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Abstract 

The choice of an appropriate problem-solving method, from available methods, is a crucial 
skill for human experts in many areas. We describe a technique for automatic selection among 
methods, based on a statistical analysis of their past performances. 

We formalize the statistical problem involved in selecting an efficient problem-solving 
method, derive a solution to this problem, and describe a selection algorithm. The algorithm 
not only chooses among available methods, but also decides when to abandon the chosen 
method, if it proves to take too much time. We extend our basic statistical technique to 
account for problem sizes and for similarity between problems. 

We give empirical results of the use of this technique to select among search engines in the 
PRODIGY system. We also test the selection technique on artificially generated performance 
data, using several different probability distributions. 
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1     Introduction 

The choice of an appropriate problem-solving method is one of the main themes of Polya's 
famous book How to Solve It [Polya, 1957]. Polya showed that the selection of an effective 
approach to a problem is a crucial skill for a student of mathematics. Psychologists have 
accumulated much evidence that confirms Polya's pioneering insight: the performance of 
human experts in many areas depends on their proficiency in choosing a method that fits a 
problem [Newell and Simon, 1972; Gcntncr and Stevens, 1983]. 

The purpose of our research is to automate the selection of a problem-solving method. 
This research is motivated by our work on the PRODIGY problem-solving system, which 
includes several search engines [Vcloso and Stone, 1995] and a number of learning modules 
[Vcloso ct al., 1995]. Wc need to provide a mechanism for deciding which learning modules 
and which search engine arc appropriate for a given problem. Moreover, since programs 
in the real world cannot run forever, wc need some means to decide when to interrupt an 
unsuccessful search. 

Wc describe a learning algorithm that gathers data on the performance of available 
methods and uses these data to select a method that fits a given problem. The algorithm 
also selects a time bound for the chosen method; wc interrupt the method if it hits the bound 
without solving the problem. Our technique is aimed at selecting a method and time bound 
before solving a given problem. Wc do not provide a mechanism for switching a method or 
revising the selected bound during the search for a solution. Developing such a mechanism 
is an important open problem. 

The selection technique is very general and independent of particular problem-solving 
engines and problem domains; it docs not use any specific properties of PRODIGY. Wc can 
use our learning algorithm in any AI system that offers the choice of multiple problem-solving 
engines or allows the selection of appropriate values of "knob" parameters. The technique 
is equally effective for small and large-scale problem domains. 

Even though AI problem solving provided the motivation for our work, the resulting 
technique is applicable to situations outside of AI. Wc may use it to select between several 
alternative approaches to a task, or to decide on the amount of effort that wc should invest 
in achieving a goal before giving up. For example, wc can apply this technique to find out 
which of several encyclopedias is most effective for finding certain types of data. As another 
example, wc may use it to decide how long one should wait on the phone, before hanging 
up, if her or his party docs not answer. 

The selection takes very little computation and its running time is usually negligible 
compared to the problem-solving time. The time of selecting a search engine in the PRODIGY 
system is three orders of magnitude smaller than the time of the subsequent search. 

Wc begin by formalizing the statistical problem of estimating the expected performance 
of a method (Section 2). Wc derive a solution to this problem (Section 3), show how to use 
it in selecting a method and time bound (Section 4), and give results of selecting among 
PRODIGY search engines (Section 5). Wc then apply our technique to determine how long 
one should wait before hanging up, when the other party docs not answer the phone. 

Wc describe the use of an approximate measure of problem complexity (Section 6) and 
similarity between problems (Section 7) to improve the accuracy of performance estimates. 



Note that wc do not need a perfect estimate; wc only need accuracy sufficient for selecting 
the right method and a near-optimal time bound. Finally, wc test the selection technique on 
artificially generated performance data, for several different probability distributions (Sec- 
tion 8). 

2    Motivating example 

We give an example of a method-selection task in the PRODIGY system, use it to formal- 
ize the statistical problem of choosing from available methods, and discuss the simplifying 
assumptions underlying our formal model. 

Suppose that wc use PRODIGY to construct plans for transporting packages by vans 
between different locations in a city [Vcloso, 1994]. Wc consider the use of three different 
search methods. The first of them is based on the control rules designed by Vcloso [1994] 
and Perez [1995], which guide PRODIGY'S search in the transportation domain. This method 
applies the selected actions to the current state of the simulated transportation world as 
early as possible; wc call this method APPLY. 

The second method uses the same control rules and a special rule that delays the appli- 
cation of the selected actions and forces more emphasis on the backward search [Vcloso and 
Stone, 1995]; wc call it DELAY. This method is a combination of the SABA search algorithm, 
implemented by Vcloso and Stone, with the domain-specific control rules. 

The third method, ALPINE [Knoblock, 1994], is a combination of APPLY with an abstrac- 
tion generator, which determines relative importance of the elements of a problem domain. 
ALPINE first ignores the less important elements and generates an outline of a solution; it 
then refines the solution to take care of the initially ignored details. 

Experiments have demonstrated that delaying the application improves the efficiency of 
problem solving in some domains, but slows PRODIGY down in others [Stone et al, 1994]; 
abstraction sometimes gives drastic time savings and sometimes worsens the performance 
[Knoblock, 1991; Bacchus and Yang, 1992]. The most reliable way to select an efficient 
method for a given problem domain is by empirical comparison. 

The application of a method to a problem gives one of three outcomes: it may solve the 
problem; it may terminate with failure, after exhausting the available search space without 
finding a solution; or wc may interrupt it, if it reaches some prc-sct time bound without 
termination. (PRODIGY domains arc completely deterministic and failures happen because 
of imperfect search heuristics rather than unexpected events during the execution.) 

In Table 1, wc give the results of solving thirty transportation problems, by each of the 
three methods. Wc denote successes by s, failures by /, and hitting the time bound by b. 
Note that our data arc only for illustrating the selection problem, and not for the purpose 
of a general comparison of these three search techniques. Their relative performance may 
be very different in other domains. Also note that our selection technique docs not rely on 
specific properties of PRODIGY search engines. It is equally applicable to the selection among 
multiple problem-solving methods in any AI system. 

Even though each method outperforms the others on at least one transportation problem 
(sec Table 1), a glance at the data reveals that APPLY's performance in this domain is 
probably the best among the three.   Wc use statistical analysis to confirm this intuitive 



# time (sec) and outcome #of # time (sec) and outcome #of 
APPLY DELAY ALPINE packs APPLY DELAY ALPINE packs 

1 1.6 s 1.6   S 1.6 s 1 16 4.4 s 68.4   S 4.6 s 4 
2 2.1  s 2.1  s 2.0  s 1 17 6.0 s 200.0  b 6.2 s 6 
3 2.4 s 5.8 s 4.4 s 2 18 7.6 s 200.0  b 7.8 s 8 
4 5.6 s 6.2 s 7.6 s 2 19 11.6 s 200.0  b 11.0 s 12 
5 3.2 s 13.4 s 5.0  s 3 20 200.0  b 200.0  b 200.0  b 16 
6 54.3 s 13.8 f 81.4 s 3 21 3.2 s 2.9 s 4.2 s 2 
7 4.0 s 31.2 f 6.3 s 4 22 6.4 s 3.2 s 7.8 s 4 
8 200.0 b 31.6 f 200.0 b 4 23 27.0 s 4.4 s 42.2 s 16 
9 7.2 s 200.0 b 8.8  s 8 24 200.0  b 6.0 s 200.0  b 8 

10 200.0  b 200.0 b 200.0 b 8 25 4.8 s 11.8 f 3.2 s 3 
11 2.8  s 2.8 s 2.8  s 2 26 200.0  b 63.4 f 6.6 f 6 
12 3.8 s 3.8 s 3.0 s 2 27 6.4 s 29.1 f 5.4 f 4 
13 4.4 s 76.8 s 3.2 s 4 28 9.6 s 69.4 f 7.8 f 6 
14 200.0 b 200.0 b 6.4 s 4 29 200.0  b 200.0  b 10.2 f 8 
15 2.8 s 2.8 s 2.8  s 2 30 6.0 s 19.1 s 5.4 f 4 

Table 1: Performance of APPLY, DELAY, and ALPINE on thirty transportation problems. 

conclusion and to estimate its statistical significance. We also show how to select a time 
bound for the chosen problem-solving method. 

If wc identify several distinct problem types in a domain, we may discover that different 
types require different problem-solving methods and time bounds. In other words, the ap- 
propriate choice of a method may depend on the properties of a problem. Wc will analyze 
such situations in Section 7. 

To compare different methods, wc need to specify a utility function for evaluating their 
performances. Wc assume that wc have to pay for running time and that wc got a cer- 
tain reward R for finding a solution. If the method solves the problem, the overall gain is 
(R — time). If the method fails or hits a time bound, it is (—time). Wc need to estimate 
the expected gain for all candidate methods and time bounds, and to select the method and 
bound that maximize the expectation, which gives us the following statistical problem. 

Problem: Suppose that a method solved n problems, failed on m problems, and was inter- 
rupted (upon hitting a time bound) on k problems. The. success times were Si,S2,...,s„, the 
failure times were fi,f2,---,fm> an^ th° interrupt times were bi,b2,..., 6A,-. Given a reward R 
for solving a new problem and a time bound B, estimate the expected gain and determine the 
standard deviation of the estimate. 

Wc use the stationarity assumption [Valiant, 1984]; that is, wc assume that the past prob- 
lems and the new problem arc drawn randomly from the same population, using the same 
probability distribution. Wc also assume that the method's performance docs not improve 
over time (that is, no learning). Note that the model docs not allow the dynamic adjustment 
of the bound B, based on the findings during the search for the new problem's solution. 

Wc need a gain estimate that makes the best use of the available data, even if they arc not 
sufficient for statistical significance. Wc cannot ask for more data, since experimentation is 
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Figure 1: Dependency of the success (o) and failure (+) probabilities on the time bound. 

usually much more expensive than solving the new problem. Another important requirement 
is the speed of statistical computations, especially since the model does not account for this 
addition to the overall problem-solving time. 

