."| < |wfc,m| and there exists w and w' such that w'u" = ukjm, ww' = u',
and w =k Uk,m (by the induction hypothesis).

On the other hand, every word from (Ufc+i,m^)*u*+i,m allows a11 tne decompo-

sitions described above. Therefore, all words in (uk+lmA)*ul+ltm are (k + 1)-

equivalent.

6 Tying Things Together

As pointed out in Section 3, all we need to do in order to prove that L+ is not
star-free is to define pictures Pk £ L+ and Qk £ L+ and show Pk =k Qk, for

k > 0.
For notational convenience, write + for {1, n, s, w, e} and T for {1, s, w, e}.
Let wk be the word u8k,2i7k from Lemma 10 with A = Z?\{+} and a = 0. Set

sk = wk+wk and tk = wk$wk and define Pk = P(sk) and Qk = P{tk). These
are the pictures we are looking for:

355

Proposition 11. For k > 0,

1. Pk e L+ and Qk £ L+, and

2. Pk' =k Qk' for all k' > k.

Proof. The first claim is obvious (cf. (6)).
The proof of the second claim goes by induction on k. The induction base,

k = 0, is trivial. In the induction step, we assume Pk' =k Qk for all k' > k and

need to show Pk' =k+i Qk' for all k' > k.
Let k' > k. Write P and Q for Pk' and Qk'. We have to verify (A'), (J), (S),

(J'), and (S'). By induction hypothesis, we know P =k Q, hence (K) holds. Of
the other four requirements, we will only consider (S) in the rest of this proof.
That (J), (J'), and (S') hold can be proven in a similar fashion.

Let P = Pi BP2. Without loss of generality, assume Pi has less rows than
P2. (Notice that Pi and P2 cannot have the same number of rows.)

Also, assume that Pi and P2 have at least 2 rows. If this is not the case, the
situation is simpler but changes would have to be made to the notation in the
following.

We have to find Q\ and Q2 such that Q = QiQQ2, Pi =k Qi, and P2 =k Q2-
Let p be the number of rows of P (which is also the number of columns of

P and the number of rows and columns of Q) and pi the number of rows of Pi.

Then Pi = P(wk,+wk,)[l,pi, l,p] and P2 = P(wk>+wk-)\pi + l,p, l,p]-
Write wki-\-wki as ais'a2azs"-\s'"a^ such that

(wk,+wk,)[l,pi, l,p] = (ai U {h, v})s'(a2 U {h})a3s"+s"'(a4 U {v}) ,

(wk.+wk.)\pi + l,p, l,p] = (ai U {v})s'a2(a3 U {h})s"+s'"{a4 U {h, v}) .

By definition of wk>, we know wki-rwki =gki wki. Therefore, there exist t' and
t" such that wki = ait'a2a3t" and

*' =8fc'-4 t' , (9)

s"-rwki =sk'-A t" ■ (10)

Let qi — \ait'a2\, and define

Qi =P(wkSwk,)[l,qi,l,p) , (11)

Q2 = P{wk,%wk,)[qi + l,p, l,p] . (12)

Clearly, Q = Qi BQ2. To conclude the proof, we show Pi =k Qi and P2 =k Q2.
Proof of Pi =k Qi. First note the following. Since =8fc'-4 is a congruence

relation, (10) implies s"-rivkSwki =sk'-4 t"9wk>, which, in turn, by assumption
about wki, implies

s"-rwk> =sk'-i t"%wki , (13)

hence
s'SV" =8fc,_5 t"9s'" . (14)

We now proceed by a case distinction on \s"\.

356

First case, \s"\ > l7k>. First of all, observe

Pi = P(als'a2a3(s"+sl" 1 n)a4)[l,pi, l,p] , (15)

Qi = P(ai<,a2a3(i"0s/" l n)a4)[l, </i, l,p] . (16)

Since |s"| > /T^, we can use Corollary 7 (part (a) or (b)) in combination with
the definition of wk> to conclude:

s"+s'" 1 n =7k, s"-rs'" 1 n . (17)

This, together with (14) and Lemma 4, yields

s"+s'" 1 n =7k,t"Qs'" 1 n . (18)

Using the congruence property again and combining (9) and (18), we obtain:

(ai U {h, v})s'(a2 U {h})a3{s"+s'" 1 n)(a4 U {v})

=7*'-3 («i U {h, v})t'(a2 U {h})a3(i"0s"' 1 n)(a4 U {v}) ,

which means, as &' > k,

(a1s'a2a3(s"-rs'" 4 n)a4)[l,pi, l,p] =7*+4 P^i^'ü^as^'W 1 n)a4)[l, 9i, l,p] •

From this, (15), and (16), together with Lemma 9, now follows Pi =k Q\.
Second case, \s"\ < l7k>. Write I for l7k>. Then \s'\ > I, and, by construction

of wk>, we can write s' as so0' for an appropriate s0- Define pictures R and R'

as follows:

R - P(a1s0(9la2a3s"+wk' I n))[l, \ais0\, l,p] ,

R' = P(a1so(0'a2a3s"0w;fc- 4- n))[l, |ais0|, l,p] •

We have 0'a2a3s"a4+u>fe< J, n =7fc/ 0'a2a3s"'a$wk' \. n by Corollary 7(a), hence

P. =fc R' by Lemma 9.
Let Z be the unique ((/ + 1) x p)-picture over {0}. Then, by Lemma 8,

R.BZ =k R'BZ. On the other hand, RBZ = Pi (recall that a2 = 0 by definition
of wk')- So for the rest it is enough to show R'BZ =k Q\.

By construction of R' and Z, we know

R'BZ = P(a1s
,a2a3s"®wkl)[l,pul,p] ■ (19)

Combining (9) and (13), we obtain

(a1s'a2a3s"-rwkl)[l,pi,l,p]=sk'-4 {a1t'a2a3t"$wk,)[l,qi,l,p\ . (20)

Thus, by Lemma 9, R'BZ =k Qx.
Proof of P2 =k Q2- Combining (9) and (14), we obtain

(ai U {v})s'a2(a3 U {h})s"-rV"(a4 U {h, v})

=8fc-_5 (ai U {v})t'a2(a3 U {h})i"0s"'(a4 U {h, v}) ,

357

which means

(a1s'a2a3s"-rwki)[pi + l,p, l,p] =7k+4 {a1t
la2a3t"9wkl)[qi + l,p, l,p] .

Using Lemma 9, we conclude

P{wk.-rwk>)\pi + l,p,l,p]=k P(wk>$wk,)[q1 + l,p,l,p] ,

which means Po =k Qi-

7 Concluding Remarks

We have seen that the class of star-free picture languages is strictly included in
the class of first-order definable picture languages, which clarifies an important
aspect of the fine structure of the class of all recognizable picture languages.

One obvious question is: what happens when the power of star-free picture
expression is enhanced, for instance, by introducing a concatenation with four
arguments? The proof methods presented here yield the following result: star-free
picture expressions are strictly less expressive than star-free picture expressions
augmented by the four-place concatenation, and these expressions are strictly
less expressive than first-order logic.

The second question that is interesting here is whether there is a constant
k such that each first-order sentence over pictures is equivalent to a first-order
sentence using k variables. This is true for words and k = 3, see [7].

References

1. J. R. Büchi. Weak second-order arithmetic and finite automata. Zeitschrift für
mathematische Logik und Grundlagen der Mathematik, 6:66-92, 1960.

2. H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Springer-Verlag,
New York, 1984.

3. R. Fraisse. Sur quelques classifications des relations, bases sur des isomorphismes
restreints, Publ. Sei. de l'Univ. Alger, Ser. A 1, pp. 35-182, 1954.

4. D. Giammarresi and A. Restivo. Two-dimensional languages, in G. Rozenberg and
A. Salomaa, ed., Handbook of Formal Languages. Springer-Verlag, Berlin. To appear.
Preprint available as: http://www.dsi.umve.it/%7Edora/Papers/chap96.ps.Z.

5. D. Giammarresi and A. Restivo. Two-dimensional finite state recognizability. Fun-
damenta Informaticae. To appear.

6. D. Giammarresi, A. Restivo, S. Seibert, and W. Thomas. Monadic second-order
logic over rectangular pictures and recognizability by tiling systems. Inform, and
Comput., 125(l):32-45, 1996.

7. N. Immerman and D. Kozen. Definability with bounded number of bound variables.
Inform, and Comput., 83(2):121-139, 1989.

8. H. A. Maurer, G. Rozenberg, and E. Welzl. Using string languages to describe
picture languages. Inform, and Control, 54(3):155-185, 1982.

9. R. McNaughton and S. Papert. Counter-Free Automata, vol. 69 of Research Mono-
graph. MIT Press, Cambridge, Mass., 1971.

10. W. Thomas. A concatenation game and the dot-depth hierarchy. In E. Borger,
editor, Computation Theory and Logic, volume 270 of Lecture Notes in Comput.
Science, pages 415-426. Springer-Verlag, 1987.

An Algebra-Based Method
to Associate Rewards with EMPA Terms

Marco Bernardo

Universitä di Bologna, Dipartimento di Scienze deü'Informazione
Mura Anteo Zamboni 7, 40127 Bologna, Italy

E-mail: bernardo@cs.unibo.it

Abstract. We present a simple method to associate rewards with terms
of the stochastic process algebra EMPA in order to make the specification
and the computation of performance measures easier. The basic idea
behind this method is to specify rewards within actions of EMPA terms,
so it substantially differs from methods based on modal logic. The main
motivations of this method are its ease of use as well as the possibility
of defining a notion of equivalence which relates terms having the same
reward, thus allowing for simplification without altering the performance
index. We prove that such an equivalence is a congruence finer than the
strong extended Markovian bisimulation equivalence, and we present its
axiomatization.

1 Introduction

A commonly used method to specify steady-state performance measures for
Markovian models is based on rewards [6]. The basic idea is that a number de-
scribing a reward (or weight) is attached to every state of the Markovian model,
and the performance index is defined as the weighted sum of the steady-state

probabilities of the states of the Markovian model.
So far the specification of performance measures in the field of stochastic

process algebras has received a scarce attention. The main negative consequence
is that the whole Markovian model underlying a given term has to be manually
scanned by the designer in order to assign rewards to states.

Recently, in [3] a technique to formally specify rewards for the stochastic
process algebra PEPA [5] has been proposed. The idea is to express rewards
by means of the Hennessy-Milner logic [4]: a logical formula is specified together
with an arithmetical expression, and every state satisfying the formula is assigned
the reward specified by means of the arithmetical expression. We shall call such

a method logic-based.
The idea of describing rewards through a modal logic seems to be quite

adequate because modal logic formulae make assertions about changing state,
hence they constitute an adequate link between algebraic terms, which describe
the behavior of concurrent systems, and rewards, which are associated with

states.
In this paper we propose a different way to associate rewards with terms of

stochastic process algebras. The idea is not to use a separate formalism in order

359

to specify rewards: they are directly described within the actions forming the
algebraic terms. This method, which we shall call algebra-based, closely resembles
the manual method consisting of associating rewards while scanning the state
space of the Markovian model: the difference is that in the algebra-based method
the algebraic term, which is much more compact than its underlying state space,
is scanned and the appropriate actions are assigned a reward. The algebra-based
method could be convenient due to its ease of use, since the designer is not forced
to know the modal logic formalism, its low computational cost, as rewards are
associated with states during the construction of the semantic models without
the need to check for a modal logic formula, and the possibility of defining a
congruence which equates terms having the same reward, thereby allowing for
simplification without altering the performance measure.

The purpose of this paper is to extend the theory developed for the stochastic
process algebra EMPA [1, 2] in order to deal with rewards according to the
algebra-based method. In Sect. 2 we show that several performance measures
can be derived using the algebra-based method. In Sect. 3 we introduce the
syntax and the semantics for EMPA augmented with rewards. In Sect. 4 we
define an equivalence which relates two terms if they have the same reward, we
prove that such an equivalence is a congruence strictly contained in the strong
extended Markovian bisimulation equivalence, and we present its axiomatization.
In Sect. 5 we report some concluding remarks.

2 Deriving Performance Measures

In this section we show by means of an example that the algebra-based method
we are going to introduce, though less powerful in general than the logic-based
method proposed in [3], allows the designer to easily specify several steady-state
performance measures frequently occurring in practice such as those identified
in [3]: rate type (e.g. throughput of a service center), counting type (e.g. mean
number of customers waiting in a service center), delay type (e.g. mean response
time experienced by customers in a service center), and percentage type (e.g.
the fraction of time during which a server is busy).

The example we consider is taken from queueing theory, and concerns a
queueing system M/M/n/n with arrival rate A and service rate /i [7]. Such a
queueing system represents a service center composed of n independent servers,
such that the customer interarrival time is exponentially distributed with rate A
and the service time of each server is exponentially distributed with rate ß. The
queueing system at hand can be given two different descriptions with EMPA:
a state-oriented description where the focus is on the state of the set of servers
(intended as the number of servers that are currently busy), and a resource-
oriented description where the servers are modeled separately [9]. Recalling that
"<a, A>._" is the prefix operator where a is the action type and A is the action
rate (a positive real number in the case of exponentially timed actions, oo;iU,
in the case of prioritized weighted immediate actions, and * in the case of pas-
sive actions), "_+ _" is the alternative composition operator, and ~-\\s -" 's the

360

parallel composition operator with synchronization set 5, the state-oriented de-
scription is given by

SystemM/M/nin = Arrivals \\{a} Servers^

Arrivals = <a, A>.Arrivals

Serverso — <a,*>.Servers\

Serversh = <a, *>.Serversll+i + <s,h- n>.Serversh-i, 1 < h < n - 1

Serversn = <s,n- fj,>.Serversn-i
whereas the resource-oriented description is given by

System^/M/n/n = Arrivals\\{a} Servers

Arrivals = <a, A>. Arrivals

Servers = SIL 5 11» ... \U 5

S = <a, *>.<s, p>.S

In order to highlight the difference between the logic-based method and the
algebra-based method for assigning rewards to stochastic process algebra terms,
we compute for the queueing system above the mean number of customers in
the system. Since every state must be given a reward equal to the number of
customers in that state, we proceed as follows:

- In the case of System'^/M/n/„, the reward specification used in the logic-
based method is (s)tt => rate(s)//M, i.e. every state having an outgoing
transition with type s is given a reward equal to the rate of that transition
divided by /z. Using the algebra-based method, every action of the form
<s,h- p> must be replaced by <s, h- p,h> (and any other action must be
replaced by a triple with zero reward). Thus, in such a case the two methods
are equally simple.

- In the case of SystemrM/M/n/n, the logic-based method turns out to be more
complex because the modal logic formula must somehow count the num-
ber of possible consecutive actions with type s that can be executed: as
a consequence, the rewards can be specified through the set composed of
(s)->{s)tt => 1, (s)(s)-.(s)« => 2, ..., (s){s)... (s)-i(a)tt => n. If we use
instead the algebra-based method, all we have to do is to replace every action
of the form <s,p> with <s, p, 1> as we assume that rewards are additive
(by analogy with rates of exponentially timed actions and weights of imme-
diate actions), i.e. the reward gained by a state is the sum of the rewards
labeling its outgoing transitions. Therefore, in such a case the ease of use
of the algebra-based method becomes evident, and it would be even more
evident if we considered e.g. a queueing system similar to the previous one
where a FIFO queue with a given capacity is introduced in front of the set
of servers: since the delivery of a customer from the queue to the server has
to be modeled by means of an action, and since actions of type s are inter-
leaved with actions of this kind, the formalization of modal logic formulae
that capture the number of customers in the system is really difficult.

361

To conclude this section, we show that other performance measures for the
queueing system above can be easily specified with the algebra-based method,
and that this capability depends on the style used to represent the system:

- If we want to compute the throughput of the system, defined as the mean
number of customers served per time unit, we have to take into account the
rate of actions having type s. As a consequence, in the case of System M/M/n/n

we must replace every action of the form <s, h ■ n> with <s, h ■ ß,h ■ y,>,
while in the case of Systemr^/M^n^n we must replace every action of the form
<s,fi> with <s,fx,n>.

- If we want to compute the mean response time of the system, defined as
the mean time spent by the customers in the system, we can exploit Little's
law [7] which states that the mean response time of the system is equal to
the mean number of customers in the system divided by the customer arrival
rate. Therefore, in the case of SysterriM/M/n/n we must replace every action
of the form <s, h-(j,> with <s, h-fj,, h/X>, while in the case of System*^ j M j n I n
we must replace every action of the form <s,/x> with <s,fi, 1/A>.

- If we want to compute the utilization of the system, defined as the fraction
of time during which servers are busy, we have to single out states having
an outgoing transition labeled with s. Thus, in the case of SystemM/M/n/n

we must replace every action of the form <s, h ■ p> with <s, h ■ p, 1>. We
observe that, unlike the logic-based method, in the case of System^/M/n/n
the algebra-based method cannot be used to determine the utilization of the
system due to the additivity assumption: the rate to associate with actions
of the form <s,/i> would be the reciprocal of the number of transitions
labeled with s exiting from the same state. Since the main objective of the
algebra-based method is its ease of use, we prefer to keep the specification of
rewards as simple as possible, i.e. just by means of numbers: thus we avoid the
introduction of arithmetical expressions as well as particular functions such
as the one determining the number of transitions of a given type exiting from
the same state. Incidentally, the inability to compute the utilization in the
case of the resource-oriented description should not come as a surprise, since
this description is more suited to the determination of performance indices
concerning a single server instead of the whole set of servers. As it turns
out, it is quite easy to measure the utilization of a given server specified in
SystemM,M,n,n, whereas this is not possible for System M/M/n/n- This means
that the style [9] used to describe a given system through an algebraic term is
strongly related to the possibility of deriving certain performance measures
through the algebra-based method.

3 Syntax and Semantics for EMPAr

In this section we extend the syntax and the semantics for EMPA [1, 2] in order
to cope with the presence of rewards treated according to the algebra-based
method outlined in the previous section: the resulting stochastic process algebra
is called EMPAr.

362

As usual, the building blocks of EMPAr are actions. Each action is a triple
<a, X, r> consisting of the type of the action, the rate of the action and the re-
ward of the action: the third component is new with respect to the structure of
EMPA actions. Like in EM PA, actions are divided into external and internal (r)
according to types, while they are classified as exponentially timed, immediate
or passive according to rates. Since exponentially timed actions model activities
that are relevant from the performance standpoint, nonzero rewards can be as-
signed only to them. We denote by AType the set of types, by ARate = R+U/n/U
{*}, with "inf = {ooiiU, | I G N+ A w G R+}, the set of rates, by A Reward = R

the set of rewards, and by Actr = {<a, X, r> G AType x ARate x AReward \ X G
Inf U {*} => r = 0} the set of actions. We use a, b, c,... as metavariables for

AType, A,/i,7,.-- for ARate, A,M,7,--- f°r R+. and r, r', r",... for AReward.
Finally, we denote by PLevel = {-1} U N the set of priority levels, and we
assume that * < A < oo/iU, for all A G R+ and oofiU, G Inf.

Let Const be a set of constants, ranged over by A, B,C,..., and let RFun =
-O : AType —► AType | ip(r) = r A <p{AType - {r}) C AType - {r}} be a set of

relabeling functions.

Definition 1. The set CT of process terms of EMPAr is generated by the fol-

lowing syntax
E ::= 0 | <a, X, r>.E | E/L | E[<p] \ E + E \ E \\s E \ A

where L,S C AType - {r}. The set £r will be ranged over by E,F,G,.... We
denote by Qr the set of guarded and closed terms of Cr. ■

We recall from [1, 2] that the alternative composition operator is parametric
in the nature of the choice: the choice is solved according to durations in the
case of exponentially timed actions (race policy) and according to priorities and
weights in the case of immediate actions (preselection policy), while it is purely
nondeterministic in the case of passive actions. We also remind that, concerning
the parallel composition operator, a synchronization can occur if and only if the
involved actions have the same type belonging to the synchronization set, and

at most one of the involved actions is not passive.
The integrated semantics of EMPAr terms can be defined by exploiting again

the idea of potential move: the multiset l of the potential moves of a given
term is inductively computed, then those potential moves having the highest
priority level are selected and appropriately merged. The formal definition is
based on the transition relation ►, which is the least subset of Qr x Actr x
gr satisfying the inference rule reported in the first part of Table 1. This rule
selects the potential moves having the highest priority level, and then merges
together those having the same action type, the same priority level and the same

1 We use "{|" and "|}" as brackets for multisets, ". © _" to denote multiset union,
Mufin{S) {Vfin(S)) to denote the collection of finite multisets (sets) over set S,
M{s) to denote the multiplicity of element s in multiset M, and x;(Af) to denote
the multiset obtained by projecting the tuples in multiset M on their i-th component.
Thus, e.g., (ffi(PA/2))(<o,*, 0>) in the fifth part of Table 1 denotes the multiplicity
of tuples of PMi whose first component is <a, *,0>.

363

(<a,Ä. r>,£') € Meltr{Selectr(PMr{E)))
a,X,r

E E'

PM r(0) = 0

PMr(<a, X, T>.E) = {| (<a, Ä, r>, E) |}

PMr(E/L) = {| (<a, X, r>, £'/!) I (<a, Ä, r>, £") € PMr(£) A a ft 11} 0
{| (<r, Ä, r>, E'/L) | (<a, Ä, r>, E') € PMr(£;) A a € L |}

PA/r(£[yj]) = {| (<v(a), Ä, r>, £'[*>]) | (<a, X, r>, £') € PMr(£) |}

PA/r(£i + E2) = PMr(Ei)® PMr{E2)

PA/r(£i ||s £2) = {| (<a, Ä, r>, E[\\s E2) \ a £ S A (<a, Ä, r>, E[) € PA/r(£i) |} (
{| (<a, X,r>,E1\\sE!>)\atSA (<a, Ä, r>, £J) € PMr(£j) |} (
{|(<a,7,r>,^||s^)U€5A

(<a,A,,r1>,£0€PMr(£i) A
(<a,Ä2)r2>,^)€PMr(£2) A
7 = 7Vormr.,rate(a,Ä1,Ä2)PA/r(JE1),PA/r(£2)) A
r = ATormrireward(a)r1,r2,PA/r(£1),PMr(£2))|]

PMr(A) = PMr(E) \i A = E

Selectr(PM) = {] (<a, Ä, r>, E) € PM | PLr(<a, Ä, r>) = -1 V
V(<6, A, r'>, £") € PA/. PLr(<a, X, r>) > PLr(<b, ß, r'>) \

PLr{<a, *,0>) = -1 PIr(<a,A,r>) = 0 PLr(<a, oc(,„,, 0>) = /

Meltr(PM) = {(<a,X,r>,E) | (<a,£,r'>, £) e PM A
Ä = Min{|7 | (<a,7,r">,£) € PM A PLr{<a, 7, r">) = PLr(<a, £, r'>) |] A
r = £{| r" I (<a> 7, r">> E)ePM A PIr(<a, 7, r">) = P£r(<a, A, r'>) |}}

* A/in * = * Ai A/in A2 = Ai + A2 ooiyW1 A/in ooi|U,,, = ooi.u^+u,.

v / I i PM- p., > / 5p/!'t(ÄIll/(x1(PM2))(<a,*,0>))if Ä2=*
/Wmr,rate(a, Aj.A., PA/:, PM2)= I Sp^2| 1/(xi(pMi)){<a ^0>))ifAi = +

,v r pu PM \ fn/(x1(PA/2))(<a,*,0»if r2=0
iWmr,reu,ard(«,r1,r2,PM1,PM2)= |r2/{xi(pMi))(<a^0>).f ^ =0

Split(*, a) = * Split(X,a) = X ■ a Split(ooi,w, a) = oci.w.a

Table 1. Inductive rules for EMPAr integrated interleaving semantics

364

derivative term. The first operation is carried out through functions Selectr :
Mufin(Adr x QT) —► Mufi„(Actr x gr) and PLr : Actr —> PLevel, which are
defined in the third part of Table 1. The second operation is carried out through
function Meltr : Mufin(Actr x Qr) —► Vfin(Actr x Gr) and partial function
Hin : (ARate x ARate) —e* ARate, which are defined in the fourth part of
Table 1. Observe that function Meltr sums the rewards of the potential moves
to merge: this is consistent with the additivity assumption about rewards.

The multiset PMr{E) e Mufin(Actr x Qr) of potential moves of E 6 Qr is
defined by structural induction in the second part of Table 1. The normalization
of rates and rewards of potential moves resulting from the synchronization of
an action with several independent or alternative passive actions is carried out
through partial functions Normrirate : (AType x ARate x ARate xMufin(Actr x
gr) x MufiniActr x gr)) -&* ARate and Normr>reward : (AType x AReward x
AReward x Mufin(Actr x Qr) x Mufin(Actr x gr)) -e->AReward, and function
Split : (ARate x R]o,i]) —► ARate, which are defined in the fifth part of Ta-
ble 1. Observe that the normalization of rewards is consistent with the additivity
assumption about rewards.

Definition 2. The integrated interleaving semantics of E 6 £r is the labeled
transition system Ir{Ej = (1E,Actr, >E,E) where]E is the set of states
reachable from E, and *E is ► restricted to]E x Actr x IE. ■

As in [1, 2], from the integrated semantic model it is possible to obtain a
functional semantic model (by dropping action rates and rewards) as well as a
performance semantic model (basically by dropping action types and by lifting
rewards from transitions to states according to the additivity assumption). Due
to lack of space, we do not show the related definitions here.

4 A Notion of Equivalence for EMPAr

In [1, 2] we developed a notion of equivalence for EMPA called strong extended
Markovian bisimulation equivalence and denoted ~EMB ■ Such an equivalence
was defined according to the idea of probabilistic bisimulation [8] on the inte-
grated semantic model, and we proved that it is necessary to define it on the
integrated semantic model in order for the congruence property to hold. For the
sake of convenience, we can extend ~EMB to EMPAr since it disregards rewards,
provided that like in [1, 2] we introduce a priority operator "©(_)" and we con-
sider the language Cr,e generated by the following syntax

E ::= 0\ <a,X,r>.E \ E/L \ E[<p] \0(E) \E + E\E\\SE\A

whose semantic rules are those in Table 1 except that the rule in the first part
is replaced by

(<o, Ä, r>, E') € Meltr(PMr(E))
a,X.r

E *E'
and the following rule for the priority operator is introduced in the second part

365

PMT{0{E)) = Selectr(PMr{E))

It is easily seen that EMPAr coincides with the set of terms {©(E) \ E € Cr}.
We denote by QV]@ the set of guarded and closed terms of £r,e-

One of the advantages of the algebra-based method, besides its ease of use, is
the possibility of defining a notion of equivalence for EMPAr which relates terms
having the same reward, thus allowing for simplification without altering the
value of the performance index we are interested in. Exploiting the lesson learnt
with ~EMB i we define this new equivalence on the integrated semantic model. For
simplicity, one may be tempted to relate strongly extended-Markovian bisimilar
terms having the same total reward, intended as the sum of the rewards attached
to the actions it can execute. However, in this way one would fail both to capture
an equivalence preserving the performance measure at hand and to obtain a
congruence.

Example 1. Consider terms

A = <a, A, r>.<b, ß, ri>.A

B = <a,X,r>.<b,n,r2>.B
where n ^ r2. Then A ~EMB B and A and B have the same total reward r, but
if we solve the two underlying performance models we obtain two different values
of the performance measure we are interested in: r • /i/(A + p) + rx ■ A/(A + fj.)
and r •///(A +/x) + r2 • A/(A+/x). ■

Example 2. Consider terms
Ei = <a, A, rx>.0 + <b, y,, r2>.0
E2 = <a, A, r2>.0 + <b, p, r1>.0

where ri ^ r2. Then E\ ~BMB E2 and E\ and E2 have the same total reward
r\ + T2, but e.g. E\ ||{j,j 0 has total reward ri while E2 ||{j} 0 has total reward

r2. ■

The examples above show that if we want to preserve the performance measure
and to obtain a congruence, we cannot treat rewards separately from the rest
of the actions: rewards must be checked in the bisimilarity clause in order to
guarantee that, given two equivalent terms, they have the same total reward and
any pair of equivalent terms reachable from them have the same total reward.

Below we show that it is really easy to extend the definition of ~EMB in such
a way that both objectives are achieved. Proofs of results are omitted whenever
they are smooth adaptations of the corresponding proofs in [2].

Definition3. We define partial functions Rate, Reward, RR with domain or,® x
AType x PLevel x V(Qrt@) and ranges ARate, AReward, ARate x AReward re-
spectively, by

Rate(E,a,l,C)= Min^X \ E-^-^ E' A PLr(<a, Ä,r>) = / A E' 6 C [}

Reward(E, a, I, C) - £{] r | E -^-^* E' A PLr(<a, Ä, r>) = I A E' G C [}
RR(E,a,l,C) = (Rate(E,a,l,C),Reward(E,a,l,C)) m

366

Definition4. An equivalence relation B C Qr@ x QT<@ is a strong extended
Markoman reward bisimulation (strong EMRB) iff, whenever (Ex,E2) G #, then
for all a G AType, I G PLevel and C € Qr,e/B

RR(Eua, I, C) = RR(E2, a, I, C)
In this case we say that E\ and En are strongly extended-Markovian reward

bisimilar (strongly EMRB). ■

Propositions. Let ~EMRB be the union of all the strong EMRBs. Then ~EMRB

is the largest strong EMRB. ■

Definition 6. We call ~EMRB the strong extended Markovian reward bisimula-
tion equivalence (strong EMRBE), and we say that Ei,E2 G GT,e are strongly
extended-Markovian reward bisimxdation equivalent (strongly EMRBE) if and

only if E\ ~EMRB E2. *

Proposition 7. ~EMRB C ~EMB ■

Proof. It follows immediately from the fact that every strong EMRB is a strong

EMB too. ■

The following example shows that the inclusion is strict. We would like to point
out that this is not inconsistent with ~EMB- The purpose of ~EMB is to relate
terms describing concurrent systems having the same functional and performance
properties: if Ei ~EMB E2 but Ei ^EMRB E2, this simply means that we are
measuring two different performance indices for Ex and E2.

Example 3. Consider terms
A = <a,X,l>.<b,iJ,,0>.A

B = <a,X,0>.<b,fj.,l>.B
Then A ~EMB B but A ^EMRB B. If we regard a and b as the transmission
over two different channels, then by means of A we can compute the utilization
of the former channel, whereas by means of B we can compute the utilization of

the latter channel. •

Theorem 8. Let Eu E2 G QTt@- If Ei ~EMRB E2 then:

1. For every <a,X,r> G Actr, <a,\,r>.Ei ~EMRB <a,X,r>.E2.
2. For every L C AType — {r}, E\/L ~EMRB E2/L.
3. For every ip G RFun, E\[(p] ~EMRB E2[<p].

4. 0(EX) -EMRB &(E2).
5. For every F G Gr,e, Ex + F ~EMRB E2 + F and F + Ex ~EMRB F + E2.
6. For every F G Gr,e and S C AType - {T}, EX \\S F ~EMRB E2\\S F and

F \\s Ex —EMRB F \\s E2. ■

Theorem 9. ~EMRB is preserved by recursive definitions. ■

Theorem 10. Let Ar be the set of axioms in Table 2. The deductive system
Ded(Ar) is sound and complete with respect to ~EMRB for the set of nonrecursive

terms of Gr.e- *

367

(A.i) (£1 + E2) + E3 = E1+ (E2 + Es)
(Ar.2) Ex + E2 = E2 + Ei
(Ar,3) £+_0 = £
(ATA) <a,\i,ri>.E + <a. Ä2. r2>.E = <a,\i Min\2,ri + r2>.E

if PLr(<a,Äl,ri>) = PLr(<a,\2,r2>)

(Ar,,) 0/7 = 0

{ATfi) «a, A, r>.E)/L - | <rj ^ r>_(£;/jT) if 0 £ L

(X.y) (E1+E2)/L = E1/L + E2/L

Mr,») 0[<p] = 0
(.4r,9) (<a, Ä, r>.£)[¥>] = <v>(o), Ä, r>.(£[d)
(A-,10) (Ei + E2)[V] = Eilv] + E2[<p]

Mr,n)0(O) = O

(^r,12)0(^<a.,Ä,,r,>.JB,)= £«*.,,ÄJ,'-J>.0(£J)

where 7= {i € 7 [Ä, = * Wl 6 7. PLr{<ai, A,,r,>) > PLr(<oh, Ah,rh>)}

(A,i3)0||sO = 0

(Ar.u) ('t<a„~X„rl>.El)\\sO= E <OJ.^.'
-
J>-(

£
> Ikfi) where J = {i € / | a; £ S}

M-MS) 0 ||s(E <a" *., r;>.£.) = E <0J. ^> rJ>-(0 Ik EJ)
where J = {* S / | a, £ S}

.6/ >ev

(Ar.u) (E <«.,Äl,T-,>.£,)lls(E <a,,Ä„r,>.£;i) =

E <aj,Äj,r>>.(£>||s E <a..A,,7-,>.£.) +
jeJi ieh
E <aJ,ÄJ,r-J>.(E <a,,X,.r,>.E,\\sEJ) +

E <at, Split(Xk, l/nk). rk/nk>.(Ek \\s Eh) +
keKx^h£Hk

E <ak,Split(\k, 1/nfc). rk/nk>.{Eh \\s Ek)
fceA'2AheHk

where 7i = {J € 7i | a, ^ 5}
72 = {«' € 72 | a, i S]
R\ = {jj e 7i | 3i2 € 72.a<! = a;, g 5 A A,, = *}

K2 = \i2 6 72 I 3ti € A.Oi, = a,, S 5 A Ä,, = *}

Hk = {A € 72 | ak = ah A \h = *} with fc G A'i
Hk = {h e h \ ak =ah A\h = *} with fc 6 A_2

Table 2. Axioms for ~EMRB

368

5 Conclusion

In this paper we have introduced an algebra-based method to attach rewards
with EMPA terms in order to derive performance measures. As observed in
Sect. 2, though less powerful in general than the logic-based method proposed
in [3], the algebra-based method may be convenient due to its ease of use, its
low computational cost and the possibility of defining a notion of equivalence
accounting for rewards. Furthermore, it has been a really easy task to extend
the theory developed for EMPA in order to take into account rewards according
to the algebra-based method.

Concerning future work, we could allow the designer to associate rewards
with immediate actions as well, because in this way we could derive performance
measures also when we restrict ourselves to the probabilistic kernel [2] of EMPA.
Finally, the algebra-based method will be implemented in a software tool (we are
currently developing) based on EMPA for the modeling and analysis of functional
and performance properties of concurrent systems.

Acknowledgements
This research has been partially funded by MURST and CNR.

References

1. M. Bernardo, R. Gorrieri, "Extended Markovian Process Algebra", in Proc. of
the 7th Int. Conf. on Concurrency Theory (CONCUR '96), LNCS 1119:315-330,
Pisa (Italy), 1996

2. M. Bernardo, R. Gorrieri, "A Tutorial on EMPA: A Theory of Concurrent Pro-
cesses with Nondeterminism, Priorities, Probabilities and Time", Technical Re-
port UBLCS-96-17, University of Bologna (Italy), 1996

3. G. Clark. "Formalising the Specification of Rewards with PEPA", in Proc. of
the 4th Workshop on Process Algebras and Performance Modelling (PAPM '96),
CLUT, pp. 139-160, Torino (Italy), 1996

4. M. Hennessy, R. Milner, "Algebraic Laws for Nondeterminism and Concur-
rency", in Journal of the ACM 32:137-161, 1985

5. J. Hillston, "A Compositional Approach to Performance Modelling", Cambridge
University Press, 1996

6. R.A. Howard, "Dynamic Probabilistic Systems", John Wiley & Sons, 1971
7. L. Kleinrock, "Queueing Systems", John Wiley fc Sons, 1975
8. K.G. Larsen, A. Skou, "Bisimulation through Probabilistic Testing", in Informa-

tion and Computation 94(l):l-28, 1991
9. C.A. Vissers, G. Scollo, M. van Sinderen, E. Brinksma, "Specification Styles in

Distributed Systems Design and Verification", in Theoretical Computer Sci-
ence 89:179-206, 1991

A Semantics Preserving Actor Translation

Ian A. Mason Carolyn L. Talcott

University of New England Stanford University

iam@turing.une.edu.au cltSsail.Stanford.edu

Abstract

In this paper we present two actor languages and a semantics preserving translation between them. The source of
the translation is a high-level language that provides object-based programming abstractions. The target is a simple
functional language extended with basic primitives for actor computation. The semantics preserved is the interaction
semantics of actor systems—sets of possible interactions of a system with its environment. The proof itself is of
interest since it demonstrates a methodology based on the actor theory framework for reasoning about correctness of
transformations and translations of actor programs and languages and more generally of concurrent object languages.

1 Introduction
In this paper we continue our investigation of the actor model of computation [Hew77, Agh86, Agh90, AMST97,
Tal96b, Tal96a]. Actors are independent computational agents that interact solely via asynchronous message passing.
An actor can create other actors; send messages; and modify its own local state. An actor can only effect the local state
of other actors by sending them messages, and it can only send messages to its acquaintances - addresses of actors it
was given upon creation, it received in a message, or that it created. Actor semantics requires computations to be fair.

We take two views of actors: as individuals and as elements of components. Individual actors provide units of
encapsulation and integrity. Components are collections of actors (and messages) provided with an interface spec-
ifying the receptionists (actors accessible from outside the component) and external actors (accessible from but not
existing inside the component). Collecting actors into components provides for composability and coordination. Indi-
vidual actors are described in terms of local transitions. Components are described in terms of interactions with their
environment.

The actor model provides a natural framework for inter-operation of multiple languages since the details of the
code describing an individual actors behavior are not visible outside that actor. All that needs to be common is the
messages communicated among the different actors. In [Tal96b], this intuition is formalized using the notion of an
abstract actor structure. Here we generalize the notion of an abstract actor structure to an actor theory. Actor theories
provide a general semantic framework for specifying and reasoning about actor systems as well as for reasoning about
relations between different actor languages. An actor theory plays the role of a theory that axiomatizes the behavior
of individual actors. The models of an actor theory account directly for the interaction (exchange of messages) of
a actor component with its environment. Each model of an actor theory gives rise to a corresponding semantics of
actor components. Two important models are: computation paths—analogous to labelled transition system semantics;
and interaction paths—obtained from computation paths by omitting details of internal computation. These give rise
to computation path and interaction semantics, respectively. Both semantics are composable and as we will see,
interaction semantics is largely insensitive to the particular choice of actor language.

In this paper we illustrate the ideas and techniques based on actor theories by showing how they can be used
to establish the correctness of a translation from a high-level actor language to low level actor language such as
might be found in compiler preprocessor. The low-level kernel language, k£, is an extension of a simple functional
language based on the call-by-value A-calculus with primitives for actor computation. The high-level user language,
"C, provides object-based programming abstractions. Each of the languages is given a semantics by defining a
corresponding actor theory. We give a separate semantics for the user language in order to be able to reason directly
about user programs. The correctness theorem shows that we can also reason about user programs by translating to the
kernel language and reasoning in terms of the kernel semantics. The translation, uSk, from the user language to the
kernel language eliminates the object-based programming abstractions in favor of the simple actor primitives. The
main result presented there is that the translation, u2k, preserves the interaction semantics.
Theorem (user-to-kernel): Isem("P) = Isem(u2k("P)) \"M where "P is a user language program, hem maps
programs to their interaction semantics, and [Tvl restricts the kernel interactions to user language messages.

The proof that the translation preserves interaction semantics itself is of interest since it demonstrates a methodol-
ogy for proving correctness of transformations and translations of actor languages and more generally of concurrent
object languages. For the proof we lift the translation to semantic configurations that correspond to the possible actor
system states and show that the following diagram commutes

up uSl\ kp

l-U 4- 1-1
"K ^ kK

where P is a top-level program, K, is a configuration, and [.] gives the semantics of a program in terms of the initial
configuration that it describes. (We use the following convention: if X is some entity, then we use the super-prescript
"A" to indicate that A' belongs to the user language and kX to indicate that X belongs to the kernel language. So
for example "K is an user language configuration.) The proof is completed by showing that interaction semantics is

370

preserved by translation at the semantic level Isem(aK) = Isem{u2k{aK))\"M.. This proof involves establishing a
correspondence between the (possibly infinite) computations of two systems. The actor theories defined for each of the
languages correspond to standard transition system semantics with transitions that are small and easy to understand, but
exp°ose much irrelevant detail. We make use of a general interaction semantics preserving actor theory transformation
that can be thought of as moving from a small step a big step operational semantics. Changing the level of abstraction
of the operational semantics of a fixed language is a general technique useful for reasoning about systems at the
desired level of detail. Reasoning about the level changing transformation on actor theories and the language changing
translation is simplified by using ideas from the rewriting logic model of concurrent computation [Mes92, Ta!96a] to
define notions of computation path equivalence.
Notation: We use the usual notation for sets, functions, finite sequences, etc. Let Y be a set. We specify meta-
variable conventions in the form: let y range over V, which should be read as: the meta-variable y and decorated
variants such as y', y0 range over the set Y. Mu [Y] is the set of (finite) multi-sets with elements in Y. 0 is the
empty multiset and if A', and X2 are multisets, then X0 , Xi is the multiset union of the two.

2 A Semantic Framework for Actors
In this section we introduce actor theories as a general semantic framework for actor computation. The notion of
actor theory provides an axiomatic characterization of actor languages: the basic features, capabilities, and con-
straints. Actor theories can be considered as an operational alternative to the domain theoretic behaviors used by
Ciinger [Cli81]. Actor theories are a simplification and generalization of the notion of abstract actor structures pre-
sented in [Tal96b, TaI96a].

An actor theory describes individual actor behaviors and their local interactions in a representation independent
manner. An actor theory specifies sets of actor names, actor states, message contents, and labelled reaction rules.
Actor names are the means of uniquely identifying individual actors. Actor states are intended to carry information
traditionally contained in the script (methods) and acquaintances (values of instance variables), as well as the local
message queue and the current processing state. Message contents represent the information that can be communicated
between actors, both locally and as interactions with the environment. Reaction rules determine what an actor in a
given state can do next and how it will respond to messages with given contents. More generally reaction rules
describe synchronous interactions of groups of actors and messages. Reaction rules are labelled. These labels are used
in deriving a labelled transition system semantics. In this way the labels provide information concerning the basic
observations that can be made as an actor system evolves. An actor theory must obey the fundamental acquaintance
(locality) laws of actors [BH77, Cli81] in addition to renaming laws that express the fact that computation is uniformly
parameterized in the choice of actor names—renaming commutes with everything. To state these laws an actor theory
also provides a primitive operation to determine the acquaintances of (actor names occurring in) the various entities
and a primitive operation to rename them.

The operational semantics of an actor theory is given by the transition relation on configurations derived from the
reaction rules. A configuration can be thought of as representing a global snapshot of an actor system with respect
to some idealized observer [Agh86]. It contains a set of receptionist names, a set of external actor names, and a
collection of actors and messages. The sets of receptionist names and external actor names are the interface of an
actor configuration to its environment. They specify what internal actors are visible from the environment, and what
actor connections must be provided for the configuration to function. Both the set of receptionist names and the set of
external actor names may grow as the configuration evolves. The collection of actors and messages is the interior of
the configuration. It specifies the internal actors and their current states, and the state of the internal message system.
Configurations evolve either by internal computation or by interaction with the environment. The transition relation
expresses the ways a configuration might evolve and interact with its environment. The computation path semantics
of a configuration is the set of fair computations possible starting with that configuration. Interaction semantics gives
a more abstract view of an actor system, specifying only the possible interactions (patterns of message passing) a
svstem can have with its environment. Interaction semantics is the result of hiding all information concerning the
internal computations and what actors may be present beyond the receptionists.

The term reaction rule is used here in the same spirit as in the Chemical Abstract Machine [BB92J to indicate local
interactions of reactive entities. Actors and messages can be thought of as special kinds of molecules and interiors are
like solutions Actor theories are in fact a special case of rewrite theories and we the mechanisms we use to derive the
computations of a actor system are based on those of rewriting logic [Mes92].

An actor theory is a structure AT of the following form: AT = < <A,S,M,L>, {acq, .), RR). AS, M-, L
arc the primitive sorts of AT. A is a countable set of actor names, S is a set of actor states, M is a set of message
contents and L is a set of labels. From the primitive sorts we form actor entities (briefly actors), AE, messages
Mse and configuration interiors, I. We let a range over A, M range over M, s range over S, I range over L, and
I ran^e over I [s] „ is an actor with name, a, in state, s and o < M is a message with addressee, a, and contents, M.
A configuration interior, /, is a multiset of actors and messages in which no two actor entities have the same name

RR is a set of reaction rules that specify the behavior of individual actors and their synchronization with other
internal actors and messages. Elements of RR are triples of the form /:/=>/' where I is the rule label, / is rule
source, and/'is the rule target. T _ rA1 . ,

The primitive operations of AT are: acq and ".. The acquaintance function, acq : S U M U L -> K, [Aj, gives the
(finite) set of actor names occurring in a state, message contents, or label, acq extends homomorphically to structures
built from the primitive sorts. Actor addresses cannot be explicitly created by actors, and the semantics cannot depend
on the particular choice of addresses of a group of actors. A renaming mechanism is used to formulate this requirement.
We let Bii(A) be the set of bijections on A (renamings) and let a range over Bij(A). For any such a, a is the
associated renaming function on states, message contents, and labels. Renaming is extended naturally to structures
built from addresses, states, and values. For example S([*].) = l<*(s)] o(„,. Renaming, a, commutes with the

371

acquaintance function and is determined by the restriction of a to the acquaintances of an object. It is a bijection on
A U M U L. To state the axioms for reaction rules, we define two auxiliary functions: InAct, ExtAct : I -> VU[A],
InAct(I) is the set of names of actors that occur in I, and ExtAct(I) is the set of names of external actors referred to
in /: InAct(I) = {a e A | (3s € S)([s] „ € /)} ExtAct(I) = acq{I) - InAct{I).
Axioms for Reaction rules (RR) If 7: J =W € RR, then
(i) InAct(I) jt 0
(ii) I: I0 => I{, € RR implies InAct{J) = InAct(I0) and InAct{I') = InAct(Io)
(iii) InAct(I) C InAct(J') C acq(l)
(iv) ExtAct(I') C ExtAct(I)
(v) 5(7) : 3(7) => S(I') £ ÄÄ for any renaming a in Bü(A)
(i) states that reactions must involve at least one existing actor; (ii) states that a label uniquely determines the actors
involve in a reaction; (iii) states that actors cannot disappear and that the actors involved in a reaction must be made
explicit as acquaintances of the reaction label; (iv) states that no references to external actors are acquired in an internal
transition, although some may be forgotten; and (v) states that the set of rules is closed under renaming.
If I: I =S- I' € RR, we call InAct(I) the old actors of 7 and InAct(I') - InAct(I) the new actors of 7.

An actor configuration is a configuration interior, 7, together with two sets of actor names: the receptionists p ,
which are a subset of the internal actors of the interior; and the externals x which include all actors mentioned in the
interior that are not internal actors.
Definition (Configurations, K): K = {^ I j | p C InAct(I) A ExtAct{I) C x}. We let K range over K.

The computations of a configuration are given by the labelled transition relation: K —> K'. K is the source of
the transition and K' is the target and I is the label. Transition labels are either rule labels, input/output labels, or a
special idle label, idle. An input label has the form in(a < M), indicating a message coming in from the environment.
An output label has the form out(o < M) indicating a message transmitted to the environment. We now let the range
of I include these additional transition labels.
Definition (Transition rules):

(internal) ^ I0 , I)' -A (h , I)' if I : Io => h <Z RR

(in) (jY "^ (l,a<M\' if a £ p A acq(M) n InAct(I) C p
\ II X \\ II XU(oCq(M)-p)

(out) (/, o < M) -U ' (/ J if a i InAct{I)

In (internal) we assume that the configurations are well-formed - InAct(h) n InAct(J) = 0, p C InAct(Io) U
InAct(l), and ExtAct(I0J) C X-

The computation paths of a configuration, V(K) are the computation paths whose initial configuration is K.

Definition (Computation Paths, V, V{K)): V is the set of sequences, TT, of the form

7T = [K, -i-» K,+l \ i £ N] V{K) = {i£P[if is the source of TT(0)}

A finite computation is a path in which all but a finite number of the transition labels are idle. Recall that actor
computations are required to be fair. Thus we do not want to consider arbitrary paths, only the fair ones. A computation
is fair if whenever a transition is enabled, either it eventually fires or it becomes permanently disabled. We only
consider enabledness for transitions whose label is a reaction rule label or an output label. We can not force the
environment to do an input and the idle transitions are simply ignored for the purpose of fairness. T(K) is the fair
paths for K.

In analogy to thinking of a sequential procedure as a black box characterized by its input/output relation, we would
like to think of an actor system as a black box characterized by the set of possible interactions with its environment.
Thus we define the interaction semantics of an actor system in such a way as to hide the details of internal transitions.
The interaction semantics of a configuration is its set of possible interaction paths. An interaction path of a configu-
ration is an infinite sequence of interaction labels together with an initial interface consisting of a pair of finite sets of
actor names (the receptionists and externals). An interaction label is either an input/output label or the special sign,
T", standing for possible internal activity. The infinite sequence of interaction labels in an interaction path is obtained
from a computation path by mapping internal transitions to silent transitions.

The function isem maps transition labels to interaction labels and computation paths to interaction paths. The
receptionists and externals of isem(x) are those of the initial configuration of 7r. The interaction sequence of wem(7r)
is the sequence of labels obtained by replacing internal and idle transition labels to T* .
Definition (isem(ir) Isem(K)):

ti\-jT~ if7eLU{idle}
isem(l) - < ; if/ £ in(Msg) u out(Msg)

Vft + l
isem(Tr) = i?™ where 7r(i) = (ü) -=-> (■fi+i) and #(i) = isem{k) for i€N

hem(K) = {isem(Tr) | -a £ F(K)}

372

So far we have been working in the context of a fixed, but arbitrary actor theory. In the case that we consider inter-
action semantics in more than one actor theory, we index Isem by the name of the actor theory, writing IsemAT(K).
It is sometimes convenient to restrict the interactions of a configuration with its environment by restricting the possible
set of input messages. For V C M, we define Isem(K) \V to be set of interaction paths f e Isem(K) whose input
labels are messages with contents in V.
Definition (Isem(K)\V):

Isem(K)\V = {isem{n) | TT € F(K) A (Vi g N, a € A, M <E M)(jr(i) = in(a « M) => M 6 V)}

For a given actor language, we usually define the reaction rules for an actor theory by giving the semantics in terms
of basic reduction steps for expressions of the language. We call this a small step actor theory. It is simple to define, but
gives rise to computations with many small and mostly uninteresting steps. In the following we show how to transform
such an actor theory' in to big step actor theory which preserves the interaction semantics of the language. In the big
step theory internal computation steps are those that create actors, send messages, or involve some synchronization of
actors and messages, thus suppressing further details of internal computation of an actor.

The key ideas motivating the transformation are the notions of silent step and that of a path being in big-step
form. A silent step is one involving a single actor that creates no new messages or actors. A path in big step
form consists of input/output transistions and non-silent steps each preceded by the necessary silent steps to pre-
pare the reacting actors. For AT = { (A,S,M,L),(acf,t),ÄÄ) we define its big-step variant AT* by AT'9 =

((A, S,M, L*), (acgt, ?f>, ÄÄ* > where

RR* = {/':/=> /' | (3/")(J A/"A(: /" => I' €RR a non-silent rule}

and / -^+ /" is sequence of silent steps. The crucial property of the big step operation is that it preserves interaction
semantics. Let AT be an actor theory and let K be a configuration of AT. Then
Theorem (small2big): IsemAT(K) — IsemAT\ (K)

The proof relies on the ability to put paths into big-step form.

3 The Kernel Language
We assume given an infinite set of variables, X. We also assume as given a collection of basic or atomic data. At, that
includes the°booleans t, f € Bool, Scheme style symbols, Sym, (Sym includes nil, the empty or null list), (con-
stants denoting the elements of) the integers, Z, and actor names, A. Expressions are built from atoms and variables by
the following operations: A-abstraction, application of primitive operations to sequences of expressions, conditional
branching, and an actor creation construct. The primitive operations include operations on basic data and pairs, and
kernel primitives manipulating actors, procedures, and local continuations. The data operations dOp contains the
recognizers: boolean? for booleans, symbol? for symbols, integer? for integers, cons? for pairs, and actor? for
actors (all of arity 1); pairing cons, car, cdr (arities 2, 1, 1); the equality predicate, equal?, on atomic data; and the
usual arithmetic operations, aOp. We consider actor addresses to be atomic data and consequently can tell one address
from another. The functional specific primitives are procedure?, the recognizer for procedures (arity 1), app, lambda
application (arity 2), and clc, control abstraction (arity 1). We include app in the list of primitive operations as a tech-
nical convenience, to make the syntax more concise. The actor primitives consists of an actor creation construct plus
the operations: self (of arity 0), the name of the executing actor; send, asynchronous send (arity 2); ready, establish-
ing behavior for receiving (arity 1). Actor creation expressions are of the form letactor{i0 ™ eo,...xt :— et) e
where the x; are pairwise distinct variables. Executing a letactor expression creates a new actor entity <H for each
i, executing expressions a with x{ bound to a*. The original executing actor then proceeds by executing e (with x{

bound to a;).
The top level syntactic construct is a kernel program which describes a configuration. For convenience, kernel

programs may include a library of mutually recursive definitions. For this purpose we reserve a subset kPunId of X
to be used as function names.
Definition (Kernel Programs):

''M = At U cons(fcM, kM) ''Program = program(receptionists : VU[A}, externals : 7>„[A]

library : 7>„[FunId := AX.'E]

actors : VU[A := *E]

messages : Ma[A<kM])

where the function identifiers in the library part and actor names in the actors part must be distinct, and all actor
names occurring in an actor state or message contents must either be one of the actor names defined in the actors
part or one of the names occurring in the externals part. Message contents are simply values built up from the
atomic data via the pairing operation cons. Lambda abstractions and structures containing lambda abstractions are
not allowed to be communicated in messages.
Definition (Kernel Expressions):

''O = dOp U {procedure?, app, clc} U {self, ready, send}

At = A U Bool U Z U Sym

"E = X U At U AX* U 0„(E„) U if (E, E, E) U letactor{(X := fcE)+}kE

373

We let x,y,z range over X, a ranges over A, ke ranges over ^E, kM ranges over kM. The binding constructs are
letaetor and A. Ax.e binds the variable x in the expression e. letactor{... x; := \ ... }ke binds the i,- in
each of the \, and also in ke. Two expressions are considered equal if they are the same up to the renaming of bound
variables. For any expression e, we write FV(e) for the set of free variables of e. We write e'[x := e] to denote the
expression obtained from e' by simultaneously replacing all free occurrences of S by e, avoiding the capture of free
variables in e. We use standard abbreviations: let, for lambda application; boolean functions not, and, boolean func-
tions; and letrec-p^id,- = Ai.ke}]<J<t \, for mutual recursive definition. We also use the following definitions

for structuring message contents.

list„ = A11.A12 Ai„cons(ii,cons(i2,. ■■ cons(x„,nil)))

msgMk = Aimid-A3;8rgs.Aicvl8flist3(2;mid,Xarg5,icust)

As indicated earlier, the semantics is given by defining an actor theory, kAT. The only primitive sort of kAT that
remains to be defined is the set of kernel actor theory states, 'S.
Definition ('S): 'S = {ke 6 *E | FV(ke) = 0}
The acquaintances of an state (or message contents for that matter) is simply just the actor names occurring therein and
renaming is simply substitution. The meaning of a kernel program is defined to be a configuration of kAT as follows.

Definition (fkPJ): Let kP be given by

program(receptionists : p, externals : x, library : {kfidj = Ax. e}i<j<i

actors : { [ve}■] „,}!<.,<„,, messages: {aj <kMj}1<j<n)

then lkPj = (kI Y where kI = { [letrec{k^. := Ax.ke}i<;<j \] 0). }1£j<m , { [kM,] „. }1£j,£n

To complete the semantics all that remains is to define the reaction rules. To do this we decompose each non-value
expression as a reduction context filled with a redex. Reduction contexts identify the subexpression of an expression
that is to be evaluated next using the standard call-by-value reduction strategy of [Plo75] and were first An expression
e is either a value or it can be decomposed uniquely into a reduction context filled with a redex. Thus, local actor
computation is deterministic.
Definition (kV '"E.-dx kR): The set of values, kV, the set of redexes, 'Erdx, and the set of reduction contexts,
kR, are defined by

ty = At U consfHr, "V) U AX.^

■^rd* = (^„(V) - cons(kV,kV)) U if (kV,kE,kE) U letactor{(X := kE)+}kE

■n = {.} u ko„+m+i (kvn, kR, kEm) u if (kR, kE, "E)

We let kR range over kR. With the exception of the actor primitives letaetor send, and ready, reduction steps
are silent - they only depend on information local to the executing actor and only effect the state of the executing
actor. Thus we define a sequential reduction relation, e -^-*^ e', on expressions that lifts uniformly to define the silent
reaction rules. The decoration X is an abstract context introduced to make the dependence on local context explicit.
We use a function self{kQ that extracts the name of the executing actor from % To define the sequential relation, we

first define the purely functional reduction relation r —>^ e which gives the rules for redexes that do not manipulate
the reduction context. The rules are standard and are omitted. The sequential reduction relation is then defined by
lifting functional reduction and adding the rule for clc.
Definition (Sequential steps (-^-*\)):

(rdx) kR{e\ -^ kR[e'] ifkeMK
ke'

(clc) kÄ[clc(kt;)l -^ app(V Xx.kR[x]) x $ FV(kÄ[nil])

clc captures the actors local continuation, R, as a function, \x.R\x\, and applies its argument ^ to this function, in

the empty reduction context (the local top level). We let —>y^ be the reflexive, transitive closure of —y\ . Now

we are ready to define the reaction rules of kAT.
Definition (kiJÄ):

seq(a) : [ke] „ => [V] „ if ke -^ V where seZ/ft) = a

send(a) : [kÄ[send(W)]] . =*• [kÄ|[nil]|] „ , kEmÜ(kv0 <kt>i)

ready(a,kAf): [kÄ[ready(kt>)J] „ , a«kAf =4> [app(VkM)] „

leta(o, 5) : [kÄ[letactor{x := ke} keJ] „ =*■ [kfi[ke[x := a]]] „ , { [kei[x := a]] ,*}!<;<„,

ifLen(S) = Len(x) = m and 2 0 acq(kR[ke, ke]) = 0

374

Where vEmit(^v0 < V) = k»o " "^l if "^o € A and ^i £ kM, otherwise it is 0 The meta-function kBmit prevents
ill-formed messages from getting into the system. The labels of kAT are

seq(A) U send(A) U ready(A, kM) U leta(A, A*)

where in the case of leta(o, 3) we require a g 3. acq(l) is just the union of old and new except for the delivery label
where acg(ready(a,kM)) = {a} U acq(kM). Again, renaming is just substitution.

4 The User Language
The user language has the same variables, basic data, actor names, and data operations as the kernel language. In
addition we assume given two disjoint, countably infinite sets of identifiers: Funld for functions; and Behld for
behaviors. Expressions are built from atoms and variables by the following operations: application of primitive
operations to sequences of expressions, let binding, conditional branching, the letactor actor creation construct,
and asynchronous and synchronous method invocation. The primitive operations include dOp and following user
primitives: self, as in the kernel; customer, the customer of the current message (arity 0); fid{, user defined oper-
ations (arity i) for i e N,fid e Funld; and readyki(fj, specifying the behavior for the next message (arity i) for
i € N, bid € Behld. An asynchronous invocation is of the form ue„ < mM[ue]@uec. The target of the request is
the value of ue„ and the message contents has method name mid, arguments "e and customer, "ee. Once the target,
arguments, and customer are evaluated, nil is returned as the value and the requesting actor proceeds with its com-
putation without waiting for a reply. A synchronous invocation (also referred to as a request or remote procedure call)
is of the form ue„. mid[ne}). The target of the request is the value of "ea and the message contents has method name
mid, arguments ue. The requesting actor suspends execution until a reply is received. A ready expression is of the
form ready ii(i „("ei,..., ue„) (also written ready(6id(uei,... ,ue„))). Execution of a ready expression terminates
processing of the current message and looks for the next message enabled for the behavior bid with parameters given
by the values of the uei. If there is no enabled message in the local message queue the actor waits for one to be
delivered. In the user language there is no lambda abstraction and thus no functions as values. Instead, each program
contains a library of (mutually recursive) function and behavior definitions. A behavior definition has the form

behavior bid(p)(methodDefs).

where bid a the behavior identifier, p is a parameter list (a list of distinct variables), and methodDefs is a set of method
definitions. A method definition has the form

method mid(p)[disable - vhenue<i]ue"'

where mid is a method name (a symbol from Sym), p is a parameter list, "edc is the [optional] disabling condition
(assumed false when not present) that specifies when a method can be invoked, and uem is the method body. "ec is
required to be functional, i.e. its evaluation involves no actor primitives other than self or customer. For consistency
we require that a method (i.e a method identifier) should have a unique definition within a given behavior. The free
variables of constraints and method bodies must be among the method parameters or the behavior parameters. A
function definition has the form

function fid (p)ue

where fid is a function identifier, p is a parameter list, and ue is an expression, the function body. The free variables
of the function body must be among the function parameters.
Definition (User Programs and Libraries):

"M = MethId["V']@(A U {nil}) Program = program(receptionists : P„[A], externals : 7>„[A]

library : Vu [(BehDef U FunDef)]

actors : 7>„[A := TEJ, messages : M„[A < Tvl])

where the actor names in the actors part must be distinct, and all actor names occurring in an actor state or message
contents must either be one of the actor names defined in the actors part or one of the names occurring in the
externals part. We let "M range over "M. We let c range over A U {nil} and we may omit the customer part if it is
nil. Message contents consist of a method identifier (symbol), an argument list (a list of values), and a customer (an
actor name ornil signifying no customer). We identify Methld with Sym and let mid range over Methld and use
mid to stand for a symbol used as a method identifier. mid[v]@c abbreviates the list construction msgMk(rm'd", v, c).
We use the the following meta functions: msgMeth(M) selects the method component; msgArgs(M) selects the
arguments component; and msgCust(M) selects the customer component. A library is well-formed if it contains at
most one definition of each fid e Funld, and bid € Behld, and these definitions themselves are well-formed. We
let x. y, and p range over lists of distinct variables. User expressions, "E, are defined in a manner similar to kernel
expressions and we omit the details. We let ue range over "E.

As for the kernel language, the semantics is given by defining an actor theory "AT. Since libraries do not evolve
we parameterize the actor theory by the library of definitions in force, letting library be just part of the auxiliary axioms
describing the actor theory. Thus to give the semantics we need only define user states, VS (since the message contents,
"M, have been explained above) and give "RR, relative to the given library.
There are five kinds of actor states:

c, Q) - processing message with customer c, with current state ue;

375

• lbid("v) Qi QT) - traversing the queue of delivered but unprocessed messages, Q = Qi * QT, looking for an
message that is not disabled. The current behavior is bid("v), The message (contents) in Qr have been checked
and rejected (i.e. they are disabled). The messages in Q, are yet to be checked;

• (tp,"M.bid{"v), Qt- Qr) checking disabling constraints of behavior bid for message uAf.

• la' "R c Q) -waiting for a reply to a request. nR is a reduction context-the continuation of the computation
upon receipt of an answer, a' is an actor created to serve as a reply address, to distinguish the request-reply from
other arriving messages.

• (a) - the state of an actor serving as a reply address for a request sent by a;

where a a' are actor names, ue is an expression (of the user language), c is a customer - and actor name or nil, ip is
functional expression, "M is the contents of a user message, and Q is a mail queue - a sequence of messages (or more
precisely their contents). . „ • , .■ . .

A state of the form (ue, c, Q) is an execution state. It attempts to step by decomposing "e into a reduction context
and redex and reducing the redex. It is hung if the redex fails to reduce. A state of the form (bid("v), Qt,.Qr) is an
execution state if Q, is not empty. If "v does not match the parameter list of the definition of bid then the state is
hun° Otherwise it steps by starting evaluation of the constraints associated, m the behavior definition for bid with
the method name of the first message in Q,. If Q, empty then the state is waiting for delivery of a message (having
already walked through its queue and found no enabled messages). A state of the form (ip, M, btd(y), Qr, Qi) steps
by evaluating <p one step if it is not a value expression. If ip is the value f, then it starts evaluation of the method body
associated with the method of "M in the behavior definition for bid. If ip is a value other than f then "Mis considered
disabled and put on the end of rejects queue, QT. States of the last two forms occur in pairs [a , UR, c, Q] * , [o] „.
that are waiting for a reply to a request by a that will arrive as a message to a', serving as a unique request identifier.

The meaning of a user program is defined to be a configuration of "A T as follows.
Definition ([UPJ): Let UP be given by

"P = program(receptionists : p, externals : x, library : Lib

actors : {a, := ueJ}i<;j<m, messages : {oj <uMi}i<j<„)

then fP] = ("/)" where"/ = {[uej,nil,nil] ,)1S<„ , {a- <u^'}i<J<n

To complete the'definition of "AT we must give the reaction rules. We first define some auxiliary meta functions
and predicates to ease definition of rules concerning behaviors and methods: behUatch(Lib, bid, y) tests whether the
parameters of ready expressions match those of the behavior definition; cstrExp(Lib,bid,"v,mid(^)@c) extracts the
constraint associated with a method; and methExp(Lib, bid,'S, mid{*v')@c) extracts a method body from a library
given a behavior identifier, a parameter list, and a message. We write ue\p := 8] for the simultaneous substitution of
the sth value in €■ for the »th variable in p. This is defined only when p and v have the same length. The definition
of cstrExp reflects the fact that a message is considered disabled if there is no matching method definition and that
messages with matching method definitions are by default enabled if there is no explicit disabling constraint. ^

As in the kernel language, to give the reaction rules, we first define the sequential reduction relation "e —>x "e'
parameterized bv and abstract context %. We also use a function customer^) to extract the customer of the current
message. We define the values "V, reduction contexts "R and redexes "Erdx of the user language, anaogous to the
kerneflanguage definitions, again giving the unique decomposition property for non-value expressions. We let

"R range over "R. The relations -^ and -^ are defined similarly to the kernel case and again we omit details.

We iet _%y^ be the reflexive, transitive closure of -^ . Notice that the sequential rules are sufficient to evaluate
functional expressions, in particular we only need the sequential rules to check constraints.

The labelled reaction rules for the user language are given by the following.
Definition ("RR):

seq(a) : [ue, c, Q] a => l"e',c,Q)„ if "e-^-f... V

send(a): [ufl[uu < mid("v)@"v'], c, Q] a =*■ [uÄ[nil], c, Q] „ , aEmü(\ < mid("vWv')

rpc(o,ao) : ["£["« • mid{"v)\, c, Q) „ =*■ [ao,"R, c, Q] „ , [a]«, , uEmit{uv< m:dC8)@no)

if oo $ acq{l"Rla' .mid("f>)],c, C)„)

rcv(a.ao,u"): [°o,u-R,';, Q]„ , [o]^, ao < mid(["v] * "S)@c' =*■ ["£[»], c, Q] . , [nil.nil, []] v

deliver(a,u,\f): lbid{"v), [], Q] a , a <UM =*• lbid(%), [aM], Q] „

walk(a) : [uß[ready(fci<i(v,S))]]1
uM, Q] „ =*• [bidCv), Q, []] . if behMatch(Lib, bid,'*)

leta(a,tt): [uÄ[[letactor{ä; := ue}ue], c, Q] „ =*• [uÄ[ue[ä := a\], c, Q] a , { [ue,[ä := 5), c, []] 0l}i<i<ifc

if Len(ö) = Len(i) = k and 5 n ac?("Ä[letac:tt>r{i := "e}"e], c, Q) = 0

cstr(n) : [bid{"v), [UM] * Qi,Qr]*=* [cstrExp(Lib, bid,"v,uM),"M ,bid("v), Qt, Qr] .

enable(a): [f ,"M. bid{"V), Qi, QA a => [methExp{Lib,bid,'iD,aM),msgCust{uM),Qi* Qr]a

disable(o) : [uv."M, bid("v), Qt, Qr] a => [bid{"v), Qt, Qr *["M]] * iCv^i

check(a) : [ueo,uM, bid{"v), Qt, Qr] a =* [uei,"M, bid{"v), Qt, Qr) a if ueo-^„,m.,c«,.(»M) %

376

where "Emit{uv < UM) = "v < "M if "v e A and msgCusVM 6 A U {nil}, otherwise it is 0. As in the kernel
language, the meta-function "Emit prevents ill-formed messages from getting into the system.

5 A Semantics Preserving User to Kernel Translation

In this section we define a translation, %2k : "C -+ kC and show that this translation preserves interaction semantics.
u2k is a family of maps, one for each syntactic category. The members of the family are distinguished by context
of application rather than by name. Programs are translated by translating the library, actors, and messages parts. A
library is translated by translating the function and behavior definitions, producing a kernel language library. An actor
description is translated by translating the expression part assuming it executes in a local context in which the current
message has no customer and message queue is empty. A message description is translated by simply eliminating the
syntactic sugar. The core of the translation is its behavior on expressions. Expressions are translated in the context
of a user library. In order to leave this dependence implicit, we adopt a standard convention about converting user
function and behavior identifiers into variables and assume sufficient renaming has been done to avoid conflicts. The
translation u2k("e) of a user expression is a lambda term of the form Xc.Xq.ke which when applied to a customer, c,
and a message queue, q, (represented as a list) reduces to a kernel expression that corresponds to the user expression
executing in a local context where the current message has customer c and message queue elements are the elements

of q. We use the following abbreviation u2k" (ue, c, q) = app(u2A(ue), c, q)) in defining the translation.
The translation of the expression forms that are common to the two languages as well as customer and asyn-

chronous send are straightforward. It amounts to passing the customer and message queue parameters to the translated
subexpressions. The translation of synchronous invocations (requests) and readybid are where care is needed. In
the user language, the transition that delivers the reply to a request involves two actors, the actor requesting the reply
and the actor created to serve as the reply address, as well as the reply message. Kernel actor transitions involve at
most one actor. The three-body interaction is replaced by a delivery to the reply address followed by a forwarding
and delivery to the requesting actor. To avoid forgery, we introduce a third actor which has null behavior and simply
serves as a secret key known only by the requestor and the actor serving as the reply address. The forwarded message
is tagged with this key.

The translation of a readybid expression must produce code to walk the message queue, checking the disabling
constraints for the method of each message. If an enabled message is found, then the translated method body is
executed. If the end of the queue is reached, then the actor executes ready with a behavior that treats the next message
delivered as the next element of the message queue to check.

We begin by defining the mapping on programs, and work our way down to expressions. Programs are translated
as follows:

u2fc(program(receptionists : p externals : x — program(receptionists : p externals : \

library : "Lib library : u2k(uLib)

actors : {(a := uej)i<,<i actors : {a,- := u2k"("e,-,nil,nil)}Ki<i

messages : {aj < Mj}J<i<n)) messages : {aj < Mj}1<i<n)

To translate function definitions we associate a kernel function symbol ^fid to each user function identifier, fid.
The translation of a definition of fid yields a definition of 'fid. The translation of behavior definitions is a little more
complex. For each defined behavior identifier, bid, the translation consists of definitions of three operations: kbid, the
top level behavior function; Qvs.lk[bid], controls the queue walking for bid; and Mcheckf&id], checks constraints for
a particular message.

User functions, behaviors and methods have parameter lists. The translated operations will be applied to a list of
arguments and must check if the number of arguments is correct and then bind these to the individual parameters. For
this purpose, we define a family of abbreviations parBind[p, t;, e] that binds elements of p to corresponding elements
of v in e. The translation of a function definition is given by:

u2k(i\mctionjid(p)''e) = kfid := Xc.Xq.Xy.lt (not(equal?(length(y),n)),
hang,
parBind(p,y, u2k'("e,c, q)))

where Len(p) = n and hang is some functional redex that fails to reduce, for example car(nil), thus hanging the
computation if the arguments do not match the parameters.

Let mcthodDcfs be {method mid,(pi)[disable - when "e?]"e™ \ i < mw] ("ef is taken to be to f if no
disabling constraint is present). The translation u2fc(behavior bid(p)(methodDeJs)) of a behavior definition with
Len(p) = n is kbid = Xq.Xy.if(not(equal?(length(y),n)),nil,Qwalk[&:d](g,nil,i/)) Qvs.lk[bid](qi,qr,y)
waits for a message to be delivered, if qi = nil and otherwise calls Hdheck[bid](cdr(qi),qr,y){csr(qi) to check the
first element of?;. Hcheck[bid](qi,qT,y)("M) looks for a method definition matching "M. If none exists, or if the
matching method method is disabled relative to the behavior parameters, y and the message arguments, then it calls
Qu&lk[bid](qi, append(gr, list{uM)), y). Otherwise it reduces to the appropriately instantiated method body.

We give the clauses for the most interesting cases:

u2fc(customer()) = Xc.Xq.c

u2k(fid("e,,..., "en)) = Xc.Xq.xppffid, c, q, list„(u2r ("ei, c, j),... u2k' (%, c,«)))

377

,i2/t(letactor{o, := "e,}1<1<„ "e) = Ac.Ag.letactor{aj := u2k'("a, c,nil)}1<i<„u2i"(ue,c,g)

u2i(ready(Mdfei,..., "e„))) = Ac.Ag.let{ij := u2k"("ei, c, ?)>!<;<„
let{y := list„(u,... ,i„)}

clc(A/.app(k6i<i, q,y))

u2k("eo . mid["ei,..., "e,,]) =

Ac.Ag.let{i; := u2f("ej,c, g)}0<v<„

let{m„g, := list„(n,... ,!„)}

letactor{aj(ey := nil}

let{6 := RpcAm(self (), ak«y)}

letactor{u> := ready(ft)}

seq(send(io, msgMk(mi<2, margB, w)),

clc(Afc.ready(RpcWait(k, Okey))))

where the following definitions are also added to the generated kernel library of any program translation

RpcAux = Ai„.Aik«yAm.send(i„,msgHk(nil, listi(car(msgArgs(m))),ikcy)

RpcWait = Afc.AikeyAm.if (equal?(xkcy,msgCust(m)),

app(fc, car(msgArgs(m))),

seq(send(self(),m),ready(RpcWait(i:,ik=y))))

To establish correctness of the user-kernel translation, we extend it to actor theory configurations and show that
this mapping preserves interaction semantics. The following lemma says that the user-to-kernel translation commutes
with the meaning function on programs. This formalizes the commuting diagram of § 1.
Lemma (user-to-kernel.l): For any user program, "P, [u2k{"P)] = u2k(l"P])
Proof: By calculation using the definitions of [], and u2k.
The main work of the proof is in the following lemma.
Lemma (user-to-kernel.2): For any user configuration "K we have

Isem{uK) = Jsem{u2k(uK))\"M.

The main theorem is an easy consequence of the above lemmas.
Theorem (user-to-kernel):

Isem("P) = Isem{u2k{"P))l"M

6 Conclusions
The main technical contribution of this paper is to present a method for establishing equivalence of actor systems,
or more «enerally for distributed object-based systems. The main result of this paper is a proof of correctness of
what is essentially a stage of compilation of a high-level actor language. In [PT94] high-level object programming
constructs are explained by expansion in the Pict language. In [Wal95] a semantics for a variant of POOL is given
via translation to a sorted Pi calculus. This is shown to be a simulation (up to bisimulation) of a direct transition
system operational semantics of POOL. Core Facile is a synthesis of the typed lambda calculus and pi-calculus style
concurrency primitives. In [Ama94] a translation from Core Facile to a variant based on asynchronous communication
is given. The translation of a process is shown to preserve barbed bisimilarity and barbed congruence of the translation
of two expressions implies congruence of the expressions. The converse is left open. The translation goes by an
intermediate language obtained by adding a control operator to the asynchronous Facile much as we have done in
the kernel language. In [AP94] an extension of the Pi-calculus to model locality and failure is translated in to a
simply sorted Pi-calculus and similar properties are proved for the translation. Our approach differs in giving both
languages an abstract, composable semantics in the same semantic domain and showing that the translation preserves
the abstract semantics. The notion of barbed bisimulation seems to share with abstract actor structures and interaction
semantics the objective of hiding details of internal computation. More detailed investigation of the relation between
these approaches is an interesting topic for future work.

Acknowledgements
The authors would like to thank Gul Agha, Scott Smith and the three anonymous ICALP referees for many helpful comments
and corrections This work was done while the first author was partially supported by ARC grant IA131.84. The second au-
thor was partially supported by ONR grant N00014-94-1-0857, NSF grant CCR-9312580, and ARPA/SRI subcontract C-Q0483,
ARPA/AirForce grant F30502-96-1 -0300, NSF grant CRR-9633419.

378

References
[Agh86] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cambridge, Mass., 1986.
[Agh90] G. Agha. Concurrent object-oriented programming. Communications of the ACM, 33(9):125—141, September 1990.

[Ama94] R. M. Amadio. Translating core facile. Technical Report ECRC-1994-3, European Computer-Industry Research
Centre, 1994.

[AMST97] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for actor computation. Journal of Functional
Programming, 7:1-72, 1997.

[AP94] R. M. Amadio and S. Prasad. Localities and failures. Technical Report ECRC-1994-18, European Computer-Industry
Research Centre, 1994.

[BB92] G Berry and G. Boudol. The Chemical Abstract Machine. Theoretical Computer Science, 96:217-248, 1992.
[BH77] Henry G. Baker and Carl Hewitt. Laws for communicating parallel processes. In IFIP Congress, pages 987-992. IFIP,

August 1977.
[CÜ81] W. D. Clinger. Foundations of actor semantics. AI-TR- 633, MIT Artificial Intelligence Laboratory, May 1981.
[FF86J M. Felleisen and D.P. Friedman. Control operators, the SECD-machine, and the A-calculus. In M. Wirsing, editor,

Formal Description of Programming Concepts HI, pages 193-217. North-Holland, 1986.
[Hew77] C. Hewitt. Viewing control structures as patterns of passing messages. Journal of Artificial Intelligence, 8(3):323-364,

1977.
[Mes92] J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical Computer Science, 96(I):73-

155, 1992.
[Plo75] G. Plotkin. Call-by-name, call-by-value and the lambda calculus. Theoretical Computer Science, 1:125-159, 1975.
[PT94] Benjamin C. Pierce and David N. Turner. Concurrent objects in a process calculus. In Theory and Practice of Parallel

Programming (TPPP), Sendai, Japan, Lecture Notes in Computer Science. Springer-Verlag, November 1994. To
appear. 1995.

[Tal96a] C. L. Talcott. An actor rewriting theory. In Workshop on Rewriting Logic, number 4 in Electronic Notes in Theoretical
Computer Science, 1996.

[Tal96h] C. L. Talcott. Interaction semantics for components of distributed systems. In E. Najm and J-B. Stefani, editors, 1st
IFIP Workshop on Formal Methods for Open Object-based Distributed Systems, FMOODS'96, 1996. proceedings
published in 1997 by Chapman & Hall.

[Wal95] D. Walker. Objects in the 7r-calculus. Information and Computation, 116:253-271, 1995.

Periodic and Non-periodic Min-Max Equations

Uwe Schwiegeishohn1 and Lothar Thiele2

1 Computer Engineering Institute, University Dortmund, D-44221 Dortmund,
Germany, uwe@carla.e-technik.uni-dortmund.de

Computer Engineering and Communications Laboratory, Swiss Federal Institute of
Technology (ETH), CH-8092 Zürich, Switzerland, thiele@tik.ee.ethz.ch

Abstract. In this paper we address min-max equations for periodic and
non-periodic problems. In the non-periodic case a simple algorithm is
presented to determine whether a graph has a potential satisfying the
min-max equations. This method can also be used to solve a more general
quasi periodic min-max problem on periodic graphs. Also some results
regarding the uniqueness of solutions in the latter case are given.

1 Introduction

Min-max problems can be considered to be a generalization of a variety of graph
problems involving potentials. There is a close relationship with network flow
problems (non-periodic case), see e.g. [1], and the well known maximum cycle
mean problem (periodic case), see e.g. [10], [8]. In particular, previous results in
the non-periodic case can be related to a feasible potential function p observing

lower linear constraints

p(vj) < p{vi) + w(vi,Vj) VVJ £ V-,(vi,Vj) £ E (1)

and an optimal potential function p using min constraints

p(vj)= min {p{vi)+w{vi,Vj)} VWJ £ V (2)

associated with some network g-{V~,E,w). Our paper addresses a generaliza-
tion where these sets of inequalities are mixed for a given network g(V,E,w)
with their dual forms, that is upper linear constraints

p(vj) > p{vi) + w{vu Vj) VVJ £ V+, {vi, Vj) £ E (3)

and max constraints

p(vj)= max {pivj+wivi^j)} Vu,- £ V+ (4)
(vi,vj)eE

with V+ UV~ = V. If a distance function d is given additionally, the correspond-
ing quasi periodic problem deals with edge weights w{vi,Vj)-X(vj)d(vi, Vj) where
a specific period X(VJ) is associated with each node Vj.

380

In the area of interface timing verification, see [11, 17, 19], problems related
to the existence of min and/or max constraints frequently occur. There, the dif-
ference between the potentials of two nodes must be maximized under various
constraints. In particular, it is possible to transform one of the problems ad-
dressed in [11], [17] and [19] to a problem with mixed constraints (1), (2) and
(3). Different pseudo-polynomial algorithms are derived for the solution of this
problem based on iterative tightening [11], removing negative cycles [17] and
maximum separations [19]. However so far, neither a polynomial algorithm nor
a proof of intractability is known.

In comparison to these results, we are mainly dealing with constraints (2)
and (4). Note that constraints of the form (1) or (3) can easily be converted into
constraints (2) and (4) by a simply adding one additional node and two edges for
each node Vj with constraints of type (1) or (3). Regarding the non-periodic case
our paper presents efficient pseudo-polynomial algorithms for finding optimal
potentials satisfying constraints (2) and (4).

The consideration of constraints (4) in connection with periodic graphs has
raised significant interest in the past, as it is the root for many problems from
different application areas, see [9, 14, 10, 8]. This includes e.g. control theory
and manufacturing [5], timing properties of discrete event systems [15], parallel
algorithms [16], and other areas of computer science. A comprehensive treatment
of the theory and its applications can be found in [2]. Especially the use of linear
equations over a new max-plus algebra [5, 2] has produced many results. Some
of these results have even been generalized to problems which are periodic in
multiple dimensions, see [3].

Driven by application areas like asynchronous circuit design, timing and pro-
tocol verification, and timing behavior of general Petri nets, some recent ap-
proaches addressed the generalization of these results to dynamic graphs with
constraints of the form (4) and (2). These dynamic min-max systems have been
investigated in [12, 13, 2]. Further results in this direction are described in [6, 7].
However, the models used in these two groups of papers are quite different. Olsder
[12, 13] describes a periodic min-max problem in terms of an eigenvalue problem,
whereas Gunawardena [6, 7] defines a certain class of min-max functions. Both
models are special cases of those used in our paper.

Also with respect to numerical procedures and the uniqueness of the period,
the results in [12, 13] are restricted to a subclass of min-max problems. On
the other hand, [6, 7] contain "complete" results in the case that only two dis-
tances have the value 1 while all others are zero. For all other considered cases
(d(vi,Vj) € {0,1}), there is no procedure which decides whether a min-max sys-
tem has a period or not. Moreover, the given algorithm for the computation of
the period is exponential in the size of the graph. In this area our paper contains
the following new results:

— A relation between potential functions of dynamic and weight transformed
static graphs is derived. This is similar to a known result for max-plus prob-
lems [4].

- Results on the uniqueness of the periods in the quasi-periodic case are given
as well as algorithms to determine these periods.

381

2 The Static Min-Max Problem

2.1 Definitions and Properties

We start this section by denning various forms of graph potentials.

Definition 1 Min-Max Potential. Assume a weighted digraph Q{V = V+ U
V~,E, w) with V+ n V" = 0, E C V x V and tu : £ -> Q, also called min-max
graph subsequently. Then, a potential p : V -> Q is called feasible if

mj I < p(vj)+w(vj,Vi) V(vi,Vi) G £,«< G 1/-.

Further, a feasible potential p : V -» Q is a min potential if

p(i>i) = min {p(fj) + w(vj,Vi)} Vtii G V-.
(u,-,i;0GS)

Similarly, a feasible potential p : V ->■ Q is a max potential, if

p(fi) = max {p(^) +tu(uj,tii)} Vuj G V+.
(vitVi)€E)

Finally, a potential p : V -> Q is a min-max potential if it is a min potential
and a max potential at the same time. ■

The definition of a min-max potential directly leads to our first key problem:

Problem, 2. Is there a min-max potential for a given min-max graph Q ?

The problem can be simplified by using the following few observations:

1. If g consists of two independent graphs, it is sufficient to consider each graph
separately.

2. If g+ = (V,ED {V+ x V+),w) contains a positive weight cycle, then there
is no min-max potential for Q (positive cycle in a longest path problem).

3. If Q- =(V,EC\ (V~ x V~),w) contains a negative weight cycle, then there
is no min-max potential for Q (negative cycle in a shortest path problem).

4. It suffices to only consider bipartite min-max graphs where E C (V+ x
V~) U (V~ x V+) as additional nodes can be inserted without changing the
problem substantially. A proof of this claim is given in [18].

Therefore, we assume for the remainder of this section that Q is a connected
bipartite graph and that for each node Vj G V there is at least one edge (vi,Vj) G
E.

In the next corollary we show that knowledge about a min potential for a
graph can provide some information about min potentials for related graphs.

382

Corollary 3. // a bipartite graph Q(V,E,w) has a min potential, then there is
also a min potential for any graph Q'{V,E,w') with w'(vi,Vj) < w(vi,Vj) for
all (vi,Vj) G E. On the other hand, if a bipartite graph Q(V,E,w) has no min
potential, then no min potential exists for any graph Q' (V, E,w') withw'(vi,Vj) >
w{vi,Vj) for all (vi,Vj) G E.

Proof. Let p be a min potential of Q and w'(vi,Vj) < w(vi,Vj) for all {vi,Vj) G E.
Then p' with

,, s(p(vi) forVi€V+

P[Vi> {min^.^eE^piv^+w'iv^Vi)} for Vi G V~

is a min potential for Q1', as p'(vi) > p(vj) + w(vj,Vi) > p'(vj) + w'(vj,Vi) for
all Vi G V+ and {vj,Vi) G E. The second claim of the corollary is a direct
consequence of the first one. ■

Of course, a similar corollary holds for max potentials as well. It is easy to see
that 'tight' edges (vi,Vj) of a min-max graph with p(vj) = p{v{) + w{vi,Vj) are
especially important. For any min-max potential p, there must be a tight input
edge for each node Vj G V. Also, a min-max potential for a graph Q implies the
existence of a cycle C consisting of tight edges. In Q this cycle C must be a zero

weight cycle, i.e. T,(Vi,vj)ecw(vi'vj) = °-
Moreover, we can restrict ourselves to those min-max potentials where Qp

is connected. Then, the difference between the min-max potential values of any
two vertices \p(vi) - P(VJ)\ is bounded by the maximum length of any simple
(undirected) path in Q. For such a path we can use the following upper bound
s:

s= XX ma? J\w(vi,Vj)\}). (5)
vltv {Vi'Vj)€E

2.2 Algorithms

Now, we describe a method to determine whether a bipartite weighted digraph
has a min-max potential. This method is based on Function increase in Table 1.

The following corollary describes the possible outcome of Function increase,
see [18] for a detailed proof.

Corollary 4. // and only if the bipartite min-max graph Q has a min potential,
then Function increase returns 'true' and the generated potential p is a min
potential. ■

Any change of the potential of a node Vi G V+ requires that at some time
during the execution of the function there was a node Vj G V~ with p(vi) =
p(vj) + w(vj,Vi). On the other hand, if p(uj) = p(vj) + w(vj,vt) at any time
during the execution of the loop for a node Vi G V+, then there is a tight edge
{vk,Vi) for some node vu G V~ provided the function returns 'true'. Hence, if

383

Boolean Function increase^, p, Qt) {
in Q; inout p; out Qt;
a = max{p(i>) | v € V+};

loop: p{vj) = m\n{p{vi) + w{vi,Vj) \ (vi,Vj) € E} for all Vj € V";
if(3(vj,Vi) e E with u; € F+ and p{vi) < p{vj) + w(vj,Vi)) {

p(vi) =p{vj) + w(vj,vi); }
else { Qt = Q\ return 'true'; }
if (there is no change in the potential of any node i>; with p(vi) < a + s) {

Qt = subgraph of Q induced by all nodes with p(vi) < a + s;
return 'false'; }

goto loop;

Table 1. Function increase

Function increase starts with a max potential and returns 'true', the generated
potential p will be a min-max potential. This leads directly to the following

theorem:

Theorem 5. Q has a min-max potential, if and only if it has a min potential

and a max potential. B

Therefore, a min-max potential of Q can be detected by first applying Func-
tion increase to an arbitrary initial potential and then applying its dual coun-
terpart Function decrease to the resulting potential. The existence of a min-max
potential for Q requires that Function increase and Function decrease both return

'true'.
This procedure constitutes a pseudo polynomial way to solve the min-max

problem. However, cycles with a small weight sum, like e.g. w{vi,Vj)+w(vj, vt) =
e ->• 0, in connection with large edge weights may lead to a large number of
iterations. This problem is addressed in [18], where we introduce improved al-
ternatives to functions increase and decrease.

3 The Dynamic Min-Max Problem

In this section we address the quasi-periodic min-max problem on dynamic
graphs. To this end, we first define dynamic graphs as usual via static graphs,
see e.g. [9]. Then, Problem 2 is extended to dynamic graphs.

Definition 6 Static Graph. A (bipartite) static graph Qa{V, E, w, d) with V =
V+ U V~ is a bipartite weighted digraph with a weight function w : E -> Z and

a distance function d: E —> Z>Q. ■

Definition 7 Dynamic Graph. The dynamic graph corresponding to a given
static graph Qs{y,E,w,d) is an infinite weighted bipartite graph Qd{Vd,Ed,wd)

where

384

Vd ={vi(k)\vi£V,keZ>0},
Ed = {{vi(k - d(vi, Vj)),Vj(k)) |

(vi,Vj) G E,k e Z,k> d(vi,Vj)},
wd(vi(k - d(vi,Vj)),Vj(k)) =w{vi,Vj) for all (vi(k - d(vi,Vj)),Vj(k)) G Ed.

Definition 8 Quasi-Periodic Min-Max Potential. The quasi-periodic min-
max potential pd : Vd ->■ Q of a dynamic graph Gd{Vd,Ed,wd) is a min-max
potential pd for all k > K = max(VitVj)eB{d(vi,Vj)}. Moreover, there is a period
function A : V -» Q such that

pd{vi(k + 1)) = Pd(vi(k)) + X(vi) for all v^k) £ Vd.

Problem 9. Is there a quasi-periodic min-max potential for a dynamic graph
gd(Vd,Ed,wd)?

In order to avoid dealing with infinite dynamic graphs, we use the regularity
of those graphs to describe them with a cycle graph, see also [1].

Definition 10 Quasi-Periodic Cycle Graph. For a static graph
Qs(V,E,w,d) and a period function A : V ->• Q with \(vi) > \{VJ) for all
Vi € V+ and Vi,Vj adjacent in Gs, the quasi-periodic cycle graph Qc(V,Ec,wc)
is defined by

Ec = {(vi,Vj) £ E | \(vi) = X(vj)},

wc(vi,Vj) = w(vi,Vj) - X(vj)d(vi,Vj) for all (vi,Vj) G Ec.

Now, the following corollary establishes a close relation between the quasi-
periodic min-max problem of a dynamic graph and the min-max problem of the
corresponding quasi-periodic cycle graph.

Corollary 11. Assume a static graph Qs{V,E,w,d). Then, the following two
statements are equivalent:

- The dynamic graph Qd corresponding to Qs has a quasi-periodic min-max
potential pd with the period function X.

- The quasi-periodic cycle graph Qc corresponding to Qs and X has a min-max

385

Proof. A max potential of Qd requires for all Vi{k) G Vd
+ and k > K the correct-

ness of the equation
Pd{vi(k)) =

max {Pd(vj(k - d(vj,Vi))) + wd(vj(k - d(vj,Vi)),Vi{k))}.
(Vjik-divj ,Vi)),Vi(k))eEd

Using the definition of a dynamic graph and the periodicity of pd we obtain
the equivalent conditions

PrfMO)) = max {pd(uj(0))+tüc(uj,i;i) + (Ä;-d(uj)i;i))(A(vJ-)-Ä(«i))} V/c> K
(vj,Vi)€E

(6)

1. örf has a quasi-periodic min-max potential ->■ öc has a min-max potential.
First assume that A(u») < A(i>j). Then, £c does not exist. Also, the validity
of Equation (6) for all k > K prevents Pd(vi(0)) from being finite.
On the other hand if A(u,) > \{VJ), then edge (vj,Vi) cannot affect Equa-
tion (6) for k -¥ co. Therefore, it need not be considered in Equation (6).
This results in

Pd(vi{0)) = max {pd(vj(0)) + wc(vj,Vi)} Vk > K,
{vj,Vi)£Ec

which leads to a max potential pc{vi) = Pd(t>i(0)) for all vt E V+.
2. £c has a min-max potential -> Qd has a quasi-periodic min-max potential.

Suppose that a cycle graph is given with pc(vi) = max(v.<Vi)eEc{Pc(vj) +
wc(vj,Vi)} for all vt e Vc. If we set pd(vi(0)) = pc{vi) for all vt G Ec, then
Equation (6) holds as X(vi) > X(VJ) and the third term in the max-expression
becomes sufficiently negative for all edges in E\EC and k ->• oo.

Similar arguments are used for all Vi (k) G Vd~. ■

Due to Corollary 11, the solution in the quasi-periodic case divides Qs into
subgraphs with different periods. In other words, the quasi-periodic cycle graph
Qc of Qs consists of unconnected subgraphs, where each subgraph has a min-
max potential and a period common to all nodes. This suggests an algorithm to
determine the periods and subgraphs by iteratively pealing off subgraphs with
decreasing periods from the static graph. Therefore, at first the case of a single
period A for all nodes vi G Qs will be considered. The functions lower-period
and upper-period are introduced to determine the single period A for all nodes
Vi G Qs.

Note that if a dynamic graph Qd has a periodic min-max potential with period
A, then the corresponding cycle graph Qc has at least one directed cycle C with

£(<^)ecM^,Vj) = 0. Assuming T,(Vi,Vj)ecd(vi>vi) > ° this results in

£(„<,v,-)ec <*("*> "i)'

386

Boolean Function lower-period(<5s, A;, p) {
in Qs; out A;; inout p;
determine s and t\
\\ = s\ \u — S]
generate the periodic cycle graph Qc of Q, and A;;
if (increase(<5c, p, Qt)) { h = -co; return 'true'; }
generate the periodic cycle graph Qc of Qs and \u;
if (!increase(öc, P, Qt)) { return 'false'; }

loop A = (\u + A;)/2;
generate the periodic cycle graph Qc of Qs and A;
if (!increase(£c, p, Gt)) { A(= A; } else { Xu = A; }
if (A„ - A/ < 1/t2) { return 'true'; }
goto loop;

}

Table 2. Function lower-period

Now, we can introduce Function lower-period in Table 2 to determine the
minimal period A/ for which a periodic min-max potential may exist. This func-
tion is based on binary search, see also [10], [1] and uses the following upper
bound t for the sum of distances in any simple path in Qs:

E(, max {\d(vi,Vj)\}). (8)
(vi,Vj)£E

VjEV

The correctness of Function lower-period is addressed in Corollary 12. In the
remaining part of this section all corollaries and theorems are given without
proofs due to space restrictions. Regarding the proofs the interested reader is

referred to [18].

Corollary 12. If Function lower-period returns 'false', then the dynamic graph
Qd corresponding to Gs has no periodic min-max potential. Otherwise, Gd has
min potentials for all k > K and for all periods X > Xi, while there is no min-

potential for all periods X < Xi. ■

Similarly, a Function upper-period based on Function decrease is used to de-
termine the maximal period A;, for which a periodic min-max potential may ex-
ist. The combination of both functions yields an algorithm to determine whether
there are periodic min-max potentials for a dynamic graph Gd- The proof is a
direct consequence of Corollary 12, its counterpart for Function upper-period and

Theorem 5.

Theorem 13. If either Function lower-period or Function upper-period return
'false' or if A/ > Xu is produced, then there is no periodic min-max potential for
the dynamic graph Gd corresponding to Gs- Otherwise, there are periodic min-
max potentials for all periods A; < A < Au. ■

387

In the following corollary we address the computational complexity for the
presented method.

Corollary 14. There is an algorithm which computes a periodic min-max po-
tential in pseudo-polynomial time. ■

Finally, a result on the uniqueness of a period A is derived.

Theorem 15. If the static graph Qs corresponding to a dynamic graph Qd con-
tains only edges with distance > 0, then Gd either has no periodic min-max
potential or a min-max potential with a unique period. ■

Now, we can return to the main task of addressing the general case of different
periods associated with the nodes of the dynamic graph. In order to simplify the
following discussions, we suppose that there is no directed cycle with a zero sum
of distances in the given static graph Qs, i.e.

V" d(vi,Vj) > 0 for all directed cycles C of Qs.
{v,,Vj)<EC

Remember that the period function defines a partition of the dynamic graphs
into subgraphs whose nodes have equal periods. At first, these subgraphs are
defined formally. This is done using the weighted bipartite graph Q in a similar
fashion as in the static min-max problem, see Section 2 and Definition 1.

Definition 16 Dominating Subgraph. A dominating subgraph Gt of a di-
graph Q (as defined in Definition 1) is a subgraph of Q with the following prop-
erties:

1. There exists a min potential p of Q which is a min-max potential of Gt-
2. There are no edges (vi,Vj) or (vj,Vi) with vt G Vf and Vj £ (V+\Vt

+).

Next, the following theorem provides results on one step of a procedure which
determines the quasi-periodic min-max potential of a given static graph. It is
shown that the concatenation of Functions lower-period and decrease

- peals off a subgraph of a given static graph,
- produces a period Xmax and a corresponding min-max potential for this

subgraph and
- that the remaining static graph has a min potential for a period less than

A-max ■

Corollary 17. Given a static graph Gs- After execution of Functions lower-
period (Gs, Xmax, p) with initial potentials p(vi) = 0 and decrease^, p, Gt)
with the periodic cycle graph Gc corresponding to Gs and Xmax, the following
properties hold:

388

1. Gt w a dominating subgraph of Gc-
2. The application of Function lower-period((os\0t), A, p) returns 'true' with

X ^ Xmax ■

Now, we are ready to present the complete algorithm for the calculation of the
quasi-periodic min-max potential, see Table 3. Input to the Function period(Gs,
\{)) is the given static graph Gs, while its output is the resulting period func-
tion A. The corresponding min-max potentials can be either extracted during
execution of Function period or by using the proof of Corollary 11.

Boolean Function period(5s, A()) {
in Gs', out A();

loop p(vi) = 0 for all Vi G Vs;
lower-period(Ss, Xmax, p);
generate the periodic cycle graph Qc of Gs and Xmax;
if (decrease^, p, Gt)) {

X(v{) = Xmax for all Vi G Vt;
return 'true'; }

else {
X(vi) = Xmax for all Vi G Vf,
Gs = Gs\Gt\
goto loop;

}
}

Table 3. Function period

Finally, the following theorem states one of the main results of this paper.

Theorem 18. Any dynamic graph Gd has a quasi-periodic min-max potential.
The potential is unique. ■

4 Conclusion

In this paper, we demonstrate a close relationship between static and dynamic
min-max problems. Also, pseudo polynomial algorithms for the solution of min-
max equations systems in the quasi-periodic and non-periodic case are presented.
Further, we show that any dynamic graph has a unique period function.

References

1. AHUJA, R. K., MAGNANTI, T. L., AND ORLIN, J. Network Flows. Prentice Hall,
1993.

389

2. BACCELLI, F., COHEN, G., OLSDER, G., AND QUADRAT, J.-P. Synchronization
and Linearity. John Wiley, Sons, New York, 1992.

3. BACKES, W., SCHWIEGELSHOHN, U., AND THIELE, L. Analysis of free schedule
in periodic graphs. In J^th Annual ACM Symposium on Parallel Algorithms and
Architectures, San Diego, CA, USA, June 1992, pp. 333-342.

4. COHEN, G., DUBOIS, D., QUADRAT, J. P., AND VIOT, M. A linear-system-
theoretic view of discrete-event processes and its use for performance evaluation in
manufacturing. IEEE Transactions on Automatic Control AC-30, No. 3, March
1985, 210-220.

5. CUNNINGHAME-GREEN, R. Describing industrial processes and approximating
their steady-state behaviour. Opt. Res. Quart. 13, 1962, 95-100.

6. GUNAWARDENA, J. Timing analysis of digital circuits and the theory of min-max
functions. In TAU'93, ACM International Workshop on Timing Issues in the
Specification and Synthesis of Digital Systems, September 1993.

7. GUNAWARDENA, J. Min-max functions. Tech. Rep. to be published in Discrete
Event Dynamic Systems, Department of Computer Science, Stanford University,
Stanford, CA 94305, USA, March 1994.

8. KARP, R. A characterization of the minimum cycle mean in a digraph. Discrete
Mathematics 23, 1978, 309-311.

9. KOSARAJU, S. R., AND SULLIVAN, G. F. Detecting cycles in dynamic graphs in
polynomial time. In 20th Annual ACM Symposium on Theory of Computing, 1988,
pp. 398-406.

10. LAWLER, E. Optimal cycles in doubly weighted directed linear graphs. In Theorie
des Graphes, 1966, P. Rosenstiehl, Ed., pp. 209-213.

11. MCMILLAN, K., AND DILL, D. Algorithms for interface timing verification. In
IEEE Int. Conference on Computer Design, 1992, pp. 48-51

12. OLSDER, G. Eigenvalues of dynamic max-min systems. Discrete Event Dynamic
Systems: Theory and Applications, 1991, 1:177-207.

13. OLSDER, G. Analyse de systemes min-max. Tech. Rep. 1904, Institute National
de Recherche en Informatique et en Automatique, May 1993.

14. ORLIN, J. Some problems in dynamic and periodic graphs. In Progress in Combi-
natorial Optimization, Academic Press, Orlando, Florida, 1984, W.R. Pulleyblank,
Ed., pp. 215-225.

15. RAMAMOORTHY, C. Performance evaluation of asynchronous concurrent systems
using Petri nets. IEEE Transactions on Software Engineering, 1980, 440-449.

16. REITER, R. Scheduling parallel computations. Journal of the Association for
Computing Machinery 15, No. 4, October 1968, 590-599.

17. WALKUP, E., AND BORRIELLO, G. Interface timing verification with application
to synthesis. In IEEE/ACM Design Automation Conference, 1994, pp. 106-112.

18. SCHWIEGELSHOHN, U., AND THIELE, L. Dynamic min max problems. Technical
Report ETH Zurich, Computer Engineering and Networks Laboratory, January
1997.

19. YEN, T., ISHII, A., CASAVANT, A., AND WOLF, W. Efficient algorithms for inter-
face timing verification. Technical Report Princeton University, June 1995.

Efficient Parallel Graph Algorithms for Coarse
Grained Multicomputers and BSP *

E. Cäceres1, F. Dehne2, A. Ferreira3, P. Flocchini4,
I. Rieping5, A. Roncato6, N. Santoro7, and S. W. Song8

Univ. Federal de Mato Grosso do Sul, Campo Grande, Brasil, edson@dct.ufms.br
2 Carleton Univ., Ottawa, Canada, dehne@scs.carleton.ca

3 ENS Lyon, Lyon, France, ferreira@lip.ens-lyon.fr
4 Univ. de Montreal, Montreal, Canada, flocchin@iro.umontreal.ca

5 Univ. Paderborn, Paderborn, Germany, inri@uni-paderborn.de
6 Facolta di Scienze Mat. Fis. e Nat., Mestre, Italia, roncato@dsi.unive.it

7 Carleton Univ., Ottawa, Canada, santoro@scs.carleton.ca
8 Univ. of Säo Paulo, Säo Paulo, Brazil, song@ime.usp.br

Abstract. In this paper, we present deterministic parallel algorithms
for the coarse grained multicomputer (CGM) and bulk-synchronous par-
allel computer (BSP) models which solve the following well known graph
problems: (1) list ranking, (2) Euler tour construction, (3) computing the
connected components and spanning forest, (4) lowest common ancestor
preprocessing, (5) tree contraction and expression tree evaluation, (6)
computing an ear decomposition or open ear decomposition, (7) 2-edge
connectivity and biconnectivity (testing and component computation),
and (8) cordal graph recognition (finding a perfect elimination ordering).
The algorithms for Problems 1-7 require O(logp) communication rounds
and linear sequential work per round. Our results for Problems 1 and 2
hold for arbitrary ratios ?-, i.e. they are fully scalable, and for Problems
3-8 it is assumed that - > p£, e > 0, which is true for all commercially
available multiprocessors. We view the algorithms presented as an im-
portant step towards the final goal of O(l) communication rounds. Note
that, the number of communication rounds obtained in this paper is in-
dependent of n and grows only very slowly with respect to p. Hence,
for most practical purposes, the number of communication rounds can
be considered as constant. The result for Problem 1 is a considerable
improvement over those previously reported. The algorithms for Prob-
lems 2-7 are the first practically relevant deterministic parallel algorithms
for these problems to be used for commercially available coarse grained
parallel machines.

Research partially supported by the Natural Sciences and Engineering Research
Council of Canada, FAPESP (Brasil), CNPq (Brasil), PROTEM-2-TCPAC (Brasil),
the Commission of the European Communities (ESPRIT Long Term Research
Project 20244, ALCOM-IT), DFG-SFB 376 "Massive Parallelität" (Germany), and
the Region Rhone-Alpes (France).

391

1 Introduction

The Models: Speedup results for theoretical PRAM algorithms do not neces-
sarily match the speedups observed on real machines [2] [31]. Given sufficient
slackness in the number of processors, Valiant's BSP approach [34] simulates
PRAM algorithms optimally on distributed memory parallel systems. Valiant
points out, however, that one may want to design algorithms that utilize local
computations and minimize global operations [33] [34]. The BSP approach re-
quires that g (= local computation speed / router bandwidth) is low, or fixed,
even for increasing number of processors. Gerbessiotis and Valiant [17] describe
circumstances where PRAM simulations can not be performed efficiently, among
others, if the factor g is high. Unfortunately, this is true for most currently avail-
able multiprocessors. The parallel algorithms presented in this paper consider
this case for graph problems.

As pointed out in [34], the cost of a message also contains a constant overhead
cost s. The value of s can be fairly large and the total message overhead cost
can have a considerable impact on the speedup observed (see e.g. [8]). We are
therefore also using a more practical version of the BSP model, referred to as
the coarse grained multicomputer model (CGM) [8], [9], [10]. It is comprised
of a set of p processors Pi,...,Pp with 0(n/p) local memory per processor
and an arbitrary communication network (or shared memory). All algorithms
consist of alternating local computation and global communication rounds. Each
communication round consists of routing a single /i-relation with h = 0(n/p),
i.e. each processor sends 0(n/p) data and receives 0(n/p) data. We require
that all information sent from a given processor to another processor in one
communication round is packed into one long message, thereby minimizing the
message overhead. In the BSP model, a computation/communication round is
equivalent to a superstep with L = -g (plus the above "packing requirement").

Finding an optimal algorithm in the coarse grained multicomputer model
(CGM) is equivalent to minimizing the number of communication rounds as well
as the total local computation time. This considers all parameters discussed above
that are affecting the final observed speedup and it requires no assumption on
g. Furthermore, it has been shown that minimizing the number of supersteps
also leads to improved portability across different parallel architectures ([33]
[34] [13]). The above model has been used (explicitly or implicitly) in parallel
algorithm design for various problems ([4], [8], [9], [14], [12], [22], [10]) and shown
very good practical timing results.

The Results: In this paper, we study deterministic parallel graph algorithms
for the CGM and BSP models. We consider the following well known graph
problems:

1. list ranking
2. Euler tour construction
3. computing the connected components and spanning forest
4. lowest common ancestor preprocessing

392

5. tree contraction and expression tree evaluation
6. computing an ear decomposition or open ear decomposition
7. 2-edge connectivity and biconnectivity (testing and component computation)

8. cordal graph recognition, finding a perfect elimination ordering

These problems have been extensively studied for the PRAM (see e.g. [28])
and for fine-grained parallel network models of computation (see e.g. [1]). However,
for the practically much more relevant CGM/BSP model there exist, to the best
of our knowledge, only a few results on parallel graph algorithms.

Reid-Miller's [27] presented an empirical study of parallel list ranking for the
Cray C-90. The paper followed essentially the CGM/BSP model and claimed
that this was the fastest list ranking implementation so far. The algorithm in [27]
required O(logn) communication rounds. In [11], an improved algorithm was
presented which required, with high probability, only O(klogp) rounds, where
k < log* n. In [13], O(logp) communication rounds are achieved by a random-
ized algorithm. Bäumker and Dittrich [3] presented a randomized connected
components algorithm for planar graphs using O(logp) communication rounds.
They suggest an extension of this algorithm for general graphs with the same
number of communication rounds.

We improve these results by giving the first deterministic algorithms for list
ranking and computing connected components using O(logp) rounds. This im-
provement is an important step towards the ultimate goal, a deterministic al-
gorithm with only 0(1) communication rounds. In fact, it is an open problem
whether this is possible for these graph problems. Algorithms with 0(1) rounds
have been presented for various Computational Geometry problems [8, 9, 10, 11,
16], but the graph problems studied in this paper have considerably less "in-
ternal structure" which could be exploited to obtain such solutions. Note that,
in practice, the number of processors is usually fixed. In contrast to the previous
deterministic results, the improved number of communication rounds obtained
in this paper, O(logp), is independent of n and grows only very slowly with
respect to p. Hence, for most practical purposes, the number of communication
rounds can be considered as constant. We expect, that this will be of considerable

practical relevance.
As in [27] we will, in general, assume that n » p (coarse grained), because

this is usually the case in practice. Note, however, that our results for Problems
1 and 2 hold for arbitrary ratios |. Goodrich [18] calls such algorithms fully
scalable. For Problems 3-8 we will assume that £ > p\ e > 0, which is true for

all commercially available multiprocessors.

2 List Ranking

Let L be a list represented by a vector s s.t. s[i] is the node following i in the list
L. The last element / of the list L is the one with s[l] = l. The distance between
i and j, dL(i,j), is the number of nodes between i and j plus 1 (i.e. the distance
is 0 iff i = j, and it is one if and only if one node follows the other). The list

393

ranking problem consists of computing for each i £ L the distance between i and

I, referred to as rank 1(1) = d/,(i, Z).
For our algorithm, we need the following definitions. A r-ruling set is defined

as a subset of selected list elements that has the following properties: (1) No two
neighboring elements are selected. (2) The distance of any unselected element to
the next selected element is at most r.

An overview of our CGM list ranking algorithm is as follows. First, we com-
pute a 0(j»2)-ruling set R with \R\ = 0(n/p) and broadcast R to all processors.
More precisely, the 0(p2)-ruling set R is represented as a linked list where each
element i is assigned a pointer to the next element j of R with respect to the
order implied by L as well as the distance between i and j in L. Then, every
processor sequentially performs a list ranking of R, computing for each i £ R
its distance to the last element of L. All other list elements have at most dis-
tance 0(p2) from the next element of R in the list. Their distance is determined
by simulating standard PRAM pointer jumping until the next element of R is

reached.
All steps, except for the computation of the 0(p2)-ruling set R, can be easily

implemented in O(logp) communication rounds.

In the remainder of this section we introduce a new technique, called determ-
inistic list compression, which will allows us to compute a 0(p2)-ruling set in
O(logp) communication rounds.

The basic idea behind deterministic list compression is to have an alternating
sequence of compress and concatenate phases. In a compress phase, we select a
subset of list elements, and in a concatenate phase we use pointer jumping to
work our way towards building a linked list of selected elements.

For the compress phase, we apply the deterministic coin tossing technique
of [7] but with a different set of labels. Instead of the memory address used
in [7], we use the number of the processor storing list item i as its label l(i).
During the computation, we select sequentially the elements of R in the sublists
of subsequent nodes in L which are stored at the same processor. The term
"subsequent" refers to successor with respect to the current value of s.

Note that, there are at most p different labels, and subsequent nodes in those
parts of L that are not processed sequentially have different labels. We call list
element s[i] a local maximum if Z(i) < l(s[i\) > l{s[s[i}]). We apply deterministic
coin tossing to those parts of L that are not processed sequentially.

The naive approach of applying this procedure O(logp) times would yield
a 0(p2)-ruling set, but unfortunately it would require more than O(logp) com-
munication rounds. Note that, when we want to apply it for a second, third,
etc. time, the elements selected previously need to be linked by pointers. Since
two subsequent elements selected by deterministic coin tossing can have distance
O(p), this may require O(logp) communication rounds, each. Hence, this straight
forward approach requires a total of 0(log2p) communication rounds.

Notice, however, that if two selected elements are at distance 0(p) at a given
moment, then it is unnecessary to further apply deterministic coin tossing in order
to reduce the number of selected elements. The basic approach of our algorithm is

394

therefore to interleave pointer jumping and deterministic coin tossing operations
with respect to our new labeling scheme. More precisely, we will have only one
pointer jumping step between subsequent deterministic coin tossing steps, and
such pointer jumping operations will not be applied to those list elements that

are pointing to selected elements.
This concludes the high level overview of our deterministic list compression

techniques. The following describes the algorithm in detail.

Algorithm 1 CGM Algorithm for computing a p2-ruling set.
Input: A linked list L and a vector s where s[i] is the node following i in the
list L. L and s are stored on a p processor CGM with total 0(n) memory.
Output: A set of selected nodes of L (which is a p2-ruling set).

(1) Mark all list elements as not selected.

(2) FOR EVERY list element i IN PARALLEL:
IF l(i) < l{s[i\) > l(s[s[t\]) THEN mark s[i\ as selected.

(3) Sequentially, at each processor, process the sublists of subsequent list ele-
ments which are stored at the same processor. For each such sublist, mark
every second element as selected. If a sublist has only two elements, and not
both neighbors have a smaller label, then mark both elements of the sublist

as not selected.

(4) FORfc= 1...log? DO
(4.1) FOR EVERY list element i IN PARALLEL:

IF s[i] is not selected THEN set s[i] := s[s[i]].

(4.2) FOR EVERY list element i IN PARALLEL:
IF (», *[*] and s[s[t]] are selected) AND NOT (/(*) < l(s[i\) >
l{s[s[i]])) AND (/(») ^ l(s[{\)) AND (/(*[«]) # l{s[s[t\])) THEN mark
s[i] as not selected.

(4.3) Sequentially, at each processor, process the sublists of subsequent selec-
ted list elements which are stored at the same processor. For each such
sublist, mark every second selected element as not selected. If a sublist
has only two elements, and not both neighbors have a smaller label, then
mark both elements of the sublist as not selected.

(5) Select the last element of L.

— End of Algorithm —

We first prove that the set of elements selected at the end of Algorithm 1 is

of size at most 0(n/p).

Lemma 1. After the kth iteration in Step 4, there are no more than two selected
elements among any 2k subsequent elements of the original list L.

395

Proof. Due to space limitations, the proof is omitted. It can be found in the full

version of this paper [5].

In order to show that subsequent elements selected at the end of Algorithm 1
have distance at most 0(p2), we need the following lemmas.

Lemma 2. After every execution of Step 4-3, the distance of two subsequent
selected elements with respect to the current pointers (represented by vector s) is

at most 0(p).

Proof. Due to space limitations, the proof is omitted. It can be found in the full
version of this paper [5].

Lemma 3. After the k-th execution of Step 4-3, two subsequent elements with
respect to the current pointer
respect to the original list L.

respect to the current pointers (represented by vector s) have distance 0(2k) with

Proof. Obvious consequence of the fact that only k pointer jumping operations

were so far executed in Step 4.1.

Lemma 4. No two subsequent selected elements have a distance of more than

0(p2) with respect to the original list L.

Proof. Follows from Lemma 2 and Lemma 3.

In summary, we obtain

Theorem 5. The list ranking problem for a linked list with n vertices can be
solved on a CGM with p processors and 0(|) local memory per processor using

0(\ogp) communication rounds and 0{j) local computation per round.

3 Euler Tour in a Tree

Let T = (V,E) be an undirected tree and T* = (V, E*) be a directed graph with
E* = {{v,w),(w,v)\{v,w} € E). Thus, T* is Eulerian because indegree(v) =
outdegree(v) for each vertex v. The Euler Tour problem for T consists of com-
puting for T* a path that traverses each edge exactly once and returns to its
starting point, as well as for each vertex its rank in this path.

Theorem 6. The Euler Tour of a tree T with n vertices can be computed on
a CGM with p processors and O(-) local memory per processor using O(logp)

communication rounds and O(-) local computation per round.

Proof. Due to space limitations, the algorithm and proof are omitted. They can
be found in the full version of this paper [5].

396

4 Connected Components and Spanning Forest

Consider an undirected graph G = (V, E) with n vertices and m edges. Each
vertex v £ V has a unique label between 1 and n. Two vertices u and v are
connected if there is an undirected path of edges from u to v. A connected
subset of vertices is a subset of vertices where each pair of vertices is connected.
A connected component of G is defined as a maximal connected subset.

In this section, we study the problem of computing the connected compon-
ents of G on a CGM with p processors and 0(2L^21) local memory per processor.
We introduce a new technique, called clipping, which refers to the idea of tak-
ing a PRAM algorithm for the same problem but running it for only O(logp)
rounds and then finishing the computation with some other O(logp) rounds CGM
algorithm. (See also JaJa's accelerated cascading technique for the PRAM [19].)

Steps 1 and 2 of Algorithm 2 simulate Shiloch and Vishkin's PRAM algorithm
[30], but for logp phases only. Each vertex v has a pointer to a vertex parent(v)
such that the parent(v) pointers always form trees. The trees are also referred
to as a supervertices. A tree of height one is called a star. An edge (u,v) is
live if parent(«) / parent(v). Shiloch and Vishkin's PRAM algorithm merges
supervertices along live edges until they equal the connected components. When
simulated on a CGM or BSP computer, Shiloch and Vishkin's PRAM algorithm
results in logn communication rounds or supersteps, respectively.

Our CGM algorithm requires 0(logp) rounds only. It simulates only the
first logp iterations of the main loop in the PRAM algorithm by Shiloch and
Vishkin and then completes the computation in another logp communication
rounds (Steps 3-7).

Algorithm 2 CGM Algorithm for Connected Component Computation
Input: An undirected graph G = (V, E) with n vertices and m edges stored
on a p processor CGM with total 0(n + m) memory. Output: The connected
components of G represented by the the values parent(v) for all vertices »6 V,

(1) FOR all v e V IN PARALLEL DO parent{v) := v.

(2) FOR k := 1 to logp DO

(2.1) FOR all v £ V IN PARALLEL DO parent{v) := parent(parent(v)).

(2.2) FOR every live edge (u,v) IN PARALLEL DO (simulating concurrent
write)
(a) IF parent (parent (v)) — parent(v) AND parent(parent(u)) = parent(u)

THEN { IF parent(u) > parent(v) THEN parent(parent(u)) :-
parent(v) ELSE parent(parent(v)) := parent(u) }

(b) IF parent(u) = parent(parent(u)) AND parent(u) did not get new
links in steps 2.1 and 2.2(a) THEN parent(parent(u)) := parent(v)

(c) IF parent(v) = parent(parent(v)) AND parent(v) did not get new
links in steps 2.1 and 2.2.1 THEN parent(parent(v)) := parent(u)

(2.3) FOR all v&VIN PARALLEL DO parent[v) := parent(parent(v)).

397

(3) Use the Euler Tour algorithm in Section 3 to convert all trees into stars.
For each v £ V, set parent(v) to be the root of the star containing v. Let
G' = (V',E') be the graph consisting of the supervertices and live edges
obtained. Distribute G' such that each processor stores the entire set V
and a subset of — edges of E'. Let Ei be the edges stored at processor i,

0<i<p-l.

(4) Mark all processors as active.

(5) FOR k := 1 to logp DO
(5.1) Partition the active processors into groups of size two.

(5.2) FOR each group Pi,Pj of active processors, i < j IN PARALLEL DO
(a) processor Pj sends it's edge set Ej to processor Pi.

(b) processor Pj is marked as passive.

(c) processor P,- computes the spanning forest (V',ES) of the graph
SF = (V, Ei U Ej) and sets E{ := Es.

(6) Mark all processors as active and broadcast EQ.

(7) Each processor i computes sequentially the connected components of the
graph G" = (V, Eo). For each vertex v of V let parent1'(v) be the smallest
label parent(w) of a vertex w £ V' which is in the same connected component
with respect to G" = (V, Eo). For each vertex u £ V stored at processor Pi
set parent(u) := parent'(parent(u)). (Note that parent(u) £ V.)

— End of Algorithm —

Lemma 7. [30] The number of different trees after iteration k of Step 2 is

(1)
We obtain

bounded by {\)kn.

Theorem 8. Algorithm 2 computes the connected components and spanning forest
of a graph G = (V, E) with n vertices and m edges on a CGM with p processors
and 0("+"1) local memory per processor, "+m > pe (e > 0), using O(logp)

communication rounds and 0(n^m) local computation per round.

Proof. Due to space limitations, the proof is omitted. It can be found in the full
version of this paper [5].

5 Other Graph Problems

In the remainder, we summarize our solutions for Problems 4-8. Due to space
limitations, the algorithms and proofs are omitted. They can be found in the full
version of this paper [5].

398

Lowest Common Ancestor: The lowest common ancestor,LCA(u,v), of two
vertices u and v of a rooted tree T = (V, E) is the vertex w that is an ancestor
to both u and v, and is farthest from the root. The problem of preprocessing T
in order to answer a query LCA(u, v) quickly for any pair (u, v) is called the

lowest-common-ancestor (LCA) problem.

Theorem 9. Consider a rooted tree T = (V, E) with n vertices. The LCA prob-
lem can be solved on a CGM with p processors and 0(j) local memory per

processor using 0(logp) communication rounds and 0(j) local computation per

round.

Tree Contraction and Expression Tree Evaluation: We observe that the
classical tree contraction and expression tree evaluation algorithm of [24] can be
easily implemented on a CGM to run in O(logp) communication rounds.

Observation 1 Tree contraction and expression tree evaluation on a tree T with
n nodes can be performed on a CGM with p processors and O(j) local memory

per processor, - > pc (e > 0), using O(logp) communication rounds and 0(j)

local computation per round.

Open Ear Decomposition and Biconnected Components: Consider an
undirected graph G = (V, E) with n vertices and m edges. For the remainder, we
assume that G is connected. An ear decomposition of G is an ordered partition of
E into r simple paths Pi,...,Pr such that Pi is a cycle, and, for each 2 < i < r,
Pi is a simple path with endpoints belonging to Pi U ... U P;-i but with none
of its internal vertices belonging to Pj, j < i. The paths P,- are called ears. If
none of the Pt,i > 1, is a cycle, then the decomposition is called an open ear
decomposition. For an edge e in Pi, let i be the ear number of e. An edge e £ E
is a cut-edge if e does not lie on a cycle in G. A connected undirected G is
2-edge connected if it contains no cut-edge. G has an ear decomposition if and
only if G is 2-edge connected. A cut-vertex is a vertex whose removal leaves G
disconnected. G is biconnected if it contains at least three vertices and has no

cut-vertex.

Theorem 10. For a graph G = (V, E) with n vertices and m edges, the ear de-
composition, open ear decomposition, as well as its 2-edge connected and bicon-
nected components can be computed on a CGM with p processors and 0(It^i2i)

local memory per processor using O (log p) communication rounds andO(j) local

computation per round.

Chordal Graph Recognition: A graph G = (V, E) is chordal, if every cycle of
length greater than three has a chord, i.e., an edge connecting two non-consecutive
nodes of the cycle. A simplicial node is a node whose neighbors form a clique.
Dirac [15] showed that every chordal graph has a simplicial node. It is easy to
see that removing an arbitrary node from a chordal graph yields another chordal

399

graph. Therefore, after removing the simplicial node of a chordal graph, the new
graph has another simplicial node. Successively removing all simplicial nodes
gives an ordering of the nodes of G. This ordering is called perfect elimination

ordering (PEO).

Theorem 11. Finding the PEO of a given graph G — (V, E) with n vertices and
m edges can be solved on a CGM with p processors and C^^^21) local memory

per processor, n^m- > p((e > 0), using O(log n logp) communication rounds and

O("+"') local computation per round.

References

1. S.G. Akl, Parallel Computation, Prentice Hall, 1997.
2. R.J. Anderson, and L. Snyder, "A Comparison of Shared and Nonshared Memory

Models of Computation," in Proc. of the IEEE, 79(4), pp. 480-487.
3. A. Bäumker and W. Dittrich, "Parallel Algorithms for Image Processing: Prac-

tical Algorithms with Experiments," International Parallel Processing Symposium,
IEEE Computer Society Press, 1996, pp. 429 - 433.

4. G.E. Blelloch, C.E. Leiserson, B.M. Maggs, CG. Plaxton, "A Comparison of Sort-
ing Algorithms for the Connection Machine CM-2.," in Proc. ACM Symp. on Par-
allel Algorithms and Architectures, 1991, pp. 3-16.

5. E. Cäceres, F. Dehne, A. Ferreira, P. Flocchini, I. Rieping, A. Ron-
cato, N. Santoro, and S.W. Song, "Efficient Parallel Graph Algorithms
For Coarse Grained Multicomputer and BSP,", on-line Postscript at
http://www.scs.carleton.ca/scs/faculty/dehne.html.

6. R. Cole, "Parallel merge sort," SIAM J. Comput., 17(4), 1988, pp. 770-785.
7. R. Cole and U. Vishkin, "Approximate parallel scheduling. Part I: The basic tech-

nique with applications to optimal parallel list ranking in logarithmic time", SIAM
Journal of Computing, Vol. 17, No. 1, 1988.

8. F. Dehne, A. Fabri, and A. Rau-Chaplin, "Scalable Parallel Geometric Algorithms
for Coarse Grained Multicomputer," in Proc. ACM 9th Annual Computational
Geometry, pages 298-307, 1993.

9. F. Dehne, A. Fabri, and C. Kenyon, "Scalable and Architecture Independent Paral-
lel Geometric Algorithms with High Probability Optimal Time," in Proc. 6th IEEE
Symposium on Parallel and Distributed Processing, pages 586-593, 1994.

10. F. Dehne, X. Deng, P. Dymond, A. Fabri, and A. A. Kokhar, "A randomized
parallel 3D convex hull algorithm for coarse grained multicomputers," in Proc.
ACM Symposium on Parallel Algorithms and Architectures (SPAA'95), pp. 27-33,
1995.

11. F.Dehne, S.W. Song, "Randomized parallel list ranking for distributed
memory multiprocessors," in Proc. Second Asian Computing Science Conference,
ASIAN'96, Singapore, Dec. 1996, Springer Lecture Notes in Computer Science
1179, pp. 1-10.

12. X. Deng, "A Convex Hull Algorithm for Coarse Grained Multiprocessors," in Proc.
5th International Symposium on Algorithms and Computation, 1994.

13. X. Deng and P. Dymond, "Efficient Routing and Message Bounds for Optimal
Parallel Algorithms," in Proc. Int. Parallel Proc. Symp., 1995.

400

14. X. Deng and N. Gu, "Good Programming Style on Multiprocessors," in Proc. IEEE
Symposium on Parallel and Distributed Processing, 1994, pp. 538-543.

15. G.A. Dirac. "On rigid circuit graphs". Abh. Math. Sem. Univ. Hamburg 25, 1961,

pp. 71-76.
16. A. Ferreira, A. Rau-Chaplin, and S. Ubeda, "Scalable 2d convex hull and triangula-

tion algorithms for coarse-grained multicomputers," in Proceedings of the 7th IEEE

Symposium, on Parallel and Distributed Processing - SPDP'95, pages 561-569, San

Antonio (USA), October 1995. IEEE Press.
17. A.V. Gerbessiotis and L.G. Valiant, "Direct Bulk-Synchronous Parallel Al-

gorithms," in Proc. 3rd Scandinavian Workshop on Algorithm Theory, Lecture
Notes in Computer Science, Vol. 621, 1992, pp. 1-18.

18. M.T. Goodrich, "Communication efficient parallel sorting," ACM Symposium on

Theory of Computing (STOC), 1996.
19. Ja'Ja', An Introduction to Parallel Algorithms, Addison Wesley, 1992.
20. P. Klein. "Efficient Parallel Algorithms for Chordal Graphs". Proc. 29th Symp.

Found, of Comp. Sei., FOCS 1989, pp. 150-161.
21. P. Klein. "Parallel Algorithms for Chordal Graphs". In Synthesis of parallel al-

gorithms, J. H. Reif (editor). Morgan Kaufmann Publishers, 1993, pp. 341-407.
22. Hui Li, and K. C. Sevcik, "Parallel Sorting by Overpartitioning," in Proc. ACM

Symp. on Parallel Algorithms and Architectures, 1994, pp. 46-56.
23. Y. Maon, B. Schieber, U. Vishkin. "Parallel ear decomposition search (EDS) and

st-numbering in graphs". Theoretical Computer Science, vol. 47, 1986, pp. 277 -

298.
24. G.L. Miller, J.H. Reif, "Parallel tree contraction and its application," IEEE Symp.

on Foundations of Computer Science, 1985, pp. 478-489.
25. G. L. Miller, V. Ramachandran. "Efficient parallel ear decomposition with applic-

ations", manuscript, MSRI, Berkeley, January 1986.
26. V. Ramachandran. "Parallel open ear decomposition with applications to graph

biconnectivity and triconnectivity", in [28], pp. 276 - 340.
27. M. Reid-Miller, "List ranking and list scan on the Cray C-90," in Proc. ACM

Symp. on Parallel Algorithms and Architectures, 1994, pp. 104-113.
28. J. H. Reif (editor), Synthesis of parallel algorithms, Morgan Kaufmann Publishers,

1993.
29. D.J. Rose, R.E. Tarjan, and G.S. Lueker. "Algorithmic Aspects of Vertex Elimin-

ation on Graphs". SIAM J. Comp. 5, 1976, pp. 266-283.
30. Y. Shiloch, U. Vishkin, "An 0(log n) parallel connectivity algorithm," Journal of

Algorithms, 3(1), pp. 57-67, 1983.
31. L. Snyder, "Type architectures, shared memory and the corollary of modest poten-

tial," Annu. Rev. Comput. Sei. 1, 1986, pp. 289-317.
32. R.E. Tarjan, U. Vishkin, "An efficient parallel biconnectivity algorithm," SIAM J.

Comput., 14(4), 1985, pp. 862-874.
33. L. Valiant, "A bridging model for parallel computation," Communications of the

ACM, Vol. 33, No. 8, August 1990.
34. L.G. Valiant et al., "General Purpose Parallel Architectures," Handbook of The-

oretical Computer Science, Edited by J. van Leeuwen, MIT Press/Elsevier, 1990,

pp.943-972.
35. H. Whitney. "Non-separable and planar graphs". Trans. Amer. Math. Soc. 34, 1932,

pp. 339 - 362.

Upper Bound on the Communication Complexity of
Private Information Retrieval*

Andris Ambainis

Institute of Mathematics and Computer Science, University of Latvia, Raina
bulv. 29, Riga, Latvia, e-mail: ambainis@cclu.lv. From August 1997 at Computer

Science Division, University of California at Berkeley.

Abstract. We construct a scheme for private information retrieval with
k databases and communication complexity 0(n '' ').

1 Introduction

Much attention has been given to the problem of protecting a database from a
user that tries to retrieve an information that he is not allowed to access[2, 8, 12].

In some scenarios, an opposite problem can appear: a user wishes to retrieve
some infomation from a database without revealing to the database what infor-
mation he needs. For example[7], an investor wishes to receive an information
about a certain stock but he does not wish others (even the database) to know
in which particular stock he is interested.

However, there is only one way to reach a complete privacy: the user should
ask for the copy of the entire database. Otherwise, the database will get some
information what the user wishes to know. This is not a good solution because
it requires much time and much communication from the database to the user.

If there are several identical copies of the database, an another scenario is

possible[7]:
The user asks a query to each database and combines the results of the

queries, obtaining the desired information. Each query alone gives no information
what the user is interested in.

Chor, Coldreich, Kushilevitz, Sudan[7] introduced this model and constructed
several schemes for a private retrieval of one bit from a database:

1. A scheme for 2 databases with Ofo1?3) communication, (n is the size of the
database)

2. A scheme for k databases with 0{n1lk) communication.
3. A scheme for O(logn) databases with 0(log2 nloglogn) communication.

In this paper, we improve their result, constructing a protocol for k databases

with 0(n1/(2k~1^) communication.

The author was supported by Latvia Science Council Grant 96.0282 and scholarship
"SWH Izglitibai, Zinätnei un Kultürai" from Latvia Education Foundation

402

Related work. Protocols for private information retrieval in [7] and this
paper have used ideas from several related problems (instance hiding and mul-
tiparty communication complexity).

Instance hidingfl, 5, 6] is the problem of obtaining the ith bit from the or-
acle so that i remains secret. There are some similarities and some substantial
differences between instance hiding and private information retrieval (see [7] for

more detailed discussion).
Techniques from instance hiding were relevant to protocols for private infor-

mation retrieval in [7]. However, they are not used in this paper.
Multiparty communication complexity is also related to private information

retrieval. Pudlak, Rödl, Sgall[ll] and Ambainis[3] have considered the problem
of computing Xfi+j)modn where as is a string of n bits and i, j are integers in the
following model:

Player 1 knows x, i, Player 2 knows x,j. Each of them sends one message to
Player 3. Player 3 computes the result, using only the messages received from
Players 1 and 2.

Any protocol for the above problem can be easily transformed into protocol
for private information retrieval. Thus, we can obtain nontrivial protocols for
private information retrieval with o(n) communication.

Another communication complexity problem was studied by Babai, Kimmel
and Lokam[4]. It also can be applied to private information retrieval.

However, all these protocols are less efficient than the protocols for private
information retrieval designed in [7]. Still, the ideas from [3, 4, 11] (not explicit
protocols) can be useful in the study of private information retrieval. In partic-
ular, this paper is based on the idea of combining two protocols which appeared
in the setting of multiparty communication complexity [3, 11].

2 Model

Formally, we view the database as a string x consisting of n bits, k denotes the
number of identical databases. We assume that the user wishes to retrieve a
single bit Xi from the database.

We require that, for every database, indices i, j and any message from the
user, the probability of the database receiving this message is equal when the
user retrieves the ith bit and when the user retrieves the jth bit. This means
that database does not get any information about i.

There are several extensions of this model. [7] considered schemes which allow
to retrieve blocks of information and give a higher degree of privacy (knowing
k — 1 of k queries gives no information about the bit that the user retrieves).
Ostrovsky and Shoup[9] have extended the results of [7] and designed schemes
for private information storage. Using their schemes, the user can both read and
write to the database without revealing which bit is accessed. They have shown
that any protocol for private information retrieval can be transformed to the
protocol for private information storage with a slight increase in the number of
databases and communication.

403

However, in this paper, we consider only the basic one-bit model of [7].
S © i denotes S U {i}, if i £ S and S - {i} if i G 5.

3 Result

Consider some protocol for private information retrieval. Does the user use all
bits in the messages from the databases? In some protocols, only a few bits are
really neccessary. If the user knows in advance which bits are necessary, two
protocols can be combined, obtaining the third with more databases and less

communication.
Below, we show how to combine a protocol for 2 databases and a protocol for

jfe - 1 databases, obtaining a protocol for k databases with less communication.

1. The user in the k database protocol simulates the user in the protocol for
2 databases. Let xx denote the message sent to the 1st database and x2 the
message sent to the 2nd database in the 2 database protocol.
The user sends xx to the 1st database and x2 to the 2nd, ..., the kth database.

2. Then, the user computes the length of the reply from the 2nd database in the
2 database protocol and the positions of necessary bits in this reply. Further,
m denotes the length and ni,..., n» denote the positions of the necessary

bits.
The user simulates the user in the protocols for k — 1 databases where n£h,
..., n'h bits from an m bit database are retrieved, sending to the (i + l)st

database the messages which are sent to the zth database in the (k - 1)

database protocol.
3. The 1st database simulates the 1st database in 2 database protocol and sends

the user the same message.
4. The 2nd, ..., the kth database simulate the 2nd database in the 2 database

protocol. Instead of sending the message to the user, they consider it as a

new 771-bit database.
Further, they simulate databases in the (k - 1) database protocol for the re-
trieval of the n'h, ..., the nf1 bit and send the messages from these protocols

to the user.
5. The user simulates the user in the (k - 1) database protocol for the retrieval

of the n£h, ..., the n'h bits. Then, knowing the message from the 1st database
and all the necessary bits from the second message, the user simulates the
user in the 2 database protocol. The result of this simulation is the bit that
the user wishes to retrieve.

If we wish to apply this idea, 2 database protocol should satisfy certain
constraints:

1. The most of communication goes from the databases to the user. (The
amount of communication from the user to databases increases when two
protocols are combined. Hence, if it is already large, the combination is use-

less.)

404

2. Only few bits from the messages received by the user are necessary.
3. The user knows in advance which bits are necessary, i.e. the positions of

these bits do not depend on the databases' contents.

Below, we use the idea of combining two protocols to prove

Theorem 1. Let k>2. There exists a protocol for private information retrieval

with k databases and 0(n1^2k"1^) bits of communication.

Proof. By induction.
The protocol for 2 databases was constructed by Chor, Goldreich, Kushilevitz

and Sudan[7]. The protocol for k databases is obtained as the combination of

the protocols for 2 databases and (k — 1) databases.
First, we describe the 2 database protocol that we use to obtain a k database

protocol from a (k — 1) database protocol.

1. Let / = f 2fc_^/n|. The database can be considered as a 2k - 1 dimensional
cube {0, ...,l - l}2*-1. Each position i G {0,..., n - 1} in the database
coresponds to some position (ii,.. -, *2fe — l) in the cube.
The user chooses independently (2k -1) random subsets of {0,..., I- 1}: Sj,
..., Slk_v Let S2 =51

1ffiii, ..., S2
k_1 = Slk_1®i2k-i where (H, .. .,i2k-i)

is the position of the required bit in the (2k - 1) dimensional cube.
He sends 5j,..., S2Vi to the 1S' database and S2,..., Sjk_1 to the 2nd

database.
2. The 1st database computes the exclusive-or of the bits in positions (ji, ...,

J2Jfe-i) such that jx £ Si, ..., j2k-i € S^-i and sends it to the user.
The database also computes the exclusive-or of the bits in positions (ji, ...,
j2k-i) such that jx E S[, ..., j2k-i £ S'2k_1 for each possible Si, ..., S'2k_1

such that
(a) SJ = Sj ®t for some j £ {1,..., 2k - 1} and t G {0,..., I - 1};

(b) S[= Sj for all * ^ j.
The exclusive-xor for each possible Si, ..., S2J._1 is sent to the user, too.

3. The 2nd database computes the exclusive-or of the bits in positions (ji, ...,

J2k-i) such that J! G S2, ..., j2k-i G ^-i and sends it to the user.
Further, the 2nd database computes the exclusive-or of the bits in positions

(ji, ■ ..,J2k-i) such that J! G Si, ..., j2k-i G S^ for each possible Si, ...,
S2jfe_1 such that
(a) For each i G {1,..., 2k - 1} S'{ is equal to Sf or Sf ffi U for some U G

{0.....J-1};
(b) There exist at least two i G {1,..., 2k - 1} such that S^ = Sf.
The exclusive-xor for each possible Si, ..., S2jt_1 is sent to the user, too.

4. For each possible Si, ..., S2jt_1 such that S? is either Sj or Sf, the user
finds the exclusive-or of bits in positions (ji, ■ ■-,J2k-i) satisfying j\ £ ^ii

■ • -, J2k-i €. S'2k-i:

(a) If St- = Sf for at most one i, then the exclusive-or is one of the bits sent

by the 1st database.

405

(b) If S'i = Sf for at least two i, then the exclusive-or is one of the bits sent
by the 2nd database.

The user computes the exclusive-or of all these values. It is the necessary bit

from the database.
(5? = Sj © ij. Hence, ij belongs to exactly one of Sj and Sj and i\ G S[,

..., i2k-i G S'2k_1 for exactly one choice of S[,..., S'2k_1.

For each other position (i'1}.. -, *2fc —a.) we ^ave *i ^ ^ii • ■ •> *2k-i ^ ^A-I

for an even number (possibly zero) of combinations S[,..., S2k_v

Hence, the exclusive-or computed by the user contains the bit in the position
(*i) • • ■ i *2ife-i) exactly once and any other bit an even number of times. It
follows that this exclusive-or is equal to the bit in the position (ii,..., i2fc-i),
i.e. the bit that the user wishes to retrieve.)

The amount of transmitted bits.

1. Communication from the user to the databases.
To transmit a set Sj, the user needs 1 = "—-f/n bits. (For each x G {0,..., / -

1}, the user must say whether x G Sj.) The user transmits 2k - 1 sets (5j,

• • -i s2k-i) to the 1St database and 2fc — 1 sets to the 2nd database.
So, the total amount of communication in this direction is 2(2k— 1) 3U~^fn =

0(2k-^n).
2. Communication from the 1st database to the user.

The 1st database computes the exclusive-or of the bits for several combina-
tions of Sj,..., S'2k_1 and sends it to the user. The amount of bits trans-
mitted by the 1st database is equal to the number of the combinations of

5i,...,5^_x, i.e. (2*-1)1 + 1.
k is a constant and I = [2k~-$/n\. Hence, the amount of communication in
this direction is 0(*k-J/n), too.

3. Communication from the 2nd database to the user.
Similarly to the previous case, the amount of bits transmitted by the 2nd

database is equal to the number of combinations S[,..., S'2k_v

For the 2nd database, the amount of such combinations is at most (22k~1 -
2k)l2k~3 = 0(n(2k-3V(2k-V) because:
(a) Those i for which S[^ S2 form a subset of {1,..., 2k - 1} with at most

2k - 3 elements. (For at least two i G {1,..., 2* - 1}, Sf - S-.)
The amount of such subsets is 22*-1 — 2k.

(b) If we have chosen i for which Sf ^ 5,', it remains to choose i;. There are
I possible values of i; for each i.
ti is chosen for at most 2k —3 values of i. Hence, there are at most l2k~3

possible combinations of i;.

So, the user transmits 0(3k-j/n) bits, the 1st database 0(2"-^/n) bits and the
2nd database O^2*-3)^2*"1)) bits.

From the 2nd database's answer the user needs a constant amount (22k~1—2k)
of bits. The positions of these bits in the message from the 2nd database do not
depend on the contents of the database.

406

Hence, we can combine the described protocol with a (k - 1) database pro-
tocol, using the method described at the beginning of this section.

Communication in the k database protocol.

1. Communication from the user to the databases.
The user sends to the databases:
(a) The information from the 2 database protocol: 0("-$/n) bits to each

database.
(b) The information for the simulations of the (k - 1) database protocol:

0(2k-f/m) bits where m is the length of the message from the 2nd

database in the 2 database protocol. We have

m 0(n(2*-3)/(2fc-l))_

Hence, 0(2k-^/n) bits are transmitted for this purpose.
2. Communication from the 1st database to the user. It is the same as in the 2

database protocol, i.e. 0(2k~j/n) bits.
3. Communication from the 2nd, ..., the kth database to the user.

In each simulation of (k — 1) database protocol, these databases communicate

0{ "-^m) = 0{ "-{/„(a*-3)/(2*-i)) = o(2k~tfi)

bits. The amount of simulations performed by the databases is equal to the
amount of bits needed by the user from the 2nd database's message, i.e.
constant. Hence, the communication by these databases is 0(2k~\/n), too.

We have constructed a protocol with k databases and 0{ 2k-^/n) communication
from a protocol with (k - 1) databases and 0(2k~^/n) communication.

Using the construction of Ostrovsky and Shoup[9] and the protocol described
above, we can obtain a scheme in which both reading and writing are private.
This scheme has (k + 1) databases and 0(n1^2*~1)logTi) communication com-

plexity for any k > 2.

References

1. M. Abadi, J. Feigenbaum and J. Kiüan, On hiding information from an oracle,
Journal of Computer and System Sciences, 39(1989), pp. 21-50

2. N. Adam and J. Wortmann, Security control methods for statistical databases: a
comparative study, ACM Somputing Surveys, 21(1989), pp. 515-555

3. A. Ambainis, Upper bounds on multiparty communication complexity of shifts, Pro-
ceedings of STACS'96, Lecture Notes in Computer Science, vol. 1047(1996), pp.
631-642

4. L. Babai, P. Kimmel, S.V. Lokam, Simultaneous messages versus communication,,
Proceedings of STACS'95, Lecture Notes in Computer Science, vol. 900(1995), pp.
361-372

5. R. Beaver, J. Feigenbaum, Hiding instances in multioracle queries, Proceedings of
STACS'90, Lecture Notes in Computer Science, vol. 415(1990), pp. 37-48

407

6. R. Beaver, J. Feigenbaum, J. Kilian, P. Rogaway, Security with low communication

overhead, Crypto'90
7. B. Chor, O. Goldreich, E. Kushilevitz, M. Sudan, Private information retrieval,

Proceedings of FOCS'95, pp. 41-50. To appear in the Journal of the ACM.
8. D. Denning, Cryptography and Data Security, Addison-Wesley, 1982
9. R. Ostrovsky, V. Shoup, Private information storage, to appear in STOC'97.

10. P. Pudlak, V. Rödl, Modified ranks of tensors and the size of circuits, Proceedings

of 25-th ACM STOC, 1993, pp. 523-531. Preliminary version of [11].
11. P. Pudlak, V. Rödl, J. Sgall, Boolean circuits, ranks of tensors and communication

complexity, to appear in SIAM J. Computing.
12. J. D. Ullman, Principles of Database Systems. 1982.

Computation Paths Logic:
An Expressive, yet Elementary, Process Logic

(abridged version)

David Harel and Eli Singerman
The Weizmann Institute of Science, Rehovot, ISRAEL

Abstract: A new process logic, is defined, called computation paths logic (CPL),
which treats formulas and programs essentially alike. CPL is a pathwise extension of
PDL in the spirit of the logic R of Harel and Peleg. It enjoys most of the advantages
of previous process logics, yet is decidable in elementary time. We also offer extensions
for modeling asynchronous/synchronous concurrency and infinite computations.

1 Introduction

Two major approaches to modal logics of programs are dynamic logic [Pr] and
temporal logic [Pn]. Prepositional dynamic logic, PDL [FL] is a natural 'dy-
namic' extension of the prepositional calculus, in which programs are inter-
mixed with propositions in a modal-like fashion. Formulas of PDL can express
many input/output properties of programs in a natural way. Moreover, valid-
ity/satisfiability in PDL is decidable in exponential time, and the logic has a
simple complete axiomatization [KP]. PDL is thus a suitable system for reason-
ing about the input/output behavior of sequential programs on the propositional
level. However, PDL is unsuited for dealing with the continuous, or progressive
behavior of programs, i.e., the situations occuring during computations. The
need for reasoning about continuous behavior arises naturally in the study of
reactive and concurrent programs.

The main approach proposed in response to this need is temporal logic, TL
[Pn], in which assertions can be made naturally about the progressive behavior of
programs. In particular, TL can easily express freedom from deadlock, liveness,
and mutual exclusion. The basic versions of TL, however, are not compositional,
in the sense that their treatment of a well-structured program does not derive
directly from their treatment of its components. Indeed, TL usually does not
name programs at all, but refers to instructions and labels in a fixed program.
Although TL can discuss the synthesis of complex programs from simpler ones
to some extent using at predicates, this method is rather cumbersome.

This dichotomy between the dynamic and temporal logic approaches has
prompted researchers to try to combine the best of the two in what is generally
called process logic. Accordingly, a system called PL was proposed in [HKP].
It borrows the program constructs and modal operators [] and () from DL,
and the temporal connectives suf (similar to until) and f (standing for first)
from TL, and combines them into a single system. The expressive power of PL
is greater than that of PDL and of TL, and its validity/satisfiability problem

409

was shown in [HKP] to be decidable, though it is not known to be elementary.
There are some inconvenient features of PL, including the asymmetry of

its central path operator, suf, and the fact that its formula connectives are
somewhat weaker than its program operators. A proposal that overcomes these
problems is the regular process logic, RPL, of [HP]. In RPL, the operators suf
and f are replaced by chop and slice, corresponding essentially to Kleene's
regular operations of concatenation and star. In this way, the regular oper-
ations on programs, a U ß, aß, a*, have natural counterparts on formulas:
X V Y, X chop Y and slice X. It is shown in [HP] that RPL is even more
expressive than PL, and that its validity problem is also decidable but nonele-

mentary.
Using the fact that in RPL both program and path operators are those of

regular expressions, and that programs and formulas are interpreted over paths,
a uniform process logic R was defined in [HP]. In R, formulas are constructed
inductively from atomic propositions and binary atomic programs, using a single
set of regular operators. It was shown in [HP] that R is more expressive than RPL
with binary atomic programs, and is decidable (though, again, nonelementary).

In the interest of obtaining a useful process logic decidable in elementary
time, an automata-oriented logic, YAPL, was defined in [VW]. In YAPL, formu-
las are constructed using finite automata for both temporal (path) connectives
and for constructing compound programs from basic (atomic) ones. There is a
clear distinction between state and path formulas in YAPL, atomic programs
are binary and atomic formulas are restricted to being state formulas. YAPL
is indeed shown in [VW] to be decidable in elementary time (even over infinite
paths). YAPL formulas, however, can be somewhat less intuitive and not that

easy to comprehend.

In the present paper, we try to combine some of the advantages of previous
methods by introducing a new process logic that is compositional, uniform in its
treatment of programs and formulas, expressive enough to capture the interest-
ing path properties mentioned in the literature in a natural way, explicit in its
treatment of concurrency, and elementary decidable.

We term our basic formalism computation paths logic (CPL). A single set of
regular operators acts on both transition formulas (programs) and state formu-
las. For example, a* ■ P ■ b is a CPL formula. (Here a and b are atomic programs
and P is an atomic state formula.) Intuitively this formula means: "perform ac-
tion a some nondeterministic number of times, check for property P and then do
action 6". An important operator in CPL is TV — pathwise intersection. Thus,
/ n g is true on paths that satisfy both / and g. Using this operator, it is possi-
ble to express a large variety of properties of computation paths. For example,
a n (skip* ■ P ■ skip*), where a is a program and P is a proposition, is true on
a-paths that contain some P-state. Note that anb, for atomic programs a and b
is true only for paths which are both a-paths and 6-paths, and is not expressible

by PDL programs or formulas.

1 Some versions of PL have been shown to be nonelementary [Ha], but it is still not
known whether PL itself is elementary.

410

Unlike PL and its descendants, RPL and R, we have decided not to include
the modal operators [] and () in CPL. The reason is as follows. Consider
a PL/RPL/R formula of the form [a]tp, where a is a program and <p is a path
property. While one might expect this formula to be true on all a-paths that
satisfy <p, in PL it is defined to be true on all paths p which, when extended by
an a-path r, result in a path p ■ r satisfying (p. This, however, corresponds to
the above intuition only when p is a path of length 0, i.e., a state. This broader
(and somewhat complicated) definition in PL is an unavoidable outcome of the
wish of the authors of [HKP] to have only path formulas, but at the same time
use () and [] as in PDL. (For example, they wanted {aß)f to be equivalent

to (<*></?>¥>.)
To make our logic elementary decidable, we use a special form of negation.

Specifically, negation in CPL is not taken relative to the set of all paths (as
is done, e.g., in PL/RPL/R). In fact, a negated formula is a state property,
made true in any state that is not the initial state of a path that satisfies the
argument formula. For example, ->(a • P) asserts "it is not possible to carry out
a computation of a ■ P from the present state". While this form of negation is
weaker than negation relative to all paths, most interesting path properties are
still expressible.

In Section 3, we show that CPL is elementary decidable, by reducing its
satisfiability problem to that of APDL, the version of PDL in which programs
are represented by finite automata rather than regular expressions [HS2], The
reduction is rather involved, and combines ideas from both [Pe] and [SPH].

In Section 4 we propose an extension of CPL for modeling concurrent pro-
cesses, called ICPL. It uses '||' to denote interleaving. This might be termed
asynchronous concurrency. Even though the interleaving operator itself is very
intuitive, combining it with other operators (especially 'fl') turns out to be rather
technically involved. Nevertheless, ICPL is also decidable in elementary time.

To model synchronous concurrency, we introduce a further extension in Sec-
tion 5, called SICPL (ICPL with synchronization). In SICPL, which is shown
to be elementary, interleaving can be synchronized with respect to subsets of
atomic programs. For such a subset syn, and formulas / and g, the interleaving
of / and g synchronized on syn is expressed by / | syn \ g (the notation is apt,
since '||' denotes the special case where syn = 0). For example, the formula
(a U b) ■ c | a, b \ (a U c) • P ■ (b U c) is true only in paths of the form:

A further elementary extension of CPL for expressing properties of infinite com-
putations, wCPL, is defined in Section 6.

2 Definitions and Basic Observations

Definition 1. A path over a set S is simply a non-empty finite sequence of
elements of 5". The notions first, last and fusion, denoted p ■ q, are defined in
the usual wav.

411

We now define computation paths logic, CPL for short. It has two sorts,
a set ASF of atomic state formulas (propositions), and a set ATF of atomic
transition formulas (programs). The set of formulas is defined as the least set
containing ASF and ATF, and such that if / and g are formulas, then so are
(pf), (/*), (f-g), {füg) and (fPig). (We often omit the parentheses where

there is no confusion.)
CPL formulas are interpreted over models M = (SM,pM), where SM is the

set of states, pM(P) C (SM) for each P GASF, and pM(a) C SM x SM for each
a GATF. In addition, pM is is extended to all formulas as follows:

PM{f ■§) = PMU)-PM{9)
PM(fn9)=pM(f)DpM(g)
PMhf) = (SM)\first(pM(f))

pM(fUg)=pM(f)UpM(g)

pM{n = pM{ir

(We often leave out the M subscript of S and p.) A path p in a model M satisfies
a CPL formula /, written M, p (= /, when pGpM(/).A formula / is satisfiable
iff M, p\= f for some path p in some model M. A state s in a model M satisfies
a CPL formula /, written M, s (= / iff there exist a path satisfying / whose

first state is s.
Example: Consider the CPL formula <p : (P ■ a)* ■ Q n (6 U c)* ■ -(6 • P) ■ a,
where P, Q <E ASF and a, b GATF. In the model illustrated in the figure below,
paths that satisfy ip are (among others): (1, 2, 3, 4, 5), (1, 2, 3, 1, 2, 3)
and (1, 2, 3, 1, 2, 3). On the other hand, a path that does not satisfy <p is

(1, 2, 7, 8, 9) (this is because (8) £ ->(b-P)).

For CPL formulas / and g, it is sometimes convenient to use the following
abbreviations: /? instead of -.-./, fWg instead of /? U g? and / A g instead
of /? n #?. Regarding transitions, it useful to use the following abbreviations:
skip instead of UaeATFa, path instead of skip* and true instead of path?. Note
that path holds in every path in which consecutive states are connected by some
atomic transition. Moreover, it follows from the semantics of CPL that for every
/ GCPL and every path p in any model M, if p G pM{f) then p \= path. So that
path plays the role of 'true' for paths that correspond to formulas. The formula
true is a 'state version' of path and is true in every path of length 0, i.e., in every

state in every model.
Let us demonstrate how to express some useful path properties in CPL.

- The existence of some segment of the path satisfying / is expressed by

someseg (/) = path ■ f ■ path.

412

- The existence of some prefix of the path satisfying / is expressed by
somepre (/) = f -path.

- The existence of some suffix of the path satisfying / is expressed by
somesuf (/) = path ■ f.

- The existence of some state in the path satisfying / is expressed by
some state (/) = someseg (/?).

- An operator similar to O (nexiiime) of TL is next (/) = skip ■ f.
- An operator similar to U of TL is / until g = (/ • skip)* ■ g.

CPL can clearly be viewed as a pathwise extension of PDL. It is not too difficult
to show that PDL^CPL in expressive power, where we only consider state
formulas of CPL. Considering other process logics, CPL can be thought of as
a restricted version of the logic R of [HP], so that: PDL<^CPL<R. From this,
and the fact that R is decidable [HP], we can conclude that CPL is decidable.
Since R is nonelementary [Pe], this yields a nonelementary decision procedure for
CPL. We will show in the next section, however, that CPL is in fact elementary.

3 CPL is Elementary Decidable

In this section we show that satisfiability of CPL formulas is decidable in el-
ementary time. This will be done in two steps. In the first, we carry out a
reduction from the satisfiability problem of CPL to the satisfiability problem
of CPL over one-action-per-transition models. These one-action-per-transition
(oapt, for short) models are defined below. (These models were used in [Pe] for
the logic R.) In the second step we carry out a reduction from the satisfiability
problem of CPL over oapt-models to the satisfiability problem of APDL.

Definition2. A model M is called an oapt-model relative to the set ATF ai,..., an

if for every 1 < i ^ j < n, p(a8) fl p(aj) — 0. A CPL formula f is oapt-satisfiable
iff there exist some oapt-model which satisfies f.

Lemma3. For every CPL formula f over {a\ ,. .an}, there exists a CPL formula
f (over a new ATFj stich that f is satisfiable iff f is oapt-satisfiable.

Proof: Let. / be a formula f over {a,\, ...,an}. We define a set ATF' of 2" — 1
new symbols (to be used as the atomic transition formulas of /'), each of the
form flCl...c„ where cj,- £ {k, £},

ATF' = {aCl...Cn |Vl<*<n , ck 6 {*, ~k}} \ {ais...«} •

Let /' be the formula, obtained from / by replacing every appearance of a^, for 1 <
k < n, with ßk = |J/C ciCk=k} aci...cn The following claim (the proof of which
we omit here) completes the proof of the lemma.
Claim: / is satisfiable <=^ /' is oapt-satisfiable. ■

As preparation for the reduction to APDL, let us start the discussion in
the framework of PDL. Recall that a PDL model is also a CPL model; note,
however, that while CPL formulas are interpreted over paths, PDL formulas are
interpreted over states. To overcome this dichotomy we shall relate paths to PDL
programs in the following way:

413

Definition-*. For a PDL program a and a path p = (pi, ■ ■ ■ ,Pfc) in a model
(S, T, R), p£a is defined by induction on the structure of a: If a G ATF then
p <E a iff k = 1 and (p0,Pi) G #(<*); P G <* U /? iff p G a or p G /?; p G a\ ß iff
there are paths q (E a and r £ ß with p = q ■ r; p G a* iff p G a' for some i > I

or p = (po); p G v?? iff p = (po) and (p0,Po) G ß(v>?)-

Via this association we can view PDL programs as being carried out along paths
rather than as binary relations. For the reduction, however, it is more convenient
to use the automata version of PDL, namely APDL [HS2]. The reason for this
is that TV can be handled more economically by automata than by regular
expressions. (This also applies to other operators used in the extensions of CPL
we define later on.) Even though APDL formulas are, in general, more succinct
than their equivalent PDL formulas, satisfiability for APDL can be decided in
EXPTIME [HS2], This is also the case for deciding satisfiability over oapt-
models. For if M, s \= <p, then M can be transformed into an oapt-model of ip

(by duplicating states).
We shall use this to get an elementary decision procedure for CPL by carrying

out a reduction from CPL into APDL. Relating paths in a model to APDL
programs is done as in Def.4, i.e., if a is an automaton (APDL program) then
p G a iff p G r(a), where r(a) is a regular expression denoting the language of

a.

Lemma 5. For every CPL formula f there exists an APDL program. (NFA) Af,

such that for every path p in every oapt-model, p G p(f) iff p G Af.

Proof: The APDL automaton (program) Af corresponding to the CPL formula
/ is built by induction on the structure of/. Here we briefly describe the following
two (non-routine) cases. For -.# we let A-,g be a two state NFA accepting the
(one word) language {([Ag] false)?}. For g f)h we have to be careful since the TV
in CPL is intersection in the path sense rather than in the language sense. We
use the fact that we are dealing with oapt-models and build Agnh that simulates

both Ag and Ah synchronizing on ATF-letters. ■

Theorem 6. If we fix ATF to be a subset of {ax, ... ,an], then satisfiability of

CPL formulas can be decided in 2EXPTIME .

Proof: Let / be a CPL formula over ATFC {ai,...,an}. Use Lemma 3 to
construct /' with new atomic transition formulas ATF', such that / is satisfiable
iff /' is oapt-satisfiable. Note that since the set {ai,...,an} is fixed, |/'| =
ci ■ l/l, for some constant cx. By Lemma 5, there exist an APDL program A5>
(in the form of an NFA over the alphabet ATF' U PropA) such that for every
path p in every oapt-model M: p G p(f) iff p G Af. In other words: p G
p(f) iff first(p) \= <Af>true. It is known [HS2], that satisfiability of APDL
formulas can be decided in deterministic exponential time. One can easily prove
by induction on the structure of /' that \Af\ < 2C2'I/'1, for some constant c2

(actually, the exponent is needed only for the TV case). So that the overall time
complexity of deciding satisfiability of the original CPL formula / is bounded

by 22°3 , for some constant C3. I

414

4 CPL with Interleaving

The motivation for adding the interleaving operator to CPL is twofold. Our
primary motivation is that the interleaving operator can be interpreted as the
simplest case of composition used in algebraic approaches to modeling concurrent
computation (see, e.g., [M]). Interleaving represents the case where processes
run concurrently in such a fashion that their atomic steps can be arbitrarily
interleaved but where no communication between them takes place. This form of
concurrency, modeled by interleaving, might also be described as asynchronous.
Second, as discussed in the sequel, using interleaving we gain succinctness.

Let us now define ICPL (CPL with interleaving). The syntax of ICPL ex-
tends that of CPL as follows: if / and g are formulas, then so is (/ |[g). Turning
to the semantics, the basic difficulty is that our p, which associates paths with
formulas, is not informative enough to capture interleaving. For example, we
would like the formula (a ■ P) \\ b to be satisfied by the paths: a ■ P ■ b (i.e., an
o-transition followed by a 6-transition, with P true in the intermediate state),
a-b-P and b-a-P. However, paths of the second form would not appear if we used
p(a ■ P) and p(b), since p(a ■ P) contains only V-paths with P at the last state.
To solve this problem we shall use a more detailed version of p. The idea is that
now pnf(f) will contain, in addition to paths in M that are associated with /,
some 'evidence' of this association. We will associate with each formula (via this
extended p) a set of computation paths (defined below) rather than a set of (or-
dinary) paths. A computation path in a model M consists of two objects: a com-
putation, which is a sequence of transitions accompanied by a sequence of prop-
erties (state formulas); and an ordinary path over M, i.e., a sequence of states
of M. To get a feeling for this, the figure below illustrates a computation path:

a Hb-Q) a,c R
s t r

Here, the path is (s,t,r), i.e., the sequence of states, and the computation is
((a,{a,c}), (P,^(b-Q),R)).

Definition 7. The set of state formulas SF is the minimal set of ICPL formulas
that contains ASF, contains all formulas of the form -■/, and is closed under
• and n. For state formulas / and g of the form f — f1 ■ f2 ... ■ fk,
g = gl ■ g2 . . . ■ (/', where k,l > 1, let

((f1ng1)-...-(fkng<), k = l
fng={ (f1ng1)-...-(f'ngl)-f'+1-...-fk, k>i

{(f1ng1)-...-(fkngk)-gk+1-...-g',k<l

Definition8. A computation is a pair c = (Tranc, Valc), where Tranc is a
path over the set 2ATF — 0 and Valc is a path of length \Tranc\ + 1 over the set
SF. The length of c, denoted |c|, is |V^a/c|.

We now define several operations on computations. For this we use the two

415

computations:

Tranc Valc Trand Vald

c = ((tlt...,tk),(/o,...,/*)>and d = ((ri.• • ■'r')<(»°>• • ■'si))

- c-d=((Tranc);(Trand), {Valcy(Vald)), where (h,... ,tk) ; (n,...,n) =

(ii,... ^fc.T-i,..., r,) and (fo, ■ ■ ■, fk):(go, ■ ■ ■ ,9i) = (/o, •••,/* -ffo, ■••,#/)•
- If c and d are of the same length (i.e., fe = /),

then c n rf =f ((<i U ri, . . ., tk U rk), (foHgo, • • •, fk^gk))-

The next operation we want to define is c || d. In general, c \\ d is a set of computa-
tions. A computation in c || d is obtained by sequentially executing portions from

or from d. Let us make this notion more precise. First, denote by Ic C {0,..., &}

the set of indices s.t. i G h iff/; is of the form // •/?■■• /;as*(/0 (and/as*(/,-) > 2).
Next, define a formula portion of c to be any element of the set

c

u /0u u Li*
ie{o,...,fc}-ic «e^ m=1

Finally, a portion of c is a formula portion or a transition portion of c, where a
transition portion of c is an element of {rjj=1. Portions of d are defined in a

similar way.
Constructing a computation e £ c \\ d is carried out as follows. Initialize Trane

and Vale with (), and set pointers to the leftmost formula portions of c and
d. While there remain portions of c and d, that have not been dealt with, non-
deterministically add to e the next portion of c or that of d, and advance the
corresponding pointer to the next portion, where the successor of a transition
is a formula and the successor of a formula portion is either the next portion
of the same formula or the next transition, if the current portion is last in the
formula. When one of c or d has been consumed, simply add to e the remaining

portions of the other.

Definition9. A computation path in a model M is a pair p = (Statp, cp), where
Statp is a nonempty path over SM (i.e., an ordinary path in the model M) and

cp is a computation with |Va/Cp| = \Statp\.

For a computation path p = (Statp, cp), we denote TranCp and ValCp by
Tranp and Valp, respectively. We intend to use a computation path p as follows:
Statp will be the states along p, Tranp will be the sequence of transitions along
p, and Valp will be the sequence of state formulas satisfied in states along p. For
example, a computation path p with Statp = (s, t, r), Tranp = (a, {a, c}) and
Valp = (P, ->(& -Q),R) is illustrated in the figure prior to Def.7.

We have defined • both on computations and on paths, and we now use these
together to define p ■ q, for computation paths p and q (and then, extend it to

sets of computation paths in the usual way): p ■ q = (Statp ■ Statq, cp ■ cq) .

416

Definition 10. Let CP be a set of computation paths in a model M. A path p =
(«o, ■ ■ ■, Sk) in M is CP consistent with a computation c = ((ti,... ,ti), (/o, • • •, //)),
if the following conditions are satisfied: (i) |p| = \c\ (i.e., k = /), (ii) For every
0 < i < k - 1, there exist q G CP s.t. Statq = (si}Si+i) and Tranq = (ti), and
(iii) For every 0 < i < k, there exist q G CP s.t. Statq = (s,-) and Va/g = (/,).

