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Dedication 
This volume is dedicated to Professor Patrick Parks who died in 1995. Patrick was 
famous both for his work in nonlinear stability and automatic control and for his 
more recent contributions to neural networks—especially on learning procedures 
for CMAC systems. Patrick was known to many as a good friend and colleague, 
and as a gentleman, and he is greatly missed. 



PREFACE 

This volume of research papers comprises the proceedings of the first International 
Conference on Mathematics of Neural Networks and Applications (MANNA), which 
was held at Lady Margaret Hall, Oxford from July 3rd to 7th, 1995 and attended by 
116 people. The meeting was strongly supported and, in addition to a stimulating 
academic programme, it featured a delightful venue, excellent food and accommo- 
dation, a full social programme and fine weather - all of which made for a very 
enjoyable week. 
This was the first meeting with this title and it was run under the auspices of the 
Universities of Huddersfield and Brighton, with sponsorship from the US Air Force 
(European Office of Aerospace Research and Development) and the London Math- 
ematical Society. This enabled a very interesting and wide-ranging conference pro- 
gramme to be offered. We sincerely thank all these organisations, USAF-EOARD, 
LMS, and Universities of Huddersfield and Brighton for their invaluable support. 
The conference organisers were John Mason (Huddersfield) and Steve Ellacott 
(Brighton), supported by a programme committee consisting of Nigel Allinson 
(UMIST), Norman Biggs (London School of Economics), Chris Bishop (Aston), 
David Lowe (Aston), Patrick Parks (Oxford), John Taylor (King's College, Lon- 
don) and Kevin Warwick (Reading). The local organiser from Huddersfield was 
Ros Hawkins, who took responsibility for much of the administration with great 
efficiency and energy. The Lady Margaret Hall organisation was led by their bursar, 
Jeanette Griffiths, who ensured that the week was very smoothly run. 
It was very sad that Professor Patrick Parks died shortly before the conference. He 
made important contributions to the field and was to have given an invited talk at 
the meeting. 
Leading the academic programme at the meeting were nine invited speakers. Nigel 
Allinson (UMIST), Shun-ichi Amari (Tokyo), Norman Biggs (LSE), George Cy- 
benko (Dartmouth), Frederico Girosi (MIT), Stephen Grossberg (Boston), Morris 
Hirsch (Berkeley), Helge Ritter (Bielefeld) and John Taylor (King's College, Lon- 
don). The supporting programme was substantial; out of about 110 who submitted 
abstracts, 78 delegates were offered and accepted opportunities to contribute pa- 
pers. An abundance of relevant topics and areas were therefore covered, which was 
indeed one of the primary objectives. 
The main aim of the conference and of this volume was to bring together researchers 
and their work in the many areas in which mathematics impinges on and contributes 
to neural networks, including a number of key applications areas, in order to expose 
current research and stimulate new ideas. We believe that this aim was achieved. 
In particular the meeting attracted significant contributions in such mathematical 
aspects as statistics and probability, statistical mechanics, dynamics, mathematical 
biology and neural sciences, approximation theory and numerical analysis: alge- 
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bra, geometry and combinatorics, and control theory. It also covered a considerable 
range of neural network topics in such areas as learning and training, neural net- 
work classifiers, memory based networks, self organising maps and unsupervised 
learning, Hopfield networks, radial basis function networks, and the general area 
of neural network modelling and theory. Finally, applications of neural networks 
were considered in such topics as chemistry, speech recognition, automatic control, 
nonlinear programming, medicine, image processing, finance, time series, and dy- 
namics. The final collection of papers in this volume consists of 6 invited papers and 
over 60 contributed papers, selected from the papers presented at the conference 
following a refereeing procedure of both the talks and the final papers. We seriously 
considered dividing the material into subject areas, but in the end decided that this 
would be arbitrary and difficult - since so many papers addressed more than one 
key area or issue. 
We cannot conclude without mentioning some social aspects of the conference. The 
reception in the atmospheric Old Library at LMH was accompanied by music from 
a fine woodwind duo, Margaret and Richard Thorne, who had first met one of the 
organisers during a sabbatical visit to Canberra, Australia! The conference dinner 
was memorable for preliminary drinks in the lovely setting of the Fellows Garden, 
excellent food, and an inspirational after-dinner speech by Professor John Taylor. 
Finally the participants found some time to investigate the local area, including a 
group excursion to Blenheim Palace. 
We must finish by giving further broad expressions of thanks to the many staff at 
Universities of Huddersfield and Brighton, US Air Force (EOARD), London Mathe- 
matical Society, and Lady Margaret Hall who helped make the conference possible. 
We also thank the publishers for their co-operation and support in the publication 
of the proceedings. Finally we must thank all the authors who contributed papers 
without whom this volume could not have existed. 
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N-TUPLE NEURAL NETWORKS 

N. M. Allinson and A. R. Kolcz 
Department of Electrical Engineering and Electronics, UMIST, Manchester, UK. 

The N-Tuple Neural Network (NTNN) is a fast, efficient memory-based neural network capable 

of performing non-linear function approximation and pattern classification. The random nature 

of the jV-tuple sampling of the input vectors makes precise analysis difficult. Here, the NTNN 

is considered within a unifying framework of the General Memory Neural Network (GMNN) — 

a family of networks which include such important types as radial basis function networks. By 

discussing the NTNN within such a framework, a clearer understanding of its operation and 

efficient application can be gained. The nature of the intrinsic tuple distances, and the resultant 

kernel, is also discussed, together with techniques for handling non-binary input patterns. An 

example of a tuple-based network, which is a simple extension of the conventional NTNN, is shown 

to yield the best estimate of the underlying regression function, E(Y|x), for a finite training set. 

Finally, the pattern classification capabilities of the NTNN are considered. 

1    Introduction 
The origins of the TV-tuple neural network date from 1959, when Bledsoe and Brown- 
ing [1] proposed a pattern classification system that employed random sampling of a 
binary retina by taking TV-bit long ordered samples (i.e., TV-tuples) from the retina. 
These samples form the addresses to a number of memory nodes — with each bit 
in the sample corresponds to an individual address line. The TV-tuple sampling 
is sensitive to correlations occurring between different regions for a given class of 
input patterns. Certain patterns will yield regions of the retina where the prob- 
ability of a particular state of a selected TV-tuple will be very high for a pattern 
class (e.g., predominately 'white' or 'black' if we are considering binary images of 
textual characters). If a set of exemplar patterns is presented to the retina, each of 
the TV-tuple samples can be thought of as estimating the probability of occurrence 
of its individual states for each class. A cellular neural network interpretation of TV- 
tuple sampling was provided by Aleksander [2]; and as we attempt to demonstrate 
in this paper its architecture conforms to what we term as the General Memory 
Neural Network (GMNN). Though the TV-tuple neural network is more commonly 
thought of as a supervised pattern classifier, we will consider first the general prob- 
lem of approximating a function, /, which exists in a 79-dimensional real space, 
TR?. This function is assumed to be smooth and continuous and that we possess a 
finite number of sample pairs {(x;, y,-) : i — 1, 2 ... ,T}. We will further assume that 
this training data is subject to a noise component, that is yi = /(x,) + e, where 
e is a random error term with zero mean. A variant of the NTNN for function 
approximation was first proposed by Tattersall et al [3] and termed the Single- 
Layer- Lookup-Perceptron (SLLUP). The essential elements of the SLLUP are the 
same as the basic NTNN except that the nodal memories contain numeric weights. 
A further extension of the basic NTNN, originally developed by Bledsoe and Bisson 
[4], records the relative frequencies at which the various nodal memories are ad- 
dressed during training. The network introduced in Section 4 combines aspects of 
these two networks and follows directly from the consolidated approach presented 
in Section 2. 
We discuss, in Section 3, some details of the NTNN with particular reference to its 
mapping between sampled patterns on the retina and the TV-tuple distance metric, 
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and the transformation of non-binary element vectors onto the binary retina. The 
form of the first mapping, which is an approximately exponential function, is the 
kernel function of the NTNN — though due to the random nature of the sampling, 
this must be considered in a statistical sense. Finally, a brief note is given on 
a Bayesian approximation that indicate how these networks can be employed as 
pattern classifiers. 

2    The General Memory Neural Network 
Examples of GMNN include Radial Basis Function (RBF) [5] networks and the 
General Regression Neural Network (GRNN) [6]. These networks can provide pow- 
erful approximation capabilities and have been subject to rigorous analysis. A fur- 
ther class of networks, of which the NTNN is one, have not been treated to such 
detailed examination. However, these networks (together with others such as the 
CM AC [7] and the Multi-Resolution Network [8]) are computationally very efficient 
and better suited to hardware implementation. The essential architectural compo- 
nents of GMNNs are a layer of memory nodes, arranged into a number of blocks, 
and an addressing element that selects the set of locations participating in the 
computation of the output response. An extended version of this section is given in 
[9]. 

2.1     Canonical Form of the General Memory Neural Network 
The GMNN can be defined in terms of the following elements: 

■ A set of K memory nodes, each possessing a finite number of \Ak\ addressable 
locations. 

■ An address generator which assigns an address vector 

A(x) = [A1(x),42(x),...,AK(x)] 

to each input point x. The address generated for the kth memory node is 
denoted by Ak{x.). 

■ The network's output, g, is obtained by combining the contents of selected 
memory locations, that is 

[mi(^iW), m2(^2(x)),..., mk(Ak(x))} -► IR, (1) 

where mfc(j4j,(x)) is the content of the memory location selected by the kth. 
memory node by the address generated by x for that node (this will be iden- 
tified as simply m,t(x)). No specific format is imposed on the nature of the 
memories other than that the format is uniform for all K nodes. 

■ A learning procedure exists which permits the network to adjust the nodal 
memory contents, in response to the training set, so that some error criterion, 
7r(/, g), is minimised. 

Each node of the network performs a simple vector quantization of the input space 
into \Ak\ cells. For each node, the address generating element can be split into 
an index generator and an address decoder. The index generator, Ik, selects a cell 
for every x g 0 and assigns it a unique index value, /fc(x) £ {1,2,..., |^4j,|}; 
hence the index generator identifies the quantization cell to which the input points 
belongs. The address decoder uses this generated index value to specify the physical 
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memory address which then selects the relevant node k. Hence, Ak(x) = ^(/^(x)). 
Therefore, a cell, Rf, can be defined as the set of all input points which result in 
the selection of an address corresponding to the ith index of the fcth node. 

Ä? = {x 6 JJ : /t(x) = »} (2) 

Each of the cells is closed and bounded as the input space is compact in IR . The 
selection of a cell is given by the following operator or activation function 

*w=(«.)-o-{;   ££E:'=1 ■*'     <»> 
The quantization of Q performed by the individual nodes is combined, through the 
intersection of the K cells being superimposed, to yield a global quantizer. The 
number of cells \A\ is given by the number of all such distinct intersections. 

I^il \M\       \Ah\   K 

\A\ = £ £ • • • £ n«x e ß: 7*« = *'*> *0) (4) 
*1 =1 1*2 = 1 Jfc=lfc = l 

The upper bound being given by |j4|max = ELizi 1-4* I- The address generation 
element of the network is distributed across the nodes, so that the general structure 
of Figure la emerges. Alternatively, the address generation can be considered at 
the global level (Figure lb). These two variants are equivalent. 
The quantization of the input space by the network produces values that are con- 
stant over each cell (We are ignoring, for the present, external kernel functions). 
The value of / assigned to the ith cell is normally expressed as the average value 
of / over the cell. 

fRidj(u)fx(u)du 

JRJx(u)du 

where df is given by the squared error function. In most supervised learning schemes, 
this representation of f{Ri) is estimated inherently through the minimisation of an 
error function. 
For K — 1, the GMNN could be simply replaced to a VQ followed by a look-up 
table. There would need to be at least one input point per quantization cell. The 
granularity of the quantization needs to be sufficient to meet the degree of approx- 
imation performance appropriate for the required task. When there are multiple 
nodes (K > 1), the quantization at the node level can be much coarser which, in 
turn, increases the probability of input points lying inside a cell. The fine granu- 
larity being achieved through the superposition of nodal quantizers. Learning and 
generalisation are only possible through the use of multiple nodes. Points that are 
close to each other in the ß space should share many addresses, and vice versa. 

2.2    GMNN Distance Metrics 
The address proximity function, which quantifies the proximity of points in fl and 
so the number of generated identical nodal addresses, is given by 

K K 

K:Q
2-+{0,l,...,/O    K(x,y) = ^(^(x) = ^(y)) = ^(7fc(x) = 7i(y))   (6) 

h=l k=l 
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4WJ 

M*) 

v.w r 

^« i 

Input vector 

<*,, XJ,   %) 

I I     Co-ordinate transformation      I 

■tuple sampling 

tf Address lines 

Figure 1 (a) GMNN — address gener- 
ation considered at the nodal level, (b) 
GMNN — address generation considered 
at the global level. These two variants are 
identical in terms of overall functionality. 

Figure    2    General   structure   of   an 
NTNN. 

The address distance function, defined as the number of different generated nodal 
addresses, is given by 

K K 

P:tf^{o,i,...,K} p(x,y) = £(^(x)7^(y)) = £(Mx)^(y)) (7) 
fc=i it=i 

The binary nodal incidence function, which returns '1' if two inputs share a common 
address at a given network node and '0' otherwise, is defined as 

1    &    4(x) = /i(y) 
0    «.    Jt(x)#It(y) 

From these definitions, several properties directly follow. 