3     Statistical foundations 
Wc determine the probability of solving the problem within a given time bound, the probabil- 
ity of terminating with failure, the estimate of the expected gain, and the standard deviation 
of the estimate. 

Wc assume, for convenience, that the success, failure, and interrupt times arc sorted in 
the increasing order; that is, si < ... < s„, f\ < ... < fm, and b\ < ... < 6/;. Wc first consider 
the case when the time bound B is no larger than the lowest of the past time bounds, B <b\. 
Wc denote the number of success times that arc no larger than B by c, and the number of 
failures within B by d\ that is, sc < D < sc+\ and fd < B < fd+i- 

Wc estimate the probability of success by the fraction of problems that were solved within 
time B, which is e ,; similarly, the probability of terminating with failure is n+„l+k ■ For 
example, the probability that ALPINE with time bound 6.0 solves a transportation problem 
is || = 0.37, and the probability that it terminates with failure is ^ = 0.07. 

In Figure 1, wc show the dependency between the time bound (given in the horizontal 
axis, on a logarithmic scale) and the estimated success and failure probabilities for APPLY, 
DELAY, and ALPINE, in the transportation domain. We do not show the failure-probability 
estimate for APrLY, because the data for this method contain no failures and, thus, the 
estimate is zero. Wc computed the probabilities only for the points marked by circles and 
pluses, and connected them by straight segments. 

Wc estimate the expected gain by averaging the gains that would be obtained in the past, 
if wc used the reward R and time bound B. The method would solve c problems, earning 
the gains R — si, R — s2,..., R— sc. It would terminate with failure d times, resulting in the 
negative gains —ft, —/b, ••-, — fd- In tnc remaining n + m + k — c — d cases, it would hit the 
time bound, each time earning —B.   The expected gain is equal to the mean of all these 
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Figure 2: Dependency of the expected gain on the time bound, for the reward of 10.0 (dash-and-dot 
lines), 30.0 (dashed lines), and 100.0 (solid lines). The dotted lines show the standard deviation of 
the expected gain for the 100.0 reward. 

n + m + k gains: 

TZ=1{R - Bj) + Ej=i(-/j) + (n + m + k-c-d)- (-D) 

n + m + k 

For example, if wc use ALPINE to solve transportation problems, with reward 30.0 and time 
bound 6.0, then the expected gain is 6.0. 

Since wc have computed the moan gain for a randomly selected sample of problems, 
it may be different from the mean of the overall population. Wc estimate the standard 
deviation of the expected gain using the formula for the deviation of a sample mean: 

SqrSum - n+m+h 

where 

\| (n + m + k) ■ (n + m + k - 1)' 

Sum = ELi (R ~ Si) + Ei=i (-/j) + {n + m + k-c- 

SqrSum = Z°i=1{R - s.,)2 + Eti // + (n + m +k- 

d) ■ (-D), 

: - d) ■ B2. 

This formula is an approximation based on the Central Limit Theorem, which states that 
the distribution of sample means is always close to normal (see, for example, Mcndcnhall's 
textbook [1987]). The accuracy of the approximation improves with sample size; for thirty 
or more sample problems, it is near-perfect. For example, if wc use ALPINE with reward 30.0 
and time bound 6.0, the standard deviation of the expected gain is 2.9. 

In Figure 2, wc show the dependency of the expected gain on the time bound for our 
three methods. Wc give the dependency for three different values of the reward R, 10.0 
(dash-and-dot lines), 30.0 (dashed lines), and 100.0 (solid lines). The dotted lines show the 
standard deviation of the gain estimate for the 100.0 reward: the lower line is "one deviation 
below" the estimate, and the upper line is "one deviation above." 



Wc have so far assumed that B < 61# We now consider the case when B is larger than 
e of the past interrupt times; that is, be < B < be+1. Wc cannot use b1,b2,...,be directly 
in the gain estimate, because these interrupt times arc smaller than B. The use of the 
time bound B would cause the method to run beyond these old bounds. The collected data 
do not tell us whether the method with the time bound B would have succeeded on the 
corresponding past problems. 

If wc had not interrupted the method at b\ in the past, it would have succeeded or failed 
at some larger time, or hit a larger time bound. Wc may estimate the expected gain using 
the data on the past problem-solving episodes in which the method ran beyond &i. Wc get 
this estimate by averaging the gains for all the larger-time outcomes. Wc incorporate this 
averaging into the computation by removing 61 from the sample and distributing its chance 
to occur among the larger-time outcomes. 

To implement this re-distribution, wc assign weights to the outcomes. Initially, the weight 
of every outcome is 1. After removing 61, wc distribute its weight among all the largcr-than- 
61 outcomes. If the number of such outcomes is 01, each of them gets the weight of 1 + —. 
Note that 62, •••,&(; arc all larger than 61, and thus they all get the new weight. 

Wc next remove 62 from the sample and distribute its weight, which is 1 + —, among 
the largcr-than-62 outcomes. If the number of such outcomes is a2, then wc increase their 
weights by (1 + i) • i; that is, their weights become (1 + ■£-) ■ (1 + j-). Wc repeat the 
distribution process for the all interrupt times smaller than B\ that is, for 63, ...,6e. 

Wc illustrate the use of this re-distribution technique using the data on ALPINE's perfor- 
mance. Suppose that wc interrupted ALPINE on problem 4 after 4.5 seconds of the execution 
and on problem 7 after 5.5 seconds, thus obtaining the data shown in Table 2(a), and that 
wc need to estimate the gain for B = 6.0. This bound B is larger than two interrupt times. 

Wc first have to distribute the weight of 6j. In this example, bx is 4.5 and there arc 21 
problems with larger times. Wc remove 4.5 from the sample data and increase the weights 
of the larger-time outcomes from 1 to 1 + ^ = 1.048 (sec Table 2b). Wc next perform the 
distribution for 62, which is 5.5. The table contains 15 problems with largcr-than-62 times. 
Wc distribute 62's weight, 1.048, among these 15 problems, thus increasing their weight to 
1.048 + ^ = 1.118 (Table 2c). 

Wc have thus distributed the interrupt times 61, 62, ...,be and assigned weights to the 
successes times, failure times, and remaining interrupt times. Wc denote the resulting weights 
of the success times si,...,s= by ui,...,uc, and the weights of the failure times fi,...,fd by 
i'i,..., Vd (recall that these success and failure times arc smaller than B). All success, failure, 
and interrupt times larger than B have the same weight, which wc denote by w. Note that 
the sum of the weights is equal to the number of problems in the original sample; that is, 
Yfi=\ Vi + J2j=i Vj +(n + m + k — c — d — c) ■ w = n + m + k. 

Wc have obtained (n+m+k— c) weighted times. Wc first use them to estimate the success 
and failure probabilities. The probability of solving a problem, within the time bound B, is 
"' n+m+fc""' i similarly, the probability of terminating with failure is Vi+

n"2^l'l^
v'1 ■ If wc use the 

data in Table 2(c) to determine these probabilities for ALPINE with time bound 6.0, wc get 
the success probability of i^§ = Q.37 and the failure probability of ^S = Q.07. 



# ALPINE'S 

time 
1 1.6  s 
2 2.0  s 
3 4.4 s 
4 4.5  b 
5 5.0 s 
6 81.4 s 
7 5.5  b 
8 200.0 b 
9 8.8 s 

29 10.2 f 
30 5.4 f 

weight time 
1.000 1.6 s 
1.000 2.0 s 
1.000 4.4 s 

1.048 5.0 s 
1.048 81.4 s 
1.048 5.5  b 
1.048 200.0 b 
1.048 8.8 s 

1.048 10.2 f 
1.048 5.4 f 

weight time 
1.000 1.6  s 
1.000 2.0  s 
1.000 4.4 s 

1.048 5.0 s 
1.118 81.4 s 

1.118 200.0 b 
1.118 8.8  s 

1.118 10.2  f 
1.048 5.4 f 

(a) (b) (c) 

Table 2: Distributing the weights of interrupt times among the larger-time outcomes. 

Wc next use the (n + m + k — c) weighted times to compute the expected gain: 

EU "i ■ (R ~ Sj) + Ej=i Vj ■ (-/j) + (n + m + k-c-d-c)-w (-B) 

n + m + k 

Similarly, wc use the weights in estimating the standard deviation of the expected gain: 

\ 

SqrSum n+m+tc 

(n + m + k) • (n + m + k — c — 1)' 

where 

Sum = ELi "i • {R - si) + Ej=i vi ■ (~fi) + (n + m + k-c-d)-w (-£), 

SqrSum = £Li w; • (R - s;)
2 + E?=i Vj ■ ff + (n + m + k - c- d) ■ w D2. 

The application of these formulas to the data in Table 2(c), for ALPINE with reward 30.0 
and time bound 6.0, gives the expected gain 6.1 and the standard deviation 3.0. 

If B is larger than the largest of the past bounds (that is, B > bft) and the largest time 
bound is larger than all past success and failure times (that is, b^ > sn and b^ > fm), then 
the re-distribution procedure docs not work. Wc need to distribute the weight of fefc among 
the larger-time problems, but the sample has no such problems. Thus, the data arc not 
sufficient for the statistical analysis because wc do not have any past experience with large 
enough time bounds. 

Wc have assumed in the derivation that the execution cost is proportional to the running 
time; however, wc may readily extend the results to any other monotone dependency between 
time and cost, by replacing the terms (R— s;), (—/»), and (-B) with more complex functions. 

