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Image and video compression algorithms are an important part of many transmission and 
storage systems. Over the past year, we addressed issues related to video compression for 
transmission and storage. Specifically, we dealt with four aspects of video compression: 

• real time software implementation of scalable video compression algorithm [10, 11], 

• transmission of video over wireless links [1], 

• content-based retrieval of video [8], and 

• low bit rate video coding [6]. 

In this report, we will briefly outline our results in these areas. 

1     Low Complexity, Software Only, Scalable Video Codec 

Developing scalable video compression algorithms has attracted considerable attention in 
recent years. Generally speaking, scalability refers to the potential to effectively decompress 
subsets of the compressed bit stream in order to satisfy some practical constraint, e.g., display 
resolution, decoder computational complexity, and bit rate limitations. 

Over the past years, we have developed a three dimensional subband scalable video 
codec [12, 13]. We have also reduced the complexity of the codec and developed a real-time 
software only implementation on multi-processors [10, 11]. Here we will go a step further 
and show a real time software only implementation on Ultra-Sparc workstations. 

One of the most intensive computational parts of the codec in [12] is arithmetic coding 
of multi-rate quantized 3-D subband coefficients. To reduce the complexity of this part, we 
investigated block coding as an alternative to the arithmetic coding of subband coefficients. 
Block coding proved to be less complex with very small loss in PSNR performance. 

We will now show how hierarchical block coding techniques can be used to code significant 
maps. A Significance map of a quantization layer is a binary map showing the location of 
coefficients in the dead-zone, versus those outside the dead-zone. An example of significance 
maps for quantization layers zero and one are shown in Figure 1. The basic hierarchical block 



Layer 0 -ayer 1 

■   Significant 

□   Not Significant 

Bits: 1 jli|o| 1  1010  0 1  1101  0  0  11  1010  0  1 1000  0 

Size: 8  4  2  2  1111  2  2  1111 A,i  i  2  1111  2  2  1111  2 

Layer 1: 

Bits: - - 0 0-0 0 1- 

Size: 8  4  2  2  1111  2  2  1111 

10 0 1 1011 0:0 0-1 0 - -110 0 

4  2 2 2 1111 2; 4 4 2 1111 2 2 1111 2 

Figure 1: Example of two layers of block coding. "Bits:" is the coded bit-stream. "Size:" is 
the size of the block corresponding to the above bit. 

coding technique we use was presented in an early work by Kunt [3] for two-level images. 
Kunt's method begins by partitioning an image into 16 x 16 blocks. If the block contains all 
zeros, the block is coded as a "0", and the algorithm proceeds to the next block. Otherwise, 
the block codeword begins with a "1", and the block is subdivided into four 8x8 blocks, 
each of which are coded the same way. In this manner, the coding proceeds in a recursive 
manner until lxl blocks We show an example of coding the first two layers of an 8 x 8 block 
in Figure 1. As seen, the initial layer, layer 0, is coded using Kunt's original method. To 
code the next layer, we use the information in the previous layer to avoid coding redundant 
bits. Specifically, any bits that are marked "1" in the previous layer are also assumed to be 
"1" in the following layer. 

To reduce the complexity, we use a pyramid structure of sum blocks to compute the coded 
bit-stream. Moreover, the 3-dimensional subband analysis and synthesis are performed using 
separable applications of 1-dimensional filters. 

1.1     Results 
[t] In this section, we compare the performances of the scalable codecs to that of MPEG-1. 

Table 1 shows the speed performance of MPEG and the 3-D subband codec for four different 
sequences at six different rates 1. The speed tests were done on a 170 MHz Ultra-Sparc 

workstation. 
As seen, depending on speed, the subband codec with block encoding is 20 to 60 times 

1rd stands for the sequence "Raiders of the lost ark", pp for "Ping Pong", fb for "Football" and md for 
"Mother Daughter". t - 1 and t - 2 denote one and two layers of temporal decompositions respectively. 
ac stands for scalable coding with arithmetic coding and be stands for scalable coding with block coding. 
mpeg.exhe and mpeg.loge stand for MPEG encoding with exhaustive and logarithmic search respectively. 