We can now define the semantics of ICPL. Formulas are interpreted over the
same models as in CPL, that is, models of the form M = (SM,p°M), where SM is
the set of states, p°M(P) C (5), for every element P GASF, and p°M(a) C S x S,

for every element a GATF.
Next, p°M is extended by induction to a function pM, which assigns a set

PM (/) °f computation paths to every ICPL formula /. The set of all compu-
tation paths assigned to formulas in this way (i.e., those that are in pM(f) for
some /) is denoted CP(M). All the inductive cases in the definition of pM are
straightforward, except for the following two:

pAf(fng) = {r | 3p£pM(f), q G PM(g) s.t. Statr = Statp = Statg

and cr = cp fl cq}
PM(f II d) = {r I Statr is CP(M) consistent with cr and cr G (cp || c?),
for some p G pM(/), 9 G pM(g)} ■

Definition 11. An ICPL formula f is satisfied in a path p of a model M, written
M, p |= /, iff p = Statq for some computation path q G pM(f)- f is satisfiable
iff A/, p (= / for some path p of some model M.

How does ICPL relate to CPL? Recall that ICPL is intended to be CPL extended
with the'H'-operator. While syntactically it is clear that CPLjICPL, semantically
this may seem less obvious due to the differences in the definitions. We there-
fore proceed by showing that under the canonical correspondence between CPL
models and ICPL models, that is, pcph = p°CPL, this is indeed the case.

Proposition 12 For every CPL formula f and every (ordinary) path p in any

model M, M,p\= f iff M,p\= f.
' 'r> CPL'' •" 'rl ICPLJ

Proof: Omitted. ■

In what sense is ICPL 'better' than CPL? Well, using the well known fact that
regular sets are closed under interleaving it is not difficult to prove that ICPL
and CPL have the same expressive power. Nevertheless, ICPL has two important
advantages over CPL. The first is clarity in modeling asynchronous concurrent
computations. For example, consider the following two computations: (i) Execute
a, observe P and then perform 6. (ii) Observe Q and then execute b followed by
a. In ICPL, we can use the formula a ■ P ■ b \\ Q ■ b ■ a to model computations
that arise from running these two in parallel, while in CPL it appears that one
must use a much more cumbersome formula that explicity lists many of the
possible interleavings. The second (and related) advantage of ICPL over CPL is
succinctness. It is known that the use of the interleaving operator can shorten a
regular expression by an exponential amount [F, MS]. It is true that interleaving
in ICPL is (in general) not interleaving in the language sense. However, ICPL

417

formulas that use only ATF and the operators '•', '*', CU' and '||' correspond
essentially to regular expressions (extended with interleaving operator) over the
alphabet ATF. As to decidability, we have:

Theorem 13. Satisfiability of ICPL formulas with ATFC {ai,...,an} can be

decided in 2EXPTIME .

5 ICPL With Synchronization

ICPL is suited for modeling asynchronous concurrency. To model synchronous
concurrency as well, we introduce ICPL with synchronization (SICPL). All ICPL
formulas are SICPL formulas. In addition, if / and g are SICPL formulas and
syn is a subset of ATF, then / | syn \ g is a SICPL formula. (The set syn has
to be written out in full, for example as in (a ■ b)* ■ P \ a, b | (a U b).) Intuitively,
/ | syn | g represents the interleaving of / and g synchronized w.r.t. syn. See
the example in Section 1.
To present the formal semantics of SICPL (which will not be given here), one
has to modify each step in the definition of piw(f || </)• Here we have:

Theorem 14. Satisfiability of SICPL formulas with ATFC {a\,. . ., an] can be

decided in 2EXPTIME .

6 Infinite Computations

CPL (and its extensions ICPL, SICPL) are input/output oriented and are there-
fore appropriate for stating properties concerning programs with finite compu-
tations. We wish, however, to make it possible to reason about processes with
possible infinite computations. For example, we would like to say that the infi-
nite model P ■ a ■ P ■ a... (the a's are transitions, and the P's signify truth in
the intermediate states), admits in addition to the finite computations described
by (P ■ a)* also the infinite computation (P ■ a)w. With this idea in mind, we
introduce the extension wCPL.

Basically, one would like wCPL to extend CPL by employing the new operator
'w' and to use formulas of the form fw, where / is a CPL formula. The most
intuitive interpretation of fw is simply to associate with it infinite paths that
result by fusing infinitely many (finite) paths of/ (that is, take p{fw) as p(f)w) ■
Choosing this interpretation, however, forces one to make a distinction between
'w-formulas' (those with possibly infinite paths corresponding to the w) and
'finite formulas'. This is necessary in order to interpret (or to forbid) formulas
of the form f"-g, f« ■ g", (/")* etc.

To enable a uniform representation, we have decided to adopt a more modest
interpretation of fw, as follows. We shall consider fw rather as a test, true in
states (i.e., paths of length 0) from which it possible to repeatedly carry out
computations of/ infinitely often. The advantage of using this interpretation is
that even though paths associated with formulas are finite, and hence all CPL
operators are applicable and retain their usual meaning, it is still possible to
make assertions concerning infinite computations.

418

Definition 15. An w-path over a set S is an infinite sequence of elements of S.

For a set P of finite paths, let Vw = {pi ■ pi • Pz ■ ■ • I Vi > 1, Pi G V}. That is,
Pw is the set of finite and infinite paths obtained by repeatedly fusing (finite)

paths from P infinitely often.

The svntax is such that wCPL contains all CPL formulas, and in addition if/ and
</are wCPL formulas, then so are (-■/), (/*), (/w), (/-ff), (fUg) and (/riff).
As for semantics, wCPL is interpreted over the same models as CPL. Given a
model M and an wCPL formula /, pM (/) is defined exactly as in CPL with the

addition of the clause: pM(fw) = first {(pM(f))w) ■
wCPL can be considered to be a 'path version' of RPDL [HS1]. Indeed, we

can extend the embedding of PDL in CPL to an embedding of RPDL in wCPL
by: (repeat(ß))' = (/?')w- Thus, wCPL's expressive power is at least as that of
RPDL, which is known to be high (for example it exceeds that of CTL* [E].)

Proving that wCPL is elementary decidable is done by reducing its satisfiabil-
ity problem to that of ARPDL (the automata version of PDL+ repeat). Here, we
omit the details, and only mention that this reduction costs at most an exponen-
tial in added size. Thus, using the fact that ARPDL is decidable in 3EXPTIME

[VW], we have:

Theorem 16. Satisfiability of wGPL formulas with ATFC {ai,...,a„} can be

decided in 4EXPTIME .

References

[E] E. A. Emerson, Handbook of Theoretical Computer Science, (J. Van Leeuwen,
ed.), Vol. B, Elsevier Science Publishers B.V., Amsterdam (1990), 996-1072.

[F] M. Fürer, Proc. 7th Intl. Colloq. on Automata, Languages, and Programming
, LNCS, Springer-Verlag, Vol. 85 (1980), 234-245.

[FL] M. J. Fischer and R. E. Ladner, J. Comput. Sys. Sei. 18 (1979), 194-211.
[HKP] D. Hard, D. Kozen fe R. Parikh, J. Comput. Sys. Sei. 25 (1982), 144-170.
[HP] D. Hard and D. Peleg, Theor. Comput. Sei. 38 (1985), 307-322.
[HSl] D. Hard and R. Sherman, Inf. and Control 55 (1982), 175-192.
[HS2] D. Hard and R. Sherman, Inf. and Control 64 (1985), 119-135.
[Ha] J. Y. Halpern, Proc. 23rd IEEE Found. Comput. Sei. , pp. 204-216, 1982.
[KP] D. Kozen and R. Parikh, Theor. Comput. Sei. 14(1) (1981), 113-118.
[M] R. Milner, LNCS, Springer-Verlag, Vol. 92 (1980).
[MS] A. J. Mayer and L. J. Stockmeyer, Inf. and Comp. 115(2) (1994), 293-311.
[Pe] D. Peleg, M.Sc. Thesis, Bar-Ilan Univ., Ramat Gan, Israel , 1982 (in Hebrew).
[Pn] A. Pnueli, Proc. 18th IEEE Symp. Found. Comput. Sei. (1977), 46-57.
[Pr] V. R. Pratt, Proc. 17th IEEE Symp. Found. Comput. Sei., (1976), 109-121.
[SPH] R. Sherman, A. Pnueli fc D. Hard, SIAM I. Comput. 13 (1984), 825-839.
[VW] M. Vardi and P. Wolper, Proc. Symp. on Logics of Programs , LNCS,

Springer-Verlag, Vol. 164 (1983), 501-512.

Model Checking the Full Modal Mu-Calculus
for Infinite Sequential Processes

Olaf Burkart*1, and Bernhard Steffen2

LFCS, University of Edinburgh, JCMB, King's Buildings, Edinburgh EH9 3JZ, UK
<olaf@dcs. ed.ac.uk>

2 FMI, Universität Passau, Innstraße 33, 94032 Passau, Germany
<steffen@fmi.uni-passau.de>

Abstract. In this paper we develop a new exponential algorithm for
model-checking infinite sequential processes, including context-free pro-
cesses, pushdown processes, and regular graphs, that decides the full
modal mu-calculus. Whereas the actual model checking algorithm res-
ults from considering conditional semantics together with backtrack-
ing caused by alternation, the corresponding correctness proof requires
a stronger framework, which uses dynamic environments modelled by
finite-state automata.

1 Introduction

Over the past decade model-checking has emerged as a powerful tool for the
automatic analysis of concurrent systems. Whereas model-checking for finite-
state systems is nowadays well-established, the theory for infinite systems is
a current research topic (cf. [BE97]). Since even weak branching time logics
are undecidable for infinite-state systems incorporating parallel operators, much
work has focused on the verification of sequential processes. The strongest res-
ults obtained so far show the decidability of monadic second order logic (MSOL)
for the infinite binary tree [Rab69], pushdown transition graphs [MS85], regular
graphs [Cou90], and rational restricted recognizable graphs [Cau96]. However,
all decision procedures are non-elementary and thus not applicable to practical
problems. Moreover, MSOL is usually too expressive, since it allows to distin-
guish even bisimilar models. For these reasons, the modal mu-calculus is seen
as an attractive alternative for specifying behavioural properties.

The model-checking problem for sequential processes and the modal mu-
calculus was first considered in [BS92]. The authors developed an iterative
model-checking algorithm that decides the alternation-free part of the modal
mu-calculus for context-free processes based on a conditional formulation of
the semantics of //-formulas. Moreover, in [HS94] it is shown how this can be
done using tableaux-based techniques, allowing local model checking. Finally,

* This work was supported during my stay at IRISA by the European Community
under HCM grant ERBCHBGCT 920017, and during my stay at the LFCS by the
DAAD under grant D/95/14834 of the NATO science committee.

420

the approach was also extended to the strictly larger classes of pushdown pro-
cesses [BS95] and regular graphs [BQ97]. Since alternation of fixpoints gives
rise to a strict hierarchy [Bra96] the problem of model-checking the full modal
mu-calculus has still been open. Only recently, Walukiewicz presented a first
exponential model-checking algorithm for pushdown processes based on games

[Wal96].
In this paper we develop an alternative algorithm which, essentially, arises

as a combination of extending the standard iterative model-checking techniques
with conditional reasoning, in order to capture sequential model structures in
an alternation-free setting [BS92, BS95, BQ97], and the observation that altern-
ating fixpoints require some kind of backtracking, as it is known from regular
model checking (cf. e.g. [CKS92]). Whereas the actual model checker results
from this combination, the corresponding correctness proof requires a stronger
framework, which uses dynamic environments. In contrast to the 'standard'
assertions, which suffice algorithmically, dynamic environments also explicitly
model valuations of variables that occur free in the actual fixpoint computation.
This explicit treatment is necessary in order to establish the link between the
result of the fixpoint iteration and the semantics of the full modal mu-calculus.

Fortunately, all this additional complexity is only required for the proof and
need not be considered for an implementation. Taking \C\ as the number of
transitions, and \Q\ as the branching degree in the finite sequential process rep-
resentation, as well as |4>| as the size of the formula, and "ad" as the alternation
depth of the formula under consideration, the overall complexity1 is

0(m * (IQI * |C|)ad«+1 * 2l*l*(ad«+IQ|)).

Note that this does not only cover context-free and pushdown processes, but also
regular graphs, which are not covered by the algorithm proposed by Walukiewics.
It is not at all clear, whether a similar extension is also possible for Walukiewics'

algorithms.
The plan of the paper is now as follows. The next section describes the class

of processes we will consider, and presents the modal mu-calculus. Subsequently,
we develop our model-checking algorithm which is proved to be correct in Section
4. The final section contains our conclusions and directions for future research.
Proofs and further details can be found in the full version [BS97].

2 Processes and Specifications

Infinite sequential processes comprise context-free processes, pushdown pro-
cesses, and regular graphs. In this paper we will mainly concentrate on the
model-checking problem for context-free processes, as the extension to push-
down processes, respectively regular graphs, can be obtained following the lines

of [BS95], respectively [BQ97].

In this paper we neglect the optimization of [LBC+94] which exploits monotonicity
arguments and would reduce ad(#) to ad(<£)/2.

421

2.1 Context-Free Processes

As usual, we consider labelled transition graphs as models for the behaviour
of concurrent systems, since they allow to represent the underlying semantics
of many process calculi. In particular, we are interested in classes of infinite
transition graphs which can be finitely represented by labelled rewrite systems.

Definition 2.1. A labelled transition graph is a triple T = (S,Act,^) where
S is the set of states, Act is the set of transition labels (or actions), and —> C
S x Act x S is the transition relation.

Definition 2.2. A labelled rewrite system is a triple V, — (V,Act,R) where V
is an alphabet, Act is a set of labels, and R C V* x Act x V* is a finite set of
rewrite rules. If the rewrite rules are of the form R C V x Act x V* the rewrite
system is called alphabetic.

In the remainder of the paper, a rewrite rule (u,a,v) £ R is also written

as « -4». In general, rewrite systems are used to define a rewrite relation on
words of V* where a rewrite rule may be applied at any position. The technical
development of this paper concentrates on rewritings of the following restricted
form.

Definition 2.3. Let H. — (V,Act,R) be a rewrite system. Then the prefix

rewriting relation of R is defined by i—>R =df { [uw, a, vw) | (u —> v) £ R, w £
V* }, and the labelled transition graph TR =df (V*, Act, \—>R) is called the prefix

transition graph of 7?.. By abuse of notation, we will henceforth write uui —► vw
instead of uw i—>R vw.

An alphabetic rewrite system which is interpreted wrt. prefix rewriting is
called a context-free system, and a context-free process is then the rooted prefix
transition graph of a context-free system. Note that the states of a context-free
process are words over V, and we will henceforth use lower greek letters a, ß,...
to denote them. One standard example for a context-free process is the prefix

transition graph of Cex = {A-+ AB, A —>• e, B —»• e } rooted at A.

2.2 The Modal Mu-Calculus

Nowadays it is widely accepted that system properties can conveniently be ex-
pressed by temporal logic formulas. Particularly, the modal mu-calculus as intro-
duced by Kozen [Koz83] is a powerful branching time logic. It combines standard
modal logic with least and greatest fixpoint operators which allows to express
very complex temporal properties within this formalism. Due to its express-
iveness and its conciseness the mu-calculus can be regarded as the "assembly
language" of temporal logics. Formulas of the mu-calculus, given in positive
form, are defined by the following grammar

<2> ::= tt | f f | X | <2> V $ \ $ A 4> | [a]& \ {a)<P | pX.$ \ vX.<I>

where X ranges over a (countable) set of variables Var, and a over a set of
actions Act. We will use Lfi to denote the set of all mu-calculus formulas.

422

Standard Semantics Given TR = {V*,Act,-+), and a valuation V : Var -»
21'*, the inductive definition below stipulates when a context-free process a G V*
has the property <P, written as a |=v #. If a fails to satisfy <P, we will write

a< ^v X iff a G V(X)
a [=v $1 V$2 iff a^v^i V a (=v ^2
a (=v ^1 A <?2 iff a Nv ^1 A a |=v ^2

a |=v (a)# iff 3 a', a A a' A a' |=v <?
a |=v [a]4> iff V a', a 4 a' =^ a' ^v $
a ^v /iX.<P iff V S C V*. (V ß G f. /? N[Jr-*s] $=>j8e5)=>aeS
cv (=v vX.<P iff 3SCV*.(W ßeV*. ßeS^ß \=v[x^s] #) A a G 5

where V[X >->• 5] is the valuation resulting from V by updating the binding of
X to 5. The clauses for the fixpoints are a reformulation of the Tarski-Knaster
theorem which states that the least fixpoint is the intersection of all pre-fixpoints
and the greatest fixpoint is the union of all post-fixpoints. As a consequence,
states satisfy a fixpoint formula iff they satisfy the unfolding of the formula, i.e.
a |=v <rX.$ iff a \=v $[<rX.$/X] where a G {p,v} and &[&/X] denotes the
simultaneous replacement of all free occurrences of X in <£ by 9.

The satisfaction relation defined above is independent of the valuation if
the considered formula has no free variables in which case we will drop the
index V. We extend our satisfaction relation, moreover, to sets of formulas by
writing a \= F if a \= <P, for all # G f. Finally, we observe that the usual
denotation of formulas as the set of states where the formula holds is obtained
in our presentation by [<2>]v - {a \ a \=v <?}. Next we define some standard
notions which will allow us to deal with occurrences of subformulas in a given
formula, as well as to measure the complexity of a formula.

Definition 2.4 (Binding). A formula $ is called well named if every fixpoint
operator in <P binds a distinct variable, and free variables are distinct from
bound variables. With each well named formula«? we then associate its binding
function V$ which assigns to every bound variable X of <P the unique subformula
<rX.&(X) of <P, called the binding definition of X in <P.

From now on we assume that every formula is well named.

Definition 2.5 (Dependency order, Expansion). Given a formula <P, we
define the dependency order over the bound variables of <£, denoted by <$, as the
least partial order such that if X occurs free in V$(Y) then X <<p Y. Moreover,
for every subformula & of #, we define the expansion of «^ with respect to T>$ as:
{&}Vt, =df V [V$(Xn)/Xn]. ..[VtiX^/Xi] where the sequence (Xu. ..,Xn)
is a linear ordering of all bound variables of 4> compatible with the dependency

order, i.e. if Xi <<j Xj then i < j.

423

Definition 2.6 (Subformulas, Closure). The subformula relation on Lfi, de-
noted by ^, is the least partial order on Lfi such that ^ < &i V$2, #i :< #1 A#2,
<J/ X (a)!?, <? ^ [a]^, ^ ^ /zX!?, and >f ^ z-X.!/', for i = 1,2 and a G ylcL Given
a formula^, we define the closure of $ as CL(^) = { ^ | ^ ^ # }. Furthermore,
if CL(#) = { #i,..., #V, } we will henceforth assume that the subformulas fy are
linearly ordered compatible with ^, i.e. if <Pj < >£j then i > j.

Definition 2.7 (Alternation Depth).
A formula <P is said to be in the classes E0 and Ho iff it contains no fixpoint
operators. To form the class Sn+i, take E„UlIn, and close under (i) boolean and
modal combinators, (ii) nX.<!>, for $ G En+i, and (iii) substitution of <P' G Sn+i
for a free variable of <P G Sn+i provided that no free variable of $' is captured
by <P; and dually for 77n+i. The (Niwinski) alternation depth of a formula <P,
denoted by ad(#), is then the least n such that $ G l^n+i H /7n+i-

Assertion-Based Semantics As pointed out in [BS92], context-free processes
can be verified by considering Hoare-logic style pre-condition/post-condition
pairs of sets of formulas for each of the nonterminals occurring in the context-
free system. A triple { T } a {A} is then interpreted as a satisfies all formulas
of F if we assert that after termination of a exactly the set of formulas A holds.
This intuition is formally captured by the following definition of assertion-based
semantics which generalises standard semantics by taking into account the set
of formulas which hold after termination of a process.

Given Tc = (V*,Act,i—>c), and a valuation V : Var ->■ 2V", the inductive
definition below stipulates when a context-free process a G V* has the property
<P under the hypothesis that after termination of a the formulas A hold, written
as a \=v {@,A). If a fails to satisfy $ under the hypothesis A, we will write
a ^v (0, A). First we have e \=v ($, A) iff <2> G A and then, for a ^ e,

a \=v (tt,A)
afiv (if, A)
a |=v (X,A) iff aeV{X)
a |=v (<£>! V$2,A) iff a \=v (^uA)Va \=v ($2,A)
a \=v (#i A$2,A) iff a \=v (<PuA)Aa \=v {<P2,A)

ak=v((a)0,A) iff 3 a', a A a' A a' \=v (<Z>, A)

a\=v([a]$,A) iff V a', a A-a'=> a' \=v (&,A)
a ^v {t*X.$, A) iff V S C V*. (V ß G V*. ß hv[x^s] (#, 4) => ß € 5)

=>■ a G 5
a ^v (i/M, /i) iff 3 5 C f*. (V /? G V*. ß G 5 =>• ß \=V[x^s] (#, 4))

AaeS
As in the case of the standard semantics, we will use a (=v (71, ^i) to denote
a \=v (<?>,/}), for all<PG T.

The usefulness of the assertion-based semantics is underpined by the follow-
ing proposition [BS92] which states that, firstly, the assertion-based semantics
extend the standard semantics, and secondly, that they allow to reason compos-
itionally about context-free processes.

424

Proposition 2.8. The assertion-based semantics is

1. an extension of standard semantics, i.e. given a closed formula $, we have,

a^$ iff a\=($,Ae) forAe = {$eCL{$)\e^{<P}v*}-

2. compositional wrt. context-free processes, i.e. for all A, F C L(i,

aß \= (r, A) iff 3 S C Lpi. a \= (r, S) and ß \= {E, A)

The effectiveness of our algorithm, which is presented in the next section, relies,
in particular, on Proposition 2.8.1, as it shows that $ can be verified by taking
into account merely the semantics of all subformulas of 0.

3 The Model-Checking Algorithm

In this section we develop our model-checking algorithm which checks closed
//-formulas with arbitrary alternation depth for context-free processes in expo-
nential time. In fact, the algorithm coincides with a backtracking extension of
the model-checker of [BS92] which deals only with the alternation-free fragment

of the modal mu-calculus.
Given a context-free system C and a closed formula #, each nonterminal

A e V = {Ai,...,An} defines a mapping \AJ : 2CLW ->■ 2CLW from post-
to pre-conditions. As we are, however, in particular interested in the question
whether a given subformula 9 G CL($) belongs to the pre-condition set or not,
we refine this notion by defining the following functions, called characteristic

property transformers (CPT).

\A\ (Z1J -df | 0 otherwise

Writing IB for the usual lattice of boolean values, characteristic property trans-
formers are elements of the boolean lattice consisting of all functions from
2CLW to IB, where the ordering, and the meet and join operations respect-
ively, are defined argument-wise. More importantly, they can be obtained as a
fixpoint solution of an appropriate function scheme, called the property trans-
former scheme (PTS). This scheme is defined by the rales given in Figure 1, and
consists of two parts. The first part copes with the structure of the context-free
system, as well as with the semantics of the formula, and defines an equation for
each pair {A,&) eVx CL($). The second part deals with the empty process
according to the first clause of the assertion-based semantics, as well as with
composed processes according to Proposition 2.8.2. Whereas the rules for the
basic cases mimic directly the semantics of the subformula, the fixpoint related
equations are slightly more complicated and require a simultaneous computa-
tion of all their corresponding transformers, sel^ then simply selects the A
component of the resulting tuple. The other auxiliary function, mem,?, tests the
membership of <P in the given set of formulas. It returns 1 if # G A and 0

otherwise.
The overall structure of the model-checking algorithm consists now of the

following three steps.

425

Mt

= 1 IA]*«*' = [A}**UIA]*>
= o M*'A*3 = [A]*1 n M*=
= V(X,A) [Ap* =UA^Jafv

my* =
sel^(n{(/i* ,...,/^J |V,-G[1,n] lMtl{XtAi)^hxiJ€llin]]^hl})

selA(U{(hXi:...,hXj |V,-G[1,n] />£ C[A|[(M.H^.£ll]n]]})

= mem^(Z\)

= «({r£CL(<2>) | [a]£(4) = i})

Figure 1. The property transformer scheme.

1. Given a context-free system C and a closed //-formula«? construct the prop-
erty transformer scheme according to the rules given in Figure 1.

2. Solve the (finite) fixpoint problem for the property transformer scheme.
3. Check whether [yli]*(Z\e) = 1 where Ai is the root of the context-free

system, and A€ = {<P £ CL(#) | e \= {^v* }•

In Section 4 we prove that the second step of the algorithm computes trans-
formers which reflect the assertion-based semantics, while Proposition 2.8.1 now
ensures that the third step solves the model-checking problem, as we have

{Alf{At) = l iff A^frAJ iff Ai\=*.

Moreover, the ordinary semantics of C?> can be obtained from the set of CPT's
by means of [<P] = { a £ V* | fa]*(^\e) = 1 }. This set can always be shown to
be a regular set of states.

As expected, the required backtracking for alternating //-formulas yields a
worst-case time complexity for the algorithm, which is exponentially worse (in
the alternation depth) than the estimation given for the alternation-free case
[BS92, BS95],

Theorem 3.1 (Complexity).
Let. C be a context-free system, and <P be a closed ^.-formula. Then the worst-case
time complexity of solving the property transformer scheme is

0(\4>*(\C*2^)adW+1)

4 Dynamic Environments

In the presence of formulas containing free variables the simple composition prop-
erty of Proposition 2.8.2 no longer captures correctly the behaviour of context-
free processes wrt. the specification at hand. This defect is eliminated by the

426

slight modification given below.

{r,V}aß{A,V} iff 3 2,V"{r,V'}a{2,V"}znd{£,V"}ß{A,V}

Intuitively, the modified composition rule expresses that in addition to assertions
also environments must be adapted when considered at intermediate states. In
general, the valuation V" is obtained from V by right cancellation of ß, i.e. for
all X G dom[V), V"{X) = (V{X) H V*ß)ß~1. As an example, aß G V(X) would

imply Q G V"{X).
In the remainder of this section we fix now a context-free system C, and a

formula 0 with closure { $1, ...,•?„ }. Our aim is to develop a formalism, the
dynamic, environments, which faithfully models the adaptations of valuations
needed for composition. Dynamic environments will be partitioned into levels
k G [l,n] where a dynamic environment of level k defines the valuations for
{ #!,..., $'k }• This change from valuations for variables to valuations for sub-
formulas is reflected in the semanics by adding the rule "if «f G dom(V) then
(a \=v {&,£) if a G V(^))". The original model-checking problem is then
reduced to a corresponding fixpoint problem on the finite domain of dynamic
environments, such that the semantics of the original formula is captured by the

final environment of level n.

Definition 4.1 (Dynamic Environment).
A dynamic environment Ak of level k G [l,n] is a sequence of deterministic
finite-state automata A- = (QA„V,SAt,FAt), i G [1,*], where QAt = (2CL(*))*
are the state sets of the automata, V is the input alphabet, SAi :_QA, x
y _>. QA. are the transition functions obeying the constraints 5Ai(Ai,A) =
A implies SAl_, (Ä-i, A) = r,-_i where A{ denotes {A1,..., A{), and FAl =
{Ai G QA, | ^i G At} is the set of accepting states. Denoting the transitive
closure of SAl, as usual, also by SAi the language accepted by Ai starting in the
state Ai is CAt{Ai) = { a G V* | SAt{A,&) G FAi } where 5 is the reverse of

Q:_

A dynamic environment Ak together with a state Ak is then interpreted as
an environment which defines valuations for $i,..., #)t by means of

Äl(A,)=äf[V1^CAl(Al)]

Ak{Ak) =it Äk-i{Äk-i) [Vk^CAk{Äk)} for 2 < k < n

Dynamic environments are a convenient formalism to describe the semantics
of p-formulason context-free processes since they model compositionality simply

by transitions in the finite automaton.

Lemma 4.2. Let {r,V}A{A, Äk(Ak) }. Then

1. For all i < k, <F{ G F iff A G Äk(Äk)(#i), and 2. V = Äk(SAk{Äk,A)).

2 Here we have to use ä as the automaton has to model the above mentioned right
cancellation

427

The first property expresses that a dynamic environment of level k captures
the semantics of all subformulas up to level k, while the second property states
that the environment to be considered in the pre-condition of A coincides with
the interpretation of the A-successor of At in Ak ■

The granularity of the transition functions of dynamic environments is not
sufficient to obtain a match between the semantic and the iterative intuition
behind the model checking problem. We therefore split these transition functions
into characteristic transition functions as follows.

-><^--{ilt{±A)=n"d*'er'
The split into characteristic transition functions allows us to view a dynamic
environment Äk as a matrix of CTF's as depicted below.

6l<1 51'2 ...tf1-* ...S1'"

rfc.l rfc,2 rfe,fc gk,n

This matrix can be systematically extended to a matrix for Äk+i with new row
(Sk+1,1,..., Sk+1'n) by means of a fixpoint computation such that the final result
will capture the semantics of the formula«? on the given process3.

As will be elaborated on in the next subsection, these matrices are adequate
for proving our main result, Theorem 4.6, i.e. the equivalence of the semantic
and the iterative algorithm presented in Section 4.1, because it is possible to
"synchronize" their corresponding computations on the diagonal.

4.1 Semantic and Iterative Solutions

Given the semantics of the formulas 9\,..., &k-i in terms of a dynamic en-
vironment Ak-i we will now consider the semantics of the remaining formulas

Definition 4.3 (Semantic Solutions).
We call Äk, for k £ [l,n], the semantic solution of Ak-i, written as S(Ak-i), if
the transition function of Ak satisfies

SAk{Ak,A) = tk iff (rfc,A-i(Ä_i>) A {Ak,Äk-i{Äk-i)).

Moreover, we call (Ak,---,An) the semantic solutions of Ak-i, denoted by
S(Äk-i), if Äi = S(Äi-i), for i £ [k,n].

It turns out that the semantic solution respects the standard substitution lemma.

" More precisely, since the arity of characteristic transition functions depends on the
row, they have to be adapted as described in [BS97] during this computation.

428

Lemma 4.4. Let (A, A-i(A-i)) A (Ak, Ak-i(Äk-i)) and let Ak be the se-
mantic solution ofAk-i- Then

(rk,Äk-i{rk-1)[^k^CAk(rk)])A{All,Äk.i(Äk.1)[^k^CAkM])

Corollary 4.5 (Diagonal Consistency). IfÄk, ..-.Ä are the semantic solu-

tions ofAk-i then V'i = 8™, for i G [Ar, n],j G [1, n}.

Due to this corollary we may simply identify the semantic solutions Ak,---,An

with the characteristic transition functions 8k>k,.. .,8n,n.
Let us finally sketch the resulting(conceptual) algorithm which iteratively

computes the semantic solutions for Äk-i- Given Ak-i, we would like to com-
pute 8iJ for i G [Ar, n], j G [1, n]. By Corollary 4.5 we already know that S1^ = S1J

for i G [A-, n],j G [1, k - 1]. The remaining characteristic transition functions are
then computed level-wise by a two-level fixpoint computation. During the inner-
level computation we have fixed some approximant 8k-k and vary the values of
Sk'k+1,...,Sk'n. The idea is that (8k'\ ... ,6k-n) together with A-i defines
a dynamic environment Ak for which we can compute the semantic solutions
0k+i,k+i^ _ gn,n by induction. We may therefore update Jfc'fc+1,..., 8k<n by
gk+i,k+i^ ^ Qn,n^ ancj repeat this iteration until we reach consistency. In the

outer-level fixpoint computation we may now update the fixed 8k<k by evaluat-
ing the characteristic transition function for the "unfolding" of \Pk in the current
setting, and start the inner fixpoint computation again. Our main theorem
then states that if we have reached consistency also at the outer-level then the
iterative and the semantic solutions for Ak-i coincide.

Theorem 4.6. For any given dynamic environment Ak, the semantic and the

iterative solutions coincides.

The observation that only the characteristic transition functions on the diag-
onal have to be taken into account when updating Sk'k wrt. the current dynamic
environment An, allows us to replace the "conceptual" algorithm used in the
correctness proof to the "actual" model-checking algorithm presented in Section
3. This optimization is the key for proving the claimed complexity result.

5 Conclusions and Further Research

In this paper we have presented an iterative, exponential model-checking al-
gorithm for context-free processes which deals with the full modal mu-calculus.
This basic algorithm can also be extended to the class of pushdown processes
following the lines of [BS95], as well as to the class of regular graphs follow-
ing the lines of [BQ97], respectively. Essentially, both extensions are obtained
by taking into account the arity Q of pushdown processes (i.e. the number of
states in the finite control), respectively regular graphs (i.e. the maximal arity of
an hyperedge), which yields characteristic property transformers with multiple
arguments. For these extensions our algorithm has the worst-time complexity
0(|<P| * (IQI * |C|)ad(*)+1 * 2l*l*(adW+iei)).

429

Recently, Walukiewicz presented another model-checker for pushdown pro-
cesses which uses games [Wal96]. His algorithm has the different complexity
estimation 0{ \C\ * (2l<3l*l*l*ad(<?)jad(<?) ^ and beriaves nence worse for increasing

degrees of alternation depths.
Since our algorithm directly mimics the behavioural intuition behind sequen-

tial processes and, in particular, keeps process and formula structure transparent,
it gives a direct handle to extending the underlying process structure. Intended
future work includes plans to extend model-checking to the class of rational re-
stricted recognizable graphs as introduced in [Cau96], and second, to develop
a local variant. Both extensions will exploit the structural transparency of our
approach and, in particular, use the framework of dynamic environments.

References

BE97. O. Burkart and J. Esparza. More Infinite Results. In INFINITY '96,
volume 6 of ENTCS, 23 pages. Elsevier Science B.V., 1997.

BQ97. O. Burkart and Y.-M. Quemener. Model-Checking of Infinite Graphs Defined
by Graph Grammars. In INFINITY '96, volume 6 of ENTCS, 15 pages.
Elsevier Science B.V., 1997.

Bra96. J.C. Bradfield. The Modal mu-Calculus Alternation Hierarchy is Strict. In
CONCUR '96, LNCS 1119, pages 233-246. Springer, 1996.

BS92. O. Burkart and B. Steffen. Model Checking for Context-Free Processes. In
CONCUR '92, LNCS 630, pages 123-137. Springer, 1992.

BS95. O. Burkart and B. Steffen. Composition, Decomposition and Model-
Checking of Pushdown Processes. Nordic Journal of Computing, 2:89-125,
1995.

BS97. O. Burkart and B. Steffen. Model Checking the Full-Modal Mu-Calculus for
Infinite Sequential Processes. Technical Report LFCS-97-355, University of
Edinburgh, April 1997.

Cau96. D. Caucal. On Infinite Transition Graphs Having a Decidable Monadic
Theory. In ICALP '96, LNCS 1099, pages 194-205. Springer, 1996.

CKS92. R. Cleaveland, M. Klein, and B. Steffen. Faster Model Checking for the
Modal Mu-Calculus. In CAV '92, LNCS 663, pages 410-422, 1992.

Cou90. B. Courcelle. Graph Rewriting: An Algebraic and Logic Approach. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, chapter 5,
pages 193-242. Elsevier Science Publisher B.V., 1990.

HS94. H. Hungar and B. Steffen. Local Model-Checking for Context-Free Processes.
Nordic Journal of Computing, l(3):364-385, 1994.

Koz83. D. Kozen. Results on the Propositional /^-Calculus. Theoretical Computer
Science, 27:333-354, 1983.

LBC+94. D.E. Long, A. Browne, E.M. Clarke, S. Jha, and W.R. Marrero. An Improved
Algorithm for the Evaluation of Fixpoint Expressions. In CAV '94, LNCS
818, pages 338-350. Springer, 1994.

MS85. D.E. Müller and P.E. Schupp. The Theory of Ends, Pushdown Automata,
and Second-Order Logic. Theoretical Computer Science, 37:51-75, 1985.

Rab69. R.O. Rabin. Decidability of Second-Order Theories and Automata on Infinite
Trees. Transactions of the AMS, 141:1-35, 1969.

Wal96. I. Walukiewicz. Pushdown Processes: Games and Model-Checking. In CAV
'96, LNCS 1102. Springer, 1996.

Symbolic Model Checking for Probabilistic Processes

Christel Baier1, Edmund M. Clarke2*, Vasiliki Hartonas-Garmhausen2,
Marta Kwiatkowska3 and Mark Ryan3**

1 Fakultät für Mathematik & Informatik 2 Department of Computer Science 3 School of Computer Science
Universität Mannheim Carnegie Mellon University University of Birmingham

68131 Mannheim, Germany Pittsburgh, PA 15213, USA Birmingham Bl5 2TT, UK
baier@pil.informatik.uni-mannheim.de {emc,hartonas}@cs.cmu.edu {mzk,mdr}@cs.bham.ac.uk

Abstract. We introduce a symbolic model checking procedure for Probabilistic
Computation Tree Logic PCTL over labelled Markov chains as models. Model
checking for probabilistic logics typically involves solving linear equation sys-
tems in order to ascertain the probability of a given formula holding in a state.
Our algorithm is based on the idea of representing the matrices used in the lin-
ear equation systems by Multi-Terminal Binary Decision Diagrams (MTBDDs)
introduced in Clarke et al [14]. Our procedure, based on the algorithm used by
Hansson and Jonsson [24], uses BDDs to represent formulas and MTBDDs to
represent Markov chains, and is efficient because it avoids explicit state space
construction. A PCTL model checker is being implemented in Verus [9].

1 Introduction

Probabilistic techniques, and in particular probabilistic logics, have proved successful
in the specification and verification of systems that exhibit uncertainty, such as fault-
tolerant systems, randomized distributed systems and communication protocols. Mod-
els for such systems are variants of probabilistic automata (such as labelled Markov
chains used in e.g. [24, 34, 35, 17]), in which the usual (boolean) transition relation
is replaced with its probabilistic version given in the form of a Markov probability
transition matrix. The probabilistic logics are typically obtained by "lifting" a non-
probabilistic logic to the probabilistic case by constructing for each formula <f> and a
real number p in the [0,1]-interval the formula [ef>]>p in whichp acts as a threshold for
truth in the sense that for the formula [</>]>p to be satisfied (in the state s) the proba-
bility that 0 holds in s must be at least p (see [26, 32, 25] for a different approach).
With such logics one can express quantitative properties such as "the probability of
the message being delivered within t time steps is at least 0.75" (see e.g. the timing or
average-case analysis of real-time or randomized distributed systems [24, 23, 5, 6, 2])
or (the more prevalent) qualitative properties, for which <p is required to be satisfied by
almost all executions (which amounts to showing that (/> is satisfied with probability 1,
see e.g. [1, 17, 23, 24, 21, 22, 29, 30, 34]).

* This research was sponsored in part by the National Science Foundation under grant no. CCR-
8722633, by the Semiconductor Research Corporation under contract 92-DJ-294, and by the
Wright Laboratory, Aeronautical Systems Center, Air Force Materiel Command, USAF, the
Advanced Research Projects Agency (ARPA) under grant F33615-93-1-1330.

** This research was sponsored in part by the European Union ESPRIT projects ASPIRE and
FIREworks, British Telecom, and the Nuffield Foundation.

431

Much has been published concerning the verification methods for probabilistic log-
ics. Probabilistic extensions of dynamic logic [26] and temporal and modal logics,
e.g. [2, 6, 17,24, 21,27, 30, 31, 34], and automatic procedures for checking satisfaction
for such logics have been proposed. The latter are based on reducing the calculation of
the probability of formulas being satisfied to a linear algebra problem: for example, in
[24], the calculation of the probability of 'until' formulas is based on solving the linear
equation system given by an n x n matrix where n is the size of the state space. Optimal
methods are known (for sequential Markov chains, the lower bound is single exponen-
tial in the size of the formula and polynomial in the size of the Markov chain [18]),
but these algorithms are not of much practical use when verifying realistic systems. As
a result, efficiency of probabilistic analysis lags behind efficient model checking tech-
niques for conventional logics, such as symbolic model checking [11, 12, 10,8,15,28],
for which tools capable of tackling industrial scale applications are available (cf. smv).
This is undesirable as probabilistic approaches allow one to establish that certain prop-
erties hold (in some meaningful probabilistic sense) where conventional model checkers
fail, either because the property simply is not true in the state (but holds in that state
with some acceptable probability), or because exhaustive search of only a portion of the
system is feasible.

The main difficulty with current probabilistic model checking is the need to inte-
grate a linear algebra package with a conventional model checker. Despite the power of
existing linear algebra packages, this can lead to inefficient and time consuming com-
putation through the implicit requirement for the construction of the state space. This
paper proposes an alternative, which is based on expressing the probability calculations
in terms of Multi-Terminal Binary Decision Diagrams (MTBDDs) [16]. MTBDDs are
a generalization of (ordered) BDDs in the sense that they allow arbitrary real numbers
in the terminal nodes instead of just 0 and 1, and so can provide a compact representa-
tion for matrices. As a matter of fact, in [13] MTBDDs have been shown to perform no
worse than sparse matrices. Thus, converting to MTBDDs ensures smooth integration
with a symbolic model checker such as smv and has the potential to outperform sparse
matrices due to the compactness of the representation, in the same way as BDDs have
outperformed other methods. As with BDDs, the precise time complexity estimates of
model checking for MTBDDs are difficult to obtain, but the success of BDDs in practice
[8, 28] serves as sufficient encouragement to develop the foundations of MTBDD-based
probabilistic model checkers.

In this paper we consider a probabilistic extension of CTL called Probabilistic Com-
putation Tree Logic (PCTL), and give a symbolic model checking procedure which
avoids the explicit construction of the state space. We use finite-state labelled Markov
chains as models. The model checking procedure is based on that of [24, 18], but we
use BDDs to represent the boolean formulas, and a suitable combination of BDDs and
MTBDDs for probabilistic formulas. Currently, we are implementing the PCTL sym-
bolic model checking in Verus [9]. For reasons of space we omit much detail from this
paper, which will be reported in [4]. We assume some familiarity with BDDs, automata
on infinite sequences, probability and measure theory [8, 33, 20].

432

2 Labelled Markov chains

We use discrete time Markov chains as models (we do not consider nondeterminism).
Let AP denote a finite set of atomic propositions. A labelled Markov chain over a set
of atomic propositions AP is a tuple M = {S, P, L) where S is a finite set of states,
P:SxS-)[0,l]a transition matrix, i.e. YlteS P(s>*) = 1 for a11 s G 5'
and L : 5 -» 2AP a labelling function which assigns to each state s £ S a set of
atomic propositions. We assume that there are 2n states for some n, and that there are
sufficiently many atomic propositions to distinguish them (i.e. L(s) ^ L(s') for all
states s, s' with s ^ s'). Any labelled Markov chain may be transformed into one
satisfying these conditions by adding dummy states and new propositions.

Execution sequences arise by resolving the probabilistic choices. Formally, an ex-
ecution sequence in M is a nonempty (finite or infinite) sequence IT = s0sis2,...
where 8i are states and P(«i_i, «<) > 0, t = 1,2,.... The first state of TT is denoted
by first(ir). 7r(fc) denotes the k + 1-th state of n. An execution sequence n is also
called a path, and a full path iff it is infinite. Path,, (s) is the set of full paths TT with
first(ir) = s. For s 6 S, let S(s) be the smallest cr-algebra on Pathu(s) which
contains the basic cylinders {TT G Pathos) : p is a prefix of TT} where p ranges over
all finite execution sequences starting in s. The probability measure Prob on S(s) is
the unique measure with Prob { TT € Pathu{s) : p is a prefix of TT } = P(p) where
P(s0si • • ■ sk) = P(s0, Si) • P(si, s2) • ... • V{sk-i,sk).

Example 1. We consider a simple communication protocol similar to that in [24]. The
system consists of three entities: a sender, a medium and a receiver. The sender sends
a message to the medium, which in turn tries to deliver the message to the receiver.
With probability j^, the messages get lost, in which case the medium tries again to
deliver the message. With probability -^, the message is corrupted (but delivered); with
probability ^, the correct message is delivered. When the (correct or faulty) message
is delivered the receiver acknowledges the receipt of the message. For simplicity, we
assume that the acknowledgement cannot be corrupted or lost. We describe the system
in a simplified way where we omit all irrelevant states (e.g. the state where the receiver
acknowledges the receipt of the correct message).

We use the following four states:
the state in which the sender passes the message
to the medium
the state in which the medium tries to deliver the
message
the state reached when the message is lost
the state reached when the message is corrupted

The transition sdei ->■ sinit stands for the acknowledgement of the receipt of the correct
message, serror -» sinit for the acknowledgement of the receipt of the corrupted mes-
sage. We use two atomic propositions ax, a2 and the labelling function L(sinu) = 0,
L(sdei) = {a1,a2},L(siost) = {a2}, L{serror) = {a\).M

Sinit

Sdel

Slost

terror

433

3 Probabilistic branching time temporal logic

In this section we present the syntax and semantics of the logic PCTL (Probabilistic
Computation Tree Logic) introduced by Hansson & Jonsson [24]4. PCTL is a proba-
bilistic extension of CTL which allows one to express quantitative properties of proba-
bilistic processes such as "the system terminates with probability at least 0.75". PCTL
contains atomic propositions and the operators: next-step X and until U. The operators
X and U are used in connection with an interval of probabilities. The syntax of PCTL
is as follows:

::= tt | a | #i A#2 | "■# | [^ bj> I [iU2hP

where a is an atomic proposition, p € [0,1], 3 is either > or >. Formulas of the
form X$ or iU2, where #, $i, $2 are PCTL formulas, are called path formulas.
PCTL formulas are interpreted over the states of a labelled Markov chain, whereas path
formulas are interpreted over paths. The subscript 3 p denotes that the probability of
paths starting in the current state fulfilling the path formula is 3 p. Thus, PCTL is like
CTL, except that the path operators A and E in CTL have been replaced by the operator
[']DP- The usual derived constants and operators are: ff = -<tt, $\ V #2 = _l(-,^i A
-1^2), #1 -> ^2 = ~^i V #2- Operators for modelling "eventually" or "always" can
be derived by: [0#]>p = [ttU$]>p, [0$]>p = -.[0-i#]>i_p, and similarly for [-]>p.

Let M = (5,P,L) be a labelled Markov chain. The satisfaction relation |= C
5 x PCTL is given by
s |= tt for all s G S s \= #1 A #2 iff s \= $1 and s |= £2

s^aiffaGL(s) s |=-><2> iff s ^ <?

s f= [X#]3p iff Pro6{7T G Pathu(s) : TT \= X#} 3 P

s |= [^i(7#2]3p iff Prob{n e Pathu(s) : TT |= £I[/<P2} 3P

TT |= X*iif7r(l) M
7T |= *i(7#2 iff there exists A; > 0with7r(i) \=$i,i = 0,1,..., k- 1 and n(k) \= $2-
For a path formula / the set {n G Pathu{s) : ir \= /} is measurable [34, 18]. If s \= $
then we say s satisfies $ (or # holds in s). The truth value of formulas involving the
linear time quantifiers O and □ can be derived:

s \= [0#]3p iff Prob{TY e Pathw(s) : Tx{k) \= £ for some k > 0} 3 P

s \= [ü#]3p iff Prob{w £ PatK{s) : it(k) \= # for all k > 0} 3 P-
Given a probabilistic process "P, described by a labelled Markov chain M = (S, P, L)
with an initial state s, we say V satisfies a PCTL formula § iff s f= #. For instance, if
a is an atomic proposition which stands for termination and V satisfies [Oa]>P then V
terminates with probability at least p.

4 Multi-terminal binary decision diagrams

Ordered Binary Decision Diagrams (BDDs) [7, 8, 15, 28] are a compact representation
of boolean functions / : {0,1}" -> {0,1}. They are based on the canonical represen-
tation of the binary tree of the function as a directed graph obtained through folding

For simplicity we omit the bounded 'until' operator of [24].

434

internal nodes representing identical subfunctions (subject to an ordering of the vari-
ables to guarantee uniqueness of the representation) and using 0 and 1 as leaves. In [16]
it is shown how one can generalize BDDs to cogently and efficiently represent matrices
in terms of so-called multi-terminal binary decision diagrams (MTBDDs).

Formally, MTBDDs can be defined as follows. Let xx,..., xn be distinct variables,
which we order by x^ < Xj iff i < j. A multi-terminal binary decision diagram
(MTBDD) over {xx,... ,xn) is a rooted, directed graph with vertex set V contain-
ing two types of vertices, nonterminal and terminal. Each nonterminal vertex v is la-
belled by a variable var(v) £ {xi,...,xn} and two children left(v), right{v) G V.
Each terminal vertex v is labelled by a real number value(v). For each nonterminal
node v, we require var(v) < var(left{v)) if left(v) is nonterminal, and similarly,
var{v) < var(right(v)) if right(v) is nonterminal. A suitable adaptation of the op-
erator REDUCE(-) [7] yields an operator which accepts an MTBDD as its input and
returns the corresponding reduced MTBDD.

Each MTBDD Q over {xx,.. .,xn} represents a function FQ : {0,1}™ -> M,
and, vice versa, each function F : {0,1}™ -> M can be described by a unique reduced
MTBDD over (zi,..., xn). In the sequel, by the MTBDD for a function F : {0,1}™ ->■
R we mean the unique reduced MTBDD Q with FQ = F. If all terminal vertices are
labelled by 0 or 1, i.e. if the associated function FQ is a boolean function, the MTBDD
specializes to a BDD over (x\,...,xn).

MTBDDs are used to represent .D-valued matrices as follows. Consider a 2m x 2m-
matrix A. Its elements atj can be viewed as the values of a function JA : {1, ■ ■ • 2m} x
{1,... 2m} -> D, where /^(i, j) = a{j. Using the standard encoding c : {0, l}m ->
{1,... 2m} of boolean sequences of length m into the integers, this function may be
interpreted as a D-valued boolean function / : {0, l}m ->• D where f(x,y) =
fA(c{x),c(y)) for x = (xi ... xm) and y = (yi ■ ■ ■ ym). This transformation now al-
lows matrices to be represented as MTBDDs. In order to obtain an efficient MTBDD-
representation, the variables of / are permuted. Instead of the MTBDD for f(xi ...
xm,yi ■■■ym), we use the MTBDD obtained from f(xi,yi,X2,y2,---xm,ym). This
convention imposes a recursive structure on the matrix from which efficient recursive
algorithms for all standard matrix operations are derived [16].

4.1 Representing labelled Markov chains by MTBDDs

To represent the transition matrix of a labelled Markov chain by a MTBDD we abstract
from the names of states and instead, similarly to [8, 15], use binary tuples of atomic
propositions that are true in the state. Let M = (5, P, L) be a labelled Markov chain.
We fix an enumeration a\,..., an of the atomic propositions and identify each state s
with the boolean n-tuple e(s) = (&i,..., &„) where 6» = 1 iff o, G L(s). In what fol-
lows, we identify P with the function F : {0, l}2n ->■ [0,1], F{xx,yu ... ,xn,yn) =
P((zi,... ,xn), (yi,.. .,yn)), and represent M by the MTBDD for P over (zi,2/i,
...,xn,yn). The associated MTBDD is denoted by P.

Example 2. For the system in Example 1 we use the encoding e(sinit) = 00, e(sdei) =
11, e(siost) = 01 e(serror) — 10. The values of the matrix P, the function F and the
MTBDD P for F are are given by:

435

00 01 10 11
00 0 0 0 1
01 0 0 0 1
10 1 0 0 0
11 98

100
1

100
1

100 0

F(xuyi,x2,y2)

1 : if x1y1x2y2 e {0101,0111,1000}
^ : if xiyix2y2 e {1011,1110}
f^ :ifxiyix2y2 = 1010
0 : otherwise.

(The thick lines stand for the "right" edges, the thin lines for the "left" edges.) I

4.2 Operators on MTBDDs

Our model checking algorithm makes use of several operators on MTBDDs proposed
in Bryant [7] and Clarke et al [14]. We briefly describe them below.
Operator BDD(-): takes an MTBDD Q and an interval I, and returns the BDD rep-
resenting the function F(x) = 1 if FQ(X) G /, else F(x) = 0. We obtain B =
BDD(Q, I) from Q by changing the values of the terminal vertices (into 1 or 0 de-
pending on whether or not value(v) e I) and applying Bryant's reduction procedure
REDUCE(-). We write BDD(Q, > p) rather than BDD(Q,]p, oo[) and BDD(Q, >
p) rather than BDD(Q, [p, oo[).
Operator APPLY(■): allows elementwise application of the binary operator op to two
MTBDDs. If op is a binary operator on reals (e.g. multiplication * or minus -) and Qi,
Q2 are MTBDDs over x then APPLY(Q1,Q2,op) yields a MTBDD over x which
represents the function f(x) = /Q1(X) op /Q2(3J).

Operator COMPOSEk(-): This operator allows the composition of a real function
F : {0, \}n+k -» M and boolean functions d : {0, l}n -> {0,1}, i = 1,..., k giving
H(x)=F{x,G1(x),...,Gk(x)).
Matrix and vector operators: The standard operations on matrices and vectors have
corresponding operations on the MTBDDs that represent them [13]. If MTBDDs A
and Q over 2n and n variables represent the matrix A and vector q respectively, then
MV-MULTI(A, Q) denotes the MTBDD over n variables that represents the vector
A q.
Operator SOLVE(-): [8] presents a method to decompose a regular matrix A into a
lower and upper triangular matrices and a permutation matrix. Using this LU-decompo-
sition we can obtain an operator SOLVE(A, Q) that takes as its input a MTBDD A
over 2n variables where the corresponding matrix A is regular and a MTBDD Q over n
variables which represents a vector q, and returns a MTBDD Q' over n variables which

436

represents the unique solution of the linear equation system A ■ x = q. Alternatively,
we can use iterative techniques to solve the equations; our experiments indicate that this
performs better.

4.3 Description of (MT)BDDs by relational terms of the ^-calculus

We will use the //-calculus as a notation for describing (MT)BDDs. In the algorithm
in the next section, all our (MT)BDDs are either over 2n variables (in which case they
represent 2n x 2™ matrices), or over n variables (in which case they represent vectors of
length 2n). For example, if B, C are BDDs over n variables and ü = (ui,..., u„),
v = (vi,.. .,vn), then D = Xüv [B(ü) A C(v)] is a BDD over 2n variables; if
B,C represent the vectors (&i)i<,<„ and (c;)i<;<„ respectively, then D represents
the matrix whose element in the zth row and jth column is 6* A Cj. The BDD E =
Xü [B(u) A Civ)] is a BDD over n variables, representing the vector (bi A Cj)i<i<n.

We write TRUE for the BDD over n variables which returns 1 in all cases of its
arguments. We write -<B instead of Xx[-iB(x)], and B± A B2 for the BDD Xx[Bi (x) A
B2 (x)]. If x = (xi,...,xn),y = (yi,...,yn) then x = y abbreviates the formula

f\l<i<Jxi *> a/0-
We require one further operator. If the labelled Markov chain M — (S, P, L) is rep-

resented by a MTBDD P as described in Section 4.1, and Bi, B2 are BDDs that repre-
sent the characteristic functions of subsets Sx, S2 of 5, then REACH(B1, B2, BDD(P,
> 0)) represents the set of states s e S from which there exists an execution sequence
s — s0,si,...,sk with k > 0 and s0,... ,sk-i G Si, sk G 52, and which is used in
the operator UNTIL(-) defined in Section 5.
Operator REACH(-) Let Bx, B2 be BDDs with n variables and T a BDD with 2n
variables. We define REACH(B1,B2,T) to be the BDD over n variables which is
given by the //-calculus formula fiZ Xx [B2(x) V (Bi (x) A 3y[Z(y) A T(x, y)])]. This
operator uses the method of [8] to obtain the BDD for a term involving the least fixed
point operator /x.

5 Model checking for PCTL

Our model checking algorithm for PCTL is based on established BDD techniques
(i.e. converting boolean formulas to their BDD representation), which it combines with
a new method, namely expressing the probability calculation for the probabilistic for-
mulas in terms of MTBDDs. In the case of [X$]^p the probability is calculated by
multiplying the transition matrix by the boolean vector set to 1 iff the state satisfies #,
whereas for [iU2]zip we derive an operator called UNTIL(-), based on [24], which
we express in terms of MTBDDs.

Let M = (5, P, L) be a labelled Markov chain which is represented by a MTBDD
P over 2n variables as described in Section 4.1. For each PCTL formula #, we define
a BDD B[$] over x = (xi,...,xn) that represents Sat(&) = {s G S : s (= £}. We
compute the BDD representation B[$\ of a PCTL formula $ by structural induction:
B[tt) = TRUE B[a,i] = Xx [xi]
£[-,#] = -,£[#] B[$i A <f2] = B[§i\ A B[$2)

437

B[[X$\-3P] = BDD (MV-MULTI(P, B[$\), 3 P)
B[[$iU§2]3P] = BDD{UNTIL{B[$llB[$2lP),^p))
The operator UNTIL(B[$i],B[$2],P) assigns to each state s G S the probability
of the set of full paths from s satisfying #i£/£2; formally, it represents the function
S->[0,l],mps, where ps = Prob {K G Pathw(s) : IT \= XU2} ■ Our method
for computing ps is based on the partition of S introduced in [24, 18], but we must
compute with BDDs. We first compute the set V = {s £ S : ps > 0} and then set
V = V \ Sat($2). We then have: ps = 1 if s f= #2; Ps = 0 if s £ V; and for the
remaining cases (i.e. those such that s G V)

p,=]£P(a,i)-Pt + 5] P(*.*)-P*+ E P(a>*)-Pt-
teV tG5ot(*2) t65\V

In the second term, each p* = 1 and in the third term, each pt = 0. Therefore ps

(s e V) satisfies a |V|-dimensional equation system of the form x = Ax + b, or
equivalent^ (I - A) x = b where I is the \V'\ x |V'| identity matrix. One can show
this system has a unique solution using the method in [24, 18].

We now demonstrate how UNTIL(-) can be expressed in terms of MTBDDs. Let
Bi = B[$i],i = 1,2. The set Vis given by the BDDS = REACH{Bx,B2,BDD(P,
> 0)), V by B' = Xx [B(x) A ->B2(x)]. In order to avoid the BDD for the "new"
transition matrix A with [log2 |V'|] variables, we instead reformulate the equation in
terms of the matrix P' = (p'Szt)Sttes which is given by: p'Sit = P(s, t) if s, t G V and
p's t = 0 in all other cases. The MTBDD P' for P' can be obtained from the MTBDD
P representing the Markov transition matrix. The following lemma shows that I - P'
is regular (we omit the proof).

Lemma 1. Let V, P', I be as as above. Then, I - P' is regular. The unique solution
x = {xs)seS of the linear equation system (I - P') • x = q where q = (qs), qs =
Etesat(*2) P(s^) satisfies: xs = ps if s G V.

The algorithm for the operator UNTIL{-) is shown in Figure 1. It first calculates the
MTBDDs B and B', for V and V. B2 is used as a mask to obtain P' from P; it sets
to 0 the entries not corresponding to states in V. We next calculate the MTBDD Q
for the vector q, and use the operator SOLVE(-) to obtain the MTBDD Q' satisfying
FQ, (S) = ps for all sGV'. The result, the MTBDD Q" for the vector p = (ps)ses, is
obtained from the MTBDD for the function F(x) = max{ FB2 (X), FQ< (X) ■ FB< (x) }
which uses Q' for all s G V and ensures that 1 is returned as the probability of the states
already satisfying <£2.

Example 3. Let # = [try.to-deliver U correctly-delivered]>0.9 where
try do-deliver = a2 and correctly-delivered = -iai A -ia2. We consider the system
in Example 1. Our algorithm first computes the BDDs Bx for Sat(tryJo-deliver) =
{sdei,siost}, B2 for Sat{correctly-delivered) = {sinU}, and then applies Algo-
rithm UNTIL(B1,B2,P). V = {sinit,sdei,slost} is represented by the BDD B,
V' = {sdei,siost} by the BDD B'. Thus, B2, P' and A stand for the matrices

'0000\ /0 0 00\ /l 0 0 0
0101 p/= 0 0 01
0000 0000
0101/ VO^öOO/

A= I " X °-1
A

 '"010

■155 0 1

438

Algorithm: UNTIL(BUB2,P)

Input: A labelled Markov chain represented by a MTBDD P over 2n variables,
BDDs B\, B2 over n variables

Output: MTBDD X over n variables which represents the function that assigns to each
state the probability of a path from the state reaching a B2-state via an execution
sequence through Bi -states

Method: B := REACH(BUB2,BDD(P,> 0)); B' := \x [B{x) A ^B2{x)];
B2 := Aziyi ...xnyn [B'{xi,..., xn) A B'(yi, • • •, Vn)\,
P' := APPLY(P, B2,*);I:= XxlVi ... xnyn [x = y\;
A ■= APPLY(I,P',-);Q:= MV-MULTI(P,B2);
Q' := SOLVE(A, Q); Q" := APPLY(B2, APPLY(Q',B', *), max);
Retum(REDUCE(Q")).

Fig. 1. Algorithm UNTIL(BUB2,P)

B-2 (viewed as a vector) is q2 = (1,0,0,0). Thus, Q is the MTBDD for the vector
p • q2 = (0,0,1,0.98). We solve the linear equation system

/°
0
1

V J8_
\ 100 '

which yields the solution x = (0, §§, 1, §§) (represented by the MTBDD Q1). More-
over, the MTBDD APPLY(Q', B', *) can be identified with the vector (0, i
UNTIL(Bi,B2,P) and the BDD B[$\ are of the following form.

0 ^)

Thus, B[$] represents the characteristic function for Sat{§) = {sinit,Sdeh Siost}-'

6 Implementing PCTL model checking

We are integrating PCTL symbolic model checking within Verus [9], which is a tool
specifically designed for the verification of finite-state real-time systems. Verus has
been used already to verify several interesting real-time systems: an aircraft controller,
a medical monitor, the PCI local bus, and a robotics controller. These examples have not
been originally modeled using probabilities. However, these systems exhibit behaviors
which can best be described probabilistically. The integration of PCTL model check-
ing with Verus allows us to verify stochastic properties of these and other interesting
applications.

439

The Verus language is an imperative language with a syntax resembling that of the C
language with additional special primitives to express timing aspects such as deadlines,
priorities, and delays. An important feature of Verus is the use of the wait statement
to control the passage of time. In Verus time only passes when a wait statement is
executed: non-wait statements execute in zero time. This feature allows a more accurate
control of time and leads to models with less states, since consecutive statements not
separated by a wai t statement are compiled into a single state. To describe probabilistic
transitions we extend the Verus language with the probabilistic select statement.

From the Verus description of the application, the tool generates automatically a
labeled state-transition graph and the corresponding transition probability matrix using

BDDs and MTBDDs respectively.
The first experimental results of our PCTL symbolic model checking implementa-

tion are promising: Parrow's Protocol (which is of a similar size to Example 1) can be
verified in less than a second. We have modeled a fault tolerant system [23, p. 168-171]
with three processors that has about 35000 reachable states (out of 108 states). A safety
property of this system took only a few seconds to check. Next we plan to evaluate
how well PCTL symbolic model checking performs as a formal verification tool in real
applications by modeling industrial size systems.

7 Concluding remarks and further directions

We have proposed a symbolic model checking procedure for the logic PCTL which we
are implementing using MTBDDs in Verus, thus forming the basis of an efficient tool
for verifying probabilistic systems. Our algorithm can be extended to cater for "bounded
until" of [24] which is useful in timing analysis of systems. We expect that MTBDDs
can be used to derive PCTL* model checking by applying the methods of [18]. Like-
wise, testing of probabilistic bisimulation and simulation [3, 19] can be implemented
using MTBDDs. An extension to the case of infinite state systems, perhaps by appropri-
ate combination with induction, as well as a generalization to allow non-determinism,

would be desirable.

References

1. R. Alur, C. Courcoubetis, D. Dill. Verifying Automata Specifications of Probabilistic Real-
Time Systems. In Proc. Real-Time: Theory and Practice, LNCS 600, pp 27-44, Springer,
1991.

2. L. de Alfaro. Formal Verification of Performance and Reliability of Real-Time Systems.
Techn. Report, Stanford University, 1996.

3. C. Baier. Polynomial Time Algorithms for Testing Probabilistic Bisimulation and Simula-
tion. In Proc. CAV'96, LNCS 1102, pp 38-49, Springer, 1996.

4. C. Baier, S. Campos, E. Clarke, V. Hartonas-Garmhausen, M Kwiatkowska, M. Minea,
and M. Ryan. Probabilistic model checking using multi terminal binary decision diagrams.
In preparation.

5. C. Baier, M. Kwiatkowska. Model Checking for a Probabilistic Branching Time Logic with
Fairness. Techn. Report CSR-96-12, University of Birmingham, 1996.

6. A. Bianco, L. de Alfaro. Model Checking of Probabilistic and Nondeterministic Systems. In
Proc. Foundations of Software Technology and Theoretical Computer Science, LNCS 1026,
pp 499-513, Springer, 1995.

7. R. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transactions
on Computers, C-35(8), pp 677-691, 1986.

440

8. J. Burch, E. Clarke, K. McMillan, D. Dill, L. Hwang. Symbolic Model Checking: 1020 States
and Beyond. Information and Computation, 98(2), pp 142-170, 1992.

9. S. V. Campos, E. M. Clarke, W. Marrero, and M. Minea. Verus: a tool for quantitative anal-
ysis of finite-state real-time systems. InPwc. Workshop on Languages, Compilers and Tools
for Real-Tune Systems, 1995.

10. E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branching time
temporal logic. In D. Kozen, eds, Proc. Logic of Programs, LNCS 131, Springer, 1981.

11. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concur-
rent systems using temporal logic specifications: A practical approach. In Proc. 10th Annual
Svmp. of Programming Languages, 1983.

12. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concur-
rent systems using temporal logic specifications. ACM Trans. Programming Lnaguages and
Systems, 1(2), 1986.

13. E. Clarke, M. Fujita, P. McGeer, J. Yang, and X. Zhao. Multi-terminal binary decision di-
agrams: An efficient data structure for matrix representation. In IWLS '93: International
Workshop on Logic Synthesis, Tahoe City, May 1993.

14. E. Clarke, M. Fujita, X. Zhao. Multi-Terminal Binary Decision Diagrams and Hybrid De-
cision Diagrams. In T. Sasao and M. Fujita, eds, Representations of Discrete Functions, pp
93-108, Kluwer Academic Publishers, 1996.

15. E. Clarke, O. Grumberg, D. Long. Verfication Tools for Finite-State Concurrent Programs.
In Proc. A Decade of Concurrency, LNCS 803, pp 124-175, Springer, 1993.

16. E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. Yang. Spectral transforms for
large boolean functions with applications to technology mapping. In Proc. 30th ACM/IEEE
Design Automation Conference, pp 54-60, IEEE, 1993.

17 C. Courcoubetis, M. Yannakakis. Verifying Temporal Properties of Finite-State Probabilistic
Programs. In Proc. FOCS'88, pp 338-345, IEEE, 1988.

18 C. Courcoubetis, M. Yannakakis. The Complexity of Probabilistic Verification. J. ACM,
42(4), pp 857-907, 1995.

19. R. Enders, T Filkorn, D. Taubner. Generating BDDs for Symbolic Model Checking in CCS.
Distributed Computing, 6, 1993.

20. P. Halmos. Measure Theory, Springer, 1950.
21. S. Hart, M. Sharir. Probabilistic Temporal Logic for Finite and Bounded Models. In Proc.

16th ACM Symposium on Theory of Computing, pp 1-13, 1984.
22. S. Hart, M. Sharir, A. Pnueli. Termination of Probabilistic Concurrent Programs. ACM Trans.

Programming Languages and Systems, 5, pp 356-380, 1983.
23. H. Hansson. Time and Probability in Formal Design of Distributed Systems, Elsevier, 1994.
24. H. Hansson, B. Jonsson. A Logic for Reasoning about Time and Probability. Formal Aspects

of Computing, 6, pp 512-535, 1994.
25. M. Huth, M. Kwiatkowska. Quantitative Analysis and Model Checking, In Proc. LICS'97,

IEEE Computer Society Press, 1997.
26. D. Kozen. A Probabilistic PDL, JCSS, 30(2), pp 162-178, 1985.
27. K. Larsen, A. Skou. Bisimulation through Probabilistic Testing. Information and Computa-

tion, 94, pp 1-28, 1991.
28. K. McMillan. Symbolic Model Checking: An Approach to the State Explosion Problem,

Kluwer Academic Publishers, 1993.
29. A. Pnueli, L. Zuck. Verification of Multiprocess Probabilistic Protocols. Distributed Com-

puting, 1(1), pp 53-72, 1986.
30. A. Pnueli, L. Zuck. Probabilistic Verification. Information and Computation, 103, pp 1-29,

1993
31 R. Segala, N. Lynch. Probabilistic Simulations for Probabilistic Processes. In Proc. CON-

CUR, LNCS 836, pp 481-496, Springer, 1994.
32. K. Seidel C. Morgan, A. Mclver and J.W. Sanders. Probabilistic Predicate Transformers.

Techn. Report PRG-TR-4-95, Oxford University Computing Laboratory, 1995.
33. W. Thomas. Automata on Infinite Objects. In Handbook of Theoretical Computer Science,

Vol. B, pp 135-191, North-Holland, 1990.
34 M Vardi Automatic Verification of Probabilistic Concurrent Finite-State Programs. In Proc.

FOCS'85, pp 327-338, IEEE, 1985.
35. M. Vardi, P. Wolper. An Automata-Theoretic Approach to Automatic Program Verification.

In Proc. LICS'86, pp 332-344, IEEE Computer Society Press, 1986.

On the Concentration of the Height
of Binary Search Trees

J. M. Robson1

LaBRI
Universite Bordeaux 1

robson@labri.u-bordeaux.fr

Abstract. The expectation of the absolute value of the difference be-
tween the heights of two random binary search trees of n nodes is less
than 6.25 for infinitely many n. Given a plausible assumption, this ex-
pectation is less than 4.96 for all but a finite number of values of n.

1 Introduction

A binary search tree (BST) of n nodes is constructed from n distinct keys in
random order by inserting each key in turn into an initially empty tree by the
familiar algorithm which inserts a key into an empty tree by constructing a new
root node with this key and otherwise inserts the key into the left or right subtree
depending on whether it is smaller or larger than the key at the root. Two other
equivalent definitions are often useful in considering the shape or in particular

the height of such a tree:

- A random tree of n nodes is empty if n is zero and otherwise consists of
a root node and a left subtree of I nodes and a right subtree of n - 1 - /
nodes where / is an integer chosen uniformly on 0 .. . n - 1; the subtrees are
constructed in the same way, all the random choices being independent.

- The i-th node is inserted into the tree by choosing one of the i external
nodes of the tree, each with the same probability 1/i, and replacing it by a
new internal node. Hence we have the important result that the probability
of this insertion increasing the height of the tree is 1/i times the number
of external nodes at the deepest level containing any external nodes, or
alternatively 2/i times the number of internal nodes at the deepest level
containing any internal nodes; we call these internal nodes at the deepest

level critical nodes.

We are interested in the distribution of the random variable h(n) which is the
height of a tree constructed in any of these ways. h(n) is also the stack depth used
by a straightforward version of Quicksort to sort n randomly ordered distinct

values.
The mean value of h(n) is known to be close to clogn where c « 4.3011

is the larger root of c = 2e1_1/c. An upper bound of the form (c + o(l)) log n
was shown in [41; a lower bound of the form (c - o(l))logn was shown in [1];

442

and finally the height was shown with high probability to lie within bounds
clog77. ± O(loglogn) in [2].

Direct calculation for small to moderate values of n and random construction
of larger trees [3] have shown that the variance of the height remains small for
quite large n and shows no sign of diverging. To date the only explanation of
these results has been an upper bound of 0(log logn) on the variance in [2].

In this paper we will show that there are indefinitely large values of n for
which E[\h(n)-E[h(n)]\] is less than 6.25. Although this does not prove anything
about the variance and does necessarily not apply to all n, it suggests very
strongly that the distribution remains tightly concentrated around its mean. If
we make a simple and plausible assumption about the convergence of the number
of critical nodes, we can both strengthen the bound and show that the conclusion
applies to all sufficiently large n.

In section 2 we will prove a very weak version of the main theorem which we
hope will illustrate the essential (and very simple) ideas in the clearest possible
way. In section 3 we will give the strongest form that we yet know of the theorem.
In section 4 we show briefly how the theorem can be strengthened further if we
assume that the expected number of critical nodes converges. Finally in section
5 we sketch some directions for further work.

2 A weak upper bound

We take hi(n) and h2{n) as two independent random variables each distributed
as the height of an n node BST. Let c be the limit of E[h(n)]/ logn. Let e be an

arbitrary positive number.

Theorem 1. E[\hi(n) - h2{n)\] < 6clog3 - 6 + e infinitely often.

(It follows immediately that E[\h(n)~ E[h{n)]\] < 6clog3-6+e (« 22.417+

e) infinitely often.)

Proof by contradiction: Suppose the contrary. Then for large enough N,
E[\hi(n) - h2{n)\] > 6clog3 - 6 + e for all n greater than TV. Now choose a v
greater than N such that E[h(iv)] < E[h(i/)] + clog3 + e/6. (Infinitely many
such v exist since E[h(n)]/ logn —>■ c.)

Consider a random tree of size Zv and the following algorithm to choose one
of its immediate subtrees (L is its larger immediate subtree and S its smaller):

443

if \L\>2v
then

choose L

else
if the height of S is greater than that of L

then
choose S

else
choose L

fi
fi

Note that the probability of taking the first case is 2/3.
Consider the height of the subtree chosen:
In case 1 we choose a random subtree of size greater than v. height. > E[h(v)];
For the case of \L\ < 2v, it is clear that the mean height is greater than it

would be for two subtrees of size v, namely E[max(hi(v), h2{v))] = E[(hi(v) +
h2(v))/2 + \hi{v)-h2{v)\/2] which is greater than E[h{y)} +3clog3-3+ e/2

by the choice of v.
Hence the expected height of the subtree chosen is at least E[h(v)] + c\og3-

1 + e/6 making it greater than E[h(3v)} - 1 which is clearly impossible since the
maximum possible height for a subtree is one less than the height of the tree.D

3 Three ways to improve the bound

The argument giving the upper bound of 22.417 can be strengthened in (at least)

three ways:

- Choose a value other than "Zv for the size of the tree. Any size greater than

2v will give some non-trivial upper bound.
- Consider not only the immediate subtrees of the tree but possibly deeper

subtrees. As long as a subtree has size greater than 2v we can consider its
split into two subtrees, certain that one of them will have at least v nodes.

- Where a subtree has size av (a > 1), we have lower bounded its height by
that of a tree of size v. In fact, since every tree has at least one critical node,
the mean height of an av node tree must exceed that of an v node tree by

av

at least 2 V" 1/i which we can approximate by 2 log a for large v.

i = v+l

Hence we have a general scheme for a method of choosing a subtree and an

associated upper bound:
Starting with a tree of size kv, with probability 1 - p find a subtree of size

av (a > I), at a depth A from, the root. Otherwise (with probability p) find two

disjoint subtrees with sizes ßv and -yv (ß, 7 > I), at depths B and C respectively
from, the root; choose one of these two according to which was higher at the.

moments when each, contained exactly v nodes.

444

We consider the expected value of the depth of the deepest node in the
subtree thus chosen. If only one subtree is found (probability 1 — p) this is at
least E[A + 21oga + h[v)]. Otherwise (probability p) it is the expected depth of
the root of the subtree chosen plus the expected height of that subtree when its
size was v plus the amount by which the height has increased since then, giving at
least (£[(5 + C + 21og/?+21og7)/2 + /j(z/) + £,[|/i1(^)--/i2(j/)|/2]). Putting these
two together we find that the expected depth is at least (1 — p){E[A + 2 log a +
h(v)]) + p{E[{B + C+2\ogß+2\og1)/2 + h(v) + E[\hl{v)-h2{v)\/2]). Since
this must be no greater than E[h(kv)] and we can choose infinitely many v with
E[h(kv]\ < E[h(v)] + clogk + e, we can deduce an upper bound, valid infinitely
often of

E^v) - h2(v)\/2] <
clogk/p - E[(B + C + 2\ogß + 2\ogf)/2] - ^E[A + 2loga] + O(c).

If we define a random variable /(n) as the value of A + 2 log a if only one
subtree is found and (5 + C + 21og/? + 21og7)/2 if two subtrees are found, when
the scheme is applied to an n node tree, we can rewrite this inequality as

£[IM")-M")0 < 2(clogfc - E\J{kv)])/p

Theorem 2. £[|/ii(n) - h2(n)\] < 6.247 infinitely often.

Proof: We consider the particular instance of this scheme in which we choose
a cut off depth d and apply the algorithm choose2(T, d) where choose2 is defined

choose2 (tree,depth);
if depth = 0 then return tree fi;
if size(tree) < 2v

return tree
else

let L and S be the larger and smaller immediate subtrees of tree
if size(S) > v

then return {choosel(L,depth-l), choose 1(S,depth-1)}
else return {choose2(L,depth-1)}

fi
fi

end;

445

inhere choose! chooses some subtree of size at least v.

choosel(tree, depth);
if depth = 0 then return tree fi;
if size(tree) < 2v then

return tree

else
return choosel(larger subtree of tree, depth - 1)

fi
end;

To apply inequality (1) we need to know the value of p and that of E[f{kvj\.
Denning p(n, depth) as the probability of finding two subtrees of size at least v
when starting with a tree of size n (> v) at depth levels above the cut off level,

we obtain

p{n,de]
if n < 2;/ or depth — 0
then

0
else

1 - 2vjn + Ivjn x E[p{n', depth - 1)]

fi

where the expectation is taken over subtrees of sizes n' from n - v to n - 1

Further defining pp{x, depth) as the limit oip{xv, depth) as v tends to infinity,

we find that

pp(x, depth) =
if x < 2 or depth = 0
then

0
else

1 - 2/z + 2/x / pp{y, depth - 1) dy
Jx-l lx-\

fi

Similarly defining ff{x, depth) and gg{x, depth) as the limits as v tends to infinity
of the expected values of (root depth + 2 log size) averaged over the nodes
returned by choose2(T, depth) and choosel(T, depth) applied to xv node trees

T, we obtain

446

ff(x, depth) =
if x < 2 or depth = 0
then

2 * log(x)
else

PX-\

1 + l/x / gg{y, depth - 1) dy + 2/x / ff{y, depth - 1) dy
Jl Jx-l

fi

where

gg(x, depth) =
if x < 2 or depth = 0
then

2 * log (a;)
e/se

1 + 2/x / gg(y,depth-l) dy
Jxl2 Ixl

fi

and lim S[/(Ai/)] = ff(k,d)
v—>oo

giving an upper bound on i?[|/ii(n) - h2(n)\] as close as required to 2(clogA: -
ff(k,d))/pp(k,d).

The strongest bound yet found was obtained by taking k — 3.9, d = 5, giving
a bound slightly less than 6.247. n

(The computation of//(3.9,5) and pp(3.9,5) was done by Maple after defi-
nition of multiple functions such as ff[d, i]{x) defined only for [a?J = i and there
equal to ff(x, d); this enables the integrals to be written as sums of integrals so
that no if then else fi constructs remain in the definitions.)

4 The Convergence Hypothesis

The result, of the previous section can be strengthened both by replacing the
'infinitely often' by 'almost always' and by reducing the bound, if we accept a
very plausible and empirically justified hypothesis.

Definition: ee(n) is the expected number of critical nodes of an n-node tree.
Note: the probability that the addition of the (n + l)-st node increases the

height of the tree is 2ec(n)/(n + 1). Calculation of ec(n) for n up to 100,000
and approximation by constructing random trees for larger n both suggest that
ec(n) is monotonically increasing after initial fluctuations while n is less than 8.
(See [3] for methods of rapid construction of very large random trees.)

The Convergence Hypothesis: ec(n) tends to a limit as n increases.
Note: if this hypothesis is correct the limit must be c/2.

447

Theorem 3. If the Convergence Hypothesis holds then £[M")- h,(n)\] < 4.96

except for (possibly) finitely many n.
(Again, this implies immedi ately that the same b ound applies tc E[\h(n) -

E[h(n)]\]).
Proof.

extending the result to almost all n:
In the proof of the main theorem, we relied on the fact that since E[h(n)/ log n]
tends to c, there exist infinitely many v for which E[h(kv) - E[h(v)} <
clogk + e. Now given the convergence hypothesis, for any k and e, by
choosing Ar large enough we can guarantee that for all v larger than N,
ec{v) < c/2 + f/21ogifc so that E[h(kv) - h(v)} < clogk + e and the argu-
ment of section 3 goes through unchanged.
reducing the bound: The proof in section 3 used the fact that a random
tree of size av had height at least E\h(y)\+1\o%a (and a similar result for the
higher of two trees of sizes ßv and 71/). Given the Convergence Hypothesis,
provided we choose v large enough, the first of these results remains true with
any constant less than c instead of the "2". (The second does not since the
higher of two random trees is not a random tree.) Hence we can replace the
"2 log x" by "(c - f) log x" in the definition of // (but not gg) and recompute
the bound obtained by the modified version of inequality (1). This time the
best result obtained has d = 1 and k - 2.67, giving a bound of just under

4.953. G

5 Further work

As has been shown, a significant improvement in the main theorem would be
obtained if the expected value of the number of critical nodes was shown to
converge. Even showing that this expectation is bounded for all n would prove
that E[\hi{n) - h2[n)\] is bounded though it would not directly give an explicit
bound. It seems extremely implausible that this expectation should oscillate
unboundedly but a proof that it does not do so has not been easy to find.

Alternatively, improving the algorithm for choosing a subtree could further
decrease the numerical value of the bound. Two ways of doing this seem worth
exploring: firstly, when the kv node tree turns out to have three or more v
node subtrees, a careful choice between these should give a deeper leaf than the
current choice between the first two found; secondly, when two subtrees are found
with depths B and C and sizes ßv and jv, biasing the choice to the one with
larger depth and size must give a deeper leaf on average. Also there may be other
parameters for which the existing algorithm gives a better bound. Unfortunately
the computations are very slow with d > 3 so not very many have been done
(the computation of the bound in theorem 2 took Maple a weekend).

The methods and results developed here tell us nothing about the variance
of h(n). We continue to conjecture that this variance is bounded as n goes to

infinity.

448

References

1. L. DEVROYE. A note on the height of binary search trees. Journal of the ACM,
33:489-498, 1986.

2. L. DEVROYE and B. REED. On the variance of the height of random binary search
trees. SIAM J. Computing, 24:1157-1162, december 1995.

3. L. DEVROYE and J. M. ROBSON. On the generation of random binary search
trees. SIAM J. Computing, 24:1141-1156, december 1995.

4. J. M. ROBSON. The height of binary search trees. Australian Computer Journal,
11:151-153, 1979.

An Improved Master Theorem for
Divide-and-Conquer Recurrences *

Salvador Roura

Departament de Llenguatges i Sistemes Informatics
Universität Politecnica de Catalunya
E-08028 Barcelona, Catalonia, Spain

E-mail:roura@lsi. upc.es

Abstract. We present a new master theorem for the study of divide-
and-conquer recursive definitions, which improves the old one in several
aspects. In particular, it provides more information, frees us completely
from technicalities like floors and ceilings, and covers a wider set of toll
functions and weight distributions, stochastic recurrences included.

1 Introduction

Let Fn denote a variable related to some divide-and-conquer (d.a.c, for short)
algorithm or data structure, such as the number of comparisons made in quick-
sort or the number visited nodes while a search in a BST, while dealing with an
instance of size n. By the recursive structure of the algorithm or data structure
it is always possible to get a recurrence that defines Fn from the values of the
variable for instances of smaller size. From this recurrence it is necessary to de-
duce explicit or asymptotic expressions for Fn (that is, we need to "solve" the
recurrence).

To this end, we can make use of the (classical) master theorem (see [1, 5]). See
also [7, 8] for several improved versions. It is a set of simple rules that provide
quick (albeit partial) information on the value of F„. Assume that we have the

recurrence
Fn=tn + W-FSn, (1)

where tn is the toll function or cost of the divide and combine steps needed to
solve a problem of size n, W is the (fixed) number of recursive calls at each
step, and Sn = Z ■ n + 0(1) is the size of the subproblems to be recursively
solved, for some 0 < Z < 1. Notice that expresions with floors and ceilings in
the argument of the recursive call, like [n/2J, are covered by the term 0(1)
above. Let a = — logz W. Then, the classical master theorem states that the
solution to this recurrence is

&(na), iftn = 0(na) for a< a;
Fn= { 9(tnlogn), [{tn = 0(na\ogcn)fovc>O; (2)

0(tn), iitn = Q(na) for a > a.

This research was supported by the ESPRIT LTR Project ALCOM-IT, contract
20244 and by a grant from CIRIT (Comissio Interdepartamental de Recerca i
Innovaciö Tecnolögica).

450

Notice that there are two gaps for the values of t„ where we cannot use the

master theorem.
Although this theorem is sometimes enough for simple purposes, it presents

some drawbacks. For instance, consider the recurrence

5n = 1+U!l^M.flL(B_1)/2j^ if„>2, (3)

with B0 = 0 and B\ = 1, defining the expected number of comparisons during
a binary search in an array of size n, when we search for some key in the array
chosen at random. It does not follow the master theorem pattern utterly, since we
do not have exactly one expected recursive call at each step but 1 - 1/n, since
the central item in the current search range could be, by chance, the sought
item. In other words, the number of recursive calls is not constant but tends
to a constant. Despite this, we can assume that the solution to the recurrence
Fn = 1 + Fn/2 must be close to Bn (which is true) and therefore deduce that
Bn = @(logn). Posterior reasoning can rigorously prove that this approximation
does not lead to a wrong answer.

Much more difficulties presents the analysis of stochastic recurrences like

S0 = 0, Sn = n - 1 + ^ J2 kSk' if « > !. (4)
0<k<n

defining the expected number of comparisons to select the i-th of the n keys of
an array (where i is chosen at random) when using Hoare's FIND [3]. Here we
would need to make further approximations, which could easily lead to wrong
conclusions.

The theorems presented in this paper improve previous theorems in several
aspects. On the one hand, we will show how technicalities like floors and ceilings
will not need to be treated any more, not previously to the analysis of the
recurrence nor afterwards. On the other, recurrences where the asymptotic sizes
of the subproblems to be recursively solved consist in a set of several fixed
fractions of the original problem (this improvement was already considered in [8])
and the number of recursive calls to each one tends to a constant (but is not

constant) like

Fn = tn + (2 - l/V£)FLn/3j + 4FL„/2_^-j + (1 + l/n)Fl4n/5+lnin] (5)

for n large enough, can be easily analysed through our theorems as well. Depend-
ing on t„, we can also deduce the constant of the main term of the solution (for
the basic recurrence (1) this constant can also be found; see [5], for instance).
Furthermore, we will be able to deal with stochastic recurrences like (4), and a
simple application of our theorems will sometimes yield several of the main terms
of the explicit solution of a recurrence with their corresponding multiplicative
factors, and not only the growing order of the dominating term. Finally, we will
see how the new theorems cover a wider set of toll functions. In terms of the
classical master theorem, the new ranges for tn are tn = ö(na logc n) for c < — 1,
tn = 0(na\ogcn) for c > -1 and t„ = Q{na) for a > a, thus closing almost

451

completely the gap between the first and the second case. The results for the
first range were first given in [7].

Next sections are organized as follows. In Sections 2 and 3 we present the
two types of recurrences that are more likely to appear in practical situations,
and give a master theorem for each one. Section 4 includes the main results from
which both theorems can be derived. Section 5 ends the paper with some final
remarks.

2 The Discrete Master Theorem

To begin with, let us introduce the concept of divide-and-conquer recursive def-
inition formally.

Definition 1. Let Fn > 0 be a function defined for all n > 0. We say that

T = N, {&„}o<n<JV, {tn}n>N, {wn,k}„^
0<k<n

N

is a d.a.c. recursive definition of Fn iff N > 1, Fn = bn for all 0 < n < N and

Fn=tn+ J2 Wn-kFk (6)
0<fc<n

for every n> N, where t„ > 0 and wnik > 0.

The weight wnik is the (expected) number of recursive calls to the algorithm to
deal with a subproblem of size k when the original problem has size n, while
t„ includes the cost to divide a problem of size n into smaller subproblems that
will be recursively solved, and to combine the solutions of the recursive calls to
find the answer to the whole problem.

Definition2. Let Jbea d.a.c. recursive definition of a function Fn. We say
that T is a discrete recursive definition if it follows the pattern

Fn=tn+ Yl Rd,nFSd,n (7)
l<<f<Z>

for every n > N, where D > 1 is the (finite) number of subproblems to be
recursively solved; RdtU = Wd + rd,n > 0 is the number of recursive calls to deal
with the d-th subproblem, where wj, > 0 is the asymptotic number of calls to it
and

J2 \ra,n\ = 0(n-") (8)
l<d<D

for some p > 0; Sd,n = zd ■ n + Sd,n is the (integer) size of the d-th subproblem
to be recursively solved, where 0 < z& < 1 and

j2 \l*A = o(n-°) (9)
l<d<D

for some a > 0.

452

For example, (3) is a discrete recursive definition. Here we have two subprob-
lems to recursively deal with (D = 2) that are both asymptotically 1/2 the size
of the whole problem (zx = z2 = 1/2, -3/2 < s1>n < -1/2, -1/2 < s2<n < 1/2)
and 1/2 expected calls to each one (wi — w2 = 1/2, -3/2n < ri)n < -l/2n,
-l/2n < r2,n < 1/2«), where for the bounds of sHik and rn,k we have used the
fact that r - 1 < [rj < r and r < |>] < r + 1 for every real r. Notice than
p = cr = 1 is a possible choice here.

Theorem3 (Discrete Master Theorem). Let T be a discrete recursive def-
inition of a function Fn, and let Bnalncn be the main term of tn, for some
constants B, a and c. Let us define

^(x) = J2 Wd'ZdX'
\<d<D

and letU = l- $(a). Then,
1) ifH > 0 then Fn ~ tn/7i;
2) ifH = 0 then

2.1) ifc>-l then Fn ~ t„ Inn/W, where

U' = -{c+l) Y2 Wd-zd
a\nzd;

l<d<D

2.2) ifc = -l then Fn = 0{na loge n) for any e > 0;
2.3) ifc<-\ then Fn = 0{na);

3)if7i<0 then Fn = 0(na), where a is the unique solution of #(a) = 1.

Some Examples of the Use of the Discrete Master Theorem

Let us solve (3). To begin with, the main term in its toll function is ra°log°n.
Now we can use the master theorem as follows.

1. First, we identify the set of values {wd}i<d<D and {zd}i<d<D- This yields
wi = w2 = 1/2 and z\ = z2 = 1/2. We should make sure that properties (8)
and (9) hold, but this is trivial here (floors and ceilings are never a problem).

2. We define <P{x) = (1/2)* and hence U = 1 - <Z>(0) = 0.
3. Since U = 0 and c > -1, we define %' = -(0 + l)((l/2)°ln(l/2)) =

-ln(l/2) = In2, and finally Bn ~ Inn/In2 = log2n.

Let us consider now (5). Assume that tn = 6n2/ln n.

1. W! = 2, w2 = 4 and w3 = 1; z\ = 1/3, z2 = 1/2 and z3 = 4/5. (It is a simple
matter to check that this recurrence is indeed a discrete recursive definition).

2. $(x) = 2(l/3f + 4(1/2)* + (4/5)* and hence % = 1 - 0(2) = -194/225.
3. Since % < 0, Fn = 0(na), where a is the unique solution of $(a) = 1, which

numerically is a ~ 3.16756.

453

Finally, let us set t„ = n2 for the recurrence

Fn=tn + F[n/4l. (10)

Notice that we do not need to explicitly state the values of Fn at small indices,
since they are irrelevant to the master theorem. Solving it is very easy.

1. w\ = 1 and z\ = 1/4.
2. ${x) = (1/4)* and hence % = 1 - 0{2) = 15/16.
3. Since U > 0, Fn ~ n2/(15/16) = 16n2/15.

Note that the last example above follows the pattern of Equation 1, and
hence we can analyse it through the old master theorem (2), which becomes a
particular case of the new one.

3 The Continuous Master Theorem

This section covers the analysis of recursive definitions like (4). To begin with,
let us define the concept of shape function (the reason for this name will be clear
after Definition 5).

Definition^ Let u(z) > 0 be a function over [0,1] such that ui'(z) exists and
is bounded for every 0 < z < 1. Furthermore, let fQ u(z)dz be greater or equal
than 1. Then we say that u(z) is a shape function.

Definition5. Let T be a d.a.c. recursive definition of a function F„. We say
that T is a continuous recursive definition if it follows the pattern

Fn=tn+ Y, "n,kFk (11)
0<fc<n

for every n > N, and if there exists some shape function w(z) such that

E
0<fe<n

Wn,k - / W(0(n->) (12)

for some p > 0.

Loosely speaking, the last definition allows us to use the integral in the right
of the expression above to find a good approximation to un,k- For instance,
the shape function for (4) is u>(z) — 2z (notice that this function follows the
conditions required for a shape function), since

/ " , x . /" " . si**1 2fc 1 1 / u)(z) dz = 2z dz = z fcn = — + — = w„|fc + -j,
J h. J — n ft TX Tl

and hence the sum of errors is 1/n = 0{n~p) for p = 1.

^

454

Therefore, u(z) is nothing except the asymptotic shape of the distribution of
weights, which now does not consist in a finite number of fixed fractions of the
original size of the problem (as it was in previous section), but is very similar to
a continuous probability distribution, where the area beneath the function is the
asymptotic number of recursive calls. Recall that, by definition, fQ ui(z)dz > 1,
and therefore we are assuming that there is at least one asymptotic recursive
call. This condition (very likely to hold in practice) simplifies the study of these
recurrences.

Theorem6 (Continuous Master Theorem). Let T be a continuous recur-
sive definition of a function Fn, and let Bna lnc n be the main term oftn, where
B, a and c are constants. Let us define

Jo
ip(x) = / ui(z)zx dz,

and let U = l-f{a). Then,
1) ifU > 0 then Fn ~ tnjU;
2) ifH = 0 then

2.1) ifc> -1 then Fn ~ tn \nn/K', where

W = -(c+ 1) / uj{z)za\nz dz;
Jo

2.2) ifc = -l then Fn = 0(na loge n) for any e > 0;
2.3) ifc<-\ then Fn = G(na);

3) ifU < 0 (including the case % = -coj then Fn = 0(na), where a is the
unique solution of <p(a) = 1.

Some Examples of the Use of the Continuous Master Theorem

Let us solve the recursive definition

Qo = 0, Qn = l+-j-—— V {n-k)Qk, ifn>l, (13)
n(n + 1) „fr-'

related to the number of comparisons in a half-defined search in a quad-tree [2].
Notice that the main term in the toll function is n°. Hence,

1. First, we identify the shape function of the weights. As first chance, we can
try the following.
(a) From ujnik we compute a set of new weights an>k, by replacing terms like

n + 1 or (n - 1 - k) by n or (n - k), respectively. This yields <rn,k =
4{n-k)/n2.

(b) Now we have to check that \u>„ik - <r„ifc| = 0(n-2). This is true in our
example, since \u>„tk - o-n<k\ = 4(n - k)/{n2(n + 1)) = 0{n~2).

(c) We compute u(z) = n ■ rrn,zn- This step produces an expression without
n's, u{z) = n ■ 4(n - zn)/n2 = 4(1 - z).

455

(d) Finally, we should prove that u)'(z) exists and is bounded, and also that

f* u(z)dz > 1, which is trivial here.
2. We define

-, l

<p(x) \i (1-
Jo

dz
rx+l yX + 2

x + 1 x+2
= 4

J 0
x+l x+2

if x > -1 (and ip(x) = +oo otherwise). Hence, ft = 1 - ip(0) - -1.
3. Since ft < 0 we have that Fn = 6>(na), where a is defined as the unique

solution of tp(a) = 1, which yields a = (y/tf - 3)/2 ~ 0.56155 (this is the
only solution to a2 + 3a - 2 = 0 that is greater than -1).

Let us analyse (4).

1. We already know that u(z) = 2z.
2. We define

nx, = f UJ{Z)Z
X
 dz = 2 /

Jo Jo
zx+1 dz = 2

rx + 2

x + 2 Jo x + 2

if x > -2 (and tp(x) = +oo otherwise). Hence, ft = 1 - ip{l) = 1/3.
3. Since ft >0, S^ ~ n/(l/3) = 3n.

In this example we can get even more information, by means of a simple trick.
Define G„ = Sn - 3n. Then

G„ = n-1+ A ^ kSk-Zn = -2n-l + ^ £ fc2 + A £ fcGfc.
0<fc<n 0<fc<n 0<fe<n

It is well known that £o<fc<n k2 = n3/3 - n2/2 + n/6. Therefore,

Gn = -4+- + — ^ fcGfe. n nz

0<fc<n

We can now solve this recurrence using Theorem 6 again. The first step is already
done, since the distribution of weights remains the same, as is the case for <f{x).
Computing ft produces ft = 1 - <p(Q) = 0. Since ft = 0 and c > -1, we define

/ 2zz°\nz dz = -2 zln;
Jo Jo

ft' = -(0 + 1) / 2zz"\nz dz dz = -2
2Z , Z"
— In 2 r
2 4

and get G„ 41nn/(l/2) = -8Inn. We can make one more step, defining
In = G„ + 8Inn for n > 0, which produces

/„ =
8 In n 1 4 In n 1 41nn ^ / 1 \ 2 v-^ , r

0<fe<n

where we have used the equality £0</c<n k In k = 2-^2-- \- ^+ ^+0(1).
Now we get ft = 1 - y{-l) = -1 < 0, and hence In = 0(na) = 0{1). Notice

456

that we cannot deduce that In = 0(1), since the toll function in the definition of
/„ includes positive and negative terms together, and their contributions could
cancel each other. As a final conclusion we have that Sn — 3n - 8 Inn + 0(1).

We end this section analysing the number of comparisons while sorting an
array of n keys through the variant of quicksort that uses as the pivot of the
partition stage the median of a random sample of 2k + 1 keys, for some fixed
k > 0 (Ar = 0 reduces to basic quicksort). This method was suggested by Hoare
himself in [4], and later Van Emden [6] analysed it by means of information-
theoretic arguments and sensible approximations. We can now prove the same
results as a simple consequence of the continuous master theorem.

Let Qlfc) be the number of expected comparisons while using quicksort to sort
an array with n items when the sample has 2Ar + 1 keys at each stage (except
for small n). The recurrence for any k is

where Sk is the (linear in Ar, but constant in n) number of comparisons to find
the median of the sample. Therefore,

1. (a) We compute
(fc) _ 2(2fc+l)! ^ (n - i)fc

<T, n2k+l Ar! Ar!
(k) as a good approximation for w„ -.

(b) It is routine work to check that ,(*) _ „CO = 0(n~2).

(c) We compute uk(z) = n ■ o$„ = 2(2A; + 1)!/Ar!2 • z*(l - z)k.
(d) Since Uk(z) is a polynomial on z, we have that w//(z) exists and is

bounded. Furthermore, we know that the asymptotic number of recursive
calls is 2.

2. We define

¥>*(*) = /'"*(*)** ^^fclt^jf**^1-')* dz>
and evaluate %{k) — 1 — ^(1). For this step, we can use the equality

(see [2], page 479, for instance) to find that, as expected, 7i(k) = 0.
3. Therefore, we define

n'(k) = -f1
Ult{z)z1lnz dz = -2(2* + 1)! jfV+1(l-*)*Inz dz.

This step yields W'(Ar) = l/(Ar + 2) + l/(Ar + 3) + ... + 1/(2* + 2) (see [6],

page 565). Finally, Q{
n
k) ~ n\nn/W(k).

457

4 The Theorems

In this section we present, without proof, the main technical results from which
both Theorem 3 and Theorem 6 can be derived. Most of them refer to canonical
recursive definitions, which are defined as follows.

Definition 7. Let T be a d.a.c. recursive definition of a function Fn. Let Wn =
J2o<k<nwn,k- We say that T is a canonical recursive definition if and only if

both these properties hold: 1) It exists some p > 0 such that \Wn - 1| = 0{n~p).
2) It exists some upper bound U < 1 such that

E Wn,k k_ <u

Wn n
0<k<n

for n large enough.

Intuitively, the first condition requires that the total number of recursive calls
to solve a problem of size n tends to 1 (with a minimum convergence speed).
Notice that, opposed to the old master theorem, the number of recursive calls
depends on n. The sum in the second condition above is the average fraction of
the original problem that is solved by a recursive call. Therefore, this condition
implies that the problem is broken into pieces that are (on average) a fraction

of the original one.

Let T be a recursive definition of Fn. As an immediate consequence of (6) we
have that Fn = Q(tn). The natural question that arises is: Can Fn grow faster
than tn and, if so, under which conditions? For the recursive definitions we deal
with and roughly speaking, we could say that there is a growing order associated
to every distribution of weights, irrespective of how small tn is. Let us call it
0(na). Then, the growing order of Fn should be Max{0(<„), &{na)}. And this

is almost true.
For instance, let us consider (10). We will see in a moment that a = 0 for any

canonical recurrence, such as this one. Therefore, for "big" values of tn, such as
n, n3 or 2n we should get Fn = Max{0(<„), 0(1)} = 9(t„), which is true. For
"small" values of tn like 1/n, 1/n3 or 2~n, Fn should be 0(1), which is also true.
However, things are not so easy for values of tn close to 0(1). For example, for
tn = 1, Fn turns out to be 0(logn) instead of 0(1). We will see in this section
how to cope with this additional factor.

There is another remark about the results in this section that we should make,
namely that recursive definitions with "small" toll function (and thus inside the
zone dominated by the term 0{na) associated to the distribution of weights) are
the most difficult to analyse. Indeed, there is no way to find the lower order terms
in the asymptotic expression of Fn nor even the multiplicative factor of the main
term na, but to consider all the values of Fn, the values at small indices included.
In terms of a recursion tree (see [1], for example) this situation corresponds to
the case in which the solution to the recurrence is dominated by the values at
the leaves. Therefore, a method for the study of recursive definitions based only

458

in the asymptotic properties of the toll function and the distribution of weights
(like our master theorems) cannot be used to get the multiplicative factor of the
main term na in Fn. Moreover, for some recursive definitions that factor is not

asymptotically constant.

Next theorems formalize one of the claims stated above, namely that any
canonical recursive definition is, on the one hand ß(l) (under some minimum
additional conditions), and on the other, 0(1) for "small" tn.

Theorem 8. Let T be a canonical recursive definition of a function Fni such
thattn >0 and YJo<k<Nwn,k = 0{n-i>) for some p>Q. Then Fn = ß(l).

Notice that, apart from being canonical, T must follow two additional con-
ditions. They are mainly technical properties that hold in most cases. Roughly
speaking, tn > 0 avoids the case "everything is zero", whilst the second condition
makes the values of Fn at n < N completely irrelevant.

Theorem9. Let T be a canonical recursive definition of a function Fn, such

that tn = ö{\ogc n) for some c < -1. Then Fn = 0(1).

Now we present the main results related to the canonical recursive definitions
that are dominated by the toll function. In contrast to the last recurrences,
where the toll function lay in the influence zone of the distribution of weights,
recursive definitions whose toll function is big enough to dominate the recurrence
are typically easier to analyse, and in most cases we can get the multiplicative
factor of the main term of the asymptotic expression of Fn Moreover, as we have
already seen in Section 3, sometimes it is possible to get several of the main
terms of the solution, their multiplicative factors included.

Theorem 10. Let I be a canonical recursive definition of a function Fn, and
let tn = naSn, where a > 0 and Sn is a strictly positive increasing (eventually

constant) function for n large enough. Then Fn = &{tn).

Theorem 11. LetT be a canonical recursive definition of a function Fn, and let
tn = lnc n ■ Sn, where c > -1 and Sn is a strictly positive increasing (eventually

constant) function for n large enough. Then Fn = 0(tn logn).

Notice that, according to the old master theorem, 0(1) seemed to be the thresh-
old value for tn above which Fn became w(l). Combining last theorem with
Theorem 9 allows us to state that in fact, this threshold lies close to tn = 1/ log n.

The remaining theorems in this section are crucial to both master theorems.

Theorem 12. Let T be a canonical recursive definition of a function F„, and
let tn = naSn, where a > 0 and 5n is a strictly positive increasing function for n
large enough. Furthermore, let

U - lim 1 - Y^ wn,k ■ T-
n—foo I '—' tn

\ M<k<n

exist for some M. Then Fn = tn/% + o(tn).

459

Theorem 13. Let T be a canonical recursive definition of a function Fn, and
let tn = lnc n ■ Sn, where c > -1 and S„ is a strictly positive increasing function

for n large enough. Furthermore, let

7i = lim Inn- } wUik ■ — -InA;
\ M<k<n

exist for some M. Then Fn = tn Inn/H + o(t„ logra).

Theorem 14. Let T be a discrete (continuous) recursive definition of a function

Fn, and let a be the unique solution of the equation $(a) = 1 (<p(a) = 1). Let B
be the recursive definition that we get after the substitution Bn = Fn/na. Then
B is a canonical discrete (continuous) recursive definition.

5 Final Remarks

We have shown how to extract useful information from the most common re-
cursive definitions, exclusively through the analysis of the asymptotic behaviour
of the toll function and distribution of weights. We have only given restricted
versions of the master theorems, which can be further generalized. For instance,
they could be adapted to deal with toll functions that include sublogarithmical
factors (like log log n). On the other hand, the definition of shape function is also
a bit restrictive, but it is enough for general purposes.

Acknowledgements

Several referees made useful suggestions on the previous version of this paper.
Many thanks are due to Conrado Martinez for his wise comments, constant
support and <9(2n) patience. This work was partially written while the author
was visiting Princeton University.

References

1. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. The
MIT Press, Cambridge, MA, 1990.

2. Philippe Flajolet, Gaston Gönnet, Claude Puech, and J.M. Robson. Analytic vari-
ations on quadtrees. Algorithmica, 10:473-500, 1993.

3. C. A. R. Hoare. Find (Algorithm 65). Communications of the ACM, 4:321-322,
1961.

4. C. A. R. Hoare. Quicksort. Computer Journal, 5:10-15, 1962.
5. Robert Sedgewick and Philippe Flajolet. An Introduction to the Analysis of Algo-

rithms. Addison-Wesley, 1996.
6. M.H. van Emden. Increasing the efficiency of quicksort. Communications of the

ACM, 13:563-567, 1970.
7. Rakesh M. Verma. A general method and a master theorem for divide-and-conquer

recurrences with applications. Journal of Algorithms, 16:67-79, 1994.
8. Rakesh M. Verma. General techniques for analyzing recursive algorithms with ap-

plications. SIAM Journal on Computing, 26(2):568-581, 1997.

2

Bisimulation for Probabilistic Transition Systems:
A Coalgebraic Approach

E.P. de Vink1 and J.J.M.M. Rutten2

Faculty of Mathematics and Computer Science, Vrije Universiteit, De Boelelaan
1081a, 1081 HV Amsterdam, The Netherlands, e-mail: vinkScs.vu.nl

Department of Software Technology, CWI, P.O.Box 94079, 1090 GB Amsterdam,
The Netherlands, e-mail: janr8cwi.nl

Abstract. The notion of bisimulation as proposed by Larsen and Skou
for discrete probabilistic transition systems is shown to coincide with a
coalgebraic definition in the sense of Aczel and Mendler in terms of a set
functor. This coalgebraic formulation makes it possible to generalize the
concepts to a continuous setting involving Borel probability measures.
Under reasonable conditions, generalized probabilistic bisimilarity can be
characterized categorically. Application of the final coalgebra paradigm
then yields an internally fully abstract semantical domain with respect
to probabilistic bisimulation.

Keywords. Bisimulation, probabilistic transition system, coalgebra, ul-
trametric space, Borel measure, final coalgebra.

1 Introduction

For discrete probabilistic transition systems the notion of probabilistic bisimi-
larity of Larsen and Skou [LS91] is regarded as the basic process equivalence.
The definition was given for reactive systems. However, Van Glabbeek, Smolka
and Steffen showed in joint work with Tofts [GSS95], that for a concrete process
language the usual notion of strong bisimilarity and the probabilistic concepts of
reactive, generative and so-called stratified bisimulation constitute a hierarchy of
observational congruences. Several other probabilistic equivalences are proposed
as well in the literature. However, in all papers, discrete probability distribu-
tions are used, and hence the transition systems that are treated are in essence
of a finitely branching or image-finite nature. The recent work of Blute et al.
[BDEP97] is the single execption that we know of.

For the exploration of probabilistic transition systems and stochastic equiva-
lences in the setting of modeling continuous systems, such as real-time or hybrid
systems, one usually wants to allow more general probability measures than the
more limited discrete probability distributions. [BDEP97] use stochastic kernels
and spans of zigzags to underpin their notion of process equivalence. They prove
that their notion of bisimulation agrees in the discrete case with the Larsen-
Skou definition, but do not provide a characterization of bisimilarity in terms of

461

transition steps, i.e., they do not give a continuous analogue for the Larsen-Skou
bisimulation.

Here we attack the problem of continuous probabilistic transition systems
and bisimulation by exploiting the transition-systems-as-coalgebras paradigm.
Using a minimal amount of category theory, it can be summarized as follows:
Let T: C ->• C be any functor on a category C. A coalgebra of T is an object S in
C together with an arrow a: S -» F(S). For many categories and functors, such
a pair (S, a) represents a transition system, the type of which is determined by
the functor T. Vice versa, many types of transition systems can be captured by
a functor this way. For instance, consider the familiar labeled transition systems
(S,A,->), consisting of a set S of states, a set A of actions, and a transition
relation ->CSxixS. Put C(X) = V{A x X), the collection of all subsets of
AxX, for any set X, and, for f:X-*Y, £(/): £{X) -> C(Y), by £(/)({K, Xi) |
i G /}) = {(oi, f(xi)) \i £ I}. It can be easily shown that £ is a functor on the
category of sets and functions. A labeled transition system (5, A, ->■) can now
be represented as an £-coalgebra by defining

a:S->£(S), s >-> {(a, s') \ {s,a, s') £ ->}.

Conversely, any £-coalgebra corresponds to a transition system: If (5, a) is a
coalgebra for £, then (5, A, -►), with -4C5xAxS given by (s, a, s') € -» «#
(a,s') e a(s), is clearly a transition system. (See [Rut96] for more details.)

One of the advantages of the coalgebraic view on transition systems is the ex-
istence of a general definition of ^"-bisimulation, for any functor T (cf. [AM89]).
For instance, applying that definition to the functor C above yields the standard
notion of strong bisimulation. In general, the coalgebraic theory gives a generic
approach to the definition and description of bisimulation: First define or char-
acterize the transition systems one is interested in as coalgebras of a suitably
chosen functor T. Then obtain a definition of bisimulation for those systems by
applying the categorical definition of ^-bisimulation.

The coalgebraic approach is applicable to many kinds of transition systems—
see [Rut96] for many examples. In the present paper, this scheme is used to de-
scribe discrete and continuous probabilistic transition systems and bisimulations.
The functor M i assigns to a metric space its collection of Borel probability mea-
sures. It is shown that the corresponding notion of Ali-bisimulation coincides,
under mild conditions, with the continuous analogue of Larsen-Skou bisimula-
tion. This extends a similar result for the discrete case, which is in fact given
first: the functor V, which assigns to a set the collection of its simple probabil-
ity distributions, is shown to yield a categorical characterization of Larsen-Skou
bisimulation. Hence, in agreement with general opinion, also from the coalgebraic
point of view the latter equivalence is suggested as the canonical one.

Another appealing aspect of the coalgebraic approach is a canonical way of
finding internally fully abstract domains of bisimulation, where two elements are
equal if and only if they are bisimilar. It follows from a simple but very gen-
eral argument that final coalgebras are fully abstract (see Aczel's final coalgebra
model for nonwellfounded sets [Acz88], and also [RT93]). We shall show that

462

it follows from general coalgebraic considerations [AR89,Bar93,RT93] that both
our functors V and Mi have a final coalgebra, which consequently are internally
fully abstract with respect to (discrete and continuous) probabilistic bisimula-
tion. Therefore these final coalgebras can be exploited as semantic domains for
probabilistic bisimulation (an important direction for future research).

As mentioned above, the functor Mi is defined on ultrametric spaces, and the
Borel (T-algebras and associated measures are taken with respect to the metric
topology. Our reasons for considering metric spaces rather than the, in semantical
contexts, more standard use of ordered structures, as studied, e.g., by Jones and
Plotkin [JP89] and by Edalat [Eda94] are twofold. Firstly, one can resort to
the rich literature for standard measure theory on metric spaces. Secondly, we
can apply the recently developed theory on coalgebraic bisimulation and final
coalgebras in the metric setting [AM89,RT94]. Notably, we shall see that My is
locally contractive, from which it follows that it has a final coalgebra. Because
of the coalgebraic definition of bisimulation, we thus obtain an internally fully
abstract domain. Such a full abstractness result has been lacking so far in the
literature.

In conclusion, D-bisimilarity and Larsen-Skou bisimilarity coincide for dis-
crete probabilistic transition systems. For the continuous case, the functor Mi
captures the generalization of probabilistic transition systems, and, under condi-
tions, characterizes the associated notion of probabilistic bisimulation. For both
functors a final coalgebra and hence, internally fully abstract domain exists,
which can be exploited in the construction of domains for probabilistic bisimu-
lation semantics.

Acknowledgments We are grateful to Henno Brandsma, Prakash Panangaden,
Jaco de Bakker, and, as always, the members of the Amsterdam Concurrency
Group for discussions on various aspects of this paper.

Note A technical report version of this paper is available by anonymous ftp
from ftp.cs.vu.nl as /pub/papers/theory/IR-423.ps.Z.

2 Mathematical Preliminaries

Basic measure theoretic definitions (See, e.g., the standard textbook [Rud66].)
A cr-algebra E on a set X is a collection of subsets which contains X and
is closed under complement and countable union. Elements E of E are called
measurable subsets of X. Trivially, the powerset V{X) is a cr-algebra for X. If X
is a topological space, the Borel cr-algebra B(X) is defined as the least cr-algebra
containing all open sets.

A function ß: E -> [0,1], where E is a u-algebra on a set X, is called a
17-probability measure if ß{X) = 1 and ß is cr-additive, i.e., ß(\Ji&IEk) -
Y,iei ß{Ei) for any countable disjoint collection of measurable sets {Ei \i e I}.
For X a topological space, a Borel probability measure is a probability mea-
sure on X taken with respect to the Borel cr-algebra B(X). For a; G X, the
Dirac-measure 6X is given by 5X{E) = 1 if x 6 E, and SX(E) = 0 otherwise.
A function ß:X ->■ [0,1] is called a simple probability distribution if there ex-

463

ist n distinct points Xj,... ,xn, n > 0, such that ß{x\) + ■ ■ ■ + fi(xn) = 1 and
p(x) = 0 for x £ {xi,... ,xn}. V(X) denotes the collection of all simple prob-
ability distributions on X. For E C X, p[E] is short for Y^xeB^(x)- This way,
a simple probability distribution corresponds to a convex linear combination of
Dirac-measures.

Metric spaces (See, e.g., the monograph [BV96].) A pair (M,d) with M a
nonempty set and d: M2 -> [0,1] is called an ultrametric space if, for all x,y,z G
M: d(x,y) = d(y,x), d(x,y) = 0 o- x = y, and d(x,z) < ma,x{d(x,y), d(y,z)}.
The last expression is referred to as the strong triangle inequality. For metric
spaces Mj, M2, a function /: Mi ->■ M2 is called nonexpansive if d2(f (x), f {y)) <
di{x,y), for alia;,?/ G M. In case d2(f(x), f(y)) < n-di(x,y), for al\x,y G M, the
function / is called /t-contractive, where K is a constant with 0 < K < 1. The col-
lection of all nonexpansive mappings from Mi to M2 is denoted by Mi —h M2.
We use the notation Ö, or more explicit 0{M), for the collection of all open
subsets of M. For e > 0 we put Oe = { O G £> | \fx G O: £e(x) CO}.

Binary relations For a binary relation i? C 5 x T we use 7Ti and 7r2 for the
projections of R on 5 and T, respectively. R is called total if the two projections
7Ti and 7T2 are surjective. We say that R is z-closed if, for all s, s' G S, t, t' G T,
i?(s,i) A ^(s',*) A i?(s',i') => Ä(s,i')- If we put, for n G N, i?0 = i?, i?n+i =
{(s,0 GÄxTl 3s' eS,i' GT:.R(s,i)A.Rn(s',*)A.R(s',i')},aiid.R* = {JneNR"-'
we have that R* is the least z-closed binary relation onSxT containing R. Below
we will employ, for s G S, the notation F(s) = {t G T | #(s,£)} and, for U CS,
Fiu] = Us6c/-F(s)I and, likewise, for i G T, £(*) ={5651 R(s,t)}, and,

forvcr,£[y] = ut6V
£(*)-

Coalgebras (See, e.g., [Rut96].) Let C be either the category of sets and functions,
or the category of ultrametric spaces and nonexpansive mappings. (These are
the only categories playing a role in this paper.) Let T:C -> C be a functor.
An J^-coalgebra is a pair (S, a) consisting of an object 5 in C together with an
arrow a: S -> T(S) in C called a coalgebra structure on S. A homomorphism
between two ^"-coalgebras (5, a) and (T,ß) is an arrow /: 5 ->■ T in C such that
.F(/) • a =/3 •/.

An T'-bisimulation between two ^-coalgebras (S,a) and (T,ß) is a relation
R C 5 x T for which there exists a coalgebra structure 7: i? ->• J"(fi) such that
the projections 7Ti: i? -> 51 and 7r2: i? -» T are homomorphisms: T(ni)«a = 7°7Ti
and ^"(^2) • /3 = 7 «7r2. We then say that R is an ^-bisimulation for a and /?.
The arrow 7 is called mediating for a and /?. We write x ~ y {'x and y are
.F-bisimilar') whenever there exists an ^-bisimulation R with (x, y) G R.
An ^-coalgebra (D, <5) is called final if there exists for any JF-coalgebra (5, a) a
unique homomorphism from (S, a) to (£>,<$). We have the following result.

Theorem 1. (Internal full abstractness) For a final T-coalgebra (D,S) and
x,y G D, x = y if and only if x ~ y.

464

The proof is easy, see, e.g., [Rut96], Theorem 9.2. The main difficulty in obtaining
full abstractness lies in the construction of a final coalgebra, which in general is

nontrivial.

3 A coalgebraic interpretation of Larsen-Skou
bisimulation

Starting from the definitions of a discrete probabilistic transition system and
probabilistic bisimulation as proposed in the literature, we will consider general-
izations of (discrete) probabilistic transition systems as coalgebras of a functor V
on Set. We argue that £>-bisimilarity implies probabilistic bisimilarity, and, us-
ing the notion of z-closure, that probabilistic bisimulation and totality imply
D-bisimilarity. Then it is shown how this leads to the existence of a fully ab-

stract domain.

Definition 2. [LS91,GSS95] A discrete probabilistic transition system is a tuple
(Pr, Act, p) where Pr is a given set of processes, Act is a given set actions, and
fj,: Pr x Act x Pr -> [0,1] is a so-called transition probability function, i.e., for
all P £ Pr, a € Act, p(P, a, •) is either the zero-map or a simple probability

distribution.
A probabilistic bisimulation for a discrete probabilistic transition system is

an equivalence '=' on Pr such that

P = Q => Zp'eE P(P,a,P') = EP'6E KQ,a,P')

for all P,Q £ Pr, a £ Act, and equivalence classes E G Pr/=. (Using the
conventions of Section 2, the implication can also be written as P = Q =>
p[P,a,E] = fj,[Q,a,E\.) Two processes P and Q are said to be probabilistic
bisimilar if some probabilistic bisimulation contains the pair {P,Q).

Above we introduced the notation V{S) for the collection of all simple probability
distributions over a set S. In fact, V can be extended to a Set-functor by defining
for a mapping /:S-)Ta function V{f):V(S) -» V(T) which maps a simple
distribution ii on S to a simple distribution V(f)(ß) on T such that V(f){p)(t) -

M[/_1({*})]- . . . •
Let 0 represent termination. Note that a probabilistic transition system is

just a mapping /x: Pr x Act -> V(Pr) + {0} or, equivalent^, a function M: Pr -4
/Act -» (V(Pr) + {0})). In other words, a probabilistic transition system is
precisely a coalgebra of the functor Act -> (Z>(-) + {0}). Applying the category
theoretical machinery as described in Section 2 now gives us the coalgebraic
notion of bisimulation. We will show that it corresponds to (actually generalizes)
the notion of probabilistic bisimulation of Definition 2, thus providing categorical
evidence for the Larsen-Skou bisimulation as the canonical process equivalence
for discrete probabilistic transition systems.

For clarity of presentation we suppress, for the moment, the action compo-
nent of a probabilistic transition system, and also do not bother about termi-
nation. Thus we consider coalgebras of the functor V itself. As it turns out, the

465

presence of labels and termination does not make any essential difference for
the technical content of what follows. Before we relate probabilistic bisimulation
with D-bisimulation, we first give a generalization of Definition 2, by allow-
ing bisimulations between different transition systems, which are not necessarily
equivalence relations.

Definition 3. Let a: S ->■ V{S), ß:T ->• V(T) be two (stripped) discrete prob-
abilistic transition systems. A binary relation R C S x T is called a probabilistic
bisimulation for a,ß iff R(s,t) => a(s)[U] = ß{t)[V], for all s £ S,t £ T and
U C S, V C T such that 7rf 1(C7) = ^(V). Two elements s € S, t £ T are
said to be probabilistic bisimilar if some probabilistic bisimulation contains the
pair (s,t).

Note that if R is an equivalence relation, then 7rf 1(U) = 7r^"1(l/) if and only if
U = (Jig/ ^t = V, for some collection of equivalence classes {Ei\i £ 1} of R. Thus
in this case, the condition on U and V in Definition 3 amounts to the assumption
of E being an equivalence class in Definition 2, or, following the terminology
of [Hen95], U and V are the same '='-block. This shows that Definition 2 is a
special instance of Definition 3 ('modulo' the presence of labels and termination).

By exploitation of the various definitions one straightforwardly verifies that
P-bisimulation implies probabilistic bisimulation.

Lemma 4. Let a: S -» V(S) and ß: T -> V(T) be two discrete probabilistic
transition systems. Let R be a V-bisimulation for Q, ß. Then R is a probabilistic
bisimulation for a, ß.

The reverse of the above lemma is more intricate. We will first use the concept
of z-closure and associated properties as developed in Section 2.

Lemma 5. If R C SxT is a probabilistic bisimulation for a: S —► V(S), ß: T —►
V(T), then so is R*, the z-closure of R.

So, if s £ S and t £ T are probabilistic bisimilar, we can assume —without loss
of generality— that there exists a z-closed probabilistic bisimulation contain-
ing (s,t). We will need, for technical reasons, that R is total. This is equivalent
with the common assumption of transition systems to have a distinguished initial
state and considering reachable states only.

Theorem 6. Let R C S x T be a probabilistic bisimulation for a: S —> V(S)
and ß:T —► T>(T). Moreover, assume R to be z-closed and total. Then R is a
T>'-bisimulation.

Proof. The mapping 7: R —> V(R) given by

r 0 a ß(t)[F(s>)} = 0
-r(s,t)(s',f) = a(s)(s>).ß(t)(t>)

{ ß(t)[F(s')] otherwlse'

for (s, t) £ R, is mediating for a and ß. □

466

The format of the definition of j{s,t) is reminiscent of the discrete probability
distributions of [JL91]. It is however not clear how their notion of probabilistic
specification extends to the continuous setting of Section 4.

It is straightforward to adapt the above line of reasoning to a functor V'
given by V = Act ->• (£>(•) + {0}). The discrete probabilistic transition systems
of Definition 2 are in 1-1 correspondence with the coalgebras of this functor, and
the notion of P'-bisimulation coincides with that of probabilistic bisimulation of
Definition 2 (for total relations R).

We can now benefit from some general insights in the theory of coalgebras,
by applying (a minor variation on) a result from [Bar93] involving boundedness
of a set functor.

Theorem 7. The functor V (and also V) has a final coalgebra.

The final coalgebra for V is nontrivial. The final coalgebra for V, though, is
degenerate: it equals the one element set. This is equivalent to the fact that,
due to the absence of labels and a concept of termination as present for V', all
elements in any two P-coalgebras are probablisitically bisimilar.

Let P be the final £>'-coalgebra, so P £* Act -»• (£>(P) + {0}). (Note that
final coalgebras are always fixed points. See, e.g., [Rut96], Theorem 9.1.) The
following is immediate by Theorem 1.

Corollary 8. The system P is internally fully abstract with respect to the orig-
inal notion of probabilistic bisimulation of Definition 2.

4 Mi-Bisimilarity for Probabilistic Transition Systems

The previous section illustrates that in a discrete probabilistic setting, a coalge-
braic interpretation of probabilistic transition systems and bisimulation can be
given, which is equivalent with the usual 'direct' approach. One of the advantages
of the abstract coalgebraic approach is that it can fairly easily be generalized to
the continuous setting of stochastic systems. We will now, in fact, allow proba-
bility measures to play the role of the simple distributions in the definition of a
probabilistic transition system.

Probability measures only make sense in the context of a cr-algebra. When the
collection of processes comes equipped with a topology —as is the case if the set
of processes is endowed with an order or a metric structure— the obvious choice
for this cr-algebra is the Borel cr-algebra, i.e. the least cr-algebra containing all
the open sets. As mentioned in the introduction, we prefer the use of ultrametric
(cf. [BV96]) above order, because of a combination of the following two reasons:
(1) the technical advantage of a close relationship between standard measure
theory and metric topology, and (2) the availability of a final coalgebra theorem
in the metric setting, leading to a fully abstract domain for general probabilistic
bisimulation.

The generalization of the notion of a discrete probabilistic transition system
and the associated concept of bisimulation as proposed by Larsen and Skou is
as follows.

467

Definition 9. A (general) probabilistic transition system is a tuple (Pr,Act,ß)
where Pr is a given ultrametric space of processes, Act is a given set of actions,
and ß: Pr x Act x B(Pr) -> [0,1] is a so-called (general) transition probability
function, i.e., ß(P,a,-) is either the zero-map, or a Borel probability measure,
for all P e Pr, a e Act. (Here B(Pr) denotes the collection of Borel measurable
subsets of Pr.)

A probabilistic bisimulation for a probabilistic transition system (Pr, Act, ß)
is an equivalence '=' on Pr such that every equivalence class E C Pr of ' = ' is
measurable, and

P = Q => ß(P,a,E)=ß{Q,a,E)

for all P, Q e Pr, a G Act, and £ e Pr/=. Two processes P and Q in Pr are said
to be probabilistic bisimilar if there exists a probabilistic bisimulation containing
the pair (P,Q).

Note that the equivalence classes E of '=' must be measurable, since only then
the values ß(P, a, E),ß(Q, a, E) are well-defined.

For reasons of presentation, we dispense with the actions and with the treat-
ment of termination. They can be added again later. In this way, a probabilistic
transition system becomes a function a:S^ Mi(S) where Mi(S) denotes the
collection of all Borel probability measures. In the reformulation of the related
notion of probabilistic bisimulation we give, as before, first a slightly more gen-
eral definition of bisimilarity of systems with different carriers.

Definition 10. Let a: S ->• Mi(S) and ß:T H> Mi(T) be two probabilistic
transition systems. A relation R C S x T is called a probabilistic bisimulation
for a,ß iff R(s,t) => a(s)(U) = ß{t){V) for all s e S, t e T and U G B(S),
V e B{T) such that ?rf 1(C7) = ir^iV). Two elements s € S, t € T are said to be
probabilistic bisimilar iff some probabilistic bisimulation contains the pair (s, t).

As for V in the previous section, M\ can be regarded as a functor, viz. a functor
on the category UMS of ultrametric spaces and nonexpansive mappings.

Definition 11. The functor MiiUMS -> UMS is given as follows: MX(M) is
the collection of all Borel probability measures endowed with the metric d such
that d(ß,v) <e <^- VOe Oe:ß{0) = i/(0), for all ß,v £ MX{M), e > 0. For
nonexpansive f:M -> N the mapping M\(f):Mi(M) -> M\(N) is defined by
M1(f)(ß)(V) = ßif-HV)), for all V € B(N).

Elementary considerations concerning Borel-cr-algebras and nonexpansive maps
show that AWi is a well-defined functor on UMS. Following the coalgebraic
paradigm, Mi induces a notion of A41-bisimulation. One half of the relationship
of A41-bisimulation and probabilistic bisimulation can be shown directly.

Lemma 12. Let a: S —)• A4i(S), ß:T -> A4\(T) be two probabilistic transition
systems. Any M\ -bisimulation R for a and ß is also a probabilistic bisimulation
for a,ß.

468

Below we show that the reverse also holds under reasonable conditions. The tech-
nicality to be dealt with concerns the proper generalization of the measurability
condition of the equivalence classes E.

For a probabilistic bisimulation '=' in the sense of Definition 9 we have, by an
elementary set-theoretic argument, a partitioning into squares of subsets. More-
over, these subsets are measurable by assumption. So, we have = = \Ji€l Ei x Ei.
Similarly, for the general set-up, we want a decomposition R = \Jk€K Ek x Fk
where the Ek and Fk are Borel sets in S and T, respectively. Additionally,
for measure theoretical considerations, we will assume the number of rectan-
gles Ek x Fk that constitute R to be countable.

Definition 13. A binary relation RC SxT on two ultrametric spaces S and T
is said to have a Borel decomposition iff R = \JkeK E* x F* wnere {Ek\k £ K},
{ Fk | k e K } are countable partitions of Borel sets of S and T, respectively.

In the construction of a mediating probabilistic transition system 7: R ->■ M\ (R),
for a given probabilistic bisimulation it!, we can again assume that R is z-closed.
Since no measure theoretical considerations are involved, the proof of this is
literally as for Lemma 5. The property is used in the next result.

Theorem 14. Let a:S ->■ Mi(S), ß:T -> M\{T) be two probabilistic tran-
sition systems. Let R be a probabilistic bisimulation for a,ß in the sense of
Definition 10. Assume that R is z-closed. If R has a Borel decomposition, then
R is an M 1 -bisimulation for a,ß.

Proof. Let { Ek x Fk | k € K } be a Borel decomposition of R. Suppose R(s, t)
holds. The mapping j(s, t): B(R) -> [0,1] is then given by

(*UTT*v\nm v a(s)(UnEk)-ß(t)(VnFk) , ,
l(s,t)((U xV)nR) = l^kzx ß(t)(Fk) ^ '

for U e B(S), V G B(T). The verification that j(s,t) is well-defined and medi-
ating for a(s), ß(t) is nontrivial but omitted for reasons of space. D

In the remainder of this section, we shall again use some general insights from
the theory of coalgebras, this time by applying a result from [AR89,RT93].

In turns out, that we are only able to show the existence of a final coalgebra
when we consider an adaptation of Mi, say M[, which delivers Borel probability
measures with so-called compact support, i.e., measures that vanish outside a
compact set. More precisely, for a metric space M, ß: B(M) ->■ [0,1] is said to
have a compact support if, for some compact subset K C M, we have that
U n K = 0 => n{U) = 0, for all U £ B(M). Let M\{M) denote the collection of
all Borel probability measures of an ultrametric space M. Similarly as for Mi,
the new M\ extends to a functor on UMS.

Additionally, to ensure the property of local contractivity (see, e.g., [RT93]),
we put in a scaling functor -/2. This operation is harmless from a semantical point

469

of view. The usage of M[, though, does narrow the type of transition systems
falling within the framework. However, we stress that the established relationship
of coalgebraic and probabilistic bisimulation, still carry through for the modified
setting. Additionally, for the class of transition systems, now captured by the
functor Act -> (M[{-)/2 + {0}), the existence of a final coalgebra is guaranteed.

Theorem 15. Let the functor f:UMS -» UMS be given by T = Act ->
(M\{-)/2 + {0}). Then the following holds:

(a) T is locally contractive, i.e., for some K, 0 < K < 1, and all ultrametric
spaces M and N, the function TM,N- (M-h N) -> (T{M) -h T{N)) given
by TM,NU) = F{f) *s K-contractive.

(b) If M is complete, then T(M) is complete.
(c) The functor T has a final coalgebra.

The presence of '-/2' in the definition of T results in (a). (The other constituent
functors are locally nonexpansive.) Only for part (b) the assumption of measures
having a compact support is necessary. Its proof is non-trivial. Finally, part (c)
follows from (a), (b), and (a minor variation of) [RT93], Theorem 4.8.

Let Q be the final J"-coalgebra: Q S Act -> (M[(Q)/2 + {0}). From Theorem 1
and 15 we then immediately obtain the following result.

Corollary 16. The system Q is internally fully abstract with respect to proba-
bilistic bisimulation.

5 Conclusion and future research

In this paper, a framework is proposed for probabilistic transition systems, in-
volving general probability measures, and an associated notion of probabilistic
bisimulation. Most research reported in the literature so far deals with discrete
probabilistic transition systems, employing simple probability distributions only.
The use of Borel measures allows for an extension of this to a continuous set-
ting, which is necessary for the further development of models for dynamical,
real-time, and in particular hybrid systems, for which discreteness and image-
finiteness are often too restrictive.

Following the transition-systems-as-coalgebras paradigm, the categorical set-
up provides a characterization of the Larsen-Skou bisimulation in terms of a
set functor. For the continuous case, a similar result is shown for a functor on
the category of ultrametric spaces. Moreover, exploiting parts of the theory of
coalgebras, both for the discrete case and for the continuous case, internally fully
abstract domains are constructed.

Further investigations of the proposed notion of Borel decomposition should
clarify how the latter relates to the use of Polish spaces as in [BDEP97]. We ex-
pect that the technical result obtained there, on the existence of weak pullbacks,
applies also to our setting. Also, once a suitable continuous process language is

470

identified (such as PCCS [GJS90] for the discrete case), the process equivalences
and fully abstract domains presented in this paper may be fruitfully applied in
the semantical study of dynamical and hybrid systems.

References

[Acz88] P. Aczel. Non-Well-Founded Sets. CSLI Lecture Notes 14. Center for the
Study of Languages and Information, Stanford, 1988.

[AM89] P. Aczel and N. Mendler. A final coalgebra theorem. In D.H. Pitt
et al., editors, Proc. Category Theory and Computer Science, pages 357-
365. LNCS 389, 1989.

[AR.89] P. America and J.J.M.M. Rutten. Solving reflexive domain equations in
a category of complete metric spaces. Journal of Computer Systems and
Sciences, 39:343-375, 1989.

[Bar93] M. Barr. Terminal coalgebras in well-founded set theory. Theoretical Com-
puter Science, 114:299-315, 1993. See also the addendum in Theoretical
Computer Science, 124:189-192, 1994.

[BDEP97] R. Blute, J. Desharnais, A. Edalat, and P. Panangaden. Bisimulation for
labelled Markov processes. In Proc. LICS'97. Warzaw, 1997.

[BV96] J.W. de Bakker and E.P. de Vink. Control Flow Semantics. The MIT Press,
1996.

[Eda94] A. Edalat. Domain theory and integration. In Proc. LICS'94, pages 115-124.
Paris, 1994.

[GJS90] A. Giacalone, C. Jou, and S.A. Smolka. Algebraic reasoning for probabilisitic
concurrent systems. In Proc. Working Conference on Programming Concepts
and Methods. IFIP TC2, Sea of Gallilee, 1990.

[GSS95] R.J. van Glabbeek, S.A. Smolka, and B. Steffen. Reactive, generative and
stratified models of probabilistic processes. Information and Computation,
121:59-80, 1995.

[Hen95] T.A. Henzinger. Hybrid automata with finite bisimulations. In Z. Fülöp
and F. Gecseg, editors, Proc. ICALP'95, pages 324-335. LNCS 944, 1995.

[JL91] B. Jonsson and K.G. Larsen. Specification and refinement of probabilistic
processes. In Proc. LICS'91, pages 266-277. Amsterdam, 1991.

[JP89] C. Jones and G. Plotkin. A probabilistic powerdomain of evaluations. In
Proc. LICS'89, pages 186-195. Asilomar, 1989.

[LS91] K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. In-
formation and Computation, 94:1-28, 1991.

[RT93] J.J.M.M. Rutten and D. Turi. On the foundations of final semantics: non-
standard sets, metric spaces, partial orders. In J.W. de Bakker, W.-P. de
Roever, and G. Rozenberg, editors, Proc. REX Workshop on Semantics:
Foundations and Applications, pages 477-530. LNCS 666, 1993.

[RT94] J.J.M.M. Rutten and D. Turi. Initial algebra and final coalgebra semantics
for concurrency. In J.W. de Bakker, W.-P. de Roever, and G. Rozenberg,
editors, Proc. REX School/Symposium 'A Decade of Concurrency', pages
530-582. LNCS 803, 1994.

[Rud66] W. Rudin. Real and Complex Analysis. McGraw-Hill, 1966.
[Rut96] J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Report CS-

R9652, CWI, 1996. Ftp-available at ftp.cwi.nl as pub/CWIreports/-
AP/CS-R9652.ps.Z.

Distributed Processes and Location Failures
(Extended Abstract)

James Riely and Matthew Hennessy*

Abstract

Site failure is an essential aspect of distributed systems; nonetheless its effect
on programming language semantics remains poorly understood. To model such
systems, we define a process calculus in which processes are run at distributed lo-
cations. The language provides operators to kill locations, to test the status (dead
or alive) of locations, and to spawn processes at remote locations. Using a variation
of bisimulation, we provide alternative characterizations of strong and weak barbed
congruence for this language, based on an operational semantics that uses configu-
rations to record the status of locations. We then derive a second, symbolic char-
acterization in which configurations are replaced by logical formulae. In the strong
case the formulae come from a standard propositional logic, while in the weak case
a temporal logic with past time modalities is required. The symbolic characteri-
zation establishes that, in principle, barbed congruence for such languages can be
checked efficiently using existing techniques.

1 Introduction

Many semantic theories have been proposed for concurrent processes [18, 16, 6]. Al-
though these theories have been fruitfully applied to the analysis of some distributed
systems, for the most part they ignore an essential feature of such systems, namely their

distribution.
As a simple example consider two implementations of a client-server application

in which the client can demand an interactive service provided by the server, such as
previewing or updating a document. In one implementation (System A) the server
spawns a process to handle the document at its own site, the remote location, and the
client previews the document remotely. In the other (System B) the server sends a
process, including the document, to the client site, and the client previews the document
locally. Using the semantic theories mentioned above it would be difficult to distinguish
between these implementations, as the only difference between them is the location at
which activity occurs. We aim to develop a useful extensional theory of systems which
would take this type of property into account.

•Research funded by EPSRC project GR/K60701. Authors' address: School of Cognitive and Computing
Sciences, Univ. of Sussex, Falmer, Brighton, BN1 9QH, UK, {jamesri ,matthewh}@cogs.susx.ac .uk
Acknowledgement: We thank Flavio Corradini and Alan Jeffrey; both made important comments and sug-
gestions in the early stages of this work.

472

In [8, 20, 10] such theories have been proposed. All of these theories, however,
are based on a very strong assumption: that an observer, or user, can determine the
location at which every action is performed. Here we start from a weaker premise: that
in distributed systems sites are liable to failure. The model of failure we have adopted
is a fail stop model in which failures are independent of each other and the number of
failures that can occur is unbounded. Assuming that sites can fail, it is easy to see that
Systems A and B, outlined above, are indeed different: if, after the client has begun
interaction with the document, a failure occurs at the remote site, then in System A the
client deadlocks, while in System B it can continue operation unaffected.

Our work is motivated by the papers [2, 12]. In these papers, distributed languages
with location failures are defined and shown to be very expressive. In both of these
papers, the semantics is based on barbed equivalence, which requires quantification
over all program contexts and thus is difficult to use directly. In each of the cited works,
the authors provide a translation from their language into a simpler (non-distributed)
language and prove that the translations are adequate or fully abstract in some sense.
While these translations provide theoretical results about the relative expressiveness of
distributed and interleaving calculi, they are sufficiently complicated to make reasoning
about examples, even simple ones, very difficult.

By restricting attention to an asynchronous language, Amadio [4] has recently im-
proved on the results of [2], providing simpler translations. Although our work devel-
oped independently of [4], the language we study has much in common with the lan-
guage developed there. The main difference is that our language has no value-passing,
allowing us to concentrate on the effects of location failure and simplifying the state-
ment of many of our results. Since the issues raised by failures and value passing are
largely independent, this paper may be seen as providing two extensional views of a
language similar to Amadio's; the first of these is concrete, as is his translation, the
second is more abstract.

In Section 2, we consider a simple language for located processes based on pure
CCS [18], with which we assume familiarity. For example (a.p)t is a process located at
I which, if £ is alive, may perform the action a and then behave as (p)i. In addition to the
usual operators of CCS we have the following new operators: spawn(£,p) which starts
process p running at location £;k\\\£.p which, if location £ is alive, kills I (with the result
that any process located at £ is deactivated) and then behaves as p; and if £ then p else q
which silently evolves to either p or q, depending on whether £ is alive or dead when
the test is performed.

We give an operational semantics for this language in terms of a labelled tran-
sition system. The judgments depend on a set L, of live locations, and are of the
form L>P A LlfrP1, where P and P1 are located processes and a is either a vis-
ible action, which permits synchronization, or the internal action x. To decide on
an appropriate equivalence between process terms we follow the approach advo-
cated in [22]. We define both strong and weak barbed equivalence between pro-
cesses, ~ and RJ. We then dictate that the required equivalence, which we refer to
as barbed bisimulation equivalence, is defined (for example in the weak case) as: P
K, Q if and only if for every suitable context C[],C[F] «C[ß]. Although this may be
reasonable, it is not a very useful definition; the reader is invited to determine whether

473

the following pairs of processes should be equivalent or distinguished.

P\ =
Öl =

(a)(\(a+x.a)k

(a + x)l\(a.a)k

\a Pi = [(if k then a else nil); | (a.a)k] \a

\a 02 = (spawn(fc.a))*

In Section 3 we define two bisimulation-based relations, strong and weak Located-
Failure equivalence (LF-equivalence) and show that these coincide with the indirectly
defined barbed congruences. Since LF-equivalence is defined using bisimulations, the
problem of deciding that two systems are semantically congruent can, in principle, be
solved using standard proof techniques associated with bisimulation [18]. However,
constructing an LF-bisimulation requires that one consider the behavior of the systems
under all possible sequences of kills, by both the systems themselves and the environ-
ment. The number of states that must be explored may be exponentially larger than the
number needed to construct a CCS bisimulation.

In Section 4 we use the ideas of [15] to give alternative symbolic characterizations
of LF-equivalence that can be decided using a much smaller state space. The idea is to
replace the operational judgments L> P A L' >/" with judgments of the form P-^P',
where cp is a logical formula that describes the circumstances under which the action
a can be performed. In the strong case the required logic is straightforward: a prepo-
sitional logic that describes the state (dead or alive) of the sites in the system. In the
weak case, however, we require a more complicated logic that can express statements
of the form site £ was alive at some point in the past. Using these symbolic transitions,
the standard definition of symbolic bisimulation [15] requires only minor modification
to capture ~ and «; hence the symbolic proof techniques and tools of [15] may be used
to check the new semantic equivalences proposed in this paper.

In this extended abstract we have omitted several formal definitions and all proofs.
The full version [21] includes additional results and examples, including a discussion
of basic processes and comparisons with other equivalences.

2 The Language

The syntax of processes is parameterized with respect to several syntactic sets. We
assume a set hoc of locations k, £, m, a set PConst of process constants A used to define
recursive processes, and a set Act of communication actions a, b, c, such that every
action a E Act has a complement a E Act (~ is a bijection on Act). The set Actx = ActU
{t} of actions a includes also the distinguished silent action x. The formal syntax is as
follows. Most of the operators should be familiar from CCS; all of the new constructs
have been described in the introduction.

p,q(EBProc) ::= a.p | spawn (£,p) | W\\\£.p | if £ then p else q | A | "Lit/Pi

| p\q \p\a | P[f]

P,Q(ELProc) ::= P\Q \P\a \ P[f] \(p)t

We have adopted a two-level syntax which distinguishes between basic processes p
and located processes P. Intuitively, a basic process corresponds to what one normally
thinks of as a. process: a collection of threads of computation that must be run at a single

474

site. A located process, instead, corresponds to a distribution of basic processes over
several sites. Note that many basic processes may be located at a single site, and a basic
process may share a private channel (unknown to other basic processes running at the
same site) with a remote process.

The ability of a process to perform an action is dependent on the set of live loca-
tions, and consequently the transition relation determining the operational semantics
is defined between configurations. A liveset L is any subset of hoc. A configuration
(L>P) is a pair comprising a liveset L and a located process term P. The set of all
configurations is Config, ranged over by C and D.

In giving the intensional semantics of processes, it will be convenient for later de-
velopment if we distinguish executions of the operator k\\\£.p depending upon whether
C is alive or dead at the time of execution. To capture this distinction, we extend the set
of actions to the set KAct = Act LI {killl \ (. £ Loc], which includes the kill actions killl.
Unless otherwise specified, p ranges over KActz = KActö {x}. In Table 1 we define the
transition relation (-^) C Config x Config. The definition uses the following simple
structural equivalence on processes:

(p\q)t = (p)t | (q)t (p\a)t = {p)t \a {p\f]\ = {p)t [/]

While the transition relation —► distinguishes effective kill actions from those that
have no effect, a basic tenet of our study is that the precise moment of location failure
should be unobservable. Thus we extract from —► a transition relation i—► in which
all kill actions have been replaced with silent actions. It is this derived relation i—► that
we take to be fundamental.

Definition 1 0—). C A C iff C -2- C' D

Ch-I-C' iff C -^ C or 3k: C ■&&> C

Most of the rules in Table 1 are straightforward, being inherited directly from CCS,
modulo the constraint that the process {p)t can only move if I is alive. Note that the
three new operators — kill, spawn and the conditional — are modeled as x-transitions;
this reflects the fact that in a distributed system the implementation of these operators
would involve some computation and thus the passage of some time.

We now discuss the problem of defining an appropriate semantic equivalence for lo-
cated processes, based on the transition relation i—v. An obvious possibility is to adapt
the bisimulation equivalences of CCS [18]. (Strong) CCS-bisimulation is the largest
symmetric relation ~ccs on configurations such that whenever C ~ccs D and C i-S-> C'
there exists a D' such that/) >-^+ D' and C ~ccs D'. A weak version of this relation, RJ

CCS
,

can be obtained by adapting this definition to the weak transition relation |=>-, defined as
usual. To see that CCS-bisimulation is not suitable for our language, for example is not a
congruence, consider the processes PT, = [(a.a)(| (ä)^] \a and Q3 = [(a), | (ot.a)k] \a.
P3 ~ccs 03. Dut ^3 and 03 can be distinguished by a context that kills location I, if this
kill action is performed after the initial communication on a.

The use of saccs for CCS has been justified in [22] by the fact that it coincides with the
congruence obtained from a simple notion of observation called barbed bisimulation.
Similar results have been obtained for lazy and eager functional languages [1, 14, 7],

475

Table 1 Transition system with configurations (symmetric rules for | omitted)

Acte) L>(a.P)l-^Lt>(p)l if t£L
Spawnc) L>(spawn(k,p))t

J^L>(p)k if £<EL

Killlc) L>(K\\m.p)t-^L\{m}>(p)l if £eL,meL
Kill2c) Lt>(killm.^-^Lt>(/7); if £eL,m(£L

Condlc) Lt>(if m then p else q)(-
L*Lt>(p)t if £eL,m£L

Cond2c) L>(ifmthenpelse^-L+L>(g)/ if £<EL,m<£L

Sumc) L^MPh-^L'^h if L>(Pj)t-^L'>(p'j)k,j€l
tief

Defc) L>(^^L'>(p')t if L>(^-^L'>(^,^ = P

Strc) L»P^L'>Q if P = P',L>PI-^LI>QI,Q' = Q

Parc) L>P|ß-^L'>/y|ß if L>P^L'>P'

Commc) Z>P|ß^L'>/"|ß' if L>P ^U >P',L»Q-^ L1 »@
Restrc) L>P\a-^Ll>P'\a if L>/> -£+£/>/", p <£ {a,a}

Renc) L>P[/]^HL'!>/"[/] if L>P^L'>P'

giving further evidence for the reasonableness of this approach. Roughly, two processes
are barbed bisimilar if every silent transition of one can be matched by a silent transi-
tion of the other in such a way that the derived states are capable of exactly the same
observable actions; in addition, the derived states must also be barbed bisimilar. For
our language, the formal definition is as follows.

Definition 2 (Barbed bisimulation). Weak barbed bisimilarity («) is the largest sym-
metric relation over configurations such that whenever C « D: (a) C i—► C implies
that for some D',D\^>D' and C' « £>'; and (b) for every a, C A implies D l=^>.
Strong barbed bisimilarity (~) is obtained by replacing t=> by i—> everywhere in the
definition. O

Barbed bisimulation is a very weak relation; for example, it is not preserved by
parallel composition. However, by closing over all contexts we arrive at a reasonable
semantic equivalence that by definition enjoys an important property, namely that it is
a congruence.

Definition 3 (Barbed equivalence). Located processes P and ß are (weak) barbed
equivalent (P « Q) if for every context C[] such that C[P] and C[Q] are configura-
tions, C[P] « C[Q]. Strong barbed equivalence (~) is obtained in the same manner
from ~. n

Because it requires quantification over all contexts, barbed equivalence is difficult
to use directly. For example the processes Pi and Q\, given in the introduction, are
distinguished by « whereas P2 and ß2 are identified; it is far from obvious why. Even
worse, processes P5 and Q5 (given in Section 3) are related, although establishing this

476

IS fact requires that one prove that P\ and Q\ are related under the assumption that
alive at the time P\ and Q\ are compared, that is, I is initially alive.

We end this section with some additional, simpler examples. The processes (a)l |
(b)k and (b)t \ (a)k can be distinguished by a context that kills I. The same context can
be used to distinguish the basic processes spawn(£,a) and spawn(£,a), regardless of
where they are located. These examples indicate that although the location of an action
is not reflected directly in the operational semantics they do impinge on the behavior of
processes. The order in which kill actions are executed is also significant. For example
kill£.W\\\k can be distinguished from killk.killt using the process (a)t \ (b)k.

3 Located-Failures Equivalence

In this section and the next, we provide alternative characterizations of barbed equiv-
alence for our language. Note that if L>P -^ L'>P, then l! is determined by L and
/j. To emphasize this, we adopt the following notation. For each action /J, we define
a function "iafter^" which reflects the immediate effect of action // on a liveset. We
also define the relations -jr-s- and =fe> on process terms, which capture the capability of
action p under liveset L.

iafter;U(L)
clef U\{k}, if fj = killk

if fit Act U{T,E}

P-M+p> g. L>P J^iafter^(L)>F/

P=^p g L>P =^ iafter^L) >f

For example, iaftera(L) = L for any a, and iafterfa/K({£, k}) = {k}. If P = (a.a)t | (a)^,
then P =F=> nil, but P has no a-transition under the liveset {k}.

We first present the strong case.

Definition 4 (Strong LF-equivalence). Let S = {§L}LCLOC
be an indexed family of re-

lations on LProc. S is a strong LF-bisimulation if for every L, S^, is symmetric and
whenever P §i Q:

(a) P -^P> implies 3Q': Q -f> Q' and P Siafterp(L) Q'

(b) for every k£L P S^{/t} Q

P and Q are strong LF-equivalent under L (P ~L Q) if there exists a strong LF-
bisimulation S with P §L Q.

P and Q are strong UP-equivalent (P ~ Q), if P ~L ß for every subset L of hoc. D

In the full paper, we prove that ~ and ~ coincide. The alternative characterization
of weak barbed equivalence is more complicated: it is not sufficient to change the strong
arrows in Definition 4 to weak arrows. To see this, consider the following processes:

P5=[(b.ß.a+b.(a+'t))l\($.(ä+x.a) + ä.a)k]\a\$

Q5= [(6.(a+T)),| (a.a)J\a

477

If £ is initially dead, P5 and ß5 are clearly equivalent: both are strong equivalent to nil.
If £ is initially alive, however, the situation is not so clear. The questionable move is P5 's
^-transition to Pi ~ [(a)t\ (a + x.a)k]\a. To match this move ß5 must perform a weak
^-transition to g, ^ [(oc + i)t \ (ä.a)k] \a. But Pi and ßi are not barbed equivalent: if
£ is dead, then g, is capable of a a transition that Pi cannot match. This would lead one
to believe that P and ß are not barbed equivalent; however, they are.

Intuitively this is true because when P5 reaches Pi, £ must be alive; thus P\ and Q\
need only be compared under the constraint that £ is initially alive. Once this compar-
ison has begun, the environment can distinguish Q\ from P\ only by killing £, but it
cannot control internal activity on the part of Pi before £ is dead.

Definition 5 (Weak LF-equivalence). For p G Actx, define £ such that a = a and x = e.
The definition of « is similar to that for ~, except that when P §L Q, we require:

(a) P -£+ P1 implies 3ß': ß =£> ß' and P1 §L ß'

(b) for every * e L 3ß': Q =fr • =^ ß' and P §A{t} ß' □

Whereas the first clause in the definition of weak LF-bisimulation is as one would
expect, the second clause is somewhat surprising. It says, in effect, that if the environ-
ment kills a location k, then ß must be able to (silently) evolve to a process Q' that
matches P; but in reaching ß', ß may exploit the intermediate states of the system (that
is, k alive, then k dead).

Theorem 6. For all located processes P&Q if and only ifP K.Q. □

4 Symbolic characterizations

While the LF-equivalences provide a great deal of insight into the meaning of barbed
equivalence in distributed process description languages such as ours, they are unwieldy
to use in practice. For the most part, this is due to the use of configurations in the opera-
tional semantics. In this section, we improve this situation by defining a symbolic tran-
sition system directly on located process terms, then giving characterizations of strong
and weak LF-equivalence using these symbolic transitions. As one should expect, the
weak case is quite a bit more subtle than the strong.

We begin by giving the symbolic operational semantics. The symbolic transition
relation makes use of propositional formulae Jt, p, which are given a semantics in terms
of livesets. Intuitively, a formula indicates a set of constraints on the status of locations
(dead or alive) at the time that the transition is enabled. If P -^f f then if location 0
is dead and 1 is alive, P is capable of making an ^-transition to /"; that is, if 0 ^ L and
1 e L then P -f* P1. In Table 2 we define the transition relation -f+ C LProc x LProc.
The two transition systems are related by the fact that P-^P1 if and only if there exists
a K such that P -jf* P1 and L1= n.

The standard definition of symbolic bisimulation [15] requires that we define entail-
ment between formulae, which we do in the standard way:

nlhp iff VL: L t= n implies L1= p

478

Table 2 Symbolic transition system (symmetric rules for | omitted)

Acts) (a./*)/ -f* (p)i
Spawn5) (spawn(k,p))(-j->(p)k

Killls) {mm.p)lJf^{p)l

Kill2s) (kiN/M/T^rOO/
Condls) (if /n then p else q)t-r^{p)t

Cond2s) (if mthen pe\seq)t -j^g- {q)t

Sums) iXivPi)t-¥^j)t if (^)/-^(P/)/.J'e/
Defs) W/HHA if (P)/^(A,^ = P

Str.) P-^ß if P = P',P,^Q',QI = Q

Pars) Plß-^P'lß if P-frP1

Comms) Plßi^P'lß' if P-|* *" > ß-?h C
Restrs) P\a-^P'\a if P -£♦ /",/Y £ {a,5}

Rens) P[/]^P[/] if P ~h ?

Note that entailment is a preorder on formulae. If % lh p we say that n is stronger than
p. ff is the strongest formula under lh, tt the weakest.

We must also identify a set of formulae suitable as parameters in the recursive defi-
nition of symbolic equivalence, that is, the analogs of the parameters L in the definition
of LF-equivalence. Intuitively, when we say that P and ß are LF-equivalent under L, we
are limiting attention to a single possible world, namely that in which exactly the sites in
L are alive. The idea of symbolic equivalences, instead, is to treat many possible worlds
simultaneously (via entailment). In the case of strong LF-bisimulation, where P~LQ

and M C L imply P ~M Q, this is achieved by restricting attention to negative formulae
— formulae which contain no positive atoms — in the recursive definition of symbolic
equivalence. Finally, we identify a transformation on formulae (indexed by actions)
which specifies the conditions under which residual processes are to be compared:

M 1= aftera(p) iff 3L: L1= p andM C L

M 1= afterfam(p) iff 3L: L t= p and M C L\{k}

Definition 7 (Strong symbolic bisimulation). Let 8 be a family of relations on LProc
indexed by negative formulae f>. S is a strong symbolic bisimulation if for every f>, Sö

is symmetric and whenever P S# ß and P -£+ P1 then for some n,-, p;, and ß,:

(a) dAnll-V.-p,-, (c) Q-frQi, and
(b) p.-lr-Tt,-, (d) P1 S^p,) Qi

We write P ~^ ß to indicate that there exists a symbolic bisimulation 8 with P S$ Q. D

Theorem %.P~LQiff3ü:P~\Q andh 1= A In addition, (~) = (~*t). D

479

As a first attempt to define weak symbolic bisimulation, let us try simply replacing
the strong transitions in Definition 7 with weak edges defined by conjoining formulae.
For example, we would have P => P and P ==^ P1 if P -^ • -f* P'■ Unfortunately,
this definition does not suffice. Consider the processes P5 and g5, previously defined;
these have the following symbolic transition graphs (where we have write -£-» as -^):

G 5

<A i \ i
TMt ^1 Xk T' 01 "t/A/t

#A ^. .A A
yQ
S

1 *M*

As noted in Section 3, in order to prove these processes equivalent we must compare
the processes P\ and Q\ under the assumption that £ is initially alive, but using our
provisional definition we would end up comparing P\ and Q\ under the assumption
tt = neg(£ A k), which is not strong enough to prove that they are related.

As a second attempt, we might simply allow all positive information to carry over
into the recursive formula "ö,, that is, change the last clause of Definition 7 to fy = p,.
Whereas our first attempt produced an equivalence that was too strong, the revised
definition is too weak. For example, the following processes would be identified even
though they are not barbed equivalent.

P6= [(a.a)t\(a)k]\a Q6 = [(a),|(ä.a)t]\oc

l a l I Ok

Here Pb and Q'6 would be compared under the formula £ Ak. This formula, however,
says something more than we would like, namely that £ and k remain alive until P'b and
Q'b execute their first action. More complicated examples can be constructed to show
that we must be able to express properties such as "£ and k must have been alive, then t
must have died, and after that k must have died."

Our solution is to define weak symbolic edges using a past-timetemporal logic [17],
interpreted over sequences of livesets. A live sequence £ is a finite nonempty sequence
of livesets {Ll}..., Ln), such that for every / between 1 and n - 1 there exists a location
k such that L,+ 1 = U\{k}. For example, ({£},0) is a live sequence, but ({£},{£})
and {{£,k},0) are not. We write £(,) for the ith element of £ and, where clear from
context, use n to refer to the length of £. Thus, for example, £ models I if £ £ £(,,)
and £ models 0q> if £ or some prefix of £ models cp. Because Jive sequences must be
strictly decreasing, £ A §1 is unsatisfiable; however {{£},0} t= IA Q£. Weak symbolic
transitions are defined as follows:

P=^P p a v p' ifP A. a , p<

p S ,p/jfp_^ _t pi p killk pi -r p _e^ JdlU^ pi

P ^ :-P' ifP4>--^P'
(pAll <P *

480

Intuitively P =^> P1 means that P can perform the action /J to become P1 in an environ-
ment where the change in live sets satisfies the formula (p. For example if (pi = (£ A k); £
and q>2 = (£Ak)°ik then P6 has the symbolic transition ==> but not =>, whereas for ß6

it is the opposite.
As parameters to the weak relation we simply take Boolean formulae, but now in-

terpreted on the initial liveset of a live sequence. Rather than use two logics in the
definition or introduce additional operators, we define the function "initially" which
converts Boolean formulae into temporal formulae with this interpretation in mind. The
transformation function for generating formulae after an action is performed, which we
call "finally", must then transform temporal formula into propositional ones. The defi-
nitions are as follows: (In the full paper, we show how to calculate these functions.)

£ t= initially(rc) iff L^Pn

Ml=finally((p) iff 3L: £ l=(pandM = £(„)

Definition 9 (Weak symbolic bisimulation). Similar to Definition 7, except that when
P Sn Q and P =|> /* we require:

(a) initially(7t)AcplhV,V;, (c) ß=f>ß;, and
(b) y/IHcp,-, (d) P1 Sfinaiiy(V/) Qi n

Theorem 10. P^LQ iff 3n: Ltn and P «^ Q. In addition, («) = (^t). D

5 Conclusions

In this paper we have proposed a new semantic theory for distributed systems which
takes into account the possibility of failures at sites. This theory is an adaptation of
standard bisimulation-based theories [18] using an operational semantics for located
processes. The new semantic equivalences are justified in terms of barbed bisimulations
[22]. We also give symbolic characterizations of the new equivalences, which means
that they can be investigated using the symbolic methods of [15].

Site failure has also played a role in languages studied in [2, 4, 12]. In these papers
abstract languages based on Facile [13] or the pi-calculus [19, 5] are studied. The orig-
inal motivation for this paper was to provide an alternative characterization of barbed
equivalence for languages such as these. Although we have not treated value passing
or references, we postulate that our results can be extended in a straightforward way to
value-passing languages which retain the assumption that all failures are independent,
such as the languages in [2, 4]. More delicate is the extension to languages such as the
distributedjoin-calculus [12] in which the independence assumption is dropped. In this
case the logical language used for symbolic bisimulations must be extended to allow
statements about the interdependence of locations; we leave this to future work.

A number of location-based equivalences already exist in the literature [8,9,20, 10];
however, none of these theories addresses the possible failure of sites. Their empha-
sis, rather, is to define a measure of the concurrency or distribution of a process: two
processes are deemed equivalent only if, informally, they have the same degree of con-
currency. In the full paper we give a series of counter-examples which show that ~

481

is incomparable with all of the equivalences proposed in these papers; we also discuss
variations on the language and model of failure.

References

[1] Samson Abramsky. The lazy lambda calculus. In Research Topics in Functional Program-
ming, pages 65-117. Addison-Wesley, 1990.

[2] Roberto Amadio and Sanjiva Prasad. Localities and failures. In FST-TCS, volume 880 of
LNCS. Springer, 1994.

[3] Roberto Amadio. From a concurrent ^.-calculus to the n-calculus. In Foundations of Com-
putation Theory, volume 965 of LNCS. Springer, 1995.

[4] Roberto Amadio. An asynchronous model of locality, failure, and process mobility. Tech-
nical report, Laboratoire d'Informatique de Marseille, 1997.

[5] Roberto Amadio, Ilaria Castellani, and Davide Sangiorgi. On bisimulations for the asyn-
chronous 7t-calculus. In CONCUR96, volume 1119 of LNCS, pages 147-162. Springer,
1996.

[6] J. C. M. Baeten and W. P. Weijland. Process Algebra. Cambridge University Press, 1990.
[7] G. Boudol. A lambda calculus for (strict) parallel functions. Information and Control,

108:51-127,1994.
[8] G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn. A theory of processes with localities.

Formal Aspects of Computing, 6:165-200,1994.
[9] I. Castellani. Observing distribution in processes: static and dynamic localities. Interna-

tional Journal of Foundations of Computer Science, 6(6):353-393, 1995.
[10] Flavio Corradini. Space, Time and Nondeterminism in Process Algebras. PhD thesis, Uni-

versitä Degli Studi di Roma "La Sapienza", 1996.
[11] C. Fournet and G. Gonthier. The refliexive CHAM and the join-calculus. In POPL94. ACM

Press, 1994.
[12] C. Fournet, G. Gonthier, J.J. Levy, L. Marganget, and D. Remy. A calculus of mobile

agents. In CONCUR96, volume 1119 of LNCS, pages 406-421. Springer, 1996.
[13] A. Giacalone, P. Mishra, and S. Prasad. A symmetric integration of concurrent and func-

tional programming. International Journal of Parallel Programming, 18(2): 121—160,1989.
[14] Andrew D. Gordon. Bisimilarity as a theory of functional programming. In MFPS, volume 1

of ENTCS, http://pigeon.elsevier.nl/mcs/tcs/pc/Menu.html.Elsevier, 1995.
[15] M. C. B. Hennessy and H. Lin. Symbolic bisimulations. Theoretical Computer Science,

138:353-389,1995.
[16] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
[17] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent System: Specifi-

cation. Springer, 1992.
[18] Robin Milner. Communication and concurrency. Prentice-Hall, 1989.
[19] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes. Infor-

mation and Computation, 100(1), September 1992.
[20] Ugo Montanari and Daniel Yankelovich. Partial order localities. In ICALP92, volume 623

of LNCS, pages 617-628. Springer, 1992.
[21] James Riely and Matthew Hennessy. Distributed processes and location failures. Technical

Report 2/97, University of Sussex, Department of Computer Science, http: //www. cogs.
susx.ac.uk, 1997.

[22] Davide Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order
Paradigms. PhD thesis, University of Edinburgh, 1992.

Basic Observables for Processes*

Michele Boreale1 Rocco De Nicola2 Rosario Pugliese2

^ipartimento di Scienze dell'Informazione, Universitä di Roma "La Sapienza"
2Dipartimento di Sistemi e Informatica, Universitä di Firenze

Abstract. We propose a general approach to define behavioural pre-
orders over process terms by considering the pre-congruences induced
by three basic observables. These observables provide information about
the initial communication capabilities of processes and about their possi-
bility of engaging in an infinite internal chattering. We show that some of
the observables-based pre-congruences do correspond to behavioral pre-
orders long studied in the literature. The coincidence proofs shed light on
the differences between the must preorder of De Nicola and Hennessy and
the fair/should preorder of Cleaveland and Natarajan and of Brinksma,
Rensink and Vogler, and on the role played in their definition by tests
for internal chattering.

1 Introduction

In the classical theory of functional programming, the point of view is assumed
that executing a program corresponds to evaluating it. If we write M \. v to
indicate that program M evaluates to value v, the problem of the equivalence of
two programs, hence of their semantics, can be stated as follows:

Two programs M and N are observationally equivalent if for every pro-
gram context C such that both C[M] and C[N] are programs, and for
every value v, we have: C[M] \.v'\i and only if C[N] I v.