Note that wc do not use past rewards in the statistical estimate. The reward R may be 
different from the rewards earned on the sample problems.  Wc may extend our results to 



c number of the already processed success times 
(the next success time to process will be sc+i) 

d number of the already processed failure times 
e number of the already processed interrupt times 
h number of the already processed time bounds 
S-Num sum of the weights of the processed successes, Ei=i ui 
F-Num sum of the weights of the processed failures, Ei=i vj 
SSurn- weighted sum of the gains for the processed successes, £3°_i «; • (R — s,) 
FJSum weighted sum of the gains for the processed failures, EjLi vj ' (~fj) 
Sum weighted sum of the gains for all sample problems, for the current time bound B/l+i 
SSqrSvm weighted sum of the squared gains for the processed successes, YA=I 

U
> ■ (R ~ si)2 

FSqrSum weighted sum of the squared gains for the processed failures, E?=i vj ' // 
SqrSum weighted sum of the squared gains for all sample problems, for the time bound B/,+i 

Figure 3: Variables used in the gain-estimate algorithm in Figure 4. 

situations when the reward is a function of the solution quality, rather than a constant, but 
it works only if the reward function docs not change from problem to problem. We replace 
each term (/?— s,;) by (71,- — s,), where ß, is the reward earned for the corresponding problem. 
The resulting expression combines the estimate of the expected reward and expected running 
time, which gives us the expected gain: 

ELi »i • (Hi - si) + EjLi vi ■ (-/j) + (n + m + k-c-d-e)-w (-B) 
n + m + k 

If we use this approach, we also have to replace (R — S;) by (R, — s;) in estimating the 
standard deviation of the expected gain. 

To summarize, wc can estimate the expected gain if cither the reward docs not depend on 
the solution quality or the dependency is the same for all problems. Relaxing this condition 
is an important open problem. Wc will discuss other limitations of the analysis and ways to 
overcome them in Section 9. 

Wc now present an algorithm for computing the success and failure probabilities, gain 
estimates, and estimate deviations, for multiple values of the time bound D. Wc describe 
the variables used in the computation in Figure 3 and give the pseudocode in Figure 4. 

The algorithm determines weights and computes gain estimates in one pass through the 
sorted list of success, failure, and interrupt times, and time-bound values. When processing 
a success or failure time, the algorithm increments the corresponding sums of the weighted 
gains and weighted squares of the gains. When processing an interrupt time, the algorithm 
modifies the weight value. When processing a time bound, the algorithm uses the accumu- 
lated sums of gains and squared gains to compute the gain estimate and deviation for this 
bound. 

The time of this pass through the sorted list of bounds and running times is linear. 
That is, for I time bounds and a sample of n successes, m failures, and k interrupts, the 
algorithm's complexity is 0(1 + n + m + k). The complexity of prc-sorting the lists is 
0((l + n + m + k) ■ log(/ + n + m + k)), but in practice it takes much less time than the 
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The input of the algorithm includes: the reward R; the sorted list of success times, si,...,sn; the 
sorted list of failure times, /j,..., /,„; the sorted list of interrupt times, 61;..., 6^; and a sorted list of 
candidate time bounds, Bi,.... Bt. The variables used in the computation are described in Figure 3. 

Set the initial values: 
c:=0; d:=0; e := 0; h := 0 
S-Num :- 0; F.Num := 0 
SSum := 0; FSum:- 0 
SSqrSum := 0; FSqrSum := 0 

Repeat the computations until finding the gains for all time bounds; that is, until h = l: 
• Select the smallest among the following four times: sc+1, fd+1, 6e+1, and B/l+i. 
• If the success time sc+i is selected, increment the related sums: 

S-Num. := S-Num + w 
SSum := SSum + w ■ (R — sc+i) 
SSqrSum- := SSqrSum. + w ■ (R — sc+i)2 

c := c + 1 
• If the failure time fd+i is selected, increment the related sums: 

FJVum := FJV«ro + w 
FSwn := .F-,SW+ w ■ (-fd+i) 
FSqrSum := FSqrSum ■ w ■ fj+1 

d:=d + l 
• If the interrupt time 6e+i is selected: 

If no success or failure times are left (that is, c = re and d = m), 
then terminate (the data are not sufficient to estimate the gains for the remaining bounds). 

Else, distribute the interrupt's weight among the remaining times, by incrementing w and e: 
W := W + W ■    n+m+fc-s-tf-e 

n+?n+k- 
e := e + 1 

• If the time bound B/l+i is selected: 
First, compute the sum of the sample-problem gains and the sum of their squares: 

Sum. := SSum + FSum +(n + m + k-c — d— e) ■ w ■ (—ß/l+i) 
SqrSum. := SSqrSum- + FSqrSum + (n+ m + k — c — d— e) ■ w ■ Bfl+1 

Now, compute the success and failure probability, gain estimate, and deviation, for B/,+i: 
Success probability: #f^ff. Gain estimate:    f1"" , . 

Failure probability: ^fi- Estimate deviation:    /AV^-AW/(n+m+fe) r J     n+m+k W {n+m+k)-(n+m+k— e— 1) 

Finally, increment the number of processed bounds: 
h :=h + l 

Figure 4: Computing the success and failure probabilities, gain estimates, and estimate deviations. 



rest of the computation. We implemented the algorithm in Common Lisp and tested it on 
Sun 5, the same machine as we used for solving the transportation problems. The running 
time is about (I + n + m + k) ■ 3 • 10~4 seconds. 

4    Selection of a method and time bound 

We describe the use of the statistical estimate to choose among problem-solving methods and 
to determine appropriate time bounds. We provide heuristics for combining the exploitation 
of past experience with exploration of new alternatives and for making a choice in the absence 
of past data. 

The basic technique is to estimate the gain for a number of time bounds, for each available 
method, and select the method and time bound with the maximal gain. For example, if the 
reward in the transportation domain is 30.Ü, than the best choice is APPLY with the time 
bound 11.6, which gives the expected gain of 14.0. This choice corresponds to the maximum 
of the dashed lines in Figure 2. If the expected gain for all time bounds is negative, than 
we arc better off not solving the problem at all. For example, if the only available method 
is DELAY and the reward is 10.0 (sec the dash-and-dot line in Figure 2), we should skip the 
problem. 

For each method, we use its past success times as candidate time bounds. Wc compute 
the expected gain only for these candidate bounds. If wc computed the gain for some 
other time bound D, wc would get a smaller gain than for the closest lower success time s,- 
(where s,- < B < si+1), because extending the time bound from s; to D would not increase 
the number of successes on the past problems. 

In practice, wc multiply the success times by 1.001 to obtain candidate bounds, in order 
to avoid the chance of interrupting a method too early because of rounding errors. Wc used 
such candidate bounds to construct the graphs in Figures 1 and 2. If several candidate 
bounds arc "too close" to each other, wc drop some of them, to reduce the amount of 
computation. In our implementation, wc consider two bounds too close if they arc within 
the factor of 1.05 from each other. 

Wc now describe a technique for incremental learning of the performance of available 
methods. Wc assume that wc begin with no past experience and accumulate performance 
data as wc solve more problems. For each new problem, wc use our statistical technique to 
select a method and time bound. After applying the selected method, wc add the result to 
the performance data. 

The use of the previous section's results incrementally causes a deviation from rigorous 
statistics: the resulting success, failure, and interrupt times arc not independent, because the 
time bound used for each problem depends on the times of solving the previous problems. 
In spite of this violation of rigor, the technique gives good results in practice. 

Note that wc need to choose a method and time bound even when wc have no past 
experience. Also, wc sometimes need to deviate from the maximal-expectation choice in 
order to explore new opportunities. If wc always used the selection that maximizes the 
expected gain, wc would be stuck with the problem-solving method that yielded the first 
success, and wc would never choose a time bound higher than the first success time. 
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Wc have not constructed a statistical model for combining exploration and exploitation. 
Instead, wc provide a hcuristical solution, which has proved to work well for selecting problem 
solvers in PRODIGY. Wc first consider the task of selecting a time bound for a fixed method, 
and then show how to select a method. 

Selecting a time bound 
If wc have no previous data on a method's performance, wc choose the time bound equal 
to the reward. This heuristic is based on the observation that, for PRODIGY search engines, 
the probability of solving a problem, say, within the next second, usually declines with the 
passage of search time. If a method has not solved a problem within half a minute, chances 
arc it will not find a solution in the next half minute cither. Thus, if the reward is 30.0 and 
the method has already run for 30.0 seconds, it is time to interrupt the search. 

Now suppose that wc have accumulated some data on the method's performance, which 
enable us to determine the bound with the maximal expected gain. To encourage exploration, 
wc select the largest bound whose expected gain is "not much different" from the maximum. 
Let us denote the maximal expected gain by #max and its standard deviation by <rmax. Suppose 
that the expected gain for some bound is g and its deviation is a. Then, the expected 
difference between the gain g and the maximal gain is #max - g. If wc assume that our 
estimates arc normally distributed, then the standard deviation of the expected difference 

is V<Tmax+ °'2- ^otc tnat tnis estimate of the deviation is an approximation, because the 
distribution for small samples may be Student's rather than normal, and because gmaK and 
g arc not independent variables, as they arc computed from the same data. 

Wc say that g is "not much different" from the maximal gain if the ratio of the expected 
difference to its deviation is bounded by some constant. In our experiments, wc set this 
constant to 0.1, which tends to give good experimental results: 

Smax ~~ 9  <- f| 1 

J .2 
max 

Wc thus select the largest time bound whose gain estimate g satisfies this condition. 
We present the results of this selection strategy in Figure 5. Wc ran each of the three 

methods on the thirty transportation problems, in order. The horizontal axes show the 
problem's number (from 1 to 30) and the vertical axes arc the running time. The dotted 
lines show the selected time bounds and the dashed lines mark the time bounds that give 
the maximal gain estimates. The solid lines show the running times; they touch the dotted 
lines where the methods hit the time bound. The successfully solved problems arc marked 
by circles and the failures arc shown by pluses. 

