
Statistical Selection
Among Problem-Solving Methods

Eugene Fink

January 1997
CMU-CS-97-101

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

The choice of an appropriate problem-solving method, from available methods, is a crucial
skill for human experts in many areas. We describe a technique for automatic selection among
methods, based on a statistical analysis of their past performances.

We formalize the statistical problem involved in selecting an efficient problem-solving
method, derive a solution to this problem, and describe a selection algorithm. The algorithm
not only chooses among available methods, but also decides when to abandon the chosen
method, if it proves to take too much time. We extend our basic statistical technique to
account for problem sizes and for similarity between problems.

We give empirical results of the use of this technique to select among search engines in the
PRODIGY system. We also test the selection technique on artificially generated performance
data, using several different probability distributions.

«jo*.«»««*8

This work was sponsored by the Wright Laboratory, Aeronautical Systems Center, Air Force Materiel
Command, USAF, and Defense Advanced Research Project Agency (DARPA) under grant number F33615-
93-1-1330.

Keywords: Learning, problem solving, statistical analysis.

1 Introduction

The choice of an appropriate problem-solving method is one of the main themes of Polya's
famous book How to Solve It [Polya, 1957]. Polya showed that the selection of an effective
approach to a problem is a crucial skill for a student of mathematics. Psychologists have
accumulated much evidence that confirms Polya's pioneering insight: the performance of
human experts in many areas depends on their proficiency in choosing a method that fits a
problem [Newell and Simon, 1972; Gcntncr and Stevens, 1983].

The purpose of our research is to automate the selection of a problem-solving method.
This research is motivated by our work on the PRODIGY problem-solving system, which
includes several search engines [Vcloso and Stone, 1995] and a number of learning modules
[Vcloso ct al., 1995]. Wc need to provide a mechanism for deciding which learning modules
and which search engine arc appropriate for a given problem. Moreover, since programs
in the real world cannot run forever, wc need some means to decide when to interrupt an
unsuccessful search.

Wc describe a learning algorithm that gathers data on the performance of available
methods and uses these data to select a method that fits a given problem. The algorithm
also selects a time bound for the chosen method; wc interrupt the method if it hits the bound
without solving the problem. Our technique is aimed at selecting a method and time bound
before solving a given problem. Wc do not provide a mechanism for switching a method or
revising the selected bound during the search for a solution. Developing such a mechanism
is an important open problem.

The selection technique is very general and independent of particular problem-solving
engines and problem domains; it docs not use any specific properties of PRODIGY. Wc can
use our learning algorithm in any AI system that offers the choice of multiple problem-solving
engines or allows the selection of appropriate values of "knob" parameters. The technique
is equally effective for small and large-scale problem domains.

Even though AI problem solving provided the motivation for our work, the resulting
technique is applicable to situations outside of AI. Wc may use it to select between several
alternative approaches to a task, or to decide on the amount of effort that wc should invest
in achieving a goal before giving up. For example, wc can apply this technique to find out
which of several encyclopedias is most effective for finding certain types of data. As another
example, wc may use it to decide how long one should wait on the phone, before hanging
up, if her or his party docs not answer.

The selection takes very little computation and its running time is usually negligible
compared to the problem-solving time. The time of selecting a search engine in the PRODIGY
system is three orders of magnitude smaller than the time of the subsequent search.

Wc begin by formalizing the statistical problem of estimating the expected performance
of a method (Section 2). Wc derive a solution to this problem (Section 3), show how to use
it in selecting a method and time bound (Section 4), and give results of selecting among
PRODIGY search engines (Section 5). Wc then apply our technique to determine how long
one should wait before hanging up, when the other party docs not answer the phone.

Wc describe the use of an approximate measure of problem complexity (Section 6) and
similarity between problems (Section 7) to improve the accuracy of performance estimates.

Note that wc do not need a perfect estimate; wc only need accuracy sufficient for selecting
the right method and a near-optimal time bound. Finally, wc test the selection technique on
artificially generated performance data, for several different probability distributions (Sec-
tion 8).

2 Motivating example

We give an example of a method-selection task in the PRODIGY system, use it to formal-
ize the statistical problem of choosing from available methods, and discuss the simplifying
assumptions underlying our formal model.

Suppose that wc use PRODIGY to construct plans for transporting packages by vans
between different locations in a city [Vcloso, 1994]. Wc consider the use of three different
search methods. The first of them is based on the control rules designed by Vcloso [1994]
and Perez [1995], which guide PRODIGY'S search in the transportation domain. This method
applies the selected actions to the current state of the simulated transportation world as
early as possible; wc call this method APPLY.

The second method uses the same control rules and a special rule that delays the appli-
cation of the selected actions and forces more emphasis on the backward search [Vcloso and
Stone, 1995]; wc call it DELAY. This method is a combination of the SABA search algorithm,
implemented by Vcloso and Stone, with the domain-specific control rules.

The third method, ALPINE [Knoblock, 1994], is a combination of APPLY with an abstrac-
tion generator, which determines relative importance of the elements of a problem domain.
ALPINE first ignores the less important elements and generates an outline of a solution; it
then refines the solution to take care of the initially ignored details.

Experiments have demonstrated that delaying the application improves the efficiency of
problem solving in some domains, but slows PRODIGY down in others [Stone et al, 1994];
abstraction sometimes gives drastic time savings and sometimes worsens the performance
[Knoblock, 1991; Bacchus and Yang, 1992]. The most reliable way to select an efficient
method for a given problem domain is by empirical comparison.

The application of a method to a problem gives one of three outcomes: it may solve the
problem; it may terminate with failure, after exhausting the available search space without
finding a solution; or wc may interrupt it, if it reaches some prc-sct time bound without
termination. (PRODIGY domains arc completely deterministic and failures happen because
of imperfect search heuristics rather than unexpected events during the execution.)

In Table 1, wc give the results of solving thirty transportation problems, by each of the
three methods. Wc denote successes by s, failures by /, and hitting the time bound by b.
Note that our data arc only for illustrating the selection problem, and not for the purpose
of a general comparison of these three search techniques. Their relative performance may
be very different in other domains. Also note that our selection technique docs not rely on
specific properties of PRODIGY search engines. It is equally applicable to the selection among
multiple problem-solving methods in any AI system.

Even though each method outperforms the others on at least one transportation problem
(sec Table 1), a glance at the data reveals that APPLY's performance in this domain is
probably the best among the three. Wc use statistical analysis to confirm this intuitive

time (sec) and outcome #of # time (sec) and outcome #of
APPLY DELAY ALPINE packs APPLY DELAY ALPINE packs

1 1.6 s 1.6 S 1.6 s 1 16 4.4 s 68.4 S 4.6 s 4
2 2.1 s 2.1 s 2.0 s 1 17 6.0 s 200.0 b 6.2 s 6
3 2.4 s 5.8 s 4.4 s 2 18 7.6 s 200.0 b 7.8 s 8
4 5.6 s 6.2 s 7.6 s 2 19 11.6 s 200.0 b 11.0 s 12
5 3.2 s 13.4 s 5.0 s 3 20 200.0 b 200.0 b 200.0 b 16
6 54.3 s 13.8 f 81.4 s 3 21 3.2 s 2.9 s 4.2 s 2
7 4.0 s 31.2 f 6.3 s 4 22 6.4 s 3.2 s 7.8 s 4
8 200.0 b 31.6 f 200.0 b 4 23 27.0 s 4.4 s 42.2 s 16
9 7.2 s 200.0 b 8.8 s 8 24 200.0 b 6.0 s 200.0 b 8

10 200.0 b 200.0 b 200.0 b 8 25 4.8 s 11.8 f 3.2 s 3
11 2.8 s 2.8 s 2.8 s 2 26 200.0 b 63.4 f 6.6 f 6
12 3.8 s 3.8 s 3.0 s 2 27 6.4 s 29.1 f 5.4 f 4
13 4.4 s 76.8 s 3.2 s 4 28 9.6 s 69.4 f 7.8 f 6
14 200.0 b 200.0 b 6.4 s 4 29 200.0 b 200.0 b 10.2 f 8
15 2.8 s 2.8 s 2.8 s 2 30 6.0 s 19.1 s 5.4 f 4

Table 1: Performance of APPLY, DELAY, and ALPINE on thirty transportation problems.

conclusion and to estimate its statistical significance. We also show how to select a time
bound for the chosen problem-solving method.

If wc identify several distinct problem types in a domain, we may discover that different
types require different problem-solving methods and time bounds. In other words, the ap-
propriate choice of a method may depend on the properties of a problem. Wc will analyze
such situations in Section 7.

To compare different methods, wc need to specify a utility function for evaluating their
performances. Wc assume that wc have to pay for running time and that wc got a cer-
tain reward R for finding a solution. If the method solves the problem, the overall gain is
(R — time). If the method fails or hits a time bound, it is (—time). Wc need to estimate
the expected gain for all candidate methods and time bounds, and to select the method and
bound that maximize the expectation, which gives us the following statistical problem.

Problem: Suppose that a method solved n problems, failed on m problems, and was inter-
rupted (upon hitting a time bound) on k problems. The. success times were Si,S2,...,s„, the
failure times were fi,f2,---,fm> an^ th° interrupt times were bi,b2,..., 6A,-. Given a reward R
for solving a new problem and a time bound B, estimate the expected gain and determine the
standard deviation of the estimate.

Wc use the stationarity assumption [Valiant, 1984]; that is, wc assume that the past prob-
lems and the new problem arc drawn randomly from the same population, using the same
probability distribution. Wc also assume that the method's performance docs not improve
over time (that is, no learning). Note that the model docs not allow the dynamic adjustment
of the bound B, based on the findings during the search for the new problem's solution.

Wc need a gain estimate that makes the best use of the available data, even if they arc not
sufficient for statistical significance. Wc cannot ask for more data, since experimentation is

APPLY DELAY ALPINE

10 100 1
time bound

10 100 1
time bound

10 100
time bound

Figure 1: Dependency of the success (o) and failure (+) probabilities on the time bound.

usually much more expensive than solving the new problem. Another important requirement
is the speed of statistical computations, especially since the model does not account for this
addition to the overall problem-solving time.

3 Statistical foundations
Wc determine the probability of solving the problem within a given time bound, the probabil-
ity of terminating with failure, the estimate of the expected gain, and the standard deviation
of the estimate.

Wc assume, for convenience, that the success, failure, and interrupt times arc sorted in
the increasing order; that is, si < ... < s„, f\ < ... < fm, and b\ < ... < 6/;. Wc first consider
the case when the time bound B is no larger than the lowest of the past time bounds, B <b\.
Wc denote the number of success times that arc no larger than B by c, and the number of
failures within B by d\ that is, sc < D < sc+\ and fd < B < fd+i-

Wc estimate the probability of success by the fraction of problems that were solved within
time B, which is e ,; similarly, the probability of terminating with failure is n+„l+k ■ For
example, the probability that ALPINE with time bound 6.0 solves a transportation problem
is || = 0.37, and the probability that it terminates with failure is ^ = 0.07.