An alternative approach, used e.g. for the lazy lambda calculus [1], is that of
denning a simulation (whose kernel is an equivalence) based on the reduction to
normal forms. In general, given a language equipped with a reduction relation,
the paradigm for denning equivalence over terms of the language, can be traced
back to Morris [16] and can be phrased as follows:

1. Define a set of observables (values, normal forms, ...) to which a program
can evaluate by means of successive reductions.

2. Consider the largest (pre-)congruence over the (set of operators of the) lan-
guage induced by the chosen set of observables.

This paradigm has been the basis for assessing many semantics of sequential
languages and is at the heart of the full abstraction problem, see e.g. [18].

Here, we aim at taking advantage of this paradigm also to assess models of
concurrent systems and their equivalences. In this case, the choice of the basic
observables is less obvious. On one hand, it is well-known that input/output

* Work partially supported by EEC: HCM project EXPRESS, by CNR project "Speci-
fica ad alto livello e verifica formale di sistemi digitali" and by Istituto di Elaborazione
dell'Informazione CNR, Pisa.

483

relations are not sufficient for describing the semantics of these classes of systems,
and thus it would be limitative to use values as observables. On the other hand,
studying the evolution to normal forms under all possible contexts is not as
inspective as in the case of lambda calculus. Indeed, the interaction between a
A-term and the environment is circumscribed, while that between a process and
its environment is less clear.

If we consider the A-term MN, we know the extent of the influence of N over
M, and, in any computation, we know exactly when an interaction between M
and N occurs, namely when M reduces to a A-abstraction. 'inus by observing M
in all possible contexts we can fully understand its behaviour. When considering
concurrent systems, the internal evolution of each parallel component is freely
intermingled with external communications. Then understanding the semantics
of a component via its contextual behaviour turns out to be much less obvious.

Here, we shall consider a simple process description language, TCCS (Tau-
less CCS [7]), and will study the impact of three basic observables for concurrent
systems on this language. However, our results are easily extensible to general
SOS language formats, like GSOS [2].

We shall be interested in testing for the initial guaranteed communication
capabilities of a system. Indeed, when one is willing to infer the interactive
behaviour of a system from its "isolated" behaviour, to know about the system's
possibility of accepting communications along specific channels is not sufficient:
due to the inherent nondeterminism of concurrent computations, it is necessary
to know whether the acceptance of the communications is guaranteed. This is
essential to establish liveness properties, like the absence of deadlock.

Moreover, we shall be interested in the risk a system has of getting involved in
an infinite sequence of internal communications (to diverge), because this could
lead to ignoring all subsequent external stimuli. Finally, with respect to this, it
might also be important to know the external communications that can lead to
divergent states.

These considerations guide us to introducing three basic observables:

1. P\l (P guarantees (.) asserts that, by internal actions, P can only reach
states from which action I can be eventually performed;

2. P I (P converges) asserts that P cannot get involved in an infinite sequence
of internal actions;

3. P 11 (P converges along £) asserts that P converges and does so also after
performing £.

For finite process graphs these observables are obviously decidable; in general,
they are not, but this is somehow expected since the basic language (TCCS) is
Turing powerful.

We shall analyze the impact of the above predicates on the semantics of
TCCS. The predicates naturally induce five contextual preorders. These pre-
orders are listed in Table 1; there we represent a contextual preorder using the
notation Sl^

c
S2 , where si (if present) refers to the used convergence predicate,

and S2 (if present) refers to the guarantees one. The universal relation is denoted
byU.

484

conv./comm. no req. 4 it conv./comm. no req. 4 ie

no req. U ^ no req. U c. c

\e <\ & -<c \l

Table 1. Contextual Preorders Table 2. Main results

Our main results are five full abstraction theorems that make it manifest
that our contextual preorders do coincide with well-known and/or intuitive be-
havioural preorders over processes studied in the literature. Table 2 provides a
summary of the claimed results.

More specifically, we will show that:

- ^c , the contextual preorder induced by ! I, coincides with £^ , the max-
imal pre-congruence included in the fair/should preorder of [17] and [3].
This pre-congruence can be characterized (see [4]) as the conjunction of
the classical trace preorder (called may preorder in [6]) with the fair/should
preorder;

- ^c and iC^
c, the contextual preorders induced by 4. and 4. t, both coincide

with £ t the (reverse) inclusion of the convergent traces preorder, a simple
variant of the trace preorder.

Together with the impact of the three observables used in isolation we also
study the result of their conjunctions and show that:

- ^c , the contextual preorder induced by 4 and ! £, coincides with £M , the
original must preorder of [6, 10];

- m^c
c>

the contextual preorder induced by 4 £ and It, gives rise to a new
preorder, the safe-must preorder £ , which is supported by a very intuitive
testing scenario.

The safe-must preorder has a direct characterization in terms of compu-
tations from pairs of observers and processes: a computation is successful if a
success state is reached before a catastrophic one (this explains the adjective
'safe')- This notion certainly deserves further investigation.

In the rest of the paper, we recall syntax and operational semantics (Sec. 2)
and introduce an observational semantics (Sec. 3) for TCCS, then we present
our full abstraction results (Sec. 4), compare the semantic preorders (Sec. 5)
and briefly discuss related work. Due to space limitations, most proofs have
been omitted; they can be found at http://dsi2.dsi.unifi.it/~denicola.

2 Tau-less CCS: TCCS

In this section, we briefly present the syntax and the operational semantics of
TCCS, (r-less CCS [7, 10]). We have preferred to use TCCS rather than CCS
because it allows us to avoid the "congruence problems" that arise when the CCS
choice operator (+) is used and silent actions are abstracted away. It is worth

485

mentioning that the very same results can be obtained by using CCS and its
must pre-congruence obtained from the must preorder by imposing that when-
ever the "better" process can perform a silent move also the other can do it.

We assume an infinite set of names Af, ranged over by a,b,..., and let
Af = {a | a £ Af}, ranged over by a,b,..., be the set of co-names. Af and AT
are disjoint and are in bijection via the complementation function (7); we define:
(<z) = a. We let C — AfUAJ", ranged over by 1,1',..., be the set of labels; we shall
use B to range over subsets of C and we define B = {£ \ £ G B}. We also assume
a countable set X of process variables, ranged over by X, Y, —

Definition 1. The set of TCCS terms is generated by the grammar:

E := 0 \0 \ £.E | E[)F \ E®F \ E \ F \ E\L \ E{f} | X | recX.E

where / : C —¥ C, called relabelling function is such that {I \ f(£) ^ £} is finite,
f(a) e Af and f(l) = /(£). We let V, ranged over by P, Q, etc., denote the
set of closed terms or processes (i.e. those terms where every occurrence of any
agent variable X lies within the scope of some recX.„ operator).

In the following, we often shall write £ instead of £.0. We write
-{£[/£u .. -,£'„/£„} for the relabelling operator _{/} where /(£) = £\ if £ = £h

i E {1,... ,n}, and /(£) = £ otherwise. As usual, we write E[Ei/Xi,... ,En/Xn]
for the term obtained by simultaneously substituting each occurrence of Xi in
E with Ei (with renaming of bound process variables possibly involved).

The structural operational semantics of a TCCS term is defined via the two
transition relations —> and >—> induced by the inference rules in Table 3 and in
Table 4, respectively. The symmetrical versions of rules AR4 and AR5 in Table 3
and of rules IR5, IR6 and IR7 in Table 4 have been omitted.

Table 3. SOS rules for TCCS: Action Relation

iRi n ^-> n IR2 recX.E ^-> E[recX.E/X]

P{f) ^ P'{/}
IM P\L ^ p'\L

IR5 P © Q ^-> P TPfi ^*
P [} Q ^ P' 0 Q

TR7)^—> f
ift' P\Q >-> P'\Q

IR„ P -A P', Q A Q
iKÖ P | Q ^ P | Q'

Table 4. SOS rules for TCCS: Internal Relation

486

As usual, we use =*• or =^> to denote the reflexive and transitive closure

of >—> and use =^> , with s G £+, for =» -A =^> when s = fe'. Moreover,

we write P =^f for 3P' : P =^> P' (P -A and P ^-> will be used similarly).

We will call sort of P the set sort(P) = {£ G C \ 3s G £* : P =^ }, successors

0/ P the set S{P) = {£ £ C \ P =U }, and language generated by P the set
L(P) = {s G £* I P =^> }■ Note that since we only consider finite relabelling
operators, every TCCS process has a finite sort.

A context is a TCCS term C with one free occurrence of a process variable,
usually denoted by _. If C is a context, we write C[P] instead of C[P/-}. The
context closure 1ZC of a given binary relation 11 over processes, is defined as:
P1ZCQ iff for each context C, C[P]7eC[Q]. 1ZC enjoys two important properties:
(a) (Rc)c = 1ZC, and (b) 11 C W implies ftc C 1Z'C. In the following, we will
write % for the complement of 1Z.

3 Observational Semantics

In this section, we introduce different observational semantics for TCCS; we
follow two approaches. The first approach takes advantage of basic observables,
the second one of the classical testing scenario of [6, 10] and variants of it.

3.1 Basic Observables and Observation Preorders

Definition 2. Let P be a process and I G C. We define three basic observation
predicates over processes as follows:

- P\l (P guarantees £) iff MP' : P ^ P' implies P' =U ;
- P X (P converges) iff there is no infinite sequence of internal transitions

P >—► Px >—> • ■ ■ starting from P;
- P 11 (P converges a/on<? £) iff P 1 and \/P' : P =U P' implies P' 4-.

The above predicates can be combined in five sensible ways and used to
define the corresponding basic observation preorders over processes, as stated in
the following definition.

Definition 3. Let P and Q be processes.

- P t<Q iff P I implies Q |;
- P i£d Q iff for each I € £: P I £ implies <2 4 £;
- P ^c Q iff for each ^ € £: P ! £ implies Q ! £;
- P^£Q iff for each £G£: P 1 and P !£ implies Q 4- and Q ! £;
~ PiC^c<3 iff for each £G£: P 1 £ and P !£ implies Q 4- ^ and Q ! £.

Of course, the basic observation preorders are very coarse. More refined rela-
tions can be obtained by closing the above preorders under all TCCS contexts.
For each basic observation preorder, say <, the contextual preorder generated by
-< is defined as its closure -<c.

487

3.2 Testing Preorders and Alternative Characterizations

Like in the original theory of testing [6, 10], we have that:

- observers, ranged over by 0,0',..., are processes capable of performing an
additional distinct "success" action w $ C;

- computations from P \ O are sequences of internal transitions P | O >—>
-Pi | 0\ >—> ■ ■■, which are either infinite or such that Pk \ Ok >f^ , k > 0.

Definition 4. Let P be a process and O be an observer.

1. Pmust 0 if for each computation from P\0, say P\0 >—> P\\0\ >—> ■■■,
there is some i > 0 s.t. Oi —> .

2. Pmust 0 if for each computation from P \ O, say P \ 0 >—> Pi 10\ >—> ■ ■ ■,
there is some i > 0 s.t. Oi —> and Pi 4-

3. Pmust O if for each computation from P \ O, say P | O >—> Pi \ 0\ >-^ ■ ■ -,

it holds that Pi \ Oi =^> for each i > 0.

The first definition of successful computation given above is exactly that
of [6]. The second one, considers successful only those computations in which a
success state is reached before the observed process diverges. The third definition,
which is essentially taken from [3], totally ignores the issue of divergence. These
three notions allow us to define three preorders: the first one (£) js the original
must preorder of [6, 10], the second one (£) js the new safe-must preorder and
the third one (E) is the (reverse of the) fair/should preorder of [17] and [3].

Definition 5. Let i £ {M, S, F}. For all processes P and Q, P ^.Q iff for every
observer 0: P musti O implies Q musti O.

We introduce below alternative characterizations of the preorders must and
safe-must. They support simpler methods for proving (or disproving) that two
processes are behaviourally related. We need some additional notation.

Definition 6. Let s G £*, B Cfin £ and S be a set of processes.

- The convergence predicate, 4- s, is defined inductively as follows: P \. e if P \.\

P I Is' if P I e and VP' : P =U P' implies P' I s'.
We write P t s if P 4- s does not hold.

- (Pafters) denotes the set of processes {P' : P =£■ P'}.
- We write P 1 B if W £ B : P | £ and S I B if VP € S : P I B.

- P\B stands for \/P' : P => P< implies 3£ € B : P' =U .
- S |! B stands for VP e S : P I B and P! B.

Definition 7. For all processes P and Q, we write

- P CM Q if Vs £ £* such that P | s, it holds that:
(a) Q i s, and (b) for every B Cßn £: (P after s)! P implies (Q after s)! P.

- P <äCs <2 is the same as above but predicate ! is replaced by J.!.

488

Theorem 8. For all processes P and Q, (1) P £M Q iff P <C„ Q and (2)

By taking advantage of the above alternative characterizations it is easy to
prove that the must and the safe-must preorders are pre-congruences.

Theorem 9. For all processes P and Q and i G {M, S], P £.Q iff P ^Q-

Note that the congruence result does not hold for the fair/should preorder
C it is not preserved by the recursion operator. This can be easily seen by

considering the following counter-example. Consider the processes P = a.b\\a.c
and Q = a.b and the context C = recX.(.\a.b.X)\{a,b}. It obviously holds that
P £F Q, but C[P] gF C[Q] (just take O = c.w); hence P gF Q.

An alternative characterization of the closure of the fair/should preorder is
given in [4], for a language slightly different from ours.

Definition 10. For all processes P and Q, we write
P £ Q if (P £ Q and L(P) C L(Q)).

FT F

Theorem 11. For all processes P and Q, P C^ Q iff P £F Q.

4 Full Abstraction Results

From now on, we adopt the following convention: an action declared fresh in a
statement is supposed to be different from any other name and co-name men-
tioned in the statement.

4.1 Convergence predicate and convergent traces

In this section, we deal with the first two contextual preorders, x^
c and lc^

c,
and prove that they have the same distinguishing power and coincide with the
reverse inclusion of the convergent traces preorder.

Definition 12. For all processes P and Q, we write P £m Q if Vs € £* such
that P I s, it holds that:
a) Q I s, and
b) s e L(Q) implies s G L(P).

Theorem 13. For all processes P and Q, P £^ Q iff P £m <2-

The following special contexts can be used to prove the next theorems. If
s G £*, say s = h ■ ■ ■ ln (n > 0), we define
- Cl =.\l1.---ln.O and

Theorem 14. For all processes P and Q, P £m Q iff P4d
c <2-

Theorem 15. For all processes P and Q, PiC<c Q'& P^ Q-

489

4.2 Guarantees and fair testing

Lemma 16. Let P be a process, 0 be an observer and let I €_ C be a fresh
action; (1) Pmustr O iff P | CK^M !I, and (2) P!l iff Pmustr l.w.

Theorem 17. For all processes P and Q, P £* Q iff P ^ Q.

PROOF: (<=) We prove that -<c is contained in £ , the claimed result follows
by closing under contexts. Suppose that P <C

CQ and that PmustF O; let £ be a
fresh action. We have:

Pmust O implies (Lemma 16(1))
P | 0{Z/w} ! I implies (hypothesis P<C

CQ, with C = .\0{%})
Q | 0{*/w} ! £ implies (Lemma 16(1))

QmustF O

(=>) The proof is similar but relies on Lemma 16(2). □

4.3 Guarantees and convergence, and must testing

The next definition introduces two special contexts to be used in the proof of
Theorem 20.

Definition 18. Let s E C*, say s = £i ■ • •£„ (n > 0), and B Cfin C. Let fB

denote a function which maps each I G B to a single fresh c. Fix a bijective
correspondence among £i, ..., ln and n fresh actions au ..., an. We define
- Ci = .\Ql where Q\ = c and Q£/ = £.Q|' []c, and
- Cl'B = (- | Ps){/B} | QI where Ps = h.oty. ■ ■-ln.an, Q\ = 0 and QllS' =

äi-QS'De-

Lemma 19. Let s e C*, B Cfin C- and c be a fresh action.
a) P I s iff Cf [P] | iff Cf [P] 1 c.
b) (P after s)\B Iff CZlB[P]\c.

Theorem 20. For all processes P and Q, P £ Q iff P , ^ Q.

PROOF: (=>•) From the definition, it is easily seen that <M is contained in
1<C (indeed P! c iff (P after e)! {c}). From this fact, by closing under contexts
and applying Theorem 8, the thesis follows.

{<=) Here, we show that ^c
c is contained in <CM . From this fact and The-

orem 8, the thesis follows. Assume that P ^C
CQ and that P 4- s, for some s G £*.

We have to show that: (a) Q 1 s and (b) (Pafter s) \B implies (Qafters) IB,
for any B Cfin £. As to part (a), from P I s and Lemma 19(a), it follows that
Cf[P] 4.. Obviously, for every process R, C°3[R]\c. From CI[P] 4-, CS

3[P] !c and
Ft^

c Q it follows that C3[Q] 4- By applying again Lemma 19(a), but in the
reverse direction, we obtain Q 4- s. As to part (b), suppose that (Pafter s)! B.

From this, applying Lemma 19(b), it follows that Cl'B[P]\c. Moreover, it is
easy to see that for every process R, R 4- s implies Cs

4' [R] 4-- From C\' [P] 4-,
Cl'B[P] !c and P^= Q, it follows that C^fQ] !c. By applying again Lemma
19(b), but in the reverse direction, we obtain (Q after s)! B. □

490

4.4 Guarantees and convergence, and safe-must

To prove full abstraction for safe-must, we will use another special context.
Again, we assume that c G C is always fresh. If s G C*, say s = h ■ ■ ■ £n (n > 0),
and B Cfin C, we define the context

- C°>B = - | Ql'B where Q<f = EteB ** and Q«>B = LQi'B[]c
The proof of the following theorem is similar to that of Theorem 20, but relies
on the context C$ instead of Cs

4' .

Theorem 21. For all processes P and Q, P £s Q iff PiC<c
c Q-

It is worthwhile to point out why the context C^'B cannot be used in place of
the context CS

A'
B to prove full abstraction for the must preorder (Theorem 20).

Indeed, P|s does not imply that Cs
h'
B[P) I (for instance a.b.Q I a but

Cl'{b}[a.b.n} t). This would invalidate the proof of the "if" part of Theorem 20.

5 Comparing the preorders
Theorem 22. For all processes P and Q, P £M Q implies P £s Q, but not
vice-versa.

PROOF: Paralleling the proof of Theorem 20, part «=, it is easy to show that
^ is contained in <s , from which the result will follow by applying Theorems

20 and 8. To show that the vice-versa does not hold, consider P = a.b.Q and

Q d= a. It is easy to see that P ^ Q, but P x^
c

c Q (just consider _ | ä). □

Theorem 23.
i c - -<c r -<;c = c c -<c = -<c ■

2 -<c = C and C is not comparable with £ , £ and ,^c.
— L ^ FT FT MS*

PROOF:
1. The result follows from Theorems 14, 20, 21 and 22. By definition, it is

easily seen that IC<C
C is included in iC<c. The inclusion is strict: aiC<c0

but aiC^c 0.
2. The equality ^c = £ derives from Theorems 17 and 11. To see that

neither of C , C and ,-<c is included in £ (hence in £), consider

the processes P d= recX.(a.X[]a.b) and Q =f recX.a.X. Clearly, P £M Q,

hence P £ Q and P IC<CQ- However, P £F <2 (because PmustF O and

Q mist O, when O d= recX.(ä.X[]ö.w)). To see the converse, observe that
0 £ J7, but 0 iZ< J7, hence 0 £s J? and 0 £M ß. D

The mutual relationships among the pre-congruences are simpler if we move
to strongly convergent processes. We say that a process P is strongly convergent
if P 4- s for every s E £*.

Theorem 24. For strongly convergent processes, it holds that:

-^c — c r C — -<:c — -<c — C r -<c = ^c

491

6 Conclusions

We have proposed three basic notions of process observables, that, when closed
with respect to the contexts of a CCS-like language, induce five pre-congruences
that have been proved to coincide with well-known and/or intuitive behavioural
relations.

Notions of observables in the same spirit as ours have been proposed in [13],
[21], [11], [15], [8] and [12].

In [13], it is shown that the pre-congruence induced by inclusion of maxi-
mal traces coincides, both for CCS and CSP, with the must pre-congruence of
[6]; another characterization is given by only considering the inclusion of the
maximal e-trace, i.e. a sequence of invisible moves leading to a divergent state
or to a deadlocked one. The strength of the basic observables (maximal traces
are definitely more inspective than our guarantees predicate) prevents from cap-
turing different notions such as fair testing, and hinders the role played by the
convergence test, which is somehow included in that for maximality.

In [21], two Petri nets are called d-equivalent if they both can reach a dead-
locked state or if they both cannot do so. Then it is proved that, by closing
d-equivalence with respect to parallel composition, the variant of failure seman-
tics [5] that ignores divergence is obtained.

In [11], a series of variants of the testing framework is proposed and results
are listed showing that, by changing the expressive power of testers, a number
of equivalences ranging from bisimulation to testing can be captured. One of
the considered family of observers is that consisting just of agents of the form
l.iu.O, that somehow resemble our \l predicates. It is claimed that for strongly
convergent processes the pre-congruence induced by this family of observers
coincides with the must preorder and the reader is referred to [13] for the proof.
However, we could not find the proof in Main's paper.

Milner and Sangiorgi [15] define an equivalence for processes based on ele-
mentary observables, namely the possibility for a process to synchronize along a
specific channel. However, they permit to recursively test for the presence of this
observable. The resulting notion of observability (called barbed bisimilarity),
when closed under parallel composition, yields bisimulation-based equivalences
that are significantly more discriminating than ours.

Ferreira [8] and Laneve [12] deal with languages significantly different from
classical process algebras. In particular, Ferreira uses a predicate which resem-
bles very much the conjunction of our I and ! £ (based on production of values
rather than on communication capabilities) to define a testing preorder for Con-
current ML [20]; this seems to be strongly related to our safe-must preorder. He
also conjectures that if one considers pure CCS (and observes communication
capabilities instead of value productions) the obtained preorder coincides with
the must pre-congruence of [6]; here we have proved this conjecture. Laneve dis-
cusses the impact of an observables-based testing scenario on the Join Calculus,
a language with elaborate synchronization schemata [9].

492

Acknowledgments

We are grateful to L. Aceto, F. van Breugel, W. Ferreira, A. Rensink and W.
Vogler for interesting discussions and suggestions and to F. Focardi for a first

debugging of the ideas contained in the paper.

References

1. S. Abramsky. The lazy lambda calculus. Research Topics in Functional Program-
ming, David Turner, ed., Addison-Wesley, 1990.

2. B. Bloom, S. Istrail, A.R. Meyer. Bisimulation can't be traced. Journal of the
ACM, 42(l):232-268, 1995.

3. E. Brinksma, A. Rensink, W. Vogler. Fair Testing. Proceedings of CONCUR'95,
LNCS 962, pages 313-327, Springer, 1995.

4. E. Brinksma, A. Rensink, W. Vogler. Applications of Fair Testing. In R. Gotzhein
and J. Bredereke, ed., Formal Description Techniques IX, Chapman & Hall, 1996.

5. S.D. Brookes, C.A.R. Hoare, A.W. Roscoe. A theory of communicating sequential
processes. Journal of the ACM, 31(3):560-599, 1984.

6. R. De Nicola, M.C.B. Hennessy. Testing Equivalence for Processes. Theoretical
Computers Science, 34:83-133, 1984.

7. R. De Nicola, M.C.B. Hennessy. CCS without r's. Proceedings of TAPSOFT'87,
LNCS 249, pages 138-152, Springer, 1987.

8. W. Ferreira. Semantic Theories for Concurrent ML. Ph.D. Thesis, University of
Sussex, 1996.

9. C. Fournet, G. Gonthier, J.-L. Levy, L. Maranget, D. Remy. A Calculus of Mobile
Agents. Proceedings of CONCUR'96, LNCS 1119, 1996.

10. M.C.B. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.
11. M.C.B. Hennessy. Observing Processes. In Linear Time, Branching Time and Par-

tial Order in Logics and Models for Concurrency, LNCS 354, Springer, 1989.
12. C. Laneve. May and Must Testing in the Join-Calculus. Technical Report UBLCS-

96-4, Universitä di Bologna, Dept. of Computer Science, Bologna, 1996.
13. M.G. Main. Trace, Failure and Testing Equivalences for Communicating Processes.

Int. Journal of Parallel Programming, 16(5):383-400, 1987.
14. R. Milner. Communication and Concurrency. Prentice Hall International, 1989.
15. R. Milner, D. Sangiorgi. Barbed Bisimulation. Proceedings of ICALP'92, LNCS

623, Springer, 1992.
16. J.-H. Morris. Lambda Calculus Models of Programming Languages. Ph.D. Thesis,

MIT, 1968.
17. V. Natarajan, R. Cleaveland. Divergence and Fair Testing. Proceedings of

ICALP'95, LNCS 944, pages 648-659, Springer, 1995.
18. C.-H.L. Ong. Correspondence between operational and denotational semantics: the

full abstraction problem for PCF. Handbook of Logic in Computer Science, vol.4,
S. Abramsky, D.M. Gabbay and T.S.E. Maibaum, ed., Oxford Science Publ., 1995.

19. G.D. Plotkin. A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, Aarhus University, Dept. of Computer Science, Aarhus, 1981.

20. J.H. Reppy. Concurrent ML: Design, application and semantics. Proceedings
of Functional Programming, Concurrency, Simulation and Automata Reasoning,
LNCS 693, pages 165-198, Springer, 1993.

21. W. Vogler. Failures Semantics and Deadlocking of Modular Petri Nets. Ada In-
formation 26:333-348, 1989.

4

Constrained Bipartite Edge Coloring
with Applications to Wavelength Routing

Christos Kaklamanis1 Pino Persiano2

Thomas Erlebach3 Klaus Jansen4

Computer Technology Institute, University of Patras, Rio, Greece, kakl@cti.gr
Dipartimento di Informatica ed Appl., Universitä di Salerno, 1-84081 Baronissi,

Italy, giuper@dia.unisa.it
3 Institut für Informatik, TU München, D-80290 München, Germany,

erlebach@informatik.tu-muenchen.de
Fachbereich IV - Mathematik, Universität Trier, Postfach 3825, D-54286 Trier,

Germany, jansen@dm3.uni-trier.de

Abstract. Motivated by the problem of efficient routing in all-optical
networks, we study a constrained version of the bipartite edge coloring
problem. We show that if the edges adjacent to a pair of opposite vertices
of an L-regular bipartite graph are already colored with ah different
colors, then the rest of the edges can be colored using at most (l + a/2)L
colors. We also show that this bound is tight by constructing instances
in which (1 + a/2)L colors are indeed necessary. We also obtain tight
bounds on the number of colors that each pair of opposite vertices can
see.
Using the above results, we obtain a polynomial time greedy algorithm
that assigns proper wavelengths to a set of requests of maximum load
L per directed fiber link on a directed fiber tree using at most 5/3L
wavelengths. This improves previous results of [9, 7, 6, 10].
We also obtain that no greedy algorithm can in general use less than
5/3L wavelengths for a set of requests of load L in a directed fiber tree,
and thus that our algorithm is optimal in the class of greedy algorithms
which includes the algorithms presented in [9, 7, 6, 10].

1 Introduction

In this paper, we study a constrained version of the well-known problem of col-
oring the edges of an L-regular bipartite graph. It is a classical result from graph
theory (see e.g. [3]) that the edges of an L-regular bipartite graphs can be colored
using exactly L colors so that edges that share an endpoint are assigned different
colors. We call such edge colorings legal colorings. The problem does not have any
other extra constraint: any given color can be used on any edge provided that
no other adjacent edge is colored using that same color. Our constrained version
of the bipartite edge coloring problem can be described in the following way.

Partially supported by Progetto MURST 40%, Algoritmi, Modelli di Calcolo e Strut-
ture Informative and by EU Esprit Project GEPPCOM and ALCOM-IT.

494

We are given an L-regular bipartite graph G = ({vi, ■ ■ ■, vn}, {«1, • • •, un},E)
along with a partial legal coloring of its edges that specifies a color for all edges
incident to vertices vi and uj. We denote the total number of constraining colors
by Q'L, where 1 < a < 2. We want to color the remaining edges of the graph so
as to minimize the total number of colors used and the number of colors used to
color the edges touching a pair (ui,Vi) of opposite vertices.

Our motivation lies in the field of WDM (wavelength division multiplexing)
routing in all-optical networks. Optics is emerging as a key technology in state-
of-the-art communication networks. A single optical wavelength supports rates
of gigabits-per-second (which in turn support multiple channels of voice, data,
and video [5] [8]). Multiple laser beams that are propagated over the same fiber
on distinct optical wavelengths can increase this capacity much further; this is
achieved through WDM (wavelength division multiplexing). We model the un-
derlying fiber network as a directed graph. Communication requests are ordered
transmitter-receiver pairs of nodes. WDM technology establishes connectivity
by finding transmitter-receiver paths, and assigning a wavelength to each path,
so that no two paths going through the same link use the same wavelength. Op-
tical bandwidth is the number of available wavelengths. Bandwidth is a scarce
resource: state-of-the-art technology allows for no more than 30-40 optical wave-
lengths in the laboratory, less than half as many in manufacturing, and there is
no anticipation of dramatic progress in the near future [11]. It is thus important
to minimize the number of wavelengths used to service a requested communi-
cation pattern. Variations of this problem have been studied by several authors
[12,1,9,7,6,10,2].

In this paper, we concentrate on tree topologies which are relevant to wide-
area networks. In particular we consider directed trees where each edge of the
tree consists of two opposite directed fiberlinks. Directedness accurately reflects
directed optical amplifiers placed on the fiber as well as asymmetries of the
communication requests. Raghavan and Upfal [9] showed that routing requests
of maximum load L per link of undirected trees can be satisfied using no more
than 3L/2 optical wavelengths and their arguments extend to give a 1L bound
for the directed case. Mihail et al. [7] were the first to address the directed case.
Their main result is a 15L/8 bound for directed trees. They obtain this bound by
reducing the wavelength assignment problem to the constrained bipartite edge
coloring problem and obtain a solution specifically for the case a = 3/2. This was
improved in [6] (and independently in [10]) by solving optimally the constrained
bipartite edge coloring problem for the value a = 3/2 and yielding a bound of

7/4L for directed trees.

1.1 Summary of results

Our results can be summarized in the following theorems. We first present our
results on the constrained bipartite edge coloring problem.

Theorem 1. There exists a polynomial time algorithm that properly colors the
uncolored edges of an L-regular bipartite graph constrained by aL colors using

495

at most (1 +a/'2)L colors and so that each pair (v,,Ui) of opposite vertices sees
no more than max{aL, (1 + a/A)L) different colors.

The next lower bound states that the above result is in general tight.

Theorem 2. For each 1 < a < 2 and for each L > 0 there exists an L-regular
bipartite graph constrained by ah colors for which any legal coloring of the re-
maining edges requires at least (1 + a/2)L total colors while there exists a pair
of opposite vertices that sees at, least, maxjai, (1 + a/A)L] different colors.

Next we present our results for wavelength routing on directed trees. We
express our results in terms of the maximum load L of a set of requests; i.e.,
the maximum number of paths between transmitter and receiver that share the
same directed fiber link. The proposed algorithm is a greedy algorithm. A greedy
algorithm is an algorithm that considers the vertices of the tree one at a time in
a DFS manner and, while at vertex v, colors (i.e., assigns a wavelength to) all the
requests that touch vertex v (i.e., start at, end at, or go through v) that are still
uncolored. Once a request has been colored, a greedy algorithm never recolors it.
Greedy algorithms do not require global control and are thus amenable of being
implemented in a distributed setting without a "central authority" that has
knowledge of the overall request pattern. All known algorithms for the problem
of wavelength routing on directed trees are indeed greedy algorithms [7, 6, 10].

Theorem 3. There exists a greedy polynomial time algorithm, that assigns luave-

lengths to a set of requests of maximum load L on a directed tree using at most

5/3L wavelengths.

Our next theorem shows a lower bound that implies that no greedy algorithm
can in general beat the 5/3L barrier.

Theorem 4. For each L, for each e > 0 and for each greedy algorithm. G there,
exists a tree and a pattern of communication requests of maximum load L for
■which G uses at least (| — e) L luavelengths.

Therefore better bounds can only be obtained by non greedy algorithms. The
only known general lower bound is 5/4L [10].

The rest of our paper is organized as follows.
In Section 2, we prove Theorem 1 by giving an algorithm that solves the

constrained bipartite edge coloring problem. Next, in Section 3 we explain the
reduction of the wavelength routing problem on directed trees to the constrained
bipartite edge coloring problem. This reduction proves Theorem 3. Finally, in
Section 4, we present our lower bounds.

2 The algorithm for the constrained bipartite edge
coloring problem

In this section we present our algorithm for solving the constrained bipartite
edge coloring problem.

496

The algorithm receives as input an L-regular bipartite graph G = ({Wo,—,Wn},

{X0, ■■■,Xn},E) where all the edges incident to W0 and X0 have been properly
colored using ah different colors. We call the edges that are colored color-forced
edges and a pair (W{, Xt) of opposite vertices a line. We assume without loss of
generality that no edge connects two opposite vertices. If a color appears on only
one color-forced edge, then we call it a single color. If it appears on two color-
forced edges, we call it a double color; note that one of these two color-forced
edges has to be incident to Wo and the other to X0. We denote by D and S the

number of double and single colors, respectively.

Step 1: Obtaining perfect matchings. We proceed by decomposing the bipartite
graph into L perfect matchings which can always be done since it is L-regular.
Each such matching includes exactly two color-forced edges: one incident to W0

and one incident to XQ. A double color is called separated if its two color-forced
edges appear in different matchings. On the other hand, if they appear in the
same matching then the color is said to be preserved. We classify the matchings
into four types: TT, PP, SS, ST, based on their corresponding color-forced edges.
If the two color-forced edges of a matching are colored with separated colors,
then the matching is of type TT. If the two color-forced edges are colored with
the same preserved color, then the matching is of type PP. If the two color-forced
edges are colored with two single colors, then the matching is of type SS. If the
two color-forced edges are colored with a single color and with a separated color,

then the matching is of type ST.

Step 2: Constructing chains and cycles of matchings. We partition the matchings
into groups. Each such group is either a chain or a cycle of matchings. A chain
of matchings is a sequence M0, Mx, • • ■, M,_x of I matchings such that

1. M0 and Mj_i are matchings of type ST;

2. Mi, • • •, M;_2 are all matchings of type TT;
3. for each 0 < i < I - 2, matchings M; and Mi+1 share exactly one double

(separated) color. A chain consists of at least two matchings.
A cycle of matchings is a sequence (M0, Mi, • • •, M,_i> of I TT matchings

such that, for each 0 < i < I - 1, matchings M; and Mi+1 mod i share exactly

one double (separated) color.

Step 3: making chains and cycles minimal. A sequence C of matchings (chain
or cycle) is minimal if it does not contain any two parallel color-forced edges.
A non-minimal sequence of matchings can be split into two shorter sequences
in the following way. Consider the sequence C = <M0, ■ ■ -,M_i) of matchings
and suppose that the edge colored a of M; and the edge colored Cj of Mj are
parallel. We exchange the two edges thus obtaining two new matchings M/ and
M'- with color-forced edges colored c,- and c,-+i and c; and cj+i and the two
new sequences of matchings Cx = (M0, Mi, • •-M;_i, Mj, Mi+1, • • ■, M_i) and
C2 = {M-, Mi+i, • • •, Mj_i>. The sequence Ci is of the same type (i.e., a cycle
or a chain) as C while C2 is always a cycle. We repeat this process of splitting

497

one sequence into two new sequences until all sequences are minimal (i.e., they
do not contain parallel edges).

Step 4: constructing triplets of matchings. Next we partition all the matchings
into groups of three matchings that we call triplets. Each such triplet has six
color-forced edges; of these, two are colored with single colors and the remaining
four with double colors.

We obtain the triplets as follows. First, we consider all the chains of length 3
or greater. From each such chain C = (Mo, Mi,- ■ -M/_i) we obtain one triplet
by stripping off C and grouping together the first two matchings M0,M\ and
the last matching Mj_i. Triplets obtained in this way will consist of two ST
matchings (that is M0 and M(_i) and one TT matching (that is Mi). The color-
forced edges are colored with single colors so and Si and double colors di,d.2,di-i,
with rfi being the common color of Mo and M\. Now we are left with cycles,
"stripped chains," chains of length 2, and SS matchings. We consider the even
length cycles and stripped chains first and construct triplets each consisting of
two consecutive TT matching from the same cycle or stripped chain and one SS
matching. We repeat the same process for odd length cycles and stripped chains.
However, in this case for each cycle or stripped chain there will be exactly one
"leftover" TT matching. We then construct triplets with one SS matching along
with a pair of these TT leftover matchings. Finally, if at any time during the
construction of the triplets we run out of SS matchings, we continue constructing
triplets by grouping together each individual TT matching along with a pair
of ST matchings that constitute a chain of length 2. If the total number of old
colors is exactly 4/3L, thus including exactly 2/3L single colors and 2/3Z double
colors all matchings can be grouped into such triplets. Instead, if we have less
than 4/3L old colors, then we are left with some extra TT matchings for which
there is no corresponding ST or SS matching. These extra TT matchings will
be dealt with separately and we omit from this abstract further details. On the
other hand, if the number of old colors exceeds 4/3L, then we are left with extra
SS or ST matchings for which no corresponding TT matching exists. Coloring
these matchings is trivial since we can use no new color (we use the single colors
to color the uncolored edges) and thus meet the two conditions presented below.

We will color the matchings maintaining the following two conditions which
are sufficient, to prove Theorem 1.
Condition 1. The number of new colors used is at most D/2. This condition
will be enforced by using at most one new color per triplet.
Condition 2. Each line sees at most max{(l + a/4)L,aL} colors.

For values of a > 4/3 this is enforced by making sure that if a line sees a new
color it does not see one of the old colors. Consequently, the number of colors
seen by a line does not exceed QL once all edges have been colored.

Lemma 5. Condition 1 above implies that the total number of colors used is at
most (l + a/2)L.

Proof. Since the number of edges adjacent to Wo and X0 is 2L, we have 2D+S =
2L and, since QL colors are used to color these edges, we have that D + S = aL.

498

From these two equalities we get directly that D = {2-a)L. Therefore the total
number of colors used is at most D + S + D/2 < ah + (2 - a)L/2 = (1 + a/2)L.

Step 5: setting the active colors. We color each triplet individually using four
of the old colors that appear on the color-forced edges of the triplet and, in
some cases, a new color. The four old colors used are called the active colors for
the triplet and they include the two single colors of the triplet. The remaining
two active colors are chosen among the double colors of the triplet so that each

double color is active for exactly one triplet.
We continue by determining what the active colors are going to be for each

triplet. We have to be careful about consistency among triplets that share double
colors; i.e., include TT matchings from the same cycle or chain.

First we fix the active colors of the triplets containing the leftover TT match-
ings. In order to properly color such a triplet {S,TUT2) while maintaining the
properties above we choose the active colors to be the two single colors of match-
ing S along with the color of the color-forced edge touching Wo in Tx and the

color of the color-forced edge touching X0 in T2.
This choice of active colors for such a triplet forces the choice of active colors

for the triplets containing TT matchings coming from the same cycle or chain
as Ti and T2 in the following obvious way. Let (S,T3,T4) be a triplet consisting
of one SS matching and two consecutive TT matchings from the same cycle or
stripped chain as Ti. Then the active colors of such a triplet are the colors of
the color-forced edges touching W0 in T3 and T4 along with the two colors of
the color-forced edges of Si- If, instead, T3 and T4 belong to the same cycle or
stripped chain as T2, then the active colors are going to be the old single colors
appearing in Si along with the color of the color-forced edges of T3 and T4 that

touch XQ.
Finally, we can determine the active colors of the triplets containing two TT

matchings belonging to even length cycles or chains (i.e., those cycles or chains
that did not give rise to leftover TT matchings) to be for each triplet the two
old single colors of the triplet along with the color of the color-forced edges that
touch X0 or Wo, picked arbitrarily as long as we are consistent across each cycle

or chain.

Step 6: coloring the triplets. As we mentioned above for each triplet we will
use the active colors of the triplet and, sometimes, a new color. If we do use a
new color for a triplet, we enforce the property that each line that sees the new
color does not see one of the active colors of the triplet. This ensures that the
total number of colors that a line will see across all triplets does not exceed the
number of old colors and that the total number of new colors introduced for all

triplets is at most half the number of old double colors.
There are four general types of triplets:

Type A These are triplets consisting of one SS matching and two leftover TT
matchings. A special case of type A triplet occurs when one or both the
leftover TT matchings is actually a PP matching that is the leftover matching

of a cycle of length 1.

499

Type B These are triplets consisting of one SS matching and two consecutive
TT matchings from the same cycle or chain. A special case of type B triplet
occurs when the two TT matchings constitute a cycle of length 2.

Type C These are triplets consisting of the two ST matchings that constitute
a chain of length 2 and one TT matching. A special case of type C triplet
occurs when the TT matchings is actually a PP matching.

Type D These are triplets that were obtained by stripping off a chain the first
two matchings (an ST and a TT matching) and the last matching (an ST
matching). A special case of type D triplet occurs when the chain has length

exactly 3.

Due to lack of space we next show the coloring algorithm only for triplets of
type A. The complete coloring appears in the final version.

Step 6. A: coloring triplets of type A. Consider a triplet R = (5,Ti,T2) of type
A, where S = (si,s2), ?i = (z,2/) and T2 = (w,z). We note that «i and s2 are
single colors and that x, y, w, and z are double colors and let the active colors of
R be si,s2,x, and z. Here we concentrate on the case in which the four double
colors are distinct separated colors. If x = y or w = z, then the corresponding
TT matching is actually a PP matching and the coloring is much simpler than
what we are going to describe below. If x = z or y = w, then R is actually a

triplet of type B.
Suppose x,y,w, and z are distinct separated double colors. We consider

matchings T\ and T2 together as one cycle cover of the bipartite graph. In what
follows, for the sake of clarity we assume that the cycle cover of two matchings
consists of one single cycle that spans the entire bipartite graph. We remark that
all our colorings can be easily adapted if such a cycle cover consists of more than

one cycle.
We first check if there exists an uncolored edge whose endpoints are incident

to color-forced edges colored with all four active colors. Note that these may
include the "fixed" color-forced edges colored with si, s2, x, and z that belong to
ft as well as the two "free" color-forced edges colored with x and z that belong
to other triplets. We denote by ex and e2 the free color-forced edge colored with
x and z, respectively and by eSl and e$2 the color-forced edges colored with si

and s2, respectively.
Suppose there is no edge restricted by all four active colors. We color the

uncolored edges of the cycle cover by starting from one of the color-forced edges
of the cycle colored with an active color (i.e., either x or z) and alternating
between x and z. When we encounter a vertex v that is incident to a free color-
forced edge e, we use color s2 to color the edge, e', incident to v that would
have been colored with the same color as e. Then we color the next edge x and
continue alternating between z and x. This is possible unless e' is adjacent to e52

as well. Note that ez cannot be incident to the same vertex as eS2, and, similarly,
ex cannot be incident to the same vertex as eSl.

Now if e' is restricted by both z and s2, then we color with s2 the other edge
incident to v, color e' with x and continue alternating z and x (see Figure 1);

500

we finish by using si to color the edges in the SS matching. This coloring is
obviously proper and we do not need to argue about the number of colors seen
by a line since we have used no new color.

Fig. 1. The case in which an edge is restricted by both z and si.

On the other hand, if ex and eS2 are incident to the same vertex v then we
color the conflicting adjacent edge e = (v,u) with s\ and continue alternating x
and z starting with x. The uncolored edges of the SS matching are then colored
using si except for the edge eu = (u,u*) incident to u. Edge eu is colored s2

unless u* sees the edge colored s2 used to fix the conflict with ez in which case
e„ is colored with z (see Figure 2).

Fig. 2. The case in which an edge is restricted by both x and S2-

The previous coloring is proper unless e is also adjacent to eSl in which case
a more complex coloring is performed.

Finally we consider the situation where we have an edge (u, v) restricted by
all four active colors. Note that such a restricted edge belongs to one of the TT
matchings of the triplet, as edges of the SS matching cannot be restricted by s\
or S2- We color edge (u,v) with n, the rest of the uncolored edges of the cycle
cover by alternating x and z, and the uncolored edges of the SS matching with
n. This coloring is obviously proper. No line except the lines containing vertices
u and v sees an edge colored with one of the two single colors. Moreover, since
u and v cannot be a line as they are adjacent, the line containing u does not see
color S2 and the line containing v does not see color si. Therefore, if a line sees
n then it does not see at least one of the active colors.

501

2.1 An alternative coloring approach for a = 4/3

In this section, we briefly describe an alternative method for coloring edges of a

bipartite graph G for the case a = 4/3.
It is possible to show that the L perfect matchings obtained from G can be

grouped entirely into triplets such that each triplet can be colored with at most
one new color and with < 4 colors per line, thus ensuring Conditions 1 and 2.
Due to a result in [10], every triplet t = (Mi,M2,M3) with two double colors
and one single color incident to each of W0 and X0 can be colored in such a way,
provided that at least one double color d appears twice in t (call such a triplet
a KS-triplet) and that t can be partitioned into a gadget (a subgraph where W0

and Xo have degree 3 and all other vertices have degree 2) and a matching of
all vertices except {W0,X0}. Only the two single colors and the double color d
oft as well as one new color are used. Every KS-triplet can be partitioned into
gadget and matching unless it contains a PP-matching. Therefore, we assume
that. G is decomposed into L perfect matchings such that the union of SS-, ST-,
and TT-matchings does not contain further PP-matchings.

A PP-matching and a chain of length 2 as well as two PP-matchings and an
SS-matching give triplets that can be colored without any new color and 4 colors
per line. Chains of odd length and cycles of even length yield triplets of Type B,
C, and D, which are KS-triplets. Two chains of even length, one of which has
length > 2, yield KS-triplets by combining the first (last) two matchings of the
longer chain with the first (last) matching of the shorter chain and producing
triplets of Type B or C from the rest. If there is a chain of length 2, a cycle
of odd length also yields triplets of Type B and C. Note that there is always a
sufficient number of SS-matchings or chains of length 2 to produce KS-triplets,
because we have 2/3L edges with single colors and 4/3L edges with double colors

altogether.
After these reductions, we are left with at most one chain of even length > 2,

at most one PP-matching, a number of cycles of odd length, and SS-matchings.
Two cycles of odd length are handled by choosing an SS-matching and two TT-
matchings, one from each cycle, such that the resulting triplet t does not have
parallel color-forced edges. If t can be partitioned into gadget and matching,
it is colored with reused old colors and one new color using techniques similar
to [10], and triplets of Type B are produced from the remainder of the two cycles.
Otherwise, the TT-matchings can be reassembled, turning the two given cycles
into a single cycle of even length, which is handled as above. A chain of even
length > 2 and a cycle of odd length are combined similarly.

For a PP-matching and a cycle of odd length, we choose an arbitrary SS-
matching Mi and a TT-matching M2 from the cycle such that the cycle cover
Mi U M2 does not contain parallel color-forced edges. This cycle cover can be
colored with one new color and one of its single colors such that no line sees more
than 3 colors. The PP-matching M3 is colored using its preserved double color,
thus ensuring that the coloring for t = (Mi,M2,M3) meets the requirements.
The remainder of the cycle is combined with SS-matchings into Type B triplets.
A PP-matching and a chain of even length > 2 are handled similarly.

502

3 Reducing the routing problem to a constrained
bipartite coloring problem

In this section we reduce the problem of assigning wavelengths to the constrained
bipartite edge coloring problem. We do so by giving an algorithm that properly
assigns wavelengths by using as a subroutine our algorithm for the constrained
bipartite edge coloring problem of the previous section.

Our algorithm for assigning wavelengths is a greedy algorithm as the ones
presented in [7, 6, 10]. The algorithm roots the tree at an arbitrary node and com-
putes a depth-first numbering of the nodes of the tree. The algorithm proceeds
in phases, one per each node v of the tree. The nodes are considered following
their depth first numbering. The phase associated with node v assumes that a
partial proper coloring of all paths that touch (i.e., start, end, or go through)
nodes with numbers strictly smaller than v'a has been computed and extends
the partial coloring to one that assigns proper colors to all paths that touch v
but have not been colored yet. We stress that the algorithm never recolors paths
that have been colored in previous phases.

We now show the reduction of the path coloring problem of a phase associated
with node v to an instance of the constrained bipartite edge coloring of a graph
Gv. Without loss of generality, we assume to have full load L on each directed
link and denote by c0 v's parent and by ci, • • •, Ck the children of v. We construct
Gv in the following way. For each vertex c;, Gv has four vertices Wi,XitYi,Zi
and the left and right partitions are {Wi,Zj\i = 0, • • -k} and {Xi,Yi\i = 0, • • -k).
Gv has an edge from Wi to Xj, for each path of the tree directed out of c,- into
Cj and an edge from Wi to Y,, for each path from c,- to v. Finally, for each path
from v to Cj, Gv has an edge from Z{ to Xi. See Figure 3. The above edges are
called real. Notice that no real edge extends across opposite vertices Z,- and Yi
or Wi and Xi and only edges with an endpoint in Wo or Xo already have a color
as they correspond to requests touching v's parent and have been assigned a
color in a previous phase. Notice also that all vertices of type Wi and Xj have
degree L whereas vertices of type Z{ and Y, do not necessarily have degree L.
We therefore add fictitious edges to the bipartite graph so that all vertices have
degree L. Clearly, any proper coloring of the edges of Gv corresponds to a legal
assignment of wavelengths to requests that go through vertex v and we compute
such a coloring of the edges of Gv by running the algorithm of the previous
section on Gv.

4 Lower bound

In this section we present our lower bounds for the wavelength routing problem
by showing that any greedy algorithm for assigning paths to requests of load L
on a tree cannot use less than 5/3L colors even if the tree is binary. The lower
bound for the constrained bipartite edge coloring is obtained similarly.

We prove the lower bound inductively. We assume inductively that, for a
vertex C there are an/2L requests along each link to its parent and that all of
these requests are colored using different colors.

503

Fig. 3. Requests touching vertex v and the corresponding bipartite graph (only real
edges are shown).

Then we assign requests between the two children A and B of C in such a
way that (1 + ^)1 colors are used in total and the inductive hypothesis between
one of A and B and one of its children is enforced for an+1 = 1 + gf. It is easy
to see that a* = lim„._>oo «» = 4/3, where ax = 1 and an = 1 + ^f1- for n > 1.
Therefore, for any e > 0 and any greedy algorithm G, it is possible to construct
a set of communication requests of maximum load L so that G uses at least

(5/3 - e)L colors.
The base of our induction for a1 = 1 is established in the following way.

We start with L requests on each direction between the root R and one of its
children R'. The greedy algorithm colors these request using at least L colors
in each direction. We then choose two sets of L/2 request along each direction
with each request colored with a different color, propagate them to one of the

children of R! and stop at Rl the remaining requests.
Let C be a vertex and A and B the two children of its left child. We denote by

A2 the set of colors used along the link (C, A), by K3 the set of colors used along
the link (B, C), by Kx the set of colors used along the link (B, A) and by A4 the
set of colors used along the link (A, B) . We inductively assume that A2nA3 = 0
and \K2\ = |A'3| = a/2L whence thus \K2U K3\ = ah. We fill the link (B,A) to
capacity by assigning kx = L(l-a/2) requests. These requests need to be colored
with new colors and thus the total number of colors used increases to L(l + §).
Next we assign L requests to the link (A, B). The best that any greedy algorithm
can do is to color these L requests colored using all the new colors employed for
the link (B, A), plus half of the colors of K3 and half of the colors of K2. The
edge (A,C) thus sees |A'iUA'2UA'4| = \Ki\ + \I<2\ + \K4\-\K2r)K<i\-\KinKA\ -
(1 + |)L. In order to complete the inductive step we have to enforce for A the
same situation as in C for (1 + f). This is achieved in the following way:

1. among the |A'i| + |A'2| = L requests coming from C, we let only the following
continue to the left child of A:

Si:U L requests from A'i.

504

- S2'. \L requests from ÄV
for a total of \ (l + f) colors.

2. and the |A'4| = L requests coming up from A to C all originate from A
except for the following ones which instead come from the right child of A
- Ri: jL requests that were colored with colors used of I<2 and which

were not considered in S2 above;
- R2: f L requests that were colored with colors used of A3;
- R3: (| - §a) L that were colored with colors of Ä'i and which were not

considered in Si above;
for a total of \ (l + f) colors.

Finally, observe that the requests going down to the left child of A and those
coming up from the right child of A are colored with different colors (i.e. the
sets of colors are disjoint). This completes the proof of Theorem 4.

References

1. A. Aggarwal, A. Bar-Noy, D. Coppersmith, R. Ramaswani, B. Shieber, and M.
Sudan, Efficient Routing and Scheduling Algorithms for Optical Networks, in Proc.
of SODA 93.

2. B. Beauquier, J.-C. Bermond, L. Gargano, P. Hell, S. Perennes, U. Vaccaro, Graph
Problems arising from Wavelength-Routing in All-Optical Networks, in proc. of
Workshop on Optics in Computer Science, 1997.

3. C. Berge, Graphs, North-Holland.
4. J.-C. Bermond, L. Gargano, S. Perennes, A. A. Rescigno, and U. Vaccaro, Efficient

Collective Communication in Optical Networks, in Proc. of ICALP 96.
5. P. E. Green, Fiber Optic Communication Networks, Prentice Hall, 1992.
6. C. Kaklamanis and P. Persiano, Efficient Wavelength Routing on Directed Fiber

Trees, in Proc. of Algorithms - ESA '96, Lecture Notes in Computer Science, 1136,
pp. 460-470.

7. M. Mihail, C. Kaklamanis, and S. Rao, Efficient Access to Optical Bandwidth, in
Proc. of FOCS 1995.

8. D. Minoli, Telecommunications Technology Handbook, Artech House, 1991.
9. P. Raghavan and E. Upfal, Efficient Routing in All-Optical Networks, in Proc. of

STOC 1994.
10. V. Kumar and E. J. Schwabe. Improved access to optical bandwidth in trees. In

Proceedings of SODA '97, 1997.
11. ONTC-ARPA, Brackett, Acampora, Sweitzer, Tangonan, Smith, Lennon, Wang,

Hobbs, A Scalable Multiwavelength Multihop Optical Network: A Proposal for
Research in All-Optical Networks, IEEE J. of Lightwave Technology, Vol 11 No
5/6, 1993, pp 736-753.

12. R. Pankaj, Architectures for Linear Lightwave Networks, Ph.D. Thesis, MIT, 1992.

Colouring Paths in Directed Symmetric Trees
with Applications to WDM Routing*

Luisa Gargano1 Pavol Hell2 Stephane Perennes3

1 Dipartimento di Informatica, Universitä di Salerno, 84081 Baronissi (SA), Italy
2 School of Computing Sciences, SFU, Burnaby, B.C. V5A1S6, Canada

3 Delft University of Technology, The Netherlands.

Abstract. Let T be a symmetric directed tree, i.e., an undirected tree
with each edge viewed as two opposite arcs. We prove that the minimum
number of colours needed to colour the set of all directed paths in T, so
that no two paths of the same colour use the same arc of T, is equal to
the maximum number of paths passing through an arc of T. This result
is applied to solve the all-to-all communication problem in wavelength-
division-multiplexing (WDM) routing in all-optical networks, that is,
we give an efficient algorithm to optimally assign wavelengths to the all
the paths of a tree network. It is known that the problem of colouring a
general subset of all possible paths in a symmetric directed tree is an NP-
hard problem. We study conditions for a given set S of paths be coloured
efficiently with the minimum possible number of colours/wavelengths.

1 Introduction

Let T be a tree and x,y two vertices of T. The dipath P{x,ij) in T is the
undirected path joining x to y, in which each edge is considered traversed in
the direction from x to y. In other words, the dipaths P{x,y) and P{y,x) are
different and do not traverse any edge in the same direction. We are interested
in colouring the set of dipaths P(x, y), for all ordered pairs x, y of vertices of T,
in such a way that two dipaths using the same edge of T in the same direction
obtain different colours. Let c(T) denote the minimum number of colours in such
a colouring of the dipaths of T. Let n(T) denote the maximum number of dipaths
P(x,y) which all pass through the same edge of T in the same direction. Clearly
TT(T) < c(T) for every tree T. It has been conjectured by Bermond et al. [7] that
in fact TT(T) = c(T) holds for every T. Here we prove this conjecture.
Moreover, given a subset S of all the paths on a tree T, we consider conditions
for the existence of an efficient algorithm to colour all the paths in S with the
minimum possible number of colours; this problem is NP-hard in general.

* Work partially supported by the Italian Ministry of the University and of the Sci-
entific Research in the framework of the project: "Efficienza di Algoritmi e Progetto
di Strutture Informative" and by Galileo Project.

506

1.1 Motivations and Related Work

The problem originally arose in the context of all-optical networks. Optical net-
works are emerging as key technology in communication networks and are ex-
pected to dominate many applications, such as video conferencing, scientific
visualisation, real-time medical imaging, high-speed super-computing and dis-
tributed computing [17, 25, 29]. The books of Green [17] and McAulay [22]
offer a comprehensive overview of the physical theory and applications of this
emerging technology. All-optical networks exploit photonic technology for the
implementation of both switching and transmission functions [16], and main-
tain the signal in optical form through the transmission, thus allowing for much
higher data transmission rates (since there is no prohibitive overhead due to
conversions to and from the electronic form). Wavelength-division multiplexing
(WDM) [10] partitions the optical bandwidth into a number of channels, and al-
lows multiple data streams to be transferred concurrently along the same optical
fiber, on different channels, i.e., different wavelengths. The same wavelength on
two input ports of a switch cannot be routed to a same output port, due to elec-
tromagnetic interference. There are various switches considered in the literature,
with 'generalized switches' being one of the more common variants, [1, 2, 27].
These switches allow different signals to travel on the same communication link
into the switch (on different wavelengths), and then exit from it along different
links.

All-optical networks are networks where the information, once transmitted as
light, reaches its final destination directly without being converted to electronic
form in between. Maintaining the signal in optic form allows to reach high speed
in these networks since there is no overhead due to conversions to and from the
electronic form. Such an approach allows thus the elimination of the "electronic
bottleneck" of communications networks with electronic switching.

In an all-optical network one needs to set up a number of communications
(paths) between given pairs of nodes, with each path being transmitted on one
particular wavelength, and all paths sharing a link having different wavelengths.
Specifically, one is given a set of requests (ai,&i), (02,62),..., (a^, 6/s), and is
required to connect each a,- to the corresponding b, by a path P,- and assign
wavelengths to each path Pi so that paths of the same wavelength do not share
a link. Viewed in this light, the problem has initially been treated in the context
of undirected graphs, [2, 1, 27]. However, it has recently become clear that each
bidirectional optical link will actually consist of a pair of unidirectional links [25],
and hence the new models of the situation tend to represent the network by a
symmetric directed graph, or equivalently, view each path as a dipath (as above)
[7, 23, 18]. We study the situation in the case of trees. The interest in trees is due
to the fact tree-like networks are standard in the telecommunications industry
[23]. Furthermore, trees free us from one half of the problem - that of choosing
the actual paths for connecting the required nodes (since in a tree these paths
are unique). The minimum number of wavelengths corresponds to the minimum
number of colours in a colouring of dipaths as detailed above. This parameter
is considered of importance in evaluating the competitiveness of the wavelength

507

division multiplexing technology [23].
Thus this general problem becomes one of colouring a given set (or multiset)

S of dipaths in a tree T with the minimum number of colours, so that dipaths
using one edge in the same direction obtain different colours. We find the above
terminology convenient to work with. However, it should be clear to the reader
that, an equivalent formulation would consider T to be a symmetric directed
tree - by replacing each edge of T with the two opposite arcs (optical links)
corresponding to it - and then each dipath would simply become a directed path
in the usual sense of the word. Conditions on using an edge in one direction then

simply translate into conditions on using an arc.
We call proper a colouring of S a colouring such that dipaths of S using

one edge in the same direction obtain different colours. The minimum number
of colours in a proper colouring of a set (multiset) S of dipaths in a tree T
will be denoted by cs{T), and the maximum number of dipaths from S that
pass through one edge of T in one direction by ns(T). We clearly must have

Ki(T)<cs{T).
The problem of colouring a general subset of all possible paths in a symmetric

directed tree is an NP-hard problem [12]. Approximation algorithms are given
in [27, 23, 18, 19]. The best ratio is obtained in [18] where the authors provide
an algorithm that requires at most 5/3TTS(T) colours, for any set S of paths in
a symmetric directed tree T. A recent survey including this topic is given in [6].

1.2 Our Results

In Section 2 we concentrate on the problem of all-to-all communication (or 'gos-
siping'). In this situation, every node is requesting a connection with every other
node. All-to-all communication among the processors is one of the most impor-
tant issues in multi-processor systems. The need for this kind of communication
arises in many problems of parallel and distributed computing including many
scientific computations [8, 11, 13] and database management [30]. Due to the
considerable practical relevance in parallel and distributed computation and the
related interesting theoretical issues, such problems have been extensively stud-
ied in the literature (see the surveys [20, 21, 24, 6]). First studies of this problem

in the context of optical networks, can be found in [7, 5, 6]
In this paper, we show that the minimum number of colours necessary to

establish all-to-all connections in a tree is equal to the maximum number of
intersecting dipaths, i.e., we shall prove the following result.

Theorem 1. Let T be a tree. Then c{T) = n(T).

Above Theorem 1 settles a conjecture by Bermond et al [7].
We stress that our proof also represents an efficient (e.g., polynomial) algorithm
for the actual assignment of the colours to the paths.

In Section 3 we study conditions, given a set S of paths on a tree T, for the
existence of an efficient algorithm to colour the paths in S with the minimum

508

possible number of colours. We recall that the problem of optimal colouring of
paths is NP-hard [12]. We show that cs(T) = irs{T) for each set of paths S
if and only if T is a generalized star, that is, a tree obtained from a star by
replacing each edge with a path.
Moreover, given any tree T, we give conditions on the set S assuring that cs{T) =
7Ts(T) and cs{T) can be found in polynomial time.

Due to space limitations some proofs are omitted from this extended abstract.

2 Colouring all paths

In this section we consider the problem of all-to-all communication (or 'gossip-
ing'). In this situation, every node is requesting a connection with every other
node; thus S consists of the paths P(x, y) for all ordered pairs x, y of vertices of T,
and we shall omit the subscripts S and write c(T), 7r(T) instead of cs(T), irs(T).

We will find it more convenient to prove a weighted version of the theorem.
A weighted tree is a tree T with positive integer weights w(x) on the vertices
x of T. (The intention of the weights is to have a vertex of weight w represent
w unweighted vertices). The total weight of a set X of vertices of T is w(X) =
J2x£X w(x). (In particular w(T) is the weight of the entire tree.)

Let e be an edge of a weighted tree T. The removal of e from T results in
two weighted subtrees T\ and Ti- The load of e is the product w(Ti)w(T^). The
forwarding index of the weighted tree T , denoted by TT(T), is the maximum load
of any edge in T. It is clear that when all weights are 1 this definition coincides
with the previous definition of n(T).

In a weighted tree T, we shall consider the multiset of all dipaths which
consists of w(a)w(b) copies of the dipath from a to b, for every ordered pair of
vertices a, b. We denote by c(T) the minimum number of colours in a proper
colouring of the multiset of all dipaths. When all weights are 1, the multiset
of all dipaths is precisely the set of all dipaths, and so the definition of c(T)
also coincides with the one given earlier. For a particular vertex v, we let In(v)
(respectively Out(v)) consist of those dipaths from the multiset of all dipaths
which end (respectively begin) with v. The weighted version of our theorem is
as follows:

Theorem 2. Any weighted tree T satisfies

c(T) = w(T)

and there exists an efficient algorithm which colours T with c(T) colours.

2.1 Two operations to generate weighted trees

There is a natural way to build all trees from a single edge, by adding and split-
ting leaves. We will formally define these operations in the context of weighted
trees, and then apply them to give an inductive proof of our theorem.

509

In the following definition we assume that T is a weighted tree of weight

W(T) = W, x is a leaf of T, / is the parent of x, and finally, that S is a positive

integer S < w(x).

Definitioii3. The operation AddLeafs{x,T) modifies T as follows:

- the weight of x is decreased by 5
- a new node y is added with weight S
- the edge [y,x] is added.

The operation Split Lea fs(x,T) modifies T as follows:

- the weight of x is decreased by S
- a new node y is added with weight S
- the edge [y, f] is added. (Recall that / is the parent of x.)

We say that an operation AddLeafs{x,T) or SplitLeafsxT is legal if S + w(x) <

W and w{x) < W/2

We will often abbreviate the notation to simply say that we have performed
an operation AddLeaf or SplitLeaf (with respect to the node x and the
weight S if needed). It is easy to see that if an operation Split Lea fs{x,T)
(resp. AddLeaf6{x, T)) is legal then in the new tree the load of [x, f] and [y, f]
(resp. [x, y]) cannot be larger than the load of [x, f] in T. Therefore we have the

following property.

Properties 2.1 // an operation AddLeaf or SplitLeaf is legal then the for-
warding index of the new tree does not exceed the forwarding index of T.

Definition 4. Let T be a weighted tree, and let W denote W{T). T is called
W/C-tree if the two trees resulting from the removal of an edge of maximum

load have weights C and W - C, with C > W/2.

Notice that the above definition is non ambiguous since each edge of maxi-
mum load is associated with the same value of C and TT(T) = C{W - C). In case
T is a weighted star then the above definition is equivalent to the fact that the

maximum weight of a leaf is (W - C)C\ we call T a W/C-star.
Given a W/C-tvee T, we will recursively construct T from some initial W/C-

star S by means of a sequence of AddLeaf'and SplitLeaf legal operations. By
Property 2.1 this will assure that at each step of the construction we have a tree

with forwarding index TT(5) = C{W - C) = TT(T).

Lemma 5. T can be generated from, some W/C-star T* by repeated application

of legal operations AddLeaf or SplitLeaf .

Proof (Sketch). We first show that any W/C-txee T contains a vertex u such

that the maximum weight of a component of T \ {u} is W - C.
In order to construct our tree T, we start from the W/C-star T* consisting

of the vertex u and all its neighbours in T; for each neighbor v of u we set the

510

weight w(v) of v equal to the weight of the component of T \ {«} that contains
v.

Let t be the number of nodes of T which are not adjacent to u. If t = 0
then the tree T is a W/C-star and we don't need to perform any operations.
Otherwise we suppose that the result holds for if t < k, and let t = k + 1. Let z
be a leaf of T of maximum distance from «, and let p be the parent of z. This
implies that p has at most one neighbour which is not a leaf.

- If the degree of p is strictly greater than two, then let x be a leaf neighbour
of p other than z. Let T" be the weighted tree obtained from T by removing
z and increasing the weight of x by w(z). Then T is generated from T" by
the operation Split Lea fw^(x ,T').

- If the degree of p is two, then let x = p. Let T" be the weighted tree obtained
from T by removing z and increasing the weight of of x by w(z). Then T is
generated from T" by the operation AddLeafw^{x,T').

We then show that in both cases the operations are legal. D

2.2 An inductive colouring

We have seen how an arbitrary W/C-tiee T can be constructed from a W/C-st&r
by legal operations, with all intermediate trees being also W/C-tvees. We now
begin to prove that the multiset of dipaths in each of these trees admits a proper
colouring with W(W — C) colours.

Lemma 6. The multiset of dipaths of any W/C-starT can be efficiently coloured
with W(W — C) colours.

Proof. The crucial observation here is the following: In a star, two dipaths
conflict (use some edge in the same direction and hence must obtain differ-
ent colours) if and only if they have the same beginning or the same end. in
other words, two dipaths of the same colour must belong to two different mul-
tisets In(v) and to two different multisets Out(v). For each vertex v we have
|/n(v)| = \Out(v)\, but these sizes differ from vertex to vertex. Of course, the
maximum |/n(i;)| = n(T). We now add to each In(v) and Out(v), ir(T) — \In{v)\
artificial paths (consisting of the single vertex v), to arrive at a situation where
each In(v) and Out(v) has exactly TT(V) dipaths. Thus the union of any k sets
In{v) contains at most k sets Out(v), and, according the the theorem of Hall
[28] (Theorem 9.2.1), one can efficiently determine a set of dipaths consisting
of exactly one representative from each In(v) and from each Out(v). These di-
paths will be coloured by colour 1, and deleted from consideration. Now each
In{v) and each Out(v) has n(T) — 1 dipaths, and so we can continue as above.
Clearly, this will produce a proper colouring of the multiset of dipaths in T with
TT(T) = W(C - W) colours. D

511

We continue, assuming that we have a W/C-tree T with a proper colouring
of its multiset of dipaths with W(W - C) colours, and show how to induce a
proper colouring of a tree T" obtained by a legal operation.

Let x be a fixed leaf in T (the leaf on which we shall perform the legal
operation AddLeaf or Split Leaf). We wish to use again the Theorem of Hall
in a fashion similar to the above proof, but treating only the multiset of dipaths
starting (and ending) with x. These dipaths are already coloured, and we may
have used different colours for Out(x) and In(x). We deal with this complication

by introducing the following bijection:
Let Out denote the set, of colours used on the dipaths from the multiset

Out {x), and let In denote the set of colours used on the dipaths from the multiset
In{x). Since all dipaths in Out(x), and in In{x), have different colours, \Out\ =
\In\. Let <j> be a fixed bijection between Out and In, such that for any c G

OutnIn,<j)(c) = c.
Notice that the w(x)w{z) dipaths between x and any vertex z of T \ {x}

must all obtain different colours, as they all use the unique edge out of x. We
now arbitrarily fix (for each vertex z) a partition of these w(x)w(z) colours
into w{z) classes of size w(x) denoted by 0\, 0\, ■ ■ ■, Oz

w(z). Similarly, we fix

(for each z) another partition of the set of w(x)w{z) colours of dipaths from z

to x into I\ ,1%, ■ ■ ■!„!;), eacn of size w(x)- We sha11 sa^ that two colours on

dipaths starting in x are I-eqwvalent if they belong to the same class I] for
some z G T \ {x},j G {1,2, • ■ •, w(z). Similarly, we shall say that two colours
on dipaths ending in x are O-eqmvalent if they belong to the same class O) for

some:eT\{i},je {1, 2, • • •, w{z).

Definition?. A supercolour is a set U of colours such that no colours from U
are /-equivalent, and no colours from <j>(U) are O-equivalent.

Let X be the set of w(x){W - w(x)) colours used by the dipaths starting in

Lemma 8. The set X of colours can be partitioned into w(x) supercolours.

Proof Omitted. D

The following result allows to complete the proof of Theorem 2.

Proposition9. If T is a W/C-tree with a proper colouring of its multiset of
all dipaths, and if T is obtained from T by performing the legal operation
AddLeafs(x,T) or SplitLeafs{x,T), then V is a W/C-tree which also admits
a proper colouring of its multiset of all dipaths. Such a colouring of T" can be

efficiently determined.

Proof Omitted. D

512

3 General sets of paths

We have shown that c(T) = TT(T) for any tree T, even in the general case of
weighted trees. Thus the set (multiset) of all dipaths P(x,y) can be coloured
with 7r(T) colours. Our proof represents a polynomial algorithm for the actual
assignment of the colours. In the more general situation of an arbitrary set S of
dipaths, it is known that the problem of optimally colouring the paths in the set
S is NP-hard [12], and only approximation algorithms are known [23, 18, 19].

The undirected version of the problem, that is, minimize the number of
colours in a colouring of paths of a tree T so that all paths using an edge of
T have different colours, is also NP-hard [15, 27].

In this section we make some additional remarks about cs{T), that is, the
minimum number of colours in a colouring, of the paths from a subset S of all the
paths on a directed symmetric tree T, such that conflicting paths obtain different
colours. We consider situations in which cs{T) can be efficiently evaluated.

It is easy to see that if T is a path or a star then ns(T) = cs{T) for every S.
In fact, when T is a path TTS(T) = cs(T) is equivalent to the fact for an interval
graph the chromatic number is equal to the maximum clique size [14], and when
T is a star 7Ts(T) = cs(T) is equivalent to the fact that for a bipartite graph
the edge chromatic index is equal to the maximum degree [9]. These results also
imply corresponding polynomial algorithms [9, 14]. We now extend these results
(and algorithms) as follows.

Definition 10. The conflict graph of set of paths 5 on a tree T is the undirected
graph whose vertices are the dipaths from S, and two dipaths are adjacent if
and only if they conflict, i.e., use an edge of T in the same direction.

Definition 11. A generalized star is a tree obtained from a star by replacing
each edge with a path (the paths may have different lengths).

Notice that a generalized star is a tree in which at most one vertex has
degree greater than two, and, conversely, any tree in which at most one vertex
has degree greater than two is a generalized star. Also note that stars and paths
are generalized stars. We proceed to prove that all conflict graphs in a generalized
star T are perfect; this will imply in particular that 7Ts(T) = cs{T) for all S.

Definition 12. An odd hole of an undirected graph is an induced cycle with-
out chords, of odd length greater than three. An odd antihole is an induced
complement of a cycle without chords, of odd length greater than three.

Lemma 13. The conflict graph of of any set of paths on a generalized star cannot
contain an odd hole or an odd antihole.

Proof Omitted. □

Since it is not hard to show that the conflict graph of trees satisfies the
perfect graph conjecture, the above Lemma 13 implies that conflict graphs in
generalized stars are perfect; therefore we have the following result.

513

Corollary 14. For any set S of dipaths in a generalized starT we have cs(T) =

*s(T).

We remark that by combining polynomial algorithms for edge colouring bi-
partite multigraphs and for vertex colouring interval graphs, we obtain a poly-
nomial algorithm for colouring the dipaths of S in a generalized star with TTS{T)

colours. It is not difficult to observe that whenever T is a tree other than a gen-
eralized star, then there exists a set of dipaths S in T such that 7Ts(T) ^ cs(T).

Proposition 15. cs{T) = ns(T) for all sets S if and only ifT is a generalized

star.

We also consider the following condition on S which assures that irs(T) =

cs(T):

Definition 16. A set of paths 5 is well distributed in T if T does not contain
an odd number of edges [v, ai], [v, a2],. ■. [v, a2k+i] such that some dipath of
5 contains both edges [v,a,-] and [u,a;+i] (in some direction), for any index
i= 1,... 2k + 1 (addition on index is taken modulo Ik + 1).

Proposition 17. If S is well distributed in T then

CS(T)=7TS(T)

and c,s(T) can be found in polynomial time.

Proof (Sketch). We verify that if S is well distributed in T then T admits
an orientation such that each dipath in S either uses all edges in the chosen
direction, or all in the opposite direction. Since a path which uses edges in the
chosen direction cannot conflict with a path which uses edges in the opposite
direction, we can colour each set separately. It is easy to see that the conflict
graph of each of these sets is chordal and hence c = w and 7r can be found in
polynomial time [14].

Acknowledgements

We would like to thank Bruno Beauquier, Jean-Claude Bermond, Huang Jing,
Paulraja, Ugo Vaccaro, Joseph Yu, and Zhu Xuding for their interest and advice.

References

1. A. Aggarwal, A. Bar-Noy, D. Coppersmith, R. Ramaswami, B. Schieber, M. Su-
dan. "Efficient Routing and Scheduling Algorithms for Optical Networks", in
Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA'94), (1994), 412-423.

514

2. Y. Aumann and Y. Rabani. "Improved Bounds for All Optical Routing", Pro-
ceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA'95), (1995), 567-576.

3. B. Awerbuch, Y. Azar, A. Fiat, S. Leonardi, and A. Rosen, "On-Line Competitive
Algorithms for Call Admission in Optical Networks", Proceedings of ESA '96,
LNCS 1136, (1996), 431-444.

4. R. A. Barry and P. A. Humblet, "On the Number of Wavelengths and Switches
in All-Optical Networks", in IEEE Transactions on Communications, (1993).

5. B. Beauquier. "All-to-All Communication for some Wavelength-Routing All-
Optical Networks", Manuscript, (1996).

6. B. Beauquier, J-C. Bermond, L. Gargano, P. Hell, S. Perennes, and U. Vaccaro,
"Graph Problems arising from Wavelength-Routing in All-Optical Networks",
2nd Workshop on Optics and Computer Science (WOCS), April 1997, Geneva,
CH.

7. J-C. Bermond, L. Gargano, S. Perennes, A. Rescigno and U. Vaccaro. "Efficient
Collective Communications in Optical Networks", Proc. 23nd ICALP'96, Pader-
born, Germany, (1996).

8. D. P. Bertsekas, and J. N. Tsitsiklis, Parallel and Distributed Computation: Nu-
merical Methods, Prentice-Hall, Englewood Cliffs, NJ, 1989.

9. J.A. Bondy and U.S.R. Murty, "Graph Theory and Applications", American El-
sevier, N.Y. 1976.

10. N.K. Cheung, K. Nosu and G. Winzer. IEEE JSAC: Special Issue on Dense WDM
Networks, vol. 8 (1990).

11. J. J. Dongarra and D. W. Walker, "Software Libraries for Linear Algebra Compu-
tation on High Performances Computers", SIAM Review, vol. 37, (1995), 151-180.

12. T. Erlebach and K. Jansen. "Scheduling of Virtual Connections in Fast Networks",
Proc. of 4th Workshop on Parallel Systems and Algorithms PASA '96, (1996), 13-
32.

13. G. Fox, M. Johnsson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker, Solving
Problems on Concurrent Processors, Volume I, Prentice Hall, Englewood Cliffs,
NJ, 1988.

14. M. C. Golumbic, "Algorithmic Graph Theory and Perfect Graphs", Academic
Press, N.Y. 1980.

15. M. C. Golumbic and R. E. Jamison, The edge intersection grpahs of paths in a
tree, J. Combinatorial Theory B 38 (1985) 8 -22.

16. P. E. Green. "The Future of Fiber-Optic Computer Networks", IEEE Computer,
vol. 24, (1991), 78-87.

17. P. E. Green. Fiber-Optic Communication Networks, Prentice-Hall, 1992.
18. C. Kaklamanis and P. Persiano, "Efficient Wavelength Routing on Directed Fiber

Trees", Proc. ESA'96, Springer Verlag, LNCS 1136, (1996), 460-470.
19. C. Kaklamanis and P. Persiano. "Constrained Bipartite Edge Coloring with Ap-

plications to Wavelength Routing", Manuscript (1996).
20. S. M. Hedetniemi, S. T. Hedetniemi, and A. Liestman, "A Survey of Gossiping and

Broadcasting in Communication Networks", NETWORKS, 18 (1988), 129-134.
21. J. Hromkovic, R. Klasing, B. Monien, and R. Peine, "Dissemination of Informa-

tion in Interconnection Networks (Broadcasting and Gossiping)", in: Ding-Zhu
Du and D. Frank Hsu (Eds.) Combinatorial Network Theory, Kluwer Academic
Publishers, 1995, pp. 125-212.

22. A. D. McAulay. Optical Computer Architectures, John Wiley, 1991.

515

23. M. Mihail, C. Kaklamanis, S. Rao, "Efficient Access to Optical Bandwidth", Pro-
ceedings of 36th Annual IEEE Symposium on Foundations of Computer Science
(FOCS'95), (1995), 548-557.

24. A. Pelc, "Fault Tolerant Broadcasting and Gossiping in Communication Net-
works", NETWORKS, to appear.

25. R. Ramaswami, "Multi-Wavelength Lightwave Networks for Computer Commu-
nication", IEEE Communication Magazine, vol. 31, (1993), 78-88.

26. Y. Rabani. "Path Coloring on the Meshes", Proc. of FOCS '96.
27. P. Raghavan and E. Upfal. "Efficient Routing in All-Optical Networks", Proceed-

ings of the 26th Annual ACM Symposium on Theory of Computing (STOC'94),
(1994), 134-143.

28. L. Mirsky, Transversal Theory, Academic Press, New York, London, 1971.
29. R. J. Vetter and D. H. C. Du. "Distributed Computing with High-Speed Optical

Networks", IEEE Computer, vol. 26, (1993), 8-18.
30. O. Wolfson and A. Segall, "The Communication Complexity of Atomic Commit-

ment and Gossiping", SI AM J. on Computing, 20 (1991), 423-450.

On-Line Routing in All-Optical
Networks

Yair Bartal1 Stefano Leonardi2

1 U.C. Berkeley and International Computer Science Institute (ICSI), Berkeley ***
2 Dipartimento di Informatica e Sistemistica, Universitä di Roma "La Sapienza"

Abstract. The paper deals with on-line routing in WDM (wavelength
division multiplexing) optical networks. A sequence of requests arrives
over time, each is a pair of nodes to be connected by a path. The problem
is to assign a wavelength and a path to each pair, so that no two paths
sharing a link are assigned the same wavelength. The goal is to minimize
the number of wavelengths used to establish all connections.

We consider trees, trees of rings, and meshes topologies. We give on-line
algorithms with competitive ratio O(logn) for all these topologies. We
give a matching ß(log n) lower bound for meshes. We also prove that any
algorithm for trees cannot have competitive ratio better than ß(log°f0gn)-

We also consider the problem where every edge is associated with paral-
lel links. While in WDM technology, a fiber link requires different wave-
lengths for every transmission, SDM (space division multiplexing) tech-
nology allows parallel links for a single wavelength, at an additional cost.
Thus, it may be beneficial in terms of network economics to combine be-
tween the two technologies (this is indeed done in practice). For arbitrary
networks with ß(logn) parallel links we give an on-line algorithm with
competitive ratio O(logn).

1 Introduction
All-optical networks promise data transmission rates several orders of magni-
tude higher than current networks. The high speeds in these networks arise from
maintaining signals in optical form throughout a transmission thereby avoid-
ing the overhead of conversions to and from electrical form (see [Gr92] for an
overview of the topic). Wavelength division multiplexing (WDM) supports the
propagation of multiple laser beams of distinct wavelengths through an optic
fiber. Thus, the high bandwidth of the WDM network is utilized by partitioning
it in many "channels", each at a different optical wavelength. Intuitively, we may
think of wavelengths as light rays of different colors.

A major algorithmic problem for optical networks is that ot routing, .hacn
routing request, consists of a pair of nodes in the network, and requires the
assignment of a path and a wavelength (color). The key restriction is that two

*** Research supported in part by the Rothschild Postdoctoral fellowship and by the Na-
tional Science Foundation operating grants CCR-9304722 and NCR-9416101. e-mail:
yairb@icsi.berkeley.edu

t This work was partially done while the author was a post-doc at the International Computer
Science Institute (ICSI), Berkeley. This work is partly supported by EU ESPRIT Long
Term Research Project ALCOM-IT under contract n 20244, and by Italian Ministry of
Scientific Research Project 40% "Algoritmi, Modelli di Calcolo e Strutture Informative .
e-mail: leon@dis.uniromal.it

517

requests with equal wavelength cannot be routed through the same link. The
main goal is in lowering the number of wavelengths for certain routing requests.

Many of the applications for high speed optical networks are real-time. It is
therefore very natural to consider the problem of routing in an on-line setting
where routing requests appear over time.

The Path Coloring Problem. The routing problem on a WDM network with
generalized switches is referred to as path coloring. More formally, let G = (V, E)
be a graph representing the network, with \V\ — n. We are given a sequence of
routing requests consisting of pairs pi = (si,ti) of nodes in G. The algorithm
must assign a path connecting s» and U and a color, so that no two paths sharing
an edge are assigned with same color. The goal is to minimize the number of
colors. The performance measure for an on-line algorithm is the competitive
ratio [ST85] defined as the worst case ratio over all request sequences between
the number of colors used by the on-line algorithm and the optimal number of
colors necessary on the same sequence.

While in WDM technology, a fiber link requires different wavelengths for ev-
ery transmission, SDM (space division multiplexing) technology allows parallel
links for a single wavelength, at an additional cost. This can be profitable since
only a limited number of wavelengths are available in practice. The two technolo-
gies are then combined to find an efficient trade off between the two approaches.
This motivates considering a generalization of the path coloring problem where
a link of a color is replaced with a number of parallel links. We will alternatively
model this case with a bandwidth B available on a link for any color, meaning
that B paths of the same color may be routed through a link (that is in the
basic path coloring problem B = 1).

Related previous work.
The on-line path coloring problem has been studied by Raghavan and Up-

fal [RU94] who give constant approximation algorithms for undirected trees
and trees of rings. Further results for trees were given in a sequence of pa-
pers [MKR95, KP96, KS97, EJKP97]. Rings have been recently addressed in
[GK97] and meshes were studied in [RU94, AR95, KT95]. Kleinberg and Tar-
dos [KT95] give an O(logn) approximation algorithm for meshes and certain
"nearly Eulerian planar graphs". Rabani [Ra96] improves the bound for meshes
to 0(pory(loglognY).

The on-line path coloring problem has been studied in the case of a line
topology in the context of interval graph coloring by Kierstead and Trotter
[KT81]. They give an optimal 3-competitive algorithm for the line ([KT81]).
Slusarek [S195] proved the same bound for circular arc graphs.

The path coloring problem is closely related to the virtual circuit routing
problem, motivated by its application to ATM networks. The Joad version of this
problem is where every requested pair must be assigned a path as to minimize
the maximum number of paths crossing a given edge. Aspnes et al. [AAFPW93]
give an 0(log n) competitive algorithm for the load version. Most of the work has
concentrated on the throughput version of the problem, where every requested
pair may be either accepted or rejected. The basic problem, also referred to as
call-control, is where the paths of all accepted pairs must be edge-disjoint. This
can also be generalized to the case where edges may have a given bandwidth
B (that can be viewed as having B parallel edges!. Awerbuch et al. [AAP93]
prove that if B = ß(logn) then there is an O(logn) competitive algorithm (for
throughput). They also give a lower bound of Q{n) for deterministic algorithms
in the general case. Randomized algorithms have been first studied by Awerbuch
et al. [ABFR94, AGLR94] giving an O(logZl) competitive algorithm for trees,

518

where A is the diameter of the tree. They also show a matching lower bound.
Kleinberg and Tardos [KT95] give O(logn) competitive algorithm for meshes
(and some generalization), improving upon a previous result of [AGLR94].

Bartal et al. [BFL96] prove that for various routing problems including the
throughput version of virtual circuit routing and the path-coloring problem there
exist networks where the competitive ratio is ü{ne) (for some fixed e) for any
randomized algorithm. Finally, the on-line version of maximizing the throughput
in optical networks was addressed in [AAFLR96].

Contributions of this paper. We consider the on-line path coloring problem
on trees, trees of rings, and meshes topologies:

- We present an O(logn) competitive deterministic algorithm for path col-
oring on meshes.

- We prove a matching J?(logn) lower bound for the mesh. The lower bound
holds for randomized algorithms for the load version of the virtual circuit
problem which immediately extends to the path coloring problem.
We comment that this also provides the first lower bound for the load
version of the virtual circuit routing problem in undirected networks with
unit edge capacities [AAFPW93].

- We give an O(logn) competitive algorithm for path coloring on arbitrary
networks with bandwidth J?(logn) (the actual statement is somewhat more
general). This algorithm is also used as a building block for our algorithm
for path coloring on meshes. This result can be viewed as a balanced com-
bination of WDM and SDM technologies.

- We give an O(logn) competitive algorithm for trees and trees of rings.
We also prove that any deterministic algorithm for trees cannot have com-

petitive ratio better than /2(lo'g
0f0gJ (even for trees with Ä = °(loSn))-

A logarithmic upper bound and an ü{y/\ögn) lower bound for trees have
been independently obtained by Borodin, Kleinberg, and Sudan [BKS96].

Paper structure: Section 2 contains the results for path coloring with more
bandwidth on arbitrary networks, that are also used in Section 3 for the O(logn)
competitive algorithm for path coloring on meshes. Section 4 contains the lower
bound for meshes. Upper and lower bounds for trees are in Section 5. The results
and the proofs that are omitted from this abstract can be found in [BL97].

2 Path coloring with more bandwidth
Let G = (V,E) be a network with \V\ = n vertices and \E\ = m edges. We
consider the path coloring problem with bandwidth B on the edges. At the j-
th step, call j, with endpoints (sj,tj), is presented to the algorithm that must
assign a color c(j) and a path P(j). The goal of the on-line is to use a set of
colors of minimum cardinality C under the constraint that the bandwidth on
any edge does not exceed B. .

We give an algorithm for general networks for this problem. The algorithm
fixes a set C of C colors that it may choose from, at the beginning, based on
an estimate for the optimal performance. The basic algorithm chooses, at every
step, one path and one of these colors according to some optimization criteria.
This criteria assigns to any edge of any color an exponential function of the

519

current load. Our goal is in proving that the algorithm never exceeds a certain
bandwidth on every edge.

A variant for this algorithm proves to be useful (see Section 3) in obtaining
an algorithm for path coloring on meshes (with edge bandwidth = 1).

In this variant we restrict the choice of the on-line algorithm for call j to a
subset C(j) of C (that may be chosen according to some arbitrary rule) whose
cardinality is at least aC.

We thus state our results in terms of this parameter a. However, for the scope
of this section alone it is enough to set a = 1.

Let C* be the number of colors used by the optimal solution to accommodate
the whole set of calls, and let B* be the bandwidth available by the optimal
solution on any edge of any color.

We compare our algorithm to a stronger adversary that uses a bandwidth
A* < B*C* on a single color, rather than being restricted to using C* colors
and bandwidth B* for every color.

We assume that the on-line algorithm knows a value A such that A* < A <
2A*. This is performed by applying a doubling technique (whose description is
omitted in this abstract) that results in increasing the competitive ratio at most
by a factor of 4.

Let the load on edge e for color c, denoted by A£(j), be the number of calls
assigned with color c and a path crossing edge e when call j is presented. Let
a = 213. Call j is assigned with a color c(j) and a path P(j) which achieve the
minimum, over all the colors in C(j) and all paths connecting Sj and tj, of the
following "exponential cost":

eeP(j)

Theorem 1. // the number of colors used by the algorithm is C = 8-4^-(2^ — 1)
where A > A* then the bandwidth is B < 1 + A log ^.

Proof. _
Let A be the maximum load on any edge for any color in the solution of

the on-line algorithm at the end of the sequence. Thus A calls are assigned with
same color and a path crossing a given edge. When the last such path P(k) is

assigned to a call k, its exponential cost is at least oA_1. By definition of the
algorithm, the chosen path is the minimum cost path over all paths and colors
C(k). Therefore, at the time this call arrived, for C(k) > aC colors, any path
connecting the same pair of vertices has a cost of at least aA_1. It follows that
the sum of the exponential costs over all edges and all colors at the end of the
sequence is

Z{f)>aCa>-\ (1)

where X[f) indicates the value of a function X at the end of the sequence.
Let l*(j) be the number of calls in the adversary solution assigned with path

crossing edge e when call j is presented.
We use the following potential function:

^o^EE^-f)-
cGCe6E

520

The sum of the exponential costs of the on-line algorithm at the end of the
sequence is also bounded by the following:

Z(f) < 2£Zy*(/)(1 - ™) < 2(*(/) -#(0)) +2mC, (2)
c6Ce€-E

In the following we prove that for the claimed choice of C, the potential
function does not increase after each step of the algorithm. Therefore #(/) <
#(0), and thus the equations 1 and 2 can be combined to achieve:

£?<X<l + ilog^.

To complete the proof we prove that if C = 2A^(2ß - 1) then for every
j; <£(j + 1) - $(j) < 0. An extra factor of 4 is due to the application of the
doubling technique to estimate the value of A. Let P*(j) be the path assigned
by the adversary for call j. The change in the potential function due to call j is:

*ü +1) - *ü) < E (ßA",ü+1) - aA",(i)) - JA £ E(^ü+1)<:(;+u
eeP(j) c€CeeE

-a^m< E^-^^-^E E aA'a)-

Observe that for any color c G C(j), the cost of any path P connecting Sj to
tj is not less than the cost of the path P(j) on color c(j) chosen by the on-line
algorithm for call j. Therefore we get for any c G C(j):

J2aKU)> E °A'(,'Ü)-

The above inequality also holds for P = P*(j), and hence

*(j +1) - *(i) < ((« - i) - ff) EeePü) «A«°')(i)-
Recall that a = 2ß - 1. Thus, by choosing C = 2^1^ (20 - 1) we have that

the potential function does not increase. ■
As an application we get the following result for the on-line load balancing

problem ([AAFPW93]), in which only one color is available and the goal is to
minimize the number of paths assigned to a single edge of the network.

By applying Theorem 1 with ß = 1 and a = 1 we get:

Corollary 2. There exists an algorithm for on-line load balancing that uses
0(A*) colors with bandwidth O(logn).

Note that Corollary 2 gives a stronger result than that of [AAFPW93] that
only shows that the on-line load is bounded by 0(A* logn).

Finally, going back to the path coloring problem, recall that A* < C*B .
For an appropriate choice of ß (the proof is omitted), Theorem 1 implies the
following:

Corollary 3. Let S be such that B* = Jlog^, and let 7 > 0 be some positive
coefficient. The algorithm for on-line path coloring with more bandwidth uses
C < 8C*^-(log ^(2^ - 1) + 1) colors with bandwidth B < jB*.

521

The above corollary shows that if the bandwidth is J?(logn), then the on-
line algorithm does not exceed the bandwidth by using O(logn) more colors.
We thus obtain the result for optical networks with general topology when the
technologies WDM and SDM are combined in a network that contains J?(logn)
parallel fiber optic links on each connection.

3 Path coloring on meshes
In this section we present an O(logn) competitive algorithm for path coloring
on meshes.

G = (V, E) denotes the y/n x ^Jn two dimensional mesh. We consider -Jn to
be a power of 2. Let \E\ = m be the number of edges of the mesh. The vertex
of the mesh with row i and column j is denoted with G[i, j}. Given two vertices
v = G[i,j],v' = G[i',j'] we define their distance as the length of the shortest
path connecting the two vertices: d(v, v') = \i - i'\ + \j - j'\.

Let a and a be parameters that will be fixed later. Calls are divided into
short calls and long calls. A call (s,t) is long if d(s,t) > 2a\og^k, and short if
d(s, t) < 2a log —. a and a will be chosen so that a log ^ is a power of two.

We use two different algorithms for long calls and short calls. The algorithm
for long calls translates the problem in a mesh, to a problem of coloring with
more bandwidth in a simulated network that is also a mesh. Theorem 1 al-
lows a logarithmic competitive ratio with a logarithmic bandwidth on any edge.
The route obtained in the simulated network is later translated into a route in
the original mesh, satisfying the constraint that paths associated to calls with
the same color are disjoint. We describe in Section 3.1 the construction of the
simulated network, and in Section 3.2 how a route in the simulated network is
transformed into a route in the original mesh.

The algorithm for short calls, whose description is omitted in this abstract,
classifies the calls on the basis of their length, and applies a greedy algorithm
within each class.

Both algorithms for long and short calls have competitive ratio O(logn).
Therefore, we can state the following theorem.

Theorem 4. There exists a O(logn) competitive algorithm for path coloring on
meshes.

3.1 The algorithm for the simulated network
In this section we describe the algorithm for the problem of coloring and routing
calls on a simulated network of a mesh of size \fn x ^Jn.

The algorithm divides the mesh into j'i», x aX^
n%m, squares of size a log ^ x

a log ^p. Square S\p, q], p, q = 1,..., ,'\,, is the subgraph of G induced by the

set of vertices {G[i,j]\i = (p-l)alog^+\ ..., pa log 2a ;j = (q-l)alog^ +
l,...,qa\og^f}.

Note that long calls have their endpoints in different squares, since the dis-
tance between the endpoints is bigger than 2a log ^.

The simulated network N of the mesh G = (V, E) is a mesh of size , "m x v ' a log —
\/n

Let m! be the number of edges of the simulated network. Every edge of N

522

is associated with a bandwidth equal to crlog2^ = 6log^-. (Observe that
logm' = logm - 0(log log m). Hence cr « 8 for large m.)

This mesh corresponds to the network obtained from the original mesh by
contracting every square of G onto a vertex and connecting every pair of vertices
representing adjacent squares with an edge. The bandwidth of the edges models
the fact that at most a log ^ edge-disjoint paths can pass between two adjacent
squares.

The basic idea is to color and route long calls in the simulated network using
the algorithm of Section 2 for path coloring with more bandwidth, and then
translate the assigned paths into an appropriate routing in the original network.

The sequence of long calls in the mesh G is transformed into a sequence of
calls in the simulated network in the most natural way: Each long call (s, t) is
replaced by a call between the two vertices of N representing the two squares
containing s and t.

The path obtained for a call in the simulated network is transformed into a
path in the original mesh G respecting the following rule: The path in G will
cross between adjacent squares in G where the path in N passes through the
edge connecting the corresponding nodes in TV.

However we need that the paths with same color crossing any square are edge
disjoint. For this purpose we will restrict the set of candidate colors for each call
to a constant fraction of the overall number of colors. (Observe that the design
of the algorithm of Section 3.2 includes this feature).

For this purpose we distinguish between the two squares that include the
endpoints of a call, and the squares that are crossed by the path connecting
the endpoints. We say that a call is internal to a square if one of its endpoints
belongs to the square. A call is called external to a square if it is not internal to
the square and the path derived by the routing in the simulated network crosses
the square.

We furthermore define in any square 5 of the mesh, three concentric regions:
S1, S2 and S3 (see Figure 1). Each region contains 2 log ^ concentric rings of
the square. S1 is the most external region, S2 is internal to S1 and S3 is internal
to both S1 and S2. Finally, the area surrounded by S3 is called the central region
of the square.

S'

s:

s.

□ G

Fig. 1. The routing of a long call.

The set of colors C used by the on-line algorithm is partitioned into three
sets Cl,C2,C^ of equal size. If a call is associated with a color c € Cl, i = 1,2,3,
then its two endpoints must lie on a region different from Sl, while the path
connecting the two endpoints will cross any square of the mesh different from
the two squares containing the endpoints using a ring of region S\

In Section 3.2 we will snow how this requirement allows to avoid intersections
between calls with same color crossing a square.

We further impose an additional requirement: for any square, at most one
internal call is associated with any color. This requirement is to avoid conflicts
between paths assigned to internal calls that leave a square.

523

Consider the j'th long call (sj,tj). Let S(SJ) and S(tj) be the squares con-
taining sj and tj, respectively. The set C(j) of candidate colors for call j is
defined as follows. A color c G Cl is in C{j) if the two following conditions hold:

1. Sj i S^Sj) and tj i Sl{tj), e.g. both endpoints are not in region i of their
corresponding squares.

2. No call with an endpoint in S(SJ) or S(tj) has been previously assigned
with color c.

The algorithm for path coloring with more bandwidth in the simulated net-
work is run with parameters satisfying: a < \\ 5 > 13; and 7 = j- Tne vame

a that defines the size of each square is chosen in order to satisfy a log ^ =

5 log 2ml.
The choice of the parameters is such that the adversary bandwidth B* =

S log 2HL. is eqUai to the maximum number of calls that can be routed through

two adjacent squares, and the width <51og ^ of a square is equal to 13 times
the maximum bandwidth B = log ^ used by the on-line algorithm for routing
between two adjacent squares.

To apply the result of Corollary 3 we need the following lemma whose proof
is omitted.

Lemma 5. The set of feasible colors C(j) for a call (sj,tj) has size at least aC.

Therefore, from Corollary 3 we can derive the following corollary, on the
number of colors and the bandwidth used by the on-line algorithm for path
coloring with more bandwidth in the simulated network:

Corollary 6. The algorithm for on-line path coloring with more bandwidth in
the simulated network N uses C = 8C*f (log2^- + 1) colors with bandwidth

3.2 Routing of long calls
In this section we describe how to transform a path in the simulated network
N into a path in the mesh G, so that the paths associated to calls with same
color are mutually edge-disjoint. A path in the simulated network indicates the
squares to cross to connect the two endpoints of a call. We are left to describe
the route followed by the path within each square.

Given a color c G C\ the set of calls accepted with that color have the
following property

1. At most one call is internal to each square.

2. Both endpoints of each call are outside region 5* of their squares.

The run of the algorithm for path coloring with more bandwidth ensures that
the maximum bandwidth of the on-line algorithm in the simulated network is
B = fz log 2s. It follows that at most B calls are assigned with paths crossing
the boundary between two adjacent squares, and there are at most 2B external
calls for each square.

We will maintain inductively the following property: A call crosses the bound-
ary between two squares on a row or on a column connecting the central regions

524

of the two squares. The central region of a square has size B x B. Since B is
the maximum number of calls routed between adjacent squares, a distinct row
or column can be associated with any call.

We first consider external calls. By induction, each external call enters the
square on a row or on a column leading to the central area. We route it towards
the central area until a free ring of region Si is reached. This is always the case
since there are at most 2B external calls and 2B available rings in each region
S\ The call then follows the ring until it reaches a free row or a free column
connecting the central region of the square to the central region of the adjacent
square to which the call is directed. The route follows such row or such column
until the adjacent square.

Finally, we consider the routing of the possible single internal call. The end-
point of the internal call is outside the area Si. If it is originated in the central
area, then it can be routed through a path that reaches a free row or column
that connects the central area to the central area of the adjacent square to which
the internal call is directed. The route goes through such row or column until
the adjacent square is reached. If the internal call has the endpoint outside both
the central area and the region S\ it is routed through the ring on which the
endpoint lies until it reaches a free row or column connecting the central area of
the square to the central area of the adjacent square to which the call is directed,
and then follow it until the appropriate adjacent square.

The routing of a call associated with a color of set C2 is shown in Figure 1.
In particular, it is described the route followed in the two squares where the call
is internal, and in one square where the call is external.

4 Lower Bounds on Meshes
In this section we give a randomized lower bound of J?(log n) for the path coloring
problem on meshes. The lower bound also applies to the load balancing problem
([AAFPW93]) on meshes.

The lower bound is based on an application of Yao's Lemma to on-line algo-
rithms. We construct a distribution over request sequences, such that the number
of colors used by an optimal algorithm is always bounded by a constant while the
expected on-line load (i.e., the maximum number of paths crossing an edge) of
a deterministic algorithm is i?(logn). We recall that the load of a path coloring
algorithm is bounded above by the number of colors and thus the lower bound
follow.

The distribution over request sequences is defined recursively in L = log4 n
stages as follows. At the i'th stage of the recursion, i = 1,2,... ,L, we define
a probability distribution for an 4L~i+1 x 4L~i+1 square Si of the mesh. We
consider a partition of Si into 16 subsquares of size 4L~l x 4L~\ The internal
part of the square Si is defined as the square I consisting of the 4 internal
subsquares in the above partition. S \ I is called the external part of the square.
Let I[x, y] denote the vertex with row x and column y in the submesh defined
by / where 0 < x, y < 2 ■ 4L~\ We now give for each 0 < x < 2 • 4L~i a set of 8
vertical calls from l[0,x] to I[2 ■ AL~\x). Then choose at random one of the 16
subsquares and proceed with the (i + l)'st stage of the probability distribution
for that subsquare recursively. The (L + l)'st stage of the probability distribution
contains no requests.

The next two claims give bounds on the optimal and the on-line solutions.

Claim 7 The number of colors used by an optimal algorithm for the above prob-
ability distribution is 8.

525

Proof. We prove the claim by induction on i. If the subsquare of size 4L~l xAL"1

chosen in the probability distribution is not in the internal part J, then we route
the calls given in the i'th stage through the internal part of the square, and
otherwise we route the calls through the external part of the square, so that
none of the routes will cross the routes for calls in stages j > i. This can be done
so that calls with distinct source and destination have disjoint paths and thus
the number of colors is 8. ■

Claim 8 Let Ai be the expected average load of the on-line algorithm on the
edges in the square Si. Then Ai >i.

Proof. We first prove that the average increase in the load of the edges of the
square Si due to the requests given at the i'th stage is at least 1. The number
of edges of the mesh Si is 2 x 42(i-*+1). The requests given at the ith stage
include 8 x 2 x 4L_i calls between pairs of vertices such that any path between
them includes at least 2 x AL~l edges in 5, (even if the path passes outside the
square). Therefore, the increase of the average load on edges of Si is 1.

We now prove by induction that At >i. For i = 1 it follows from the above
claim. We assume the claim holds for i and prove it for i +1. Since the subsquare
for the (i + l)'st stage is chosen at random the expected average load of the edges
of Sj+i is equal to Ai. Since the average increase in the load of the edges of Sj+i
is at least 1 we have Ai+i >i + l. ■

We conclude the following.

Theorem 9. The competitive ratio of any on-line randomized path coloring al-
gorithm on meshes is J?(logn) against oblivious adversaries. The same lower
bound holds for load balancing on meshes.

5 Path coloring on trees and trees of rings
In this section we consider the on-line path coloring problem on trees and on
trees of rings.

An algorithm for trees and trees of rings is obtained by showing that these
graphs are 0(C)-inductive graph, where C is the maximum number of paths
that crosses an edge, which is a lower bound on the optimal cost. We omit the
proof of this fact in this abstract. The upper bounds follow from a result by
Irani [190] that the greedy on-line coloring algorithm uses O(dlogn) colors on a
d-inductive graph of n vertices. We can therefore conclude:

Theorem 10. There exists a 0(log n)-competitive algorithm for on-line path col-
oring on trees and trees of rings of n vertices.

We also prove the following lower bound on the competitive ratio of determin-
istic algorithms for on-line path coloring on trees whose description is omitted
in this abstract.

Theorem 11. Any algorithm for path coloring on trees of n vertices has a com-
petitive ratio o//?(lo'°f0gn).

Acknowledgments: We would like to thank Yossi Azar, Allan Borodin,
Amos Fiat, Sandy Irani, Hal Kierstead and Gerhard Woeginger for useful dis-
cussions.

526

References
[ABC+94] A. Aggarwal, A. Bar-Noy, D. Coppersmith, R. Ramaswami, B. Schieber,

and M. Sudan. Efficient Routing and Scheduling Algorithms for Optical Networks.
Proc. of SODA '94, pp. 412-423.

[AAFPW93] J. Aspens, Y. Azar, A. Fiat, S. Plotkin and O. Waarts. On-line Load Bal-
ancing with Applications to Machine Scheduling and Virtual Circuit Routing. Proc.
of STOC'93.

[AAFLR96] B. Awerbuch, Y. Azar, A. Fiat, S. Leonardi, A. Rosen. On-line Compet-
itive Algorithms for Call Admission in Optical Networks. Proc. of ESA '96, LNCS
1136, pp. 431-444.

[AAP93] B. Awerbuch, Y. Azar, and S. Plotkin. Throughput Competitive On-line
Routing. Proc. of FOCS'93.

[ABFR94] B. Awerbuch, Y. Bartal, A. Fiat, and A. Rosen. Competitive Non-
Preemptive Call Control. Proc. of SODA '91

[AGLR94] B. Awerbuch, R. Gawlick, F.T. Leighton, and Y. Rabani. On-line Admis-
sion Control and Circuit Routing for High Performance Computing and Communi-
cation. Proc. ofFOCS '91

[AR95] Y. Aumann, Y. Rabani. Improved Bounds for All-Optical Routing. Proc. of
SODA'95.

[BFL96] Y. Bartal, A. Fiat, S. Leonardi. Lower Bounds for On-line Graph Problems
with Application to On-line Circuit and Optical Routing. Proc. of STOC'96.

[BKS96] A. Borodin, J. Kleinberg, and M. Sudan. Personal communication.
[BL97] Y. Bartal and S. Leonardi. On-line Routing in All-Optical Networks. Tech

Rep 02-97, Dipartimento di Informatica e Sistemistica, Universitä di Roma "La
Sapienza", 1997.

[Gr92] P.E. Green. Fiber-Optic Communication Networks. Prentice Hall, 1992.
[EJKP97] T. Erlebach, K. Jansen, C. Kaklamanis and P. Persiano. Constrained Bi-

partite Edge Coloring with Applications to Wavelength Routing. Proc. of IC'ALP"97
(this proceedings).

[GK97] O. Gerstel and S. Kutten. Dynamic Wavelength Allocation in WDM Ring
Networks. To appear in Proceedings of ICC '97.

[190] S. Irani. Coloring inductive graphs on-line. Proc of FOCS'90, pp. 470-479.
[KP96] C. Kaklamanis and P. Persiano. Efficient wavelength routing in directed fiber

trees. Proc. of ESA'96, LNCS 1136, pp. 460-470.
[KS97] V. Kumar and E. Schwabe. Improved Access to Optical Bandwidth in Trees.

Proc. of SODA'97.
[KT81] H.A. Kierstead and W.T. Trotter. An Extremal Problem in Recursive Combi-

natorics. Congress. Numer., 33, pp. 143-153, 1981.
[KT95] J. Kleinberg and E. Tardos. Disjoint Paths in Densely Embedded Graphs.

Proc. ofFOCS'95, pp. 52-61.
[MKR95] M. Mihail, C. Kaklamanis, and S. Rao. Efficient Access to Optical Band-

width. Proc. of FOCS'95, pp. 548-557.
[Ra96] Y. Rabani. Path-Coloring on the Mesh. Proc. of FOCS'96, pp. 400-409.
[RU94] P. Raghavan and U. Upfal. Efficient Routing in All-Optical Networks. Proc.

of STOC'94, pp. 133-143.

[S195] M. Slusarek. Optimal Online Coloring of Circular Arc Graphs. Informatique
Theoretique et Applications, vol. 29, n. 5, pp. 423-429.

[ST85] D. Sleator, R.E. Tarjan. Amortized Efficiency of List Update and Paging Rules.
Communications of ACM 28, 1985.

A Complete Characterization of the Path Layout
Construction Problem for ATM Networks with

Given Hop Count and Load
(Extended Abstract)

Tamar Eilam1, Michele Flammini2'3'* and Shmuel Zaks1

1 Department of Computer Science,
Technion, Haifa 32000, Israel

{eilam,zaks}@cs.technion.ac.il
2 Dipartimento di Matematica Pura ed Applicata,

University of L'Aquila,
via Vetoio loc. Coppito, 1-67100 l'Aquila, Italy

f lanuniniQunivaq. it
3 Project SLOOP I3S - CNRS URA / INRIA / Univ. Nice-Sophia Antipolis,

930 route des Colles, Sophia Antipolis, F-06903 Cedex, France

Abstract. We investigate the time complexity of deciding the existence
of layout« of virtual paths in high-speed networks, that enable a connec-
tion from one vertex to all others and have maximum hop count h and
maximum edge load / , for a stretch factor of one. We prove that the
problem of determining the existence of such layouts is NP-complete for
every given values of h and I, except for the cases h = 2, / = 1 and h = 1,
any /, for which we give polynomial-time layout constructions.

1 Introduction

1.1 Motivation

Asynchronous Transfer Mode (ATM for short) is widely accepted as the most
popular architecture that supports high-speed networks, and is thoroughly de-
scribed in the literature [14, 13, 16]. ATM is based on relatively small fixed-size
packets, that are routed independently, based on two small routing fields at
their header (termed virtual channel index (VCI) and virtual path index (VPI)).
At each intermediate switch, these fields serve as indices to two routing tables,
and the routing is done in accordance to the predetermined information in the
appropriate entries.

Routing in ATM is hierarchical in the sense that the VCI of a cell is ignored
as long as its VPI is not null. This algorithm effectively creates two types of

This author has been partly supported by the EU TMR Research Training Grant
N. ERBFMBICT960861, by the EU ESPRIT Long Term Research Project ALCOM-
IT under contract N. 20244 and by the Italian MURST 40% project "Algoritmi,
Modelli di Calcolo e Strutture Informative".

528

predetermined simple routes in the network - namely routes which are based on
VPIs (called virtual paths or VPs) and routes based on VCIs and VPIs (called
virtual channels or VCs). VCs are used for connecting network users, and VPs
are used for simplifying network management (routing of VCs in particular).
Thus the route of a VC may be viewed as a concatenation of complete VPs.

As far as the mathematical model is concerned, given a communication net-
work, the VPs form a set of simple paths in the network (termed the virtual path
layout (VPL for short)) on the same vertices. Each VC is thus a concatenation

of such virtual paths.
The VP layout must satisfy certain conditions to guarantee important per-

formance aspects of the network (see [1, 12] for technical justification of the
model for ATM networks). In particular, there are restrictions on the following

parameters:

The hop count: The number of VPs which comprise the path of a VC in the
virtual graph. This parameter determines the efficiency of the setup of a VC

(see, e.g., [4, 17, 18]).
The load: The number of virtual paths that share any physical edge. This

number determines the size of the VP routing tables (see, e.g., [6]).
The stretch factor: The ratio between the length of the path that a VC takes

in the physical graph and the shortest possible path between its endpoints.
This parameter controls the efficiency of the utilization of the network.

In many works (e.g., [2, 3, 12, 5]), a general routing problem is solved using
a simpler sub-problem as a building block; In this sub-problem it is required
to enable routing between all vertices and a single vertex (rather than between
any pair of vertices). This restricted problem for the ATM VP layout problem
is termed the rooted (or one-to-many) VPL problem [12] and is the focus of the

present work.

1.2 Related Work

A few works have tackled the VP layout problem, some using empirical tech-
niques [1, 15], and some using theoretical analysis [12, 5, 11].

The VP layout problem is closely related to graph-embedding problems since
in both cases it is required to embed one graph in another graph. However, while
in most embedding problems both graphs are given, here we are given only the
physical (host) graph, and we can choose the embedded graph (in addition to

the choice of the embedding itself).
Most of the performance parameters are also different in both cases:

- While the association between the host graph and the embedded graph is
made by the dilation parameter in embedding problems, here it is made by
the stretch factor. In other words, in embedding problems it is important to
minimize the length of each individual embedded edge, while in this model
it is important to minimize the length of paths.

529

- The hop count parameter is closely related to the distance in the virtual
graph, however, while the distance depends only on one graph, the hop count
also depends on the physical graph (unless the stretch factor is unbounded).

- The load parameter is identical to the congestion in embedding problems,
and the different terminology is due to the loaded meaning of congestion in

the communication literature.

The computational complexity of determining the existence of a VP layout
for a given network within a given maximum hop count and a given maximum
load was investigated in [12], where the authors showed that this problem is NP-
complete when there is no limit on the stretch factor. In [12] also some polynomial
construction algorithms are given for trees for the stretch factor equal to one,
i.e. when the physical routed paths are shortest.

1.3 Summary of Results

In this paper we improve the results of [12], concerning the computational com-
plexity of constructing virtual path layouts from a given node to all other nodes
in the network. While in [12] the maximum hop count h and the maximum load
/ are not constant, here we tightly establish the border between tractability and
intractability, by determining the lowest (constant) values of h and I that make
the problem computationally hard. Moreover, we give efficient construction al-

gorithms for all the tractable cases.
Specifically, we show that the problem of determining the existence of such

layouts is NP-complete for every given values of h and /, except for the cases
h = 2, / = 1 and h - 1, any /, for which we give polynomial-time constructions.
All results in this paper concern the stretch factor of one.

The paper is organized as follows: In Section 2 we define the model and the
related performance measures. In Section 3 we give the above-mentioned NP-
completeness results. In Section 4 we present efficient construction algorithms for
the polynomial cases, and in Section 5 we conclude and list some open problems.
Some proofs are only briefly sketched in this Extended Abstract.

2 The Model

Following [12] we model the underlying communication network as an undi-
rected graph G = (V,E), where V corresponds to the set of switches and E to
the set of physical links between them.

Definition 1. A rooted virtual path layout (RVPL for short) <E is a collection
of simple paths in G, termed virtual paths (VPs for short), and a vertex r eV

termed the root of the layout (denoted root^)).

Definition2. The hop count H{v) of a vertex v € V in a RVPL <P is the
minimum number of VPs whose concatenation forms a shortest path in G from
v to root^P). If no such VPs exist, define %{v) = oo. (Note that the assumption

530

of stretch factor equal to one is reflected by the requirement of using shortest

paths.)

Definition3. The maximal hop count of a RVPL & is defined as Hmax{^) =

maxv£v{Ti{v)}.

Definition^ The load £(e) of an edge e £ E in a RVPL $ is the number of

VPs 4' € lP that include e.

Definition5. The maximal load £max(<E) of a RVPL f/ is maxee£ £(e). 4

To minimize the load, one can use a RVPL & which has a VP on each physical
link, i.e., £mar(^) = 1, however such a layout can have a hop count equal to the
diameter of the network. The other extreme is connecting a direct VP from the
root to each other vertex, yielding %max = 1 but usually a very high Cmax. In
general, we are interested in the intermediate cases where we trade one parameter
for the other. The following decision problem then naturally arises.

Definition6. (h, l)-RVPL Problem:

INSTANCE: A network G = (V, E) and a given root r e V.
QUESTION: Is there a (h,l)- RVPL 9 for G with root r, i.e. a RVPL such

that nmax{V) < h and Cmax(V) < n

3 The NP-complete Cases

In this section we tightly establish the values of h and / that make the problem
of determining the existence of virtual path layouts NP-complete. Namely, we

prove the following theorem.

Theorem 7. The {h, I)-RVPL problems are NP-complete for any h and I except

for the cases h = I, any I and h = 2, / = 1.

First observe that the (/i,/)-RVPL problems belong to the class NP. In fact,
given an RVPL W for G = (V, E) with a given root r G V, one can easily check
whether C(e) < I for every edge e £ E and whether Hmax{^) < h. For the latter
task we define a weighted graph G' = {V, £"), termed virtual graph, with an edge
of weight / connecting vertices a and b if and only if there is a virtual path of
length / between them; then, if d is the (unweighted) distance between r and v
in G, by using slight modifications of usual shortest path algorithms we verify
that, for every vertex v £ V - {r}, there is a path from r to v in G' of length d
that has at most h edges.

We prove Theorem 7 in the following four lemmas. In Lemma 8 we prove that
(3,1)-RVPL is NP-complete. In Lemmas 9 and 10 we prove that for every / the
(2,/)-RVPL problems are NP-complete. Finally, we prove in Lemma 11 that for
every h and /, if (h, /)-RVPL is NP-complete then so is {h + 1, /)-RVPL. Thus,
the first three lemmas establish the basis of an inductive proof and Lemma 11
is the inductive step.

4 As mentioned above, the load on an edge is identical to its congestion.

531

Lemma 8. The (3, \)-RVPL problem is NP-complete.

Sketch of proof. In order to prove the NP-completeness of the (3,1)-RVPL
problem, we provide a. polynomial time transformation from the Dominating Set
problem (DS) (known to be NP-complete; see [10]). In this problem we have a
universe set U = {«i, ...,um} oim elements, a family {Ai,..., Aj} of / subsets
of U and an integer k < /; we want to decide if there exist k subsets Aj1,..., Ajk

which cover U, i.e. such that \Ji=1 Aj{ = U.
Starting from an instance IDS of DS, we construct a graph G that admits a

(3,1)-RVPL if and only if IDS admits a cover.
Let G= (V,E), where V = {r}UViU{v}UV2UV3 and E = ExUE2UE3UEA

(see Figure 1), with Vl = {qa \ a = l,...,k + 1}, V2 = {wb \ b = 1,...,/},
V3 = {zc | c = 1,..., m}, and J^ = {{r, qa] \ a = 1,.. .,k + I}, E2 = {{qa,v} \
a=l,...,k+l},E3 = {{v, wb}\b=l,...J},E4 = {{wb, zc} \ uc G Ab}.

Instance Dominating Set

U — {ui, . . . , tiis}
k = 4, / = 9
subsets Ai, . . . , Ag C U

Ai — {ui,u3, u4], ...,

Ae = {ti9,uio,«ii|Mij}.-,
Ac, = {«is, "17}

2l ^2 «3 Z4 ^5 26 27 Zg Z9 210 Zll ^12 Zl3 ^14 ^15 ^16 Zl7 218

Fig. 1. The reduction graph for (3, 1)-RVPL

We show that if there are k dominating sets Ajl,..., Ajk, then there exists
a (3,1)-RVPL & for G, and that if there are no k dominating sets, then no
(3,1)-RVPL 9 for G exists. The details are omitted in this Extended Abstract.

D

Lemma 9. The (2,2)-RVPL problem is NP-complete.

Sketch of proof. We prove the claim by providing a polynomial time trans-
formation from the 3-SAT problem (see [10]). An instance of this problem is
constituted by a boolean formula / over m variables x\,..., xm, where / is in
conjunctive normal form, i.e. / is the conjunction of g clauses ci,..., cg, each of

532

which is the disjunction of three literals. We want to determine whether there
exists a truth assignment for xi,..., xm which satisfies /.

Starting from an instance of 3-SAT, we construct a graph G that admits a

(2, 2)-RVPL if and only if / is satisfiable.
Let G = {V, E), where V = {r}\JV1\JV2UV3VV4ÖV6, and E = E1öE2UE3U

E4öE5UE6 (see Figure 2), with Vx = {üa,ua | a= l,...,m}, V2 = {va,va | a =
l,...,m}, V3 = {qa \ a = l,...,m}, V4 = {wa,i | a = 1,..., m, i = 1,... ,4},
V5 = {zfcj | 6 = l,...,g,j = 1 4}, and Ex = {{r,üa},{r,ua} \ a =
l,...,m}, E2 = {{üa,va},{ua,va} \ a= l,...,m}, E3 = {{ua,qa},{ua,qa} I
a = l,...,m], E4 = {{qa,wa>i} | a= l,...,m, i= 1.....4}, E5 = {{va,zbJ} \
a = l,...,m,b = l,...,g,j = l,...,4,xa G cb}, E6 - {{va,zb)j} | a =
l,...,m,b=l,...,g, j = l,...,4,xaE cb}.

«1,121,221,3 «1,4 22,122,222,322,4

/ = (xTVE2"Vz3) A (^lVs2Vli")

Fig. 2. The reduction graph for (2, 2)-RVPL

Informally, in G we associate to each variable xa a truth setting component
constituted by the subgraph induced by the vertices r, ua, ua, va, va, qa, wa>i,
u'a,2, t"a,3 and wai4. To explain the intuition for our construction, consider any
path layout for the graph G. The restriction of this layout to this subgraph can
be associated in a natural way to a truth assignment for xa. In fact, in order for
r to reach the four vertices waii,wai2,wa,3,Wa,4 in at most two hops, the VPs
(r,üa,qa) or (r, ua,qa) must belong to the RVPL.

W.l.o.g. we can then assume that either {r,ua,qa) or (r,ua,qa) are in the
RVPL . In the first case the truth assignment associated to xa is true, and in
the second it is false. If the truth assignment of xa is true (resp. false), then the
RVPL can contain the VP (r, ua,va) (resp. {r,ua,va)), so that all vertices zbj
corresponding to clauses cb containing xa (resp. xa) can be reached in at most

533

two hops, as they are directly connected to va (resp. va). (See Figure 3.

"'o,l t(;a,2 wa,3 wa,4

xa false

wa,\ wa,2 wa,3 wa,4

xa true

Fig. 3. Path layout and truth assignment in the case of (2,2)-RVPL

We show (details omitted in this Extended Abstract) that there is a truth
assignment satisfying / if and only if there exists a (2, 2)-RVPL <? for G.

D

Lemma 10. For every I, the (2,l)-RVPL problem is NP-complete.

Sketch of proof. Given any / > 2, we will prove that (2,/}-RVPL is an NP-
complete problem by a polynomial time transformation from the 3-SAT prob-
lem which is a generalization of the transformation presented in the proof of
Lemma 9. Let an instance of the 3-SAT problem be as defined in the proof of
Lemma 9. Starting from this instance, we construct a graph G that admits a
(2, /)-RVPL if and only if / is satisfiable.

The idea is to add a construction to each of the vertices ua and v.a which will
force an addition of/ - 2 VPs on each of the edges {r, ua) and {r, v,a} (in order
to reach all vertices in the new construction in 2 hops). In addition, we have to
enlarge the number of wa,i vertices (actually we will have 2/ such vertices for
every variable a in /), and the number of ztj vertices to 3(/ — 1) + 1 for each
clause b in the formula /. Note that for the special case / = 2 we will get exactly
the same construction as in the proof of Lemma 9.

Formally, we specify only the additions to the construction of Lemma 9. We
add the following sets of vertices Ve = {sa,i, sa,i \ a = 1,..., m, i = 1,..., / - 2},
V7 = {ta,i,j,ta,i,j \a=l,...,m,i=l,...,l-2,j=l,...,l}, and the following
sets of edges: E7 = {{ua,_sa,i}, {ua, sa,i] \ a = 1,.. ., m , i - 1,..., / - 2},
£"8 = {{Sa,i,ta,i,j},{Sa,ija,i,j} I a = 1, . . . , m , i = 1, . . ., / - 2 , j = 1, . . ., /}.

We enlarge the number of waii and ztj vertices as follows: VA — {wa,i | a =
l,...,m,i=l,...,2l},Vs = {z'bJ | 6 = 1,..., ff , j = 1,..., 3(/ - 1) + 1}, and
we correspondingly enlarge the number of edges in the sets £4, E5 and E6 as
follows: E4 = {{qa,wa,i} \ a = 1,... ,m, i = 1,...,2/}, E5 = {{va,zitj} | a -

534

l,...,m,6= l,...,g,j = 1,...,3(/- 1) + 1, z„ € ct}, £6 = {K,^,j} I « =
1,..., m , b = 1,... ,g , j = 1,..., 3(/ - 1) + 1, xa £ cb}.

Clearly to reach the tatitj and ta>ij vertices in two hops, we must reach each
of the sa<i and ~sa,i vertices in one hop, which uses /- 2 VPs on each of the edges
{r,ua} and {r,Tia}.

The rest of the proof is a generalization of the proof of Lemma 9, and is
omitted in this Extended Abstract. n

Lemma 11. For every h and I, if the {h,l)-RVPL problem is NP-complete then
(h + l,l)-RVPL is also an NP-complete problem.

Sketch of proof. We assume that {h, /)-RVPL is NP-complete and prove that
(/).+ 1, /)-RVPL is also NP-complete by a polynomial transformation from (h, /)-
RVPL. Given an instance of (h, /}-RVPL, a graph G = {V, E) and a vertex r £ V,
we construct a graph G' = {V, E') and a vertex r' £ V such that there exists a
(h + 1, /)-RVPL for G' if and only if there exists a (h, Z)-RVPL for G. For every
vertex in V, let deg(v) be the degree of the vertex (i.e., the number of vertices
adjacent to v in G). The graph G" is constructed from G by adding deg(v) ■ I
new vertices to each vertex v in G, and connecting each of them to v. Formally,
V = VU {wVti | v G V, i = 1,..., deg(v) ■ I}, E' = E U {{v, wVii} | v £ V, i =
l,...,deg{v)-'l}.

The root r' of G' is the vertex r £ V. We term the vertices and edges of G
in G' original and the rest of the vertices and edges in G' new. Obviously the
transformation is polynomial in the size of the input graph G.

Assume that there is an {h, /)-RVPL <f for G with root r. To get an (h + 1,1)-
RVPL #' for G' with root r' we add to 9 the VPs of length 1 from every v £ V
to every wV)i. It can also be shown (detailed omitted here) that if there is an
{h + l,/)-RVPL <f' for G' with root r', then in <P' for every original vertex v,
7i{v) < h and thus !f' induces an (h, /)-RVPL for G in the natural way (remove
from W all VPs with an endpoint which is a new vertex).

D

Sketch of proof, [of Theorem 7] We prove that for every h and / except for the
cases h = l, any /, and, h = 2,1=1 the (h, /)-RVPL problem is NP-complete by
induction on h. The basis is established in Lemmas 8, 9, and 10, where we prove
that the problems (2, /)-RVPL for every /, and (3,1)-RVPL are NP-complete. The
induction step is established in Lemma 11, where we prove that for every h and
/, the NP-completeness of the {h, /)-RVPL problem derives the NP-completeness
of </?.+ !, 0-RVPL. D

4 Polynomial Cases

In this section we show that the above NP-completeness results are strict, by
giving polynomial running time algorithms for the (2,1)-RVPL problem and the

535

(1, /)-RVPL problems for any / > 1. We do this by applying algorithms to find
flow in networks, which are known to be polynomial (e.g., [9, 8, 7]).

Given a directed graph G = {V,E), with capacities c(e)- positive integers -
for the edges e £ E, and two specified vertices s and t, we want to find a flow
of maximum total value from s to t. It is well-known that in the case of unit
capacities there is a flow of value k from s to t in G iff there are k edge-disjoint
paths connecting s and t, and that this holds also in a general network with
integral capacities, provided that each edge e is replaced by x parallel edges of
unit weight each, where x is the original capacity of e.

Given a graph G = {V, E) and a specified vertex r, to construct a (1, /}-RVPL
for it, we construct the graph G' - (V, £")> as follows. V = V U {<}. For E' we
construct a shortest-path BFS graph, rooted at r; this gives a directed layered
graph (whose layers are identical to those constructed by the Dinic's Algorithm;
see [8, 7]); The vertices in layer i,i > 0 are exactly the vertices in V whose
distance from r is exactly i. There are no edges within a layer, and all edges are
from layer i to layer i + 1, for some i > 0. All these edges have a capacity of /.
We then add all the edges (v,t) for every vertex v in V - {r}, with capacity 1.
The source and destination of G' are r and t, respectively. (See Figure 4(b)).

layers

(a) Initial network G (b) (V) - RVPL (c) (2,1) - RVPL

Fig. 4. The flow constructions

We then run any algorithm to determine the maximum flow in this network.
By the above, there is a flow of value \V\ - 1 in G' iff there are paths in G
from r to all other vertices in |V|, such that no edge is used in more than / of
them, which means that there is a solution to the (1, /)-RVPL problem iff there
is a flow of value at least |V| - 1 in G', which thus supplies a polynomial-time
algorithm for the (l,/)-RVPL problem.

536

Given a graph G = (V, E) and a specified vertex r, to construct a (2, 1)-
RVPL for it, we construct the following graph G' = {V, £")• V = V U {t}, and
E' is defined as follows. Let U denote the set of neighbors of r in G. For E' we
construct a shortest-path BFS graph, rooted at r (as above). This partitions the
vertices of V into layers, such that the vertices in layer i, i > 0 are exactly the
vertices in V whose distance from r is exactly i. As above, there are no edges
within a layer, and all edges are from layer i to layer i + 1, for some i > 0.
We then add to E' all the edges (v,t) for every vertex v in V - (U U {r}). All
the edges in E' have a capacity of 1, except for the edges emanating from r,
whose capacity is \V\ - \U\ - 1. The source and destination of G' are r and t,
respectively. (See Figure 4(c)). It can be shown that there is a (2,1}-RVPL iff
the maximum flow in the network is equal to | Vj - \U\ - 1, and thus the problem
is solved in polynomial time by solving the corresponding flow problem.

Note that, in the case of h = 1 and arbitrary /, if we run the network flow
algorithm on the original network to which t is added as above, and where
each edge is replaced with two anti-parallel edges (rather than using the layered
network) and capacities are similarly defined, we can determine whether a layout
exists, but with an arbitrary stretch factor.

5 Summary and Open Problems

We have considered a routing problem termed the "rooted VP layout problem"
that arises in ATM networks and we have investigated the computational com-
plexity of determining the existence of RVPL fulfilling a maximum hop count
h and a maximum load /. We have shown that deciding the existence of such
layouts is NP-complete for all values of h and /, except for the cases h = 2, / = 1
and h= 1, any /, for which we presented polynomial-time layout constructions,

based on network flow algorithms.
In classical graph embedding problems vertices are mapped to vertices and

edges are mapped to paths connecting the endpoints of their corresponding ver-
tices; this is a very common situation in embeddings within a VLSI networks.
In this context, the term dilation is used to denote the longest path onto which
an edge is embedded. Since in our constructions for the NP-complete results the
virtual paths were of length at most two, it follows that the above two problems
remain NP-complete for any given bound on the dilation.

An open problem is to extend these results to many-to-many virtual path
layouts, where we are interested to connect all pairs of vertices with virtual paths
under similar constraints, or to other cases when the pairs to be connected are

specified.
A more difficult problem seems to be the one in which not only shortest

path layouts are considered, but also layouts that are within a given stretch
factor / (that is, one in which the virtual channel between the desired vertices is
bounded by / times the shortest path between these vertices). Our polynomial-
time algorithms do not apply for a given stretch factor (though, as we noted, we

537

can use simpler algorithms for the case h = 1, any /, under the assumption of

an arbitrary stretch factor).

Acknowledgment: We thank Shlomo Moran for very helpful comments.

References

1. S. Ahn, R.P. Tsang, S.R. Tong, and D.H.C. Du. Virtual path layout design on

ATM networks. In INFOCOM'94, pages 192-200, 1994.
2. B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg. Compact distributed data

structures for adaptive routing. In 21st Symp. on Theory of Computing, pages

479-489, 1989.
3. B. Awerbuch and D. Peleg. Routing with polynomial communication-space trade-

off. S1AM Journal on Discrete Math, 5(2):151-162, May 1992.
4. J. Bürgin and D. Dorman. Broadband ISDN resource management: The role of

virtual paths. IEEE Communicatons Magazine, 29, 1991.
5. I. Cidon, O. Gerstel, and S. Zaks. A scalable approach to routing in ATM net-

works. In G. Tel and P.M.B. Vitänyi, editors, The 8th International Workshop on
Distributed Algorithms (LNCS 857), pages 209-222, Terschelling, The Netherlands,

October 1994. Submitted for publication in IEEE/ACM Trans, on Networking.
6. R. Cohen and A. Segall. Connection management and rerouting in ATM networks.

In INFOCOM'94, pages 184-191, 1994.
7. E. A. Dinic. Algorithm for solution of a problem of maximum flow in a network

with power estimation. Soviet Math. Dokl., Vol. 11, pages 1277 - 1280, 1970.

8. S. Even. Graph Algorithms. Computer Science Press, 1979.
9. L. R. Ford and D.R. Fulkerson. Flows in Networks. Princeton Univ. Press, Prince-

ton, NJ, 1962.
10. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman and Co., 1979.
11. O. Gerstel, A. Wool, and S. Zaks. Optimal layouts on a chain ATM network. 3rd

Annual European Symposium on Algorithms (ESA), (LNCS 979), Corfu, Greece,
September 1995, pages 508-522. To appear in Discrete Applied Mathematics.

12. O. Gerstel and S. Zaks. The virtual path layout problem in fast networks. In
The 13th ACM Symp. on Principles of Distributed Computing, pages 235-243, Los

Angeles, USA, August 1994.
13. R. Händler and M.N. Huber. Integrated Broadband Networks: an introduction to

ATM-based networks. Addison-Wesley, 1991.
14. ITU recommendation. I series (B-ISDN), Blue Book, November 1990.
15. F.Y.S. Lin and K.T. Cheng. Virtual path assignment and virtual circuit routing

in ATM networks. In GLOBCOM'93, pages 436-441, 1993.

16. C. Partridge. Gigabit Networking. Addison Wesley, 1994.
17. K.I. Sato, S. Ohta, and I. Tokizawa. Broad-band ATM network architecture based

on virtual paths. IEEE Transactions on Communications, 38(8):1212-1222, Au-

gust 1990.
18. Y. Sato and K.I. Sato. Virtual path and link capacity design for ATM networks.

IEEE Journal of Selected Areas in Communications, 9, 1991.

Efficiency of Asynchronous Systems
and Read Arcs in Petri Nets

Walter Vogler *, Universität Augsburg, Germany-

Abstract

Two solutions to the MUTEX-problem are compared w.r.t. their tem-
poral efficiency. For this, a formerly developed efficiency-testing for asyn-
chronous systems is adapted to nets with so-called read arcs. The close re-
lation between efficiency-testing and fairness is pointed out, and it is shown
that read arcs are necessary for any solution to the MUTEX-problem.

1 Introduction

The testing scenario of [DNH84] has been developed further in [Vog95b, JV96] in
order to compare the temporal efficiency of asynchronous systems - using Petri
nets as system models. This approach is applied here to two solutions of the
MUTEX-problem based on token passing. The corresponding nets contain what
we call read arcs, and one of our main results is that this is in fact necessary.

c

® ÖO^O^H
Figure 1

In Petri nets, the check of a side-condition is modelled with a loop as in
Figure 1: the occurrence of t removes the condition c and restores it afterwards;
hence, t and £' can occur in any order, but not at the same time. This is certainly
adequate if e.g. c models the processor that t and t' run on. But if e.g. c is a
value from a data base which can be read concurrently, then t and i' can occur
at the same time. We model such cases with special read arcs instead of loops.

Read arcs have not found so much attention in the past, probably because
loops and read arcs are treated just the same if we only look at interleaving
semantics. But they do make a difference when we explicitly take into account
concurrency. E.g. [CH93] discusses a step semantics and [MR95] defines net-

"This work was partially supported by the DFG-project 'Halbordnungstesten'. Author's
address: Institut für Informatik, Universität Augsburg, D-86135 Augsburg, Germany, email:
vogler@informatik.uni-augsburg.de

539

processes for nets with read arcs. In both approaches, a net with read arcs can
be translated to an equivalent net without, but it is argued in [MR95] that the
former is more natural and compact. In clear contrast, read arcs are even better
motivated in our setting, since they add relevant expressivity: the MUTEX-
problem can only be solved with nets having read arcs; this also holds, if we
disregard efficiency and simply take fair behaviour as a basis.

In the testing approach of [DNH84], a system is an implementation if it per-
forms in all environments, i.e. for all users, just as well as the specification. While
in the classical setting successful performance only depends on the functionality,
i.e. which actions are executed, the testing approach was refined in [Vog95b] to
consider also efficiency. The must-version of this efficiency testing (concerned
with worst case behaviour) is not so easy to define in the case of asynchronous
systems, where the components work with indeterminate relative speeds; most
often, this is interpreted as 'each component may work arbitrarily slow'. With
this view, the worst case is simply that nothing is done for a long time, hence
every test is failed and we do not have a sensible theory of testing.

As a way out, [JV96] assumes that each action is performed within one unit of
time (or is disabled within this time). Such an upper time bound is a reasonable
basis for judging the efficiency; since actions can also be performed arbitrarily
fast, the components work with indeterminate relative speeds even under this
assumption, and we have a valid theory for asynchronous systems. It turns out
that, for the resulting testing scenario, the implementation preorder is a sensible
faster-than relation. Three variants based on dense time are considered and each
of them is shown to coincide with a discretely timed version. In the most simple
variant, which we will generalize here to nets with read arcs, transitions must
fire within time 1 after enabling, but the firing itself is instantaneous.

After defining some basic concepts in Section 2, we define our asynchronous
firing rule in Section 3 and present a characterization of the faster-than relation
that results from testing; also, the use of loops is discussed. Section 4 shows the
close relation between efficiency testing and fairness (in the sense of progress)
demonstrating that our efficiency testing is concerned with asynchronous be-
haviour; it is also described how to determine the fair behaviour of a composed
system in a modular fashion. The two MUTEX-solutions with read arcs are
studied in Section 5. We view a MUTEX-solution as a scheduler, i.e. an inde-
pendent component the users have to synchronize with. This view allows a clean
formulation of the correctness requirements and fits very well the behaviour no-
tions we have given in Sections 3 and 4; we prove the correctness of one of our
solutions and then show that no ordinary net without read arcs can be correct
in this sense. Finally, we show that, from the point of view of one user, one
solution is more efficient than the other.

Due to lack of space, the proofs had to be omitted; see [Vog96], also for a
discussion of the literature on the efficiency of asynchronous systems. I thank
Roberto Gorrieri and Lars Jenner for their comments, which helped to improve

the presentation of this paper.

540

2 Basic Notions of Petri Nets with Read Arcs

We use safe nets (extended with read arcs) whose transitions are labelled with
actions from some infinite alphabet £ or with the empty word A, indicating
internal, unobservable actions. £ contains a special action w, which we will need
in our tests to indicate success.

Thus, a net N = (S,T,F,R,l, MN) consists of finite disjoint sets 5 of places
and T of transitions, the flow F C S xTUT X S consisting of (ordinary) arcs,
the set of read arcs R C 5 x T U T X S, the labelling l:T->SU {A}, and the
initial marking MJV : S -» {0,1}; R is always symmetric with R D F — 0. As
usual, we draw transitions as boxes, places as circles and arcs as arrows; read
arcs are drawn as lines without arrow heads, i.e. we identify the two elements
(x, y), (y, x) £ R. The net is called ordinary, if R = 0.

For each i£SUT, the (full) preset of a; is 'x = {y \ (y, x) £ F U R} and
the (full) postset of x is x* = {y \ (x, y) £ F U R}; the reduced preset of x is
°x = {y | (y, x) G .F} and the reduced postset of a; is se° = {y \ (x,y) £ F}.
If E £ °2/ D y°, then x and y form a loop. A marking is a function 5 —» JV0.
We sometimes regard sets as characteristic functions, which map the elements
of the sets to 1 and are 0 everywhere else; hence, we can e.g. add a marking and
a postset of a transition or compare them componentwise.

Our basic firing rule extends the firing rule for ordinary nets by regarding
the read arcs as loops, i.e. as ordinary arcs (since R is symmetric). A transition
t is enabled under a marking M, denoted by M[t), if 't < M. If M\t) and
M' = M + f - *t (which is the same as M + t° - °t), then we write M[t)M'
and say that t can occur or fire under M yielding the follower marking M'.

Enabling and occurrence is extended to sequences as usual. If w £ T* is
enabled under Mff, it is called a firing sequence. We extend the labelling to
sequences of transitions as usual, i.e. homomorphically; thus, internal actions
are deleted in this image of a sequence. With this, we lift the enabledness and
firing definitions to the level of actions: a sequence v of actions is enabled under
a marking M, denoted by M[v)), if M[w) and l(w) = v for some w £ T*. If
M = MM, then v is called a trace; the set of traces is the language of N.

A marking M is called reachable if MM[W)M for some w £ T*. The net is
safe if M (s) < 1 for all places s and reachable markings M.

General assumption: All nets considered in this paper are safe and only have
transitions t with °t ^ 0. (The latter condition is no serious restriction, since it
can be satisfied by adding a loop between t and a new marked place, if °t were
empty otherwise; this addition does not change the firing sequences.)

We use a TCSP-like parallel composition \\A and write || for ||s—{o>}- Nets
combined with ||^ run in parallel and have to synchronize on actions from A.
To construct JVi \\A N2, we take the disjoint union of Ni and N2, combine each
a-labelled transition ti of iVi with each a-labelled transition t2 from N2 if o £ A
(i.e. introduce a new a-labelled transition (ii,*2) that inherits all arcs from t\
and t2), and delete all the original a-labelled transitions in N\ and iV2 if a G A.

541

3 Timed Behaviour of Asynchronous Systems

We now describe the asynchronous behaviour of a parallel system, taking into
account at what times things happen. Hence, the components of the system
vary in speed - but we assume that they are guaranteed to perform each enabled
action within at most one unit of time; this upper time bound allows the relative
speeds of the components to vary arbitrarily, since we have no positive lower time
bound. Thus, the behaviour we define is truly asynchronous.

For ordinary nets, [JV96] bases a testing preorder on such an asynchronous
firing rule using dense time, shows that one can just as well use discrete time, and
gives a characterization of the testing preorder. These results can be generalized
to nets with read arcs [Vog96]; here, we immediately define an asynchronous
firing rule using discrete time and present the respective characterization.

Due to the time bound 1, a newly enabled transition fires or is disabled within
time 0 - or it becomes urgent after one time-unit (denoted by a), i.e. it has no
time left and must fire or must be disabled before the next a.

The crucial point of read arcs is that they differ from loops w.r.t. disabling.
If we have a loop (c,t), (t,c) and an arc or read arc (c,f) for a place c and
urgent transitions t and t' (see Figure 1), then firing t removes the token from c
and, thus, disables t' momentarily; hence, t' is not urgent any more. If, instead,
(c, t) and (t, c) form a read arc, t just checks for the presence of a token without
removing it and, thus, t' is not disabled and remains urgent; hence, t and t' will
occur faster - and this is what we should expect since t does not block t'.

Definition 3.1 An instantaneous description ID = (M, U) consists of a mark-
ing M and a set U of urgent transitions. The initial ID is IDN = (MN, UN) with
UN = -0 I MN[t)}. We write (M, U)[e)(M\ U') in one of the following cases:
1. e = t e T, M[t)M', U' = U- {t'\°t n •*' ± 0})
2.e = a1M = M',U = 9,U' = {t\ M[t)}

DFS(N) - {w | IDN[w) ID} is the set of discretely timed) firing sequences
of N, DL(N) = {l{w) | w G DFS{N)} is the discrete language of N containing
the discrete traces of N, where 1(a) = a. For w e DFS(N) or w € DL(N), ((w)
is the number of CT'S in w. The behaviour inbetween two a's is called a round.

We call a net testable, if none of its transitions is labelled with w. A testable
net TV satisfies a timed test (O, D), N must (O, D), if each w £ DL(N\\0) with
((w) > D contains some w; we call a net Ni faster than a net N2, Nx Zl N2, if
for all (O, D) we have N2 must (O, D) => JV"i must (O, D). □

Part 1 allows enabled transitions - urgent or not - to fire; hence, DL(N)
includes the language of N and describes an asynchronous behaviour. U = 0 in
Part 2 requires that no urgent transition is delayed over the following a. Each
enabled transition is urgent after a. Thus, a discrete trace is any ordinary trace
subdivided into rounds by a\ such that no transition enabled at (i.e. immediately
before) one a is continuously enabled until after the next a.

The definitions for testing are standard except for the time bound, where
we require that every run of the system embedded in the test environment is

542

successful within time D; hence, we do not consider traces that do not last for
time D. We call the implementation Ni faster, since it might satisfy more tests
and, in particular, some test nets within a shorter time.

The test-preorder ZJ formalizes observable difference in efficiency; refering to
all possible tests, it is not easy to work with directly. Thus, we now characterize
ZJ by so-called i-refusal traces [JV96]: we replace the IT'S in a discrete trace by
sets of actions, indicating the time-steps now. Such a set contains actions that
are not urgent, i.e. can be refused when the time-step occurs.

Definition 3.2 For discrete instantaneous descriptions (M, U) and (M', U') we
write (M,U)[e)r(M',U') if one of the following cases applies:
1. e = t G T, M[t)M', U' = U- {t'\°t n •*' ^ 0})
2. e = X C E, M = AT, U' = {t | M[t)}, VteU : l(t) <£ X U {A}; X is a refusal

set.
The corresponding i-refusal firing sequences form the set RFS(N). RT(N) =
{l(w) | w G RFS(N)} is the set of i-refusal traces where l(X) = X. □

Occurrence of E exactly corresponds to that of a, hence:

Prop. 3.3 For nets Nx andN2, RT(Nx) C RT(N2) implies DL{NX) C DL(N2).

We will show later that read arcs add relevant expressivity; here, we state
that ordinary loops are in fact not needed in nets with read arcs.

Prop. 3.4 For each net N, there is a loopless net N' with RT(N) = RT(N').

Still, loops are certainly often adequate: if two activities run on the same
processor, they cannot occur together; if one takes place, the other has to wait
a little - and this is just how we treat two transitions with a common loop-place
here. Also, our construction for 3.4 makes nets possibly exponentially larger.
Finally, on the level of discrete firing sequences, loops have expressivity of their
own, since no net without loops has the same discrete firing sequences as the
one shown in Figure 1:

Prop. 3.5 IfN is a loopless net such thatt',tt' G DFS(N), ihenta £ DFS(N).

To show that ÄT-semantics induces a congruence for H^, one defines \\A for
i-refusal traces: actions from A are merged, while others are interleaved; refusal
sets are combined as in ordinary failure semantics.

Definition 3.6 Let u,te(SU 7>(E))*, A C E. Then u \\A v is the set of all
w G (E U 'P(E))* such that for some n we have u = u±.. .un, v = vi...vn,
w = u>i... wn and for i = 1,..., n one of the following cases applies:

- ui = Vi = Wi G A
- Ui = u>i G (E — J4) and V{ = A, or v^ = tUj G (E — A) and Ui = A
- m, Vi, Wi C E and Wi C ((ui U Vi) n -A) U (ui fl Vi) □

Theorem 3.7 gives us one half of the characterization in 3.8.

Theorem 3.7 For ACE and nets Ni and N2, we have that RT(NI\\AN2) =
(J {u\\Av | u G RT(N!), v £ RT{N2)}.

543

Theorem 3.8 For testable nets, Nx =1 N2 if and only if RT(N1) C RT(N2).

Observe that a faster system has less i-refusal traces; such a trace is a witness
for slow behaviour, it is something 'bad' due to the refusal information.

Corollary 3.9 Inclusion of RT-semantics is fully abstract w.r.t. inclusion of
DL-semantics and parallel composition, i.e. it is the coarsest precongruence for

parallel composition that respects DL-inclusion.

Theorem 3.8 essentially reduces ~J to an inclusion of regular languages, which
implies decidability. The testing preorder 3 is als0 compatible with some other
interesting operations, namely relabelling, hiding and restriction.

4 Efficiency Testing and Fairness

Now we relate our notion of asynchronous behaviour to (weak) fairness (or
progress assumption); at the same time, we study compositionality for fair be-
haviour. Fairness requires that a continuously enabled activity should eventually
occur; in real life, this is automatically true, i.e. it does not have to be imple-
mented. First, we extend the definition of the various firing sequences to infinite
sequences taking into account that an infinite run should take infinite time.

Definition 4.1 An infinite sequence is a (discrete/i-refusal) firing sequence if
all its finite prefixes are (discrete/i-refusal) firing sequences.

A progressing (i-refusal) firing sequence is an infinite discrete, i-refusal resp.,
firing sequence with infinitely many cr's, sets resp. The images of these sequences
are the progressing (refusal) traces, forming PL(N), PRT(N) resp.

For a progressing (refusal) trace v, a(v) denotes the sequence of actions in
v, which remains after removing all cr's, sets resp. □

Pi?T-(PI-)semantics extends ÄT-(Z>Zr)semantics to infinite runs, required to
take infinite time. Using König's Lemma, one can show that nets have the same
PRT-(oi P2^)semantics if and only if they have the same RT-(oi DL-)semantics.

Classically, an infinite firing sequence MN\t0)Mi\ti)M2 .. ■ would be called
fair if we have: if some transition t is enabled under all Mi for i > j, then t = U
for some i > j; hence, an infinite sequence of t"s would not be fair in the net of
Figure 1, since t is enabled under all states reached, but never occurs. But the
sequence should be fair: t is not continuously enabled, since every occurrence of
t' disables it momentarily, compare [Rei84, Vog95a]. Thus, we will require that
t is enabled also while each U with i > j is firing. For this, we have to keep in
mind that a read arc does not consume a token.

Definition 4.2 For a transition t, a finite firing sequence Mjv[i0)Mi[*i) ■ ■ ■ Mn

is t-fair, if not Mn[t). An infinite firing sequence MN[to)Mi[ti)M2 ... is t-fair, if
we have: if t is enabled under all Mi - °U for i greater than some j, then t — U
for some i > j. A finite or infinite firing sequence is fair, if it is t-fair for all
transitions t. The fair language of N is Fair(N) = {v\v — l(w) for some fair

firing sequence w}. a

544

Now we establish a first relation of our approach to fairness: PL(N), the
infinite version of DL(N), describes an asynchronous behaviour just as Fair(N).

Theorem 4.3 For all nets N, Fair(N) = {v \ 3u G PL(N) : v = a(u) }

Next, we determine the coarsest precongruence refining fair-language inclu-
sion, something that is needed when systems are constructed bottom-up with ||^.
Theorem 4.5 was first obtained in [G0I88]. We improve the original results by
allowing read arcs and loops; also, Gold considered safe nets where always °t ^ 0
- as we do -, but allowed unsafe nets with isolated transitions as environments
in the proof of 4.5 iii); this is improved, too.

Definition 4.4 For a net N, define the fair failure semantics by TT{N) =
{(v, X) I X C E and v = l(w) for some, possibly infinite, firing sequence w that
is f-fair for all transitions t with l(t) G X U {A}}. Q

The intuition for (v, X) G TT(N) is that all actions in X can be refused when
v is performed - in the sense, that fairness does not force additional performance
of these actions.

Theorem 4.5 i) For all nets N, Fair(N) = {v | (v, S) G TT{N)}.
ii) For AC £ and nets Nt and N2) TT{Nl\\AN2) = {(w,X) | 3(wi,Xi) G

TT{Ni), i = 1, 2 : w G ^i|U^2 and X C ((Xi U X2) nA)U (Xx D X2)}.
iii) Inclusion of TT-semantics is fully abstract w.r.t. fair-language inclusion

and parallel composition in the sense of Corollary 3.9.

This result and the following, second relation to our testing approach will
also be useful in the next section.

Theorem 4.6 For a net N, (v, X) G TT{N) if and only if there is some w G
PRT(N) such that v = a(w) and, for each x G X, there is some suffix of w
where x is in all refusal sets.

5 Two Token-Passing MUTEX-Processes

In this section we will show how useful, in fact necessary, read arcs are to achieve
mutual exclusion. Both our processes pass an access-token around and only the
owner of the token may access the critical section, which guarantees mutual
exclusion. MUTEXi, shown below, is a modification - using read arcs - of a
Petri net solution given in [KW95]. The first user has priority, i.e. owns the
access-token lying on p\. He can repeatedly request access with ri, enter the
critical section with e\ (marking ci) and Zeave it with l\. The second user misses
the access-token (m2 is marked); if she requests access, she has to order the token
by marking o2, and now the first user might #rant the token by marking g2.

For MUTEXi to work properly, [KW95] assumes fairness in general: e.g., if
the internal transition ordering the token is enabled, it has to fire eventually;
otherwise the token will never be passed and the requesting user will never enter

545

the critical section. In our solution, it is essential that the upper ei-transition
checks with a read arc that the token has not been ordered. This check does not
disable the ordering transition; so, if the latter is enabled and time progresses,
then it will order the token, which now cannot be used by the owner to enter
the critical section again and will be passed eventually,

reqj

As usual, MUTEXi is seen in [KW95] as 'code', which has to be inserted into
the code of the users; e.g. the ri-transition is the first user requesting access.
Since the first user should not be obliged to request, [KW95] has a special class of
'weak' transitions for which fairness is not assumed. This concept is not needed
in our view: we see a net such as MUTEXi as a scheduler guaranteeing mutual
exclusion; the user processes are put in parallel with such a MUTEX-process

using ||{ri,ei,ii,r2,e2,(2}) they issue their requests to it and are then allowed to
enter the critical section. In this view, the ri-transition is the MUTEX-process
offering the possibility to request; if this offer is not used, then, technically, time
can pass in an i-refusal trace with a refusal set not containing r^.

Our view seems to be very beneficial as a clean way to deal with the question
what users do while being noncritical; they may e.g. communicate with each
other and even run into deadlocks - it is not completely clear whether this is
allowed in the usual view. Here, it obviously is allowed, but we do not have to
deal with it explicitly, since such a behaviour is not part of the MUTEX-process.
The obligation to prove that a user can indeed request becomes obvious in our
view - this obligation is often ignored, see also below.

For the solution of [KW95], fairness is actually not enough; [KW95] therefore
requires a restricted form of strong fairness by introducing 'fair arcs'. We will
show that, using read arcs, strong fairness is not needed at all.

While in MUTEXi the token has to be ordered, it is passed automatically
in MUTEX2 below if it has been used or is not needed. The check whether the
token is needed or not is performed by the read arcs from nc\ and nc2.

We will now argue in our setting that MUTEX2 is correct, omitting the
similar arguments for MUTEXi. Safety is easy: if one user enters, then he must
leave before another enter is possible, since we always have exactly one token
on the places ci, pi, p2 and c2. (This set is an S-invariant, as also used e.g. in
[KW95].) Also, MUTEX2 ensures that the users follow the right protocol, i.e.

546

it allows the actions n, et and k only to be performed cyclically in this order.
Liveness - i.e. whenever a user wishes to enter he will be able to do so eventually
- is more difficult and requires to assume fairness. First, we have to make sure

that a user may always perform a request.

Prop. 5.1 Let (w,X) G TT(MUTEX2) and i G {1,2}. Then in w r{ occurs

and each l{ is followed by another rj, or ri £ X.

This proposition says that if the environment, i.e. the t-th user, tries to
request (enables an rj-transition permanently) at a proper moment (initially or
after leaving, i.e. when he is not already requesting or in the critical section), then
the request will be performed. If it were not, neither the user (by assumption)
nor MUTEX2 (by 5.1) would refuse rit hence the combined run according to
4.5 ii) would not refuse T-J, i.e. it would violate fairness according to 4.5 i). By
Theorem 4.6, we can formulate 5.1 equivalently as: each w G PRT(MUTEX2)
contains T\ as in 5.1 or at some stage no following refusal set contains n. The
proof of 5.1 uses this variant and shows in fact that, after k, r; can be refused
at most once before it occurs again. Similar variants are used to prove 5.2 and
5.3, where the former states that a user that enters and then wants to leave will
do so. (In fact, he will do so in the present or next round.)

Prop. 5.2 Let {w,X) G TT{MVTEX2) and i G {1,2}. Then each e{ in w is

followed by an U, or k 0 X.

The most difficult part is to show that a requesting user will eventually enter;
here, we must require that a requesting user is indeed willing to enter and also
that a user that enters is willing to leave after a while. Since by 5.2, willingness to
leave ensures that this happens indeed, we can restrict attention to fair failures
where each e; is followed by k; for these we show that each requesting user will
enter unless some user has requested but is not willing to enter.

Prop. 5.3 Let i G {1,2} and (w,X) G TT{MXJTEX2) such that each et is
followed by k. Then either each 7-j is followed by e{ or for some j G {1, 2} some

rj is not followed by ej and ey ^ X.

We now come to the main result regarding the expressiveness of read arcs.

547

Theorem 5.4 Let N be a correct MUTEX-process, i.e. a net that satisfies
Propositions 5.1 to 5.3 and guarantees mutual exclusion, namely that e- and
l-transitions occur alternatingly. Then N has read arcs.

Independently, [KW96] have shown a similar result. For correctness, some
state-properties are required and a certain net-structure is prescribed there. The
latter makes the result quite dependent on Petri nets as system models, whereas
our MUTEX-specification in 5.1-5.3 is action-oriented and, thus, fairly model-
independent. Also our proof seems to be transferable to other models.

One could also view 5.4 as evidence that a 'simple' progress assumption is
not enough to achieve mutual exclusion, as argued in [KW96], who recommend
'fair arcs' as a way to introduce strong fairness in a limited way. Read arcs
seem less drastic, but they allow a 'refined' progress assumption, since with read
arcs repeated read accesses to one location do not block a write access to this
location. This is a restricted form of what [Ray86] calls fairness of hardware.

In fact, the discussion of Dekker's and Knuth's algorithms in [Ray86, p.27/28]
might give the impression that the latter does not rely on any fairness of hard-
ware - something that should be false in view of our theorem. And it is: without
this fairness, one user-process in Knuth's algorithm can e.g. repeatedly test the
variable turn in its pre-protocol, thereby preventing the other process from writ-
ing turn in its post-protocol and in effect from requesting again. Thus, 5.1 treats
a realistic possibility for failure that is often ignored.

We conclude the discussion of the MUTEX-problem by comparing the effi-
ciency of MUTEXi and MUTEX2. Our results are intuitively plausible, hence
they demonstrate the feasability of our approach.

The first observation is that both processes have their advantages: if there
is no competition, then moving the access-token to the other part of the net is a
useless and time consuming effort; on the other hand, if the competition is strong,
ordering the token is an additional overhead. This is demonstrated by the follow-
ing i-refusal traces. If in MUTEX2 the access-token is moved to p2 immediately
before rx, then t becomes urgent only in the second round, at the end of which
d can still be refused; we get Pl{ei}{ei} £ RT(MUTEX2) \ RT(MUTEXX)
showing that sometimes MUTEX2 is slower - namely if the second user is not
interested in entering the critical section. Vice versa, MUTEXi is sometimes
slower as witnessed by r2{e2}{e2}{e2} £ RT{MUTEX1)\RT(MUTEX2), where
an additional round is needed to order the token.

RT(MUTEXi) shows how efficiently the respective MUTEX-process serves
the environment consisting of both users. Interestingly, we can also use our
approach to study a different view: how efficiently are the needs of the first user
met by the system, which for him consists of a MUTEX-process and the second
user? As second user, we take a standard user who, in the non-critical section,
can choose between requesting with r2 and some other internal activity; if she
requests, she is willing to enter the critical section in the next round and to
leave it again in the round after. As a net, this user looks like the right hand

548

side of MUTEX2, i.e. has places nc2, req2 and c2 and the transitions between
them, plus an internal transition on a loop with nc2. We compose this user
with MUTEXi via ||{r2,eai(3} and hide the synchronized actions (change them to
A), since from the point of view of the first user they are internal activities of
the system. Thus, MUTEXX and MUTEX2 are transformed to MUTEX3 and
MUTEXi It is plausible that MUTEXi is more efficient than MUTEX3: we
consider the worst case efficiency; naturally, for the first user strong competition
is the worst case, and in the case of strong competition MUTEX2 is more efficient

since it saves the additional effort of ordering the token.

Theorem 5.5 i) MUTEXi is strictly faster than MUTEX3.
ii) The efficiency of MUTEX2 and that of MUTEXy are incomparable.

References
[CH93] S. Christensen, N.D. Hansen. Coloured Petri nets extended with place

capacities, test arcs, and inhibitor arcs. In M. Ajmone-Marsan, edi-
tor, Applications and Theory of Petri Nets 1993, LNCS 691, 186-205.

Springer, 1993.
[DNH84] R. De Nicola, M.C.B. Hennessy. Testing equivalence for processes.

Theoret. Comput. Sei., 34:83-133, 1984.

[G0I88] R. Gold. Verklemmungsfreiheit bei modularer Konstruktion fairer
Petrinetze. Diplomarbeit, Techn. Univ. München, 1988.

[JV96] L. Jenner, W. Vogler. Fast asynchronous systems in dense time. In
F. Meyer auf der Heide et al., editors, ICALP'96, LNCS 1099, 75-86.

Springer, 1996.
[KW95] E. Kindler, R. Walter. Message passing mutex. In J. Desel, editor,

Structures in Concurrency Theory, Worksh. in Computing, 205-219.

Springer, 1995.
[KW96] E. Kindler, R. Walter. Mutex needs fairness. To appear, 1996.

[MR95] U. Montanari, F. Rossi. Contextual nets. Ada Informatica, 32:545-

596, 1995.
[Ray86] M. Raynal. Algorithms for Mutual Exclusion. North Oxford Academic,

1986.
[Rei84] W. Reisig. Partial order semantics versus interleaving semantics for

CSP-like languages and its impact on fairness. In J. Paredaens, editor,
ICALP'84, LNCS 172, 403-413. Springer, 1984.

[Vog95a] W. Vogler. Fairness and partial order semantics. Information Process-

ing Letters, 55:33-39, 1995.
[Vog95b] W. Vogler. Timed testing of concurrent systems. Information and

Computation, 121:149-171, 1995.
[Vog96] W. Vogler. Efficiency of asynchronous systems and read arcs in Petri

nets. 1996. See http://www.math.uni-augsburg.de/~vogler/.

Bisimulation Equivalence is Decidable for
One-Counter Processes J

Petr Jancar
Univ. of Ostrava and Techn. Univ. of Ostrava, Czech Republic

e-mail: jancar@osu.cz

Abstract. It is shown that bisimulation equivalence is decidable for the
processes generated by (nondeterministic) pushdown automata where the
pushdown behaves like a counter, in fact. Also regularity, i.e. bisimulation
equivalence with some finite-state process, is shown to be decidable for the
mentioned processes.

1 Introduction

In recent years, growing effort has been devoted to the area of verification of
(potentially) infinite-state systems. An important studied question is that of
(un)decidability for various (behavioural) equivalences. A prominent role among
these equivalences is played by bisimulation equivalence, or bisimilarity, which is
more appropriate for (concurrent, reactive etc.) systems than e.g. the traditional
language equivalence (cf. [Mil89]). Roughly speaking, two processes (states of
systems) are bisimilar iff for any evolving of one process caused by performing an
action labelled a there is an action labelled a which causes evolving of the other
process in such a way that the resulting processes (states) are again bisimilar.

Several recent results help to highlight and understand the decidability
boundaries for bisimilarity, which are different from those for language equiva-
lence. It is e.g. known that bisimilarity is decidable for Basic Parallel Processes
([CHM93]) while the language equivalence is undecidable for them ([Hir93]).
More relevant here are context-free processes (generated by context-free gram-
mars), also called BPA-processes, where the language equivalence is well-known
to be undecidable while bisimilarity is decidable ([CHS95]). Pushdown automata
(which are in the 'language sense' equivalent to context-free grammars) generate
a richer family than that of context-free processes when considering bisimulation
equivalence. These pushdown processes can be identified with 'state-pushdown'
configurations, whose behaviour is determined by the transition rules (not allow-
ing e-rules). Recently Stirling ([Sti96]) has shown the decidability of bisimilarity
for normed pushdown processes, while the question remains open for the whole
class.

Here we show the decidability of bisimilarity for another subclass of pushdown
processes: we will not impose the restriction of normedness but we consider the
case when the pushdown behaves like a counter, in fact; i.e. there is only one
stack symbol, besides a special bottom symbol which enables to test 'emptiness'
of the pushdown. Let us call such processes as one-counter processes. The

1 Supported by the Grant Agency of the Czech Republic, Grant No. 201/97/0456, and also
by the Univ. of Ostrava grant No. 031/97

550

decidability result for one-counter processes also confirms the conjecture by the
author ([Jan93]) that bisimilarity for labelled Petri nets with one unbounded
place is decidable (while two unbounded places suffice for undecidability).

Semidecidability of nonbisimilarity of pushdown processes can be derived
easily in the standard way applied for image finite systems. Therefore semide-
cidability of bisimilarity is what matters here. In similar cases, the key point is to
show that the bisimilarity case has always a finite (or finitely presented) witness
whose validity can be checked algorithmically. In our case, at the one-counter
processes, the role of such witnesses is played by (descriptions of) semilinear

sets; this approach was already used in [Jan93] or [Esp95].
Roughly speaking, the existence of such witnesses (i.e. semilinear bisimula-

tions) for one-counter processes can be anticipated from the intuition that two
bisimilar processes have to have the same 'distance' (minimum number of steps)
to a 'bottom process' (configuration with only the bottom symbol in the push-
down=counter) when such bottom processes matter at all; it can be guessed
that then the counter heights of such processes have to be, in principle, linearly
related. The possibility of an algorithmic checking of a witness' validity can be
easily observed due to the decidability of Presburger arithmetic (although this

deep result is surely not needed in its whole).
Another natural decidability question is that of regularity of a given process,

which will in our context mean the bisimulation equivalence with some finite-
state process. This problem has been shown to be decidable for labelled Petri
nets ([JE96]), which include BPP-processes. In [BCS96], the decidability is
shown for BPA-processes (where the 'language regularity' is well-known to be
undecidable). The question for the whole class of pushdown processes is still open
(while for the class of normed pushdown processes is easily seen to be decidable).
As an additional result, we demonstrate that regularity is also decidable for one-

counter processes.
In fact, one-counter processes can be 'almost' identified with labelled Petri

nets with one unbounded place; but unlike Petri nets they can 'test for zero'.
Nevertheless the strategy used in the proof of decidability of regularity for la-

belled Petri nets ([JE96]) applies for them as well.
Section 2 contains definitions and claims the results; the proofs are given in

Section 3. Section 4 adds some further comments.