APPLY's total gain is 360.3, which makes an average of 12.0 per problem. If wc used the 
maximal-gain time bound, 11.6, for all problems, the average gain would be 14.0 per problem. 
Thus, the use of incremental learning yielded a near-optimal gain, in spite of the initial 
ignorance. The time bounds used with this method (dotted line) converge to the estimated 
maximal-gain time bounds (dashed line), since the deviations of the gain estimates decrease 
as wc solve more problems. APPLY's estimate of the maximal-gain bound, after solving all 
problems, is 9.6. This estimate differs from the 11.6 bound, found from Table 1, because the 
use of bounds that ensure a near-maximal gain prevented sufficient exploration. 
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Figure 5: Results of the incremental learning of a time bound: running times (solid lines), time 
bounds (dotted lines), and maximal-gain time bounds (dashed lines). The successes are marked by 
circles and the failures by pluses. 

DELAY'S total gain is 115.7, or 3.9 per problem. If wc used the data in Table 1 to find 
the optimal bound, which is 6.2, and solved all problems with this bound, wc would earn 
5.7 per problem. Thus, the incremental-learning gain is about two-thirds of the gain that 
could be obtained based on the advance knowledge. Finally, ALriNE's total gain is 339.7, or 
11.3 per problem. The estimate based on Table 1 gives the bound 11.0, which would result 
in earning 12.3 per problem. Unlike APPLY, both DELAY and ALPINE eventually found the 
optimal bound. 

Note that the main "losses" in the incremental learning occur on the first ten problems, 
when the past data arc not sufficient for selecting an appropriate time bound. After this 
initial period, the choice of a time bound becomes close to the optimal. 

The total time of the statistical computations while solving the thirty problems is 0.26 
seconds, which makes less than 0.01 per problem. This time is negligible in comparison with 
the problem-solving time, which averages at 6.5 per problem for APPLY, 7.7 per problem for 
DELAY, and 7.1 per problem for ALPINE. 

Selecting a method 
Wc next describe the use of incremental learning to select a problem-solving method. If wc 
have no data on the performance of some method, wc always select this unknown method. 
If wc have no data on several methods, wc select among them at random. The optimistic 
use of the unknown encourages exploration during early stages of learning. 

If wo have past performance data for all methods, wc first select a time bound for each 
method and determine the corresponding gain estimate and its standard deviation. Wc then 
make a weighted random selection among the methods; the chance to choose a method is 
equal to the probability that it is the best among the methods. This probabilistic selection 
results in the frequent application of methods that perform well, but also encourages some 
exploratory use of poor performers. 

Wc now describe a technique for estimating the probability that a method is the best 
among the available methods. Wc use the statistical 2-tcst to determine the probability that 
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some method is better than another one. Suppose that the expected gain for some method is 
#1 and its standard deviation is cry, similarly, the expected gain for another method is g2 with 
deviation cr2. The expected difference between these two gains is gr — g2. If we assume that 
estimates arc normally distributed, then the standard deviation of the expected difference is 

V of + o\. The z value is the ratio of the expected difference to its standard deviation; that 

's' z = rr^i- The z-tcst converts this value into the probability that the average gain of 

the first method is larger than that of the second method. 

The use of the z-tcst for small samples of past performance data is an approximation; its 
accuracy improves with sample size. We can obtain a greater accuracy by using the 2-tcst, 
which is more complex than the z-tcst. We did not use the 2-tcst in the experiments, because 
we need the probability estimates only for our "occasional exploration" heuristic, which docs 
not require high accuracy in determining the exploration frequency. 

We find the probability that a method is the best by calculating the product of the 
probabilities that it outperforms individual methods. This computation is also an approxi- 
mation, occasionally quite inaccurate, since the probability values that we multiply arc not 
independent. 

For example, suppose that we need to select among APPLY, DELAY, and ALPINE based on 
the data in Table 1. We select bound 13.1 for APPLY, which gives the gain estimate of 13.5 
with deviation 3.3; bound 5.3 for DELAY, with gain estimate 5.3 and its deviation 3.0; and 
bound 13.2 for ALPINE, with expected gain 11.2 and its deviation 3.2. We now use the z-tcst 
to determine the probability that APPLY's gain is larger, on average, than that of DELAY. 
The z value is j*^3% = 1.84; this value of z corresponds to the 0.97 probability that 
ArPLY gives a larger average gain. Similarly, the probability of APPLY's average superiority 
over ALPINE is 0.69, and the probability of ALPINE's superiority over DELAY is 0.91. The 
probability that APPLY is the best among the throe is estimated as 0.97 • 0.69 = 0.67. 
Similarly, the probability that ALPINE is the best is (1 - 0.69) • 0.91 = 0.28, and DELAY'S 

chance of being the best is (1 - 0.97) • (1 - 0.91) - 0.003. The resulting probabilities do not 
add up to 1.0 because of the approximation used in estimating them. We now choose one of 
the methods randomly; the chance of choosing each method is proportional to its estimated 
probability of being the best. 

We show the results of using this selection strategy in the transportation domain, for 
the reward of 30.0, in Figure 6. In this experiment, we first use the thirty problems from 
Table 1 and then sixty additional transportation problems. The horizontal axis shows the 
problem's number and the vertical axis is the running time. We mark successes by circles 
and failures by pluses. The rows of symbols below the curve show the method selection: a 
circle for APPLY, a cross for DELAY, and an asterisk for ALPINE. 

The total gain is 998.3, which makes an average of 11.1 per problem. The overall time of 
the statistical computations is 0.78, or about 0.01 per problem. The selection converges to 
the use of ArPLY with the time bound 12.7, which is optimal for this set of ninety problems. 
If we used this selection on all the problems, we would earn 13.3 per problem. Note that 
the convergence is slower than in the bound-selection experiments (sec Figure 5), because 
we test each method only on about third of all problem. 
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Figure 6: Results of the incremental selection of a method and time bound, on ninety transporta- 
tion problems. The graph shows the running times (solid line), successes (o) and failures (+), and 
the selection made among APPLY (O), DKLAY (X), and ALPINB (*). 
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Figure 7: Incremental learning of time bounds in the extended transportation domain: running 
times (solid lines), time bounds (dotted lines), and maximal-gain time bounds (dashed lines). The 
successes are marked by circles and the failures by pluses. 

5    Empirical examples 

We have demonstrated the effectiveness of the statistical selection in a simple transportation 
domain. Wc now give results in two other domains. 

We first consider an extended version of the transportation domain, in which wc use 
airplanes to carry packages between cities and vans for the local delivery within cities [Vcloso, 
1994]. The problems in this domain arc more complex, and the behavior of PRODIGY search 
methods differs from that in the simpler domain used in the previous sections. In Table 3, 
wc give the performance of ArPLY, DELAY, and ALPINE on thirty problems. 

Wc present the results of the incremental learning of a time bound, for the reward of 
400.0, in Figure 7. The APPLY learning gives the gain of 110.1 per problem and eventually 
selects the bound 127.5. The optimal bound for this set of problems is 97.0. If wc used the 
optimal bound for all problems, wc would cam 135.4 per problem. 

DELAY gains 131.1 per problem and chooses the 105.3 bound at the end of the learning. 
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# time (sec) and outcome #of # time (sec) and outcome #of 
APPLY DKL AY ALPINE packs APPLY DELAY ALPINE packs 

1 4.7  s 4.7   S 4.7   S 1 16 35.1 s 21.1   S 6.6 f 2 
2 96.0 s 9.6 f 7.6 f 2 17 60.5 s 75.0 f 13.7 s 2 
3 5.2 s 5.1 s 5.2 s 1 18 3.5 s 3.4 s 3.5 s 1 
4 20.8 s 10.6 f 14.1 s 2 19 4.0 s 3.8 s 4.0 s 1 
5 154.3 s 31.4 s 7.5 f 2 20 232.1 s 97.0 s 9.5 f 2 
6 2.5 s 2.5 s 2.5 s 1 21 60.1  s 73.9 s 14.6 s 2 
7 4.0 s 2.9 s 3.0 s 1 22 500.0 b 500.0  b 12.7 f 2 
8 18.0 s 19.8 s 4.2 s 2 23 53.1  s 74.8 s 15.6 s 2 
9 19.5 s 26.8 s 4.8 s 2 24 500.0 b 500.0 b 38.0 s 4 

10 123.8 s 500.0 b 85.9 s 3 25 500.0 b 213.5 s 99.2 s 4 
11 238.9 s 96.8 s 76.6 s 3 26 327.6 s 179.0 s 121.4 s 6 
12 500.0  b 500.0 b 7.6 f 4 27 97.0 s 54.9 s 12.8 s 6 
13 345.9 s 500.0 b 58.4 s 4 28 500.0 b 500.0  b 16.4 f 8 
14 458.9 s 98.4 s 114.4 s 8 29 500.0 b 500.0  b 430.8 s 16 
15 500.0  b 500.0  b 115.6 s 8 30 500.0 b 398.7 s 214.8 s 8 

Table 3: Performance in the extended transportation domain. 

The actual optimal bound for DELAY is 98.4, the use of which on all problems would give 
the pcr-problcm gain of 153.5. Finally, ALPINE gains 243.5 per problem and chooses the 
bound 127.6. The optimal bound for ALPINE is 430.8, the use of which would give the pcr- 
problcm gain of 255.8. (ALPINE outperforms APPLY and DELAY because it uses abstraction, 
which separates the problem of between-city transportation by airplanes from the problem 
of within-city deliveries.) 

Even though the bound learned for ALPINE is much smaller than optimal (127.6 ver- 
sus 430.8), the resulting gain is close to optimal. The reason is that, in this experiment, 
ALPINE's dependency of the expected gain on the time bound has a long plateau, and the 
choice of a bound within the plateau does not make much difference. 

Note that ALPINE's optimal bound is larger than the reward (430.8 versus 400.0). This 
observation shows the imperfection of the heuristic for selecting the initial time bound (sec 
Section 4), which assumes that the optimal bound is no larger than the reward. 

We show the results of the incremental selection of a method in Figure 8. In this ex- 
periment, we first use the thirty problems from Table 3 and then sixty additional problems 
from the extended transportation domain. The method converges to the choice of ALPINE 
with time bound 300.6 and gives the gain of 207.0 per problem. The best possible choice for 
this set of problems is the use of ALPINE with the time bound 517.1, which would give the 
pcr-problcm gain of 255.8. We identified this optimal choice in a separate experiment, by 
running every method on all ninety problems. 