V(x, yefi)    p(x, x) = 0 p(x, y) = p(y, x) 
K(X, X) = K K(X, y) = /c(y, x) 
K(X, y) = K - p(x, y) 

K 

^Mi(x,y) = «(x,y) 

Mt(x,y) = (/t(x) = /t(y)) (8) 

(9) 

(10) 
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2.3    GMNN Error-Based Training 
If the address generation elements of the GMNN have been established (based on 
some a priori knowledge about the function to be approximated), then the only 
element which is modifiable through training is the contents of the nodal memory 
locations (e.g., the weights). If these locations contain real-valued numbers and the 
output of the network is formed by summing these numbers, then the response 
of the GMNN is linear in terms of this weight space. Learning methods based on 
the minimisation of the square error function are guaranteed to converge under 
these general circumstances. In the following analysis, we will therefore assume an 
iterative LMS learning schedule. For a finite training set of T paired samples, the 
error produced by the network for the j/th presentation of the ith training sample 
is given by 

K 

!/*-5>t(x'") (11) 
ifc=i 

where Wfc(x') is the value of the weight selected by x' at the fcth node. The par- 
ticipating weights are modified by a value, AJ, proportional to this error so as to 
reduce the error. 

wktf) i- tüt(x') + A} : k = 1,2,..., K (12) 

Initially, all weight values are set to zero. As Wk(x') is shared by all points within 
the neighbourhood Nk(x

l), this weight updating can affect the network response 
for points from outside the training set. That is within an input space region given 
by 

wk(x) <-wk{x) + A) • Mk(x,tf) (13) 

The output of the network after the training is complete, for an arbitrary x£fi, 
will depend on all training samples lying within the neighbourhood of x. 

g(x) = £>*(x) = EE (M*(x, x'-) f;Aj I (14) 
*=1 *=1>=1  \ j=l      / 

Rearranging this expression and using the identity (10), yields 
T    Ti K T T; 

ff(x) = EEAl EM*(x-x<) = EA' • <*>x')>where EAl = Ai-  (15) 
« = 1 j = l Jfc = l ! = 1 J = l 

We can compare this result with the response of a trained RBF network. 
T 

fl(x) = £y.K(x,x') (16) 
t=i 

For the normalised RBF network, the response is given by 
T 

^V-K(X,X*') 

ff(x) = ^  (17) 

EK(X>X*) 
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and for the GRNN (where the training set response values replace the weight val- 
ues). 

T 

]r</ -«(x.x*) 
<7(x) = ^  (18) 

^/c(x,x*) 
1=1 

Though there are obvious similarities, we can further extend the functionality of the 
GMNN by incorporating into each nodal memory an integer counter. This nodal 
counter is incremented whenever the node is addressed, that is Cfc(x') +— ct(x!) + 1 
(Initially, all counter values are set to zero). Now the response of the GMNN is 
given by 

T 

5>'-K(X,X«') 

fl(x) = ^  (19) 

Yl K(X' x<) 
i=i 

The trained GMNN is equivalent to a set of T units, each centred at one of the train- 
ing samples, x*, and possessing height A* and kernel weighting function «(■, x4). To 
complete the equivalence of the GMNN and the GRNN, K must satisfy the general 
conditions imposed on kernel functions [10]. 

2.4    Introduction of External Kernels 
The network output is given by the sum of weights corresponding to the selected 
locations, but the output remains constant over each quantization cell — regardless 
of the relative position of the input point inside a cell. The network mapping thus 
becomes discontinuous at the cell boundaries. A solution would be to emphasise 
weights that correspond to quantization cells that are closer to the current excita- 
tion, x, than others. This distance can be defined in terms of the distance between 
x and the centroid of Rf (where i — Zfc(x)). 

d(x,Ä?) = d(x,cf) (20) 
A smooth, continuous and monotonically decreasing kernel function is then intro- 
duced to weight the contributions of the respective nodes to the values of d(x, Rf(x)), 
where Ä*(x) is the cell selected by x for the fcth node. The network output now 
becomes 

K   \Ak\ 

»to = EE»? •^Mx.Äftx))) -Mk{clx) (21) 
it=i i=i 

A set of K ■ \Ak\ kernel or basis functions can be defined, with centres given by 
the centroid set {cf} and where each kernel has its support truncated to its corre- 
sponding quantization region. The network mapping can be expressed as 

K \Ak\ 

ffW = £X>.* "P.*M (22) 
fc=i >'=i 
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or in its normalised form as 
K \Ak\ 

Jb=l « = 1 

<Pi (x) is the kernel function associated with the ith quantization cell of the kth 
node and truncated to zero at its cell boundaries. Gaussian kernels provide an 
approximation to this last condition, though B-spline kernels [11] can lead to the 
total absence of cell discontinuities. The introduction of external weighting kernels 
is the final step in the GMNN architecture. 

3    The TV-Tuple Neural Network 
The general form of the NTNN was described in the introduction and is shown in 
Figure 2. The following two sections consider the mapping functions inherent to 
this network. Namely: 

■ Conversion of the input vector into the binary format needed for the retina 

■ Sampling the retina by taking TV bit values at a time to the address of one of 
the K memory nodes. 

There is some choice in what form the first of these mappings may take depending 
on the application, but the retinal TV-tuple sampling is common to all NTNNs. 
Figure 3a indicates how the threshold decision planes of the individual elements 
of a tuple delineate the input space into discrete regions and why the Hamming 
distance between tuple values is the obvious choice for a distance metric. Further 
details of the TV-tuple distance metric and input encoding are given in [12, 13]. 

3.1    Retinal Sampling 
The relationship between the number of different addresses generated for two ar- 
bitrary inputs, x and y, and the Hamming distance i7(x, y) (i.e., the number of 
bits for which x and y differ) is important as it reveals the nature of the distance 
metric necessary when a NTNN is used for pattern classification and the form of 
the kernel for the approximation-NTNN. This relationship can only be expressed 
in terms of an expectation due the random nature of the sampling. For sampling 

without repetitions, the expected value of />NTNN(
X

> ^ = ^NTNN(^) *
S
 given by 

^(PNTNNW) = ä'(1-(1-^)  j (24) 
T, this can be simplified to 

£(PNTNN (
H))« K (i - exP (- f) ) (25) 

For sampling with repetitions, the expected value is 

£(PNTNN(#)) = K (i - exP (N ■ (h - Y + Y - ■ ■ ■)))        (26) 
where h is the normalised Hamming distance (= H/R). Again, this can be simplified 
for small values of h, to yield 

E(Pmm(H))*K(l-exp(-N-h)) (27) 

For small values of H, this can be simplified to 
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address line 1 —   address line 2 

U = 2 *2 

b\b2 = 00 
bxbt =10 b1b2=U 

A>8 
B<C   010 v        no 
A<C X 

(c) 

Figure 3 (a) The delineation of input space by the hard decision planes of each 
tuple element's threshold. Each region is marked by its specific binary state of 
the 3-tuple, t\. (b) The thermometer coding inherent in JV-tuple sampling. The 
variable, x\, is uniformly quantized into six discrete regions (L = 6). The indicated 
2-tuple partitions this interval into three unequal quantization regions, with the 
binary state of the 2-tuple indicated, (c) The delineation of the 3-dimensional input 
space into tetrahedral regions through the use of a ranking code. The binary space 
representation of the input space is also shown. 

There is little difference in the general form of these two sampling methods, though 
there may be crucial differences in performance for specific tasks. The distance 
function depends exponentially on the ratio of the Hamming distance, H, between 
patterns to the retinal size, R. The rate of decrease is proportional to the tuple 

3.2    Input Encoding 
There is a direct and monotonic dependence of PNTNN 

on ^e Hamming distance in 
the binary space of the network's retina. For binary patterns, the Af-tuple sampling 
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provides the desired mapping between the input and output addresses. For non- 
binary input patterns, the situation is not so clear. One obvious solution is to use 
a thermometer or bar-chart code, where one bit is associated to every level of an 
input integer. This creates a linear array of 2n bits for an n-bit long integer. This 
can produce very large retinas if the input dimensionality and quantization level are 
large. The use of the natural binary code or Gray code is not feasible. Though these 
are compact codes, there is no monotonic relationship between input and pattern 
distances. The concatenation of several Gray codes [3] offers an improvement over 
a limited region and enhances the dynamic range over the binary and straight Gray 
code. The exponential dependence of the ppjTNN on tne Hamming distance means 
that strict proportionality is not required but monotonicity is required within an 
active region of Hamming distances. 
The potential of CM AC encoding, and further aspects of input coding methods, are 
discussed in Kolcz and Allinson [14]. Improvements in the input mapping, which in 
turn produce a more isotropic kernel, are given in Kolcz and Allinson [15], where 
rotation and hyper-sphere codings are described. Two further techniques will be 
briefly introduced here in order to indicate the wide range of possible sampling and 
coding schemes. Figure 3b shows one input variable, x\, which is uniformly quan- 
tized to six levels and this is sampled by the indicated 2-tuple. The corresponding 
states of the resultant tuple for the three resulting sub-intervals indicate that ther- 
mometer encoding can be inherent in tuple sampling. This concept can be extended 
to the multivariate case. If the input space, Q,, is a D-dimensional hypercube and 
each memory node distributes its N address lines among these dimensions, then 
the space is effectively quantized into Yld=i(^d + 1) hyper-rectangular cells. This 
assumes random sampling, such that there are Nj address lines per input dimen- 
sions (where Nj = N/D). The placement of tuples can be very flexible (i.e., uniform 
quantization is not essential) and the sampling process can take into account the 
density of training points within the input space. 
In rank-order coding, the non-binary ./V-tuple is transformed to a tuple of ranked 
values (e.g., (20, 63, 40, 84, 122, 38) becomes, in ascending order, the ranked tuple 
(0, 3, 2, 4, 5, 1)). Each possible ordering is assigned a unique consecutive ranking 
number, which is converted to binary format and then used as the retinal input. 
Rank-order coding produces an equal significance code. The use of these relation- 
ships is equivalent to delineating the input space into hyper-tetrahedrons rather 
than the usual hyper-rectangles (Figure 3c). 

4    N-tuple Regression Network 
The framework for GMNN proposed earlier together with the derivation the tuple 
distance metric are employed here in the development of a modified NTNN which 
operates as a non-parametric regression estimator. The formal derivation of this 
network and that the iV-tuple kernel is a valid one for estimating the underlying 
probability function is given in Kolcz and Allinson [16]. The purpose of this section 
is to show the relative simplicity of this network compared with other implementa- 
tions. 
During the training phase, the network is presented with T data pairs, (x',«/'), 
where x1 is the D-dimensional input vector and y' is the corresponding scalar 
output of the system under consideration. The input vector is represented by a 
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unique selection of the K tuple addresses with their associated weight and counter 
values. 

r  {<i(x),/2(x),...,<x(x)} 
X->S   {WI(X),W2(X),...,Wü:(X)} (28) 

{    {a1(x),a2(x),...,aif(x)} 

During training, each addressed tuple location is updated according to 

Wjt(x!) <- Wfc(x') + ?/' and c^x1') <- a^x*') + 1 (29) 

for i = 1,2,..., T and fc = 1,2,..., K 

Initially all weight and counter values are set to zero. After training, the network 
output, 2/(x), is obtained from 

K 

it=i 
y(x) = ^ (30) 

J2akW 
k=\ 

An additional condition is where all addressed locations are zero. In this case, the 
output is set to zero. 

K 

^ait(x)=:0-+y(x) = 0 (31) 
*=i 

Figure 4 shows the modifications needed to a conventional NTNN to form the TV- 

/ 

k(x) 
i 

\ 
\ 

\ ,  
1 
i 

\ 
w\ 

/ 
/ 

Network 
output 

Figure 4    Modifications to the nodes and output elements of the NTNN to yield 
the TV-tuple regression network. 

tuple regression network. By considering the tuple distances between inputs, as 
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defined in terms of the number of different tuple addresses generated, then (30) can 
be extended to 

f>M   fy.(i-««£!!2) 
«*> = ¥— = i5V~——T7- <32) 

Jb=l «=1   v ' 

This suggests that the network output is an approximate solution of the gener- 
alised regression function, E(Y\x), provided that the bracketed term in (32) is a 
valid kernel function. This function is continuous, symmetrical, non-negative and 
possesses finite support. These are all necessary conditions. A close approximation 
(based on the exponential approximation of tuple distances) is also representable 
as a product of univariate kernel functions. Taken together these provide sufficient 
conditions for a valid kernel function [17]. A wide ranging set of experiments on 
chaotic time-series prediction and non-linear system modelling has been conducted 
[16], which confirm the successful operation of this network. A major advantage of 
the NTNN implementation over other approaches is its fast, and fixed, speed of 
operation. Each recall operation involves addressing a fixed number of locations. 
There is no need for preprocessing large data sets, through data clustering, as is 
often the case for RBF networks [18]. 

5    Pattern Classification 
So far we have restricted our considerations to the approximation properties of the 
NTNN, but the other major application — namely, pattern classification — can 
be discussed within this common framework. The training phase of a supervised 
network provides estimates of the conditional probabilities of individual pattern 
classes. The class membership probabilities can be formulated through the Bayes 
relationship, i.e., 

P(*ec, = «> (33, 

where c is the class label for a particular class {c = 1,2, ...,C}. The modified 
NTNN discussed in Section 4 can be reformulated in terms of this classification. 
The network through training approximates C indicator functions, which denote 
membership to an individual class. 

Jc(x) = l I    LLLL (34) 0 otherwise 

Modifying (32), the indicator functions can be approximated, after training, by 
T K K 

j>< c c)(i -P(x,X')/üO   5>s      Y.
p^\°) 

Ie(x) = ^ = k-f— = P(c)k-^         (35) 

! = 1 jfc = l fc = l 

This relationship gives the ratio of the cumulative summation of all training points 
belonging to a class c, which have an JV-tuple distance at 0,1,..., (K — 1) from 
x to a similar cumulative summation for all training points. The decision surfaces 
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present in the /^-dimensional weight space are described by X^itLi wk = const, and 

the winning class is given by cwinner = maxc=i|2,...,c £f=i w\. 

6    Conclusions 
The unifying approach proposed for a wide class of memory-based neural networks 
means that practical, but poorly understood, networks (such as the NTNN) can 
be considered in direct comparison with networks (such as RBF networks) that 
possess a much firmer theoretical foundation. The random sampling inherent in 
the TV-tuple approach makes detailed analysis difficult so this link is all the more 
important. The pragmatic advantages of NTNNs has been demonstrated in the 
regression network described above, where large data-sets can be accommodated 
with fixed computational overheads. The possible range of input sampling and 
encoding strategies has been illustrated, but by no means exhaustively. There is 
still a need to seek other strategies that will provide optimum kernel functions for 
specified recognition or approximation tasks. The power and flexibility of Bledsoe 
and Browning's original concept has not, as yet, been fully exploited. 
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The set of all the neural networks of a fixed architecture forms a geometrical manifold where 

the modifable connection weights play the role of coordinates. It is important to study all such 

networks as a whole rather than the behavior of each network in order to understand the capability 

of information processing of neural networks. What is the natural geometry to be introduced in 

the manifold of neural networks? Information geometry gives an answer, giving the Riemannian 

metric and a dual pair of affine connections. An overview is given to information geometry of 

neural networks. 