2 Definitions and Results

We begin with recalling some standard notions.
A labelled transition system, a system for short, is a tuple T = (S, {—>}0EA)

where S is the set of states, A is the set of actions (or action names) and each

-^ is a binary (transition) relation on S (—»-C S x S). By E —► F (E, F e S)

we mean that E -^ F for some a; -►* denotes the reflexive and transitive
closure of the relation -». By E -►* S' {S' is reachable from E), where S' C S,

we mean E —*■* F for some F € S'. In the obvious sense, we also use E —► F

where u G ^4*; |w| denotes the length of the sequence u.

551

A transition system T = (S, {-^}ae^0 is finite iff S and A are finite. T
is image finite iff succ(E) = \JaeA succa(E) is finite for any E £ S, where we

define succa(E) = {E1 \ E -^ E'}.
Speaking of a process E, we always consider it as (being associated with) a

state in a transition system which is clear from the context. When necessary,
we denote the relevant transition system by T{E). Using the term of a finite,
or rather a finite-state, process E, we mean that T(E) is finite; similarly for an
image finite process.

A binary relation V, between processes is a bisimulation relation provided
that whenever (E, F) £ TZ, for each action a

iiE-^E' then there is F' s.t. F -?- F' and (£", F') G 11, and

if F -% F' then there is E' s.t. E -^ E' and (E1, F') G ft.

Two processes E and F are bisimulation equivalent, or bisimilar, written E ~ F,
if there is a bisimulation relation ft relating them.

The family {~n\ n > 0} (of relations between processes) is defined induc-
tively:

1/ E ~o F for all processes F, F
2/ E ~n+i F iff for each a

if £ -^ F' then there is F' s.t. F ^ F' and F' ~n F', and
if F -?- F' then there is E' s.t. E-^ E' and F' ~n F'.

Let us recall some 'folklore' results.

Proposition 2.1 For image finite processes, E ~ F iff\/n>0:E ~n F.

Let us call T = («S, {—»lae^) an admissible system iff the state set S is finite
or countably infinite (identified with a set of sequences over a finite alphabet),
the action set A is finite, T is image finite, and all the successor functions
succa : S —► 2s are effectively computable.

Proposition 2.2 Considering only admissible transition systems, all the rela-
tions E ~„ F (n G M) are decidable. Therefore the problem E •/• F is semide-
cidable.

Now we define the pushdown processes (cf. e.g. [Sti96]); loosely speaking,
these are state-pushdown configurations of a given (nondeterministic) pushdown
automaton without e-rules. Then we introduce the 'one-counter case'.

Suppose a given collection (i.e. a pushdown automaton viewed as a 'push-
down process generator') M — (V,T,A,B) where V = {pi,P2, ■ ■ ■ ,Pk} is a
finite set of states, T = {Xi, X2, ■ ■ ■, Xm} is a finite set of stack symbols,
A = {o.j, 02, . . ., an} is a finite set of actions, and B is a finite set of basic

transitions, each of the form pX —► qa where p, q are states, a is an action, X
is a stack symbol and a is a sequence of stack symbols (i.e. a G F*). The transi-
tion system TM generated by M has the expressions pa (p G V, a G T*), called

552

pushdown processes, as states, A is its action set, and the transition relations
are in the straightforward way determined by the basic transitions together with
the following prefix rule: if pX -^ qa then pXß -^ qaß (for any^/3 G F*).

When T = {X, Z} and any basic transition is of the form pX —► qa or

pZ -I* qaZ where a G {X}* (we call M = {V,T,A,B) a one-counter machine
in such a case), then any pXX ...XZ is called a one-counter process. For
convenience, a process pXmZ will be denoted by p(m) (m G //", where Af denotes

the set of all nonnegative integers).
Notice that any process reachable from a one-counter process is a one-counter

process as well. Thus for a one-counter machine M we can safely suppose that

TM has states of the form p(m) only.
Our main aim here is to show

Theorem 2.3 Bisimulation equivalence is decidable for one-counter processes.

More precisely it means that there is an algorithm which inputs (descriptions
of) two one-counter processes p(m), p'(m') together with the respective one-
counter machines M,M', and after a finite amount of time answers whether or

notp(m)~p'(m').
An additional result is expressed in the following theorem; here a process F

is called regular iff there is a finite-state process p s.t. E ~ p.

Theorem 2.4 Regularity (wrt bisimilarity) is decidable for one-counter pro-

cesses.

Each of the two decidability results is implied by two semidecision procedures.
We can immediately note that semidecidability of nonbisimilarity E ■/■ F follows
from Proposition 2.2 since one-counter systems (as well as pushdown systems)

are obviously admissible.
We finish this section by recalling some known notions and results which are

then used in the proofs in Section 3.
Given a transition system T = (S,{-^}a€A), we define the class of all

n-incompatible processes as INC% = {E | VF G S : E ^n F}.
More specific variants of the following two propositions were used in [JM95],

[JE96].
T(F)

Proposition 2.5 For any n, E ~ F implies that E ~„ F and E />* INCn

In addition, the implication can be reversed for any n s.t. ~„_i coincides with

~n (and hence ivith ~j on T(F).

Corollary 2.6 Let A be a finite transition system with k states. For any states

p, q, it holds that p ~*_i q iffp ~k q (iff P ~ <l)- H V^lds for any process E and
a state p of A: E ~ p iff E ~k p and E /»* INC£.

The distance of a process E to F, denoted by Dist(E,F), is the length

of the shortest sequence u s.t. E -^ F; if F is not reachable from E, we
put Dist{E,F) = oo. For a set T of processes, we define Dist(E,T) =

min{Dist(E,F) \ F G T}.

553

Proposition 2.7 If E ~ F then Dist{E,T) = Dist(F,T) for any quotient
class T o/~„ on the set of all processes.

We need the notion of semilinear sets. An important fact is that they are
precisely the sets expressible in Presburger arithmetic (cf. [GS66]); we will use
it implicitly when arguing that some sets are semilinear.

A set V C Mr of vectors (r > 1) is linear if there is a base vector y and

period vectors xi, x2,..., xm in Mr such that V = { y + YA=I
C
»'^ I c» G ^ }■

K is semilinear if it is a finite union of linear sets.
In fact, here we are mainly interested in dimensions r = 1,2. The next fact

on one-dimensional semilinear sets is easily derivable:

Proposition 2.8 Suppose a set V C M. Then:

1/ If there are c,8 G M s.t. Vm > c : m G V => m + <5 G V Men 1/ «s

semf/niear.

4) ?/ // V is semilinear then there are constants c and A s.t. for any m > c,
the value m mod A determines whether m G V or m £ V.

3 Proofs
In this section we always (implicitly) suppose a given one-counter machine M
with k states (and the stack alphabet {X, Z}); the states are denoted by p,q

(often primed or with subscripts).
Subsection 3.1 proves the crucial fact of this paper (Proposition 3.3) which

shows that the set {(m, n) \ p(m) ~ q(n)} is semilinear for any p, q. Subsections

3.2 and 3.3 then prove the theorems.
In the proofs we need the notion of the underlying automaton AM which

behaves like M as long as the bottom of the stack is not reached, and also the
notion of processes which are 'Basically Incompatible' with (states of) AM'

The underlying finite automaton AM (viewed as a finite transition system)

has the same set of states as M, and it has the transition p —► q iff M has a
basic transition pX —> qa (a G {X}*).

We define Bine = {p(m) | p(m) G INC£M) = {p(m) | p{m) ^k q for each

state q}.
When we observe that p(m) ~jt p for m > k, the next lemma is clear:

Lemma 3.1 If p(m) £ Bine then m < k. Therefore Bine is a finite, and
effectively computable, set-

Due to corollary 2.6 we can add (recall that k denotes the number of states
of M and hence also of AM)'-

Lemma 3.2 For m> k (and any state p), p(m) ■/■ p iff p(m) —►* Bine.

554

Notation. By p(m) ^>r q(n) (r G H) we mean that there is a path p(m) =

qi(ni) -+ q2(n2) — •••"-> 9*K) = ?(") s-t- "•' > r for t = 1, 2,..., s. By
p(m) -+*POS q(n) (POSitive) we mean that p(m) -^ q(n).

Observe the obvious fact (used implicitly in what follows): if r > 1 then
p(m) -*>r q(n) iff p(m + 6) -+*>r+s q(n + 6) for any 8 G M. In particular

p(m) -^*pOS q(n) implies p(m + 6) -+POS q(n + 6).

3.1 Semilinearity Proof

This subsection is devoted to a proof of the next crucial proposition:

Proposition 3.3 For any one-counter machine and its states p, q, the set

{(m,n) | p(m) ~ q(n)} is semilinear.

First observe that if p(m) ->* Bine and q(n) -f>* Bine then surely p(m) ^
q(n) (cf. Proposition 2.7). Therefore the set B = {(m,n) \ p(m) ~ q(n)} can be

written as B = B\ U B2 where

Bi = {{m,n) \p(m)~q(n),p(m)-f+* BInc,q(n)-^* Bine},

B2 = {(m,n) | p(m) ~ q(n),p(m) -** BInc,q(n) -+* Bine}.

Therefore it suffices to show semilinearity of B\ and B2.
The next lemma is a means for proving semilinearity of By.

Lemma 3.4 For any state p (of the one-counter machine M), the set {m |
p(m) ->■* Bine} is semilinear; therefore also {m \ p(m) ■/** Bine} is semilinear.

Proof: Recall that we suppose M with k states; let V be the state set.
We have to show semilinearity of R = {m | p(m) -►* Bine}. For any Q C V

we define the set RQ C R as follows: m G RQ iff there is a 'witness' path

p(m) = gi("i) -► 32(»2) -»■...-+ ?»(".) € -S/nc (1)

s.t. g,: G Q for ?' = 1, 2,..., s' where s' < s is the maximum number s.t. n; > 1
for i = 1, 2,..., s' (the path goes through states from Q solely while after the first
reaching of the stack bottom - if it happens at all - there are no restrictions).

It is clear that Rv = R and it suffices to show semilinearity of all RQ. We

proceed by induction on \Q\.
When Q = 0 then RQ is obviously semilinear (RQ = 0 or RQ = {0}).
Now we show semilinearity of RQ, \Q\ > 0, while supposing semilinearity for

each RQ<, \Q'\ < \Q\. Let some m > 2k be in RQ (otherwise RQ is finite, hence
semilinear) and let (1) be a relevant witness path; recall that k > ns (Lemma
3.1). We can take the leftmost subsequence ^(m), qi2(m-l), ..., qik+1(m-k);
due to the pigeonhole principle, there is q = qitl = qib for a ^ b. Therefore

P(m) ^>n; ?("i) ^>n'2 ?K) ^* ««("') G S7nc where 6 = "i ~ n'2 > °'
n'2 > 0; hence q(n + 6) -^*>n q(n) for any n > 0.

555

We can write RQ = RQ U RQ\{9} where

Rq = {m £ RQ I there is a witness path with q — qi for some i, 1 < i < s'}.

Since m £ Rq
Q obviously implies m + 6 £ Rg

Q, Rq
Q is semilinear (cf. Proposition

2.8 1/); semilinearity of RQ\{9) follows from the induction hypothesis. O

Corollary 3.5 B1 = {(m,n) \ p(m) ~ q(n),p(m) -f+* BInc,q(n) ■/+* Bine} is

semilinear.

Proof: Given r < k, consider Bi(r, -) = {n | (r, n) £ Bi} Note that for any
n £ Bi(r,-), n > k implies q(n) ~ q. Therefore when 5i(r,-) is infinite, it
is the union of a finite set and the set {n > k \ q(n) ■/+* Bine}; in any case,
Bi(r,-) is semilinear. Semilinearity of Bi(-,r) = {m \ (m,r) £ B\} can be
established similarly. B\ can be written

fc-l k-l

Bi = U i(r' n) I n e 5i(r> -)> U U ^m' r) im e B^-' f)>U 5i
r = 0 i"=0

where

B[= {(m,n) | m > k,n> k,p(m) ~ q(n),p(m) -/+* BInc,q(n) y^* Bine}.

B[is either empty (when p •/• ?) or equals to {(m,?j) |m>fc,n> k,p(m) -f**
Bine, q(n) ■/+* Bine} (when p ~ g).

Thus semilinearity of Bi is clear. □

We also need another corollary.

Corollary 3.6 There are constants c and A s.i. for any p and any m > c, the
value m. mod A determines whether or not p{m) —►* Bine.

Proof: For any state p, we get the relevant cp, Ap due to Proposition 2.8 2/.
The constant c desired here can be taken as the maximum of cp's and A can be
taken as the product of Ap's. E

Our aim now is to show semilinearity of B2 = {{m, n) \ p(m) ~ q(n),p(m) —►*
BInc,q(n) —* Bine}.

Notation. Dist(p(m),BInc) will be denoted by Dist(p(m)) for short.

Since Dist(p(m)) = Dist(q(n)) is a necessary condition for p(m) ~ q(n), we will
explore which relation it imposes for m and n. First we show that Dist(p{m)) is,
in fact, linear (when finite) in m with the provision that the coefficient depends
on m mod A. Here and further, A is taken from Corollary 3.6.

Lemma 3.7 There is a constant d £ßf, and for any state p and any congruence
class {i)mod A (0 < i < A — 1) there is a rational constant k' s.t. the following
holds for any m, m = i{mod A): if Dist(p(m)) is finite then

Dist(p(m)) £ {k'm — d, k'm + d).

556

Proof: Suppose some p and (i)mod A- In the proof, for each number denoted
by m. we implicitly suppose m = i(mod A). We show that there are k' and d'
s.t. Dist(p(m)) G (k'm - d', k'm + d'), by which we will be done (the desired d

can be taken as the maximum of all relevant constants d').
Observe that p(m) -►* Bine, for a large m, implies a decreasing cycle:

p(m) -+POS q(n + 6) -+>„ q(n) -►* Bine for some q, n > 0,8 > 0.

Let Q = {q | p(m) ^POS q(n) ->* Bine for some m,n). Now let q' be a

state of Q which allows a decreasing cycle q'(n + 8W) -^>„ q'(n) (for some w,
6W > 0, and all n > 1) with the best decreasing rate - i.e. 8w/\w\ is maximal
possible. The existence of such q' can be easily derived (by 'pigeonhole principle
reasoning' we could suppose \w\ < k). Moreover we can safely suppose that
Sw is a multiple of A (otherwise we take wA which yields the same decreasing
rate), and thus q'(n + 8W) -+* Bine iff q'(n) -»■* Bine for n > c, c taken from

Proposition 3.6.
Let us choose m > c + Sw + k s.t. p(m) -^POS ?'(«) ^* Bine for some

u and n,c < n < c + Sw; denote <5U = m - n. Note that p(m + jA) —>Pos

q'(n + jA) -+* Bine for any j > 0.
Now let d0 = \u\, di = max{Dist(p'(c + x)) | x G {0,1,...,^} and

Dist{p'(c + x)) is finite }. Then it is clear that for any m > c + 6W + k

Dist(p(m)) <d0+ Km - 6U - c)/6w)\w\ + dx

On the other hand it is easily verifiable that

Dist(p(m)) > ((m - Su - c)/6w - lj \w\.

Calculating the desired k', d' is now a technical routine {d1 has to be chosen
large enough to 'cover' the finitely many m < c + 6W + k as well). □

Corollary 3.8 There is a constant d G M s.t. for any p, q and congruence
classes (i) A A, {J)mnA A, there is a rational constant k' s.t. the following
holds for any m,n, m = i(modA), n = i(modA): tfDist(p{m)) = Dist{q(n)) <

oo </).ew ?i G (fc'm - d, k'm + d).

Proof: Because there are constants kx, k2 and d' s.t. Dist(p(m)) G (fcim -
of', k^n + d') and Dist(q(n)) G (&2« - rf', ^2" + d') then it must hold k2n - d' <
kim + d' and k2n + d1 > kyin - d'. Hence we have mk1/k2 - 2d'/k2 < n <

mkx/k'i + ld'lk-t. u

Recall that our aim is to show semilinearity of B2. We already know that
there is d G M and a finite set K = {kx, k2,..., kr} of rational constants s.t. it
suffices, for each k' G K, to show semilinearity of the set

Bk> = {(m, n) | p(m) ~ q(n),n G (k'm - d, k'm + d)}.

557

(The union of S^'s consists of B2 and a subset of B\ which is obviously semi-
linear, i.e. expressible in the Presburger arithmetic).

In fact, we will consider only the subset of Bv where m > c for a sufficiently
large c (the rest being finite and therefore causing no problems); c will be chosen
so that for any m, n, m > c, \n - k'm\ < d, the following holds: for any p', q' and

any moves p'(m) -^-+ p"(m'), q'(n) -^-> q"(n') it is ensured that \n' - k"m'\ > d
for each k" G K, k" ^ k' (a pair of moves cannot lead from 'ö^-area' into

'ßj;//-area').
Given k', let us denote Cut(m) = C\fL0CuU(m) where CuU(m) - {(p1', q', x) \

x G {-d,-d+l,.. .,d},p'(rn) ~,- q'(round(k'm) + x)}.
Observe that there surely is an infinite sequence m0 < mi < m2 < ...

s.t. for all i > 0: k'rrii is integer, mj+i - m» = 0(mod A), k'mi+i - k'mt =
0(mod A). Since, for any m, Cut(m) is a boundedly finite set, there are surely
m, m' satisfying the assumption of the next lemma; and it is easily observable
that the lemma demonstrates semilinearity of Bk> and thus finishes the proof of

Proposition 3.3.

Lemma 3.9 When Cut(m) = Cwt(m') for sufficiently large m where m < m',
k'm,k'm' are integers, in! — m = 0(mod A), k'rn! - k'm = 0(mod A), then

Cut{m +8) = Cut(m' + 8) for any 8>0.

Proof: We show Cut(m + 8) C Cut(m' + 8) while the other inclusion will be
completely symmetric.

In fact, we show by induction on i that (p,q,x) G Cut(m + 8) implies
(p, q, x) G Cuti(m' + 8) for all i; for i = 0 it is trivial as well as for 8 = 0.

Induction hypothesis: for any p, q, x, 8, if (p, q, x) G Cut(m+8) then (p, q, x) G

Cuti(m' +8).
Now we consider arbitrary (but fixed) p,q,x,8 > 1 s.t. (p, q, x) G Cut(m + 8)

and we show that (p,q,x) G Cwi,+i(m' + 8) by which the whole proof will be
finished.

In other words, denoting mj = m+8, rii = round(k'(m+8)) + x, m.2 = m' + 8,
n2 = round(k'(m' + 8)) + x, we suppose p(rai) ~ <z(«i) and we have to show

p(m2) ~i+i q(n2).
Let p(mo) -^-+ p\m2 + y) (—1 < y < max, max depending on the machine

M). There is the corresponding movep(mi) —► p'(mi+y) and there has to be a

moveg(ni) -?-* q'(ni+z) (-1 < z < max) s.t. p'(mi+y) ~ q'(n\ + z). We claim

that the corresponding move q(n2) —> g'(n2 + 2) yields p'(rri2 + y) ~» q'(n2 + z).
When \k'(mi + y) - {n\ + z)\ < d (hence also \k'(m2 + y) - (n2 + z)\ <

d), it follows from the inductive hypothesis. Otherwise Dist(p'(mi + y)) =
Dist(q'(ni+z)) = oo and p' ~ q'. But then also Dist(p'(m2 + y)) = Dist(q'(n2 +
z)) = oo (recall the property of A); therefore p'(m2 + y) ~ q'{n2 + z).

The remaining parts of the proof are completely similar. □

3.2 Decidability of Bisimilarity

Now we can provide a proof for Theorem 2.3:

558

Theorem. BiSimulation equivalence is decidable for one-counter processes.

Proof: First notice that we can always consider the bisimilarity problem in-
stance 'p(m) ~ q(n) ?' where p(m), q(n) are associated to the same one-counter
machine (which can be achieved by taking the union of two machines - i.e. union
of action sets, and disjoint union of state sets and basic transition sets).

Recall that it suffices to show semidecidability for 'p(m) ~ q(n) ?' (cf.
Proposition 2.2). Now due to Proposition 3.3 it suffices to generate all bisimu-
lation candidates K s.t. the set {(m>') | O'(m'),«'(«')) G 11} is semilinear for
each pair of states p',q', and for each such candidate to check if H actually is a
bisimulation containing (p(m),q{n)). (Descriptions of) such candidate relations
can be obviously generated in a systematic way, and the condition to be checked
is easily seen to be expressible in Presburger arithmetic, which is decidable (cf.

e.g. [Opp78]). D

3.3 Decidability of Regularity

Here we provide a proof for Theorem 2.4:

Theorem. Regularity (wrt bisimilarity) is decidable for one-counter processes.

Proof: Semidecidability of regularity of p(m) follows from Theorem 2.3. (We
can generate all finite state processes F, viewed as special cases of one-counter
processes, and to check for each of them whether p(m) ~ T).

Semidecidability of nonregularity will follow when we show that p(m) is non-

regular iff there is a path

p(m) ^* p'(mi) -*POS P'(™2) -+*POS «'("O ^*POS v'fa) -** Bine

where mi < m2, n\ > n2.
The existence of such a path ensures for any i > 0 that

p(m) _>* p'(m2+i(n1-n2)(m2-mi)) -*•* q'(n1+i(m2-m1)(n1-n2)) ->* Bine

which implies that there are reachable states with arbitrarily large (but finite)
distances to Bine - and this obviously implies nonregularity of p(m). The

opposite direction can be also easily established. G

4 Further Comments

The example of a pushdown process used in [Sti96]

pX -^ PXX,pX -U qe,pX -^ re, qX -^ sX, sX -^ qs, rX —> re

can be easily transformed in a one-counter process with the isomorphic transition
system. This process can serve as an example of a one-counter process which
is not equivalent to a BPA-process, nor a BPP-process, and when adding a

rule pX -t-* qfin we get a one-counter process not equivalent to any normed

pushdown process.

559

References
[BCS96] Burkart O., Caucal D. and Steffen B.: Bisimulation collapse and the process

taxonomy; in Proc. CONCUR'96, Lecture Notes in Computer Science, Vol.

1119 (Springer, 1996) 247-262

[CHM93] Christensen S., Hirshfeld Y. and Moller F.: Bisimulation equivalence is de-
cidable for all Basic Parallel Processes, in Proc. CONCUR'93, Lecture Notes

in Computer Science, Vol. 715 (Springer, 1993) 143-157

[CHS95] Christensen S., Hiittel H. and Stirling C: Bisimulation equivalence is decid-
able for all context-free processes; Information and Computation 121 (1995)

143-148

[Esp95] Esparza J.: Petri nets, commutative context-free grammars, and Basic Par-
allel Processes; in Proc. Fundamentals of Computation Theory (FCT) 1995,
Lecture Notes in Computer Science, Vol. 965 (Springer, 1995) 221-232

[GS66] Ginsburg S. and Spanier E.: Semigroups, Presburger formulas, and lan-

guages; Pacific J. of Mathematics 16 (1966) 285-296

[Hir93] Hirshfeld Y.: Petri nets and the equivalence problem; in Proc. Computer Sci-
ence Logic (CSL) '93, Lecture Notes in Computer Science, Vol. 832 (Springer,

1994) 165-174

[Jan93] Jancar P.: Decidability questions for bisimilarity of Petri nets and some
related problems; Techn.rep. ECS-LFCS-93-261, Dept. of comp. sei., Univ.

of Edinburgh, UK, April 1993
(cf. also Jancar P.: Undecidability of Bisimilarity for Petri Nets and Related

Problems; Theoretical Computer Science 148 (1995) 281-301)

[JE96] Jancar P., Esparza J.: Deciding finiteness of Petri nets up to bisimulation;
in Proc. ICALP'96, Paderborn, Germany, July 1996, Lecture Notes in Com-

puter Science, Vol. 1099 (Springer, 1996) 478-489

[JM95] Jancar P., Moller F.: Checking regular properties of Petri nets; in Proc.
CONCUR'95, Philadelphia, U.S.A., August 1995, Lecture Notes in Computer

Science, Vol. 962 (Springer, 1995) 348-362

[Mil89] Milner R.: Communication and Concurrency (Prentice Hall, 1989)

[Opp78] Oppen D.C.: A 22 upper bound on the complexity of Presburger Arith-

metic, J. of Comp. and System Sei. 16 (1978) 323-332

[Sti96] Stirling G: Decidability of bisimulation equivalence for normed pushdown
processes; in Proc. CONCUR'96, Lecture Notes in Computer Science, Vol.

1119 (Springer, 1996) 217-232

Symbolic Reachability Analysis of FIFO-Channel
Systems with Nonregular Sets of Configurations

(extended abstract)

Ahmed Bouajjani Peter Habermehl

VERMAG, Centre Equation, 2 av. de Vignate, 38610 Gieres, France.
Email: Ahmed.Bouajjani@imag.fr, Peter.Habermehl8imag.fr

Abstract. We address the verification problem of FIFO-channel systems
by applying the symbolic analysis principle. We represent their sets of
states (configurations) using structures called CQDD's combining finite-
state automata with linear constraints on number of occurrences of sym-
bols. We show that CQDD's allow forward and backward reachability
analysis of systems with nonregular sets of configurations. Moreover, we
prove that CQDD's allow to compute the exact effect of the repeated ex-
ecution of any fixed cycle in the transition graph of a system. We use this
fact to define a generic reachability analysis semi-algorithm parametrized
by a set of cycles 9. Given a set of configurations, this semi-algorithm
performs a least fixpoint calculation to construct the set of its successors
(or predecessors). At each step, this calculation is accelerated by consid-
ering the cycles in & as additional "meta-transitions" in the transition
graph, generalizing the approach adopted in [5].

1 Introduction

Analyzing the behaviour of systems relies basically on solving reachability prob-
lems in their models, that are in general finite-state automata supplied with
(possibly unbounded) data structures (Petri nets, timed or hybrid automata,
fifo-channel systems, etc). It is therefore fundamental to compute the set of all
successors or all predecessors of a given set of states S, i.e., the set of states that
are reachable from S, or those from which it is possible to reach S.

Let post(S) (resp. pre(S)) denote the set of immediate successors (predeces-
sors) of the set 5, and let post*(S) (pre*(S)) denote the set of all its successors
(predecessors). Clearly, post*(S) is the limit of the infinite increasing sequence
{Xi)i>0 with X0 = S and Xi+1 = XiUpost{Xi) for every i > 0. Similarly, pre*(S)
is the limit of the infinite sequence obtained by considering pre instead of post.

Unfortunately, for any interesting class of infinite-state systems, the sets Xt

are in general infinite and the sequence (Xi)i>0 is not guaranteed to reach its
limit. Hence, the first problem is to find a class of finite structures that can
represent the infinite sets of states we are interested in. This class of structures
should be effectively closed under union and the post and pre functions such that
the Xi's can be calculated. Moreover, to compare two sets and to check whether a
given state belongs to an infinite set, the membership and the inclusion problems

of the class should be decidable.

561

For instance, for systems manipulating integer or real valued variables (Petri
nets or timed and hybrid automata), representation structures based on polyhe-
dra or sets of linear constraints are used [3, 6, 2, 13]. In systems manipulating
sequential data structures like stacks or queues sets of states are vectors of words,
and automata-based representation structures can naturally be used.

Another problem is the convergence of the sequence of Xj's. In general this
sequence never reaches its limit and an exact acceleration of the computation of
the limit is considered by defining another increasing sequence (Yi)i>o such that
for every i > 0, Xt C Y{, and Y{ C \J^0 xi- This approach has been used [9, 7]
to define model-checking algorithms for pushdown systems using (alternating)
finite-state automata to represent sets of stack contents.

In [5], finite-state automata-based structures called QDD's are used to repre-
sent queue contents of fifo-channel systems (communicating finite-state machines,
CFSM). However, contrary to the case of pushdown systems, the set of reachable
states of a CFSM is not regular in general, and hence not QDD representable.
Moreover, there is no algorithm allowing to construct the set of reachable states
even if we know that it is regular [10, 12, 1]. To face this problem [5] proposes an
acceleration technique based on adding to each Xi+i the set of states post*e{Xi)
which corresponds to the set of all successors after repeating as much as possible
a cycle 9 of a special kind (called meta-transitions). The restriction on the nature
of 9 guarantees that the post*9 image of a regular set is also regular.

In this paper, we also consider CFSM's and propose a generalization of the ap-
proach adopted in [5] by allowing an exact acceleration of the fixpoint calculation
with the successors by any cycle in the transition graph of the system. The diffi-
culty comes from the fact that the set of reachable states by a cycle is in general
nonregular. Therefore, we propose a representation structure called CQDD (con-
strained QDD) allowing the representation of such sets. This structure is based
on a combination of (simple) finite-state automata with Presburger arithmetics
formulas expressing constraints on the number of occurrences of symbols.

We show that CQDD's satisfy the desirable properties of a representation
structure mentioned above. Moreover, and this constitutes our main result, we
prove that the class of CQDD representable sets of states is effectively closed
under the function post*e for every cycle 9. We prove also that the class of CQDD
reverse representable sets of states (their reverse image is CQDD representable)
is effectively closed under the function pre*g for every cycle 9. These results allow
to define a generic reachability analysis semi-algorithm which is parametrized by
a set of cycles in the transition graph of the system. When it terminates, our
algorithm returns the exact set of successors (or predecessors) of a given CQDD
representable (or CQDD reverse representable) set of states. Several analysis al-
gorithms can be derived from our algorithm by determining adequate strategies
for choosing the set of cycles to be considered to accelerate the fixpoint calcula-
tion. The algorithm of [5] can be seen as a particular instance of our algorithm.

Related work: In [16, 11] a model-checking semi-algorithm is proposed for CFSM,
based on a finite representation of the state-graph by means of graph grammars.
This approach is different from ours since it is based on a finite representation

562

of the state-graph instead of a finite representation of the set of states. There
are other existing works on the analysis of CFSM's assuming that the systems
have lossy or unreliable channels (queues) [1, 12]. In our work we do not have
such assumptions. Other works propose (terminating) algorithms generating an
upper approximation of the set of reachable states [15]. This is different from
our approach because we construct the exact set of reachable states as a fixpoint
calculation and helping the termination of this calculation by exact accelerations.

The rest of this paper is organized as follows. In Section 2 we introduce
some basic definitions. In Section 3 we define CFSM's and the successors and
predecessors functions. In Section 4, we define CQDD's and give basic results.
In Section 5, we show how CQDD's can be used to represent nonregular sets of
states and give our main results on the class of CQDD representable and reverse
representable sets of states. In Section 6, we present our generic forward and
backward analysis algorithm. Finally, we conclude in Section 7. Due to lack of
space we omit the proofs of the theorems. They can be found in [8].

2 Preliminaries

Presburger arithmetics is the first order logic of natural numbers with addition,
subtraction and the usual ordering. We say that / is a Presburger formula over a
set of variables X — {xi,.. .,xn}, and we write f(X), if the set of free variables in
/ is precisely X. The semantics of Presburger formulas is defined in the standard
way. Given a formula / with free variables X = {x\,...,xn}, and a valuation
v : X -> IV, we say that v satisfies /, and write v \= /, if the evaluation of /
under v is true. We say that a formula / is valid if every valuation satisfies /.

A simple automaton over £ (SA) is a finite-state automaton A — (Q,qo,^
,qm) where Q is a finite set of states with Q = {qo,qi,- ■ ■,qm} U (J™o ^» where
Pt = {pj,... ,pf}, q0 (resp. qm) is the initial (resp. final) state, ->C Q x £ x Q
is a set of transitions (transition relation) defined as the smallest set such that :

1. Vi G {0, ...,m- 1}. 3!aG S. qt A qi+i,
2. Vt G {0,..., m}, if Pi ^ 0 then 3!a G S. q{ A p\, 3!a G S. p\l A q{

and Vj G {1, ■ ■ ■, £i - 1}. 3!a e S. p> 4 pf'+\
3. Vi € {0,..., m — 1}, if Pj = 0 then there is at most one a G S with qi A <?,
4. if Pm = 0 then 3£' C E. Va G X". qm A qm,

A restricted simple automaton (RSA) is a simple automaton where point (4)
in the definition above is replaced by: (4'). if Pm = 0 then qm has no successors.

Notice that in simple automata, the outdegree of the states q^s, except maybe
qm, is at most 2, whereas the outdegree of the states in the Pj is always 1.
Each state different from qm belongs to at most one loop which is of the form

qi A p\ A .. .pf -4 qt. We say that qi is the root of this loop. The state qm has
a particular status since it may be the root of several loops, but in this case all
these loops must be self-loops. In RSA qm has the same status as the other q^s.
Nondeterministic choices may occur only at the states qi. A simple automaton

563

is deterministic if every state qi has at most one successor by each symbol in E.
We write DSA (resp. DRSA) for deterministic SA (resp. RSA).

Given a word w = ao ■ ■ ■ at £ E*, a run of A over w is a sequence of transitions
p = (s0,a0,si)... (s(,ai,si+i) £-)l+1 such that So = <?o- The run p is accepting
if sf+1 = qm. The language accepted by A, denoted by L(A), is the set of words
w £ E* such that there is an accepting run of A over w.

Notice that RSA's accept languages over E which are definable by regular
expressions of the form uiv*U2V* '' ■«m|)mum+i where the u,'s and the ViS are
words over E such that only U\ and um+i may be empty. SA's accept words of
the form u\v*U2V* • • • um(a,\ + ... + at)* where the a;'s are symbols in E.

Let A = (Q, qo,-^, qm) be a simple automaton. Let X be the set of variable
{xf : t £-»}. We consider for each run p of A the valuation vp of the variable in
X such that, for every xt £ X, up(x) = \p\t- Then, we define a Presburger formula
[.4] over X which characterizes the set of valuations corresponding to all accepting
runs of A. For that, let us introduce some notations. We denote by T the set of
transitions {t €-> : 3i e {0,... ,m - 1}. 3a £ E. t = (qi,a,qi+i)}. For each
state q £ Q, we denote by In(q) (resp. Out(q)) the set of transitions of the form
((?'>a)(?) (resp. (q,a,q')) for some q' £ Q and a £ E. Now, let [A] be the formula

{AteTXt = 1) A (AgSQ\{?0} J2teln(q) Xt = T,teOut(q)_ Xt) A (1 + Jlteln(qo) Xt =

StgOutfo) xt)- ^ can ^e checked that for each valuation v of the variables in X,
v satisfies [A] if and only if there exists an accepting run p of A such that v = vp.

It is well known that every finite-state automaton has a characteristic Pres-
burger formula due to Parikh's theorem [14]. However, the formula we give above
is simpler and exploits the particular structure of simple automata.

3 Communicating Finite-State Machines

We consider a generalization of communicating finite-state machines (CFSM)
defined in [4]. A CFSM is a finite-state machine which can send and receive
messages over a finite set of unbounded FIFO queues. Usually, a transition either
appends a message to the end of a queue or removes a message from the head of
a queue. We generalize this by allowing simultaneously appending and removing
messages from several queues.

Formally, a Communicating Finite-State Machine M. is a tuple (S,K, E,T)
where S is a finite set of control states, K is a finite set of unbounded FIFO queues,
E is a finite set of messages, T is a finite set of transitions. Each transition is
of the form {s\,op, s^), where s\ and S2 £ S, and op is a finite set of queue
operations of the form /c;!w or mlw with K» £ K and w £ E* such that for each
queue KJ there is at most one label Kj!w or Ki?w in op.

A configuration of A4 is a tuple 7 = (s, w) where s is a control state in S,
and w = (wi,... ,W\K\) is a |K|-dim multi-word (i.e., a tuple in (X1*)^!), each
Wi being the contents of the queue Ki, for i € {1,..., \K\}. We denote by Conf
the set of all configurations of M, i.e., Conf = S x (E*)\K\.

We define a global transition relation between configurations in the following
manner: Let 7 = (s,wi,... ,W|K|)

and 7' = (s', w[,..., w',K,) be two configura-

564

tions, and let op be a set of queue operations. Then, we have 7 -» 7' if and only
if there exists a transition (si, op, s2) £ T such that, for every i e {1,. ■ ■, \K\},

- if Ki?w € op then imuj = wt else if K,!W € op then w- = wiw,
— otherwise w\ = w;.

Given a transition r = (s, op, s') 6 T, we say that r is executable at 7 = (s, w)
if there exists 7' = (s', w') such that 7 ^? 7'. In this case, 7' (resp. 7) is the imme-
diate successor (resp. predecessor) of 7 (resp. 7') by r. We define the predecessor
and successor functions preT and postT, both in 2C'0"/ -> 2Conf, such that, for
every set of configurations C, preT(C) (resp. postT{C)) is the set of immediate
predecessors (resp. successors) of the configurations in C by r. The pre (resp.
post) function is defined as the union of the functions preT (resp. postT), for all
T &T. The notion of executability can be generalized to sequences of transitions,
in particular to cycles in the transition graph T. A sequence 6 of transitions in
T is called a cycle if it is of the form (s0,op0,Si)(si,opi,s2) • ■ ■ (sn-i,opn,so)-

The definitions of preT and postT can also be generalized to sequences of
transitions: preT1...Tii = preTl o ... o preTn and postTl/Tn = posirn o ... o postTi.

Given a sequence of transitions 6, the functions pre*e and posi^ are the re-
flexive transitive closures of pree and poste, i.e. given a set of configuration C,
pre*e(C) (resp. post*e(C)) is the set of predecessors (resp. successors) of configu-
rations in C obtained by iterating an arbitrary number of times 9.

We define the functions pre* and post* as the reflexive transitive closures of
pre and post. The function pre* (resp. post*) yields the set of all predecessors
(resp. successors) of a given set of configurations.

4 Constrained Queue Description Diagrams

In this section we introduce representation structures for sets of queue contents.
These structures consist of a combination of finite-state automata (restricted
deterministic simple automata) with linear constraints on the number of times
transitions in these automata are taken. This combination allows to represent
nonregular sets of queue contents.

4.1 Definition

Constrained Queue Description Diagrams (CQDD's) are a particular case of con-
strained simple automata. For any n > 1, a n-dim constrained simple automa-
ton (CSA) is a set of accepting components C = {(Ai,fi), ■■■, (Am, fm)} where,
for every i € {1,..., m}, A is a tuple of n simple automata (A\,..., Al

n) over
£ and fc is a Presburger formula over a set of variables Vi containing the set
Xt = {xt : t € Ti}, where % is the set of all the transitions of the automata in

At, i.e., Ti = U"=i -►;■•
The CSA C accepts a n-dim multi-language, i.e., a set of tuples of n words.

For every« £ {1,... ,m}, the multi-language of the accepting component (A,/»>,
denoted by L((A,/i» is the set of tuple of words (wi,... ,wn) 6 (S*)n for which

565

there are accepting runs (pi,.. .,/?„) of the automata (A],..., A?) respectively,
such that 3{Vi \Xt). ft is satisfied by the valuation {uPl,...,vPn) (i.e., the valu-
ation associating with each variable xt the integer |pi... pn\t, where t G %). The
multi-language of the CSA C, denoted by L(C), is the union |J™ j L{(Ai,fi)).

A n-dim CDSA is a n-dim CSA such that all its automata are determinis-
tic. A n-dim CQDD is a n-dim CDSA such that all its automata are restricted
(DRSA's). For every n > 1, we denote by n-CQDD (resp. n-CDSA) the class of
all n-dim CQDD's (resp. n-dim CDSA's). We say that a n-dim multi-language C
is CQDD (resp. CDSA) definable if there exists a n-dim CQDD (resp. CDSA) C
such that L(C) = £. A n-dim multi-language £ is CQDD (resp. CDSA) reverse
definable if its reverse image, denoted by LR, is CQDD (resp. CDSA) definable.

4.2 Expressiveness

CQDD's allow to define nonregular multi-languages. For instance, consider the
context-sensitive language Ly = {anbmanbm : n,m > 1}. To define Lu we use
the automaton A\ represented by the following picture:

aba

Sb 9° ^A
go <?1 °2 93

Then, Lx is defined by the 1-dim CQDD {(Ai,/i)} where /i is given by
zfo-a,«) = *(93,a,M) A *(«,»,«) = Hi**,**)- Consider the 2-dim multi-language
L-2 = {(anbmanbm, cmdnam) : n,m> 1}. To define this multi-language, we use
two automata, the automaton A1 above and A2 given by the following picture:

c d

&A^_ o
q'o Q[4

Then, L2 is defined by the 2-dim CQDD {((A1,A2),h)} where f2 is given by

(X(91,a,Ql) =E(93,a,<!3) = X(q'2,d,q'2) =
n) A (*(,2,6,92) = X(q4,b,<14) ~ X{q[,c,q\) = X (l'3,a,q'3) = m) ■

These examples show that CQDD's can be used to express nonregular multi-
languages involving constraints on number of occurrences of symbols at some
positions that may be in a same word (as in Li), or even in different words (as in
L2). This allows to represent sets of queue contents such that there are counting
constraints relating the contents of different queues.

4.3 Basic operations and decision problems

Here we give the main results about boolean operations on CQDD's. We show
that they are closed under union, intersection, concatenation and left-derivation,
but their complementation yields CDSA's. Concatenation and left-derivation are
useful operations in the construction of sets of successors and predecessors (see

566

Section 5). Moreover, the intersection of a CQDD with a CDSA is a CQDD.
Finally, we show that the membership and inclusion are decidable for CQDD's.

Let £1 and £2 be two n-dim multi-languages. The concatenation of £1 and
£2, denoted by £1 • £2, is the set {w E (E*)n : 3u £ Cx. 3v E £2. ü? = u#}
where m7 is the component-wise concatenation of u and v. The left-derivative of
£1 by £2, denoted by £2"1 ■ £1, is the set {w E (E*)n : 3w' € £2. w'w € £1},
i.e., the set of multi-words allowing to extend elements of £2 to elements of C\.

Proposition 4.1 For every n > 1, n-CQDD is closed under union, intersection,
concatenation and left-derivation.

It can be observed that the product of a DRSA with a DSA is a DSA. Hence:

Proposition 4.2 For every n > 1, the intersection of an n-CQDD with an n-
CDSA is an n-CQDD.

Because the simple automata in a CQDD are deterministic we can show:

Proposition 4.3 For every n>l, the complement of a n-CQDD is a n-CDSA.

Let C = {(A,f)} be a CSA. Clearly, L(C) ^ 0 if and only if the Presburger
formula [A] A / is satisfiable. Hence:

Proposition 4.4 The emptiness problem is decidable for CSA's.

From Propositions 4.2, 4.3, and 4.4 we deduce:

Corollary 4.1 For every n>l, the membership problem as well as the inclusion
problem are decidable for n-dim CQDD's.

5 Representing and manipulating sets of configurations

Let M = (S, K, E, T) be a CFSM. Every set of configurations C C Conf can
be written as a union LUsW x £* where the £s's are |Ä"|-dim multi-languages.
We say that C is CQDD representable (resp. reverse representable) if for every
seS, the multi-language £s is CQDD definable (resp. reverse definable). Let us
consider as an example the system M:

{ni?a,K2
].b}

{K2\a,K3\a}

The set of configurations of M reachable from the (s0, e, e) is given by:

{s0}x{(an,(ba)m,am) : n,m > 0} U {Sl} x {(on, (ba)mb,am) : n,m>0} (1)

and is clearly CQDD representable.
In the sequel, we present results allowing to manipulate and to reason about

sets of configurations that are CQDD representable or reverse representable. First
of all, by Propositions 4.1, 4.4 and Corollary 4.1, we deduce:

567

Theorem 5.1 The class of CQDD representable (resp. reverse representable)
sets of configurations is effectively closed under union and intersection, and has
decidable emptiness, membership and inclusion problems.

The closure property under concatenation and left-derivation of CQDD's
(Proposition 4.1) allows us to show:

Theorem 5.2 For every CQDD representable (resp. reverse representable) set
of configurations C, the set of configurations post{C) (resp. pre(C)) is CQDD
representable (resp. reverse representable) and effectively constructible.

Now, we give our main results.

Theorem 5.3 For every CQDD representable set of configurations C, and every
cycle 9, the set of configurations post*9(C) is CQDD representable and effectively
constructible.

We give hereafter a rough scheme of the proof: Let C be a set configurations
given by a m-dim CQDD of the form {((Aj,..., Am), /)} (this is not a restriction
since post is distributive w.r.t. union). The principle of the construction is to
compute the effect of n successive executions of the cycle 9 on each queue, n
being a parameter.

Then, for every i £ {1,... ,771}, we construct several automata A\ and con-
straints gt. These constraints depend on n (considered as a new free variable),
and relate variables corresponding to the transitions of A\ with those correspond-
ing to the transitions of A{. The set post*e{C) is then represented by a union of
CQDD's {((Ai,..., A'm), f A A™ 1 9i)}- Note that> since a11 the ^'s depend on
the variable n, this expresses the fact that the number of executions of 9 must
be the same for every queue.

The construction of the automaton A[and the constraint gi is done by iden-
tifying the configurations from which the cycle 9 can be executed an unbounded
number of times and those allowing only a bounded number of executions. Then,
we show that in each case, A- and gt are obtained from Ai using basic operations
on CQDD's such as concatenation and left-derivation.

We can also prove that the class of CQDD reverse representable sets of con-
figurations is effectively closed under the pre*e function, for every cycle 9.

Theorem 5.4 For every CQDD reverse representable set of configurations C,
and every cycle 9, the set of configurations pre*e{C) is CQDD reverse repre-
sentable and effectively constructible.

6 Forward and backward reachability analysis

The basic (safety) verification problem consists in checking that a bad configu-
ration can never be reached from an initial configuration. Thus, given a set of
initial configurations I and a set of bad configurations B, this problem can be
formulated either as

568

- (PI) BDpost*(I) = 0, or
- (P2) lr\pre*(B) = 0.

The first formulation consists of a forward reachability analysis of the configura-
tion space whereas the second one consists of a backward reachability analysis.
Hence, given a set of configurations C, we wish to compute the set of its successors
and predecessors, i.e., post*(C) and pre*(C). By definition, for 4> £ {post,pre},
we have

p(C) = \JCi
i>0

where

C0 = C

Ci+1 =Ciö (j){Ci) for every i > 0.

In the case <j> = post (resp. 0 = pre), if C is CQDD representable (resp. reverse
representable), it can be deduced from Theorems 5.1 and 5.2 that all the Cj's are
CQDD representable (resp. reverse representable). Hence, the equations above
yield a semi-algorithm for calculating $* (C) based on a iterative calculation of
the Ci's. Since the sequence of the Cj's is increasing, the limit is reached if for
some i we have d = Ci+i. Then the algorithm stops and returns C». We can
detect this since the inclusion problem is decidable for CQDD representable (resp.
reverse representable) set of configurations (by Theorem 5.1). Then, if the set of
initial and bad states is also CQDD representable (resp. reverse representable),
the problem PI (resp. P2) above can be solved by Theorem 5.1.

Of course, since the reachability problem is undecidable for CFSM's, an index
i such that d = Ci+X does not exist in general, and the (naive) algorithm
described above may never stop.

We propose to tackle this divergence problem by performing an "exact ac-
celeration" of the iterative calculation of the limit cf>*(C). The idea is as follows:
Given a set of cycles in the transition graph of the system, say 0, add at each
step the set of successors (or predecessors) by each of the cycles in 6. This op-
eration is sound (exact) since all the added configurations belongs to <j>*{C). So,
we compute <j>*{C) as the limit of another increasing sequence of configurations
(Di)i>0 given by:

D0 = C

Di+i =DiU 4>{Di) U (J (p*g(Di) for every i > 0

Clearly, for every i > 0, we have d C £>*. Hence, the chance to reach the limit
(j>* (C) in a finite number of steps is greater (or at least equal) by considering the
Dj's instead of the Cj's, and this chance should increase with the size of 6.

Therefore, using Theorems 5.1, 5.2, 5.3 and 5.4, we obtain a generic reacha-
bility analysis semi-algorithm which computes (when it terminates) the exact set
of successors (resp. predecessors) of a given CQDD representable (resp. reverse
representable) set of configurations. This algorithm is given by:

569

Reachability (6>, C):
X :=C ;
repeat

Y •= X "
I:=lU^(I)UU9ee«W

until X = Y ;
return(X)

end Reachability

A variety of reachability algorithms can be derived from the generic algorithm
above by determining adequate strategies for choosing the set of cycles Q.

For instance, the forward reachability analysis algorithm given in [5] can be
seen as a possible instance of our algorithm1. Indeed, in [5] the authors con-
sider the set of cycles that are of one of the following three forms: (s, {K\W}, S),

(S,{K?W},S), or (S,{KI?Iü}, «')(*'. {«2^}.*)- These kind of cycles d0 n0t intr°~
duce counting constraints on queue contents. Hence, starting from a regular set
of configurations (finite-state automata definable), the set of reachable configura-
tions by these cycles is also regular. Then, a representation structure based only
on finite-state automata (QDD's) can be used and allows to analyze some signifi-
cant systems. But considering QDD's and only cycles of the form specified above
does not allow to reason about systems with nonregular sets of configurations like
the system M given in Section 5. However, it is easy to see that our algorithm
terminates and computes the exact set of configurations of the system M (given
by 1) if we consider as 0 the set of the two elementary cycles (s0,{Ki!a},s0),
and (so, {/«i?a,K2\b},si){si,{K2\a, K3\a},s0)}.

7 Conclusion

We have applied the symbolic analysis principle to fifo-channel systems (commu-
nicating finite state machines). These systems have in general nonregular sets of
configurations. We have proposed a representation structure for their sets of con-
figurations combining finite-state automata with counting constraints expressed
in Presburger arithmetics. We have shown that this structures allow to com-
pute the exact effect of the repeated execution of any fixed cycle in the transition
graph of a system. We have defined a generic reachability analysis semi-algorithm
which is parametrized by a set of cycles. This semi-algorithm computes iteratively
the set of successors (or predecessors) by considering these cycles as additional
"meta-transitions" in the graph, following the approach adopted in [6, 5].

It can be seen that our reachability analysis procedure computes a fixpoint of
a function on set of configurations which is of a very particular form. Actually,
this procedure can be generalized to a mo del-checking procedure for any positive
fixpoint formula constructed using disjunctions, conjunctions, and the successor
(predecessor) function, starting from basic CQDD (reverse) representable sets.

1 In the definition of QDD's, any deterministic finite-state automata can be used. How-
ever, it can be checked that, starting from an initial configuration with empty queues,
the constructed QDD is a union of DRSA's.

570

References

1. P. Abdulla and B. Jonsson. Verifying programs with unreliable channels. Informa-
tion and Computation, 127:91-101, 1996.

2. R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The Algorithmic Analysis of Hybrid Systems.
TCS, 138, 1995.

3. R. Alur and D. Dill. A Theory of Timed Automata. TCS, 126, 1994.
4. G.V. Bochmann. Finite State Description of Communication Protocols. Computer

Networks, 2, October 1978.
5. B. Boigelot and P. Godefroid. Symbolic Verification of Communication Protocols

with Infinite State Spaces using QDDs. In CAV'96. LNCS 1102, 1996.
6. B. Boigelot and P. Wolper. Symbolic Verification with Periodic Sets. In CAV'94-

LNCS 818, 1994.
7. A. Bouajjani, J. Esparza, and O. Maler. Reachability Analysis of Pushdown Au-

tomata: Application to Model Checking. In CONCUR '97, 1997.
8. A. Bouajjani and P. Habermehl. Symbolic reachability analysis of fifo-channel

systems with nonregular sets of configurations. 1997. full version available at
http://www.imag.fr/VERIMAG/PEOPLE/Peter.Habermehl.

9. A. Bouajjani and O. Maler. Reachability Analysis of Pushdown Automata. In
Infinity'96. tech. rep. MIP-9614, Univ. Passau, 1996.

10. D. Brand and P. Zafiropulo. On communicating finite-state machines. JACM,
2(5):323-342, 1983.

11. O. Burkart and Y.M. Quemener. Model-Checking of Infinite Graphs Defined by
Graph Grammars. In Infinity'96. tech. rep. MIP-9614, Univ. Passau, 1996.

12. Gerard Cece, Alain Finkel, and S. Iyer. Unreliable Channels Are Easier to Verify
Than Perfect Channels. Information and Computation, 124(1):20-31, 1996.

13. S. Melzer and J. Esparza. Checking System Properties via Integer Programming.
In ESOP'96. LNCS 1058, 1996.

14. R.J. Parikh. On Context-Free Languages. JACM, 13, 1966.
15. W. Peng and S. Purushotaman Iyer. Data Flow Analysis of Communicating Fi-

nite State Machines. ACM Transactions on Programming Languages and Systems,
13(3):399-442, July 1991.

16. Y.M. Quemener and T. Jeron. Finitely Representing Infinite Reachability Graphs
of CFSMs with Graph Grammars. In FORTE/PSTV96. Chapman and Hall, 1996.

Axiomatizations for the Perpetual Loop
in Process Algebra

Wan Fokkink

University of Wales Swansea
Department of Computer Science

Singleton Park, Swansea SA2 8PP, Wales
e-mail: w. j . f okkinkGsvan .ac.uk

Abstract. Milner proposed an axiomatization for the Kleene star in basic pro-
cess algebra, in the presence of deadlock and empty process, modulo bisimulation
equivalence. In this paper, Milner's axioms are adapted to no-exit iteration z"\
which executes i infinitely many times in a row, and it is shown that this axio-
matization is complete for no-exit iteration in basic process algebra with deadlock
and empty process, modulo bisimulation.

1 Introduction

Kleene [15] defined a binary operator x'y in the context of finite automata, which denotes
the iterate of x on y. Intuitively, the expression x*y can choose to execute either x,
after which it evolves into x*y again, or y, after which it terminates. A feature of the
Kleene star is that on the one hand it can express recursion, while on the other hand
it can be captured in equational laws. Hence, one does not need meta-principles such
as the Recursive Specification Principle [10]. Kleene formulated several equations for his
operator, notably the defining equation x'y = x{x*y)+y. In later years it became more
fashionable to consider the unary version x* of the Kleene star. In the presence of the
empty process, the unary and the binary Kleene star are equally expressive.

Salomaa [22] presented a finite complete axiomatization for the Kleene star in language
theory, modulo completed trace equivalence, which incorporates one conditional axiom,
namely, if x = y ■ x + z, and y cannot terminate immediately, then x = y*z. Salomaa's
completeness proof basically consists of two steps: first he shows that the solutions of a
guarded recursive specification are all provably equal to the same term, and next he shows
that if two terms are completed trace equivalent, then there exists a guarded recursive
specification for which both terms are solutions.

Milner [17] was the first to study the (unary) Kleene star modulo bisimulation, and
proposed an axiomatization for it, being an adaptation of Salomaa's axiom system. Milner
[17, page 461] raised the question whether his axiomatization is complete for the Kleene
star in process theory, and remarked that this question may be hard to answer: "The
difficulty is that the method [...] of Salomaa's original completeness proof cannot be
applied directly, since -in contrast with the case of languages- an arbitrary system of
guarded equations [...] cannot in general be solved in star expressions".

In this paper the instantiation x*5 of the binary Kleene star is studied, which carries
two names: perpetual loop and no-exit iteration. Since the deadlock 5 blocks the exits,
this construct executes x an infinite number of times in a row. The perpetual loop is
closely related to the Kleene star, and shares several of its characteristics. In this paper
no-exit iteration, which is denoted by x", is studied in Basic Process Algebra [9] with
deadlock and empty process, denoted by BPA^(.4). No-exit iteration can be used to
formally describe programs that repeat a certain procedure without end. A significant

572

advantage of iteration over recursion as a means to express infinite processes is that does
it not involve a parametric process definition, because the development of process theory
is easier if parametrization does not have to be taken as primitive (see e.g. Milner [18, page
212]). Since the syntax of process algebra with iteration has an inductive term structure,
it allows simpler axiomatizations than recursion, and it does not need a guardedness
restriction to locate the class of meaningful terms. Therefore, the Kleene star is used
for example in the specification and verification of Grid protocols [7], which describe
parallel computations in a grid-like architecture, and in the ToolBus [8], which enables
to link separate tools. In both cases, iteration is used almost exclusively in the form of
the perpetual loop. No-exit iteration is also used in the educational vein [21], because it
enables to specify and verify infinite processes in a simple and intuitive way.

The three axioms for the unary Kleene star in Milner's axiom system (being Kleene's
defining equation, Salomaa's conditional axiom and an equation which describes the in-
terplay of Kleene star and empty process) have obvious counterparts for no-exit iteration.
It turns out that these three axioms, together with the standard axioms for BPA^£(A),
make a complete axiomatization for BPA^S(A) modulo bisimulation. The completeness
proof is based on a strategy that originates from [11]. It also uses new techniques, which
will hopefully turn out to be applicable in a possible proof of Milner's conjecture (see
Section 4 for a discussion on this topic). For a detailed presentation of the completeness
proof for BPAj£(A), and for omitted proofs in this paper, the reader is referred to [12].

This paper focuses on the process algebra BPA'g(A), in which the empty process is not
present. This setting allows a more concise presentation of the ideas that are used in the
completeness proof for the perpetual loop in process algebra. We will see that Kleene's
defining equation and Salomaa's conditional axiom for the the perpetual loop, together
with the standard axioms for BPAi(A), are complete for BPA^(A) modulo bisimulation.

Sewell [23] proved that there does not exist a complete finite equational axiomatization
for the Kleene star in combination with deadlock modulo bisimulation, due to the fact
that a" is bisimilar to (an)u for n = 1, 2,.... Since these equivalences are also present in
BPA^., Sewell's argument can be copied to conclude that there does not exist a complete
finite equational axiomatization for BPA" (A). Hence, the adaptation of Salomaa's con-
ditional axiom for the perpetual loop is essential for the obtained completeness results.

The requirement ly cannot terminate immediately' in Salomaa's conditional axiom can
be defined inductively on the syntax. According to Kozen [16] this requirement is not
algebraic, in the sense that it is not preserved under substitution of terms for actions.
He proposed two alternative conditional axioms which do not have this drawback. These
axioms, however, are not sound with respect to bisimulation equivalence.

Bergstra, Bethke and Ponse [6] suggested a finite equational axiomatization for BPA*,
i.e, for basic process algebra with the binary Kleene star without the special constants 5
and e, modulo bisimulation. Their conjecture that it is complete was solved by Fokkink
and Zantema [14]. (In contrast with this result, Aceto, Fokkink and Ingölfsdöttir [3]
showed that there does not exist a complete finite equational axiomatization for BPA*
modulo any process semantics in between ready simulation and completed traces.) In
[11], a new proof for the completeness result from [14] was presented. This new proof
technique was was applied successfully not only in this paper, but also in a paper on a
restricted version of iteration called prefix iteration, which is better suited for a setting
with prefix multiplication or with communication [2], and in a paper on a more expressive
variant of iteration called multi-exit iteration [1].

Acknowledgements. This research was initiated by a question from Alban Ponse. Luca
Aceto, Jaco van de Pol, Alban Ponse and an anonymous referee provided useful com-
ments, and Jan Bergstra is thanked for stimulating discussions.

573

2 The Perpetual Loop in Process Algebra

2.1 Syntax

We assume a non-empty alphabet A of atomic actions, with typical elements a, b, c. We
also assume two special constants 6, which represents deadlock, and e, which represents
the empty process, and f ranges over .4 U {<5,e}. Furthermore, we have two binary op-
erators: alternative composition x + y, which combines the behaviours of x and y, and
sequential composition x-y, which puts the behaviours of x and y in sequence. Finally, we
have the unary operator xu, which executes x infinitely many times in a row. We will refer
to this operator both as perpetual loop and as no-exit iteration. The language BPA£e(A),
with typical elements p,q,...,w, consists of all the terms that can be constructed from
the atomic actions, the two special constants, the two binary composition operators, and
the perpetual loop. That is, the BNF grammar for the collection of process terms is:

p ::= a\5\e\p + p\p-p\pu.

BPA£(A) is obtained by deleting the empty process e, and BPA"(A) is obtained by delet-
ing the deadlock S and the empty process s from the syntax. The sequential composition
operator will often be omitted, so pq denotes p ■ q. As binding convention, alternative
composition binds weaker than sequential composition and no-exit iteration.

Remark: The presence of the special constant 5 in BPA^(A) is redundant, because it can be
expressed in BPA^(A) modulo bisimulation: s" is bisimilar with S, because both processes do
not exhibit any behaviour. However, S is maintained in the syntax as a standard abbreviation.

2.2 Operational Semantics

Table 1 presents an operational semantics for BPA£(A) in Plotkin style [20], where

x -1+ x' represents that process x can evolve into process x' by the execution of action
a, and i A 7 denotes that process x can terminate by the execution of action a, and
the unary predicate x -^ yj denotes that process x can terminate immediately.

V "-W

X —> \J
a. i x —> X

x + y -^ V y + x -^ y/ x+y
a / . a 1 —>■ x y + x —> x

x —> yj y —> v x —> V y —>y
a. /

x-y —>y

a i & /
x —► v x —> x

x-y —> v
x-y -^y x-y -^+ x' -y

x-^V
a. / x —> X

x1 ■ (x")

Table 1. Transition rules for BPA£e(A)

574

Definition 1. p' is a derivative of p if p can evolve into p' by zero or more transitions,
p' is a proper derivative of p if p can evolve into p' by one or more transitions.

Note that a process term can be a proper derivative of itself, for example, a"b —>• a*b.
In the sequel, p' and p" will denote derivatives of process term p. The following lemma
can easily be deduced, using structural induction.

Lemma 2. Each process term in BPAgE(A) has only finitely many derivatives.

Process terms are considered modulo bisimulation equivalence from Park [19]. Intuitively,
two processes are bisimilar if they have the same branching structure.

Definition 3. Two processes p and q are bisimilar, denoted by p i± q, if there exists a
symmetric binary relation B on processes which relates p and q, such that:

- ifrßs and r -^ r', then there is a transition s -^ s' such that r' B s';

- if r B s and r —> •/, then 5 —> y/.

Bisimulation equivalence is a congruence with respect to all the operators, which means
that if p j± p' and q j± q', then p+q <±p'+q' and pq ±± p'q' and pu i± (p')w'• Namely, the
transition rules in Table 1 are in the 'path' format, which guarantees that the generated
bisimulation equivalence is a congruence, see [5, 13].

2.3 Axiomatizations

Table 2 presents the standard axioms Al-9 for BPAje(.A). Furthermore, Table 3 contains
the denning equation NEU together with the conditional axiom RSP" for the perpetual
loop. The axiomatization A1-7+NEI1+RSP1" is sound for BPA^(A), i.e., if p = q in
BPAj (A) is provable from these axioms, then p j±q. Since bisimulation equivalence is
a congruence for BPA£(A), soundness can be verified by checking this property for each
axiom separately, which is left to the reader.

Al x + y — y + x
A2 (x + y) + z = x + (y + z)
A3 x + x = x
A4 {x + y)-z = x-z + y-z
A5 (x ■ y) ■ z = x ■ (y ■ z)
A6 x + 5 = x
A7 5-x = 5
A8 x ■ £ = x
A9 c • x = x

Table 2. The axioms for BPA<5t(A)

NEU x-{x") =x"
RSP" x = y ■ x => x = y"

Table 3. The axioms for the perpetual loop in the absence of e

575

However, the axiom RSPW is not sound in the presence of the empty process. Namely,
due to the'axiom A9, x = ex, it then implies x = e", which is clearly unsound. There-
fore, in Table 4 an adaptation RSP^ is introduced, where the condition y # expresses
that y cannot terminate immediately. This condition, which is similar to the so-called
guardedness restriction in the Recursive Specification Principle from Bergstra and Klop
[10], can be defined unductively on the syntax:

ay
sy

x¥Ay¥=>(x + y)¥

Table 4 contains the defining equation NEU, and an extra equation NEI2 which de-
scribes the interplay of no-exit iteration with the empty process. The axiomatization
A1-9+NEI1.2+RSP" is sound for BPA£(A).

NEU i.(i") = i"
NEI2 (x + e)" = x"
RSP" x = yx A y Y =»• x = yu

Table 4. The axioms for the perpetual loop in the presence of e

The purpose of this paper is to present the following three completeness results.

Theorem4. The axiomatization Al-9+NEIl,2+RSP" is complete for BPA^(A) with
respect to bisimulation.

That is, if pi±q for process terms p and q in BPA^(A), then p = q can be derived from
the axioms Al-9+NEIl,2+RSP".

Theorem5. The axiomatization Al^+NEIl+RSP1" is complete for BPA£'{A) with re-
spect to bisimulation.

Theorem 6. The axiomatization Al-5+NEIl+RSPw is complete for BPA" (A) with re-
spect to bisimulation.

This paper focuses on the completeness proof for BPAf(A). The completeness proof for
BPA%4) is closely related to the one for BPA£(.A) (missing only some minor cases for 6
in the construction of basic terms in Lemma 17). The completeness proof for BPA^(A)
also uses the same proof strategy, but, due to the presence of the empty process, the
technical details are considerably more complicated. The reader is referred to [12] for a
detailed exposition on the completeness proof for BPA^e(A).

3 Proof of the Main Theorem

This section presents preliminaries that are needed in the proof of Theorem 5, together
with the completeness proof itself. Many preliminary definitions in this section originate
from [11]. For omitted proofs the reader is referred to [12].

576

3.1 Expansions

From now on, process terms in BPAg(A) are considered modulo associativity and com-
mutativity of the +, that is, modulo the axioms Al,2. We write p =Ac 9 if P and q can
be equated by axioms Al,2. As usual, £?=i p; represents the term pi + ... +pn, and the
Pi are called the summands of this term. The empty sum represents 6, where £Ig0 Pi + <7
is not considered empty.

Definition 7. For each process term p, its collection of possible transitions is finite, say

{p-^Pi I i-l,-.n}\j{p-% y/\j = l,-.,m}. The expansion of p is

n m

Lemma 8. üJacft process term p in BPAg(A) is provably equal to its expansion, using
A4-7+NEI1.

Proof: By structural induction with respect to p.

3.2 Normed Processes

The following terminology stems from [4].

Definition 9. A process term p is called normed if it can terminate in finitely many

transitions, that is, p —> pi —*■ ■ ■ ■ —»■ pn —>• v •

The class of normed processes in BPA£ (A) can be defined inductively as follows:

- a G A is normed;
- if p or g is normed, then p + q is normed;
- if p and q are normed, then pq is normed.

LemmalO. 7/p M not normed, then pq = p is provable using A4,5,7+NEI1+RSP"'.

Proof. By structural induction with respect to p.

3.3 An Ordering on Pairs of Terms

The following weight function on process terms in BPA^(^4), which represents the max-
imum nesting of ui's in a term, will be used to formulate an ordering on pairs of terms.

9(a) = 0
g(5) = 0

g(p + q) -max{g(p),g(q)}
g(pq) =max{g(p),g(q)}
g(p")=g(p) + l.

Note that p-value is invariant under axioms Al,2. The following lemma can easily be
deduced, using structural induction.

Lemma 11. If p' is a derivative of p, then g{p') < g(p).

We consider pairs of process terms modulo commutativity. The ordering < on pairs of
process terms is defined as follows.

577

Definition 12. The ordering < on pairs of terms is obtained by taking the transitive
closure of the union of the three relations below.

1. (r,s) < [p,q) if g(r) < g(p) and g(s) < g(p);
2. (r,s) < (p,q) if S(r) < g{p) and g(s) < g{q);
3. {p',q') < (p,q) if p' is a derivative of p, and not vice versa, and q' is a derivative of q.

The proof of the completeness theorem is based on induction with respect to this ordering,
so we need to know that it is well-founded.

Lemma 13. The ordering < on pairs of process terms is well-founded modulo =Ac-

Proof. Omitted.

3.4 Basic Terms

We construct a set 1 of basic process terms, such that each process term is provably
equal to a basic term, and the derivatives of basic terms are basic terms. We will prove
the completeness theorem by showing that bisimilar basic terms are provably equal.

Definition 14. The set 1 of basic process terms is defined inductively as follows:

1. if oi,...,a„,6i,...,6me Aandpi,...,p„eB, then £"=1 mpi + Y!J=i bJ € B;
2. ifp€ B thenp1" € B;
3. if p 6 B and p' is a proper derivative of p, then p'(pu) 6 B.

For notational convenience, we distinguish the following set C of cycles in B.

Definition 15. C = {pu,p'(pw) | P 6 B, p' proper derivative of p}.

The following facts for basic terms will be needed in the completeness proof.

Lemma 16. 1. If p £ C and p -^ p', then p' € C.
2. If p e B and p -^ pi, then p' 6 B.
3. //pel and p is a proper derivative of itself, then p 6 C.

Lemma 17. For each termp there exists a basic term q with g{q) < g{p) such that p = q
is provable using A4-7+NEI1+RSP".

3.5 The Auxiliary Function <p

Before starting with the completeness proof, first we need to develop some theory. The
proposition that will be proved at the end of this section makes an important stepping
stone to obtain the desired completeness result for BPA£(A).

p'ip") i± P"^"). with P' and P" derivatives of p, does not imply p' j± p". For example,
clearly adaa)") j± aaKaa)"), but a <£ aa. In order to solve this ambiguity, we define an
operator <j>p on basic terms, where intuitively the term <j>p(q), for q £ C, is obtained from
the argument q as follows: all proper derivatives q' of q with q'(p") ±± p" are removed in
4>p(q). We will see that if p'ip") ±tp"(p") then (f>p(p?) j± <t>p{p")-

Definition 18. Given q £ B, the term op(q) is defined as follows, using structural in-
duction. We distinguish two cases: either q € C or q £ C.

- CASE 1: q e C. Then put
Op{q) =AC q-

578

- CASE 2: </ £ C, so that
q =AC 22a.iqi + 2_,bj-

iei j€J

Then define J0 = {i 6 / | qdp") i£ Pw}> and put

<^(<?) =AC X] a^p(?i) + Y, ai + J2 bi-
ie/o i€/\/o ieJ

Lemma 19. For g £ 1 we ftaue g{(j>p{q)) < g(q)-

Proof: By structural induction with respect to q.

The proofs of the next two technical lemmas are quite involved, and therefore omitted.

Lemma 20. Assume that for some natural number iV0:

A. for all terms u with g(u) < N0 we have p" +£ u.

Letq,r£B andg{q + r) < N0. If q(p") i±r{pu) then

4>P{q) ±± Mr)-

Proof. Omitted.

Lemma 21. Assume that for some natural number N0:

A. for all terms u with g{u) < N0 we have p i£_ u;
B. for all pairs (u,v) of bisimilar terms with g(u + v) < N0 we have u-v.

Let p, q € 1 and g(p + q) < N0. Then

q^viPT) = MtifaiP)")-

Proof. Omitted.

Proposition 22. Assume that for some natural number N0:

A. for all terms u with g{u) < N0 we have p" j£ u;
B. for all pairs (u, v) of bisimilar terms with g(u + v) < N0 we have u = v.

Let g{p + q + r)< N0 and q(pu) i± r(p"). Then

q(p") = r(pw).

Proof. By Lemma 17
p = s (1)

with s £ B and g(s) < g{p) < N0. Since conditions A and B hold, Lemma 21 can be
applied to derive s(^(sD = 0,(s)(^(s)") = Ms)" ■ RSP" then yields

su = MB)"- (2)

According to Lemma 17 there exist basic terms t and u with g(t) < g{q) < No and
g(u) < g{r) < N0 and

q — t (•>)
r = u. iv

Since t{s") j± q(pu) ±± r{pu) ±> u(su), and since g(t + u) < N0 and requirement A of
Lemma 20 is satisfied, it implies <£,(*) i± <£,(«)• Since s(0s(<) + <£,(«)) < No (Lemma
19), condition B yields

Mt) = My)- (°)
Hence,

,(p-) (1L(3) t(sn (=> t(M*r) Le=21 MtUMsr)
(4> MuKMsT) L' = 21 u(Msr) (=> u(s») (1)^4) r{p-). G

579

3.6 Completeness Proof

Proof of Theorem 5: Assume p, q 6 B with p $±q; we show that p = q can be derived
from A1-7+NEI1+RSP", by induction on the well-founded ordering < on pairs of terms.
So suppose that we have already dealt with pairs of bisimilar basic terms that are smaller
than (p, q). By symmetry it is sufficient to consider two cases: either p £ C or p,q g C.

- CASE l-.p&C
According to Lemma 8 p and q are provably equal to their expansions. Since p ±¥ q,
these expansions can be adapted, using axiom A3, to obtain:

n m n m

where p; f± qt for i = 1,..., n. Since p 0 C, Lemma 16.3 says that p is not a derivative
of pi for i = l,...,n. Since the p4 and the <ji for i = l,...,n are derivatives of p and
<? respectively, it follows that {pi,qi) < (p,q) for i = 1, ...,n (by item 3 in Definition
12). So induction yields p* = qi for i = 1, ...,n. Hence, p = q.

- CASE 2:p,q£ C.
Since p € C, either p =AC ru - r{r") or p =Ac r'(ru), where r € I and r' is a
proper derivative of r. In both cases p = r'(r") with r € 1 and r' a derivative (not
necessarily proper) of r. Even so, q = s'(s") with s € 1 and s' a derivative of s.
By symmetry, it is sufficient to distinguish two cases: either r' is not normed, or both
r' and s' are normed.

* CASE 2.1: r' is not normed.
Then by Lemma 10 r'(ru) = r'. Since g(r') < g{r) < g(p), item 2 in Definition
12 yields (r',q) < (p,q). So, since r' ±±r'(ru') *±q, induction yields r' = q. Hence,
p = /(r") = r' =q.

* CASE 2.2: Both r' and s' are normed.
For convenience of notation put iV0 = max{g(p),g(q)}. Again, we consider two cases:
either there exists or there does not exist a term t with g(t) < N0 and p «t

o CASE 2.2.1: There exists a term t with g{t) < N0 and p $±t (and so q j± £).
Since by the assumption at case 2.2 r' is normed, and r'(ru) 4±t, there exists a
derivative t' of t with ru ±±f, and so rt' j± t'. Furthermore, Lemma 11 implies
g(t') < g(t) < N0, and so g(rt' + t') < N0. So after using Lemma 17 to reduce rt'
and t' to basic form, we can apply induction, by item 1 in Definition 12, to conclude
rt' = t'. RSP" then yields ru = t', so p = r't'. By Lemma 17 r't' = u with u 6 I and
g(u) < N0. Thus, p = u. Even so, q — v for some basic term v with g(v) < No- Then
u i± P ±± 9 i± "i so since ff(u+«) < A^o, induction yields u = v. Hence, p = u = v = q.

o CASE 2.2.2: For each term t, if #(£) < N0 then p <£_ t (and so q <£ £).
Since p i±q, the assumption of this case implies #(p) = g(q).
Note that the requirements A and B for Proposition 22 are satisfied, by the assump-
tion at case 2.2.2 together with the induction hypothesis (item 1 of Definition 12).
So we are allowed to apply Proposition 22 in this case.
By the assumption at case 2.2 r' is normed, so since r'(ru) i±s'(su), there exists a
derivative s" of s such that r" ±> s"(s"). Even so, s" *+ r'^r") for some derivative
r" of r such that r"(ru) +± s".
Since s"r"{r") tts"^") ±± r" ±±r(r"), and #(s"r" + r) < JV0, Proposition 22 yields

s"r"(r") = r(rJ) N=U ru. RSP" then yields

r- = {s"r")^. (6)

580

Even so,
a" = (r"s'T- (7)

Since s"((r"s"y) "=" s"((r"s")((r"s"r)) = (s"r")(s"((r"s'T)), RSP" yields

s"((r"s")u) = (s"r'T- (8)

Since /«"(a") i± r's"((r"s")u) ±± r'((«"r")w) ±± r'{r") i±s'(s"), and 5(rV + s') <
iV0, Proposition 22 yields

rV'(*") = s'(sn- (9)
So finally,

P=AC r (r") (=> r'((s"r")u) = r's"((r"s")") = r's'V) ® s'(sw) =Ac <?• O

3.7 An Example

We give an example as to how the construction in the completeness proof acts on par-
ticular pairs of bisimilar basic terms.

Example 1. {a.8 + b){{c(a5 + b))u) ±± {aS + bc)u.

This equivalence belongs with case 2.2.2. It can be derived as follows.

(aS + b)((c(a5 + b))u) NIU (aS + b)((c(a5 + b))((c(a5 + 6))"))
Ai'5 ((a5 + b)c)((a5 + b)((c(aS + &))")).

Then RSP" yields
(a5 + b)((c(a8 + 6))") = ((aS + b)c)". (10)

So finally,
{aS + b){(c(a5 + b))u) (=> ((aS + b)cr A4=5J {a5 + bCy.

4 Conclusion

In this paper, Milner's axiomatization for iteration was restricted to the case of no-
exit iteration, and it was proved that this yields a complete axiomatization for no-exit
iteration in process algebra modulo bisimulation. The main new idea in the proof was to
introduce a function 0 which can help to minimize the argument p of a no-exit iteration
term pw, in such a way that p does not contain any proper derivatives p' with p'(pw) ±± pu ■
For example, using this function <j>, the term (aa)" can be reduced to a".

The completeness result in this paper may be a step forward to a positive answer to
the question whether Milner's axiomatization is complete for iteration in process algebra
modulo bisimulation. Namely, the main problem in solving this question is to deal with
no-exit iteration terms p" where p is not minimal. Unfortunately, it is not obvious how
to extend the definition of the function tj> to all terms in process algebra with iteration.
For example, consider the term

{a((a(ba + a))*c))w

where the argument a((a(ba + a))*c) of no-exit iteration is not minimal. Minimization of
this argument would yield a so-called 'double-exit' term (with exits 6 and c), which cannot
be expressed in process algebra with iteration modulo bisimulation (see [6, 1]). The only
way to obtain a no-exit iteration term with a minimal argument in this particular case
is to rewrite the term to

a((a(ba + a) + ca)u)

A minimization strategy for all possible arguments of no-exit iteration would probably
be the key to solving Milner's question.

581

References

1. L. Aceto and W.J. Fokkink. An equational axiomatization for multi-exit iteration. Report
RS-96-22, BRICS, Aalborg University. 1996. Accepted for publication in Information and
Computation.

2. L. Aceto, W.J. Fokkink, R.J. van Glabbeek, and A. Ingölfsdöttir. Axiomatizing prefix iter-
ation with silent steps. Information and Computation, 127(l):26-40, 1996.

3. L. Aceto, W.J. Fokkink, and A. Ingölfsdöttir. A menagerie of non-finitely based process
semantics over BPA\ from ready simulation to completed traces. Report RS-96-23, BRICS,
Aalborg University, 1996.

4. J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of bisimulation equivalence for
processes generating context-free languages. Journal of the ACM, 40(3):653-682, 1993.

5. J.C.M. Baeten and C. Verhoef. A congruence theorem for structured operational semantics
with predicates. In Proceedings CONCUR'93, LNCS 715, pp. 477-492. Springer, 1993.

6. J.A. Bergstra, I. Bethke, and A. Ponse. Process algebra with iteration and nesting. The
Computer Journal, 37(4):243-258, 1994.

7. J.A. Bergstra, J.A. Hillebrand and A. Ponse. Grid protocols based on synchronous commu-
nication. Science of Computer Programming, 1997, To appear.

8. J.A. Bergstra and P. Klint. The discrete time toolbus. In Proceedings AMAST'96, LNCS
1101, pp. 286-305. Springer, 1996.

9. J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication. Information
and Control, 60(1/3):109-137, 1984.

10. J.A. Bergstra and J.W. Klop. Verification of an alternating bit protocol by means of pro-
cess algebra. In Proceedings Spring School on Mathematical Methods of Specification and
Synthesis of Software Systems, LNCS 215, pp. 9-23. Springer, 1985.

11. W.J. Fokkink. On the completeness of the equations for the Kleene star in bisimulation. In
Proceedings AMAST'96, LNCS 1101, pp. 180-194. Springer, 1996.

12. W.J. Fokkink. An axiomatization for the terminal cycle. Logic Group Preprint Series 167,
Utrecht University, 1996. Available at http://www.phil.ruu.nl.

13. W.J. Fokkink and R.J. van Glabbeek. Ntyft/ntyxt rules reduce to ntree rules. Information
and Computation, 126(1):1-10, 1996.

14. W.J. Fokkink and H. Zantema. Basic process algebra with iteration: completeness of its
equational axioms. The Computer Journal, 37(4):259-267, 1994.

15. S.C. Kleene. Representation of events in nerve nets and finite automata. In Automata
Studies, pages 3-41. Princeton University Press, 1956.

16. D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular events.
Information and Computation, 110(2):366-390, 1994.

17. R. Milner. A complete inference system for a class of regular behaviours. Journal of Com-
puter and System Sciences, 28:439-466, 1984.

18. R. Milner. The polyadic 7r-calculus: a tutorial. In Proceedings Marktoberdorf Summer School
'91, Logic and Algebra of Specification, NATO ASI Series F94, pp. 203-246. Springer, 1993.

19. D.M.R. Park. Concurrency and automata on infinite sequences. In Proceedings 5th GI
Conference, LNCS 104, pp. 167-183. Springer, 1981.

20. G.D. Plotkin. A structural approach to operational semantics. Report DAIMI FN-19,
Aarhus University, 1981.

21. A.Ponse. Personal communication, March 1997. See also the handouts for the course
"Concurrency and Distributed Systems", avalailable at http://adam.wins.uva.nl/ alban.

22. A. Salomaa. Two complete axiom systems for the algebra of regular events. Journal of the
ACM, 13(1):158-169, 1966.

23. P.M. Sewell. Bisimulation is not finitely (first order) equationally axiomatisable. In Pro-
ceedings LICS'94, pp. 62-70. IEEE Computer Society Press, 1994.

Discrete-Time Control for Rectangular Hybrid Automata*

Thomas A. Henzinger1 Peter W. Kopke2

' University of California, Berkeley, CA. Email: tah@eecs.berkeley.edu
2 William H. Kopke, Jr. Inc., Lake Success, NY. Email: 75467.2651@compuserve.com

Abstract Rectangular hybrid automata model digital control programs of analog
plant environments. We study rectangular hybrid automata where the plant state evolves
continuously in real-numbered time, and the controller samples the plant state and
changes the control state discretely, only at the integer points in time. We prove that
rectangular hybrid automata have finite bisimilarity quotients when all control transi-
tions happen at integer times, even if the constraints on the derivatives of the variables
vary between control states. This is sharply in contrast with the conventional model
where control transitions may happen at any real time, and already the reachability
problem is undecidable. Based on the finite bisimilarity quotients, we give an exponen-
tial algorithm for the symbolic sampling-controller synthesis of rectangular automata.
We show our algorithm to be optimal by proving the problem to be EXPTIME-hard.
We also show that rectangular automata form a maximal class of systems for which
the sampling-controller synthesis problem can be solved algorithmically.

1 Introduction

Hybrid systems are dynamical systems with both discrete and continuous components. A
paradigmatic example of a hybrid system is a digital control program for an analog plant en-
vironment, like a furnace or an airplane: the controller state moves discretely between control
modes, and in each control mode, the plant state evolves continuously according to physical
laws. A natural mathematical model for hybrid systems is the hybrid automaton, which rep-
resents discrete components using finite-state machines and continuous components using
real-numbered variables [ACH+95]. A particularly important subclass of hybrid automata
are the rectangular automata, where in each control mode v, the given n variables follow a
nondeterministic differential equation of the form % G B(v), for an n-dimensional rect-
angle B{v) CM" [HKPV95]. Rectangular automata are useful as (1) they can be made to
approximate, arbitrarily closely, complex continuous behavior using lower and upper bounds
on derivatives [HH95], and (2) they can be analyzed automatically using (semi)algorithms
based on symbolic execution, such as those implemented in HYTECH [HHW97].

For systems that can be executed symbolically, verification and control yield to a
(semi)algorithmic approach even if the state space is infinite [Hen96]. For such systems, a
temporal formula can be verified automatically and a controller can be synthesized auto-
matically by computing, using iterative approximation, a fixpoint of an operator on state
sets [BCM+92, MPS95]. The fixpoint computation is guaranteed to terminate in the pres-
ence of a suitable finite quotient space. For example, symbolically-executable systems with
finite bisimilarity quotients allow symbolic LTL and CTL model checking, and symbolic

* This research was supported in part by the ONR YIP award NOOO14-95-1-0520, by the NSF
CAREER award CCR-9501708, by the NSF grant CCR-9504469, by the AFOSR contract F49620-
93-1-0056, by the ARO MURI contract DAAH-04-96-1-0341, by the ARO contract DAAL03-91-
C-0027 through the MSI at Cornell University, by the ARPA grant NAG2-892, and by the SRC
contract 95-DC-324.036.

583

safety controller synthesis. While rectangular automata can be executed symbolically, they
do not necessarily have finite bisimilarity quotients, and simple reachability questions are
undecidable [HKPV95]. A noted subclass of rectangular automata with finite bisimilarity
quotients are timed automata, where all variables are clocks with derivative 1 [AD94]. As
a consequence, the symbolic model checking and controller synthesis problems have been
solved for timed automata [HNSY94, MPS95].

While previous results on timed and hybrid automata allow edge transitions (i.e., control
switches) to occur at any real-numbered points in time, this is not necessarily a natural
assumption for controller synthesis, as it permits controllers that, in a single time unit, can
interact with the plant an unbounded number of times (even infinitely often, if no special
care is taken [AH97]). By contrast, we study the control problem under the assumption that
while the plant evolves continuously, the controller samples the plant state discretely, at
the integer points in time only.3 This leads to the following formulation of the sampling-
controller synthesis problem for rectangular automata: given a continuous-time rectangular
automaton, is there a discrete-time controller that samples the automaton state at integer
times and switches the control mode accordingly so that the resulting closed-loop system
satisfies a given invariant?

To solve this problem, we study the discrete-time transition systems of timed and rect-
angular automata, where all time transitions have unit duration. It should be noticed that all
variables still evolve continuously, in real-numbered time; only edge transitions are restricted
to discrete time. We prove that unlike in the case of dense time, the discrete-time transition
system of every rectangular automaton has a finite bisimilarity quotient.4 As a corollary, we
conclude that the standard approaches to symbolic model checking and controller synthesis
are guaranteed to terminate when all control switches must occur at integer times. The run-
ning times of the verification and control algorithms depend on the number of bisimilarity
equivalence classes, which, while exponential in the description of the automaton, is less
by a multiplicative exponential factor than the number of region equivalence classes used
for the dense-time verification and control of timed automata. Thus, the often more realistic
sampling-controller synthesis problem can be solved for a wider class of hybrid systems
than dense-time control (rectangular vs. timed), at a smaller cost.

We prove that our sampling-control algorithm is optimal, by giving lower bounds on
the control problem for timed and hybrid systems: we show that the safety control decision
problem (does there exist a controller that maintains an invariant?) is complete for EXPTIME
already in the restricted case of discrete-time timed automata. We also identify the boundary
of sampling controllability by proving that several generalizations of rectangular automata
lead to an undecidable reachability problem, even in discrete time. The undecidability of
dense-time reachability for rectangular automata has led [PV94] to consider the restriction
that the flow rectangle B(v) must be the same for each control mode v. For the resulting
class of initialized rectangular automata, reachability is decidable [HKPV95]. Our work can
be viewed as pointing out an orthogonal restriction of rectangularity, namely, that the flow
rectangle may change only at integer points in time. Unlike initialization, our restriction
guarantees not only a finite language equivalence quotient but a finite bisimilarity quotient
on the infinite state space of a rectangular automaton.

3 The sampling rate of the controller may be any rational, but without loss of generality we assume it
to be 1.

4 Under the technical restriction that either the invariant and flow rectangles are positive, or the
automaton state stays within a bounded region.

584

2 Definitions and Previous Results

2.1 Labeled Transition Systems

Definition 2.1 [Transition system] A transition system S = {Q,E, -s-,Q/, 77, |=) consists
of a set Q of states, a finite set E of events, a multiset -!• C Q x E x Q called the
transition relation, a set Qi C Q of initial states, a set 77 of propositions, and a satisfaction
relation ^ C Q x 77. We write g 4 g' instead of (9, <r, g') G -+, and g f= * instead of
(g, TT) G |=. The transition system 5 is/zm're if Q is finite. We assume for simplicity that
S is deadlock-free; that is, for each state g G Q, there exists an event a 6 17 and a state

r£Q such that g 4 r. A region is a subset of Q. Given a proposition TT £ 77, we write

7?,r = {g £ Q I g |= T} for the region of states that satisfy it. ■

Verification as reachability

Definition 2.2 [Weakest precondition] Let 5 be a transition system. For each event a G E,
the a-predecessor operator Pre* : 2Q -» 2Q is defined by Prea{R) = {? G Q I 3r G
7?. ? 4 r}. In particular, Prea(Q) is the set of states in which the event a is enabled. Define
Pre : 2« -^ 2« by Pre{R) = \JaZS Prea{R). A region 7? C Q is reachable in S if

Q/ n Pre*(7?) 7^ 0 for some k G N. ■
The basic verification problem for transition systems asks whether an unsafe state is un-

reachable.

Definition 23 [Safety verification] Let C be a class of transition systems. The safety verifi-
cation problem for C is stated in the following way: given a transition system S G C and a
proposition 7r G 71, determine whether the region R« is not reachable in S. ■

For finite transition systems, the safety verification problem is the complement of graph
reachability, which can be solved in linear time and is complete for NLOGSPACE. The
safety verification problem can be generalized to the safety control problem.

Control as alternating reachability We use the following model for control: for each
state q of a transition system, a (memory-free) controller chooses an enabled event a so
that in state q, the controlled system always proceeds via event a. Since q may have several
cr-successors, the controlled system may still be nondeterministic. Alternative models for

memory-free control are equivalent.

Definition 2.4 [Control map] Let 5 be a transition system. A control map for S is a function

K : Q _► E such that for each state q G Q, there exists a state r 6 Q with q Ar. The
closed-loop system K(S) is the transition system (Q,E,=>,Qi,II, (=), where q =>q' iff

q-¥q' and K,(q) — <r. ■

The basic control problem for transition systems asks whether an unsafe state is avoidable

by applying some control map.

Definition 2.5 [Safety control] Let C be a class of transition systems. The safety control
decision problem for C is stated in the following way: given a transition system S G C and a
proposition K G 77, determine whether there exists a control map K such that the region R„
is not reachable in the closed-loop system K(S). If SO, then we say n is avoidable in 5. The
safety controller synthesis problem requires the construction of a witnessing control map K

when TT is avoidable. ■

585

For finite transition systems, the safety control decision problem is the complement of
AND-OR graph reachability, which can be solved in quadratic time and is complete for
PTIME.

Definition 2.6 [Alternating reachability] An AND-OR graph G = (VA, V0, Vu ->) consists
ofafiniteset^ = VAUVo of vertices that is partitioned into a set VA of AND vertices and a
set Vo of OR vertices, a set Vi C V of initial vertices, and a multiset -*• C V x V of edges.
We assume deadlock freedom, namely, that for each vertex v £ V, there exists a vertex
w £V such that v -» w. The controllable predecessor operator CPre: 2V -> 2V is defined
by CPre{R) = {q £ Vo \ 3r £ R. q -> r} U {q £ VA | Vr £ V. q -» r implies r £ R}. A
set R C V of vertices is alternating reachable in G if V/- D CPre* (Ä) ^ 0 for some fc 6 N.
The alternating reachability problem asks whether a given set of vertices is alternating
reachable in a given AND-OR graph. ■

Theorem 2.1 [Imm81] The alternating reachability problem is complete for PTIME.

There is a simple correspondence between safety control and alternating reachability. Let
5 be a finite transition system and let K be a proposition. Define an AND-OR graph Gs as
follows: let VA = Q and Vo = Q x H and V/ = Qi\ for each vertex q £ VA and each event
<7 £ 17, let g -+ (g, cr) in Gs iff g £ Prea(Q) in 5; and for each vertex (q, a) £ Vb, let
(g, c) ->• r in Gs iff ? A r in S. Then the proposition n is avoidable in S iff the set Rn of
AND vertices is not alternating reachable in Gs-

Corollary 2.1 The safety control decision problem for finite transition systems is complete
for PTIME.

Moreover, a byproduct of a negative alternating reachability computation is a control map that
avoids ff. Note that for each set R C Q of AND vertices, CPre2(R) = f]a€S{Pre<T(R) U
(Q \ Prea{Q))). Thus the region CPre2(R) is the set of all states that no control map
can keep out of R at the next transition. Let RF = CPre2^{Rv). Then n is avoidable
in S iff Qi n Rp = 0. Each application of CPre2 can be computed in linear time, so
RF can be computed in quadratic time. If n is indeed avoidable, then a witnessing control
map may be constructed by choosing for each state q £ Q \ Rp an event a such that
qePrea{Q)\Prea{RF).

Theorem 2.2 [RW87] The safety controller synthesis problem for finite transition systems
can be solved in quadratic time.

Effectively-presented transition systems with finite bisimilarity quotients The safety
controller synthesis problem can be solved not only for finite transition systems, but also for
effectively-presented transition systems with finite bisimilarity quotients.

Definition 2.7 [Effective presentation] A symbolic execution theory for the transition system
S consists of a set T of formulas, a formula 4>i £ T, and a map f-|: T —>• 2® such that
(1) every proposition w £ 77 is a formula: [n-] = R*; (2) for all formulas 6\,4>i £ T< the
three expressions <j>\ A 4>i and <j>\ V fa and ~«j>] are formulas: \<j>\ A fa} = 1<P\] H [©2] and
fei V©:] = [0i]U[0jand[-.^,]| = Q\[<?i];(3) [©/] = Q/;(4) thesetjo £ ^ | [0] = 0}
is recursive; and (5) for each event a £ E, there is a computable map Pre^ : T -¥ T such
that \Prea{fa\ - Prea{[<j>\) for all formulas <j> £ J7. An effectively-presented transition
system consists of a transition system 5 together with a symbolic execution theory for S. ■

586

Definition 2.8 [Bisimilarity] A bisimulation on the transition system S is an equivalence
relation 2 on the state set Q such that (1) if q = r then for all propositions TT £ 77, we
have 9 |= 7T iff r (= 7T, and (2) if ? = r and 9 A q', then there exists a state r' G Q such
that r Ar' and q' = r'. The largest bisimulation on S is denoted by =. The bisimilarity

quotient S/= is the transition system (<?/=, 27, ^-3 , Q3, /7, |=3), where ä43 ä' iff there
exist two states q G R and q' G Ä' such that ? 4 q', where Ä G Q3 iff R n <?/ # 0, and

where Ä j=3 T iff RDRV # 0. ■

The. controllable-predecessor operator CPre2 can be computed on any effectively-presented
transition system. When the bisimilarity quotient has k G N equivalence classes, the RF

computation converges in at most k iterations of CPre2. Synthesizing a control map is
accomplished by first computing the bisimilarity quotient, and then choosing for each state
in each equivalence class R disjoint from Rf, an event a G E such that R 0 Prea (Q) ^ 0

and Äfl Prea(RF) = 0.

Theorem 13 [Hen95] The safety control decision problem is decidable for effectively-
presented transition systems with finite bisimilarity quotients. Moreover, when a proposition

is avoidable, a witnessing control map can be computed.

This result can be generalized to liveness verification such as /i-calculus model checking, and
to memory-free liveness control such as control-map synthesis for Rabin chain conditions.

2.2 Rectangular Hybrid Automata

Definition 2.9 [Rectangle] Let X = {x,,... ,xn} be a set of real-valued variables. A
rectangular inequality over X is a formula of the form a;,- ~ c, where c is an integer
constant, and ~ is one of <, <, >, >. A rectangular predicate over X is a conjunction of
rectangular inequalities. The rectangular predicate <j> defines the set of vectors {<£] = {y6
E» | $[X := y] is true}. A set of the form [<0], where <f> is a rectangular predicate, is called
a rectangle. Given a positive integer m G N>0, the rectangular predicate <p and the rectangle
y>J are m-definable if \c\ < m for every conjunct x{ ~ c of <j>. The set of all rectangular

predicates over X is denoted Rect(X). ■

Definition 2.10 [Rectangular automaton] [HKPV95] A rectangular automaton A consists

of the following components:

Variables. A finite set X = {x\,..., xn} of real-valued variables representing the contin-
uous component of the system. The number n is the dimension of A. We write X for
the set {it \ x{ G X} of dotted variables, and X' for the set {x'{ | x{ G X} of primed

variables.
Control graph. A finite directed multigraph (V", E) representing the discrete component of

the system. The vertices in V are called control modes. The edges in E are called control

switches.
Invariant conditions. A function inv : V -* Rect(X) mapping each control mode to its

invariant condition, a rectangular predicate.
Initial conditions. A function init: V -> Rect(X) mapping each control mode to its initial

condition, a rectangular predicate.
Jump conditions. A function jump mapping each control switch e G E to a predicate

jump(e) of the form <j> A <f>' A Aiiupdat*(e)(xi = x<)> where ^ e Rect{X) and <£' G
Rect(X') are rectangular predicates, and update{e) C {1,..., n}. The jump condition
jump(e) specifies the effect of the change in control mode on the values of the variables:

587

each unprimed variable x,- refers to a value before the control switch e, and each primed
variable x\ refers to the corresponding value after the control switch.

Flow conditions. A function flow: V ->■ Rect{X) mapping each control mode v to a flow
condition, a rectangular predicate that constrains the behavior of the first derivatives of
the variables while time passes in control mode v.

Events. A finite set E of events, and a function event: E ->• E mapping each control switch

to an event.

Thus a rectangular automaton A is a tuple (X,V, E, inv, initjumpjow, E, event). The
automaton A is m-definable if every rectangular predicate in the definition of A is in-
definable. The automaton A is positive if for every control mode v 6 V, the invariant
rectangle |mv(»)] and the flow rectangle \flow{v]\ are subsets of the positive orthant M£0.
The automaton A is bounded if for every control mode v £ V, the invariant rectangle

[z'nv(u)] is a bounded set. ■

The state of a rectangular automaton has two parts: a discrete (or control) part, and a
continuous (or plant) part. The discrete state is a control mode. The continuous state is a

valuation for the variables.

Definition 2.11 [States of rectangular automata] Let A be a rectangular automaton. A state
of A is a pair (v, y), where v £ V is a control mode and y £ pnv(u)] is a vector satisfying the
invariant condition of v. Thus the set of states is Q = {{v, y) £ V x S" | y £ [mv(u)]}. A
subset of Q is called a region of A. A rectangular state predicate for A is a function ij> from
V to Rect(X). The rectangular state predicate ip defines the region [x/>] = {(v, y) £ Q | y £
[^(D)1). A region of the form [$], where ^ is a rectangular state predicate for A, is called
a rectangular region. The initial condition map defines the rectangular region Qi = [/m'rj

of initial states. ■

A rectangular automaton makes two types of transitions: jump (or edge, or control) transi-
tions, and flow (or time, or plant) transitions. Jump transitions are instantaneous. They are
characterized by a change in control mode, and are accompanied by discrete modifications
to the variables in accordance with the jump condition of the control switch. During flow
transitions, while time elapses, the control mode remains fixed and the variables evolve
continuously via a trajectory that satisfies the flow condition of the active control mode.

Definition 2.12 [Transitions of rectangular automata] Let A be a rectangular automaton.
For each event a £ E, we define the jump relation A C Q2 by {v, y) A (v',y') iff there
exists a control switch e = {v, v') £ E such that event (e) = .rand (y. y') £ [/«m/jj»]. For
each nonnegative real 5 £ E>o, we define the flow relation ->■ C Q2 by (v, y) -> [v', y')
iff (1) u = v1, and (2) there exists a differentiable function / : [0,d] -»■ [«nv(i>)J such
that /(0) = y and f{6) - y', and /(e) £ [/fow(?;)J for all reals e £ (0,<5), where /
is the first derivative of /. We say that S is the duration of the flow transition. Since the
rectangle [j'nv(*;)] is a convex set, it follows that for 6 > 0, condition (2) is equivalent to
y-^p- £ \flow(v)f, that is, all flows can be thought of as straight lines. ■

Every rectangular automaton defines two transition systems.

Definition 2.13 [Discrete time and dense time] Let A be a rectangular automaton. Define
the binary relation nf C Q2 by (v,y)'™ (v',y') iff {v,y) A (i/.y7) for some duration
j e E>o. Define 77 to be the set of rectangular state predicates for A, and for all states
(u>y) £ Q. define (v,y) \= n iff {v,y) £ [TTJ. The discrete-time transition system of .4

588

is defined by Sfc = (Q, £ U {1}, -> , <?/, 77, |=). The dense-time transition system of
A is defined by S^"'" = (Q,EU {time}, -»•, Qj, 77, (=). Thus all flow transitions in the
discrete-time transition system are required to have duration 1, while flow transitions in
the dense-time transition system can have any nonnegative real duration. We refer to the
safety verification problem for transition systems of the form Sfc (resp. S£"e), for some
rectangular automaton A, as the discrete-time (resp. dense-time) safety verification problem
for rectangular automata, and similarly for the control decision and controller synthesis

problems. ■

Dense-time undecidability results In dense time, the verification and control of rectan-

gular automata cannot be fully automated.

Theorem 2.4 [ACH+95] For positive and bounded rectangular automata, the dense-time
safety verification problem (and thus the dense-time safety control decision problem) is

undecidable.

Research has therefore concentrated on subclasses of rectangular automata. In [HKPV95] it
is shown that for initialized rectangular automata, whose flow condition map is a constant
function (i.e., all control modes have the same flow condition), the dense-time safety veri-
fication problem (in fact, LTL model checking) can be decided. These automata, however,
have no finite bisimilarity quotients in dense time [Hen95], and therefore further restrictions

are desirable.

Timed automata An important special case of initialized rectangular automata are timed
automata. All variables of a timed automaton are clocks, which advance uniformly at rate 1

while time elapses.

Definition 2.14 [Timed automaton] [AD94] A timed automaton is a positive rectangular
automaton A with the restriction thatflow(v) = /\"=1 (x; = 1) for every control mode v. A
triangular inequality over a set X of variables is a formula of the form x:- - xj ~ c, where
Xi,Xj G X are variables, c is an integer constant, and ~ is one of <, <, >, >. A triangular
predicate over X is a conjunction of rectangular and triangular inequalities. A triangular
state predicate for a timed automaton A is a function that maps every control mode of A to
a triangular predicate over the variables of A. ■

The fundamental theorem for timed automata states that the dense-time transition system
gjense 0f a tjme(j aut0maton A has a finite bisimilarity quotient and can be presented

effectively using triangular state predicates.

Theorem 2.5 [AD94, HNSY94] For every m-definable n-dimensional timed automaton A
withk control modes, the dense-time transition system Sd^nse has a finite bisimilarity quotient
withO(k(n + l)!-(2m)n) many equivalence classes. Moreover, the boolean combinations
of triangular state predicates for A form a symbolic execution theory for Sj""'.

Corollary 2.2 For timed automata, the dense-time safety verification problem (in fact, LTL
and CTL model checking) can be solved in PSPACE, and the dense-time safety controller
synthesis problem can be solved in EXPT1ME.

As for finite transition systems, control is harder than verification. In [AD94] it is shown that
the dense-time safety verification problem for timed automata is hard for PSPACE. From
Theorem 3.2 below it follows that the dense-time safety control decision problem for timed
automata is hard for EXPTIME.

589

3 Discrete-Time Rectangular Automata

3.1 Finite Bisimilarity Quotients and Effective Presentation

We show that the discrete-time transition system S^'sc of a positive or bounded rectangular
automaton A has a finite bisimilarity quotient and can be presented effectively using rectan-
gular state predicates. More precisely, in discrete time, two states of a rectangular automaton
are bisimilar if (1) they have the same control mode, (2) corresponding variable values
agree on their integer parts, and (3) corresponding variable values agree on whether they
are integral. Moreover, if an m-definable rectangular automaton is positive, then it cannot
distinguish variable values greater than m. For m-definable bounded rectangular automata,
the continuous part of the state is contained in the cube [-m, m]n. It follows that in both the
positive and the bounded case, the bisimilarity quotient is finite.

Definition3.1 Define the equivalence relation «„ on Mn by y «„ z iff [y,J = [z,-J and
\y>] = fzil for all 1 < i < n. Given m £ N>0, define the equivalence relation «™ on K"
by y «™ z iff for each 1 < i < n, either ?/,■ «i z,-, or both yt and z,- are greater than m,
or both yi and z,- are less than -m. For an n-dimensional rectangular automaton A, define
the equivalence relations SA and =™ on the states of A by [v, y) =,4 (w, z) iff v - w and
y «n z, and (v, y) =™ {w, z) iff v = w and y «™ z. ■

Lemma 3.1 Consider two vectors y, z £ Rn. Then y «„ z iff for every rectangle B C Kn,
we have yeBiffzEB. Moreover, y «™ z #/or every m-definable rectangle B C E",
we Aave y £ B ijffz £ ß.

Theorem 3.1 Let A be an n-dimensional rectangular automaton with k control modes. The
equivalence relation =A is a bisimulation on the discrete-time transition system SdJ?c. If A
is m-definable and either positive or bounded, then =™ is als0 a bisimulation on Sd^sc. The
number of equivalence classes of=™ is k ■ (4m + 3)n.

Proof. We argue that =™ is a bisimulation for positive m-definable A; the other parts

of the proof are similar. Suppose that (v, y) S™ (w>z) and (v> y) "^ K> v')- We must

show that there exists a state [w1, z') such that (w, z) A {w',z') and (v', y') =™ [w1, z').
First, assume that a £ E. In this case there exists a control switch e with source v = w
such that event(e) = <r and (y,y') G \jump(e]\, and y{ = y- for each i g update{e).
Define z' by z[= z,- for i <£ update(e), and z- = y- for i £ update(e). By Lemma 3.1,
(z, z') € [/ump(e)l and z' £ [znu(u')l- It follows that (to, z) A (1/, z').

Second, assume that cr = 1 (cf. Fig. 1). In this case v' - v = w, andy'-y £ [/7ow(i>)].
We must show that there exists a vector z'such that z'-z £ [/?OUJ(I;)] andy' «™ z' (notice
that by Lemma 3.1, y' «™ z' implies z' £ [mu(v)J). We do this one coordinate at a time.
Fix 2 £ {1 , n}. Suppose that t/,- > m. It follows that y\ > m and z, > m, because /I is
positive. Choose any c G \flow(v)\i, and define z{ = z,- + c. Since c > 0, we have yj «71 z,'.
Now suppose that y; < m. If y,- G H then z; = j/,-, because j/,- «1 z,-. Define zj = y\. Then
r| - z,- =(j-!(i6 [^oto («)],-. If &■ £ N then [Vi\ < Vi, z; < [y,-]. The set \flow[v)]i is an
interval, say, with endpoints a,b G N (it is easy to extend the argument to the case b = 00).
Thus lflow(v)]i contains the open interval (a, 6), and y'{ G [yi + a, yi + b]. We show that
there exists a number c G (a, 6) such that y\ «1 z; + c. Since a, 6 £ N and j/; «1 z,-, it
follows that !/,• + a «1 Zj + a and y,- + b «1 z,- + 6. Thus the closed interval [z,- + a, z,- + b]
intersects the same «^equivalence classes as does [j/,- + a, j/,- + 6]. Since neither z,- + a nor
z,- -(- 6 is an integer, the same is true for the open interval (z,- + a, zt- + 6). Therefore there
exists a number c £ (a, b) such that yj «1 z» + c. ■

590

0 12 3 4

Fig. 1. Given a control mode v, consider the flow condition flow(v) = (1 < x, < 3 A 1 < £2 < 2).
Let B = [3 < xi < 4 A 2 < x2 < 3J and P = [0 < x, < 3 A 0 < x2 < 2]. Then
Prei{{v) xS) = {»} xP.

Corollary 3.1 For every rectangular automaton A, the boolean combinations of rectangu-
lar state predicates for A form a symbolic execution theory for the discrete-time transition

system Sfc.

Corollary 3.2 For positive or bounded rectangular automata, the discrete-time safety ver-
ification problem (in fact, LTL and CTL model checking) can be solved in PSPACE, and the
discrete-time safety controller synthesis problem can be solved in EXPTIME.

The LTL and CTL parts of the corollary follow from the facts that both model-checking
problems can be solved in space logarithmic in the size of the transition system and polyno-
mial in the size of the temporal formula [Kup95]. It should be noted that while in the same
complexity class, the actual running times of the discrete-time algorithms for rectangular
automata are better by a multiplicative exponential factor than the running times of the
corresponding dense-time algorithms for timed automata. This is because there, the number
of equivalence classes of the bisimilarity quotient is Q{k-n\-(m+\)n). By providing tight
lower bounds, the following theorem shows that our algorithms are optimal. The second part
of the theorem follows from Theorem 3.4 below.

Theorem 3.2 For bounded timed automata, the discrete-time safety verification problem is
hard for PSPACE [AD94], and the discrete-time safety control decision problem is hard for

EXPTIME.

3.2 Sampling-Controller Synthesis

The dense-time and discrete-time control problems are not realistic, as a controller may
enforce arbitrarily many (even infinitely many) consecutive instantaneous jumps. A more
natural control model for hybrid systems involves a controller that samples the plant state
once per time unit, and then issues a command based upon its measurement. The command
may cause a switch in control mode, after which the plant state evolves continuously for
one time unit, before receiving the next command. We call this model "sampling control" to
distinguish it from discrete-time control. Moreover, we wish to ensure that a proposition is
avoided not only at the sampling points but also between sampling points. Given a rectangular
automaton .4, we define a third transition system, Ss/mple, such that (1) any control map
behaves in a sampling manner and (2) the prepositional regions are "large enough" so that
they cannot be entered and left by a single flow transition of duration 1. For example, if K is

591

a rectangular state predicate that maps each control mode of A to either true or false, then
R„ is large enough. If the region of unsafe states is not large enough, this may be correctable
by increasing the sampling rate (i.e., by reducing the unit of time).

Definition 3.2 [Sampling control] Let A be a rectangular automaton. A rectangular state
predicate w £ Ü is large enough for A if there are no three states [v,y),{v,y') £

R„ and (v,f) G R* such that (u,y) A{v,y") and {v,y")1^ K/) for some real

6 <= (0,1). Define IT C H to be the set of rectangular state predicates that are large
enough for A, and define ({v,y),X) (=' n iff (u,y) (= TT. The sampling-control tran-
sition system of yi is defined by 5^mp,tr = (Q x {control,plant}, E U {1}, => , Qi x
{control}, II', \='), where the binary relation => is defined by: (1) for each event a € E,
we have ({v,y), control) ?> ((v',?), plant) iff {v,y) A (i/,y'), and (2) ((v,y),plant) =>
((u',y'),co«rro/) iff (v,y) -V (f',/)- Thus in the sampling-control transition system the
controller and the plant take turns: first the controller specifies a jump transition, then
one time unit passes in a flow transition, and so on. We refer to the safety control deci-
sion problem for transition systems of the form SA

mple, for some rectangular automaton A,
as the sampling-control decision problem for rectangular automata, and similarly for the
sampling-controller synthesis problem. ■

Theorem 3.3 For positive or bounded rectangular automata, the sampling-controller syn-

thesis problem can be solved in EXPTIME.

Proof. Consider an ra-dimensional positive or bounded rectangular automaton A. We re-
duce the sampling-control problems to discrete-time control problems by constructing a
rectangular automaton Ctrl(A) such that SA

mple is isomorphic to S$'^l{A). Moreover, if

A is positive, then Ctrl{A) is positive, and if A is bounded, then Ctrl(A) is bounded.
Let Xctri(A) = XA U \xn+\} for a clock xn+x £ XA. The control graph and events
of Ctrl(A) are identical to those of A. Let invctri(A){v) = invA{v) A 0 < xn+\ < 1,
let initCtri(A)(v) - mitA(v) A xn+x = 1, let jumpctrl{A)(e) = jumpA{e) A xn+x -
1 A x'n+l = 0, and let flow ctrl{A)(v) = flowA(v) A xn+x = 1. It follows that in the

discrete-time transition system S&rtfvi)' JumP transitions must alternate with flow transi-

tions (of duration 1). Hence the map / : Qctri(A) -> QA X {control, plant}, defined by
f(v, y, 0) = (v, y, plant) and f(v, y, 1) = {v, y, control), is an isomorphism between the
transition systems S^^A)

and SA
mpie. If A is m-definable with k control modes, by The-

orem 3.1, the bisimilarity quotient of S$t
s

r
c
l{A) has no more than k-(4m + 3)n+i equivalence

classes, which is singly exponential in the size of A. ■

Lemma 3.2 Let G={VA,V0,Vi, ->■) be an AND-OR graph, and let Rbea set of vertices
ofG. Define the transition system SG = {VA W0,Z, ->, Vj, {n}, (=) such that (1) v \= K

iffv £ R, (2) for all OR states v £ Vp, if v A w and v °^ w', then <r = a', and (3) for all
AND states v£VA,ifv^w and v^r-w' and w £ w', then a ^ er1. Then R is alternating

reachable in G iff it is not avoidable in SG-

Theorem 3.4 For bounded timed automata, the sampling-control decision problem is hard

for EXPTIME.

Proof sketch. We reduce the halting problem for alternating Turing machines using polyno-
mial space [CKS81] to the sampling-control decision problem for bounded timed automata.
Let M be an alternating Turing Machine with input s so that M uses space p(\s\). Then M
accepts s iff the unique final state uF is alternating reachable in an AND-OR graph whose ver-
tices are configurations of M. The set of configurations of M is U x {1,..., p(\s\)} x rp(|s|),

592

where U is the state set of M, the second component of the product gives the position of
the tape head, and F is the tape alphabet. Without loss of generality, we assume that
r - {0,1,2}, where 0 is the "blank" symbol. We first define a bounded positive rectangular
automaton A whose states are configurations of M, and a proposition KF, large enough
for .4, that is true exactly in the configurations containing UF- This is done in a way consis-
tent with Lemma 3.2, so that irF is not avoidable in S™mple iff M accepts s. Then we turn
A into a bounded timed automaton.

The automaton A uses p(\s\) variables xu ■ ■ ■, zp(|»|) to store the tape contents. The
set of control modes of A is U x {1,... ,p(|s|)}. The invariant and flow conditions are

constant functions: inv(u,i) = Aj=f(° < XJ < 2) and flow{u,i) = A^i'^i = °)
for all u and i; thus flow transitions have no effect. The initial condition is defined by
init(u,i) = false except when u is the initial state «/ of M and i = 1; in that case,

imt(Ul, 1) = Ai'i.fo = sj) A A'£fij+i(*.- = °)- Each transition f of M consists of a
source state« G U, a tape symbol 7 G r, andalistof triples (uj,jj,dj), where «_,- G t/isa
target state, 7,- G T is written on the current tape cell, and dj G {-1,1} gives the direction
moved by the tape head (there is exactly one transition for each source state «). For every
transition t = (u, 7, {uh 7,-, dj)j€J) of M, every tape position 1 < i < p[\s\), and every
j G J, we define in A a control switch et,ij with source («, i) and target (uj, i + dj). The
jump condition jump(etiij) is a;,- = 7 A z< = 7,- A t\k^i(x'k = x<=)- If « is an AND state
of M, then event{etli,j) = (w, i, j). If w is an OR state of M, then eveni(e£,, j) = 0. To
turn A into a timed automaton, all variables are replaced by clocks, and between any two
control switches of A, a sequence of p(\s\) control switches is added, one for each clock, to
subtract p(Is|) + 1 from each clock value. ■

4 Beyond Rectangular Automata

Discrete-Time Undecidability Results We show that the pleasant properties of discrete-
time rectangular automata (Theorem 3.1) depend on both conditions, (1) positivity or bound-
edness and (2) rectangularity. If either condition is violated, then already the discrete-time
safety verification problem becomes undecidable.

Definition 4.1 [Triangular automaton] A triangular automaton A has the same compo-
nents as a rectangular automaton, except that the predicates defining .4 may be triangular
predicates, and need not necessarily be rectangular. ■

Theorem 4.1 The discrete-time safety verification problem (and thus the discrete-time con-
trol decision problem) is undecidable for the class of all rectangular automata, and also for
the class of bounded positive triangular automata.

Proof sketch. Both parts use areduction from the halting problem for two-countermachines.
For the first part, the reduction is simple, as counter values can be represented by variable
values, as in [KPSY93]. For the second part, counter values must be encoded, so that the
counter value c corresponds to the variable value ^. For this purpose, the wrapping-clock
technique of [HKPV95] can be modified as follows. The set {n,..., xn) of dense-time
clocks used for encoding counter values is simulated in discrete time by variables with the
triangular flow condition i\ — ■ ■ ■ = x„. Then the variables are enforced to represent valid
encodings at those integer times when the wrapping clock shows 0. ■

593

Generalized Rectangular Automata It is well-known that the pleasant properties of timed
automata (Theorem 2.5) are preserved if rectangularity is relaxed to triangularity in invari-
ant, initial, and jump conditions. We conclude with a similar observation for rectangular
automata. A generalized rectangular automaton is a triangular automaton whose flow con-
ditions are rectangular predicates. It follows from our arguments that for every generalized
rectangular automaton A, the boolean combinations of triangular state predicates for A form
a symbolic execution theory for the discrete-time transition system 5^"c. Consequently, if
A is a bounded generalized rectangular automaton, then S%sc has a finite bisimilarity quo-
tient (which is identical to the region equivalence of timed automata [AD94], and finer by a
multiplicative exponential factor than the equivalence of Theorem 3.1). For such automata,
we can automatically synthesize sampling controllers that avoid triangular state predicates.

References

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero.J. Sifakis, S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer
Science, 138:3-34, 1995.

[AD94] R. Alur, D.L. Dill. A theory of timed automata. Theoretical Computer Science, 126:183-235,
1994.

[AH97] R. Alur, T.A. Henzinger. Modularity for timed and hybrid systems. In CONCUR: Concur-
rency Theory, LNCS. Springer, 1997.

[BCM+92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J. Hwang. Symbolic model check-
ing: 102" states and beyond. Information and Computation, 98:142-170,1992.

[CKS81] A.K. Chandra, DC Kozen.L.J. Stockmeyer. Alternation. 7. ACA/, 28:114—133,1981.
[Hen95] T.A. Henzinger. Hybrid automata with finite bisimulations. In ICALP: Automata, Lan-

guages, and Programming, LNCS 944, pp. 324-335. Springer, 1995.
[Hen96] T.A. Henzinger. The theory of hybrid automata. In Proc. 11th Symp. Logic in Computer

Science, pp. 278-292. IEEE, 1996.
[HH95] T.A. Henzinger, P.-H. Ho. Algorithmic analysis of nonlinear hybrid systems. In CAV:

Computer-Aided Verification, LNCS 939, pp. 225-238. Springer, 1995.
[HHW97] T.A. Henzinger, P.-H. Ho, H. Wong-Toi. HYTECH: a model checker for hybrid systems.

In CAV: Computer-Aided Verification, LNCS. Springer, 1997.
[HK.PV95] T.A. Henzinger, P.W. Kopke, A. Puri, P. Varaiya. What's decidable about hybrid au-

tomata? In Proc. 27th Symp. Theory of Computing, pp. 373-382. ACM, 1995.
[HNSY94] T.A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine. Symbolic model checking for real-time

systems. Information and Computation, 111:193-244,1994.
[Imm81] N. Immerman. Number of quantifiers is better than number of tape cells. J. Computer and

System Sciences, 22:384-^06,1981.
[KPSY93] Y Kesten.A. Pnueli.J. Sifakis, S. Yovine. Integration graphs: a class of decidable hybrid

systems. In Hybrid Systems, LNCS 736, pp. 179-208. Springer, 1993.
[Kup95] O. Kupferman. Model Checking for Branching-Time Temporal Logics. PhD thesis, The

Technion, Haifa, Israel, 1995.
[MPS95] O. Maler, A. Pnueli, J. Sifakis. On the synthesis of discrete controllers for timed systems.

In STACS: Theoretical Aspects of Computer Science, LNCS 900, pp. 229-242. Springer, 1995.
[PV94] A. Puri, P. Varaiya. Decidability of hybrid systems with rectangular differential inclusions.

In CAV: Computer-Aided Verification, LNCS 818, pp. 95-104. Springer, 1994.
[RW87] P.J. Ramadge, W.M. Wonham. Supervisory control of a class of discrete-event processes.

SIAMJ. Control and Optimization, 25:206-230, 1987.

Maintaining Minimum Spanning Trees in
Dynamic Graphs

Monika R. Henzinger1 and Valerie King2

1 Systems Research Center, Digital Equipment Corporation, 130 Lytton Ave, Palo
Alto, CA, USA 94301; email: monika@pa.dec.com.

2 University of Victoria, Dept. of Computer Science, P.O. Box 3055, Victoria, BC,
Canada, V8W 3P6; email: val@csr.uvic.ca

Abstract. We present the first fully dynamic algorithm for maintaining
a minimum spanning tree in time o{\/n) per operation. To be precise, the
algorithm uses 0(n1/3 log n) amortized time per update operation. The
algorithm is fairly simple and deterministic. An immediate consequence
is the first fully dynamic deterministic algorithm for maintaining con-
nectivity and, bipartiteness in amortized time 0{n1/3 logn) per update,
with 0(1) worst case time per query.

1 Introduction

We consider the problem of maintaining a minimum spanning tree during an
arbitrary sequence of edge insertions and deletions. Given an n-vertex graph G
with edge weights, the fully dynamic minimum spanning tree problem is to main-
tain a minimum spanning forest F under an arbitrary sequence of the following

update operations:

insert(u,v): Add the edge {u,v} to G. Add {u,v} to F if this reduces the cost
of F, and return the edge of F that has been replaced.

delete(u,v): Remove the edge {it, v} from G. If {u, v} G F, then (a) remove {u, v}
from F and (b) return the minimum-cost edge e of G \ F that reconnects F

if e exists or return null if e does not exist.

In addition, the data structure permits the following type of query:

connected(u,v): Determine if vertices u and v are connected.

In 1985 [7], Fredrickson introduced a data structure known as topology trees
for the fully dynamic minimum spanning tree problem with a worst case cost of
0(y/m) per update His data structure permitted connectivity queries to be an-
swered in 0(1) time. In 1992, Eppstein et. al. [3, 4] improved the update time to
0{y/n) using the sparsification technique. If only edge insertions are allowed, the
Sleator-Tarjan dynamic tree data structure [13] maintains the minimum span-
ning forest in time O(logn) per insertion or query. If only edge deletions are
allowed ("deletions-only"), then no algorithm faster than the ü(^/n) fully dy-
namic algorithm was known.

595

Using randomization, it was recently shown that the fully dynamic connec-
tivity problem, i.e., the restricted problem where all edge costs are the same, can
be solved in amortized time 0(log2 n) per update and O(logn) per connectivity
query [9, 10]. However, this approach could not be extended to arbitrary edge
weights, leaving the question open as to whether the fully dynamic minimum
spanning tree problem can be solved in time o{y/n).

In this paper we give a positive answer to this question: We present a fully
dynamic minimum spanning tree data structure that uses C^n1/3 log n) amor-
tized time per update and 0(1) worst case time per query when update time is
averaged over any sequence of Q{min) updates, for min the initial size of the
graph. Our technique is very different from [7].

The result is achieved in two steps: First, we give a deletions-only minimum
spanning tree algorithm that uses 0(m'1/3 log n + ne) amortized time per update
and 0(1) worst case time per query when the update time is averaged over any
sequence of f2(min) updates. Here e is any constant such that 0 < e < 1/3, and
m' is the number of nontree edges at the time of the update.

Then we present a general technique which, given a deletions-only minimum
spanning tree data structure with a certain property, generates a fully dynamic
data structure with the same running time as the deletions-only data structure.
Let f(m', n) be the amortized time per deletion in the deletions-only data struc-
ture with m' nontree edges and n vertices. The property required is that, upon
inserting into the graph no more than m' edges at the same time (a "batch
insertion"), the deletions-only data structure can be modified to reflect these
insertions and up to m' subsequent deletions can be performed in a total of
0(m'f(m',n)) time.

Using this technique, we develop a fully dynamic minimum spanning tree
algorithm with amortized time per update of 0(m1/3 log n), for a sequence of
updates of length Q(min), where m is the size of G at the time of the update. In
other words, letting m(i) denote the size of G (vertices and edges) after update
i, the total amount of work for processing a sequence of updates of length I is
ö

(E'=O
m(i)1/3 logn). We then apply sparsification [3, 4] to reduce the running

time for the sequence to 0{lnlf3 logn).
Our result immediately gives faster deterministic fully dynamic algorithms

for the following problems: connectivity, bipartiteness, fc-edge witness, maximal
spanning forest decomposition, and Euclidean minimum spanning tree. See [9]
for all but the last reduction; see Eppstein [2] for the last reduction. For these
problems, the new algorithm achieves an 0(n1/6/ logn) factor improvement over
the previously best deterministic running time. If randomization is allowed, how-
ever, much faster times are achievable [9, 10].

Additionally, improvements can be achieved in the following static problems
(see [4, 3]): randomly sampling spanning forests of a given graph [6]; finding a
color-constrained minimum spanning tree [8].

The paper is structured as follows: In Section 2 we give a deletions-only
minimum spanning tree algorithm. In Section 3, we show how to use a sequence
of deletions-only data structures to create a fully dynamic data structure.

596

2 Maintaining a minimum spanning tree-deletions-only

In this section, we give an algorithm which maintains a minimum spanning tree
while edges are being deleted. The amortized update time is 0(m1/3 log n) and
the query time is 0(1) for queries of the form "Are vertices i and j connected?".
Let G = (V,E) be an undirected graph with edge weights. Without loss of
generality, we assume that edge weights are distinct.

Initially, we compute the minimum spanning forest F of G. Let m'in be the

number of nontree edges in G initially and k = m'V3 logn. We sort the nontree
edges by weight and partition them into m'in/k levels of size k so that the k
lightest are in level 0, the next k lightest are in level 1 and so on. The set of edges
in a level i is denoted by J3j. In addition, all tree edges of the initial minimum
spanning forest F are placed in level 0.

Throughout the algorithm, the level of an edge remains unchanged, and F
denotes the minimum spanning forest. For i = 0,1,..., (m'in/k) -1, let Fi denote
the minimum spanning forest of the graph with vertex set V and edgeset \Jj<iEj.
(Initially, all Fi = F, but in later stages, an edge from any level may become
a tree edge. Thus, F0 C Fi C ... F(m,o/fc)_i = F.) Let Ti(x) denote the tree
in Fi which contains x and let T(x) without the subscript denote the tree in F
containing x.

The main idea is the following. If a nontree edge is deleted, then the minimum
spanning forest F is unchanged. Suppose a tree edge {u, v} in level i is deleted.
Then for each Fj, j >i, the deletion splits the tree in Fj containing u and v into
Tj(u) and Tj(v). We search for the minimum weight nontree edge e (called the
"replacement edge") that connects T(u) and T{v) by gathering and then testing
a set S of candidate edges on level i. If none is found, we repeat the procedure
on level i + 1, etc. until one is found or all levels are exhausted. We now describe
the update operations:

delete(u,u): Delete edge {u,v} from any data structures in which it occurs. If
a tree edge {u,v} from level i is deleted, then remove {u,v} from F and search
for a replacement by calling Replace^, u,u). We refer to i as the level of the
call to Replace.

In the algorithm below, the subroutine Search when applied to a tree in Fi
finds all nontree edges in level i which are incident to the tree. A phase consists of
the examination of a single edge. (Its exact definition and the details of Search
are given in Section 2.2 below.)

Replace(i,u, v)

1. Alternating in lockstep, one phase at a time, Search(Tj(u)) and Search(Ti(u))
until kj logn phases are executed (Case A) or one of the searches has stopped
(Case B).
- Case A: Let 5 be the set of all nontree edges in level i.
- Case B: Let S be the set of (nontree) edges produced by the Search

that stopped.

597

2. Test every edge in S to see if it connects T(u) and T(v).

- If a connecting edge is found, insert the minimum weight connecting
edge into F and the data structures representing the Fj, j >i.

- Else if i is not the last level, call Replace^ + l,u,v).

2.1 Data Structures

The idea here is to use the ET-tree data structure developed in [9]: (1) to rep-
resent and update each tree in F, so that in constant time, we can quickly test
if a given edge joins two trees; and (2) to represent each tree in an Ft in such
a way that we can quickly retrieve nontree edges in Ei which are incident to
the tree. To avoid excessive cost, we explicitly maintain only those Ft where i
is a multiple of m'^3/logn. An unpleasant consequence of this is that when
retrieving nontree edges in Eit other nontree edges are also retrieved.

Below, we refer to input graph vertices as "vertices" and use "node" to mean
a nodes of the B-tree in which we store the "ET-sequences."

ET-trees: An ET-sequence is a sequence generated from a tree by listing each
vertex each time it is encountered ("an occurrence of the vertex") as a tree is
searched depth-first. Each ET-sequence is stored in a B-tree of degree d. This
allows us to implement the deletion or insertion of an edge in the forest as follows:
we split a tree by deleting an edge or join two trees by inserting an edge in time
0(d\ogdn), using a constant number of splits and joins on the corresponding
B-trees. Also we can test two vertices of the forest to determine whether they
are in the same tree in time 0(\ogdn). See for example [1, 11] for operations on
B-trees. If d = na, for a a positive constant, then the join and split operations
take time 0(d) and the test operation takes time 0(1). We refer to the B-trees
used to store ET-sequences as ET-trees.

This data structure allows us to keep information about a vertex so that
the cumulative information about all vertices in a tree may be maintained. For
example, we may keep the number of nontree edges incident to a vertex at
one designated occurrence of the vertex. Then each internal node of the ET-tree
stores the sum of the numbers of nontree edges kept with designated occurrences
in its subtree. In a degree d ET-tree, each split or join operation or each change to
the number associated with an occurrence requires the adjustment of 0(logdn)
internal nodes with each adjustment taking 0(d) timesteps.

We maintain the following data structures.

- Each edge is labelled by its level and a bit which indicates if it is a tree edge.
- Let k' = max{m'V3 logn,ne}, for any constant 0 < e < 1/3. Each tree in F

is represented as an ET-sequence which is stored in a degree k' B-tree.
- Let c = m'l^/logn. We map each level i to the j which is the largest

multiple of c no greater than i by the function f(i) = c[i/cj.
For each level j such that c\j ("c divides j"):

598

• we represent each tree in Fj as an ET-sequence which is stored in a
binary B-tree;

• for each vertex v, we create a list Lj(v) which contains:
(i) all nontree edges incident to v which are in any level i G /_1(i) anc*;
(ii) all tree edges incident to v which are in any level i > j, i £ /_1(i)-

• We mark each designated occurrence of a vertex v whose list Lj(v) is
nonempty. Each internal node of the ET-tree is marked if its subtree
contains a marked occurrence.

2.2 The Search routine

Search(Ti(:r)) returns all nontree edges in level i incident to Tt(x). It begins by
searching Tf(i) (x) which is a subtree of Ti(x). It proceeds by examining all edges
in Lf{i)(v) for all vertices v in the tree being searched. Nontree edges in level i
are picked out and tree edges in levels i', f(i) <i' <i are followed to other trees
of Ff(i) which are then searched in turn. Note that all such tree edges lead to
other trees of Ff{i) which are subtrees of Ti(x). A phase of the algorithm consists
of the examination of one edge e in a list L.

Search(Ti(u))

1. S' <- 0;
2. treelist-t-Tf(i)(u);
3. Repeat until treelist is empty:

- Remove an ET-tree from the treelist.
- For each marked vertex u in the ET-tree and for each edge e in each

Lf(i)(u):
• If {u,v} is a nontree edge on level i, add it to the set of edges to

return.
• Else if {u, v} is a tree edge on level I such that I < i, then add Tf^ (v)

to treelist.

2.3 Analysis

Initialization: We compute the minimum spanning forest F, create the ET-trees
for Fj, for each j such that c\j, and partition the nontree edges by weight.
Recall that m'in is the number of nontree edges in the initial graph. Let t be the
number of edges in the initial minimum spanning forest. The creation of all the
lists L takes time proportional to the number of nontree edges m'in. The building
of ET-trees for F and all Fj such that c\j and the marking of internal nodes
takes time proportional to the size of each forest or 0{{(m'in/k)/c)t + m'in) —

0(m']l3t + m'in).
Deletions of nontree edges: Deleting a nontree edge on any level may require
resetting the bit of an occurrence of a vertex in some ET-tree, which may require
resetting bits on all internal nodes on the path to the root in O(logn) time.

599

Deletions and insertions of tree edges: Deleting a tree edge takes O(k') time to
delete it from the ET-tree of F and O(logn) time to delete it from the ET-tree
of each F, such that c\j, for a total of 0(k' + ({m'in/k)/c) logn) time per edge.
Inserting a replacement edge takes the same time.

Finding a replacement edge: We first analyze the cost of Search. Let the weight
w{T) of a tree T of some F» be £ \Lf{i){v)\ summed over all vertices v in T. It
costs O(logn) to move down the path from the root to a leaf in an ET-tree to
find a marked occurrence of a vertex, or to move up a tree from an occurrence to
the root. Thus, the cost of Search(7i(z)) is O(logn) times the number of edges
examined, or 0{w(Ti(x)) logn), if Search is carried out until it ends, and O(k)
if it is run for k/ logn phases.

In Replace^, w,i), if w(T;(u)) < w(Ti(v)), then we refer to T^u) as the
smaller component 7\; otherwise 7\ is Tt(v). The cost of a call to Replace(u, v, i)
is the cost of the Search plus the cost of testing each edge in S. The number of
edges in S is 0(min{fc, w(7\)}). We may use the fc'-degree ET-tree representation
for F to test each edge at cost 0(1). Thus the cost of a call to Replace is
0(min{fc, 10(71) logn}).

To pay for these costs: We charge the cost of a call to Replace(u, v, i) to level
i if no replacement edge is found on that level. In that case, a tree of Ft which was
split by the deletion remains split. Otherwise, we charge the cost to the deletion.
In addition, we charge the cost of modifying F to the deletion so the total cost
charged to the deletion is 0(min{/c,w(7\)logn} + {{m'in/k)/c)logn + k') =
0(({m'm/k)/c)\ogn + k').

Claim 1 0{J2w(Ti)) summed over all smaller components 7\ which split from
a tree T on any given level during all Replace operations is 0(w(T)\ogn).

The proof of the claim is not hard and follows [5]. The details are omitted
here.

There are at most k edges per level (except for level 0, which has at most
k nontree edges). Each Lj(v) consists of edges from c levels. Since level 0 tree
edges do not belong to any list Lj(v), the maximum weight of a tree w{T) is ck.
Thus the total cost charged to a level is 0(ck log2 n). Summing over all levels we
have 0((m'in/k)(ck log2 n) = 0{m!inc\og2 n), or an amortized cost per deletion

of 0(clog2 n) = (Xm'll? logn), if Q{m'in) edges are deleted.
The cost charged to each deletion is 0((m'in/ck){logn) + k'). For k

max{m'\£ logn,ne} and c = m'l^/logn, this is 0(m'^3 logn + n£).

To summarize the cost of initialization when amortized over 0(min) operations
is 0(m'1/3) and the cost per deletion of an edge and finding replacement edges,

'in 1 l"\
when amortized over Q(m'm)) operations is 0(m'^ logn + ne). Thus for a

sequence of 0(min) operations, the amortized time per update is 0{m'\n log n +
n£).

Finally, we note that the query of the form "Are nodes i and j connected?"
may be answered using the ET-tree data structure for F in 0(1) time.

i

600

3 Allowing insertions

As in the previous section, we assume all edge weights are unique. We refer to
the current minimum spanning forest of G as the MST. Let m' be the number
of nontree edges in the current graph.

Let s = [lg m']. Initially, we build and maintain s simultaneous deletions-only
data structures As, As-i,.., Ax and a set of edges B. We call this the composite
data structure. We maintain the MST in a Sleator-Tarjan dynamic tree [13] and
also in an ET-tree of degree maxjm'1/3 logn, ne}.

Below, we distinguish between the number of edges inserted into G and the
number of edge insertions into B, as an edge of G may be inserted more than
once into B even though it has not been deleted and reinserted into G. The
minimum spanning forests of the deletions-only data structures are referred to
as local spanning forests. A local nontree edge of an Ai is an edge which is not in
Ai's local spanning forest or the MST. We will see that every nontree edge of G
is a local nontree edge of some Ai or B, but may also be a tree edge in a local
spanning forest of an Aj,j ^ i.

Initially As is the deletions-only data structure described in the previous
section, with F = MST and the set of local nontree edges being all nontree
edges of G, and the parameter m'in set to 2s. The set B is empty and the
remaining Aj, 1 < j < s, are initialized ("built") as though the edges of the
MST were the only edges in Aj, i.e., they contain no nontree edges. The set B
is empty.

Foii = l,...,s, let ?7ij = 2\ ki = m1/3 \ogrrii, and k • = max{m-/3 log n,ne}.
When an edge is inserted into G, it is placed into B or into the MST.

Let Xi be the number of local nontree edges in Uf<jA,- U B. Each Ai is built
(or rebuilt) when i is the smallest index such that rrii > Xi and the number
of edges in B has increased to m'1/3. At that time, B is emptied and all local
nontree edges Uj<iAj and edges in B are removed from Aj,j < i, and B and
placed into Ai. Then Ai becomes the deletions-only data structure described
in the previous section, which is initialized (or reinitialized) to contain the tree
edges of the MST and the local nontree edges previously contained in l)j<iAj
and the edges B. Thus, throughout the algorithm, B contains fewer than m'1/3

edges, i.e., the most recent insertions into B, which have not yet been added to
some Aj and for j < |_lgm'1/3J Aj never contains any nontree edges. These Aj
are maintained in the event that they will be used later, if m' is reduced.

To insert edge e into G: Use the dynamic tree to find the maximum weight edge
/ on the path between e's endpoints in the MST. If e is lighter than /, remove
/ from the MST, and insert / into B. Else insert e into B.

To delete an edge e from G: (1) Delete e from all data structures in which it
appears. (2) For each Ai which contained e in its local spanning forest, update
the At by determining e's local replacement edge e' (if there is one). Insert e1

into Ai's local forest and into B, if it is not already there. (3) If e was in the
MST, then for each local replacement edge e' and each edge in B, use the ET-

601

tree representation of the MST to determine which of those edges connect the
two subtrees resulting from the deletion of e. Insert the lightest connecting edge
into the MST.

3.1 Proof of correctness

Our algorithm maintains the following invariant:

Invariant: Every edge in the local forest of some Ai is (1) in the MST, or (2)
is a local nontree edge in some A3,j ^ i, or (3) is in B.

Lemma 2. The invariant stated above holds throughout the execution of the al-

gorithm.

The proof of the lemma is straightforward and is omitted here.
The correctness of the algorithm follows easily from the invariant. We use

the well-known fact that an edge is in the minimum spanning tree iff it is not
the heaviest edge in any cycle ("red rule" [14]). We also note that every edge in
the composite data structure is an edge in G.

Let e be an edge of the MST which is deleted. Let e' be the correct replace-
ment edge. Consider the state of the composite data structures right before the
deletion of e. By the invariant, since e' was not in the MST, it was a local nontree
edge in some At or in B. If e' was in B it would be checked in Step 2 above.

If e' was a local nontree edge in Au then consider the subgraph G' of G whose
edgeset consists of edges in Ai. Since e' is the correct replacement edge for e in
the MST then after e's deletion, e' is not the heaviest edge in any cycle of G and
therefore is not the heaviest edge of any cycle of G'. Hence, after e's deletion, e'
becomes a local forest edge, i.e., e' is a local replacement edge for e in At. Recall
that e' is the minimum weight edge which connects the two subtrees of the MST
resulting from the deletion of e. Thus, e' is the lightest connecting edge from
among the edges of B and the set of local replacement edges, and is chosen in
Step 2 by the algorithm.

3.2 Implementation and analysis

At the start of the algorithm, Ai for i < s are built. After that, Ai for i < s may
be "rebuilt". Depending of the value of m', As+i,As+2,- may be built later.
We first consider the (one-time) cost of building the Ai's, then the cost of their
rebuilding, and finally the cost of maintaining the Ai between rebuilds.

Initialization of the A{: Let min be the size of the initial graph (number of
vertices plus edges), let m'in be the initial number of nontree edges, and for
each operation let m be the size of the current graph. Recall that the total
cost of initialization for a deletions-only data structure with rrn nontree edges is
0{m\,3n + rrn) and that we are given a sequence of Q{min) operations.

We will amortize the building of the first \\gmin] Ai's to the sequence of
n(min) operations, even though only s Ai's are built initially. If more than

602

fig min"] Ai's are necessary at some point, we know that at this point m >
rriin and at least rriin insertions happened. Let ASmax be the largest deletions-
only data structure built during the execution of the algorithm where 2s'"ax >
rriin. Then there was a sequence of ü(2Sr"ax) operations during which m was
n((2Sn,ax) and we can amortize the initialization cost over these operations.

The total cost of initializing the smax A'iS is 0(Ej=i" 2i/3n+2i) = 0(2'~-/3n+
min). The average cost over a sequence of Q(2Sma*) operations is thus 0(22s'""/3n),
which is 0{mllz) per operation.

Rebuilding: We create ET-trees for the new Ai by modifying the ET-trees for
the previous Ai. For each i, we keep a list of all changes made to each ET-tree
of Ai since the last rebuild, and a list of all changes made to the MST. We use
this list to first restore all the ET-trees for Ai to their previous state when Ai
was last built or rebuilt, MSTold, by undoing each change, edge by edge. We
then transform each MST0id to MST, edge by edge.

The cost of restoring the ET-trees of Ai to MST0u is charged to operations
on the deletions-only data structure Ai which caused the initial change. This
results in only a doubling of cost per operation, as the cost for inserting a tree
edge into an ET-tree is the same as for deleting a tree edge.

The cost of transforming MST0id to MST is charged to the update op-
eration that causes the change in MST (each update causes 0(1) changes in

1 /s
MST) as follows: For each Ai, there are m/ forests of ET-trees represented
by binary B-trees and one forest (the ET-tree for the local spanning forest F)
represented by a degree-^ B-tree. Thus, a single tree edge insertion or deletion

costs 0(rn\'3logn + k[) for Ai. Note that for each i one change to the MST
contributes to the cost of only one rebuild of A4. The total cost per change over
all levels is 0(X^=i rn1/3 logn + k[-f-logn) = (^(m'1/3 logn + nelogn).

Also, when A% is rebuilt, all local nontree edges from Aj,j < i and B are
moved from Aj and inserted into Ai. That is, the edges are sorted by weight,
assigned to levels in Ai, and put in the appropriate list L. The bits on the
internal nodes of ET-trees for Aj ,j<i are set appropriately. Since each local
nontree edge is stored in only one ET-tree on a level, the cost of moving a single
local nontree edge is O(logn). Thus, the total cost is 0{rrii logn). Since A{-i is
not rebuilt, %i-\ > rrii-i = rrii/2. We amortize this cost by charging O(logn)
to each edge in Uj<iAj LI B, i.e. each edge that is newly added to Ai. We show
below (type (3) charges) how to amortize these costs over the update operations.

Maintaining the deletions-only data structures: After a rebuild in Ai there are
at most rrii nontree edges in Ai. In Section 2, we have two types of charges:
(1) the cost charged to each deletion in a deletions-only data structure which is

0(m\' logn+ne) and (2) the cost charged to all the levels which is 0(7x1/ logn)
per nontree edge. Additionally, the rebuilding of an Ai above charged O(logn)
to each nontree edge in Ai. We call these costs type (3) charges.

Type (1) charges: When there is a deletion in G in the fully dynamic data
structure, an edge (or one of its copies) may be deleted from each of Ai,i =

603

1,... s. We may charge that deletion in G with the (1) charges for all levels for

a total cost of 0(E1
mI/3 loSn + n') = 0(ma/3 logn + n£ logn).

Type (2) and (3) charges: As a special case, the charges incurred by the first
deletions-only data structure containing nontree edges As must be amortized
over the initial sequence of fi{min) operations which follow its initialization.
Since each Ai: i < s is initialized to contain no nontree edges, there are no type
(2) and (3) for these data structures until they are rebuilt.

Note that the Ai, i > s contain nontree edges when initialized. The type(2)
and type(3) charges for their building and rebuilding and the rebuilding of the
other Ai i < s are amortized over the insertions which occurred previous to its
building or rebuilding, as analyzed below.

Suppose Ai is rebuilt. Since Ai-i was not rebuilt, a;,_i > mj_i = rrii/2
at the time of the rebuilding of At. Thus, ü{mi) insertions into B occurred
since the previous rebuild of Au and f!{mi) of these occurred when the graph
had n(mi) nontree edges. Thus, we may charge each insertion into B with

0(Efm*/3 log n + ne) = 0(my3 logn+ ne logn) where s' = 2^-1 where
m' is\he number of nontree edges in G when the insertion occurred.

To amortize costs over insertions into G, rather than B, we use the following
simple but crucial observation: When an edge is inserted into B that edge may
contribute to the type (2) and (3) costs for Ai (when it belongs to Ai) iff it in-

creases Xi. Note that m, > x{ > Xi-i > m;_i = mi/2. We charge 0(m\,z logn)
to each local nontree edge inserted into Ai+i to pay for the type (2) and (3)
charges while the edges are in Ai.

We examine the types of insertions into B to see how they affect x{: (a)
when an edge is first inserted into B, i.e., when the edge is inserted into G; (b)
when an edge is replaced in the MST; (c) when an edge is deleted in G and
it is replaced in up to s local spanning forests. The first two cases result in a
single insertion into B. The third case may cause up to s' insertions. However,
the s insertions do not affect all Ai the same. Each insertion in this case results
from a local nontree edge e becoming a local forest edge. Hence if this occurs
in some Ajtj < i, the increase of Xi resulting from the insertion of a copy of e
into B is offset by the decrease of x; caused by the change in status of e from
a local nontree edge to a local tree edge. Thus xs> is unchanged by a case-(c)
insertion into B, xs,^i is changed by at most 1, and in general, xt is changed by
at most s'-i. The type (2) and (3) cost per deletion is O^is' -i)™1/3 logn) =

0(EJ(™W2l)1/3l°gn) = OK1/3logn) .
Thus the deletion cost per update operation is 0(ra'1/3 logn + ne logn).

Insertion cost: Testing a newly inserted edge to see if it should be added to
the MST using the Sleator-Tarjan dynamic trees is an O(logn) cost operaton.
Adding an edge to B can be done in constant time, as B is an unsorted list.

Summary: For rebuilding and maintaining the deletions-only data structures, the
algorithm achieves an amortized cost of 0(m'1/3 log n+n£) per update, where m'
is the number of nontree edges in the graph, for processing a sequence of fi{mln)

604

operations, where min is the initial size of the graph (vertices plus edges). For
the. initializations of the deletions-only data structures, the amortized cost per
update is 0(m1//3 logn), where m is the size of the graph at the time of the
update, for a sequence of Q(min) operations.

Note: For unweighted graphs, a simpler fully dynamic data structure can be
constructed which uses only one deletions-only data structure and adds levels as
needed. The details are omitted here.

References

1. T. Corman, C. Leiserson, and Rivest. Introduction to Algorithms. MIT Press
(1989), p. 381-399.

2. D. Eppstein, "Dynamic Euclidean minimum spanning trees and extrema of bi-
nary functions", Disc. Comp. Geom. 13 (1995), 111-122.

3. D. Eppstein, Z. Galil, G. F. Italiano, "Improved Sparsification", Tech. Report
93-20, Department of Information and Computer Science, University of Califor-
nia, Irvine, CA 92717.

4. D. Eppstein, Z. Galil, G. F. Italiano, A. Nissenzweig, "Sparsification - A Tech-
nique for Speeding up Dynamic Graph Algorithms" Proc. 33rd Symp. on Foun-
dations of Computer Science, 1992, 60-69.

5. S. Even and Y. Shiloach, "An On-Line Edge-Deletion Problem", J. ACM 28
(1981), 1-4.

6. T. Feder and M. Mihail, "Balanced matroids", Proc. 24th A Cm Symp. on Theory
of Computing, 1992, 26-38.

7. G. N. Frederickson, "Data Structures for On-line Updating of Minimum Span-
ning Trees", SI AM J. Comput, 14 (1985), 781-798.

8. G. N. Frederickson and M. A. Srinivas, "Algorithms and data structures for an
expanded family of matroid intersection problems", SIAM J. Comput. 18 (1989),
112-138.

9. M. R. Henzinger and V. King. Randomized Dynamic Graph Algorithms with
Polylogarithmic Time per Operation. Proc. 27th ACM Symp. on Theory of Com-
puting, 1995, 519-527.

10. M. R. Henzinger and M. Thorup. Improved Sampling with Applications to Dy-
namic Graph Algorithms. To appear in Proc. 23rd International Colloquium on
Automata, Languages, and Programming (ICALP), LNCS 1099, Springer-Verlag,
1996.

11. K. Mehlhorn. "Data Structures and Algorithms 1: Sorting and Searching",
Springer-Verlag, 1984.

12. H. Nagamochi and T. Ibaraki, "Linear time algorithms for finding a sparse k-
connected spanning subgraph of a ^-connected graph", Algorithmica 7, 1992,
583-596.

13. D. D. Sleator, R. E. Tarjan, "A data structure for dynamic trees" J. Comput.
System Sei. 24, 1983, 362-381.

14. R. E. Tarjan, Data Structures and Network Flow, SIAM (1983) p. 71.

Efficient Splitting and Merging Algorithms for
Order Decomposable Problems

(Extended Abstract)

Roberto Grossi * and Giuseppe F. Italiano **

Abstract. We present a general and novel technique for solving decom-
posable problems on a set S whose items are sorted with respect to d > 1
total orders. We show how to dynamically maintain S in the following
time bounds: O(logp) for the insertion or the deletion of a single item,
where p is the number of items currently in S; 0(p1-1/d) for splits and
concatenates along any total order; 0(p1_1/d) plus an output sensitive
cost for rectangular range queries. The space required is 0(p). We provide
several applications of our technique ranging from two-dimensional prior-
ity queues and d-dimensional search trees to concatenable interval trees.
This allows us to improve many previously known results on decompos-
able problems under split and concatenate operations, such as member-
ship query, minimum-weight item, range query, and convex hulls. Our
technique is suitable for efficient external memory implementation.

1 Introduction

Let Pbea searching problem defined on an input set S with p items, and let
V(x, S) denote its solution for a query item x. Problem V is decomposable^ we
can find an answer to query V(x,S) by first partitioning set S = S' U 5"' and
computing the answers to queries V(x,S') and V(x,S") recursively, and then
combining them through a suitable operator <>. Formally, V is said to be f(p)-
decomposable if and only HV(x,S) = <>(V(x,S'),V(x,S")) for any partition S =
S'US" and any query item x, where 0 is an operator whose computation requires
0(f(p)) time. (We assume that function f{p) is smooth, i.e., f(0(p)) = 0{f(p)),
and nondecreasing.) Some examples of 0(l)-decomposable searching problems
include: membership queries (with 0 being the logical-or function); closest point
queries (with 0 the minimal distance); range queries (with 0 the list append
operation). Convex hull searching is not decomposable as the fact that a point x £
5 belongs to the convex hull of S" or 5" does not necessarily imply that x belongs

* Dipartimento di Sistemi e Informatica, Universitä di Firenze, Italy. Email:
grossiQdsi2. dsi. unif i. it. Part of this work was done while visiting ICSI, Berkeley.

** Dipartimento di Matematica Applicata ed Informatica, Universitä "Ca' Foscari" di
Venezia Italy. Email: italianoSdsi.unive.it. Work supported in part by CEE
under ESPRIT LTR Project no. 20244 (ALCOM-IT), by the Italian MURST Project
"Efficienza di Algoritmi e Progetto di Strutture Informative", and by a Research
Grant from University of Venice "Ca' Foscari". Part of this work was done while at
University of Salerno and while visiting ICSI, Berkeley.

606

to the convex hull of S = S'liS". The definition of decomposable search problems
can be extended also to the decomposable set problems in which the query item is
not specified (e.g., finding the minimum-weight item, where 0 is the minimum),
and we shall denote a generic solution to a decomposable problem V by V(S). Let
d > 1 total orders -<i,..., -<d be defined on S, and let -<i be a given total order,
1 < i < d. A problem V is f(p)-order decomposable with respect to total order
<i tfV(S) = 0{V{S'),V(S")) for any ordered partition S = S'US" (i.e., x' <i x"
for all x' e S' and x" 6 S"), where operator 0 takes 0(f(p)) time. Problem V
is f(p)-order decomposable if it is /(p)-order decomposable with respect to any
total order -<i, 1 < i < d. Convex hull searching is 0(logp)-order decomposable.
Other examples of order decomposable problems include multidimensional range
queries and Voronoi diagrams, and many other decomposable problems in basic
data structures, computational geometry, database applications and statistics [7,
17, 21].

In this paper, we present a general technique for maintaining a dynamic set
S with d total orders, for constant d, under insertions of a single item, deletions
of a single item, and re-arrangements of any of the total orders -<i,..., -<d on
S by means of split and concatenate operations. Our queries involve finding the
solution P(R) for only the items in the subset R C S identified by some ranges
in the orders -<i,..., -<<*. More formally, we introduce the following multiordered
set splitting and merging problem:

split(S,z,<i): Split S into 5" and S" according to item z and the specified
total order <i (1 < i < d). That is, x' -<i z and z -<j x" for all x' £ S' and
x" € S". S is no longer available after this operation.

concatenate^', S", <[,-<"): Combine S" and S" together according to their
respective i-th total orders ^ and -<" (1 < i < d) into a new set S =
5"US". The items in the resulting set S undergo the new order -<i obtained
by concatenating -^ and -;". That is, x <i y in S if and only if either
(a) x <\y and x,y 6 S"; or (b) x <" y and x, y £ S"; or (c) x G S' and
y £ S". S' and S" are no longer available after this operation.

insert(z, S): Insert item z into set S according to all orders -<i,..., -<d-
delete(z, S): Delete item z from set S.
range((ai,bi),..., (ad,bd),S): Let R = {z 6 S : a; -<i z -<i bi, for 1 < i < d}.

Find the solution V(R) to problem V restricted to region R only.

For d = 1, the recursive nature of order decomposable problems gives an imme-
diate tree structure, and each of the above operations can be simply implemented
in 0(f(j>) logp) time by using a 2-3-tree [2]. Maintaining d > 1 total orders on
the same set S, while splitting or merging each order independently of the others,
makes things much more complicated than this simple case. In the case of two
or more different orders, indeed, there are some technical difficulties, which are
mainly due to the interplay among different orders.

Related Work. Decomposable problems were first introduced by Bentley [6] for
dynamizing static data structures, while other dynamization techniques were in-
troduced in [7, 15, 18, 19, 24]. All these techniques rely on two main methods,

607

the equal block method [14, 15, 18] and the logarithmic method [6, 7, 24], in which
a big data structure is decomposed into small data structures, called blocks; the
number of blocks is properly tuned so as to obtain a good tradeoff between quer-
ies and updates. Some lower bounds on the best possible tradeoff were given
in [7, 16]. Optimal solutions were obtained by combining the equal block and the
logarithmic method by means of the amortized solution in [19] and by the global
rebuilding technique yielding worst-case bounds in [23, 25]. The notion of order
decomposable problems was first introduced in [20] by generalizing the results
of [22] and was independently presented in [10]. Solving an ordered decompos-
able problem only for the items contained in an input rectangular region can be
done by range queries on quad-trees [9] and k-d trees [5], but it is difficult to
keep them balanced (e.g., see [26, 27]). Many other elegant data structures for
range queries were devised subsequently and we refer the reader to [8] for a com-
prehensive survey on this topic and a list of references. Among them, [28] and [29]
show how to combine decomposable problems and range queries together so as
to add some range restrictions to dynamic data structures. Split and concatenate
operations were subsequently introduced in [11, 13] for a set of multidimensional
points in addition to the standard operations: range queries, insertions and de-
letions. Specifically, the divided k-d trees [11] for a set of p items supported
a range, a split or a concatenate operation in 0(p1_1/dlogly'dp) time and an
insertion or a deletion in O(logp) time, with 0(p) space. In [13], a general tech-
nique, based on the ordered equal block method, was described for solving order
decomposable problems and producing efficient concatenable data structures in
0(p) space. The following time bounds were obtained for a split or concatenate:
0(y/p\ogp) in concatenable interval trees, 0(p1_1/dlogp) in d-dimensional 2-
3-trees and 0{y/p\ogp \ogp) in a data structure for convex hulls. The bound for
insertions and deletions of items is O(logp) amortized, except for the 0(log2p)
amortized bound in the data structure for convex hulls. The range query bounds
equal the split/concatenate cost plus an output sensitive cost 0(occ), where occ
is the size of the output reported by the query. Although the range queries in [28]
and [29] are faster than the ones in [13], the solutions in [13] support efficient
splits and concatenates, require less space and can be used to obtain an efficient
dynamic version of static data structures.

Our results. In this paper, we present a novel technique for solving order de-
composable problems on S under insertions, deletions, splits, concatenates and
range queries, yielding new and efficient concatenable data structures for dimen-
sion d > 1. All these data structures are based on a new multidimensional data
structure, which we call the cross-tree. Differently from the approach of [13], our
general technique is based more on simple geometric properties rather than on
underlying sophisticated data structures, and exploits the fact that some data
structures can be built on sorted items more efficiently. By using our technique
we maintain a set S of p items in 0(p) space with the following worst-case time
bounds: O(logp) for the insertion or the deletion of a single item, and 0(p1_1/d)
for splits and concatenates along any order. We use this new technique in a
simple way for a wide range of applications to shave some log factors from the

608

best known bounds [11,13]. We obtain new multidimensional data structures im-
plementing two-dimensional priority queues, two-dimensional search trees, and
concatenable interval trees. We achieve the following time bounds for a split or
concatenate: 0(y/p) in concatenable interval trees, 0(p1-1//d) in d-dimensional
2-3-trees (or divided k-d trees) and 0(y/p\ogp) in a data structure for the
convex hull. We also improve the query bounds because they are equal to the
split/concatenate cost plus an 0(occ) cost due to the output. Furthermore, we
make the bounds for insertions and deletions of a single item worst-case rather
than amortized. The new data structures work for many other order decompos-
able problems under split and concatenate operations. For example, point inser-
tions and deletions in a planar Voronoi diagram of p points take 0(p) time in
0{p\og\ogp) space [21] (a result in [1] is a semi-dynamic algorithm with 0(p)
deletion time and space). We obtain an 0(p) cost also for range, split and con-
catenate operations in O(ploglogp) space (the techniques in [13, 28, 29] require
more time or space). This solves a problem posed in [1] (i.e., compute the Voronoi
diagram for any given subset R C S of points in less than G(p\ogp) time) for the
special case in which R is defined by range queries on a dynamic set S. Our tech-
nique for order decomposable problems is suitable for efficient external memory
algorithms. For the case d = 1, B-trees [4] are very popular data structures
that can be successfully employed in decomposable search problems analogously
to concatenable 2-3-trees. For d > 1, no provably good external memory data
structures for splitting and concatenating along any dimension were previously
known in the literature. In this extended abstract, many details are omitted for
lack of space.

2 Splitting and Merging Data Structures

In this section, we describe how to maintain d = 2 total orders, which we denote
by -<x and -<y, under split and concatenate operations. Let p be the number of
items in S. Each item z € S can be associated with a dynamic point (X(z), Y(z))
in the Cartesian plane, such that X(z) is the rank of z in S with respect to current
order -<x and Y(z) is the rank of z in S with respect to current order -<y • Starting
from p items in 5, we obtain p points in the Cartesian plane, which can be stored
in the form of a p x p sparse and dynamic matrix M.

The operations in S can be simulated by a certain number of operations in
M. Operation split{S,z,<x) corresponds to splitting matrix M horizontally at
a certain position X(z), which is the rank of z in S with respect to -<x, while
doing the same according to its order -<y is equivalent to handling M vertic-
ally at position Y(z). Concatenating is analogous. Operations insert(z,S) and
delete(z, S) require a new operation which sets entry M[X(z), Y(z)} to item z or
to an empty value, respectively. Finally, solving problem V in the region specified
by range((ax,bx), (ay, by), S) can be done by solving V for the points contained
in the rectangular part of M defined by the ranks of ax,bx,ay,by in their
corresponding order. We can state our multiordered set splitting and merging
problem by using our sparse matrix M. Formally, for any integers hi,h,2,Vx,V2

609

(1 < hi < h,2 < p, 1 < vi < V2 < p), we use M[hi,h,2',vi,V2] to denote the sub-
matrix of M that contains entries M[i,j] with h\ < i < h2 and vi < j < V2- We
call this submatrix a region. We can disassemble and reassemble a single matrix
M in many different ways by using any sequence of the following operations:

hsplit(M,i): Split M horizontally at row i and obtain two new matrices Mi
and A4 2, such that M\ = A4[l,i; l,p] and M2 = M[i + l,p; l,p]. In other
words, A4i is given by the first i rows of M and M2 is given by the last
(p — i) rows of A4. M is no longer available after the operation.

/i_conca£ena£e(A41, A4 2)-' Let Mi have size m xp and M2 have size nxp. We
meld Mi and A4 2 horizontally and produce a matrix M of size (m + n) xp,
such that M[l,m; l,p] = Mi and M[m + \,m + n; l,p] = A42- In other
words, the first m rows of M are given by Mi and the last n rows of M
are given by M2- This operation assumes that Mi and A42 have the same
number of columns. Mi and AI2 are no longer available after the operation.

set(i,j,w,M): Update M by setting A4[i,,j] = w. This corresponds either to
an insertion (if w is nonempty) or to a deletion (if w is empty).

range(hi,h2,Vi,v2,M): Find the solution V(R) to problem V restricted to
the nonempty entries contained in region R = M[hi,fi2;vi,V2]-

Operations v.concatenate(Mi, M2) and v.split(M,j) are similarly defined. We
restrict ourselves to the special case where each row or column of M contains a
constant number of points but our technique works for a general matrix M. We
need some preliminary definitions. Let X = {xx, x2, ■. ■, xq} be a sorted sequence
of q elements, according to a total order <: xi -< x2 -<■•■-< xq. Let Ii,..., Is be
a partition of X into adjacent intervals, so that for 1 < i < s — 1 all the elements
in Ii precedes all the elements in Jf+1. For 1 < i < s, let |7i| denote the size of
interval Ii, defined as the number of elements in /;.

Definition 1. (Size Invariant) Let k > 1 be a positive integer. The adjacent
intervals Ii,..., Is satisfy the size invariant of order k if the following two con-
ditions are met: (a) |I;| < k, 1 < i < s; and (b) |/j| + \Ii+i\ >k,l<i<s-l.

The size invariant of order k in Definition 1 implies that the number s of intervals
is 0(q/k). Moreover, the size invariant can be maintained in O(logfc) time when
an element is deleted from X or a new element is inserted into X.

We now introduce the cross-tree, which is a 2-dimensional data structure
supporting efficient split and concatenate operations. Intuitively, a cross-tree de-
scribes a balanced decomposition of a 2-dimensional set, and it is based upon
a variant of 2-3-tree [2], which we call 1-2-tree. A 1-2-tree satisfies two con-
ditions: (a) All the leaves are on the same level and each internal node has at
most two children, (b) The children of all the internal nodes on the same level
satisfy the size invariant of order 2 according to Definition 1. It follows that no
two adjacent nodes can have a single child. It can be shown that 1-2-trees are
balanced and that a 1-2-tree with n leaves can be modified by means of split,
concatenate, insert and delete operations in O(logn) time per operation, with
each operation involving at most 0(1) nodes and parent pointers per level.

610

Definition 2. (Cross-Tree) Let T and S be two 1-2-trees, having the same
height. The cross-tree CT(T x S) is the cross product of T and S defined as
follows. For each node u in T, there is a node auv in CT(T x S) for every node v
in 5 on the same level as u. For each edge (u, u) in T, there is an edge (auv,otüv)
in CT(T x S) for every edge (v, v) in S, such that u and v are on the same level.

A cross-tree has either 1, 2 or 4 children and it is balanced (i.e., its height is
logarithmic with respect to the number of its leaves). We can update a cross-tree
CT(T x S) by modifying either T or S (i.e., we can split, concatenate, insert or
delete in one of the 1-2-trees) and obtain the corresponding cross-tree efficiently.
We can show:

Theorem 3. We can split a 1-2-tree T into T\ and T2 in order to obtain cross-
trees CT(Ti x S) and CT(T2 x 5) from cross-tree CT(T x S) in 0(\S\) time.
We can concatenate 1-2-trees Ti and T2 into T to obtain CT(T x S) from
CT(Ti x S) and CT(T2 x S) in 0{\S\) time.

2.1 The General Technique

We now treat our splitting and merging problem for a matrix M. We refer to
the p nonempty entries of M as the points of M and let k be a slack parameter,
where k is an integer with 1 < k < p. We handle the sparse pxp matrix M as
if it were a dense 6(p/k + k)x 9(p/k + k) matrix. We then tune k according to
the chosen problem V and the cost f(p) of operator <>. We proceed as follows.
We group adjacent rows and columns of matrix M into respectively horizontal
and vertical stripes, such that the stripes satisfy the size invariant of order k
(Definition 1), where the size of a horizontal (respectively vertical) stripe is given
by its number of rows (respectively columns). The size invariant guarantees that
each stripe contains at most 0{k) points and that the total number of horizontal
and vertical stripes is 0(p/k). The partition into horizontal and vertical stripes
induces a partition of M into 0(p2/k2) squares, such that each square intersects
no more than k rows and k columns. We call these the basic squares in M. We
maintain the solution to V for each such basic square and store these solutions in
the leaves of a cross-tree CT(TH x Tv), which describes recursively the partition
of M into its basic squares. For this purpose, we employ two 1-2-trees, denoted
by TH and Ty, whose leaves are in one-to-one correspondence to the horizontal
and vertical stripes, respectively. Trees TH and Ty have 0(p/k) leaves, one for
each stripe of M, and a total oiO(p/k) nodes. Consequently, cross-tree CT{TH x
Tv) has height 0(log(p/fc)) and 0(p2/k2) leaves, one for each basic square of
M, and a total of 0(p2/k2) nodes. Its leaves corresponding to the nonempty
basic squares in either a horizontal or vertical stripe can be retrieved in 0(p/k)
time, and the points in the stripe can be retrieved in additional 0(k) time. We
then percolate the solutions from the leaves of the cross-tree towards its internal
nodes in a heap-like fashion by means of operator 0- If the solutions occupy
more than 0(f(p)) space, we save space whenever 0 is invertible: We say that
0 is invertible if we can keep 0(f(p)) additional information associated with

611

any solution V{R) = <}(V(R'),V(R")) so that we can compute <>-1(7'(i?)) =
{V(R'),V(R")} in 0(f(p)) time. For example, if V is the range query problem
and 0 is the destructive list append with cost /(p) = 0(1), we can simply keep a
pointer to the last item in the appended lists to "de-append" them in 0(1) time.