We next apply our technique to a bound selection when calling to a friend on the phone. 
We determine how many seconds (or rings) you should wait for an answer before hanging up. 
The reward for reaching your party may be determined by the time that you arc willing to 
wait in order to talk now, as opposed to hanging up and calling again later. In Table 4, we give 
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Figure 8: Selection of a method in the extended transportation domain: the running times (solid 
line), successes (o) and failures (+), and the selection made among APPLY (o), DKLAY (X), and 
ALP1NJJ (*). 

# time 

1 5.80 f 

2 8.25 s 
3 200.00 b 

4 5.15 s 
5 8.30 s 

6 200.00 b 
7 9.15 s 

8 6.10 f 
9 14.15 f 

10 200.00 b 

11 9.75 s 
12 3.90 s 

# time 

13 11.45 f 

14 3.70 s 
15 7.25 s 

16 4.10 s 

17 8.25 s 

18 5.40 s 

19 4.50 s 

20 32.85 f 

21 200.00 b 
22 200.00 b 

23 10.50 s 
24 14.45 f 

# time 

25 11.30 f 

26 10.20 f 
27 4.15 s 

28 14.70 s 
29 2.50 s 

30 8.70 s 

31 6.45 s 

32 6.80 s 

33 8.10 s 
34 13.40 s 

35 5.40 s 

36 2.20 s 

# time 

37 26.70 f 

38 6.20 s 
39 24.45 f 

40 29.30 f 
41 12.60 s 

42 26.15 f 
43 7.20 s 

44 16.20 f 

45 8.90 s 
46 4.25 s 

47 7.30 s 

48 10.95 s 

# time 

49 10.05 s 

50 6.50 s 
51 15.10 f 

52 25.45 s 

53 20.00 f 
54 24.20 f 

55 20.15 f 

56 10.90 s 

57 23.25 f 
58 4.40 s 

59 3.20 f 
60 200.00 b 

Table 4: Waiting times (seconds) in sixty phone-call experiments. 

the time measurements on sixty phone calls, rounded to 0.05 seconds1. A success occurred 
when our party answered the phone. A reply by an answering machine was considered a 
failure. 

The graph in Figure 9(a) shows the dependency of the expected gain on the time bound, 
for the rewards of 30.0 (dash-and-dot line), 90.0 (dashed line), and 300.0 (solid line). We 
assume here that the caller is not interested in leaving a message, which means that a reply 
by a machine gets the reward of zero. The optimal bound for the 30.0 and 90.0 rewards is 
14.7 (three rings); the optimal bound for the 300.0 reward is 25.5 (five rings). 

If the caller plans to leave a message, then the "failure" reward is not zero, though it 
may be smaller than the success reward. The graph in Figure 9(b) shows the expected gain 
for the success reward of 90.0 with three different failure rewards, 10.0 (dash-and-dot line), 
30.0 (dashed line), and 90.0 (solid line).  The optimal bound for the 10.0 failure reward is 

1\Ve made these calls to sixty different people at their home numbers.  We measured the time from the 
beginning of the first ring, skipping the static silence of the connection delays. 
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Figure 9: The dependency of the expected gain on the time bound in the phone-call domain: 
(a) for the rewards of 30.0 (dash-and-dot line), 90.0 (dahsed line), and 300.0 (solid line); (b) for 
the success reward of 90.0 and failure rewards of 10.0 (dash-and-dot line), 30.0 (dahsed line), and 
90.0 (solid line). 
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Figure 10: Incremental learning of a time bound in the phone-call domain. 

26.7 (five rings); for the other two rewards, it is 32.9 (six rings). 
The graph in Figure 10 shows the results of selecting a time bound incrementally, for 

the 90.0 success reward and zero failure reward. The learned time bound converges to the 
optimal bound, 14.7. The average gain obtained during the learning is 38.9 per call. If we 
used the optimal bound for all calls, we would earn 41.0 per call. 

The experiments in the two PRODIGY domains and the phone-call domain demonstrated 
that the incremental-learning procedure usually finds a near-optimal time bound after solving 
twenty or thirty problems, and that the gain obtained during learning is close to optimal. 
In Section 8, we will present a scries of experiments with artificially generated time values, 
using normal, log-normal, uniform, and log-uniform distributions. Wo will demonstrate that 
the learning technique gives good results for all four distributions. 
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6    Use of problem sizes 

Wc have considered the task of finding a problem-solving method and time bound that will 
work well for most problems in a domain. If wc can estimate the sizes of problems, wc 
improve the performance by adjusting the time bound to a problem size. 

Wc define a problem size as an easily computable positive value that correlates with the 
problem complexity: the larger the value, the longer it usually takes to solve the problem. 
Finding an accurate measure of complexity is often a difficult task; however, many domains 
have features that provide at least a rough complexity estimate. For example, in the trans- 
portation domain, wc may estimate the problem complexity by the number of packages to 
be delivered. In the rightmost column of Tables 1 and 3, wc show the number of packages 
in each of the sample problems. 

Note that measures of a problem size arc usually domain-specific. The choice of a good 
measure is the user's responsibility. Wc allow the user to specify different measures for 
different problem-solving methods. 

Wc use regression to find the dependency between the sizes of the sample problems and 
the times to solve them. Wc use separate regressions for the times of successes and for the 
times of failures. In PRODIGY, successes usually occur after exploring a small part of the 
search space, whereas failures require the exploration of the entire space, and the dependency 
of the success time on the problem size is quite different from that of the failure time. 

Wc assume that the dependency of time on size is cither polynomial or exponential. If 
it is polynomial, than the logarithm of time depends linearly on the logarithm of size; for 
an exponential dependency, the time logarithm depends linearly on size. Wc thus use linear 
regression to find both polynomial and exponential dependencies. 

Wc use the least-squares technique to perform the regression. In Figure 11(a) and 11(b), 
wc give the regression formulas for a polynomial dependency between size and time; the 
regression for an exponential dependency is similar. Wc denote the number of sample prob- 
lems by n, the problem sizes by sizci,...,sizc„, and the corresponding running times by 
tirnci,..., timen. 

Wc evaluate the regression results using the f-tcst. The t value in this test is the ratio 
of the estimated slope of the regression line to the standard deviation of the slope estimate. 
Wc give the formula for computing t in Figure 11(c). The TimcDcv value in this formula is 
the standard deviation of time logarithms. It shows how much, on average, time logarithms 
deviate from the regression line. 

The f-tcst converts the t value into the probability that the use of the regression gives 
no better prediction of running time than ignoring the sizes and simply taking the mean; in 
other words, it is the probability that the regression docs not help. This probability is called 
the P value; it is a function of the t value and the number n of sample problems. When the 
regressed line gives a good fit to the sample data, t is large and the P value is small. 

In Figure 12, wc give the results of regressing the success times for the sample trans- 
portation problems from Table 1; wc do not show failure regression. The top three graphs 
give the polynomial dependency of the success time on the problem size; the bottom graphs 
arc for the exponential dependency. The horizontal axes show the problem sizes (that is, 
the number of packages), and the vertical axes arc the times. The circles show the sizes and 
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(a) Approximate dependency of the running time on the problem size: 
log time = a + 0 ■ log size; 
that is, time. = ca ■ sizc^. 

(b) Regression coefficients: 
,T     /jj-\ *°S sizej-logtimej — SizeSum-'ftmeSum/n 

SizeSqrSum —SizeSum  In ' 
_, __   TimeSum     ,0 _  SizeSum 

n ■ n       ' 
where 

TimeSum = I]"=i 1°S timcj, 
SizcSum = ]C;'=i log size;, 
SizcSqrSum = Z)"=i (log sure,)2. 

(c) The £ value, for evaluating the regression accuracy: 

t = T- ßn    ■ J SizcSqrSum - A'^'*"'2 

where 
TimcDcV = J^ ■ (^=I(loStime,)2 - SiasSaai _ .Ö .(^ log««, • log«me, - SkoSum-TimcS«,,, }y 

Figure 11: Rergression coefficients and the t value for the polynomial dependency of time on size. 

times of the problem instances; the solid lines arc the regression results. For each regression, 
we give the t values and the corresponding intervals of the P value under the graph. 

Wc use the regression only if the probability P is smaller than a certain bound. In our 
experiments, wc set this bound to 0.2; that is, wc used problem sizes only for P < 0.2. 
This test ensures that wc use sizes only if they provide a good correlation with problem 
complexity. If the size measure proves inaccurate, then the gain-estimate algorithm ignores 
sizes. Wc use the 0.2 bound rather than more "customary" 0.05 or 0.02 because an early 
detection of a dependency between sizes and times is more important for the overall efficiency 
than establishing a high certainty of the dependency. 

For example, all three polynomial regressions in the top row of Figure 12 pass the P < 0.2 
test. The exponential regressions for APrLY and ALPINE also satisfy this condition. On the 
other hand, the exponential regression for DELAY fails the test (sec the middle bottom graph 
in Figure 12). 

The choice between the polynomial and exponential regression is based on the value of t: 
wc prefer the regression with the larger t. In the example of Figure 12, the polynomial 
regression wins for all three methods. 

The user has an option to select between the two regressions herself. For example, she 
may insist on the use of the exponential regression. Wc also allow the user to set a regression 
slope. This option is useful when the human operator has a good notion of the slope value 
and the past data arc not sufficient for an accurate estimate. If the user specifics a slope, 
the algorithm uses her value in the regression; however, it compares the user's value with 
the regression estimate of Table 11, determines the statistical significance of the difference, 
and gives a warning if the user's estimate is off with high probability. 