1    Introduction to Neural Manifolds 
Let us consider a neural network of fixed architecture specified by parameters w = 
(wi, ■ ■ ■, wp) which represent the connection weights and thresholds of the network. 
The parameters are usually modifiable by learning. The set N of all such networks 
is considered a p-dimensional neural manifold, where w is a coordinate system in 
N. Because it includes all the possible networks belonging to that architecture, the 
total capabilities of the networks are made clear by studying the manifold N itself. 
To be specific, let N be the set of multilayer feedforward networks each of which 
receives an input x and emits an output z. The input-output relation is described 
as 

z = f(x;w) 

where the total output z depends on w which describes all the connection weights 
and thresholds of the hidden and output neurons. Let us consider the space S of 
all the square integrable functions of x 

S = {*(*)} 
and assume for the moment that f(x; w) is square integrable. The set S is infinite- 
dimensional 1/2 space, and the neural manifold N is a part of it, that is, a p- 
dimensional subspace embedded in S. This shows that not all the functions are 
realizable by neural networks. 
Given a function k(x), we would like to find a neural network whose behavior 
f(x; w) approximates k(x) as well as possible. The best approximation is given by 
projecting k(x) to N in the entire space S. The approximation power depends on 
the shape of N in S. This shows that geometrical considerations are important. 
When the behavior of a network is stochastic, it is given by the conditional proba- 
bility p(z|x; w) of z conditioned on input x, where w is the network parameters. A 
typical example is a network composed of binary stochatic neurons: The probability 
z — 1 of such a stochastic neuron is given by 

Prob{* = 1; w} =        vx    L 1 
1 + expju; • x) 

where z =■ 0 or 1. Another typical case is a noise-contaminated network whose 
output z is written as 

z = f(x;w) + n, (2) 

15 
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where n is a random noise independent of w. If n is subject to the normal distri- 
bution with mean 0 and covariance CT

2
I, I being the identity matrix, 

n~iV(0,(727), 

the conditional probability is given by 

p{z\x;w) = const exp j-Ii^g^ÜJ . (3) 

When input signals x are produced independently from a distribution q(x), the 
joint distribution of (x, z) is given by 

p(x,z;w) = q(x)p{z\x\ w). (4) 

Let S be the set of all the conditional probability distributions (or joint distri- 
butions). Let q(z\x) be an arbitrary probability distribution in S which is to be 
approximated by a stochastic neural network of the behavior p(z|x; w). The neural 
manifold N consists of all the conditional probability distributions p(z\x;w) (or 
the joint probability distributions p(x, z; w)) and is a p-dimensional submanifold of 
S. A fundamental question arises : What is the natural geometry of S and JV? How 
should the distance between two distributions be measured? What is the geodesic 
connecting two distributions? It is important to have a definite answer to these 
problems not only for studying stochastic networks but also for deterministic net- 
works which are not free of random noises and whose stochastic interpretation is 
sometimes very useful. Information geometry ([3], [17]) answers all of these prob- 
lems. 

2    A Short Review of Information Geometry 
Let us consider probability distributions p(y,£) of random variable y, where £ = 
(£i> ■•■,£«) is the parameters to specify a distribution. When y is a scalar and 
normally distributed, we have 

where £ = (p, a) is the parameters to specify it. When y is discrete, taking values 
on {0,1, • • •, n}, we have 

Prob{2/,£} = J2*MV) + ( 1 - I> ) 6°M 

where 6i(y) = 1 when y — i and is equal to 0 otherwise and & = Prob{2/ = «'}. 
Let S be the set of such distributions 

5 = {p(y,0} 
specified by £. Then, S can be regarded as an n-dimensional manifold, where £ is 
a coordinate system. If we can introduce a distance measure between two nearby 
points specified by $ and £ + d£ by the quadratic form 

KI2 = I>;(0<^, (5) 

the manifold S is said to be Riemannian. The quantity {<jr»j(£)} is the Rieman- 
nian metric tensor. Another important concept is the affine connection by which 
a geodesic line (an extention of the concept of the straight line in the Euclidean 
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geometry) is defined. The affine connection is defined by the covariant derivative, 
and is represented by the three-index parameters Tijk(£) formally defined by 

ry* = (Vejei(efc) (6) 
where e, = d/d£i is the natural basis vector field, (•, •) is the inner product and V 
is the covariant derivative. The metric tensor is written as 

(e,-,ej) =flfy. (7) 

In the Riemannian geometry, the Levi-Civita connection 
.(o)    U d     .  d        d 

Tij* = 2{Wi9jk + dt;9ik~drk
9ij) (8) 

is used usually. This is the only torsion-free metric connection satisfying 

X(Y, Z) = (VXY, Z) + (Y, VXZ), (9) 

for vector fieds, X, Y and Z. More intuitively, a geodesic is the minimum distance 
curve connecting two points under the Levi-Civita connection. 
Information geometry ([3], [17]) defines a new pair of affine connections given, 
respectively, by 

(10) 

(11) 

1 ijk (£)    —    ^ijk      2    J*' 

rjff«)  =  rjg + jT«*, 
where Tijk(£) is the tensor defined by 

Tijk — E 
■ d .     d        d      " 
"äT-logp^-logp—logp 
ßv        oij        d$k 

(12) 

They are called the e- and m-connection, respectively, and are dual in the sense of 

X(Y, Z) = (V^y, Z) + (Y, V^Z). (13) 

The duality of connections is a new concept given rise to by information geometry. 
When a manifold has a dually flat structure in the sense that the e- and m-Riemann- 
Christoffel curvature vanish (but the Levi-Civita connection has non-vanishing cur- 
vature in general), it has remarkable properties that are dual extensions of Euclidean 
properties. Exponential families of probability distributions are proved to be du- 
ally flat. Intuitively speaking, the set of all the probability distributions {p(y)} are 
dually flat, and any parameterized model S = {p(y, 0} IS a nat or curved subman- 
ifold embedded in it. Hence, it is important to study properties of the dually flat 
manifold. 
When S is dually flat, the divergence function 

ö«=O = /p(w.01og^^dw (14) 

is naturally and automatically introduced to S. This is an extension of the square 
of the Riemannian distance, because it satisfies 

The divergence satisfies D(£,£') > 0 with equality when and only when £ = £'. 
But it is not symmetric in general. 
We have the generalized Pythagorus theorem. 
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Theorem 1 Let£1, £2 and £3 be three distributions in a dually flat manifold. Then, 
when the m-geodesic connecting £x and £2 is orthogonal at £2 to the e-geodesic 
connecting £2 and $3, 

D(ix-i2) + D{i2:i3) = D{il:iz). (16) 

The projection theorem is a consequence of this theorem. 

Theorem 2 Let M be a submanifold embedded in a dually flat manifold S. Let P 
be a point in S, and let Qp is the point in M that minimizes D(P : Q), Q e M, 
that is, the point in M that gives the best approximation to P. Then, the Qp is the 
m-geodesic projection of Q to M. 

These properties are applied to various fields of information sciences such as statis- 
tics ([3], [11], [16], information theory ([5],[9], control systems theory ([4],[19]), 
dynamical systems ([14],[18]) etc. It is also useful for neural networks ([6], [10], [7]). 
We will show how it is applied to neural networks. 

3    Manifold of Feedforward Networks and EM Algorithm 
In the begining, we show a very simple case of the manifold M of simple stochastic 
perceptrons or single stochastic neurons. It receives input x and emits a binary 
output z stochastically, based on the weighted sum wx of input x. The conditional 
probability of z is written as 

ezWX 
P(z\x;w)= i + eWX. (17) 

The joint distribution is given by 

p(x,z;w) = q(x)p(z\x;w). (18) 

Here, we assume that q(x) is the normal distribution JV(0,1) with mean 0 and 
covariance metrix 7, the identity matrix. 
Let M be the set of all the stochastic perceptrons. Since a perceptron is specified 
by a vector w, M is, regarded as a manifold homeomorphic to Rn where n is the 
dimensions of x and w. Here, w is a coordinate system of M. We introduce a 
natural Riemannian geometric structure to M. Then, it is possible to define the 
distance between two perceptrons, the volume of M itself, and so on. This is done 
through the Fisher information, since each point (perceptron) in M is regarded as 
a probability distribution (18). Let G(w) = {gij(w)} be a matrix representing the 
Riemannian metric tensor at point w. We define the Riemannian metric by the 
Fisher information matrix, 

■\ogp(z,x;w)-—logp(z,a:;w;)   , 9ij(w) - E (19) 
dwi '   '    ' dwj 

where E denotes the expectation over (z,x) with respect to the distribution 
p(z, x; w). In order to calculate the metric G explicitly, let ew be the unit column 
vector in the direction of w in the Euclidean space R", 

w 

\w\ 

where |io| is the Euclidean norm, and ew its transpose. We then have the following 
theorem. 
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Theorem 3 The Fisher information metric is given by 
g(w) = ci(w)I + {c2(w) - ci(iu)}e«,e£,, (20) 

where w = \w\ (Euclidean norm) and ci(w) and C2(w) are given by 

Cl(w)   =    -±= Jf (we){l -f(ws)}expj-^2} de, (21) 

c2(w)    =    -l=y*/(«;£){l-/(W£)}£2exp|-i£
2}&. (22) 

The theorem shows that M is a Riemannaian manifold with Riemannian metric 
G(w) which has spherical symmetry. It is remarked that the skewness tensor T = 
(Ujk), 

^ = *[il0SP^l0gPil0SP 
vanishes under the distribution q(x) ~ N(0,1). Hence, M is a self-dual Riemannian 
manifold and no dual affine connections appear in this special case. 
We now show some applications of the Riemannian structure. 
The volume Vn of the perceptron manifold M is measured by 

Vn = J x/\GM\dw (23) 

where |G(w>)| is the determinant of G = (gtj) which represents the volume density 
by the Riemanian metric. Let us consider the problem of estimating w from exam- 
ples. iProm the Bayesian viewpoint, we consider that w is chosen randomly subject 
to a prior distribution ppr(u>). A natural choice of ppT(w) is the Jeffrey prior or 
non-informative prior given by 

Ppr(^) = +-y/\GM\. (24) 
»n 

When one studies learning curve and overtraining ([8]), it is important to take the 
effect of ppx(w) into account. The Jeffrey prior is calculated as follows. 

Theorem 4  The Jeffrey prior and the volume of the manifold are given by 

^/\G(w)\ = ^ v^Hi^RP, (25) 
v n 

Vn =  f ^c2(w){c1(w)}"-1anwn-1dw, (26) 

respectively, where an is the volume of the unit n-sphere. 

The gradient descent is a well known learning method, which was proposed by 
Widrow for the analog linear perceptron and extended to non-linear multilayer 
networks with hidden units ([2],[20] and others). Let l(x, z; w) be the loss function 
when the perceptron with weight w processes an input-output pair (x, z). In many 
cases, the squared error 

l(x,z;w)- -\z-f{wx)\2 

is used. When input-output examples (xt,zt), t = 1,2, • ■ •, are given, we train the 
perceptron by the gradient-descent method: 

dl(xt,zt;wt) ,„. 
wt+1 =wt- c —  (27) 



20 CHAPTER 2 

where wt is the current value of the weight and it is modified to give iut+1 by using 
the current input-output (xt,z%). It was shown that the learning constant c can be 
replaced by any positive-definite matrix cK ([2]). The natural choice of this matrix 
is the inverse of the Fisher information metric, 

wt+i = wt- cG~\wt)^- (28) 
ow K    ' 

from the geometrical point of view, since this is the invariant gradient under general 
coordinate transformations. However, it is in general not easy to calculate G_1 so 
that this excellent schema is not usually used (see [10]). We can calculate G~1(w) 
explicitly in the perceptron case. 

Theorem 5  The inverse of the Fisher information metric is 

G-\w) = -1^/ + f-J- - -J-) ewel. (29) 
ci(w)        \c2(w)      ci(w)J w K    ' 

This leads to a very simple form of learning 

wt+i     =    wt-c{zt- f(wt.Xt)}f'(WfXt) 

1        1 ( l       1 \, zXt - -j     —. r -. r     (Wt ■ Xt)wt. [Cl(Wtr wj\c2(wt) cw/^-^-j'    (30) 

This is much more efficient compared to the prevailing simple gradient method. 
Any acceleration methods can be incorporated with this. 
The geometry of the manifold N of multilayer feedforward neural networks can be 
constructed in principle in the same way. However, it is not so easy to calculate 

the explicit forms of the metric gij(w) and the connections T^l and T^. The 
geometrical structure becomes very complicated because of hidden units. 
Neural network researchers sometimes use statistical methods such as the EM 
algorithm [15]. Information geometry is useful for elucidating such a method [7]. 
Let (x, y, z) be the random variables representing the input, outputs of hidden units 
and the final output. Let 5 be the manifold of all the joint probability distributions 
<l(x, V,z)- The manifold N of the probability distributions p(x, y, z; w) realized by 
the network specified by w forms a submanifold in S. 
We want to realize a stochastic input-output relation q(z\x) or q(x,z) and we do 
not care about the values y of hidden units so far as the input-output relation is 
well approximated. All the probability distributions whose marginal distributions 
are the same, that is, those satisfying 

Y,q(*,y,z) = q*(x,z) (31) 
y 

form an m-flat submanifold D in S, 

Dq. = {q(x, y,z)\J2 q(x, y, z) = q*(x, z)}. 
y 

This is called the data submanifold. The problem of approximation is formulated as 
follows : Given q*(x, z) obtain the neural network w* that minimizes D[q(x, y, z) : 
p(x,y,z;w)], that is 

min        D[q:p]. (32) 

Hence, the problem is minimization of the divergence between two submanifolds TV 
and Dq-. 
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This is iteratively solved as follows: 

Step 1 : Given p* € TV, obtain qi € Dg- that minimizes D[q,pi]. 

Step 2 : Given q( 6 Dq-. obtain p,+i € TV that minimizes -D[g;,p]. 