In Figure 1, wc show the dependency between the time bound (given in the horizontal
axis, on a logarithmic scale) and the estimated success and failure probabilities for APPLY,
DELAY, and ALPINE, in the transportation domain. We do not show the failure-probability
estimate for APrLY, because the data for this method contain no failures and, thus, the
estimate is zero. Wc computed the probabilities only for the points marked by circles and
pluses, and connected them by straight segments.

Wc estimate the expected gain by averaging the gains that would be obtained in the past,
if wc used the reward R and time bound B. The method would solve c problems, earning
the gains R — si, R — s2,..., R— sc. It would terminate with failure d times, resulting in the
negative gains —ft, —/b, ••-, — fd- In tnc remaining n + m + k — c — d cases, it would hit the
time bound, each time earning —B. The expected gain is equal to the mean of all these

APPLY

60

1 40
CD
'S 20
CD ^
Q.

8 o
/ ' ~~ — -^
 "" s.

N

DELAY APLINE

10 100
time bound

10 100
time bound

10 100
time bound

Figure 2: Dependency of the expected gain on the time bound, for the reward of 10.0 (dash-and-dot
lines), 30.0 (dashed lines), and 100.0 (solid lines). The dotted lines show the standard deviation of
the expected gain for the 100.0 reward.

n + m + k gains:

TZ=1{R - Bj) + Ej=i(-/j) + (n + m + k-c-d)- (-D)

n + m + k

For example, if wc use ALPINE to solve transportation problems, with reward 30.0 and time
bound 6.0, then the expected gain is 6.0.

Since wc have computed the moan gain for a randomly selected sample of problems,
it may be different from the mean of the overall population. Wc estimate the standard
deviation of the expected gain using the formula for the deviation of a sample mean:

SqrSum - n+m+h

where

\| (n + m + k) ■ (n + m + k - 1)'

Sum = ELi (R ~ Si) + Ei=i (-/j) + {n + m + k-c-

SqrSum = Z°i=1{R - s.,)2 + Eti // + (n + m +k-

d) ■ (-D),

: - d) ■ B2.

This formula is an approximation based on the Central Limit Theorem, which states that
the distribution of sample means is always close to normal (see, for example, Mcndcnhall's
textbook [1987]). The accuracy of the approximation improves with sample size; for thirty
or more sample problems, it is near-perfect. For example, if wc use ALPINE with reward 30.0
and time bound 6.0, the standard deviation of the expected gain is 2.9.

In Figure 2, wc show the dependency of the expected gain on the time bound for our
three methods. Wc give the dependency for three different values of the reward R, 10.0
(dash-and-dot lines), 30.0 (dashed lines), and 100.0 (solid lines). The dotted lines show the
standard deviation of the gain estimate for the 100.0 reward: the lower line is "one deviation
below" the estimate, and the upper line is "one deviation above."

Wc have so far assumed that B < 61# We now consider the case when B is larger than
e of the past interrupt times; that is, be < B < be+1. Wc cannot use b1,b2,...,be directly
in the gain estimate, because these interrupt times arc smaller than B. The use of the
time bound B would cause the method to run beyond these old bounds. The collected data
do not tell us whether the method with the time bound B would have succeeded on the
corresponding past problems.

If wc had not interrupted the method at b\ in the past, it would have succeeded or failed
at some larger time, or hit a larger time bound. Wc may estimate the expected gain using
the data on the past problem-solving episodes in which the method ran beyond &i. Wc get
this estimate by averaging the gains for all the larger-time outcomes. Wc incorporate this
averaging into the computation by removing 61 from the sample and distributing its chance
to occur among the larger-time outcomes.

To implement this re-distribution, wc assign weights to the outcomes. Initially, the weight
of every outcome is 1. After removing 61, wc distribute its weight among all the largcr-than-
61 outcomes. If the number of such outcomes is 01, each of them gets the weight of 1 + —.
Note that 62, •••,&(; arc all larger than 61, and thus they all get the new weight.

Wc next remove 62 from the sample and distribute its weight, which is 1 + —, among
the largcr-than-62 outcomes. If the number of such outcomes is a2, then wc increase their
weights by (1 + i) • i; that is, their weights become (1 + ■£-) ■ (1 + j-). Wc repeat the
distribution process for the all interrupt times smaller than B\ that is, for 63, ...,6e.

Wc illustrate the use of this re-distribution technique using the data on ALPINE's perfor-
mance. Suppose that wc interrupted ALPINE on problem 4 after 4.5 seconds of the execution
and on problem 7 after 5.5 seconds, thus obtaining the data shown in Table 2(a), and that
wc need to estimate the gain for B = 6.0. This bound B is larger than two interrupt times.

Wc first have to distribute the weight of 6j. In this example, bx is 4.5 and there arc 21
problems with larger times. Wc remove 4.5 from the sample data and increase the weights
of the larger-time outcomes from 1 to 1 + ^ = 1.048 (sec Table 2b). Wc next perform the
distribution for 62, which is 5.5. The table contains 15 problems with largcr-than-62 times.
Wc distribute 62's weight, 1.048, among these 15 problems, thus increasing their weight to
1.048 + ^ = 1.118 (Table 2c).

Wc have thus distributed the interrupt times 61, 62, ...,be and assigned weights to the
successes times, failure times, and remaining interrupt times. Wc denote the resulting weights
of the success times si,...,s= by ui,...,uc, and the weights of the failure times fi,...,fd by
i'i,..., Vd (recall that these success and failure times arc smaller than B). All success, failure,
and interrupt times larger than B have the same weight, which wc denote by w. Note that
the sum of the weights is equal to the number of problems in the original sample; that is,
Yfi=\ Vi + J2j=i Vj +(n + m + k — c — d — c) ■ w = n + m + k.

Wc have obtained (n+m+k— c) weighted times. Wc first use them to estimate the success
and failure probabilities. The probability of solving a problem, within the time bound B, is
"' n+m+fc""' i similarly, the probability of terminating with failure is Vi+

n"2^l'l^
v'1 ■ If wc use the

data in Table 2(c) to determine these probabilities for ALPINE with time bound 6.0, wc get
the success probability of i^§ = Q.37 and the failure probability of ^S = Q.07.

ALPINE'S

time
1 1.6 s
2 2.0 s
3 4.4 s
4 4.5 b
5 5.0 s
6 81.4 s
7 5.5 b
8 200.0 b
9 8.8 s

29 10.2 f
30 5.4 f

weight time
1.000 1.6 s
1.000 2.0 s
1.000 4.4 s

1.048 5.0 s
1.048 81.4 s
1.048 5.5 b
1.048 200.0 b
1.048 8.8 s

1.048 10.2 f
1.048 5.4 f

weight time
1.000 1.6 s
1.000 2.0 s
1.000 4.4 s

1.048 5.0 s
1.118 81.4 s

1.118 200.0 b
1.118 8.8 s

1.118 10.2 f
1.048 5.4 f

(a) (b) (c)

Table 2: Distributing the weights of interrupt times among the larger-time outcomes.

Wc next use the (n + m + k — c) weighted times to compute the expected gain:

EU "i ■ (R ~ Sj) + Ej=i Vj ■ (-/j) + (n + m + k-c-d-c)-w (-B)

n + m + k

Similarly, wc use the weights in estimating the standard deviation of the expected gain:

\

SqrSum n+m+tc

(n + m + k) • (n + m + k — c — 1)'

where

Sum = ELi "i • {R - si) + Ej=i vi ■ (~fi) + (n + m + k-c-d)-w (-£),

SqrSum = £Li w; • (R - s;)
2 + E?=i Vj ■ ff + (n + m + k - c- d) ■ w D2.

The application of these formulas to the data in Table 2(c), for ALPINE with reward 30.0
and time bound 6.0, gives the expected gain 6.1 and the standard deviation 3.0.

If B is larger than the largest of the past bounds (that is, B > bft) and the largest time
bound is larger than all past success and failure times (that is, b^ > sn and b^ > fm), then
the re-distribution procedure docs not work. Wc need to distribute the weight of fefc among
the larger-time problems, but the sample has no such problems. Thus, the data arc not
sufficient for the statistical analysis because wc do not have any past experience with large
enough time bounds.

Wc have assumed in the derivation that the execution cost is proportional to the running
time; however, wc may readily extend the results to any other monotone dependency between
time and cost, by replacing the terms (R— s;), (—/»), and (-B) with more complex functions.

Note that wc do not use past rewards in the statistical estimate. The reward R may be
different from the rewards earned on the sample problems. Wc may extend our results to

c number of the already processed success times
(the next success time to process will be sc+i)

d number of the already processed failure times
e number of the already processed interrupt times
h number of the already processed time bounds
S-Num sum of the weights of the processed successes, Ei=i ui
F-Num sum of the weights of the processed failures, Ei=i vj
SSurn- weighted sum of the gains for the processed successes, £3°_i «; • (R — s,)
FJSum weighted sum of the gains for the processed failures, EjLi vj ' (~fj)
Sum weighted sum of the gains for all sample problems, for the current time bound B/l+i
SSqrSvm weighted sum of the squared gains for the processed successes, YA=I

U
> ■ (R ~ si)2

FSqrSum weighted sum of the squared gains for the processed failures, E?=i vj ' //
SqrSum weighted sum of the squared gains for all sample problems, for the time bound B/,+i

Figure 3: Variables used in the gain-estimate algorithm in Figure 4.

situations when the reward is a function of the solution quality, rather than a constant, but
it works only if the reward function docs not change from problem to problem. We replace
each term (/?— s,;) by (71,- — s,), where ß, is the reward earned for the corresponding problem.
The resulting expression combines the estimate of the expected reward and expected running
time, which gives us the expected gain:

ELi »i • (Hi - si) + EjLi vi ■ (-/j) + (n + m + k-c-d-e)-w (-B)
n + m + k

If we use this approach, we also have to replace (R — S;) by (R, — s;) in estimating the
standard deviation of the expected gain.

To summarize, wc can estimate the expected gain if cither the reward docs not depend on
the solution quality or the dependency is the same for all problems. Relaxing this condition
is an important open problem. Wc will discuss other limitations of the analysis and ways to
overcome them in Section 9.

Wc now present an algorithm for computing the success and failure probabilities, gain
estimates, and estimate deviations, for multiple values of the time bound D. Wc describe
the variables used in the computation in Figure 3 and give the pseudocode in Figure 4.