Note that the least-square regression and the related i-tcst make quite strong assumptions 
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Figure 12: The dependency of the success time on the problem size. The top graphs show the 
regression for a polynomial dependency, and the bottom graphs are for an exponential dependency. 

about the nature of the distribution. First, for problems of fixed size, the distribution of the 
time logarithms must be normal; that is, time must be distributed log-normally. Second, 
for all problem sizes, the standard deviation of the distribution must be the same. The 
regression, however, usually provides a good approximation of the dependency between size 
and time even when these assumptions arc not satisfied. 

The use of the problem size in estimating the gain is based on "scaling" the times of 
sample problems to a given size. We illustrate it in Figure 13, where wc scale DELAY'S times 
of a 1-packagc success, an 8-packagc success, and an 8-packagc failure for estimating the 
gain on a 3-packagc problem (the 3-packagc size is marked by the vertical dotted line). To 
scale a problem's time to a given size, wc draw the line with the regression slope through 
the point representing the problem (sec the solid lines in Figure 13), to the intersection with 
the vertical line through the given size (the dotted line). The ordinatc of the intersection is 
the scaled time. 

If the size of the problem is sizca\d, the running time is timc0n, and wc need to scale it to 
a size sizcnev, using a regression slope ß, then wc compute the scaled time timcnevr as follows: 

Polynomial regression: 
log timc.new = log timcold + 3 • (log sizcnev/ - log sizc.oid); 

that is, timc„evl = timc0\d ■ (^C
e°°j)' • 
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Figure 13: Scaling two success times (o) and a failure time (+) of DKLAY to a 3-package problem. 

Exponential regression: 
log iimcnew = log timcoW + 3 ■ (sizenew - sizcM); 
that is, iimcnew = timcoi<i ■ cxp(# ■ (sizcnev/ — sizc0\d)). 

We use the slope of the success regression in scaling success times (sec the lines through 
circles in Figure 13), and the slope of the failure regression in scaling failures (the line trough 
pluses). The slope for scaling an interrupt time should depend on whether the method would 
succeed or fail if we did not interrupt it; however, we do not know which of these two outcomes 
would occur. We use the simple heuristic of choosing between the success and failure slope 
based on which of them has the smaller P value. We also experimented with "distributing" 
each interrupt point between success and failure slopes, similar to the distribution of small 
interrupt times described in Section 3; however, it did not provide higher accuracy than the 
simple heuristic. 

For a sample of n successes, m failures, and k interrupts, the overall time of computing 
the polynomial and exponential regression slopes, performing the f-tcst to select between the 
two regressions, and scaling the sample times to a given size is about (n + m + k) • 9 • 10"4 

seconds. For the incremental learning of a time bound, we implemented a procedure that 
incrementally updates the slope and t value after adding a new problem to the sample. The 
amortized running time of this procedure is approximately ((n + m + k)-2 + 7) ■ 10~4 seconds 
per problem. 

After scaling the times of the sample problems to a given size, we use the technique of 
Section 3 to compute the gain estimate and its standard deviation. The only difference is 
that wc reduce the second term in the denominator for the standard deviation by 2, because 
the success and failure regressions reduce the number of degrees of freedom of the sample 
data. Thus, wc compute the deviation as follows: 

SqrSum — n+m+k 

\ (n + m + k) ■ (n + m + k ■ ■3)' 

In Figure 14, wc show the dependency of the expected gain on the time bound when 
using APPLY on 1-packagc, 3-packagc, and 10-packagc problems in the simple transportation 
domain, described in Section 2. 

If wc estimate the problem sizes in the transportation domain by the number of packages 
to be delivered, and use these sizes in the incremental-selection experiments of Sections 4 
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Figure 14: Dependency of APPLY'S expected gain on the time bound in the simple transportation 
domain, for the rewards of 10.0 (dash-and-dot lines), 30.0 (dashed lines), and 100.0 (solid lines). 
The dotted lines show the standard deviation for the 100.0 reward. 
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'Section 5) 
121.6 

DELAY'S bound selection 131.1 137.4 
ALPINE'S bound selection 243.5 248.3 
method selection 207.0 215.6 

Table 5: Per-problem gains in the learning experiments, without and with the use of sizes. 

and 5, we get larger gains in all eight experiments. In Table 5, we give the pcr-problcm gains 
in these experiments, without and with the use of problem sizes. 

In Figure 15, wc give a more detailed comparison of gains without and with the regression, 
for the bound-selection experiments of Section 4. The horizontal axes show the problem's 
number, from 7 to 30. Wc skip the first six problems, because the algorithm docs not use 
sizes in selecting the time bounds for these problems: it has not yet accumulated enough 
data for regression with sufficiently small P value. 

The vertical axes show the average pcr-problcm gain up to the current problem. For 
example, the left end of the curve shows the average gain for the first seven problems and 
the right end gives the average for all thirty problems. The gain declines for problems 20 to 
30 because these problems happen to be harder, on average, than the first twenty problems 
(sec Table 1). The dotted lines give the average gains without the use of problem sizes, and 
the solid lines arc for the gains obtained with the regression. 

The graphs show that the use of problem sizes usually, though not always, provides a 
small improvement of the performance. The apparent advantage of the regression in DELAY'S 
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Figure 15: Average per-problem gains without the regression (dotted lines) and with the regression 
(solid lines), during the incremental learning of a time bound. 

learning is mostly due to the choice of low time bounds for problems 9 and 10, which cannot 
be solved in feasible time. This luck in setting low bounds for two hard problems is not 
statistically significant. If the algorithm docs not use problem sizes, it hits the time bounds 
of 16.9 and 14.0 on these problems (sec Figure 5) and falls behind in its pcr-problcm gain. 

7    Similarity hierarchy 

We have estimated the expected gain by averaging the gains for all sample problems. If we 
know which of them arc similar to a new problem, wo may improve the estimate accuracy 
by averaging only the gains for these similar problems. 

We describe similarity among problems by a tree-structured similarity hierarchy. The 
leaf nodes of the hierarchy arc groups of similar problems. The other nodes represent weaker 
similarity among groups. We assume that each problem belongs to exactly one group and 
that determining a problem's group takes little computational time. 

For example, wc may divide the transportation problems into within-city and between- 
city deliveries. Wc extend this example by a now type of problems, which involves the 
transportation of containers within a city. A van can carry only one container at a time, 
which sometimes makes container delivery harder than package delivery. In Table 6, wc give 
the performance of APPLY, DELAY, and ALPINE on ten container-transportation problems. 
Wc now subdivide within-city problems into package deliveries and container deliveries. Wc 
show the resulting similarity hierarchy in Figure 16(a). 

The construction of a hierarchy is presently the user's responsibility. Wc plan to address 
the problem of learning a hierarchy automatically in the future work. Wc allow the user to 
construct a separate hierarchy for each problem-solving method or a common hierarchy for 
all methods. Wc also allow the use of different problem-size measures for different groups of 
problems. 

Wc may estimate the similarity of problems in a group by the standard deviation of the 
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# time (sec) and outcome #of 
APPLY DKL AY ALPINE conts 

1 2.3 s 2.3 s 2.1   S 1 
2 3.1  s 5.1 s 4.1 s 2 
3 5.0 s 20.2 s 4.8 s 3 
4 3.3 s 8.9 s 3.2 s 2 
5 6.7 s 36.8 s 6.4 s 4 

# time (sec) and outcome #of 
APPLY DELAY ALPINE conts 

6 200.0  b 200.0  b 10.1   f 8 
7 3.2 s 3.2 s 3.2 s 2 
8 24.0 s 200.0  b 26.3 s 8 
9 4.8 s 86.2 s 3.4 s 4 

10 8.0 s 200.0  b 9.4 s 6 

Table 6: Performance on ten container-transportation problems. 
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(a) Similarity hierarchy (b) ALPINE's deviations w/o regression (c) ALPINE's deviations with regression 

Figure 16: Similarity hierarchy and the deviations of ALPINE'S success and failure logarithms, 

logarithms of running times, computed for the sample problems that belong to the group: 

TimcDcv 
\ 1 

^(log timci)2 - (E-Ulogtoc,-)2 

We compute the deviations separately for successes and failures, and use these values as a 
hcuristical measure of the hierarchy's quality. The smaller the deviations for the leaf groups, 
the better the user's hierarchy. If some deviation value is larger than a prc-sct threshold, 
the system gives a warning. In the implementation, we set this threshold to 2.0. 

If we use the regression, we apply it separately to each group of the similarity hierarchy. 
If the regression confirms the dependency between problem sizes and times, we compute the 
deviation of time logarithms by a different formula, given in the last line of Figure 11. 

For example, the deviation values for ALPINE in the transportation domain arc as shown 
in Figure 16. We give the deviations computed without the regression in Figure 16(b), and 
the deviations for gain estimates with the regression in Figure 16(c). The values show that 
within-city problems arc more similar to each other than between-city problems. 

Note that the deviations of the logarithms do not change if we multiply all times by the 
same factor, which means that they do not depend on the speed of a computer that runs 
problem-solving methods. Also, the deviation values do not change, on average, with adding 
more problems to the sample. 
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Wc may estimate the expected gain for a new problem by averaging the gains of the 
sample problems that belong to the same leaf group. Alternatively, wc may use a larger 
sample from one of its ancestors. The leaf group has less data than its ancestors, but the 
deviation of these data is smaller. Wc need to analizc this trade-off when selecting between 
the leaf group and its ancestors. Intuitively, wc should use ancestral groups during early 
stages of the incremental learning and move to leaf groups after collecting more data. 

Wc present a hcuristical (rather than statistical) technique for selecting between a group 
and its parent, based on two tests. The first test is aimed at identifying the difference 
between the distribution of the group's problems and the distribution of the other problems 
in the parent's sample. If the two distributions prove different, wc use the group rather than 
its parent for estimating the problem-solving gain. If not, wc perform the second test, to 
determine whether the group's sample provides a more accurate performance estimate than 
the parent's sample. Wc now describe the two tests in detail. 