The step 1 is solved by e-projecting p; to £>,.. This is equivalent to taking the 
conditional expectation of hidden variables with respect to p,-. The step 2 is the 
maximization of the likelihood and is given by m-projecting g,- to TV. Hence, the 
procedure is called the em-algorithm in geometry ([12], [13], [7], [10]) and the EM- 
algorithm in statistics. The algorithm was shown very effective in the model of 
mixture of expert nets ([15], and many others). Its geometry was studied by Amari 
[7]. Xu [21] extended the idea to be applicable to more general neural network 
learning problems. 

4    Manifold of Boltzmann Machines 
A Boltzmann machine is a recurrently connected neural network composed of 
binary stochastic neurons. We show in the beginning a simple Boltzmann ma- 
chine without hidden units and then study that with hidden units. The behav- 
ior of a Boltzmann machine is shown by the following stochastic dynamics : Let 
x(t) = {xx(t), ■■■, xn(t)) be the state of the network at time t, where X{ takes on 
0 and 1 representing the quiescent and excited states of the ith neuron. At time 
t + 1, choose one neuron at random. Let the ith neuron be chosen. Then, the state 
of the ith neuron changes stochastically by 

r,oMl,<<-M) = i} = Tf|i|_, (S3) 

where 
Ui = ^2 WijXj(t) - Wio, (34) 

i 
Wij being the connection weights of the ith and jth neurons and w,o being the 
biasing term of the ith neuron. All the other neurons are unchanged, Xj(t + 1) = 
xj(t). 
The x(t), t = 1, 2, • • •, is a Markov process, and its stationary distribution is explic- 
itly given by 

p(x, W) = exp | - ^2 wiJxixJ ~ *l>(w) | (35) 

when Wij = viji, wa = 0 hold, where x0 — 1. The set of all the Boltzmann machines 
forms an n(n + l)/2-dimensional manifold B, and W — {w0,-, Wij,i < j} is a coor- 
dinate system of the Boltzmann neural manifold. To each Boltzmann machine W 
corresponds a probability distribution (35) and vice versa. Therefore, B is identified 
with the set of all the probability distributions of form (35). 
Let S be the set of all the distributions over 2" states x, 

S = {q(x) \ q(x) > 0, £j(x) = l}. (36) 
x 

Then, B is an n(n + l)/2-dimensional submanifold embedded in the (2" - 1)- 
dimensional manifold S. We can show that B is a flat submanifold of 5, and that 
both S and B are dually flat, although they are curved from the Riemannian metric 
point of view [10]. 
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Given a distribution q(x), we train the Boltzmann machine by modifying wtj based 
on independent examples xj, x2 ■ ■ • from the distribution q, for the purpose of ob- 
taining W such that p(x, W) approximates q(x) as well as possible. The degree 
of approximation is measured by the divergence D[q(x) : p(x,W)]. The best ap- 
proximation is given by m-projecting q to B. We have an explicit solution since 
the manifolds are flat. The stochastic gradient learning was proposed by Ackley, 
Hinton and Sejnowski [1], 

Wt+i = Wt-r,—D[q;p\ (37) 

where the gradient term is not the expectatio form but is evaluated by random 
example xt. However, from the geometrical poit of view, it is more natural to use 

Ww = Wt-r,G-^D[q-p], (38) 

where G~l is the Fisher information matrix. In this case, the expectation of the 
trajectory Wt of learning is the e-geodesic of B (when the continuous time version is 
used), see [10]. It is shown that the convergence is much faster in this case, although 
calculations of G~l are sometimes not easy. 
When hidden units exist, we divide x into 

x = (xv,xH), (39) 

where xv represents the state of the visible part and xH represents that of the 
hidden part. The connection weights are also divided naturally into the three parts 
W = (Wv, WH, WVH). The probability distribution of the visible part is given by 

P(XV;W) = J2P(XV,XH;W). (40) 
x» 

Let Sv and Bv be the manifolds of all the distributions over xv and those realizable 
by Boltzmann machines in the form of (40). Then, Sv is flat but Bv is not. 
It is easier to treat the extended manifolds of SV>H and BV'H including hidden units. 
However, only a distribution q(xv) is specified from the outside in the learning 
process and its hidden part is not. Let us consider a submanifold 

D = {q(xV, xH)\ £ q{xV,xH) = q(xV)}. (41) 
XH 

The submanifold D is m-flat. Because we want to approximate q{xv) but we do 
not care about q(xH) nor the interaction of xv and xH, the problem reduces to 
minimizing 

D[q(x
v,xH)   : p(xv,xH;W)] 

over all W and q e D, or 

D[q : p] 

over all p e Bs<v and q e D. This is the minimization of the divergence between 
two submanifold D and BS'V. 

We can use the geometric em algorithm which is equivalent to the statistical EM 
algorithm in this case, too. Since D is m-flat and Bs'v is e-flat, the problem is 
relatively easy to solve (see [7]). 
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5    Conclusion 
We have shown the framework of the information-geometrical method of neural net- 
works. Information geometry has originated from the research on statistical mani- 
folds or families of probability distributions. It proposes a new geometrical notion 
of the duality of affine connections. It has successfully been applied to statistics, 
information theory, control systems theory and many others. Neural networks re- 
search is one of the promissing fields of applications of information geometry. Its 
research has just started with expectation that it opens new perspectives to neural 
networks 
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In the past decade, research in neurocomputing has been divided into two relatively well-defined 

tracks: one track dealing with cognition and the other with behavior. Cognition deals with orga- 

nizing, classifying and recognizing sensory stimuli. Behavior is more dynamic, involving sequences 

of actions and changing interactions with an external environment. The mathematical techniques 

that apply to these areas, at least from the point of neurocomputing, appear to have been quite 

separate as well. The purpose of this paper is to give an overview of some recent powerful math- 

ematical results in behavioral neurocomputing, specifically the concept of Q-learning due to C. 

Watkins, and some new extensions. Finally, we propose ways in which the mathematics of cogni- 

tion and the mathematics of behavior can move closer to build more unified systems of information 
processing and action. 

1    Introduction 
The study of artificial neural networks has burgeoned in the past decade. Two 
distinct lines of research have emerged: the cognitive and the behavioral. Cognitive 
research deals with the biological phenomenon of recognition, the mathematics of 
pattern analysis and statistics, and applications in automatic pattern recognition. 
Behavioral research deals with the biological phenomena of planning and action, the 
mathematics of time dependent processes, and applications in control and decision- 
making. 
To be mathematically precise, let us discuss simple formulations of each problem 
type. A cognitive problem typically involves so-called feature vectors, x g IR". These 
feature vectors are sensory stimuli or measurements and are presented to us in some 
random way - that is, we cannot predict with certainty which stimuli will occur 
next. These observations must be classified and the classification is accomplished 
by a function / : IR" —► IRm. The problem is to build an estimate of the true 
function, /, based on a sample set of the form S — {(xi,yi),i = 1,...,N} which 
are drawn according to a joint probability distribution on (x,y) g IR™+m, say 
n{x,y). Call the estimate g{x). Typically, f{x) is the conditional expected value 
of y: f(x) = J ydft(x, y)/ f dp(x, y). A number of distinct situations in cognitive 
neurocomputing arise depending on the type of information available for estimating 
/. (See one of the numerous excellent textbooks on neural computing and machine 
learning for more details.) 

■ SUPERVISED LEARNING - The sample data, S, is as above so that correct clas- 
sifications, apart from noise, are part of the data. Moreover, an error criterion 
is typically provided or constructed on the classifications: \g(x) — f(x)\ is some 
error metric. This situation is closest to traditional statistical regression and 
uses many classical statistical methods. 

■ UNSUPERVISED LEARNING - No corrrect or approximate classification values, 
y, are given. The problem is to organize the data into equivalence classes or 
clusters and then to label the classes. These labels serve to define / from above 
and the performance criterion is related to how accurately the equivalence 

24 



Cybenko, Gray & Moizumi: A Q-Learning Tutorial 25 

classes are formed. Unsupervised learning is closely related to clustering and 
uses techniques from that area. 

■ REINFORCEMENT LEARNING - As in unsupervised learning, no "correct" re- 
sponse is given but a reinforcement is available. A reinforcement can be thought 
of as an error when g(x) is the estimated response for feature vector x but the 
correct response / is not available. Reinforcement learning is thus between 
supervised and unsupervised learning: some performance feedback is provided 
but not in the form of the correct answer and the deviation of "the response 
from it. The difference between supervised and reinforcement learning has been 
characterized as the difference between learning from a teacher and learning 
from a critic. The teacher provides the correct response but the critic only 
states how bad the system's response was. Reinforcements are often referred 
to as "rewards" and "punishments" depending on their sizes and the context. 

Behavioral neurocomputing derives its problems from planning, decision-making 
and other applications in which actions over time are of fundamental interest. The 
mathematical framework, which will be formalized below, involves a system with 
states. Actions are available to move the system into another state, perhaps stochas- 
tically. There is an immediate cost associated with taking an action. An action at 
any given time may be optimal in the short run but may not be the best over 
the long run when future costs and actions are taken into account. Behavioral ap- 
plications are therefore most naturally cast as reinforcement learning problems. 
The goal of behavioral learning is to have a system infer, from empirical data, the 
state-action pairs which give the smallest average cost. 
There are a number of ways that such a behavioral system could be reduced to a 
cognitive problem. One involves building the following type of training set. Given 
some initial state, generate a sequence of actions randomly, stopping at some future 
time. Record the initial state, the action sequence and the ultimate cost of taking 
that action sequence from that initial state. From this data, build a classifier whose 
input feature vector is a state and whose output is the action sequence which has 
minimal cost over all sequences tried. This estimate of the minimal cost to solve 
the problem from an initial state is an estimate of the cost-to-go function. 
A related way to solve the problem involves estimating these cost-to-go values for 
each state-action pair. Notice that in a stochastic setting, the action which em- 
pirically resulted in the least cost solution may not be the action which leads to 
the least cost expected value. So averaging is more appropriate than merely keep- 
ing track of the minimum cost solution for a given action sequence. The artificial 
intelligence community has had considerable difficulties with behavioral learning 
because of difficulties with temporal delays and combinatorial explosions result- 
ing from brute force approaches. Only recently has the mathematics of controlled 
Markov chains been explored along with solution techniques such as dynamic pro- 
gramming. A major breakthrough in learning optimal actions for such processes 
has been Watkins' Q-learning [3, 2, 4, 1]. 
In this paper, we give a quick overview of controlled Markov processes in Section 
2. Section 3 presents Watkins' basic results and Section 4 extends those results to 
describe a system that learns and simultaneously converges to the optimal policy 
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Cognitive Learning Behavioral Learning 
Goal Classifying inputs Optimizing actions 

Related Areas Statistics 
Pattern recognition 

Control theory 
Operations research 

Relevant 
Mathematics 

Approximation theory 
Probability 

Dynamic programming 
Stochastic Systems 

Status Sound Theoretical 
Foundations 

Emerging Analytic 
Theory 

Table 1    Cognitive vs. Behavioral Learning. 

solution. Section 5 discusses possible areas of intersection between the cognitive 
and behavioral problems. 

2    Markov Decision Processes 
The paradigm for behavioral neurocomputing can typically be cast as a controlled 
Markov process which is described below. An environment has a number of states, 
X = {xj}. For each state, there is a set of actions, Ai = {a,j}, each of which 
transforms the current state to another state stochastically. This is quantified as a 
collection of transition probabilities: p(xi, atj,xk) being the probability that apply- 
ing action a,j in state X{ we land in state xk at the next time step. These proba- 
bilities are independent of time and previous states, hence the stationary Markov 
character. 
Each action engenders a cost, k(xi,a,jj), which depends only on the state and the 
action. The goal of a behavioral problem is to minimize this cost over time. Such 
a temporal cost depends on a policy which specifies the actions to be taken at 
various times in various states. Thus for each time, t, in a policy, we have a vector 
of actions at which tells us which action to apply for any of the possible states the 
system could be in at time t. Specifically, at(x,) is one of the allowable actions a^ 
for state Xj. There are a number of ways in which to quantify this temporal cost 
minimization: 

■ FREE-TIME MINIMIZATION - A designated state, x0, terminates the process. 
We are concerned with the cost of the behavior up to the time this state is 
reached. Starting in some state Xi and following a policy, w = {a0,a\,a2,...), 
suppose we follow the trajectory a:,-, xtl, x,-2,..., xir_1,x0j the cost will then be 

T-l 

53 *(*.-,->a; (*••,■ ))• 
3=0 

However, since the transitions are stochastic, we must take an expectation over 
all possible trajectories, starting with Xi and terminating in x0 with probabil- 
ities determined by the policy, 7r, and the corresponding transitions. 

T-l 

3=0 
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■ FIXED-TIME MINIMIZATION - As above but the cost is computed up to a fixed 
time as opposed to when a terminal state is reached. 

■ AVERAGE-COST MINIMIZATION - The average future cost is minimized (here 
0 < 7 < 1 is the discount factor): 

1 L 

•     DISCOUNTED COST MINIMIZATION - Here the cost of future actions are dis- 
counted by a constant rate, 0 < j < 1, so that 

oo 

V(w,i) = E[^k(xij,aj(xij))]. 
j=o 

We consider only discounted cost minimization problems here. A large body of 
literature in optimal control theory has been devoted to solving such problems and 
we review the key elements, leaving out the occasional technical requirements for 
the results to hold. We focus instead on the general flow of ideas. 
First of all, we need only consider policies which are independent of time if we are 
interested in the optimal policy. The reason is that the process is Markovian and 
once we reach a state at a point in time, only the future costs can be affected. Since 
the costs are additive (in a discounted way), an optimal choice of action depends 
only on the current state. This simplification allows us to consider only policies that 
are of the form % — (a, a, a,...) where a is a mapping from states to actions. 
Secondly, the cost-to-go functions, which we now write as V(a,i) because we are 
restricting ourselves to stationary policies, satisfy a recurrence relation of the form: 

V(a, i) = k(xi, a(xi)) + 7^p(ar,-, a(x;), Xj)V(a,j). 

j 

This identity has the following interpretation: using action a(x{) we go to state 
Xj with probability p(xi,a(xi),Xj); once in state Xj we have the cost-to-go value 
V(a, j). Weighing these cost-to-go values with the corresponding transition proba- 
bilities and adding gives the identity. Stacking these values to form a vector V(a), 
the above equation becomes a vector-matrix equation of the form: 

V(a) = k(a) + jP(a)V(a). 