Table 1: Encoding and decoding speed < ;omparison. 
R (kbits/s) 64 256 500 1000 1500 3000 

rd — t2 — bce 24.0 24.0 20.0 15.2 12.5 9.9 
rd — t2 — bcj. 24.0 21.4 18.5 14.5 12.8 10.6 
rd — 22 — acd 24.0 18.7 11.0 7.0 5.4 3.9 

mpegd 24.0 24.0 24.0 24.0 24.0 24.0 
mpeg.exhe 0.4 0.4 0.4 0.4 0.4 0.4 
mpeg.loge 1.6 1.6 1.6 1.6 1.6 1.6 

rd — tl — bed 24.0 24.0 19.9 15.6 13.8 10.8 
pp — tl — bed 24.0 20.6 16.7 13.7 11.9 9.2 
fb-tl- bcd 24.0 21.3 17.0 13.6 11.8 9.6 
md — tl — bed 24.0 21.3 18.0 14.4 12.4 9.5 

faster than exhaustive search MPEG encoding. Even though using logarithmic instead of ex- 
haustive search speeds up MPEG encoding by a factor of 4, it is still considerably slower than 
scalable codec with block coding. The speed of both scalable codecs, based on arithmetic 
and block coding are for the most part symmetric with respect to encoding and decoding. As 
seen, the block coding approach is up to twice as fast as arithmetic coding approach. Decreas- 
ing the number of temporal decompositions from 2 to 1, speeds up the encoding/decoding 

of the block coder. 
Table 2 shows the luminance PSNR performance of the 3-D subband codec using block 

coding and MPEG-1 for four video sequences at rates 0.5, 1, 1.5, and 3 Mbits/s. The scalable 
codec uses two layers of temporal decomposition unless otherwise stated. It is important to 
emphasize that for the scalable 3-D subband codec one bit stream at 3 Mbits/s is generated 
once and its subsets are extracted to obtain other bit streams at other bit rates. On the other 
hand, for MPEG, a whole different bit stream is generated at the encoder for each bit rate. 
As seen, except for Ping Pong, the scalable codec performs as good or better than MPEG 
codec for the other three sequences. Decreasing the number of temporal decompositions 
from two to one sometimes adversely affects the SNR, and improves encode/decode speed. 

2     Scalable Video Transmission over Wireless Chan- 
nels 

The advent of wireless personal communications services in recent years has created a num- 
ber of challenging research problems in the areas of communications, signal processing and 
networking. A major challenge in dealing with the wireless channel has to do with its inher- 



Table 2: PSNR comparison 
Rates Mbits/s 0.5 l(t2) l(tl) 1.5 3.0 

rd — mpeg 
rd — be 

30.9 
31.7 

34.1 
35.2 35.2 

35.9 
37.0 

38.9 
39.3 

pp — mpeg 
pp — be 

25.9 
25.1 

28.5 
28.4 26.8 

30.3 
30.1 

33.9 
33.0 

fb - mpeg 
fb-be 

30.2 
31.0 

33.1 
34.1 34.3 

34.9 
35.9 

38.0 
38.0 

md — mpeg 
md — be 

36.0 
37.0 

38.7 
40.4 38.9 

40.7 
42.1 

42.9 
45.0 

ent unreliability. This is in contrast with wired networks in which the physical loss is very 

small, e.g. of the order of 10-9. 
The main problem we solve is as follows: given a total number of bits C, and a given 

binary symmetric channel with bit error probability of error Pe, find the best source coding 
rate Rs and channel coding rate Rc such that C = Rs + Rc, and the expected value of MSE 
is minimized. This is equivalent to finding the optimal source to channel bit ratio R°/R°, 
with R° + R° = C, such that the distortion is minimized. To find these minima for various 
CSFs, our approach is to construct distortion curves D(-^^) and to locate the minima 
empirically We use the scalable coder described in [12] and implemented real time in the 

previous section. 
Our solution to the optimization is based on a variation of Lagrange Multipliers, similar 

to the one developed in [9], with the exception that we are considering optimization of two 
sets of variables instead of one [1]. A complete mathematical derivation can be found in [1]. 

2.1     Results 
To test the above algorithm numerically, we use Rate-Compatible Punctured Convolutional 
Codes [2] for channel coding, in order to achieve unequal error protection without changing 
the structure of the channel codec. We use 600 frames of the digitized video "raiders of the 
lost ark" to compute the distortion functions, and apply our proposed bit allocation strategy 
to search for the optimal source to channel coding ratio R°JR°C for various CSI ranging from 
.001 to .05. The total bit budget is assumed to be 250 kbits/s. We see in Figure 2 that there 
exists a unique distortion minimum for various Pe. 