Our data structure has the following additional features. For each nonempty
basic square of M, we keep its points sorted according to a total order -<p (not
necessarily equal to -<x or -<y) by means of a threaded binary search tree, whose
nodes are linked together in symmetrical order. Searching, inserting and deleting
a point takes O(logfc) time. Scanning the points in a basic square in their -<p-
order takes constant time per scanned point. We introduce order -<p because
some data structures can be built more efficiently on a sorted set of points.
Each node in cross-tree CT(TH X Ty) corresponds to a region R of matrix M.
The cross-tree leaves correspond to the basic squares (leaves corresponding to
the empty basic squares can be ignored). An internal node p corresponds to
region R = M[hi,h,2;vi,V2] and has no more than four children p\, p2, pz,
and p\ corresponding to four subregions of R (if a child pi is empty then the
corresponding subregion is empty.) We store the solutions to V in the following
way. For each nonempty basic square of M, we store the solution for its points
in the corresponding cross-tree leaf. For each internal node p of the cross-tree,
we use that fact the V is order decomposable to store 0(si,..., Sj) in p, where
si,..., Sj are the solutions stored in its j < 4 children. This is indeed the solution
V{R) for the points in the region R corresponding to p, and is stored in an efficient
way depending on the problem V.

We now show how to use our data structure for solving problem V. We denote
by P(k) the cost of preprocessing an 0(fc)-point stripe to solve problem V for
every basic square in the stripe. We will exploit the fact that the basic squares
are already -<p-ordered to determine P(k) and we assume that P(k) > k is a
smooth nondecreasing function. Furthermore, we use U(k) to denote the cost of
updating the solution to problem V for a basic square in an 0(/c)-point stripe
after its preprocessing. We assume that U(k) > log k, since we have to update
at least the threaded search tree in the basic square. Finally, we denote by S(k)
the space occupied by an 0(fc)-point stripe. We also assume that S(k) > k
is a smooth nondecreasing function. In most of our applications, we will have
P(k),S(k) = 0(k) and U{k) = 0(f(k)\ogk). In the preprocessing, we put (k +
l)/2 rows (columns) per stripe except for the last one, which has some dummy
rows (columns) added, and build the cross-tree. This takes 0(plogp + P(p) +
f(p) P2/k2) time. We now describe in some details how to perform a vsplit(M,j).
Column j might fall inside a vertical stripe er, which must necessarily be split.
We examine the basic squares of a. Given a basic square, we scan its points
according to their -<!p-order and produce two -<p-ordered lists in linear time:
one list contains all the points whose second coordinate is smaller than or equal
to j and the other list contains the remaining points, i.e., the points whose second
coordinate is larger than j. We split this basic square into two squares and build
two threaded search trees for them in linear time by using the two -<p-ordered
lists. Since each stripe consists of 0(p/k) basic squares and contains 0(k) points,

612

we can examine stripe a square by square in 0(k+p/k) time and split it into new
stripes o\ and a2, such that o\ contains all the points of a before and including
column j, and a2 contains all the points of a after column j. This creates 0(p/k)
smaller squares and costs 0(k+p/k) time. We check to see if we can combine <j\
and <72 with their neighbor stripes to maintain the size invariant of order k. For
any two such stripes to be merged, we examine their basic squares in pairs (a
square per stripe), such that the two squares are on the same horizontal stripe.
We take their two -<p-ordered lists of points and merge them to build a threaded
search tree on the resulting list in linear time. Again, this requires 0(k +p/k)
total time. It is worth noting that splitting and merging stripes preserves the
order of their presorted points. Next, we determine the solutions for the basic
squares in the 0(1) stripes involved at a total cost of P(k) time. It remains
to split cross-tree CT(TH x Tv) to reflect the split operation on the vertical
stripes. We first focus on the cross-tree topology and discuss later on how to
maintain the solutions to V in its nodes. We have to split the 1-2-tree Ty at
the leaf w corresponding to stripe a. We split w into two new leaves wi and w2,
corresponding to the split of a into the new stripes o\ and a2. If o\ or <r2 are
combined with their neighbor stripes, we should do the same on w\ and w2 and
their neighbor leaves. We check to see if the 1-2-tree Tv satisfies the size invariant
of order 2 along a leaf-to-root path and update the corresponding 0(p/k) cross-
tree leaves. Globally, we create no more than 0{p/k) leaves corresponding to the
new basic squares in 0(1) stripes and we traverse and reorganize their ancestor
nodes all the way up to the cross-tree root by Theorem 3 (with T = TH and
S = Tv). Consequently, maintaining the cross-tree topology takes 0(p/k) time.
Next, we recompute the solutions to V in the traversed cross-tree nodes by
applying operator 0 to them upwards, in 0(f(p)) time per node (we show in the
full paper how to do this with <>_1 if 0 is invertible). Since we traverse a total of
0(p/k) nodes, it takes 0(f(p) p/k) time to recompute their solutions. It therefore
takes a total of 0(k + f(p) p/k + P(k)) = 0(f(p) p/k + P(k)) time to execute
v.split, as P(k) > k. The implementation of hsplit is completely analogous. We
do not discuss here the other operations due to lack of space and refer the reader
to the full paper. There, we prove the following main theorem:

Theorem 4. The splitting and merging problem on p points can be solved with
the following time bounds for a parameter k (I < k < p) and an operator cost
f{p): range, hsplit, v.split, h.concatenate, v^concatenate: 0((p/k)f(p) + P(k) +
P{p)/p), with P(k) > k; set: 0(\og{p/k)f(p) + U(k) + (p/k2)f{P)+P{p)/p), with
U(k) > logifc. The space required is 0(S(p) + (p2/k2)f(p)) and the preprocessing
time is 0(p\ogp + P(p) + (p2/k2)f(p)).

Theorem 4 states the bounds needed for solving a general decomposable prob-
lem V in terms of the parameter k, 1 < k < p. In most of our applications,
f(p) = 0(pe) for a non-negative constant e < 1 and the preprocessing cost of
a stripe is P(k) = 0{k) because we have presorted points. In this case, since
U(k) = 0(f(k)logfc) and S(k) = 0(k) [20, 21], we can tune k = \y/p f(p)]:

613

Theorem 5. The splitting and merging problem on p items can be solved with
the following time bounds whenever the cost of operator 0 is f(p) = 0(pe) for a
non-negative constant e < 1; range, hsplit, v.split, h-concatenate, v.concatenate

in 0 (A/P f(p)),' set in 0(log(p)f(p)). The space required is 0(p) and the pre-

processing time is O(plogp).

The analysis in Theorem 4 is overly pessimistic when f(p) = 6>{p). Using
weighted balanced B-trees [3] in place of 1-2-trees yields a different analysis
and better bounds:

Theorem 6. The splitting and merging problem onp items can be solved with the
following time bounds when f(p) = 0(p): set, range, hsplit, vsplit, h-concatenate,
v-concatenate in 0(p). The space required is 0(p\oglogp) and the preprocessing
time is O(plogp).

3 Some Applications

In this section we list few applications of Theorems 4-6. The problems in Theor-
ems 7-9 are all 0(l)-order decomposable; the problem in Theorem 10 is 0(logp)-
order decomposable while the one in Theorem 11 is 0(p)-order decomposable.
Most of the worst-case bounds reported in this section improve the best previ-
ously known bounds for the same problems [11, 13]. The improvement consists
of shaving a logarithmic factor from the previous bounds and of making some
bounds worst-case rather than amortized. We omit the details.

Theorem 7. A two-dimensional priority queue for a set ofp items can be main-
tained in the following time bounds: an item insertion or deletion in 0(logp);
a split or concatenate of any order in 0(y/p); and a minimum-weight query in
a region in 0(y/p). The space required is 0(p) and the preprocessing time is
O(plogp).

Theorem 8. A two-dimensional 2-3-tree storing p points can be maintained
with the following bounds: a point insertion or deletion in O(logp); a split or
concatenate along any coordinate in 0{s/p); a range search in 0(y/p + occ),
where occ is the number of points reported by the search. The space required is
0(p) and the preprocessing time is O(plogp).

Theorem 9. An interval tree that stores n (overlapping) intervals from the line
can be maintained with the following time bounds: an interval insertion or dele-
tion in O(logn); a stabbing query (i.e., find all the intervals containing a given
point) retrieving only the intervals whose lengths are between two input values
l\.. .£2 in 0(i/n + occ), where occ is the number of such intervals; a split or
concatenate of the intervals according to a perpendicular stabbing line in 0(y/n).
The space required is 0{n) and the preprocessing time is 0(n log n).

614

Theorem 10. The convex hull for p points in the Cartesian plane can be main-
tained with the following time bounds: a point insertion or deletion in 0(log p);
a split or concatenate along one coordinate in 0(\/p\ogp); a query checking if
a point is inside or outside the convex hull in O(logp); a query reporting the
convex hull for the points in any input region in 0(^plogp + h), where h is the
output size. The space required is 0(p) and the preprocessing time is 0(plogp).

Theorem 11. The Voronoi diagram for p points in the Cartesian plane can be
maintained with the following worst-case time bounds: a point insertion or dele-
tion: 0(p); a split or concatenate along one coordinate: 0(p); a query reporting
the Voronoi diagram for the points in an input region: 0{p). The space required
is 0(ploglogp) and the preprocessing time is O(plogp).

The above results show that our technique is a general paradigm on which we
can cast many other split-and-concatenate data structures in some basic prob-
lems (e.g., member searching, predecessor, ranking), computational geometry
(e.g., neighbor queries, union and intersection queries), database applications
(e.g., partial match queries, range queries) and statistics (e.g., maxima queries).
We refer the interested reader to [7, 17, 21] for more decomposable problems.
We only mention here that our technique can be extended to d > 2 total orders
-<i,..., <d and can be efficiently implemented in external memory. Details will
be given in the full paper.

Acknowledgments. We are indebted to Amnon Nissenzweig and to Giuseppe
Persiano for many delightful conversations at the beginning of this research. We
are grateful to Lars Arge and to Paolo Ferragina for helpful discussions and to
Marc van Kreveld and Mark Overmars for sending us a copy of [13].

References

1. A. Aggarwal, L. Guibas, J. Saxe and P.W. Shor, A linear-time algorithm for com-
puting the Voronoi diagram of a convex polygon. Discrete and Computational Geo-
metry 4 (1989), 591-604.

2. A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, MA, 1974.

3. L. Arge and J.S. Vitter, Optimal dynamic interval management in external memory.
37th IEEE Symp. on Foundations of Computer Science (1996).

4. R. Bayer and C. McCreight, Organization and maintenance of large ordered in-
dexes. Ada Informatica 1, 3 (1972), 173-189.

5. J.L. Bentley, Multidimensional binary search trees used for associated searching.
Comm. ACM, 19 (1975), 509-517.

6. J.L. Bentley, Decomposable Searching Problems. Information Processing Letters,
8 (1979), 244-251.

7. J.L. Bentley and J.B. Saxe, Decomposable Searching Problems I. Static-to-
Dynamic Transformation. J. of Algorithms, 1 (1980), 301-358.

8. Y.-J. Chiang and R. Tamassia, Dynamic Algorithms in Computational Geometry,
Proceedings of the IEEE, Special issue on Computational Geometry, G. Toussaint,
ed., 80 (1992) 1412-1434.

615

9. R. A. Finkel and J.L. Bentley, Quad-trees: a data structure for retrieval of composite
keys. Ada Inform., 4 (1974), 1-9.

10. I.G. Gowda and D.G. Kirkpatrick, Exploiting linear merging and extra storage in
the maintenance of fully dynamic geometric data structures. In Proc. 19th Allerton
Conference on Communication, Control and Computing (1980), 1-10.

11. M.J. van Kreveld and M.H. Overmars, Divided k-d trees, Algorithmica, 6 (1991),
840-858.

12. M.J. van Kreveld and M.H. Overmars, Union-copy structures and dynamic segment
trees, J. ACM, 40 (1993), 635-652.

13. M.J. van Kreveld and M.H. Overmars, Concatenable structures for decomposable
problems, Information and Computation, 110 (1994), 130-148.

14. J. van Leeuwen and M.H. Overmars, The art of dynamizing. In Proc. 10th Math-
ematical Foundations of Computer Science, LNCS, 118 (1981), 121-131.

15. J. van Leeuwen and D. Wood, Dynamization of decomposable searching problems.
Information Processing Letters, 10 (1980), 51-56.

16. K. Mehlhorn, Lowerbounds on the efficiency of transforming static data structures
into dynamic structures. Mathematical System Theory, 15 (1981), 1-16.

17. K. Mehlhorn, Multi-Dimensional Searching and Computational Geometry EATCS
Monographs on Theoretical Computer Science, vol. 3, Springer-Verlag, 1984.

18. H.A. Maurer and T.A. Ottmann, Dynamic solutions of decomposable searching
problems. In Discrete Structures and Algorithms, U. Pape ed., Hanser Verlag,
Wien, (1979), 17-24.

19. K. Mehlhorn and M.H. Overmars, Optimal dynamization of decomposable search-
ing problems. Information Processing Letters, 12 (1981), 93-98

20. M. H. Overmars, Dynamization of order decomposable set problems. J. Algorithms,
2 (1981), 245-260.

21. M.H. Overmars, The Design of Dynamic Data Structures, LNCS 156, Springer-
Verlag, Berlin/New York, 1983.

22. M.H. Overmars and J. van Leeuwen, Maintenance of configurations in the plane.
Journal of Computer and System Sciences, 23 (1981), 166-204.

23. M.H. Overmars and J. van Leeuwen, Dynamization of decomposable searching
problems yielding good worst-case bounds. In Proc. 5th GI Conference on Theor-
etical Computer Science, LNCS, 104 (1981), 224-233.

24. M.H. Overmars and J. van Leeuwen, Some principles for dynamizing decomposable
searching problems. Information Processing Letters, 12 (1981), 49-53.

25. M.H. Overmars and J. van Leeuwen, Worst-case optimal insertion and deletion
methods for decomposable searching problems. Information Processing Letters, 12
(1981), 168-173.

26. M.H. Overmars and J. van Leeuwen, Dynamic Multi-dimensional data structures
based on quad- and k-d trees. Ada Inform., 17 (1982), 267-285.

27. H. Samet, Bibliography on quad-trees and related hierarchical data structures. In
Data Structures for Raster Graphics, L. Kessenaar, F. Peters, and M. van Lierop
eds., Springer-Verlag, Berlin, (1986), 181-201.

28. H.W. Schölten and M.H. Overmars, General methods for adding range restrictions
to decomposable searching problems, J. of Symbolic Computation, 7 (1989), 1-10.

29. D.E. Willard and G.S. Lueker, Adding range restriction capability to dynamic data
structures, J. ACM, 32 (1985), 597-617.

Efficient Array Partitioning

Sanjeev Khanna1 , S. Muthukrishnan2 and Steven Skiena3

1 Mathematical Sciences Research Center, Bell Laboratories, Lucent Technologies,
700 Mountain Avenue, Murray Hill, NJ 07974. sanjeevCresearch.bell-labs.con

2 Information Sciences Center, BeU Laboratories, Lucent Technologies, 700 Mountain
Avenue, Murray Hill, NJ 07974. muthuCresearch.bell-labs.COB

3 Dept. of Computer Science, State University of New York, Stony Brook, NY
11794-4400. skienaCcs.sunysb.edu. This work is partially supported by ONR award

400xll6yip01 and NSF Grant CCR-9625669.

Abstract. We consider the problem of partitioning an array of n items
into p intervals so that the maximum weight of the intervals is minimized.
The currently best known bound for this problem is 0(n+p1+e) [HNC92]
for any fixed e < 1. In this paper, we present an algorithm that runs in
time 0(n log n); this is the fastest known algorithm for arbitrary p.
We consider the natural generalization of this partitioning to two dimen-
sions, where an n x n array of items is to be partitioned into p2 blocks by
partitioning the rows and columns into p intervals each and considering
the blocks induced by this partition. The problem is to find that parti-
tion which minimizes the maximum weight among the resulting blocks.
This problem is known to be NP-hard [GM96]. Independently, Charikar
et. al. have given a simple proof that shows that the problem is in fact
NP-hard to approximate within a factor of two. Here we provide a poly-
nomial time algorithm that determines a solution at most O(l) times the
optimum; the previously best approximation ratio was 0{s/p) [HM96].
Both the results above are proved for the case when the weight of an
interval or block is the sum of the elements in it. These problems arise
in load balancing for parallel machines and data partitioning in parallel
languages. Applications in motion estimation by block matching in video
and image compression give rise to the dual problem, that of minimizing
the number of dividers p so that the maximum weight of a block is at
most S. We give an O(logn) approximation algorithm for this problem.
All our results for two dimensional array partitioning extend to any
higher fixed dimension.

1 Introduction

The problem of partitioning a set of items into roughly equal weight subsets is
a fundamental one. We study two dual versions of this, namely, (a) given B,
partition a given array into at most B blocks so as to minimize the maximum
weight of any block in the partition, and (b) given S, partition a given array
into minimum number of blocks such that their individual weight is no larger
than S. The definition of the weight function for a block, the type of partitions
allowed, the dimensionality of the arrays, and the relevant version depends upon

617

the application at hand. The problems we consider arise in load balancing for
parallel processing, compilers for high-performance parallel languages, and mo-
tion estimation in videos by block matching, and hence have been extensively
researched in several communities. In this paper, we present algorithms for these
problems which are more efficient than the best ones so far, and give improved
approximations over those previously known. In what follows, we describe the
setting of the problems (Section 1.1), and describe various application scenar-
ios where three such problems arise (Section 1.2). We state our results for such
problems in Section 1.3 and present the technical details in sections 2, 3 and 4.

1.1 Problems

We begin with the one dimensional version. Consider an array A[l ■ ■ ■ n] of non-
negative numbers, and a weight function / that maps intervals of A to non-
negative integers. The function / is trivially assumed to be 0 on empty intervals.
The p-partition of A is a division of A into p intervals, that is, setting dividers
d0 = 0 < di < d2 < ■ ■ ■ < dp-i < dp = n. Here the ith interval is [di_i + 1 ■ • • di]
if di_i ^ di and is denoted empty otherwise. The MAX norm of a partition is
max*^ f(A[di-i + 1 • ■ -di]). Two weight functions arise commonly in practice:

the additive weight function F(A[i,j]) = St=MW and the Hamming weight
function Hc for a given parameter c, relative to another array B of size n, given
by Hc{A[i,j)) = mm_c<k<cn(B[i + k,j + k],A[i,j\) where U{X,Y) gives the
Hamming distance between two segments X and Y of identical length.

The ID p-partition problem. Given p, find the p-partition that minimizes
the MAX norm. □

This notion can be naturally extended to a p x p partition in two dimensions as
follows. Consider an n x n array A. Divide the rows [1, n] into p intervals given by
horizontal dividers h0 = 0 < hi < h2 < ■ ■ ■ < /ip_i < hp = n, and the columns
[1, n] into p other intervals given by the vertical dividers vo = 0 < vi < v2 < • ■ • <
vp-i <vp = n. This induces p2 blocks given by A[hi-!+l ■ ■ -hi, Vj-i + 1 ■ ■ -Vj] for

each i, j. The MAX norm of a partition is max)~^j^ f(A[hi-i + 1 • • • hi, u,_i -f-
1 • • -Vj]). Again, the common weight functions on blocks are F and Hc defined
analogously as above for intervals.

The 2D p X p-partition problem. Given p, find the p X p partition that
minimizes the MAX norm. □

The 2D 5-weight partition problem. Given S, find the minimum p for which
there exists a p x p partition of the array with the MAX norm of at most 5. O

Remarks. There are many different ways to partition 2D arrays, as discussed
in [GM96, KRW95, MS96, MM+96]. Here we consider only the p x p partition.
These problems can be naturally generalized to higher dimensions. Our solutions
for the 2D case extend to higher dimensions in a straightforward way. However,
the ID and 2D cases are fundamentally different, and they will be contrasted
later.

618

1.2 Application Scenarios

Array partitioning problems arise in load balancing, scheduling, data layout,
video compression, etc. We focus on three specific array partitioning problems.
Here we briefly describe the application context for each; further details of mod-

eling will be discussed in the journal version.

One dimensional case under F. This problem was abstracted for load bal-
ancing in pipelined, parallel environments in [B88] and studied in [OM95, AF91,
HL92, MS95, M93, CN91, HNC92, N91] etc.

Two dimensional case under F. This problem arises in balanced data dis-
tribution as implemented in the Superb environment [ZBG86] and HPF2 [HPF]
(High Performance Fortran). See [M93, CM+95] for more applications to particle-
in-cell computations and sparse matrix computations.

Two dimensional case under Hc. This arises in motion-compensated video
compression by block matching. Roughly this involves compressing a frame in a
video sequence by cutting it into rectangles each of which is encoded in terms of
a block in the previous frame. See [MM+96] and then references therein for the

precise setting.

1.3 Results

We state our results for each of the three problems of our interest.
ID p-partition under F. This problem has been extensively researched. We
summarize the previous work and our results in the table below, providing all
citations where identical bounds were obtained independently.

Reference Bound
Bokhari [B88] 0(n*p)
Anily k Federgruen [AF91] 0{n2p)
Hansen k Liu [HL92] 0{n2p)
Manne k Sorevik [MS95] 0(np\ogp)
Choi k Narahari [CN91] 0(np)
Olstad k Manne [OM95] 0(np)

Nicol [N91] 0(n + p2 log2 n)

Charikar, Chekuri k Motwani [CCM96] 0(n + p2 log2 n)
Han, Narahari k Choi [HNC92] 0{n + p1+e),e< 1
This paper O(nlogn)

Our result relies on a binary search over a space of 0(n?) items. However, at
each test, an approximate median among these items is identified in only 0(n)
(as opposed to 0(n2)) time by exploiting the structure in our search space. In
particular, we design and use an algorithm that finds an approximate median of
the 0(n2) elements which are organized into n sorted lists in only 0(n) time.

Throughout we have made no assumptions on the range of F's. However,
improved bounds may be obtained if the F's lie in a restricted range; we omit

the details here.

619

The 2D (5-weight problem under Hc. A number of algorithms are known for
block matching, and in particular, for the 2D tJ-weight problem under Hc. These
essentially work by splitting subareas greedily until each subarea has weight at
most S and do not provide any guarantees on the number of blocks used. Building
on the result of Grigni and Manne [GM96], this problem can in fact be shown
to be NP-hard.

Here we provide an O(logn) approximate polynomial time algorithm. We
obtain our result by a rather simple reduction to the classical set cover problem.
Our algorithm works for a general class of metrics including F and Hc.

The 2D pxp partition problem under F. Grigni and Manne [GM96] showed
that the 2D problem is NP-hard even when the given array consists of 0/1 entries.
Independently, Charikar et. al. have given a simple proof that this problem is
APX-hard, that is, the problem is in fact NP-hard to approximate within a
factor of two. While a number of natural heuristic algorithms are known for
this problem (See for example [MS96]), most of them can be shown to be bad
(typically Q(<Jp)) approximations. One such heuristic has been recently shown
to have a performance guarantee of 0{^/p) by Halldorsson & Manne [HM96].
This is the currently best known approximation for this problem.

Reference Result
Grigni & Manne [GM96]
Charikar et. al. [CCM96]
Halldorsson & Manne [HM96]
This paper (Section 4)

NP-Hardness
APX-Hardness

0{y/p) approximation
0(1) approximation

We observe that using our result for the 2D cf-weight problem above, one
can easily obtain an 0((logn)2) approximation algorithm for the 2D p x p-
partitioning problem under F. But our main contribution is an 0(l)-factor ap-
proximation for this problem which builds on an inherent connection between
"independent" rectangles of large weight within the array and the cost of the
optimal solution. Surprisingly, we are able to show that after a suitable prepro-
cessing of the input array, a locally optimal collection of independent rectangles
can be used to generate a solution which is at most a constant factor away from
the optimal.

2 The One Dimensional Case Under F

We assume for convenience that .F(.<4.[i]) ^ 0 for any i; this assumption can be
easily removed and we omit that detail. Define the Boolean function MA(1, k, v)
to be true if and only if there exists a partition of the elements A[t, n] into k
intervals, such that the MAX norm of these intervals is < v. In our analysis
below, we count only the complexity of calls to the F oracle; F can be simulated
in constant time after linear preprocessing.

Lemma 1. Mji(l,k,v) can be determined using 0(n) calls to the F oracle for
arbitrary k, I, and v.

620

Proof. Note that without loss of generality the (j + l)st divider can be placed as
far to the right of the jth divider such that F value of the elements in that interval
is < v. By incrementally inserting dividers from left to right so as to prevent
the total in any interval from exceeding v, we find the minimum number of
dividers required in 0{n) time. If this total exceeds k, then MA(l,k,v) = false.

Otherwise, MA{1, k, v) = true. D

In the optimal partitioning with k dividers, there will be an interval A[i, j]
which will prove the bottleneck of the partitioning: an interval is a bottleneck to
the partitioning if it is the largest weight interval that results from this partition-
ing. There are Q) candidates for this bottleneck interval. Performing a binary
search on these candidates, using the linear-time oracle of Lemma 1, would yield
an 0(n log n) algorithm to search for the ^-partition. However, this requires a
method to efficiently compute the sequence of (approximate) median candidates
to support the binary search. Conventional linear-time median-finding is clearly
inadequate, since we have only 0(n) time to find the median of 0(n2) elements.

We take advantage of the fact that this collection of 0(n2) elements is not
arbitrary, but has rather been derived from interval sums over n elements. We
partition the (") intervals f{A[i,j]) into n columns, where column c consists of
the elements f{A[i,c]), 1 < i < c. Let Cc[i) = f{A[i,c\) denote the ith element
of column c. The subcolumn Sc[i,j] comprises elements Cc[x], i < x < j. These

definitions are illustrated in Figure 1(a).

Lemma 2. Cc[i] > Cc[j] iffi<j- Further, the median element of any subcolumn

Sc[i, j] can be determined with one call to the F oracle.

Proof. The first claim follows since the elements of each column are monoton-
ically non-increasing. The second claim follows since the median of Sc[i,j] is

F(A[[(i + j)/2\,c]). °

Theorem 3. The ID p-partition problem under F can be solved in 0(n log n)

time.

Proof. As per the above discussion, we effectively perform a binary search over
the set of (") interval values. For each column, we will maintain one subcolumn
containing the range of intervals which might include the optimum. Let U be
the set of elements representing the union of the elements in all the active sub-
columns. A splitter for U is an element m such that the rank of m in U, say rm,

satisfies
\U\/c<rm<\U\(c-l)/c

for some constant c. The following algorithm finds a splitter for the active sub-

columns in 0(n) time:

1. We find m, the median element of the set of < n median elements of the
active subcolumns. Using Lemma 2, this set of median elements can be iden-
tified in 0(n) time. The median of this collection, m, can now be identified
in 0{n) time using the standard linear-time median finding algorithm.

621

AIM AI2I AI.1

H
++HH

Fig. 1. (a) Columns and subcolumns of A. (b) The median of medians is not necessarily
a splitter.

2. We divide the active subcolumns into two sets according to whether their
median is < m or not. Let C\ (Cr) denote the set of elements in subcolumns
whose medians are < m (> 771). If min(|Cj|, \CT\) > (|C/| +|Cr|)/8, we return
TO as a good splitter.

3. As illustrated by Figure 1(b), this median of medians is not necessarily a
good splitter. If not, we recur on the appropriate set of subcolumns (the ones
containing the larger number of elements) for the splitter search. Because
the set of subcolumns under consideration is halved on each iteration, the
total search time remains linear.

If MA(1,P, m) = true, then m is a lower bound on the optimal partitioning.
Half of the elements in each subcolumns in Ci may be eliminated, by replac-
ing subcolumn Cc[i, j] with Cc[[(i + j)/2\, j]. If MA(1,P, m) = false, then m
is an upper bound on the optimal partitioning. Half of the elements in each
subcolumns in CT may be eliminated, by replacing subcolumn Cc[i,j] with
Cc[i, [(i + j)/2j]. In either case, a constant fraction of the elements are elim-
inated in each linear-time round, and hence the optimal partition is identified in
0(n log n) time. D

3 2D ^-weight partition under Hc

We begin by considering the following geometric problem. We say that a rect-
angle is stabbed by a line if the line passes through the interior of the rectangle.

Stabbing Problem. Given a set of axis-parallel rectangles in the [1, n] x [1, n]
two dimensional integer grid, determine a set R of grid rows and C of grid
columns such that each rectangle is stabbed by one of the rows in R or one of
the columns in C and furthermore, s = max{|Ä|, |C|} is minimized. G

Lemma 4. The stabbing problem is O(log n)-approximable.

Proof. The proof is by reduction to set cover; the details are deferred to the final
version. D

622

Theorem 5. There exists a polynomial time O(logn) factor approximation for

the 2D S-weight partition problem under He-

Proof. We reduce this problem to the stabbing problem above. Consider the
collection of all possibly overlapping minimal rectangles where the F value of
each rectangle is > 6; rectangles are minimal in the sense that if two rectangles
have F value > S and one is contained in the other, we retain the smaller one.
Now the 2D J-weight partition problem is precisely the stabbing problem for

which a O(logn) factor approximation exists. D

4 2D p X p-partition under F

Grigni and Manne [GM96] have shown that the 2D p x p-partition problem under
F is NP-Complete. Charikar et al [CCM96] proved that it is NP-Complete even
to approximate the solution within a factor of 2. In this section, we present a
polynomial time heuristic which provides an 0(1) factor approximation.

The following lemma is crucially used in our arguments.

Lemma 6. Let c and d be two positive integers, c,d<k. If there exists akx k
partitioning such that MAX norm of the blocks is B under F, then there exists
a k/c x k/d partitioning with MAX norm < cdB under F.

Proof. Consider a ife x k partitioning with MAX norm B and take every cth row
as well as every dth column. The maximum F value of a block of this k/c x k/d
partitioning is at most cdB since each new block contains cd of the previous

blocks.

This lemma can be combined with the observation that Theorem 5 holds for
2D J-weight partition problem under F as well, to get the following.

Theorem 7. There exists a polynomial time O{log2 n)-approximation for the

ID p x p-partition problem under F.

We omit the proof in this extended abstract.
The main result in this section is a substantially improved approximation

algorithm; our algorithm computes an 0(1) factor approximation.
Let a (W, £)-partition be a I x ^-partition such that the MAX norm of the

blocks is at most W. We will now show that given an input instance for which
a (W, ^-partition exists, we can construct in polynomial time a {0(W),£}-
partition. The basic idea behind our algorithm is the notion of independent

rectangles:

Definitions. Two axis-parallel rectangles are said to be independent if their

projections are disjoint along both the E-axis and the y-axis.

623

Clearly, no single horizontal or vertical line can stab a pair of independent
rectangles. So if an array has a (W, -£)-partition, then it may contain at most
2£ independent rectangles of weight strictly greater than W. As a result, inde-
pendent rectangles constitute a useful tool in establishing a lower bound on the
optimal solution value. The algorithm presented below builds on this idea to
construct a partition whose cost is 0{W).

4.1 The Algorithm

Let W be the optimal solution value. We assume a knowledge of this value in
the presentation below - this value will be determined by performing a binary
search over the interval [0, YA,J Mh j]]- Observe that W > maxij A[i,j]. Our
algorithm constitutes of the following five steps:

Step 1. We obtain an £ x £ partition of the array such that each row or column
within any block in the partition has weight at most 2W. □

This can done by performing independent horizontal and vertical scans. Dur-
ing the horizontal scan, we keep a running sum of the weight of each row since
the most recent vertical partition and set down the next vertical partition when
the weight of any one of the rows exceeds W. Likewise, we set horizontal parti-
tions based on running sums of the weights of columns during the vertical scan.
Since each time a new column (row, respectively) is considered, the weight of
the rows (columns, respectively) can increase by at most W, it follows that the
weight of any row (column, respectively) within any block induced by the ver-
tical and horizontal partitions does not exceed 2W. Henceforth we consider the
array with this £ x £ partition which we refer to as the partition P.

Step 2. We construct the set 5 of all minimal rectangles whose weight exceeds
W and which are entirely contained within the blocks induced by the partition
from Step 1. A rectangle is minimal if there does not exist another rectangle
properly contained in it with weight larger than W. □

This can be done by starting from each location within a block and consid-
ering rectangles with their top left corner at that location in turn in the order
of increasing sides until all minimal rectangles of weight strictly greater than W
are discovered.

Step 3. We determine a local 3-optimalset M C S of independent rectangles. M
is a local 3-optimal set if there does not exist i £ {1, 2, 3} independent rectangles
in S — M which can be added to M by removing at most (i — 1) rectangles from
M without violating the independence condition. □

Such a set can be easily constructed in polynomial time by repeatedly per-
forming swaps which increase the size of the current independent collection. Each
swap takes polynomial time and the procedure terminates in polynomial time
since any independent collection can have at most 0(n) rectangles.

Step 4. We now introduce another partition based on M. For each rectangle
in M, we set two straddling horizontal and two straddling vertical partitions so
as to induce that rectangle. In all, this introduces at most 2M horizontal and

624

IM vertical partitions. The partition P from Step 1 together with this partition
induced by rectangles in M is our new partition now. a

Step 5. We now have a partition of the input array which uses h < 2M + £
horizontal lines and v < 2M + I vertical lines. To get a I x t partition from
this, we simply retain only every \h/l]th horizontal line and only every \v/l]th
vertical line. By Lemma 6, this increases the maximum block weight by at most

a factor of \h/l]\v/l].

4.2 Analysis: Approximation Guarantee and Correctness

We need to establish two properties of the above algorithm: (a) given a choice W
for which the input array has a (W, ^-partition, the weight of any block in the
partition constructed by the above algorithm is 0(W), and (b) the smallest value
W for which the analysis of the algorithm holds, identified via binary search,
is upper bounded by the optimum solution value. We begin by establishing the
first property above; the following lemma is central to the analysis here.

Lemma 9. Let b be a block contained in some block of the partition P constructed
in Step 1 above. Then if the weight of block b is at least 27W, it can be partitioned
into 3 independent rectangles, each with weight strictly exceeding W.

Proof. Given a block of weight at least 27W, we construct three independent
rectangles of weight exceeding W as follows. First we perform a vertical scan,
placing a horizontal cut as soon as the weight of the slab seen thus far exceeds
TW; we place two horizontal cuts in all. This gives us three slabs each of weight
strictly greater than 1W. Now we perform a horizontal scan from right to left
placing the first vertical cut as soon as one of the horizontal slabs exceeds weight
W. Without loss of generality assume that it is the top slab. Then the top right
block has weight greater than W but does not exceed 3W', and the two lower
horizontal slabs to the left ofthat vertical cut have weight greater than AW each.
Now in a similar manner we place a second vertical cut to obtain two independent
blocks of weight exceeding W from these two horizontal slabs. Thus we get three

independent rectangles of weight greater than W each. □

Lemma 10. The weight of any block in the partition constructed at the end of

Step 4 is 0{W).

Proof. We begin by observing the following easily verifiable properties of the
solution: (a) each block of the solution is completely contained in some block of
the partition P, and (b) given a block b G M and another block b' £ M, their
projections on the z-axis or the y-axis have either completely disjoint or have a

perfect overlap.
Now consider a block b in the solution; using the preceding observations, it

is readily seen to fall into one of the following categories: (1) the block b belongs
to M, or (2) the block b does not belong to M but has a perfect overlap along
one of the axes with a block b' G M, or (3) the block b does not belong to M but

625

has a perfect overlap along the x-axis with a block b' £ M and a perfect overlap

along the z-axis with a block b" £ M.
In Case 1, the weight of b is 0(W) since the set S as defined in Step 2 has

the property that any rectangle r in it has weight at most 3W. This is because
otherwise, we can always remove either a row or a column (of weight at most
2W) from r to obtain a rectangle r' of weight greater than W, contained in r,

which violates the minimality of the rectangles in S.
In Cases 2 and 3, each block has weight at most 27W; this follows from an

application of Lemma 9. We observe that at most two blocks in M, say b' and
b", may not be independent of a block which falls into these two cases. So if
b has weight greater than 27W, we can replace b' and b" with at least three
independent rectangles which are constructible from b (and are contained in S).
But this contradicts the local 3-optimality of the collection M constructed in

Step 3. Hence b must weight at most 27W. □

Lemma 11. The number of rectangles in M is 21 for any choice W for which

there exists a (W, £)-partition of the input array.

Proof. If M had x rectangles, then each of those rectangles must be stabbed
in the optimal solution since the optimal solution value is bounded by W and
every rectangle in M has weight strictly greater than W. Stabbing x rectangles
requires at least x/2 horizontal or vertical partitions and hence x must be at

most 21. D

Lemma 12. The weight of any block in the final solution returned in Step 5 is
at most 0(W) for any choice W for which there exists a (W,£)-partition of the

input array.

Proof. Lemma 11 tells us that the number of horizontal and vertical partitions at
the end of Step 4 is 0(£) each. This fact, along with an application of Lemma 6,
allows us to conclude that the weight of every resulting block in the £ x £ partition

is 0{W). D

This completes the proof of the first property of our algorithm that it gives
a solution of weight 0(W) whenever a (W, ^-partition exists. To conclude, we
observe that the least value W for which the algorithm either fails to construct
the partition P in Step 1 or yields a collection M in Step 3 with more than 2£
rectangles, must exceed the optimum. Thus the binary search procedure works

to identify a suitable W.

Theorem 13. There exists a polynomial time algorithm that computes an 0(1)-
factor approximation to the two dimensional block partitioning problem.

5 Acknowledgements

Sincere thanks to the referees for bringing [HNC92] to our attention, and to the
authors of [CCM96] for giving us a copy of their manuscript. The third author
thanks Estie Arkin and Joe Mitchell for helpful discussions.

626

References

[AF91] S. Anily and A. Federgruen. Structured partitioning problems. Operations Re-
search, 13, 130-149, 1991.

[B88] S. Bokhari. Partitioning problems in parallel, pipelined, and distributed com-
puting. IEEE Transactions on Computers, 37, 38-57, 1988.

[CM+95] B. Chapman, P. Mehrotra, and H. Zima. High performance Fortran lan-
guages: Advanced applications and their implementation. Future Generation Com-
puter Systems, 401 - 407, 1995.

[CCM96] M. Charikar, C. Chekuri, and R. Motwani. Personal Communication, 1996.
[CN91] H.-A. Choi and B. Narahari. Algorithms for mapping and partitioning chain

structured parallel computations. Proc. Intl. Conf. on Parallel Processing, Vol I,
625-628, 1991.

[HPF] High Performance Fortran Forum Home Page.
http: //www. crpc.rice. edu/HPFF/home.html.

[GM96] M. Grigni and F. Manne. On the complexity of the generalized block distri-
bution. Proc. of 3rd international workshop on parallel algorithms for irregularly
structured problems (IRREGULAR '96), Lecture notes in computer science 1117,
Springer, 319-326, 1996.

[HNC92] Y. Han, B. Narahari and H.-A. Choi. Mapping a chain task to chained pro-
cessors. Information Processing Letters 44, 141-148, 1992.

[HM96] M. Halldorsson and F. Manne. Manuscript, 1996.
[HL92] P. Hansen and K. Liu Improved algorithms for Partitioning problems in par-

allel, pipelined, and distributed computing. IEEE Trans. Computers, 41, 769-771,
1992.

[KRW95] M. Kaddoura, S. Ranka and A. Wang. Array decomposition for nonuniform
computational environments. Technical Report, Syracuse University, 1995.

[M93] F. Marine. Load Balancing in Parallel Sparse Matrix Computations. Ph.d. thesis,
Department of Informatics, University of Bergen, Norway, 1993.

[MM+96] I. Rhee, G. Martin, S. Muthukrishnan, and R. Packwood. Fast algorithms
for variable size block matching motion estimation with minimal error. Manuscript,
1996.

[MS95] F. Manne and T. Sorevik. Optimal partitioning of sequences. Journal of Algo-
rithms, 19, 235 - 249, 1995.

[MS96] F. Manne and T. Sorevik. Partitioning an array onto a mesh of processors.
Proc. of Workshop on Applied Parallel Computing in Industrial Problems. 1996.

[N91] D. Nicol. Rectilinear partitioning of irregular data parallel computations. ICASE
Report 91-55, 1991. J. Parallel and Distributed Computing, 23, 119-134, 1994.

[OM95] B. Olstad and F. Manne. Efficient partitioning of sequences. IEEE Transac-
tions on Computers, 44, 1322 - 1325, 1995.

[ZBG86] H. Zima, H. Bast and M. Gerndt. Superb: A tool for semi-automatic
MIMD/AIMD parallelization. Parallel Computing, 1-18, 1986.

Constructive Linear Time Algorithms for
Branchwidth*

Hans L. Bodlaender Dimitrios M. Thilikos

Department of Computer Science, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, the Netherlands

E-mail: {hansb,sedthiik}@cs.ruu.nl

Abstract. Let Qk be the class of graphs with branchwidth at most k.
In this paper we prove that one can construct, for any k, a linear time
algorithm that checks if a graph belongs to Qh and, if so, outputs a branch
decomposition of minimum width. Moreover, we find the obstruction set
for & and, for the same class, we give a safe and complete set of reduction
rules. Our results lead to a practical linear time algorithm that checks if
a graph has branchwidth < 3 and, if so, outputs a branch decomposition
of minimum width.

1 Introduction

This paper considers the problem to find branch decompositions of graphs with
small branchwidth. The notion of branchwidth has a close relationship to the
more well-known notion of treewidth, a notion that has come to play a large
role in many recent investigations in algorithmic graph theory. (See Section 2
for definitions of treewidth and branchwidth.) One reason for the interest in this
notion is that many graph problems can be solved by linear time algorithms,
when the inputs are restricted to graphs with some uniform upper bound on
their treewidth. Most of these algorithms first try to find a tree decomposition
of small width, and then utilise the advantages of the tree structure of the

decomposition.
The branchwidth of a graph differs from its treewidth by at most a multiplicative
constant factor (see Theorem 1.) As branchwidth is also reflecting some optimal
tree structure arrangement, it is possible to have algorithmic applications anal-
ogous to those of treewidth. Hence, instead of using tree decompositions, one
also can use branch decompositions as starting point for the linear time algo-
rithms for problems restricted to graphs with bounded treewidth (and hence also
bounded branchwidth.) In fact, in some cases, it appears that branchwidth is
more convenient to use, and seems to give better constant factors in the imple-
mentation of the algorithms; for instance, Cook used branch decompositions as
an important ingredient in a practical approximation algorithm for the Travelling

* The secont author was supported by the Training and Mobility of Researchers (TMR)
Program, (EU contract no ERBFMBICT950198).

628

Salesman Problem [11], and remarked that branchwidth was the more natural
notion (instead of treewidth) to use for that problem [10]: where tree decompo-
sitions primarily are concerned with vertices, branch decompositions deal more
with edges (in a loose sense.) We also mention that the branchwidth of planar
graphs can be computed in polynomial time (see [20]). As both treewidth and
branchwidth are NP-complete parameters (see [2, 20]), it appears an interesting
task to find algorithms solving the following problems (k is assumed to be a fixed
constant).

n£(B) (IJf.(T)): Check if for some input graph has branchwidth (treewidth)

< k.
nc

k{B) (ni(T)): Given a graph with branchwidth (treewidth) at most k, output
a minimum width branch (tree) decomposition.

According to the results of Robertson and Seymour, for any minor closed class
of graphs there exist a finite set of graphs, its obstruction set, such that a graph
G belongs to the class iff no element of the obstruction set is a minor of G. It is
also known that for, any k, the class of graphs where treewidth (or branchwidth)
is bounded by a fixed k is minor closed (see also Theorem 1). An immediate
consequence of this fact (using results from Robertson and Seymour and the
algorithm from [6]) is the existence of a linear time algorithm solving IJf(B) or
n£(T). Unfortunately, in this way, we only get a non-constructive proof of the
existence of such an algorithm, but in order to construct the algorithm, we must
know the corresponding obstruction set. Additionally, we would like to have
an algorithm that does not only decides on branchwidth, but also constructs
corresponding branch decompositions.
Much research has been done towards the construction of linear time algorithms
solving nf{T) and nc

k(T). In [6], a linear (on the size of the input) time algo-
rithm for treewidth was constructed. As this algorithm appears to be heavily
exponential on k (and thus impractical, at least without considerably optimisa-
tions in the implementation), more practical algorithms have been presented for
small values of k: (treewidth 1 and 2 [14, 22], treewidth 3 [4, 12, 14], treewidth
4 [18].) Also, the obstruction sets for treewidth 1, 2, and 3 are known [5, 19, 22].

In this paper, we find analogous results to those of [4, 5, 6, 19, 12, 14, 19] for
the parameter of branchwidth. Namely, for any fixed k, one can construct:
• A linear time algorithm that solves nk(B) and IIl(B).

• A parallel algorithm that solves IIk(B) in 0(lognlog*n) time on a EREW
PRAM or O(logn) time on a CRCW PRAM and needs 0(n) operations.

• A sentence in monadic second order logic expressing whether a graph has
branchwidth at most k or not.
• The obstruction set of the graphs of branchwidth at most k.
As, (similarly to the case of treewidth) the algorithms above appears to be non-
practical we provide special results for the case where k < 3. More specifically,
for the class of graphs with branchwidth < 3, we identify the obstruction set
and we give a set of safe and complete reduction rules enabling the construction
of a practical linear time algorithm that checks if a graph has branchwidth < 3
and, if so, outputs an minimum width branch decomposition.

629

The paper is organised as follows. In Section 2 the basic definition and prelim-
inary results are presented. In Section 3 we give several graph theoretic results
on Q3. These results concern the obstruction set of Q3 and the identification of
a complete and safe set of reduction rules for G3 leading to the construction
of a practical linear time algorithm solving i7|(5) and I7|(5). In Section 4 we
present a general (for any fixed value of k) solution for II^(B) and 111(B).

2 Definitions and Preliminary Results

We consider undirected graphs without parallel edges or self-loops. (It is easy
to extend the results to graphs with parallel edges and/or self-loops.) Given a
graph G = (V, E) we denote its vertex set V and edge set E with V(G) and E(G)
respectively. For any vertex v G V(G), we define as NG(v) the set of vertices in
V(G) adjacent with v. Also, given a set 5 C V(G) we denote as G[S] the graph
induced by S. We also denote as Kr the complete graph with r vertices.

Given two graphs G, H we say that H is a minor of G (denoted by H < G) if
H can be obtained by a series of vertex/edge deletions and/or edge contractions
(a contraction of an edge {u, v} in G is the operation that replaces u and v by a
new vertex whose neighbours are the vertices that were adjacent to u and/or v).
Let Q be a class of graphs. We say that Q is closed under taking of minors when
all minors of any graph in Q belong also to Q. Robertson and Seymour proved
(see e.g. [16]) that any class of graphs Q contains a finite set of minor minimal
elements. We call such a set the obstruction set of £. It follows that if Q is closed
under taking of minors, then, for any graph H, G G Q iff there is no graph in

the obstruction set of Q such that H < G.
A tree decomposition of a graph G is a pair ({Xt | i G I},T = {I,F)), where
{Xi | i G /} is a collection of subsets of V and T is a tree, such that

. U ^ = V(G),

.for each edge {v, w} G E(G), there is an i G / such that v, w G Xit and

.for each v G V the set of nodes {i \ v G Xi} forms a subtree of T.

The width of a. tree decomposition ({Xi \i£l},T= (I, F)) equals maxi€J{\Xi\ -
1}. The tree width of a graph G is the minimum width over all tree decompositions

of G.
A branch decomposition of a graph G is a pair (T,T), where T is a tree with
vertices of degree 1 or 3 and r is a bijection from the set of leaves of T to
E(G). The order of an edge e in T is the number of vertices v G V(G) such that
there are leaves ti,t2 in T in different components of T(V(T), E(T) - e) with
r(ti) and r(t2) both incident with v (we also say: v belongs to e.) The width of
(T, r) is the maximum order over all edges of T, and the branchwidth of G is the
minimum width over all branch decompositions of G (in case where \E(G)\ < 1,
then we define the branchwidth to be 0; if \E(G)\ = 0, then G has no branch
decomposition; if \E(G)\ = 1, then G has a branch decomposition consisting of
a tree with one vertex - the width of this branch decomposition is considered to

beO).

630

Instead, we can use different types of functions r. If r is a surjective function
that maps every leaf of T to an edge e 6 E(G), then we have an amplified branch
decomposition: for each edge e G E(G) there exist at least one leave v of T with
T(V) = e. If, instead, we have a partial function r, mapping only some leaves to
an edge, but that is injective (every edge has a unique leaf), then we have an
extended branch decomposition.

In what follows we denote as Bk (71) the obstruction set of the graphs with
branchwidth (treewidth) at most k.

Theorem 1 ([17]) The following statements hold, (a) The class of graphs with
bounded branchwidth is closed under taking of minors, (b) branchwidth(G) <
treewidth(G) + 1 < [§branchwidth(G)J. (c) A graph has branchwidth 0 (< 1)
iff each connected component contains at most one edge (vertex of degree > 2).

(d) B2 = {IU}.

The results from [17] give algorithms for nf{B) and nc
k{B) for k = 0,1,2; for

instance, graphs have branchwidth 2 if and only if they have treewidth 2, and a
tree decomposition of width 2 can be transformed into a branch decomposition
of width 2 in linear time. The following lemma is easy to show.

Lemma 1 There exist an algorithm that given an amplified branch decompo-
sition (T, T) of a graph G with width < 3, outputs a branch decomposition of
G with width < 3, in 0(\V(T)\) time. Moreover, there exist an algorithm that
given a branch decomposition (T, r) of a graph G with width < 3, outputs a
branch decomposition of any subgraph of G with width < 3 in 0(\V(G)\) time.

A reduction R is a triple (H,S,f), where H is a graph S C V(H),S ^ 0
and / : V(H) -> w + 1 is a labelling of vertices in H by ordinals (finite ones
and w), such that V« G S f(v) — 0. We say that a reduction R = (H,S,f)
occurs in G if H is a subgraph of G and for any v G V{H) the degree of v in
G[V(G) - V(H) U {v}] is at most f(v). The result of applying R on G is the
graph arising from G if we remove the vertices in S and connect as a clique in G
all vertices in V(H)—S. Given a graph class Q, we say that a set 11 of reductions
is safe if, for any R G H and for any G such that R occurs in G, the result of
applying R on G is a graph in Q if and only if G G Q- Also, U is called complete
for Q, if for every non-empty graph G G Q, there is a reduction in 11 occurring in
G. Clearly, if a set 11 of reduction rules is safe and complete for a graph class Q,
then, for any graph G, it holds that G ell if and only if there exist a sequence of
reduction rules in H that, when successively applied, can reduce G to the empty
graph.
We denote as 1Zt<3 the set of reduction rules shown in Figure 1. For any R =
(H,S,f) G 1Zt<3, S is represented by the white cycles and the values of / are
shown only when they are not u> and correspond to vertices not in S.

Theorem 2 ([4, .12, 15]) Ht<3 is a safe and complete set of reduction rules
for the class of graphs with treewidth < 3.
We call a graph G chordal when it does not contain any induced cycle of length
> 4. We call a vertex v G V(G) simplicial if G[NG{V)] is a clique. Let k be an
integer. A fc-tree is a graph which is defined recursively as follows. A clique with
k + 1 vertices is a fc-tree. Given a fe-tree G with n vertices, a fc-tree with n + 1

631

O^i) null
graph

(Ui) o<^ ^ I

Fig. 1. The reduction rules for the class of graphs with treewidth < 3.

vertices can be constructed by making a new vertex adjacent to the vertices of
a fc-clique in G. A graph is a partial fc-tree if either it has at most k vertices or
it is a subgraph of a fc-tree G with the same vertex set as G. k-Tiees are chordal
graphs with w(G) =fc + l (w(G) is the size of the maximum clique in a graph G).
It can be easily proved that a graph has treewidth < k iff it is a partial fc-tree

(see e.g. [21]). Also, if G is a lb-tree, then \E(G)\ = 0{k\V{G)\). A set S C ^(G)
is an s-t-separator in G (s, t 6 V), if s and f belong to different connected
components of G[V - S\. S is a minimal s-t-separator, if it does not contain
another s-i-separator as a proper subgraph. S is a minimal separator, if there
exist vertices s, 2 £ V for which 5 is a minimal s-t-separator. It is known that
any minimal separator of a chordal graph induces a clique. We call a graph G"
a triangulatwn of G if G' is chordal and V{G) = V(G'). We call a triangulation
of G with a minimum number of edges minimal triangulation.
Theorem 3 ([9]) Let G' be a minimal triangulation of a graph G. Then any

minimal separator in G' is also a minimal separator in G.

Fig. 2. The graphs Kb, M6, Ms, Mi0, and Q3

Theorem 4 ([5, 19]) T3 = {K5, M6, M8, M10} (graphs K5,M6,M8, and M10

are shown in Figure 2).
The following can be proved using Theorems l.b and 4.
Lemma 2 The following three statements hold.
a. There are no graphs in B3 with treewidth < 2.
b. Q.3 G B3 and treewidth(Q3) = 3 (graph Q3 is shown in Figure 2).
c. The set {K5,M6,M8} contains all the graphs of B3 that have treewidth > 4.
Let G be a graph and S C V{G), \S\ = 4. We call S = {vltv2,V3,v4} a cross
if the sets Si = S - {«;}, 1 < i < 4 are all minimal separators of G. We also
define as att(G, S,) the set of all the vertices of the connected components of
G[V(G) - Si] that do not contain the single vertex in S - Si. If a graph does
not contain any cross then we call it crossless.

Using Theorem 3 we can easily prove the following.

632

Lemma 3 Let G be a crossless graph of treewidth at most 3 and G' be a minimal
triangulation of G. Then, G' is a crossless chordal graph with LO(G) < 4.
Let G be a 3-tree G. A tree TG is the clique tree of G if each vertex in V(TG)
represents a 4-clique in G and where two vertices v = {^i, V2, i>3, V4}, u =
{y-i, «2, «3, «4} £ V(TQ) are connected by an edge {v,u} in TG iff |vf~lu| = 3,
i.e., they have exactly 3 vertices in common (notice that each such triple of ver-
tices is a minimal separator of G). Given an edge e = {v, u} £ E(TG) we define
the separation set of e as sep(e) = v D u.

We will need the following results which we present without proof.

Lemma 4 There exist an algorithm that given a 3-tree G constructs the clique

tree of G in 0{\V{G)\) time.

Lemma 5 There exists an algorithm that given a crossless chordal graph G with
LO(G) < 4, outputs, in 0(\V(G)\) time, a crossless 3-tree G' such that G' is a
subgraph of G where V(G) = V{G').

3 Graphs with branchwidth at most 3

In this section we will identify the set B3 and find a complete and safe set of
reduction rules for the class of graphs with branchwidth < 3. Our results lead to
the construction of a linear time algorithm testing whether a graph has branch-
width < 3 and, if so, computes a branch decomposition of minimum width.
According to Theorem l.c, it is trivial to check in linear time if G has branch-
width < 1 and, if so, to construct a branch decomposition of minimum width.
Also, from Theorem l.d, we can check in linear time if a graph has branchwidth
> 3 or not. In what follows, we examine the non trivial case where the input is
a graph with branchwidth > 3. We omit the case where we are given a graph
with branchwidth 2 as it is a very similar (and much easier) version of the non

trivial case.
The following lemma defines the notion of the labelled clique tree of a crossless
3-tree (the proof is omitted).
Lemma 6 Let TQ be the clique tree of a crossless 3-tree G. Let also, for any
v £ V(TG), Ev = {e £ E(TG) : v is incident to e}. Then, for each v £ V{TG),
|{sep(e) : e £ Ev}\ < 3. Moreover, it is possible in 0{n) time to compute

a labelling function I : \E(TG)\ ->■ {1,2,3} such that Vv £ V{TG) Vei,e2 £
Ev (sep(ei) = sep(e2) iff l(e\) = l(e.2)), i.e. edges in Ev xuith the same separa-
tion set have the same label. We call such a clique tree 3-labelled and we denote
it as (TQ , /).
Given a labelled clique tree (TG, I) we define the span degree of a vertex v to be
equal to |{/(e) : e £ Ev}\. We also call a leaf u of TG that is adjacent to a vertex
v simple if |{e £ Ev : 1(e) = /({u, v})}| = 1.

The following can be easily proved by induction on |V(TG)|-

Lemma 7 Let (TG,l) be a labelled tree with more than 3 vertices. Then one of
the following holds: (i) There exist no simple leaves, (ii) There exist a simple
leaf u in TG adjacent to a vertex v of span-degree 2. (Hi) There exist two simple
leaves ui and u2 in TG adjacent to a vertex v of span-degree 3.

633

Using now Lemma 1 we have a proof of the following Lemma which provides
the basic algorithm of this section (the proof is long and is omitted due to space

limitations).

Lemma 8 There exist a linear time algorithm that, given a 3-labelled clique tree
of a crossless 3-tree G constructs a branch width decomposition of G of width 3.

Combining Lemmas 1, 4, 5, 6, and 8 gives the following result.

Theorem 5 Any crossless chordal graph with u{G) < 3 has a branch decom-
position of width 3. Moreover it is possible to construct an algorithm that finds

such a branch decomposition in 0(\V(G)\) time.

Using Theorems 1 and 5 and Lemma 2, we can now proof the following.

Theorem 6 The following two propositions hold: (i) branchwidth(G) < 3 O-
treeivulth(G) < 3 A Q3 £ G <£> treewidth(G) < 3 A G is crossless. (ii) Th'
obstruction set of the graphs of branchwidth three, B3 equals {K5, Me, M8, Qz)

We denote as 7?.j<3 the set of reduction rules shown in Figure 3.

(M null „ _ (M m r^» {kin

e

graph
< 2?'I

Fig. 3. The reduction rules for the class of graphs with branchwidth < 3.

Using Theorems La, 2, and 6, we can prove the following.

Lemma 9 ^(,<3 is a safe set of reduction rules for the class of graphs with

bounded branchwidth.

Also, using the case analysis of Lemma 7, we can prove the following.

Lemma 10 The following two propositions hold: (i) If G is a crossless 3-tree
then, there exists one reduction rule in 1Zb<3 occurring in G. (ii) If there exist
some reduction rule in 1Zb<3 occurring in a graph G, then, for any subgraph G'
ofG where V(G) = V{G'), there exist also some rule in TZb<3 occurring in G".

Using now Lemmas 3, 5, 9, and 10, we can proof the following.

Theorem 7 7?.6<3 is a safe and complete set of rules for rewriting graphs of

branchwidth< 3.

Using now Theorems 7 and 5, we can prove the following.

Theorem 8 One can construct an algorithm that tests if a given graph has
branchwidth at most 3 and, if so, outputs a branchwidth decomposition of mini-

mum width, and that uses 0(n) time.

634

4 A linear time algorithm for graphs with branchwidth
< k

In this section, we will show the following theorem.

Theorem 9 For every k, one can construct an algorithm, that given a graph
G = (V,E), decides whether the branchwidth of G is at most k, and if so,
constructs a branch decomposition ofG of minimum width, and that uses 0(\V\)

time.

(Note that if the branchwidth of a graph is bounded by a constant, then \E\ =
0(| V|).) While the theorem generalises the result of the previous Section, it
should be noted that the algorithm here has a large (exponential) constant factor,
making it (at least without considerably optimisations in the implementation)
not practical, whereas the algorithm in the previous section for the case that
k — 3 is a practical and efficient algorithm.
Note that a non-constructive version of Theorem 9 can almost directly be ob-
tained from the results in [16] and [6] as, for every k, the class of graphs with
branchwidth at most k is closed under taking of minors. Also, note from the
result in [6], that it is sufficient to prove the following result:

Lemma 11 For every k, I, one can construct an algorithm, that given a. graph
G = (V, E), with a tree decomposition of G of width at most I, decides whether
the branchwidth of G is at most k, and if so, constructs a branch decomposition
of G of minimum, width, and that uses linear time.

A terminal graph is a triple G = (V, E, X) with G = (V, E) a graph, and X an
ordered set of vertices from V. If \X\ = k, we call (V, E, X) a Är-terminal graph.

Given an extended branch decomposition, we can build a branch decomposition
of the same graph with the same width as follows: repeatedly remove leaves
that have no edge associated with them and contract over nodes of degree 2 in
the tree. We call the obtained branch decomposition the shrunken form, of the
extended branch decomposition.

Let G — (V, E) be a graph, and let H = (V, E') be a subgraph of G. A branch
decomposition (T, r) of G is an extension of a branch decomposition (T", r') of
H, if (T',T') can be obtained as follows: let r" be the restriction of r to those
leaves that map to an edge in E'. (T, r") is an extended branch decomposition
of H. Now let (V, r1) be the shrunken form of (T, r").

The full model of a branch decomposition (T, r) of a terminal graph G —
(V, E, X) is the 4-tuple (T, r, ß, 7), where ß is a function, that maps each edge e
of T to the set of vertices in X that belong to e, and 7 is a function that maps
each edge in T to its order.

A model of a branch decomposition (T, r) of terminal graph G = (V, E, X) is a
4-tuple (T',r',ß,j), that is obtained by the full model of {T,T) by applying 0
or more of the following operations:
• Suppose {v, w} and {v, x} are edges in T, w, x leaves in T, and ß({v,iv}) C
ß({v,y}), ß({v,x}) C ß({v, y}); y the third neighbor of v in T. Then remove
edges {v,w}, and {v,x} from T, and restrict r, /?, and 7 to the edges in the
smaller tree.

635

. Suppose vi,vo,..., vr form a path in T, with all vertices v2,...vr-i adjacent to
a leaf (^ vuvrj in T. Suppose that ß{{vuv2}) = ß{{v2,v3}) = ■ ■ ■ ß{{vr-i,vr}).
Suppose also that j({vi,v2}) < min{j({v2, v3}, • ■ •, l{{vr-2, Vr-i}) and that

7(K_i,rv)} < max{j{{v2,v3}),..., 7(K-2,tV-i})- Then, identify v2 and
LV-i, remove vertices v3, . . ., iV-2, their adjacent edges, their leaf-neighbors,

and the leaf-neighbor (^ vi) of v2-
The characteristic of a branch decomposition (T, r) of terminal graph G -
(V,E, X) is the model of the characteristic that cannot be reduced by applying
one of these two operations. One can show that the characteristic of a branch

decomposition is unique.

Lemma 12 Let k be fixed. There are functions fi, such that each characteristic
of a branch decomposition of a terminal graph G = {V, E, X) of width at most
k has at most fi(\X\) nodes on its tree, and each terminal graph G = (V, E, X)
has at most f2{\X\) different characteristics of branch decompositions of G of

width at most k.

Lemma 13 Let d = {VUE^X), G2 = (V2,E2,X) be terminal graphs with
the same set of terminals. If H = (V3,E3,X) is a terminal graph, and (Ti,n),
(T2,T2) are branch decompositions, respectively of G\ and G2, with the same
characteristic, then there is an extension o/(Ti,n) that is a branch decomposi-
tion ofGi®H of width < k, if and only if there is an extension of {T2,T2) that

is a branch decomposition of G2® H of width < k.

The two lemmas above imply together that the property that a graph has branch-
width at most k is finite state, or regular (see e.g. [1]). (A class of graphs Q is
finite state, if the equivalence relation on /-terminal graphs G ~ H o- (VA' :
G © K G Q O- H © K e Q) has a finite number of equivalence classes, for each

fixed /.)
Combining the above results, and results and techniques from [1, 3, 6, 7, 13], we
obtain the following result. (The results show that each of these is computable,
although real practical efficiency and doabily is not guaranteed.)

Theorem 10 One can construct, for each k,
. linear time algorithms that decide whether a graph has branchwidth at most k
(these algorithms can either use a tree- or branch decomposition and dynamic

programming, or use graph reduction),
.parallel algorithms that decide whether a graph has branchwidth at most k,
that use 0(log?}log* n) time on a EREW PRAM or O(logn) time on a CRCW

PRAM and 0(n) operations,
. a sentence in monadic second order logic expressing whether a graph has

branchwidth at most k or not,
. the obstruction set of the graphs of branchwidth at most k.

However, we do not only want to decide whether the branchwidth is at most k,
but also to build a corresponding branch decomposition.

A model (Tx, T1: A,71) is dominated by a model (T2, r2,/?2, 72), if {T2, i~2, ß2, 72)
can be obtained from (Tu rlt ßi, 71) by 0 or more of the following operations:

636

. Contract some edges in T\.

. Remove vertices from sets ßi(e), for some edges e in T.

. Decrease numbers ß\ (e) for some edges e in T.

Lemma 14 Let G\ = (Vi,Ei,X), Gi — (V2, E2, X) be terminal graphs with the
same set of terminals. If H = (Vz,Ez,X) is a terminal graph, and if the charac-
teristic of branch decomposition (T\, T{) ofG\ is dominated by the characteristic
of branch decomposition (T2,r2) of G2, then if there is an extension of {T\,T\)
that is a branch decomposition of G\® H of width at most k, then there is an
extension of (T2, r2) that is a branch decomposition of G2 © H of width at most
k.

A full set of characteristics (for branchwidth = k) of a terminal graph G =
(V, E, X) is a set of characteristics S of branch decompositions of G of width at
most k, such that each characteristic of a branch decomposition of G of width
at most k is dominated by an element of S.

Suppose we have a tree decomposition ({Xi | i £ I},T — (I, F)) of a graph G,
with T a rooted binary tree. To each i 6 /, we associate the terminal graph G{ =

(Vi,Eit Xi), with Vi = U ■ is a ascendant of i or j = iX^ and E* = E(GiVi\)-

The following lemma (with a proof that resembles a technique from [8]) gives us
a method to compute full sets of characteristics.

Lemma 15 Let k, I be constants. Let ({Xi \ i G I},T = (I, F)) be a tree decom-
position of G of width at most I. For any node i £ I with at most 2 children in
T, we can compute a full set of characteristics for branchwidth = k of Gi, given
full sets of characteristics for branchwidth = k of all terminal graphs associated
with the children of i.

Using the algorithm of the lemma above, we can compute full sets of charac-
teristics for all graphs associated with nodes in the given tree decomposition of
the input graph, in time, linear in the size of T (process nodes in a bottom-up
order). When the full set of the root node is non-empty, the branchwidth of the
input graph is at most k, otherwise not. Finally, by extra bookkeeping, we can
build a branch decomposition of width at most k (when existing), in linear time.
As the details are cumbersome, they are omitted here.

A cknowledgement s

We thank Babette de Fluiter and Koichi Yamazaki for discussions on this re-
search.

References

1. K. R. Abrahamson and M. R. Fellows. Finite automata, bounded treewidth and
well-quasiordering. In N. Robertson and P. Seymour, editors, Proceedings of the
A MS Summer Workshop on Graph Minors, Graph Structure Theory, Contempo-
rary Mathematics vol. 147, pages 539-564. American Mathematical Society, 1993.

637

2. S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embed-

dings in a fc-tree. SIAM J. Alg. Disc. Meth., 8:277-284, 1987.
3. S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic theory of

graph reduction. J. ACM, 40:1134-1164, 1993.
4. S. Arnborg and A. Proskurowski. Characterization and recognition of partial 3-

trees. SIAM J. Alg. Disc. Meth., 7:305-314, 1986.
5. S. Arnborg, A. Proskurowski, and D. G. Corneil. Forbidden minors characteriza-

tion of partial 3-trees. Disc. Math., 80:1-19, 1990.
6. H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small

treewidth. SIAM J. Comput., 25:1305-1317, 1996.
7. H. L. Bodlaender and T. Hagerup. Parallel algorithms with optimal speedup for

bounded treewidth. In Z. Fülöp and F. Gecseg, editors, Proceedings 22nd Inter-
national Colloquium on Automata, Languages and Programming, pages 268-279,

Berlin, 1995. Springer-Verlag, Lecture Notes in Computer Science 944.
8. H. L. Bodlaender and T. Kloks. Efficient and constructive algorithms for the path-

width and treewidth of graphs. /. Algorithms, 21:358-402, 1996.
9. H. L. Bodlaender, T. Kloks, and D. Kratsch. Treewidth and pathwidth of permu-

tation graphs. In Proceedings 20th International Colloquium on Automata, Lan-

guages and Programming, pages 114-125, Berlin, 1993. Springer Verlag, Lecture

Notes in Computer Science, vol. 700.
10. W. Cook, 1996. Personal communication.
11. W. Cook and P. D. Seymour. An algorithm for the ring-routing problem. Bellcore

technical memorandum, Bellcore, 1993.
12. Y. Kajitani, A. Ishizuka, and S. Ueno. A characterization of the partial fc-tree in

terms of certain substructures. Graphs and Combinatorics, 2:233-246, 1986.
13. J. Lagergren and S. Arnborg. Finding minimal forbidden minors using a finite

congruence. In Proceedings of the 18th International Colloquium on Automata,

Languages and Programming, pages 532-543. Springer Verlag, Lecture Notes in

Computer Science, vol. 510, 1991.
14. J. Matousek and R. Thomas. Algorithms finding tree-decompositions of graphs.

J. Algorithms, 12:1-22, 1991.
15. J. Matousek and R. Thomas. On the complexity of finding iso- and other mot-

phisms for partial fc-trees. Disc. Math., 108:343-364, 1992.
16. N. Robertson and P. D. Seymour. Graph minors — a survey. In I. Anderson,

editor, Surveys in Combinatorics, pages 153-171. Cambridge Univ. Press, 1985.
17. N. Robertson and P. D. Seymour. Graph minors. X. Obstructions to tree-

decomposition. J. Comb. Theory Series B, 52:153-190, 1991.
18. D. P. Sanders. On linear recognition of tree-width at most four. SIAM J. Disc.

Meth., 9(1):101-117, 1996.
19. A. Satyanarayana and L. Tung. A characterization of partial 3-trees. Networks,

20:299-322, 1990.
20. P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combmatorica,

14(2):217-241, 1994.
21. J. van Leeuwen. Graph algorithms. In Handbook of Theoretical Computer Science,

A: Algorithms and Complexity Theory, pages 527-631, Amsterdam, 1990. North

Holland Publ. Comp.
22. J. A. Wald and C. J. Colbourn. Steiner trees, partial 2-trees, and minimum IFI

networks. Networks, 13:159-167, 1983.

The Word Matching Problem Is Undecidable for Finite
Special String-Rewriting Systems That Are Confluent

Paliath Narendran1* and Friedrich Otto2

1 Institute of Programming and Logics, Department of Computer Science
State University of New York at Albany, Albany, NY 12222, U.S.A.

E-mail: dran@cs.albany.edu

2 Fachbereich Mathematik/Informatik
Universität Kassel, 34109 Kassel, Germany

E-mail: otto@theory.informatik.uni-kassel.de

Abstract. We present a finite, special, and confluent string-rewriting
system for which the word matching problem is undecidable. Since the
word matching problem is the non-symmetric restriction of the word uni-
fication problem, this presents a non-trivial improvement of the recent
result that for this type of string-rewriting systems, the word unification
problem is undecidable (Otto 1995). In fact, we show that our undecid-
ability result remains valid even when we only consider very restricted
instances of the word matching problem.

Keywords: matching, unification, equational theory, string-rewriting systems

1 Introduction and basic definitions

Equational unification and matching have generated a lot of interest recently,
mainly due to their importance in term-rewriting systems and equational rea-
soning. Historically, one of the earliest equational unification problems that have
been studied extensively is word unification, which is the problem of solving word
equations3. The general question of whether the solvability of a word equation
is decidable or not remained open for a long time, until it was finally settled
positively by Makanin [Mak77].

Since Makanin's paper appeared, his algorithm has been the subject of many
research activities. The objectives have been to simplify the proof of the ter-
mination and correctness of his algorithm [Pec81, Sch93], to develop simpler
algorithms for deciding the solvability of word equations [Jaf90, Sch90], and to
compute a description for the set of all solutions of a solvable word equation
[MaAb94]. Observe that a word equation can have a minimal complete set of

* Partially supported by the NSF grants CCR-9404930 and INT-9401087.
3 This is also known as Markov's problem or Löb's problem.

639

most general unifiers that is infinite, that is, the theory of associativity is of

unification type infinitary.

Makanin also extended his result further by showing that the word unifica-
tion problem is decidable for finitely generated free groups [Mak83, Mak85]. Since
finitely generated free groups can be specified by finite, special, and confluent
string-rewriting systems, this leads naturally to the question of whether the solv-
ability of word equations modulo finite, special, and confluent string-rewriting
systems is decidable in general. Here a string-rewriting system is called special,

if it only contains rules of the form £ -+ A, where A denotes the empty string.
Obviously, rewriting modulo such a system is particularly simple, since it simply
amounts to the deletion of substrings. A special system R is called confluent,
if each string has a unique irreducible descendant with respect to the reduction
relation induced by R. In this situation the set IRR(Ä) of irreducible strings
modulo R forms a set of unique representatives for the Thue congruence in-
duced by R (see, e.g., [BoOt93]). But here the answer to the solvability question
turned out to be negative as shown by Otto [Ott95], who presents a particular
finite, special, and confluent string-rewriting system for which the word unifica-

tion problem is undecidable.

Now where exactly is the borderline between the decidable and the undecid-
able cases of the problem of deciding the solvability of word equations? On the
one hand, one could try to restrict the finite string-rewriting systems considered
even further. A reasonable candidate would be the class of finite, special, and
confluent string-rewriting systems that present groups. Is the solvability of word
equations in general decidable or undecidable for this class of string-rewriting

systems? (This question is still open.)

Here we follow a different approach. Instead of restricting the class of string-
rewriting systems considered even further, we put an additional restriction on the
form of the word equations that we admit. While a typical instance of the word
unification problem consists of a pair of strings (u, v), where both u and v contain
variables that must be instantiated in order to get instances 9{u) and 9(v) that
are congruent modulo the system R considered, we look at word equations of the
form (u,v), where only one side, say u, contains variables. Hence, such a word
equation has a solution modulo R if and only if there exists an instantiation 9
such that the strings 9(u) and v are congruent modulo R. This restricted version
of the word unification problem is known as the word matching problern.

Here we strengthen the above-mentioned undecidability result by showing
that there is a finite, special, and confluent string-rewriting system for which
the word matching problem is undecidable. In fact, we consider rather restricted
instances of the word matching problem, since we look at word equations of
the form (w,A). Recall that A is used to denote the empty string. Such a word
equation has a solution modulo R if and only if there exists an instantiation
9 of the variables occurring in u such that the string 9(u) is congruent to the
empty string A modulo R. We present a finite, special, and confluent string-
rewriting system for which this restricted variant of the word matching problem

is undecidable.

640

This paper is organized as follows. In Section 2 we present a finite, special,
and confluent string-rewriting system K for which the word matching problem
is undecidable, thus establishing a weak version of the intended undecidability
result. In the following section we extend 11 to a finite, special, and confluent
system 7?-i for which even the above-mentioned restricted variant of the word
matching problem is undecidable.

One may ask why we actually give both these proofs, since the latter result is
clearly stronger than the former. However, the proof of the former is simpler and
therefore, it illustrates the key ideas used in the reductions more clearly. Further,
the technical results on the system H established in Section 2 are needed anyway
in proving the stronger result in Section 3.

We close this section by providing the main definitions and notation necessary
to follow our arguments. For a more detailed treatment of the basics and for
additional information on the notions introduced, we refer the interested reader
to the following surveys - [BaSi94, JoKi91] for unification, [DeJo90] for term-
rewriting, and [BoOt93] for string-rewriting.

A string-rewriting system (often called a 'Thue system') on an alphabet E is
a finite set of pairs of strings R C E* x E*. In this note we will only be dealing
with string-rewriting systems that are length-reducing, that is, we assume that
\(\ > \r\ for each pair (£, r) 6 R. These pairs are often referred to as rewrite rules
and are sometimes represented as £ —► r. A string-rewriting system R is said to
be special if r = A for each pair (£, r) in R. As mentioned before, A denotes the
empty string.

By -^R we denote the single-step reduction relation that is defined by the
string-rewriting system R: -*R := {{u£v, urv) \ {£, r) G R,u,v G E*}. Its re-
flexive and transitive closure —>R is the reduction relation induced by R. The
relation ^*R := (—*R U —»R

1
)* is called the Thue congruence generated by R. By

IRR(fi) we denote the set of irreducible strings modulo R, that is, u G IRR(Ä)
if and only if u —►# v does not hold for any string v.

Let V be a set of variables that range over E*. A string equation or word
equation is an equation of the form u = v where u and v are strings over (EUV)*.
An assignment or substitution 6 : V —> E* is a solution of the equation u — v
modulo R if and only if 9(u)^*R8(v). Here 6 is extended to a morphism 8 :
(VUE)* -* E* in the obvious way.

The word matching problem for a string-rewriting system R is the following
decision problem:

INSTANCE : A string u G (V U E)* and a string v G E*.
QUESTION : Is there a substitution 8 satisfying 8(u) ^*R vl

2 Undecidability of the word matching problem

The announced undecidability result will be proved by a reduction from the
following undecidable problem.

641

Theorem 1. [NaOt90]
There exists a set of pairs of non-empty strings P = {(x,,yi) \i = 1,..., n} C
{a,b}+ x {a,b}+ such that the following problem is undecidable:

INSTANCE : Two non-empty strings x0,yo G {a,b}+-
QUESTION: Do there exist indices ii,...,ik, each ij from {l,...,n}, such

that XQXixXi2 ■ ■ ■ xik = yoyiiVi? ■ • • 2/ü?

We reduce this problem, which is a specialized form of the well-known Mod-
ified Post Correspondence Problem (MPCP), to the word matching problem
modulo a particular finite, special, and confluent string-rewriting system. The
system we construct is on the alphabet consisting of the letters a and b, symbols
for each of the numbers 1 to 7?., and special symbols S, #, and $. In other words,

let

P := {a,6}U{l,...,n}U{5,#,$}.

The rules of our system are divided into three classes. The first class corre-
sponds to the Xi's, the first components of the pairs in P, the second to the y,-'s,
and the third class is to ensure that a string is indeed from {a,b}*.

The rules from Class I are

XiSi —»-'A, i £ {1,.. .,n}.

Class II consists of

y{iS-> \, ie{l,...,n}.

Class III consists of the rules

a##-*A, 6##^A, a$$-+A, 6$$ -► A.

Observe that the string-rewriting system PL that consists of the above three
classes of rules is a finite special system that is in addition confluent. In fact,
there are no non-trivial critical pairs at all for this system (see, e.g., [BoOt93]).

We will show that the simultaneous variant of the word matching problem is
undecidable for this system 11, which is the following decision problem:

INSTANCE : A finite sequence (ux, vx),..., (um, vm) of pairs of strings from

(vury x r*.
QUESTION :Is there a substitution 9 satisfying 0(u,-) *-+k v, simultaneously

for all i = 1, . .., ml

Since this simultaneous variant of the word matching problem is reducible to
the (single) word matching problem by introducing a new letter, say {, this will
give our intended undecidability result.

Lemma 2. Let X be an irreducible string from i~"\ Then

X#Yx -+*n A, XY!# —k A, X%Y2 -^*n A, and XY2% -^ A,

for some Y\, Y2 G P* if and only if X £ {a, 6}*.

642

Proof: The 'if-part is trivial. The proof of the 'only if'-part is by contradiction.
Let Zbea shortest counterexample, that is, a shortest irreducible string such

that
Z#Y! -^ A, ZYX# -^ A, Z%Y2 -^ A, and ZY2% -^ A,

for some Y\, Y2, where Z <£ {a, b}*. Clearly Z cannot end in a S or a #, for if
Z = Z'%, then Z'$#Yi will not be reducible. Thus Z has to end in either an a

or a 6.
Let Z - Z'a, where a E {a,b}. For Z'a#Yi to be reducible, the leftmost

symbol of Yi must be a #. Because of the second condition ZY\# -*\ A, the
next (that is, second from the left) symbol in YL must also be a #. In other
words, Yi = ##Y3 for some Y3. By similar reasoning, Y2 = $$Y4 for some Y4.

Now,

Z'a###Y3 -+K Z'#Y3 -k A,
Z'a##Y3# -w Z'Y3# -fc A,
Z'a$%$YA -*n Z'$Y4 -^*n A, and
Z'a$%YA§ -+n Z'YA% -+fc A,

which shows that Z' is a shorter counterexample. This contradicts the choice of
Z, and hence, we conclude that there is no such counterexample. □

Lemma3. Let x0,y0 E {a,b}+. Then, for XX,X2 E {a,b}*,

XiSY -^*n x0S and X2Y ^*n y0

for some Y if and only if there exist indices ji,...,jt E {1,. • •, «} such that

Xi = x0xjl ■ ■ ■ xjt and X2 — y0yj, ■ ■ ■ Vje■

Proof: The 'if part is straightforward. By examining the rules from Classes I
and II, we can easily see that by taking Y := jiS ■ ■ -jiS we can reduce XXSY
by Class I rules to x0S, and X2Y by Class II rules to y0.

We prove the 'only if part by contradiction. Let U\,U2E {a, b}* be minimal
counterexamples in terms of their combined length. Obviously, we may assume
without loss of generality that Y is irreducible. Clearly Y ^ A: if Y were A, then

UiS = x0S and U2 = yo,.
If Y / A, then the only rules that are applicable to U\SY are the rules from

Class I. Thus there must be a rule xpSp —► A and strings U[and Y' such that
Ui = U[xp, Y = pY', and UiSY -+K U[Y' ->*n x0S.

Then U2Y = U2pY' must also be reducible, and it can be seen that only the
rule yppS -* A from Class II can apply. In other words, U2 = U2yp, Y' = SY"

for some W2, Y", and U2pY' ->w U^Y" -►£ yo-
Thus we get

U[SY" ^\x0S and U'2Y" -^ y0,

and this contradicts the minimality of U\ and U2.
n

The following result is now immediate.

643

Lemma4. Let x0,y0 G {a,b}+. Then there is a string X G {a,b}* satisfying

XSY -^ x0S and XY -^ y0

for some Y if and only if the instance {{x0,y0)} of the MPCP has a solution.

Combining the technical results obtained we arrive at the following result.

Theorem5. For all x0,yo G {a,b}+, the following two statements are equiva-
lent:

(a.) the MPCP has a solution for {(x0, 2/o)}/
(b.) there exist strings X, Y, ZUZ2€ r* such that the following congruences are

satisfied simultaneously:

1. XSY ^*n x0S,
2. XY «-f*j y0,
3. X#Z1 ~*n X,

5. X%Z2 ^*n A, and
6. XZ2% ^n X.

Thus, we have the following undecidability result.

Corollary 6. The simultaneous variant of the word matching problem, is unde-
cidable for the finite, special, and confluent string-rewriting system U.

Now consider the extended alphabet A := T U {{}, and the following two
strings u E{AU V)* and v G A*:

v := x0S{yo{{{{,

where v\,... ,v4 G V.
Then there exists a substitution 9 : {vx,..., v4} -► A* satisfying 8(u) <-+^ v

if and only if the following congruences are satisfied simultaneously, where X :=
0(vi),Y := e(v2), Zx := 6(v3), and Z2 := 9{v4):

1. XSY ~*K x0S,
2. XY ~*n y0,
3. X#ZX ^ A,
A.XZ^^X,
5. X$Z2 <->k A, and
6. XZ2% ^ A.

By the theorem above this means that the instance (it, v) of the word match-
ing problem for H has a solution over A if and only if the MPCP has a solution
for {(x0,yo)}- Hence, we obtain our first main result.

Corollary 7. Over the alphabet A the word matching problem is undecidable for
the finite, special, and confluent string-rewriting system 11.

644

3 A restricted variant of the word matching problem

As described in the introduction we are interested in the following restricted
variant of the word matching problem, which we call the special word matching

problem:

INSTANCE: A string u e (V ü S)*.

QUESTION: Is there a substitution 9 satisfying 6(u) ^*R A?

Here we present a finite, special, and confluent string-rewriting system Hi for
which this problem is undecidable. We obtain Hi from the system H constructed
in the previous section by adding three new rules.

Let a',b',@, and (j: be four additional symbols, let r0 :=fU {a', b'} (=
{a, b, a', b'} U {1,..., n} U {S, #, $}), let A0 := T0 U {@, t}, and let Hi be the
following string-rewriting system on AQ\

UI :=RU {aa1 -► A, bb' ->• A, @t -► A}.

It is easily seen that Hi is a finite, special string-rewriting system that is

confluent.
Now, for given strings x0, y0 G {a, &}+, we consider the following instance of

the special word matching problem for Hi:

viv2Sy'0~@viSv2x'^li@vi#v3li@viv3#k@vi$vilt@viV4$$viV4$,

where ' : {a,b}* —► {a',b'}* denotes the canonical isomorphism induced by
ana' and b i-s- 6', and u~ denotes the reversal of the string u. Here vi, v2, v3, v4

are variables.

Lemma 8. If the instance {(x0,y0)} of the MPCP has a solution, then the above
instance of the special word matching problem has a solution for Hi-

Proof. Let n,.. .,4 G {1,2,.. .,n} such that x0xilxi2 ■ ■ -xik = yoy^y^ ■ ■ -y%k-
Let wi := xox^x^ ■■■xik, w2 :-ikSik-iS ■ ■-i2Sii, w3 := #2'l1"il-1, and w4 :-
cj;2|iui|-i -phen We have the following reductions modulo Hi:

iuiiv2Sy'0~ =y0yi1-■-yikikS■■■i2SiiSy'0~ -»* y0y'f —►* A,
iuiSiu2x'^ = x0xil ■ ■ -XikSikSik-i ■ ■ -iiSiix'^

u>i#w3 =wiw3# = Ko^n •••a;u#2'1"'11 -
Wi$lU4 = WiW4$ = X0Xi1 ■ ■ -Xik$

2''Wl' —>"

Thus, if ip denotes the morphism defined by {vi <— W{ \ i = 1,.. .,4}, then

<p(viv2Si/o~@- • ■ ttWB) = wiw2Sj/0~@ ■ ■ -{wiw4$ -►£, (@i)5 -^ A.

D

We claim that also the converse implication holds. So let p be a morphism
satisfying ip(viv2Sy'^ © ■ ■ ■ ^1^4$) +-+^1 A, and let W{ := f{vi), i = 1,...,4.
Without loss of generality we can assume that u>i,..., w4 are irreducible modulo
Hi, that is, wi,..., w4 £ IRR(Tei). Denote ip(viv2Sy'(p'@ ■ ■ ■ ^viv4$) simply by

w.

2/oS/o~ -**
X0XQ

* A, and
A.

645

Lemma 9. w\,. . ., W4 G -Tg .

Proof.

Claim 1. |Iü4|@ = 0.

Proof. Assume that w4 = gi@g2 for some gi G A*0 and g2 G (Ä0 ^ {@})*-
Since w ends in w4$, and since @{ -» A is the only rule of U\ containing an
occurrence of the symbol @, we see that w -+*Ul ^ implies that \g2\i > 0, that

is, g2 = gzkgA for some g3 G r$. Hence, w4 = gi@g3{g4, and g3 -+*Ui A. This,
however, contradicts our assumption that w4 G IRR(7?-i). Thus, \io4\@ = 0. □

Claim 2. |iui|i = 0.

Proof. This follows analogously. D

Claim 3. |u>i|@ = 0.

Proof. Assume that wx = gi@hx for some gi G (A) ^ {i})* and hx G ro*. Since
tu ends in w1w4$, this implies that w4 - h2i[g2 for some g2 G -T0* satisfying
/z1/i2 —^ A. Since u; also contains the substring wi$w4, and therewith the

substring @hi$h2{,
we see that also /ii$/i2 —^ ^ must h0^- T*le system ^1

contains only two rules that involve occurrences of the symbol $: a$$ —»• A and
6$$ -> A. Hence, hx$h2 -**ni A implies that \hrh2\% = 1 mod 2, while /ii/i2 -+7^
A implies \hih2\% = 0 mod 2. This contradiction yields |u>i|@ = 0. □

The string w begins with the prefix wi<w2. Since \wi\@ = 0, we obtain the

following analogously to Claim 1.

Claim 4. \w2\i = 0.

Claim 5. \w3\@ = 0.

Proof. Assume that w3 = gi@hx for some gx G A*0 and hi G (A0 ^ {@})* • Since
w3 is irreducible, we see that \hi\i = 0, that is, hi G r0*. Since tu contains the

substrings w3{ and tü3#i, we conclude that hi —»^ A and /ii# —^ A. But
w3 being irreducible yields hi = A, which in turn implies that hx# = # ■^■7^1 A.

Thus, |«73|@ = 0. G

Claim 6. \w3\\ = 0.

Proof. Let w3 = gx^hx for some gx G ro* and hi G (A0 \ {@})*- Since tu
contains the substrings @wi#w3 and @wiiv3, we see that tu —>%1 A and tfi G -T0*
imply that wi#gi -+K A and u>i0i —»-^i A. The only rules of 7?-! that contain
occurrences of the symbol # are the following two: a## —► A and 6## —► A.
Hence, wi#gi —^ A implies that |wiffi|# = 1 mod 2, while u^gri —>^i A implies
that \wigi\# = 0mod2. Thus, \w3\< =0. □

Because of wi G f0* and w —^ A, the fact that w contains the substrings
@u>i$u>4 and @wiw4 implies analogously the following.

Claim 7. \w4\i = 0.

646

By Claims 2, 4, 6, and 7 wi,w2,w3,w4 G (zl0^{i})*- Thus, \w\^ = 5. Hence,

we also have \w\® = 5, and so w1} w2) w3, w4 G T0*. This completes the proof of

Lemma 9.

Since iv <-*%, X, we can conclude the following from Lemma 9:

(1.) wiw2Sy'0~
(2.) ■wiSw2x'^

(3.) Wl#W3
,* \

(4.) •wiw3#

(5.) Wi$U>4 —^ A, and

(6.) WiW4$

From Lemma 2 and its proof we see that the reductions (3.) to (6.) imply

that W! G {a,b}*.

Lemma 10. Let i0,t/0£ {a,b}+. Then, forX1,X2 G {a, b}*,

X^SYxf^X and X2YSy'Q~ -^ A

/or so?7?.e Y G r0* i/ emrf only if there exist indices iu...,ii G {1,..., n} sucA

/Aoi
A'i = zoZj, • • • x%t

and X2 = yoVi, ■ ■ ■ y%t■

Proof. If Xi = x0xil ■ --xit and X2 = yoy^ •■•&*, choose Y := ieS---i2Sii.

Then

A'ISTVO- = xox{l ■ ■ ■ xitSiiS ■ ■ ■ i2Siix'0~ -**n x0x'0~ -^ A and

X2YSy'0~ = 2/07/,:, • ■■yuiiS---i2Si1Sy'0~ -+£> 2/o2/o~ ^, A-

We prove the converse implication by contradiction. Let U\,U2 G {a, b}* be
minimal counterexamples in terms of their combined length such that UiSYx'f

—^ X and U2YSy'0~ -^ A for some y e ro- Obviously, we may assume
without loss of generality that Y G -T0* is irreducible modulo Tlx. Clearly, Y ^ A,

since [/iSa-'cT G {«, b}* ■ S • {a', 6'}+ C IRR(fti).

Claim 1. Yx'0~ G IRR(fti).

Proof. If Yx£ is reducible modulo Hy, then Y = Yic and x'f = cV for some
c G {a, 6}- However, then U2YSy'0~ ends in c5j/0~, and we see from the form of
the rules of Ui that each descendant of U2YSy'0~ then also ends in c5y0~. G

Claim 2. YSy'0~ G IRR(fti).

Proof. If YSyf is reducible modulo Tli, then Y = Yij/jJ for some i G {1,..., n}.
Hence, [/ISY:E0~ ends in 2/oV0~, and therewith each descendant of U\SYx'^ also
ends in J/,-IV0~, since j/,- G {a, 6}+. Thus, YSy'0~ G IRR(fti). □

Thus, the only rule that is applicable to UiSYx'f is of the form xpSp —► A,
that is, Ui = U[xp, Y = pV, and

UtSYx'o- -« U[Y'x'0~ Sni A.

647

Hence, U2YSy'0~ = U2pY'Sy'0~, and since Y'Sy'0~ is irreducible by Claim 2, we
see that the rule yppS —► A must apply, that is, U2 = U2yp, Y' = SY", and

UipY'Stfr -^n Up"Sifr -^ A.

Thus, U[,Ui G {a, 6}* satisfy [/{YVQ- = [/{SY'V0~ —^ A and U!,Y"Sy'0~
—r*n A for some string Y" £ T0*. This, however, contradicts the minimality of

[/iand£y2. °

Lemma 10 applied to the reductions (1.) and (2.) above implies that there
exist, indices ii, . . ., it G {1,. . ., n} such that w\ = x0xil ■ ■ ■ Xit = t/oJ/»i ■ ■ -yit,
that is, the instance {(zo,2/o)} of the MPCP has a solution. This observation
together with Lemma 8 yields the following equivalence.

Corollary 11. The instance {(x0,y0)} of the MPCP has a solution if and only
if the above instance of the special word matching problem has a solution for Hi.

The choice of P thus implies the intended undecidability result.

Theorem 12. For the finite, special, and confluent string-rewriting system 1Z\
the special word matching problem is undecidable.

4 Conclusion and open problems

We have shown that extending Makanin's result to the general case of all finite,
special, and confluent string-rewriting systems is even 'more impossible' than we
thought. The simplicity of special confluent string-rewriting systems is deceptive;
they are powerful enough to even make word matching problems undecidable.

However, there is still one interesting case that remains open, the case of
finite, special, and confluent string-rewriting systems that present groups. Note
that the systems constructed above do certainly not present groups, since sym-
bols like a do not have left-inverses. A helpful factor for attacking this open
problem is the fact that the class of groups that are presented by finite, special,
and confluent string-rewriting systems can be characterized algebraically: they
are exactly those groups that are isomorphic to the free products of a free group
of finite rank and finitely many finite cyclic groups [Coc76]. In any case, even
if this problem should turn out to be decidable, its complexity is likely to be
very high, since Makanin's algorithm for free groups is itself not even primitive
recursive [KoPa],

References

[BaSi94] F. Baader and J.S. Siekmann. Unification theory. In: D.M. Gabbay,
C.J. Hogger, and J.A. Robinson (eds.), Handbook of Logic in Artificial
Intelligence and Logic Programming, Oxford University Press, 1994.

[BoOt93] R. Book and F. Otto. String-Rewriting Systems. Springer Verlag, New
York, 1993.

648

[Coc76] Y. Cochet. Church-Rosser congruences on free semigroups. Colloquia

Mathematica Societatis Jdnos Bolyai 20 (1976) 51-60.
[DeJo90] N. Dershowitz and J.P. Jouannaud. Rewrite systems. In: J. van Leeuwen

(ed.), Handbook of Theoretical Computer Science, Vol. B: Formal Models

and Semantics, Elsevier, Amsterdam, 1990, pages 243-320.
[Jaf90] J. Jaffar. Minimal and complete word unification. Journal Association

Computing Machinery 37 (1990) 47-85.
[JoKi91] J.P. Jouannaud and C. Kirchner. Solving equations in abstract algebras:

a rule-based survey of unification. In: J.L. Lassez and G. Plotkin (eds.),
Computational Logic: Essays in Honor of Alan Robinson, MIT Press, 1991,

pages 360-394.
[KoPa] A. Koscielski and L. Pacholski. Makanin's group algorithm is not primitive

recursive. Theoretical Computer Science, to appear.
[Mak77] G.S. Makanin. The problem of solvability of equations in a free semigroup.

Mat. Sbornik 103 (1977) 147-236.
[Mak83] G.S. Makanin. Equations in a free group. Math. USSR Izvestija 21 (1983)

483-546.
[Mak85] G.S. Makanin. Decidability of the universal and positive theories of a free

group. Math. USSR Izvestija 25 (1985) 75-88.
[MaAb94] G.S. Makanin and H. Abdulrab. On general solution of word equations. In:

J. Karhumäki, H. Maurer, and G. Rozenberg (eds.), Results and Trends

in Theoretical Computer Science, Lecture Notes Computer Science 812,

Springer Verlag, Berlin, 1994, pages 251-263.
[NaOt90] P. Narendran and F. Otto. Some results on equational unification. In:

M.E. Stickel (ed.), Proceedings 10th CADE, Lecture Notes in Artificial

Intelligence 449, Springer Verlag, Berlin, 1990, pages 276-291.
[Ott95] F. Otto. Solvability of word equations modulo finite special and confluent

string-rewriting systems is undecidable in general. Information Processing

Letters 53 (1995) 237-242.
[Pec81] J.P. Pecuchet. Equations avec Constantes et Algorithme de Makanin.

These 3e Cycle, Universite de Rouen, France, Dec. 1981.
[Sch90] K.U. Schulz. Makanin's algorithm for word equations - Two improvements

and a generalization. In: K.U. Schulz (ed.), Word Equations and Related

Topics, Proceedings, Lecture Notes Computer Science 572, Springer Ver-

lag, Berlin, 1990, pages 85-150.
[Sch93] K.U. Schulz. Word unification and transformation of generalized equa-

tions. Journal of Automated Reasoning 11 (1993) 149-184.

The Geometry of Orthogonal Reduction Spaces

Zurab Khasidashvili1 and John dauert2

1 NTT Basic Research Laboratories, Atsugi, Kanagawa, 243-01, Japan
zurab@theory.brl.ntt.co.jp

2 School of Information Systems, UEA, Norwich NR4 7TJ England
jrwg@sys.uea.ac.uk ***

Abstract. We investigate mutual dependencies of subexpressions of a com-
putable expression, in orthogonal rewrite systems, and identify conditions for
their concurrent independent computation. To this end, we introduce con-
cepts familiar from ordinary Euclidean Geometry (such as basis, projection,
distance, etc.) for reduction spaces. We show how a basis for an expression
can be constructed so that any reduction starting from that expression can
be decomposed as the sum of its projections on the axes of the basis. To
make the concepts more relevant computationally, we relativize them w.r.t.
stable sets of results, and show that an optimal concurrent computation of
an expression w.r.t. S consists of optimal computations of its 5-independent
subexpressions. All these results are obtained for Stable Deterministic Resid-
ual Structures, Abstract Reduction Systems with an axiomatized residual
relation, which model all orthogonal rewrite systems.

1 Introduction

Efficient evaluation of expressions requires concurrent evaluation of subexpressions.
In computation in general, it is normal that intermediate results of computation
of different subexpressions are used by other subexpressions, and contribute to
creation of new computable subexpressions. In concurrent languages like the ir-
calculus [Mil92] this is expressed explicitly by value-passing, while in sequential lan-
guages computations in different subexpressions can only interact by joint creation
of new redexes. Our aim in this paper is to give a formal numerical characterization
of dependencies of subexpressions of an expression (or subprograms of a modu-
lar program), and in particular to identify conditions for independent evaluation
of subexpressions. Computation of different independent subexpressions can be con-
ducted in isolation from computations elsewhere in the expression, concurrently, and
the results can then be combined to yield the final result.

We restrict our attention to functional languages, and consider their operational
model - orthogonal rewrite systems - of which the A-calculus [Bar84] is the prime ex-
ample, although we believe that our results can be generalized to the non-orthogonal
case and cover concurrent languages as well. To remain as general as possible, and
at the same time to avoid syntactic structure of computable expressions (terms,
graphs, etc.), which is irrelevant for our purpose, we assume that the rewrite sys-
tem is given in the form of a Stable Deterministic Residual Structure, SDRS [GK96].

" Part of this work was supported by the Engineering and Physical Sciences Research
Council of Great Britain under grant GR/H 41300

650

SDRSs are Abstract Rewrite Systems with an axiomatized residual relation, which
model all orthogonal rewrite systems. Standard important results like the Standard-
ization and Normalization theorems can already be proven in SDRSs [GK96, KG96].
Furthermore, via Deterministic Family Structures, DFSs [GK96], which are SDRSs
with an axiomatized family relation on redexes, one can prove optimality results
of Levy [Lev80], and achieve Prime Event Structure [Win89] style semantics for or-
thogonal rewrite systems in a uniform way [KG97a].

The idea we want to pursue is very simple and natural, and the concepts we
introduce have their counterparts in ordinary Euclidean Geometry, although there
will be some differences. For expository purposes, let us assume first that the given
SDRS is linear - there are no duplication or erasure of redexes. The main analogy
is the following. In a Euclidean 3-dimensional space, one can decompose a vector as
the sum of its projections on the axes X, Y and Z, which form a Euclidean basis.
Similarly, we can construct a basis at any expression t, consisting of independent
reductions P, starting from t, such that any reduction P starting from t can be
decomposed as the sum of its projections on Pt. Here Pi and Pj are independent
if no finite initial parts of them can interact, i.e., by joint creation of a new redex.
In the basis that we construct, every reduction Pi is a maximal reduction internal
to Ui, i.e, Pi contracts residuals of redexes in U and created redexes; every Z7; is
independent, i.e., no reduction internal to Ui can interact with a reduction internal
to the complement Ü of U, which consists of redexes of t not in U; Ui are pairwise
non-overlapping, and cover all redexes of t.

Further, the distance \P,Q\ between co-initial reductions P,Q is the number of
their 'different' steps, and characterizes 'how far apart' the reductions have pro-
gressed. Here 'different steps' means that they cannot be related by the zig-zag rela-
tion (which is the transitive and symmetric closure of the residual relation) [Lev80],
so they are in different zig-zag families. \P,Q\ coincides with the minimal number
of reduction steps needed to reach a common reduct from the endpoints of P and
Q. This is different from the Euclidean measure of distance. For example, in the

simplest case, if two vectors P and Q are orthogonal (say parallel to axes X and Y

^_ rzi Zl
respectively), then the distance is \P, Q\ = y \P\ + \Q\ , while the distance between

reductions P and Q that contract redexes in different families is \P,Q\ = \P\ + \Q\-
However, this is because the Euclidean space is continuous and allows 'shortcuts'.

If we were to allow joining of the endpoints of the vectors P and Q only by moves
parallel to X and Y, then we would get the same distance measure as for reductions!

Finally, the independence degree of a redex set U of an expression t is the length
of a shortest reduction P internal to U such that there is a reduction Q internal to U
that interacts with P, and is oo otherwise. So at least \P\ steps can be performed in
U independently from the rest of the computation, after which results of computing
U and U must be combined in order for the computation to proceed 'as concurrently
as possible'. Note that if and only if U is independent, its independence degree is oo.

These concepts can very naturally be explained in terms of Prime Event Struc-
tures (PES) [Win89], which in the conflict-free case (in which we are interested)
are simply event sets E partially ordered by a causal dependency relation <, such
that every event e € E can only dominate a finite number of others. Computations
in a linear SDRS 11 are interpreted as left-closed sets of events (i.e., closed under

651

<), called configurations, in the PES £ = (E,<) whose events correspond to (the
zig-zag classes of) redexes in H. Those event sets Xi C E that are closed under
> are independent, as they correspond to independent reductions in 11. Further, if
{Xi | i 6 1} are disjoint independent sets covering E, they form a basis for E, as for
any configuration a, a = U,€/a n Xr. Here a n Xi is the projection of a on XM and
coincides with the restriction of a to the set X° of all initial (i.e., minimal w.r.t. <)
events of Xi. And the set {X°}iei is an independent covering of the set of initial
events of E. Further, the distance between configurations a and ß is defined as the
cardinality of a U ß \ a n ß (as is usual for sets), and it precisely corresponds to the
distance measure for reductions in linear SDRSs - \P,Q\ - \ap,ctQ\, where aP,aQ

are configurations corresponding to P,Q. The independence degree of a set OQ of
initial events is the cardinality of the smallest configuration a, whose initial events
are in ct0, such that there exists a configuration ß not containing elements of oo and
an event e such that a U ß U {e} is a configuration, while neither a U {e} nor ß U {e}
are (i.e, a and ß both contribute to creation, or enabling, of e, and they interact to

create e).
Most of the technical difficulties come from the erasure of redexes in SDRSs.

To cope with the erasure problems, and to have (most of the) concepts invariant
under Levy-equivalence, we work with standard reductions, which in SDRSs are
reductions in which later steps 'do not erase' the preceding ones [KG96]. If the SDRS
is duplicating, concepts like 'restriction of P to a redex-set IP cannot be defined
correctly for arbitrary P - we need P to be a family-reduction, that is, a multi-step
reduction contacting all members of a (zig-zag) family in parallel, in every multi-step.
However, as we have shown in [KG97a], duplicating SDRSs can be interpreted via
non-duplicating, also called affine, SDRSs, and the family-reductions in the former
become reductions in the latter. Therefore, via that encoding, the results obtained
here for affine SDRSs are applied to all SDRSs. (Restriction to family-reductions
is inevitable when one studies adequate simulation of a duplicating system with an
affine one [KKSV94].)

In order to make the introduced concepts more meaningful computationally, we
relativize them w.r.t. the semantics one may be interested in. For example, in the
A-calculus, one might be interested in computing normal forms, head-normal forms,
weak-head-normal forms, etc. In [GK96], we have characterized all reasonable sets
of finite '(partial) results' as stable sets 5 of terms, and have shown that (only)
w.r.t. stable sets 5, 5-needed reductions are 5-normalizing. This allows us to ignore
5-unneeded redexes, and for example, we can define P, Q to be S-independent if
there is no joint creation of 5-needed redexes. So reductions that interact may be
5-independent. This is profitable since redex sets that are not independent may
become 5-independent, and this allows for finer independent splitting of redex-sets
of terms, implying more parallelism in the computation. And indeed, if {t/;};e/ is
an 5-independent covering of an 5-normalizable term t, we show that an optimal
5-normalizing reduction is the sum of maximal 5-needed reductions internal to L\.

In Section 2, we recall SDRSs and DFSs. In section 3, we introduce the restric-
tion and projection concepts and prove the Decomposition theorem. In section 4,
we define the geometry of orthogonal reduction spaces, and prove the Independent
Decomposition theorem. In section 5, we relativize the geometry w.r.t. stable sets of
results 5, and show that optimal computation w.r.t. 5 can be achieved by combining
optimal computations of 5-independent redex-sets. Conclusions appear in section 6.

652

2 Deterministic Residual and Family Structures

Let us recall some basic theory for DRSs and DFSs developed in [GK96, KG96,
KG97]. DRSs are Abstract Reduction Systems (ARSs) with axiomatized notions of
residual. A definition and a survey of results about ARSs can be found in [Klo92].
Our definition is slightly different, and follows that of Hindley [Hin69].

An ARS is a triple A = (Ter,Red,->) where Ter is a set of terms, ranged over
by t, s, o, e; Red is a set of redexes (or redex occurrences), ranged over by u, v, w: and
-+: Red >-> (Ter x Ter) is a (total) function such that for any t € Ter there is only

a finite set of u € Red such that -+ (u) = (t, s), written t^*s. This set will be known
as the redexes of term t, where tiCf denotes that u is a member of the redexes of
t and U C t denotes that U is a subset of the redexes. Note that one can identify u
with the triple t^*s. A reduction is a sequence i-+i2-+ —

P
Notation Reductions are denoted by P, Q, N. We write P : t -»sort -»• s if

P denotes a reduction (sequence) from t to s, write P : t —►+ if P may be infinite,
and write P : t -** oo if P is infinite (i.e, of the length w). P + Q denotes the
concatenation of P and Q. u also denotes the reduction that contracts u. The final
term of a finite reduction P is denoted by ft(P). If U C t, then U will denote the
complement of U, i.e., the set of redexes in t not in U.

DRSs model orthogonal rewrite systems. They are similar to Stark's Determi-
nate Concurrent Transition Systems (DCTSs) [Sta89] and ARSs of Gonthier et
al. [GLM92]. Unlike DCTSs, the residual relation in DRSs may be duplicating, and
unlike ARSs of [GLM92], we do not have a nesting relation on redexes. Several re-
fined concepts of abstract rewriting are studied in [Oos94, Mel96, Raa96].

Definition 2.1 A DRS is a pair 11 = (A, /), where A is an ARS and / is a residual
relation on redexes relating redexes in the source and target term of every reduction
t^g g ^ SUch that for v C t, the set v/u of residuals ofv under u is a set of redexes
of s; a redex in s may be a residual of only one redex in t under u, and u/u = 0. If
v has more than one u-residual, then u duplicates v. If v/u — 0, then u erases v. A
redex of s which is not a residual of any v C t under u is said to be u-new or created
by u. The set u/P of residuals of u under P is defined by transitivity.

A development of U C t is a reduction P : t -»■ that only contracts residuals
of redexes from U; it is complete if U/P = Uu6£/u/P = 0. Development of 0 is
identified with the empty reduction. U will also denote a complete development of
U C t. The residual relation satisfies the following two axioms:

• [FD] ([GLM92]) All developments are terminating; all complete developments
of U C t end at the same term; and residuals of a redex tC(under all complete
developments of U are the same.

• [weak acyclicity] ([Sta89]) Let u,vCt,u^v, and u/v - 0. Then v/u # 0.

We call a DRS 11 stable (SDRS) if:

• [stability] If u,v C t are different redexes, t-^-e, t^>s, and u creates a redex
w C e, then the redexes in w/(v/u) are not u/u-residuals of redexes of s, i.e., they
are created along u/v.

We call a DRS 11 non-duplicating or affine if a redex may have at most one
residual under contraction of another redex. Affine SDRSs will be called ASDRSs.

653

In a DRS 71, the residual relation on redexes is extended to all co-initial finite
reductions exactly as in syntactic orthogonal rewrite systems [HL91, Lev80, Sta89]:
(Pi + P2MQ = Pi/Q + P2KQ/P1) and P/iQ, + Q2) = (P/Qi)/Q2, and Levy-
equivalence or permutation-equivalence, «L, is defined as the smallest relation on
co-initial reductions satisfying: U + V/U »L V + U/V for any U, V C t, and Q «£
Q' => P + Q + N^LP + Q' + N. Further, one defines P < Q iff P/Q - 0, and can
show that P «L Q iff P < Q and Q < P; and P < Q iff Q xL P + N for some N.
The following Strong Church-Rosser property can be proved: for any co-initial finite
reductions P, Q, P U Q *L Q U P, where P U Q = P + Q/P.

The relations <,«/, and / are extended to co-initial possibly infinite reductions
N, N' as follows. N <N', or equivalently, N/N' = 0 if, for any redex v contracted
in'N, sa,yN = N1+v + N2, v/{N'/Ni) = 0; and N tsL N' iff N < N' and N' < N.
Here, for any infinite P, u/P = 0 (called u is erased in P or u is P-erased) if
u/P' - 0 for some finite initial part P' of P, and P/Q is only defined for finite Q,
as the reduction whose initial parts are residuals of initial parts of P under Q.

The essence of stability is better understood by the following lemma, which ex-
tends [stability] axiom from one step reductions to any co-initial external reductions,
that is, reductions that do not contact redexes having common residuals.

Definition 2.2 ([GK96]) • Let u e U C t and P : t -» . We call P external to U
(resp. u) if P does not contract residuals of redexes in U (resp. residuals of u).

• Let P : t0 -%♦ ti^U+i -»• and Q : t0 = s0 %* s^Sj+i -» . We call P
external to Q if for any i,j, u./iQj/Pi) n Vj/iPi/Qj) = 0.

Lemma 2.3 (Stability [GK96]) Let P : t -+> s be external to Q : t -+»• e, in an
SDRS, and let P create redexes WCs. Then the residuals W/{Q/P) of redexes in
VF are created by P/Q, and Q/P is external to W.

Definition 2.4 ([KG96]) • Let P : t -** and ti C t. We call u P-needed if there is
no Q «i P that is external to u, and call it P-unneeded otherwise.

pi
• Let Q : t -» , P : t -» s -** , and u C s. We call u (or more precisely, «

with creation history P', denoted by P'u) Q-needed if u is Q/P'-needed. We call P
Q-needed if so is every redex contracted in P.

• We call P self-needed or standard if it is P-needed. We write Q «5 P if Q ~z, P
and Q,P € 5T^, where STA denotes the set of all standard reductions. We call N
a standard variant of P if P »L N and iV € 5TA.

Note that P-neededness does not depend on the choice of a reduction in the class
of reductions Levy-equivalent to P, but this is not true for the externality concept.

The following is a relativized standardization algorithm for reductions in AS-
DRSs. Let P, Q : t -+» . The canonical P-needed variant of Q, STp(Q), is defined as
follows: let v C t be such that it is P-needed and its residual is contracted in Q first
among P-needed residuals of P-needed redexes in t. Then STp(Q) = v+STP/v(Q/v).
If there is no such a redex in t, then STP{Q) = 0. We write ST(P) for STP(P).

The Standardization theorem [KG96], when restricted to ASDRSs, states that,
for co-initial reductions Q,P, finite or infinite, STP(Q) is a standard P-needed
reduction whose length coincides with the number of P-needed steps in Q, and

654

STp{Q) < Q,P. Further, if Q is finite, then Q xL ST{Q); otherwise, Q xL ST(Q)

need not hold.
It has been shown in [KG97] that, in ASDRSs, all standard variants of a finite

reduction P can be constructed effectively (as P-neededness is decidable and there
are only a finite number of such reductions, all of the same length), and that «s is
decidable. So standard reductions can be used as canonical representatives of their
Levy-equivalence classes (which may have an infinite number of elements).

Next we recall an axiomatization of Levy's concept of redex-family for DRSs.
All family and sharing concepts for orthogonal reduction systems known to us (such
as [Lev80, Mar92, AL94, Oos96]) satisfy our family axioms, which allow for abstract
proofs of Relative Normalization and Optimality Theorems [GK96].

Definition 2.5 ([GK96]) A Deterministic Family Structure (DFS) is a triple T =
(11, ~, <-+), where U is a DRS; ~ is an equivalence relation on redexes with histories;
ancj <_» is the contribution relation on co-initial families, defined as follows:

(1) For co-initial reductions P and Q, a redex Qv in the final term of Q (read as v
with history Q) is called a copy of a redex Pu if P < Q, i.e., P + Q/P «L Q, and v is
a Q/P-residual of u; the zig-zag relation ~2 is the symmetric and transitive closure
of the copy relation. The family relation ~ is an equivalence relation among redexes
with histories containing ~2. A family is an equivalence class of the family relation;
families are ranged over by <f>, ip,.... Fam() denotes the family of its argument.

(2) Further, ~ and <-> satisfy the following axioms:
• [initial] Let u,v C t and u ^ v, in Tl. Then Fam.(®tu) ^ Fam(<btv), where 0t

is the empty reduction starting from t.
• [contribution] <j> <-►<£' iff for any Pu € <f>', P contracts at least one redex in <j>.

• [creation] if e 4* t^s and u creates v C s, then Fam(Pu) <-» Fam((P + u)v).
• [FFD] (Finite Family Developments) Any reduction that contracts redexes of

a finite number of families is terminating.

It is shown in [GK96] that every DFS is a stable DRS. Further, we have proven
in [KG97] that the zig-zag relation ~z, as well as the zig-zag contribution relation
<->z, are decidable in ASDRSs, and that ~z is a family relation.

Below, FAM(P) (resp. SFAM(P)) denotes the set of zig-zag families, or simply
families, whose member (resp. P-needed) redexes are contracted in P, in an ASDRS.
Further, for any U C t, FAM0(U) denotes the set of families (relative to t) of redexes
in U, and FAM+(U) will denote the minimal set of families containing FAM0(U)
and closed under the contribution relation <—>2.

3 Decomposition of Reductions in ASDRSs

In this section, we introduce restriction of a reduction to a redex-set, and its pro-
jection onto another reduction, study their properties, and use them to decompose
reductions as the sum of their restrictions to non-overlapping redex sets.

Let p ■ t _H be a reduction in a DRS, and let U C t be a set of redexes in t.
We call P internal to U or a V'-reduction if it is external to U, that is, if it contracts
residuals of redexes in U and created redexes. We call such redexes U-redexes.

Definition 3.1 We call STP(ST(Q)) the projection of Q onto P, written Q\P.

655

Definition 3.2 (1) Let t be a term in an ASDRS 11, let U C t, and let P : t -»■ s
be standard. The concepts P respects U and the restriction of P to U, written P\U,
are defined by induction on n = \P\ as follows. If n = 0, then P respects U_a.nd
P\U = 0. Now let P = P' + u and let P^jrespect 17. Assume that P'\U and P'|7 are
defined as reductions internal to U and U, respective]y, such that P1 =ss P'\UuP'\U.
Then we say that P respects U if either u = u'/{P'\U/P'\U) for u' C /£(P'|C/) such
that (P'\U) +u' is still internal to 17, or u = u'/{P'\U/P'\U) for v! C /t(P'|!7)
such that (P'|i7) + w' is still internal to U. In the first case (depicted on the picture
below), we_define P\U = P'\U + u' and P\U = P'\U, and define P\U = P'\U and
P\TJ = P'\U + u' in the second case.

P'\U/P'\U u

(2) We say that a finite reduction Q respects U if so does ST(Q), and define Q\U =
ST{Q)\U. We say that Q respects ö = {Ui}iei if it respects every Ui.

One can easily show that Definition 3.2 is correct, that is, ST(P) «s P\UuP\U.
The intuition is that, P respects U iff 5T(P) contracts only redexes to which either
only redexes in U contribute, or only those in U, but not redexes in both U and
U. More precisely, if U_ C t and P : t ^* s, then P respects J7 iff SFAM{P) C
FAM+(«7) U PAM+(T7), and in the latter case, (S)FAM(P\U) = SFAM{P) n
F^lM+(7) and SFAM{P) = (S)PAM(P|/7)U (5)PAM(P|t/). Further, if P,Q are
co-initial, then (S)FAAf(SZ>(Q)) = (5)FAAf(Q) n SFAM(P). It follows that the
restriction and projection concepts for finite reductions are invariant under «£.

In the above definition, we need to take a standard variant of Q before restricting
it to U to ensure that the restriction notion is invariant under Levy-equivalence. As
shown by the following simple example, this is necessary. Let R = {/(x) -► a, g(x) -+

x), let P : f(g{x))^*f{x)^a, and let U = {v}. Then 'direct restriction' of P to U is
u, while P\U = 5T(P)|7 = 0, and u 56z, 0.

We call a 7-reduction P U-fair if each *7-redex is erased in P, and call strongly
U-cofinal if, for any ^-reduction Q, Q < P. If U is the set of all redexes in t, then
U-faii reductions are fair, and strongly [7-cofinal reductions will be called strongly
cofinal. One can show that a 7-reduction P is strongly f7-cofinal iff it is 7-fair.
(Recall that if P is fair, then it is cofinal, but not conversely [KI08O].)

If Q\P is finite, then so is P\Q and P\Q «s Q\P- Further, for any P : t -»
internal to J7 C * such that SFAM(P) = FAM+{U), and any finite Q : t -** s,
Q\U = Q\P. If the SDRS is linear, then every /7-fair reduction is such.

Let If, with i £ I be nonempty sets of redexes in t such that U1(=/J7i contains
each redex of t and Ux nUj = <D when t # j. Then we call the set 3 = {7,}ie/ a
(redex-)covering of t.

The restriction concept enjoys nice algebraic properties: If P : t -** s respects
L\,Ui C t, then P respects t/t u U2 and t/j n U2; and Pl^ U J72 sss P|^i U P|J72

and P\Ui n 72 «s (P|f7i)|^2- This allows us to prove the following

656

Theorem 3.3 (Decomposition) Let 9 = {Ui}iei be a redex-covering of a term t

in an ASDRS 1Z.
(1) Let P be finite reductions internal to Lr;, and let P = U;P. Then P respects

9 and P|*7i «s P|P-
(2) Let P : t -» s respect 9. Then P «t UiP|[/;.

4 The Geometry of Reduction Spaces

In this section, we introduce the Reduction Geometry and prove the Independent
Decomposition theorem, which reflects the main analogy of orthogonal reduction
spaces with the Euclidean Geometry.

Let p : t —» . We call the strict domain of P, written SDom(P), the minimal
set of redexes U C t such that P is internal to £/. We call the domain of P, written
Dom(P), the set UQ~LpS.Dom(<2), i.e., the minimal set of redexes U C t such that
any Q that is Levy-equivalent to P is internal to U. And we call the minimal domain
of P, written MDom(P), the set nQ~Lp5Z)om((5).

It is easy to see that Dom(P) is SDom(P) augmented by all P-erased redexes
not contracted in P, and MDom(P) is the set of all P-needed redexes in t. Ob-
viously P xL Q implies Dom(P) = Dom(Q) and MDom(P) = MDom(Q), but
not SDom(P) = SDom(Q). It follows from the Standardization Theorem that
MDom(P) = SDom(ST{P)) for any P.

Definition 4.1 (The Reduction Geometry) Let t be a term in an ASDRS U.
• Let P : t -» s and Q : £ -+> e. We say that P and Q are independent or <fo

no* interact, written P ± Q, if MDom(P) C\ MDom{Q) = 0 and any created redex
in ft(P U Q) is a residual of a redex either from /£(P) or from ft(Q).

• We call a. set II = {Pi}iei of reductions starting from £ independent if P/ 1
U^jP' for every i € / and any finite initial parts P[of P». We call iT a basis of 71
at £ if II is independent and for any Pit —» s, P < UP;.

• The distance \P,Q\ between co-initial finite reductions P,Q : t -** is the
number of families whose essential member redexes are contracted either in P or
in Q (but not in both). Here a redex v C s is essential [Kha93] (or Maranget-
needed [Mar92]) if in any fair reduction starting from s a residual of v is contracted.

• The independence degree of U C t is the length of a shortest finite P internal
to U such that there exists a reduction Q external to U that interacts with P, and
is oo otherwise. _

• We call U C t independent if every pair of finite U- and t/-reductions is so.
We call a redex-covering 9 = {Ui}iei of t an independent covering if each Ui is
independent.

Example 4.2 (Bases) Consider a term t containing three redexes u,v,w, let w/(uU
v) = 0, w/u jt 0, w/u ^ 0, and assume no redexes can be created by contraction of
these redexes. Then TTi = {u,w},iJ2 = {u,v,w},II3 = {u, wUv} and 774 = {U.DUW}

are all bases at t (there are others too), as all reductions are independent, and
u U v K,L u U v U w «/, « U (w U u) «i u U (v U w) are all normalizing, hence strongly
cofinal. For Z7i, the strict domains of the axes do not form a covering of t, while
for other bases they do. Note also that for IJ4, u erases the second step ofcUto-
(w/v)/(u/v) = 0.

657

Note that, in the definition of P ± Q, a created redex in ft(P U Q) cannot
be a residual of redexes from both ft(P) and ft(Q), as otherwise the same re-
dex would be a residual of redexes from ft(ST(P)) and ft(ST(Q)), which is im-
possible by the Stability Lemma (since MDom(P) n MDom{Q) = 0 implies that
ST(P) and ST(Q) are external; the converse implication need not hold). Note also
that, if P -L Q, Dom(P) n Dom(Q) = 0 need not hold. Indeed, consider the mod-
ified example from [Lev80]: let t = (\x.Ka(xY))Kb, where Ka = Xx.a, Kb = Xx.b,

and Y = (\x.f(xx))(Xx.f(xx)), and let P : t^Ka{KbY)^Ka(Kb(fY))^Kab and

Q : t^{\x.Ka{x{fY)))Kb
!^{\x.a)Kb. Then y € Dom(P), Dom(Q), but y £

MDom(P), MDom(Q), since y is not needed either in P or in Q.
In the definition of distance between reductions P and Q, one might think that

it would be more appropriate to consider P U Q-needed redexes only. The following
example shows that the distance would not be a metric. Indeed, take t = Kxu, P :

t^t^t^t^t, Q : t^t, and N : &&&&t$x. Then \P,Q\ = 3 and \P,N\ =
\N, Q\ = 1. It is easy to check that our distance measure on finite co-initial reductions
satisfies the triangle inequality. To make it a metric, we define for co-initial finite
reductions P,Q, P «/ Q iff FFAM(P) = FFAM(Q), where FFAM(P) denotes
the set of families of essential redexes in P. Clearly, «/ is an equivalence relation,
and the (co-initial) reduction space quotiented w.r.t. it is a metric, as \P,Q\ = 0
implies P ä/ Q. Note that «iC«/, but not conversely.

The independence degree of U C t, if finite, characterizes the minimal amount of
work that can be performed in U independently from the rest of the computation.

It follows easily from Definition 3.2 and Definition 4.1 that U C t is independent
iff any finite reduction P : t -» s respects it. Now, using Theorem 3.3.(2), we can
prove the following

Theorem 4.3 (Independent Decomposition) Let 9 = {Ui}i€r be an indepen-
dent redex-covering of a term t in an ASDRS 11, let P : t -** s, and let Pi be Unfair.
Then P at UiP\Ui. Further, B = {Pijiel is a basis at t, and there are reductions
PI < Pt such that P «L UP/.

We have seen in Example 4.2 that not all bases are of the form described in
Theorem 4.3. That is, if {Pi}iel is a basis at t, Pz need not be an J7»-fair reduction for
some independent covering 9 = {Ui}ieI of t, as it is the case for 77i (since w/u # 0
and w/v ^ 0). We could exclude this situation, by requiring in the definition of
independence of U C t that for any pair of finite reductions P, Q respectively internal
and external to U, Q does not erase any steps of P, that is, \P\ = \P/Q\. We have
chosen not to do so, since also in the relativized bases which we introduce in the
next section, axes do not need to be maximal reductions on their strict domains.

Note that every term t in an ASDRS has an independent redex covering - {U(t)},
where U(t) is the set of all redexes of t, and has an independent basis - a fair
reduction starting from t. One can construct finer bases from existing ones, as if
9 = {Ui]ieI and ö' = {U'}}]€j are bases, then 3n9' = {l7,n L/j}(ij)e(/,j) is a
basis too. It is interesting to note that for any P : t -** s and a created redex tiCs,
any 'smallest' reduction needed to create u, obtainable by extraction of Pu [Lev80],
which for ASDRSs is defined in [KG97], is internal to some finest independent set
of redexes in t.

658

5 The Optimal Decomposition Theorem

Next we show that an optimal computation of a term, w.r.t. a stable set 5 of results,
can be decomposed into optimal computations of its <S-independent redex-sets.

The concepts introduced in Definition 4.1 (independence of reductions and redex
sets, covering, basis, etc.) immediately relativize w.r.t. any stable set 5, simply by
replacing 'independence', 'covering', 'basis', etc. with '5-independence\ '5-covering',
'5-basis', etc., respectively, and by replacing '(essential) redex' and 'reduction' with
'5-needed redex' and '5-needed reduction'. Recall that, for any set of terms 5, a
redex u C t S-needed iff at least one residual of it is contracted in any reduction
from t to a term in 5, and 5 is called stable if (a) it is closed under reduction (this
condition can be relaxed slightly), and (b) any step entering 5 is 5-needed. The Rel-
ative Normalization theorem [GK96], for ASDRSs, states that any 5-normalizable
term t g 5 contains an 5-needed redex, any 5-needed reduction starting from t is
eventually 5-normalizing, and is a shortest 5-normalizing reduction starting from t.

Let U C t. We call a ^/-reduction P:t -** (U, S)-fair if each 5-needed J7-redex is
erased in P (P need not be U-iaix). It is not difficult to show that, if 9 = {Ui \ i € '/}
is an 5-independent covering of an 5-normalizable term t g 5, in an ASDRS, then
P : t -» s is an 5-normalizing 5-needed reduction iff Pi = P\Ui : t -» s; are
(LA, 5)-fair 5-needed t/i-reductions; and Pi ia an optimal (?7;,5)-fair ^-reduction
iff it is an 5-needed (E/i,5)-fair ^-reduction. Hence we have from the Relative
Normalization theorem that

Theorem 5.1 (Optimal Decomposition) Let 5 be a stable set of terms in an
ASDRS H, let 9 = {Ui}iei be an 5-independent covering of an 5-normalizable term
t in 11, let 9' = {Uj}jejci contain all Ui that contain at least one 5-needed redex
of t, and let Pj be internal to Uj. Then Pj are optimal (i.e., shortest) (Uj, S)-fair
reductions iff P = UjPj is an optimal 5-normalizing reduction starting from t.

6 Conclusions

We have defined concepts similar to those in Vector Spaces for orthogonal rewrite
systems, and described how these can be used in distributed evaluation of sequential
programs. The constructed Reduction Geometry is not just a nice piece of mathe-
matics. Obviously, (relative) independence of redex-sets is undecidable in general,
as is neededness. However, we hope that decidable approximations for independence
can be defined which will yield decidable concepts for large classes of rewrite sys-
tems, as is the case for the neededness [HL91]. For example, all the introduced con-
cepts are decidable for Recursive Program Schemes, both in first [Kha93] and higher
order [Kha94] cases, but the latter do not have full computational power (as the
if - then - else operator is only evaluated semantically). Actually, because of a
specific simple form of redex-creation in such systems, one has maximal possible
independence there - any redex forms an independent redex-set. Further, TRSs in
which there is no upwards creation of redexes (such as Klop's TRS which models a
Turing machine, in Exercise 2.2.21 of [Klo92]) do have full computational power, and
any set consisting of all redexes occurring inside an outermost redex is independent.

Acknowledgements We thank J.R. Kennaway, V. van Oostrom and F.-J. de Vries
for useful comments. The diagram was drawn using Paul Taylor's Diagram package.

659

References

[AL94] Asperti A., Laneve C. Interaction Systems I: The theory of optimal reductions.
MSCS 11:1-48, Cambridge University Press, 1993.

[Bar84] Barendregt H. P. The Lambda Calculus, its Syntax and Semantics. North-Holland,

1984.
[GK96] dauert J.R.W., Khasidashvili Z. Relative normalization in deterministic residual

structures. CAAP'96, Springer LNCS, vol. 1059, H. Kirchner, ed. 1996, p. 180-195.
[GLM92] Gonthier G., Levy J.-J., Mellies P.-A. An abstract Standardisation theorem. In:

Proc. of LICS 1992, p. 72-81.
[Hin69] Hindley R. J. An abstract form of the Church-Rosser theorem I. JSL, 34(4):545-560,

1969.
[HL91] Huet G., Levy J.-J. Computations in Orthogonal Rewriting Systems. In: Compu-

tational Logic, Essays in Honor of Alan Robinson, J.-L. Lassez and G. Plotkin, eds.

MIT Press, 1991, p. 394-443.
[KKSV94] Kennaway J. R., Klop J. W., Sleep M. R, de Vries F.-J. On the adequacy of

Graph Rewriting for simulating Term Rewriting. ACM Transactions on Programming

Languages and Systems, 16(3):493-523, 1994.
[Kha93] Khasidashvili Z. Optimal normalization in orthogonal term rewriting systems. In:

Proc. of RTA'93, Springer LNCS, vol. 690, C. Kirchner, ed. Montreal, 1993, p. 243-258.
[Kha94] Khasidashvili Z. On higher order recursive program schemes. In: Proc. of

CAAP'94, Springer LNCS, vol. 787, S. Tison, ed. Edinburgh, 1994, p. 172-186.
[KG96] Khasidashvili Z., Glauert J. R. W. Discrete normalization and Standardization

in Deterministic Residual Structures. In proc. of ALP'96, Springer LNCS, vol. 1139,
M. Hanus, M. Rodriguez-Artalejo, eds. 1996, p.135-149.

[KG97] Khasidashvili Z., Glauert J.R.W. Zig-zag, extraction and separable families in non-
duplicating stable deterministic residual structures. Technical Report IR-420, Free Uni-

versity, February 1997.
[KG97a] Khasidashvili Z., Glauert J. R. W. Relating conflict-free transition and event

models. Submitted.
[Klo80] Klop J. W. Combinatory Reduction Systems. Mathematical Centre Tracts n. 127,

Amsterdam, 1980.
[Klo92] Klop J. W. Term Rewriting Systems. In: S. Abramsky, D. Gabbay, and T. Maibaum

eds. Handbook of Logic in Computer Science, vol. II, Oxford U. Press, 1992, p. 1-116.
[Lev80] Levy J.-J. Optimal reductions in the A-calculus. In: To H. B. Curry: Essays on

Combinatory Logic, Lambda-calculus and Formalizm, Hindley J. R., Seldin J. P. eds,

Academic Press, 1980, p. 159-192.
[Mar92] Maranget L. La Strategie paresseuse. These de l'Universite de Paris VII, 1992.
[Mil92] Milner R. Functions as processes. MSCS 2(2):119-141, 1992.
[Mel96] Mellies P.-A. Description Abstraite des Systemes de Reecriture. These de l'Uni-

versite Paris 7, 1996.
[Oos94] Van Oostrom V. Confluence for Abstract and Higher-Order Rewriting. Ph.D. The-

sis, Free University, Amsterdam, 1994.
[Oos96] Van Oostrom V. Higher order families. In: Proc. of RTA'96, Springer LNCS,

vol. 1103, Ganzinger, H., ed., 1996, p. 392-407.
[Raa96] Van Raamsdonk F. Confluence and normalisation for higher-order rewriting. Ph.D.

Thesis, Free University, Amsterdam, 1996.
[Sta89] Stark E. W. Concurrent transition systems. J. TCS, 64(3):221-270, 1989.
[Win89] Winskel G. An introduction to Event Structures. Springer LNCS, vol. 354, 1989,

p. 364-397.

The Theory of Vaccines

Massimo Marchiori

Department of Pure and Applied Mathematics, University of Padova

Via Belzoni 7, 35131 Padova, Italy

maxSmath.unipd.it

Abstract
Despite the major role that modularity occupies in computer science, all the
known results on modular analysis only treat particular problems, and there
is no general unifying theory. In this paper we provide such a general theory of
modularity. First, we study the space of the criteria for modularity (the so-called
modularity space), and give results on its complexity. Then, we introduce the
notion of vaccine and show how it can be used to completely analyze the modular
space. It is also shown how vaccines can be effectively used to solve a variety
of other modularity problems, providing the best solutions. As an application,
we successfully apply the theory to the study of modularity for term rewriting,
giving for the first time optimality results, and show how modularity problems
can be completely solved.

1 Introduction

The field of modular analysis is of fundamental importance, and is nowadays attracting
increasing interest by the scientific community. In essence, modularity allows to study
a complex object by studying his smaller subparts: given a 'big' object composed by
smaller subparts (via some composition operator), we want to state that it enjoys a
certain property by simply investigating its smaller subcomponents. Hence, modular
analysis allows to develop correct complex objects 'bottom-up', just building correct
smaller submodules, and even dually to verify the correctness of a complex object by
decomposing it into its submodules and verifying them.

Besides for the theoretical relevance, the increasing complexity of nowadays appli-
cations has made modularity analysis a task of primary importance from the practical
side as well.

At the present moment, the field of modular analysis consists of several results that
study the modularity of a particular property for a certain specific paradigm (see e.g.
[7, 2, 20, 13, 8, 16, 5, 18]). However, there is no general theory on modular analysis.
In this paper, we introduce such a theory.

Given the property to be verified, and the 'composition operator' that builds com-
plex objects from smaller submodules, we analyze the corresponding modularity space,
that is to say the collection of all the criteria for the modularity of the property w.r.t.
the composition operator.

First, a complete description of this space by means of its maximal criteria is pro-
vided (roughly speaking, the 'best' results that can be obtained), and its complexity
is studied (how many maximal criteria can exist). Next, we introduce the notion of
vaccine, which is used for analyzing in an effective way the modularity space. Intu-
itively, a vaccine extracts from a possibly non-modular property a maximal modular

661

sub-property, that is a maximal criterion of the modularity space for that property.
Therefore, vaccines provide a convenient way to represent the modularity space. We
propose a methodology for finding vaccines (and so the optimal modularity criteria).
Moreover, we provide suitable conditions that ensure that the analysis of the modular-
ity space is completely solved, i.e., it covers all the optimal criteria, and consequently
every possible modularity criterion (being all the others subsumed by the maximal
criteria).

Furthermore, it is shown that an analysis which is completely solved, is relevant
for the study of the class of the disjunctive criteria (cf. [13, 20]), because it provides
the best disjunctive criterion.

Finally, we consider also the other side of the coin, namely the case when modularity
does not hold. We introduce the notion of counterexample structure, which is used
together with the notion of vaccine for recovering the best description of the failure of
modularity. The above results are successfully applied to the study of the modularity
of important properties of term rewriting systems: termination, completeness and
uniqueness of normal forms (the only main properties of TRSs that are not modular).
In particular, we show that Cf-termination (cf. [5, 15]) is a maximal criterion, and
provide a formal justification in terms of complexity of the difficulty of the study of
the modularity of termination in TRS. Moreover, we completely solve the problem
of the modularity of termination for left-linear TRSs, providing the only two optimal
criteria. We give analogous results for the other major properties of completeness and
uniqueness of normal forms, thus not only improving on all the works on the modularity
of these properties, but completely solving the problem of their modular analysis.

The paper is organized as follows. Section 2 starts with some short preliminaries.
Soon afterwards, Section 3 presents the notion of modular analysis and of a criterion
for modularity. Then, Section 4 introduces the modularity space and gives some results
on its complexity. In Section 5 the concept of vaccine is introduced. Next, Section
6 shows how vaccines can be successfully employed for the study of the modularity
space via the notion of vaccines basis. Section 7 analyzes another kind of criteria,
the so-called disjunctive criteria, and shows how they can be successfully analyzed via
vaccines. Section 8 performs the same task for the study of counterexample structures,
giving a complete analysis of the failure of modularity. Sections 9 successfully presents
practical applications of the theory for the field of term rewriting. Finally, Section 10
ends with some other remarks on the further applications of the theory.

2 Preliminaries

Ö denotes the class of generic objects we will consider: every object is understood to
be in O, As usual, properties of objects will be identified with the classes of objects
that belong to them. So, we will write equivalently Qi A Q2 or Qi fl Q2 to denote
the intersection of two properties Q\ and Q2. We will also write -iQ to indicate the
complement property of Q (i.e. T G ->Q iff T & Q).

As far as TRSs are concerned, we only require knowledge of the basic notions (see
e.g. [3, 7]). The reader interested in modularity topics of TRSs can find extensive
surveys in [14, 16].

662

3 Modularity

Suppose we want to perform the modular (w.r.t. some composition operator 0) analysis
of the property V: given a complex object Ti© • • • QTn we want to infer it belongs to

V by separately analyzing its smaller submodules Ti,... , T„.
The best case occurs when the property V is modular (w.r.t. a binary composition

operator ©): whenever n objects Ti,... ,T„ are in V, their composition Ti©... ©T„ is
in V as well. Thus, to check a complex object Ti© ...Tn belongs to V, it just suffices
to check its submodules Ti,... ,T„ belong to V. In general, however, V may not be
modular, and so we need a more general concept to formalize modular analysis. We so

define what is the notion of a criterion for modularity:

Definition 3.1 Q is a criterion (for the Q-modularity ofV) if Q / 0 and VTi,.. . ,Tn.
T1€Q,...,TneQ=>T1Q...QTn€V. □

In the sequel we will often talk simply of criterion, omitting V and 0.
So, having a criterion Q we can perform modular analysis of a complex object

T\Q . . . QT„ just by separately checking that every submodule belongs to Q.

3.1 Assumptions

Given the property P(/ 0) whose modular behaviour we want to analyze, we call
healthy the objects in V, and sick the others (the reasons for this terminology will
become clear when we will introduce vaccines in Section 5). We say that two objects
A and B are compatible (resp. incompatible) w.r.t. V and 0, if AQB is healthy (resp.

sick).

Since the observable of interest is the property V, we introduce the following notion:
two objects A and B are said to be V-equivalent {A =v B) if A £ V •& B e V.

Recall from algebra that a groupoid (S, r) is a set <S equipped with a binary op-
eration r. Although this is not strictly needed for the development of our theory, for
simplicity we suppose that in every groupoid we talk about there is a neutral element
(if it is not the case, one can always be added by the standard lifting technique).

We say that a groupoid (5, r) is a V-semilattice if for every objects A, B and C in S
we have that (ATB)TC =V AT(BTC), ATB =V BTA, and AT A =v A. That is to say,
a "P-semilattice is like a semilattice, but for the fact that the equations for associativity,
commutativity and idempotence are weakened by considering =p -equivalence in place

of equivalence.
Another crucial definition is the following:

Definition 3.2 A groupoid (S,r) is said to be V-dense if VTi,T2 G S. Ti r Ti €

V => Ti 6 V A T2 € V. n

Roughly speaking, density corresponds to the very reasonable assumption that

objects constituting a healthy object are themselves healthy.
Now we have all the ingredients to define this main notion:

Definition 3.3 A V-acid groupoid (briefly, a V-acid), is a groupoid (S,r) that is a

"P-dense "P-semilattice. LJ

The name "acid" stems from the fact a semilattice can equivalently be seen as an
aci-groupoid (viz. a groupoid that is associative, commutative and idempotent), and

so acid stands for aci and dense.

Assumption: Throughout the paper, we assume that (0,0) is a 'P-acid.

663

We remark that for most of the results all of the above assumptions are not neces-
sary. We take all of them at once to simplify readability (for discussions on the minimal
required hypotheses, see e.g. [10, 12]).

4 The Modularity Space

The study of modularity for a given healthiness property is tantamount to the study of
the criteria for its modularity. We are so interested in the modular space (m-space), that
is in the collection of all the criteria for modularity. A way to express this information
is to consider only the most significant objects in this space. The m-space has a natural
partial ordering, namely the set inclusion; the idea is so to consider only the tops of
the m-space:

Definition 4.1 The modular basis (m-basis for short) is the collection of all the
maximal criteria. The modular dimension (m-dimension) is the cardinality of the m-
basis. '-'

The modular basis is a good representative of the modular space, since from it
we can build up the whole modular space (the maximal criteria entail all the other
criteria):

Theorem 4.2 Every criterion is contained in a maximal criterion.

4.1 fc-counterexamples

The m-dimension gives an abstract measure of the complexity of the modular space.
It is not difficult to see that the m-dimension is one iff V is modular, and if V is not
modular the m-dimension is at least two. We now give more precise results on the
m-dimension, introducing the concept of fc-counterexample.

Given an ordinal k, a k-counterexample (to the ©-modularity of V) is a collection
Ai,..., Ah of pairwise uncompatible healthy objects.

Usually, a 2-counterexample will be simply called a counterexample.

The next two lemmata provide the link between ^-counterexamples and the m-
dimension. The first result gives a lower bound:

Lemma 4.3 Ifthere is a k-counterexample (k<ui), then the m-dimension is at least k.

The second result, dually, gives an upper bound:

Lemma 4.4 If there is not a k-counterexample (k < u>), then the m-dimension is less
than k.

Combining the above bounds gives the following characterization of the m-dimension
in the finite case:

Corollary 4.5 The m-dimension is k (k < w) iff there is a k-counterexample but
there is no k + 1-counterexample.

5 Vaccines

We said the basic notion of the theory is that of vaccine. A vaccine is "a preparation
of living attenuated organisms, or living fully virulent organisms that is administered
to produce or artificially increase immunity to a particular disease" (Webster's 7th
Collegiate Dictionary). So, suppose we want to ensure an organism enjoys a particular

664

property. We can inject a specific vaccine for this property to it: if it does not get sick,
due to collateral effects, we are sure it is immunized and enjoys that property.

In this paper, we utilize the notion of vaccine in a formal setting to study mod-
ularity. Therefore, suppose we want to study the modularity behaviour of the class
of objects V. The idea is to consider V as a 'healthiness condition', and select some
representative objects that make things go wrong (i.e. that cause modularity to fail),
using them as a vaccines: we can 'inject' one of them, say A, to any other object in V
via the composition operator 0: in case there are no collateral effects, i.e. in case the
object is still healthy (belonging to V), it will become 'immunized' to that particular
disease that made modularity fail.

More formally, an object A is a vaccine if for the class of its vaccinated objects

({T-.TQA € V}), V becomes ©-modular.
The nice fact, as said in the introduction, is that we will show that the criteria

defined by vaccines are optimal (i.e. maximal). This way, vaccines provide a tool to
completely describe the modular space, providing the best criteria.

We now start giving rigorous formal definitions.

Definition 5.1 The class of objects vaccinated via A with injection operator 0 and

healthiness property V is
Y?(7>) = {T-.TQA eV} □

That is, we take every object T and inject A to it, obtaining the healthy object

TQA.

The operator 0 and the healthiness property V will be mostly omitted and con-
sidered understood, hence we will also write simply ~VA-

Now, we can define what a vaccine for modularity is:

Definition 5.2 A is a vaccine (for the Q-modularity ofV) if Y4 is a criterion for the

0-modularity of V. LJ

That is to say,

0 i= Yi, Ti G Vi,... ,Tk € VA => Ti0 . .. QTk € V

Vaccines can be composed to get new vaccines, as the following results show:

Lemma 5.3 (Composition) Suppose A is a vaccine for V\ and B is a vaccine for

V2 ■ If AQB £?IAP2, then AQB is a vaccine for Vi A V2■

Corollary 5.4 If A and B are compatible vaccines, then AQB is a vaccine.

Vaccines are only representatives of the corresponding criteria. It is therefore im-
portant to ask when different vaccines are representative of the same class. The fol-

lowing lemma gives a neat answer to this question:

Lemma 5.5 Let A and B be vaccines. Then, VA = "VB & A and B are compatible

6 Vaccines Bases

Every vaccine for modularity defines a criterion for modularity given by the class YA.

The most important reason that makes vaccines attractive to study is that this criterion
is optimal in the sense that cannot be improved.

Theorem 6.1 (Optimality) If A is a vaccine, then Vk is a maximal criterion.

665

The m-basis is an abstract concept. Anyway, we have just seen that vaccines
can conveniently represent the maximal criteria. So, we introduce a new manageable
representative of the m-space:

Definition 6.2 A vaccines basis (v-basis) is a collection of vaccines {Ai}i=i...k (k an
ordinal) such that every maximal criterion is represented by exactly one vaccine. D

Hence, Ai,. . . , Ak is a v-basis iff VAl, ■ ■ ■ , VAk is the m-basis.
A v-basis does not only give a complete description of the modular space. It also

allows to easily derive that a property is indeed a criterion by proving that it is weaker
than an optimal criterion. The precise technique is described in the full paper. This
also holds for the other kind of criteria, namely d-criteria (cf. Section 7). Hence not
only easy proofs of the previously existing results on modularity can be given, but also
investigation of new practical criteria is possible.

6.1 v-Bases versus fc-Counterexamples

We now analyze the tight relationships between v-bases and fc-counterexamples. First
we introduce the notion of partial v-basis, which formalizes the uncomplete knowledge

of a v-basis.

Definition 6.3 A partial vaccines basis is a collection Ai,... ,Ak (k an ordinal) of
vaccines giving pairwise different maximal criteria. U

Lemma 6.4 Every partial vaccines basis {Ai,..., Ak} is a k-counterexample.

As a corollary, we get that every v-basis {Ai,..., Ak} is a fc-counterexample. The
next important result shows that also the other direction holds, thus providing a way

to find the v-bases:

Theorem 6.5 // the modular dimension is k <ui, then every k-counterexample is a

v-basis.

Combining these results, we get the following characterization of the v-bases:

Corollary 6.6 (Characterization) If the modular dimension is k < w, then the
v-bases are exactly the k-counterexamples.

Therefore, the above results suggest a way to find the optimal criteria: seek for
vaccines produced by objects in fc-counterexamples.

In fact, Theorem 6.5 says much more: if we know that the m-dimension is k < w
(e.g. via Corollary 4.5), then a v-basis is automatically provided by a fc-counterexample.

Another immediate consequence of Theorem 6.5 is about the existence of v-bases:

Corollary 6.7 If the modular dimension is k <u>, there is a v-basis.

In order to effectively find a v-basis, Theorem 6.5 requires the knowledge of the
m-dimension, which as said can be computed using Corollary 4.5. Anyway, there is
another fundamental result that, starting from a not complete knowledge of it (a partial
v-basis), ensures that we have found a v-basis:

Theorem 6.8 (Covering) LetAi,...,Ak (k < w) be a partial v-basis. It is a v-basis
iff every healthy object belongs to at least one VAi: U^I^YA; = V (i.e. the criteria
'cover' the healthy objects).

666

The above theorem thus provides an alternative powerful methodology to find a v-
basis: build up a fc-counterexample with k as great as possible; prove that its elements
are vaccines (Theorem 6.5); check if the criteria cover the healthy objects (Theorem
6.8).

We will later (Section 9) successfully employ this methodology in the applications
of the theory to term rewriting.

7 Disjunctive Criteria

The notion of criterion for modularity that we have given in Definition 3.1 is not the
only one which has been studied. Another kind of criteria, e.g. studied in [13, 20],
requires only one of the objects to be constrained in order to ensure their combination
is healthy. So, we introduce this concept:
Definition 7.1 Q is a disjunctive criterion (for the Q-modularity ofV), or d-criterion
for short, if VTi,...,r„.Ti G QV ... VT„ G Q=>TiQ...QTn eV. D

The motivation for the adjective 'disjunctive' should be clear from the definition;
analogously, the usual criterion of Definition 3.1 could be dubbed 'conjunctive'.

Unlike the standard criteria, the d-criteria space is linearly ordered, since only one
object instead of all objects is constrained. The following definition formalizes the top
object in this space:
Definition 7.2 The kernel K, is the greatest disjunctive criterion, that is K, = {T G
V : VT" G V. TOT' €V3 T'QT}. □

It is easy to prove that, rather interestingly, the kernel has an important algebraic
meaning, since it is just the class of =-p -neutral elements (i.e. those elements N such
that for every T we have TON =v T =v NOT).

Nicely, from a v-basis we can obtain right away the kernel:

Theorem 7.3 Suppose {Ai}i-i...k is a vaccines basis. Then the kernel is n;=i...fcYAi.

8 Counterexample Structures

In this section we turn our attention to the other side of the coin: when modularity
fails. We formally study what happens when two objects give a counterexample to
modularity.

Definition 8.1 A couple of classes {Qi, Q2} is a counterexample structure (c- structure),
(w.r.t. 0 and V) if in every counterexample one of the two objects belongs to Q\ and
the other to Q2. □

The canonical ordering on structures is: {Qi,0.2} Qstruct {Si, Q'2} iff (Si Q
Si A Q2 C Q'2) V (Qi C Q'2 A Q2 C Qi). Then, we say that a structure {Qi,Q2} is
better than another structure {Qi, Q'2} if {Qi, Q2} Ctruct {Qi, Q'2}: this means we
can provide with {Qi, Q2} a more precise (smaller) description than with {Qi, Q2}-
The best structure is so the minimum w.r.t. Qstruct-

From a v-basis we can recover the best counterexample structure, as the next result
shows:

Theorem 8.2 If{Ai,A2} is a vaccines basis, then {~>Y4j AV,->VA2 AP} is the best
counterexample structure.

Actually, more can be proved, i.e. that such c-structure is perfect in the sense that
it provides a characterization of the counterexamples (cf. [12]).

Analogous results can be stated for v-bases of higher dimension.

667

9 Applications to Term Rewriting

We now provide some applications of the theory to the study of the modularity of
termination for Term Rewriting Systems.

So, we let O =TRSs and consider as usual the combination operator O to be the
disjoint sum (e) of two TRSs: when the signatures overlap the TRSs are renamed
to get disjoint signatures, and then their (disjoint) union is taken. The healthiness
property is V =Termination (Termination will be also indicated with the acronym SN,
after Strong Normalization). We have that

Lemma 9.1 {TRSs,®) is SN-acid.

Among the many results on the modularity of termination (see e.g. [14, 8, 16,
18] for a panoramic), the best results so far obtained are the ones in [15] and [9].
We will come back to the result of [9] in the next subsection. In [15] Ohlebusch,
generalizing a previous result of Grämlich for finitely branching TRSs ([5]), proved that
X£-termination' is modular. It is straightforward to see that the class of Cf-terminating
TRSs coincides with the class of TRSs vaccinated via {or(X, Y) -> X, or(X, Y) -+ Y}.
This, a posteriori, implies that the above TRS is a vaccine (for the modularity of

termination).
Hence, using Theorem 6.1 we obtain right away:

Theorem 9.2 Cs-termination is a maximal criterion.

That is to say, the result of [15] cannot be improved.

But what is the complexity of the modular space for termination? The following
result gives a formal confirmation that the topic is quite intricated:

Theorem 9.3 The m-dimension is at least three.

The proof of the above result makes use of Lemma 4.3.
Whether the m-dimension is indeed three, is still one of the most important open

problems (we conjecture it is).

9.0.1 The Left-Linear Case

As just seen, the situation for termination is quite complicated, since we have proved
that the m-dimension is at least three, and only one vaccine has been found so far. In
the left-linear case we will be able to completely solve the problem, finding a v-basis.

There are two best results on the modularity of termination for left-linear TRSs.
The first stems from the one seen above: in the left-linear case, {or(X, Y) -* X,
or(X, Y) —» Y} is a vaccine.

So, by Theorem 6.1 we can infer that C£-termination is a maximal criterion even
for left-linear TRSs.

The second is the result proved in [9]. Recall that a TRS is said consistent (with
respect to reduction), briefly CON", if no term reduces to two different variables. In
the aforementioned paper it has been shown that termination is modular for left-linear
and consistent TRSs.

We have seen in Section 4 that there are deep relationships between fc-counterexamples
and v-bases. The most famous counterexample to the modularity of termination
has been given by Toyama in [19]: {F(0,1,X) -> F{X,X,X)} and {or{X,Y) -►
X,or(X,Y) -* Y}. As seen above, {or{X,Y) -> X,or(X,Y) -* Y} is a vaccine.
Hence, a stimulating hypothesis is that {F(0,1,X) — F{X,X,X)} is a vaccine as
well. Amazingly, this turns out to be true:

668

Theorem 9.4 For left-linear TRSs, ~V{F(O,I,X)^F(X,X,X)} = SN A CON^.

That is to say, the class of left-linear TRSs vaccinated by {F(0,1, X) —» F(X, X, X)}
is just the criterion found in [9].

Corollary 9.5 In the left-linear case, {F(0,1,X) —> F(X, X, X)} is a vaccine.

Hence, we get

Corollary 9.6 In the left-linear case, SNA CON-* is a maximal criterion.

Thus, the result of [9] cannot be improved.

The remarkable thing is that with these two vaccines we have completed the analysis
of the modular space, since they form a v-basis:

Theorem 9.7 The m-dimension for left-linear TRSs is two, and a vaccines basis is
given by {F(0,1, X) — F{X, X, X)}, {or(X, Y) -► X, or(X, Y)-*Y}.

That is to say, the above two optimal criteria completely solve the problem of
modularity of termination for left-linear TRSs: there are no other optimal criteria and
all the other criteria are subsumed by one of the two.

Also, being the m-dimension 2, by Corollary 6.6 we have a characterization of the
v-bases: they are just the counterexamples.

As far as d-criteria are concerned, Middeldorp in [13] showed that whenever one of
two terminating TRSs is both non-collapsing and non-duplicating, then their disjoint
sum is terminating; that is to say, he proved that "terminating and non-collapsing and
non-duplicating" is a disjunctive criterion. Toyama, Klop and Barendregt showed in
[20] that whenever one of two terminating TRSs is confluent and non-collapsing, then
their disjoint sum is terminating (hence, they proved that "terminating and confluent
and non-collapsing" is a d-criterion).

Using the result on d-criteria (Theorem 7.3), we can properly generalize both of
these results in the left-linear case, giving the best d-criterion (the kernel):

Theorem 9.8 For left-linear TRSs, CON-* A Ce-termination is the greatest disjunc-
tive criterion for the modularity of termination.

We now consider c-structures. Ohlebusch in [15] (again, extending a result of Gräm-
lich in [5] for finitely branching TRSs), showed that in every counterexample one of the
TRSs is not Cf-terminating and the other is collapsing (hence, in our terminology, he
showed that { Ce -termination, non-collapsibility } is a c-structure). Schmidt-Schauß,
Marchiori and Panitz showed in [18] that, in the left-linear case, in every counterexam-
ple one of the TRSs is CON^ and the other is -.CON^ (that is, { CON^, -.CON"* }
is a c-structure). Both of these results require a not easy proof. Via Theorem 8.2, we
can easily not only generalize all of these results in the left-linear case, but also provide
the best c-structure:

Theorem 9.9 {-iCON-1 A SN, ->Ce-termination A SN} is the best counterexample
structure.

The above theorem gives the following result: in every counterexample to the mod-
ularity of termination, one of the TRSs is non consistent and the other is non Ce-
terminating.

Other applications, as mentioned in Section 6, include the possibility to give easy
proofs of previously existing results on modularity (for example the results in [17] and
[13] can be provided, in the left-linear case, with an easy proof).

669

Finally, the optimality of the v-basis allows to infer right away results on the relative

strength of other criteria.
For instance, it has been directly proved with some effort in [5] that Simple Ter-

mination implies (^-termination, and that termination plus non-duplication imply C£-

termination. These results immediately follow from Theorem 9.2, once noticed that
Simple Termination ([8]) and termination plus non-duplication ([17]) are criteria, and
that {or(X,Y) -> X,or(X,Y) -> Y} is both simply terminating and non-duplicating.

10 Remarks

In this extended abstract we have sketched the core of the theory of vaccines, and
presented as a particular instance some successful applications to modularity in term
rewriting. However, so far the theory of vaccines has been employed to obtain a
variety of other results. For instance, we have applied it to study the modularity
problem for completeness and uniqueness of normal forms w.r.t. reduction (UN-*),
finding vaccines for their modularity, and this way improving many existing results so
far obtained in the literature. Also, besides many other results which are variations and
generalizations of the main results here presented, we have investigated the major topic
of multimodularity, where other combinations of more than two objects are studied
(see [10, 12]). Again, via a v-basis we can obtain precise information on what kind of

multimodular behaviour a certain property satisfies.
Currently, we are investigating practical applications of the theory to the study of

modularity for other paradigms, like functional or logic programming (cf. [2]). Note
that even in the rewriting field there are still many other modularity topics to which
the theory of vaccines can be applied, including e.g. more involved combinations of
TRSs (like composable ones, cf. [16] for a survey), higher order rewriting in its various
forms (see e.g. [7, 6]), conditional rewriting ([7, 14]), combinations with A-calculus and
systems in the A-cube (cf. e.g. [1]), and so on. For instance, the theory of vaccines
can be applied to the criterion developed in [4] for conditional rewriting, showing that
it is optimal for finitely branching CTRSs. Also, we have shown that the theory of
vaccines nicely interacts with unraveling theory (cf. [11]), and shown how one can thus
automatically translate a lot of modularity results from term rewriting to conditional
rewriting: for instance, we have lifted the result of Theorem 9.7, showing that, for
left-linear normal CTRSs, the same two TRSs provide a v-basis for decreasingness.

Acknowledgments

I wish to thank Jan Willem Klop and Aart Middeldorp for scrutinizing a previous

version of this paper.

References
[1] F. Barbanera, M. Fernandez, and H. Geuvers. Modularity of strong normalization and

confluence in the algebraic A-cube. In Proceedings Nineth IEEE Symposium on Logic in
Computer Science, pages 406-415, 1994.

[2] A. Brogi, P. Mancarella, D. Pedreschi, and F. Turini. Modular logic programming. ACM
TOPLAS, 16(4), 1994.

[3] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, volume B, chapter 6, pages 243-320. Elsevier -
MIT Press, 1990.

670

[4] B. Grämlich. Sufficient conditions for modular termination of conditional term rewriting
systems. In 3rd Workshop on Conditional Term Rewriting Systems, vol. 656 of LNCS,
pp. 128-142. Springer-Verlag, 1993.

[5] B. Grämlich. Generalized sufficient conditions for modular termination of rewriting. Ap-
plicable Algebra in Engineering, Communication and Computing, 5:131-158, 1994.

[6] J.-P. Jouannaud and M. Okada. Executable higher-order algebraic specification languages.
In Proc. Sixth IEEE Symposium on Logic in Computer Science, pp. 350-361, 1991.

[7] J.W. Klop. Term rewriting systems. In S. Abramsky, Dov M. Gabbay, and T.S.E.
Maibaum, editors, Handbook of Logic in Computer Science, volume 2, chapter 1, pages
1-116. Clarendon Press, Oxford, 1992.

[8] M. Kurihara and A. Ohuchi. Modularity of simple termination of term rewriting systems.
Journal of IPS Japan, 31(5):633-642, 1990.

[9] M. Marchiori. Modularity of completeness revisited. In J. Hsiang, editor, Proceedings of
the Sixth International Conference on Rewriting Techniques and Applications, volume
914 of LNCS, pages 2-10. Springer-Verlag, 1995.

10] M. Marchiori. The theory of vaccines. Technical Report 27, Dept. of Pure and Applied
Mathematics, University of Padova, 1995.

11] M. Marchiori. Unravelings and ultra-properties. In Proceedings of the Fifth International
Conference on Algebraic and Logic Programming (ALP'96), volume 1139 of LNCS, pages
107-121. Springer-Verlag, 1996.

12] M. Marchiori. Local Analysis and Localizations. PhD thesis, Dept. of Pure and Applied
Mathematics, University of Padova, February 1997. In Italian.

13] A. Middeldorp. A sufficient condition for the termination of the direct sum of term
rewriting systems. In Proc. Fourth IEEE Symposium on Logic in Computer Science, pp.
396-401, 1989.

14] A. Middeldorp. Modular Properties of Term, Rewriting Systems. PhD thesis, Vrije Uni-
versiteit, Amsterdam, November 1990.

15] E. Ohlebusch. On the modularity of termination of term rewriting systems. Theoretical
Computer Science, 136(2):333-360, 1994.

16] E. Ohlebusch. Modular properties of composable term rewriting systems. Journal of
Symbolic Computation, 20(1):1-41, 1995.

17] M. Rusinowitch. On termination of the direct sum of term rewriting systems. Information
Processing Letters, 26:65-70, 1987.

18] M. Schmidt-Schauß, M. Marchiori, and S.E. Panitz. Modular termination of r-consistent
and left-linear term rewriting systems. Theoretical Computer Science, 149(2):361-374,
1995.

19] Y. Toyama. On the Church-Rosser property for the direct sum of term rewriting systems.
Journal of the ACM, 1(34):128-143, 1987.

20] Y. Toyama, J.W. Klop, and H.P. Barendregt. Termination for direct sums of left-linear
complete term rewriting systems. Journal of the ACM, 42(6):1275-1304, November 1995.

The Equivalence Problem for Deterministic
Pushdown Automata is Decidable

Geraud Senizergues

LaBRI
Universite de Bordeaux I

351, Cours de la Liberation 33405 Talence, France **

Abstract. The equivalence problem for deterministic pushdown au-
tomata is shown to be decidable. We exhibit a complete formal system for
deducing equivalent pairs of deterministic rational series on the alphabet
associated with a dpda A4.

Keywords: deterministic pushdown automata; rational series; finite dimensional vector spaces; matrix semi-

groups; complete formal systems.

1 Introduction

The so-called "equivalence problem for deterministic pushdown automata" (dpda for short), is the fol-

lowing decision problem:

INSTANCE: two dpda A, B. QUESTION: L(A) = 1(B)?

where 1(A) (resp. L(5)) is the language recognized by A (resp. B). (This problem is often denoted by
Eq(D, D), where D stands for the class of all dpda). The question of whether this problem is decidable or
not is raised in [GG66] and has received much attention since this time. Beside the fact that this question
was natural from the point of view of formal language theory, it appeared later as Turing-equivalent with
other equivalence-problems for different types of recursive program schemes (see [Cou90] for a survey).
Some other Turing-equivalent problems on semi-Thue systems were also found (see [Sen94] for a survey)
and formulations in terms of bisimulation equivalence of infinite graphs (or processes) have been found

too (see [Cau95] for a survey).
Among a large number of papers let us only quote [Val74, VP75, Bee76, Rom85, Oya87, Sti96] which

proved decidability of Eq(D',D') for subclasses D' of the full class D of dpda. (We refer the reader
to the surveys ([Cou90, Cau95, Lis96]) for other results on problems related to Eq(D,D)). The work
[Mei89, Mei92] is an attempt to solve the general problem. On account of its incompleteness (see for
example the comment in [Lis96, p.219]) it does not provide a full solution; nevertheless it introduced a
fundamental new idea: the notion of linear independance for languages.

We prove here that the equivalence problem for dpda is decidable (theorem 9.3).
We obtain this result by providing a complete formal system V0 for equivalence identities between

deterministic rational series (we use here a type of formal system inspired by [Cou83] and a notion of
deterministic series inspired by [HHY79]). The proof of this completeness property leans on three types

of arguments:

- in section 3 we develop around the fundamental idea of [Mei89, Mei92] an algebraic theory of "d-

spaces",
- in sections 5.7 these structure results are turned into a construction of strategies for the formal system

I>o.
- in section 8 we analyze the infinite trees generated by some strategies associated with XV

" mailing adress:LaBRI and UFR Math-info. Universite Bordeauxl
351 Cours de la liberation -33405- Talence Cedex.
email:ges@labri.n-bordeaux.fr
fax: 05-56-84-66-69

672

2 Preliminaries

2.1 Pushdown automata

A pushdown automaton on the alphabet A' is a 6-tuple M = < A..Z, Q,S, qa,z0 > where Z is the finite
stack-alphabet, Q is the finite set of states, qo € Q is the initial state, z0 is the initial stack-symbol and
& :QZ x (A U {c}) — Vf{QZ"), is the transition mapping.

Let q,q' £ Q.u.u' 6Z",iSZ,/6 A" and a £ A U {e} ; we note (qzu,af) i—,w (q'u'u.f)

if (j'u)' 6 (5(ijz,a). i—^yn is the reflexive and transitive closure of i—>M ■ For every qu,q'ui' £ QZ"

and / 6 A", we note qu —i» q'u' iff (?u,/) i—~->M (?'"'>0- ■M 's said deterministic iff, for every
z€Z,?£<3:

either Card(%z, c)) = 1 and for every x £ A, Card(%z, i)) = 0, (1)

or Card(%2, e)) = 0 and for every x € A, Card(%z, x)) < 1. (2)

M is said real-time iff, for every qz £ QZ, Card(%z, e)) = 0. A dpda A4 is said normalized iff, for every

qz <=QZ,x€X:
q'u' £ %z, x) =>| a/ |< 2, and q'u' £ %z, E) =>| u' |= 0 (3)

Given some finite set F C QZ* of configurations, the language recognized by M with final configurations

F is defined by l(M,F) = {w £ A* | 3c g F, q0z0 —^M C}-

2.2 Deterministic context-free grammars

Let M be some deterministic pushdown automaton (for sake of simplicity 3, we suppose here that M is
normalized). The variable alphabet VM associated to M is defined as: VM = {[p. z,q}\ p,q € Q,z e Z}.
The context-free grammar GM associated to M is then GM =< X,V,P > where V =VM and P is the
set of all the pairs of one of the following forms:

({P,z,q},x\p',z1,P"}lp''^2,q]) or (\p,z,q],x'\p'tz',q]) or (\p,z,q],a) (4)

where p,q e Q,z € Z,x,x' e X,a £ A U {e},p'ziZ2 € 6(pz,x),p'z' £ 6(pz,x'),q 6 i5(pz,a). GM is
a strict-deterministic grammar. (A general theory of this class of grammars is exposed in [Har78] and
used in [HHY79]). We call mode every element of QZ U {e}. For every q £ Q, z 6 Z, qz is said (-bound
(respectively e-free) iff condition (1) (resp. condition (2)) in the above definition of deterministic automata
is realized. The mode <r is said c-free. We define a mapping p : V* —► QZ U {e} by

p(f) = f and ^([p, z, q]-ß)= pz,

for every p, q £ Q, z £ Z, ß € V*. For every w £ V* we call /i(tu) the mode of the word w.
For technical reasons (which will be made clear in section 7), we suppose that Z contains a special
symbol e such that, for every q £ Q, 6(qe, e) = {q} and im(i5) C Vj(Q(Z - {e})").