Thus, every stationary policy satisfies an equation of the above form which can be 
solved by rewriting it as: 

(/ - yP(a))V(a) = k(a) 

where it is assumed that P(a) and k(a) are known for a given policy a. Thus this 
is a simple linear system of equations which can be solved using standard matrix 
iterative techniques. 
What this shows is that for any policy, there is a computational procedure for 
computing the cost-to-go function for a fixed action policy. What remains is to find 
an action policy which will lead to the overall optimal strategy - one that minimizes 
the cost-to-go function for each state. 
Specifically, the optimal policy a* has the property that 

V(a*) = V* = mina{k(a) + 7P(a)V*}. 
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This policy can be computed using the iteration, starting with VQ arbitrary, 

Vn+1 = mina{k(a) + jP(a)V„}. 

Then V„ -* V* and the optimal policy is the policy which realizes the minimization 
above. 

3    Watkins' Q-Learning 
The behavioral learning problem is to learn the optimal (minimal cost) policy using 
samples of the following form: 

Si = {niXi,<Xi,k),i= 1,2,3,... 
These samples are four-tuples with the interpretation that s,- involves a trial use 
of action a; on state rn which resulted in a transition to state d at a cost of k,. 
Given many samples with the same initial state and action, we can estimate the 
transition probabilities as well as the expected cost of taking that action from that 
state. With such estimates, a standard solution procedure for computing optimal 
policies for a Markov decision process can be carried out. This is an off-line, batch 
approach. 
Is there an on-line approach which will learn the optimal strategy adaptively, with 
guaranteed convergence? The on-line strategy does not compute transition prob- 
abilities or costs explicitly. Watkins has given an elegant solution to this problem 
which he named Q-learning. Q-learning uses samples of the above form to update 
a simple table whose entries converge and whose limit values can easily be used to 
infer an optimal policy. 
Q-learning is motivated by so-called Q-values which are defined as follows: 

Qa(xiy a{j) = K(xi, a(j) + jP(a)V(a). 

Q"(xi, a,j) is the expected cost when starting in state a;,-, performing action a^-, and 
then following policy a thereafter. Let Q* be the Q-values for the optimal policy 
a*, meaning we take some initial action and then follow it with optimal actions 
thereafter. For these Q-values, we have 

V(a*)i=mm{Q*(xi,aij)} 

and the optimal action from state x, is precisely the action atj which achieves the 
minimum. 
The beauty of Watkins' Q-learning is that we can adaptively estimate the Q-values 
for the optimal policy using samples of the above type. The Q-learning algorithm 
begins with a tableau, Qo(x{, ajj), initialized arbitrarily. Using samples of the form 

«i = (%, C«. «i, h), i = 1, 2, 3,... 
we perform the following update on the Q-value tableau: 

Qi(TH,<*i) = (1 - ßi)Qi-i(m, a») + ßi{h + jV(d)) 
where V(Q) = mma{Qi_i(Q,a)}. All other elements of Q, are merely copied from 
Qi-i without change. The parameters /?,• —> 0 as i —► oo. 

Theorem 1 (Watkins [6, 7, 5]) - Lei {i(x,a)} be the set of indices for which the 
(x,a) entry of the Q-tableau is updated. If 

Yl &(*,*) = °°  and ^ ßf(xa) < oo 

then Qi(x,a) —> Q*(x,a) as i —► oo. Accordingly, at(x) = argmax„Q,(a;, a) con- 
verges to the optimal action for state x. 
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Proof See [7, 5]. G 

This result is remarkable in that it demonstrates that a simple update rule on the 
Q-tableau results in a learning system which computes the optimal policy. In the 
next section we show how this method can be embedded into an online system which 
simultaneously uses the current Q-values to generate policies and uses the results 
to update Q-values in such a way as to satisfy Watkin's theorem. Consequently, the 
online system learns the optimal policy to which it ultimately converges. 

4    Universal On-line Q-Learning 
Online optimal learning and asymptotic optimal performance must be a compromise 
between performing what the learning system estimates to be the optimal actions 
and persistently exciting all possible state-action possibilities often enough to satisfy 
the frequencies stipulated in Watkins' Q-learning theorem. 
To begin, let us introduce a notion of asymptotically optimal performance. Suppose 
we have an infinite sequence of state-action pairs that result from an actual realiza- 
tion of the Markov decision process, say {(&•, a,-), i = 0,1,...} with (yi,cti) meaning 
that at time i we are in state y, and execute action a,-, resulting in a transition to 
state j/,+1 at the next time. For such a sequence, we have a corresponding sequence 
of costs V{ which represent the actual costs computed from the realized sequence, 
v, being the cost of following the sequence from time i onwards. 
We now define asyptotic average optimality. Suppose that V, is the optimal expected 
cost-to-go for state i. Let v,-(ny) be the observed cost-to-go values for state i when 
the system is in state i at time ny. Let JVjif(z) be the number of times the process 
has visited state i up to time M. Then we say that the policy is asyptotically optimal 
on average for state i if 

as M —* oo. 
In order to establish this result, we need to construct an auxiliary Markov process 
with states (a;,-, ay) and transition probabilities, 

p((x,-, aij), (xm, Omn)) = p(Xi,a,ij,Xm)/Jm 

where Jm is the number of allowable actions in state xm. This auxiliary process 
has the following interpretation: the transition probabilities between states are de- 
termined by the transition probabilities of the original controlled process with the 
added ingredient that the actions corresponding to the resulting state are uniformly 
randomized. 

Theorem 2 - Suppose that there is at least one stationary policy under which the 
states of the resulting Markov process constitute a single recurrent class (that is, the 
process is ergodic). Then, with probability 1, there is a mixed nonstationary strategy 
for controlling the Markov decision process with the following two properties: 
1. The optimal policy is estimated by Q-learning asymptotically; 
2. The control is asymptotically optimal on average for all states that have a nonzero 
stationary occupancy probability under the process' optimal policy. 

Proof - The proof consists of three parts. We begin by showing that under the 
hypothesis that the original process has a stationary policy under which the Markov 
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(Xj.ay) 

(x ,a   ) u   uv 

Q-Tableaux 

Transition between rows 
determined according to 

P(x,a) 

Transition within a row 
is uniformly randomized 

Figure 1    Auxiliary Process Schematic. 

process consists of a single recurrent class, the corresponding auxiliary process also 
has a single recurrent class. Let a(x) be the action for a state x which makes the 
original process have a single recurrent set. Denote the corresponding transition 
probabilities by p*(x, x') = p(x, a(x), x'). Let D be the maximal number of actions 
per state: D > |{a,-j}| for all i. Consider the auxiliary process' canonical partitioning 
into subclasses of states in which each set of the partition consists of states which 
are either a) transient or b) recurrent and communicate with each other. Now the 
(x, a(x)) form a subset of the states of the auxiliary process. 
Step 1. The auxiliary Process is Recurrent - We will show that any given state of 
the auxiliary process communicates with every other state. Let (x,a) and (x',a') 
be any two states of the auxiliary process. We must show that 

p^((x,a),(x',a'))>0 
for some n. Pick any state y for which p(x, a, y) > 0. By assumption, there is an m 
for which 

p{m)(y,x')>0 

under the special choice of actions, a{x). This means that there is a sequence of 
states 2/i = y, y2,..., ym = x' for which 

p(yi,a(yi),yi+i) > 0 
and so 

p^\(x,a),(x>,a')) > rt^^nrjSlp^aiy^y^/D] > 0. 
Since all states of the auxiliary process communicate with each other, all states 
must be recurrent. Thus the auxiliary process consists of a single recurrent set of 
states. Because the auxiliary process consists of recurrent states, the expected time 
to visit all states of the auxiliary process is finite and all states will be visited in a 
finite time with probability 1. 
Step 2. A Mixed Policy - We next define a mixed time-dependent strategy for 
switching between the auxiliary process and a stationary policy based on an esti- 
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mate of the optimal policy. The mixed strategy begins by choosing actions according 
to the auxiliary process. At time nt we switch from the auxiliary process to the 
process controlled by the policy determined by the Q-table according to 

a,j(nk) = aTgmmaQnk(xjta). 

At time mjfc we switch back to the auxiliary process. For k = 1,2,3,... we have 
1 = mo < njt < mj; < n^+i < mjfe+i... < oo. Let TV' the largest expected time to 
visit all states of the auxiliary process starting from any state and let N = 2 * N'. 
Consider the following experiment which is relevant to the discussion below. Start in 
any state of the auxiliary process and follow it for TV steps at which time we jump to 
an arbitrary state and run for another TV steps, repeating this process indefinitely. 
Call each such run of TV steps a frame, numbering them F,- for i — 1,2,3,.... We want 
to concatenate the frames to produce a realization of the auxiliary process. To do 
this, consider the final state of frame F,-. Since TV was chosen to be twice as large as 
the expected time to visit all states starting from any state, with probability 1 some 
future frame, say F,+j, includes a visit to the final state of Fi in the first TV/2 = TV' 
states of that frame. Concatenate to the end of Fi the history in F{+j following 
the visit to the final state of F,. Each step of this concatenation adds at least TV' 
consecutive steps of the auxiliary process so there are an infinite number of visits to 
all states in the concatenation with probability 1. In the following construction, we 
implicitly use this property of a concatenation of frames. The definition of nk is as 

Estimated Optimal Policy Operation 

k+1        k+1 Increasing time 

-"► 

Auxilliary Process Operation 

Figure 2    The Mixed Policy Transitions. 

follows. At time m^-i, we began following the auxiliary process which is recurrent. 
We store state transitions of the form 

where 77 is a state X{, a is an action taken by the auxiliiary process, £ is the state of 
the original process to which the process transitioned and K is the observed cost of 
that transition, in a list. Proceed in this manner until either TV steps have been taken 
in this way or until the list contains a sample for each element in the Q-table. If the 
list to update the Q-table is completed first, we update the Q-table and compute 
the current optimal actions. In this case, raj is defined as the time after which the 
Q-table was updated. Otherwise, define ra* = mjt_i + TV and continue using the 
previous estimated optimal actions as a policy. In either case, m^ = n^ + k * TV so 
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we operate the process using the estimated optimal policy for increasingly longer 
periods of time k* N. We then use this list to update the Q-table with the samples 
in the list. 
Assume that the Q-table has M entries. Then for updating the ith element for the 
jth time in the Q-table from the sample list, use 

ßj*M+i — -.—TTT~-- 

According to this scheme, element i is updated for j = 1,2,3,... and the corre- 
sponding subset of ß's forms an arithmetic subsequence of the harmonic sequence; 
hence it satifies Watkins' criteria for divergence and squared-convergence. 
By the discussion above about frames, this list is filled in a finite amount of time 
infinitely often with probability 1, but we impose a deterministic limit on the time 
spent in this mode generating a frame. By construction and Watkins' Theorem, 
the Q-table values converge to the optimal Q-values and hence the optimal action 
policy is eventually found. 
Step 3. Asymptotic Optimal Convergence - To prove the asymptotic optimal conver- 
gence, note that the Q-table updates are performed according to Watkins' criteria 
so that in the limit the Q-table values determine an optimal stationary policy. More- 
over, the time spent operating in the auxiliary mode becomes an asymptotically 
small fraction of the time spent operating in the estimated optimal policy. Hence, 
the asymptotic convergence to optimality. 
To make this formal, note that asymptotic average optimality depends only on what 
happens in the limit. Specifically, if we can show that the average of the observed 
cost-to-go values after some fixed time converges to the optimal value then we are 
done. 
To see this, run the process long enough so that the estimated optimal policy 
determined by the Q-table is as close as desired to the optimal cost-to-go for the 
process. This will happen at some finite time with probability 1 although the time 
is not known a priori. Since we can also wait until k is arbitrarily large, the fraction 
of time spent in the appoximately optimal mode can be made as close to 1 as we 
like. Now for a state that has nonzero stationary occupancy probability under the 
optimal policy, the fraction of time spent operating under the estimated optimal 
policy approaches 1 and so the empirical cost-to-go also approaches the optimal. For 
states that have zero occupancy probability under the optimal policy, the empirical 
cost-to-go will be dominated by the empirical values determined during the auxiliary 
process operation which will not be optimal in general. Thus the average within 
the mixed mode of operation is guaranteed to converge to the estimated cost-to-go 
for the optimal policy but only for states that have nonzero stationary occupancy 
probabilities under the optimal policy. O 

5     Discussion 
We have shown that there exists a strategy for operating a Markov Decision Process 
(under simple conditions) in such a way that the optimal strategy is both learned 
and the asymptotic operation of the system approaches optimality for states that 
have nonzero occupancy probabilities under the computed optimal policy. This is 
only one of many possible strategies for performing both of these simultaneously. 
The question of which operating procedures are best for fastest convergence to the 
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Figure 3    A Unified Learning Theory. 

optimal cost-to-go values is beyond the scope of the techniques that we use. It is 
an important question to pursue in the future. 
One of the weaknesses of the Q-Learning framework is that states and actions for the 
Q-Tableaux must be known a priori. This is restrictive in most dynamic learning 
situations - it may not be appropriate or possible to select the actual states or 
actions of a system without significant experimentation first. In general, we would 
like to simultaneously learn the states, actions and corresponding optimal policies 
at one time. This subject has been looked into by various researchers but with few 
analytic results yet. There has been growing interest in dealing with systems that 
have an infinite (contiuum) of possible states and actions, requiring discretization 
for Q-Learning. How these states can be clustered or otherwise organized to achieve 
optimal operation is a challenging question that requires serious future research. 
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COMPUTATION? 
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1 Introduction 
Are there universal computational principles that the brain uses to self-organize 
its intelligent properties? This lecture suggests that common principles are used in 
brain systems for early vision, visual object recognition, auditory source identifica- 
tion, variable-rate speech perception, and adaptive sensory-motor control, among 
others. These are principles of matching and resonance that form part of Adaptive 
Resonance Theory, or ART. In particular, bottom-up signals in an ART system 
can automatically activate target cells to levels capable of generating suprathresh- 
old output signals. Top-down expectation signals can only excite, or prime, target 
cells to subthreshold levels. When both bottom-up and top-down signals are si- 
multaneously active, only the bottom-up signals that receive top-down support can 
remain active. All other cells, even those receiving large bottom-up inputs, are in- 
hibited. Top-down matching hereby generates a focus of attention that can resonate 
across processing levels, including those that generate the top-down signals. Such 
a resonance acts as a trigger that activates learning processes within the system. 
In the examples described herein, these effects are due to a top-down nonspecific 
inhibitory gain control signal that is released in parallel with specific excitatory 
signals. 