To show that our optimization strategy is essential in high error rate environment, we 
compare the performance of our joint source/channel codec to one that employs equal error 
protection only.   This codec also operates at the optimal source to channel coding rate, 
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Figure 3: Comparison between equal and non-equal error protection. 

R°/R°. However, it distributes R° source bits using traditional bit allocation theory that 
assumes a noiseless channel, then codes these source bits with R°c channel bits equally. In 
Figure 2.1 we see the performance of both codecs compare to the case when the channel is 
noiseless. Because the important source bits are not protected with higher priority, we see 
that occasionally the video suffers disastrous effects from channel noise. 

3    Video Compression using Matching Pursuits 

All existing video compression standards are hybrid systems. That is, the compression is 
achieved in two main stages. The first stage, motion compensation and estimation, predicts 
each frame from its neighboring frames, compresses the prediction parameters, and produces 



the prediction error frame. The second stage codes the prediction error. All existing video 
compression standards use block-based discrete cosine transform (DCT) to code the resid- 
ual error. Although, DCT video coding is efficient, it introduces undesirable effects onto 
the video sequence. Video sequence compressed using block-DCT approaches suffer from 
"blocking" artifacts, especially at low bit rates. Moreover, due to bit rate restrictions, some 
blocks are only represented by one or a small number of coarsely quantized transform co- 
efficients, hence the decompressed block will only consist of these basis vector. This will 
cause artifacts commonly known as ringing and mosquito noise. To solve this problem, we 
developed a coder that tries to match the residual error after motion compensation wherever 
it occurs using an over-complete basis set. 

3.1    Matching Pursuits 
Representing a signal using an over-complete basis set implies that there is more than one 
representation for the signal. For coding purposes, we are interested in representing the signal 
with the fewest basis vectors. This is an NP-complete problem [4]. Different approaches have 
been investigated to find or approximate the solution. Matching pursuits is a multistage 
algorithm, which in each stage finds the basis vector that minimizes the mean-squared-error 

[4]- 
Suppose we want to represent a signal f[i] using basis vectors from an over-complete 

dictionary (basis set) Q. Individual dictionary vectors can be denoted as: 

tü7[i] G g. (1) 

Here 7 is an indexing parameter associated with a particular dictionary element. The decom- 
position begins by choosing 7 to maximize the absolute value of the following inner-product: 

*=</[*W*]>, (2) 
where t is the transform (expansion) coefficient. A residual signal is computed as: 

R\i] = f\i]-tw^\i]. (3) 

This residual signal is then expanded in the same way as the original signal. The procedure 
continues iteratively until either a set number of expansion coefficients are generated or 
some energy threshold for the residual is reached. Each stage k yields a dictionary structure 
specified by 7*, an expansion coefficient t[k], and a residual Rk, which is passed on to the 
next stage. After a total of M stages, the signal can be approximated by a linear function 
of the dictionary elements: 

M 

fc=i 
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Figure 4: Separable two-dimensional 20 x 20 Gabor dictionary. 

3.2    Coder Description 
We have used a modified version of matching pursuit algorithm to represent the motion 
compensation residual error. First, the coder divides each motion residual into blocks and 
measures the energy of each block. The center of the block with the largest energy value 
is adopted as an initial estimate for the inner-product search. A dictionary of Gabor basis 
vectors, shown in Figure 4, is then exhaustively matched to an S x S window around the 
initial estimate. The exhaustive search can be thought of as follows. Each N x N dictionary 
structure is centered at each location in the search window, and the inner-product between 
the structure and the corresponding N x N region of image data is computed. The largest 
inner-product is then quantized. The location, basis vector index, and quantized inner- 
product are then coded together. 

The decoder needs to know the basis function used to represent the residual error and its 
locations, and the value of the quantized inner-product. For a more efficient coder, the bases 
index and the inner-product are coded using variable length codes (VLC). To code atom 
positions, the atoms are sorted in position order from left to right and top to bottom within 
the residual image. A differential coding strategy employs three basic codeword tables. The 
first table PI is used at the beginning of a screen line to indicate the horizontal distance 
from the left side of the image to the location of the first atom on the line. For additional 
atoms on the same line, the second table P2 is used to transmit the inter-atom distances. 
The P2 table also contains an escape code indicating that no additional atoms exist on the 
current line. The escape code, when used, is always followed by a P3 code, indicating how 
many lines in the image may be skipped before the next line containing coded atoms. The 
P3 code is then followed by a PI code, since the next atom will be the first on a particular 
line. No special codeword is needed to indicate the end of the atom field, since the number 
of coded atoms is transmitted as header information. 