2.3 Free monoids acting on semi-rings

Semi-ring B < W > Let (B, +, ■, 0,1) where B = {0,1} denote the semi-ring of "booleans". Let W be
some alphabet. By (B < W >, +, •, 0, e) we denote the semi-ring of boolean series over W: every boolean
series S £ B < W > can be written in a unique way as: S = EW£\ySw ■ w, where, for every w £ W",
S„, £ B. The support of S is the language

supp(5) = {w € W* | S„ ^ 0}.

In the particular case where the semi-ring of coefficients is B (which is the only case considered in this
article) we sometimes identify the series S with its support. We recall that for every 5 £ B < W >,
S* is the series defined by: S* = £0<n S". Given two alphabets W, W, a map ^:B<W> — B<
W > is said cr-addiiive iff it fulfills:Tor every denumerable family (S;)jgiN of elements of B < W >,
iiiJ2j £KSi) = Z!ieiN V'(Si). A map 4: :B <W > — B < W > which is both a semi-ring homomorphism
and a <r-additive map is usually called a substitution.

but without, loss of generality for the equivalence problem

673

Actions of monoids Given a semi-ring (S,+, •, 0. 1) and a monoid (M, •, l.i/), a map o : S x M — S is
called a right-action of the monoid M over the semi-ring S iff, for every S, T £ S, m, m' £ M:

0om = 0, 5ol,v/ = S, (S + T)om = (Som) + (Tom) and 5 o (m ■ m') = (S o m) o m' (5)

In the particular case where S = B<W>,°is said to be a <r-right-action if it fulfills the additional

property that, for every denumerable family (Si)igiN of elements of S and m £ M:

(^Si)om=53(5iom). (6)

The action of W on B < W > We recall the following classical cr-right-action • of the monoid W"

over the semi-ring B < W > : for all S, 5' € B < W >, u £ W

s. u = s' «• V«; e w,(s; = 1 iff S„.„ = 1).

(i.e. S.uisthe left-quotient ol S by u , or the residual oi S by u). For every S € B < W > we denote by
Q(S) the set of residuals of 5: Q(5) = {5»u|u€ W }. We recall that S is said raiiona/ iff the set Q(S)
is finite. We define the norm of a series 5 £ B < W >, denoted ||5|| by: ||5|| = Card(Q(S)) £ IN U {oo}.

The action of X' on B < V > Let us fix now a deterministic (normalized) pda M and consider
the associated grammar G. We define a <r-right-action © of the monoid (X U {e})- over the semi-ring

B< V > by: for every p,qeQ,AeZ,H € V*,/?G V",x€X

[p, A, ?] • ß ® i = ff • ,0 iff ([p, A, q], x ■ H) € P, [p, A, ?] ■ /? ® e = H ■ ß iff ([p, .4, ?], ff) G P (7)

e®r = 0, e®e = 0. (8)

A series 5 € B < V > is said e-/ree iff Vw £ V, 5„ = 1 =>■ /i(ui) is e - free. We denote by Be < F > the
subset of e-free series. We define the map p, : B < V >— B < V > as the unique tr-additive map such

that, for every p€Q,z £ Z, q £<2,/?£ V",

/)£([p, z, ?]•/?) = p£(([p.2. ?] ® e) • ß) if P« is £ - bound, p£([p, z, ?]•/?) = [p, -", ?] • /? if P-' is £ - free,

and p((f) = (. The above definition is sound because, by hypothesis (3), every \p,z,q]®e is either the
unit series £ or the empty series 0. One can notice that for every w £ V*, pc(w) £ V" U {0}. We call p£

the f-reduction map. We then define © as the unique right-action of the monoid X' over the semi-ring
B < V > such that: for every S £B < V >,x € X, S O x = pc(pt(S) ® x). One can notice that if u / e,
then S © u is e-free. Let us consider the unique substitution <p :B <V >— B < X > fulfilling: for every
p,q £ Q,z £ Z, ip(\p, z, q]) - {u £ X" \ [p, z, q] © u = e], (in other words, if maps every subset L <ZV
on the language generated by the grammar G from the set of axioms L).

Lemma 2.1 <p is a morphism of right-actions i.e. for every S £ B < V >,u £ A'*, ^(S0u) = <p(S) • u .

We denote by = the kernel of p i.e.: for every 5,T£B<V>,5sTo ^>(S) = <p(T).

3 Series and languages

3.1 Deterministic series and matrices

We introduce here a notion of deterministic series which, in the case of the alphabet V associated to a
dpda M, generalizes the classical notion of configuration of M. The main advantage of this notion is
that, unlike for configurations, we shall be able to define nice algebraic operations on these series (this
is done in section 3.2). Let us consider a pair (W, ~) where W is an alphabet and ~ is an equivalence
relation over W. We call {W, ~) a structured alphabet. The two examples we have in mind are:

- the case where W = V, the variable alphabet associated to M and [p, A.q] ~ [p',A',q'] iff p = p' and

.4 = A' (see [Har78])
- the case where IF = A', the terminal alphabet of M and x ~ y holds for every x, y £ A (see [Han 8]).

674

Definition 3.1 Let 5 6 B < W >. S is said left-deterministic iff either (1) 5 = 0 or (2) S = c or
(3) Vu\ u>' 6 W", S„, = S„,< = 1 => 3A, .4' € W, u>i, w[€ W", A ~ A', to = A ■ wx and w' - A' ■ w[.

Definition 3.2 Let S € B < W >. S is said deterministic iff, for every u e W, S*u is left-deterministic.

This notion is the straighforward extension to the infinite case of the notion of (finite) set of associates

defined in [HHY79].
We denote by DB < W > the subset of deterministic boolean series over W. Let us denote by B„]m < W >
the set of (n, m)-matrices with entries in the semi-ring B < W >.

Definition 3.3 Let m € IN, S 6 Bi>m < W >: S = (Si, ■ ■ ■, Sm). S is said left-deterministic iff either
(1) Vie [l,m],Si = 0 or(2) 3i0 € [1, m], 5,-0 = e and Vi ^ i0l5j = 0 or (3) Vto, ui' € r,W, j €
[l,m],(Sv)„, = (Sj)w, = 1^3A,A' € VV.wi.to'i 6 V',A~ A',w = A-w1 and w' = A' ■ w[.

The right-action • on B < W > is extended componentwise to B„,m < V7 >: for every 5 = (s.'.j),

« S W, the matrix T = 5 • u is defined by Uj = <s, j • u.

Definition 3.4 Let S S Bi,m < W >. S is said deterministic iff, for every u 6 W, S • u is left-

deterministic.

We denote by DB! m < W > the subset of deterministic row-vectors of dimension m over B < W >.

Definition 3.5 Let S € B„,m <W >. S is said deterministic iff, for every i 6 [1, n], Si,, is a determin-

istic row-vector.

The following property is crucial for establishing a correct theory of deterministic spaces (see §3.2

below).

Lemma 3.6 For every S € DB„,m <W>,T £ DBm>J < W>,S-T 6 DB„,„ < W >.

W=V Let (W,~) be the structured alphabet (V,~) associated with M and let us consider a bijective
numbering of the elements of Q: (?i,?2,.. .,«n0). Some particular "vectorial" notions turn out to be

useful:

- we define a Q-series to be a family (5,),SQ such that the row-vector (5fl, SfI,..., Sf„0) is determin-

istic
- we define a Q-form to be a family * = (@q)«eQ of deterministic series.

Given a Q-series 5 and a Q-form #, their Q-product 5 * # is the deterministic series defined by 5 * 0 =
£ 6<3 S, ■#,. If the Q-series (5,),6<j is identified with the row-vector (Sfl, S„ S,.g) and the Q-form

(&q),€Q with the column-vector (*!:j)j6[i,ng]>tnen tne Q-product appears to be just the ordinary product
of matrices.

Let us define here handful notations for some particular row-vectors or Q-series. Let us use the
Kronecker symbol 6jj meaning e if i = j and 0 if i # ;'. For every 1 < n, 1 < i < n, we define the
row-vector ef as: t? = (f",-)i<j<n where V;', e?j = Sij. We call unit row-vector any vector of the form e?.
For every ui £ Z",p,q € Q, \puq] is the deterministic series defined inductively by:

\peq] = 0 if p # ?, [pe«] = f if p = ?,

[pug] = V] [p./lr] ■ [rw'ij] it u = A -u' for some A6Z,u'6Z'.

By \pu] we denote the Q-series: [pw] = ([p"?]),ecj- (In particular [?,•] = c"°). By [u] we denote the
Q-matrix: [u] = ([pw?]) €Q €o- The next lemma relates the right-action 0 with the right-action •.

Lemma 3.7 Let S € DB < V >, u € X". One of the three following cases must occur: (1) 5© u = 0, or
(2) 5 0 « = f, or (3) 3«i,«2 € X", vi € V*,? € Q, A € •£,# Q -form such thai u = ui • «a, 5 0 «i =
5 • i>i = [qA] *& and SOU = {[qA] O u2) * 0.

Corollary 3.8 Let S £ DB < V>,u6.Y". Then S O « € DB < K > .

The particular letters [p, e, q] for p.q € Q play a special role in sections 7 and 8: we use them as marks
in the series (somehow like the ceilings of [Val74]). We define below a map pe which removes the marks
in the series. Let us define pe : DB < V >— B < V > as the unique substitution such that:

Pe([p,e,q]) = e ifp = tf, pc([p, e, g]) = 0 ifp^g.

Lemma 3.9 For every S € DB < V >. p,(S) E DB < V > and \\p,(S)\\ < \\S\\.

675

Rational series, norm Let us generalize the definition of rationality of series in B < W > to matrices.
Given M G B„,m < W > we denote by Q(A/) the set of residuals of M: Q(.V) = {A/ • u | u € W}.
Similarly, we denote by Qr(Af) the set of row-residuals of M: Qr(Af) = UKK» Q(-W'.-)- -v-f is said rational
iff the set Q(A/) is finite. One can check that it is equivalent to the property that every coefficient A/,j is
rational, or to the property that Qr(M) is finite. We denote by DRB„,m < W > the set of deterministic,
rational matrices over B < W >. For every M G DRB„,m < W >, we define the norm of M as:

||A/|| = Card(Qr(A/)).

Lemma 3.10 Lei A G DB„,m <W >,B& DBm,, < W >. Then \\A ■ B\\ < \\A\\ + \\B\\.

3.2 Deterministic spaces

We adapt here the key-idea of [Mei89, Mei92] to series.

Definitions Let (W,~) be some structured alphabet and let us consider the set E = DRB < W >. A
series U = £"=1 ji ■ Ui where 7 G DRB1>n < W >, £/,- G DRB < W > is called a linear combination of
the Ui's. We call deterministic space of rational series (d-space for short) any subset V of £ which is
closed under finite linear combinations. Given any set Q = {Ui\i G I}, one can check that the set V of
all (finite) linear combinations of elements of Q is a d-space (by lemma 3.6) and that it is the smallest
d-space containing Q. Therefore we call V the d-space generated by Q and we call Q a generating set of V
(we note V = V({(/;|! G /})). (Similar definitions can be given for families of series).
We let now W = V. Following an analogy with classical linear algebra, we develop now a notion cor-
responding to a kind of linear independence of the images by ip of the given series Let us extend the
equivalence relation = to d-spaces by: for every d-spaces Vt, V2, V! = V2 <S- Vi, j G {1,2}, VS € V;,35' G

\lj,S = S'.

Lemma 3.11 Let Si,..., S,■,..., Sm G DRB < V >. The following are equivalent

1. 3a,/3GDRBi,m< V>,a£ß, such that Ei<j<m
ai ' si = Ei<,-<mft ' SJ'

2. 3jo G [l,m],37G DRBi,m < V>,7^e£, such that Su =Y,i<j<m7i -Sj<
3. 3j0 G [1, m], 37' G DRB1]m < V >, -/h s 0, such that Su = Ei<,<m Ty ■ ■?;,
I Bjo G [l,m], sucA that V((5j)i<,-<m) = V((SJ)i<j<m,;>i;o).

The equivalence between (1),(2) and (3) was first proved in [Mei89, Mei92], in the case where the Sj's
are configurations qjui, with the same u.

4 Deduction systems

4.1 General deduction systems

We follow here the general philosophy of [HHY79, Cou83]. Let us call deduction system any triple
V =< .4, H, I— > where A is a denumerable set called the set of assertions, H, the cost function
is a mapping A — IN U {00} and |— , the deduction relation is a subset of Vj(A) x A ; A is given
with a fixed bijection with IN (an "encoding" or "Gödel numbering") so that the notions of recursive
subset, recursively enumerable subset, recursive function, ... over A,Vj(A),... are defined, up to this fixed
bijection ; we assume that V satisfies the following axioms:
(A 1)]— is recursively enumerable
(A 2) V(P,A) G I— , (min {H(p),Pe P] < H(A)) or (H(A) = 00). (We let min(0) = 00).

In the sequel we use the notation PI— A for (P. A) € |— . We call proof m the system V, any subset
P C A fulfilling : Vp 6 P, (3Q QP,Q\— p). Let us define the total map \• : .4 ->• {0,1} and the partial
map Y:i-j0.1) by :
X(A) = 1 \{H(A) = x,x(A) = 0 if H(A) < 00. \(.4) = 1 if H{A) = 00. \ is undefined if H(A) < 30.
(\ is the 'truth-value function", x 's tne "1-value function").

Lemma 4.1 Let P be a proof and A G P- Then \(A) = 1.

676

In other words : every provable assertion is true. The deduction system V will be said complete iff,
conversely, VA G A. x(A) = 1 =*• there exists some finite proof P such that .4 € P. (In other words, V
is complete iff every true assertion is "finitely" provable).

Lemma 4.2 : IfV is complete, \ « a recursive partial map.

In order to define deduction relations from more elementary ones, we set the following definitions. Let
I— c V,(A) x A- For every P, Q G Vt(A) we set:

rnf HI <°> [0! <l>

Pl±QiRPDQ- P\-QiK\/qeQ,3RCP,R\--q; P\-QiSP[-Q; P |-0 iff V« e

Q. (3Ä CP,üh 9) or (q G P); P^^Q iff 3Ä G 7>/(^). P (— P and P |— Q (for every n > 1).;
<-> <">
I M |

Given 1-1-° |—, C Vj(A) x VS{A), for every P,Q G P/(-4) we set : P((—i ° |—2)0 iff 3Ä S
>1,(P(—,P)A(Äi—2Q).

4.2 System T>„

Let us define here a particular deduction system V0 "Taylored for the equivalence problem for dpda's".

Given a fixed dpda M over the terminal alphabet X, we consider the variable alphabet V associated
to M (see section 3.1) and the set DRB < V > (the set of Deterministic Rational Boolean series over
V). The set of assertions is defined by : A = IN x DRB < V > xDRB < V > i.e. an assertton is here a
weighted equation over DRB < V >.
The "cost-function" H : A - IN U {oo} is defined by : H(n, 5, S») = n + 2 • Div(5,S>), where Div(5, 5
the «to^en« between 5 and S', is defined by : Div(5,5') = min{| u || u G A(v»(S), v(S))}. (We recall
min(0) = oo).
Let us notice that here : x("> 5,5') = 1 <=> 5 = 5'. _

We define a binary relation ||— CV/(A)x A, the elementary deduction relation, as the set of all
the pairs having one of the following forms:

(PO) {(p,S,T)} If— (p + hS,T)
(PI) {(p,S,T)} II— (P,T,S)
(R2) {(p,S,S'),(p,S',S")} II— (P,S,S")
(P3) 0 Ir- (0,5,5)
(fl'3)0 II— (0,fozr],0 (for?,rG<3,-*GZ,[<;zr] = e)
(A4) {(p+l,SQx,TQx)\x&X} II— (p,5,T) (for5^eAT#e)
(Ä5) {(p,S,S')} II— (p + 2,5©x,5'©a:)(forzGX)
(P6) {(p,ST' + T,T')} II— (P- 5" ■ r,r) (for 5 ^ e)
(Ä7) {(p,5,5')} II- (p,5 + T,5' + r)
(i?8) {(p,5,5')} II- (P,S-T,S'T)
(fl9) {(p,5,5')} \\- (p,U-S,US')

where p € IN, 5, S',T, T' € DRB < V >, U G RB < V >. (By set of "all" these pairs we mean, all the
pairs which fulfill both properties "to belong to Vj(A) x A" and "to have one of these 11 possible forms"
; but of course, for example, not all the triples (p, S + T,S' + T) belong to A because DRB < V > is not
closed under sum).

Lemma 4.3 : Let P S V,(A),A G A such that P ||— A. Then min{H(p) | p G P} < H(A).

<-> (il <*>
Let us define (— by : for every P G Vf(A),A G -4, P |— ^ «=*• P II— ° l|— 0,3.4° ll~ i-4)-

„■here ||— 0,3,4 is the relation defined by R0, R3, R's, R* on[Y- We let Vo =<A,H,\— >

Lemma 4.4 : VQ is a deduction system.

The kev-statement of this work is that V0 is complete (theorem 9.2). We prove this completeness result
bv exhibiting a "strategy" S which, for every true assertion (n,S,S'), constructs a finite XVproof of
this assertion. Notice that, by lemma 4.2. we do not need to prove that 5 is computable in any sense to
establish that \ is partial-recursive.

677

4.3 Strategies

Let V =< A, H, |— > be a deduction system. We call a strategy for V any partial map S : A+ — A"

such that :
(51) ilS(AiA->---An) = Si ■■■Bm then 3Q C {At | 1 < i < n - 1} such that

{Bj I 1<J <m}UQ\— A„,

(52) if S(A1A2 ■An) = Bi--Bm then

min{# (A,) [1 < i < n} = oo => min{tf(Bj) | 1 < j < m} = oo.

Given a strategy 5, we define T(S, A), the proof-tree associated to the strategy S and the assertion A
as the unique tree t such that :
€ G dom(t), t(e) = A, and, for every path xo^i, ■ --Zn-i in t, with labels t(ii) = Aj+i (for 0 < i < n-1)
if x„_i has m sons r„_i ■ 1,■ • • .i„-i ■ m £ dom(t) with labels i(z„_i ■ j) = Sj (for 1 < ;' < m) then

5(yli ■••/!„) = Bi ---Bm or (m = 0 and Ai--An $ dom(5)).

Let us say that S terminates iff, VA £ x_1(l).7"(<S./I) is finite; S is said c/osed iff, VW <= A+,W e
(X-1(1))+ => W 6 dom(S) (i.e. 5 is defined on every non-empty sequence of true assertions).

Lemma 4.5 : If S is a closed strategy for V, then, for every true assertion A, the set of labels ofT(S,A)

is a V-proof.

Lemma 4.6 ; IfV admits some terminating, closed strategy then V is complete.

5 Triangulations

Let Si, S2, • • •, Sd be a family of deterministic series over the structured alphabet V (we recall V is the
alphabet associated with some dpda Ai as defined in section 2.2).
Let us consider a sequence S of n "weighted" linear equations :

d d

(Si) ■Pi,J2ai'iSi • ZXJ5.»'

where p; € IN, and A = (ctij),B = (ßij) are deterministic rational matrices of dimension (n,d), with
indices m < i <m + n - 1,1 < j < d. For any weighted equation, £ = (p, 5,5'), we recall the "cost" of

this equation is : H(E) = p + 2 ■ Div(y?(S), ip(S')).
We associate to such a system another system of equations, INV(S), which "translates the equations of
5 into equations over (a{j,ßi,j) only". This function INV is in some sense an "elaborated version" of
the inverse systems defined in [Mei89, Mei92]. The general idea of the construction of INV consists in
iterating the transformation used in the proof of (1) => (2) => (3) in lemma 3.11, i.e. the classical idea
of triangulating a system of linear equations. Of course we must deal with the weights and relate the
construction with the deduction system V0. Let us assume here that

V;G[l,cf],S;-^0. (9)

For every S 6 B < X > (resp. 5' G Bid < X >), we define v(S) = min{|u|,u G supp(S)} (resp.
u(S') = min{|ti|,uGUi<j<<,supp(5j)}). Let us define INV(5), Vf(S) G IN U {L}, D(5) G IN by induction
on n. W(S) is the weight of S. D(S) is the weak codimension of S.
Case 1 : tfi{am.) = >?(ßm,.) or n = 1

INV(S) = ((W(S),amj,ßmJ))liJ<d, W(S) = pm-l, D(5) = 0.

Case 2 : >p(am..) ^ *(8m,.),n > 2,pm+i - pm > 2 ■ v(A(<p(am,.),tp(ßm,.))) + 1
Let u = mmA{ip{a,„_.),<p(ß,„,,)). Suppose u G A(ip(amja), f(ßmj0)).
Subcase 1 : Qm.ja 0 " = s, ßm.j0 0 u = 0.

678

Let us consider the equation (pm,S,-0,£*=1(A» j ® u)Sj) and define a new s-vstem of weiShted equations

S' = (^/)m + l<i<m + n-l by :

(£,') : Pi, £(«<,, + <*.jo(A,j © "))$, £(Aj + Äj„(/Vj 0 «))$

where the above equation is seen as as an equation between two linear combinations of the Si's where

the j'o-t.h coefficient is 0 on both sides. We then define :

INV(S) = INV(S'). W(5) = W(5'), D(5) = D(S') + 1. (10)

Subcase 2 : am,jo Qu = s, ßm,ja © u ^ 0.
Let us consider the w-equation (pm,S,„ , £-=1(Anj„ © «)*(Anj © «)$) and define a new system of

weighted equations 5' = (£j)m+i<i<m+n-i by :

We then set the same definitions (10) as above.
Subcase 3 : amj-„ © « = Mm jo © « = e. (Analogous to subcase 1).
Subcase 4 : am j„ © u # 0, An jo © « = £■ (Analogous to subcase 2).
Case 3 :¥>((»„.) ^¥>(An,.).n> 2,Pm+i-Pm< 2 •i/(A(v('»m,*).(v(^m,«)))-
We then define: INV(5) = JL, W(5) = X, D(5) = 0, where 1 is a special symbol which can be understood

as meaning "undefined".

Lemma 5.1 : Let S be a system of linear equations. If INV(S) ± -L then INV(S) = (£j)i<j<d fulfills:

j \jj g [l,d],£j is a linear equation with deterministic coefficients,

2. {Sj | 1 <j <d}U{£i \m<i<m + D(S)-l}\—£m+D(s),
If, in addition, n> d then :

3. min{H{£i) \ m < i < m + D(S)} = oo =>• mm{H{£j) \ 1 < j < d} = oo.

Let us consider the function F defined by :

F(n) = max{v{V(A)t\?(B)) \ A, B e DRBM < V >, || A ||< n, || B \\< n, <p(A) # <p(B)}.

For every integer parameters A'i, A'2, K3, A"4 £ W-{0}, we define integer sequences («;,<,-, i,-,»,-, 5,-, r,)m<,<m+r—i

by :

,5m = 0,*m = 0, £m = Ä2, sm = A's ■ Ki + IU,Sm = 0, Sm = 0, (11)

and for every m<z'<m + rc — 2,

«i+i = 2 ■ F(sj + Si) + 1, 4+1 = 5 ■ (5,-+i + 14, Li+i = A'i • (ii + 4+i) + A'2,

*,-+i = A3L,+i + A4, Si+1 = Si + £i+\Q\F(si + Ei), Si+1 = T,- + S,-+i. (12)

For every weighted, deterministic rational linear equation £ = (p,T.j=iaiSJ • Ej=i A'5j)' vve deRne

|||£|||=m<w{||a||,||0||}.

Lemma 5.2 Let S = (&)m<i<m+d-i 6e a system of d weighted linear equations such thai :

(7;v;e[m,m + rf-i],|||& |||<s,-
(2) Vi e [m. m + rf - 2], W(£,+i) - W(&) > Si+1.

Then INV(6") /-L. D(5) < d- 1,V£ S IN'V(S). ||| £ |||< Em+D(S) +sm+D(£i-

679

6 Constants

The following constants will be used in the sequel.

ibo = max{v([pAq]) \p,q€Q,Ae Z, \pAq] £ 0}, Jfci = max{2i0 + 1,3}, jfc2 = 4*i + 2(ii)2 + t0,
01 = 4ifco + 2, A"i=*i + 1, A'2=2(ii)3 + 3(t1)

2 + ii + l,
A3 = k0\Q\, A4 = iolQI2 + (h + 6)|Q|,
<io = 2|Q|Card(.Y^'')-

We consider now the integer sequences (b~i,U, £i, «i, Si, £i)m<i<m+n-i denned by the relations (11,12)
of section 5 where the parameters K\,..., A4 are chosen to be the above constants, the functions F is
associated with d — do and m = 1, n = do.

D2 = rdo+sdo.

7 Strategies for T>0

Let us define strategies for the particular system 2V
We define first auxiliary strategies Tcm, Tj, XE, TU, TB , Tc and then derive some closed strategies from
them. Let us fix here some total ordering on X : x\ < x? < ■ ■ ■ < xa and also some total ordering < of
type uon^l (inherited from the usual well-ordering of IN by the fixed encoding). From these orderings
one can construct in the usual way an ordering of type u on the sets X* ,A~ and IN* x (DRB < V >)".

Let us adapt the usual notion of stacking derivation to derivations of series. For every u 6 X" we
define the binary relation } {u) over DB < V > by: for every S,S' S DB < V >,S f (u)S' <S> 3A € Z,u e
Z+,p,qeQ,#e DBQil < V > such that

S = [pA]* <P, \pA] 0 u = [qu],S' = [qu] * 9.

A sequence of deterministic series So, Si,. ■., 5„ is a derivation iff there exist xi,..., x„ 6 X such that
So 0 xl = Si,.. . ,Sn_1 Qx„ = S„. If u = Xi ■ X2 ■... ■ xn we call So,S\,.. .,Sn the derivation associated
with (5, u). A derivation So, Si,..., S„ is said to be stacking iff it is the derivation associated to a pair
(5, u) such that S = So and So T (u)S„.

Tc,u: Tcut(A1---An) = Bl---Bm iff 3i € [1, n - 1], 35, T,

Ai = (pi, S,T). An = (p„,S,T),Pi < pn and m = 0

Tt: T^AiA? ■■■A„) = B1---BmiS3S,T,An = (p, 5, T),p > 0,5 = T = 0 and m = 0
Ts: Ts(Al--An) = Bl-Bm iff A„ = (p, S,T),p > 0, 5 = T = e and m = 0
7^: TA(,4I--yt„) = Si---Smiff

An = (p,S,T),m=\X\,B1 = (p+l,SQx1,TQxl),---,Bm = (p+l,SQxm,TOxm),

where 5^;,r^;
r|: T^(.41---J4„) = ß1---ßm iff n > fci,.4n_tl =(w,Ü,U'), (where !7 is unmarked)

u' = Y1 &Aq] 'v? (for some (P€Q)

Ai = (ir + &! + i - n, Ui,U{) for n — fci < i < n, (C/'i)„_tl<i<„ is a "stacking derivation" (see the
above definition),

V'n = 'Yl\pT<l]-vqi for some pS Q,r£Z+,

m = 1, Si = (* + h - 1, V, V"), V = C/n, V" = £,6<3,[pr,] • [?e?] • (f/0 «,),
_where Q' = {q € Q \ \pAq] £ IS}, V? e Q', u, = min(^([pA?])).

Tg : Tg is defined in the same way as Tg by exchanging the left series (S~) and right (5+) series in
every assertion [p, 5~,S+).

680

Tc: Tc(Ai---An) = Bx-Bm iff there exists d€ [l,d0},Si,S2,-■ ■ ,St € DRB < V >,1 < «i < K2 <

... < «d = n, such that,
(Cl) every equation & = AK, is a weighted equation over Si, So, ■ ■ ■, St,

(C2) 5 = (£i)i<i<d fulfills the hypothesis of lemma 5.2,
(C3) [KUKo,---,Kd,Si,---,Sd) 6 IN" x (DRB < V >)' is the minimal vector satisfying conditions

(C1,C2) for the given sequence (Ai ■ ■ ■ A„) and
(C4) Si • • ■ Sm = Pe(INV(S)) (where pe is the obvious extension of p. to pairs of series and then

to sequences of weighted equations; in other words the result of Tc is INV(S) where the marks

have been removed).
Let us notice that, by lemma5.2 and lemma3.9, for every j £ [l,m], ||| Bj \\\< Zm+D(s) + *m+D(,S) <
£m+d0 + Sm+d„ = Do. This inequality is independent of the sizes of the series appearing as lefthand

sides (or rhs) of the initial equations Ai - • • A„.

Lemma 7.1 : Tcut,Tt,Tt,TA,TB,Tc areVQ strategies.

Let us define the strategy SAB by : for every W = A^Ai ■ ■ -A„,

(0) if W € dom(T,ul), then SAB(W) = Tmt(W) (1) elsif W € dom(Ta), then SAB(W) = T,(W)
(2) elsif W e dom(Tt), then SAB(W) = TC{W) (4) elsif W € dom(T+), then SAB{W) = TB (W)
(5) elsif W € dom(Tä), then SAB(W) = Tg{W) (6) elsif W € dom(TA), then SAB(W) = TA(W)

(7) else SAB{W) is undefined.

The strategy SABC is obtained by inserting "(3) elsif W € dom(Tc), then SABC{W) = TC(W)" '" the

above list of cases.

Lemma 7.2 SABc,SAB <""e c/oseii.

8 Tree analysis

This section is devoted to the analysis of the proof-trees r produced by the strategy SAB defined in
section 7. The main results are [Sen97, lemma 8.14 , 8.15] whose combination asserts that if some path
(from a node x to a node y) of r is such that its origin has a "small norm" and its length is "large

enough", then the transformation Tc is defined at some ancestor of y. 4

9 Completeness of VQ

Lemma 9.1 : SABc « terminating.

The proof leans on the two delicate lemmas [Sen97, lemma 8.14 , 8.15] mentioned above.

Theorem 9.2 The system T>0 is complete.

Pi-oof: By lemma 7.1 SABC is a strategy for V0, by lemma7.2 SABc is closed , by lemma 9.1 it is termi-

nating and by lemma 4.6, V0 is complete. D

Theorem 9.3 The equivalence problem for deterministic pushdown automata is decidable.

Proof: Let M be some dpda. The equivalence relation = on DRB < V > (where V is the structured
alphabet associated to the given M) has a recursively enumerable complement (this is well-known). By-
theorem 9.2 and lemma 4.2 = is recursively enumerable too. Hence s is recursive. In addition, the system

Vn associated with M is computable from M, hence the theorem follows. O

4 Technically speaking, this is the most difficult part of the full proof; we cannot sketch it here due to the lack of

space.

681

Acknowledgements I thank: L. Boasson and J.M. Autebert for supervising my first works on Eq(D.D).
B. Courcelle for initiating me to the classical equivalence algorithms, to his notion of decision systems
and for numerous discussions along the years, M. Oyamaguchi for discussions, M.S. Paterson for his
hospitality and interest, J.E.Pin and W. Thomas for pointing to me Meitus' works, D. Caucal and C.
Stirling for useful informations, H. Comon and J.P. Jouannaud for stimulating me to read Meitus' work
in details, J. Karhumaki for his encouragements , M. Nivat for his support, J. Engelfriet, L.P. Lisovik,
Y. Matiyasevich for discussions. I am also indebted to the CNRS (and, obviously, to my collegues in the
CNRS comitee) who allowed me to have my full time for research during the academic year 1996/1997.

References

[Bee76] C. Beeri. An improvement on Valiant's decision procedure for equivalence of deterministic finite-turn
pushdown automata. TCS 3, pages 305-320, 1976.

[Cau95] D. Caucal. Bisimulation of context-free grammars and of pushdown automata. To appear in CSLI,
Modal Logic and process algebra, vol. 53, Stanford, pages 1-20, 1995.

[Cou83] B. Courcelle. An axiomatic approach to the Korenjac-Hopcroft algorithms. Math. Systems theory, pages
191-231, 1983.

[Cou90] B. Courcelle. Recursive applicative program schemes. In Handbook of THeoretical Computer Science.
edited by J. Van Leeuwen, pages 461-490. Elsevier, 1990.

[GG66] S. Ginsburg and S. Greibach. Deterministic context-free languages. Information and Control, pages
620-648, 1966.

[Har78] M.A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, Reading, Mass., 1978.
[HHY79] M.A. Harrison, I.M. Havel, and A. Yehudai. On equivalence of grammars through transformation trees.

TCS 9, pages 173-205, 1979.
[Lis96] L.P. Lisovik. Hard sets methods and semilinear reservoir method with applications. In Proceedings 23rd

ICALP, pages 229-231. Springer, LNCS 1099, 1996.
[Mei89] Y.V. Meitus. The equivalence problem for real-time strict deterministic pushdown automata. Kiber-

netika 5 (in russian, english translation in Cybernetics and Systems analysis), pages 14-25, 1989.
[Mei92] Y.V. Meitus. Decidability of the equivalence problem for deterministic pushdown automata. Kibernetika

5 (in russian, english translation in Cybernetics and Systems analysis), pages 20-45, 1992.
[Oya87] M. Oyamaguchi. The equivalence problem for real-time d.p.d.a's. J. assoc. Comput. Mach. 34, pages

731-760, 1987.
[Rom85] V.Yu. Romanovskii. Equivalence problem for real-time deterministic pushdown automata. Kibernetika

no 2, pages 13-23, 1985.
[Sen94] G. Senizergues. Formal languages and word-rewriting. In Term Rewriting, Advanced Course, pages

75-94. Springer, LNCS 909, edited by H. Comon and J.P.Jouannaud, 1994.
[Sen97] G. Senizergues. L(A) = L(B)? Technical report, LaBRI, Universite Bordeaux I, report nrll61-97. can

be accessed at URL, http://www.labri.u-bordeaux.fr/, 1997.
[Sti96] C. Stirling. Decidability of bisimulation equivalence for normed pushdown processes. In Proceedings

CONCUR 96, 1996.
[Val74] L.G. Valiant. The equivalence problem for deterministic finite-turn pushdown automata. Information

and Control 25, pages 123-133, 1974.
[VP75] L.G. Valiant and M.S. Paterson. Deterministic one-counter automata. Journal of Computer and System

Sciences 10. pages 340-350, 1975.

On Recognizable and Rational Formal Power Series
in Partially Commuting Variables*

Manfred Droste1 and Paul Gastin2

1 Institut für Algebra. Technische Universität Dresden, D-01062 Dresden,
droste@math.tu-dresden.de

2 LITP, Universite Paris 7, 2 place Jussieu, F-75251 Paris Cedex 05,
Paul.Gastin@litp.ibp.fr

Abstract. We will describe the recognizable formal power series over
arbitrary semirings and in partially commuting variables, i.e. over trace
monoids. We prove that the recognizable series are certain rational power
series, which can be constructed from the polynomials by using the oper-
ations sum, product and a restricted star which is applied only to series
for which the elements in the support all have the same connected al-
phabet. The converse is true if the underlying semi-ring is commutative.
Moreover, if in addition the semiring is idempotent then the same re-
sult holds with a star restricted to series for which the elements in the
support have connected (possibly different) alphabets. It is shown that
these assumptions over the semiring are necessary. This provides a joint
generalization of Kleene's, Schiitzenberger's and Ochmanski's theorems.

1 Introduction

In the theory of automata and formal languages, Kleene's foundational theorem
on the coincidence of regular and rational languages in free monoids has been
extended in many ways. Schützenberger [15] investigated formal power series
over arbitrary semirings (e.g., like the natural numbers) and the free monoid,
i.e. in noncommuting variables, and showed that the recognizable formal power
series coincide with the rational ones. This was the starting point for a large
amount of work on formal power series, cf. [14,9,2,8] for surveys. The concept
of recognizable formal power series has also been defined for arbitrary monoids
instead of the free monoid, but it was clear and has been stressed by several
authors (cf., e.g. [14]) that in general then the recognizable and the rational

series do not coincide.
On the other hand, Mazurkiewicz [10,11] introduced an important mathemat-

ical model for the behaviour of concurrent systems: trace monoids (or free par-
tially commutative monoids), see also [3,1,4-6] for their well-developed theory.
They are monoids whose generators are partially commutative. Again, their rec-
ognizable languages do not coincide with the rational ones, but by Ochmanski's

* This research was partly carried out during a stay of the first author in Paris and
another stay of the second author in Dresden.

683

theorem [12] they coincide with the c-rational languages where the iteration is

restricted to connected languages.
It is the aim of this paper to investigate recognizable formal power series over

trace monoids, thereby obtaining a generalization of both Schützenberger's and

Ochmahski's results.
We denote by K((M)) the set of all formal power series over the semiring K

and the free partially commutative monoid M. It is known that in general the
recognizable series in A'((M)) form a proper subclass of the rational ones. We
therefore dehne the subclasses of c-rational and mc-ra,tiona,l series. We say that
a series S is connected, if each element of its support is connected, and S is mono-
alphabetic, if all elements of its support have the same set of generators. The c-
rational series are obtained from the polynomials by allowing the operations sum,
product, and star, but the latter applied only to proper and connected series.
The mc-rational series are constructed in the same way, but using star only for
series which are proper, mono-alphabetic and connected. In view of Ochmahski's
result, one might expect that the recognizable series in K((M}) coincide with the
c-rational ones. However, we will show that this fails in general even for the
semiring (N,+, x). Our main result is the following:

Theorem 1. Let M be a trace m.onoid and K a semiring.
(a) Each recognizable series in K((Mj) is mc-rational.
(b) If K is commutative, each m,c-rational series in K((M)) is recognizable.
(c) If K is commutative and id.emyote.nt, each c-rational series in A'((M)) is

recognizable.

The fact that the recognizable series in K((Mj) are closed under the product
operation was proved before already by Fliess [7], but only for very specific
semirings K (strong Fatou semirings or the Boolean semiring). By Theorem 1(b),
this holds for arbitrary commutative semirings, and we show by example that

the commutativity of K is needed for this.
Theorem l(b,c) is proved in section 3. There we also show that if the star S*

of a recognizable proper series S is connected, then it is also recognizable. This
gives another closure property of the recognizable series under the star-operation.
Part (a) of Theorem 1 is proved in section 4, and in section 5 we give examples
and discuss the relationship with Schützenberger's and Ochmahski's results. For
lack of space, most proofs are not contained in this extended abstract.

It seems a very interesting research road to investigate which other results
from the theory of formal power series over non-commuting variables can be
extended to series over partially commuting variables, i.e. over trace monoids.

2 Background

Here we recall the necessary notation and background for formal power series
and of trace theory. For more details, we refer the reader to [14,2,4,6].

Let M be any monoid and K = (K, +, -,0,1) any semiring, i.e., (Ji\+,0)
is a commutative monoid, (K, -,1) is a monoid, multiplication distributes over

684

addition, and 0 • x = x ■ 0 = 0 for each x £ K. If multiplication is commutative,
we say that K is commutative. If the addition is idempotent, then the semiring
is called idempotent. For instance, the semiring (EU {oo},min, +,oo,0) is both
commutative and idempotent.

Mappings S from M into K are called formal power series. They are de-

noted as formal sums S = J2meM(^^m)-m wnere (S,m) = S(m) £ K. The set
supp(S) = {m £ M | (S,m) ^ 0} is called the support of S, and if it is finite,
then S is called a polynomial. The collection of all formal power series is denoted
by K((M}), and its subset of all polynomials by K{M). We consider elements
of K also as polynomials in the natural way, having a non-zero entry only at
1 £ M. If L C M, we define the characteristic series of L by l/_, = Y^meL 1' m-

Let n > 1 and [n] = {1,...,??,}. We let Knxn be the monoid of all (n x n)-
matrices over K (with matrix multiplication as usual). A series S £ K((M))
is called recognizable, if there exists an integer n > 1, a monoid morphism /./. :
M —> Knxn and vectors A £ A'lxn,7 £ A'nxl such that

(5, m) = A • (fim) ■ 7 = ^ A^pm),-^
ij'e[n]

for each m G M. In this case, the triple (A,//.,7) is called a representation of
S, and we often shortly write S = (A,//,7) to denote this. If «,j e [n], we also
al^l^reviate (fim)ij =: firnij. We let Krec({M)) denote the set of all recognizable
formal power series.

With componentwise addition, K((M)) becomes a commutative monoid. Now,
the (Cauchy) product of two series S, S' in K((M)) is the series defined for m £ M

by (5 • S',m) = 2m=m, •m2(
5'>mi) ' (5')m2) provided the sum is defined (e.g.

when the sum is finite). With this, K{(M)) is a semiring. The powers S"(n > 0)
are defined in the natural way. We call S proper, if (5,1) = 0, and then we put, in

the natural way, S* = J2n>o ^"'tne star (or iteration) of 5, and S+ = J2n>i ^"J

provided it is defined. We" let Krat((M)) denote the smallest subset of K((M))
which contains all polynomials and is closed under the operations sum, product
and star, where the latter is only applied to proper series. Its elements are called
rational formal power series. Now Schiitzenberger's theorem states the following
equivalence between recognizable and rational series over the free monoid.

Theorem 2 (Schützenberger, [15]). Let £ be any finite set and K any semi-

ring. Then
Krcc((E*)) = Kral ((£*)).

From this, Kleene's theorem on the coincidence of regular and rational lan-
guages follows by considering the Boolean semiring B = {0,1} (with 1 + 1 =
1-1 = 1) and noting that a language L C E* is regular iff its characteristic series
If, £ B((-£"')) is recognizable, and similarly for rationality.

Later we will also need the Hadamard product S 0 T of two series S,T £
K((M)). It is defined by (S 0 T, m) = (S, m) • (T, m) for all m £ M.

Next we recall basic notions from trace theory. A pair (£, I) is called a trace
alphabet, if S is a finite set and / is an irreflexive symmetric binary independence

685

relation on E. Let ~ denote the smallest congruence on E* containing {(ab,ba) :
a I b}. The quotient monoid M = M(E,I) := E* / ~ is called the trace monoid
(or free partially commutative monoid) over (E,I). If w; £ E*, we let [w] denote
the equivalence class of w in ML Also, let a(w) be the set of all letters of E
occurring in w.\ called the alphabet of w. Since equivalent words have the same
alphabet, we may put o:([w}) = a(w). If A,B C E, we write A I B to denote
that a I b for all a £ A,b £ B. We also write w I A or [w] I A to abbreviate
that n(w) I A, similarly, w I w' for a(w) I <*(«/), etc. A subset A C E is called
connected, if it cannot be split A = AöB into two non-empty subsets such that
AI B. Again, u> and [w] are connected, if a(w) is connected. A language L CM
or L C E" is called connected, if each of its elements is connected, and mono-
alphabetic, if a(m) - a(m') for all m, m,' £ L. Then the collection of all c-rational
languages in M (respectively, in E*) is defined as the smallest set of languages
of M (respectively, of E*) containing all finite languages and which is closed
under the operations union, product and star, where the latter is applied only
to connected languages. The following characterizes the recognizable languages
of M (recall that a language LCMis recognizable iff it is accepted by some
finite M-automaton, or, equivalently, iff its syntactic monoid is finite).

Theorem 3 (Ochmariski, [12,4,6]). Let (E,I) be any trace alphabet and M
its trace monoid. Then a language L CM is recognizable iff it is c-rational.

Again, one should note that the Kleene's theorem mentioned above is a spe-
cial case of Theorem 3 since when the independence relation is empty, the trace
monoid M(E, 0) is the free monoid E* and in this case all languages are con-
nected, hence rational sets are also c-rational.

The goal of this paper is a common generalization of Theorems 2 and 3,
that is, a characterization of the recognizable formal power series in K((M))
where K is a semiring and M a trace monoid. Let S £ K((M)). We. say that S

is connected, if snpp(S) is a connected language in M, and mono-alphabetic, if
supp(S) is mono-alphabetic. In the latter case, we put a(S) = a(m) if S ^ 0
and m £ supp(S). Now let Kmc~rai ({M)} (mono-alphabetic-connected rational)
be the smallest subset of K((M)) which contains all polynomials and is closed
under the operations sum, product and star, where the latter gets applied only
to proper, mono-alphabetic and connected series. Similarly, we let Kc"ral'((M))
(connected rational) be the collection of series obtained from the polynomials
by allowing the operations sum, product and star, where now star is applied to
all proper and connected series. Similarly, we define connected series in K({E*))
and the collection of mc-rational series in K((E*)).

3 Mc-rational series are recognizable

In this section, let (E, I) be a trace alphabet and M = M(E, I) its trace monoid.
We will prove Theorem l(b,c). This will require a more particular notion of
representations which we introduce first.

686

Definition 4. Let 5* = (A,//,-/) € K((M)) be a recognizable series with fj. :
M —> Knxn. The representation (A,/;,, 7) is alphabetic, if there exist two func-

tions a, a : [n] —> V(E) such that for all u e M, the following three conditions

are satisfied:
(1) Whenever fj.ii.ij ^ 0, then o.(j) = a.(i) U 0.(11) and a(i) = o.(j) U a(u);

(2) whenever A,- / 0, then a(i) = 0;

(3) whenever ~/j ^ 0, then a(j) = 0.

We call (X,fi,-/-.a,a) an alphabetic representation of S. Here, a(fc) describes

the pn.it. alphabet of k and ra(fc) the future alphabet, of fc. We say that k is wwtinZ,

if a(fc) = 0, and k is /mriZ, if a (A;) = 0.

We will often use the fact that if (A,//,7) is alphabetic and fiuij ^ 0, then i

initial implies that a(j) = «(»/), and j final implies a(«) = a(u). Moreover, if
;/. / 1, then i initial implies fiuki = 0, and j final implies fmjk = 0, for any k.

Proposition 5. Let S € #((M)) 6e a recognizable series. Then there exists an

alphabetic representation of S.

First we want to show that the product of two recognizable series in K{(M)}
is again recognizable. For more particular semirings K (strong Fatou semirings
or the Boolean semiring), the result has been obtained already by Fliess [7,
Prop. 2.2.14 and 2.2.15]. Our proof will not use the full notion of alphabetic
representation, since it can be based either on the past alphabets (the function

a) or the future alphabets, only. The full notion of alphabetic representation
will come into use when we deal with iteration.

Theorem 6. Let K be a commutative semiring and let Si,S2 S -K"((M)) be two
recognizable series. Then their product S = Si ■ 52 is also recognizable.

Proof. Let (X1 ,^,-f1) be a representation of S1 and let (A2,/y,2,7
2; «, <*) be an

alphabetic representation of S2 (Proposition 5). We assume that m : M ■—>
Kn'xni for i. = 1,2, and let n = nx • n2. Subsequently we identify [n] with
[m] x [n2]. Next, we define /;, : E* —► KnXn by

l'ia){U,h)(h,h) = Sh,J2I(a^i2)l'i(a)iuh +siu}Jlz(a)h,h

if i=j [l \iula(i)
and 1(11,1) = <

otherwise [0 otherwise

Note that /(o, j2)/'2(a);2,h = °' hence at most one of the two terms is non-zero.
One can prove that //(«) • fi(b) = fi(h) ■ fi(a) for all (a, b) £ I. Hence, //

factorizes to a morphism p. : M —> Knxn. Next we claim that this factorization

is given by the explicit formula

Kw)(i,,i2)Uuh) = J2 I(u,i2)lJ.i(u)iujiH2(v)h,h

687

Finally, define A e Alx",7 G A"xl by \{iuh) = X}^, !(*,,*,) = 7*,7fc3- We
can verify that 5 = (A,//.,7) which proves the theorem.

The following result shows that a mono-alphabetic recognizable series has
an alphabetic representation (A,//, 7; a, a) with an even more specific form. For

this, let <?! = (1,0,... ,0) G Alx" and en = (0,... ,0,1)'' G Anxl.

Proposition 7. Lei 5 G A'({M)) be recognizable, proper and mono-alphabetic

with a(S) = A. Then there exists an alphabetic representation (ei,//,e„; a, a)

ofS with a{l) = a{n) = A.

We will now prove the following essential closure property of recognizable
series. Note that Theorem 1(b) follows easily from Theorems 6 and 8.

Theorem 8. Let K be a, commutative semiring and let S G A'((M)) be a proper,
connected, mono-alphabetic and recognizable series. Then, S* is recognizable.

The proof of this theorem is based on a rather involved construction. Let
S G A"((M)) be a proper, recognizable, connected and mono-alphabetic series

with a(S) = A. Let 5 = (ei,//,en\ a, a) be an alphabetic representation with

a(l) = a{n) = A (Proposition 7). Let m > 1. We identify [nm] with the set [n]m

of all m-tuples with entries from [n\. We use 1 as abbreviation for such an m-tuple
(?!,... , im), similarly j, k. Now we define functions //,..., ym : E* —> A""™' x "™

by

.0 _\lMUn if J= (*2,---,*m,l)

0 otherwise
// «j; =

lmiPjP
if if = *' for all/ 7^ p

0 otherwise
^flr,-=r:,';' "--;'""-- (p>i)

Also, let

' 1 if a(ip) U a(ip) = A = a(S) for all p, a(h) / 0 and

-firT = { ft(»'p) / «(*g) for all p < q

^ 0 otherwise

Let. H G A"'" x "'" be given by Hrj = H-t ■ H-„ and define y." : E* —> An™ x"™
by //* = ff 0 (/i° + • • • + //m), where (H 0 //P)(««)TJ = % • t>?mj for any w G E*
and ?,JG [n]m.

Theorem 8 results clearly from the following two essential results.

Proposition 9. Let K be a commutative semiring and assume that m, > \A\.
Then)i'{ob) = fi*(ba) for all a,b £ E such that a I b.

Hence //* factorizes to a morphism from M to #"'"*"'", and we have:

688

Proposition 10. Let, K be a commutative semiring and assume, that m > \A\.
Then S~ = (Aj,//.*,7j) where Aj,7j are the row respectively column vectors which

have a 1 only at entry 1 = (1,... , 1), and. 0 otherwise.

Next we wish to derive a further closure properties of Krcc((M}).

Definition 11. Let S G K((M)) or S G K{(S*)) and ACS. Then the restric-
tion of S to A is the series SA defined by

f(S,w) if «H= A
(SA,w) = <

10 otherwise

First we show that the restriction preserves both recognizability and mc-

rationality of series.

Proposition 12. Let S G A'{{M)) he recognizable. Then SA is also recognizable.

Proposition 13. Let S G K((£*)) or S G K((M)) be mc-rational. Then SA is

also mc-rational.

The following lemma generalizes a result of Pighizzini [13] for trace languages.

Lemma 14. Let S G A'((M)} be proper and AC S be non.em.pty. Then {S*)A =

Z+X where X = £BC/,(S*)B and Z={X-S)A-

Next we derive another sufficient condition which implies that the star of a
recognizable series is again recognizable and, also, that the star of an mc-rational

series is again mc-rational.

Theorem 15.

1. Let K be. a commutative, semiring and S G K((M)) be proper and recognizable
such that S" is connected. Then S* is recognizable.

2. Let A" be any semiring and S G K((S*)) or S G A'«M}) be proper and mc-
rational such that S* is connected. Then S* is mc-rational.

For positive semirings, the condition S* connected is stronger than S con-
nected. This latter condition is actually sufficient to obtain the closure properties
stated in Theorem 15 when the semiring is commutative and idempotent. This is
an easy consequence of Theorem 1(a) and of Theorem 17 for which the following
lemma is crucial.

Lemma 16. Let K be a commutative and idempotent semiring. Let S G A'((M))
be a connected series and. let B,C C S be independent subsets of the alphabet.

Then, {S*)BUC = (S*)B-(S*)C.

Theorem 17. Let K be a comm.uta.tive and idempotent semiring. A series in

A"((M)) is mc-rational iff it, is c-rational.

689

Proof. One direction is clear and for the converse, it snfSc.es to show that the
star of an mc-rational connected series S is still mc-rational. We will first show
by induction on the size ofiCX that if S is an mc-rational connected series
then (S*)A is mc-rational. The theorem follows directly since S* =Y,ACE(

S
~)A-

Clearly, (5")0 = 1 is mc-rational. Now, assume A ^ 0 and let Au... ,An

be' the connected components of A: A = Ai U • ■ ■ U An and Ai I Aj for i / j.
By Lemma 16, we obtain {S*)A = {S*)A, ••■(S")yi„ and we are reduced to
the case A connected. Now, using Lemma 14 we obtain (S*)A = Z+X where

X = *ERCA(
S

*)V
and Z = (X ■ S)A-

Then X is mc-rational by induction
hypothesis. By Proposition 13, it follows that Z is also mc-rational. Since we
have assumed A connected, we deduce that (S*)A = Z ■ Z* ■ X is mc-rational.

Note that Theorem 1(c) follows from Theorem 1(b) and Theorem 17.

4 Recognizable series are mc-rational

Thoughout this section, let K be an arbitrary (possibly non-commutative) semi-
ring and {S,I) a trace alphabet. We will prove that all recognizable series in
A"((M)) are mc-rational. This uses the concept of lexicographic normal forms of
traces and LNF-representations of series which we introduce first. For this, fix
any linear order < on E. We extend this to the lexicographic linear order, also
denoted by <, on E'. We say that a word w is the lexicographic normal form
of [?<;], if it is the smallest element of [u>] with respect to <. Then LNF is the
set of all words which are lexicographic normal forms. Note that LNF is closed
under prefixes (and suffixes). Now let .Ar,NF = (Q,^^,q0,Q) be the minimal

(reduced) automaton for LNF.

Definition 18. We will call a morphism fi : E* —>• Knxn an LNF-morphism,
if there exists a function n : [n] —> Q such that for all a G E and all i,j £ [n],

fiaij / 0 implies x(i) -^ %(j) in ANF- Then any representation (A,//,7) with
an LNF-morphism /./. of a series S G K((E*)) will be called an LNF-representation

of S.

Proposition 19. Let S' G K({E*)) be recognizable. Then S = S' 0 1T,NF has an

LNF-representation.

Next we note that for any n > 1 there is a canonical isomorphism # between
the semiring of n x n-matrices K((E*))nxn and the semiring of formal power
series Knxn({E*)), given by (*(A),u>) = ((Aihw)) if A = {Ai}) G A'((^-))"xn.
Subsequently, we will often identify A with its image #(A).

We will also use the following result.

Lemma 20 (Ochmanski, [12,4]). Let w G E* be a word such that. w,w2 G
LNF. Then w; is connected.

Proposition 21. Let // : E" —> KnXn be an LNF-morphiim, and let M =

Y;aprtm ■ n S Knxn(E*). Then the entries of M* are mc-rational series.

690

Proof. We first, show, by induction on the length of w, that (M*,w) = fiw for
any word M:. Indeed, clearly (M*, 1) = 1 = //l and (M*,wa) = (l + M*M,wa) =
(M"M,wa) = (M",w)(M,a) = ftw ■ pa = (i(wa).

By lack of space we only give the proof for n — 1, which already shows several
connections between all the results. Hence, assume that n = 1. Then M G K(S*)
is proper and mc-rational. Now, let w G S*. If (M*,w) - fj.w ^ 0, since /./, is an

LNF-morphism, we have a path 7r(l) -^> TT(1) in ANF- Therefore, w,w2 G LNF
and by Ochmahski's lemma 20, w is connected. Hence M* is connected and so,

by Theorem 15, mc-rational.

Theorem 22. Let S G K{{£*)) be recognizable. Then S 0 1LNF « mc-rational.

Proof. By Proposition 19 we can choose an LNF-representation (A,//, 7) of S' =

5" 0 1T,NF- Let M = Y,aes lm ' a- ^e ^lave seen *n t'-le Pro°f °f Proposition 21
that (M~,w) = fiw for any word w.

Now, A and 7 are vectors with entries in K, and M* has only mc-rational
series as entries by Proposition 21. Hence AM*7 G K{{£*)) is an mc-rational
series. Finally, observe that for any word w,

i,3 ',3

- ^2,^illwijli = Vw7 = (S',w).

Therefore S 0 1T,NF = S' = \M*j is mc-rational.

Corollary 23. Let 5 G K{(£*)) be recognizable with supp(S) C LNF. TAßre 5
is mc-rational.

Let M, A' be two monoids and h : M —>• Ar be a morphism. Then h"1 :
K((N)) —> K((M)) given by (/i_1(5),w) = (S,h(w)) («; G Ar) is a semiring mor-
phism. Moreover, if S = (A,//,7) G Krec{(N)), then (V^S*),™) = (5,A(w;)) =
A//./7.(w;)7, hence (of. [14, p.32])

h-1(S) = {\,fioh,y)eKre°((M)).

Let 92 : E* —> M be the canonical epimorphism. Then <p extends naturally
to a mapping, denoted by #, from K((E*)) to K((M)) given by

#(S) = £ (S,«,M«;) = E f E (5'";)) ■*•
wGU* (€M \toe^-'(/,) /

As is well-known from general results (cf., e.g., [14, pp.13,14]), # is a semiring
morphism and if S is proper, then #(S*) = #(5)*. Furthermore, if 5 is connected
(respectively, mono-alphabetic), then #(5) is also connected (respectively, mono-
alphabetic). From this, it is clear that if S is mc-rational, then #(5) is also
mc-rational. Now we prove Theorem 1(a).

691

Theorem 24. Let S G A'((M)) be recognizable. Then S is mc-rational.

Proof. Let S = (A,//,7) G A'rec((M)). As noted before, ^(S) G Jircc«r*)).
By Theorem 22, '^(S) 0 ILNF is mc-rational. Hence also $((^"1(S') (•) 1T,NF) is

mc-rational. Now for each f£Mwe have

Wf-HS) 0 1LNF),0 = Y (^_1(5) 0 1
I-NF,W)

Y (<p-\s),u!)= Y (SM">)) = (S,t).
u-S^-HOnLNF u>€v_,(')nLNF

Therefore, 5 = $(^_1(S) (•) 1T,NF) is mc-rational.

5 Examples and consequences

Here we will give two examples to show that the assumptions in Theorems 6 and 8
(hence, in Theorem l(b,c)) are necesssary. We also indicate the relationship with
the results of Schützenberger and Ochmanski. First, we show that, in Theorem 6

the commutativity of K is necessary.

Example 25. Consider the trace alphabet (E,I) with E = {a,b} and a I b, and
let A" = 1(37"). Let S = £n an.on,T = £„ bn.bn G K((M)). Then S and T are
recognizable. Indeed, if // : E* —> K is defined by fi(a) = a and /./,(6) = 0 and
A = 7 = 1, then S = (A,//,7). However, we can show that S ■ T G K({M}) is not.

recognizable.

Secondly, we want to show that in general Krec((Mj) is properly contained in
Kc~rat{(Mj). That is, we show that the star of a connected recognizable series
may not be recognizable. (Thus by Theorem 15, the star of this series will not

be connected.)

Example 26. Again consider the trace alphabet (E, I) with E = {a, b} and a I b,
and let S = a + b G N(M). Then, obviously, S is a connected polynomial and

(£-, t) = ("1^1'!") for all * € M Hence, S* = En.meN ("+„>r- We can Prove

that S~ is not recognizable.

Let E he any finite alphabet. If I = 0, the trace monoid M(E, I) is isomorphic
toT-. Hence, by Theorem 24 we have Krec((E*)) C K

mc-ral((E*)) C Kral((E')).
Now, using one inclusion of Theorem 2, we obtain Krcc((E*)) = Kmc-ra'((E*}) =
Kral((E*}) which is in fact a strengthening of Theorem 2.

Now we show how to deduce and actually strengthen Theorem 3 from our
results. The following can be proved in the same way as classically for the free

monoid (of. [14,2]).

Proposition 27. L CM is recognizable (resp. rational, c-rational, mc-rational)

ifflj, G 1((M)) is recognizable (resp. rational, c-rational, mc-rational).

692

Since the boolean semiring B is both commutative and idempotent, we de-
duce from Theorem 1 that a series in B((M)) is recognizable iff it is c-rational iff
it is mc-rational. Using Proposition 27, we deduce that a trace language L CM
is recognizable iff it is c-rational iff it is mc-rational. The first equivalence is
precisely Ochmahski's theorem. The second one is a strengthening of a result
by Pighizzini [13] which characterizes the recognizable languages as those lan-
guages obtained from finite sets of traces using union, concatenation, restriction
to mbalphabet and star restricted to monoalphabetic and connected languages.

References

1. I.J. Aalbersberg and G. Rozenberg. Theory of traces. Theoretical Computer Sci-
ence., 60:1-82, 1988.

2. J. Berstel and Ch. Reutenauer. Rational Series and Their Languages, volume 12
of EATCS Monographs in Theoretical Computer Science. Springer Verlag, 1988.

3. Ch. Choffrut. Free partially commutative monoids. Rapport LITP 86.20, Univer-
site Paris 7 (France), 1986.

4. V. Diekert. Combinatorics on Traces. Number 454 in Lecture Notes in Computer
Science. Springer Verlag, 1990.

5. V. Diekert and Y. Metivier. Partial commutation and traces. In G. Rozenberg and
A. Salomaa, editors, Handbook on Formal Languages, volume III. Springer Verlag.
To appear.

6. V. Diekert and G. Rozenberg, editors. Book of Traces. World Scientific, Singapore,
1995.

7. M. Fliess. Matrices de Hankel. J. Math. Pures et AppL, 53:197-224, 1974.
8. W. Kuich. Semirings and formal power series: Their relevance to formal languages

and automata. In Handbook on Formal Languages. Springer Verlag, 1997. To
appear.

9. W. Kuich and A. Salomaa. Semirings, Automata, Languages, volume 6 of EATCS
Monographs in Theoretical Computer Science. Springer Verlag, 1986.

10. A. Mazurkiewicz. Concurrent program schemes and their interpretations. Tech.
rep. DAIMI PB 78, Aarhus University, 1977.

11. A. Mazurkiewicz. Trace theory. In W. Brauer et al., editors, Advances in
Petri Nets '86, number 255 in Lecture Notes in Computer Science, pages 279-324.
Springer Verlag, 1987.

12. E. Ochmariski. Regular behaviour of concurrent systems. Bulletin of the European
Association for Theoretical Computer Science (EATCS), 27:56-67, Oct 1985.

13. G. Pighizzini. Synthesis of nondeterministic asynchronous automata. In M. Droste
and Y. Gurevich, editors, Semantics of Programming Languages and Model Theory,
number 5 in Algebra, Logic and Applications, pages 109-126. Gordon and Breach
Science PubL, 1993.

14. A. Salomaa and M. Soittola. Automata-Theoretic Aspects of Formal Power Series.
Texts and Monographs in Computer Science. Springer Verlag, 1978.

15. M.P. Schützenberger. On the definition of a family of automata. Information, and
Control. 4:245-270. 1961.

On a Conjecture of J. Shallit

Julien Cassaigne

Institut de Mathematiques de Luminy,
Case 930, F-13288 Marseille Cedex 9, France

cassaignOiml.univ-mrs.fr

Abstract. We solve a conjecture of J. Shallit related to the automaticity
function of a unary language, or equivalently to the first occurrence function
in a symbolic sequence. The answer is negative: the conjecture is false, but
it can be corrected by changing the constant involved. The proof is based
on a study of paths in the Rauzy graphs associated with the sequence.

1 Introduction

In a recent paper [6], Shallit proposed a conjecture on the automaticity func-
tion of a unary language, i.e. the size of the minimum finite-state machine that
correctly decides membership in the language for words of length at most n.
See [9] for more details on the automaticity function and its applications; in
short, it measures how close the language is from a regular language. The con-
jecture arises from a natural question: apart from regular languages (which have
bounded automaticity), what is the lowest possible automaticity that a language
can have? Shallit rephrased his conjecture in combinatorial terms as follows:

Conjecture 1. Let u = Uiu2ud ... be an infinite word over a finite alphabet
that is not ultimately periodic. Define S{n) to be the length of the longest suffix
of uiu2 ■ ■ ■ un+i that is also a factor of U\u2 ...un. Then

liminf £M < 2 _ v = ^-^ ~ .381966
n—>oo n £

where <p = (1 + VE)/2 ~ 1.61803 is the golden ratio.

He also proved that if it is true, then this conjecture is optimal as the value 2-ip
is attained for the famous Fibonacci word,

0100101001001010010100100101001001010010100100101001010...

which is the fixed point of the substitution 0 *-+ 01, 1 H-+ 0.
Allouche and Bousquet-Melou [1] noticed a similarity between this conjecture

and an older conjecture of Rauzy [7], also involving the golden ratio:

Conjecture 2. Let u be an infinite word over a finite alphabet that is not ul-
timately periodic. Let R(n) be the recurrence function of u, i.e. the size of the
smallest window containing an occurrence of every factor of u of length n what-
ever its position on u, or oo if no such window exists. Then

limsup ^H > y + 2 = 11^ ~ 3.61803 .
n—>oo n 6

694

They proposed a modified ("Rauzy-like") conjecture, and proved that it was
equivalent to Shallit's conjecture:

Conjecture 3. Let u be an infinite word over a finite alphabet that is not ulti-
mately periodic. Let R'{n) be the length of the shortest prefix of u containing an
occurrence of every factor of u of length n. Then

limsup^>v> + l = ^-^2.61803.
7i—»oo ri £

Using Rauzy graphs, we have been able to prove Conjecture 2 [3]. We then
tried to adapt the proof to Conjecture 3. In principle, Conjecture 3 should have
been easier to prove in this way than Conjecture 2, as the constant is smaller
and the number of different cases to study is therefore reduced. However we did
not succeed in this attempt, and we resolved to first restrict to the case of Stur-
mian words, which we had previously dismissed as trivial, following Allouche and
Bousquet-Melou: "[...] the case of the Sturmian words [...] can certainly be ad-
dressed by adapting the arguments of [5] for the computation of lim sup R(n)/n,
but we have not written the details." We did not try to use the method of Morse
and Hedlund [5] which is specific to Sturmian words, but our general method
with (pointed) Rauzy graphs. And it appeared that contrarily to what we ex-
pected, the Fibonacci word is not optimal for R'(n)/n. Indeed, the infinite word

z3 = 0100101001001001010010010100100100101001001...

defined as the fixed point of the substitution 0 H- 01001010, 1 M- 010 satisfies

R'(n) 29-2VTÖ 0,ro,0^ J_1 hm sup —— = ~ 2.51949 < <p + 1 .
n—YOO ri y

Conjectures 1 and 3 are therefore false. However, we are now able to prove a
modified conjecture, with a different constant:

Theorem 1. Let u be an infinite word over a finite alphabet that is not ulti-
mately periodic. Let R'(n) be the length of the shortest prefix of u containing an
occurrence of every factor of u of length n. Then

R'(n) 29-2V10
lim sup —^ > —-— ~ 2.51949 ,

n—^oo ri y

and this value is optimal.

Fortunately, Allouche and Bousquet-Melou [1] proved much more than the
equivalence of Conjectures 1 and 3: they proved that the numbers liminf S{n)/n
and lim sup R'(n)/n are inverses of each other. Therefore, we immediately deduce
a modified version of Shallit's conjecture, where the constant is optimal for the
same Sturmian word Z3 as above:

Corollary 1. Let u = U1U2U3... be an infinite word over a finite alphabet that
is not ultimately periodic. Define S(n) to be the length of the longest suffix of
W1W2 • • • «n+i that is also a factor of U1U2 ■. ■ un. Then

lim.nf5M< 29 + 2^0^ 396905j

n-)-oo n 89
and this value is optimal.

695

In Section 2, we define precisely the tools that we will use in the proof. We
then study in Section 3 the case of Sturmian words, and the word z3 occurs
naturally in this process. Finally, we explain in Section 4 how the general case
can be reduced to the Sturmian case.

2 Preliminaries

2.1 Complexity and First Occurrence Functions

Let S be a finite alphabet, and S" the set of one-way infinite sequences over
S. If u = M1U2M3... is an element of Sw, and n is a non-negative integer,
we denote by Fn(u) the set of factors (also called subwords) of length n of
u, i.e. of words of length n consisting of letters occurring consecutively in u:
F!(U) = {ufcUfc+iUfc+2 • • -ufc+n-i I k > 1}, and we denote by F{u) the union of
these sets. We also denote by prefn(u) the prefix of length n of u, i.e. the word
UiU-2 ■ ■ .«„•

The complexity function of u is then defined as the function mapping a non-
negative integer n to the number of factors of length n of u: pu(n) = #F„(u).
When there is no ambiguity on the sequence u, we shall write p(n) instead of
pu(»i). It is clear that for all n > 0,1 < p(n) < (#£)n; moreover, it is well-known
that p(n) > n + 1 when the sequence u is not ultimately periodic [5].

To study Shallit's conjecture, we will use the first occurrence function £u (or
simply t) defined as follows. For any word w £ F(u), let £{w) be the smallest
positive integer m such that w = umum+i.. .um+\w\-i, so that for instance
£(prefn(u)) = 1, and let £(n) = max{f(w) | w G Fn(u)}.

Proposition 1. The function R' defined in Conjecture 3 satisfies the relation

R'(n) =l(n) + n-l.

Proof. The function R'(n) is defined as the length of the shortest prefix of u
containing every factor of length n of u. A factor w £ Fn(u) occurs in prefm(u)
if and only if l(w) < m - {n - 1), therefore prefm(u) contains all factors if and
only if m > t(n) +n-l. a

Defining A(u) = lim sup i(n)/n, we get as a corollary that

lim sup —^- = A(u) + 1 .
n—+00 Tl

Proposition 2. The first occurrence and complexity functions satisfy the in-
equality £(n) > p{n).

Proof. For two distinct factors v and w of the same length n, £{v) and £(w) are
two distinct positive integers. The set {£(w)\w 6 Fn(u)} contains therefore p{n)
distinct positive integers, hence its maximum £{n) is at least p(n). D

If the sequence u is ultimately periodic, then it is easy to see that the function
£ has a finite limit (it is the minimum value of \uv\, where u and v are words
such that u = uvu), hence A(u) = 0. Otherwise, the complexity is at least n + 1
[5], therefore £(n) > n+ 1 by Proposition 2, and A(u) > 1. Theorem 1 says that
in fact A(u) > (20 - 2>/lÖ)/9 ^ 1.51949.

696

2.2 Rauzy Graphs

To study the structure of the factors of a sequence u, it is usually convenient to
define a sequence of graphs G„, called Rauzy graphs or factor graphs, as follows.
For any non negative integer n, let Gn be the directed graph with p(n) vertices
labelled with elements of Fn(u), and with an edge from u to v if and only if
there exist two letters i,j/£S such that uy = xv G Fn+1(u). The graph Gn has
therefore p(n + 1) edges.

Unlike other problems for which only F(u) is important, for Shallit's con-
jecture we need to know which factors occur first in the sequence. We shall add
this information to the Rauzy graphs by singling out one vertex, the one labelled
with the prefix of length n of u. We will therefore consider the pointed Rauzy
graph (G„, prefju)).

We choose to label edges of Gn with letters, in the following way: if uy = xv
with x,y G S, then the edge (u,v) is labelled with the letter x. We then define
the label of a finite path of length k in Gn as the word of length k obtained by
concatenating the labels of the edges in the order they are met, and similarly
the label of an infinite path as an infinite word.

With this definition, there is a unique infinite path in Gn labelled with u and
starting in prefn(u): it is the path (toi, w2, w3,...) where wk is the fc-th block
of length n of u, i.e. wk = ukuk+i ...uk+n-i (in particular, wx = pref„(u)).
Knowing this path, we can now read £(n) on the graph.

Propositions. Let (wi, w2, w3,...) be the path labelled with u in Gn. Then
£{n) - 1 is the length of the shortest prefix of this path that goes through every
vertex of Gn, and £(n + 1) is the length of the shortest prefix of this path that
goes through every edge of Gn.

Proof. For a given w G Fn(u), we have £{w) = min{A; > l\wk = w}. Conse-
quently, a prefix (w1,w2, ■ ■ ■ ,wk) of length k - 1 of the path labelled with u
goes through the vertex w if and only if k > £(w), and it goes through every
vertex if and only if k > £{n). Similarly, for a given edge (u,v) labelled with
x G S, we have £(xv) — min{k > 1 | wk = u and wk+i — v}. Consequently, a
prefix (wi,w2, ■ ■ ■ ,wk+i) of length k of the path labelled with u goes through
the edge (u,v) if and only if k > £{xv), and it goes through every edge if and
only if k>£(n + l). □

It should be noted that in the graph Gn, every vertex has outdegree at least
one (i.e. has at least one outgoing edge), and every vertex except possibly the
one labelled with prefn(u) has indegree at least one. The sequence is said to be
recurrent if every factor occurs infinitely often; in this case prefn(u) has also
indegree at least one. If u is not recurrent, then for n large enough the prefix
prefn(u) occurs only once, and therefore the corresponding vertex in Gn has
indegree zero.

A vertex v of Gn is called bispecial if both its indegree and its outdegree are
greater than 1 (the word v is then a bispecial factor of u [4]).

697

2.3 From G„ to Gn+i

The reader is warmly encouraged to construct the Rauzy graphs G„, for small
n, for a simple sequence like the Fibonacci word, to get acquainted with the
manipulation of these graphs. One crucial point, on which the rest of this article
relies heavily, is the relation between Gn and Gn+i, which is explained in detail
in [2, 4, 8] and summarized below.

Knowing Gn, one constructs its line graph D{Gn) as follows: for every edge
(u, v) labelled with x in Gn, there is a vertex in D(Gn) labelled with xv; and for
every pair of consecutive edges ((u,v), {v,w)) in Gn labelled with x and y, there
is an edge (xv,yw) in L>(Gn) labelled with x.

Proposition 4. The Rauzy graph of order n+l is a subgraph ofD(Gn). Namely:
— If Gn has no bispecial vertex, then Gn+i = D(Gn).
— IfGn, has bispecial vertices, then some (possibly none) edges (xv,vy), with v
bispecial, have to be removed from D(Gn) to obtain Gn+\.

3 The Sturmian Case

In this section, we assume that u is a Sturmian sequence, i.e. a sequence with
complexity p{n) = n +1. As p(l) = 2, the alphabet S has only two letters. Rauzy
graphs of Sturmian sequences are described by the following proposition [2].

Proposition5. If u is a Sturmian sequence, then the Rauzy graphs are of one
of the following two types (vertices with indegree and outdegree 1 are not repre-

sented).

(i) (ii)

Moreover, both types occur infinitely often.

We shall give a particular importance to graphs of the second type, which we
number G„0 = G0, Gni, G„2, etc. Adding the initial vertex prefju) (marked
with a black triangle), we get the following pointed graph Gnk.

(1)

The three branches are labelled with the words ak, bk, ck (in the case where
the initial vertex is also the bispecial one, ak is the empty word and the loop
labelled with bk is the first one used in a path labelled with u). They satisfy
p(nk + 1) = nk + 2 = \akbkck\.

We are now interested in the evolution of the graphs when n grows from nk

to nfc+i-

698

Proposition 6. For every k, the transition between Gnk and Gnk+1 is of one of
the following three types:
transition A: nk+\ = nk + \akbk\, ak+i = ak, bk+i = bk, ck+i = akbkck;
transition B: nk+i = nk + \akbk\, ak+i = ak, bk+i = bkck, ck+i = akbk;
transition C: nk+i = nk + \ck\, ak+1 = ckak, bk+i = bk, ck+i = ck.

Proof. We have to construct the graphs Gn for nk < n < nk+i, using Propo-
sition 4 repetitively. Let w denote the bispecial factor of length nk. Let x, y, z
respectively denote the last letters of ak,bk, ck (note that y ^ z). The line graph
D(Gnk) is then

(2)

CLZ'

To obtain Gra,.+i, which is a graph of type (i), one of the two dotted edges
has to be removed from (2). (Note that the other two central edges cannot
be removed because the resulting graphs would only have ultimately periodic
paths.) Therefore, Gnt:+i is either

yck

(3)

(4)

In the first case, the next graphs Gn have the same morphology until n =
nk + \bk\, where we get

(5)

Then the next graph (n = nk + \bk\ + 1) depends on which branch contains the
prefix. There are therefore two subcases,

(6)

xbkck

699

which then evolves to Gn,+1, at nk+l = nk + \akbk\ (transition A)

a

(7)

and

(8)

akbkck

l\

x b.
bkck

-•^K
which then evolves to Gn,+1, also at nk+1 = nk + \akbk\ (transition B):

(9)

In the second case, the following graphs have the same morphology until
n = nk + |cfc|, where we get directly Gnk+1 (transition C):

(10)

We observe that there are three possible transitions, corresponding to the
three transformations A, B, and C. a

Proposition 6 allows us to define a new representation of the sequence u. Let
A be the alphabet A = {A,B,C}; the adic representation of u is the sequence
t = ht2t3 ... G A", where tk indicates which kind of transition occurs between
Gn,_, and Gn,,. The adic representation is related to similar representations
studied in [10], and also (in the case of Sturmian words only) to the usual
continued fraction expansion of real numbers [5].

Proposition 7. Given a sequence t G A" \ A* (A" U C"), there exists a unique
Sturmian sequence u (up to renaming of the letters) such that t is the adic
representation of u.

Proof. We first take the graph Gno = G0 to be the graph with one vertex and
two loops of length 1, labelled with the two letters of S (b0 will be the first
letter of u, and c0 the other letter), and a0 = e since the starting vertex is the
bispecial one. Then ak, bk, and ck are entirely defined by the sequence t, using
the recurrence relations of Proposition 6. We thus know the labels of the edges

700

of the graphs Gnk, and from this information we can also find the labels of the
vertices (the label of a vertex in Gn is the label of any path of length n starting
at this vertex). In particular we obtain the words prefnjl(u), which as a limit
give a sequence u.

We still have to check that u is indeed a Sturmian sequence. Its Rauzy graph
of order nk is a subgraph of Gnk, but it may not be exactly Gnk in the event
where the path associated with u never reaches certain branches of the graph.
In this case the sequence would be ultimately periodic, which implies that for n
large enough, all graphs Gn have a loop of the same size (equal to the period).
This occurs only when t e A*A" or t G A*CJJ (words in A*BU define legal
Sturmian sequences, for instance Bw is the adic representation of the Fibonacci
sequence). G

We can now turn to the study of A(u). Knowing a few consecutive terms of t,
we are able, using the corresponding graphs, to evaluate certain values of l(n) as
a function of |a^|, \bk\, and |cjt|. In some cases, we can prove that it is more than
ipn. If these terms occur infinitely many times in t, we deduce that A(u) > <p.

Proposition8. If t contains infinitely many occurrences of the words BCm A
(with in > 0), AC A, ACC, CBCB, CBCC, BBCCB, BBCCC (i.e. if either
t contains infinitely many occurrences of one word in the list, or if t contains
BCmA for infinitely many values of m), then A(u) > <p.

Proof. We shall study in detail only the case of the word BCA\ the other words
are dealt with similarly. Suppose that tk+i — B, tk+2 — C, and tk+3 = A; let
n — nk, a = ak, b = bk, and c = Ck- Then we have :

i n-k+i Ok+i bk+i Ck+i

0
1
2
3

n
n + \ab\
n + 2\ab\

n + 4\ab\ + \c\

a
a

aba
aba

b
be
be
be

c
ab
ab

ababcab

Note that all paths of Gnk+3 starting at the pointed vertex begin with
bcababcabab. Thus bcababcabab is a prefix of u. This gives the beginning of
the path followed by u in the graphs G„< for n' > n. In particular, in Gn+i
(see (3)), the shortest prefix going through every edge has length \bcab\, hence
£(n + 2) = |6ca6|; in Gn+|{,|+1 (see (8)), this shortest prefix has length \bcaba\,
hence £(n+\b\ + 2) = \bcaba\; and in Gn+|aft|+1 (see (4), with k replaced by
k+ 1), t(n+\ab\+2) > \bcababcab\. Now let di = £(n+|6|+2) - <p(n+\b\+2) and
<^2 = i(n+\ab\ + 2) — (p(n+\ab\ + 2), and let us compute d\ + <pd2, recalling that
n + 2 = \abc\, and c/?2 = <p + 1:

d!+<pd2 = (n+\b\ + 2) - >p(n+\b\ + 2)) + (p(e(n+\ab\ + 2) - >p(n+\ab\ + 2))

> (\bcaba\ — <p\bcab\) + <p{\bcababcab\ — <p\bcaba\)

> (1 + tp - (p2) \bcaba\ = 0

This shows that at least one of di and d2 has to be non-negative, i.e. that
t{n') > ipn' for n' = n + \b\ + 2 or ri = n + \ab\ + 2.

701

Similarly, for each occurrence in t of a word in the list, there is a length
n' for which i(ri) > ipn'. If there are infinitely many such occurrences, then
A(u) > <p. . D

Most sequences t satisfy the conditions of Proposition 8; the only words
that do not satisfy them are the elements of the set A*{CB2B*Y UA'B". If
t G A*BU, then u is a morphic image of the Fibonacci sequence and it is easy to
see that A(u) = <p\ for the other set however, the method of Proposition 8 does
not seem to work.

It is then natural to study the simplest examples of these sequences, for which
t is periodic with a short period. Namely, take t = (CBm)u, with m > 2. The
recurrences for ak,bk, and ck can be solved; taking the limit of (bk), one finds in
particular that the associated Sturmian sequence, zm, is the fixed point of the
substitution fm o g, where /(0) = 01, /(l) = 0 (/ is the substitution defining
the Fibonacci word) and g(0) = 01, g(l) = 1. Computing £ for these sequences,
although rather technical, is not very difficult, as the lengths of the paths in the
Rauzy graphs can be computed from the lengths of ak, bk, and ck- If only A(zm)
is of interest, this amounts to computing the eigenvectors of the matrix of the
substitution fmog, combining them in several ways, and taking the maximum.
Proposition 9 summarizes the results for the first values of m.

Proposition 9. The sequences zm> 2 < m < 5, yield the following limits:

A(z2) = ^^ * 1.57735 ,

A^i»^, 1.51949,

A(z4) =
18t/24 ^ 1-52660

415 + 3^65
yb> 280

Among these four examples, the sequence z3 appears to give the lowest value;
it is indeed possible to compute explicit formulas for all A(zm) and to prove that
they are increasing for m > 3. This observation suggests that A(z3) could be the
lowest possible value for Sturmian sequences.

To prove this, we proceed as in Proposition 8, loosening the researched in-
equality by replacing <p with 1.52.

Proposition 10. //1 contains infinitely many occurrences of one of the words
B5, B3CB4, B2CB2CB4 or CB3CB2CB, then A(u) > 1.52 > A(z3).

The only sequences t satisfying neither Proposition 8 nor Proposition 10 are
elements of the set A*(CB2)U U A*(CB3)U, i.e. the corresponding Sturmian
sequences are morphic images of z2 or z3, among which z3 is optimal according
to Proposition 9 (changing a finite prefix of t does not change the value of A(u)).
We have thus finished the proof of Theorem 1 in the Sturmian case.

702

It should be noted that when t £ A*(CB3)U, then A(u) > 1.52 > A(z3): the
spectrum of possible values for A(u) for Sturmian sequences is not continuous.
We have not tried to find what the next attainable value is, and 1.52 is just a
rough minoration.

4 The General Case

Let us now turn to the general case. As noted in [1], sequences with large enough
complexity can be easily eliminated.

Proposition 11. If there is an integer no such that the sequence u satisfies
p(n + 1) - p(n) > 2 for all n > n0, then A(u) > 2.

Proof. If this is the case, then p(n) > p(n0) + 2(n - n0) for n > n0, hence there
is a constant C such that p(n) > 2n - C for all n. According to Proposition 2,
£(n) > p(n), hence

A(u) = lim sup ^ > lim sup ^ > 2 .
n n

We can therefore suppose that p(n + 1) - p(n) = 1 for infinitely many n,
which implies that for infinitely many n, the Rauzy graphs are of the types
of Proposition 5, at least if the sequence is recurrent (non-recurrent sequences
have slightly different graphs, the initial vertex being connected by an additional
branch to the main part of the graph, but they can be handled similarly). As for
Sturmian sequences, we can define the sequences n^, a^, bk, and Ck, and study
the possible transitions. There are infinitely many possible transitions (including
A, B, and C), as the intermediate graphs can be very complicated. However, in
most cases we will obtain a sufficiently large minoration for A(u).

The graph Gnjt+i may be graph (3) or graph (4), in which case we find
the same transitions A, B, and C as with Sturmian words, but it may also be
graph (2), the complete line graph D(Gnic). In this graph, the shortest paths
starting from the pointed vertex and going through every edge are bccab and
babcc (for simplicity, we now note n = nk,a = a^, etc.) hence £(n+2) > |a|+2|6c|.
What happens next depends on the respective sizes of b and c. If b is shorter,
we get the following graph of order n + \b\

(11)

703

where c = c'b', \b'\ = |fr|. There are then two possibilities for n + \b\ + 1,

zb'
ax c z~

ax

(12)

and

(13)

x b
In both cases, a path starting from the pointed vertex and going through every
edge has length at least 2\abc\, i.e. tin + \b\ + 2) > 2\abc\. As in the proof of
Proposition 8, let di = t{n + 2) -<p(n + 2) and d2 = l(n+\b\ + 2)-tp(n+\b\ + 2),
and let us compute di + ipd2, using \abc\ = p(n + 1) > n +2 :

di+tpd* = {l(n + 2)-v(n + 2))+v(l{n+\b\+2)-v(n + \b\ + 2))

> (\a\ + 2\bc\ - <fi\abc\) + <p(2\abc\ - <p\bcab\)

= (1 + <p - ^2)\abc\ + \bc\ - ¥>|&| = \bc\ - <p\b\

As \b\ < \c\, this number is positive, hence also one of di and d2, i.e. £(n') > <pn'
for n' = n + 2 or n' = n + |b| + 2. If this transition occurs infinitely often, then
^(u) > ip; we can therefore assume that this transition does not occur when k is
large enough.

If c is shorter than b or has the same length, several subcases are possible,
most of which can be eliminated with the same kind of arguments. The only
transitions that remain are those where the loop labelled with c is taken a fixed
number of times j > 2 by every path, with (j - l)|c| < \b\. We eventually get at
order n + \b\ the graph

(14) A

which is essentially the same as graph (5) except that c is repeated j times. This
gives rise to transitions Aj and Bj analogous to A = Ai and B = Bx.

We can now define the adic representation of a sequence u that satisfies
A(u) < <p: it is a sequence t = tkotko+\tko+2 • • • on the infinite alphabet A' =
{Aj,Bj \j > 1}U{C}, where tk indicates the transition between G^^ and Gnk.
As replacing A and B by Aj and Bj may only increase the values of I, the rest

704

of the proof for Sturmian words works with the general case as well, and we can
conclude that Theorem 1 is true for any recurrent binary sequence.

As noted above, the case of non-recurrent sequence uses graphs with a slightly
different morphology, but does not cause any additional problem. The case of an
arbitrary finite alphabet can be easily reduced to the binary case with a simple
projection argument, and this completes the proof of Theorem 1.

Acknowledgments

I would like to warmly thank J.-P. Allouche for introducing me to this problem,
W. Plandowski for an interesting discussion that helped me realize that consid-
ering pointed graphs was essential, and D. Bernardi for numerically checking the
unexpected counterexamples zm.

References

1. J.-P. ALLOUCHE AND M. BOUSQUET-MELOU, On the conjectures of Rauzy and
Shallit for infinite words, Comment. Math. Univ. Carolinae 36 (1995), 705-711.

2. P. ARNOUX AND G. RAUZY, Representation geometrique des suites de complexite
2n + 1, Bull. Soc. Math. France 119 (1991), 199-215.

3. J. CASSAIGNE, A proof of Rauzy's conjecture through an exhaustive study of factor
graphs. In preparation.

4. J. CASSAIGNE, Facteurs speciaux et complexite, Bull. Belg. Math. Soc. 4 (1997),
67-88. Special issue: Actes des Journees Montoises d'Informatique Theorique 1994.

5. M. MORSE AND G. A. HEDLUND, Symbolic dynamics II: Sturmian trajectories,
Amer. J. Math. 61 (1940), 1-42.

6. C. POMERANCE, J. M. ROBSON, AND J. SHALLIT, Automaticity II: Descriptional
complexity in the unary case, Theoret. Comput. Sei. To appear.

7. G. RAUZY, Suites ä termes dans un alphabet fini, Sem. de Theorie des Nombres
de Bordeaux, 1982-1983, 25.01-25.16.

8. G. ROTE, Sequences with subword complexity 2n, J. Number Th. 46 (1994), 196-
213.

9. J. SHALLIT AND Y. BREITBART, Automaticity I: Properties of a measure of de-
scriptional complexity, J. Comput. System Sei. 53 (1996), 10-25.

10. A. M. VERSHIK, Locally transversal symbolic dynamics, St. Petersburg Math. J.
6 (1995), 529-540.

On Characterizations of Escrow Encryption
Schemes

Yair Frankel* Moti Yung

CertCo LLC
frankely,moti@certco.com, moti@cs.columbia.edu

Abstract. Designing escrow encryption schemes is an area of much re-
cent interest. However, the basic design issues, characterizations and dif-
ficulties of escrow systems are not fully understood or specified yet. This
paper demonstrates that in public-key based escrow, the combination of
(1) two different receivers (intended receiver and potentially law enforce-
ment); and (2) on-line verified compliance assurance by the sender which
ensures that law enforcement can decrypt ciphertext upon court order, is
equivalent to a "chosen ciphertext secure public-key system" (i.e., one se-
cure against an adversary who uses the decryption oracle before trying to
decipher a. target ciphertext). If we further add measures to ensure that
law enforcement is given access to messages only within an authorized
context and law enforcement is assured to comply as well (i.e., it can-
not frame users), then the escrow system is equivalent to "non-malleable
encryption schemes". The characterizations provide a theoretical under-
pinning for escrow encryption and also lead us to new designs.

1 Introduction

The intent of escrow encryption schemes is to enable strong cryptography for
users while protecting society from criminal behavior. Namely, users can send en-
crypted messages while enabling law enforcement (when and only when allowed
by the court) to read their clear messages. The first scheme was the Escrow En-
cryption Standard (EES) and its Clipper implementation [19], after which many
systems have been suggested world-wide [10, 19, 25]. Governments, industry and
international organizations are all investigating escrow encryption solutions.

Many of the early and recent designs focused on various specific aspects of
escrow encryption, but no rigorous investigations of the technical issues have
been clone. One of the basic issues that the initial Clipper implementation [10]
and the EES gave rise to, is the notion of "compliance assurance and verification"
implemented through the use of a LEAF authentication field in Clipper. This was
only based on an intuitive understanding drawn from an obvious need, and, in
fact, due to design errors and lack of understanding of requirements, some severe
flaws were found [6, 20]. Here we attempt a step in the direction of theoretical
understanding of escrow systems.

Research performed while at Sandia National Laboratories. This work was performed
under U.S. Department of Energy Contract number DE-AC04-76AL85000.

706

Our Results:
An escrow encryption system can be viewed as a system providing private mes-
sages for a regular receiver and a potential additional "shadow receiver" called
law-enforcement. We concentrate on "public key based" schemes, i.e. where the
sender and receiver do not have to meet. We have collected available requirements
and we formally model "escrow systems" based on these basic requirements. We
concentrate on a very basic property of "compliance and its verification" in our
modeling. This property assures that a message sent is made available for future
authorized law enforcement access; it is discussed by several documents and pro-
posed systems. As an example, the Law Enforcement Activation Field (LEAF)
in Clipper has the purpose of enforcing availability of "sufficient information"
that enables the shadow receiver to read the messages when a proper escrow
procedure takes place, connecting the availability to the decoding availability.
Another example motivating us to investigate compliance issues is a statement
in a NIST (The US National Institute of Science and Technology) document [34]
which says: "To meet these criteria, encryption products will need to implement
key escrow mechanisms that can not be readily altered or bypassed so as to

defeat the purpose of key escrowing". ^ ^
To model compliance verification, we add a formal entity called a "gateway

G that assures that messages sent into the systems (from a sender to the receiver
and the potential "law enforcement") are in compliance; G is less obtrusive than
the recently suggested "Trusted Third Party entity" [25]. We then ask: Given the
escrow encryption system models with the basic property of compliance, what
type of cryptosystems and security notions characterize them? Such character-
ization helps in understanding the requirements and may also help in future
designs. It may potentially allow implementations to exploit available crypto-

graphic knowledge and prevent flaws in future system designs.
We call schemes which provide the sender's compliance checking capability

compliance verifiable escrow encryption systems. These systems, which have a
seemingly necessary ingredient required for full-fledged escrow encryption, are
shown to be strongly related to chosen ciphertext secure encryption public-key
systems which were first introduce by Naor and Yung [33] and further developed
in various works [35, 9, 40, 28, 4, 21]. We concentrate on systems with formal
proof of security and we prove that under quite a broad definition of the respec-
tive systems (avoiding narrow scenarios and limiting resources, concentrating on

the principle security requirements), the following holds:

A compliance verifiable escrow encryption exists iff a chosen ciphertext

secure cryptosystem exists

Furthermore, if we require more from the escrow system and also assume
that the system has to limit untrusted law enforcement as well, then we get
what we call basic escrow encryption systems. These systems require compliance
verification and in addition they ask for the binding of a message to a proper
limitation of context (namely time, sender and receiver identities). Context is
required to be checked (by an authority- escrow agents) before messages are

707

opened to law enforcement (as advocated in the recent design in [27] and by
formal documents). For secure basic escrow systems we show that:

A basic escrow encryption system exists iff a non-malleable encryption

system exists

Non-malleable systems in essence do not allow an attacker to modify chosen
ciphertexts to create a new meaningful ciphertext and were introduced by Dolev,

Dwork and Naor [16].
Our results demonstrate inherent complexities in implementing systems like

the key recovery (by the US government) and trusted third party (by some
European governments) on top of a public key infrastructure. They show that the
difficulties of assuring compliance in such systems is not only a property of the
current ad-hoc designs, but rather they are inherent to any system attempting
to build key escrow with compliance in the available infrastructure.

On Reductions between Cryptosystems:
We note that in "one-way function based cryptography," a characterization was
completed and its various primitives (one-way functions, digital signatures, ran-
dom generators, private cipher systems) have been shown to be equivalent (in
a long research program which is reviewed in [29]). In "public-key encryption
systems" (our subject) the picture is much less clear. A sufficient condition for
a secure public key communication (i.e., secrecy without the parties sharing a
key) is either "trapdoor function" or "key exchange protocol". These imply the
existence of "one way function" since they enable an authentication protocol
[23], but there are indications that one-way functions by themselves, cannot
easily imply (based on black-box reductions) "public-key cryptography" (since
such a construction separates NP from P) [24]. Necessary conditions beyond this
are not known, and, therefore, equivalence among various public-key notions is

mostly open and intriguing.
Another issue is the quality of the cryptographic reduction. In [29] a reduction

is quantified by the amount it reduces the security parameter of a problem
when a problem is reduced to another one (an idea attributed to L. Levin). Our
reductions are high quality in this sense, they are linear preserving.

Related Work:
Various designs have been suggested concentrating on several important aspects
and crucial stages of escrow schemes. Most of these aspects are orthogonal to the
issue of compliance as investigated here. In [30] the issue of key distribution to
trustees was discussed, while a more rigorous approach to a distribution channel
with minimization of various potential exposures was given in [26]. In [14] tracing
receivers was discussed (this is criticized in [15, 20]), and in [31] the distribution
of pseudorandom functions was discussed. The issue of limiting time and context
of escrow was discussed in [5, 27]. Also, a few alternatives to escrow based on
partial key has been put forth [37, 3, 2]. Opening of ciphertexts based on small
(message by message) granularity was put forth in [11]. Characterizing universal
escrow trapdoor using public-key systems was presented in [7]. Issues for systems
design, based on findings of initial failures were discussed in [20].

708

2 Compliance-Verification Systems

We first concentrate on a system with minimal requirements for escrow encryp-
tion, assuming honest law enforcement. As motivated by [34], the system satisfies
the following requirements: (1) compliance verification: the messages sent are
assured to be open-able by law enforcement when the sender actually employs
the system for privacy; and (2) "limiting surveillance": as said in [34]: "in-
formation both sent and received by the user can be decrypted without release

of keys of other users."
We note that we allow the systems in our definitions to use all available

resources such as interaction and perhaps inefficient constructions as long as
they are polynomial. We are interested in relations and we do not necessarily

limit ourselves to restricted models.
Remark: We note that the sender may use another mechanism to encrypt

the message (pre-encryption) or employ a covert channel. Our definition does not
attempt to prevent such transmissions; all we argue about is that if a certain
message is generated by the system and is sent via the gateway to the receiver-
it should be the case that law enforcement gets this message when needed.

The parties: There are four parties which are polynomial-time and each has
its respective key: S is the sender and G is the gateway, through which messages
are passed, R is the receiver, and L is law enforcement. The sender and gateway
may be active at message sending and are probabilistic algorithms. (We explain

the motivation/source of the gateway below).

Basic properties and definition

- Based on the above two requirements, in order to satisfy the compliance
verification the gateway G is introduced here which does not allow a cipher-
text that does not pass the verification (of compliance) to be opened (or
received) by the receiver. Such assurance seems to be a minimal require-
ment in a mandatory escrow process. Physically, this gateway may reside at
the sender module, receiver module (as the LEAF checker in Clipper), or
anywhere on the communication channel (the network router, the firewall,
etc.). The gateway is a checking function of the sender and is similar but less
involved than the recently suggested "trusted third party" [25] endorsed by
a number of European government and financial institutes.

- To satisfy the minimal surveillance requirement, the law enforcement key
must be different than the receiver's key.

Definition 1. Compliance verifiable escrow encryption system (CV-
EES): Let k be the security parameter for an encryption system which for any
Law enforcement (L) with a randomly chosen public key e^ (and corresponding
private key d^), for any public key e# (chosen at random) and corresponding
private keys dR of the Receiver (R), and a verification key vG for a compliance
Gateway (G), for any Sender (5), the following holds.

709

Let a be the encryption of a message m generated by S, namely S(eR, e^, m) =
a, then there is a protocol between S and G, and then ß acts on a (to get the
message), L may apply to a later. We are assure that:

Certification of Compliance: for any a, let G(va,a) the result of a protocol
between G and 5 computed by G, then £?(*;<?, a) = 1 implies that there exists
an m such that: R(dR,a) = m and L(d,L,a) = m with probability. 1 - p- for
any constant d, for parameter fc large enough.

Security: The system is polynomially secure [22], namely for any two messages
mo, mi computed by a message finder, for any ciphertext a that encrypts one of
the message raj (6 G {0,1} chosen at random), for any message distinguisher that
is given (eR,eL,VG,m0,mi, a) returns 6' = {0,1}, then 6=6' with probability
less than ^ + JJ for any constant d, for k large enough.

Note that we can have a number of variations that do not change the system
in a fundamental way: we can assume that the ciphertext generated is performed
interactively with the gateway; also, the order of choice and publication of the
keys does not matter as a receiver cannot help itself by using ex in its key
generation so CR is actually drawn at random to be secure.

2.1 Chosen ciphertext security

Let us recall the definition of chosen-ciphertext secure systems [33].

Definition 2. Chosen ciphertext secure encryption system (ccs sys-
tem): Let k be the security parameter for a public key encryption system
which generates public/private key pair (e,d) for each user of the system. The
adversary attacking a user (A CC-attacker) is a sender who is allowed the fol-
lowing attack: It generates a history tape h from 1*, e and input/output pairs
from (poly in k) ciphertext queries it provides adaptively to a decryption oracle
which has d. Then, the following holds:

Security: Two messages mo, mi from the message space are generated from a
probabilistic polynomial time called a message finder on input lk and auxiliary
input tape which may include h and e and other public information. Let a be the
encryption of m\, with e for some randomly chosen bit 6. Lastly, a message dis-
tinguisher given (e, mo, mi, h, a) returns 6' = {0,1}. A system is secure against
chosen ciphertext if it is polynomially secure after the attack namely, for any
CC-attacker, for any message finder, for any message distinguisher, then 6=6'
with probability less than \ + JJ for any constant d and k large enough.

Remark: the definition above assumed non-adaptive attacker in the sense
that the target ciphertext was not available to it when producing h, we may also
allow adaptive attacker (that gets to see the challenge first, but is not allowed
to query the oracle on it).

710

2.2 Equivalence of the systems

Next, we compare the systems above: the first, motivated by requirements of an
escrow encryption environment, and the second which assures level of security.
We prove the following:

Theorem 3. The following are equivalent: (1) Existence of compliance verifiable
escrow system, and (2) Existence of chosen cipheriext secure encryption system.

To prove the theorem we will show reductions in the next two Lemmas:

en Lemma 4. If there exists a compliance verifiable escroiu system CV-EES th
there exists chosen cipheriext secure (CCS) encryption system-

Proof. (Sketch) We assume that there exists a CV-EES and build a CCS
system. Let G be the gateway and vG be the verification key for the CV-EES.
Let eR, eL be the public keys and dL be the law enforcement key corresponding
to eL for the CV-EES.

In the following we will use a "tinkering argument" that will move keys and
components around to have a public-key system based solely on the components
available to us from the CV-EES system. We demonstrate that the following is a
CCS system in a complete public-key environment where every participant has
a key (as in Rackoff and Simon [35]). The following is done

- Each user u publishes a public key as a receiver eu which is drawn from the
family of receivers' public key;

- in addition it publishes a sender key which is from the family of Law en-
forcement keys e\.

Let V be the sender and U the receiver, we define them as following:
Encryption of m: a = S(eu, eL , m)
Decryption of a: If G(vG,a) = 1 then return m = L(du,a) else return NULL.

First note that the system is polynomially secure, this is derived from the
security definition of the CV-EES system. To prove that this is secure against
a chosen ciphertext attack we use the following argument. When G returns 1
it means that the two decryptions (under dv and under dv

L) retrieves the same
message with overwhelming probability. Thus, in a similar argument to [35],
if G(vG,a) = 1 then the sender must have known the input which generated
ciphertext a (by knowing and applying d\ to retrieve the message. Observe
that this key is the sender private key drawn from the family of law enforcement
keys which is corresponding to e\. Since "the sender" already knew the value
that is encrypted we are sure that revealing it after the check "the sender" won't
learn anything new since "the sender" already must have known this information.
Hence, the attacker being the sender was reduced to a "known plaintext attack"
which is taken care of by the property of polynomial security. In fact we can

711

show is that by providing the ciphertext queries and getting a corresponding
cleartext answer in a CC-attack producing history h, the attacker has no more
power than the (message only) attacker that produces by itself (without the help
of the oracle) a cleartext message and then produces its ciphertext and produce
a history h' of ordered ciphertexts and their corresponding messages.

The above reduction is direct (using the same keys used in the original sys-
tem) and thus one does not lose in the size of the security parameter when
translating the CV-EES to the CCS cryptosystem. This implies that a success
ratio in breaking the CCS cryptosystem implies the same ration for the escrow
related scheme (CV-EES) which means a linear preserving reduction.

Lemma 5. If there exists a chosen ciphertext secure (CCS) encryption system
then there exists compliance verifiable escrow system.

Proof. (Sketch) First, we have an encryption scheme which is polynomially
secure (by definition of CCS-cryptosystem); in fact all we need is a secure en-
cryption for proving the lemma. So L can publish a public key e^ in such a
system, and R publishes another public key eR in this system. Then note that
since we have chosen ciphertext secure encryption system we have a one-way
function (we can use the encryption function for authentication protocol among
two parties, thus by [23] one-way function exist).

We continue by a simple version of a construction of [33] to construct the CV-
EES. To send a message m, a sender first generates two encryptions of m one
for the receiver under eR and one for law enforcement under ej,. The verification
algorithm of G is done by a zero-knowledge proof of knowledge of the fact that
"The sender (i.e., prover) knows a unique message m such that the two ciphertext
are encryptions of it under their respective keys". This is an NP statement and
can be proven to G interactively in a zero-knowledge fashion by the sender (that
knows the preimages) using the availability of one-way functions. This proof
assures that the message opened by the receiver using his public key is the
same message available to law enforcement if they wish to open it using their
key, thus G can allow the two ciphertexts to be transmitted together over the
communication line. (In the next version we will formally recall the definition of
proof of knowledge [17, 38, 1] and use it to show that the system has the required
properties and that with very high probability both security and certification of
compliance hold).

Using amplification of one-way functions [39] we can have the probability
of extracting any computational advantage in the CV-EES system based on
the zero knowledge proof, inverse exponential in the security parameter for any
polynomial-time computation. Thus, breaking the system based on breaking the
ZK proofs adds a negligible value to the time-success ratio. Now observe that the
reduction just uses two CCS encryption systems, and the above zero-knowledge
proof (which has the inverse exponential success probability). Breaking the CV-
EES encryption means that in most of the time (at least 1/2 of the cases) we
break one of them. Therefore, this reduction is linear preserving.

712

3 Basic escrow encryption systems and non-malleability

CV-EES systems are not sufficient to protect individuals' privacy rights from
unlawful search and seizure as they impose no compliance restriction on opening
of ciphertext by law enforcement. For example, it was shown that with Clipper
it is possible to modify the ciphertext so that it appears the ciphertext was
generated by (or for) a Clipper chip different from the actual participants [20].
Let us review what we want from a "basic escrow encryption".

- First, we want "basic escrow encryption systems" to assure compliance of
senders (as in CV-EES), and to be secure (as in CV-EES).

- In addition, it has been concluded by many that we need to have some con-
text associated with a ciphertext which determines if law enforcement has
the right to open that message. Then, an authorization body (judge, escrow
agents, etc.) can use this context to determine whether to allow law enforce-
ment to open or not to open a ciphertext (This is context-limited escrow).
This is motivated by various designs [6, 20, 30, 8, 27, 5] and primarily by
the correspondences on Clipper [18, 10, 19]. The ciphertext context includes
the sender and receiver identity since, formally, "Law enforcement agencies
require (1) information from the service provider to verify the association of
the intercepted communications with the intercept subject, ..." [18]. This
seems a reasonable minimal requirement. Note that "context limitation" is
a double-edge sword. Namely, the sender who knows that law enforcement is
allowed to escrow based on restricted context, can attach "wrong context"
to evade legal escrowing. Thus, the sender's compliance has to be revised
and to include also compliance with "a correct context" which is assured by
extended compliance assurance which includes (context certification).

- Next, from a security point of view, we would need to be able to identify
a sender with the message and not enable law enforcement to modify the
sender's ID nor the other content and context (opening of messages is allowed
only within a context). This makes the system spoofing-free (with respect
to law enforcement that tries to modify messages or fabricate ones based
on past opened messages and even when it can control some of the earlier

messages sent in a conversation).

The notion of spoofing-freeness looked to us related to the one of non-
malleability (defined in [16]). The later helped the formalization of the above
requirements as following:

Definition 6. Basic Escrow encryption system (B-EES): Let k be the
security parameter for an encryption system which for any Law enforcement (L)
with a randomly chosen public key eL (and corresponding private key dL), for
any verification key vG for a compliance Gateway (G), and a legal authority J
with authorization key aj = aj(eL,dL), for any randomly chosen public key
eR and private keys dR of the Receiver (R) (each of the keys drawn from a
corresponding key family with parameter k), then, for any Sender (S):

713

Let KT be the context of a message which at minimum includes the identity of
the sender KTS and receiver KTT. Let a be the encryption of a message m gener-
ated by S using receiver's key CR, namely S(eR,eL, KT, m) = a then:

(1) Compliance and Context Certification and Correctness: for any a,
let G(vG,a) the result of a protocol between G and S computed by G, then
G(vG,a) = 1 implies that with probability 1 - kd for any d, for k large enough:

- there exists an m such that: R((1R, a) = m, KT, and
- the result of J(aj, a) = context, key and context = KT and L(CIL, a, key,...) =

77!., KT. (We may assume that the context is part of the message).

(2) Context-Limited Escrow: For any ciphertext a and an authorized con-
text KT, Let J(aj,a) = context,key. If context = KT then L is activated and

L{di, a,key) = m, KT.

(3) Spoofmg-freeness: We define poly-time adversary A which may try
to produce a message by modifying another message according to some poly-
time relation REL (REL different from the identity relation), thus spoofing the
system (and generating a message out of context or with different content that
may be opened by the judge and in effect will frame the user); formally:

- The adversary A first generates a history tape h\ from lk, e, e^, d^, eR and
input/output pairs from (poly in k) queries it provides to the authorizing
authority with authorized contexts; For any ciphertext at and an authorized
context KTi, Let J(aj,ai) = contexti,keyi. If contexti = KT; then L is
activated and L(dL,ai, keyi) = ra^/cr,-. The record (cn,KTi,keyi,m.i) is put
on the history tape.

- Then, A produces a distribution M on messages (and contexts).
- Then A receives the challenge ciphertext a e« S(e, ei,KT, m) for m GR M

and some knowledge about the message (e.g., its context) called hint(m)

which is polynomial time computable from m.
- A again generates a history tape h2 from 1*, e, ej,, di, eR and input/output

pairs from (poly in k) queries all different from a that it provides to the
authorizing authority with authorized contexts; For any ciphertext a,- and
an authorized context KTJ, Let J(aj,aj) = contextj,keyj. If contextj = KTJ

then L is activated and L{dL,otj, keyj) = mj,KTj.
The record (a,-, KTJ, keyj, m,j) is put on the history tape.

- A now produces polynomially many ciphertexts /, such that /,• is an encryp-
tion of ßi. Then A succeeds if REL(m, /?,•) holds for some i.

The system is called spoofing-free if for any polynomial^ for any polynomial
modification relation REL the probability of success is smaller than l/kd for any
constant d, for k large enough. This concludes the definition.

We note that spoofing-freeness is modeled after non-malleability and implies
polynomial security. In fact, we can show more strongly (proof omitted) that
following the proof strategy of the Theorem 3 gives:

714

Theorem 7. The following are equivalent: (1) Existence of basic escrow encryp-
tion systems, and (2) Existence of non-malleable encryption systems.

Designs:
The characterizations have led us to a number of designs based on secure

public key systems (and their relaxations). The designs introduce various ways
to implement the compliance verifying gateway.

Based on private key system we can consider a server-based key distribution
system (where users do not meet but each user shares a permanent key with
a server). We can adapt our results and conclude that by augmenting such a
system we can have an escrow system in this model. What we need is the notion
of "publicly certified key distribution" where each key given to a user has also
a publicly announced version which is encrypted or one-way processed by the
trusted server. Now, each key distribution to a pair of users can be on-line
verified by a gateway G for compliance. Unlike [25], this design needs only one
way functions. We get (proof omitted):

Theorem 8. Based on a trusted server and the existence of a one-way function
(only), there exists a basic escrow system.

References

1. M. Bellare and O. Goldreich, On Defining Proofs of Knowledge, Crypto '92.
2. M. Bellare and O. Goldwasser, Verifiable Partial Key Escrow, ACM, 4-th

Symp. on Computer and Comm. Security, 1997.
3. M. Bellare and R. Rivest, Translucent Cryptography - an alternative to key

escrow and its implementation via fractional oblivious transfer, a manuscript.
4. M. Bellare and P. Rogaway, Random Oracles are Practical: a paradigm for

designing efficient protocols, ACM, 1-st Comp. and Com. Sec. 1993.
5. T. Beth, H.-J. Knobloch, M. Otten, G.J. Simmons and P.Wichmann, Towards

Acceptable Key Escrow Systems, In the Proceedings of The 2nd ACM Symp.
on Comp. and Comm. Security, 1994 51-58.

6. M. Blaze, Protocol failure in the Escrowed Encryption Standard, In the Pro-
ceedings of The 2nd ACM Symp. on Comp. and Comm. Security, 1994, 59-67.

7. M. Blaze, J. Feigenbaum and T. Leighton, Master-Key Cryptosystems,
Crypto-95 Rump session.

8. Building in Big Brothers: the cryptographic policy debate, ed. L.J. Hoffman,
Springer Verlag, 1995.

9. I. Damgärd, Towards practical public key cryptosystems secure against chosen
ciphertext attacks, Crypto '91.

10. D. E. Denning and M. Smid, Key Escrowing Now, IEEE Communications
Magazine, Sep. 1994, pp. 54-68.

11. A. De Santis, Y. Desmedt, Y. Frankel and M. Yung, How to Share a Function
Securely, ACM STOC 94.

12. A. De Santis, and G. Persiano, Non-Interactive Zero-Knowledge Proof of
Knowledge, FOCS 93.

13. Y. Desmedt and Y. Frankel, Threshold cryptosystems, Crypto '89.

715

14. Y. Desmedt, Securing Traceability of Ciphertexts: Towards a Secure Software

Key Escrow Systems, Eurocrypt 95.
15. L. Knudsen and T. Pedersen, On the Difficulty of Software Escrowing, Euro-

crypt 96.
16. D. Dolev, C. Dwork and M. Naor, Non-Malleable Cryptography, STOC 91.
17. U. Feige, A. Fiat and A. Shamir, Zero-Knowledge Proofs of Identity, Journal

of Cryptology, vol. 1, 1988, pp. 77-94. (Originally: STOC 87).
18. The FBI, Law Enforcement requirements for the Surveillance of Electronic

Communications, June 1994.
19. FIPS PUB 185, Escrowed Encryption Standard Feb.94. (Dep. of Commerce).
20. Y. Frankel and M. Yung, Escrow Encryption Visited: Attacks, Analysis and

Designs. Crypto '95.
21. Y. Frankel and M. Yung, Cryptanalysis of the immunized LL public key sys-

tems. Crypto '95.
22. S. Goldwasser and S. Micali, Probabilistic Encryption, J. Com. Sys. Sei. 28

(1984), pp 270-299.
23. R. Impagliazzo and M. Luby, One-way Functions are Essential for

Complexity-Based Cryptography FOCS 89.
24. R. Impagliazzo and S. Rudich, Limits on the Provable Consequences of

Oneway Permutations, STOC 89.
25. N. Jefferies, C. Mitchell and M. Walker, A Proposed Architecture for Trusted

Third Party Services, in Cryptography: Policy and Algorithms, Springer Verlag
LNCS 1029, 1996. (Also: Royal Holloway, U. of London Report, 95).

26. J. Kilian and F.T. Leighton, Fair Cryptosystems, Revisited, Crypto '95.
27. A. Lenstra, P. Winkler and Y. Yacobi, A key escrow system with warrant

bounds, Crypto '95.
28. C. H. Lim and P. J. Lee, Another method for attaining security against adap-

tive chosen ciphertext attacks, Crypto '93.
29. M. Luby, Pseudorandomness and its Cryptographic Applications, Princeton

Univ. Press, 1995.
30. S. Micali, Fair public-key cryptosystems, Crypto '92.
31. S. Micali and R. Sidney, A simple method for generating and sharing pseu-

dorandom functions with applications to clipper-like key escrow systems,

Crypto '95.
32. M. Naor and M. Yung, Universal One-way Hash Functions and their Crypto-

graphic Applications, STOC 89.
33. M. Naor and M. Yung, Public-key cryptosystem provably secure against chosen

ciphertext attack, STOC 1990.
34. NIST, Issues: Export of software key escrow encryption, August 1995. see:

http://csrc.ncsl.nist.gov/keyescrow/
35. C. Rackoff and D. Simon, Non-Interactive Zero-Knowledge Proof of Knowl-

edge and Chosen Ciphertext Attacks, Crypto '91.
36. J. Rompel One-way Functions are Necessary and Sufficient for Secure Signa-

tures, STOC 90.
37. A. Shamir, Partial Key Escrow, Crypto 95 Rump Session.
38. M. Tompa and H. Woll, Random Self-Reducibility and Zero-Knowledge Inter-

active Proofs of Possession of Information, FOCS 87.
39. A. C. Yao, Theory and Applications of Trapdoor functions, FOCS 82.
40. Y. Zheng and J. Seberry, Immunizing public key cryptosystems against chosen

hertext attacks, IEEE JSAC 93.

Randomness-Efficient Non-Interactive Zero Knowledge
(Extended Abstract)

Alfredo De Santis,1 Giovanni Di Crescenzo,2 Pino Persiano1

1 Dipartimento di Informatica ed Applicazioni
Universitä di Salerno, 84081 Baronissi (SA), Italy

E-mail: {ads,giuper}@dia.unisa.it

2 Computer Science and Engineering Department
University of California at San Diego, La Jolla, CA, 92093, USA

E-mail: giovanni@cs.ucsd.edu
(Part of this work was done while at Universitä di Salerno, Italy)

Abstract. The model of Non-Interactive Zero-Know ledge allows to ob-
tain minimal interaction between prover and verifier in a zero-knowledge
proof if a public random string is available to both parties. In this pa-
per we investigate upper bounds for the length of the random string for
proving one and many statements, obtaining the following results:

- We show how to prove in non-interactive perfect zero-knowledge any
polynomial number of statements using a random string of fixed
length, that is, not depending on the number of statements. Pre-
viously, such a result was known only in the case of computational
zero-knowledge.

- Under the quadratic residuosity assumption, we show how to prove
any NP statement in non-interactive zero-knowledge on a random
string of length &(nk), where n is the size of the statement and k is
the security parameter, which improves the previous best construc-
tion by a factor of 0(k).

1 Introduction

Zero-knowledge proofs [19, 17] require quite a rich scenario in terms of resources
needed and much effort has been devoted to presenting alternative poorer set-
tings in which zero-knowledge proofs were possible.

In [5, 6, 12], the shared-string model for non-interactive zero-knowledge was
put forward. Here, the prover and the verifier share a random string and the
mechanism of the proof is mono-directional: the prover sends one message to the
verifier. Non-interactive zero-knowledge proofs have found several applications in
Cryptography (most notably the construction of cryptosystems secure against
chosen-cyphertext attacks [24]) and can be employed in any setting in which
communication is a precious and scarce resource. Thus, the shared-string model
trades the need for interaction with the need for shared randomness. Since non-
interactive zero-knowledge proofs from scratch can be obtained only for BPP

717

languages [18], the shared-string model provides a minimal enough setting for

non-interactive zero-knowledge.
Randomness has played a major role in several theoretical and applied fields

of Computer Science. Several are the examples of computational tasks which are
impossible to execute deterministically or whose efficiency is greatly enhanced
if a source of random bits is available. Unfortunately, good random sources are
difficult to find and this has motivated the study of the minimal amount of ran-
domness needed for certain tasks (e.g., computing the sum in a secure way [7]),
of techniques for reducing the number of random bits used by probabilistic algo-
rithms (see for instance [20]) and the construction of pseudorandom generator
specific for certain computational tasks: pseudorandom generator for constant-
depth circuits [1, 25], space bounded computation [26, 27] and network compu-
tation [23] have been presented. The randomness in interactive proof systems

has been studied in [2] and [3].
In this paper we consider the shared string model for non-interactive zero

knowledge of [5, 6] and study the amount of shared randomness needed for zero-

knowledge proofs.

Perfect zero-knowledge on a fixed random string. The first problem we
investigate is the possibility of proving many statements using a random string
of fixed length, i.e., not depending on the number of statements. This problem
has found early solutions for the case of computational zero-knowledge in [5],
assuming the intractability of quadratic residuosity, and, later, in [15], assuming
the existence of certified one-way permutations. The certification requirement
for one-way permutations was later removed in [4]. In [15, 13] the case of many
provers was solved. Unfortunately, these constructions do not preserve perfect
zero knowledge and thus cannot be used in our context. Before the current paper,
no indication had been given that this problem might have a positive solution
in the case of perfect zero-knowledge. The state of this problem was particularly
unclear also because not many non-interactive perfect zero-knowledge protocols
have been found in the literature (see [11]).
OUR RESULTS . We show how to prove many statements in non-interactive perfect
zero-knowledge using a fixed random string. First we give a protocol for the lan-
guage of quadratic non residuosity. Then we identify a general class of languages,
called Simulator-Rankable languages, for which we give a protocol. Finally, we
show that all languages known having a non-interactive perfect zero-knowledge
proof system are Simulator-Rankable.

Non-interactive zero-knowledge for all NP on a short random string.
Another problem we investigate is the possibility of proving any NP statement
using a random string of short length. Many non-interactive zero-knowledge
proof systems for NP-complete languages have been given in the literature, mo-
tivated by attempts both of reducing the complexity assumption necessary and
of increasing the efficiency of the proof system. The first proof system for all NP
was given in [6], under a specific number-theoretic assumption, and used a ran-
dom string of length 0(kn3), where by k we denote the security parameter, and
by n the size of the input. The proof system in [5, 12] reduced the assumption to

718

the intractability of deciding quadratic residuosity modulo composite integers,
and used a string of length 0(kn3). The proof system in [15] reduced the assump-
tion to the intractability of inverting one-way permutations, and used a string
of length 0(kn55). Under the same assumption, [21] and [22] obtained proof
systems using a string of length 0(k2n log n) and 0(k2n), respectively. Under
the quadratic residuosity assumption, [9] and [8] obtained proof systems using
a random string of length 0{k2n). As a result, the best known proof system for
all NP before this paper uses a random string of length 0(k2n).
OUR RESULT. Under the quadratic residuosity assumption, we show how to prove
any NP statement in non-interactive zero-knowledge using a random string of
length 0(kn), thus improving the previous best result by a factor of &{k).

Lower bounding the length of the random string. In order to best esti-
mate the efficiency of our proof systems, we have also looked at the question
of finding lower bounds on the length of the random string necessary to obtain
a non-interactive zero-knowledge proof. Previously, a result in [18] showed that
non-interactive (computational or perfect) zero-knowledge proofs without the

random string are possible only for languages in BPP.
OUR RESULT. We can show that non-interactive (computational or perfect) zero-
knowledge proofs on a random string of length less than max(fc, clogn), for any

constant c, can be given only for languages in BPP.

Organization of the paper. In Section 2, we review the definitions for non-
interactive zero-knowledge proofs. In Section 3, we present our results on proving
multiple non-interactive perfect zero-knowledge on a fixed random string. In
Section 4, we present our result on proving any NP statement in non-interactive
zero-knowledge on a short random string. Formal proofs and descriptions of some
protocols are omitted from this extended abstract for lack of space. For the same
reason, we follow the notation of [5] without explictly repeating it and advise
the reader to refer to [28] or [5] for the necessary number-theoretic background.

2 Non-Interactive Zero-Knowledge

We review the definition of non-interactive zero-knowledge proof systems of [5],
referring the reader to the original paper for motivations and discussions. We
start with the definition of non-interactive proof systems.

Definition 1. Let P a probabilistic Turing machine and V a deterministic Tur-
ing machine that runs in time polynomial in the length of its first input. We say
that (P,V) is a Non-Interactive Proof System with security parameter k > 1 for
the language L if there exists a constant c such that the following hold:

1. Completeness. \/x G L, \x\ = n, and for all sufficiently large n,

Pr(<r<-{0, l}nC; Proof ^P(<T,X) : V{<r,x, Proof) = 1) > 1 - 2~fc.

2. Soundness. Mx £ L, \x\ = n, for all Turing machines P', and for all sufficiently

large n,

Pr((7 *-{0,l}nC; Proof <-P>\<T, x): V{a, x, Proof) = 1) < 2~k.

719

We will call the random string a, input to both P and V, the reference string.
Now we recall the definitions of non-interactive computational and perfect zero-
knowledge proof systems. We will denote by View(n,x) the probability space
View(n, x) = {erf- {0, 1}"°; Proof <—P(a, x) : (<x, Proof)}, where c is a constant.

Definition^. Let (P,V) be a non-interactive proof system for the language L.
We say that (P,V) is Computational Zero-Knowledge if there exists an efficient
algorithm 5, called the Simulator such that Va; G L, 'ar| = n, for all efficient
non-uniform (distinguishing) algorithms D„,Vd> 0, and all sufficiently large n,

Pr(s<-View{n,x) : Dn{s) = 1) - Pr{s<-S(ln, x) : Dn(s) = 1] < n

Definition3. Let (P,V) be a non-interactive proof system for the language L.
We say that (P,V) is Perfect Zero-Knowledge if there exists an efficient algorithm
5, called the Simulator such that Va; £ L, \x\ = n, and all sufficiently large n,
the two probability spaces 5(1", x) and View(n, x) are equal.

3 Perfect zero-knowledge on a fixed random string

In this section we show how to prove any polynomial number of statements in
non-interactive perfect zero-knowledge using a reference string of fixed length. In
Subsection 3.1 we present our technique with respect to the language of quadratic
non residuosity. In Subsection 3.2 we give a result that will be useful when prov-
ing this result for a more general class of languages: a transformation between
any non-interactive zero-knowledge proof system with expected polynomial time
simulator to one with strict polynomial time simulator. In Subsection 3.3 we
describe a protocol that applies to a more general class of languages, that we
call Simulator-Rankable languages.

Some simplifications. For simplicity, in our protocol for quadratic non resid-
uosity we will assume that the modulus x is already known (or has already been
proven) to be a Blum integer and, unless explicitly specified, that the reference
string is made of integers in Z+1, instead than of just rc-bit integers. Techniques
used, for instance, in [5] and [11], allow to deal with the general cases by los-
ing only a constant factor in the length of the reference string, and preserving
perfect zero knowledge.

3.1 Quadratic non residuosity

We present a perfect zero-knowledge proof system (A,B) with security parameter
k that uses a reference string of length 0{nk) for proving that any polynomial
number m(n) of elements yi, ■ ■ ■ ,ym(n) are quadratic non residues modulo an
integer x of length n.

The proof system of [5] for one statement. The non-interactive perfect
zero-knowledge proof system of [5] for proving one quadratic non residuosity
statement of size n uses a reference string of length nk. On input a pair (x,y),

720

where x is a Blum integer and y an element of Z+1, the reference string is
viewed as the concatenation of k elements zi o • • • o zk of Z+1. If y is a quadratic
non residue, then for each j, exactly one of ZJ and yzj mod x, call it UJ, is a
quadratic residue and the prover gives a random square root of Uj. The soundness
of the proof system relies on the fact that if y is a quadratic residue and Zj is
a quadratic non residue then neither Zj and yzj mod a; is a quadratic residue
and thus the prover cannot satisfy the verifier's verifications. Since the Zj's are
chosen at random and since exactly half of the elements in Z+1 are quadratic
non residues, the prover has probability 2~fe of making the verifier accept when

y is a quadratic residue.

Proving many statements. We modify the above described proof system
in such a way that the following two properties are satisfied: 1) the prover can
generate exactly one proof for each input and each reference string; 2) each proof
has the same distribution as the reference string. We use the following definition.
Let x be a Blum integer; for z £ Z+1 and 6 G {0,1}, define u = sqrt(x, z, b) as
the integer u <E Z+1 such that (a) u2 = z mod x and (b) if b = 0 then u < x/2
else u > x/2. Now we give a formal description of our proof system (A,B).

Input to A and B:

• A k(n + l)-bit reference string a = z\ o • • • o zk ° bi o • • • o 6*, where ZJ G Zx ,
bj G{0,1}, for .7 = 1,..., fc.

• An (m + l)-tuple {x, yi,..., ym), where \x\ = n, y, € Zj"1, for i = 1, ..., m.

Input to A: x's factorization.

Instructions for A.

A.l Set «i,j = ZJ, 6i,j = bj, for j = 1,..., k.
A.2 For i = 1,... ,m,

for j = 1,. .. ,k,
if Uij € QRx then

compute ui+i,y = sqrt(x,u,j,bil3) and set 6;+i,j = 0;
if tiij € NQRX then

compute u,-+i,j = sqrt(x,y ■ uil3 mod x,bij) and set b,+i]3 = 1;
set Proof, = (ui+i,i, • • •, ««+i,fc,bi+i,ii • • • ,bi+i,k)-

A.3 Send {Proof i,..., Proofm) to B.

Input to B: A sequence of proofs {Proof i,..., Proofm), where Proof, =
(u,-+i,i,..., «,•+!,*, bi+i,i,...,fe;+i,*). u.+i.j e^j"1, bi+ij €{0,1}, for j= l,...,k.

Instructions for B.

B.l Set «i,j = ZJ, bij = bj, for j = 1,..., k.
B.2 For i = 1,..., m, and j = 1, ..., k,

verify that uf+1:J - ybi+1-:i ■ ui:J mod x.
B.3 If all verifications are satisfied then output: ACCEPT else output: REJECT.

Completeness, Soundness and Perfect Zero Knowledge: intuition. The
completeness property is not hard to check. To prove soundness and perfect
zero-knowledge, the following characterization of the distribution of a proof for

721

a quadratic non residue is useful. The i-tti proof Proofc is a string of k in-
tegers ui+ij in Z+1, and k bits bi+ij, such that the each u,-+i,j is uniformly
distributed (and so is its quadratic residuosity) and each bit 6,+i,j is also uni-
formly distributed. The soundness of (A,B) can then be proved by induction on
the number m of integers yt. The base case is simple; for the inductive case, we
assume that yi,..., y,-_i are quadratic non residues modulo x, and that ?/,• is a
quadratic residue, and use the above characterization of the distribution for the
proof for y,:-i, that is also the reference string to be used for proving j/j. The
perfect zero-knowledge of (A,B) can be proved by generating the m proofs start-
ing from the last one, using the above characterization. Here the main difficulty
consists in simulating the generation of a square root ui+ij of 2/

6'+1^ • uitj mod x
which is less than x/2 or not, according to the value of the random bit 6,- j taken
from the reference string. The generation is accomplished as follows. The sim-
ulator will first choose bit bij at random and ui+1J G Z+1 and then compute
mj such that «?,- = yb'+1'j ■ tii+ijmod x; now, the value of bit bij is then de-
termined depending on whether u; j is greater or smaller than x/2. It is possible
to see that if x is a Blum integer and y is a quadratic non residue, then bit bij
(or in other words, the predicate saying whether utj < x/2 or not) is uniformly
distributed, no matter how quadratic residues are distributed in Z+1. We obtain

the following

Theorem 4. (A,B) is a non-interactive perfect zero-knowledge proof system, with
security parameter k that can prove any polynomial number of quadratic non
residuosity statements, each of size n and uses a reference string of length &(kn).

3.2 Expected vs. strict polynomial time simulators

The zero-knowledge requirement in the definition of a non-interactive zero-
knowledge proof system requires the simulator associated to the proof system
to run in expected polynomial time. We can transform any non-interactive zero-
knowledge proof system into one having the additional property that the sim-
ulator runs in strict polynomial time. The transformation preserves the kind of
zero-knowledge, i.e., computational or perfect. We obtain the following

Theorems. Let L be a language having a non-interactive zero-knowledge proof
system. Then L has a non-interactive zero-knowledge proof system such that the
simulator associated runs in strict polynomial time.

3.3 A general class of languages

In this subsection we show a non-interactive perfect zero-knowledge proof system
for proving many statements on a fixed reference string, which applies to some
general class of languages, not necessarily depending on number-theoretic prop-
erties. We start with an informal discussion, and then define a class of languages
and give a protocol for all languages in such class.

722

An informal discussion. Generalizing the proof system of previous section, an
idea to construct a randomness-efficient protocol for proving many statements in
non-interactive perfect zero-knowledge would be the following: a first statement
xi is proved on a given reference string a\ and then the proof itself is used in
order to compute a new reference string for the next statement x%, and so on.
Specifically, instead of using the proof, whose structure is not known in general,
we would like to use the randomness needed by the simulator to simulate a
proof for a;i in order to compute a new reference string for the next statement x2-
Notice that because of Theorem 5, we can assume that the amount of randomness
needed by the simulator to simulate a proof is a fixed and well defined quantity.
Simulator-Rankable languages. Let L be a language and let (A,B) be a non-
interactive perfect zero-knowledge proof system for L; also, denote by M the
simulator associated to (A,B), by <r the reference string, by x the common input,
and by SM,a,x the set {R\M(R,x) = {a, Proof)}. If \x\ = n, let \R\ = r(n),
\a\ = s(n) and \SM,O,X\ = 2'(") (we can assume a fixed length r(n) for string R
because of Theorem 5). We say that (A,B) is simulator-rankable if there exists a
polynomial-time computable function F : {0, l}n x {0, l}r(n) -* {0,1}'(") such
that if x e L then F(x, R) is the rank of R in set SM,<T,X, where cr is such that
M(R,x) = (a, Proof). We say that language L is simulator-rankable if there
exists a non-interactive perfect zero-knowledge proof system (A,B) for L which
is simulator-rankable.
A protocol for any simulator-rankable language. Let L be a simulator-
rankable language; now we describe a non-interactive perfect zero-knowledge
proof system (P,V) for proving any polynomial number m = m{n) of membership
statements of size n to L which uses a fixed reference string. By ranks(x) we
denote the rank of element x in set 5. Now we give a formal description of (P,V).

Inpl it to P and V: n-hit string 'S xu.. ■ , 3*m, and an r (ra)-bit string a

Inst ■uctions for P:

P.l Set T\ = IT.

P. 2 For i = - 1,..., m 5

write T, = 7, o indi, where M = s(n) and \indi\ — r(n) — «(«);
compute Ri € SM,~I ,!■ such that rank SM,- „..,(*) = indi;
set Tv+i = Ri.

P. 3 Send (T\ , . . ■ , T,r +i) to V.

Input to V: a sequence of r(n) -bit strings (TI,... >Tm+l)-

Instructions for V:

V.l Set n = a.
V.2 For i = m,..., 1,

write ri = 7i o indi where |7;| = s(n) and \indi\ = = r(n) — s(n);
set R, = T, +i and o , = M(R„ £«);

check that T, = 1i < wid F(x, R i) = inc i •
V.3 If all verifications are successful then output: ACCEPT and halt, else output:

REJECT and halt.

723

We obtain the following

Theorem 6. Let L be a simulator-rankable language and let (A,B) be a simulator-

rankable non-interactive perfect zero-knowledge proof system for L. Then (P, V)
is a non-interactive perfect zero-knowledge proof system that can prove any poly-
nomial m = m(n) number of membership statements each of size n and uses a

reference string of length r(n), (that is, not depending on m), where r(n) is the
length of the random string used by the simulator M associated to (A,B).

Examples of simulator-rankable languages. A first example of a simulator-
rankable language is the language of quadratic non residuosity modulo Blum
integers. This can be seen by using the protocol in [5], revised in Section 3.1: for
each reference string <r, there exist exactly 2k random strings R in set SM,V,X,

since each integer z{ 6 Z+1 might have been generated from two different square
roots: r; and -r,- mod x. This allows to compute the rank of any random string
in SM,<7,X, for any reference string a. Later, in Section 4.2 we show that the
language of all l-out-of-3 thresholds over quadratic non residuosity is simulator-
rankable. Using this fact, we can show the same for the language of fc-out-of-m
thresholds over quadratic non residuosity [11] and for the language of all secret-
sharing based compositions over quadratic non residuosity [10]. Also, it is easy
to see that the language of all elements in a family of trapdoor permutations
[4] is simulator-rankable. This implies that all known languages having a non-
interactive perfect zero-knowledge proof system are simulator-rankable.

4 A randomness-efficient protocol for NP

We start by reviewing the non-interactive zero-knowledge proof system for the
NP-complete language 3SAT given in [5]. We will denote by k the security pa-
rameter of the proof system, by n the number of variables and by m the number
of clauses of the 3-SAT input formula <j>. Also, we choose the size of the Blum

integer used as a modulus to be equal to k.

The protocol in [5] for 3SAT. The non-interactive zero-knowledge proof
system for 3SAT given in [5] uses a reference string of length 0(kn3) and can be
divided into three steps.

1. Committing to truth values. First of all the prover uniformly chooses a It-
bit Blum integer x and a quadratic non residue y. Then, using x,y, and
a satisfying assignment t for variables in <j>, the prover assigns an integer
Vi G Z+1 to each literal /,• in <f> in such a way that if y is a quadratic non
residue modulo x, then the following is true: y; is a quadratic non residue
modulo x if and only if literal /,• is true under the assignment t.

2. Proving that the commitments are consistent. Here the prover sends a non-
interactive zero-knowledge proof that a; is a Blum integer and y is a quadratic

non residue modulo x.
3. Proving that clauses are satisfied. For each clause (In V h2 V Z,^) of <f>, the

prover proves that at least one of t/»i, JA2,2/»3 is a quadratic non residue
modulo x, where integer ytj was assigned to literal Uj.

724

Our contribution. We give a significantly different implementation of the first
and third step in the above protocol, and obtain the following

Theorem 7. Under the quadratic residuosity assumption, there exists a non-
interactive computational zero-knowledge proof system with security parameter
k for 3SAT, using a reference string of length 6(nk), where n is the number of

variables of the input formula.

Now we informally describe our implementation of the first and third steps of
the above protocol, omitting a formal description. We remark that our protocol
satisfies also the requirement of strong soundness, that is, it is sound also if a
malicious prover chooses the statement after seeing the reference string.

4.1 Committing to the truth values of the literals

Let t be an assignment for variables vi,..., vn in the 3SAT formula <j>; let x be the
input modulus and let w\ o ■ • •om„ be a portion of the random string, where each
u'i e Z+1. Also, denote by q, the quadratic residuosity of iu,-, for each i = 1,..., n.
Then the prover P commits to each Vj and Uj as follows. For each i= 1,..., n,
P sets di = t(v,)(B qi, tcom, = yd' ■ w, mod x and nconn — y-tconn mod x. The
commitments are then (vi,tcom.i), (vi,ncorrii), for i = 1,...,«. It is easy to check
that, tconii (nconii) is a quadratic non-residue if and only if variable u,- (T7;) is
true under assignment t. We remark that the above commitments are generated
using integers from the reference string, while in [5] they were generated from
the prover by using some private randomness. In our analysis, this will decrease
significantly the cheating power of a dishonest prover and will allow us to use
a shorter reference string in the proof system for proving that the clauses have

been correctly constructed.

4.2 Proving that the clauses are satisfied

In order to prove that a single clause is satisfied, we use a non-interactive perfect
zero-knowledge proof system for the language 3-OR(NQRr) of triples (y1, y2, 2/3)
such that at least one out of 2/1,2/2,2/3 ls a quadratic non residue modulo the Blum
integer x. We do not yet know whether such language is simulator-rankable, since
it is not clear how to use the two protocols given in [14, 11] for this language
in order to derive such property. Here we describe a non-interactive perfect
zero-knowledge proof system (A,B) for language 3-OR(NQRa;), which allows to
conclude that such language is simulator-rankable, and thus allows to prove all
m clauses of formula (f> on one fixed random string.

An informal description. We start with some definitions. Let x be a Blum
integer and 6i,62,63 G {0,1}; we say that a triple (zi,z2,z3) of integers in

Z+1 has quadratic character (61,62,63), if Qx{zi) = &». for i = I,2, 3. Also,
we say that two triples (2/1,2/2,2/3) and {zi,z2,z3) of integers in Z+1 have dif-
ferent quadratic characters if the two triples of bits representing the quadratic

725

characters of (j/i, y2,2/3) and (zltz2, z3) are different. Finally, we define the 0R-
frip/es of (yi, y2,2/3), for any triple (2/1, 2/2,2/3) of integers in Z+1, as the 7 triples
(2/1,2/2,2/3), (yi 2/2 2/3,2/12/3, 2/1), (2/2,2/3,2/12/2), (2/3,2/12/2,2/22/3), (2/12/2,2/22/3,2/12/22/3),
(2/22/3, 2/12/22/3, 2/12/3), (2/i2/3> 2/1,2/2), where all computations are done modulo a;.
We will use the following

Fact 1 Le£ idea ß/«m integer, and let 2/1,2/2,2/3 e Z+1. ^/ien ifte OR-triples

of (2/1,2/2,2/3) satisfy the following properties:

1- //(2/i,2/2,2/3) has quadratic character (0,0,0) then allOR-tnplesof(yi,y2,y3)
have quadratic character (0,0,0);

2- U (2/1,2/2,2/3) /»öS quadratic character different from (0,0,0) tfjen
- each OR-triple 0/(2/1,2/2,2/3) ^a« quadratic character different from (0, 0, 0),
- eac/i too OR-triples 0/(2/1,2/2,2/3) ^<™e different quadratic character.

The proof system (A,B) uses a reference string of length 9(nk), viewed as the
concatenation of triples (ziA, zii2,zi>3) of integers in Z+1, for i = 1,..., [fc/3]. On
input (x,yi, 2/2,2/3), the prover A computes the quadratic character (d,-,i, d»,2, ^,3)
of each triple (ziA, zi>2, zii3). Now, if (ditl,dii2,dii3) = (0,0,0) then A computes
and sends to B square roots of ziyi, zi)2, zi%3. Instead, if (diti,di)2, di>3) ^ (0, 0, 0),
A computes and sends to B square roots of zit\ ■ vx mod x, zii2 ■ v2 mod x,
and Zii3 ■ v3mod x, where (vx,v2,v3) is the OR-triple with quadratic character
(di,i,di}2,dii3). The verifier B checks that the square roots are correctly com-
puted. A formal description of (A,B) is omitted. Similarly as done for the lan-
guage of quadratic non residuosity, we can show that the language 3-OR(NQRx.)
is simulator-rankable. Using Theorem 6, we obtain the following

Theorem 8. There exists a non-interactive perfect zero-knowledge proof system
with security parameter k for proving any polynomial number m(n) of member-
ship statements for the language 3-OR(NQRx) of size n, which uses a reference

string of length 0(kn).

Acknowledgements. We thank Russell Impagliazzo for valuable discussions.
Part of the second author's research was supported by NSF YI Award CCR-92-

570979 and Sloan Research Fellowship BR-3311.

References

1. M. Ajtai and A. Wigderson, Deterministic Simulation of Probabilistic Constant

Depth Circuits, in Proceedings of STOC 85.
2. M. Bellare, O. Goldreich, and S. Goldwasser, Randomness in Interactive Proof

Systems, in Proceedings of FOCS 90.
3. M. Bellare and J. Rompel, Randomness in Interactive Proof Systems, in Proceed-

ings of FOCS 94.
4. M. Bellare and M. Yung, Certifying Cryptographic Tools: the case of Trapdoor

Permutations, in Journal of Cryptology, vol. 9, n. 1, pp. 149-166.

726

5. M. Blum, A. De Santis, S. Micali, and G. Persiano, Non-Interactive Zero-

Knowledge, SIAM Journal of Computing, vol. 20, no. 6, Dec 1991, pp. 1084-1118.
6. M. Blum, P. Feldman, and S. Micali, Non-Interactive Zero-Knowledge and Appli-

cations, in Proceedings of STOC 88.
7. C. Blundo, A. De Santis, G. Persiano, and U. Vaccaro, On the number of random

bits in totally private computations, in Proceedings of ICALP 95.
8. J. Boyar and R. Peralta, Short. Discreet Proofs, in Proc. of EUROCRYPT 96.
9. I. Damgaard, Non-interactive circuit-based proofs and non-interactive perfect zero-

knowledge with preprocessing, in Proceedings of EUROCRYPT 92.
10. A. De Santis, G. Di Crescenzo, and G. Persiano, Secret Sharing and Perfect Zero-

Knowledge, in Proceedings of CRYPTO 93.
11. A. De Santis, G. Di Crescenzo, and G. Persiano, The Knowledge Complexity of

Quadratic Residuosity Languages, in Theor. Comp. Sc, Vol. 132, pp. 291-317.
12. A. De Santis, S. Micali, and G. Persiano, Non-Interactive Zero-Knowledge Proof

Systems, in Proceedings of CRYPTO 87.
13. A. De Santis and M. Yung, Cryptographic Applications of the Metaproof and Many-

Prover Systems, in Proceedings of CRYPTO 90.
14. G. Di Crescenzo, Recycling Random Bits for Composed Perfect Zero-Knowledge,

in Proceedings of EUROCRYPT 95.
15. U. Feige, D. Lapidot, and A. Shamir, Multiple Non-Interactive Zero-Knowledge

Proofs Based on a Single Random String, in Proceedings of FOCS 90.
16. L. Fortnow, The Complexity of Perfect Zero-Knowledge, in Proc. of STOC 87.
17. O. Goldreich, S. Micali, and A. Wigderson, Proofs that Yield Nothing but their

Validity or All Languages in NP Have Zero-Knowledge Proof Systems, Journal of

the ACM, vol. 38, n. 1, 1991, pp. 691-729.
18. O. Goldreich and Y. Oren, Definitions and Properties of Zero-Knowledge Proof

Systems, Journal of Cryptology, vol. 7, 1994, pp. 1-32.
19. S. Goldwasser, S. Micali, and C. Rackoff, The Knowledge Complexity of Interactive

Proof-Systems, SIAM Journal on Computing, vol. 18, n. 1, February 1989.
20. R. Impagliazzo and D. Zuckerman, How to Recycle Random Bits, in Proceedings

of FOCS 89.
21. J. Kilian, On the Complexity of Bounded-interaction and Non-interactive Zero-

knowledge Proofs, in Proceedings of FOCS 94.
22. J. Kilian and E. Petrank, An Efficient Zero-knowledge Proof System for NP under

General Assumptions, in Electronic Colloquium on Computational Complexity,

Technical Report no. TR95-038.
23. R. Impagliazzo, N. Nisan, and A. Wigderson, Pseudorandomness for Network Al-

gorithms, in Proceedings of STOC 94.
24. M. Naor and M. Yung, Public-Key Cryptosystems Provably Secure against Chosen

Ciphertext Attack, in Proceedings of STOC 90.
25. N. Nisan, Pseudorandom Bits for Constant Depth Circuits, Combinatorica, 11, pp.

63-70, 1991.
26. N. Nisan, Pseudorandom Sequences for Space Bounded Computations, Combina-

torica, 12, pp. 449-461, 1992.
27. N. Nisan and D. Zuckerman, More deterministic simulation in LOGSPACE, in

Proceedings of STOC 93.
28. I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers, John

Wiley and Sons, 1960, New York.

Approximation Results
for the Optimum Cost Chromatic Partition Problem

Klaus Jansen1

Fachbereich IV - Mathematik, Universität Trier, 54 286 Trier, Germany, email:
jansen@dm3.uni-trier.de

Abstract. In this paper, we study the optimum cost chromatic partition
(OCCP) problem for several graph classes. The OCCP problem is the
problem of coloring the vertices of a graph such that adjacent vertices
get different colors and that the total coloring costs are minimum.
We prove that there exists no polynomial approximation algorithm with
ratio O(\V\0b~e) for the OCCP problem restricted to bipartite and in-
terval graphs, unless P = NP.
Furthermore, we propose approximation algorithms with ratio 0(\V\ ')
for bipartite, interval and unimodular graphs. Finally, we prove that
there exists no polynomial approximation algorithm with ratio 0(\V\ ~£)
for the OCCP problem restricted to split, chordal, permutation and com-
parability graphs, unless P = NP.

1 Introduction

In this paper, we study the optimum cost chromatic partition (OCCP) problem
for several graph classes. The graph classes used in this paper are defined e.g. in
[5]. The OCCP problem can be described as follows: Given a graph G = (V, E)
with n vertices and a sequence of coloring costs (ki,...,kn), find a feasible
coloring f(v) for each vertex v £ V such that the total coloring costs Ylvev kf(v)
are minimum. A coloring / : V -»■ {1,. .., n} is feasible if adjacent vertices
have different colors. Alternatively, the OCCP problem can be formulated as
follows: Given a graph G = (V, E) with n vertices and a sequence of coloring
costs (ki,...,kn), find a partition into independent sets Ui,...,Us such that

J2l=i kc ' l^cl is minimum. We may assume that kc < kd whenever c < d.
C A VLSI layout problem introduced by Supowit [11] with terminals on a circle

or on two opposite parallel lines corresponds to the OCCP problem restricted
to circle or permuation graphs. Another application is given by Kroon et al.
[9]. The OCCP problem for interval graphs is equivalent to the Fixed Interval
Scheduling Problem (FISP) with machine dependent processing costs. It is not
difficult to see that the OCCP problem is NP-complete for arbitrary graphs. Sen
et al. [10] proved that the OCCP problem for circle graphs is NP-complete.

Kroon et al. [9] studied the OCCP problem for interval graphs and trees. They
showed that the problem restricted to trees can be solved in linear time and that
the problem restricted to interval graphs is NP-complete even if there are only
four different values for the coloring costs. If there are only two different values

728

for the coloring costs, then the OCCP problem is equivalent to the maximum
g-colorable subgraph problem. Suppose that the first q costs are equal and that
the last n — q costs are equal (k\ = ... — kq < kq+i = ... = k„). Then, we get
an optimum solution if the maximum g-colorable subgraph is colored with the
colors 1,..., q and if the other vertices are colored with the remaining colors.
The maximum g-colorable subgraph problem has been studied extensively by
Frank [3], Gavril [4], Yannakakis and Gavril [12], Jansen et al. [6] and Chang et
al. [2]. Further complexity results for the OCCP problem can be found in [7].

We give several approximation results for the OCCP problem restricted to
bipartite, chordal, comparability, interval, permutation, unimodular and split
graphs. We prove that there exists no polynomial approximation algorithm with
ratio O(|V[0-5~f) for the OCCP problem restricted to bipartite and interval
graphs, unless P = NP. Furthermore, we propose approximation algorithms
with ratio 0(|V|0,5) for both graph classes and for unimodular graphs. Finally,
we prove that there exists no polynomial approximation algorithm with ratio
OdV7!1-6) for the OCCP problem restricted to split, chordal, permutation and
comparability graphs, unless P = NP.

2 Bipartite graphs

In this section we prove that OCCP is hard to approximate 0(|y|°-5_£) for
bipartite graphs. After that, we propose an approximation algorithm with ratio
o(|vf-5).

2.1 Non-Approximability result

We use the precoloring extension problem that is NP-complete for bipartite
graphs proved by Bodlaender, Jansen and Woeginger [1]. Given a bipartite graph
G = (V, E) with vertex set V = A U B, edge set E C {{v, w}\v G A, w G B} and
three specified vertices 01,02, az G A, the 1-PrExt problem is to decide whether
there exists a 3-coloring of G with f{a\) = 1, /(ß2) = 2 and /(013) = 3.

First, we show the NP-completeness of the OCCP problem using an integer
parameter K. Later, we specify the parameter K to achieve our non - approx-
imability result.

Theorem 1. The OCCP problem for bipartite graphs is NP-complete if there
are at least four different cost values.

Proof. The theorem is proved by a reduction from 1-PrExt restricted to bipartite
graphs. We may assume that G = (A U B, E) contains three further vertices
bi,bo,b3 G B with {a»,6;} G E for 1 < %i ^ j < 3. Let n be the number of
vertices in G.

Let / be an instance of 1-PrExt containing the bipartite graph G = (AUB, E)
with 0,1,0-2,03 G A and 61,62,63 G B as described above. Let K be a positive

729

integer with A > 1. An instance V of the OCCP problem is constructed as
follows. First, we define a bipartite graph G' = (V',E') with vertex set

V = {vhj,v2lj\l < 3 < 2000A2n}U
{t>3j-',«4j'|l < f < lOOA'n} U {«5, v6}

and edge set

E' = {{wi ,-,«3i'},{«2j,t;4j-}|l < 3 < 2000A2n, 1 < j' < 100An}U
{{^5,w3,i'},{^6,^4,i'}|l < / < 100A'n}U
{v<S,V6}-

Vl,

m>—m.
"3, Vs V6 "4,. ü2,>

Fig. 1. The constructed graph G' and a feasible 2-coloring of G'.

The bipartite graph G' illustrated in Figure 1 contains 4000A2n + 200An + 2

vertices. Then, we connect G and G' using the following edges:

E = {{auv3,j>}, {bi, v4JI}, {6i, v5}, {a2, v2j},
{{&2, ^lj}, {&2, v5}, {a3, v3tjl}, {a3, v2,j},
{b3, vu), {b3, v4ij,} | 1 < j < 2000A2n, 1 < j' < lOOAn}}.

In total, the bipartite graph G for V is given by

G = (AUBUV',EUE'\JE).

The cost values are kx = 1, k2 = 10A, k3 = 100A2 and k4 = 15000K3n. A
cheap coloring of G has to use only three colors; otherwise the costs would be

more than 15000A3n.
We can prove the following statements: 7 is a yes instance of 1-PrExt if

and only if the minimum total costs of coloring all vertices in I' don't exceed
6100A2ra+100A2 + l.
If there is no solution of the 1-PrExt problem, then we have either four colors
in G with coloring costs of at least k4 = 15000A3n or a 3-coloring with coloring

costs of at least 10000A3«. a

Theorem2. For each e < \, there exists no polynomial approximation algo-
rithm, with ratio O(\V\05~e) for the OCCP problem restricted to bipartite graphs,

unless P = NP.

730

Proof. Let H be an approximation algorithm for the OCCP problem that com-
putes a coloring with costs H(I') < c\V\°-5~eOPT(I'), where c is a constant and
OPT(I') are the minimum costs of a solution /'.

We construct for an instance / of the 1-PrExt problem an instance /' of the
OCCP problem as described in the proof above. We obtain a graph with at most
4300K2n vertices. If there exists a solution of the 1-PrExt problem, the optimum
solution of the OCCP instance I' has costs of at most 6200A"2n. In this case, our
approximation algorithm produces the value H(I') < 6200A'2cn|V|°-5_£. Since
the number of vertices in I' is at most 4300A2n, we have

c|y|0.5-e < (4300)°-5A'1-2ecn0-5.

If there exists no solution of the 1-PrExt instance, then OPT(I') > 10000K3n
and, therefore, algorithm H generates a solution with costs greater than
10000A3n. Next, we consider the inequality

10000A3n > (4300)°-56200A3-2£cn1-5.

This inequality is satisfied if and only if

2£ c(4300)°-56200 05
A > loooo •

We define

K ,«/C(4300)°-56200n0.5]

10000
+ 1.

Since c and e are constant, A is a polynomial in n and, therefore, the instance /'
can be constructed in polynomial time. If there exists no solution of the 1-PrExt
problem, then H generates a solution with costs of at least

10000A3n > (4300)°'56200A3_2fcn1-5 > 6200A2cn|F|°-5_f.

Therefore, by using the polynomial time approximation algorithm H, we could
decide the existence of a solution for the 1-PrExt problem, which would imply
P = NP.O

2.2 Approximability result

The key idea of the approximation algorithm is to compute two colorings for the
problem and to choose the cheaper one.

Algorithm A
given: Instance / of the OCCP problem containing a bipartite graph G = (V, E)

and cost vector {k\,..., &|v|)-
(1) Compute a 2-coloring of G with ri\ vertices colored with color 1 and \V\ — n\

vertices colored with color 2 such that riy is maximum and, therefore, n\ >
y. The costs of the first coloring are A\{I) = niki + (\V\ — ni)&2-

731

(2) Compute a maximum independent set U in G with a(G) vertices and color
the vertices in [/ with color 1. Then, compute a 2-coloring of G[V \ U]
with n\ vertices colored with color 2 and \V\ - a{G) - n[vertices colored
with color 3 such that n[> |K|~°(G). The costs of the second coloring are
,42(7) = a(G)h + n[k2 + (\V\ - a(G) - n't)k3.

(3) Choose the cheaper coloring among the two colorings.

We note that the costs of the second coloring are bounded by

a{G)kl +]Xlz^l{k2 + k3) < a(G)h + (\V\ - a(G))k3.

Theorem 3. Algorithm A computes a solution of the OCCP problem restricted
to bipartite graphs with approximation ratio < \V\°- .

Proof. Let I be an instance of the OCCP problem containing a bipartite graph

G = {V, E) and cost vector (ifei,..., V|). Then' we have two lower bounds for

the optimum value OPT(I):

(l)OPT(I) > \V\ku

(2) OPT(I) > a(G)h + (\V\ - a(G))k2.

We consider two cases k3 < \V\05k2 and k3 > \V\05k2 and can prove that
A(I) < \V\05OPT(I). ü

3 Interval graphs

In this section we prove that the OCCP problem restricted to interval graphs
is hard to approximate with ratio 0(|V|0-5_e)- Furthermore, we propose an ap-
proximation algorithm with ratio O(\V\05) for interval graphs and also for uni-
modular graphs.

3.1 Non-Approximability result

The NP-completeness proof uses a reduction from Numerical Three Dimensional
Matching (N3DM) and is a modification of the pure NP-completeness proof of
the OCCP problem given by Kroon et al. [9].

Theorem4. For each e < \, there exists no polynomial approximation algo-
rithm with ratio 0(\V\°rj-e) for the OCCP problem restricted to interval graphs,
un less P = NP.

Proof First, we give a reduction from N3DM with variable parameter K G M
and, later, we specify the parameter K E M to achieve our non-approximability
result. Let h be an instance of N3DM with integer t and rational numbers

0 < ai,bi, Ci < 1 for 1 < i < t with E!=I(°* + bi + c») = *• The N3DM Problem

is to decide whether there exist permutations p and 6 of {1,...,<} such that
at + bp(i) + c6(i) = 1 for 1 < i < t.

732

We choose further rational numbers Ai, Bj and X{j such that all these num-
bers are different and that 4 < A, < 5 < Bj < 6 and 7 < Xij < 9 for 1 < i, j < t.
Next, we construct an instance J2 of the OGCP problem. We use the intervals
given in Table 1 for the interval graph.

interval interval numbers

(0, By (ll-cfc,13] 1 < j < t or 1 < k < t
(1,2] (2, A.-] t times or 1 < i; < t

(A„Xt]] (Xij,10 + at+b}] 1 <i,j<t
(Bj,Xjj] (Xij, 14] 1 < i,j <t

(3, Bj] (O.Aj] t — 1 times and l<j<torl<i<<

?oon^'2t T,3]
(I SI

(12,14- 3 At' 1
u<-2fl t — < times

t times, 0 < I < 2000Ä"V ti l (13 + 13 + ~m~

.?nnnr>-aH ' ?.nnnK2f*. t2 - t times, 0 < I < lOOKt2

Table 1. The intervals in the interval graph

Furthermore, there are t colors with costs 1, t2 — t colors with costs lOKt2,
t2 colors with costs 100AT2t4 and all other colors have costs 20000A'3it6.

The first claim (see also [8]) is to prove the following statement: I\ is a yes
instance of N3DM if and only if the minimum total costs of coloring all intervals
of I2 do not exceed

costs(K) := 2000K2t5 + 5« + 2300K2t6 + 50Kt4 - 50Kt3.

If I\ is a no instance of N3DM, then the total costs of coloring all intervals of I2
are greater than IQQOOKH6. We notice that the value costs(K) is bounded by
4355/i2*6.

The second part of the proof is the specification of the parameter K to
achieve our non-approximability result. We define

(4208)054355j9 K

10000
-t1

and get our non-approximability result (see also [8]). □

3.2 Approximability result

Next, we propose an approximation algorithm A with ratio 0(|V|°"5) for the
OCCP problem restricted to interval graphs or to unimodular graphs. The key
idea is to analyse the structure of the optimum solution and to solve a special
coloring problem.

Suppose that the optimum solution consists of bopt > x{G) colors. Further-

more, we assume that the colors aopt,aopt + l,...,bopt cover at least |"v|V|]

733

vertices and that the colors aopt + 1,..., bopt cover less than fvl^ll vertices of
G. This implies that aopt G {1, • • ■, bopt}. Let naoptibopt-aopt be the number of
vertices colored with colors l,...,aopt and let naopUbopi-aopi be the number of
vertices colored with the other colors aopt + 1,..., bopt. Therefore, naopUbopi-aopt

is bounded by \/|V|.
Using these assumptions, we obtain the following lower bounds for the min-

imum costs OPT(I) of a coloring:

(l)OPT(I)>\^\V\\-kaoptl

(2)OPT(I)>khopi.

The first inequality is satisfied, since \^/\V\] vertices are colored with the colors
aopt,aopt + l,...,bopt and since kaopi < kaopt+1 < ... < hopt. The second in-
equality follows from the fact that color bopt occurs at least once in the optimum

coloring.
For our approximation algorithm we have to solve the following graph theo-

retical problem (called maximum (a,b - a)-colorable subgraph problem).

Maximum (a, b - a)-colorable subgraph
Given: A graph G = (V, E), and numbers a, b G NI with a < b and 6 > \(G).
Question: Compute a partition (V',V\ V) of V such that V has maximum

cardinality and can be colored with a colors and V\V can be colored with

b — a colors.

Let H be an optimum algorithm to solve the maximum (a, b - a)-colorable
subgraph problem. A call of this algorithm with parameters a and 6 is denoted
by H(a, b - a). Note, that the maximum (a, b - a)-colorable subgraph problem
is harder as the maximum g-colorable subgraph problem. This implies that the
decision problem corresponding to the maximum (a, b - a)-colorable subgraph
problem is NP-complete for e.g. split graphs, undirected path graphs and their

complements and for &-trees with unbounded k.

We have proved the following results:

Theorem 5. (1) The maximum (a, 6 - a)-colorable subgraph problem for inter-
val graphs is solvable in polynomial time using a mincost flow algorithm.

(2) The m.axim.um, (a, b - a)-colorable subgraph problem for unimodular graphs

is solvable in polynomial time using a linear program.

We denote by aaib-a(G) the maximum cardinality of such a subset V and
with äa:b-a(G) the number of vertices in V \ V. Clearly, aaopUbopi-aop,(G) >
n i „ and an h n (G) < n„ ,4 ,-a ,. Given a solution with sets
V (and V\V), a coloring with at most a (and b - a) colors can be computed
with an optimum coloring algorithm for several classes of graphs (e.g. interval
or unimodular graphs). Since the colors aopt + 1,.. -,b0pt cover less than \J\V\
vertices in the optimum solution and since äaoptibopt-aopt(G) < naoptibopi-aopt,

the value aaopubopt-aopt{G) is bounded by ^/\V\.

734

Let Cniiopt, bopt — aopt) be the costs of a coloring computed by a call of the
algorithm H(aopt, bopt — aopt) and a corresponding coloring algorithm. Then, we
can bound the costs Cff(aopt,6op4 — aopt) using the lower bounds (1) and (2) as
follows:

CH(aopt, b0pt — d0pt) < aaopt,bol,i-aort{G) ■ kaopt + äaopt,bop,-aopt{G) • K0opt

<\v\-kao^JW\-h

< 2^/\V\OPT(I).

For the approximation algorithm for the OCCP problem the values a and
b — a can be bounded by x(G). If aopt > x(G), the optimum costs OPT(I) are
greater than [^/l^ll^x(G)- ^n this case> we get an approximate solution with
a — x(G) and b = a using

CH(X(G),0) < ax{G)fi{G)kx(G) < y/\VW\V\kx{G) < s/\V\OPT(I).

If b0pt > x(G) + a-opt and aopt < x{G), then the optimum costs OPT(I) >
kx(G)+aor,- In this case, we get an approximate solution with a = aopi and
b = a + \{G) using

CH(aopt,X(G)) < \V\kaopi + y/\V\kx(G)+aort < 2y/\V\OPT(I).

These arguments imply that at most 0(x(G)2) calls of the maximum (a, b—a)
- colorable subgraph are sufficient for our approximation algorithm. In the next
part of this section we improve this bound. We show that at most 0(logx(G))
calls of the maximum (a, b — a) colorable subgraph algorithm H are needed.

For each a £ {l,...,x{G) — 1}, let x be the smallest integer with x 6
{1,.. .,x(G)} (if possible) such that äa<x(G) < \\^\V\]. We notice that
öa,x(G)(G) can be greater than [\/|V|] and that

äa,i(G) > äa^(G) > ... > äa,x(G)(C?)-

For a £ {!,..., x{G) — 1} we define

first{a) = [X if <x(c)(G)< \VW\]
[oo otherwise

Since G can be colored with x{G) colors, we define first(x{G)) = 0.

Lemma 6. If a < a' and first(a), first(a') ^ oo then first(a')+a' < first(a)+

The smallest a with first(a) < oo can be found using binary search with calls
H(a,x(G)). Therefore, ä can be found with 0(logx(G)) calls of the maximum
a-colorable subgraph algorithm. We notice that first(a') < oo for each a' £
{ö,..., x(G)}- This implies that the mapping ip : a —► first(a) + a is non-
increasing.

735

first(a) + a

large(a)

large(x{G))

first(X(G)) + x(G)

 _ a

5i t t B2

Fig. 2. The mappings <p : a -+ first(a) + a and ip : a -* large(a)

For each a £ {1,..., y(<?)}, let a; be the smallest number in {a + 1,..., |V|}
(if existent) with kx > y/\V\ka. Notice that k\V\ can be smaller than y/\V\ka.

We define

. / i if fc|V| > vn7^ largeia) = < , ' ' . v
v ' ^ oo otherwise

For x(G) = |V"|, we define large(\V\) = oo.

Lemma 7. If a < a' then large(a) < large(a').

This Lemma implies that the mapping ip : a —> large(a) is non-decreasing.
Next, we define two regions Bx = {a G {ä, ... ,x(G)}\large(a) < first (a) + a]
andB2 = {a G {ä,... ,x{G)}\large(a) > first(a) + a}. We define ax = max(Bi)
and a2 = m.in(B2) (if the corresponding sets are non-empty). In Figure 2, we
have illustrated the mappings ip : a -» large(a) and ^ : a -+ first(a) + a.
Since the mappings ^ and V are non-increasing and non-decreasing, for each

pair a G B\, a' G B2 we have a < a'.
Consider an optimum solution with parameters (aopt,b0pt) where aopt <

X(G). We prove that is sufficient to compute at most two solutions using a
(ai,first(aij) and a (o2, first(a2)) maximum colorable subgraph.

Lemma 8. Let (V',V\V) be an optimum solution with parameters (aopt,bopt)

such that aopt < x(G). If'Bx # 0 and B2 / 0 then

m.in(CH(a1,first(a1)),CH(a2,first(a2)) < 2y/\V\0PT(I)

If Bi = 0, then a2 = ä and

CH(äJirst(ä)) < 2y/\V\0PT(I).

736

Proof. We analyse the case with B\ ^ 0 and B2 ^ 0; the other case with B\ — 0
follows then directly. Clearly, we have 0,2 = a\ + 1. We have to consider three
cases.

Case 1: large(aopt) < first(aopt) + aopt and aopt > ä. In this case, the
optimum solution lies in the first region B\. Notice that first(aopt) + aopt < bopt-
Since the mapping ip : a —> first(a) + a is non-increasing and ai > aopt, we
have first(ai) + a\ < first(aopt) + aopt. Moreover, it holds that large(a\) <
first(ai) + ax and that k,arge^ai) > \f\V\kai-

The costs Cff(ai,/irsi(ai)) < \V\kai + ^/\V\kJirst(ai)+ai- Using ^/\V\kai <
kiarge(ai) and large(a,\) < first(ai) + ax < first(aopt) + aopt < bopt, we obtain

CH(ai,first(ai)) < 2^\V\kiort < 2y/\V\OPT(I).

Case 2: large(aopt) > first(aopt) + aopt and aopt > ä. In this case, the opti-
mum solution lies in region B2 and similar as above we get CH(<12, first(02)) <
2^/\V\OPT(I).

Case 3: aopt < ä. In this case, we get a contradiction. □
The next Lemma implies how the values ai and 0,2 can be computed using

binary search and calls H(a, large(a) — a) and H(a, large(a) — a — 1).