The algorithm determines weights and computes gain estimates in one pass through the
sorted list of success, failure, and interrupt times, and time-bound values. When processing
a success or failure time, the algorithm increments the corresponding sums of the weighted
gains and weighted squares of the gains. When processing an interrupt time, the algorithm
modifies the weight value. When processing a time bound, the algorithm uses the accumu-
lated sums of gains and squared gains to compute the gain estimate and deviation for this
bound.

The time of this pass through the sorted list of bounds and running times is linear.
That is, for I time bounds and a sample of n successes, m failures, and k interrupts, the
algorithm's complexity is 0(1 + n + m + k). The complexity of prc-sorting the lists is
0((l + n + m + k) ■ log(/ + n + m + k)), but in practice it takes much less time than the

8

The input of the algorithm includes: the reward R; the sorted list of success times, si,...,sn; the
sorted list of failure times, /j,..., /,„; the sorted list of interrupt times, 61;..., 6^; and a sorted list of
candidate time bounds, Bi,.... Bt. The variables used in the computation are described in Figure 3.

Set the initial values:
c:=0; d:=0; e := 0; h := 0
S-Num :- 0; F.Num := 0
SSum := 0; FSum:- 0
SSqrSum := 0; FSqrSum := 0

Repeat the computations until finding the gains for all time bounds; that is, until h = l:
• Select the smallest among the following four times: sc+1, fd+1, 6e+1, and B/l+i.
• If the success time sc+i is selected, increment the related sums:

S-Num. := S-Num + w
SSum := SSum + w ■ (R — sc+i)
SSqrSum- := SSqrSum. + w ■ (R — sc+i)2

c := c + 1
• If the failure time fd+i is selected, increment the related sums:

FJVum := FJV«ro + w
FSwn := .F-,SW+ w ■ (-fd+i)
FSqrSum := FSqrSum ■ w ■ fj+1

d:=d + l
• If the interrupt time 6e+i is selected:

If no success or failure times are left (that is, c = re and d = m),
then terminate (the data are not sufficient to estimate the gains for the remaining bounds).

Else, distribute the interrupt's weight among the remaining times, by incrementing w and e:
W := W + W ■ n+m+fc-s-tf-e

n+?n+k-
e := e + 1

• If the time bound B/l+i is selected:
First, compute the sum of the sample-problem gains and the sum of their squares:

Sum. := SSum + FSum +(n + m + k-c — d— e) ■ w ■ (—ß/l+i)
SqrSum. := SSqrSum- + FSqrSum + (n+ m + k — c — d— e) ■ w ■ Bfl+1

Now, compute the success and failure probability, gain estimate, and deviation, for B/,+i:
Success probability: #f^ff. Gain estimate: f1"" , .

Failure probability: ^fi- Estimate deviation: /AV^-AW/(n+m+fe) r J n+m+k W {n+m+k)-(n+m+k— e— 1)

Finally, increment the number of processed bounds:
h :=h + l

Figure 4: Computing the success and failure probabilities, gain estimates, and estimate deviations.

rest of the computation. We implemented the algorithm in Common Lisp and tested it on
Sun 5, the same machine as we used for solving the transportation problems. The running
time is about (I + n + m + k) ■ 3 • 10~4 seconds.

4 Selection of a method and time bound

We describe the use of the statistical estimate to choose among problem-solving methods and
to determine appropriate time bounds. We provide heuristics for combining the exploitation
of past experience with exploration of new alternatives and for making a choice in the absence
of past data.

The basic technique is to estimate the gain for a number of time bounds, for each available
method, and select the method and time bound with the maximal gain. For example, if the
reward in the transportation domain is 30.Ü, than the best choice is APPLY with the time
bound 11.6, which gives the expected gain of 14.0. This choice corresponds to the maximum
of the dashed lines in Figure 2. If the expected gain for all time bounds is negative, than
we arc better off not solving the problem at all. For example, if the only available method
is DELAY and the reward is 10.0 (sec the dash-and-dot line in Figure 2), we should skip the
problem.

For each method, we use its past success times as candidate time bounds. Wc compute
the expected gain only for these candidate bounds. If wc computed the gain for some
other time bound D, wc would get a smaller gain than for the closest lower success time s,-
(where s,- < B < si+1), because extending the time bound from s; to D would not increase
the number of successes on the past problems.

In practice, wc multiply the success times by 1.001 to obtain candidate bounds, in order
to avoid the chance of interrupting a method too early because of rounding errors. Wc used
such candidate bounds to construct the graphs in Figures 1 and 2. If several candidate
bounds arc "too close" to each other, wc drop some of them, to reduce the amount of
computation. In our implementation, wc consider two bounds too close if they arc within
the factor of 1.05 from each other.

Wc now describe a technique for incremental learning of the performance of available
methods. Wc assume that wc begin with no past experience and accumulate performance
data as wc solve more problems. For each new problem, wc use our statistical technique to
select a method and time bound. After applying the selected method, wc add the result to
the performance data.

The use of the previous section's results incrementally causes a deviation from rigorous
statistics: the resulting success, failure, and interrupt times arc not independent, because the
time bound used for each problem depends on the times of solving the previous problems.
In spite of this violation of rigor, the technique gives good results in practice.

Note that wc need to choose a method and time bound even when wc have no past
experience. Also, wc sometimes need to deviate from the maximal-expectation choice in
order to explore new opportunities. If wc always used the selection that maximizes the
expected gain, wc would be stuck with the problem-solving method that yielded the first
success, and wc would never choose a time bound higher than the first success time.

10

Wc have not constructed a statistical model for combining exploration and exploitation.
Instead, wc provide a hcuristical solution, which has proved to work well for selecting problem
solvers in PRODIGY. Wc first consider the task of selecting a time bound for a fixed method,
and then show how to select a method.

Selecting a time bound
If wc have no previous data on a method's performance, wc choose the time bound equal
to the reward. This heuristic is based on the observation that, for PRODIGY search engines,
the probability of solving a problem, say, within the next second, usually declines with the
passage of search time. If a method has not solved a problem within half a minute, chances
arc it will not find a solution in the next half minute cither. Thus, if the reward is 30.0 and
the method has already run for 30.0 seconds, it is time to interrupt the search.

Now suppose that wc have accumulated some data on the method's performance, which
enable us to determine the bound with the maximal expected gain. To encourage exploration,
wc select the largest bound whose expected gain is "not much different" from the maximum.
Let us denote the maximal expected gain by #max and its standard deviation by <rmax. Suppose
that the expected gain for some bound is g and its deviation is a. Then, the expected
difference between the gain g and the maximal gain is #max - g. If wc assume that our
estimates arc normally distributed, then the standard deviation of the expected difference

is V<Tmax+ °'2- ^otc tnat tnis estimate of the deviation is an approximation, because the
distribution for small samples may be Student's rather than normal, and because gmaK and
g arc not independent variables, as they arc computed from the same data.

Wc say that g is "not much different" from the maximal gain if the ratio of the expected
difference to its deviation is bounded by some constant. In our experiments, wc set this
constant to 0.1, which tends to give good experimental results:

Smax ~~ 9 <- f| 1

J .2
max

Wc thus select the largest time bound whose gain estimate g satisfies this condition.
We present the results of this selection strategy in Figure 5. Wc ran each of the three

methods on the thirty transportation problems, in order. The horizontal axes show the
problem's number (from 1 to 30) and the vertical axes arc the running time. The dotted
lines show the selected time bounds and the dashed lines mark the time bounds that give
the maximal gain estimates. The solid lines show the running times; they touch the dotted
lines where the methods hit the time bound. The successfully solved problems arc marked
by circles and the failures arc shown by pluses.

APPLY's total gain is 360.3, which makes an average of 12.0 per problem. If wc used the
maximal-gain time bound, 11.6, for all problems, the average gain would be 14.0 per problem.
Thus, the use of incremental learning yielded a near-optimal gain, in spite of the initial
ignorance. The time bounds used with this method (dotted line) converge to the estimated
maximal-gain time bounds (dashed line), since the deviations of the gain estimates decrease
as wc solve more problems. APPLY's estimate of the maximal-gain bound, after solving all
problems, is 9.6. This estimate differs from the 11.6 bound, found from Table 1, because the
use of bounds that ensure a near-maximal gain prevented sufficient exploration.

11

APPLY

„3°
XI

h?5
o
.0
■n'A)
c «
(1) 1R
t-
m1ü
c /MT T1 —CJIJ \Ä^"\
F 5 «T
3

" n^

DELAY

30

25

20

15
TT '1

10 ' 1
5

il TI*p-=\i-jf-=r-

ALPINE

10 20 30
problem's number

10 20 30
problem's number

10 20 30
problem's number

Figure 5: Results of the incremental learning of a time bound: running times (solid lines), time
bounds (dotted lines), and maximal-gain time bounds (dashed lines). The successes are marked by
circles and the failures by pluses.

DELAY'S total gain is 115.7, or 3.9 per problem. If wc used the data in Table 1 to find
the optimal bound, which is 6.2, and solved all problems with this bound, wc would earn
5.7 per problem. Thus, the incremental-learning gain is about two-thirds of the gain that
could be obtained based on the advance knowledge. Finally, ALriNE's total gain is 339.7, or
11.3 per problem. The estimate based on Table 1 gives the bound 11.0, which would result
in earning 12.3 per problem. Unlike APPLY, both DELAY and ALPINE eventually found the
optimal bound.

Note that the main "losses" in the incremental learning occur on the first ten problems,
when the past data arc not sufficient for selecting an appropriate time bound. After this
initial period, the choice of a time bound becomes close to the optimal.

The total time of the statistical computations while solving the thirty problems is 0.26
seconds, which makes less than 0.01 per problem. This time is negligible in comparison with
the problem-solving time, which averages at 6.5 per problem for APPLY, 7.7 per problem for
DELAY, and 7.1 per problem for ALPINE.

Selecting a method
Wc next describe the use of incremental learning to select a problem-solving method. If wc
have no data on the performance of some method, wc always select this unknown method.
If wc have no data on several methods, wc select among them at random. The optimistic
use of the unknown encourages exploration during early stages of learning.

If wo have past performance data for all methods, wc first select a time bound for each
method and determine the corresponding gain estimate and its standard deviation. Wc then
make a weighted random selection among the methods; the chance to choose a method is
equal to the probability that it is the best among the methods. This probabilistic selection
results in the frequent application of methods that perform well, but also encourages some
exploratory use of poor performers.

Wc now describe a technique for estimating the probability that a method is the best
among the available methods. Wc use the statistical 2-tcst to determine the probability that

12

some method is better than another one. Suppose that the expected gain for some method is
#1 and its standard deviation is cry, similarly, the expected gain for another method is g2 with
deviation cr2. The expected difference between these two gains is gr — g2. If we assume that
estimates arc normally distributed, then the standard deviation of the expected difference is

V of + o\. The z value is the ratio of the expected difference to its standard deviation; that

's' z = rr^i- The z-tcst converts this value into the probability that the average gain of

the first method is larger than that of the second method.