Table 3: The average luminance PSNR of different sequences at different bit rates when 
coding using a DCT coder (MPEG-4 VM), zero-tree subband coder (ZTS), and matching 

pursuit coder (MP). 
Sequence Format Rate PSNR (dB) 

Bit Frame DCT ZTS MP 
CONTAINER-SHIP QCIF 10 K 7.5 29.43 28.01 30.99 
HALL-MONITOR QCIF 10 K 7.5 30.04 28.44 31.17 
MOTHER-DAUGHTER QCIF 10 K 7.5 32.50 31.07 32.74 
CONTAINER-SHIP QCIF 24 K 10.0 32.77 30.44 34.21 
SILENT-VOICE QCIF 24 K 10.0 30.89 29.41 31.71 
MOTHER-DAUGHTER QCIF 24 K 10.0 35.17 33.77 35.56 
COAST-GUARD QCIF 48 K 10.0 29.00 27.65 29.84 

NEWS CIF 48 K 7.5 30.95 29.97 32.02 

3.3    Results 
Figure 5 shows frame 250 of the 15 frame/s CIF COAST-GUARD sequence coded at 112 
Kbits/s using DCT, subband, and matching pursuit coders. The matching pursuit coded 
frame does not suffer from the blocky artifacts, which affect the DCT coders as shown in 
Figure 5(b). Moreover, it does not suffer from the ringing noise, which affects the subband 
coders as shown in Figure 5(c). 

Video sequences coded using matching pursuit do not suffer from either blocking or 
ringing artifacts, since the basis vectors are only coded when they are well-matched to the 
residual signal. As bit rate decreases, the distortion introduced by matching pursuit coding 
takes the form of a gradually increasing blurriness (or loss of detail). 

Figure 6 compares the PSNR performance of the matching pursuit coder [6] to a DCT 
(MPEG-4 verification model, VM) coder and a zerotree subband coder [5] when coding the 
COAST-GUARD sequence at 112 Kbits/s. The matching pursuit coder [6], in this example, has 
consistently higher PSNR than the MPEG4 and the zerotree subband [5] coders. Table 3 
shows the average luminance PSNRs for different sequences at different bit rates. In all 
examples mentioned in Table 3 the matching pursuit coder has higher average PSNR than 

the DCT coder. 

3.4    Real Time Encoding using Matching Pursuits 

The main objection to video coding using matching pursuit is the complexity of the encoder. 
The decoder is very simple and its complexity linearly increases with bit rate (number of 
atoms). The encoder, however, involves an exhaustive search over a small region using all 
possible basis functions. This limits the applicability of matching pursuits for software only 



rer- •-! 

P. 

i'..-r-r~  •' 

„    . :*>**   '***'                   ' \     * 

-. — 

'-:.,-'.V«.' .,.,-.,_•• W^ 

BP^^TT jpyk* 

I                1 

(a) Original (b) DCT 

(c) Subband (d) Matching pursuit 

Figure 5: Frame 250 of COAST-GUARD sequence, original shown in (a), coded at 112 Kbits/s 
using: (b) DCT based coder (MPEG-4 VM), (c) zerotree subband coder, and (d) matching 
pursuit coder. Blocking artifacts can be noticed on the DCT coded frame. Ringing artifacts 
can be noticed on the subband coded frame. 
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Figure 6: Frame-by-frame distortion of the luminance component of the COAST-GUARD 
sequence, reconstructed from 112 Kbits/s MPEG-4 VM bit stream (solid line), a zerotree 
subband bit-stream (dotted line), and from a matching pursuit bit stream (dashed line). 
Consistently, the matching pursuit coder had the highest PSNR while the DCT coder had 

the lowest PSNR. 

real time encoding. We addressed this problem and developed a real time software only 
encoder that runs on Pentium 200 MHz PCs. 

The complexity of matching pursuits was reduced mainly by approximating the com- 
putation of the inner-product and reducing the search. The following summarizes these 
approximations: 

• The number of basis functions has been reduced from 20 x 20 basis function to 17x17 
basis functions. This alone does not reduce the complexity significantly. The choice 
of the new basis functions, however, does. Eleven out of the seventeen basis functions 
have the same scale. These eleven functions consist of the same Gaussian multiplied 
by sines and cosines. Thus, they can be computed using fast Fourier Transform (FFT). 