Lemma9. Let a £ {ä,... ,x(G)}. Using calls H(a,large(a) — a) and
H(a, large(a) — a — I) we can decide whether a 6 Bi or a £ #2-

Now, we are ready for our approximation algorithm.

Algorithm B
(1) compute large(a) for each a £ {l,...,x(G)} (using preprocessing in

0(x(G)+\V\)time),
(2) compute a first solution with the call H(x(G),0) (this is an arbitrary col-

oring for the case aopt > x{G)),
(3) find the smallest a with first{a) < 00 using binary search with calls

H(a,x(G)) (these are maximum a - colorable subgraphs),
(4) compute a\ (if existent) and 02 using binary search with calls

H(a,large(a) — a) and H(a,large(a) — a — I) (these are maximum (a,x)-
colorable subgraphs),

(5) compute first(ai) (if ai exists) and first(a,2) using binary search with calls
H(cii,x) (these are maximum (a;, a;)-colorable subgraphs),

(6) choose the cheapest solution among the solutions with costs CH{O-\,

first(ai)) (if ai exists), CH(CI2, firstfa)) and CH(X(G), 0).

Using the calculations above, we obtain the following result.

Theorem 10. The approximation algorithm B above computes a coloring of the
OCCP problem restricted to interval graphs (and unimodular graphs) with ap-
proximation ratio 0(\V\).

The time complexity of this algorithm for interval graphs is given by
0(log\'(G)) calls of a minimum cost flow algorithm. For unimodular graphs,
we need at most Oi\ogx{G))) calls of a linear programming algorithm.

737

4 Other perfect graphs

In [8], we have proved the following further results for the OCCP problem re-
stricted to chordal, comparability, permutation and split graphs.

Theorem 11. For each e < 1, there exists no polynomial approximation al-
gorithm with ratio 0(|V|1_f) for the OCCP problem restricted to permutation
graphs (and to comparability graphs), unless P = NP.

Theorem 12. For each e < 1, there exists no polynomial approximation algo-
rithm with ratio 0(\V\l~e) for the OCCP problem restricted to split graphs (and
to chordal graphs), unless P = NP.

Acknowledgement. I thank Thomas Erlebach (TU München) for his help-
ful comments and many fruitful discussions.

References

1. Bodlaender, H.L., Jansen, K., Woeginger, G.: Scheduling with incompatible jobs.
Graph Theoretic Concepts in Computer Science, LNCS 657 (1992) 37-49

2. Chang, M.S., Chen, Y.H., Chang, G.J., Yan J.H.: Algorithmic aspects of the gen-
eralized clique-transversal problem on chordal graphs. Discrete Applied Mathe-
matics 66 (1996) 189-203

3. Frank, A.: On chain and antichain families of a partially ordered set. Journal
Combinatorial Theory (B) 29 (1980) 176-184

4. Gavril, F.: Algorithms for maximum k-colorings and k-coverings of transitive
graphs. Networks 17 (1987) 465-470.

5. Golumbic, M.C.: Algorithmic graph theory and perfect graphs, Academic Press,
New York (1980)

6. Jansen, K., Schemer, P., Woeginger, G.J.: Maximum covering with D cliques.
Fundamentals of Computation Theory, LNCS 710 (1993) 319-328

7. Jansen, K.: The optimum cost chromatic partition problem. Algorithms and Com-
plexity, LNCS 1203 (1997) 25-36

8. Jansen, K.: Approximation results for the optimum cost chromatic partition prob-
lem. Universität Trier, Forschungsbericht 1 (1997)

9. Kroon, L.G., Sen, A., Deng, H., Roy, A.: The optimal cost chromatic partition
problem for trees and interval graphs. Graph Theoretical Concepts in Computer
Science, LNCS (1996)

10. Sen, A., Deng, H., Guha, S.: On a graph partition problem with an application
to VLSI layout. Information Processing Letters 43 (1992) 87-94

11. Supowit, K.J.: Finding a maximum planar subset of a set of nets in a channel.
IEEE Transactions on Computer Aided Design CAD 6, 1 (1987) 93-94

12. Yannakakis, M., Gavril, F.: The maximum k-colorable subgraph problem for
chordal graphs. Information Processing Letters 24 (1987) 133-137

The Minimum Color Sum of Bipartite Graphs'

Amotz Bar-Noy** Guy Kortsarz***

Abstract. The problem of minimum color sum of a graph is to color the
vertices of the graph such that the sum (average) of all assigned colors
is minimum. Recently, in [BBH+96], it was shown that in general graphs
this problem cannot be approximated within n1_£, for any e > 0, unless
NP = ZPP. In the same paper, a 9/8-approximation algorithm was pre-
sented for bipartite graphs. The hardness question for this problem on
bipartite graphs was left open. In this paper we show that the minimum
color sum problem for bipartite graphs admits no polynomial approxima-
tion scheme, unless P = NP. The proof is by L-reducing the problem of
finding the maximum independent set in a graph whose maximum degree
is four to this problem. This result indicates clearly that the minimum
color sum problem is much harder than the traditional coloring problem
which is trivially solvable in bipartite graphs. As for the approximation
ratio, we make a further step towards finding the precise threshold. We
present a polynomial 10/9-approximation algorithm. Our algorithm uses
a flow procedure in addition to the maximum independent set procedure
used in previous results.

1 Introduction

One of the most fundamental problems in scheduling theory is scheduling
efficiently (under some optimization goals) dependent tasks on a single
machine. At any given time, the machine is capable to perform (serve)
any number of tasks as long as these tasks are independent. When the
serving time of each task is the same, this problem is identical to the well
known coloring problem of graphs. The vertices of the graph represent the
tasks and an edge in the graph between vertices v and u represents the
dependency between the two corresponding tasks. That is, the machine

*The full version of this extended abstract can be found in URL
http://www.eng.tau.ac.il/ amotz/publications.html.

"Department of Electrical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel.
E-mail: amotz@eng.tau.ac.il.
'"Department of Computer Science, The Open University of Israel, Ramat Aviv,

Israel. E-mail: guyk@tavor.openu.ac.il.

739

cannot perform the tasks corresponding to vertices u and v concurrently.
Another important application arises in the context of distributed re-
source allocation. Here, the vertices represent processors each has one
job to execute. An edge between two vertices indicates that the jobs be-
longing to the corresponding processors cannot be executed concurrently
since they require the usage of the same common resource. This problem
is known in the literature as the dining (drinking) philosophers problem
([LYN81, CM84]).

More formally, the coloring problem can be defined as follows, let G =
(V, E) be an undirected simple graph with n vertices, where V denotes
the set of n vertices and E denotes the set of edges. A coloring of the
vertices of G is a mapping into the set of positive integers, / : V H-> Z+,
such that adjacent vertices are assigned different colors. We refer to f(v)
as the color of v.

The traditional optimization goal is to minimize the number of dif-
ferent assigned colors. We call this problem the minimum coloring (MC)
problem. In the setting of tasks system, this is equivalent to finding a
schedule in which the machine finishes performing all the tasks as early
as possible. In the setting of resource allocation, this is equivalent to find-
ing a schedule in which the last processor finishes executing its job the
earliest. This is an optimization goal that favors the system. However,
from the point of view of the tasks (or processors) themselves, we might
wish to find the best coloring such that the average waiting time to be
served (or to execute the job) is minimized.

Clearly, minimizing the average waiting time is equivalent to minimiz-
ing the sum of all assigned colors. The minimum color sum (MCS) problem
is defined as follows. Let G = (V, E) be an undirected simple graph with
n vertices. We are looking for a coloring in which the sum of the assigned
colors of all the vertices of G is minimized. That is, the value of J2vev f(v)
is minimized.

The minimum color sum problem was introduced by Kubicka in [K89].
In [KS89] it was shown that computing the MCS of a given graph is NP-
hard. A polynomial time algorithm was given for the case where G is a
tree. In [KKK89] it was shown that approximating the MCS problem within
an additive constant factor is NP-hard. In a recent paper, [BBH+96], it
was proven that the MCS problem cannot be approximated within n1_£,
for any e > 0, unless NP = ZPP. On the other hand, this paper showed
that an algorithm based on finding iteratively a maximum independent
set is a 4-approximation to the MCS problem. This bound yields a 4p-
approximation polynomial algorithm for the MCS problem for classes of

740

graphs for which the maximum independent set problem can be polyno-
mially approximated within a factor of p.

A special and important sub-class of graphs is the class of bipartite
graphs. In a bipartite graph the set of vertices V is partitioned into two
disjoint sets VJ and Vr such that both sets are independent. That is, all
the edges of E are between vertices of V; and Vr. Coloring Vt by 1 and
Vr by 2 yields a 2-coloring of any bipartite graph. Obviously this is the
best possible solution for the MC problem. However, for the MCS problem
the answer is not straightforward. Denote by MBCS the MCS problem on
bipartite graphs.

Coloring the largest set between Vt and Vr by 1 and the other set by
2 yields a solution to the MBCS problem the value of which is at most
3n/2. Obviously the value of the optimal solution is at least n, and there-
fore this solution is at least a 3/2-approximation to the optimal solution.
The paper [BBH+96] presents a better approximation of 9/8 using as a
sub-procedure the algorithm for finding a maximum independent set. In
bipartite graphs, finding maximum independent set can be done in poly-
nomial time. Therefore, their approximation algorithm is also polynomial.

New results: The contributions of this paper are the following two results:

- We prove the first hardness result for MBCS. We show that the MBCS
problem admits no polynomial approximation scheme, unless P =
NP. The proof is by L-reducing the problem of finding the maximum
independent set in a graph whose maximum degree is four to the
MBCS problem which implies that MBCS is MAXSNP-hard [PY88]. This
result indicates clearly that the MCS problem is much harder than the
traditional coloring problem.

- We improve the approximation ratio for the MBCS problem by present-
ing a 10/9-approximation algorithm. Our algorithm introduces a new
technique. It employs a flow procedure in addition to the maximum
independent set procedure used in [BBH+96].

Max-type vs. sum-type problems: Our impossibility result raises the gen-
eral question of the connection between "max-type" and "sum-type"
problems. The MC problem is a max-type problem whereas the MCS prob-
lem is a sum-type problem. The input and the feasible solutions for both
problems are the same, the difference lies in the optimization goal. In the
full version of this paper ([BK97]) we examine the "max-type" and the
"sum-type" of the Traveling Salesperson problem (TSP). The discussion

741

there raises the interesting question of classifying problems according to
the relationship between their "max-type" version with the "sum-type"
version. The coloring problem and the traveling salesperson problem each

belongs to a different class.

2 Preliminaries

Given a graph G(V, E) we use the following notations. Let MIS(G) denote
the largest independent set in G. For any set S CV, let N(S) be the set
of neighbors of S and MIS(S) denotes the maximum independent set in
the graph induced by S. We also use the term 5 to denote the size of S.
Given any coloring / of a graph, we denote by SC(/) the sum of colors

in /, i.e., SC(/) = T,vevf(v)- When all the vertices in a set S C V are
colored by the same color c, we say that S is colored by c.

We say that problem P admits a polynomial approximation scheme,
if for any e > 0 there exists a polynomial time approximation algorithm
for P, whose approximation ratio is bounded by (1 + e).

L-reduction The L-reduction ([PY88]) is a tool that helps proving hard-
ness results. Unlike the usual iVP-hardness reductions, it "preserves" ap-
proximation ratios. In order to define L-reduction we need the following
notations. Let P be an optimization (either minimization or maximiza-
tion) problem. Denote by I(P) the set of instances for problem P, by
sol(P) the set of feasible solutions of problem P, and by cP(s) the cost
function of any feasible solution s for P. Suppose now that P and Q are
two optimization problems. In order to construct an L—reduction we need
to define two (polynomially computable) functions K : I(P) i-» I(Q) and
S : sol(Q) H> sol(P). For any instance x G I(P) let COPT(X) be the value
of the optimal solution for x and let COPT(R-{

X
)) be the value of the op-

timal solution for IZ(x). The two functions TZ and S are an L—reduction
from problem P to problem Q, if there exist two constants a and ß such
that the two following properties hold:

1. C0PT{T^(X)) < a ■ COPT(X).

2. For any feasible solution s G sol(Q) of TZ(x), S(s) is a feasible solution

for x and \COPT(X) - cP(S(s))\ < ß ■ \COPT(K{X)) - CQ(S)\.

Theorem 1 [PY88]. Suppose that Problem P admits no polynomial ap-
proximation scheme and that Problem P can be L—reduced to problem Q.
Then Problem Q admits no polynomial approximation scheme.

742

The MIS and 4-MIS problems The Maximum Independent Set (MIS) prob-
lem is the following. Given an undirected graph G(V, E) with n vertices,
the goal is to find a maximum independent set. I.e., a maximum sized set
S CV such that no two vertices of S share an edge. The 4-MIS problem
is the MIS problem restricted to graphs with maximum degree 4.

Theorem2 [ALM+92]. There exists some e > 0 such that the 4-MIS
admits no (1 + e)-approximation algorithm, unless P = NP (and hence
4-MIS admits no polynomial approximation scheme).

Known algorithms for the MBCS problem We recall the approximation al-
gorithm presented in [BBH+96]. For a given bipartite graph G, denote by
Ji the maximum independent set in G, by J2 the maximum independent
set in G \ h, by J3 the maximum independent set in G \ {h UI2), and so
on. The algorithm of [BBH+96] is best explained by the definition of a se-
quence of (roughly) logn possible algorithms. Let A(2) be the algorithm
that colors the vertices of G with two colors, the larger side of V by 1
and the smaller side by 2. Let A(3) be the following algorithm: color the
vertices of h by 1, and then color the vertices of G \ h by 2 and 3 (i.e.,
color the larger side in the remaining graph by 2 and the smaller side by
3). In general, for i > 3 and for 1 < j < i - 2, algorithm A(i) colors the
sets Ij with color j, and then colors the larger side of the remaining graph
by i - 1 and the smaller side by i. All together, algorithm A(i) uses i
colors. Note that we have defined at most LlognJ algorithms, because the
maximum independent set in any bipartite graph with n vertices contains
at least n/2 vertices. Let A' be the last possible algorithm in this family of
algorithms. Since G is a bipartite graph, it follows that h > n/2. There-
fore, algorithm A(2) is a 3/2-approximation algorithm. Consider now the
following algorithm, denoted by B, that runs algorithms A(2) and A(3)
and picks the best solution.

Theorem 3 [BBH+96]. Algorithm B is a 9/8-approximation algorithm
to the MBCS problem.

An algorithmic tool We now describe the new tool used in our approxi-
mation algorithm. Define the 2-Neighborhood problem as follows. Given
a bipartite graph G{Vi,Vr,E) we look for a set S C Vt such that ds =
2S - N(S) is maximum. We note that the order in which Vt and Vr are
specified in the problem-presentation is important, that is the solution S
is a subset of Vt. Polynomial time solutions for problems of this nature
are known (see, e.g., [GGT89]).

743

3 A hardness result for the MBCS problem

In this section, we prove that (unless P = NP) the MBCS problem has no
polynomial approximation scheme. We do that by proving an L—reduction
from the 4-MIS problem to the MBCS problem (hence showing that the
MBCS problem is MAXSNP—hard). By Theorems 1 and 2 the hardness re-
sult is implied.

3.1 The construction - the function 72.

Let G(V, E) be an instance of the 4-MIS problem. The 1Z function should
map G into a graph G which is an instance of the MBCS problem. First,
G contains a vertex corresponding to each vertex in V. In G, V is an
independent set. We assume an order on the vertices of G. Whenever we
consider an edge (x, y) 6 E we assume that x < y. The construction
involves adding a gadget for each edge e = (x,y) G E. Each gadget is
composed of twelve independent sets of vertices containing no internal
edges (edges only cross from one different set to the other). The sets of
vertices corresponding to different edges are disjoint.

Before describing the sets of vertices and the edges of any gadget we
need some definitions. We say that two (independent) sets A and B are
cliqued, if every vertex in A is connected to every vertex in B that is, the
sets A and B induce a complete bipartite graph. We say that the two sets
are matched if \A\ = \B\ and every vertex x in A has a single neighbor
m{x) in B, that is, the sets A and B induce a perfect matching. The
sets and edges in the gadget corresponding to the edge e = (x, y) are as
follows.

Main and matched sets:

1. A set XYX of 3 vertices and a matched set m(XYX) of 3 vertices.

2. A set XYY of 3 vertices and a matched set m(XYY) of 3 vertices.

3. A set XY of 6 vertices and a matched set m(XY) of 6 vertices.

Imposing sets:

1. A set Ii(XYX) of 18 vertices and a cliquedset tyXYX) of 9 vertices.

2. A set I\{m{XYX)) of 6 vertices and a cliqued set l2(m(XYX)) of 3
vertices.

3. Two sets h{XY) of 24 vertices and h{m{XY)) of 12 vertices.

744

Additional edges between the sets:

1. The vertex x (y) is connected to all 3 vertices of XYX (XYY).

2. The sets XYX and XYY each is cliqued with XY.

3. The sets XYX (m(XYX)) and I2(XYX) (I2(m(XYX))) are cliqued.

4. The sets XY {m{XY)) and h(XY) (h(m(XY))) are cliqued.

This completes the description of the gadget corresponding to each
edge e = (x, y) and the description of the ^-function. The above sets
depend on e, that is, there is such a gadget for every edge e £ E. We
avoid adding e as a subscript in these sets, for the simplicity of notation.
In order for the 11 function to be valid we demonstrate a 2 coloring for G
proving that the graph G is a bipartite graph.

Lemma 4. The graph G is bipartite.

The intuition behind the construction: The goal of the construction is to
enable us to define the right function S. The role of the imposing sets is to
force a situation in which some sets cannot be colored by a specific color.
For example, it will be shown that in an optimal coloring the imposing set
I2(XYX) is colored by 2. Consequently, the set XYX cannot be colored
by 2. In general, in an optimal solution, all the sets of type h are colored
by 1 and all the sets of type J2 are colored by 2. The role of the matched
sets is to assure that the sum coloring of two matched sets is fixed in
any optimal coloring. For example, if a vertex in XYX is colored by 1,
then its matched vertex is colored by 3, and vice versa (recalling that
these two sets can not be colored by 2). Thus every pair in XYX and
m(XYX) adds exactly 4 to the sum coloring in an optimal coloring and
the contribution of XYX and m(XYX) is fixed. Now let us explain the
main idea in the construction. Let x and y be two vertices adjacent in G
(i.e., (x,y) G E). We will show that we lose in the sum coloring if both x
and y are colored by 1. Indeed, say that both x and y are colored 1, and
consider the colors of XY, XYX, XYY. In the best coloring XYX is
colored by 3 and XYY by 2. Therefore, since the set h(XY) is colored
by 1, it follows that XY is colored by at least 4. On the other hand, if
one of x and y is not colored by 1, we may gain by assigning XY a color
less then 4. This follows since XYX and XYY will "waste" only one of
the colors 2 and 3. Hence, it is possible to color XY with either 2 or 3.
Therefore, a "good" sum coloring colors as large as possible independent
set in G by 1. Thus, a "good" approximation for the MBCS problem implies
a "good" approximation for the 4-MIS problem.

745

3.2 The function S

A coloring / of the vertices in G is proper, if the two following properties
hold for every edge.

Imposing properties: The sets h{XYX), h(m(XYX)), h(XY), and
h{m{XY)) are colored by 1. The sets h(XYX) and I2(m(XYX))
are colored by 2.

Independence property: All the vertices of G that are colored by 1 in
/ form an independent set in G.

The process of constructing S is as follows. We start with any feasible
coloring / of G. We then show in five stages that / can be transformed to a
proper coloring / such that the sum of colors in / is no larger than the sum
of colors in / (SC(/) < SC(/)). The mapping S is now defined by choosing
the set of vertices in G that are colored by 1 by / denoted by h{f). Note,
that by the independence property, h (/) is also an independent set in G.

In the first stage we transform / into fx such that all the vertices in
any independent set in any gadget are colored by the same color. In the
second stage, we transform /i into a coloring f2 that is locally minimal,
that is a coloring such that each set in the gadget is colored by no more
than k + l where k is the number of neighboring sets to this set. In the
third stage, we show how to transform /2 into a coloring /3 such that
the imposing properties hold. In the forth stage, we transform /3 into a
coloring /4 in which all the sets XYX and XYY in all the gadgets are
colored by no more than 3. Finally, in the fifth stage we transform fo
into the desired coloring / by showing how to achieve the independence
property. In all five stages the new coloring has no worse sum coloring
then the previous one. The full proof appears in [BK97].

3.3 The L—reduction properties

We now turn to prove the two L—reduction properties. Let OPT be the
minimum sum coloring in G and let MIC = SC(OPT). The next lemma
proves the first property of the L-reduction.

Lemma5. There exists a constant a such that MIC < a ■ MIS(Gr).

For the second property of the L-reduction, we need to show the exis-
tence of a constant ß such that for any legal coloring f of G the following
holds: MIS(G) - S(f) < ß{SC(f) - MIC). We prove this inequality with
ß = 1. The proof uses the following two lemmas. Let h be the maximum
independent set in G.

746

Lemma 6. MIC < 135 • E + 2n - h ■

Now let / be an arbitrary coloring of G and let / be its corresponding
proper coloring. Let h{j) be the set of vertices colored by 1 in /, and
thus S(f) = h(f).

Lemma7. SC(/~) > 135 • E + In - h(f).

The following lemma states the second property of the L-reduction.

Lemma8. MIS(G) - S{f) < SC(/) - MIC.

We completed constructing a valid ^-reduction from the 4-MIS prob-
lem to the MBCS problem. The following theorem follows from Theorems
1 and 2.

Theorem 9. There exists an e > 0 such that there is no (1 + e)—ratio
approximation algorithm for the MBCS problem unless P = NP.

4 Improved approximation algorithm for MBCS

In the previous section we have shown that there exists some e > 0 such
that the MBCS problem has no (1 + e)-approximation algorithm. How-
ever, the precise threshold for the approximation is yet to be determined.
We take a further step in this direction. In this section, we present a
new algorithm C that utilizes a new procedure Neig. We prove that this
procedure, combined with algorithms A(2), A(3), and A(4) yield a 10/9-
approximation algorithm for the MBCS problem.

4.1 Procedure Neig and Algorithm C

Procedure Neig utilizes the solution to the 2-Neighborhood problem. It
uses the following subsets and subgraphs of G.

1. h - the maximum independent set in G. l[= I\C\Vi and I[= I\ nVr.

2. Z - the larger side of G\/i and W - the smaller side of G\/i. Without
loss of generality, assume that Z C VJ and W C Vr.

3. Gz = (Z,I[,Ez) - the (bipartite) subgraph induced by Z and I[.
Gw = (W, l[,Ew) - the (bipartite) subgraph induced by W and l[.

4. Sz - the set maximizing dsz = 2Sz — N(Sz) in Gz-
Sw - the set maximizing dsw = 2Sw — N(Sw) m Gw-

5. N^Sz) = N(SZ) n /[and N^Sw) = N{SW) n /{.

747

Procedure Neig:

If dsz > dsw then color: If dsz < dsw then color:
1. l[uSzU (/[\ N^Sz)) by 1. 1. /{ U Sw U (I[\ Ni{Sw)) by 1.
2. WUN^Sz) by 2. 2. Z U iVi(5w) by 2.
3. Z \ Sz by 3. 3. W \ Sw by 3.

For the case dsz > dsw, procedure Neig can be described as follows.
Start with the initial coloring of A(3), that is h is colored by 1, Z (the
larger of the two remaining sides) is colored by 2 and W by 3. Thus
SC(A(3)) = /{+/[+ 2Z + SW. Next, re-color Z by 3 and W by 2, losing
Z — W in the sum coloring. Next, change the color of Sz from 3 to 1
gaining 2Sz in the sum coloring. This forces all the neighbors of Z in
h, Ni(Sz), to be colored by a color different than 1, thus color them by
2. Here we lose Ni(Sz) in the sum coloring. The net profit in the sum
coloring is therefore 2SZ - Nx{Sz) + W - Z = dSz +W - Z. Similarly,
it can be shown that for the case dsw > dsz, the net profit is dsw ■ (This
case is better for us since we do not need to switch the colors of Z and
W, loosing Z — W.) Thus, we proved the following proposition.

Proposition 10.
(!)■ IfdSz > dSw then SC(Neig) = SC(A(3)) - dSz + (Z-W).
(2). IfdSw > dSz then SC(Neig) = SC(A(3)) - dSv ?w ■

We conclude this subsection with the description of algorithm C. It
clearly follows that the algorithm has a polynomial running time.

Algorithm C

- Run algorithms A(2), A(3), A(4), and Procedure Neig.

- Pick the solution whose sum coloring is the minimum among the four
coloring solutions.

4.2 Analysis

All through the analysis, let Z = (n—Ii)/2+ed,n and W = (n—Ji)/2—e^n.
The term e^n quantifies the extent in which the graph induced by Z U W
is unbalanced. This is the graph resulting once the maximum independent
set I\ is deleted from G.

748

Outline of the analysis: If Z - W = 2edn is "large" enough, then the
10/9-ratio is already yielded by min {SC(A(2)), SC(A(3))}. Otherwise, Z-
W is not too "large". If h is "large" enough, then this time already
min{SC(A(2)),SC(A(4))} yields the 10/9-ratio. Otherwise, W is almost
as "large" as Z and I2 is not too "large". If W is "small" enough and
therefore Z is also "small" and h is "large" enough, then SC(A(3)) alone
yields the 10/9-ratio. Otherwise Z - W and I2 are not too "large" and W
is not too "small". If the optimal algorithm does not deviate much from
algorithm A(3), then again min{SC(A(2)), SC(A(3))} yields the 10/9-
ratio. Finally, if all the previous conditions do not hold, we use the new
procedure Neig and show that min{SC(A(2)),SC(Neig)} yields the 10/9-
ratio. The analysis is partitioned into the above five cases. The complete
analysis appears in [BK97].

Theorem 11. Algorithm C is a polynomial 10/'9-approximation algorithm
for the MBCS problem.

References

[ALM+92] S. Arora, C. Lund, R. Motwani, M Sudan, and M. Szegedy. Proof verifi-
cation and intractability of approximation problems. In Proc. of the 33'rd
IEEE Symp. on the Foundations of Computer Science, pages 14-23, 1992.

[BK97] A. Bar-Noy and G. Kortsarz. The Minimum Color Sum of Bipartite Graphs.
In URL: http://www.eng.tau.ac.il/ amotz/publications.html.

[BBH+96] A. Bar-Noy, M. Bellare, M. M. Halldorsson, H. Shachnai, and T. Tamir.
On chromatic sums and distributed resource allocation. In Proc. of the
fourth Israel Symp. on Theory and Computing and Systems, pages 119-128,
1996. (Also in URL: http://www.eng.tau.ac.il/ amotz/publications.html.)

[CM84] K. Chandy and J. Misra. The Drinking Philosophers Problem. ACM Trans.
Programming Languages and Systems, 6:632-646, 1984.

[Chr76] N. Christofides. Worst case analysis of a new heuristic for the traveling
salesman problem. Technical report GSIA, Carnegie-Mellon Univ., 1976.

[GGT89] G. Gallo, M.D. Grigoriadis, and R.E. Tarjan. A fast parametric maximum
flow algorithm and applications. SI AM J. on Comput., 18:30-55, 1989.

[K89] E. Kubicka. The Chromatic Sum of a Graph. PhD thesis, Western Michigan
University, 1989.

[KKK89] E. Kubicka, G. Kubicki, and D. Kountanis. Approximation Algorithms for
the Chromatic Sum. In Proc. of the First Great Lakes Computer Science
Conf, Springer LNCS 507, pages 15-21, 1989.

[KS89] E. Kubicka and A. J. Schwenk. An Introduction to Chromatic Sums. In
Proc. of the ACM Computer Science Conf., pages 39-45, 1989.

[LYN81] N. Lynch. Upper Bounds for Static Resource Allocation in a Distributed
System. J. of Computer and System Sciences, 23:254-278, 1981.

[PY88] C. H. Papadimitriou and M. Yannakakis. Optimization approximation and
complexity classes. In Proc. of the 20'th IEEE Symp. on The Theory of
Computing, pages 229-234, 1988.

A Primal-Dual Approach to Approximation of
Node—Deletion Problems for Matroidal

Properties *
(Extended Abstract)

Toshihiro Fujito1

Dept. of Electrical Engineering, Faculty of Engineering
Hiroshima University

1-4-1 Kagamiyama, Higashi-Hiroshima 739 JAPAN
e-mail: f uj itoQhuis.hiroshima-u .ac.jp

Abstract. This paper is concerned with the polynomial time approx-
imability of node-deletion problems for hereditary properties.
We will focus on such graph properties that are derived from matroids
definable on the edge set of any graph. It will be shown first that all the
node-deletion problem for such properties can be uniformly formulated
by a simple but non-standard form of the integer program. A primal-
dual approximation algorithm based on this and the dual of its linear
relaxation is then presented.
When a property has infinitely many minimal forbidden graphs no con-
stant factor approximation for the corresponding node-deletion problem
has been known except for the case of the Feedback Vertex Set (FVS)
problem in undirected graphs. It will be shown next that FVS is not the
sole exceptional case and that there exist infinitely many graph (heredi-
tary) properties with an infinite number of minimal forbidden graphs, for
which the node-deletion problems are efficiently approximable to within
a factor of 2. Such properties are derived from the notion of matroidal
families of graphs and relaxing the definitions for them.

1 Introduction

This paper is concerned with the polynomial time approximability of node-
deletion problems for hereditary properties. The node-deletion problem for a
graph property TT (denoted ND(7r) throughout the paper) is a typical graph opti-
mization problem; that is, given a node-weighted graph G, find a node set of the
minimum weight sum s.t. deletion of it (along with all the incident edges) from
G leaves a subgraph satisfying the property 7r. A graph property TT is hered-
itary if every subgraph of a graph satisfying n also satisfies TT. A number of
well-studied graph properties are hereditary such as independent set, planar,

* This work is partially supported by a grant from the Okawa Foundation for Infor-
mation and Telecommunications.

750

bipartite, degree-constrained, circular-arc, circle graph, chordal, comparabil-
ity, permutation, perfect. Consequently, many well known graph problems fall
into this class of problems when desired graph properties are specified appropri-
ately. Lewis and Yannakakis proved, however, that whenever IT is nontrivial and
hereditary on induced subgraphs ND(TT) is JYP-hard [LY80]. When this general
AT-hardness result was established in 1980, almost nothing was known about
the approximability of ND(?r)'s except for good approximation algorithms for
the Vertex Cover (VC) problem (i.e., TT = "independent set"). Moreover, their
generic reductions from VC to other ND(7t)'s are approximation preserving, and
as such, no ND(TT) can be approximated better than VC can be. One question
posed therein was thus concerned with the other direction of approximability:
Can other node-deletion problems be approximated as good as VC can be ?

It has been long known that VC can be approximated with ratio 2 (achievable
by a simple maximal matching heuristic [Gav74] for the unweighted case) and
a better approximation has been a subject of extensive research over the years.
Yet the best constant bound has remained the same at 2 while the best known
heuristics can accomplish only slightly better (2 - ^^p of [BE85, MS85]). On

the other hand very few other ND(TT)'S have been shown to be approximate
within a factor of c, for any constant c, not to mention a constant of 2. As
observed in [LY93] whenever hereditary IT has only a finite number of minimal
forbidden graphs ND(7r) can be efficiently approximated to within some con-
stant factor of the optimum. It was in fact conjectured therein that those with
finitely many minimal forbidden graphs axe the only hereditary properties which
yield constant factor approximable node-deletion problems (see also [Yan94]). It
was found later, however, that this conjecture does not hold as is when the (un-
weighted) Feedback Vertex Set (FVS) problem (i.e., IT = "acyclic*') in undirected
graphs was shown to be approximable to within a factor of 4 [BGXR94] (Xote:
every simple cycle of each length is a minimal forbidden graph for this -). Until
now this problem has been the only known exception to the Lund-Yannakakis'

conjecture.

1.1 Our results

In this paper we will show that there exist infinitely many XD(TT)'S for IT with an
infinite number of minimal forbidden graphs, each of which approximable to a
factor of 2. For that purpose we shall concentrate on such hereditary properties
that can be derived from (independent sets of) matroids definable on the edge
set of any graph (details given later). The class of XD(TT)'S for such properties
includes VC, FVS, and many others. It will be shown first that all XD(TT)'S in
this class can be uniformly formulated by a simple but non-standard form of
the integer program using matroid rank functions. A primal-dual approximation
algorithm for such XD(TT)'S is then designed based on this formulation and the
dual of its linear programming relaxation, which is simpler than those algorithms
for FVS given in [BBF95, BG94, CGHW96]. In particular our algorithm does
not look into nor modify explicitly, unlike the previous algorithms for FVS, any
special structure in graphs under consideration. An analysis of this algorithm

751

reveals that its performance ratio can be reduced to the combinatorial bound
arising from the underlying structures of the problems.

It will be shown next, as an application of the current primal-dual approach,
that FVS is not the sole exceptional case: i.e., there exist other (hereditary)
properties 7r*s with an infinite number of minimal forbidden graphs, s.t. XD(^)'s
are efficiently approximate to within a factor of 2, the best constant factor
known for either VC or FVS. In fact, we will show, there are infinitely many
of them (at least countably many). Such properties are derived from the notion
of matroidal families of graphs and relaxing the definitions for them (details
later). The infinite sequence of these properties will be constructed having those
for both VC and FVS at its basis and thus providing a proper generalization
of them. It is also worth pointing out that our formulation for these XD(7r)'s
introduces the integrality gap of at most 2 unlike the more natural "covering"

formulations for them.

1.2 Other related work

Every ND(7r) for nontrivial hereditary IT is MAX SNP-hard, as pointed out
in [LY93], due to the reductions of [LY80] and the result of [PY91]. Thus, no
polynomial time algorithm can approximate ND(7r) to within a factor of l + e for
some positive f. unless P = NP [ALM+92]. Yet a better lower bound is provided
by the one in approximation of VC as it, serves as a lower bound for every XD(TT)

for hereditary IT. Such a bound for VC has been continuously improved in the
last few years, and currently it is known to be as large as | [Has97].

The approximation ratio of [BGNR94] for the unweighted FVS was subse-
quently extended to the one for the weighted FVS and was further improved
to 2 in [BBF95, BG94], matching the best constant factor known for VC. Re-
cently Chudak et al. [CGHW96] gave a primal-dual interpretation of these 2-
approximation algorithms of [BBF95, BG94]. They also provided a new primal-
dual algorithm for FVS, which has the same performance ratio but is slightly

simpler than the previous two.

2 Preliminaries

2.1 Notation and Definitions

For any graph G let V{G) and E(G) denote the vertex set and the edge set,
respectively, of G. The subgraph of G = (V. E) induced by X C V is denoted by
G[X\. Let E[X] denote the set. of edges induced by X C V, and conversely, let
V[F] for F C E denote the set, of vertices incident to some edge in F. E[X, Y] is
the set of edges with one end in X and the other in Y. The set of edges incident
to some node of A" is denoted S(X) and when those edges are restricted to the
ones in a subgraph G[Y] we denote it by 6Y(X)(= 6{X)nE[Y}). Let, 5{it) {5Y(u),
resp.) be a shortening of S({v.}) (dy({?/.}), resp.).

A graph property n is nontrivial if infinitely many graphs satisfy - and in-
finitely many graphs fail to satisfy it. It, is here.dit.ary (on induced subgraphs) if,

752

in any graph satisfying TT, every (node-induced, resp.) subgraph also satisfies
TT. For a hereditary property n any graph which does not satisfy TT is called a
forbidden graph for TT, and it is a minimal one if, additionally, every "proper"
(induced, resp.) subgraph of it satisfies jr. Any hereditary property JT is equiva-
lently characterized by the set of all minimal forbidden graphs for TT.

It is customary to measure the quality of an approximation algorithm by its
performance ratio, which is the worst, case ratio of the optimal solution value to
the value of an approximate solution returned by the algorithm.

2.2 Matroidal Properties

One way to represent a matroid M is by a pair of a ground set E and a rank

function r defined on 2E. A set F C E is called

- independent, if r(F) = \F\ (and conversely, r(F') is the cardinality of a largest,
independent subset of F' for an arbitrary F' C E),

- dependent, if r(F) < \F\,
- a base if it, is a maximal (and hence, maximum in any matroid) independent,

set, and a circuit if it is a minimal dependent set,

- spanning if r(F) = r(E).

For any matroid M = (E, r) there is the dual m.atroid Md = (E, rd) defined on
the same ground set E. The rank functions r and rd are related s.t.

rd(E-F) = (\E\-r(E))-(\F\-r(F))

for any F C E (For more on matroid theory see, for instance, [Wel76]).
Let M be a matroid which can be defined on the edge set of any graph (called

an edge set. m.atroid) and denote by M(G) the matroid defined by M on the edge
set of G. To avoid any possible anomaly we stipulate that for any subgraph H
of G. M{H) is the restriction of M{G) onto E(H). This means that the rank
function of M(H) is that of M(G), but its domain restricted to subsets of E{H).

We say that, a graph property 7r is matroidal if for some edge set matroid
M a (subgraph G satisfies TT iff its edge set, is independent in M{G) (Such a
property is said to be derived from the matroid M). Such a property is hereditary
on induced subgraphs because a subset of an independent set is independent in
any matroid. Therefore, node-deletion problems for any nontrivial matroidal
properties are iVP-hard and MAX SiVP-hard according to the results of [LY80]
and [LY93]. Also note that the family of minimal forbidden graphs for such a
property TT corresponds to the family of circuits of the corresponding matroid

M(G) for all possible G.

2.3 Matroidal Families of Graphs

A matroidal family of graphs is a non-empty collection P of finite, connected
graphs with the following property: given an arbitrary graph G. the edge sets of
the subgraphs of G that are isomorphic to some member of P are the circuits

753

of a matroid on E(G). The matroid defined this way by the matroidal family P

on the edge set of graph G will be denoted by P(G).
The following four matroidal families, P0, Pi, P2, and P3, are those that were

discovered first [Sim72, Sim73]. The family P0 consists of one graph only, namely
two nodes with one edge in between. This is also the only finite matroidal family.
The family Px consists of all the cycles: thus, PX(G) is the cycle matroid defined
on E{G). The family P2 consists of all the bicycles, where a bicycle is a graph
formed by minimally connecting two independent, cycles. These two cycles can
be joined together by either (1) sharing only a single node, (2) sharing only a
connected path, or (3) having a simple path attached only at each end of it.
The family P3 consists of all the even cycles (i.e. cycles of even length) and the
bicycles with no even cycle. The matroidal properties derived from these families
thus correspond, respectively, to "a graph has no edge" (P0), "a graph contains
no cycle" (Pi), "every connected component contains at most one cycle'1 (P2),
and "every connected component contains at most one odd cycle and no even
cycle" (PJV Therefore, ND(TT) is actually the VC (FVS, respectively) problem
when iv is the matroidal property derived from P0 (Pi, respectively).

It has been known that in fact there exist infinitely many (uncountably many)
matroidal families of graphs, and the first description of them (countably many
matroidal families) was obtained by Andreae:

Proposition 1 [And78]. Let s and t be integers, s > 0 and -2s + 1 < t < 1.

Let PS:i be the set of all graphs G s.t.

(i) s\V(G)\ + t=\E(G)\, and
(ii) G is minimal with respect to -property (i); i.e., no graph isomorphic to a

proper subgraph of G satisfi.es property (i).

Then PSit is a matroidal family.

It is not so hard to verify that Pi = P1|0, P2 = Pi,i, and P0 = P3.-2s+\ (ft is

not of the form Ps.i)-

3 Primal-Dual Approximation for Matroidal Properties

One of the most natural integer program formulations of ND(7r), presented here
for the sake of comparison, is the one for a "covering problem":

Min y_V'u.xu
u€V"

subject to:
]T xu > 1 H e nG(*

u€V(ff)
.ru€{0,l} u € V

where i?(y(~) is the set of minimal forbidden graphs of ND(?r) contained as
subgraphs in G. It was indicated in [EXSZ96] that in case of the FVS problem

754

the linear relaxation of the formulation above introduces the integrality gap (i.e.,
the ratio between the integer and fractional optima) of size as large as J?(log |V'|).
We shall show later that there exists another formulation of which integrality gap
is bounded by 2 for many XD(TT)'S including FVS (see Corollary 9). Chudak et
al. gave new primal-dual formulations and the algorithms based on them for the
FVS problem in undirected graphs [CGHW96]. These algorithms are not new
ones but actually are primal-dual "interpretations" of the algorithms previously
known from [BBF95, BG94]. We shall show below that in fact every XD(TT) with
matroidal ir has a simple and identical primal-dual formulation as well as an
algorithm based on it. Chudak et al. also gave a new algorithm for the FVS
problem which is a slight simplification of the previous algorithms cited above.

Our algorithm for ND(7r) is even simpler than theirs.
We claim that ND(TT) on graph G = (V, E) can be formulated by the following

integer program when 7r is a matroidal property derived from M = (E(G),r):

Min y"Vyru
u€V

subject to:

(IP) jyd(8s(u))xu > rd(E[S]) S C V

x„ € {o, 1} « e v

Theorem 2. When n is a matroidal property, F is a solution of ND(TT) iff X G
{0,1}v (incidence vector of F) is a feasible solution to (IP).

Consider now the dual of the linear programming relaxation of (IP):

Max Y,rd(E\S\)Vs
scv

subject to:

(D) J2 rd(ss(u))ys < »•" «e v

S:u€S

vs > o s £ v

The primal-dual approximation algorithm, based on (IP) and (D) above, for
XD(~) with matroidal TT is presented in Fig. 1. We elaborate more on it. The
algorithm starts with F = 0, the original graph G[S'] = (V, E) and the dual
feasible solution y = 0. Given F, if it is not yet a solution of ND(;r) there must
exist some set SCV corresponding to a violated constraint of (IP). In particular
the set of all the remaining nodes S'{= V - F) must be always such a set, and
thus we can always choose S' as a "violated set". The algorithm then increases
the dual variable ys> as much as possible until for some node u in S" the dual
constraint for u becomes tight; i.e., Y.S:ue.srd(5s{n))ys = "-V Notice that ys>
here can be indeed increased because S' is the collection of all those nodes whose
corresponding dual constraints were not yet tight. The algorithm adds u into a
solution set F and at the same time removes it from 5". Clearly F eventually
becomes a solution of XD(-) (and to (IP)) while y is kept feasible to (D). Lastly,

755

Initialize F = 0. 5' = V.. y = 0, / = 0.
While F is not a solution of ND(7r) do

/<-/ + l.
Increase yS' until for some u € S' the dual constraint corresponding to u

becomes tight.
Let ui <- u.
Add ui into F and remove u from S'.

For j = / downto 1 do
If p _ {Uj} is a solution of ND(JT) in G then remove u> from F.

Output F.

Fig. 1. Primal-Dual Approximation Algorithm for ND(7r)

the nodes in F are examined one by one, in the reverse order of their inclusion
to F, and whenever any of them is found to be extraneous it is thrown out of F.

The algorithm clearly constructs a feasible solution F of ND(TT) and a solution
y feasible for (D). These two solutions are related such that

E '"» = EE A*s(«))Vs = E(E r'iWMvs (1)
u€F u€FS:u6S SCVuSSnF

An analysis of this algorithm reduces its performance ratio to the following

combinatorial bound.

Theorem 3. Let n be a matroidal property derived from, M = (E(G),r). Then

the performance ratio of the prim,al-dual algorithm, is bounded by

E ^»)
maxi r*(E(G)) *

■where max is taken over any minimal solution X of ND(TT) in any graph G.

4 Uniformly Sparse Graph Properties

It was shown in [Fuj96] that when it is derived either from P0 or Px (i.e., the VC
or FVS property) (an essentially same algorithm as) the primal-dual algorithm
delivers a solution with approximation ratio of 2. We add here one more to this

list:

Theorem 4. When n is derived from, P3 the primal-dual algorithm for ND(TT)

has performance, ratio of 2.

The case of P2 = A,i wm ^e- subsumed by the general result given below.
We now turn our attention to a -relaxation', of the matroidal families of

graphs, dropping the connectivity requirement on graphs in the families. Recall

756

the countably many matroidal families P,tl (s > 0, -2s + 1 < t < 1) of graphs
from Proposition 1. Fix .* to 1, let t be any integer > -2s +1 = -1, and consider
the sets of graphs, that are no longer necessary to be connected, using the same
set of the definitions for Psy. i.e., PM is the set of all graphs G s.t.

(i) |V(G)| + *=|£(G)|,and
(ii) G is minimal with respect to property (i); i.e., no graph isomorphic to a

proper subgraph of G satisfies property (i).

Let Qk =f Pi,i+i for k > -2.

Proposition 5. Qk defines the set of circuits of a matroid on any (edge set of)

graph for all k.

It is useful to observe here what graph properties are actually derived from Qt's.
A graph G = (V, E) satisfies the property iff for every F C E, \F\ - \V[F]\ < k,
and thus we may call a graph with such a property uniformly k-sparse.

We should also note:

Proposition 6. Qk consists of an infinite number of distinct graphs for all k >

-1.

The next is a key lemma of the present paper, proof of which is postponed till

Sec. 5.

Lemma 7. Let IT be a property derived from Qk = (E{G), r). Suppose X C V(G)

is any minimal solution of ND(n) in any G. Then,

Y, rd(S(u)) < 2 • rd{E(G)).

Finally, observe that given G = {V, E) we can compute efficiently the rank r{F)
of any F C E (and thus rd(5(u.)) for each u € V) under Qk{G) (for instance,
using the formula (2)). Therefore, our primal-dual algorithm runs in polynomial
time for every Qk- Now from Lemma 7 and Theorem 3 it easily follows that

Theorem 8. When ir is the property derived from, Qk for any fixed k the primal-
dual algorithm, computes a solution of ND(ix) in polynomial time: its performance

ratio is bounded above by 2.

And hence, there exist at. least countable many nontrivial hereditary properties
with an infinite number of minimal forbidden graphs, for which the node-deletion
problems are efficiently approximate to within a factor of 2.

We also deduce from Lemma 7, (1), and the fact that F f*l S is a minimal
solution in G[S] whenever ys is nonzero, that the integrality gap in our formu-
lation is at most 2 when n is derived from Qk- Let Z'IP and Z"D be the optimal
values of (IP) and (D), respectively. And then, for any F and y computed by
the primal-dual algorithm,

Z,V < J2 «-•< = E "•'" = E (E Assays < £ 2rd(E{S])ys
uev u€F 5cv uesnF scv

<2Z'D.

757

7*
Corollary 9. When r is the rank function of Qk for any k, -jff- < 2.

5 Proof of Lemma 7

Definitions. Let C be a connected component. Define the surplus of C by

sp(C) d= \E(C)\ - \V(C)\ and the bounded surplus s'p of C by sp(C) =
mm{k, sp{C)}. Let C+{F) (C~{F)) denote the set of components, induced by an
edge set F, with a positive bounded surplus (with a negative bounded surplus,
respectively). When E' is an edge subset of E define sp(E') to be the surplus of

the graph induced by E'.

Notice that C~{F) consists of all the acyclic components, each with a
(bounded) surplus of -1, induced by F. Also notice that for any component
C and for any E' C E(C), sp(E') < sp{C). The rank function of the matroid

Qk(G) defined on G = (V,E) can be given by

r{F) = \V[F]\+xwn{k, £ sP(C)} - \C~(F)\ (2)
C€C+(F)

for any F C E.
Assume throughout that k > 0 (the case of k < -1 is no harder). Consider

first the edge set E[V - X], which must be an independent set of Qk(G), since

A" is a solution of ND(TT). Using (2) we have

\E[V-X]\ = r(E[V-X])
— | V — A"| — (# of acyclic components in G[V — X]) + I (3)

for some 0 < / < k. We shall use the following auxiliary lemma in proving

Lemma 7.

Lemma 10. Assume (3). If X is a minimal solution of ND(ir) then

\E[X,V-X]\>(k-l + l)\X\ +

y2(# of acyclic components, in G[V - X], adjacent to u)(4)

Suppose G contains an acyclic component T. Then since X contains no node
of T. due to its minimality, we can restrict ourselves w.l.o.g. to G without T.
So assume that G contains no acyclic component. Now suppose r(E) < \V\ + k.
Then E must be independent in Qk{G) and G satisfies n. But then a solution
A" minimal in G must he. empty and the inequality in question trivially holds.

So assume that r(E) = |V'| + k, and using (3) we can write

rd(E) = \E\ - r(E)

= \E[X\\ + \E[X, V - X}\ - (r(E) - \E[V - X}\)

= \E[X]\ + \E[X,V-X]\

— (\X\ + k — I. + (# of acyclic components in G[V - X})) (5)

758

Assume that |A"| > 2 (the case of |„Y| < 1 is more straightforward and
omitted here). Call such a component in G[V — X] that is adjacent to a single
node in X as a leaf component. Recall that the dual rank of any E' C E under
a matroid M can be equivalently defined by

rd(E') = max{|£" - B\ : B is a base of M]

Take any node u of A". To estimate the value of rd(5(u)) we observe how many
edges incident to u must belong to a base of Qk{G). Let I,JCE be mutually
disjoint sets s.t. / is an independent set and sp(J) < 0. And then, IllJ in general
is an independent set of Qk(G). This observation allows us to argue that, for
every acyclic leaf component T which is adjacent only to u, any base B of Qk(G)
must use all the edges in T and (at least) one edge connecting u and T. Besides
them B must use at least one more edge from S(u). To see why notice first that if
no other edges of S(u) belong to B the component of B containing u is a tree at
best. As observed above, however, it is always possible to extend this component
by one more edge incident to it if it exists. So it remains to see that at least, one
more edge is incident to u, and this is easy to do for, otherwise, u belongs to an
acyclic component of G, which we've excluded at the beginning of the current
analysis. Therefore, we can write

rd(5(u)) < \S(u)\ — ((# of acyclic leaf components adjacent to u) + 1)

and hence,

£ rd(5(u)) < 2\E[X}\ + \E[X, V - X]\ - \X\
u€.V

— (# of acyclic leaf components) (6)

Notice that, since there is no isolated acyclic component in G. we can reduce (4)
to

\E[X, V -X]\>(k-l + 1)| A"| + 2(# of acyclic non-leaf components)

+(# of acyclic leaf components) (7)

Combining (5), (6) and (7),

2rd(E) - £ rd(S(u))
uex

> \E[X, V - X]\ - 2(\X\ + k - I + (# of acyclic components in G[V - A"]))

+\X\ + (# of acyclic leaf components in G[V — X})

= \E[X,V-X]\-(\X\ + 2(k-l))

— (2(# of acyclic non-leaf components) + (# of acyclic leaf components))

> (k - l)(\X\ - 2)

>0

759

References

[ALM+92] S. Arora. C. Lund. R. Motwani. M. Sudan, and M. Szegedy. Proof verifica-
tion and hardness of approximation problems. In 33rd FOCS, pages 14-23,

1992.
[And78] T. Audreae. Matroidal families of finite connected nonhomeomorphic

graphs exist. J. of Graph Theory. 2:149-153, 1978.
[BBF95] V. Bafna, P. Berman, and T. Fujito. Constant ratio approximations of the

weighted feedback vertex set problem for undirected graphs. In ISAAC
'95. pages 142-151, 1995.

[BE85] R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the
weighted vertex cover problem. In Annals of Discrete Mathematics, vol-
ume 25, pages 27-46. North-Holland, 1985.

[BG94] A. Becker and D. Geiger. Approximation algorithms for the loop cutset
problem. In Proc. of the 10th conference on Uncertainty in Artificial Intel-
ligence, pages 60-68, 1994.

[BGNR94] R. Bar-Yehuda, D. Geiger, J. Naor, and R. M. Roth. Approximation algo-
rithms for the vertex feedback set problem with applications to constraint
satisfaction and bayesian inference. In 5th SODA, pages 344-354. 1994.

[CGHW96] F.A. Chudak, M.X. Goemans, D.S. Hochbaum, and D.P. Williamson. A
primal-dual interpretation of recent 2-approximation algorithms for the
feedback vertex set problem in undirected graphs. Manuscript. 1996.

[ENSZ96] G. Even, J. Naor, B. Schiever, and L. Zosin. Approximating minimum sub-
set feedback sets in undirected graphs with applications. In 4th ISTCS,

pages 78-88, 1996.
[Fuj96] T. Fujito. A unified local ratio approximation of node-deletion problems.

In ESA '96, pages 167-178, 1996.
[Gav74] F. Gavril, 1974. cited in [GJ79, page 134].
[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. W. H. Freeman and co., New York. 1979.
[Häs97] J. Hästad. Some optimal in-approximability results. In 29th STOC, to

appear, 1997.
[LY80] J.M. Lewis and M. Yanuakakis. The node-deletion problem for hereditary

properties is NP-complete. JCSS, 20:219-230, 1980.
[LY93] G. Lund and M. Yannakakis. The approximation of maximum subgraph

problems. In 20th ICALP, pages 40-51, 1993.
[MS85] B. Monieii and E, Speckenmeyer. Ramsey numbers and an approximation

algorithm for the vertex cover problem. Ada Inform., 22:115-123. 1985.
[PY91] C. Papadimitriou and M. Yannakakis. Optimization, approximation and

complexity classes. JCSS, 43:425-440, 1991.
[Sim72] J.M.S. Simöes-Pereira. On subgraphs as matroid cells. Math. Z.. 127:315-

322. 1972.
[Sim73] J.M.S. Simöes-Pereira. On matroids on edge sets of graphs with connected

subgraphs as circuits. In Proc. Amer. Math. Soc, volume 38. pages 503-
506. 1973.

[Wel76] D.J.A. Welsh. Matroid Theory. Academic Press, London. 1976.
[Yau94] M. Yannakakis. Some open problems in approximation. In CIAC '94.

pages 33-39, 1994.

Independent Sets in Asteroidal Triple-Free Graphs

Hajo Broersma1 Ton Kloks' Dieter Kratsch2 Haiko Müller2

1 University of Twente
Faculty of Applied Mathematics

P.O. Box 217
7500 AE Enschede, the Netherlands

{H.J.Broersma,A.J.J.Kloks}@math.utwente.nl
2 Fakultät für Mathematik und Informatik

Friedrich-Schiller-Universität
07740 Jena, Germany

{kratsch.hm} @ minet.uni-jena.de

Abstract An asteroidal triple is a set of three vertices such that there is a path between
any pair of them avoiding the closed neighborhood of the third. A graph is called AT-
free if it does not have an asteroidal triple. We show that there is an 0(n2 ■ (m + 1))
time algorithm to compute the maximum cardinality of an independent set for AT-
free graphs, where n is the number of vertices and m is the number of non edges
of the input graph. Furthermore we obtain 0(n2 ■ (fn+ 1)) time algorithms to solve
the INDEPENDENT DOMINATING SET and the INDEPENDENT PERFECT DOMINATING SET
problem on AT-free graphs. We also show how to adapt these algorithms such that
they solve the corresponding problem for graphs with bounded asteroidal number in
polynomial time. Finally we observe that the problems CLIQUE and PARTITION INTO

CLIQUES remain NP-compIete when restricted to AT-free graphs.

1 Introduction

Asteroidal triples were introduced in 1962 to characterize interval graphs as those chordal
graphs that do not contain an asteroidal triple (short AT) [20]. Graphs not containing an AT
are called asteroidal triple-free graphs (short AT-free graphs). They form a large class of
graphs containing interval, permutation, trapezoid and cocomparability graphs. Since 1989
AT-free graphs have been studied extensively by Corneil, Olariu and Stewart. They have
published a collection of papers presenting many structural and algorithmic properties of
AT-free graphs (see e.g. [6, 7]). Further results on AT-free graphs were obtained in [18, 23].

Up to now the knowledge on the algorithmic complexity of NP-complete graph problems
when restricted to AT-free graphs was relatively small compared to other graph classes. The
problems TREEWIDTH, PATHWIDTH and MINIMUM FILL-IN remain NP-complete on AT-free
graphs [1, 25]. On the other hand, domination-type problems like CONNECTED DOMINATING
SET [7], DOMINATING SET [19] and TOTAL DOMINATING SET [19] can be solved by polyno-
mial time algorithms for AT-free graphs. However there is a collection of classical NP-
complete graph problems for which the algorithmic complexity when restricted to AT-free
graphs was not known. Prominent representatives are INDEPENDENT SET, CLIQUE, GRAPH
fc-COLORABILITY, PARTITION INTO CLIQUES, HAMILTONIAN CIRCUIT and HAMILTONIAN PATH.

A crucial reason for the lack of progress in designing efficient algorithms for NP-
complete problems on AT-free graphs seems to be that none of the typical representations,

761

that are useful for the design of efficient algorithms on special graph classes, is known to
exist for AT-free graphs. Contrary to well-known graph classes such as chordal, permutation
and circular-arc graphs, AT-free graphs do not seem to have a representation by a geometric
intersection model, an elimination scheme of vertices or edges, small separators, a small
number of minimal separators etc. However it turns out that the design of all our algorithms is
supported by a structural property of AT-free graphs, that can be obtained from the definition
of AT-free graphs rather easily.

Our approach in this paper is similar to the one used to design algorithms for problems
such as TREEWIDTH [14, 17] MINIMUM FILL-IN [17] and VERTEX RANKING [18] on AT-free
graphs. However these algorithms have polynomial running time only under the additional
constraint that the number of minimal separators is bounded by a polynomial in the number
of vertices of the graph. (Notice that all three problems are NP-complete on AT-free graphs.)
Technically, for the three different independent set problems in this paper, we are able to
replace the set of all minimal separators, used in [14, 17, 18] - which might be 'too large'
in size - by the 'small' set of all closed neighborhoods of the vertices of the graph.

Finding out the algorithmic complexity of INDEPENDENT SET on AT-free graphs is a
challenging task. Besides the fact that INDEPENDENT SET is a classical and well-studied NP-
complete problem, the problem is also interesting since, contrary to well-known subclasses
of AT-free graphs such as cocomparability graphs, not all AT-free graphs are perfect. Thus
the polynomial time algorithm for perfect graphs of Grötschel, Loväsz and Schrijver [11]
solving the INDEPENDENT SET problem does not apply to AT-free graphs.

We present the first polynomial time algorithm solving the NP-complete problem IN-
DEPENDENT SET, when restricted to AT-free graphs. More precisely, our main result is the
0(n2 ■ (m + 1)) algorithm to compute the maximum cardinality of an independent set in an
AT-free graph. Furthermore we present an 0(n2 ■ (m + 1)) time algorithm to solve the prob-
lem INDEPENDENT DOMINATING SET. A similar algorithm solves the problem INDEPENDENT
PERFECT DOMINATING SET in time 0(n2 ■ (m + 1)) [3]. We also observe that the problems
CLIQUE and PARTITION INTO CLIQUES remain NP-complete when restricted to AT-free graphs.

A natural generalization of asteroidal triples are the so-called asteroidal sets. Structural
results for asteroidal sets and algorithms for graphs with bounded asteroidal number were
obtained in [15, 21]. Computing the asteroidal number (i.e., the maximum cardinality of an
asteroidal set) turns out to be NP-complete in general, but solvable in polynomial time for
many graph classes [16]. Furthermore the results for problems as TREEWIDTH and MINIMUM
FILL-IN on AT-free graphs can be generalized to graphs with bounded asteroidal number [15].
We show how to adapt our algorithms to obtain polynomial time algorithms for graphs
with bounded asteroidal number solving the problems INDEPENDENT SET, INDEPENDENT
DOMINATING SET and INDEPENDENT PERFECT DOMINATING SET.

2 Preliminaries

For a graph G = (V, E) we denote \V\ by n, \E\ by m and the number of edges of the
complement of G, which is equal to the number of non edges of G, by rn.

Recall that an independent set in a graph G is a set of pairwise nonadjacent vertices.
The independence number of a graph G denoted by a(G) is the maximum cardinality of an
independent set in G.

762

For a graph G = (V, E) and W C V, G[W] denotes the subgraph of G induced by the
vertices of W; we write a(W) for a(G[I-F]). For convenience, for a vertex x of G we write
G - x instead of G[V \ {x}}. Analogously, for a subset XCFwe write G - X instead of
G[V \ X\. We consider components of a graph as (maximal connected) subgraphs as well
as vertex subsets. For a vertex x of G = (V, E), 'JV(x) = {y 6 V : {x,y} S £} is the
neighborhood of a: and N[x] = N(x) U {x} is the closed neighborhood of x. For W C V,
N[W) = \JxeWN[x].

A set S-C V is a separator of the graph G = (V, E) if G - S is disconnected.

Definition 1. Let G = (V, E) be a graph. A set Q C V is an asteroidal set if for every
x € J? the set Q \ {x} is contained in one component of G - N[x). An asteroidal set with
three vertices is called an asteroidal triple (short AT).

Notice that every asteroidal set is an independent set.

Remark. A triple {x, y, z} of vertices of G is an asteroidal triple if and only if for every two
of these vertices there is a path between them avoiding the closed neighborhood of the third.

Definition 2. A graph G = (V, E) is called asteroidal triple-free (short AT-free) if G has
no asteroidal triple.

It is well-known that the INDEPENDENT SET problem 'Given a graph G and a positive inte-
ger k, decide whether a(G) > k\ is NP-complete [9]. The problem remains NP-compIete,
even when restricted to cubic planar graphs [13]. Moreover the independence number is
hard to approximate within a factor of n1_e for any constant e > 0 [12]. Despite this dis-
couraging recent result on the complexity of approximation, the independence number can
be computed in polynomial time on many special classes of graphs (see [13]). For example,
the best known algorithm to compute the independence number of a cocomparability graph
has running time 0(n + m) [24].

The main result of this paper is an 0(n2 - (m + 1)) algorithm to compute the maximum
cardinality of an independent set in a given AT-free graph. The structural properties enabling
the design of our algorithms are given in the next three sections. In this extended abstract,
we restrict ourselves to the cardinality case of the problems. Nevertheless our algorithms can
be extended in a straightforward manner such that they solve the corresponding problems
on graphs with real vertex weights (see [3]).

3 Intervals

Let G = (V, E) be an AT-free graph, and let x and y be two distinct nonadjacent vertices of
G. Throughout the paper we use Cx (y) to denote the component of G — N[x] containing y,
andr(x) to denote the number of components of G — N[x}.

Definition 3. A vertex z € V \ {x, y} is between x and y if x and z are in one component
of G - N[y] and y and z are in one component of G — N[x\.

Equivalently, z is between x and y in G if there is an x, z-path avoiding N[y] and there
is a y, z-path avoiding N[x}.

Definition 4. The interval I = I(x, y) of G is the set of all vertices of G that are between
x and y.

Thus I(x. y) = Cx{y) n C^(x).

763

4 Splitting intervals

Let G = (V, E) be an AT-free graph, let I = I(x, y) be a nonempty interval of G and let
sei. Let J, = I(x, s) and J2 = I{s, y)-

Lemma 5. The vertices x and y are in different components ofG - N[s\.

Proof. Assume x and y would be in the same component of G - N[s\. Then there is an
x, y-path avoiding N[s\. However s£l implies that there is an s, y-path avoiding N[x] and
an s, i-path avoiding N[y]. Thus {s, x, y} is an AT of G, a contradiction. D

Corollary 6. Ij n/2 = 0-

Proo/ Assume z G /i n 72. Then z£/, implies that there is a component Gs of G - N[s]
containing both x and z. Furthermore z e h implies that also y G Cs, contradicting
Lemma 5.

Lemma 7. I\ C I and h Q I-

Proof. Let z e I\. Clearly sei implies s e Cx(y). Thus z e I, implies z G Cx(y).
Clearly z G Cs(x) since z G I\. By Lemma 5, Cs(x) is contained in a component of
G - N[y] and obviously this component contains x. This proves z e I. Consequently

h a.
hQI can be shown analogously. D

Theorem 8. There exist components C?, C%,..., C} ofG - N[s\ such that

t

/\iV[5] = J1uJ2uUc/.
i=\

Proof. By Lemma 7, we have /, C I \ N{s) and I2 Q I \ N[s}. By Lemma 5, x and y
belong to different components Cs{x) and Cä(y) ofG - N[s]. Let z G J \ N[s).

Assume z G Cs{x). There is a z, y-path avoiding N[x]. This path must contain a vertex
of N[s\, showing the existence of a z, s-path avoiding N[x\. Hence z e I\.

Similarly z G Cs(y) implies z G /2-
Assume z 0 Gs(x) and z g Cs{y). Since z 0 JV[s], z belongs to the component

Cs{z) of G - JV[s]. For any vertex p G Gs(z), there is a p, z-path avoiding N[x], since
Gs(z) 7^ G3(x). Since z € I, there is a z,y-path avoiding N[x\. Hence there is also a
p, y-path avoiding N[x\. This shows Gs(z) C J \ N[s\. n

Corollary 9. £very component of G[I \ (N[s\ U Ji U J2)] « a component ofG - N[s}.

5 Splitting components

Let G = {V, E) be an AT-free graph. Let Cx be a component of G - iV[i] and let y be a
vertex of Cx. We study the components of the graph Cx - N[y].

Theorem 10. Let Dbea component ofCx - N[y). Then N[D] n [N[x] \ N[y\) = 0 if and
only if D is a component of G - N[y\.

764

Proof. Let D be a component of Cx - N[y] with N[D] n (N[x\ \ N[y]) = 0. Since no
vertex of D has a neighbor in N[x] \ N[y], £> is a component of G - N[y).

Now let D C Cx be a component of G - i%]. Then AT[£>] n N[x) C iV[j/]. G

Corollary 11. Lef 5 6e a component of Cx - N[y\. Then N[B] n (iV[i] \ JV*[y]) ^ 0 i/and
onlyifBQCy(x).

Theorem 12. Let B\,..., Be denote the components of Cx - N[y] that are contained in
Cy(x).ThenI(x,y) = [jei=lBl.

Proof. Let / = I(x, y). First we show that Bi Q I for every i S {1, ...,£}. Let z G Bi.
There is an x, z-path avoiding 7V[j/], since some vertex in Bi has a neighbor in JV[x] \ iV[y].
Clearly, there is also a z,y-path avoiding N[x], since z and y are both in Cx. This shows
that z € /. Consequently (Ji=1 ßj C /.

Supposez S /\Ui=i -Si-Sincez ^ U^_, S,, the component!) of Cx-N[y] containing
z does not contain a vertex with a neighbor in N[x]\N[y}. Thus z £ Cv(x), implying z 0 i",
a contradiction. □

6 Computing the independence number

In this section we describe our algorithm to compute the independence number of an AT-free
graph. The algorithm we propose uses dynamic programming on intervals and components.
All intervals and all components are sorted according to nondecreasing number of vertices.
Following this order, the algorithm determines the independence number of each component
and of each interval using the formulas given in Lemmas 13, 14 and 15.

We start with an obvious lemma.

Lemma 13. Let G = (V, E) be any graph. Then

r(x)

a(G) = l+m«(j>(Cf)),
It V '

i=\

where Cx, Cx,..., Cx,s are the components ofG — N[x\.

Applying Lemma 13 to the decomposition given by Theorems 10 and 12, we obtain the
following lemma.

Lemma 14. Let G — (V, E) be an AT-free graph. Let x £ V and let Cx be a component of
G - N[x}. Then

a(Cx) = 1+ max (a(I(x,y)) + £>(.Df)),

where the D\ 's are the components ofG — N[y] contained in Cx.

Applying Lemma 13 to the decomposition given by Theorem 8, we obtain the following
lemma.

765

Lemma 15. Let G = {V, E) be an AT-free graph. Let I = I{x, y) be an interval ofG. If
I = 0 then a(I) = 0. Otherwise

a(I) = 1 + max (a(I(x, s)) + a(I{s, y)) + £ a(C?)),
sei i

where the Cf 's are the components ofG - N[s] contained in I{x, y).

Remark. Notice that the components Dy and Cf as well as the intervals I{x, s) and I(s, y)
on the right-hand side of the formulas in Lemma 14 and Lemma 15 are proper subsets of
Cx and I, respectively. Hence a{Cx) (resp. a{I)) can be computed by table look-up to
components and intervals with a smaller number of vertices.

Consequently we obtain the following algorithm to compute the independence number
a(G) for a given AT-free graph G = (V, E), which is based on dynamic programming.

Step 1 For every x £ V compute all components Cf, Cf,..., Cx
{x) of G - N[x}.

Step 2 For every pair of nonadjacent vertices x and y compute the interval I(x, y).
Step 3 Sort all the components and intervals according to nondecreasing number of vertices.
Step 4 Compute a{C) and a{I) for each component C and each interval / in the order of

Step 3.
Step 5 Compute a(G).

Theorem 16. There is an 0(n2 • (m + 1)) time algorithm to compute the independence
number of a given AT-free graph.

Proof. The correctness of our algorithm follows from the formulas of Lemmas 13, 14 and
15 as well as the order of the dynamic programming.

We show how to obtain the stated time complexity. Clearly, Step 1 can be implemented
such that it takes 0(n(n + m)) time using a linear time algorithm to compute the components
of the graph G - N[x] for each vertex x of G. For each component of G - N[x], a sorted
linked list of all its vertices and its number of vertices is stored. For all nonadjacent vertices
x and y there is a pointer P(x, y) to the list of Cx(y). Thus in Step 2, an interval I(x, y)
can be computed using the fact that I(x, y) = Cx{y) n Cy(x). Hence a sorted vertex list
of I(x, y) can be computed in time 0(n) for each interval. Consequently the overall time
bound for Step 2 is 0(n ■ (rn+ 1)). There are at most n2 components and at most n2 intervals
and each has at most n vertices. Thus using the linear time sorting algorithm bucket sort,
Step 3 can be done in time 0(n2).

The bottleneck for the time complexity of our algorithm is Step 4. First consider a
component Cx of G - N[x] and a vertex y € Cx. We need to compute the components
of G - N[y] that are contained in Cx. Each component D of G - N[y] except C(x) is
contained in Cx if and only if D n Cx ^ 0. Thus the components D of G - N[y] with
D C Cx are exactly those components of G - N[y] addressed by P(y,z) for some z G Cx.
Thus all such components can be found in time 0{\CX\) for fixed vertices x and y € Cx.
Hence the computation of a{C) for all components C takes time Y.{x,y}iE °{\cx{v)\) =
0{n-{m+ 1)).

Now consider an interval / = I{x, y), and a vertex s € I. We need to add up the
independence numbers of the components C* of G - N[s] that are contained in /. The

766

components of G — N[y] that are contained in / are exactly those components addressed by
P(y, z) for some z e. I, except Cs(x) and Cs{y). Thus all such components can be found
in time 0(\I(x, y)\) for a fixed interval I(x, y) and s € I(x, y). Hence the computation of
a(I) for all intervals I takes time E{x.y}^s Ese/(*,y) 0(\I(x, y)\) = 0(n2 • (m + 1)).

Clearly Step 5 can be done in 0(n2) time. Thus the running time of our algorithm is
0{n2 ■ {m + 1)). D

7 Independent domination

The approach used to design the presented polynomial time algorithm to compute the
independence number for AT-free graphs can also be used to obtain a polynomial time
algorithm solving the INDEPENDENT DOMINATING SET problem on AT-free graphs. The best
known algorithm to solve the weighted version of the problem on cocomparability graphs
has running time 0(n2376) [4].

Definition 17. Let G - (V, E) be a graph. Then S C V is a dominating set of G if every
vertex of V \ S has a neighbor in S. A dominating set S C V is an independent dominating
set of G if S is an independent set.

We denote by ~/j (G) the minimum cardinality of an independent dominating set of the
graph G. Given an AT-free graph G, our next algorithm computes 7i(G). It works very
similar to the algorithm of the previous section.

We present only the formulas used in Step 4 and 5 of the algorithm (which are similar to
those in Lemma 13, Lemma 14 and Lemma 15).

Lemma 18. LetG = (V, E) be a graph. Then

r(x)

7i(G) = l + min(^7i(GJ)),

where Cf, C*,..., C*,x-, are the components ofG — N[x\.

Lemma 19. Let G = (V, E) be an AT-free graph. Let x e V and let Cx be a component of
G - N\x\. Then

Tl(Cn = 1 + min (7i(/(x,t/)) +^7i(D})),
j

where the DVj 's are the components ofG — N[y] contained in Cx.

Lemma 20. Let G = (V, E) be an AT-free graph. Let I = I(x, y) be an interval. If I = 0
then 7i(J) = 0. Otherwise

7i(/) = 1 + mir, (T,(/(I,S)) + r,(I(s,v)) + I><C'))'
3

where the Cj 's are the components ofG — N[s] contained in I{x, y).

767

Design and analysis of the algorithm is done similar to the previous section. We obtain
the following theorem.

Theorem 21. There exists an 0{n2 ■ (m + 1)) time algorithm to compute the independence
domination number 71 of a given AT-free graph.

In the full version [3] we also show how to obtain an 0{n2 • (m + 1)) algorithm to
compute a minimum cardinality independent perfect dominating set for AT-free graphs.

8 Bounded asteroidal number

In this section we show that the independence number of graphs with bounded asteroidal
number can be computed in polynomial time.

Definition 22. The asteroidal number of a graph G is the maximum cardinality of an
asteroidal set in G.

Hence a graph is AT-free if and only if its asteroidal number is at most two. Furthermore
the asteroidal number of a graph G is bounded by a(G), since every asteroidal set is an
independent set.

Definition 23. Let Si be an asteroidal set of G. The lump L{Si) is the set of vertices v such
that for all x £ Si there is a component of G - N[x) containing v and Si \ {x}.

Let Si = {xi,..., xK} be an asteroidal set of cardinality K > 2 and consider the lump

L = L{Si).
Let s be an arbitrary vertex in L. In this section we show how N [s\ splits the lump

analogous to Theorem 8.
Consider the components of G-iV[s]. These components partition ß into setsß,,..., SiT,

where each Si% is a maximal subset of Si contained in a component of G - N[s).

Lemma 24. For each i = 1,..., r, the set Si* = ß4 U {s} is an asteroidal set in G.

Proof. Consider a: £ Sii. Then, by definition, Si\{x} and s are contained in one component
0fG _ N[x]. Hence, Si* \ {x} is contained in one component of G - N[x\. This proves the

claim.

Lemma 25. Let z £ L be in some component C* ofG- N[s] that contains no vertices of

Si. Then C* C L.

Proof. Let p £ C* \ {z}. There is a p. z-path avoiding N{x\ for any vertex x £ Si. This
proves the claim.

First we consider the case where r = 1, i.e., where Si is in one component of G - N[s}.
Then Si U {s} is an asteroidal set.

Lemma 26. If Si is contained in one component C ofG - N[s], then L{SiU {s}) = L n C.

768

Proof. Clearly L(Q U {s}) C L n C. Let z £ L n C and consider a vertex iefi. Clearly,
there is an x, z-path avoiding iV[s], since z and a; are in the component C of G — iV[s].
Hence z is in the component of Q of G — N[s]. Consider any other vertex j6ß. (Such
vertices exist since \Q\ > 2). There exists a z, y-path avoiding N[x] since z £ L. But also,
there exists a y, s-path avoiding N[x] since J? U {s} is an asteroidal set. Hence z is in the
component of (Q U {s}) \ {x} of G - N[x}. 0

Now we consider the case where r > 1. Let Li = L(J?,u{s}) fori = 1,..., r. Clearly,
Lj D Lj = 0 for every i 7^ j.

Lemma 27. Assume r > 1 a«if /er C £e the component of G — N[s] containing ß;. Then
Li = LnC.

Proof. First let z € L n C. Then for all x and y in i?i there is a z, x-path avoiding N[s] since
z £ C (showing that z and /?* are in one component of G — N[s\), and there is a z, z-path
avoiding N[y] since z6L, For y' € i?, for any j^j there is a z, y'-path avoiding N[x],
since z £ L. Such a path contains a vertex of N[s], and consequently there is a z, s-path
avoiding N[x]. This shows that z, s and J?i \ {x} are in one component of G - N[x] and
hence L f~l C C Lj.

Now let z € £i. This clearly implies z € C. For a vertex y € fij, j ^ i, s and the set
Q \ {y} are in one component of G — N[y] since s G L. There is an s, z-path avoiding iV[y]
since y and z belong to different components of G — N[s}. Consequently, z and Q \ {y} are
in one component of G — N[y\.

For a vertex x 6 flu there is a component of G — N[x] containing s and Q \ {x}, since
s £ L. Since z € Li, there is an s, z-path avoiding N[x\. Hence also z is in this component
of G - N[x\ and therefore I.CinC. D

Theorem28. There exist components C\,... ,Ct of G — N[s] which contain no vertex of
Q such that

t T

L\N[s} = [jCiU\jLj.
i=\ j=\

Proof Let C\,..., Ct be the components of G — N[s] which contain a vertex of L but no
vertex of Ü. Then by Lemma 25 we have (J!=i Gi C L\ N[S], and by Lemmas 26 and 27
we have [fj=] Lj C L\ N[s].

Now let I s £ \ iV[s]. If Hs in a component containing l?i, 1 < i < r, then Z € Lj by
Lemma 26 or 27. Otherwise there is an index i, 1 < i < t such that I £ Ci. This completes
the proof. Ü

Theorem 28 enables us to generalize Lemmas 15 and 20 in the following way.

Lemma 29. Let L = L{Q) be a lump ofG. IfL = 0 then a(L) = 7i(L) = 0. Otherwise

t T

a(L) = 1 + max (53a(Cj) + £>(Li)),

t r

7)(I) = 1 + min (^7,(^) + ^7i(^)),

769

where C\,... ,Ctare the components ofG - N[s] which contain no vertex ofQ, L\,...,LT

are the lumps L{Qi + 5) as used in Lemma 24.

Together with Lemmas 13 and 14, 18 and 19, the formulas of Lemma 29 lead to
recursive algorithms computing a{G) and 71(G) for a graph G. For any positive integer k,
these algorithms can be implemented to run in time 0(nk+2) for all graphs with asteroidal
number at most k. Analogously to the proof of Theorem 16, the time complexity is now
dominated by the term Y,n ZseL(n) OQL(f2)\) = 0(nk+2), where the sum is taken over
all asteroidal sets Q of G and all s € L{Q).

As before, our algorithms for graphs with a bounded asteroidal number can be extended
to the weighted cases of the problems and the corresponding algorithms have the same
timebounds.

9 Conclusions

In this paper we have shown that the independence number as well as the independence
domination number of an AT-free graph can be computed in time 0{n2 ■ (m+ 1)). The same
approach can be used to obtain an 0{n2 ■ (m + 1)) algorithm to solve the INDEPENDENT
PERFECT DOMINATING SET problem on AT-free graphs. We have shown how to adapt the
algorithm computing the independence number in such a way that the new algorithm com-
putes the independence number of a graph with a bounded asteroidal number in polynomial
time.

In the full version [3] we show how to extend our algorithms for the problems INDEPEN-
DENT SET and INDEPENDENT DOMINATING SET to AT-free graphs with real vertex weights.
Both algorithms run in time 0(n2 ■ (m + 1)). Furthermore our algorithms can also be mod-
ified such that they compute a maximum weight independent set and a minimum weight
independent dominating set in time 0(n2 ■ (m + 1)).

Contrary to the independent set problems considered so far, the NP-complete graph
problems CLIQUE and PARTITION INTO CLIQUES, that are closely related to INDEPENDENT
SET, both remain NP-complete when restricted to the class of AT-free graphs. Concerning
CLIQUE recall that Poljak has shown that INDEPENDENT SET remains NP-complete on triangle-
free graphs [9]. Consequently CLIQUE remains NP-complete on graphs with independence
number at most two, and thus on AT-free graphs. Similarly, it follows from a recent result
due to Maffray and Preissman (showing that GRAPH fc-COLORABlLlTY remains NP-complete
when restricted to triangle-free graphs [22]), that the problem PARTITION INTO CLIQUES
remains NP-complete on AT-free graphs.

Consequently CLIQUE and PARTITION INTO CLIQUES are the first NP-complete graph prob-
lems (known to us) which are NP-complete on AT-free graphs, but solvable in polynomial
time on the class of cocomparability graphs. The latter graph class is the largest well-studied
subclass of AT-free graphs which is also a class of perfect graphs.

It would be interesting to find out the algorithmic complexity of the following well-known
NP-complete graph problems when restricted to AT-free graphs: GRAPH fc-COLORABiLiTY,
HAMILTONIAN CIRCUIT, HAMILTONIAN PATH. These three problems are all known to have
polynomial time algorithms for cocomparability graphs [8, 10].

770

References

1. Arnborg, S., D. G. Corneil and A. Proskurowski, Complexity of finding embeddings in a k-tree.
SlAMJ.Alg. Disc. Meth. 8 (1987), pp. 277-284.

2. Brandstädt. A., Special graph classes - A survey. Schriftenreihe des Fachbereichs Mathematik,
SM-DU-199, Universität Duisburg Gesamthochschule, 1991.

3. Broersma, H. J., T. Kloks, D. Kratsch and H. Müller, Independent sets in asteroidal triple-free
graphs, Memorandum No. 1359, Faculty of Applied Mathematics, University of Twente, En-
schede, The Netherlands, 1996.

4. Breu, H. and D. G. Kirkpatrick, Algorithms for domination and Steiner tree problems in cocom-
parability graphs, Manuscript 1993.

5. Chang, M. S., Weighted domination on cocomparability graphs, Proceedings of 1SAAC95,
Springer-Verlag, LNCS 1004, 1996, pp. 122-131.

6. Corneil, D. G., S. Olariu and L. Stewart, The linear structure of graphs: Asteroidal triple-free
graphs,'Proceedings ofWG'93, Springer-Verlag, LNCS 790, 1994, pp. 211-224.

7. Corneil, D. G., S. Olariu and L. Stewart, A linear time algorithm to compute dominating pairs
in asteroidal triple-free graphs, Proceedings of ICALP'95, Springer-Verlag, LNCS 944, 1995,
pp. 292-302.

8. Deogun, J. S. and G. Steiner, Polynomial algorithms for hamiltonian cycle in cocomparability
graphs, S1AMJ. Comput. 23 (1994), pp. 520-552.

9. Garey, M. R. and D. S. Johnson, Computers and Intractability: A guide to the theory of NP-
completeness, Freeman, San Francisco, 1979.

10. Golumbic, M. C, Algorithmic graph theory and perfect graphs, Academic Press, New York,
1980.

11. Grötschel, M., L. Loväsz and A. Schrijver, Polynomial algorithms for perfect graphs, Annals of
Discrete Mathematics 21 (1984), pp. 325-356.

12. Hastad, J., Clique is hard to approximate within n1_e, to appear in the Proceedings ofFOCS'96.
13. Johnson, D. S., The NP-completeness column: An ongoing guide, J. Algorithms 6 (1985),

pp. 434-451.
14. Kloks, T, Treewidth - Computations and Approximations, Springer-Verlag, LNCS 842, 1994.
15. Kloks, T, D. Kratsch and H. Müller, A generalization of AT-free graphs and some algorithmic

results, Manuscript 1996.
16. Kloks, T, D. Kratsch and H. Müller, Asteroidal sets in graphs, Memorandum No. 1347, Faculty

of Applied Mathematics, University of Twente, Enschede, The Netherlands, 1996.
17. Kloks, T, D. Kratsch and J. Spinrad, On treewidth and minimum fill-in of asteroidal triple-free

graphs, to appear in Theoretical Computer Science 175 (1997).
18. Kloks, T, H. Müller and C. K. Wong, Vertex ranking of asteroidal triple-free graphs, Proceedings

oflSAAC'96, Springer-Verlag, LNCS 1178, 1996, pp. 174-182.
19. Kratsch, D., Domination and total domination on asteroidal triple-free graphs, Forschungsergeb-

nisse Math/Inf/96/25, FSU Jena, Germany, 1996.
20. Lekkerkerker, C. G. and J. Ch. Boland, Representation of a finite graph by a set of intervals on

the real line. Fund. Math. 51 (1962), pp. 45-64.
21. Lin, I. J.,T. A. McKee and D. B. West, Leafage of chordal graphs. Manuscript 1994.
22. Maffray. F. and M. Preissman, On the NP-completeness of the fc-colorability problem for triangle-

free graphs, Discrete Mathematics 162 (1996), pp. 313-317.
23. Möhring, R. H., Triangulating graphs without asteroidal triples, Discrete Applied Mathematics.

64(1996). pp. 281-287.
24. McConnell. R. M. and J. P. Spinrad, Modular decomposition and transitive orientation.

Manuscript 1995.
25. Yannakakis. M., Computing the minimum fill-in is NP-complete, SIAM J. Alg. Disc. Meth. 2

(1981), pp. 77-79.

Refining and Compressing Abstract Domains

Roberto Giacobazzi* Francesco Ranzato**

* Dipartimento di Informatica, Universüä di Pisa
Corso Italia 40, 56125 Pisa, Italy

giaco@di . unipi . it

** Dipartimento di Matematica Pura ed Applicata, Universüä di Padova
Via Belzoni 7, 351 SI Padova, Italy

f ranz@math. unipd. it

Abstract. In the context of Cousot and Cousot's abstract interpreta-
tion theory, we present a general framework to define, study and handle
operators modifying abstract domains. In particular, we introduce the
notions of operators of refinement and compression of abstract domains:
A refinement enhances the precision of an abstract domain; a compres-
sion operator (compressor) can exist relatively to a given refinement, and
it simplifies as much as possible a domain of input for that refinement.
The adequateness of our framework is shown by the fact that most of the
existing operators on abstract domains fall in it. A precise relationship of
adjunction between refinements and compressors is also given, justifying
why compressors can be understood as inverses of refinements.

1 Introduction

It is well known that abstract domains play a fundamental role in abstract inter-
pretation [5, 6], since the precision of an abstract interpretation-based program
analysis strongly depends on the expressive power of the chosen abstract do-
main. Much work has been therefore devoted to define systematic operators for
enhancing the precision of representation of abstract domains. Relevant examples
are Cousot and Cousot's reduced product, disjunctive completion and reduced
cardinal power [6], Nielson's tensor product [18], Giacobazzi and Ranzato's de-
pendencies and dual-Moore-set completion [13], the open product and pattern
completion of Cortesi et al. [4], to cite the most known ones. The basic idea is
that richer abstract domains can be obtained by combining simpler ones or by
lifting them by adding new information. These operators on abstract domains
provide high level facilities to tune the analysis in accuracy and cost, and some
of them have been included as tools for abstract domain design aid in modern
systems for program analysis, like for instance in System Z [22] and in PLAI [1].

We carry on this idea of operators enhancing the precision of abstract do-
mains and we present in Sect. 3 a general and precise framework to handle these
operators, which encompasses and improves the ideas sketched in [9]. The cen-
tral notion is that of abstract domain refinement, that intuitively is any operator
performing an action of refinement on abstract domains, with respect to their
standard ordering relation of precision. There exists a strong link between refine-
ments and closure operators, and many lattice-theoretic properties of closures
are inherited by refinements. We introduce a generic pattern of definition for
domain refinements, which allows to recover most of the important refinements

772

listed above. Moreover, as an instance of this scheme, we present a new refine-
ment of completeness. Roughly speaking, an abstract domain D is complete for
a semantic function / defined on the concrete domain when no loss of precision
is introduced by approximating / in the best possible way (i.e. by considering its
best correct approximation, cf. [5, 6]) with respect to D. Thus, for a domain D,
our refinement of completeness provides the most abstract domain which is more
precise than D and complete for a given continuous concrete semantic function.

Recently, also operators of simplification of abstract domains have been de-
fined and studied, like the operations of complementation in [3] and least dis-
junctive basis in [14]. As well as refinements, we show in Sect. 4 that these
operators can be expressed in a formal and precise way in our framework. Ac-
tually, these operators are instances of our notion of operator of compression
(or compressor). Roughly speaking, for a given abstract domain refinement 5ft,
its relative compressor simplifies a domain D of input for 5ft, by returning the
domain (if this exists) which contains the least amount of information required
as input by 5ft to reach the same enhancement obtainable from D. This is some-
how similar to the operation of compression on files - hence our terminology.
In more precise terms, if 5ft is a unary refinement and D is an abstract domain,
then an abstract domain A is the optimal basis of D for 5ft, if A is the most
abstract solution to the equation 5ft(X) = 5ft(D). Obviously, if an optimal basis
exists then it is necessarily unique. We say that 5ft is invertible on a given class
of abstract domains if there exists the optimal basis of any domain D in the
class. In this case, the compressor 5ft- relative to 5ft (also called the inverse of
5ft) provides the optimal basis 5ft~(£>) of D for 5ft. The problem of inverting a
refinement is often hard to solve in a satisfactory way, and, in general, not all
domain refinements admit a corresponding compressor defined for a significant
class of abstract domains. We show that complementation and least disjunctive
basis give rise, respectively, to the compressors relative to reduced product and
disjunctive completion refinements, and we give a generic scheme for defining
invertible refinements. Moreover, we show that invertible refinements provide
solutions to the problem of decomposing abstract domains into simpler factors.
If 5ft is an n-ary refinement and D = 5ft(A,..., Dn), then the tuple (Di,...,Dn)
can be considered as a decomposition of D relative to 5ft. We then present a
general iterative method which starting from any decomposition relative to an
invertible refinement provides minimal decompositions, i.e. decompositions in-
volving the most abstract factors.

It is important to note that our notion of inversion of a refinement does not
correspond to the more customary inversion in the sense of adjunctions - on
the contrary, we observe that, in general, this is not possible. However, we show
in Sect. 5 that this asymmetry can be overcome by considering a modified or-
dering relation between abstract domains, that is induced in a natural way by
the refinement itself. We prove that for this lifted order on abstract domains,
an invertible refinement and its compressor do constitute an adjunction. This
provides a firm mathematical relationship between refinements and compressors,
and gives a more precise justification to the use of the term "inverse".

773

2 Preliminaries
The structure (uco(C), C., U, n, Xx.T,Xx.x) denotes the complete lattice of all
upper closure operators (shortly closures) on a complete lattice (C, <, V, A, T, _L),
where p C 77 iff Vx £ C. p(x) < r)(x). The complete lattice of all lower closure
operators on C is denoted by lco(C) and is dual-isomorphic to uco(C). Recall
that each closure operator p £ uco(C) is uniquely determined by the set of its
fixpoints, which is its image, i.e. p{C) = {x 6 C \ p(x) = x}, that p C. r\ iff
77(C) C p(C), and that a subset X C C is the set of fixpoints of a closure iff
X — {AY \ Y C X} (note that T e X). {p{C), <) is a complete meet subsemi-
lattice of C but, in general, it is not a complete sublattice of C.

In the standard Cousot and Cousot abstract interpretation theory, abstract
domains can be equivalently specified either by Galois connections or by closure
operators [6]. In the first case, concrete and abstract domains are related by
a pair of adjoint functions. This provides a way to relate domains containing
objects having different representation. In the second case instead, an abstract
domain is specified as (the set of fixpoints of) an upper closure on the concrete
domain. Thus, the closure operator approach is particularly convenient when
reasoning about properties of abstract domains independently from the repre-
sentation of their objects, as in our case. Hence, we will identify uco(C) with
the complete lattice of all possible abstract domains of the concrete domain (i.e.
any complete lattice) C. The ordering on uco(C) corresponds precisely to the
standard order used in abstract interpretation to compare abstract domains with
regard to their precision: D\ is more precise than D2 iff D\ Q D2 in uco(C) (c
denotes strict ordering). The lub and gib on uco(C) have therefore the following
meaning as operators on domains. Suppose {A}ie/ ^ uco(C): (i) U{ejDi is the
most concrete among the domains which are abstractions of all the A's, i.e. it
is their least common abstraction; (ii) HiejDi is (isomorphic to) the well-known
reduced product of all the Di's, and, equivalently, it is the most abstract among
the domains (abstracting C) which are more concrete than every £>;. Whenever
C is a meet-continuous complete lattice (i.e., for any chain FCC and x £ C:
x A (VF) = Vj/6y(a; A y)), uco(C) enjoys the lattice-theoretic property of pseu-
docomplementedness (cf. [12]). This property allowed to define the operation of
complementation of abstract domains (cf. [3]), namely an operation which, start-
ing from any two domains C C D, where C is meet-continuous, gives as result
the most abstract domain C~D, such that (C~ö)nZ)= C.

3 Abstract Domain Refinements

Intuitively, an abstract domain refinement is an operator that, for any tuple
(Dl)i<i<n of domains of input (ranging on a given domain of definition), provides
as output a domain more precise than each D{. It is also very reasonable to
expect that such an operator is monotone. These observations naturally lead to
the definition below. In the following, a generic tuple of objects is denoted by
O, 7Tj(0) denotes its i-th component, and 0[X/i] denotes the tuple obtained
from O by replacing 7TJ(0) with X. Also, C is a complete lattice acting as
the concrete domain and U C uco(C)n, n > 1, is a given tuple of sets of
domains abstracting C (for simplicity, we only consider refinements of finite arity

774

- actually those having a practical meaning - although a generalization would be
straightforward). When n = 1 we denote U as the set U C uco(C). We extend
on tuples the gib of uco(C): For any tuple of domains D, nD = ni<»<n7r;(D).
Definition 3.1 A map ft : U -»• uco(C) is a (n-ary abstract domain) refinement
if: (i) ft is monotone; (ii) ft is reductive: VD G U. ft(D) C nD. □

The kernel of definition of any refinement ft : U -)■ uco(C) is given by
Ku = ni<i<„7ri(U). Often, refinements are defined on any tuple of abstract
domains, i7e.7 ft : uco{C)n -»■ uco(C), as in the case of reduced product and
disjunctive completion, later considered. We will call them full refinements, in
order to distinguish them from generic ones as allowed by Definition 3.1. Any
n-ary refinement ft : U -> uco(C) induces a family of refinements of lower arity
obtained by fixing some of the domains of input. For instance, by fixing n - 1
domains, we get the unary refinements \XM(D[X/i]) : 7r,(U) -> uco(C). Also,
ft induces the canonical unary self-refinement ftj : Kn -> uco{C) defined as
fti(D) = ftp, ...,D). Conversely, any n-uple R = (ft,)i<»<n of unary refine-
ments ft» : Ui ->■ uco(C) induces an n-ary refinement ftR : UiX...xUn ->■ uco(C)
defined as ftR(D) = n^^MD)), and called attribute independent.

It is important to remark that Definition 3.1 lacks of any requirement of
idempotence. For instance, for a unary refinement ft : U -► uco(C) may well
happen that a refined domain ft(£>) G U can still be object of further refinement,
i.e. ft(ft(I>)) C ft(-D). Due to lack of space, in the paper we will only consider
examples of idempotent refinements, although a relevant example of nonidem-
potent refinement can be given by the dependencies between abstract domains
of [13]. However, it is worth noting that, by monotonicity, any refinement can
be lifted to an idempotent one as the limit of a possibly transfinite Kleene fix-
point iteration sequence. It is therefore reasonable requiring idempotence for
refinements, i.e. that a refinement upgrades abstract domains all at once.

Definition 3.2 An n-ary refinement ft : U -> uco(C) is idempotent if for any
i G [1, n] and D G U such that ft(D) G Ku, ft(D) = ft(D[ft(D)/i]). □
Proposition 3.3 For any ft : U ->• uco(C), the following are equivalent:

(a) ft is idempotent;
(b) For any D G U such that ft(D) G KU; »(D) = fti(ft(D)).
//Ku is a (finitely) meet subsemilattice of uco(C) then (a) is equivalent to:
(c) ftn is idempotent and for any DGU such that ft(D) £%, ft(D) = fti(nD).

The following example yields a generic and useful pattern of definition for
full idempotent refinements.
Example 3.4 Consider any property P of abstract domains, i.e. a subset of the
lattice of abstract interpretations P C uco(C). For any fixed n G IN, define the
operator ftP : uco(C)n ->■ uco(C) as ftp = AD. U {A G uco(C) | A G P, A C
nD}. Thus, ftp(D) is the least common abstraction of all domains that satisfy
P and are more concrete (viz. precise) than every TT;(D) for i G [l,n]. It is
immediate to observe that ftp is monotone and reductive. Also, it is!easily seen
that ftp satisfies the condition (c) of Proposition 3.3. Thus, ftp always defines a
full idempotent refinement. However, in general, ftp(D) may not satisfy P. On
the other hand, the following characterization holds.

775

Proposition 3.5 VD. KP(D) € P O P <E lco{uco(C)) =» 5ftP = AD.P(nD).

Thus, for a property P which is a lower closure, 5ftP(D) is the most abstract
domain which satisfies P and is more concrete than every 7r;(D), or, equivalently,
5ftP(D) is the least extension of nD that satisfies P. It is also worth noting that
5ftP(D) is the greatest fixpoint of the equation X = P(X) n (nD) in uco(C). □

Note that any unary idempotent refinement 5ft : U ->• uco(C) such that
$l(U) C U (we say in this case that 5ft is well-defined on U) actually is a,lower
closure operator on the poset (U,C), with the order inherited from uco(C), i.e.
5ft £ lco{ U). In particular, any unary full idempotent refinement 5ft is a lower clo-
sure on uco(C), i.e. K e fco(Mco(C)), a case already considered in [9]. Also, for
any n-ary full idempotent refinement 5ft : uco(C)n -» uco(C), we have that any
unary refinement AX.5R(D[X/«]) (i G [1, n]) induced by 5ft is a lower closure op-
erator on uco(C), as well as the self-refinement 5ftj. It would be straightforward,
although notationally tedious, to generalize this latter observation to generic
n-ary (possibly nonfull) idempotent refinements that satisfy a suitably general-
ized condition of well-definedness. These observations are fairly important, since
unary idempotent refinements inherit all the lattice-theoretic properties of lower
closures (see [23] for a few of them). For instance, whenever the domain of defini-
tion (U, Q is a complete lattice, we get that these refinements well-defined on U
form a complete lattice (lco(U), C) (by a slight abuse of notation, we always use
the ordering symbol C for any kind of closures), where 5fti C. 5ft2 iff for any A e U,
5RI(J4) C R2(A) iff the set of abstract domains refined by 5fti is contained in the
set of those refined by 5ft2. Thus, analogously to the case of abstract domains,
the complete ordering C between idempotent refinements can be interpreted as
a relation of precision among refinement operators, where 5fti is more precise
than 5R2 iff 5ft i Q 5ft2. Moreover, any unary idempotent refinement well-defined
on a complete subsemilattice U of uco(C) enjoys the following properties of
compositionality w.r.t. the reduced product and least common abstraction.

Proposition 3.6 If U is a complete meet (join) subsemilattice of uco(C), 5ft :
U -)■ U is an idempotent refinement, and {Di}iej C p(U), then 5ft(nis/A) =
5R(nlG/5R(A)) (5R(u!6/5ft(A)) = Ui6/K(A);.

Reduced Product Refinement. The simplest and probably most familiar ex-
ample of abstract domain refinement is the reduced product [6], which is the gib
in the lattice of abstractions. For simplicity, we consider it as a binary refinement.
For any fixed concrete domain C (i.e., any complete lattice), reduced product is
obviously an idempotent full refinement 5ftn : uco(C) x uco{C) ->■ uco(C). Thus,
the unary refinement induced by 5ftn, i.e. AX. A n X is a lower closure, and for
it the properties discussed above hold. It is worth noting that 5ftn is the simplest
instance of the family of refinements defined in Example 3.4, since 5ftn is 5ftp for
the trivial property P = uco(C). Also, 5ftn is the attribute independent combi-
nation of the trivial identity refinements. Reduced product has been successfully
applied as a domain refinement in program analysis e.g. in [1, 16, 21].

Disjunctive Completion Refinement. The disjunctive completion [6] en-
hances an abstract domain so that its disjunction operation (i.e. lub) becomes

776

precise (as that of the concrete domain). Abstract domains with a precise dis-
junction (also called disjunctive abstract domains) correspond to additive clo-
sure operators. Disjunctive completion can be given as an instance of the gen-
eral scheme of Example 3.4, where the property P is given by additivity: P =
ucoa(C), the subset of uco(C) of additive closures. Hence, the disjunctive com-
pletion 5Rv : uco(C) ->• uco(C) is defined as 5cv(£>) = U{^ G ucoa(C) | A C D).
Thus, Kv is an idempotent full refinement. It is easy to observe that ucoa(C)
defines a lower closure on uco{C). Then, by Proposition 3.5, SRV(-D) is the most
abstract disjunctive domain that is more concrete than D. The disjunctive com-
pletion refinement has been applied in program analysis e.g. in [8, 15, 10].

Negative Completion Refinement. Assume the concrete domain C be a
complete Boolean algebra. It is easy to verify that if p G uco°(C) then -.p =
{-.re G C | x G p) G ucoa(C). The negative completion refinement is then
defined on disjunctive abstract domains, SR^ : ucoa{C) ->■ uco(C), as follows:
3?_,(.4) = A n -ü4. Thus, 5R-, lifts a given disjunctive abstract domain A to the
reduced product of A with its negative abstract domain, namely to the most
abstract domain containing both A and -iA. It is now simple to check that
K-, : ucoa(C) ->■ uco(C) is an idempotent refinement. It is worth noting that, in
general, 3l^(A) may not be disjunctive (i.e., 3^ is not well-defined on ucoa(C)).

The Refinement of Completeness. Abstract interpretation is intended to
create sound approximations of the concrete semantics of programs. If the pro-
gram semantics is specified as the least fixpoint of a monotone semantic op-
eration / : C 4 C on a complete lattice C, then, in the closure operator
approach, the soundness criterion for an abstract domain given by p G uco(C)
and for an abstract monotone semantic operation /" : p(C) ->■ p(C), is Vc G
C p{f(c)) < /"(/3(c)). This ensures the global soundness of the abstract se-
mantics, i.e. p{lfp(f)) < Ifpif1) (cf. [5]). Completeness is the dual relation
Vc G C. fHp(c)) < P(f(c)i- Because soundness is always required in abstract
interpretation, in the following we abuse terminology and say that /" is complete
for / if p o f = /» o p. In this case p(lfp(f)) = lfp{P)- Completeness in abstract
interpretation is a quite rare ideal situation, where for a given abstract domain
no loss of precision is introduced by abstract semantic operations. Completeness
is especially recurrent between (concrete) semantics of programming languages
(cf. [2, 7, 11]). Issues of completeness and related notions have also been studied
in [17, 19, 20]. Completeness can be made a property of abstract domains, by
making this notion independent on the choice for /". Recall that the best correct
approximation of/ w.r.t. p is given by p o / : p{C) -> p(C). Thus, we consider
completeness of the best correct approximation: p G uco(C) is complete for / if
pof = pofop. For example, let us consider the canonical 4-point abstract do-
main Sign = {0, Z<o, 2>0, Z}, which is an obvious abstraction of (p(Z), C). It is
simple to show that Sign is complete for the monotone operation of integer mul-
tiplication XX.n-X : p(Z) -4 p(Z) (where n G Z and n-X = {n-m | me X}).
On the other hand, p = {2>0,7L) (with Sign C. p) is not complete for XX. n ■ X
with n < 0: In fact, e.g., p(n ■ {-3}) = Z>0, but, because p({-3}) = Z,
p{n ■ p({-3})) = p{7L) = 2. The property of completeness for a semantic func-

777

tion / is therefore given by T(/) = {/)£ uco(C) | pof = pofop}. Following the
scheme of Example 3.4, we can define an idempotent full refinement of complete-
ness 5ftr(/) : uco{C) -> uco(C) as 5ftr(/)(p) = U{r) £ uco(C) \ r) £ T(/), r) C p}.

Theorem 3.7 /// is continuous then T(f) € lco(uco(C)).

Thus, by Proposition 3.5, we have that for a continuous /, 5Rr(/)(-D) actually is
the (unique) most abstract domain which includes D and is complete for /. For
instance, it is possible to check that for n < 0, $ir(\X.nX)({'%->0, Z}) = St^n.

4 Abstract Domain Compressors

We have introduced the notion of abstract domain refinement as a formalization
(and generalization) of many existing operators devoted to enhance the expres-
siveness of abstract domains. However, no operator performing a dual action of
simplification on abstract domains has been proposed up till now. We now for-
malize the idea of a simplifying operator that gives as input to a fixed refinement
the simplest domains (i.e. most abstract) which can be object of that refine-
ment. Let 5ft : U -»■ uco(C) be a (possibly nonidempotent) refinement. Define
5ft^ : U ->• uco(C), k £ [1, n], as 5ft^ = AD.U{,4 £ nk(U) \ X(T>[A/k]) = 5ft(D)}.
For D £ U, 5ft^(D) is the least common abstraction of all domains in 7rfc(U)
that, when substituted to 7rfc(D) as fc-th input for 5ft, do not change the output.

Definition 4.1 ift^ (D) is the k-th optimal basis of D £ U for 5R if 5R^(D) £
nk(V) and 5ft(D) = 5R(D[3^(D)/fc]). The refinement 5R is k-invertible (or admiis
the ifc-ift inverse) on V C 7rfc(U) if for all D e U[7/fc], 3^(D) is the fc-th optimal
basis of D for 5ft. When 5ft is fc-invertible, the map 5ft" : U[F/fc] -> 7rfc(U) is
called the fc-t/i compressor for 9?. n

Note that if the domain of definition V C 7rfc(U) of the fc-th compressor 5ft^ is
a complete join subsemilattice of uco(C), then the condition 5ft)T(D) £ ^(U) in
the above definition can be omitted. For K C [1, ra], we say that 5R is if-invertible
on a |Ä"|-tuple V, where Vi £ if. 7Ti(V) C 7Tj(U), if it is fc-invertible on ^(V),
for any k £ Ä". In particular, 5ft is /u% invertible on V C U if it is [l,n]-
invertible on V. For the simpler case of a unary refinement 5ft : U -> uco(C), we
have that 3?" : [/ -> uco(C) is defined as »-(2?) = U{A £ U \ fft{A) = »(D)},
and 5ft is invertible on V C C/ iff for any Z? e V, 5ft(5ft-(£>)) = 5ft(£>). It is
simple to observe that the above definition of fc-invertibility can be formulated
by using the unary refinements induced by a (ra-ary) refinement. More precisely,
if 5ft : U -> uco(C) is a refinement, then we have already seen that for any
fc € [l,n] and TT^D) £ 7rt(U) (i ^ fc), AX.5ft(D[X/fc]) : 7rfc(U) -»• uco(C) is a
unary refinement. It is then easily seen that 5ft is fc-invertible in FC 7Tfc(U) iff
XXM(D[X/k]) is (l-)invertible on V C 7r4(U). In this case, for the compressor
(AX.5R(D[X/fc]))_ : 7 -»■ 7r*(U) and the fc-th compressor 5ft^" of 5R, the following
mutual equality result holds: VD £ V. {XXM(D[X/k]))~(D) = 5ft^(D).

Not all domain refinements are invertible in a satisfactory way. An example is
provided by the negative completion refinement 3ft-, of Sect. 3. In fact, as observed
in [9], the optimal basis of the domain Sign (in Sect. 3) for 5ft^ does not exist.

778

Since Sign enjoys all most important lattice-theoretic properties, this means that
5ft^ is not invertible on any really significant class of abstract domains.

As the following result says, compressors relative to idempotent refinements
are extensive and idempotent.

Proposition 4.2 //5ft : U -* uco(C) is idempotent and k-invertible in V, then
the compressor Jft^ : XJ[V/k] ->• 7rfc(U) is extensive (i.e. nk(D) C 5ftj^(D)J and
idempotent (i.e. 5ft^(D) £ V => 5R^ (D [3^ (D)/*;]) = 5ft^ (D)j.

In general, compressors are neither monotone nor antimonotone: [14] proves
that the least disjunctive basis operator is neither monotone nor antimonotone,
and later we will show that the least disjunctive basis is the compressor relative
to the disjunctive completion refinement. On the other hand, as expected, a
compressor applied to a refined domain performs no further simplification.

Proposition 4.3 //5ft : U -> uco(C) is idempotent and k-invertible in V then
for any D G U[V/k] such that 5R(D) G V, Sf£(D[H(D)/*]) = R* (D).

An n-ary refinement 5ft : U -> uco(C) is commutative if for any permutation
r of {l,...,n}, sR(7iY(1)(D),...,7rT(n)(D)) = 5ft(D) holds. For instance, the re-
duced product refinement 5ftn is obviously commutative as well as any attribute
independent refinement. For commutative refinements, the following result holds
(this result admits a straightforward, although notationally tedious, generaliza-
tion for generic if-commutativity and invertibility).

Proposition 4.4 // 5ft : U -> uco(C) is a (possibly nonidempotent) commu-
tative refinement and k G [l,n] then, 5ft is fully invertible on V C U iff 5ft is
k-invertible on 7rfc(V) iff for all D G V, XXM(D[X/k]) : irk(U) -S- uco(C) is
(l-)invertible on 7rjfe(V).

Not all refinements are commutative. Examples of noncommutative refine-
ments are reduced power [6], dependencies [13], and tensor product [18]. Due to
lack of space, we do not formalize these operators as refinements. In the following,
we show how the results in [3, 12, 14] on complementation and least disjunctive
basis of abstract domains, actually permit to define the compressors relative
to reduced product and disjunctive completion respectively. These results also
suggest a generalization towards a general pattern of invertible refinements.

The Inverse of Reduced Product. Since 5ftn is commutative, by Proposi-
tion 4.4, 5ftn is fully invertible on some V x V C uco(C)2 iff for any D G V,
XX.(D n X) is invertible on V. As recalled in Sect. 2, for any meet-continuous
complete lattice C and D G uco(C), one can define the complement abstract
domain C~D. Moreover, it is immediate to note that, for any complete lattice
C, if Di,D2 E uco{C) satisfy the ascending chain condition (to be ACC, for
short; DCC is dual) then Di n D2 is ACC as well, and hence meet-continuous.
These observations directly imply that we can invert the reduced product on the
ACC abstractions of any concrete domain C (i.e. a plain complete lattice). Let
us define ACC(C) = {D G uco(C) \ D is ACC}, for any complete lattice C.

Theorem 4.5 If D £ ACC(C) then XX.D n X is invertible on ACC(C), and
the corresponding compressor (XX.D n X)~ : ACC(C) ->■ uco(C) is defined as
(XX.DnX)-(E) = (D\1E)~D.

779

Thus, 5ftn is fully invertible on ACC{C) x ACC(C). For instance, if D1,D2 G
ACC(C), we have that the first compressor is (^n)^(Di,D2) = (DxnD2)~D2.

The Inverse of Disjunctive Completion. Giacobazzi and Ranzato defined
and studied in [14] the operator of least disjunctive basis on abstract domains,
that corresponds exactly to the compressor for the disjunctive completion re-
finement. Hence, the results in [14] can be reformulated as follows.

Theorem 4.6
(i) // C is co-algebraic completely distributive then !RV is invertible on all uco(C).

(ii) // C is distributive then 5ftv is invertible on {A G uco(C) \ A is finite).

Compressing Lower and Upper Refinements. Define an upper (lower) im-
provement on C as any map 1 : p(C) -> p(C) such that MS G p(C).Ms G
S.Ms' G 2(5). s < s' (s1 < s). Gib and lub are obvious examples of lower
and upper improvements. We prove that upper and lower improvements in-
duce invertible refinements in a natural way. This provides a general pattern for
defining new invertible refinements. For an upper (lower) improvement I on C,
define the corresponding upper (lower) set-refinement 5ft1 : p(C) -»■ p(C) as:
UT(X) = Xö (UscxZ(S)). It turns out that 5ftz is a lower closure on (p(C), 2).
However, in general, for a closure p G uco(C), "$¥(p) may not be in uco(C).
But, when a unary full idempotent refinement 5R G lco(uco(C)) is the restriction
on uco(C) of an upper (lower) set-refinement, i.e. there exists an upper (lower)
improvement I on C such that 5R = ^\uco(c) (in tnis case> we cal1 ^ an uPPer

(lower) refinement), the following general theorem of inversion for 5ft holds.

Theorem 4.7 // C is a complete lattice satisfying the DCC (ACC), then any
upper (lower) refinement -ft G lco(uco(C)) is invertible on all uco(C).

For instance, if C is distributive and X = V, we get for free the inversion of
disjunctive completion of Theorem 4.6 (ii). By Proposition 4.4, the attribute in-
dependent refinement induced by a family of upper or lower refinements is invert-
ible under suitable hypotheses derived by Theorem 4.7. By this last observation,
it would be possible (but we omit the details) to derive as a consequence of
Theorem 4.7 the result of inversion for the reduced product of Theorem 4.5.

Minimal ift-decompositions. For a given refinement üft : U ->■ uco(C) of arity
n > 1, we say that D G U is a 5ft-decomposition of D G uco(C), if D = 5ft(D).
If D,E G U are two ^-decompositions of D then D is better than E if E C D
componentwise.1 The intended meaning is that D is better than E because
it is a less costly decomposition (in particular, YA=I KiWI < Sr=i l71"»^)!)-
Obviously, this relation induces a partial ordering between ^-decompositions
of D, but, in general, optimal (i.e. least) ^-decompositions for this order do
not exist. For instance, (D,{T}) and ({T},D) are uncomparable minimal 5ftn-
decompositions of D. It is easy to see that, if 5ft is idempotent and fully invertible
on V C U and D is a ^-decomposition of D, then for any k G [1, n] the tuple
D[5ft^(D)/fc] (*) is still a ^-decomposition of D which is better than D, and

1 For commutative refinements, both this definition and the successive development
would identify decompositions up to permutation - however, we omit the details.

780

fun 5R-min (D: array [1, n] of domains)
J := {1,...,«};
repeat

A; := choose(J);
J ■= J\{k};
D := D[R£(D)/A]

until J = 0
output D

that D is a minimal ^-decomposition of D iff Vfc G [1, n]. 7rA(D) = 3?fc (D).
Thus, each ^-decomposition can be improved by iterating the above step (*) as
shown in the following nondeterministic function 3?-min, where choose selects
an arbitrary element from its input set. TheQrem 4>8 Let JJ be an idem_

potent and fully invertible refine-
ment on V. If, for any k G [l,n],
3?^ is anti-monotone then for any
D G V, SR-min(D) is a minimal 3ft-
decomposition of 5R(D).

Note that, for a ^-decomposition D
of D, we can get at most n! different
minimal ^-decompositions of D.

For instance, if K(A,D2) = D then (3^(A,^{DUD2)), S%(A, D2)) is a min-
imal ^-decomposition of D. Theorem 4.8 generalizes the results of [3, Sect. 4],
since the compressor relative to reduced product is anti-monotone (cf. [3]).

5 A Relation of Adjunction between Refinements and Compressors

Assume that 3? is an idempotent n-ary refinement 52 : U -> uco(C) that is
fc-invertible on V C irk(U) C uco(C), for some k G [l,n]. We saw in Sect. 4
that any (jfc-th) unary refinement XXM(D[X/k\) : 7rfc(U) -»• uco(C) induced by
3? is invertible in V, and the corresponding compressor (of type V ->■ 7rfc(U))
is defined as (AX.3?(D[X/A;]))- = XX £ V.^(D[X/k]). In general, the re-
finement \X.$t(D[X/k]) and the relative compressor XXMk (D[X/k]) do not
constitute an adjunction on the poset of domains (V, C) of invertibility, i.e. for
all A G 7rfc(U) and B e V, $(D[A/k]) C 5 O 4 C JR-(D[5/fc])) may not
hold. This is due to the fact that compressors, in general, are not monotone,
as observed after Proposition 4.2. Since, by Proposition 4.2, compressors are
idempotent and extensive, this also implies that compressors XXMk (D[X/k}),
well-defined on V, are not upper closures on (V, 0, as instead we would expect
by viewing compressors as inverses of refinements.

We solve this asymmetry between abstract domain refinements and compres-
sors by modifying the standard ordering C of precision between domains, so as
to keep into account the role of 3?. We maintain the above scenario and also sup-
pose that the refinement AX.3?(D[X/A;]) is well-defined in 7rfc(U), namely for any
D G 7Tfc(U), &(D[D/k]) G 7Tfc(U), and that (TT^U), C) is a complete sublattice
of (uco(C),C>. These hypotheses imply that XX.$l(D[X/k]) is a lower closure
on the complete lattice (7rfc(U),Q. Then, we define the following relation CR

(that actually depends also on the fixed arguments 7Tj(D), i ^ k) on irk(U):

ACm B iff St(]D[A/k]) C K(D[5/*]) & QR(B[Bß]) C fft(D[A/k]) ^AQB).

Theorem 5.1 (7r*(U), Cs) «5 a complete lattice.

Note that AQB => AC® B. Thus, we call CK the lifling of C »ia R. This
lifted complete partial order reflects precisely the relative precision of domains
with respect to the refinement XX.9t(D[X/k]): A is more precise than B in the
lifted order if the refinement of A is more precise than the refinement of B in the

781

Standard sense and, when they are the same (i.e. (!R(D[B/fc]) = $t(D[A/k])),
then A contains more information. For this ordering CK, we get back a relation
of adjunction between the invertible refinement and its compressor.

Theorem 5.2 VA £ 7rfc(U), fl € V. K(D[A/*]) E^^^E" ^ (B[B / k])).

As a consequence, AX. ?ft~(D[X/A;]) is an upper closure operator on (V,C^)
(provided it is well-defined on V). For example, we get an adjunction between
reduced product and complementation w.r.t. the lifted order. For any complete
lattice C and D £ uco{C), the lifted order on uco(C) is defined as follows: For
all A, B€ uco(C), ACn B iff DnAQDnBk(DnBCDnA => AQB).
Hence, the adjunction between refinement (reduced product) and compressor
(complementation) is the following: For any A G uco(C) and B G ACC(C),
DnAQnB & ACP(Dr\B)~D.
Acknowledgments. We are grateful to Francesca Scozzari for her contribution
to Theorem 3.7 and to one anonymous referee for many helpful suggestions.

References
1. M. Codish, A. Mulkers, M. Bruynooghe, M. Garcia de la Banda, and M. Hermenegildo. Im-

proving abstract interpretations by combining domains. ACM TOPLAS, 17(l):28-44, 1995.
M. CominiandG. Levi. An algebraic theory of observables. In Proc. ILPS'94, pp. 172-186,1994.
A. Cortesi, G. File, R. Giacobazzi, C. Palamidessi, and F. Ranzato. Complementation in ab-
stract interpretation. ACM TOPLAS, 19(l):7-47, 1997.
A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Combinations of abstract domains for logic
programming. In Proc. POPL'94, pp. 227-239, 1994.
P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In Proc. POPL'77, pp. 238-252, 1977.
P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Proc.
POPL'79, pp. 269-282, 1979.
P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpretation. In Proc.
POPL'92, pp. 83-94, 1992.
P. Cousot and R. Cousot. Higher-order abstract interpretation (and application to comport-
ment analysis generalizing strictness, termination, projection and PER analysis of functional
languages). In Proc. IEEE ICCL'94, pp. 95-112, 1994.

9. G. File, R. Giacobazzi, and F. Ranzato. A unifying view of abstract domain design. ACM
Comput. Surv., 28(2):333-336, 1996.

10. G. File and F. Ranzato. Improving abstract interpretations by systematic lifting to the power-
set. In Proc. ILPS'94, pp. 655-669, 1994.

11. R. Giacobazzi. "Optimal" collecting semantics for analysis in a hierarchy of logic program
semantics. In Proc. STACS:96, LNCS 1046, pp. 503-514, 1996.

12. R. Giacobazzi, C. Palamidessi, and F. Ranzato. Weak relative pseudo-complements of closure
operators. Algebra Universalis, 36(3):405-412, 1996.

13. R. Giacobazzi and F. Ranzato. Functional dependencies and Moore-set completions of abstract
interpretations and semantics. In Proc. JLPS'95, pp. 321-335, 1995.

14. R. Giacobazzi and F. Ranzato. Optimal domains for disjunctive abstract interpretation. To
appear in Sei. Comput. Program. Preliminary version in LNCS 1058, pp. 141-155, 1996.

15. T.P. Jensen. Disjunctive strictness analysis. In Proc. LICS'92, pp. 174-185. 1992.
16. K. Muthukumar and M. Hermenegildo. Combined determination of sharing and freeness of

program variables through abstract interpretation. In Proc. ICLP'91, pp. 49-63, 1991.
17. A. Mycroft. Completeness and predicate-based abstract interpretation. In Proc. PEPM'93.
18. F. Nielson. Tensor products generalize the relational data flow analysis method. In Proc. 4th

Hungarian Comput. Sei. Conf., pp. 211-225, 1985.
19. U. Reddy and S. Kamin.On the power of abstract interpretation.In Proc. IEEE ICCL'92, 1992.
20. R.C. Sekar, P. Mishra, and I.V. Ramakrishnan. On the power and limitation of strictness

analysis. To appear in J. ACM. Preliminary version in Proc. POPL'91, pp. 37-48, 1991.
21. R. Sundararajan and J. Conery. An abstract interpretation scheme for groundness, freeness,

and sharing analysis of logic programs. In Proc. FST&TCS'92, LNCS 652, pp. 203-216, 1992.
22. K. Yi and W.L. Harrison. Automatic generation and management of interprocedural program

analyses. In Proc. POPL'93, pp. 246-259, 1993.
23. M. Ward. The closure operators of a lattice. Ann. Math., 43(2):191-196, 1942.

Labelled Reductions, Runtime Errors, and
Operational Subsumption

Laurent Dami

Centre Universitäre d'Informatique, Universite de Geneve
24, rue General-Dufour, CH-1211 Geneve 4, Switzerland

http: //cuiwww.unige.ch/~daai

1 Introduction

Consider the "name-switching" function F = \x.{h = x.l2,h = x-h} in a A-
calculus with records. Most type systems would reject program {F{h = 3})./2

because the type of F is {lx : X,l2 ■ Y] ->• {h ■ Y,h : X} and {h : X,l2 ■ Y}
cannot be unified with {h : Int}, the type of the record argument. However
this program reduces to 3 without error. This shows that the common notion of
"erroneous" terms, as implemented in most typed languages, is sometimes over-
restrictive. Here we propose a general framework for studying the semantics of
programs containing "uncatchable" errors, and a language-independent classifi-
cation of error propagation properties; this is then applied to a comparison of
various A-calculi. In this approach, errors (written e) can be passed around as
any other value, sometimes in a lazy way, and therefore an error occurring inside
a term is not necessarily propagated to the top level; a term is considered "er-
roneous" if and only if it always generates s. We define an operational ordering
of terms, called "subsumption", which gives a formal foundation for the notion
of "substitutability" or "safe replacement" often used informally in the object-
oriented literature: a term subsumes another iff it generates fewer errors in all
program contexts. Subsumption often implies and sometimes equals the usual
approximation ordering (Theorems 21, 26); its main interest is to directly inter-
pret subtyping in a term model, which is simpler than the partial equivalence
relations (PERs) of [6] or the coercion functions of [5]. Since we require that
errors are "absorbing" (any attempt to interact with an error yields an error
again), e is the top element. Therefore the semantic structure is a lattice, like in

the original work of Scott [19].
For the technical development below we make heavy use labelled reductions,

an old idea used in the A-calculus to restrict the interaction behaviour of a
term to a finite number of steps. Here this is generalised in an abstract way to
other reduction systems. Labelled reductions allow us to classify both terms and
contexts according to the number of interaction steps they can perform, and
therefore introduce an operational notion of finite approximation. This in turn
can be used as an alternative to the contractive maps of [15] or the embedding-
projection pairs of [7] for solving recursive type equations.

783

2 Basic definitions: error generation and preservation

This section defines a number of abstract notions, independent of any partic-
ular language. However, since some concepts need illustrations, informal ex-
amples will be drawn from the standard A-calculus extended with constants
and records. Precise definitions for this calculus and other calculi will be given
later in Section 5. Prior knowledge of the A-calculus and the notions of call-
by-name (CBN), call-by-value (CBV) and lazy evaluation is assumed; standard
references are [3,17,1]. As a reminder, common abbreviations for A-terms are

I dä Xx.x,Kd^ \xy.x,AdM Xx.xx,Qd^ AA,Y ^ Xf.(Xx.f(xx))(Xx.f(xx));

furthermore /ix.a abbreviates Y(Xx.a).

Notation. We consider languages of the form (T, V, ->) where T is a set of
terms, V C T is the set of values, and ->■ is a binary relation on terms (one-step
reduction) satisfying V»eV,i)-H)' => v' € V . The letters a, 6, c range over
arbitrary terms, v, u range over values. We assume a set X C T of variables
and standard notions of bound and free variables; the function FV : T ->■ 2'
gives the free variables of a term; letters x, y, z range over X. Tc and Vc denote
the sets of closed terms and values, i.e. those for which FV returns the empty
set. The substitution of b for free occurrences of x in a is written a[x := b]
Contexts are terms possibly containing occurrences of a "hole" [-]; if C[—] is
a context, then C[a] is the term obtained by filling the hole in C[-] with a,
possibly capturing variables. The set of contexts is written T[-]; since there is
no restriction on the number of holes, we have T C T[-]. A subterm of a is
a term a' such that a = C[a'] for some C[-]. The reflexive, transitive closure

of ->. is written A and = is its symmetric closure; (a ->) is an abbreviation
for 36, a -> b. Finally, if \Ze is one of the operational ordering relations defined
below, with 6 representing any collection of subscripts/superscripts, then =g is
its symmetric closure and \Ze is its strict restriction, i.e. the relation C.g\=g.

Definition 1 (Reduction properties). For a language £ = (T, V, ->) we say

that

- a is stuck iff a ^ V and -<(a —>■)
- a diverges (written a ff) iff, for each b such that a A 6, we have ((6 £

V) A (6 —)•)). Conversely, a converges (a JJ-) iff 3v £ V, a —► i>.

 > is Church-Rosser (CR) iff ((a A 6) A (a A c)) => 3d.((6 A d)h{c A rf))

 >■ is compatible iff a -> 6 => C[a] A C[6] for any context C[-]

Definition 2 (Relevant contexts). A context C[-] is relevant iff a ff ==>-

C[a] ff and there is a term 6 such that C[b] Jj-.

Example 3. Contexts [-], ([-]a6), ((Ax.[-])a6), [-].l are relevant. The context
(K[-]a) is relevant with CBV evaluation, but not with CBN. The context Aa:.[-]
is relevant with both CBV and CBN, but not with lazy evaluation.

784

Definition 4 (Solvable terms). A term a is solvable iff, for every term b, there

is a relevant, context C[—] such that C[a] -> b.

Definition 5 (Language properties). A language (T, V,-»)

- /zas divergence iff there is at least a term ß£T\V such that Q ff.
- is stuck-free iff T contains no stuck terms.
- has errors iff there is a nonempty subset £ C V of error values satisfying

v e £ => ->(v ->■). Most often we will consider a singleton set and write e

to denote the single error value. We write at0 if a -» w G £ •
- is error-generating iff there is an a G T such that at0 and for every subterm

a' of a, a' ££.
- is error-complete iff, for every value »gVc, there is a relevant context C[—]

such that C[v]f.
- is error-preserving iff there are no relevant context C[—] and error value

v G £ such that C[ü] ft-

Some comments are of order. Absence of stuck terms is easily obtained by adding
an error term e and completing the reduction relation so that stuck terms ex-
plicitly reduce to e. In that case the language is also error-generating. Error-
completeness is a closely related, but different property: we will show examples
of languages which are error-generating but not error-complete, or vice-versa.
Finally, error-preservation ensures that errors are not observable internally; in
other words, there is no "catch" construct to recover from errors.

Example 6. The pure A-calculus with an added error constant e has stuck terms:
(sa) does not reduce and is not a value. With an added reduction rule Ma,ea ->
£ the language becomes stuck-free; however it is not error-generating. Error-
completeness varies with the evaluation strategy: with CBN evaluation, all values
are solvable, and therefore can become errors in some context. By contrast, lazy
evaluation admits values which are unsolvable, so then the language is not error-
complete: there is no relevant context which can turn Xx.Q into an error.

Example 7. The A-calculus with integers and integer operators is error-complete,
independently of the evaluation strategy: this is because there are contexts such

as ([_][_]) and ([_] + [-]) which discriminate between functional values and

integer values, even if they are unsolvable.

Example 8. A language like the one in [16], containing constructs isnat, islam,
ispr,. . . for identifying various syntactic classes of values such as numbers, A-
abstractions or pairs, is not error-preserving: for example the context

if (islam([—])) then + 1 else - 1

returns —1 for all terms which are not A-abstractions, including s. By contrast,
the approach of [2], who discriminate between syntactic classes through a single

construct
cases a nat : ax fun : a2 pair : a3 ... end

785

is error-preserving, provided of course that the cases construct has no "default"
clause and no clause to recognize errors.

Example 9. The A-calculus extended with e, with records {h = ai .. An = a.n}
and with a field selection construct a.I, together with the obvious reduction and
error generation rules, is stuck-free, error-generating, error-complete and error-

preserving.

Following [1,13,16], we can define approximation in an operational way:

Definition 10 (Contextual approximation). Contextual approximation C^

is defined as:
(aC46) <=* (VC[-],C[a]^=> C[b]!).)

In error-preserving languages, since e always converges, then ü Qj. a CJJ. e

for any a.

3 Labelled reduction

This section borrows from Chapter 14 of [3] the idea of labelled reductions. La-
belled terms are obtained from usual terms by decorating subterms with natural
numbers which limit the number of reduction steps they can perform. For ex-

ample

(((\x.xY)(\yz-y3)/

is a labelled A-term. Subterms without any label are implicitly labelled with oo.
We write a,(,bt,..., Ci[—], Dt[—],... for labelled terms and contexts, and Tt for
the set of labelled terms. Given a set V of values, we define Vt as the set of

labelled values satisfying

vt = Ct[{at)°] <=> C[Ü] G V

In other words, labelled values can contain 0 labels only in places where the
corresponding subterm, replaced by a divergent term, still yields a value in the
original language: this is typically the case in lazy computation systems [12], in
which the outermost term constructor is enough to determine whether a term is
a value or not.

For defining labelled reduction we assume that the original reduction relation
—y is given by a set of rules [Ihs —> rhs) in some form of rewrite system (possibly
dealing with bound variables, as in [14,12,20]). Operators (function symbols) in
the left-hand side of a rule which are not at the outermost level are called
internal. Given a. left-hand side Ihs of a rule, a labelling ^(Ihs) is obtained
by decorating internal operators in Ihs with labels in N. Each original rule
[Ihs —> rhs) generates labelled rules of shape

e{n+i\neN}(lhs)^rhs""nW

786

Labelled reduction is the relation on Te given by all such labelled rules, together

with the label elimination rules

{labl) {am)n -►/ a™"(m>")
\lab2) a0 ->< Ü

Example 11. /^-reduction on A-terms is expressed in [14] as @(\([x]Z(x)),Z') ->•
Z(Z'). The only internal operator is A, so the corresponding rule for labelled /?-
reduction is @{Xn+1{[x]Z(x)), Z') -* {Z{Z'))n, which in more familiar notation

is written
(\x.a)n+1b-+{a[x:=b])n

This is not exactly like the definition of [3], which reads:

{\x.a)n+1b-+{a[x:=bn])n

so our labelled reductions are not strongly normalizing, because b could be a di-
vergent term. Nevertheless for the current purpose this is not a problem: labelled
reductions still introduce an appropriate notion of finite approximation, as will
be shown below. Hence these are intended as a general, abstract mechanism to
replace the language-dependent finite projection functions of [2,16,1].

Example 12. In a record calculus, the field extraction rule {/; = a,-}./* ->• a& has

corresponding labelled rule {/; = a,-}" .h —>• a£

Proposition 13. If{T, V,->■) is stuck-free, with compatible and Church-Rosser

reduction, then so is its labelled extension (Ti,Vi,-*t)-

Note that Ct is never error-preserving, as can be seen easily by a context like

([—]*I) which diverges when filled with e.

Definition 14 (it-relevant contexts). 1. A context C[-\ is k-relevant iff (a ft
=> C[a] ft) and there is a term b such that C[bk+1] 4-

2. The relevance index for C[-], written RI(C[-]), is the smallest k such that
C[—} is fe-relevant, or undefined if there is no such k.

3. Ck denotes the set {C[-] G T[-]\RI(C[-]) = k}.

The notion of Ar-relevance captures the number of interaction steps between a
context and the term filling it. 0-relevant contexts are contexts which only carry
the hole around without interacting with it, like [-],(I[-]) or ({/ = [-]}•/);
1-relevant contexts include the 0-relevant ones, but in addition also include con-
texts like ([-]I) or ([-]./) which perform one single interaction step with the
hole. More generally, we have:

Lemma 15. 1. Any k-relevant context is also (k + 1)-relevant.
2. A context is relevant iff it is k-relevant for some k > 0.

Lemma 16 (context decomposition).

c[-] e ck+1 =±> 3Ci[c2H] = c[-],Ci[-] e c1 AC2[-] G ck

787

Proof. If k - 0, there is an easy solution Ci[-] = C[-],C2[-] = [-]■ If k > 0,

we know i) 3a,v,C[ak+2} A v and ii) V&,C[6fc+1] ft. Suppose v = C'[a'k+2},

with C[-] A C"[-],a A a'. Then by definition C'[a'k+1] must be a value,
contradicting ii). So necessarily

C[a"+2] A D1[I>2[a
,*+2]] -> Di[6fc+1] A «

where D2[a
//c+2] ->■ &fc+1 is an instance of a labelled reduction rule. Now by rule

(labl), D1[(D2[a'k+2])k+1] A v, so £>i[-] G Ck; moreover U2[a
/2] -+ 61 ^, which

implies D2 G C1. D

Now we can use relevance indices of contexts to measure the interactivity of
terms; intuitively, a term is ^-interactive if it can performe k interaction steps.

Definition 17 (^-interactivity). 1. every term is ^-interactive
2. a is (k + I)-interactive iff 3C[-] G Ck,C[a] JJ..
3. the interactivity index of a term a, written 11(a), is the biggest k such that

a is fe-interactive, or oo if a is ^-interactive for every k.

4. T* denotes the set {a G T|//(a) < k}.

Example 18. - In the lazy A-calculus [1] all A-abstractions are values, so the
term Xx.Q is 1-interactive, as well as (Xx.a)1 for any function Xx.a.

- In the standard call-by-name A-calculus, the term Xx.xQ is 1-interactive.

As demonstrated by these examples, the notion of ^-interactivity not only applies
to labelled terms, but also to unlabelled ones. Labels are used as an auxiliary
study tool, but then the results can be extracted and give information about the

unlabelled language.

4 Erroneous Terms and Subsumption

We want to allow some errors to occur inside terms, because of the assumption
that these will not necessarily be propagated to the top level. However, if a
term contains only errors, then it is observationally not different from an error
itself. For example, the term Xx.e is not /?-equal to e, but only yields errors in any
context . By contrast, lazy systems admit unsolvable values like fix.Xy.x, fix.{l —
x} which can interact without ever generating errors. Hence we come to define
the erroneous terms are those which always yield errors after a finite number of
interaction steps:

Definition 19 (Erroneous terms). A term a is k-erroneous, written a\k, iff

C[a] A e for every context C[—] G Ck. A term a is erroneous, written at, iff it is
fc-erroneous for some k.

Clearly 0-erroneous terms must belong to the class {a\a —> e}. Examples of
1-erroneous terms are Xx.e or {I = e}. .

788

Definition 20 (Subsumption). A term a subsumes another term b, written
a Ge 6, iff it generates fewer errors in all program contexts:

a\Z£b <=$» VC[-],C[a]t => C[6]f

As for Qiy, we have Q \ZC a C£ e for any a in error-preserving languages. The
obvious question then is how the two orderings relate. This in general depends on
the language properties, as shown through several examples in the next section.
Nevertheless, a general result can be stated already:

Theorem 21. In an error-complete language, a\Zc b => a C^ 6.

Proof. We will show (a E£ b) => (VC[-],C[6] ft => C[a] ft), from which
(a Qj. b) directly follows by definition. Suppose a C£ b. For any context C[-],
furthermore suppose C[b] ft and C[a] i).. If the language is error-complete, then
there exists a relevant context £>[-] with D[C[a]]t°; but since D[-] is relevant,
D[C[6]] ft, contradicting a G£ b. Hence C[a] must diverge. G

5 Comparing various lambda calculi

We will now apply our abstract framework to several languages, all related to the
A-calculus, but with various kinds of extensions, and with two different notions of
values: head normal forms (terms withouth a head redex) or lazy values (terms
with an outermost abstraction construct). These are described by fairly standard
rules, given in the appendix. Head and lazy versions are distinguished by the

superscripts H and L.
For the pure A-calculus A the relation =£ clearly is inconsistent since there

are no errors. By contrast, Qj. on AH is the usual approximation relation, and its
reflexive closure =4 is the sensible theory of [3], equating all unsolvable terms;
= y. on AL is the semi-sensible, lazy theory of [1], which equates unsolvable terms
of the same order. So in AH we have Q £% YK Qj. a for every a, while in AL

we have Q C.^ a Q^ YK. A detailed discussion of these different relations can

be found in [1].

Lemma 22. 1. Xx.a Qj. Xx.b <^=> a Qj. 6

2. Xx.a \Zsyb => (6 4 Xx.b1) A (a G^ b')

5.1 Standard A-calculus with e

Ae is the pure A-calculus with an added constant e and corresponding reduction

rule ea. —>■ e.

Lemma 23. In Ac, at <=> a A Xxi .. .xn.e

Proof. (•€=): easy, Xxi .. .xn.e is rc-erroneous. (=>■): a must be fc-erroneous for
some i, so we can use induction on k. □

789

Lemma 24. 1. Ac is not error-generating, but is error-preserving.

2. AL
t |= YK % s.

3. /if is error-complete, but not A\.

Proof. 1: Easy by inspection of rules ß and £.2: Both are ever-convergent. 3:
Values in /if are A-terms in head normal form, or e. Since HNFs are solvable,
for every v there is always a context C[-] such that C[v]]°. By contrast, value
Xx.n in A\ never reduces to an error. □

Lemma 25. /if \= a Qc b <^=> A\ \= a CE 6.

Proof. By the Lemma 23 the error terms in both calculi are the same. D

Theorem 26. 1. In both /if and ylf a C4 6 =» aCj
2. 7n /If, a Q| 6 «=> nC£4

Proof. 1: suppose a C^ b. By Lemma 23, for any context C[-\, if C[a]f then
C[a] A Axi ... £„.£. Therefore by Lemma22 C[b] A A«i ... a;„.6' with s Cj^ 6', so
C[6]f. 2: (=>) preceding part of the theorem. {<=): from Theorem 21, knowing
that /if is error-complete. n

5.2 A-calculus with records

The A-calculus is now extended with records, i.e. collections of bindings from
names to terms. As usual, these are written with curly braces; we use the vector
notation {/,- = a;} to denote the record with finite list of fields 1% = ay,..., ln =
a„, with all h distinct. The expression (U = a{ \l) denotes removal of field / (if
present) in a collection of bindings. Here all records are considered as values,
which is perhaps a debatable choice, but conforms to an often similar choice in
calculi with tuples [16].

Lemma 27. 1. As\ is error-generating, error-complete and error-preserving
for both the head and the lazy calculus.

2. Af} |= a C£ b ^=> Af} \= a C£ b.

Proof 1: Error-generating: obvious. Error-complete: each closed value is either of
record shape or of functional shape. In each case there is a context ([—]a) or [-]./
which generates an error. Error-preserving: easy by inspection of the reduction
rules. 2: As for As (Lemma 25): the error terms are the same (although the proof
here is slightly more complex, as error terms may also be of record shape). D

Since now even the lazy calculus is error-complete, the "ogre" YK has a
different status than in At:

Proposition 28. In AQ,->(YK =% s)

790

Proof. Because /if, is error-complete and because of Theorem 21, it suffices to

show -.(YK S£ e). In the empty context [-], there is no k such that YK is
fc-erroneous, because it can consume an infinite number of arguments without

yielding an error. E

On the other hand there is a new term which is erroneous, namely the empty

record:

Proposition 29. In /1{}, {} =e e

Proof. By inspection of the reduction rules, {} cannot interact without yielding

an error, so it is 1-erroneous. C

However if the calculus is augmented with a record extension construct
a4=/ = b (like in [18,21]) then the empty record becomes solvable: for any value
v there is a relevant context ([-]<=/ = v).l yielding that value, so in that case

{} is not equal to e.

6 Types

This section illustrates the usefulness of both subsumption and labelled reduc-
tions for the semantics of types : subsumption is a natural foundation for inter-
preting subtyping, and labelled terms are a natural foundation for interpreting
recursive types, following the approach of [7]. This is just an appetizer, as lack of
space prevents us from going through full technical developments. Nevertheless
the general approach borrows well-known techniques and therefore should be

easy to follow.
Types are interpreted as non-empty, downward-closed subsets of terms in

the Ce ordering. Let Tset denote the set of such subsets. For any t G Tset, tn

denotes the set {an\a G t} (finite projection). A type environment r\ is a mapping
from Tvar to Tset. Given a type environment, a type interpretation function
Ti[-] maps types to members of Tset. We will illustrate this approach on the
AQ calculus of the previous section, considering types of the following syntax.

T,U ::=T\X\T^U\{U: T;} | /xX.T

Type assignment rules and subtyping rules are not displayed here: standard rules
are assumed (see for example [8]). We also assume a rule (top) assigning type
T to any term. Figure 1 gives the type interpretation. A well-known difficulty
associated with recursive types is the fact that arrow types are contravariant on
the left. The ideal model of [15] solves the problem through contractive maps on
ideals in the semantic domain; this requires some conditions on the syntax of type
expressions to enforce contractiveness. By contrast we follow here the idea of [7],
using a family of indexed type interpretations, where the index denotes finite
approximations. In this approach non-contractive type expressions are naturally
mapped to the bottom type (the one containing only divergent terms), without
any syntactic constraints. With labelled terms this can be done in an operational
way, without needing to resort to denotational semantics.

791

Ti[T]° = {a\a \ZC Ü}

Ti[T]^+1 = Tn+1

Ti[X]^+1 = n(X)n+1

Tip -> Utf+1 ={a€ Tn+1\b € Tip]^ =*• a(6) € Ti[[/]£}

Ti[{I7TTT}]^+1 = {a € T^+'IVi.a.Zi € Ti[T,]£}

Ti[>iA'.T]™ = Ti[T]^[Xh+Ti[/iX-p]»]

Ti[T]r, = {a|VnSa;,aneTi[r]^}

Fig. 1. Type interpretation for functions and records

Lemma 30. \/T,r],Ti[T\v G Tset.

Lemma 31. T < U =>• Tip1],, C Ti[tf]„.

Definition 32. A closing substitution a satisfies a basis T, written <r \= T, iff,

V7?,Vx- £ dom(r), <r(a:) G Tip»],,.

Theorem 33. r \-a : T =>- (V<r |= r, acr G Tip1]).

Definition 34 (Trivial types). The set Triv of trivial types is defined induc-

tively as:

Triv = T U {T -> U\U G Triv} U {{TTTTT}|Vi, 7i G Triv} U {/i(X)T|T G Triv}

Lemma 35. In any non-trivial type environment, non-trivial types do not con-
tain erroneous terms, (n is non-trivial iff e g rj(X) for each type variable X in

dom(n))

Theorem 36. If T \- a : T and T <£ Triv, then V<T |= T, -(ao-f).

Proof. Consequence of the preceding lemma and of subject reduction, shown

using standard techniques. d

Lemma 37. The following equality between record types is sound:

{l:T,hTTi}={J7TTi}

Proof. Since e G Ti[T], the condition a.lt G Tip}] on field / is always satisfied,
even for records where field / is absent. □

Example 38. The example of the introduction

(Xx.{li = x.l2,h = x-h}){li = 3}

has type {h : T,/2 : Int}, which is equal to {l2 : Int} and is non-trivial.

792

References

1. Samson Abramsky and C.-H. Luke Ong. Full Abstraction in the Lazy Lambda
Calculus. Information and Computation, 105:159-267, 1993.

2. Martin Abadi, Benjamin Pierce and Gordon Plotkin. Faithful Ideal Models for
Recursive Polymorphic Types. Int. J. of Foundations for Computer Science, 2(1):1-
21, 1991.

3. Henk Barendregt. The Lambda-Calculus, its Syntax and Semantics. Studies in
Logic and the Foundations of Mathematics, North-Holland, 1984.

4. Baard Bloom. Can LCF Be Topped? Flat Lattice Models of Typed A-calculus.
Information and Computation 87:264-301, 1990.

5. Val Breazu-Tannen, Thierry Coquand, Carl A. Gunter, and Andre Scedrov. Inher-
itance as Implicit Coercion. Information and Computation 93:172-221, 1991. Also
in [11], pp 197-245.

6. A Modest Model of Records, Inheritance, and Bounded Quantification. Information
and Computation 87:196-240, 1990. Also in [11], pp 151-195.

7. Felice Cardone and Mario Coppo. Two extensions of Curry's Type Inference Sys-
tem. In Logic and Computer Science, P. Odifreddi(ed), pp 19-75. Academic Press,
1990.

8. Luca Cardelli and John Mitchell. Operations on Records. In [11], pp 295-350. First
appeared in Math. Structures in Comp. Sc, 1991, pp 3-48.

9. Laurent Dami. A Lambda-Calculus for Dynamic Binding. To appear in Theoretical
Comp. Sc, special issue on Coordination, 1997.

10. Laurent Dami. Labelled Reductions, Runtime Errors, and Operational Sub-
sumption. Technical Report, U. of Geneva, 1997. Currently available at
http: //cuiwww. unige. ch/~dami.

11. Carl A. Gunter and John C. Mitchell, eds. Theoretical aspects of object-oriented
programming: types,semantics, and language design. MIT Press, Foundations of
computing series, 1994.

12. D. J. Howe. Equality in lazy computation systems. In Proc. 4th IEEE Symp. on
Logic in Comp. Sc, pp 198-203, 1989.

13. Trevor Jim and Albert R. Meyer. Full Abstraction and the Context Lemma. SIAM
J. on Computing 25(3):663-696, June 1996.

14. Jan W. Klop, Vincent van Oostrom and Femke van Raamsdonk. Combinatory re-
duction systems: introduction and survey. Theoretical Computer Science, 121:279-
308, 1993.

15. David MacQueen, Gordon Plotkin and Ravi Sethi. An Ideal Model for Recursive
Polymorphic Types. Information and Control, 71:95-130, 1986.

16. Ian A. Mason, Scott F. Smith and Carolyn L. Talcott. From Operational Semantics
to Domain Theory. In Information and Computation, 128:26-47, 1996.

17. Gordon Plotkin. Call-by-name, call-by-value and the A-calculus. Theoretical Com-
puter Science, 1:125-159, 1975.

18. Didier Remy. Typechecking records and variants in a natural extension of ML. In
Proceedings ACM POPL'89, pp 242-249. Also in [11], pp 67-96.

19. Dana Scott. Data types as lattices. SIAM J. of Computing, 5:522-587, 1976.
20. C. Talcott, A Theory of Binding Structures and Applications to Rewriting, Theo-

retical Computer Science, 112:99-143, 1993.
21. Mitchell Wand. Type Inference for Record Concatenation and Multiple Inheritance.

Information and Computation, 93(1):1-15, 1991.

793

A Language Rules

A.l Standard A-calculus with e

Syntax

Red. Rules

Values

(0
x G X
x er (A)-

€X,aeT ro,a,beT
Ax.a G T (ß)- ab)£T y~'e£T

(ß) (Ax.a)6->• a[x := 6] VK>|; Ax.a -» Xx.b "~'(sa)->£

m\y ac) -¥ {be)
(|/?2|)

(|A|)-

a -» b
(ca) ->■ (cb)

a -¥ b w-t

. .x£X,a£T,x$FV{a)
^' Ax.ax -¥ a

(0- x&n
la.v eu,aeT , ,ven
iß) ,..„\ r- ay M- (va) e ft «ev

(A"> Ax.u G v (Az> Ax.a € V (*)T GV

A.2 A-calculus with records

Syntax
, V», a,- G T

W,!ET

Red. Rules

/i „i\

, > 3j,l = h Vj./^Z,-
KUpl {/,- = a<}.Z-> a.

vu,;{/,- = a,-}.Z->e

f/3 \ -
1 AJ(Ax.a)i->j

a* —> a;

lW({/,=a,}&)->e

fid) a^a' llPI) r ij,...} ll^a.Z^a'./

^£./^£

Values
{li = a,) G /c

a G 72. . . a G 7{
aGV ^ a.i en

A Complete and Efficiently Computable
Topological Classification of D-dimensional

Linear Cellular Automata over ZTO

Giovanni Manzini1'2, Luciano Margara3

1 Dipartimento di Scienze e Tecnologie Avanzate, Universitä di Torino, Via
Cavour 84, 15100 Alessandria, Italy.

2 Istituto di Matematica Computazionale, Via S. Maria, 46, 56126 Pisa, Italy.
3 Dipartimento di Scienze delPInformazione, Universitä di Bologna, Mura Anteo

Zamboni 7, 40127 Bologna, Italy.

Abstract. We study the dynamical behavior of D-dimensional linear
cellular automata over Zm. We provide easy-to-check necessary and suf-
ficient conditions for a D-dimensional linear cellular automata over Zm

to be sensitive to initial conditions, expansive, strongly transitive, and
equicontinuous.

1 Introduction

Cellular Automata (CA) are dynamical systems consisting of a regular lattice
of variables which can take a finite number of discrete values. The global state
of the CA, specified by the values of all the variables at a given time, evolves
in synchronous discrete time steps according to a given local rule which acts
on the value of each single variable. CA have been widely studied in a number
of disciplines (e.g., computer science, physics, mathematics, biology, chemistry)
with different purposes (e.g., simulation of natural phenomena, pseudo-random
number generation, image processing, analysis of universal model of computa-
tions, cryptography). For an introduction to the CA theory and an extensive
and up-to-date bibliography see [7].

CA can display a rich and complex temporal evolution whose exact determi-
nation is in general very hard, if not impossible. In particular, some properties
of the temporal evolution of general CA are undecidable [3, 4, 10]. Despite their
simplicity that makes it possible a detailed algebraic analysis, linear CA over Zm

(CA based on a linear local rule) exhibit many of the complex features of general
CA. Several important properties of linear CA have been studied during the last
few years [1, 5, 8, 9, 12, 13] and in some cases exact characterizations have been
obtained. As an example, in [9] the authors present criteria for surjectivity and
injectivity of linear CA, while in [2] the authors present criteria for topological
transitivity and ergodicity.

In this paper we investigate the topological behavior of linear D-dimensional
C A over Zm. We focus our attention on a number of topological properties which
are widely recognized as fundamental in the determination of the qualitative be-
havior of any discrete time dynamical system, namely sensitivity to initial condi-

795

Property Characterization Reference

Surjectivity gcd(m, Ai,..., As) = 1 L9J
Injectivity (VpG7>) (BIA.^p/A, [9]
Transitivity gcd(m, A2,.. ., Aa) = 1 [2]
Sensitivity (3p€V): p/gcd(A2,..., A.) This paper
Expansivity gcd(m, au ... , ar) = gcd(m, a_i,..., a_r) = l This paper
Equicontinuity (Vp G 7>) p| gcd(A2,..., A.) This paper
Strong Trans. (Vp€7>) (3A,, A,):p/A, Ap/A, This paper

Fig. 1. Characterization of set theoretic and topological properties of linear CA over
Zm in terms of the coefficients A;'s (for D-dimensional CA) or en's (for 1-dimensional
CA). V denotes the set of prime factors of ra-

tions, expansivity, equicontinuity, and strong transitivity. The main contribution
of this paper consists in efficiently computable criteria for deciding whether a
linear CA satisfies one of the above four properties. Our criteria are reported in
Fig. 1 and are given in terms of the coefficients of the linear local map associated
to the CA. Note that, using our criteria, one can easily construct a linear CA
which satisfies any combination of the above properties. The criteria we propose
require only gcd computations and can be checked in polynomial time in the
number of coefficients and in the logarithm of the cardinality of the alphabet.
The dimension of the lattice does not explicitly affect the computational cost of
our criteria. The results of this paper hold for every dimension D > 1 and for
every m > 2. Our results show that linear CA over Zm have dynamical aspects
that linear CA over finite fields, such as Zp with p prime, cannot have.

2 Basic definitions

Let Zm, m > 2, denote the ring of integers modulo m. We consider the space of

configurations

C° = {c\c:ZD-+Zm}.

which consists of all functions from lP into Zm. Each element of C% can be
visualized as an infinite D-dimensional lattice in which each cell contains an
element of Zm. A special configuration is the null configuration 0 which has the

property that 0(v) = 0 for all v£ZD.
Let s > 1. A neighborhood frame of size s is an ordered set of distinct vectors

ui,u2,...,u, <E TP■ Given any function f:Z'm -> Zm, a D-dimensional CA
based on the local rule f is the pair (C°,F), where F:C° ->• C°, is the global
transition map defined as follows. For every c 6 C% the configuration F{c) is

such that for every v£Zfl

[F(c)](v) = / (c(v + ui),. . ., c(v + u,)) , (1)

796

In other words, the content of cell v in the configuration F(c) is a function of
the content of the cells v + Ui,..., v + us in the configuration c. Note that the
local rule / and the neighborhood frame completely determine F.

A map /: Tjsm —>■ Zm, is linear if and only if there exist Ai,...,As £ Zm

such that f(xi,.. .,xs) = Yli=i^ix' (mod m). From now on, we say that a
CA defined over Zm is linear if the local rule on which it is based is linear over
Zm. Note that for a linear D-dimensional CA, equation (1) becomes

s

[F(c)](v) = ^2 AJC(V + Uj) mod m.
»=i

We define the radius of the linear CA (C®, F) as

p(JF)=max{||u!||00, 1 < i < s}, (2)

where the maximum is restricted to the indices i such that A,- ^ 0 (mod m). As
usual, [|v||oo denotes the maximum of the absolute value of the components of v.
For linear 1-dimensional CA we use a simplified notation. A local rule of radius r
is written as /(x'_r,..., xr) — Y^i=-r a*x' m°d m, where at least one between
a_r and ar is nonzero. Using this notation, the global map F of a 1-dimensional
CA with p(F) = r becomes

r

[F(c)](i) — 2_j aic(J' + i) mod m, c G Cx
m, i£Z.

j = -r

In order to study the topological properties of D-dimensional CA, we intro-
duce a distance over the space of the configurations. Let A: Zm x Zm —f {0,1}
defined by A(i,j) = 0 if i = j and A(i,j) = 1 otherwise. Given a,b 6 C^ the
Tychonoff distance d(a,b) is given by

rfM)= 2^ —2IMÜ—• (3)

veZD

It is easy to verify that d is a metric on C® and that the topology induced by d
coincides with the product topology induced by the discrete topology of Zm.

2.1 Topological Properties

In this section we recall the definitions of some topological properties which de-
termine the qualitative behavior of any general discrete time dynamical system.
Here, we assume that the space of configurations X is equipped with a distance
d and that the map F is continuous on X according to the topology induced by
d (for CA, Tychonoff distance satisfies this property). We denote by B(x,e) the
(open) set {y 6 X: d{x, y) < e}.

797

Definition 1 (Sensitivity). A dynamical system {X,F) is sensitive to initial
conditions if and only if there exists 8 > 0 such that for any x £ X and for any
e > 0, there exists y £ B{x,e) and n > 0, such that d{Fn{x), Fn(y)) > 8. The

value 8 is called the sensitivity constant. □

Intuitively, a map is sensitive to initial conditions, or simply sensitive, if there
exist points arbitrarily close to x which eventually separate from x by at least
8 under iteration of F. Note that not all points near x need eventually separate
from x under iteration, but there must be at least one such point in every

neighborhood of x.
A property stronger than sensitivity is expansivity. Expansivity differs from

sensitivity in that all nearby points must eventually separate by at least 8. It is
easy to verify that expansive CA are sensitive to initial conditions.

Definition2 (Expansivity). A dynamical system {X,F) is expansive if and
only if there exists S > 0 such that for every x,y £ X there exists n > 0 such
that d(Fn(x),Fn(y)) > 8. The value 8 is called the expansivity constant. D

If a dynamical system is sensitive to initial conditions or, even worse, expan-
sive, then its dynamics defies numerical approximation. As an example, round-off
errors may become magnified upon iterations of F and the results of the numeri-
cal computation of an orbit, no matter how accurate, may be completely different

from the real orbit.

Definition3 (Equicontinuity at x). A dynamical system (X,F) is equicon-
tinuous at x £ X if and only if for any 8 > 0 there exists e > 0 such that for any

y £ B(x, e) and n > 0 we have d{Fn{x), Fn{y)) <8. □

Definition4 (Equicontinuity). A dynamical system (X, F) is equicontinuous

if and only if it is equicontinuous at every x £ X. □

The notions of sensitivity and equicontinuity are related. In fact, by compar-

ing the definitions one can easily see that

F is not sensitive «=>• 3a;: F is equicontinuous at x. (4)

Definition5 (Strong transitivity). A dynamical system (X,F) is strongly

transitive iff for all nonempty open set U C X we have (JjS) Fn(U) = X. D

A strongly transitive map F has points which, under iteration of F, move
from one arbitrarily small neighborhood to all the space of configurations X.
A weaker notion is transitivity: a map F is transitive iff for all nonempty open
set U the set \J*=0F

n(U) is a dense subset of X. Clearly, strongly transitive
maps are transitive, and in view of [2, Theorem 6] ergodic with respect to the

normalized Haar measure.

798

3 Statement of the new results

In this section we state the main results of this paper. The same results are
summarized in Fig. 1.

Theorem6. Let. F denote the global transition map of a linear D-dimensional

CA over Zm defined by

s

[F(C)](V) = J2 A«'c(v+u0mod m- (5)
! = 1

Assume ui = 0, that is, Xi is the coefficient associated to the null displacement.
The global transition map F is sensitive if and only if there exists a prime p such

that.
p\m and p/gcd^, A3,..., Xs). (6)

In other words, F is sensitive unless every prime which divides m divides also

all the coefficients A,- 's with i ^ 1. □

Note that we can check the above condition without knowing the factorization
of m. In fact, (6) holds if and only if gcd(A2, A3,..., As) does not contain all the
prime factors of m. Since each prime appears in m with a power at most [log2 mj,

F is sensitive if and only if [gcd (A2, A3, . . ., Xs)] ^ OS2 m* ^ 0 (mod m).

Theorem 7. Let F denote the global transition map of a linear 1-dimensional
CA over Zm with local rule f(x-r,...,xr) = ^__r Oji; mod m. The global
transition map F is expansive if and only if

gcd(m,a_r, . . ., a_i) = 1 and gcd(m, ai,..., ar) = 1. (7)

D

Note that by Theorem 5.3 in [6] we know that expansive CA, whether linear or
not, do not exist in any dimension D > 2.

Theorem 8. Let F denote the global transition map of the linear D-dimensional
CA over Zm defined by (5). The following statements are equivalent: (i) F is
equicontinuous in at least one point, (ii) F is equicontinuous at every point, and

(Hi) for each prime p such that p\m we have p\ gcd(A2, A3,..., A5). D

By Theorem 8 and (4), a linear CA is either sensitive or equicontinuous. Hence,

F is equicontinuous if and only if [gcd(A2, A3,..., As)]L °Sa mJ = 0 (mod m).

Theorem 9. Let F denote the global transition map of a linear D-dimensional
CA over Zm defined by (5). The global transition map F is strongly transitive if
and only if for each prime p such that p\m, there exist at least two coefficients
Xi,Xj such thatp/(Xi and p j{Xj. Ü

We can check whether F is strongly transitive without knowing the factorization
of m. In fact, the above condition is equivalent to gcd(m, Ai, A2,..., As_i) =
gcd(?7z, Ai, A2,..., As_2, Xs) = • • • = gcd(m, A2, A3,.. .-■, Xs) = 1.

799

4 Proof of the main theorems

We now prove the results stated in Sect. 3. Due to limited space the proof of The-
orem 8 is reported in [11]. In our proofs we make use of the formal power series
(fps) representation of the configuration space C% (see [9, Sec. 3] for details). For

D = 1, to each configuration c 6 Cx
m we associate the fps PC(X) = EigZ C(J')^-

The advantage of this representation is that the computation of a linear map
is equivalent to power series multiplication. Let F:Cl

m ->■ C^ be a linear map
with local rule /(x_r,..., xT) = EL-r«^'- We associate to F the finite fps

Af{x) = Ei=-r aix~l- Then>for anyc e C™ we have

PF{c)(X)=Pc{X)Af(X) (modm). (8)

Note that each coefficient of PF(c)(X) is well defined since Af(X) has only
finitely many nonzero coefficients. Note also that the finite fps associated to Fn

is AVX). More in general, to each configuration c G C,£ we associate the formal

power series

PC(X1,...,XD)= J2 c{il,...,iD)X\^--Xi
D°.

»1I...,»D£Z

The computation of a linear map F over C® is equivalent to the multiplication
by a finite fps A(XU.. .,XD) which can be easily obtained by the local rule /
and the neighborhood frame ux,..., us. The finite fps associated to the map F

defined by (5) is A{XU. ..,XD)= £'=i XiX^Ui{1) ■ • -X~U,(ß) where u,-(j) de-

notes the j-th component of vector u;.
Throughout the paper, given a fps H(X) and i £ Z, we use (H(X))i t

denote the coefficient of X' in H{X).

4.1 Sensitivity

In this section we characterize sensitive linear CA. We prove our results only in
the 2-dimensional case, since the proofs for the other dimensions are similar.

Let F:C2
m ->■ C2

m denote the global transition map of a 2-dimensional CA.
For any integer k > 0, let Vk denote the set of configurations c G C2

m such that
c(v) = 0 for Hvlloo < k. It is straightforward to verify that F is sensitive if and
only if there exists S > 0 such that for any configuration c G C2

m we have

Vfe 3c' e Vt: d{Fn(c+c'),Fn(c))>6 for some n > 0. (9)

In fact, (9) implies that we can find a configuration, arbitrarily close to c, whose
distance from c exceeds 6 after a sufficiently large number of iterations.

If F is linear we can get rid of the initial configuration c. In fact, we have

d(Fn(c + c'),F"(c)) = d(Fn(c) + Fn(c'),Fn(c)) = d(Fn(c'),0).

Hence, F is sensitive if and only if

Vk 3c' G Vk: d{Fn{c'): 0) >S for some n > 0. (10)

This observation leads to the following lemma.

:.o

800

Lemma 10. Let F denote the global transition map of a linear D-dimensional

CA over Zm. F is sensitive if and only if

limsup/>(Fn) = oo; (11)
n—foo

(the radius p of a CA is defined by (2)).

Proof. We prove the result for D = 2. If (11) does not hold, there exists M such
that p(Fn) < M for all ??.. Thus, if k > M, for all c G Vk we have Fn{c) G Vk-M-

Elementary calculus shows that c G Vt =>■ d(c,0) < 8^2'. Hence, for any 8,
if k is large enough c G Vk implies d(Fn(c),0) < 6 for all n, and F cannot be
sensitive.

Assume now (11) holds. Then, for every k we can find n such that p(Fn) =

z > k. Let A.- , u"' denote the coefficients and the displacements of the local
(\

map associated to Fn. p(Fn) = z implies that there exists j, such that Xy ^ 0

and ||uSn)||oo = z- Let c be such that c(-ujn)) = 1, and c(v) = 0 for v ^ -ujn).

Clearly, c G V/c and [Fn(c)](0) = AJn) ^ 0 which implies (10). D

Proof of Theorem 6 Let F denote the global transition map of a linear 2-
dimensional CA, and let

A(X,Y)= Yl "iJxiYi,
y<j<'

denote the finite fps associated to F. Assume (6) holds. Then, there exist a prime
p and a coefficient as>u such that p\m, p/a5i„ and at least one between s and u
is nonzero. We now prove that, as a consequence, lim supp(Fn) = oo. Without
loss of generality, we can assume s ^ 0, and that for i < s we have p\aitj.

Let Ä(X, Y) = A(X, Y) mod p. By our assumptions, Ä(X, Y) can be written as
X'G(Y) + £.<,■<«, X'if^y), with G(Y) jL 0. Hence,

(An(A',y)modp) = in(x,y) = xnsG"(y)+ ^ x*'^(y).
ns<i<nw

Since Zp is an integral domain, we have Gn(Y) ^ 0 which implies p(Fn) > n\s\.

Assume now p\m => p\X{ for all i ^ 1. Let m = Pj1 • • -pjj" denote the
factorization of m, and let k — max,- fej. We prove that p(Fn) < p(F)(k — 1). Let
bij denote the coefficients of the fps associated to Fn. We have

■l + --- + 'n=i
JlH \-3n-3

If max(|?'|, \j\) > p{F)(k — 1), each term ai1j1ai2j2 ■ ■ -ainjn contains at least
k coefficients aihtjh with max(|j'/,|, \jh\) / 0. Hence, p\m =>■ p^la^j! • • -ainjn,
and each term in the sum (12) is a multiple of m. Hence, p(Fn) < p(F)(k — 1)
and by Lemma 10 F is not sensitive. Ü

801

4.2 Expansivity

In this section we characterize expansive linear CA. Since expansive CA do not
exist in dimension D > 2 (see [6, Theorem 5.3]) we can restrict ourselves to the
1-dimensional case.

Let F-.C^ —> C1, denote the global transition map of a 1-dimensional CA. It
is straightforward to verify that F is expansive if and only if there exists 8 > 0
such for any configuration c £ C^ we have

Vc' G Cl
m 3n > 0: d{Fn(c + c'),Fn{c)) > 8.

Reasoning as in Sect. 4.1, if F is linear we can get rid of the particular configu-
ration c. We have

d(F"(c + c'),Fn(c)) = d(Fn(c) + Fn(c'),Fn(c)) = d(Fn(c'), 0).

Hence, F is expansive if and only if for any c' G Cl
m we have d(Fn(c'), 0) > 8

for a sufficiently large n. Clearly, this is equivalent to assuming that there exists
M > 0 such that

VC'GC 3n > 0: [Fn(c')](i) # 0 for some i with |i| < M.

For any integer Ar > 0, let Wk denote the set of configurations c G Cx
m such that

c(i) — 0 for |i| < k and at least one between c(k) and c(—AT) is different from
zero. Since 8 can be chosen arbitrarily, we have that F is expansive iff 3k such
that for all k > k

Vc' G Wk 3n > 0: [F"(c')](i) ^ 0 for some i with \i\ < M. (13)

If we visualize each configuration as a biinfinite array, (13) tells us that the
essential feature of expansive maps is that any pattern of nonzero values can
"propagate" from positions arbitrarily away from 0 up to a position i with |i| <
M. Informally, we say that any nonzero pattern can propagate for an arbitrarily
large distance. For a comparison, sensitive 1-dimensional linear CA can be seen as
those CA in which for each t > 0 there exists a nonzero pattern which propagates
by at least t positions.

Proof of Theorem 7 (sketch) First we prove that (7) is a necessary condition
for expansivity. Assume for example gcd(ai,. . ., ar) = q\ > 1, and let <?2 = mjq\.
For any integer k > 0 let ck G Wk denote the configuration defined by ck(i) = q-i
if i = k and ck (i) = 0 otherwise. We show that for every n > 0 and i < k we have
[Fn(ck)](i) = 0 which implies that F is not expansive. Let A(X) = Y^i=-r a-i^

be the finite fps associated to /. Since the fps associated to ck is q2Xk, we have

[Fn(ck)](i) = (q2X
kA"(X)). = g2(An(X))i_k .