The use of the z-tcst for small samples of past performance data is an approximation; its
accuracy improves with sample size. We can obtain a greater accuracy by using the 2-tcst,
which is more complex than the z-tcst. We did not use the 2-tcst in the experiments, because
we need the probability estimates only for our "occasional exploration" heuristic, which docs
not require high accuracy in determining the exploration frequency.

We find the probability that a method is the best by calculating the product of the
probabilities that it outperforms individual methods. This computation is also an approxi-
mation, occasionally quite inaccurate, since the probability values that we multiply arc not
independent.

For example, suppose that we need to select among APPLY, DELAY, and ALPINE based on
the data in Table 1. We select bound 13.1 for APPLY, which gives the gain estimate of 13.5
with deviation 3.3; bound 5.3 for DELAY, with gain estimate 5.3 and its deviation 3.0; and
bound 13.2 for ALPINE, with expected gain 11.2 and its deviation 3.2. We now use the z-tcst
to determine the probability that APPLY's gain is larger, on average, than that of DELAY.
The z value is j*^3% = 1.84; this value of z corresponds to the 0.97 probability that
ArPLY gives a larger average gain. Similarly, the probability of APPLY's average superiority
over ALPINE is 0.69, and the probability of ALPINE's superiority over DELAY is 0.91. The
probability that APPLY is the best among the throe is estimated as 0.97 • 0.69 = 0.67.
Similarly, the probability that ALPINE is the best is (1 - 0.69) • 0.91 = 0.28, and DELAY'S

chance of being the best is (1 - 0.97) • (1 - 0.91) - 0.003. The resulting probabilities do not
add up to 1.0 because of the approximation used in estimating them. We now choose one of
the methods randomly; the chance of choosing each method is proportional to its estimated
probability of being the best.

We show the results of using this selection strategy in the transportation domain, for
the reward of 30.0, in Figure 6. In this experiment, we first use the thirty problems from
Table 1 and then sixty additional transportation problems. The horizontal axis shows the
problem's number and the vertical axis is the running time. We mark successes by circles
and failures by pluses. The rows of symbols below the curve show the method selection: a
circle for APPLY, a cross for DELAY, and an asterisk for ALPINE.

The total gain is 998.3, which makes an average of 11.1 per problem. The overall time of
the statistical computations is 0.78, or about 0.01 per problem. The selection converges to
the use of ArPLY with the time bound 12.7, which is optimal for this set of ninety problems.
If we used this selection on all the problems, we would earn 13.3 per problem. Note that
the convergence is slower than in the bound-selection experiments (sec Figure 5), because
we test each method only on about third of all problem.

13

CCOO OOOOO 0000O CO c
X XX

SKt&K 3IÖBK ä 34£ äK äKK 3K 5K äiOK

) oo OOOD co ccocco oooc
xx x x x x x

10 20 30 40 50 60
problem's number

70 80 90

Figure 6: Results of the incremental selection of a method and time bound, on ninety transporta-
tion problems. The graph shows the running times (solid line), successes (o) and failures (+), and
the selection made among APPLY (O), DKLAY (X), and ALPINB (*).

APPLY

10 20 30
problem's number

DELAY
4UU

300

200 L
100

0< *M
i 1+ Too y

' *\1

ALPINE

10 20 30
problem's number

10 20 30
problem's number

Figure 7: Incremental learning of time bounds in the extended transportation domain: running
times (solid lines), time bounds (dotted lines), and maximal-gain time bounds (dashed lines). The
successes are marked by circles and the failures by pluses.

5 Empirical examples

We have demonstrated the effectiveness of the statistical selection in a simple transportation
domain. Wc now give results in two other domains.

We first consider an extended version of the transportation domain, in which wc use
airplanes to carry packages between cities and vans for the local delivery within cities [Vcloso,
1994]. The problems in this domain arc more complex, and the behavior of PRODIGY search
methods differs from that in the simpler domain used in the previous sections. In Table 3,
wc give the performance of ArPLY, DELAY, and ALPINE on thirty problems.

Wc present the results of the incremental learning of a time bound, for the reward of
400.0, in Figure 7. The APPLY learning gives the gain of 110.1 per problem and eventually
selects the bound 127.5. The optimal bound for this set of problems is 97.0. If wc used the
optimal bound for all problems, wc would cam 135.4 per problem.

DELAY gains 131.1 per problem and chooses the 105.3 bound at the end of the learning.

14

time (sec) and outcome #of # time (sec) and outcome #of
APPLY DKL AY ALPINE packs APPLY DELAY ALPINE packs

1 4.7 s 4.7 S 4.7 S 1 16 35.1 s 21.1 S 6.6 f 2
2 96.0 s 9.6 f 7.6 f 2 17 60.5 s 75.0 f 13.7 s 2
3 5.2 s 5.1 s 5.2 s 1 18 3.5 s 3.4 s 3.5 s 1
4 20.8 s 10.6 f 14.1 s 2 19 4.0 s 3.8 s 4.0 s 1
5 154.3 s 31.4 s 7.5 f 2 20 232.1 s 97.0 s 9.5 f 2
6 2.5 s 2.5 s 2.5 s 1 21 60.1 s 73.9 s 14.6 s 2
7 4.0 s 2.9 s 3.0 s 1 22 500.0 b 500.0 b 12.7 f 2
8 18.0 s 19.8 s 4.2 s 2 23 53.1 s 74.8 s 15.6 s 2
9 19.5 s 26.8 s 4.8 s 2 24 500.0 b 500.0 b 38.0 s 4

10 123.8 s 500.0 b 85.9 s 3 25 500.0 b 213.5 s 99.2 s 4
11 238.9 s 96.8 s 76.6 s 3 26 327.6 s 179.0 s 121.4 s 6
12 500.0 b 500.0 b 7.6 f 4 27 97.0 s 54.9 s 12.8 s 6
13 345.9 s 500.0 b 58.4 s 4 28 500.0 b 500.0 b 16.4 f 8
14 458.9 s 98.4 s 114.4 s 8 29 500.0 b 500.0 b 430.8 s 16
15 500.0 b 500.0 b 115.6 s 8 30 500.0 b 398.7 s 214.8 s 8

Table 3: Performance in the extended transportation domain.

The actual optimal bound for DELAY is 98.4, the use of which on all problems would give
the pcr-problcm gain of 153.5. Finally, ALPINE gains 243.5 per problem and chooses the
bound 127.6. The optimal bound for ALPINE is 430.8, the use of which would give the pcr-
problcm gain of 255.8. (ALPINE outperforms APPLY and DELAY because it uses abstraction,
which separates the problem of between-city transportation by airplanes from the problem
of within-city deliveries.)

Even though the bound learned for ALPINE is much smaller than optimal (127.6 ver-
sus 430.8), the resulting gain is close to optimal. The reason is that, in this experiment,
ALPINE's dependency of the expected gain on the time bound has a long plateau, and the
choice of a bound within the plateau does not make much difference.

Note that ALPINE's optimal bound is larger than the reward (430.8 versus 400.0). This
observation shows the imperfection of the heuristic for selecting the initial time bound (sec
Section 4), which assumes that the optimal bound is no larger than the reward.

We show the results of the incremental selection of a method in Figure 8. In this ex-
periment, we first use the thirty problems from Table 3 and then sixty additional problems
from the extended transportation domain. The method converges to the choice of ALPINE
with time bound 300.6 and gives the gain of 207.0 per problem. The best possible choice for
this set of problems is the use of ALPINE with the time bound 517.1, which would give the
pcr-problcm gain of 255.8. We identified this optimal choice in a separate experiment, by
running every method on all ninety problems.

We next apply our technique to a bound selection when calling to a friend on the phone.
We determine how many seconds (or rings) you should wait for an answer before hanging up.
The reward for reaching your party may be determined by the time that you arc willing to
wait in order to talk now, as opposed to hanging up and calling again later. In Table 4, we give

15

40 50
problem's number

Figure 8: Selection of a method in the extended transportation domain: the running times (solid
line), successes (o) and failures (+), and the selection made among APPLY (o), DKLAY (X), and
ALP1NJJ (*).

time

1 5.80 f

2 8.25 s
3 200.00 b

4 5.15 s
5 8.30 s

6 200.00 b
7 9.15 s

8 6.10 f
9 14.15 f

10 200.00 b

11 9.75 s
12 3.90 s

time

13 11.45 f

14 3.70 s
15 7.25 s

16 4.10 s

17 8.25 s

18 5.40 s

19 4.50 s

20 32.85 f

21 200.00 b
22 200.00 b

23 10.50 s
24 14.45 f

time

25 11.30 f

26 10.20 f
27 4.15 s

28 14.70 s
29 2.50 s

30 8.70 s

31 6.45 s

32 6.80 s

33 8.10 s
34 13.40 s

35 5.40 s

36 2.20 s

time

37 26.70 f

38 6.20 s
39 24.45 f

40 29.30 f
41 12.60 s

42 26.15 f
43 7.20 s

44 16.20 f

45 8.90 s
46 4.25 s

47 7.30 s

48 10.95 s

time

49 10.05 s

50 6.50 s
51 15.10 f

52 25.45 s

53 20.00 f
54 24.20 f

55 20.15 f

56 10.90 s

57 23.25 f
58 4.40 s

59 3.20 f
60 200.00 b

Table 4: Waiting times (seconds) in sixty phone-call experiments.

the time measurements on sixty phone calls, rounded to 0.05 seconds1. A success occurred
when our party answered the phone. A reply by an answering machine was considered a
failure.

The graph in Figure 9(a) shows the dependency of the expected gain on the time bound,
for the rewards of 30.0 (dash-and-dot line), 90.0 (dashed line), and 300.0 (solid line). We
assume here that the caller is not interested in leaving a message, which means that a reply
by a machine gets the reward of zero. The optimal bound for the 30.0 and 90.0 rewards is
14.7 (three rings); the optimal bound for the 300.0 reward is 25.5 (five rings).

If the caller plans to leave a message, then the "failure" reward is not zero, though it
may be smaller than the success reward. The graph in Figure 9(b) shows the expected gain
for the success reward of 90.0 with three different failure rewards, 10.0 (dash-and-dot line),
30.0 (dashed line), and 90.0 (solid line). The optimal bound for the 10.0 failure reward is

1\Ve made these calls to sixty different people at their home numbers. We measured the time from the
beginning of the first ring, skipping the static silence of the connection delays.

16

(a) gains w/o failure rewards (b) gains with failure rewards

150 ■

100

50

0 —*r

time bound
10 100

time bound

Figure 9: The dependency of the expected gain on the time bound in the phone-call domain:
(a) for the rewards of 30.0 (dash-and-dot line), 90.0 (dahsed line), and 300.0 (solid line); (b) for
the success reward of 90.0 and failure rewards of 10.0 (dash-and-dot line), 30.0 (dahsed line), and
90.0 (solid line).