If wc do not use the regression, then the first test is the statistical f-tcst that determines 
whether the mean of the group's time logarithms differs from the mean of the other time log- 
arithms in the parent's sample. Wc perform the test separately for successes and failures. In 
our experiments, wc considered the means different when wc could reject the null-hypothesis 
that they arc equal with the Ü.75 confidence. If wc use the regression and it confirms the 
dependency between sizes and times, then wc use a different i-tcst. Instead of comparing 
the means of time logarithms, wc determine whether the regression lines arc different with 
confidence Ü.75. 

A statistically significant difference for cither successes or failures is a signal that the 
distribution of the group's running times differs from the distribution for the other problems 
in the group's parent. Therefore, if wc need to estimate the gain for a new problem that 
belongs to the group, the use of the parent's sample may bias the prediction. Wc thus should 
use the group rather than its parent. 

For example, suppose that wc use the data in Tables 1, 3, and 6 with the hierarchy in 
Figure 16(a), and wc need to estimate ALPINE's gain on a new problem that involves the 
delivery of packages within a city. Wc consider the choice between the corresponding leaf 
group and its parent. In this example, wc do not use the regression. 

The estimated mean of the success-time logarithms for the package-delivery problems is 
4.07, and the standard deviation of this estimate is 0.2Ü. The estimated mean for the other 
problems in the parent group, which arc the container-delivery problems, is 4.03, and its 
deviation is 0.16. The difference between the two means is not statistically significant. Since 
the container-transportation sample has only one failure, wc cannot estimate the deviation 
of its failure logarithms; therefore, the difference between the failure-logarithm moans is also 
considered insignificant. 

If wc apply the regression to this example and use the i-tcst to compare the regression 
slopes, it also shows that package-transportation and container-transportation times arc not 
significantly different. 

The second test is the comparison of the standard deviations of the mean estimates for 
the group and its parent. The deviation of the mean estimate is equal to the deviation of 
the time logarithms divided by the square root of the sample size, 'J""^CT- Wc compute 
it separately for success times and failure times.  Wc use this value as an indicator of the 
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sample's accuracy in estimating the problem-solving gain: the smaller the value, the greater 
the accuracy. This indicator accounts for the trade-off between the deviation of the running- 
time distribution and the sample size. It increases with an increase in the deviation and 
decreases with an increase in the sample size. 

If the group's deviation of the mean estimate is smaller than that of the group's parent, 
for cither successes or failures, then the group's sample is likely to provide a more accurate 
gain estimate; thus, we prefer the group to its parent. On the other hand, if the parent's 
mean-estimate deviation is smaller for both successes and failures, and the comparison of 
the group's mean with that of the other problems of the parent sample has not revealed a 
significant difference, then we use the parent to estimate the gain for a new problem. 

Suppose that we apply the second test to the group selection for estimating ALPINE's 
gain on within-city package delivery. The standard deviation of the mean estimate of the 
success-time logarithms, for the corresponding leaf group, is 0.20; the deviation for its parent 
is 0.16. The deviation of the mean estimate of the failure-time logarithms is also smaller for 
the parent. Since the first test has not revealed a significant difference between the group's 
times and the other times in the parent's sample, we prefer the use of the parent. 

After selecting between the leaf group and its parent, we use the same two tests to 
choose between the resulting "winner" and the group's grandparent. We then compare the 
new winner with the great-grandparent, and so on. In our example, we need to compare the 
selected parent group with the top-level node (sec Figure 16a). After applying the first test, 
we find out that the mean of the group's success logarithms is 4.03 and the corresponding 
mean for the other problems in the top node's sample is 5.39. The difference between these 
means is statistically significant. We thus prefer the group of within-city problems to the 
top-level group. 

The time taken by the statistical computations is proportional to the depth of a hierarchy. 
If we use a hierarchy in the incremental learning, and we have accumulated data on n 
successes, m failures, and k interrupts, then the amortized time of performing the necessary 
regressions, selecting a group, and scaling the times of this group to the size of the new 
problem is about ((n + m + k) ■ 4 + 20) • depth • 10~4 seconds. This time is still very small 
compared to PRODIGY's problem-solving time. 

We have considered several alterations of the described group-selection heuristic in our 
experiments. In particular, we tried replacing the deviation of time logarithms with the 
deviation of times divided over their mean. In most cases, the use of this measure led to the 
same selection. We also tried to use cither success or failure times rather than both successes 
and failures. This alternative proved to be a less effective strategy. When successes arc much 
more numerous than failures, which happens in most PRODIGY domains, the results of using 
successes and ignoring failures arc near-identical to the results of using both success and 
failures; however, when the number of successes and failures is approximately equal, the use 
of both successes and failures gives better performance. 

In Table 7, we present the results of using the similarity hierarchy of Figure 16 in the 
incremental learning, and compare them with the results obtained without a hierarchy. We 
ran the bound-selection experiments on a sequence of seventy transportation problems, which 
was constructed by interleaving the problem sets of Tables 1, 3, and 6. We used a three-times 
longer sequence of transportation problems for the method-selection experiments. 
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using leaf using the heuristical 
groups top group group selection 

without the use of problem sizes 
APPLY'S bound selection 11.8 10.5 12.1 
DELAY'S bound selection 7.0 4.7 7.5 
ALPINE'S bound selection 19.5 18.1 19.5 
method selection 13.1 11.1 13.4 

with the use of problem, sizes 
APPLY'S bound selection 16.3 11.1 16.8 
DELAY'S bound selection 12.1 5.2 12.0 
ALPINE'S bound selection 22.6 18.4 22.6 
method selection 19.4 13.7 21.0 

Table 7: Per-problem gains in learning experiments, for different group-selection techniques. 

In the first column, wc give the results of using only leaf groups in estimating the gains. 
In the second column, wc show the results of using the top-level group for all estimates, which 
means that wc do not distinguish among the three problem types. The third column contains 
the results of using the similarity hierarchy, with our heuristic for the group selection. Wc 
first ran the experiments using both success and failure times in the group selection, and then 
re-ran them using only success times. In all eight cases, he results of using both successes 
and failures were identical to the results of using successes. 

The experiments demonstrate that the use of the complete hierarchy gives larger gains 
than cither the leaf groups or the top-level group; however, the improvement is not large. 

Wc next use a similarity hierarchy in selecting a time bound for phone calls. Wc consider 
the outcomes of sixty-three calls to six different people. Wc called two of them, say A and 
B, at their office phones; wc called the other four, C, D, E, and F, at their homes. Wc show 
our similarity hierarchy and the call outcomes in Figure 17. 

For each group in the hierarchy, wc give the estimated mean of success and failure time 
logarithms ("mean"), the deviation of the time logarithms ("deviation"), and the deviation 
of the mean estimate ("mean's dcv"). The mean of success-time logarithms for calls to offices 
is significantly different from that for calls to homos, which implies that the distribution of 
office-call times differs from the distribution of home-call times. 

The mean success logarithms for persons A and D arc not significantly different from 
each other. Similarly, the success means of C, D, and E do not differ significantly from the 
mean of the home-call group. On the other hand, the success mean of F is significantly 
different from the mean for the other people in the homo-call group, implying that the time 
distribution for F differs from the rest of its parent group. Finally, the failure-logarithm 
means of D, E, and F arc all significantly different from each other. 

Wc ran incremental-learning experiments on these data with the reward of 90.0. An 
experiment with the use of the leaf groups for all gain estimates yielded the gain of 57.8 per 
call. Wc then ran an experiment using the home-call and office-call groups for all estimates, 
without distinguishing among different people within these groups, and obtained the average 
gain of 56.3. Wc next used the top-level group for all estimates, which yielded 55.9 per call. 
Finally, wc experimented with the use of our heuristic for choosing between the leaf groups 
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Figure 17: Similarity hierarchy and call outcomes in the phone-call domain. 

and their ancestors based on the means and deviations of time logarithms; the gain in this 
experiment was 59.8 per call. If we knew the time distributions in advance, determined the 
optimal time bound for each leaf group, and used these optimal bounds for all call, then the 
average gain would be 61.9. 

The phone-call experiments have confirmed that the use of a similarity hierarchy improves 
the performance, though not by much. Note, however, that the gain obtained with the use 
of the hierarchy is much closer to the optimal than the gain from the use of leaf groups or 
top-level group. 

8    Artificial tests 

We give the results of testing the selection mechanism on artificially generated values of 
success and failure times. The "running times" in these tests arc the values produced by a 
random-number generator. The artificial data enable us to perform controlled experiments 
with known distributions. 

The learning mechanism has proved effective for all tested distributions. The experiments 
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have demonstrated that the gain obtained in the incremental learning is usually close to the 
optimal. They have also shown that the use of the regression improves the performance 
when there is a correlation between size and time, and docs not worsen the results when 
there is no correlation. We have not found a significant difference in performance for different 
distributions. 

We consider the following four distribution types: 

Normal: The normal distribution of success and failure times corresponds to the situation 
when the running time for most problems is close to some "typical" value, and problems 
with much smaller or much larger times arc rare. 

Log-Normal: The distribution of times is called log-normal if time logarithms arc dis- 
tributed normally. Intuitively, this distribution occurs when the "complexity" of most 
problems is close to some typical complexity and the problem-solving time grows ex- 
ponentially with complexity. 

Uniform: The times arc distributed uniformly if they belong to some fixed interval and all 
values in this interval arc equally likely; thus, there is no "typical" running-time value. 

Log-Uniform: The logarithms of running times arc distributed uniformly. Intuitively, the 
complexity of problems is within some fixed interval, and running time is exponential 
in complexity. 

For each of the four distribution types, we ran multiple tests, varying the values of the 
following parameters: 

Success and failure probabilities: We varied the probabilities of success, failure, and 
infinite looping. 

Mean and deviation: We experimented with different values of the mean and standard 
deviation of success-time and failure-time distributions. 

Reward: We set the reward to 100.0 in all the experiments. 

Length of the problem sequence: Wc tested the incremental-learning mechanism on se- 
quences of 50, 150, and 500 problems. 