• While searching, the Gaussian part of the Gabor function is approximated using quan- 
tized Gaussian functions. Thus, the multiplications are reduced to the number of 
quantized coefficients. 

• It's known that 
<f,g><\f<f,f><9,9>- (5) 

We can find the norm, </,/>, of the search area and compare it the best value of 
the inner-product so far (In our case < g,g >= 1). If it was smaller than the largest 

10 



Table 4: The average PSNR and speed of the fast matching pursuit coder (MP) compared 
to MPEG-4 verification model (VM). All are 10 Kbits/s QCIF sequences. 

Sequence PSNR (dB; Time per frame (ms) 
VM MP APSNR VM MP MP/VM 

CONTAINER-SHIP 29.55 30.21 0.66 0.131 0.150 1.15 

HALL-MONITOR 29.96 30.63 0.67 0.119 0.138 1.16 
MOTHER-DAUGHTER 32.45 32.56 0.11 0.132 0.132 0.99 

inner-product found so far, no search is needed. We can relax this condition in expense 
of less accuracy by multiplying the norm of the search area by a factor less than one. 
This will speed the search. The loss in quality depends on the chosen factor. 

• The search area is reduced from 16x16 to 8x8 search area. This increased the speed 

by a factor of 4. 

• The search is subsampled in the horizontal direction for all basis functions except for 
the bases function with scale 1. The search is subsampled in the vertical direction 
according to the support of the basis functions. The search is vertically subsampled 
only for functions with large support. 

• After the best function is found, a local search using the best function is done on a 
3x3 window. The search is done by computing the inner-products accurately. 

As expected, reducing complexity reduces the quality of the compressed video. However, 
visually, the differences are very small and in PSNR they are small. Moreover, the fast 
version of matching pursuits still outperforms the DCT based approach. Table 4 shows the 
average PSNR values for the fast version and compare them to the MPEG-4 verification 
model (VM). It should be noted here that the motion search for the examples in the table is 
not exhaustive. A combination of subsampled and step search is used for motion estimation. 

3.5    Error-Resilient Matching Pursuit Coding 

When transmitting video over noisy channels, it is important for bit-streams to be robust 
to transmission errors. It is also important, in case of errors, for the error to be limited to a 
small region and not to propagate to other areas. The position coding mechanism described 
in Section 3.2 does not limit the error in a frame. That is, if an error occurs in the middle 

of a frame, the whole frame will be lost. 

11 
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Figure 7: Scan used to code th atoms in a macroblock. First pixels 1, 2, 3, and 4 are coded. 

We addressed this problem and developed a new position coding mechanism that limits 
the effect to a macroblock (16 x 16 pixels). The new position scheme codes atoms that are 
in the same macroblock together. The atoms of each macroblock are reordered according 
to the scan shown in Figure 7. Afterwards, the atoms are coded differentially. Four VLC 
tables are used to code the atoms. The VLC table used to code the atoms of a macroblock 
is chosen according to the number of atoms in that macroblock. 

This new coding approach is more error-resilient. Moreover, the sequence coded using 
this approach has slightly higher PSNR than the older method. Table 5 shows the PSNR of 
the new (macroblock-based) and the old (frame-based) methods. 

4    Motion Indexing of Video 

A valuable tool in the management of visual records is the ability to automatically "describe" 
and index the content of video sequences in a meaningful manner. Such a facility would allow 
recovery of desired video segments or objects from a very large database of image sequences. 
The efficient use of stock film archives and identification of specific activities in surveillance 
videos are usually cited as potential applications. 

A parallel goal to creating such a database is the use of compressed video in the in- 
dexing and searching functions. More specifically, the elements of the compressed sequence 
themselves should serve as search keys. The concept of compression is thus extended from 
only producing an efficient representation, to also providing a meaningful one. This idea is 
embodied in the term "content based video" [7]. 