20 25 30 35 40
problem's number

45 50 55

Figure 10: Incremental learning of a time bound in the phone-call domain.

26.7 (five rings); for the other two rewards, it is 32.9 (six rings).
The graph in Figure 10 shows the results of selecting a time bound incrementally, for

the 90.0 success reward and zero failure reward. The learned time bound converges to the
optimal bound, 14.7. The average gain obtained during the learning is 38.9 per call. If we
used the optimal bound for all calls, we would earn 41.0 per call.

The experiments in the two PRODIGY domains and the phone-call domain demonstrated
that the incremental-learning procedure usually finds a near-optimal time bound after solving
twenty or thirty problems, and that the gain obtained during learning is close to optimal.
In Section 8, we will present a scries of experiments with artificially generated time values,
using normal, log-normal, uniform, and log-uniform distributions. Wo will demonstrate that
the learning technique gives good results for all four distributions.

17

6 Use of problem sizes

Wc have considered the task of finding a problem-solving method and time bound that will
work well for most problems in a domain. If wc can estimate the sizes of problems, wc
improve the performance by adjusting the time bound to a problem size.

Wc define a problem size as an easily computable positive value that correlates with the
problem complexity: the larger the value, the longer it usually takes to solve the problem.
Finding an accurate measure of complexity is often a difficult task; however, many domains
have features that provide at least a rough complexity estimate. For example, in the trans-
portation domain, wc may estimate the problem complexity by the number of packages to
be delivered. In the rightmost column of Tables 1 and 3, wc show the number of packages
in each of the sample problems.

Note that measures of a problem size arc usually domain-specific. The choice of a good
measure is the user's responsibility. Wc allow the user to specify different measures for
different problem-solving methods.

Wc use regression to find the dependency between the sizes of the sample problems and
the times to solve them. Wc use separate regressions for the times of successes and for the
times of failures. In PRODIGY, successes usually occur after exploring a small part of the
search space, whereas failures require the exploration of the entire space, and the dependency
of the success time on the problem size is quite different from that of the failure time.

Wc assume that the dependency of time on size is cither polynomial or exponential. If
it is polynomial, than the logarithm of time depends linearly on the logarithm of size; for
an exponential dependency, the time logarithm depends linearly on size. Wc thus use linear
regression to find both polynomial and exponential dependencies.

Wc use the least-squares technique to perform the regression. In Figure 11(a) and 11(b),
wc give the regression formulas for a polynomial dependency between size and time; the
regression for an exponential dependency is similar. Wc denote the number of sample prob-
lems by n, the problem sizes by sizci,...,sizc„, and the corresponding running times by
tirnci,..., timen.

Wc evaluate the regression results using the f-tcst. The t value in this test is the ratio
of the estimated slope of the regression line to the standard deviation of the slope estimate.
Wc give the formula for computing t in Figure 11(c). The TimcDcv value in this formula is
the standard deviation of time logarithms. It shows how much, on average, time logarithms
deviate from the regression line.

The f-tcst converts the t value into the probability that the use of the regression gives
no better prediction of running time than ignoring the sizes and simply taking the mean; in
other words, it is the probability that the regression docs not help. This probability is called
the P value; it is a function of the t value and the number n of sample problems. When the
regressed line gives a good fit to the sample data, t is large and the P value is small.

In Figure 12, wc give the results of regressing the success times for the sample trans-
portation problems from Table 1; wc do not show failure regression. The top three graphs
give the polynomial dependency of the success time on the problem size; the bottom graphs
arc for the exponential dependency. The horizontal axes show the problem sizes (that is,
the number of packages), and the vertical axes arc the times. The circles show the sizes and

18

(a) Approximate dependency of the running time on the problem size:
log time = a + 0 ■ log size;
that is, time. = ca ■ sizc^.

(b) Regression coefficients:
,T /jj-\ *°S sizej-logtimej — SizeSum-'ftmeSum/n

SizeSqrSum —SizeSum In '
_, __ TimeSum ,0 _ SizeSum

n ■ n '
where

TimeSum = I]"=i 1°S timcj,
SizcSum =]C;'=i log size;,
SizcSqrSum = Z)"=i (log sure,)2.

(c) The £ value, for evaluating the regression accuracy:

t = T- ßn ■ J SizcSqrSum - A'^'*"'2

where
TimcDcV = J^ ■ (^=I(loStime,)2 - SiasSaai _ .Ö .(^ log««, • log«me, - SkoSum-TimcS«,,, }y

Figure 11: Rergression coefficients and the t value for the polynomial dependency of time on size.

times of the problem instances; the solid lines arc the regression results. For each regression,
we give the t values and the corresponding intervals of the P value under the graph.

Wc use the regression only if the probability P is smaller than a certain bound. In our
experiments, wc set this bound to 0.2; that is, wc used problem sizes only for P < 0.2.
This test ensures that wc use sizes only if they provide a good correlation with problem
complexity. If the size measure proves inaccurate, then the gain-estimate algorithm ignores
sizes. Wc use the 0.2 bound rather than more "customary" 0.05 or 0.02 because an early
detection of a dependency between sizes and times is more important for the overall efficiency
than establishing a high certainty of the dependency.

For example, all three polynomial regressions in the top row of Figure 12 pass the P < 0.2
test. The exponential regressions for APrLY and ALPINE also satisfy this condition. On the
other hand, the exponential regression for DELAY fails the test (sec the middle bottom graph
in Figure 12).

The choice between the polynomial and exponential regression is based on the value of t:
wc prefer the regression with the larger t. In the example of Figure 12, the polynomial
regression wins for all three methods.

The user has an option to select between the two regressions herself. For example, she
may insist on the use of the exponential regression. Wc also allow the user to set a regression
slope. This option is useful when the human operator has a good notion of the slope value
and the past data arc not sufficient for an accurate estimate. If the user specifics a slope,
the algorithm uses her value in the regression; however, it compares the user's value with
the regression estimate of Table 11, determines the statistical significance of the difference,
and gives a warning if the user's estimate is off with high probability.

Note that the least-square regression and the related i-tcst make quite strong assumptions

19

APPLY
100

o c
o ■a c (
<D
a.

■°-\o ^'o
a &-<o
£ o

"T^ c o
.£• ,
a (>

DELAY ALPINE
100

10
t = 4.2, P<0.01

100

1 10
t = 1.6, 0.1 <P<0.2

1 10
t = 3.5, P<0.01

5 10 15
t = 3.8, P<0.01

5 10 15
t = 0.5, P>0.2

5 10 15
t = 3.3, P<0.01

Figure 12: The dependency of the success time on the problem size. The top graphs show the
regression for a polynomial dependency, and the bottom graphs are for an exponential dependency.

about the nature of the distribution. First, for problems of fixed size, the distribution of the
time logarithms must be normal; that is, time must be distributed log-normally. Second,
for all problem sizes, the standard deviation of the distribution must be the same. The
regression, however, usually provides a good approximation of the dependency between size
and time even when these assumptions arc not satisfied.

The use of the problem size in estimating the gain is based on "scaling" the times of
sample problems to a given size. We illustrate it in Figure 13, where wc scale DELAY'S times
of a 1-packagc success, an 8-packagc success, and an 8-packagc failure for estimating the
gain on a 3-packagc problem (the 3-packagc size is marked by the vertical dotted line). To
scale a problem's time to a given size, wc draw the line with the regression slope through
the point representing the problem (sec the solid lines in Figure 13), to the intersection with
the vertical line through the given size (the dotted line). The ordinatc of the intersection is
the scaled time.

If the size of the problem is sizca\d, the running time is timc0n, and wc need to scale it to
a size sizcnev, using a regression slope ß, then wc compute the scaled time timcnevr as follows:

Polynomial regression:
log timc.new = log timcold + 3 • (log sizcnev/ - log sizc.oid);

that is, timc„evl = timc0\d ■ (^C
e°°j)' •

20

100

1 10
problem size

Figure 13: Scaling two success times (o) and a failure time (+) of DKLAY to a 3-package problem.

Exponential regression:
log iimcnew = log timcoW + 3 ■ (sizenew - sizcM);
that is, iimcnew = timcoi<i ■ cxp(# ■ (sizcnev/ — sizc0\d)).

We use the slope of the success regression in scaling success times (sec the lines through
circles in Figure 13), and the slope of the failure regression in scaling failures (the line trough
pluses). The slope for scaling an interrupt time should depend on whether the method would
succeed or fail if we did not interrupt it; however, we do not know which of these two outcomes
would occur. We use the simple heuristic of choosing between the success and failure slope
based on which of them has the smaller P value. We also experimented with "distributing"
each interrupt point between success and failure slopes, similar to the distribution of small
interrupt times described in Section 3; however, it did not provide higher accuracy than the
simple heuristic.

For a sample of n successes, m failures, and k interrupts, the overall time of computing
the polynomial and exponential regression slopes, performing the f-tcst to select between the
two regressions, and scaling the sample times to a given size is about (n + m + k) • 9 • 10"4

seconds. For the incremental learning of a time bound, we implemented a procedure that
incrementally updates the slope and t value after adding a new problem to the sample. The
amortized running time of this procedure is approximately ((n + m + k)-2 + 7) ■ 10~4 seconds
per problem.

After scaling the times of the sample problems to a given size, we use the technique of
Section 3 to compute the gain estimate and its standard deviation. The only difference is
that wc reduce the second term in the denominator for the standard deviation by 2, because
the success and failure regressions reduce the number of degrees of freedom of the sample
data. Thus, wc compute the deviation as follows:

SqrSum — n+m+k

\ (n + m + k) ■ (n + m + k ■ ■3)'

In Figure 14, wc show the dependency of the expected gain on the time bound when
using APPLY on 1-packagc, 3-packagc, and 10-packagc problems in the simple transportation
domain, described in Section 2.

If wc estimate the problem sizes in the transportation domain by the number of packages
to be delivered, and use these sizes in the incremental-selection experiments of Sections 4

21

1 package 3 packages 10 packages

10 100
time bound

10
time bound

10 100
time bound

Figure 14: Dependency of APPLY'S expected gain on the time bound in the simple transportation
domain, for the rewards of 10.0 (dash-and-dot lines), 30.0 (dashed lines), and 100.0 (solid lines).
The dotted lines show the standard deviation for the 100.0 reward.

w/o sizes with sizes
transportation by v

APPLY's bound selection
ans (Sectioi

12.0
i 4)

12.2
DELAY'S bound selection 3.9 4.7
ALPINK'S bound selection 11.3 11.9
method selection 11.1 11.8
transportation by vans an
APPLY's bound selection

i airplanes
110.1

'Section 5)
121.6

DELAY'S bound selection 131.1 137.4
ALPINE'S bound selection 243.5 248.3
method selection 207.0 215.6

Table 5: Per-problem gains in the learning experiments, without and with the use of sizes.

and 5, we get larger gains in all eight experiments. In Table 5, we give the pcr-problcm gains
in these experiments, without and with the use of problem sizes.