2 Neural Dynamics of Multi-Source Audition 
How does the brain's auditory system construct coherent representations of acoustic 
objects from the jumble of noise and harmonics that relentlessly bombards our 
ears throughout life? Bregman [1] has distinguished at least two levels of auditory 
organization, called primitive streaming and schema-based segregation, at which 
such representations are formed in order to accomplish auditory scene analysis. The 
present work models data about both levels of organization, and shows that ART 
mechanisms of matching and resonance play a key role in achieving the selectivity 
and coherence that are characteristic of our auditory experience. 
In environments with multiple sound sources, the auditory system is capable of 
teasing apart the impinging jumbled signal into different mental objects, or streams, 
as in its ability to solve the cocktail party problem. With my colleagues Krishna 
Govindarajan, Lonce Wyse, and Michael Cohen [5], a neural network model of 
this primitive streaming process, called the ARTSTREAM model (Figure 1), has 
been developed that groups different frequency components based on pitch and 
spatial location cues, and selectively allocates the components to different streams. 
The grouping is accomplished through a resonance that develops between a given 
object's pitch, its harmonic spectral components, and (to a lesser extent) its spatial 
location. Those spectral components that are not reinforced by being matched with 
the top-down prototype read-out by the selected object's pitch representation are 
suppressed, thereby allowing another stream to capture these components, as in the 
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"old-plus-new heuristic" of Bregman [1]. These resonance and matching mechanisms 
are specialized versions of ART mechanisms. 

Pitch 
stream 
layer 

Spectral 
stream 
layer 

I 
ooooo 

Basilar membrane 
Gammatone filterbank 

Outer and middle ear 
Preemphasts 

t 
Input signal 

Figure 1 Block diagram of the ARTSTREAM auditory streaming model. Note 
the nonspecific inhibitory feedback from pitch representations to spectral represen- 
tations. 

The model is used to simulate data from psychophysical grouping experiments, such 
as how a tone sweeping upwards in frequency creates a bounce percept by grouping 
with a downward sweeping tone due to proximity in frequency, even if noise replaces 
the tones at their intersection point. The model also simulates illusory auditory 
percepts such as the auditory continuity illusion of a tone continuing through a 
noise burst even if the tone is not present during the noise, and the scale illusion 
of Deutsch whereby downward and upward scales presented alternately to the two 
ears are regrouped based on frequency proximity, leading to a bounce percept. The 
stream resonances provide the coherence that allows one voice or instrument to be 
tracked through a multiple source environment. 

3     Neural Dynamics of Variable-Rate Speech Categorization 
What is the neural representation of a speech code as it evolves in real time? 
With my colleagues Ian Boardman and Michael Cohen [6], a neural model of this 
schema-based segregation process, called the ARTPHONE model (Figure 2), has 
been developed to quantitatively simulate data concerning segregation and integra- 
tion of phonetic percepts, as exemplified by the problem of distinguishing "topic" 
from "top pick" in natural discourse. Psychoacoustic data concerning categorization 
of stop consonant pairs indicate that the closure time between syllable final (VC) 
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rate invariant 
phonetic output 

control 

phone inputs 

Figure 2 The ARTPHONE model. Working memory nodes (w) excite chunks (u) 
through previously learned pathways. List chunks send excitatory feedback down 
to their item source nodes. Bottom-up and top-down pathways are modulated by 
habituative transmitter gates (filled squares). Item nodes receive input in an on- 
center off-surround anatomy. Total input (/) is averaged to control an item rate 
signal (r) that adjusts the working memory gain (g). Excitatory paths are marked 
with arrowheads, inhibitory paths with small open circles. 

and syllable initial (CV) transitions determines whether consonants are segregated, 
i.e., perceived as distinct, or integrated, i.e. fused into a single percept. Hearing two 
stops in a VC-CV pair that are phonetically the same, as in "top pick," requires 
about 150 msec more closure time than hearing two stops in a VC1-C2V pair that 
are phonetically different, as in "odd ball." As shown by Repp [10], when the dis- 
tribution of closure intervals over trials is experimentally varied, subjects' decision 
boundaries between one-stop and two-stop percepts always occurred near the mean 
closure interval. 
The ARTPHONE model traces these properties to dynamical interactions between 
a working memory for short-term storage of phonetic items and a list categoriza- 
tion network that groups, or chunks, sequences of the phonetic items in working 
memory. These interactions automatically adjust their processing rate to the speech 
rate via automatic gain control. The speech code in the model is a resonant wave 
that emerges after bottom-up signals from the working memory select list chunks 
which, in turn, read out top-down expectations that amplify consistent working 
memory items. This resonance may be rapidly reset by inputs, such as C2, that are 
inconsistent with a top-down expectation, say of Ci; or by a collapse of resonant 
activation due to a habituative process that can take a much longer time to occur, 
as illustrated by the categorical boundary between VCV and VC-CV. The catego- 
rization data may thus be understood as emergent properties of a resonant process 
that adjusts its dynamics to track the speech rate. 

4    Neural Dynamics of Boundary and Surface Representation 
With my colleagues Alan Gove and Ennio Mingolla [4], a neural network model, 
called a FACADE theory model (Figure 3), has been developed to explain how 
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Figure 3 FACADE model macrocircuit. Boundary representation, or BCS, stages 
are designated by octagonal boxes, surface representation, or FCS, stages by rect- 
angular boxes. 

visual thalamocortical interactions give rise to boundary percepts such as illusory 
contours and surface percepts such as filled-in brightnesses. Top-down feedback 
interactions are needed in addition to bottom-up feedforward interactions to sim- 
ulate these data. One feedback loop is modeled between lateral geniculate nucleus 
(LGN) and cortical area VI, and another within cortical areas VI and V2. The 
first feedback loop realizes a resonant matching process, as in ART, which en- 
hances LGN cell activities that are consistent with those of active cortical cells, 
and suppresses LGN activities that are not. This corticogeniculate feedback, being 
endstopped and oriented, also enhances LGN ON cell activations at the ends of thin 
dark lines, thereby leading to enhanced cortical brightness percepts when the lines 
group into closed illusory contours. The second feedback loop generates boundary 
representations, including illusory contours, that coherently bind distributed corti- 
cal features together. Brightness percepts form within the surface representations 
through a diffusive filling-in process that is contained by resistive gating signals from 
the boundary representations. The model is used to simulate illusory contours and 
surface brightnesses induced by Ehrenstein disks, Kanizsa squares, Glass patterns, 
and cafe wall patterns in single contrast, reverse contrast, and mixed contrast con- 
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figurations. These examples illustrate how boundary and surface mechanisms can 
generate percepts that are highly context-sensitive, including how illusory contours 
can be amodally recognized without being seen, how model simple cells in VI re- 
spond preferentially to luminance discontinuities using inputs from both LGN ON 
and OFF cells, how model bipole cells in V2 with two colinear receptive fields can 
help to complete curved illusory contours, how short-range simple cell groupings 
and long-range bipole cell groupings can sometimes generate different outcomes, and 
how model double-opponent, filling-in and boundary segmentation mechanisms in 
V4 interact to generate surface brightness percepts in which filling-in of enhanced 
brightness and darkness can occur before the net brightness distribution is com- 
puted by double-opponent interactions. Taken together, these results emphasize the 
importance of resonant feedback processes in generating conscious percepts in the 
visual brain. 
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Figure 4    SACCART model for multimodal control of saccadic eye movements by 
the superior colliculus. 

5    Neural Dynamics for Multimodal Control of Saccadic Eye 
Movements 

Saccades are eye movements by which an animal can scan a rapidly changing envi- 
ronment. While the saccadic system plans where to move the eyes, it also retains 
reflexive responsiveness to fluctuating light sources. These two types of saccades 
ultimately result in control of the same set of eye muscles. Visually reactive cells 
encode gaze error in a retinotopicaily activated motor map. Planned targets are 
coded in head-centered coordinates. When two conflicting commands attempt to 
share control of the saccadic eye movement system, the system must resolve the 
conflict and coordinate command of one set of eye muscles. 
The superior colliculus is a brainstem region that plays a prominent role in both 
planned and reactive saccades. This region coordinates information to adjust move- 
ments of the head and eyes to a stimulus. In order to combine these visual, somatic, 
and auditory saccade targets in the superior colliculus, the targets in head-centered 
coordinates are mapped to a gaze motor error in retinotopic coordinates. 
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How does the saccadic movement system select a target when visual and planned 
movement commands differ? How do retinal, head-centered, and motor error co- 
ordinates interact during the selection process? How are these coordinate systems 
rendered consistent through learning? Recent data on superior colliculus (SC) re- 
veal a travelling wave of activation whose peak codes the current gaze error [9]. 
In contrast, Waitzman [12] found that the locus of peak activity in SC remains 
constant while the activity level at this locus decays as a function of residual gaze 
error. Why do these distinct cell types exist? 
With my colleagues Mario Aguilar, Dan Bullock, and Karen Roberts [8], a neural 
network model has been developed that answers these questions while providing a 
functional rationale for both signal patterns (Figure 4). The model assumes that 
calibration between visual inputs and eye movement commands is learned early in 
development within a visually reactive saccade system [7]. Visual error signals coded 
in retinotopic coordinates calibrate adaptive gains to achieve accurate foveation. 
The accuracy of planned saccades derives from using the gains learned by the re- 
active system. For this, a transformation between a planned head-centered and a 
retinotopic target representation needs to be learned. ART matching and resonance 
control the stability of this learning and the attentive selection of saccadic target 
locations. Targets in retinotopic and head-centered coordinates are rendered dimen- 
sionally consistent so that they can compete for attention to generate a movement 
command in motor error coordinates. Simulations show how a decaying, stationary 
activity profile is obtained in the pre-motor layer due to feedback modulation. In 
addition, a travelling wave activity profile is produced in the motor layer due to 
modulation from the pre-motor layer and the nature of the local connectivity. The 
simulations show how this model reproduces physiological data of these two classes 
of collicular neurons simultaneously during a variety of behavioral tasks (e.g., vi- 
sual, memory, gap, and overlap conditions), an achievement previously unattained 
by eye movement models. In addition, the model also clarifies how the SC integrates 
signals from multiple modalities, and simulates collicular response enhancement and 
depression produced by multimodal stimuli [11]. 

6    Concluding Remarks 
In addition to these systems are the more familiar ART systems for explaining vi- 
sual object recognition and its breakdown due to hippocampal lesions that lead to 
medial temporal amnesia [2]. Taken together, these results provide accumulating 
evidence that the brain parsimoniously specifies a small set of computational prin- 
ciples to ensure its stability and adaptability in responding to many different types 
of environmental challenges. 
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ATTRACTOR NETWORKS 
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A rigorous mathematical analysis is presented of a class of continuous networks having rather 

arbitrary activation dynamics, with input patterns classified by attractors by a special training 

scheme. Memory adapts continually, whether or not a training signal is present. It is shown 

that consistent input-output pairs can be learned perfectly provided every pattern is repeated 

sufficiently often, and input patterns are nearly orthogonal. 

1    Introduction 
Most neural networks used for pattern classification have the following features: 

■ The training dynamics is separate from the activation dynamics. 

■ Patterns are classified by fixed points or limit cycles of the activation dynamics. 

But biological neural networks— nervous systems— do not conform to these rules. 
We learn while doing— we learn by doing, and if we don't do, we may forget. And 
chaotic dynamics is the rule in many parts of the cerebral cortex (see the papers 
by Freeman et al). 
Here we look at supervised learning in continuous time nets in which: 

■ The memory matrix is always adapting: the only difference between training 
and testing is the presence of a training signal. Testing reinforces learning, lack 
of testing can lead to forgetting, and retraining at any time is possible. 

■ Patterns are classified by possibly chaotic attractors. 

■ Training is completed on any single pass through the training set. 

The fundamental problem faced by such a system is that presentation of new in- 
put patterns affects the memory of old patterns, whether or not a training signal 
is present; consequently there is a tendency for previously trained memories to 
degrade. To prevent this from occurring, we constrain the system in two ways: 

■ Each input pattern is repeated sufficiently frequently, with or without a train- 
ing signal. 

■ Input patterns are nearly orthogonal. 