By hypothesis, for j < 0, (A(X))- is a multiple of q\. Since the same is true for
A"(X), for i < k we have [Fn(ck)](i) = 0 (mod m) as claimed.

Now we prove that condition (7) implies expansivity. Let c G C^ such that
c(v) ^ 0 and c(i) = 0 for i > v. We show that gcd(m, a_i,..., a_r) = 1 implies

802

w. that for any integer w there exists n such that [Fn(c)](i) ^ 0 for some i >
This proves that any one-sided nonzero pattern can propagate arbitrarily far
away to the right. Similarly, gcd(ra, au ..., ar) = 1 implies that any one-sided
nonzero pattern can propagate arbitrarily far away to the left. Combining these
two facts we get (13) (the details will be given in the full paper).

Let c € Cl
m such that c(v) # 0 and c(i) = 0 for i > v, and let C(X) =

J2i<v CiX{ be the associated fps. Since mj{cv, there exists a prime p and an

integer k such that pk\m and pk/c„. Let A{X) = YZ=-r a_;X!' denote the finite
fps associated to /. Since gcd(m,a_i,.. .,a_r) = 1, we can find t, 0 < t < r,

such that
p/a_j and p|a_; for t < i < r. (14)

Under these assumptions we show that if n is a multiple of pk(k - 1)! then

[Fn(c)]{v + nt) = (C(X)An (X))v+nt £ 0 (mod m).

Clearly, this proves our claim that every one-sided nonzero pattern propagates
arbitrarily far away to the right. Let Ä(X) = A{X) mod pk. By (14) we know
that Ä(X) satisfies the hypothesis of Lemma A.4 of [11]. Hence, if n is a multiple
of p*(fc - 1)!, we have Än{X) = £"!_„,. äiX{ with gcd(änt,p

fc) = 1. We have

[Fn{c)](v + nt) = (in(X)C(X))^ ^ (mod pk)

^((Ent ^')(E-< ^')> (modpfc)

= antcv (modp*).

Since pk \cv and pßnt, [Fn(c)](v + nt) is not a multiple of pk. We conclude that

[Fn(c)](v + nt) ^ 0 (mod m) as claimed. □

4.3 Strong transitivity

In this section we give a characterization of strongly transitive linear CA. The
proof is quite complex and we will need some preliminary lemmas. To simplify
the notation we consider only the 1-dimensional case; the proof for dimensions
D > 1 is analogous and will be given in the full paper. Let Vfc = {x G C^\ x(i) =

0 for |«| < k}. For any x^Cx
m let

V(x,k) = x + Vk = {y£C1
m\y = x + z, z£Vk}.

For any nonempty open subset U C Cx
m we can find x e X and e > 0 such that

B(x, e) C U. Elementary calculus shows that

2)(j!,3+[log(l/£)l)CB(Z,f)Cl/,

hence F is strongly transitive if and only if

VzVfc [JFn(V(x,k))=C1
m. (15)

n = 0

We are now ready to establish a simple condition which, for linear maps, implies

strong transitivity.

803

Lemma 11. Let F be a linear 1-dimensional map over Zm. //, for all k, there
exists nk such that Fn"(Vk) = C}n, then F is strongly transitive.

Proof. For all x £ C}n and k > 0 we have

+ oo

(J Fn{V{x, k)) D Fn«(x + Vk) = Fnk(x) + Fn*(Vk) = Cx
m.

n = 0

O

We prove the "if" part of Theorem 9 using Lemma 11 and the power series
representation of CA. Lemma 12 establishes the result for the special case in
which the cardinality of Zm is a prime power, while Lemma 13 proves the result

in the general case.

Lemma 12. Let A(X) - E-r<i<r aixi denote a finite fps over 7,pk (p prime).
Suppose there exist two coefficients a,-,^- such that gcd(p, a,-) = gcd(p, ay) = 1,
and let n be any multiple of pk(k - 1)!. Then, for each fps C{X) we can find

B(X) = Ei6Z hiXi such that B(X)An(X) = C{X) (mod pk) and

b-[n/2\ = b-[n/2\ + l = ■■■ = &[n/2j-2 = &|n/2j-l = 0.

Due to limited space we do not report the proof of Lemma 12 here (see [11]).

Lemma 13. Let A{X) - £-r<i<r a,-Xi denote a finite fps over 1m. Suppose
that for each prime p which divides m there exist two coefficients a,-, a,- such that
gcd(p, a,-) = gcd(p, a.j) = 1. Then, for any integer z > 0 there exists n such that

for each fps C(X) = J2i€Z C»X' we can find a & B^ = £«eZ ^ such that

b_z+1 = -.- = 63_2 = 6,_1 = 0! and B(X)An{X) = C(X) (mod m). (16)

Proof. Let m = p\lpk
2
2 ■■■pt", 1i = pfS and k = max; kt. Let n denote a multiple

of m(k-i)l such that n > 1z. Clearly n is a multiple of #(&,--1)! for i=l,...,h.

By Lemma 12 we know that given C{X) we can find Bt{X) = J2jeZ bf X:i such

that

6^a+1 = - • • = 6^22 = 6^1 = 0, and Bi(X)An(X) = C(X) (mod Qi)

Since gcd(g,;, m/qi) = 1, we can find /?; such that ßi(m/qi) = 1 (mod </,;). Let

h

i=i qi

For i = l,...,h, we have B{X) = B{{X) (mod qt). Hence, B(X)An{X) =

C(X) (mod qt) for all i, which implies (16). □

804

Proof of Theorem 9 The "if" part follows directly from Lemmas 11 and 13. To

prove the "only if" part we use again the power series representation. Let A(X) =

Y s-s a{X
l denote the finite fps associated to the map F, and assume there

exist a prime p and an integer j such that p\m and p|a,- for all i ^ j. Let at ,

-rn < i < rn, denote the coefficients of An(X). It is straightforward to verify

that, for i ^ jn, we have that p|a|n). Consider now any configuration 6 £ Vi.

The corresponding fps B(X) = J2iez biX' is such tllat b° = °- We have

rn

[Fn(b)](nj) = (An(X)B(X))nj = J2 a^h

t=-rn

Since b0 = 0, all terms in the summation are multiple of p and p\ [Fn(b)](nj).

Hence, the configuration c such that c(i) = 1 for all i £ Z clearly does not belong

to Fn{Vi), and by (15) F cannot be strongly transitive. □

References

1. H. Aso and N. Honda. Dynamical characteristics of linear cellular automata. Jour-

nal of Computer and System Sciences, 30:291-317, 1985.
2. G. Cattaneo, E. Formenti, G. Manzini, and L. Margara. On ergodic linear cellular

automata over Zm. In 14th Annual Symposium on Theoretical Aspects of Computer
Science (STAGS '97), volume 1200 of LNCS, pages 427-438. Springer Verlag, 1997.

3. K. Culik, J. Pachl, and S. Yu. On the limit sets of cellular automata. SIAM

Journal of Computing, 18:831-842, 1989.
4. K. Culik and S. Yu. Undecidability of CA classification schemes. Complex Sys-

tems, 2:177-190, 1988.
5. P. Favati, G. Lotti, and L. Margara. One dimensional additive cellular automata

are chaotic according to Devaney's definition of chaos. Theoretical Computer Sci-

ence, 174:157-170, 1997.
6. M. Finelli, G. Manzini, and L. Margara. Lyapunov exponents vs expansivity and

sensitivity in cellular automata. Journal of Complexity. To appear.
7. M. Garzon. Models of Massive Parallelism. EATCS Texts in Theoretical Com-

puter Science. Springer Verlag, 1995.
8. P. Guan and Y. He. Exacts results for deterministic cellular automata with addi-

tive rules. Jour. Stat. Physics, 43:463-478, 1986.
9. M. Ito, N. Osato, and M. Nasu. Linear cellular automata over Zm- Journal of

Computer and System Sciences, 27:125-140, 1983.
10. J. Kari. Rice's theorem for the limit set of cellular automata. Theoretical Computer

Science, 127(2):229-254, 1994.
11. G. Manzini and L. Margara. A complete and efficiently computable topological

classification of £>-dimensional linear cellular automata over Zm. Technical Report
B4-96-18, Istituto di Matematica Computazionale, CNR, Pisa, Italy, 1996.

12. T. Sato. Group structured linear cellular automata over Zm. Journal of Computer

and System, Sciences, 49(l):18-23, 1994.
13. S. Takahashi. Self-similarity of linear cellular automata. Journal of Computer and

System Sciences, 44(1):114-140, 1992.

Recognizability Equals Definability for Partial
fc-Paths*

Valentine Kabanets

School of Computing Science, Simon Fräser University, Vancouver, Canada

Abstract. We prove that every recognizable family of partial fc-paths
is definable in a counting monadic second-order logic. We also show the
obstruction set of the class of partial fc-paths computable for every k.

1 Introduction

In 1960, Biichi [1] showed that a language is regular iff it is definable by some
formula in a monadic second-order logic, MS. Here, MS is the extension of the
first-order logic that allows quantification over set variables. A set of objects is
definable by an MS-formula if the formula is true exactly on the members of the
set. Thus Biichi established that recognizability is equivalent to MS-definability
for words. Doner [7] then extended this result to ranked trees.

Graphs are algebraic objects since any graph can be constructed from smaller
graphs using certain graph operations. They are also logical structures since any
graph is completely determined by the set of its vertices and the adjacency
relation on this set. Thus the notions of recognizability and definability can be
extended to finite graphs. Courcelle [2] proved that every MS-definable set of
finite graphs is recognizable, but not conversely. However, he was able to extend
the result of Doner to unordered unbounded trees using a counting monadic
second-order logic, CMS, an extension of MS that allows modular counting.

The question remained whether there was a sufficiently large class of graphs
for which recognizability would imply CMS-definability. In their study of graph
minors, Robertson and Seymour [10] introduced the notion of the tree-width of a
graph. A graph of tree-width k exhibits certain tree-like structure. Such a graph
can be decomposed into subgraphs of size k + 1 arranged as nodes of a tree
(tree-decomposition) so that the nodes containing a given vertex form a subtree.

The class of graphs of tree-width at most k coincides with that of partial k-
trees. Among other classes of graphs of bounded tree-width are trees and forests
(tree-width < 1), series-parallel graphs and outerplanar graphs (< 2), and Halin
graphs (< 3).

The class of graphs of bounded tree-width plays an important role for another
reason. Courcelle showed in [2] that the MS-theory of the class of partial fc-trees

This research was done while the author was at Simon Fräser University [8]. The
author's present address is Department of Computer Science, University of Toronto,
Toronto, ON, Canada M5S 3G4; kabanets@cs.utoronto.ca.

806

is decidable. Seese [11] proved that if the MS-theory of a class of finite graphs
Q is decidable, then the graphs in Q have uniformly bounded tree-width. Thus,
tree-width "characterizes" classes of finite graphs having decidable MS-theories.

Strictly speaking, the above results hold for so-called MS2 logic, where MS2

denotes the monadic second-order language using quantification over both vertex
sets and edge sets of graphs; MSi is the language that uses quantification over

vertex sets only (see [5, 6]). In this paper, we are using MS2 and CMS2.
For graphs of tree-width at most k, recognizability is defined using a tree

automaton working on the corresponding tree-decompositions: A set Q of partial
fc-trees G is recognizable if there is a tree automaton that accepts any tree-
decomposition of each graph G e Q, and rejects tree-decompositions of graphs
not in Q. Courcelle [3] showed that a recognizable set of partial fc-trees is CMS-
definable for fc = 1 and k = 2, and conjectured that recognizability implies
CMS-definability of partial fc-trees for every k. Kaller [9] proved the case of
k = 3 and the case of fc-connected partial fc-trees.

We establish that every recognizable set of partial fc-paths is CMS-definable,
thereby proving a special case of Courcelle's conjecture. A partial fc-path, or
graph of bounded path-width, is a partial fc-tree for which the corresponding
tree-decomposition is a path-decomposition. Partial fc-paths are recognized by
finite automata working on the corresponding path-decompositions.

Our second result deals with computing the obstruction sets of minor-closed
graph families. The class of partial Ar-trees (fc-paths) is minor-closed and its
obstruction set can be determined from the MS-formula defining that class [4].
We describe how to construct the MS-formula defining the class of partial k-
paths for every given k. As a consequence, the obstruction sets of the classes of

partial fc-paths are computable for each k.
The remainder of this article is organized as follows: In Sect. 2, we give

the necessary definitions. In Sect. 3, we show that recognizability implies CMS-
definability for a generalization of the class of ^-connected partial fc-paths, the
class of (k, l)-paths. This is a base case of our solution for arbitrary partial

it-paths which is outlined in Sect. 4.

2 Preliminaries

2.1 Partial fc-Paths

We consider finite and simple graphs G = {V,E), where V is the vertex-set
and E is the edge-set of G. A path-decomposition (or decomposition) of G is a
sequence B = (5i,.. .,Bm) of vertex-subsets, called bags, such that

1. every vertex v £V belongs to some bag Bi (1 < i < m),
2. for each edge e£ E, there is a Bt (1 < i < m) containing both ends of e,

3. for any i, /, j £ {1,..., m) such that i < I < j, Bi D B, C Bt.

The path-width of a decomposition B = (Bi,...,Bm) is maxi<i<m{|5,-|}-l.
A decomposition of path-width at most k will be called a k-decomposition. The

807

path-width of a graph G is the minimum path-width over all decompositions of
G. A partial k-path is a graph of path-width at most k.

Example 1. Graphs d (Fig. 1) and G2 (Fig. 2) are partial 1-path and 2-path,
respectively, with possible decompositions: B(G\) = ({1, 2}, {2, 3}, {3,4}, {3, 5},
{3,6}) and 5(G2) = ({1,1', 2}, {1,2,3}, {2,3,4}, {2,3,5}, {2,3,6}).

^ 6 It

Fig. 1. A partial 1-path G\. Fig. 2. A partial 2-path G2.

For a partial fc-path G = (V, E) with a decomposition B = (Bi,...,Bm),
first(f) is the number of the bag where a vertex v G V appears for the first
time, i.e., first(v) = mini<i<m{/|u G Bi}, new(5,-) (i G {1, • • •, rn}) is the set of
vertices in B{ that appear in the decomposition for the first time, i.e., new(S2) =
{u G ,B,-|first(u) = i], and o\d(Bi) is the set of vertices in 5,- that also appear in
some earlier bag, i.e., old(5j) = 5;\new(Bj).

For G and B as above, a vertex u G Br (1 < r < m) is called a drop vertex
of Br iff for every IU G V \U[=15,-, {u, w} (£ E. The set of all drop vertices of
Br (1 < r < m) is denoted by drop(5r). The remaining vertices of Br are called
non-drop vertices of Br, the set of which is denoted by non-drop(5r).

2.2 CMS-Definability

A graph G = (V, E) can be viewed as a relational structure (VöE, {pv, pe, Inc}),
where p„ and pe are unary predicates that define the vertex-set and the edge-set,
respectively, and Inc is the ternary incidence predicate, i.e., for any e G E and
u, v G V, Inc(e, u, v) = True iff e = {«, v}.

The language of counting monadic second-order logic corresponding to graphs
G has the usual logical connectives: -i ("not"), A ("and"), V ("or"), => ("if-
then"), and O ("if and only if"), universal (V) and existential (3) quantifiers,
equality symbol =, a sequence u, v, w, ..., of individual variables, a sequence
U, V,W,. . ., of set variables, the membership symbol G, the unary predicate
symbols inodpg, p < q are non-negative integers, and the predicate symbols p„,
pe, and Inc. In our interpretation, modP)9(V) = True iff |5| = p mod q, where
S is the set denoted by the set variable V.

A graph property P is called CMS-definable over a class of graphs Q iff there
is a CMS-formula # such that for each G EQ, G satisfies P iff <P is true on G.

Example 2. Connectedness of a graph G is an MS-definable property:
Connected = W, VV2 (V! ^ 0 A V2 ^ 0 A Vx U V2 = V) => Adj(Vi, V2),

808

Adj(Vi,V2) = 3v! 3v2 viGVi A v2 G V2 A adj(v1,v2),
adj(v!,v2) = 3e Inc(e,vi,v2),
where (V,- ^ 0) = 3v p„(v) AvGV; (t = 1, 2) and
(Vi UV2 = V)EVV p„(v) ^(VGVI V V G V2).

Using mod0]2, we can express in CMS the property that a given vertex subset
of a graph has even cardinality. This cannot be done in MS alone [2].

2.3 Recognizability

We define the notion of recognizability of partial Ar-paths in terms of deterministic
finite automata A = {E,Q,8,q0,F) working on extended decompositions. A
decomposition B = (Bi,5f,..., Bm,B~) is called «tended iff dropping old
vertices and adding new vertices occur separately, i.e., Bi = non-drop(ßj)>
1 < i < m.

Example3. Here is an extended 1-decomposition of the graph G\: B(Gi) =
({1,2},{2},{2I3},{3},{3,4},{3},{3,5},{3},{3,6},{}).

Let G = (V, E) be a partial Ar-path with an extended Ar-decomposition B =
(Bi,..., Bm). Let ß : V ->• {1,..., k + 1} be a labeling function such that any
two distinct vertices in the same bag or in two consecutive bags have different
labels. We call such labeling functions admissible by B. It is not difficult to see
that k + 1 labels always suffice in the case of extended decompositions. For the
labeling function ß and any set of vertices W C V, ß(W) = üw£wß(w).

For B and ß described above, we define the following string <Tß(B) of colored
undirected graphs on at most Ar + 1 vertices: aß(B) = (o-ß(Bi),..., <rp(Bm)),
where for a bag Bi (1 < i < m), <rß(Bi) = (Vß(Bi),Eß(Bi)) such that Vß{B{) =
ß{B{), and for every u,u' G Bit {ß{u),ß{u')} G EP(B{) iff {«,«'} G E. Let Sg

be the set of all colored (with colors 1,..., k + 1) undirected graphs on at most
Ar + 1 vertices. Clearly, \Sg\ is bounded by a function of Ar.

A family Q of partial Ar-paths G is called recognizable iff there is an automaton
A with the input alphabet Eg such that for any G, G G Q iff <rß{B) G L{A) for
any extended Ar-decomposition B of G and any labeling function ß admissible
by B, and G <£ Q iff aß{B) £ L{A) for any B and ß as above. Here L(A) denotes
the language accepted by A.

3 The Case of (fe, i)-Paths

3.1 (fe, i)-Paths and fe-Generative Orders

A connected partial A--path is called a (Ar, l)-path if it allows a Ar-decomposition
B = (Bi,..., Bm) satisfying the following conditions:

1. old(Si) = non-drop(5,_i) for every i G {2,..., m},
2. drop(5i) ^ 0 for every ie{l,..., m},

809

3. |new(5,-)| = 1 for every i G {2,.. .,m}.

Here (1) says that vertices are dropped from a bag as soon as possible, (2)
that each bag contains at least one drop vertex, and (3) that exactly one new
vertex is added to form the next bag. Note that every Ar-connected partial Ar-path

is a (k, l)-path.

Example 4- The graphs G\ and G2 described earlier are (Ar, l)-paths.

To show that a recognizable family Q of (Ar, l)-paths G is CMS-definable, it
suffices to define in CMS some extended decomposition for every G and then
use Biichi's result for sets of words. A decomposition of G can be defined if some
linear order on V is known. Let < be an arbitrary linear order on V, and let
(vi,..., vn) be the sequence of vertices in V ordered according to <. We define
the sequence B< = (J5i,..., 5„), where Bt = {vt} U {vj\j < i and there is f >
i s.t. {VJ, Vji] G E}. Clearly, B< is a decomposition of G. For a partial Ar-path
G, a linear order < on V is called k-generative if B< is a ^-decomposition.
Conversely, from a (k, l)-decomposition B of G, one can define a ^-generative
linear order on G by setting u to be less than v iff first(w) < first(n), u, v G V,

and ordering the vertices in B\ arbitrarily.
Thus, to show that recognizability implies CMS-definability for (AT, l)-paths,

it would suffice to define in CMS a Ar-generative linear order for every given (A-, 1)-
path. However, there are (Ar, l)-paths for which no linear order can be defined in
CMS. Consider the family of G„ - ({0,1,..., n}, En), where En = {{0,j}\l <
j < n}. No linear orders can be CMS-defined on G„, since these graphs have
nontrivial automorphisms, and the size of Gn can be arbitrary large. So, in
general, we cannot CMS-define a Ar-decomposition of a partial As-path.

For a partial A;-path G, a partial order on V is called k-generative if every
completion to a linear order on V is A;-generative. We will describe a certain
A--generative partial order, which is MS-definable over a suitably colored (k, 1)-
path Gc. Given such a partial order, one can MS-defme a tree-decomposition of
G of a special form. Since we cannot MS-define a path-decomposition but only
a tree-decomposition, we need CMS to get the formula for recognizability of
Gc, using an extension of Biichi's theorem. To convert the corresponding CMS-
formula into a formula for the underlying uncolored (Ar, l)-paths G, we "guess"
some coloring of G using a constant number of 3 quantifiers, check in MS if it
induces the required structure, and apply our CMS-formula to the colored graph.

To MS-define a Ar-generative partial order on a (Ar, l)-path G with a (Ar, 1)-
decomposition B = (B\,..., Bm), we convert G into the directed graph Gd

B =
(V, Ed) using the following algorithm. For a bag Br = old(ßr) Unew(ßr) (1 <
r < m), where old(Br) — {«i,.. .,ws} and new(Br) = {v}, if {v,Uj} G E, then
(v, Uj) G Ed. That is, we direct the edges from new to old vertices. To simplify
the notation, we will often omit the superscript in Ed and the subscript in Gd

B.

Now we label Gd as follows. For v G new(Br) and every u G old(Br) f)
dTop(Br) (1 < r < m), we color the arc v —* u with some new color. This
colored arc will be denoted as a double arrow v =$> u, and the set of them as E^.

810

If {v} = new(J3r) = drop(5r), we color v with some new color, the same color
for all such vertices; v will be denoted by having a loop arrow.

Example 5. For G2 defined earlier, the (Ar, ^-decomposition B(G2) induces the

labeled digraph G\ (Fig. 3).

Fig. 3. The labeled digraph Gd, with double arrows shown as thick single arrows.

3.2 A fc-Generative Partial Order

Given the digraph Gd induced by a (Ar, ^-decomposition B of a (Ar, l)-path G, we
s

define the following binary relation of strong precedence, denoted by -<, on the set

V: for any u, v G V, u A v iff either (v, u) G E or there is some w G V such that

(u, iv) G E and (v, w) G JEW- The reflexive and transitive closure of -<, denoted
by <, is called precedence. Semantically, u -< v means that first(w) < first(v).
We extend -< so that for any two vertices u G -Bi and v <£ B\ incomparable
with respect to <, u is less than v. Let ^ denote the transitive closure ofthat
extension. Obviously, ^ is a Ar-generative partial order on G.

To define the required CMS-formula for recognizability of (k, l)-paths, we
need a certain refinement of X1. We color Gd so that the precedence relation -<
is completed to a linear order on the set non-drop(5i). We do so by coloring the
non-drop vertices of Bx with colors 1,..., k so that no two vertices are colored
the same. We denote this new colored digraph by Gdl.

Using Gdl enables us to define the following Ar sets Plt..., Pk. For any v G
Vt v G Pi (1 < i < Ar) iff i is the minimum over the labels of the vertices
u G non-drop(-Bi) such that there is a path of double arrows in the digraph Gdl

from v to u. The set N of nodes is defined as N = UfL^P,-, the set L of /ea^es is

defined as L = V\{N U Bx).

Example 6. The digraph G\ from Example 5 can be viewed as Gf with the two
sets of nodes Px = {1, 3, 6} and P2 = {2}, and the set of leaves L = {4, 5}.

Since no vertex in Gd can have more than one incoming double arrow, each
set Pi: 1 < i < Ar, induces a path of double arrows in Gdl. Therefore, each Pi is
linearly ordered by <. Using this fact, we can MS-define a Ar-generative partial
order on G that is a linear order on the set of nodes N. We denote this partial
order by <n. Note that we could MS-define a tree-decomposition of G using <n.

811

We need to order the leaves that are incomparable with respect to <n. By
the definition of a (k, l)-decomposition, each leaf w G L has at most k outgoing
single arrows pointing to some nodes from different sets P\,. ..,Pk- For a leaf
w G L, P(w) denotes the set of nodes to which there are arrows from w, i.e.,
P(w) = {v G N\(w, v) 6 E}. We associate with each leaf w G L its characteristic

vector x(w) = {xi(w), ■ ■ ■ ,Xk{u))), where for each 1 < i < k, Xi{w) = 1 if
P(w) n Pi ± 0, and Xi(w) = 0 otherwise. We extend <n to a new partial order
on V, denoted by <nl, by ordering the leaves incomparable with respect to <n

lexicographically according to their characteristic vectors.
For two vertices w\, w2 G V, we say that wi and w2 are p-equivalent, denoted

by iui ~ w2, iff wi, w2 G L and P(w{) = P(w2). For the quotient graph Gp =

G/~= (Vp, Ep) we extend <ni to the set Vp in the standard way. Clearly, <nl is

a linear order on the set (NöL)/~. Ordering the drop vertices of B\ arbitrarily
yields a ^-generative linear order on Gp, denoted by <p. We will denote the

digraph Gdl with ordered drop vertices of B\ by Gdl .

Example 7. For G2, the (k, 1 ^decomposition of the corresponding quotient graph
is B'p = ({[1], [1'], [2]}, {[1], [2], [3]}, {[2], [3], [4]}, {[2], [3], [6]}), where [„] denotes
the set of vertices p-equivalent to u, u G V.

3.3 A CMS-Formula

Let B' = {B[,..., B'm) be the (k, l)-decomposition of the graph Gp induced by
<p. We can construct a (k, l)-decomposition of the original graph G as follows.
In the sequence B'p, replace B[with Bx. For every !6{l,...,m}, replace B\ =
{[MI]P ,..., [US,]P , [tf]p}, where [w]p is the new vertex of B\ such that [w]p =
{wi,..., wti] (t{ > 1), with the sequence of bags B(wi) = {u\,.. .,MS,, ifi},...,
B(wtt) — {«i, • • •, MS,, wti}- Let B' denote thus constructed decomposition of G.

Example8. For G2, two decompositions B' are possible: ({1,1', 2}, {1, 2,3},
{2, 3,4}, {2, 3,5}, {2,3,6}) or <{1,1',2}, {1,2,3}, {2,3,5}, {2,3,4}, {2,3, 6}).

Let us convert B' into the extended decomposition B'p and color Gp with

some labeling function ßp : Vp -+{!,. ..,k+l} admissible by B'p. Let us also
convert the decomposition B' of G into the extended decomposition B' and color
the graph G with the labeling function ß :V -¥ {\,.. .,k + l} such that, for every
v G V, ß(v) = ßp([v]p)• The labeling function ß is admissible by B' since no leaf
appears in two consecutive bags. Note that the symbols in the alphabet Sg that

correspond to the bags B'(wi) and B'(tV2), for any two ~-leaves wi and w2, are
identical. Let <Tßp{B'P) = (o"i, <rv, ■ ■ ■, <rm, <rm')- Then (Tß(B') can be obtained
from aßp(B'p) by repeating every subsequence (o-,-, ov) (2 < i < m) |[u>]pj times,

where new(ßj') — {[w]^}. It can be shown that <Tßp(B'p) is MS-definable.
Let A = (Eg, Q, 5, go, F) be the automaton recognizing a family Q of (k, 1)-

paths G. To obtain the required CMS- formula for recognizability of Q, we use an
extension of Biichi's result to words that are defined as sequences of substrings

812

given with their multiplicities (in our case, the sequences aßp(B'P) with the
cardinalities of the corresponding p-equivalence classes). By finiteness of A, to
determine the behavior of A on a substring u> repeated t times, it suffices to
know t mod a for some constant a dependent on A. Therefore, every recognizable

family of colored (k, l)-paths Gdl' is CMS-defmable.
Let $ be the CMS-formula checking the recognizability of suitably colored

(k, l)-paths. We state without proof that there is an MS-formula #adm verifying
that a given coloring c of a (k, l)-path G is such that G is recognized by A
iff 0 holds for G colored by c. Then the required CMS-formula for uncolored
(k, l)-paths G is the following: 3 "coloring c of G" <?adm(c) A #(GC).

Theorem 1. Every recognizable family of (k,l)-paths is CMS-definable.

4 The General Case

4.1 Nice Decompositions

In general, a partial fc-path is not necessarily a (k, l)-path; consider the partial
2-path Gn from Example 1 with the new edge connecting vertices 4 and 5. We
generalize our definition of (k, 1 ^decomposition as follows. A decomposition B =
(Bi,..., Bm) of G is called nice iff all of the following conditions hold:

1. old(J3,-) = non-drop(S,-_i) for every * G {2,..., m),

2. drop(Sj) # 0 for every i G {1,..., m),
3. for any i G {2,. ..,m}, if |new(B,-)| > 1, then

(a) for any v G U™=inev/(Bj), each decomposition (Bi,..., 5j_i,old(5,-) U
{v},d,..., Cs) of G is such that drop(old(J3i) U {v}) = 0, and

(b) for any subset S C new (Bi), each decomposition (Bi,... ,5.-_i,old(5,-)U
S, Ci,..., Cs) of G is such that drop(old(Si) U S) = 0.

Here (1) and (2) are as those for (k, ^-decompositions, and (3) says that if
more than one new vertex is added to form Bi, then both (a) there was no single
non-added vertex to choose instead of the set new(Sf) so that Bi contained a
drop vertex and (b) new(B,) is a minimal set with respect to set inclusion such

that Bi contains a drop vertex.
It is not difficult to show that every ^-decomposition can be converted into

a nice ^-decomposition. We call a nice ^-decomposition B — (Bi,... ,Bm) a
(k,p)-decomposition for some 1 < p < k iff |new(5,-)| < p for all 1 < i < m. A
partial fc-path allowing a (k,^-decomposition will be called a (k,p)-path.

Let B = (Bi,..., Bm) be a nice ^-decomposition of a partial fc-path G. The
family of sets new(S,) (1 < i < m) forms a partitioning of the vertex-set V of G.

We call the corresponding equivalence on V the 1-equivalence, denoted by ~. The

decomposition B also induces a linear order on the quotient set V/~, denoted

by <!. Clearly, given the pair (~, <i), we can reconstruct the decomposition B
of G. Although we can MS-define the 1-equivalence when G is suitably colored,

it is impossible to MS-define <i.

813

We will divide a ^-decomposition of a partial fc-path G into a sequence of
monotonic pieces whose structure resembles that of (k, l)-decompositions. For-
mally, a contiguous subsequence (£?;,..., B{+i) (1 < i,i + l < m) of a decomposi-
tion B = (Bi,..., Bm) is called monotonic iff |new(B,)| > 1 and |new(5r)| = 1
for each i < r < i + I. The nice decomposition B can then be viewed as a se-
quence of monotonic pieces (Mi,..., M4), where Ms = (5,-,,..., Bjs) for each
1 < s < d. Note that a nice decomposition is defined so that it is monotonic as
long as possible, then there is a "jump" — more than one new vertex is added
to a bag — which starts a new monotonic piece, and so on.

We define the sets new(Ms) = U^l,- new(5r) (1 < s < d) the family of which
forms a partitioning of the vertex-set V of G. The corresponding equivalence on

2
V is called 2-equivalence and denoted by ~. This sequence of monotonic pieces

2
also induces a linear order on the quotient set V/ ~, denoted by <2. Some k-

1 2
decomposition of G (possibly different from B) can be constructed given ~, ~,
and <2- Again, we can MS-defme the 2-equivalence on a suitably colored graph,
but not <o.

4.2 fe-Generative Structures

1' 2' 1' 2'
For a partial fc-path G, a triple (~ ,~ , <2), where ~ and ~ are equivalences

2'
on V and <'2 is a linear order on V/ ~ , is called a linear k-generative structure

1' 2'
on G iff there exists some nice ^-decomposition B of G such that ~ and ~ are
the 1-equivalence and 2-equivalence, respectively, induced by B, and <2 is the
linear order on 2-equivalence classes induced by B. For a partial fe-path G, a

i' 2' 1' 2'
triple (~ ,~ ,^2)' where ~ and ~ are equivalences on V and <'2 is a partial

2'
order on K/~ , is called a partial k-generative structure on G iff any completion
of <2 to a linear order yields a linear ^-generative structure on G.

Let ~ and ~ be the 1-equivalence and 2-equivalence, respectively, induced
by some nice ^-decomposition of a partial fc-path G. Let -< be the precedence

2
relation defined similarly to the case of (k, l)-paths, and let < be the extension

2 12^
of < to the quotient set V"/~ in the standard way. The triple (~,~,^) is not

2
necessarily a partial ^-generative structure on G. One reason is that each ~-class
[u] 2 (u £ V) contains several vertices all of which must be put in the same bag.

The other reason is that [u] 2 can "contribute" more non-drop vertices than drop

vertices. We did not have the latter problem in the case of (k, l)-paths, because
there adding a new vertex always produced at least one drop vertex.

To get around these problems, we put consecutive monotonic pieces of the
^-decomposition B of G into sequences of minimal length such that the num-
ber of non-drop vertices produced by each sequence, except the first one, is
at most that of drop vertices. More formally, let /j, = {Ms,.. .,Mt) be a con-
tiguous subsequence of a nice ^-decomposition B that corresponds to the se-
quence of bags (B,lt..., Bjt). We define the balance of p, bal(/z), as bal(/j) =

814

|non-drop(ßj()| - |old(S,J|. A contiguous subsequence LI of monotonic pieces
is called balanced if bal(/*) < 0 and no proper non-empty prefix of LI is of non-
positive balance.

Let B = (Mi,...,Md), where Ms, 1 < s < d, is a monotonic piece. We
divide B into disjoint subsequences of monotonic pieces ii1:...,Lir such that
B = m .. .fir, A*i = <Mi>> and each W. 2 < * < r> is balanced. It can be shown
that every //,-, 2 < i < r, corresponds to a (k, k- l)-subdecomposition of G. The
sets new (//i), 1 < i < r, defined in an obvious way induce a partitioning of V. The

corresponding equivalence is called 3requivalence and is denoted by ~. Recur-
sively, we partition each ia,l<i<r, into fi\,..., n\ and define 32-equivalence
classes. Each //}, 2 < j < s, corresponds to a (k, k - 2)-subdecomposition of G.
We stop after Jk steps when every (not necessarily balanced) sequence ft consists
of a single monotonic piece and corresponds to a (k, l)-subdecomposition of G;
also note that 3fc-equivalence coincides with 2-equivalence.

Then we define partial orders on these 3,-equivalence classes, denoted by

A, 1 < i < k, satisfying the following condition: for any completions of ^ to
linear orders <*', 1 < i < k, such that <j is a refinement of <*' for every j > i

(i.e., the restriction of <j to 7/~ coincides with <*'), the triple (~,~,<fc) is a
linear ^-generative structure on G. These partial orders as well as 3;-equivalences
can be MS-defined for suitably colored connected partial fc-paths thanks to the
properties of nice decompositions.

4.3 Defining a CMS-Formula

We partition our set of 3j-equivalence classes into the sets of 3,-nodes and 3,-

leaves, 1 < i < k. Then we refine each partial order A, 1 < i < k, to a linear order
on the set of 3,-nodes within each 3,_i-equivalence class; every two vertices of
G are 30-equivalent. However, we cannot order leaves in the same way as we did
in the case of (k, l)-paths, because now they are not necessarily single vertices
but, instead correspond to sequences of bags, and hence to words over Eg.

Let A = (Eg, Q, S, q0, F) be an automaton recognizing our family of partial
fc-paths. We call two incomparable 3,-leaves within the same 3,-_i-equivalence
class, 1 < i < k, Si-equivalent if the corresponding words wi and w2 over Eg

are such that for each q G Q, S*(q,ui) = S*(q,üj2), where S* is the extended
transition function of A. To determine if two leaves are ^-equivalent, we need to
know the behavior of A on the sequences of bags corresponding to those leaves.

The above discussion suggests the following "bottom-up" procedure which
can be encoded in CMS. We define the sequence of bags corresponding to each
3fc-equivalence class as in the case of (k, l)-paths, since each 3ft-equivalence class
is the set of new vertices of a monotonic piece. Then we convert this sequence
into the word u> over Eg and compute the behavior ofionu. This behavior is a
map from Q to Q, which can be presented as a state-vector q(u>) of length \Q\. For

each 3^-1-equivalence class C, two 3fc-leaves C" and C" in C/~ are ^-equivalent

iff q(C') - q(C"). We extend the partial order on the set C/~ to a linear order

815

on Cs = (C/~)/~ by ordering incomparable leaves lexicographically according
to their state-vectors. Let (Ci,..., Cs) be thus ordered sequence of elements of
Cs- The behavior of A on C is denned as q(C) = q{Ci)u o • • • o q{CsY', where
;,- = \d\, 1 < ? < s, and o is the composition. By finiteness of Q, q{C) can be
defined in CMS. Continuing in this manner will give us, after k steps, the vector
q(G) describing the behavior of A on the entire ^-decomposition of G. The graph
G is recognized by A iff q(G) maps q0 to some final state of A.

Thus, we can define a CMS-formula for recognizability of suitably colored
connected partial fc-paths. As in the case of (k, l)-paths, there is an MS-formula
#'adm so that recognizability implies CMS-definability for connected partial k-
paths. Note that the formula 3 "coloring c of G" #'adm(c) is true on G iff G is a
partial fc-path, so the obstruction set of the class of partial fc-paths is computable.

For a disconnected partial fc-path G, we compute the state-vectors for its
connected components, order these vectors lexicographically, and compute their
composition in CMS. Together with Courcelle's result this yields our main claim.

Theorem 2. Recognizability equals definability for partial k-paths.

Acknowledgements. I am indebted to my supervisor Arvind Gupta at SFU
for suggesting this topic and for his encouragement and support. I want to thank
David Mould for his assistance in preparing this paper. I am also grateful to the

anonymous referees for their comments.

References

1. J. Büchi. Weak second-order arithmetic and finite automata. Zeitschr. j. math.
Logik und Grundlagen d. Math., 6:66-92, 1960.

2. B. Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Information and Computation, 85:12-75, 1990.

3. B. Courcelle. The monadic second-order logic of graphs. V. On closing the gap
between definability and recognizability. Theoret. Comput. Sei., 80:153-202, 1991.

4. B. Courcelle. The monadic second-order logic of graphs. III. Tree-decompositions,
minors and complexity issues. Informatique theorique et Appl., 26:257-286, 1992.

5. B. Courcelle. The monadic second-order logic of graphs. VI. On several represen-
tations of graphs by relational structures. Discr. Appl. Math., 54:117-149, 1994.

6. B. Courcelle. The monadic second-order logic of graphs. VIII. Orientations. Ann.
Pure Appl. Logic, 72:103-143, 1995.

7. J. Doner. Tree acceptors and some of their applications. J. Computer and System
Sciences, 4:406-451, 1970.

8. V. Kabanets. Recognizability equals definability for partial /c-paths. Master's
thesis, Simon Fräser University, June 1996.

9. D. Kaller. Definability equals recognizability of partial 3-trees, 1996. Workshop
on Graph-Theoretic Concepts in Computer Science (WG '96).

10. N. Robertson and P. Seymour. Graph minors. II. Algorithmic aspects of tree-
width. J. Algorithms, 7:309-322, 1986.

11. D. Seese. The structure of the models of decidable monadic theories of graphs.
Ann. Pure Appl. Logic, 53:169-195, 1991.

Molecular Computing, Bounded
Nondeterminism, and Efficient Recursion

Richard Beigel1* and Bin Fu2**

1 Yale University, University of Maryland, and Lehigh University
2 Yale University and University of Maryland

Abstract. The maximum number of strands used is an important mea-
sure of a molecular algorithm's complexity. This measure is also called
the space used by the algorithm. We show that every NP problem that
can be solved with b(n) bits of nondeterminism can be solved by molec-
ular computation in a polynomial number of steps, with four test tubes,
in space 26("). In addition, we identify a large class of recursive algo-
rithms that can be implemented using bounded nondeterminism. This
yields improved molecular algorithms for important problems like 3-SAT,
independent set, and 3-colorability.

1. A model of molecular computing

Molecular computation was first studied in [1, 17]. The models we define were
inspired as well by the work of [3, 23]. A molecular sequence is a string over
an alphabet E (we can use any alphabet we like, encoding characters of £ by
finite sequences of base pairs). A test tube is a multi-set of molecular sequences.
We describe the allowable operations below. Where set notation is applied to
multi-sets, multiplicities are respected. In the definitions T\, T2, and T3 denote
distinct test tubes, c denotes a character, and i denotes a positive integer.

Separate(7\, c, i, T2, T3)
T2 := the multi-set of all strings in T\ whose ith character is c;
T3 := the multi-set of all strings in T\ whose ith character is not c;

Tx := 0.
Pour(Ti,T2)

Ti := 0.
Append(jT, c)

T := {xc : x € T}.

Address: Dept. of Computer Science, University of Maryland at College Park, College
Park, MD 20742-3251, USA. Research supported in part by the National Science
Foundation under grants CCR-8958528 and CCR-9415410 and by NASA under grant
NAG 52895. On sabbatical from Yale University. Email: beigel8cs.umd.edu
Address: Dept. of Computer Science, P.O. Box 208285, New Haven, CT 06520-8285,
USA. Research supported in part by the National Science Foundation under grants
CCR-8958528 and CCR-9415410. Email: fu-bin@cs.yale.edu

817

Merge(TuT2,T3)

T3

T2

TiUT2;

Others have proposed a variant of operation separate, which we will call Sep.
It checks whether a string contains the character c anywhere. If we represent the
ith symbol zt of a string z by the symbol (i, Zi) instead, then the standard Sep
operation can simulate our Separate operation with no additional overhead. The
use of polynomial-size alphabets is standard practice in molecular computing.
We prefer the Separate operation for convenience in programming.

The running time for a molecular algorithm is proportional to the number
of operations on test tubes. An important complexity measure is the solution
space size (also called simply space), i.e., the maximum number of strings in all
test tubes at any time, counting multiplicities. Adleman [2] has speculated that
molecular computation with a solution space of size 270 (about 0.002 moles)
might be possible. Recent papers [3, 19] attempt to optimize solution space size
for particular combinatorial problems.

Problem instances are associated with a parameter n called their size. In
complexity theory, n is the length of a suitable encoding of the instance. However,
in analysis of algorithms, n is usually a more natural representation-independent
parameter, such as the number of vertices in a graph or number of variables
in a formula. Although the n's of complexity theory and the n's of analysis of
algorithms are usually polynomially related, it can make a phenomenal difference
when n appears in the exponent. For that reason we take n to be a problem-
dependent but representation-independent notion of size through this paper. We
write \x\ to denote the size of a problem instance x rather than its length, and
we usually identify n with |ai|.

We consider a highly restricted model of i(n)-time, s(n)-space molecular
computation, which we think has a good chance of eventually being practical.
On input x, one test tube T0 is initialized to hold encodings of the numbers
1,..., s(\x\). A sequence of molecular operations o\,..., ot(\x\) = f(x) is then
performed, where / is a conventional polynomial-time computable function (that
is, the program is uniform in a weak but appropriate sense). The computation
accepts if T0 is nonempty after the last operation is performed. MOL(s(n)) is
the class of languages accepted by such a computation where the running time
t(n) is polynomial bounded.

We give the most space-efficient molecular algorithms known for several prob-
lems. See Table 1.

2. Bounded Nondeterminism
NP computation with a limited amount of nondeterminism was introduced
in [14, 15, 16] and studied further in [10, 11, 20, 9, 12, 25, 13, 7]. The class
NPbits(6(n)) consists of all languages recognized by an NP machine that make
at most b(n) binary nondeterministic choices on each computation path on in-
puts of size n. (Actually, prior treatments allowed O (b(n)) binary choices, but

818

Results Previously In This Paper
Problem Space Limited Model Reference Space | Limited Model

Hamiltonian Path n\ V [1]
SAT 2" V [17]
QBF 2" XX [23]

3-SAT 1.62" X [19] 1.50" V
3-Colorabilit.y 1.89" V [3] 1.35" V

Independent Set 1.51" V [3] 1.23" V
(3, 2)-system 1.39" V

Table 1. Results for particular problems

the constant factor turns out to be very important in connection with molecu-
lar computation.) We define a refinement of these classes: NPinit(s(n)) consists
of all languages recognized by NP machines that nondeterministically choose a
number between 1 and s(n) on inputs of size n and then behave deterministically.

Clearly, NPbits(6(n)) = NPinit(26(n)).

3. NPinitO(n)) C MOL(*(n))

In this section we show how to simulate bounded nondeterministic computa-
tion via bounded-space molecular computation. Results of this type appear in
[4, 23, 24, 29], but they assume models of molecular computation with more pow-
erful operations, such as Amplify, that may be harder to implement in practice.
Independently, Boneh et al. [8] obtained a result similar to ours.

Lemma 1. Let TT be a circuit with m gates. Given a tube To, a molecular al-
gorithm using only the operations Pour, Append, and Merge, running in time
O(m), and using only four test tubes can create tubes T\ and T2 such that Ti
contains all strings z from, tube T0 that satisfy w(z) = 1 and T2 contains all

strings z from, tube To that satisfy TT(Z) = 0.

Proof. Let 7r's input gates be gi,...,gn and internal gates be gn+i, ■ ■ -,9m in
topological order; in particular gm is the output gate. We will use four tubes
T0,T

,
1,T2,T3. For each i, let g{ compute fi(gj(i),gk(i)) where j(i) < i, k(i) < i,

and /,; is a binary function. We perform the following algorithm:

for i := n. + 1 to m do
Separate(T0, 0, j(z'),Ti,T2)
Separate(Ti, 0, k(i),TQ, T3)
Append(To,.A(0,0))
Append(r3,/,:(0,1))
MergeCTo.Ta.Ti)
Separate(T2, 0, k(i), To, T3)
Append(To,/i(l,0))

819

Append(T3,/?:(l,l))
Merge(T0,T3,T2)
Merged, T2l To)

Separate(T0, 0, m, T\, T2)

At completion, T\ contains all strings that satisfy 7r and T2 contains all strings

that, do not satisfy TX. *

Theorem2. NPinit(s(n)) C MOL(s(n)).

Proof. Let L be accepted by an NPinit(s(n)) machine M. Construct a determin-
istic machine M' that takes as inputs a string x and a positive integer z < s(n)
and accepts iff M accepts input x with nondeterministic guess z. Obtain M'x by
fixing the input x, so the only input to M'x is the number z. Construct a circuit
7T equivalent to M'x in the usual way (see [21]). Apply Lemma 1 to 7r to see that

L is in MOL(s(n)). '

4. Implementing Recursion with Bounded
Nondeterminism

In this section we show how to enumerate search spaces using bounded non-
determinism. In many nondeterministic searches, some paths are longer than
others, which can be inefficient. However, if we can compute the size of subtrees,
then we can balance nondeterministic search trees, which reduces the amount of

nondeterminism needed.
Recursive algorithms for NP problems usually take the form of d-self-

reductions ("d" for disjunctive). Self-reductions were defined in [27] and d-self-

reductions were defined in [28].

Definition3. Let \y\ denote the size of the problem instance y. A partial order
-< is polynomial well-founded if there exists a polynomial-bounded function p

such that

- Vm< < 2/i => m<p(\yi\)
- ym < —< 2/1 =>■ \ym\ <p(|j/il)

For technical simplicity we will consider only languages L containing the

emptystring, A.

Definition^ A d-self-reduction for a language L consists of a polynomial time
computable function h(x) = {xy,..., xm} and a polynomial-well-founded partial

order -< on problem instances such that

- A is the only minimal element under -<
- for all x ^ A, x £ L <=> h(x) n L / 0
- for all x, Xi £ h(x) => Xi -< x

Definitions. Let (h, ^} be a d-self-reduction and let i be a problem instance.

820

- Tht<{x) is the unordered rooted tree that satisfies the following rules: (1) the
root is a;; (2) for each y, the set of children of y is h(y).

- |T/lX(x)| is the number of leaves in Th^(x).

If (h, -<) is a self-reduction for L, then the corresponding recursive algorithm
for L runs in time \x\°W \Tht<{x)\. The analysis of such an algorithm usually
provides a bound on \Th><(x)\ that is suitable for use in constructing a molecular
algorithm for L. We formalize this below:

Definition 6. Let T be a polynomial-time computable function. A language L
is in REC(T(z)) if there is a d-self-reduction (h, -<) for L such that for all x

(1) \Th^(x)\<T(x),aad

(2) T(x) > E*j€fc(*) T(^)-

Lest conditions (1) and (2) above seem restrictive, we argue that they are
quite natural. We consider the typical analysis of a recursive algorithm. One
introduces a function T and proves by induction on \x\ that \Thi<(x)\ < T(x),
which is (1). The inductive hypothesis is that \Thi<(w)\ < T(w) if \w\ < \x\.
Inspection of the algorithm yields

\Th,*(*)\= E TK<i*i)

< y^ T{xi) by the inductive hypothesis
Xi£h(%)

The last step in the induction consists of showing that T satisfies E^ehO) ^(^0 <
T(x), which is (2). The only other requirement on T is that T be polynomial-time
computable. We will deal with that later in this section.

The function T above depends on problem instances rather than their size
because the analysis of the algorithm may depend on two or more parameters.
We will need an analogous variant of NPinit().

Definition 7. NPinit'(5(a;)) consists of languages recognized by NP machines
that nondeterministically choose a number between 1 and S(x) on input x and
then behave deterministically.

Clearly, if S(x) < s(\x\) then NPinit'(5(a:)) C NPinit(s(n)).

Theorem 8. REC(T(a:)) C NPinit'(T(aj)).

Proof. Let L 6 REC(T(x)) via (h, -<). We will define a deterministic polynomial-
time computable function path(f, x) taking values in {0,1, yl} such that
path(l,;r) • • -path(T(a;),a;) is equal to the sequence of values at the leaves of
Thi<(x) in canonical order. The proof is completed by having the ith path of an
NPinit'(T(x-)) machine compute path(i, x); clearly that machine accepts L. The
function path(i, x) will be computed via tail recursion.

821

function path(i, x)
if x = A then return true
else if h(x) = 0 then return false
else

{xi,...,xm} :- h(x)
for j := 1 to m do

if i < T(xj) then return path(i, Xj)
else i := i — T(XJ)

return A *

Now we give sufficient conditions for T to be polynomial-time computable.

Definition9. We say that a partial order -< on problem instances is parame-
tenzable if there are a function m from problem instances to a set M, a partial

order -<' on M, and a polynomial p such that

- m(x) is computable in time polynomial in |a;|, and
- x -< y => m(x) -<' m(y), and
- \\{i:i<'m(x)}\\<p(\x\).

In many examples we will take m(x) = \x\ and <' to be the standard lin-
ear order on natural numbers. In other examples, m{x) will be a tuple of pa-
rameters (such as the number of 2-clauses and the number of 3-clauses in a
Boolean formula); in many (but not all) of these examples we use the partial
order (a1:...,ak) -<' (bi,...,bk) if (Vi)[a,- < &»] and (3i)[a,- < h}.

Definition 10. Given h and m, define

- mh(x-) — the multi-set {m(xi) : X{ G h{x)}
- MH(i) = the set {mh(y) : m(y) = m(x)}

Definition 11. A d-self-reduction (h, -<) is by cases if -< is parameterizable via
(m, -<') in such a way that MH(a;) is computable in time polynomial in |x|.

Lemma 12. Let (h, -<) be a d-self-reduction by cases with parameter function

m(). Let To be the least function T such that

(1) \Th^(x)\<T(x)

(2) T(x) > E.,6hW T(xi)
(3) T(x) is a function of m{x)

Then TQ exists and TQ(X) is computable in time polynomial in \x\.

Proof. Let (/i,-<) have a parameterization (m, -<'), where m(x) and MH(a:) are
computable in time polynomial in |a;|. Define a partial function t from M to
natural numbers recursively:

(1 if \i is a minimal element under -<'

W> ~ \ maxra(j)=(1 EJ/^äCJ,)
f(TO(s/0) otherwise

822

If n is in the range of m, then t(/i) is defined because MH(i) is a finite set for
every x. Now it is easy to see that lomis the least function satisfying (1,2,3).

By Definition 9, \{i : i <' m(x)}\ < p(\x\). If we compute t(m(x)) by the
obvious recursion, at most p(\x\) different subproblems will arise. If we use a
table to avoid recomputation, the recursion will run in polynomial time. I

4.1. 3-SAT

In this section, we apply our results to the classic 3-SAT algorithm of Monien and
Speckenmeyer [18] and a recent unverified 3-SAT algorithm of Schiermeyer [26].
The former yields a simple MOL(1.62") algorithm, and the latter (assuming that
Schiermeyer's paper is correct), yields a MOL(1.497") algorithm.

Monien and Speckenmeyer's Algorithm The size of a satisfiability instance
is the number of variables. Consider the 3-SAT algorithm of Monien and Speck-
enmeyer. Let f\t denote the formulas obtained by replacing in / the literal £
by true and £ by false. A fc-clause is a disjunction of k literals. The function
3SAT takes a formula / consisting of some 3-clauses and at least one 1-clause

or 2-clause.

function 3SAT(/)
if / is the empty set of clauses then return true
else if / contains an empty clause then return false
else if some variable v appears only in positive literals then return 3SAT(f\v)
else if some variable v appears only in negative literals then return 3SAT(f\ü)
else if/ contains a clause C consisting of a single literal £ then return 3SAT(f\i)
else if / contains a clause C consisting of two literals £i, £2 then

return 3SAT(f\tl) V iSATU\j^\i,)
else

let v be the first variable to appear in /

return 35i4T(/|„) V 3SAT(fk)

The last case in the recursion is ostensibly the worst, yielding two subprob-
lems of size n — 1, but it only occurs on the first call or immediately after
eliminating a single variable, which yields a single subproblem of size n - 1;
unrolling the recursion, we see that the last case gives two subproblems of size
n - 2. The worst case is the second to the last, which yields subproblems of size
77 — 1 and n - 2. Thus the number of leaves in the self-reduction is at most 2/(n)
where f(n) is given by the recurrence f(n) = f(n - 1) + f(n - 2); in particular

2f(n) < 1.62" for almost all n.
The algorithm above is clearly a d-self-reduction for 3-SAT. The value

function h for a formula is the set of subformulas generated by the recur-
sive algorithm. Let m(x) = n, where n is the number of variables in the for-
mula x. < is the normal order for the integers. From the analysis above we
know mh(i) is either {n - l},{n - 2,rz - 2} or {n - 2,n - 1}. MH(i) is
{{rc-1}, {n-2,n-2}, {n-2,n-l}} that is clearly polynomial time computable.
Let t(n) = 1.62". 2/(n) < t(n). Hence t(n) is an upper bound of the number
of leaves of computation tree for the recursive algorithm. It is easy to see that

823

t(n) >i{n-2)+t(n-l) >t(n-2)+t(n-2). Hence, T3S{x) = t(m(x)) satisfies
the conditions of Lemma 12 and 3-SAT is in REC(T0(F)) for some T0 < T3S. By
Theorem 8 and Theorem 2, 3SAT £ NPinit(t3S(n)), so 3-SAT is in MOL(1.62").
The same space bound for 3-SAT was obtained previously by Ogihara [19], but
in a model that allows more powerful operations like Polymerization, which can

implement the Amplify operation.

Schiermeyer's Algorithm Schiermeyer [26] reports a 1.497" time algorithm
for 3-SAT problem. His algorithm is a d-self-reduction for the 3-SAT problem.
We will prove that 3SAT £ REC(T(F)), where the function T(F) < 1.497"
and will be defined below. We follow [26] to define F3 and F£. For a formula
F with n variables, let p be the maximum number of 1-clauses and 2-clauses
(with preference of 1-clauses) such that no variable occurs more than twice.
Let q be the number of remaining 2-clauses and define m = p + min(2, q). Let
F3(n) = cßn ■ fi and F^n) = cßa-m, where ß = 1.4963, a = 1.04855 and c is a

sufficiently large constant.

/ F3(n) if F has no 1-clauses or 2-clauses

^ \ F3(n) otherwise

Schiermeyer states that F^n) > \Tht<(F)\ if F has at least one 1-clause or
2 clause, and that F3(n) > \TK<(F)\ for all F. Hence, T(F) > \Th<<\, since
\Thi<\ < the number of recursive calls. The inequalities that Schiermeyer gives
in the proofs of his Lemma 4.3 and Lemma 4.4 imply that our T(F) satisfies the
conditions of Definition 6. Hence, 3SAT £ REC(T(F)) C MOL(1.497n).

4.2. 3-Coloring and (3, 2)-System

Beigel and Eppstein [6] give algorithms for (3, 2)-system and 3-coloring. In the
(a,6)-system problem, we are given a collection of n vertices, each of which
can be given one of a different colors. However certain color combinations are
disallowed: we are also given a set of constraints, each of which forbids one
coloring of some 6-tuple of variables. (3,2)-system generalizes 3-coloring, 3-SAT

and 3-edge-coloring.

(3, 2)-System Algorithm The size of a (3, 2) system is the number of variables
in it. Beigel and Eppstein's [6] (3, 2)-system algorithm can be sketched as follows:

function 32SYS(F)
if \F\ < 5 then return brute-force(F)
else

(Fl)...,Fk) = h32(F)

return Vr=i32SYS(F')'
In the algorithm above, brute-force(F) means "use the brute force method

to solve the (3,2)-system F;" k < 3; h32 is polynomial-time computable; and
|Fj| < \F\. Let h = h32 and let -< be the standard linear ordering on the natural
numbers. Then (h, -<) is a d-self-reduction for (3, 2)-system. Define m(F) = \F\.

In case 1, mh(F) = {n - (4 + i), n - 1}, where i > 0.

824

In cases 2a, 2c, and 3, mh(F) = {n - (3 + t),» - 2). where * > °-
In cases 2b, 2d, 6, 8c and 9, mh(F) = {n'}, where n' < n.

In case 4, mh(F) = {n - 5, n - 3, n - 3}.

In case 5, mh(F) = {n - 4, n - 4}.

In case 7, mh(F) = {n - 3, n - 3}.
MH(F) is polynomial-time computable by the case analysis above. Let t(n) =

1.38028". It is easy to see that for every input x with {ni,..., nk} = mh(;c) and

m(F) = n, t(n) > i(m) + • • ■ + <("*)• Define T(F) = *(m(F))- By Lemma 12,
there is a polynomial-time computable function T0 such that T0(F) < T(F)
and To, h, and -<; satisfy the conditions of Definition 6. Thus, (3, 2)-system is in

REC(T0(F)). So,

(3, 2)-system G NPinit'(T0(F)) by Theorem 8

C NPinit'(T(F)) because T0(F) < T(F)

= NPinit(<(n)) because T(F) = t(\F\)

= NPinit(l.38028") because t(n) = 138028"

C MOL(l.38028") by Theorem 2.

3-Coloring Algorithm There are two parts to Beigel and Eppstein's algo-
rithm. The first part runs in polynomial-time and finds an independent set S
with a lot of neighbors. Let r(S) denote the set of vertices in G that are not
in S but are adjacent to an element of S. The second part 3-colors S in all
possible ways. Each of these 3'sl partially-colored graphs is transformed into an
equivalent (3, 2)-system with n - \S\ - \r(S)\ variables, which is solved by call-
ing 32SYS. Their algorithm runs in time 3|s|1.38028"-lSHr(s)l, which is less
than 1.345" for sufficiently large n. Thus we have the following NPinit(1.345")

algorithm:

choose a natural number m < 1.345"

construct Beigel and Eppstein's set S

let c = m mod 3'5'
color S with the cth 3-coloring in the lexicographical ordering

form the corresponding (3, 2)-system F

let b = [7?V3|S|J
run 32SYS(i?) using the nondeterministic choices dictated by b

Therefore 3-coloring is in MOL(1.345").

4.3. Independent Set

For a graph G, an independent set 5 is a subset of G"s nodes such that there is
no edge between any two nodes in S. The independent set problem is "given a
graph G and a number k, does G contain an independent set of cardinality at

lest k?"

825

Tarjan's Algorithm Consider the following simple algorithm due to Tar-
jan [30]. (d(v) denotes the degree of v, and N(v) denotes the neighbor set of
v. max(5,T) denotes the larger of the two sets S and T, with ties resolved

arbitrarily.)

function MIS(G)
pick any vertex v in G
if d(v) < 1 then return {v} U MIS(G -v- N(v))
else return max(MIS(G - v), {v} U MIS(G -v- N(v)))

This is a self-reduction with at most T(n) leaves where T(n) satisfies T{n) =
T(n - 1) + T(n - 3) where T(n). The recurrence can be solved in polynomial
time by an explicit formula or by dynamic programming so the independent set
problem is in MOL(1.47"), which is better than prior results [3]. Because the
algorithm is particularly simple, the molecular algorithm can even be made to

run in linear time.

Robson's Algorithm The best published purely recursive algorithm for the
independent set problem is due to Robson [22] and runs in time 1.229" for suf-
ficiently large n. A d-self-reduction with 1.229" leaves is evident from Robson's
paper, so we have we have a MOL(1.229") algorithm for the independent set

problem. Details will be given in the full version of this paper.
Robson has a faster dynamic programming algorithm for independent set, but

we see no way to adapt it to molecular computing. Molecular computing may
motivate the search for efficient recursive algorithms that do not use dynamic
programming. Towards that end we have found a recursive 1.223" time (for
sufficiently large n) algorithm for independent set [5] that is based on a d-self-
reduction and hence is directly adaptable to molecular computing.

5. Acknowledgments

We are grateful to William Gasarch for his patience in reading this paper as
well as his suggestions in improving the presentation. We are also grateful to
Tirza Hirst for helpful discussions and to Ingo Schiermeyer for sharing with us

a preliminary draft of [26].

References
1. L. Adleman. Molecular computation of solutions to combinatorial problems. Sci-

ence, 266:1021-1024, Nov. 1994.
2. L. Adleman. On constructing a molecular computer. In 1st DIMACS workshop on

DNA Computing, 1995.
3. E. Bach, A. Condon, E. Glaser, and C. Tanguay. DNA models and algorithms for

NP-complete problems. In Proc. 11th Ann. Con}. Structure in Complexity Theory,
pp. 290-299, 1996.

4. D. Beaver. A universal molecular computer. CSE 95-001, Penn. State Univ., 1995.
5. R. Beigel. Maximum independent set algorithms. Manuscript, 1996.
6. R. Beigel and D. Eppstein. 3-coloring in time 0(1.3446™): a no-MIS algorithm. In

Proc. 36th IEEE FOCS, pp. 444-452, 1995.

826

7. R. Beigel and J. Goldsmith. Downward separation fails catastrophically for limited
nondeterminism classes. In Proc. 9th Ann. Conf. Structure in Complexity Theory,

pp. 134-138, 1994.
8. D. Boneh, C. Dunworth, R. J. Lipton, and J. Sgall. On the computational power

of DNA. Manuscript, 1996.
9. J. F. Buss and J. Goldsmith. Nondeterminism within P. SICOMP, 22:560-572,

1993.
10. J. D. C. Alvarez and J. Torän. Complexity classes with complete problems be-

tween P and NP-complete. In Foundations of Computation Theory, pp. 13-24.
Springer-Verlag, 1989. LNCS 380.

11. J. Diaz and J. Torän. Classes of bounded nondeterminism. MST, 23:21-32, 1990.
12. J. Goldsmith, M. Levy, and M. Mundhenk. Limited nondeterminism. SIGACT

News, pp. 20-29, June 1996.
13. L. Hemachandra and S. Jha. Defying upward and downward separation. In Proc.

10th STAGS, pp. 185-195. Springer-Verlag, 1993. LNCS 665.
14. C. M. R. Kintala. Computations with a restricted number of nondeterministic

steps. PhD thesis, Penn. State Univ., University Park, PA, 1977.
15. C. M. R. Kintala and P. C. Fischer. Computations with a restricted number of

nondeterministic steps. In Proc. 9th ACM STOC, pp. 178-185, 1977.
16. C. M. R. Kintala and P. C. Fischer. Refining nondeterminism in relativized

polynomial-time bounded computations. SICOMP, 9(l):46-53, Feb. 1980.
17. R. Lipton. Using DNA to solve NP-complete problems. Science, 268:542-545, Apr.

1995.
18. B. Monien and E. Speckenmeyer. Solving satisfiability in less than 2" steps. Dis-

crete Appl. Math., 10:287-295, 1985.
19. M. Ogihara. Breadth first search 3SAT algorithms for DNA computers. TR 629,

U. Rochester, July 1996.
20. C. H. Papadimitriou and M. Yannakakis. On limited nondeterminism and the

complexity of the V-C dimension. In Proc. 8th Ann. Conf. Structure in Complexity

Theory, pp. 12-18, 1993.
21. N. Pippenger and M. Fischer. Relations among complexity measures. J. ACM,

26, 1979.
22. J. Robson. Algorithms for maximum independent sets. /. Algorithms, 7:425-440,

1986.
23. D. Roos and K. Wagner. On the power of bio-computers. TR, U. of Wurzburg,

Feb. 1995. ftp://haegar.informatik.uni-wuerzburg.de/pub/TRs/ro-wa95.ps.gz.

24. P. Rothemund. A DNA and restriction enzyme implementation of Turing ma-
chines. http://www.ugcs.caltech.edu/tfpwkr/oett.html.

25. L. Sanchis. Constructing language instances based on partial information. Inter-

national Jour. Found. Comp. Sei., 5(2):209-229, 1994.
26. I. Schiermeyer. Pure literal lookahead: An 0(1,497") 3-satisfiability algorithm.

Manuscript, August 14, 1996.
27. C. P. Schnorr. Optimal algorithms for self-reducible problems. In Proc. 3rd

ICALP, pp. 322-337, 1976.
28. A. L. Selman. Natural self-reducible sets. TR, Northeastern Univ., 1986.
29. W. Smith and A. Schweitzer. DNA computers in vitro and vivo. TR, NEC, 1995.
30. R. Tarjan. Finding a maximum clique. TR 72-123, Cornell Univ., 1972.

Constructing Big Trees from Short Sequences

Peter L. Erdös
Michael A. Steel
Läszlö A. Szekely

and Tandy J. Warnow

1 Mathematical Institute of the Hungarian Academy of Sciences. E-mail:
elpQmath-inst.hu

2 Biomathematics Research Centre, University of Canterbury. E-mail:
m.steelQmath.canterbury.ac.nz

3 Department of Mathematics, University of South Carolina. E-mail:
laszloQmath.sc.edu

Department of Computer and Information Science, University of Pennsylvania.
E-mail: tandyQcentral. eis. upenn. edu.

Abstract. The construction of evolutionary trees is a fundamental
problem in biology, and yet methods for reconstructing evolutionary trees
are not reliable when it comes to inferring accurate topologies of large
divergent evolutionary trees from realistic length sequences. We address
this problem and present a new polynomial time algorithm for recon-
structing evolutionary trees called the Short Quartets Method which is
consistent and which has greater statistical power than other polyno-
mial time methods, such as Neighbor-Joining and the 3-approximation
algorithm by Agarwala et al. (and the "Double Pivot" variant of the
Agarwala et al. algorithm by Cohen and Farach) for the L<x> -nearest
tree problem. Our study indicates that our method will produce the cor-
rect topology from shorter sequences than can be guaranteed using these

other methods.

1 Introduction

Evolutionary trees indicate how species evolved from a common ancestor and are
of fundamental concern to biologists. There are many methods for reconstruct-
ing trees from biomolecular sequences, and all potentially competitive methods
are evaluated according to their accuracy for topology prediction [11]. However,
reconstructing this topology is a difficult task for at least two reasons. First,
all accepted optimization problems in this area are NP-hard, so that methods
which are efficient typically do not provide good performance on large sets of
sequences. More importantly, even if we could solve some of the NP-hard op-
timization problems in this domain, the sequence length required in order to
be able to guarantee an accurate topology estimation can be beyond what is
available or even possible. A polynomial time algorithm that can only be guar-
anteed to be accurate on unavailable sequence lengths is simply not reliable,
and it must either not be used, or if used its output must not be believed. On

828

the other hand, a method which is accurate on realistic length sequences can
be used even if it requires more computational resources. We may simply need
to use more machines, wait longer, employ more sophisticated techniques to im-
plement the same basic objective, etc. Thus, the sequence length needed by a
method imposes a significantly more severe limitation than its computational
requirements. The importance to biologists of this measure of accuracy (called
efficiency or power in the systematic biology literature [14]) is reflected in the
extensive performance analysis literature in systematic biology in which meth-
ods are analyzed according to their performance on model tree reconstruction
under various stochastic models of evolution [12]. Initially these studies focused
on consistency [7], i.e. the question of whether a method would be guaranteed to
produce the correct topology given long enough sequences. Since the discovery
around 1970 [13] of consistent distance transformations (which produce "cor-
rected distances"), it has been clear that all reasonable distance-based methods
can recover the true tree with high probability given long enough sequences when
applied to corrected distances computed on sequences generated by binary trees.
All this is well-understood in the systematic biology community. What is not so
well-understood is the sequence length needed to obtain an accurate topology
with high probability using a given method on a given model tree. Unfortunately,
sequence lengths are limited, and especially so when the tree to be reconstructed
is large and contains widely divergent sequences.

This paper contains several results:

— We present a probabilistic analysis of the depth and diameter of random trees
under two distributions.

— We describe a framework based upon topology-invariant neighborhoods which
permits the comparison of the statistical power of different distance-based
tree reconstruction methods.

— We develop a new consistent polynomial time method, the Short Quartet
Method for reconstructing evolutionary trees, and provide an analytical study
of its convergence rate for inferring trees under the Cavender-Farris model.
(This analysis extends to a large class of r-state Markov models.) We show
that this method has superior statistical power to Neighbor-Joining, the most
popular distance-based method of phylogenetic tree reconstruction, and to
new results from the theoretical computer science community by Agarwala
et al. (STOC 1996) [1] and Cohen and Farach (SODA 1997 and RECOMB
1997) [5].

Due to space constraints, we cannot give proofs in this extended abstract.

2 Basics

We begin by describing a simple model of sequence evolution, called the
Cavender-Felsenstein model, or sometimes the Cavender-Farris model. The
Cavender-Felsenstein model of evolution for binary sequences associates to ev-
ery edge e in a model tree T a mutation probability pe with 0 < pe < .5, and
the mutations on each edge are independent. The sites (i.e. positions within

829

the sequences) are assumed to evolve identically and independently, with the
state at the root selected according to some distribution (usually uniform). If
k sites evolve under this model, then the tree generates a set of sequences of
length k at the leaves. We allow the input to our method to be any symmetric
zero-diagonal non-negative matrix, and we will abuse the notation and call such
matrices distance matrices.

Definition 1. A distance matrix D is additive if and only if there exists a
tree T with non-negative edge weighting w such that for all leaves i,j, Dij =
HeeP- w(e)' where pij is the Path between i and j in T. The L^ distance be-
tween two distance matrices A and B is defined by L^A, B) = max^\Atj -Bij\.
The Loo-nearest tree problem takes as input a distance matrix d and returns an
additive distance matrix D minimizing Los(d,D). The 6-neighborhood around d,
denoted N(d,S), is the set of all distance matrices d' such that Loo(d,d') < S.
A distance-based method M for phylogeny construction is a mapping from nxn
distance matrices tonxn additive distance matrices. A tree 7\ is said to refine
a tree T if T can be obtained from Ty by contracting some of the edges in Ti.
A method M is said to be combinatorial^ consistent if M{D) = D for all ad-
ditive distance matrices D, and continuous at D if for every e > 0 there exists
a <5 > 0 such that if d € N(D,S) then M(d) € N(M(D),e). We will say that a
distance-based method is reasonable if it is both combinatorially consistent and
continuous at every additive distance matrix defining a binary tree.

An interesting characterization of additive matrices D is the following:

Theorem 2. Four Point Condition, from [4]: A distance matrix D is an additive
matrix if and only if for all i,j, k, I, of the three pairwise sums D^ + Dki,Dik +
DjijDu +Djk, the largest two are identical.

The proof of the theorem shows that the ordering on the three pairwise sums
indicates the topology induced by the quartet. Thus, if Dtj + Dki is strictly

. smaller than the other two sums, then the topology induced by the quartet
i,j,k,l is a resolved binary tree; otherwise all three sums are identical, and the
topology induced by i,j, k, I is a star. Since we assume that T is binary, all such
quartets induce resolved subtrees. We will denote this topology by ij\kl when
the pairs that are separated by an internal edge are ij and kl.

We now present a characterization of additive distance matrices which define
the same topology.

Theorem 3. Two additive distance matrices D and D' define the same topol-
ogy if and only if for all quartets, the relative orders of the pairwise sums for
that quartet are identical in the two matrices. Therefore, for every reasonable
distance-based method M and for every binary tree T defining additive distance
matrix D, there will be a 5 > 0 such that M is guaranteed to reconstruct the
topology of T when applied to any d G N(D,S). Consequently, any reasonable
distance-based method M will be consistent on every binary tree when applied
to corrected distances. However, for every edge-weighted tree T with minimum

830

edge weight x, there is a tree V with a different leaf-labelled topology such that
Loo(D,D') = x/2, where D is the additive distance matrix for T and D' the
additive distance matrix for X".

We will now describe a method we call the Naive Method, based on Bune-
man's Four-Point Condition. For each quartet of species i,j,k,l, compute the
topology on that quartet by computing the three pairwise sums (this is called
the four-point method (FPM) for reconstructing a tree on a single quartet.) If
the three sums are distinct and the minimum is attained at £>„• + Dki, then set
the topology on i, j, k, I to be ij\kl. If the minimum sum is not unique, constrain
the topology to be a star. Construct the tree (if it exists) consistent with all the
constraints on the topologies of quartets. If no tree exists consistent with all the
constraints, output a star tree. (A similar procedure was described by Fitch in
[9].) Constructing a tree consistent with all quartet topologies is easily done in
polynomial time through a variety of techniques, hence this is a polynomial time
method.

We now present a comparison of various distance based methods based upon
topology invariant neighborhoods.

Theorem 4. Let D be an additive n x n distance matrix defining a binary tree
T, d be a fixed distance matrix, and let 5 = Loo(d,D). Assume that x is the
minimum weight of internal edges of T in the edge weighting corresponding to
D.
(i) A hypothetical exact algorithm for the L^-nearest tree is guaranteed to return
the topology of T from d if S < x/4.
(ii) (a) The 3-approximation algorithm for the Loo-nearest tree is guaranteed to
return the topology of T from d if 6 < x/8. (b) For all n there exists at least one
d with 5 - x/6 for which the method can err. (c) If 6 > x/4, the algorithm can
err for every such d.
(iii) The Naive Method is guaranteed to return the topology of T from d if 5 <
x/2, and there exists a d for any S > x/2 for which the method can err.

In other words, given any matrix d of corrected distances, if an exact al-
gorithm for the Loo-nearest tree can be guaranteed to correctly reconstruct the
topology of the model tree, then so can the Naive Method. Thus, an exact al-
gorithm for the Loo -nearest tree can err on longer sequences than the Naive
Method, when applied to corrected distances, for any model tree T. This sug-
gests an inherent limitation of the Loo-nearest tree approach to reconstructing
evolutionary tree topologies.

3 The Short Quartet Method

The Short Quartet Method is similar in spirit to the Naive Method, in that
it is based upon reconstructing trees for quartets, and then combining these
trees if possible. However, the essential difference is that we attempt to avoid
reconstructing the trees for the difficult quartets. Instead, we attempt to con-
struct topologies only on those quartets that are close within the tree; these

831

are called the short quartets. The reconstruction of the tree from these short
quartets involves solving a special case of a problem which is in its general form
NP-complete [15]. The method we use to reconstruct the topology on each quar-
tet is not specified; if we can afford the time, we may elect to use maximum
likelihood which has great statistical power, but which is computationally too
expensive to use for all but small trees. However we do not know apriori which
quartets are short quartets. Thus, the method we actually employ is a greedy
method, which surprisingly can be shown to have high probability of accurate
reconstruction of the topology provided that the sequence length is adequate,
even if we reconstruct topologies on quartets using the same (simple and not
particularly statistically powerful) method used by the Naive Method!

3.1 Short Quartet Consistency

We begin by defining the notion of an edi-subtree.

Definition5. The topological distance between two leaves i and j in a tree T
is the number of edges on the path between i and j, and the topological length
of a path P is the number of edges on P. Consider the subtrees of a binary
T obtained by deleting a single edge e in T but not the endpoints of e; call
such subtrees edi-subtrees (for edge-deletion-induced). Each such edi-subtree can
be considered a rooted tree, by rooting it at the endpoint of e to which it was
originally attached. Given an edi-subtree t, rep(t) denotes a leaf in t closest to
the root of t. Two edi-subtrees which are disjoint and whose roots are distance 2
apart are said to be sibling edi-subtrees. In order to simplify the discussion, we
may abuse the notation and let t also denote the leaf set of the edi-subtree t.

We give some more definitions.

Definition 6. Let the depth of an edi-subtree in T be the number of edges on
the path from e to the nearest leaf, and let the depth of T (denoted by d(T)) be
the maximum depth of any edi-subtree in T. We say that a path P in the tree
T is short if its length is at most 2d(T) + 2. The quartet i,j, k, I is said to be a
short quartet if it induces a subtree which contains a single edge connected to
four disjoint short paths.

Thus, the depth of a complete binary tree of n leaves is log2 n - 1 but the
depth of a caterpillar (a tree consisting of a long path with leaves hanging off
the path) is just 1. Consequently, every quartet in a complete binary tree on n
leaves is a short quartet, but there are only 0{n) short quartets in a caterpillar.

We now proceed with the description of the algorithm which we will use to
construct binary model trees from a set of topologies on quartets. Our algorithm
operates by determining siblinghood, first of leaves, and then of larger and larger
rooted edi-subtrees, until the tree is constructed from the leaves inward. The
determination of siblinghood of edi-subtrees is based upon detecting witnesses
and anti-witnesses among the quartets, which we now define.

832

Definition 7. Given a quartet {i,j, k,l} of leaves, we will denote by ij\kl the
induced topology on i, j, k, I in which i and j are separated in T from k and / via
a path. Let £1 and £2 be two edi-subtrees. A witness to the siblinghood of t\ and
£2 is a short quartet {u,v,w,x} with topology uv\wx such that u £ ti, 1; 6 £2,
and {w,a;}n(£1 U^) = 0- We call such quartets witnesses. An anti-witness to the
siblinghood of ti and £2 is a short quartet {p, 9, r, s} with topology p#|rs, such
that p € ti, r e t2, and {g,s} n (£1 U£2) = 0- We will call these anti-witnesses.

We now present the property upon which the algorithm is based:

Axiom 1 Let t\ and £2 be disjoint edi-subtrees of T and assume T — t\ — £2 has
at least two leaves. Then t\ and £2 are siblings if and only if the following two
conditions hold:

1. There are leaves y and z such that the quartet {rep(t\),rep(t2),y,z} is a
witness to the siblinghood of t\ and £2, and

2. If there is an antiwitness to the siblinghood of £1 and £2, then there is a
witness for it as well.

This axiom provides the basis for determining if there is at least one tree
consistent with the constraints in the set of quartets, but may not be enough
to verify that there are not two such trees. Verifying uniqueness of the solution
turns out to be easy, fortunately, but it is also necessary due to the way in which
we selectively apply the short quartet consistency algorithm.

In each edi-subtree, there may be more than one leaf that is closest to the root
of the subtree (in terms of the number of edges on the path from the leaf to the
root). However, among all such closest leaves in each edi-subtree, there is a unique
leaf which has a smallest label, if the species are labelled by 1,2, ...,n. We call this
leaf the smallest representative of the edi-subtree. This allows us to define
a special set of short quartets, which we call the representative quartets, as
follows. Each short quartet is composed of a single edge e = (a, b), so that if we
delete both a and b from T we create four edi-subtrees. We will say that a short
quartet is a representative quartet if its leaves are the smallest representatives
of the four edi-subtrees created in this manner. Then the following can be shown:

Theorem 8. If a binary tree T is consistent with a set Q of quartet topologies
such that Q contains all representative quartets, then T is uniqely consistent with

This observation and the axiom above suggests the following algorithm:

— Start with every leaf of T (i.e. the taxa) defining an edi-subtree.
— While the graph has more than three edi-subtrees, do:

• Form the graph on vertex set given by the edi-subtrees, and with edge
set defined by siblinghood; i.e., (x, y) is an edge if and only if edi-subtrees
x and y satisfy the conditions of Axiom 1 for siblinghood.

833

* Make a sibling pair out of each connected component, and make the
roots of the edi-subtrees in that connected component children of
a common root r, and replace the pair of edz-subtrees by one edi-
subtree.

* If no new sibling pairs are found, then return fail.
• If there are at most three ed«-subtrees left, connect their roots each to

one internal node, and call the resultant tree T.
- Verify that T satisfies all the constraints given in the input, and that Q

contains the representative quartet for every edge in T. If so, return T, and
else return fail.

The correctness of this algorithm follows from the discussion above, and the
runtime of this algorithm depends upon how the two edi-subtrees are found that
can be siblings. It is obvious that this can be achieved in polynomial time, but
the details of the implementation are omitted due to space constraints.

Theorem 9. Given a set Q containing all short quartets of a tree T and satis-
fying Axiom 1, we can determine T in 0(\Q\ logn + n2logn) time.

3.2 The entire method

We now describe how we use the short quartet consistency algorithm to construct
the tree. One issue we address is how we select the set of quartets to consider.
As it turns out, this is done in a greedy fashion, which we now describe:

Definition 10. We define the similarity between sequences i and j to be
s(jj) = i _ 2H(i,j)/k, where k is the sequence length, and H(i,j) is
the Hamming distance of sequences i and j. Let Q be the set of all pos-
sible quartets on [n], and let Qw be those quartets a,b,c,d such that
min{s(a, b), s(a, c),s(a, d),s(b, c),s{b, d), s{c, d)} > w.

On a given set Qw, the result of applying the Short Quartet Consistency algo-
rithm will either be a binary tree that is uniquely consistent with all the topology
constraints in Qw, or fail. This permits us to define our method as follows. The
structure of the method is to do a "halving" search among the w by applying the
Short Quartet Consistency algorithm to Qw. starting with w = 1/2,1/4, etc.,
until we either find a tree that is uniquely consistent with the Short Quartet
consistency algorithm or realize that no such tree can be found (this evidence
of failure occurs when w < l/k). We can show that with high probability, given
adequate sequence length this search will examine a set Qw which contains all
short quartets and which also satisfies Axiom 1. Consequently, in polynomial
time we will reconstruct the tree topology.

Theorem 11. The Short Quartets Method takes 0(n4 logn log k + n2k) time in
the worst case. On any input d of distances derived from sequences generated on
a model tree T, if the Naive Method accurately reconstructs the topology of T
from d then SQM will also accurately reconstruct the topology of T from d.

834

A more realistic analysis of the running time of the Short Quartet Method is
based upon analyzing typical trees can be obtained by using Theorem 13. Typical
trees under both the uniform and Yule-Harding distributions have 0 (log log n)
depths. If the pe probabilities on the edges of a tree of depth 0(log log n) are
equal or almost equal, then certain Qw's with \QW\ = 0(n polylogn) will yield a
tree through the consistency algorithm, and the halving search will hit such a w,
with probability 1 — o(l). Consequently, for typical tree shapes and for mutation
probabilities that just slightly vary, applying the Short Quartet Method is likely
to take only 0(n2k + n2 logn) time.

We now state our main result:

Theorem 12. Suppose k sites evolve under the Cavender-Farris model on a
binary tree T, so that for all edges e, pe £ [/, g], where we allow f,g to be
functions of n. Assume that g is separated from 1/2. The Short Quartet Method
returns the tree T with probability 1 — o(l), if

fc>
c'lQgn m

(1 - VT^7)2(1 - 25)«eptft(T) ^ I

where c is a fixed constant.

4 Depth vs. Diameter of Random Trees

We have shown that the sequence length needed by our method depends expo-
nentially upon the minimum of the depth or the diameter of the tree it attempts
to reconstruct. We study these topological quantities in this section.

Two simple models for describing semi-labelled binary trees are the uniform
model, in which each tree has the same probability, and the Yule-Harding model,
studied in [2, 3, 10]. This distribution is based upon a simple model of speciation,
and results in "bushier" trees than the uniform model.

The following results are needed to analyse the performance of phylogeny
reconstruction algorithms on random binary trees. Recall the definitions of depth
and diameter from Section 3.

Theorem 13. a) For a random semilabelled binary tree T with n leaves under
the uniform model, d{T) < (2 + o(l)) log2 log2(2n) with probability 1 — o{\),
and diam(T) > e^/n with probability 1 — 0(e2).

b) For a random semilabelled binary tree T with n leaves under the Yule-Harding
distribution, d(T) — O(loglogn) and diam(T) = (9(logn), with probability
l-o(l)

4.1 Analysis of the Short Quartet Method

In [6], Farach and Kannan proposed a method (FK) for reconstructing Cavender-
Farris trees based upon applying the 3-approximation of Agarwala et al (dis-
cussed in Section 2) for the Loo-nearest tree problem to corrected distances.
They proved that the method converged quickly for the variational distance (a

835

related but different concern than the topology estimation), but did not analyze
the convergence to the topology of the model tree. Recently, Kannan extended
the analysis (personal communication) and obtained the following counterpart
to (1): If T is a model tree with mutation probabilities in the range [f,g], and if
sequences of length k' are generated on this tree, where

k'>
■ logn

/2(1 - 2g)2diam(T)'
(2)

and c' is some constant, then with high probability the result of applying Agar-
wala et al to Cavender-Farris distances will be a tree with the same topology as
T.

We now compare the sequence length requirements for the Short Quartet
method as compared to the 3-approximation algorithm for the nearest Loo-tree.
Comparing this formula to (1), we note that the the comparison of depth and
diameter is the most important issue. We always have diam(T) > 2depth(T) +1.
The constants do not affect the comparison unless the depth and the diameter
are close to each other, which in general they are not (from our earlier results,
for almost all trees, the depth is O(loglogn) while the diameter is 0(y/n), under
the uniform distribution, while for the Yule-Harding distribution, the depth is
still O(loglogn) and the diameter is J?(logn). Consequently, the Short Quartet
Method requires much shorter sequence lengths than the Agarwala et al algo-
rithm for almost all binary trees.

We summarize these results in the following table.
range of mutation probabilities on edges:

[f,g]
/, g are constants

1 log log n
log n' log n

binary trees
worst-case

SQM
FK

polynomial
superpolynomial

polylog
superpolynomial

random binary trees
(uniform model)

SQM
FK

polylog
superpolynomial

polylog
superpolynomial

random binary trees
(Yule-Harding)

SQM
FK

polylog
polynomial

polylog
polylog

This comparison establishes that our method requires significantly shorter
sequences in order to ensure accuracy of the topology estimation than the algo-
rithm of Agarwala et al, for almost all trees under both probability distributions.
The trees for which the two methods need comparable length sequences are those
in which the diameter and the depth are as close as possible - such as complete
binary trees. In these cases, the previous analysis given in Section 3 indicates
that SQM will nevertheless need shorter sequences than Agarwala et al will need
to obtain the topology with high probability.

Although their running time is likely to be faster than ours on most data
sets, our method is fast enough to be useful for all data sets that we might wish
to analyze (even up to several thousand sequences). The real advantage of this
method is its increase in accuracy on sequences of realistic length.

836

However, both algorithms are fast enough to make real-time computation of
evolutionary trees feasible even for very large (n = 500 to 1000) data sets. This
means that the issue of accuracy realistically is the most important issue, and
needs to be the focus of the study.

5 Lower bounds

A careful analysis of the table above concerning the sequence length needed by
the short quartet method reveals that for almost all trees under either distribu-
tion, the required sequence length grows polylogarithmically in the number of
taxa for each fixed range of mutation probabilities. In this section, we show that
this is a polynomial of the minimum possible sequence length for any method,
whether deterministic or randomized.

We will henceforth assume that all trees we consider are binary trees bi-
jectively leaf-labelled by the elements of {l,2,...,n} = [n]; we will call these
semi-labelled binary trees. Since the number of semi-labelled binary trees on n
leaves is (2n - 5)!!, encoding deterministically all such trees by binary sequences
at the leaves requires that the sequence length, k, satisfy (2n - 5)!! < 2nk, i.e.
k = J?(logn). We now show that this information-theoretic argument can be
extended for arbitrary models of evolution and arbitrary deterministic or even
randomized algorithms for tree reconstruction. For each semi-labelled binary
tree, T, and for each algorithm A, whether deterministic or randomized, we will
assume that T is equipped with a mechanism for generating sequences, which
allows the algorithm A to reconstruct the topology of the underlying tree T from
the shortest possible sequences with constant probability.

Theorem 14. Let T be a tree with n leaves labelled by sequences of {0, l}k, and
let A be an arbitrary algorithm, deterministic or randomized. For A to be able
to reconstruct the topology of T from the sequences at the leaves with probability
greater than 1/2 (respectively greater than e), it must hold that (2n - 5)!! < 2nk

(respectively, (2n - 5)!!e < 2nk), and so k = J?(logn).

The Theorem above shows that model and algorithm have to be a very good
match, if not much more than logn length sequences suffice for tree reconstruc-
tion with high probability for each trees. In view of the very mild conditions, it
is amazing, that this bound basically can be attained by our SQM, applied to
the Cavender-Farris model!

6 Acknowledgements

Thanks to Ken Rice for carefully reading the manuscript for biological accu-
racy and Scott Nettles for advice about data structures. This research was sup-
ported by an NSF Young Investigator Award CCR-9457800, a David and Lucille
Packard Foundation fellowship, and generous research support from the Penn
Research Foundation and Paul Angello to the fourth author. The second author
was supported by the New Zealand Marsden Fund. The first and third authors
were supported in part by the Hungarian National Science Fund contracts T 016

837

358, T 019 367, and European Communities (Cooperation in Science and Tech-
nology with Central and Eastern European Countries) contract ERBCIPACT
930 113. This research started when the authors enjoyed the hospitality of DI-
MACS during the Special Year for Mathematical Support to Molecular Biology

in 1995.

References

1. R. Agarwala, V. Bafna, M. Farach, B. Narayanan, M. Paterson, and M. Thorup.
On the approximability of numerical taxonomy: fitting distances by tree metrics.
Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms,
1996.

2. D. J. Aldous, Probability distributions on cladograms, in: Discrete Random Struc-
tures, eds. D. J. Aldous and R. Permantle, Springer-Verlag, IMA Vol. in Mathe-
matics and its Applications. Vol. 76, 1-18, 1995.

3. J. K. M. Brown, Probabilities of evolutionary trees, Syst. Biol. 43(1), 78-91, (1994).
4. P. Buneman, The recovery of trees from measures of dissimilarity, in Mathematics

in the Archaeological and Historical Sciences, F. R. Hodson, D. G. Kendall, P.
Tautu, eds.; Edinburgh University Press, Edinburgh, 1971, pp. 387-395.

5. J. Cohen and M. Farach, Numerical Taxonomy on Data: Experimental Results.
SODA '97 and RECOMB '97.

6. M. Farach, and S. Kannan, Efficient algorithms for inverting evolution, Proceedings
of the ACM Symposium on the Foundations of Computer Science, 230-236, (1996).

7. J. Felsenstein, Cases in which parsimony or compatibility methods will be posi-
tively misleading, Syst. Zool., 27, 401-410 (1978).

8. J. Felsenstein, Numerical methods for inferring evolutionary trees, Quarterly Re-
view of Biology, 57 (1982), pp. 379-404.

9. W. Fitch, A non-sequential method for constructing trees and hierarchical classi-
fications. J. Mol. Evoi, (18):30-37, 1981.

10. E. F. Harding, The probabilities of rooted tree shapes generated by random bifur-
cation, Adv. Appl. Probab. 3, 44-77, (1971).

11. D. Hillis, Approaches for assessing phylogenetic accuracy. Syst. Biol. 44(1):3-16,
1995.

12. D. Hillis, J. Huelsenbeck, and D. Swofford, Hobgoblin of phylogenetics? Nature,
Vol. 369, 1994, pp. 363-364.

13. J. Neyman, Molecular studies of evolution: a source of novel statistical problems.
Pages 1-27 of Gupta, S.S. and J. Yackel (eds), Statistical Decision Theory and
Related Topics. New York: Academic Press, 1971.

14. D. Penny, M. Hendy, and M. Steel, Progress with methods for constructing evolu-
tionary trees. Trends Ecol. Evol. (7): 73-79, 1992.

15. M. A. Steel, The complexity of reconstructing trees from qualitative characters
and subtrees, J. Classification, 9, 91-116 (1992).

Termination of Constraint Logic Programs

Salvatore Ruggieri

Dipartimento di Informatica, Universitä di Pisa
Corso Italia 40, 56125 Pisa, Italy
e-mail: ruggieri@di.unipi.it

Abstract. In this paper, we introduce a method for proving universal
termination of constraint logic programs by strictly extending the ap-
proach of Apt and Pedreschi [1]. Taking into account a generic constraint
domain instead of the standard Herbrand univers, acceptable (CLP) pro-
grams are defined. We prove correctness and completeness of the method
w r t the leftmost selection rule for the class of ideal constraint sys-
tems, including CLP(fcii„), CLP(ftT), and CLP(^T) among the oth-
ers. Moreover, we investigate the problems arising in extending those
results to non-ideal constraint system, by specifically designing sufficient
conditions for termination of CLP(7i) programs.

1 Introduction

Motivations for the termination analysis of logic programs are related to sev-
eral topics, including systematic program development, control generation, non-
monotonic reasoning, decidability issues, applications to abstract interpretation,

program transformation and testing.

There are many contributions in the literature on termination of logic and Prolog
programs (see [9] for a recent survey). However, research has been mainly focused
on Prolog programs. Only recently other logic programming (LP) paradigms
have been considered, including logic programs with delay declarations, and

constraint logic programming (CLP).

Jaffar and Malier claim in their survey [6], that "the CLP Scheme provides a
framework in which the lifting of results from logic programming to CLP is al-
most trivial". As shown in [7], that statement is certainly true for many results,
including the equivalence of declarative, functional and operational semantics.
However, we will show that a well-known declarative proof method for termina-
tion of logic programs can be easily extended only to a restricted class of systems,
namely ideal constraint systems. In those systems, the consistency test is cor-
rect and complete, in the sense that a computation proceeds iff the accumulated

constraints are satisfiable.

Although the class of ideal constraint systems includes CLP (Hun), CLP(UT),
PJSC-CLP(Real) and CLP(JT) among the others, several real systems are not
ideal. As the most representative example, in CLP(fc) [5] non-linear constraints
are delayed until some variables in these constraints get unique values during

839

the further computation process so that the constraints become linear. If a com-
putation stops with some delayed non-linear constraints, the system generates
a "maybe" answer, i.e. the test cannot ensure consistency of all the answer con-
straints since the test has been performed only on the linear ones. The delaying
of passive constraints is a mechanism for bounding the computational complexity
of the constraint solver. Unfortunately, this prevents an early failure detection

and may be the cause of infinite derivations.

In this paper, we introduce a method for proving universal termination of con-
straint logic programs with respect to a leftmost selection rule. We extend the
approach of Apt and Pedreschi [1], which declaratively characterize the class of
logic programs such that every LD-derivation starting with a ground query is
finite, namely acceptable logic programs. On the one hand, we lift their results
to ideal constraint systems, by taking into account a generic constraint domain
instead of the standard Herbrand univers. On the other hand, we improve the
method by providing a stronger completeness theorem even in the case of pure

logic programming.

Concerning non-ideal constraint systems, we study termination of CLP(7?.) pro-
grams by specifically designing two sufficient conditions. Both of them are aimed
at preventing the involvement of non-linear constraints in the termination anal-
ysis, either by removing them from the analysis, or by imposing a notion of
well-modedness which ensures that non-linear constraints become linear at run-

time.

Preliminaries We will use throughout the paper the terminology of JafFax and Mä-
her [6]. By a program we mean a constraint logic program, i.e. a set of clauses of
the form A <— Bi ,... , Bn where A is an atom and each B,,i € [l,n], is either an
atom or a constraint. A flat program is a program in which every atom has the form
p{X\ ,... , Xn), where X\ , ... , Xn are (not necessarily distinct) variables.

A constraint domain V is a first order structure on the signature E of the con-
straints. We denote with D the domain of V. A ^-interpretation of a program P is
an interpretation of P with the same domain as V and the same interpretation for the
symbols in E as V. It can be represented as a subset of B^,, where B% is the set of
atoms of the form p(ai ,... ,an), with a; £ D for i £ [l,n], and p n-ary predicate
symbol appearing in P. When P is clear from the context, we write 5p. A X>-model
of P is a P-interpretation of P which is also a model of it.

We write V \= cd when the constraint c is true in V w.r.t. the valuation ■&. Given
an atom p(ti ,... , tn) and a valuation ■&, p(t% ,... ,t„)d stands for p(ii$,... ,tnd),
where t,$ is the value of t, in the valuation ■&. Analogously for queries and clauses.
A X>-ground instance of a clause C is then any C$, where D is a valuation. For a V-
interpretation / and a X>-ground atom A, we write / |= A iff A € /• For a ©-ground
constraint c, we write / |= c iff T> \= c.

Those definitions easily extend to a many-sorted language.
The operational semantics of a constraint system is characterized by a transition

relation —>■ defined in terms of the relations —► r, —► c, —* i, —► s and of the functions
infer and consistent, as described in [6]. infer is required to satisfy infer(C,S) =
(C',S')^V\= CAS»C"AS'.

840

consistent is required to satisfy consistent(C) =>■ V \= 3C.
N is the set of natural numbers. 7V°° is N U {oo}. The list-length function // is

defined as follows: ll(f(ti ,...,<„)) is 0 if / # [.|.] and ll{t2) + 1 if f(h ,... ,tn) =
[h\t2]. In particular, the length of an infinite list is oo. size(t) is the number of symbols
occurring in a term t. For a pair {C,S), we define the projection on the first element

(C,S)1=C.

2 Termination in LP

A largely acknowledged termination proof method for logic programs was pro-
posed by Apt and Pedreschi in [1], where the class of acceptable logic programs
was introduced. First of all, we recall the basic notions of level mappings and
ground instances of logic programs.

Definition 1. Given a logic program P

- a level mapping for P is a function \ \: BP -+ N of ground atoms to natural

numbers. | A | is called the level of A.
- ground(P) denotes the set of ground instances of clauses from P. □

Intuitively, a program is acceptable if every time a clause is used in a LD-
derivation, the level of the head of any of its ground instances is greater than
the level of each atom in the body which might be selected further.

Definition2. Let P be a logic program, and 7 C BP a Herbrand interpreta-

tion.

- P is acceptable by \ |: BP -»■ N and I iff 7 is a model of P, and for every
A <— Bi ,... , Bn in ground(P) : for i G [1, n]

7 |= B\,..., 5,_! implies \ A\ > \ B, |

- A query Q is acceptable by \ | and I iff there exists k G N such that for every
ground instance A\ ,... , An of it: for i G [1, n]

7 |= Ai,..., Ai-i implies k > \ Ai \ D

We summarize the main termination properties of acceptable programs in the
following Theorem (see [1] for a proof).

Theorem 3. Every LD-derivation for a logic program P and query Q both ac-

ceptable by | | and I is finite.
Conversely, if every LD-derivation for P and Q and for P and every ground

query is finite then P and Q are acceptable by some | | and I. □

Intuitively, a generalization of acceptability to the CLP Scheme has to consider
©-ground instances of clauses, in order to involve the constraint domain to the
proof level. As an example, MEMBER

841

member(X, [X I Xs]).
member(X, [YI Xs]) *- member(X, Xs).

and the query Xs = [aI Xs] , member(b, Xs) show different termination be-
haviors when considering finite trees or rational trees as the underlying constraint
domain.

Definition4. Given a program P defined on a constraint system V,

- a level mapping for P is a function | | : B-p —>• N°° of X>-ground atoms to
natural numbers plus infinitum. | A | is called the level of A.

- groundv(P) denotes the set of X>-ground instances of clauses from P. □

Though it is clear why we consider now B-p, it is less obvious why we include
oo in the codomain of level mappings. The underlying objective is to be able
to partly reason on termination of programs and a restricted class of queries.
In the case of MEMBER, for instance, it is still legitimate to consider queries of
the form member(2, t) where t is a finite list, since non-termination arises only
for infinite lists. To this end, we extend the > order on natural numbers to the
relation > , defined as follows:

n> m iff n = oo ov n > m

Therefore, oo> a for every a £ 7V°°, and for n £ N, n> m iff m € N and
n > m. It is worth noting that although > is not an ordering relation, there is
no infinite descending chain n\ > n^ > ... when n\ £ N.

3 From LP to ideal CLP

Acceptability extends to constraint logic programs by replacing the Herbrand
univers with the constraint domain, and the ordering > with the relation > .

Definition5. Let P be a program on the constraint system V, I C B-p a V-
interpretation and | | a level mapping for P.

- P is acceptable by | | and I iff I is a P-model of P, and for every
A <— B\ ,... , Bn in groundz>(P): for i £ [1, n], if Bi is an atom then

/ |= B\,..., Bi-i implies \ A \ > | 5, |

- A query Q is acceptable by | | and I iff there exists k £ N such that for every
D-ground instance A\ ,... , An of it: for i £ [1, n], if A' is an atom then

I \= Ai,... ,Ai-i implies k>\A(\ n

842

The definition above is quite similar to Definition 2, except for the fact that now
we consider atoms whose level is infinitum, and do not require the decreasing of
the level mapping from the head of a £>-ground clause to the constraints in the
body. The latter choice is only a matter of convenience, since the most natural

level of a constraint should be always 0.
Relation > plays two roles. On the one hand, it prevents us from reasoning about
badly-typed clauses, i.e. those for which the level of the head is infinitum. In fact,
if the level j^4j of the head of a £>-ground clause is infinitum, the requirement
\A\> \B{\ in Definition 5 is trivially satisfied for every r. On the other hand, >
plays the same role of the > order on naturals when the level of the head is

finite.
We recall from [6] the definition of ideal constraint systems. We denote with
{C,S) a. pair of sets of active and passive (i.e., delayed) constraints.

Definition 6. A constraint system with operational semantics defined by —► ,

consistent and infer is called ideal if

(l) —' = —' ris T 'r eis i

fiij for every (C, S), infer(C, S) = (C U S, 0)
(Hi) for every C, consistent(C) o£> |= 3C. D

Therefore, the operational semantics of ideal constraint systems is defined in
terms of —► ris and —► cis transitions, the inferred active constraint set Cö S
gathers all the information of the pair (C,S), and the consistency test is com-
plete. CLP(7eKn), CLP(TIT),CLP(JT), RISC-CLP(fc) fall in this class. On the
contrary, full CLP(ft) [5] is not ideal, since non-linear constraints are delayed

until they become linear.

As an example, let us consider the clp(ftT) (alias Prolog without occur check)
program CURRY, which implements the rules of a simple Curry's type system.
The query type(E,M,T) is intended to calculate the type T of a term M in
the environment E. Since the elements of the domain are rational trees, recursive
polymorphic types are allowed, such as the solution of the equation a = a —>/?.
The answer constraint for the query

type(0, lambda(x, apply(var(x), var(x))), T). (1)

binds T to the type a.

type(E,var(X),T) <- in(E,X,T).
type(E,apply(M,N),T) «- type(E,M,arrow(S,T)) , type(E,N,S).
type(E,lambda(X,M),arrow(S,T)) <- type([(X,S)|E],M,T).

in([(X,T)|E],X,T).
in([(Y,Tl)|E],X,T) ^X ^ Y, in(E,X,T).

CURRY and the query (1) are both acceptable by | | and B-RT, where

|type(£, M, T)\ = 11(E) + size(M)

843

|in(£, X, T)\ = 11(E)

On the other hand CURRY and a query such as

M - lambda(x,M),type(0,lambda(x,M),T)

are not acceptable by a same level mapping and interpretation. In fact, they
have an infinite LD-tree. In general, CURRY and a query type(£, M, T) may
not terminate when M is an infinite term. The use of oo in the codomain of
level mappings covers the situations in which we are interested to reason on
termination of a restricted class of queries. As another example, consider the
well-known test & generate programming technique:

program(X, Y) <-test(X, Y), generate(X, Y).

test creates a network of constraints between the variables, whilst generate
instantiates the variables. When reasoning on termination, we have to show the
decreasing of the level mapping from the head to the generate atom in the body
only for those P-ground instances that pass the constraint network. Thus, we
should not be worried about the possible divergence arising for generate atoms

that do not satisfy the test constraints.

The following theorem states termination of acceptable programs and queries.
It extends the first part of Theorem 3 to ideal constraint systems.

Theorem 7. (Termination Correctness) Consider an ideal constraint system,
and a program P and a query Q both acceptable by | | and I. Then every LD-

derivation for P and Q is finite. a

Consider again CURRY. By the theorem, we conclude that the LD-tree of the

query (1) is finite.

Focusing on termination completeness, we present a result that extends the
second part of Theorem 3. It is even more general, since we relax the hypothesis
that the LD-tree of the program and every ground query is finite. In other words,
our notion of acceptability is a correct and complete characterization of universal
termination with respect to leftmost selection rules.

Theorem 8. (Termination Completeness) Consider an ideal constraint system,
a program P and a query Q such that every LD-derivation for P and Q is finite.
Then there exist | | and I such that P and Q are both acceptable by | | and I. O

4 From ideal CLP to CLP(7£)

Let us consider now the following program FACT for computing factorial numbers:

844

fact(0, 1).
factd, 1).
iact(N, N * F) *-F >= 1, N >= 2, fact(N-l, F) .

A query such as fact(4,F) is intended to compute the 4th factorial number,
i.e. 24. Moreover, the same program can be used to check whether a number is
factorial, by means of a query such as Q = fact(N, 24). We point out that
FACT and Q are both acceptable by | | and B-R. where

|fact(n, f)\ = int(f)

where int{f) is the integer part of a real /. From Definition 5, the only proof

obligation we have to show is that

int(n ■ f) > int(f)

when / > l,n > 2.

Running the program and the query Q on a RISC-CLP(Real) system, the result-
ing LD-tree is finite. In fact, as RISC-CLP(Real) is ideal, termination is a conse-
quence of Theorem 7. On the contrary, the LD-tree built by the CLP(fc) system
is infinite, since the system eventually runs into an infinite loop by applying the
third clause again and again. As CLP(ft) delays the non-linear constraints, their

unsatisfiability is never checked.

As often it happens, real programming language implementations deviate from
theoretically desirable properties. They often sacrifice completeness of the con-
sistency test for efficiency reasons. The consistency test on passive constraints
is delayed until they are sufficiently instantiated. This is the case, for example,
of non-linear constraints in CLP(ft). As a consequence, the computation may
proceed even in the case that the accumulated constraints are unsatisfiable.

A simple extension of our approach to generic systems is then to prevent the use
of any declarative reading of programs in the termination proofs.

Definition 9. A program P is recurrent by | | iff for every A<— B\ ,... ,Bn in
groundv(P): for i G [1, n], if 5; is an atom then \ A \ > \ Bt \ . □

The definition of recurrent queries is derived accordingly. It can be easily shown
that any derivation is finite with respect to any selection rule, when considering
programs and queries both recurrent by a same level mapping. Recurrent pro-
grams extends recurrent logic programs introduced by Bezem [2]. As an example,

consider the program MAP, defined in CLP(7?.).

map([], []).
map([X|Xs], [YlYs]) <- Y = X * X, map(Xs, Ys) .

It is easy to see that it is recurrent by defining |map(Z,s, Rs) | = ll(Ls). However,
if we rewrite MAP in a flat form, namely the following MAPFLAT

845

map(A, B) <- A = [] , B = [] .
map(A, B) <- A = [XlXs], B = [Y|Ys], Y = X * X, map(Xs, Ys).

we obtain a program that is not recurrent.

In the rest of this section, we give some sufficient conditions specially designed
for termination of CLP(7?.) programs together with a generalization of the un-
derlying insights to other non-ideal constraint systems.

A first idea is to exclude non-linear constraints from the termination analysis.
Next theorem states that if a program and a query with their non-linear con-
straints removed terminate, then the original program and query do terminate.

Theorem 10. Consider the CLP(TZ) system. The LD-tree for a program P and
a query Q is finite if P' and Q' are both acceptable by | | and I, where P' (resp.,
Q') is obtained by deleting all non-linear constraints from P (resp., Q). □

Intuitively, the conclusion follows since adding constraints to a clause implies
having shorter derivations.
Consider again the MAPFLAT program. It is immediate to observe that the non-
linear constraint Y = X * X does not play a relevant role in termination of a
query such as map([X,3,5] ,Z). In fact, termination is given by the decreasing
of the length of the list in the first argument of map. By deleting Y = X * X we
get the program MAPFLAT'

map(A, B) <- A = [], B = [] .
map(A, B) <- A = [X|Xs], B = [Y|Ys], map(Xs, Ys).

which is acceptable by | | and B-JI, where | map(Ls, Rs) | = ll(Ls). Therefore,
we conclude that the LD-tree for MAPFLAT and map([X,3,5] ,Z) is finite.

In general, we have a stronger result for a large class of constraint systems.

Definition 11. A constraint system with operational semantics defined by —+ ,
consistent and infer is called incremental if —*■ = —► ris + -^ds, and

[M]for every 5" C S, consistent{infer{^,S)\) => consistent(infer($, S")i)
[I] for S, S' sets of constraints, and C set of active constraints

consistent(infer(infer(C, S) U (0, S'))0 & consistent(infer(C, S U S)i) D

As an example, ideal constraint systems and CLP(7£) are incremental. Basi-
cally, [M] requires monotonicity of consistent and infer - a condition naturally
satisfied in all practical systems.

[I] is an incrementality requirement. Starting from a pair (C, S), if applying
infer first, then adding the constraints in 5" and then re-applying infer we
obtain a consistent state, then the state obtained by applying infer only once
to (C, S U S') should be consistent as well, and vice-versa.

846

Theorem 12. Consider an incremental constraint system. The LD-tree for a
program. P and a query Q is finite if the LD-tree for P' and Q' is finite, where
P' (resp., Q1) is obtained by deleting some constraints from P (resp., Q). D

However, this approach is not sufficient to prove termination when it depends on
non-linear constraints. Consider the program SqRT for computing square roots

of naturals.

srqt(X, R) <- A = 0, sqrt2(X, A, R).

sqrt2(X, A, A) <- (A+1)*(A+1) > X.
sqrt2(X, A, B) <- (A+1)*(A+1) < X, Al = A + 1, sqrt2(X, Al, B) .

If we remove the non-linear constraints, we get a program that has an infinite
LD-derivation for any query by applying the third rule again and again. In
addition, the non-linear constraints become linear at run-time iff sqrt2 is called

with the second argument ground.

To properly reason on programs containing non-linear constraints that become
linear at run-time, we introduce a notion of moding. Without any loss of gener-

ality, we restrict to consider flat programs.

Definition 13.

- Consider an n-ary predicate symbol p. A mode for p is a function dp from
{1,.. ., n] in {+, -,)*}• If dp(i) =' +' we call i an input position. If dv(i) ='
-' then i is called an output position. If dp(i) =' ft then i is called a blank
position (with respect to dp.) We write dp in the formp(dp(l),.. .,dp(n)).

- A mode for a constraint c(Xi ,... ,Xn) whose variables are X\ , ■ ■ ■ , X„
is a function dp from {Xi ,... , Xn } in {+, -, JJ}. We write dp in the form
c(A'id;,(l),...,Xndp(n)).

- For an atom or a constraint A, we write A(X,Y, Z) to denote that X are
the variables occurring in input positions, Y are those occurring in output
positions, and Z are those occurring in blank positions.

- We say that a flat program P is well-moded iff for every clause

A0(Y0,Xn+1,Z0)*-A1(X1,Y1,Z1),...,An(Xn,Yn,Zn)

of P, for i € [1, n + 1] X;CU k<iYk ■
- We say that a flat query A^X^YuZy),.. .,An{Xn,Yn, Z„) is well-moded

ifffori€[l,n] X,- C Ut<,-Yt.
G

The intuition underlying this definition is to force the input variables in an atom
or a constraint selected along a LD-derivation to be grounded by the active
constraints. Variables not involved in the input-output relation are marked as

blank.

Suppose now that the moding of the constraints is consistent with the operational
semantics, i.e. if a constraint c(X,Y,Z) is selected and the active constraints

847

imply X = a for some tuple a of elements of the domain, then the active con-
straints of the resolvent (if exists) imply Y = b for some tuple b. Under this
assumption, when a non-linear constraint is selected then the input variables
are grounded by the active constraints. We can exploit this fact to impose that
non-linear constraints become linear at run-time.

Definitionl4. A moding for a program P (resp., a query Q) is consistent w.r.t.
CLP(7?.) if for every constraint c(X, Y,Z) in P (resp., Q) either

(i) Y is an empty tuple and c(X, Y, Z) is linear in Z, or
(ii) Y is a tuple of only one variable, Z is an empty tuple and c(X, Y, Z) is an

equation linear in Y. n

It is worth noting that both well-modedness and consistency w.r.t. CLP(7?.) are
syntactic notions. Consider again the program SQRT. It is immediate to see that
it is well-moded with the moding

sqrt(>, }), sqrt2(>, +, JJ), A- = 0
(A++1)*(A++1) > Xjf, (A++1)*(A++1) < Xjf, Al- = A+ + 1.

Moreover, the moding for the constraints is consistent w.r.t. CLP(TZ). Next the-
orem relates modings, acceptability and termination by providing a sufficient
condition for termination of well-moded acceptable CLP(7£) programs.

Theorem 15. Consider the CLP(U) system. Let P and Q be well-moded flat
program and query and let the moding be consistent w.r.t. CLPfTZ). Suppose P
and Q are both acceptable by I and \ |. Then every LD-derivation for P and Q

is finite. n

The program SQRT and the query sqrt(n, R) for n £ TV are acceptable by B-JI

and | |, where

... (maxfx - a,0) ifx,aeN
sqrt2(x, a, b) \ = { v +u • 1 ^ ' I oo otherwise

I ,_(x + lifxeN
' ^ ' — (^ oo otherwise

Therefore, Theorem 15 allows us to state that the LD-tree for SQRT and sqrt(n,
R) is finite when n £ TV.

Theorem 15 can be used together with Theorem 12 in order to prove termination
of programs P and queries Q defined on CLP(7?.), by means of the following
strategy:

(i) delete some (non-linear) constraints from P and Q, and
(ii) show that the resulting program and query are well-moded and acceptable by

the same model and level mapping.

Finally, we point out that this approach is extendible to a generic non-ideal
constraint system by appropriately defining a notion of consistency of constraint
moding w.r.t. the system.

848

5 Conclusions

There is still little work on the extension of termination approaches to constraint
logic programming. The only papers we are aware of are [3] and [8]. [8] provides
sufficient conditions based on approximation techniques, with the aim of autom-
atizing the termination proof. [3] presents a necessary and sufficient condition for
termination based on a radically different approach from ours, which is inspired
by the works of Floyd on termination of flowchart programs. We also cite [4],
where a class of programs is characterized with no delayed constraints at the
end of successful computations. Also, that method is able to discover possible
sources of non-termination due to delaying of non-linear constraints.

We presented an extension to the CLP Scheme of a largely acknowledged ap-
proach to termination of logic programs. For a large class of constraint systems,
namely ideal constraint systems, we extend and improve on the results of [1],
showing stronger forms of correctness and completeness even in the case of pure
logic programming. In the second part of the paper, we investigated termination
specifically for the CLP(ft) system, by proposing two sufficient conditions.

References

1. K.R. Apt and D. Pedreschi. Studies in Pure Prolog: Termination. In J. W. Lloyd,
editor, Symposium on Computational Logic, pages 150-176. Springer-Verlag, Berlin,
1990.

2. M. Bezem. Characterizing termination of logic programs with level mappings. In
E. L. Lusk and R. A. Overbeek, editors, Proceedings of the North American Con-
ference on Logic Programming, pages 69-80. The MIT Press, 1989.

3. L. Colussi, E. Marchiori, and M. Marchiori. On Termination of Constraint Logic
Programs. In M. Bruynooghe and J. Penjam, editors, Proc. of PPCP'95, number
976 in Lectures Notes in Computer Science, 1995.

4. M. Hanus. Analysis of nonlinear constraints in CLP(R). In D. S. Warren, editor,
Proceedings of the 1993 International Conference on Logic Programming, pages 83-
99. MIT Press, 1993.

5. P. Stuckey J. Jaffar, S. Michaylov and R. Yap. The CLP(R) Language and System.
A CM Toplas, 14(3):339-395, 1992.

6. J. Jaffar and M.J. Maher. Constraint logic programming: A survey. Journal of
Logic Programming, 19,20:503-581, 1994.

7. M.J. Maher. A Logic Programming View of CLP. In D. S. Warren, editor, Proceed-
ings of the 1993 International Conference on Logic Programming. The MIT Press,
1993.

8. F. Mesnard. Inferring Left-terminating Classes of Queries for Constraint Logic Pro-
grams. In M. Maher, editor, Proceedings of the 1996 Joint International Conference
and Symposium on Logic Programming, pages 7-21. The MIT Press, 1996.

9. D. De Schreye and S. Decorte. Termination of logic programs: the never-ending
story. Journal of Logic Programming, 19-20:199-260, 1994.

The Expressive Power of
Unique Total Stable Model Semantics

Francesco Buccafurri,1 Sergio Greco2 and Domenico Saccä2

1 ISI-CNR, 87030 Rende, Italy
bucca@si.deis.unical.it

2 DEIS, Univ. della Calabria, 87030 Rende, Italy
{ greco, sacca }@si.deis.unical.it

Abstract. This paper investigates the expressive power of DATALOG-1

queries under unique T-stable model semantics, i.e., a query on a given
database yields an answer if and only if there exists a unique T-stable
model. Under this semantics DATALOG-1 queries are shown to express ex-
actly all decision problems with unique solutions. Obviously, unique T-
stable model semantics is the 'natural' semantics for queries with at
most one T-stable model or with exactly one T-stable model for every
database. The expressive powers of of these two classes of queries are
investigated as well but it turns out that any practical language for such
queries cannot get to an expressive power higher than DATALOG with
stratified negation.

1 Introduction

Total stable models (T-stable models) [9] provide a simple, yet powerful se-
mantics to DATALOG-', i.e., logic programming with negation but without function
symbols. One of the properties of stable models is their multiplicity: a program
may have from 0 to n T-stable models, where n can grows exponentially with
the size of the universe.

Multiplicity has been recognized by some authors as an important opportu-
nity for either expressing non-determinism or for increasing the expressive power
while preserving determinism (e.g., by taking the union or the intersection of all
models). On the other hand, multiplicity has been strongly criticized by many
other authors mainly because the canonical meaning of a logic program is tradi-
tionally based on a unique model. This criticism explains the great deal of inter-
est for special classes of DATALOG-1 programs with 'unique' T-stable models such
as stratified model [3] or total well-founded model [23], notwithstanding their
reduced expressive power (indeed, only a proper subset of polynomial problems
are expressible by such programs).

An interesting question is the following: is there any class of DATALOG-1 queries
which preserves the T-stable model uniqueness property but it has an expressive
power higher than stratified DATALOG-1? To anwser this question, we investigate
the classes Qo,i and Qi of DATALOG-1 queries admitting, respectively, at most
one T-stable model and exactly one T-stable model for every input database.

850

We show that, the expressive powers of these two classes is bound by MV H IM>
and MV n coMV respectively. But AfP C\ UW and MV D coMV as well as all
their meaningful subclasses from V over are not know to be expressible by a
(recursively enumerable) query language [13]. Moreover, although total well-
founded semantics is capable to express all fixpoint queries as recently shown m
[8], no language is known which has the same power of fixpoint queries and only
generates queries having total well-founded models for every database. Thus, it
appears that any practical language for queries with unique T-stable model is

not more expressive than stratified DATALOG"!
To get more expressive power using a semantics based on a unique total stable

model, it probably remains to take the whole class ofDATALOG" queries and to
check uniqueness a-posteriori. To this end, we introduce the unique T-stable
model semantics: a ground literal is true if both it is in a T-stable model and
there exists no other T-stable model — informally multiplicity corresponds to a
negative answer. We show that the class of all DATALOG" queries under unique
T-stable model semantics is able to express all the decision problems that can
be defined using an existential second-order formula of the form (3!S)#(S) with
unique witnesses for the second-order quantifiers, i.e., there are unique relations
si,..., sm in S satisfying the first-order formula 4>(S) — we call this class UW.
This is an interesting class which consists of most of all decision problems with
unique solutions. Observe that T-stable models under a popular version of T-
stable model semantics, certain semantics, capture coNV; so, as coAfP C UW,
unique T-stable model semantics turns out to be more expressive than certain

semantics.
The paper is organized as follows. Background and basic definitions on T-

stable model semantics for DATALOG" queries are given in Section 2. The ex-
pressive power of unique T-stable model semantics for the class of all DATALOG"
queries is investigated in Section 3. The analysis of the subclasses Q0,i and Qi
as well as the conclusion are presented in Section 4.

2 Total Stable Models and DATALOG Queries

Let us start by recalling basic concepts and notation of the DATALOG"1 lan-
guage, that is logic programming with negative goals in the rules but without

function symbols [1, 21].
A rule r is a formula of the language of the form Q <— Qi,..., Qm, where Q

is a atom (head of the rule) and Qu ...,Qm are literals (goals of the rule). A
ground rule with no goals is called a fact; a rule without negative goals is called
positive. A DATALOG" program is a finite set of function-free rules and it is called
positive (or, simply, DATALOG) when all its rules are positive.

Given a DATALOG" program £P, some of the predicate symbols (EDB pred-
icates) do not occur in the rule heads as they are defined by a number of facts
stored into a database — the other predicate symbols are called IDB predicates.
EDB predicate symbols form a relational database scheme VScp, thus they are
also seen as relation symbols. A database D on VSCP is a set of finite relations

851

D(r) on a countable domain U, one for each r in VS cp ■ Given a database D on
I>5rp, CPD denotes the program obtained from CP by adding the facts corre-
sponding to the relation tuples in D. Observe that the Herbrand universe and
the Herbrand Base for CP D (denoted by UCPD and BcpD, respectively) are both
finite; moreover, UcpD

ls a finite subset of U as possible constants in CP are also
taken from the domain U. Any subset of BcpD is called an interpretation.

Let, M be an interpretation of the program CPD- Let pos(CPo,M) be the
positive program obtained from the ground instantiation of CPD by deleting (a)
each rule that has a negative goal -iA for which A £ M, and (b) all negative
goals from the remaining rules. Then M is total stable (T-stable) model [9] if and
only if T°°OS(CPD M)(§) = M, where the operator T is the classical immediate
consequence transformation. The existence of a T-stable model for any program
is not guaranteed.

Fact 1 [9, 17] Given a DATALOG" program CP, a database D on VS CP , and an

interpretation M for CPD, then

1. deciding whether M is a T-stable model for CPD is ?n V i
2. deciding whether there exists a T-stable model for CPD is MV-complete. G

Three versions of deterministic semantics for T-stable models are known in
the literature: the possible (or credulous or brave) semantics [2, 20, 6], the certain
(or skeptical or cautious) semantics [9, 2, 20, 6], and the definite semantics [19].
We now introduce a fourth version: the unique T-stable model semantics.

Definition 1. Given a DATALOG"1 program CP, a database D on VScp and a
ground literal A, then

1. A is & 'IS3 (possible) inference of CPD if A is true in some T-stable model

of CPD;
2. A is a T«SV (certain) inference of CPD if A is true in each of the T-stable

models of CPD ;
3. A is a TSvl (definite) inference of CP if CPD ha at least one T-stable model

and A is in each of these models;
4. A is a TSl (unique) inference of CPD if CPD ha exactly one T-stable model

and A is true in this model. G

The above version of T-stable model semantics will be denoted by TSV, where
v is 3, V, V!, or 1.

Definition2. A (bound DATALOG"1) query Q is a pair (CP,G), where CP is a
DATALDG"1 program and G is a ground literal (the query goal) — possible con-
stants in G are in U as well. The set of all queries is denoted by Q.

Given any T-stable model semantics TSV, the database set of Q under TSV,
denoted by £XPrsv{Q), is the set of all databases D on VScp for which G is a
TSV inference of CPD ■ Moreover, the expressive power of the TSV semantics is
measured by the family of the database sets of all possible queries and is denoted

by EXPTS*[Q] = {£XPTS*{Q)\Q G Q}- D

852

It is well known that for each query Q and for each T-stable model semantics
TSV, £XPTS*{Q) is indeed a generic database set [5, 1], i.e., it is closed under
renaming of constants in (U-C), where C is the set of constants occurring in £P
and in G — thus the constants not in C are not interpreted and relationships
among them are only those explicitly provided by the databases. From now
on any generic set of databases on the same scheme will be called a database

collection.
The expressive power of any T-stable model semantics will be measured w.r.t.

classes of database collections defined as follows. Given a (not necessarily Turing
machine) complexity class C of decision problems and a database collection D, D
is C-recognizable if the problem of deciding whether a database D is in D is in C.
The database complexity class DB-C is the family of all C-recognizable database
collections — for instance, DB-V is the family of all database collections that are
recognizable in polynomial time. Observe that any two database collections in a
database complexity class do not in general share the same database scheme.

We stress that our expressive power measure follows the data complexity
approach of [5, 24] for which the query is assumed to be a constant whereas the
database is the input variable. The following results are known in the literature:

Fact 2 Given a DATALOG" program CP, a database D on VScp, and an inter-

pretation M for JCPD, ihen

1. SXPTS* = DB-MV I17!»
2. £XPTS* = DB-coMV [20];
3. £XPTS>"- =DB-VP [19]. D

Example 1. Let VSK = {v, e} be a database scheme defining directed graphs and
T)K be the set of all databases on VSK corresponding to graphs with a kernel
— recall that a kernel of a graph G is a subset Vi of V such that (a) for any two
x, y G Vi, the edge (x, y) is not in E, and (6) for any y G V2 = V - V\ there is
an x G Vi such that (x,y) G E. Consider the following DATALOG" program K:

vl(X) «-v(X), -v2(X).
v2(X) <-v(X), -ivl(X).
joined_to_Vl(X) <-vl(Y), e(Y,X).
no_condition_a <— vl(X), joined_to_Vl(X).
no_condition_b <-v2(X), -goined_to_Vl(X).
kernel <— -nio_condition_a, -mo_conditionJb.
T.constraint <— -"kernel, -iT_constraint.

Given any database D on VSK, say corresponding to the graph G, any possible
T-stable model M of KD must make T-constraint false because of the last rule
(otherwise, T-constraint would be undefined); then M must make true kernel,
i.e., the vertices selected for Vi by M through the first rule form a kernel for
G Hence, KD has exactly one T-stable model for each kernel of the graph.
Given the query QK = (K,kernel), £XPTss(QK) = £XPTsv<{QK) = &K, i.e.,
under both possible and definite T-stable model semantics QK defines the MV-
complete problem of whether a graph has a kernel. Moreover, Z?CPrsAQ) =

853

D ^, that is the set of all graphs with exactly one kernel; i.e., under unique T-
stable model semantics, QK defines the problem of whether a graph has exactly
one kernel. On the other hand, as kernel is a T<SV inference also when there is
no T-stable model, the database set of QK under TSV semantics consists of all
graphs, i.e., the query is meaningless under this semantics.

Let A"' be obtained from K by removing the last rule. Now, there are T-stable
models for K'D also when D corresponds to a graph without kernel. Consider now

the query QK' = {K', -^kernel). We have that £XPTsv{QK') = SXPTsV:{QK') =

D , that is the set of all graphs without kernel; i.e., under both certain and
definite T-stable model semantics, QK' defines the coA/"P-complete problem of
whether a graph has no kernel. This query is meaningless under possible and
unique T-stable model semantics. D

From Fact 2 it follows that, as far as the expressive powers are concerned,
definite semantics subsumes the other two semantics which, in turn, are incom-
parable with each other (unless NV = coMV). In the next section we characterize
the expressive power of unique T-stable model semantics.

3 Expressive Power of Unique Stable Model Semantics

In this section we prove that unique T-stable model semantics captures the whole
class DB-ltW, consisting of all database collections D that can be defined using
an existential second-order formula of the form (3!T)#(T) with unique witnesses
for the second-order quantifiers, i.e., there are unique relations in T satisfying
the first-order formula &(T) on a finite structure VS. Obviously every problem
in UW is also in US (the class of problems with unique solution [4]); however,
not every problem in US can be written in the above logic form [15]. The class
UW includes coMV whereas it is not known whether it also includes MV\ the
latter question is equivalent to the question of whether Vp equals to UW (and
to US as well).

The formula (3!T)<£(T) is in Skolem normal form if the first-order formula
#(T) is in the following format:

*(T) = (Vx)(3y)(Ö1(TIx)y)V...V0t(T(x)y)).

Next we show that any existential second-order formula with unique witnesses
can be brought into Skolem normal form as it happens for formulas with multiple
witnesses.

Lemma 3. Given a second order formula r = (3!T)#(T), there ts a a Skolem
normal form formula which is equivalent to r.

Proof. We first bring &(T) in prenex normal form and then apply repeatedly
the equivalence

(Vu)(3v)0(u, v) o (3!5){(Vu)(Vv)[5(u, v) <- 0(u, v)] A (Vu)(3v)5(u, v)}

854

Observe that our "Skolemization" differs from the classical one for existen-
tial second order formulas with multiple witnesses [7 16] essentially because
<J(u v) -> 0(u,v) is replaced by S(u, v) - ö(u, v). Thus, we require that the
chosen relation for S be maximal, i.e., it exactly contains all the tuples (uv)
satisfying 0 in addition to have at least one of such tuples for every « as m the
cLsiIAolemization. Therefore, as the maximal relation for 5^^bv^ly
unique also 35 of classical Skolemization can be replaced by 3!S Note that oui
procedure of Skolemization in general requires more steps than the.classical one
because the implication S(u, v) - 0(u, v) corresponds to S(u, v) V ^0(u, v) so
that negation must be suitably propagated inside 0 by inverting quantifiers and

logical connectives.

Theorem4. SXPTS^[Q\ = DB-UW.

Proof. [Proof of £XPTs>[Q] Q DB-UW] Take any query Q = (£P,C^
without loss of generality assume that G is a zero-arity atom g Given D -
TlT^iQ) we have to show that D is in DB-UW, i.e., there exists an existen-
ä border formula defining D of the format (3! S)*(S) where *(S) is

a first order formula. By the definition of unique T^abl« .^ode! 8^1"tl™'.!
database D on VSCP is in D if and only if the following conditions hold: (i) he
exists exactly one T-stable model for CPD and (n) g is m exactly one T-stable
model for CPD. To complete the proof, it is sufficient to show that each of the
above two conditions is in UW. Observe that Condition (i) is not subsumed by
Condition (ii); in fact, the latter condition does not forbid to have other T-stable

models containing-iff. ni^r/sUvpr
Condition (i) can be expressed by the second-order formula (3 ! S)r(S) over

the database scheme VSCP as follows. S has a relation symbol for each^ IDB
predicate symbol of CP and selecting relations s for S defines a set M(s) of
ground literals {s(t)\ s G S and t is a tuple in the relation of s corresponding to

s}. We define r in such a way that, for each database D on VSCP, f\s) *_true it
and only if M(s) is a T-stable model of CPD; therefore, the formula (3 ! S) T (S) is
satisfied if there exists a unique T-stable model for CPo -But testing T-stabihty
is in V by part 1 of Fact 1. So, as V C coAfP C UW, T(s) can be expressed by a
second-order formula (3! S2)ß(s1; S2) where fl(Bl Sa) is a.first order formula.

Hence, Condition (i) is defined by the formula: (3 ! Su S2) U (Si, b2j.
It is now easy to see that also Condition (ii) is in WW. Indeed, take the above

formula (3 ! S)r(S) with the following extended condition: for each database U
on VSCP -T(S) is true if and only if both (i) M(s) is a T-stable model ofCPD

and (ii) g is in M(s). Let s be the relation symbol in s corresponding to ..Then
r(s) can be now expressed by a second-order formula (3 ! S2) (J/(s, b2) A t j),
where ß, defined as above, tests T-stability of M(s) and 5 checks membership

of q to Mis). „ ±. „
\Proof of DB-UW C £XPTs>[Q]-] Take any database collection D on a

database scheme VS whose recognition is in UW. Then, by Lemma 3 D can
be defined by a Skolem normal form second order formula, say:

(3 ! S)(Vx)(3y)(6>i(S,x,y) V ... V 0*(S,x,y)).

855

It is now easy to prove that D is the datab ase set of a query un der uni que

'T- stable model semantics. Indeed, consider the query Q = <£P,-ff) wh ere CP

IS:

''1 sjiWj) <- ->ij(Wj). (1 < j < m) r4 : g <- --g(X).
SjiWj) <- -ns,-(Wj). (1 < j < m) r5: p^g, ->p
g(X) «-0,-(X,Y). (1 <i<k)

Let D be a database on VS = £><S,CP- We construct a T-stable model for £PD as
follows. For each tuple Wj, the first two groups of rules make true either SJ(WJ)

or Sj (WJ); using these rules, we perform a non-deterministic selection of relations
for S. For each x, rules 3 makes q(x) true if there exists some y for which one of
&i is satisfied. By rules 4, g is false if and only if the selected relations for S are
witnesses for #(S) (i.e., for each x, g(x) is true). By rule 5, p is not undefined if
and only if g is made false; so the role of this rule is to invalidate any selection for
S that does not make g false. Therefore, the program CPD admits a number of
T-stable models, one for every witness for #(S). Hence, if D G D then there is a
unique witness for #(S) and, therefore, a unique T-stable model of CPD , say M;
since -*g G M, D £ &YPTsi(Q) as well. On the other hand, if D £ D then CPD

admits either no T-stable model or multiple T-stable models, so D $_ £XVrsi (Q).
It turns out that D = £XPTsi(Q); therefore, DB-UW C £*PT5i[Q]. °

We point out that this is not the first time that a relationship between
DATALOG"1 and the class UW is discovered: DATALOG"1 programs with unique fix-

point are characterized in terms of UW in [16].
As coNV C UW C Vp, from Theorem 4 and Fact 2 we derive that, measured

in terms of expressive powers, unique semantics subsumes certain semantics and,
in turn, it is subsumed by definite semantics. The relationships among the various

versions of T-stable model semantics is depicted in Fig. 1.

TS*] = DBVV

TS1 = DBUW

TS3 = DBNP T5V = DBcoAfV

Figure 1: Relationships among T-stable semantics

Example 2. In Example 1, we have shown that, under the unique T-stable model
semantics, the query QK = (K, kernel) defines the problem of whether a graph
has exactly one kernel — this problem is a typical problem in UW. Since coMV C
UW, according to Theorem 4 unique T-stable model semantics is also able to
express the cojVP-complete problem of whether a graph has no kernel. We next
show how to modify the query QK to formulate this problem.

856

Let K" be the program obtained from K by modifying the first two rules into:

vl(X)*-b, v(X), -.v2(X). v2(X)^b, v(X), -.vl(X).

and by adding the following three rules:

a <— -ib. b <— -ia. kernel <— a.

Under the unique T-stable model semantics, the query QK" = (K", kernel)
expresses the problem of whether a graph has no kernel. In fact, the interpre-
tation M - {a, kernel} U D3 is a T-stable model for K£ for any database D.
Moreover, the program has an additional T-stable model for every kernel in the
graph G corresponding to D; for such models a is false and b is true. Therefore,
KQ has a unique T-stable model (that is, M) if and only if G has no kernel. D

4 Subclasses of Queries with Unique T-stable Model

So far we have analyzed various types of deterministic semantics for the
class Q of all DATALOG"1 queries. In this subsection we consider two interesting
subclasses of Q for which the unique T-stable model semantics is the natural

semantics:

- Q1 = {Q = (CP, G) I VD on VScp,CPD admits a unique T-stable model}
- Qo,i = {Q= (CP,G)\VD on VSCP,£PD admits at most one T-stable model}

Obviously, Qi C Qo,i C Q- Note that, while Q is a recursive query language,
the two sub-classes are not recursively enumerable as it is not in general decidable
whether a DATALOG"1 program has a unique T-stable model for every database.
Therefore, Qi and Q0,i are not query languages in the sense of [13].

The two subclasses blur the differences among the various T-stable model

semantics.

Proposition5.

1. For each Q G Qi, £XPTs*{Q) = £XPTsAQ) = £XPTSAQ) = SXPTsl{Q);
2. For each Q G Qo,i, £XPTs<Q) = £XPTS*'{Q) = €XPTsi(Q).

Proof. . Let Q = {£P,G) and D be a database on VSa>■ If Q is in Qi
then JCPD has exactly one T-stable model: so all semantics coincide. Suppose
now that Q £ Q0,i: if CPD has no T-stable model then only certain semantics
behaves differently from the other semantics. D

Next we characterize the expressive power of T-stable model semantics for
the two subclasses of queries. To this end we need to consider further database

classes, first introduced in [15]:

3 The database D is seen as a set of ground atoms, one for each tuple.

857

1. DB-UE\ denotes the subset of DB-UW consisting of each database collection
D which is defined by a formula (3!T)#(T) such that for each D £ D,
(3!T)#(T) is false, i.e., for each D, either the formula is satisfied by exactly
one witness (and, then, D e D) or it is not;

2. DB-UA\ denotes the subset of DB-UE\ of all database collections D for
which the complementary database collection D' is in DB-UE\ as well.

As discussed in [15], UE\ is related to the complexity class UP that has
been introduced by Valiant [22] and consists of all unambiguous computations.
Indeed UE\ captures UP if an order on the universe is available; in this case,

UA\ captures UP C\ coUP.

Lemma6. Given a second order formula T = (3T)$(T) in UE\, there is a
Skolern normal form formula mUE\ which is equivalent to r.

Proof. We first bring <P(T) in prenex normal form and then apply repeatedly
the Skolemization introduced in the proof of Lemma 3. If is easy to see that every
relation symbol added by the skolemization admits at most one witness. □.

Theorem 7.

1. DB-UA\ C £VPrsi[Qi] C DB-MP D DB-coMP;
2. DB-UA\ C £*7>TS'[QO,I] C DB-MP n DB-UW.

Proof. (1) Since £XPTS3 [Q] = DB-MP by Fact 2 and Qi C Q, £XPTsa[Qi] Q

DB-MP; so, as &FPrs3[Qi] = SXPTsi[Qi] by Proposition 5, SXPTs i[Qi] Q
DB-MP. By replacing 3 with V and MP with coMP and repeating the pre-
vious argument we obtain £XPTsl[Qi] C DB-coMP. Hence, £XPTsi[Qi] C
DB-MPnDB-coMP■ Let us now prove the other relationship. Let D be a database
collection in DB-UA\, say with database scheme VS. Let D' be the complemen-
tary database collection of D. Then, by definition oiUA\, D and D' are defined
by two formulas in UE\, say (BS)^(S) and (3S')^'(S'), respectively. By Lemma
6, we can assume that both formulas are in Skolem format say:

<KS) = (Vx)(3y)(0i(S, x, y) V ... V 0k(S, x, y)),
tf'(S') = (Vx')(3y')(©i(S', x', y') V ... V e'k,(S', x', y')).

Consider the program CP":

r\ : a +— ->b. r^: b «— ->a.

^a,^Sj(W3). (l<j<m)
«-a.-.s^Wj-J-Cl^J <m)
^0,-(X,Y). (1 <»<*)
- -?(X).

^6,-«'j(Wj).(l<i<m')
-&,-.sj(w;.). (l<j<m')
-08'(X',Y'). (1 <»<*')
--g'(x').

''3 s;(W,-)
''4 %(w,)
»•5 ?(X)
''6 5

Tl sJ(W<)
»'8 *'i(Wj)
^9 g'(x')
?'10 : </'

858

'•li : a" <- ^9- ru : g" <- V ■ ri3 : P <- V, -7>

The program £P" consists of two subprograms: £P (rules 3-6) and CP' (rules
7-10) plus the first two rules which enable one of the two subprograms plus
the rules 11-13 which make p undefined iff neither g nor g' is false. Observe
that, under the TS3 semantics, the queries Q = {£P,->g) and Q' = (£P',^g'}
defines D and D', respectively; moreover for each D, if D £ D (resp. D') then
there exists exactly one T-stable model M for JCPD (resp., CP'D) such that
-.# G M. It is then easy to see that for each D, EP"D has exactly one T-stable
model. Therefore, the query Q" = (CP",^g) is in Qi and £XPTsx{Q") = D; so

DB-UA\ C£tPr<si[Qi].
(2) AsQi C Qo,i,byPart(l),jQB-Wzil C £XPTsi[Q0,i}- Concerning the sec-

ond relationship, we have that £XPTS*[Q] = DB-NV and £XPTsi[Q] = L®-ZM>
by Fact 2 and Theorem 4. Therefore, as EXPTsn[Qot±}= £XPrsx [Qo,i] by Propo-
sition 5, we derive that £XPTsi [Q0,i] CDB-AfV n DB-UW. □

Note that classes of queries whose expressive power is bounded by MVC\coMV
have been studied in [12, 11, 10] and that also such classes are characterized by

similar uniqueness conditions.
The above results are rather negative with respect to the possibility to single

out a subclass of Qx or Q0,i which can be expressed by a query language more
powerful than stratified DATALOG". In fact, as the classes UP DWV and MV D
coMV as well as any known subclass of them over V are not syntactic unless
something surprising is true (e.g., MP C UW, NT = coNV or HV n coAfP = V)
[13], it turns out that any query language in QrSi or Qrs0tl cannot express
more than V■ But it is not know either whether V is expressible by a query
language and whether there exists a language for total well-founded semantics
preserving the capability of expressing all fixpoint queries [1, 10]. Flum et al. have
recently shown in [8] that total well-founded semantics has the same expressive
power as 'partial' well-founded semantics. However, this result refers to database
equivalence in the sense that a 'partial' query on a database can be replaced by
the same query on a different database yielding a total model. Thus they have
not proved the existence of a language L with the power of fixpoint queries which
only generates queries whose well-founded models are total for every database.
So follows our conjecture that any practical language for DATALOG"1 queries with
unique T-stable model is not more expressive than stratified DATALOG"1:

Conjecture 1 Given any subset Q' of QrSj, if Q' is recursively enumerable

then £XPTs*[<}'] Q f-XPrs^Q"], where Q" is the class of all DATALOG"1 queries
ivith stratified negation. E

ACKNOWLEDGEMENTS: Work partially supported by the EC-US033 project
"DEUS EX MACHINA: non-determinism in deductive databases", and by a
MURST grant under the project "Sistemi formali e strumenti per basi di dati
evolute". The third author's work is also supported by ISI-CNR. The authors
would like to thank a anonymous reader of a preliminary draft of this paper for
many stimulating suggestions and criticisms.

859

References

1. Abiteboul S., Hull R., V. Vianu, Foundations of Databases, Addison-Wesley, 1994.
2. Abiteboul S., Simon E., and V. Vianu, Non-deterministic languages to express

deterministic transformations, Proc, ACM PODS Symp., 1990, pp. 218-229.
3. Apt K., Blair H. and A. Walker, Towards a theory of declarative knowledge, in

Foundations of Deductive Databases and Logic Programming (J. Minker ed.), Mor-

gan Kauffman, 1988, 89-142.
4. Blass A. and Y. Gurevich, On the Unique Satisfiability Problem, Inform, and

Control, 1982, pp. 80-88.
5. Chandra A., and D. Harel, Structure and Complexity of Relational Queries, Jour-

nal of Computer and System Sciences 25, 1, 1982, pp. 99-128.
6. Eiter T., Gottlob G. and H. Manila, Expressive Power and Complexity of Disjunc-

tive DATALOG, Proc. ACM PODS Symp., Minneapolis, USA, May 1994.
7. Fagin R., Generalized First-Order Spectra and Polynomial-Time Recognizable

Sets, in Complexity of Computation, SIAM-AMS Proc, Vol. 7, 1974, pp. 43-73.
8. Flum J., Kubierschky M., and B. Ludascher, Total and partial well-founded Dat-

alog coincide, in Proc. Int. Conf. on Database Theory (ICDT), 1997, pp. 113-124.
9. Gelfond M., and V. Lifschitz, The Stable Model Semantics for Logic Programmin,

Proc. 5th Int. Conf. on Logic Programming, 1988, pp. 1070-1080.
10. Greco S. and Saccä D., 'Possible is Certain' is desirable and can be expressive,

Annals of Mathematics and Artificial Intelligence, 1997.
11. Grumbach S. and Z. Lacroix, On non-determinism in machines and languages,

Annals of Mathematics and Artificial Intelligence, 1997.
12. Grumbach S., Lacroix Z. and S. Lindell, Implicit Definitions on Finite Structures,

in Proc. of the Conf. on Computer Science Logic, 1995.
13. Gurevich Y., Logic and the Challenge of Computer Science, in E. Borger (ed.),

Trends in Theoretical Computer Science, Computer Science Press, 1988.
14. Johnson D.S., A Catalog of Complexity Classes, in J. van Leewen (ed.), Handbook

of Theoretical Computer Science, Vol. 1, North-Holland, 1990.
15. Kolaitis P.G., Implicit definability on finite structures and unambiguous computa-

tions, Proc. 5th IEEE Symp. on Logic in Computer Science, 1990, pp. 168-180.
16. Kolaitis P.G. and C.H. Papadimitriou, Why not Negation by Fixpoint?, Journal

of Computer and System Sciences 43, 1991, pp. 125-144.
17. Marek W., M. Truszcynski, Autoepistemic Logic, J. ACM 38, 3, 1991, pp. 588-619.
18. Papadimitriou C, Computational Complexity, Addison-Wesley, 1994.
19. Saccä D., Multiple Total Stable Models are Definitely Needed to Solve Unique

Solution Problems, Information Processing Letters 58, 5, 1996, pp. 249-254
20. Schlipf J.S., The Expressive Powers of the Logic Programming Semantics, Proc.

ACM PODS Symp., 1990, pp. 196-204.
21. Ullman J.D., Principles of Database and Knowledge Base Systems, Computer Sci-

ence Press, 1989.
22. Valiant L., "Relative complexity of checking and evaluating", Information Process-

ing Letters 5, 1976, pp. 20-23.
23. Van Gelder A., Ross K. and J.S. Schlipf, The Weil-Founded Semantics for General

Logic Program, Journal of the ACM 38, 3, 1991, pp. 620-650.
24. Vardi M.Y., The Complexity of Relational Query Languages, Proc. ACM Symp.

on Theory of Computing, 1982, pp. 137-146.

Author Index

Farid Ablayev, 195
Stephen Alstrup, 270
Andris Ambainis, 401
Alexander E. Andreev, 177
Krzysztof R. Apt, 36
Andrea Asperti, 259
Christel Baier, 430
Amotz Bar-Noy, 738
Yair Bartal, 516
Frederique Bassino, 76
Marie-Pierre Beal, 76
Martin Beaudry, 110
Richard Beigel, 816
Marco Bernardo, 358
Hans L. Bodlaender, 627
Michele Boreale, 482
Ahmed Bouajjani, 560
Olivier Bournez, 143
Hajo Broersma, 760
Veronique Bruyere, 87
Francesco Buccafurri, 849
Harry Buhrman, 188
OlafBurkart, 419
Edson Cäceres, 390
Olivier Carton, 17
Julien Cassaigne, 693
Edmund M. Clarke, 430
Andrea E. F. Clementi, 177
Bruno Codenotti, 203
Laurent Dami, 782
Frank Dehne, 390
Rocco De Nicola, 482
Alfredo De Santis, 716
Roberto Di Cosmo, 237
Giovanni Di Crescenzo, 716
Volker Diekert, 336
Pietro Di Gianantonio, 121
Manfred Droste, 682
Bruno Durand, 65
Tamar Eilam, 527
Peter L. Erdös, 827
Funda Ergün, 203
Thomas Erlebach, 493
Stephen Fenner, 188

Alfonso Ferreira, 390
Michele Flammini, 527
Paola Flocchini, 390
Wan Fokkink, 571
Lance Fortnow, 188
Yair Frankel, 705
Bin Fu, 816
Yuxi Fu, 325
Toshihiro Fujito, 749
Luisa Gargano, 505
Paul Gastin, 682
Peter S. Gemmell, 203
Neil Ghani, 237
Roberto Giacobazzi, 771
John Glauert, 649
Sergio Greco, 849
Roberto Grossi, 605
Yuri Gurevich, 154
Peter Habermehl, 560
Torben Hagerup, 292
David Harel, 408
Vasiliki Hartonas-Garmhausen, 430
Pavol Hell, 505
Edith Hemaspaandra, 214
Lane A. Hemaspaandra, 214
Matthew Hennessy, 471
Thomas A. Henzinger, 582
Jacob Holm, 270
Kohei Honda, 225
Giuseppe F. Italiano, 605
Petr Jancar, 549
Klaus Jansen, 493, 727
Valentine Kabanets, 805
Christos Kaklamanis, 493
Juhani Karhumäki, 98
Sanjeev Khanna, 616
Zurab Khasidashvili, 649
Valerie King, 594
Ton Kloks, 760
Peter W. Kopke, 582
Guy Kortsarz, 738
Dieter Kratsch, 760
Sven 0. Krumke, 281
Marta Kwiatkowska, 430

862

Laura F. Landweber, 56
Cosimo Laneve, 259
James I. Lathrop, 132
Francois Lemieux, 110
Stefano Leonardi, 516
Kristian de Lichtenberg, 270

Richard J. Lipton, 56
Jack H. Lutz, 132
Giovanni Manzini, 794
Madhav V. Marathe, 281
Massimo Marchiori, 660
Luciano Margara, 794
Ian A. Mason, 369
Yuri Matiyasevich, 336
Kurt Mehlhorn, 7
Filippo Mignosi, 98
Robin Milner, 1
Haiko Müller, 760
Anca Muscholl, 336
S. Muthukrishnan, 616
Stefan Näher, 7
Paliath Narendran, 638
Hartmut Noltemeier, 281
Friedrich Otto, 638
Valeria de Paiva, 248
Christos H. Papadimitriou, 2
Stephane Perennes, 505
Dominique Perrin, 17, 76
Pino Persiano, 493, 716
Anna Philippou, 314
Wojciech Plandowski, 98
Rosario Pugliese, 482
Francesco Ranzato, 771
Monika Rauch Henzinger, 594
Ramamurthy Ravi, 281
S.S. Ravi, 281
S. Ravi Kumar, 203
James Riely, 471
Ingo Rieping, 390

Eike Ritter, 248
John M. Robson, 441
Jose D. P. Rolim, 177
Alessandro Roncato, 390
Jörg Rothe, 214
Salvador Roura, 449
Salvatore Ruggieri, 838
Jan J. M. M. Rutten, 460
Mark Ryan, 430
Domenico Saccä, 849
Davide Sangiorgi, 303
Nicola Santoro, 390
Uwe Schwiegeishohn, 379
Geraud Senizergues, 671
Eli Singerman, 408
Steven Skiena, 616
Siang W. Song, 390
Michael A. Steel, 827
Bernhard Steffen, 419
Ravi Sundaram, 281
Laszlö A. Szekely, 827
Carolyn L. Talcott, 369
Denis Therien, 110
Lothar Thiele, 379
Dimitrios M. Thilikos, 627
Mikkel Thorup, 270
Christian Uhrig, 7
Erik de Vink, 460
Walter Vogler, 538
Andrei Voronkov, 154
David Walker, 314
Tandy J. Warnow, 827
Klaus Weihrauch, 166
Thomas Wilke, 347
Hans-Christoph Wirth, 281
Nobuko Yoshida, 225
Moti Yung, 705
Shmuel Zaks, 527

Lecture Notes in Computer Science

For information about Vols. 1-1179

please contact your bookseller or Springer-Verlag

Vol. 1180: V. Chandru, V. Vinay (Eds.), Foundations of
Software Technology and Theoretical Computer Science.
Proceedings, 1996. XI, 387 pages. 1996.

Vol. 1181: D. Bj0rner, M. Broy, I.V. Pottosin (Eds.),
Perspectives of System Informatics. Proceedings, 1996.
XVII, 447 pages. 1996.

Vol. 1182: W. Hasan, Optimization of SQL Queries for
Parallel Machines. XVIII, 133 pages. 1996.

Vol. 1183: A. Wierse, G.G. Grinstein, U. Lang (Eds.),
Database Issues for Data Visualization. Proceedings,
1995. XIV, 219 pages. 1996.

Vol. 1184: J. Wasniewski, J. Dongarra, K. Madsen,
D. Olesen (Eds.), Applied Parallel Computing.
Proceedings, 1996. XIII, 722 pages. 1996.

Vol. 1185: G. Ventre, J. Domingo-Pascual, A. Danthine
(Eds.), Multimedia Telecommunications and
Applications. Proceedings, 1996. XII, 267 pages. 1996.

Vol. 1186: F. Afrati, P. Kolaitis (Eds.), Database Theory
- ICDT'97. Proceedings, 1997. XIII, 477 pages. 1997.

Vol. 1187: K. Schlechta, Nonmonotonic Logics. IX, 243
pages. 1997. (Subseries LNAI).

Vol. 1188: T. Martin, A.L. Ralescu (Eds.), Fuzzy Logic
in Artificial Intelligence. Proceedings, 1995. VIII, 272
pages. 1997. (Subseries LNAI).

Vol. 1189: M. Lomas (Ed.), Security Protocols.
Proceedings, 1996. VIII, 203 pages. 1997.

Vol. 1190: S. North (Ed.), Graph Drawing. Proceedings,
1996. XI, 409 pages. 1997.

Vol. 1191: V. Gaede, A. Brodsky, O. Günther, D.
Srivastava, V. Vianu, M. Wallace (Eds.), Constraint
Databases and Applications. Proceedings, 1996. X, 345
pages. 1996.

Vol. 1192: M. Dam (Ed.), Analysis and Verification of
Multiple-Agent Languages. Proceedings, 1996. VIII, 435
pages. 1997.

Vol. 1193: J.P. Müller, M.J. Wooldridge, N.R. Jennings
(Eds.), Intelligent Agents III. XV, 401 pages. 1997.
(Subseries LNAI).

Vol. 1194: M. Sipper, Evolution of Parallel Cellular
Machines. XIII, 199 pages. 1997.

Vol. 1195: R. Trappl, P. Petta (Eds.), Creating
Personalities for Synthetic Actors. VII, 251 pages. 1997.
(Subseries LNAI).

Vol. 1196: L. Vulkov, J. Wasniewski, P. Yalamov (Eds.),
Numerical Analysis and Its Applications. Proceedings,
1996. XIII, 608 pages. 1997.

Vol. 1197: F. d'Amore, P.G. Franciosa, A. Marchetti-
Spaccamela (Eds.), Graph-Theoretic Concepts in
Computer Science. Proceedings, 1996. XI, 410 pages.
1997.

Vol. 1198: H.S. Nwana, N. Azarmi (Eds.), Software
Agents and Soft Computing: Towards Enhancing Machine
Intelligence. XIV, 298 pages. 1997. (Subseries LNAI).

Vol. 1199: D.K. Panda, C.B. Stunkel (Eds.),
Communication and Architectural Support for Network-
Based Parallel Computing. Proceedings, 1997. X, 269
pages. 1997.

Vol. 1200: R. Reischuk, M. Morvan (Eds.), STACS 97.
Proceedings, 1997. XIII, 614 pages. 1997.

Vol. 1201: O. Maler (Ed.), Hybrid and Real-Time
Systems. Proceedings, 1997. IX, 417 pages. 1997.

Vol. 1203: G. Bongiovanni, D.P. Bovet, G. Di Battista
(Eds.), Algorithms and Complexity. Proceedings, 1997.
VIII, 311 pages. 1997.

Vol. 1204: H. Mössenböck (Ed.), Modular Programming
Languages. Proceedings, 1997. X, 379 pages. 1997.

Vol. 1205: J. Troccaz, E. Grimson, R. Mosges (Eds.),
CVRMed-MRCAS'97. Proceedings, 1997. XIX, 834
pages. 1997.

Vol. 1206: J. BigUn, G. Chollet, G. Borgefors (Eds.),
Audio- and Video-based Biometrie Person Authentication.
Proceedings, 1997. XII, 450 pages. 1997.

Vol. 1207: J. Gallagher (Ed.), Logic Program Synthesis
and Transformation. Proceedings, 1996. VII, 325 pages.
1997.

Vol. 1208: S. Ben-David (Ed.), Computational Learning
Theory. Proceedings, 1997. VIII, 331 pages. 1997.
(Subseries LNAI).

Vol. 1209: L. Cavedon, A. Rao, W. Wobcke (Eds.),
Intelligent Agent Systems. Proceedings, 1996. IX, 188
pages. 1997. (Subseries LNAI).

Vol. 1210: P. de Groote, J.R. Hindley (Eds.), Typed
Lambda Calculi and Applications. Proceedings, 1997.
VIII, 405 pages. 1997.

Vol. 1211: E. Keravnou, C. Garbay, R. Baud, J. Wyatt
(Eds.), Artificial Intelligence in Medicine. Proceedings,
1997. XIII, 526 pages. 1997. (Subseries LNAI).

Vol. 1212: J. P. Bowen, M.G. Hinchey, D. Till (Eds.),
ZUM '97: The Z Formal Specification Notation.
Proceedings, 1997. X, 435 pages. 1997.

Vol. 1213: P. J. Angeline, R. G. Reynolds, J. R.
McDonnell, R. Eberhart (Eds.), Evolutionary
Programming VI. Proceedings, 1997. X, 457 pages. 1997.

Vol. 1214: M. Bidoit, M. Dauchet (Eds.), TAPSOFT '97:
Theory and Practice of Software Development.
Proceedings, 1997. XV, 884 pages. 1997.

Vol. 1215: J. M. L. M. Palma, J. Dongarra (Eds.), Vector
and Parallel Processing - VECPAR'96. Proceedings,
1996. XI, 471 pages. 1997.

Vol. 1216: J. Dix, L. Moniz Pereira, T.C. Przymusinski
(Eds.), Non-Monotonic Extensions of Logic
Programming. Proceedings, 1996. XI, 224 pages. 1997.
(Subseries LNAI).

Vol. 1217: E. Brinksma (Ed.), Tools and Algorithms for
the Construction and Analysis of Systems. Proceedings,
1997. X, 433 pages. 1997.

Vol. 1218: G. Päun, A. Salomaa (Eds.), New Trends in
Formal Languages. IX, 465 pages. 1997.

Vol. 1219: K. Rothermel, R. Popescu-Zeletin (Eds.),
Mobile Agents. Proceedings, 1997. VIII, 223 pages. 1997.

Vol. 1220: P. Brezany, Input/Output Intensive Massively
Parallel Computing. XIV, 288 pages. 1997.

Vol. 1221: G. Weiß (Ed.), Distributed Artificial
Intelligence Meets Machine Learning. Proceedings, 1996.
X, 294 pages. 1997. (Subseries LNAI).

Vol. 1222: i. Vitek, C. Tschudin (Eds.), Mobile Object
Systems. Proceedings, 1996. X, 319 pages. 1997.

Vol. 1223: M. Pelillo, E.R. Hancock (Eds.), Energy
Minimization Methods in Computer Vision and Pattern
Recognition. Proceedings, 1997. XII, 549 pages. 1997.

Vol. 1224: M. van Someren, G. Widmer (Eds.), Machine
Learning: ECML-97. Proceedings, 1997. XI, 361 pages.
1997. (Subseries LNAI).

Vol. 1225: B. Hertzberger, P. Sloot (Eds.), High-
Performance Computing and Networking. Proceedings,
1997. XXI, 1066 pages. 1997.

Vol. 1226: B. Reusch (Ed.), Computational Intelligence.
Proceedings, 1997. XIII, 609 pages. 1997.

Vol. 1227: D. Galmiche (Ed.), Automated Reasoning with
Analytic Tableaux and Related Methods. Proceedings,
1997. XI, 373 pages. 1997. (Subseries LNAI).

Vol. 1228: S.-H. Nienhuys-Cheng, R. de Wolf,
Foundations of Inductive Logic Programming. XVII, 404
pages. 1997. (Subseries LNAI).

Vol. 1230: I. Duncan, G. Gindi (Eds.), Information
Processing in Medical Imaging. Proceedings, 1997. XVI,
557 pages. 1997.

Vol. 1231: M. Bertran, T. Rus (Eds.), Transformation-
Based Reactive Systems Development. Proceedings, 1997.
XI, 431 pages. 1997.

Vol. 1232: H. Comon (Ed.), Rewriting Techniques and
Applications. Proceedings, 1997. XI, 339 pages. 1997.

Vol. 1233: W. Fumy (Ed.), Advances in Cryptology —
EUROCRYPT '97. Proceedings, 1997. XI, 509 pages.
1997.

Vol 1234: S. Adian, A. Nerode (Eds.), Logical
Foundations of Computer Science. Proceedings, 1997. IX,
431 pages. 1997.

Vol. 1235: R. Conradi (Ed.), Software Configuration
Management. Proceedings, 1997. VIII, 234 pages. 1997.

Vol. 1236: E. Maier, M. Mast, S. LuperFoy (Eds.),
Dialogue Processing in Spoken Language Systems.
Proceedings, 1996. VIII, 220 pages. 1997. (Subseries
LNAI).

Vol. 1238: A. Mullery, M. Besson, M. Campolargo, R.
Gobbi, R. Reed (Eds.), Intelligence in Services and
Networks: Technology for Cooperative Competition.
Proceedings, 1997. XII, 480 pages. 1997.

Vol. 1239: D. Sehr, U. Banerjee, D. Gelernter, A. Nicolau,
D. Padua (Eds.), Languages and Compilers for Parallel
Computing. Proceedings, 1996. XIII, 612 pages. 1997.

Vol. 1240:1. Mira, R. Moreno-Diaz, J. Cabestany (Eds.),
Biological and Artificial Computation: From
Neuroscience to Technology. Proceedings, 1997. XXI,
1401 pages. 1997.

Vol. 1241: M. Aksit, S. Matsuoka (Eds.), ECOOP'97 -
Object-Oriented Programming. Proceedings, 1997. XI,
531 pages. 1997.

Vol. 1242: S. Fdida, M. Morganti (Eds.), Multimedia
Applications, Services and Techniques - ECMAST '97.
Proceedings, 1997. XIV, 772 pages. 1997.

Vol. 1243: A. Mazurkiewicz, I. Winkowski (Eds.),
CONCUR'97: Concurrency Theory. Proceedings, 1997.
VIII, 421 pages. 1997.

Vol. 1244: D. M. Gabbay, R. Kruse, A. Nonnengart, H.J.
Ohlbach (Eds.), Qualitative and Quantitative Practical
Reasoning. Proceedings, 1997. X, 621 pages. 1997.
(Subseries LNAI).

Vol. 1245: M. Calzarossa, R. Marie, B. Plateau, G. Rubino
(Eds.), Computer Performance Evaluation. Proceedings,
1997. VIII, 231 pages. 1997.

Vol. 1246: S. Tucker Taft, R. A. Duff (Eds.), Ada 95
Reference Manual. XXII, 526 pages. 1997.

Vol. 1247: I. Barnes (Ed.), Ada 95 Rationale. XVI, 458
pages. 1997.

Vol. 1248: P. Azema, G. Balbo (Eds.), Application and
Theory of Petri Nets 1997. Proceedings, 1997. VIII, 467
pages. 1997.

Vol. 1249: W. McCune (Ed.), Automated Deduction -
CADE-14. Proceedings, 1997. XIV, 462 pages. 1997.
(Subseries LNAI).

Vol. 1250: A. Olivi, I.A. Pastor (Eds.), Advanced
Information Systems Engineering. Proceedings, 1997. XI,
451 pages. 1997.

Vol. 1251: K. Hardy, I. Briggs (Eds.), Reliable Software
Technologies - Ada-Europe '97. Proceedings, 1997. VIII,
293 pages. 1997.

Vol. 1252: B. ter Haar Romeny, L. Florack, I. Koenderink,
M. Viergever (Eds.), Scale-Space Theory in Computer
Vision. Proceedings, 1997. IX, 365 pages. 1997.

Vol. 1253: G. Bilardi, A. Ferreira, R. LUling, J. Rolim
(Eds.), Solving Irregularly Structured Problems in
Parallel. Proceedings, 1997. X, 287 pages. 1997.

Vol. 1254: O. Grumberg (Ed.), Computer Aided
Verification. Proceedings, 1997. XI, 486 pages. 1997.

Vol. 1255: T. Mora, H. Mattson (Eds.), Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes.
Proceedings, 1997. X, 353 pages. 1997.

Vol. 1256: P. Degano, R. Gorrieri, A. Marchetti-
Spaccamela (Eds.), Automata, Languages and
Programming. Proceedings, 1997. XIV, 862 pages. 1997.

Vol. 1258: D. van Dalen, M. Bezem (Eds.), Computer
Science Logic. Proceedings, 1996. VIII, 473 pages. 1997.

Vol. 1259: T. Higuchi, I. Masaya, W. Liu (Eds.),
Evolvable Systems: From Biology to Hardware.
Proceedings, 1996. XI, 484 pages. 1997.

Vol. 1260: D. Raymond, D. Wood, S. Yu (Eds.), Automata
Implementation. Proceedings, 1996. VIII, 189 pages.
1997.

Lecture Notes in Computer Science

This series reports new developments in computer science research and
leaching, quickly, informally, and at a high level. The timeliness of a manu-
script is more important than its form, which may be unfinished or tentative.
The type of material considered for publication includes

- drafts of original papers or monographs.

- technical reports of high quality and broad interest,

- advanced-level lectures,

- reports of meetings, provided they are of exceptional interest and focused
on a single topic.

Publication of Lecture Notes is intended as a service to the computer science
community in that the publisher Springer-Verlag offers global distribution of
documents which would otherwise have a restricted readership. Once pub-
lished and copyrighted they can be cited in the scientific literature.

Manuscripts

Lecture Notes are printed by photo-offset from the master copy delivered in
camera-ready form. Manuscripts should be no less than 100 and preferably
no more than 500 pages of text. Authors of monographs and editors of
proceedings volumes receive 50 free copies of their book. Manuscripts
should be printed with a laser or other high-resolution printer onto white
paper of reasonable quality. To ensure that the final photo-reduced pages are
easily readable, please use one of the following formats:

Font size Printing area Final size
(points) (cm) (inches) (%)

10 12.2x19.3 4.8x7.6 100
12 15.3x24.2 6.0x9.5 80

On request the publisher will supply a leaflet with more detailed technical
instructions or a TgX macro package for the preparation of manuscripts.

Manuscripts should be sent to one of the series editors or directly to:

Springer-Verlag, Computer Science Editorial III, Tiergartenstr. 17,
D-69121 Heidelberg, Germany

ISSN 0302-9743