In Figure 15, wc give a more detailed comparison of gains without and with the regression,
for the bound-selection experiments of Section 4. The horizontal axes show the problem's
number, from 7 to 30. Wc skip the first six problems, because the algorithm docs not use
sizes in selecting the time bounds for these problems: it has not yet accumulated enough
data for regression with sufficiently small P value.

The vertical axes show the average pcr-problcm gain up to the current problem. For
example, the left end of the curve shows the average gain for the first seven problems and
the right end gives the average for all thirty problems. The gain declines for problems 20 to
30 because these problems happen to be harder, on average, than the first twenty problems
(sec Table 1). The dotted lines give the average gains without the use of problem sizes, and
the solid lines arc for the gains obtained with the regression.

The graphs show that the use of problem sizes usually, though not always, provides a
small improvement of the performance. The apparent advantage of the regression in DELAY'S

'>.'>.

APPLY DELAY ALPINE

10 20 30
problem's number

10 20 30
problem's number

10 20 30
problem's number

Figure 15: Average per-problem gains without the regression (dotted lines) and with the regression
(solid lines), during the incremental learning of a time bound.

learning is mostly due to the choice of low time bounds for problems 9 and 10, which cannot
be solved in feasible time. This luck in setting low bounds for two hard problems is not
statistically significant. If the algorithm docs not use problem sizes, it hits the time bounds
of 16.9 and 14.0 on these problems (sec Figure 5) and falls behind in its pcr-problcm gain.

7 Similarity hierarchy

We have estimated the expected gain by averaging the gains for all sample problems. If we
know which of them arc similar to a new problem, wo may improve the estimate accuracy
by averaging only the gains for these similar problems.

We describe similarity among problems by a tree-structured similarity hierarchy. The
leaf nodes of the hierarchy arc groups of similar problems. The other nodes represent weaker
similarity among groups. We assume that each problem belongs to exactly one group and
that determining a problem's group takes little computational time.

For example, wc may divide the transportation problems into within-city and between-
city deliveries. Wc extend this example by a now type of problems, which involves the
transportation of containers within a city. A van can carry only one container at a time,
which sometimes makes container delivery harder than package delivery. In Table 6, wc give
the performance of APPLY, DELAY, and ALPINE on ten container-transportation problems.
Wc now subdivide within-city problems into package deliveries and container deliveries. Wc
show the resulting similarity hierarchy in Figure 16(a).

The construction of a hierarchy is presently the user's responsibility. Wc plan to address
the problem of learning a hierarchy automatically in the future work. Wc allow the user to
construct a separate hierarchy for each problem-solving method or a common hierarchy for
all methods. Wc also allow the use of different problem-size measures for different groups of
problems.

Wc may estimate the similarity of problems in a group by the standard deviation of the

23

time (sec) and outcome #of
APPLY DKL AY ALPINE conts

1 2.3 s 2.3 s 2.1 S 1
2 3.1 s 5.1 s 4.1 s 2
3 5.0 s 20.2 s 4.8 s 3
4 3.3 s 8.9 s 3.2 s 2
5 6.7 s 36.8 s 6.4 s 4

time (sec) and outcome #of
APPLY DELAY ALPINE conts

6 200.0 b 200.0 b 10.1 f 8
7 3.2 s 3.2 s 3.2 s 2
8 24.0 s 200.0 b 26.3 s 8
9 4.8 s 86.2 s 3.4 s 4

10 8.0 s 200.0 b 9.4 s 6

Table 6: Performance on ten container-transportation problems.

domain

extended
transportation

domain j

/ \
delivery

within city
^(vans only)

>
delivery

between cities
(vans & planes) 2

/ S

delivery of
packages ^

I delivery of
^containers

succ dev: 1.39
faildev: 0.38

_Z7~X.
within city

succ dev: 0.86
fail dev: 0.44

between cities

succ dev: 1.60
fail dev: 0.33

succ dev: 0.92
fail dev: 0.27

succ dev: 0.75
fail dev: Unknown

domain

succ dev: 1.08
fail dev: 0.37

/ \
within city

succ dev: 0.6*
fail dev: 0.23

between cities

succ dev: 0.69
fail dev: 0.29

/ \
' packages 1 containers

succ dev: 0.73
^fail dev: O.OsJ

succ dev: 0.38
fail dev: Unknown

(a) Similarity hierarchy (b) ALPINE's deviations w/o regression (c) ALPINE's deviations with regression

Figure 16: Similarity hierarchy and the deviations of ALPINE'S success and failure logarithms,

logarithms of running times, computed for the sample problems that belong to the group:

TimcDcv
\ 1

^(log timci)2 - (E-Ulogtoc,-)2

We compute the deviations separately for successes and failures, and use these values as a
hcuristical measure of the hierarchy's quality. The smaller the deviations for the leaf groups,
the better the user's hierarchy. If some deviation value is larger than a prc-sct threshold,
the system gives a warning. In the implementation, we set this threshold to 2.0.

If we use the regression, we apply it separately to each group of the similarity hierarchy.
If the regression confirms the dependency between problem sizes and times, we compute the
deviation of time logarithms by a different formula, given in the last line of Figure 11.

For example, the deviation values for ALPINE in the transportation domain arc as shown
in Figure 16. We give the deviations computed without the regression in Figure 16(b), and
the deviations for gain estimates with the regression in Figure 16(c). The values show that
within-city problems arc more similar to each other than between-city problems.

Note that the deviations of the logarithms do not change if we multiply all times by the
same factor, which means that they do not depend on the speed of a computer that runs
problem-solving methods. Also, the deviation values do not change, on average, with adding
more problems to the sample.

24

Wc may estimate the expected gain for a new problem by averaging the gains of the
sample problems that belong to the same leaf group. Alternatively, wc may use a larger
sample from one of its ancestors. The leaf group has less data than its ancestors, but the
deviation of these data is smaller. Wc need to analizc this trade-off when selecting between
the leaf group and its ancestors. Intuitively, wc should use ancestral groups during early
stages of the incremental learning and move to leaf groups after collecting more data.

Wc present a hcuristical (rather than statistical) technique for selecting between a group
and its parent, based on two tests. The first test is aimed at identifying the difference
between the distribution of the group's problems and the distribution of the other problems
in the parent's sample. If the two distributions prove different, wc use the group rather than
its parent for estimating the problem-solving gain. If not, wc perform the second test, to
determine whether the group's sample provides a more accurate performance estimate than
the parent's sample. Wc now describe the two tests in detail.

If wc do not use the regression, then the first test is the statistical f-tcst that determines
whether the mean of the group's time logarithms differs from the mean of the other time log-
arithms in the parent's sample. Wc perform the test separately for successes and failures. In
our experiments, wc considered the means different when wc could reject the null-hypothesis
that they arc equal with the Ü.75 confidence. If wc use the regression and it confirms the
dependency between sizes and times, then wc use a different i-tcst. Instead of comparing
the means of time logarithms, wc determine whether the regression lines arc different with
confidence Ü.75.

A statistically significant difference for cither successes or failures is a signal that the
distribution of the group's running times differs from the distribution for the other problems
in the group's parent. Therefore, if wc need to estimate the gain for a new problem that
belongs to the group, the use of the parent's sample may bias the prediction. Wc thus should
use the group rather than its parent.

For example, suppose that wc use the data in Tables 1, 3, and 6 with the hierarchy in
Figure 16(a), and wc need to estimate ALPINE's gain on a new problem that involves the
delivery of packages within a city. Wc consider the choice between the corresponding leaf
group and its parent. In this example, wc do not use the regression.

The estimated mean of the success-time logarithms for the package-delivery problems is
4.07, and the standard deviation of this estimate is 0.2Ü. The estimated mean for the other
problems in the parent group, which arc the container-delivery problems, is 4.03, and its
deviation is 0.16. The difference between the two means is not statistically significant. Since
the container-transportation sample has only one failure, wc cannot estimate the deviation
of its failure logarithms; therefore, the difference between the failure-logarithm moans is also
considered insignificant.

If wc apply the regression to this example and use the i-tcst to compare the regression
slopes, it also shows that package-transportation and container-transportation times arc not
significantly different.

The second test is the comparison of the standard deviations of the mean estimates for
the group and its parent. The deviation of the mean estimate is equal to the deviation of
the time logarithms divided by the square root of the sample size, 'J""^CT- Wc compute
it separately for success times and failure times. Wc use this value as an indicator of the

25

sample's accuracy in estimating the problem-solving gain: the smaller the value, the greater
the accuracy. This indicator accounts for the trade-off between the deviation of the running-
time distribution and the sample size. It increases with an increase in the deviation and
decreases with an increase in the sample size.

If the group's deviation of the mean estimate is smaller than that of the group's parent,
for cither successes or failures, then the group's sample is likely to provide a more accurate
gain estimate; thus, we prefer the group to its parent. On the other hand, if the parent's
mean-estimate deviation is smaller for both successes and failures, and the comparison of
the group's mean with that of the other problems of the parent sample has not revealed a
significant difference, then we use the parent to estimate the gain for a new problem.

Suppose that we apply the second test to the group selection for estimating ALPINE's
gain on within-city package delivery. The standard deviation of the mean estimate of the
success-time logarithms, for the corresponding leaf group, is 0.20; the deviation for its parent
is 0.16. The deviation of the mean estimate of the failure-time logarithms is also smaller for
the parent. Since the first test has not revealed a significant difference between the group's
times and the other times in the parent's sample, we prefer the use of the parent.

After selecting between the leaf group and its parent, we use the same two tests to
choose between the resulting "winner" and the group's grandparent. We then compare the
new winner with the great-grandparent, and so on. In our example, we need to compare the
selected parent group with the top-level node (sec Figure 16a). After applying the first test,
we find out that the mean of the group's success logarithms is 4.03 and the corresponding
mean for the other problems in the top node's sample is 5.39. The difference between these
means is statistically significant. We thus prefer the group of within-city problems to the
top-level group.

The time taken by the statistical computations is proportional to the depth of a hierarchy.
If we use a hierarchy in the incremental learning, and we have accumulated data on n
successes, m failures, and k interrupts, then the amortized time of performing the necessary
regressions, selecting a group, and scaling the times of this group to the size of the new
problem is about ((n + m + k) ■ 4 + 20) • depth • 10~4 seconds. This time is still very small
compared to PRODIGY's problem-solving time.