When the input patterns are sufficiently orthogonal, depending on the number of 
patterns, then system parameters can be chosen robustly so that the system learns 
to give the correct output for each input pattern on which it has consistently trained. 
The net comprises an input layer of d units which feeds into a recurrently connected 
activation layer of n units. Inputs and activations can take any real number values. 
Inputs are drawn from a fixed list of patterns, taken for convenience to be unit 
vectors. With any input a training signal may be presented for minimum time and 
then shut off. These training signals need not be consistent, but those patterns 
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that are trained consistently and tested sufficiently frequently, will respond with 
the correct output. 
Rather than taking outputs to be the usual stable equilibria or limit cycles, we 
consider outputs to be the attractors (more precisely, their basins) to which the 
activation dynamics tends. (Compare [2], [4]). Each training signal directs the ac- 
tivation dynamics into the basin of an attractor. 
In some biological models it is the attractor as a geometric object, rather than 
the dynamics in the attractor, that classifies the input. If the components of the 
activation vector x represent firing rates of cells, then the attractor may corresond 
to a particular cell assembly, and the useful information is which cell assembly is 
active, with dynamical details being irrelevant. In this connection compare [8]; [1]. 
Before giving details of the dynamics, we first describe how the network looks from 
the outside. From this black box point of view the activation dynamics appears to 
be governed by a differential equation in Euclidean rz-space IRn, 

Tt    =    *■(*> + ' (1) 
=    -x + f(x) + I (2) 

where / : IR" —► IRn is bounded and I £ IR" is a constant training signal which may 
be 0. Input patterns are chosen from a finite set of distinct vectors £a 6 IRd, a = 
1,..., m. Training signals are selected from a compact set S C IR" which contains 
the origin. 
At stage k of running the net, ah input and a possibly null training signal are 
presented simultaneously to the net for a certain time interval [<j;_i,<jj.] called the 
k'th instruction period, followed by the computation period [t^tk] during which 
training signal is removed (set to 0) while the same input is present. The activation 
vector x then settles down to an attractor for the dynamics of the vector field F, 
that is, for the differential equation 

dx 
*=-* + /(*). (3) 

When this process is repeated with a different input and training signal, the acti- 
vation variable x jumps instantaneously to a new initial position. 
To each pattern £" there is associated a special attractor A" C IR" for (3), and a 
target Ua, which is a positively invariant neighborhood of Aa in B{Aa). It is desired 
that when £a is input, x(t) goes into Ua and stays there (thus approaching Aa), 
until the input is changed. 
Training consists in using training signals from a special subset Sa C S of proper 
training signals asociated with £a. Other nonzero training signals are improper. 
It turns out that with sufficiently orthogonal input patterns and suitable parame- 
ters, any pattern that is trained on a proper training signal at stage k will go to its 
correct target at a later stage provided that at intervening stages the pattern was 
presented sufficiently often and no improper training signals were used. 
Now we explain how the memory evolves. The time varying memory matrix M £ 
IR" * maps static input patterns (column vectors) £ to dynamic activation vectors 
x by x(t) =. M(t)£. An auxiliary fast variable y £ IR" provides a delay between 
x(t) and M(t): The true dynamics is given by the following Main System, where 
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£T denotes the transpose of £: 
dM 

dt 
=     [-X + y + I}f, (4) 

Af    =    m-y, (5) 
x    =    Mt (6) 

The system's dynamics is thus driven by M(t); there is no independent activation 

dynamics. 
Computing dx/dt and using the fact that £T£ = ||£||2 = 1, we obtain the following 

system: 

S = -x+v+I> <7) 

A§    =    f(x)-y. (8) 
This system is independent of the input f; but the interpretation of x depends on 
£, and x (but not y) jumps discontinuously when £ is changed. 
It is interesting to observe that System (7), (8) is equivalent to a single second order 
equation in x, namely: 

Ag + (A + l)| + . = /(.) + /, (9) 
similar to the second order activation dynamics used by W. Freeman et al. (see 
References). The following fact is used: 

Proposition 1 If x(t) obeys Equation (9) and \\f(x)\\ < p, then x(t) -► NP(I). 

Standard dynamical system techniques (singular perturbations, invariant mani- 
folds) show that the dynamics of System (7), (8) is closely approximated by the 
that of the simpler system 

J = -* + /(*)+ 7 (10) 
provided A is small enough. 
Example 1 A simple but interesting system of this type has 1-dimensional acti- 
vation dynamics. For / we take any smooth (Lipschitz also works) sigmoid with 
high gain K > 1, having limiting values ±1. The dynamics of (10) with 1 = 0 
has stable equilibria at (approximately) x = ±1 and an unstable equilibrium at 
x = 0. The 2-dimensional dynamics of System (7), (8) with I = 0 has two attract- 
ing equilibria near (1,1) and (-1,-1), and an unstable equilibrium near (0,0). 
Every trajectory tends to one of these three equilibria. As training signals we take 
7_ = -1, I+ — +1. When I takes either of these values I", (x,y) settles to the 
global attractor near (27",27°). When 7 is then set to 0, keeping the same input 
pattern, then (a;, y) relaxes toward (7°, Ia). This system learns to sort any number 
of sufficiently orthogonal input patterns into two arbitrary classes after a single 
pass through the pattern set. A similar system is treated in detail in [9]. 
Higher dimensional examples can be obtained from this one by taking Cartesian 
products of n such vector fields, yielding 2" attracting equilibria. More interesting 
dynamics can be constructed by changing the vector field in small neighborhoods 
of the attracting equilibria. In this way attractors with arbitrary dynamics can be 
constructed. 
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2    Statement of Results 
Notation.    ||u|| = ^u ■ u denotes the Euclidean norm of vector u. The closed ball 
of radius p about a point z is denoted by Np(z). The closed p-neighborhood of a 

We start with the data: f, {Aa}, {Ua}, {Sa}. 
We assume given an increasing sequence of times tk-i < t'h < tk, k G IN. The Main 
System is run during stage k as described above, taking as initial values at th-i 
whatever the terminal values were in the previous stage (if k > 1). 
We make the following asumptions, in terms of parameters e > 0, T > 0, N > 
l,R>0,p>0: 

Hypothesis 2 

Unit pattern vectors:     ||£°|| = 1. 
Separation of patterns:     |£a ■ £b\ < e for distinct a, b 
Duration of presentation:    t'k - <A_i > T and tk -t'k>T for all k. 
Frequency of presentation:     Each pattern £a is used as input at least once in 
every N successive stages. 
Initial values:     |j/(0)| < 1, ||M(0)£a|| < R. 
Bound on /:     ||/(z)|| < p. 
Proper training signals:     Sa = {I € § : NP(I) c B(Aa)}. 

The following theorems refer to the main system. They mean that robust parameters 
can be chosen so that that whenever the pattern from a consistent pair is input 
after being properly trained once, the output is always correct, whether or not a 
training signal is input, and regardless of the training signals when other patterns 
are input; and moreover, all the variables stay within given bounds. 
Define time-varying vectors xa(t) = M(t)£a e IR— the net's current recall of input 
C 
A pattern £a is consistently trained from stages k to / provided that at stage k 
the input is £° and the training signal is proper, while at each stage r, k < r < I 
at which £a is input,the training signal is either proper or 0 (both may occur at 
different stages). 
£" tests successfully during stages k to / provided xa(tj) G Ua whenever k < j <l 
and the input for stage j is £a. 
Recall that A is the time constant in Equation (5). 

Theorem 3 There exist positive constants T», r*, A* independent ofN,e,{£"} and 
computable from the data, with the following property. Assume 0 < A < A* and 
Hypothesis 2 holds with T >T,,R> Rt, and in addition eN < r». Then every 
pattern which is consistently trained from stages k to I, tests successfully during 
those stages. 

The quantity 
6 = eN(l + e)N 

plays a key role. Notice that 6 —> 0 as eN —► 0. 
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Theorem 4 There exist positive constants T», R„, A», independent ofe, N, {£"} and 
computable from the data, with the following property. IfO < A < A* and Hypothesis 
2 holds with T > T*, R > Rt, then: 

\\M(t)e\\ < 6R (11) 

for allt>0, a — l,...,m. 

It is clear from (4) that if a vector r] 6 Ht   is orthogonal to all the input patterns, 
then M(i)rj is constant. Therefore the Theorem 4 implies that the entries in M(t) 
are uniformly bounded. 
The key to the proofs is the following lemma. Suppose the input is £ = £a in System 
(4), (5),(6). Computing dxb/dt shows dxb/dt = (£b -^a)dxa/dt, yielding the crucial 
estimate: 

Lemma 5 // the input is £° and b ^ a, then for ti > to > 0 we have: 

\xb(Sl) - xb(s0)\ < e\xa(Sl) - xa(s0)\. (12) 

This means that after presentation of £b, subsequent presentation of £a does not 
alter the net's recall of £b by very much provided e is sufficiently small. 

3 Discussion 
Theorem 3 means that each consistently trained input pattern yields the correct 
output attractor regardless of the training of the other patterns, which may be 
untrained or even inconsistently trained. Moreover the system can be trained or 
retrained on any patterns without impairing the previous training of the other 
patterns. 
Example 2 An example which illustrates the difficulty in verifying the assumption 
on proper training signals in Hypothesis 2 is obtained by replacing / in Example 
1 by /i(a;) = f(x) + f(x — 1). (If / approximates a step function, then f\ approxi- 
mates a staircase function.) For high gain the vector field — x + fi(x) has attracting 
equilibria very near —2, 0 and 2, and unstable equilibria near —1 and 1. The basin 
of the attraction for the equibrium near 0 is contained in the interval (—1,1). As 
we must take p ft* 2, Hypothesis 2 is violated because ^(0) <£. (—1,1). 
The requirement that input patterns be unit vectors is made only for simplicity. If 
they are not unit vectors then the assumption on separation of distinct patterns in 
Hypothesis 2 is changed to 

r-e\\\e\\ . 
neu   < • 

with similar results. The dimension d of the input space is irrelevant to our results. 
In fact the input patterns could be members of an arbitrary inner product space. 
It is not hard to see that some restrictions on the geometry of the patterns is 
necessary. For example, a set of linearly dependent patterns severely constrains the 
associated outputs that can be learned. 
The training-testing schedule is also crucial. Simple examples show that, as with 
natural learning systems, if a pattern is not repeated sufficiently often it may be 
forgotten. 
Interesting stochastic questions arise. Suppose, for example, that instead of consid- 
ering consistently trained patterns, we allow the wrong teaching signal to be given 
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with small positive probability. Is it true, as seems likely, that under some similar 
training scheme there is a high probability of correct output? 
Some other issues: Is incremental learning possible? Can such nets be usefully cou- 
pled? Can more than one layer of memory be trained this way? Is there a good way 
to approximately orthogonalize inputs by preprocessing? 
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MATHEMATICAL PROBLEMS ARISING FROM 

CONSTRUCTING AN ARTIFICIAL BRAIN 

J. G. Taylor 
Department of Mathematics and Centre for Neural Networks, 

King's College, London,  UK. 

A beginning is being made on the hard problem of constructing an artificial brain, to try to bridge 

the gap between neurophysiology and psychology. The approach uses especially the increasing 

number of results obtained by means of non-invasive instruments (EEG,MEG,PET,fMRI), and 

the related psychological tasks. The paper describes the program and some of the mathematical 

problems that it is producing. In particular the class of problems associated with the activities of 

various coupled modules used in higher order control and attention will be discussed. These include 

posterior attentional coupled systems, and the anterior motor/action/attention "ACTION" net- 

works, based on biological circuits. The relevance of these modules, and the associated problems, 

for higher order cognition, are emphasised. 

1 Introduction 
The Harvard neurologist Gerald Fishbach stated recently "The human brain is the 
most complicated object on earth". That does indeed seem to be the case, and for 
a considerable period of time since the beginning of the scientific revolution this 
fact seems to have led to despair in ever being able to have a reasonable compre- 
hension of it. However there is now a strong sense of optimism in the field of brain 
sciences that serious progress is being made in the search for comprehension of 
the mechanisms used by the brain to achieve its amazing powers, even up to the 
level of consciousness. Part of this optimism stems from the discovery and devel- 
opment of new windows with which to look at the brain, with large groups now 
being established to exploit the power of the available instruments. There are also 
new theories of how neurons might combine their activities to produce mind-like 
behaviour, based on recent developments in the field of artificial neural networks. 
At the same time there is an ever increasing understanding of the subtleties of the 
mechanisms used by living neurons. It would thus appear that the mind and brain 
are being attacked at many levels. The paper attempts to contribute towards this 
program by starting with a brief survey of the results of non-invasive instruments. 
Then it turns to consider the inverse problem before discussing the nature of past 
global brain models. An overview is then given of the manner in which neural 
modelling may attempt to begin to achieve perception. Problems of neuropsychol- 
gical modelling are then considered, with the breakdown of tasks into component 
sub-processes. Mathematical problems associated with constructing neural modules 
to achieve the required functionality of sub-process are then discussed. Modules to 
produce possible conscious processing are then considered, and the paper concludes 
with a summary and discussion of further questions. 

2 Non-Invasive Results 
There are amazing new windows on the mind. These measure either the magnetic 
or electric fields caused by neural activity, or the change in blood flow in active 
regions of the brain to allow oxygen to be brought to support the neural activity. 
The former techniques are termed magnetoencephalography (MEG) and electroen- 
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cephalography (EEG), the latter positron emission tomography (PET) and func- 
tional magnetic resonance imaging (fMRI) respectively. The techniques of MEG, 
EEG and fMRI are truly non-invasive since there is no substance penetrating the 
body, whilst that is not so with PET, in which a subject imbibes a radioactive 
material which will decay rapidly with emission of positrons (with their ensuing 
decay to two photons). 
The methods have different advantages and disadvantages. Thus EEG is a very 
accurate measure of the time course of the average electrical current from an ag- 
gregate of neurons firing in unison, but is contaminated with conduction currents 
flowing through the conducting material of the head. Thus although temporal ac- 
curacy of a few milliseconds can be obtained spatial accuracy is mainly limited to 
surface effects, and deep currents are difficult to detect with certainty. MEG does 
not have the defect of being broadened out spatially by the conduction currents, 
but has the problem of spatial accuracy, which is slowly becoming resolved (but 
also has a more difficult one of expense due to the need for special screening and 
low temperature apparatus for the SQUID devices). fMRI also has considerable 
expense and low temporal accuracy. Even though the activity from each slice of 
brain may be assessed in an fMRI machine within about 100 or so milliseconds the 
blood flow related to the underlying brain activity still requires about 7 seconds 
to reach its peak. There has been a recent suggestion that hypo-activity from the 
deoxygenated blood will 'peak' after only about 1 or 2 seconds of input [1], but 
that is still to be confirmed. Finally PET also has the same problems of slow blood 
flow possessed by fMRI, but good spatial accuracy. Combining two or more of the 
above techniques together makes it possible to follow the temporal development of 
spatially well defined activity [2]. The results stemming from such a combination 
are already showing clear trends. 
The most important result being discovered by these techniques is that 

1. activity of the brain for solving a given task is localised mainly in a distinct 
network of modules, 

2. the temporal flow of activity between the modules is itself very specific, 

3. the network used for a given task is different, in general, from that used for 
another task. 

It is not proposed to give here a more detailed description of the enormous number 
of results now being obtained by these techniques, but refer the reader, for example, 
to the recent book of [2], or the excellent discussion in [3]. However it is important 
finally to note that the fact there are distinctive signatures that can be picked 
up by these instruments indicate that aggregates of nerve cells are involved in 
solving the relevant tasks by the subjects. Thus population activity is involved, 
and "grandmother" cells are not in evidence. Of course if they were important they 
would slip through the net. However that there are such characteristic signatures 
seems to show that the net is sharp enough to detect relevant aggregated activity. 