The development of a representation technique driven by database considerations such 
as hierarchical and "meaningful" representations, has inspired the use of motion of objects 

12 



Table 5: The average luminance PSNR of different sequences at different bit rates when 
coding using the frame-based position MP coder (old) and the macroblock-based position 

MP coder (new). 
Sequence Format Rate PSNR -(dB) 

Bit Frame Frame-based Macroblock- 
based 

CONTAINER-SHIP QCIF 10 K 7.5 31.99 31.08 

HALL-MONITOR QCIF 10 K 7.5 31.17 31.35 
MOTHER-DAUGHTER QCIF 10 K 7.5 32.74 32.75 

CONTAINER-SHIP QCIF 24 K 10.0 34.21 34.27 

SILENT-VOICE QCIF 24 K 10.0 31.71 31.92 

MOTHER-DAUGHTER QCIF 24 K 10.0 35.56 35.69 

COAST-GUARD QCIF 48 K 10.0 29.84 29.90 

FOREMAN QCIF 48 K 10.0 30.78 30.81 

NEWS CIF 48 K 7.5 32.02 32.16 
COAST-GUARD CIF 112 K 15.0 26.73 26.59 

FOREMAN CIF 112 K 15.0 28.62 28.61 

NEWS CIF 112 K 15.0 35.26 35.44 

STEFAN SIF 1 M 30.0 29.52 29.63 

MOBILE-CALENDER SIF 1 M 30.0 26.86 26.93 

to index a video database. We applied this concept to a street surveillance application [8]. 
A segmentation and tracking program analyzes compressed video of a scene and extracts 
the trajectories of moving objects, represented as two dimensional curves parameterized by 
time. The coarse-scale components of these trajectories are stored as keys in an index. A 
user who wishes to find an object moving in a particular way draws a trajectory, which is 
then matched against those in the index. 

The present video database system is shown schematically in Figure 8. It comprises com- 
ponents to achieve trajectory extraction, index building, and easy user interaction. Motion 
vectors from MPEG 1-compressed video form the sole input to the system. From these, 
the trajectories of objects in a fixed scene are extracted and represented by their wavelet 
transforms. The multi-resolution nature of the wavelet representation is the key to using 
inexact or incomplete queries, allowing imprecise matching and retrieval of desired clips of 

video. 
A graphical user interface that is particularly designed for the surveillance application ac- 

cepts hand-drawn queries and returns matches pictorially and in order of increasing distance 
from the query. Figure 9 shows the results of a typical query. 
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Figure 8:  The database system, showing the interaction of the three components. 
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Figure 9: Example query results.  The query was for left-hand turns. 

5    Evaluation 
Both the feature extraction and database parts of the system were tested. Approximately 
20 minutes of video were analyzed both manually and by the proposed segmentation and 
tracking algorithm for trajectories. The number of correctly extracted trajectories was deter- 
mined by comparing a graph of extracted trajectories to those observed by a human viewing 
the video. 409 objects were detected manually, of which the algorithm found 338. The 
tracking program also produced 141 false detections, representing noise and short fragments 
of actual trajectories. The results in Table 6 show the rates of missed detection for three 
categories of objects. As seen, the algorithm is more successful in tracking vehicles than 
people. This is due to problems in segmentation resulting from the more complex motions 
of people in the scene, and to their smaller size. The imprecision and noisiness of the MPEG 
motion estimates is simply inadequate to describe these motions correctly, or to recognize 
them at all. Tracking fails as well when motions are too similar, or occlusions too great. The 
segmentation and tracking algorithms work easily in real time. 

The recall precision of the database was tested next. The precision for a given recall rate 
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Table 6: Segmentation results. 

Object Type Manual Detections Algorithm Detections Rate 

People 209 163 78% 
Bicycles 6 6 100 
Motor Vehicles 194 169 87 

Table 7: Precision for 90% recall rate. 

Query Tracking Detections Precision at 90% Recall 

People, cross near —> far 35 86% 
People, cross far —> near 30 75% 
People, near side, E —>• W 32 69% 
People, near side, W —>• E 29 78% 
People, far side, W —> E 11 65% 
Car Left Turns 6 100% 
Cars E ->• W 68 93% 
Cars W -)• E 72 80% 

r is defined as 

precision 
T *  ™objects 

r * ivobjects "T -LVfalse-detections 

where N0bjects is the number of objects in the database determined by a human to match 
the query, and NJaise detections,the number of false detections, is the number of objects not 
matching the query activity that are found before a total of r * Nobjects matching objects 
are found. Table 7 shows the precision rates for the 90% recall rate for various hand-drawn 
queries. The numbers show that the indexing and retrieval strategy is significantly more 
successful for vehicles than for pedestrians. 
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