Correlation between sizes and times: Wc ran tests both without and with the use of 
problem sizes. Wc experimented with three different correlations between size loga- 
rithms and time logarithms: 0.0, 0.6, and 0.9. 

Wc ran fifty independent experiments for each setting of the parameters and averaged 
their results. Thus, every graph in this section shows the average of fifty experiments. 

Since the learning technique has proved effective in all these tests, wc conjecture that it 
also works well for most other distributions. Wc plan to experiment with a wider variety of 
distributions and identify situations in which the technique docs not give good results. 
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Figure 18: Per-problem gains (top row), time bounds (middle row), and estimates of the optimal 
time bounds (bottom row) in the incremental learning on 50-problem sequences. The crosses mark 
the optimal time bounds and the circles show the expected gains for the optimal bounds. 

Experiments with short and long problem sequences 
Wc first present the results of learning a time bound on sequences of 50 and 500 problems, 
without the use of problem sizes. The success probability in these experiments is 1/2, the 
failure probability is 1/4, and the probability of infinite looping is also 1/4. The mean 
of success times is 20.0 and their standard deviation is 8.0; the failure-time mean is 10.0 
and standard deviation is 4.0. Wc experimented with all four distribution types. For each 
distribution, wc ran fifty experiments and averaged their results. 

In Figure 18, wc summarize the results for 50-problcm sequences. The horizontal axes 
in all graphs show the problem's number in a sequence. The top row of graphs gives the 
average per-problem gain obtained up to the current problem. The circles mark the gain 
that the system would obtain if it knew the distribution in advance and used the optimal 
time bound for all problems. The vertical bars show the width of the distribution of gain 
values obtained in different experiments. Each bar covers two standard deviations up and 
down, which means that 95% of the experiments fall within it. 

The middle row of graphs shows the selected time bounds. The bottom row of graphs 
gives the system's estimates of the optimal time bound (recall that the selected bounds arc 
larger than optimal, to encourage exploration). The crosses mark the values of the optimal 
time bounds. Note that the system's estimates of the optimal bounds converge to their real 
values. 

In Figure 19, wc give similar results for 500-problcm sequences. In these experiments, 
per-problem gains come closer to the optimal values, but still do not reach them. The 
difference between the obtained and optimal gains comes from losses during early stages of 
learning and from the use of largcr-than-optimal bounds. 
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Figure 19: Per-problem gains (top row), time bounds (middle row), and estimates of the optimal 
time bounds (bottom row) in the incremental learning on 500-problem sequences. 

Varying success and failure probabilities 
Wc give the results of learning a time bound for different probabilities of successes and 
failures. The means and standard deviations of the success and failure times arc the same 
as in the previous experiments. 

Wc summarize the results in Figure 20. The top row of graphs is for a problem-solving 
method that succeeds, fails, and goes into an infinite loop equally often; that is, the prob- 
ability of each outcome is 1/3. The middle row of graphs gives the results for a method 
that succeeds half of the time and fails half of the time, and never goes into an infinite loop. 
Finally, the bottom row is for a method that succeeds half of the time and loops forever 
otherwise. 

The solid lines show the average per-problem gain up to the current problem; the dotted 
lines arc the selected time bounds; and the dashed lines arc the estimates of the optimal 
bound. The crosses mark the optimal time bounds, and the circles arc the expected gains 
for the optimal bounds. 

Note that, when the probability of infinite looping is zero (the middle row), any large 
time bound gives near-optimal results, because wc never need to interrupt a method. Thus, 
the system never changes the initial time bound and gets near-optimal gains from the very 
beginning. 

Varying the means of time distributions 
Wc now vary the mean value of failure times. Wc keep the mean success time equal to 20.0 
(with standard deviation 8.0). Wc experiment with failure means of 10.0 (with deviation 4.0), 
20.0 (with deviation 8.0), and 40.0 (with deviation 16.0). Wc give the results in Figure 21. 

The gains for normal and log-normal distributions come closer to the optimal values 
than the gains for uniform and log-uniform distributions.   This observation suggests that 
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Figure 20: Per-problem gains (solid lines), time bounds (dotted lines), and estimates of the optimal 
time bounds (dashed lines) for different success and failure probabilities. The crosses mark the 
optimal time bounds and the circles show the expected gains for the optimal bounds. We give the 
values of success probability ("succ") and failure probability ("fail") to the left of each row. 
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Figure 21: Per-problem gains (solid lines), time bounds (dotted lines), and estimates of the optimal 
time bounds (dashed lines) for different mean values of failure times. The mean of success times is 
20.0 in all experiments. 
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Figure 22: Per-problem gains without the use of sizes (dashed lines) and with sizes (solid lines), 
for different correlations between size logarithms and time logarithms. 

our technique works better for the first two distributions. The difference, however, is not 
statistically significant. 

Use of problem sizes 
We compare the gains obtained without and with the use of the regression. Problem sizes in 
this experiment arc natural numbers between 1 and 10, selected randomly. The logarithms 
of mean success and failure times arc proportional to the problem-size logarithms. We 
adjusted the deviation values to obtain desired correlations between time logarithms and 
size logarithms. We used the correlation of 0.9 in the first scries of experiments and 0.6 in 
the second scries. Finally, we ran experiments with zero correlation; the mean times in this 
scries were the same for all problem sizes. 

We give the results in Figure 22, where dashed lines show the average per-problem gains 
without the regression, and the solid lines give the gains obtained with the regression. The 
use of the regression improves the performance and the improvement is greater for a larger 
correlation. If there is no correlation, the system disregards the results of the regression and 
performs identically without and with sizes. 

Method selection 
Finally, we show the results of the incremental selection among three problem-solving meth- 
ods, on 150-problcm sequences. In the first scries of experiments, we adjusted mean success 
and failure times in such a way that the optimal per-problem gain for the first method was 
10% larger than that for the second method and 20% larger than that for the third method. 

We give the results in Figure 23. The top row of graphs shows the average pcr-problcm 
gain without the use of the regression (dashed lines) and with the regression (solid lines). 
The circles mark the expected gains for the optimal time bounds, without the regression. 

The other two rows of graphs give the probability of choosing each method, for the 
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Figure 23: Incremental selection among three problem-solving methods, where the average gain 
for the first method is 10% larger than that for the second method and 20% larger than that for 
the third method. We show the average per-problem gains in the experiments without and with 
the use of the regression (the top row of graphs), and the probability of selecting each method (the 
other two rows). 

experiments without and with the use of problem sizes. The distance from the bottom of the 
graph to the lower curve is the probability of selecting the first method, the distance between 
the two curves is the chance of selecting the second method, and the distance from the upper 
curve to the top is the third method's chance. The graphs show that the probability of 
selecting the first method (which gives the highest gain) increases in the process of learning. 
The probability of selecting the third (worst-performing) method decreases faster than that 
of the second method. 

In the second scries of experiments, the optimal gain of the first method was 30% larger 
than that of the second method and 60% larger than that of the third method. We give 
the results in Figure 24. Note that the probability of selecting the first method grows much 
faster, due to the larger difference in the expected gains. 

9    Conclusions and extensions 

We have stated the task of selecting among available problem-solving methods as a statistical 
problem, derived an approximate solution, and used it to build a system for the automatic 
selection of the most effective method. The system collects data on the results of using 
the available methods and estimates their average performance. It uses an approximate 
measure of problem sizes and information about similarity between problems to improve the 
accuracy of the estimates. The choice of the method is based on the estimated performance. 
The selection heuristics combine the exploitation of the past experience with the exploration 
of new alternatives. 
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Figure 24: Incremental selection among three problem-solving methods, where the average gain 
for the first method is 30% larger than that for the second method and 60% larger than that for 
the third method. 

Wc have demonstrated empirically the system's effectiveness in choosing the right method 
and a near-optimal time bound. The selection technique has proved effective for a variety of 
running-time distributions. The technique gives good results even when the distributions do 
not satisfy the assumptions of the statistical analysis. Its performance, however, depends on 
the user's proficiency in selecting an accurate measure of problem sizes and defining groups 
of similar problems. 

The generality of the statistical model makes our technique applicable to selection among 
multiple search methods in any AI system. Besides, the model extends to a wide range of real- 
life situations outside of AI. The main limitation of applicability stems from the restrictions 
on the reward function. Another major drawback of the model is its inability to account for 
specific properties of given problem-solving methods. 

Wc have implemented heuristics that enhance the statistical technique, though wc have 
not used them in the described experiments. In particular, wc allow the user to provide a 
prediction of the gains for different methods; wc then combine the user's prediction with 
the statistical estimate. If the selected method has failed to solve a problem, wc can choose 
another method for a second attempt to find a solution. Wc have designed an algorithm for 
making this choice of a new method. The algorithm rc-cvaluatcs the gain estimates, to incor- 
porate the knowledge that the first attempt has failed. Finally, wc provide a mechanism for 
combining if-then preference rules for method selection with our numerical estimates. This 
combination enables us to merge the user-coded semantic knowledge with the incremental 
learning. 

The statistical model for method selection rises many open problems, which include relax- 
ing our simplifying assumptions, improving the rigor of the statistical derivation, extending 
the model to account for more features of real-world situations, and improving the heuristics 
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used with statistical estimates. 
To make the model more flexible, wc need to provide a mechanism for updating the 

time bound while searching for a solution. Wc also plan to explore the use of competing 
problem-solving methods on parallel machines, which will require an extension to the selec- 
tion technique. Another open problem is to consider possible dependencies of the reward 
on the solution quality and enhance the model to account for such dependencies. Wc also 
need to allow interleaving of several promising methods, which is often more effective than 
sticking to one method. 

To enhance the use of similarity hierarchies, wc should allow multiple inheritance among 
groups and make appropriate extensions to the group-selection heuristics. Finally, wc need 
to provide a means for learning similarity groups automatically, to minimize the deviation 
of time logarithms (sec Figure lie) within groups. 
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