We have considered several alterations of the described group-selection heuristic in our
experiments. In particular, we tried replacing the deviation of time logarithms with the
deviation of times divided over their mean. In most cases, the use of this measure led to the
same selection. We also tried to use cither success or failure times rather than both successes
and failures. This alternative proved to be a less effective strategy. When successes arc much
more numerous than failures, which happens in most PRODIGY domains, the results of using
successes and ignoring failures arc near-identical to the results of using both success and
failures; however, when the number of successes and failures is approximately equal, the use
of both successes and failures gives better performance.

In Table 7, we present the results of using the similarity hierarchy of Figure 16 in the
incremental learning, and compare them with the results obtained without a hierarchy. We
ran the bound-selection experiments on a sequence of seventy transportation problems, which
was constructed by interleaving the problem sets of Tables 1, 3, and 6. We used a three-times
longer sequence of transportation problems for the method-selection experiments.

26

using leaf using the heuristical
groups top group group selection

without the use of problem sizes
APPLY'S bound selection 11.8 10.5 12.1
DELAY'S bound selection 7.0 4.7 7.5
ALPINE'S bound selection 19.5 18.1 19.5
method selection 13.1 11.1 13.4

with the use of problem, sizes
APPLY'S bound selection 16.3 11.1 16.8
DELAY'S bound selection 12.1 5.2 12.0
ALPINE'S bound selection 22.6 18.4 22.6
method selection 19.4 13.7 21.0

Table 7: Per-problem gains in learning experiments, for different group-selection techniques.

In the first column, wc give the results of using only leaf groups in estimating the gains.
In the second column, wc show the results of using the top-level group for all estimates, which
means that wc do not distinguish among the three problem types. The third column contains
the results of using the similarity hierarchy, with our heuristic for the group selection. Wc
first ran the experiments using both success and failure times in the group selection, and then
re-ran them using only success times. In all eight cases, he results of using both successes
and failures were identical to the results of using successes.

The experiments demonstrate that the use of the complete hierarchy gives larger gains
than cither the leaf groups or the top-level group; however, the improvement is not large.

Wc next use a similarity hierarchy in selecting a time bound for phone calls. Wc consider
the outcomes of sixty-three calls to six different people. Wc called two of them, say A and
B, at their office phones; wc called the other four, C, D, E, and F, at their homes. Wc show
our similarity hierarchy and the call outcomes in Figure 17.

For each group in the hierarchy, wc give the estimated mean of success and failure time
logarithms ("mean"), the deviation of the time logarithms ("deviation"), and the deviation
of the mean estimate ("mean's dcv"). The mean of success-time logarithms for calls to offices
is significantly different from that for calls to homos, which implies that the distribution of
office-call times differs from the distribution of home-call times.

The mean success logarithms for persons A and D arc not significantly different from
each other. Similarly, the success means of C, D, and E do not differ significantly from the
mean of the home-call group. On the other hand, the success mean of F is significantly
different from the mean for the other people in the homo-call group, implying that the time
distribution for F differs from the rest of its parent group. Finally, the failure-logarithm
means of D, E, and F arc all significantly different from each other.

Wc ran incremental-learning experiments on these data with the reward of 90.0. An
experiment with the use of the leaf groups for all gain estimates yielded the gain of 57.8 per
call. Wc then ran an experiment using the home-call and office-call groups for all estimates,
without distinguishing among different people within these groups, and obtained the average
gain of 56.3. Wc next used the top-level group for all estimates, which yielded 55.9 per call.
Finally, wc experimented with the use of our heuristic for choosing between the leaf groups

all phone calls

successes failures
mean: 1.55 mean: 2.72
deviation: 0.72 deviation: 0.32
mean's dev: 0.10 mean's dev: 0.11

2 v
calls to an office phone

successes failures
mean: 0.92
deviation: 0.89 NONE

mean's dev: 0.19

^

calls to a home phone

successes
mean: 1.84
deviation: 0.55
mean's dev: 0.09

failures
mean: 2.72
deviation: 0.32
mean's dev: 0.11 x:

calls to A

successes
mean: 0.92
deviation: 0.18
mean's dev: 0.06

failures

NONE

calls to B

successes
mean: 0.92
deviation: 1.13
mean's dev: 0.43

failures

NONE

calls to C

successes
mean: 1.77
deviation: 0.44
mean's dev: 0.14

failures

NONE

.

/ \
calls to D

successes
mean: 1.81
deviation: 0.60
mean's dev: 0.18

failures
mean: 2.98
deviation: 0.02
mean's dev: 0.01

calls to E

successes
mean: 1.89
deviation: 0.50
mean's dev: 0.17

failures
mean: 2.98
deviation: 0.11
mean's dev: 0.01

calls to F

successes
mean: 2.02
deviation: 0.007
mean's dev: 0.004

failures
mean: 2.40
deviation: 0.20
mean's dev: 0.05

outcomes outcomes outcomes outcomes outcomes outcomes
of calls to A of calls to B of calls to C of calls to D of calls to E of calls to F

200.0 b 2.30 s 200.0 b 200.0 b 6.80 s 2.60 s 8.30 s 1.70 s 5.60 s 5.45 s
2.50 s

3.20 s

2.05 s

3.10 s

200.0 b

2.55 s

200.0 b

4.85 s

1.85 s

0.50 s

200.0 b

17.20 s

2.30 s

7.90 s

7.60 s

4.95 s

9.70 s

6.05 s

2.85 s

7.15 s
20.10 f
2.05 s
7.40 s
9.05 s

7.80 s
19.30 f
6.05 s
8.35 s
8.75 s

8.10 s

18.30 f

9.70 s

2.45 s

4.15 s

21.25f

11.25 s

10.15 f

11.65 f

7.50 s

10.15 f

7.55 s

7.45 s

12.40 f
2.75 s 1.95 s 1.05 s 3.25 s 6.70 s 8.10 s 19.75 f 9.65 s 8.85 s 9.90 s

Figure 17: Similarity hierarchy and call outcomes in the phone-call domain.

and their ancestors based on the means and deviations of time logarithms; the gain in this
experiment was 59.8 per call. If we knew the time distributions in advance, determined the
optimal time bound for each leaf group, and used these optimal bounds for all call, then the
average gain would be 61.9.

The phone-call experiments have confirmed that the use of a similarity hierarchy improves
the performance, though not by much. Note, however, that the gain obtained with the use
of the hierarchy is much closer to the optimal than the gain from the use of leaf groups or
top-level group.

8 Artificial tests

We give the results of testing the selection mechanism on artificially generated values of
success and failure times. The "running times" in these tests arc the values produced by a
random-number generator. The artificial data enable us to perform controlled experiments
with known distributions.

The learning mechanism has proved effective for all tested distributions. The experiments

28

have demonstrated that the gain obtained in the incremental learning is usually close to the
optimal. They have also shown that the use of the regression improves the performance
when there is a correlation between size and time, and docs not worsen the results when
there is no correlation. We have not found a significant difference in performance for different
distributions.

We consider the following four distribution types:

Normal: The normal distribution of success and failure times corresponds to the situation
when the running time for most problems is close to some "typical" value, and problems
with much smaller or much larger times arc rare.

Log-Normal: The distribution of times is called log-normal if time logarithms arc dis-
tributed normally. Intuitively, this distribution occurs when the "complexity" of most
problems is close to some typical complexity and the problem-solving time grows ex-
ponentially with complexity.

Uniform: The times arc distributed uniformly if they belong to some fixed interval and all
values in this interval arc equally likely; thus, there is no "typical" running-time value.

Log-Uniform: The logarithms of running times arc distributed uniformly. Intuitively, the
complexity of problems is within some fixed interval, and running time is exponential
in complexity.

For each of the four distribution types, we ran multiple tests, varying the values of the
following parameters:

Success and failure probabilities: We varied the probabilities of success, failure, and
infinite looping.

Mean and deviation: We experimented with different values of the mean and standard
deviation of success-time and failure-time distributions.

Reward: We set the reward to 100.0 in all the experiments.

Length of the problem sequence: Wc tested the incremental-learning mechanism on se-
quences of 50, 150, and 500 problems.

Correlation between sizes and times: Wc ran tests both without and with the use of
problem sizes. Wc experimented with three different correlations between size loga-
rithms and time logarithms: 0.0, 0.6, and 0.9.

Wc ran fifty independent experiments for each setting of the parameters and averaged
their results. Thus, every graph in this section shows the average of fifty experiments.

Since the learning technique has proved effective in all these tests, wc conjecture that it
also works well for most other distributions. Wc plan to experiment with a wider variety of
distributions and identify situations in which the technique docs not give good results.

29

log-normal log—uniform

40
<

20

o

Figure 18: Per-problem gains (top row), time bounds (middle row), and estimates of the optimal
time bounds (bottom row) in the incremental learning on 50-problem sequences. The crosses mark
the optimal time bounds and the circles show the expected gains for the optimal bounds.

Experiments with short and long problem sequences
Wc first present the results of learning a time bound on sequences of 50 and 500 problems,
without the use of problem sizes. The success probability in these experiments is 1/2, the
failure probability is 1/4, and the probability of infinite looping is also 1/4. The mean
of success times is 20.0 and their standard deviation is 8.0; the failure-time mean is 10.0
and standard deviation is 4.0. Wc experimented with all four distribution types. For each
distribution, wc ran fifty experiments and averaged their results.

In Figure 18, wc summarize the results for 50-problcm sequences. The horizontal axes
in all graphs show the problem's number in a sequence. The top row of graphs gives the
average per-problem gain obtained up to the current problem. The circles mark the gain
that the system would obtain if it knew the distribution in advance and used the optimal
time bound for all problems. The vertical bars show the width of the distribution of gain
values obtained in different experiments. Each bar covers two standard deviations up and
down, which means that 95% of the experiments fall within it.

The middle row of graphs shows the selected time bounds. The bottom row of graphs
gives the system's estimates of the optimal time bound (recall that the selected bounds arc
larger than optimal, to encourage exploration). The crosses mark the values of the optimal
time bounds. Note that the system's estimates of the optimal bounds converge to their real
values.

In Figure 19, wc give similar results for 500-problcm sequences. In these experiments,
per-problem gains come closer to the optimal values, but still do not reach them. The
difference between the obtained and optimal gains comes from losses during early stages of
learning and from the use of largcr-than-optimal bounds.

30

log—normal log-uniform

Figure 19: Per-problem gains (top row), time bounds (middle row), and estimates of the optimal
time bounds (bottom row) in the incremental learning on 500-problem sequences.

Varying success and failure probabilities
Wc give the results of learning a time bound for different probabilities of successes and
failures. The means and standard deviations of the success and failure times arc the same
as in the previous experiments.

Wc summarize the results in Figure 20. The top row of graphs is for a problem-solving
method that succeeds, fails, and goes into an infinite loop equally often; that is, the prob-
ability of each outcome is 1/3. The middle row of graphs gives the results for a method
that succeeds half of the time and fails half of the time, and never goes into an infinite loop.
Finally, the bottom row is for a method that succeeds half of the time and loops forever
otherwise.

The solid lines show the average per-problem gain up to the current problem; the dotted
lines arc the selected time bounds; and the dashed lines arc the estimates of the optimal
bound. The crosses mark the optimal time bounds, and the circles arc the expected gains
for the optimal bounds.

Note that, when the probability of infinite looping is zero (the middle row), any large
time bound gives near-optimal results, because wc never need to interrupt a method. Thus,
the system never changes the initial time bound and gets near-optimal gains from the very
beginning.

Varying the means of time distributions
Wc now vary the mean value of failure times. Wc keep the mean success time equal to 20.0
(with standard deviation 8.0). Wc experiment with failure means of 10.0 (with deviation 4.0),
20.0 (with deviation 8.0), and 40.0 (with deviation 16.0). Wc give the results in Figure 21.

The gains for normal and log-normal distributions come closer to the optimal values
than the gains for uniform and log-uniform distributions. This observation suggests that

31

log—normal log-uniform

f lOO

sy" 50

1 * > ~~ < :

Figure 20: Per-problem gains (solid lines), time bounds (dotted lines), and estimates of the optimal
time bounds (dashed lines) for different success and failure probabilities. The crosses mark the
optimal time bounds and the circles show the expected gains for the optimal bounds. We give the
values of success probability ("succ") and failure probability ("fail") to the left of each row.

log—normal
, SO
: 60

|40£
! I
: 20

o

80

60

<
20

O

40,

20

o

80

60

1
20

O

log- -uniform

> -- <
^

Figure 21: Per-problem gains (solid lines), time bounds (dotted lines), and estimates of the optimal
time bounds (dashed lines) for different mean values of failure times. The mean of success times is
20.0 in all experiments.

32

log—normal

20 .^

10
IS

<=> 20

C
o

jro IO

o
0 o

log—uniform

20 ^-^
/^-~ ~'~

10

20 ^— 20 20

^^^ 10 /s 10 ^T^-1 10

O

V

O O

Figure 22: Per-problem gains without the use of sizes (dashed lines) and with sizes (solid lines),
for different correlations between size logarithms and time logarithms.

our technique works better for the first two distributions. The difference, however, is not
statistically significant.

Use of problem sizes
We compare the gains obtained without and with the use of the regression. Problem sizes in
this experiment arc natural numbers between 1 and 10, selected randomly. The logarithms
of mean success and failure times arc proportional to the problem-size logarithms. We
adjusted the deviation values to obtain desired correlations between time logarithms and
size logarithms. We used the correlation of 0.9 in the first scries of experiments and 0.6 in
the second scries. Finally, we ran experiments with zero correlation; the mean times in this
scries were the same for all problem sizes.

We give the results in Figure 22, where dashed lines show the average per-problem gains
without the regression, and the solid lines give the gains obtained with the regression. The
use of the regression improves the performance and the improvement is greater for a larger
correlation. If there is no correlation, the system disregards the results of the regression and
performs identically without and with sizes.

Method selection
Finally, we show the results of the incremental selection among three problem-solving meth-
ods, on 150-problcm sequences. In the first scries of experiments, we adjusted mean success
and failure times in such a way that the optimal per-problem gain for the first method was
10% larger than that for the second method and 20% larger than that for the third method.

We give the results in Figure 23. The top row of graphs shows the average pcr-problcm
gain without the use of the regression (dashed lines) and with the regression (solid lines).
The circles mark the expected gains for the optimal time bounds, without the regression.

The other two rows of graphs give the probability of choosing each method, for the

33

log—normal log-uniform

Figure 23: Incremental selection among three problem-solving methods, where the average gain
for the first method is 10% larger than that for the second method and 20% larger than that for
the third method. We show the average per-problem gains in the experiments without and with
the use of the regression (the top row of graphs), and the probability of selecting each method (the
other two rows).

experiments without and with the use of problem sizes. The distance from the bottom of the
graph to the lower curve is the probability of selecting the first method, the distance between
the two curves is the chance of selecting the second method, and the distance from the upper
curve to the top is the third method's chance. The graphs show that the probability of
selecting the first method (which gives the highest gain) increases in the process of learning.
The probability of selecting the third (worst-performing) method decreases faster than that
of the second method.

In the second scries of experiments, the optimal gain of the first method was 30% larger
than that of the second method and 60% larger than that of the third method. We give
the results in Figure 24. Note that the probability of selecting the first method grows much
faster, due to the larger difference in the expected gains.

9 Conclusions and extensions

We have stated the task of selecting among available problem-solving methods as a statistical
problem, derived an approximate solution, and used it to build a system for the automatic
selection of the most effective method. The system collects data on the results of using
the available methods and estimates their average performance. It uses an approximate
measure of problem sizes and information about similarity between problems to improve the
accuracy of the estimates. The choice of the method is based on the estimated performance.
The selection heuristics combine the exploitation of the past experience with the exploration
of new alternatives.

34

log—normal log—uniform

Figure 24: Incremental selection among three problem-solving methods, where the average gain
for the first method is 30% larger than that for the second method and 60% larger than that for
the third method.

Wc have demonstrated empirically the system's effectiveness in choosing the right method
and a near-optimal time bound. The selection technique has proved effective for a variety of
running-time distributions. The technique gives good results even when the distributions do
not satisfy the assumptions of the statistical analysis. Its performance, however, depends on
the user's proficiency in selecting an accurate measure of problem sizes and defining groups
of similar problems.

The generality of the statistical model makes our technique applicable to selection among
multiple search methods in any AI system. Besides, the model extends to a wide range of real-
life situations outside of AI. The main limitation of applicability stems from the restrictions
on the reward function. Another major drawback of the model is its inability to account for
specific properties of given problem-solving methods.

Wc have implemented heuristics that enhance the statistical technique, though wc have
not used them in the described experiments. In particular, wc allow the user to provide a
prediction of the gains for different methods; wc then combine the user's prediction with
the statistical estimate. If the selected method has failed to solve a problem, wc can choose
another method for a second attempt to find a solution. Wc have designed an algorithm for
making this choice of a new method. The algorithm rc-cvaluatcs the gain estimates, to incor-
porate the knowledge that the first attempt has failed. Finally, wc provide a mechanism for
combining if-then preference rules for method selection with our numerical estimates. This
combination enables us to merge the user-coded semantic knowledge with the incremental
learning.

The statistical model for method selection rises many open problems, which include relax-
ing our simplifying assumptions, improving the rigor of the statistical derivation, extending
the model to account for more features of real-world situations, and improving the heuristics

35

used with statistical estimates.
To make the model more flexible, wc need to provide a mechanism for updating the

time bound while searching for a solution. Wc also plan to explore the use of competing
problem-solving methods on parallel machines, which will require an extension to the selec-
tion technique. Another open problem is to consider possible dependencies of the reward
on the solution quality and enhance the model to account for such dependencies. Wc also
need to allow interleaving of several promising methods, which is often more effective than
sticking to one method.

To enhance the use of similarity hierarchies, wc should allow multiple inheritance among
groups and make appropriate extensions to the group-selection heuristics. Finally, wc need
to provide a means for learning similarity groups automatically, to minimize the deviation
of time logarithms (sec Figure lie) within groups.

Acknowledgements

I am grateful to Svctlana Vayncr, who contributed many insights into my research. She
helped to construct the statistical model for estimating the performance of problem-solving
methods and provided a thorough feedback on all my ideas. I owe thanks to Herbert Si-
mon, Jaime Carboncll, Manuela Vcloso, Karen Ilaigh, and Henry Rowley for their valuable
comments and suggestions.

References

[Bacchus and Yang, 1992] Fahicm Bacchus and Qiang Yang. The expected value of hier-
archical problem-solving. In Proceedings of the Tenth National Conference on Artificial
Intelligence, 1992.

[Blumer et al., 1987] Ansclm Blumcr, Andrzcj Ehrcnfcucht, David Haussier, and Manfred K.
Warmuth. Occam's razor. Information Processing Letters, 24:377 380, 1987.

[Cohen, 1992] William W. Cohen. Using distribution-free learning theory to analyze
solution-path caching mechanisms. Computational Intelligence, 8(2):336 375, 1992.

[Cohen, 1995] Paul R. Cohen. Empirical Methods for Artificial Intelligence. MIT Press,
Cambridge, MA, 1995.

[Gcntncr and Stevens, 1983] Dcdrc Gcntncr and Albert L. Stevens, editors. Mental Models,
Hillside, NJ, 1983. Lawrence Erlbaum Associates.

[Knoblock, 1991] Craig A. Knoblock. Automatically Generating Abstractions for Problem
Solving. PhD thesis, School of Computer Science, Carnegie Mellon University, 1991.
Technical Report CMU-CS-91-120.

[Knoblock, 1994] Craig A. Knoblock. Automatically generating abstractions for planning.
Artificial Intelligence, 68:243 302, 1994.

36

[Mcndcnhall, 1987] William Mcndcnhall. Introduction to Probability and Statistics. Duxbury
Press, Boston, MA, seventh edition, 1987.

[Newell and Simon, 1972] Allen Newell and Herbert A. Simon. Human Problem Solving.
Prentice Hall, Englcwood Cliffs, NJ, 1972.

[Perez, 1995] M. Alicia Perez. Learning Search Control Knowledge to Improve Plan Quality.
PhD thesis, School of Computer Science, Carnegie Mellon University, 1995. Technical
Report CMU-CS-95-175.

[Polya, 1957] George Polya. How to Solve It. Doublcday, Garden City, NY, second edition,
1957.

[Stone et al, 1994] Peter Stone, Manuela M. Vcloso, and Jim Blythc. The need for different
domain-independent heuristics. In Proceedings of the Second International Conference on
AI Planning Systems, pages 164 169, 1994.

[Valiant, 1984] Leslie G. Valiant. A theory of the lcamablc. Communications of the ACM,
27:1134 1142, 1984.

[Vcloso and Stone, 1995] Manuela M. Vcloso and Peter Stone. FLEOS: Planning with a
flexible commitment strategy. Journal of Artificial Intelligence Research, 3:25 52, 1995.

[Vcloso et al., 1995] Manuela M. Vcloso, Jaime G. Carboncll, M. Alicia Perez, Daniel Bor-
rajo, Eugene Pink, and Jim Blythc. Integrating planning and learning: The PRODIGY
architecture. Journal of Experimental and Theoretical Artificial Intelligence, 7(1):81 120,
1995.

[Vcloso, 1994] Manuela M. Vcloso. Planning and Learning by Analogical Reasoning. Springer
Verlag, 1994.

37