3    Inverse Problems 
There has been much work done to decipher the detailed form of the underlying 
neural activity that gives rise to a particular MEG or EEG pattern, the so-called 
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"inverse problem". Various approaches have been used to read off the relevant 
neural processing, mainly in terms of the distribution of the underlying sources 
of current flow. This latter might be chosen to be extremely discrete, as in the 
case of the single dipole fits to some of the data. However more complete current 
flow analyses have been performed recently, as in the case of MFT [4]. This leads 
to a continuous distribution of current over the brain, in terms of the lead fields 
describing the effectiveness of a given sensor to detect current at the position of the 
field in question. 
It has been possible to extend this approach to use cross entropy minimisation so as 
to determine the statistics of the current density distribution in terms of the covari- 
ance matrix of the measurements and the sensor mean results [5]. This approach is 
presently being extended to attempt to incorporate the iteration procedure in the 
MFT method of [4] so as to make the approach more effective [6]. 
There are further deep difficulties with the inverse problem. Thus one has to face 
up to the question of single trials versus averaged values. Averaging has especially 
been performed on the EEG data so as to remove the noise present. However in the 
case of successful task performance the subject must have used activity of a set of 
modules, in a single trial, in a way which avoided the noise. This is an important 
question that will be taken up in the next section: how is successful performance 
achieved in an apparently noisy or chaotic dynamical system such as the brain [7]? 
Averaging only removes the crucial data indicating as to how the solution to this 
task might be achieved. But single trials appear to be very, very noisy. How do 
modules share in the processing so as to overcome the variability of neural activity 
in each of them? 
One way to begin to answer this, and the earlier problem about the inverse problem, 
is to model the neural activity in a direct manner. In other words the actual flow 
of nerve impulses, and their resultant stimulation of other neural modules, must be 
attempted. The resulting electric and magnetic fields of this neural activity must 
then be calculated. This approach will allow more knowledge to be inserted in the 
model being built than by use of methods like MFT, and so help constrain the 
solution space better. 

4    Neural Modules for Perception 
It is possible to develop a program of modelling for the whole brain, so that the 
spatial and temporal flow patterns that arise from given inputs can be simulated. 
That also requires the simulation of reasonably accurate input sensors, such as the 
retina, the nose or the cochlea. There are already simple neural models of such 
input processors (such as in [8]), so that with care the effects of early processing 
could already be included. 
The order of work then to be performed is that of the development of simple neural 
modules, say each with about a thousand neurons, and connected up to others in 
a manner already being determined from known connectivities, such as that of the 
macaque [9]. An important question of homology has to be solved here, but there is 
increasing understanding of how to relate the monkey brain to that of the human, 
so that problem may not be impossible. There is also the difficulty of relating the 
resulting set of, say, a hundred simplified modules to their correct places on the 
cortical surface (and to appropriate sub-cortical places) for a particular human 
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subject. Even assuming the cortical surface is known from an MM scan, the actual 
placing of the modules corresponding to different areas might be difficult. However 
this may be tackled by considering it as a task of minimization of the mismatch 
between the predictions of the model and the actual values of EEG and MEG signals 
during a range of input processing, and including sub-cortical structures, such as 
discussed in [10]. 

5    Neuropsychological Modelling 
There is a big gap between neurons in the brain and the concepts which they sup- 
port. The job of explaining how the latter arise from the former is formidable. 
Indeed it is even harder to consider the ultimate of experiences supported, that of 
consciousness itself. One approach has been to consider the brain as carrying out 
simple computations. However there has recently been an attack on the notion of 
the brain as a 'computational' organ, in the sense that "nervous systems represent 
and they respond on the basis of the representations" [11]. It has been suggested, 
instead, that brains do not perform such simple computations. Thus "It is shown 
that simplified silicon nets can be thought of as computing, but biologically realistic 
nets are non-computational. Rather than structure sensitive rules governed opera- 
tions on symbolic representations, there is an evolution of self-organising non-linear 
dynamic systems in a process of 'differing and deferring' " [7]. 
This claim of non-computationality of the brain is supported by appeals to the 
discovery of chaos in EEG traces, and also that low-dimensional motion may be 
involved in the production of percepts in ambiguity removal. However it is well 
known that neural systems are non-linear, and that such systems can easily have 
chaotic motions if forced into certain parameter regimes. Thus the dynamics of the 
whole brain, written as the dynamical system 

dX/dt = F(X, a) 

in terms of the high dimensional state vector X, is expected to have chaotic motion 
for some of the parameter range a, on which the vector field F depends. Thus X 
could denote the set of compartmental membrane potentials, and F denotes the non- 
linear Hodgkin-Huxley equations for the production of the nerve impulses. However 
there are still expected to be "representations" brought about by the changes of the 
function F by, for example, synaptic modifications caused by learning. If there is no 
change in the transform function F there seems to be no chance for learning. Hence 
the claim of [7] seems to be incorrect when the notion of representation is extended 
to the more general transform function F. This uses the notion of coupled modules 
in the whole brain, as are observed to be needed by the non-invasive techniques 
mentioned earlier. Thus the possibility of chaos will not be regarded as problematic 
to the program being proposed. 
It is possible to build neural modules to model some of the important processes 
observed in psychology. Thus the various sorts of memory and other processes may 
be modelled as: 

■ working memory (as a set of neuron buffers) 

■ semantic memory (as an associative memory) 

■ episodic memory (as a recurrent net) 
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■ attention (as a lateral inhibitory net) 

■ action (by means of a population vector encoding) 

This is an incomplete list, but can be begun to be made complete. However in order 
to do that it would appear necessary to consider the manner in which psychological 
tasks may themselves be broken down. That is done in the next section. 

6    Component Sub-Processes 
The method to be developed here is to try to decompose complex psychological 
functions into a set of lower order component sub-processes (CSPs). These latter 
will attempted to be chosen so as to be independent of each other. That would 
then make the identification of neural substrates for their performance easier, in 
the sense that separate neural modules would be expected to support the different 
CSPs. Lesion deficits would then be expected to show loss of different components 
of the complex tasks, and hopefully even allow better identification of the CSPs 
involved. Such a program has already been started for the frontal lobes in [12], 
where the supposed executive function action of that region has been attempted to 
be decomposed into a set of CSPs in the case of attention. 
The conjecture, then, is that 

Any complex psychological task is decomposable into a set of indepen- 
dent component sub-processes, each of which is distributed across only a 
few separate brain areas. 

Such a conjecture would make the analysis of brain function a problem of mapping 
the corresponding CSPs onto the appropriate brain areas. There may well be a 
limit as to how far it is possible to break down a complex psychological task in a 
manner which still has psychological observability. Thus it might be supposed that 
some small brain areas may give a contribution to a task which does not have any 
clearly observable effect on task performance. However the principle of parsimony 
would lead one to expect that such areas would be rather unlikely, since they do 
not appear to possess much survival value to the system and so could be dispensed 

with. 
It is possible to group complex tasks under the four main headings: 

■ Perception 

■ Movement 

■ Memory 

■ Thought 

It is further seen that perception itself has at least the two component sub-tasks of 
construction of codes (in the five separate modalities) and that of representations 
(such as at feature, object, category, position, body matrix, lexical, phonological 
and word level). There are numerous sub-divisions of memory (episodic, semantic, 
implicit, priming, working, active) with considerable overlap with representations 
(which are the objects of memory). There are functions which are strongly asso- 
ciated with limbic regions, such as goals, values, drives and self representations. 
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There are also frontally-sited functions, as in attention, social behaviour, planning 
and actions [13]. 

The above set of functions is performed by complex brain networks, as demonstrated 
clearly in [2]. It is a very important but difficult task to attempt to reduce this 
broad range to a smaller set of underlying elements, the CSPs alluded to above. 
The following set is proposed as a preliminary version of the required list: 

Analyser (into features, objects or categories) 

Predictor/Actor (as a generator of schema) 

Monitor (for assessing goodness of fit) 

Activator (to promote or inhibit on-going schema or other forms of processing) 

Buffer (for holding activity over a fixed or variable time) 

Clock (for estimating temporal duration) 

Long-term memory stores (both implicit and declarative) 

Goal formation (involving value-memory) 

Drive (arising from internal bodily sources, and being independent of the ac- 
tivator) 

There may be other CSPs which must be added to the above list. Moreover the CSPs 
of a given sort specified above may have different properties amongst each other. 
Thus there are buffers which hold activity for a fixed time (such as the phonological 
store [14]) and those which can preserve it over a variable time of up to 30 or so 
seconds (associated specifically with frontal lobe). Similarly activators can either 
excite or inhibit, and there may thus be two quite separate sub-classes of modules 
performing these two disparate functions. However the suggested list of CSPs given 
above seems to be of enough interest to explore its use in attempting to reduce 
the complexity of psychological tasks to more manageable proportions. It includes 
those suggested in [12] for the frontal lobe, where the 'logic CSP' introduced there 
is assumed to be the schema generator above, and compression of separate inhibitor 
and excitor modules has been introduced in our list to give a common activator 
sub-set. 

The next step is to develop a neural underpinning for the mental processes at the 
level of the CSPs listed above. Thus single modules or small coupled nets of them 
must be constructed which (a) have a close relation to neural modules in the brain 
from an anatomical and functional point of view (b) appear to cause deficits in 
processing when there is loss of the relevant module (c) are seen to be active in the 
performance of a task as determined by some non-invasive measurement. 

7 Neural Modules for Component Sub-Processes 
There are already a number of modules which may be suggested to solve the above 
problems (a), (b) and (c). Thus 
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(i) an analyser may be designed from a convolution filter, such as by the use of a 
Gabor function kernel. Such a filter has similarity to the action of striate visual 
cortex, and may be directly mapped onto the action of simple cells in area VI, 
say. There is also a considerable level of understanding of the manner in which 
such a filter may arise from adaptation to visual input. 

(ii) a predictor may be constructed as a recurrent net of the form 

x(t + l) = F(I(t),x(t),x(t-l),...) 

where such recurrence leads to the generation of a sequence stored in the nature 
of the response function F, which may also be modulated by the external input 
I. Identification of such a system is in terms of well defined recurrence of neural 
output, as is well known as occurring in hippocampus, for example [15]. 

(iii) an activator may be constructed as a set-point detector, say in the form 

x(t + 1) = Y(-I(t) + s) 
where Y is the Heaviside step function. Then neuron x is active (to initiate 
search, say) if the input I (which may be some internal energy level, say) drops 
below the threshold or set-point s. This can be mapped onto various brain-stem 

systems. 

(iv) active memory , comparator action, etc: there are several tasks associated with 
actions which are not so simple to relate to actual neuranatomical structures, 
although there is now increasing work on this area of investigation. Some of 
these are specifically associated with frontal functions. The approach to be 
adopted here now is to take a specific architecture, that of the ACTION net- 
work [16], and determine in which manner it may be able to support the CSPs 
associated with monitoring, prediction/action (schema generation) and active 

memory. 

The ACTION network comprises the frontal cortex, basal ganglia and associated 
thalamic nuclei. It is decomposable at least into the four main loops of motor 
action, frontal eye fields, limbic activity, and cognitive activity [17]. These loops are 
supposed to have a certain degree of autonomy, so might be expected to play an 
important role in the support of CSPs. 
The architecture of the ACTION net is one of a feedback loop between cortex and 
thalamus which has threshold modulation by a non-reciprocal disinhibitory feed 
from cortex down through the basal ganglia to the same area of thalamus as was in 
contact with the cortex in the first place. The ACTION network is built to capitalise 
on this structure so as to allow for the development of a flip-flop action between 
cortex and thalamus. Thus activity arriving at a cortical region from posterior 
cortex (parietal or temporal areas have important cortico-cortical connections with 
frontal cortex) may cause the cortico-thalamic loop to be activated, and stay on. 
Such persistence may crucially require support from the basal ganglia disinhibition, 
which may be achievable by means of cingulate activation (as 'drive') from some 
set point detector, or from some goal memory set up there or on another portion 
of the ACTION network. 
Such functionality may thus be seen to support active memory. By the addition 
of lateral inhibition in the two levels of the basal ganglia it may also be shown to 
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function as a comparator. Again the successful performance by ACTION to achieve 
this can be argued for, since if there is an active memory being preserved on cortex 
and thalamus then a new, but different, one arriving on cortex will produce lateral 
inhibitory activity in basal ganglia. A competitive action is then fought on the basal 
ganglia between the earlier activity and that newly arriving. Assuming that there 
is support for the earlier activity from cingulate, say, as part of drive, then the 
former activity will win this competition on the basal ganglia. That means that the 
new activity will not be able to persist on cortex, since its threshold disihibiting 
mechanism has been lost. Only new activity in agreement with the past activity 
will be able to continue its activity unchecked, and contribute positively to the 
previously stored activity on cortex. This latter may then exceed some detection 
threshold to indicate that a search has been completed successfully, say. 
Besides the obvious mathematical questions associated with the development and 
storage capacity of the proposed cortico-thalamic flip-flop and of the lateral compet- 
itive system on the basal ganglia, there is a more fundamental question that needs 
answering. It is well established experimentally that coding of action in motor or 
premotor cortex is in terms of a population code. Many cells in motor cortex con- 
tribute to the determination of the direction an action will take. Each has its own 
preferred direction, say a8-, and resulting activity proportional to [1 + cos(0 - a,)], 
if 9 is the direction of the upcoming movement. However it does not seem easy to 
preserve this activity level by means of a flip-flop memory, since in that case activity 
is either on or off, and is not graded. Therefore there seems to be a contradiction 
between the proposed functioning of ACTION as a flip-flop and the presence of a 
range of preserved activities by population coding. 
One way to understand the mode of persistence of the motor cortex population 
vector is to suppose that the motor cortex has an attractor behaviour arising from 
its structure as a recurrent net due to the lateral connections it possesses. These 
connections have been observed as having weights anticorrelated with the preferred 
direction of movement vector for each cell; the value w{j = cos(a,- - ay) would 
roughly fit the data of [18. In that case the value of the quantity J2 v>ij [1 + cos(0 - 
aj)] may be seen to be proportional to cos(0-a,-) (with constant of proportionality 
1/3). In order to obtain the additional term 1 in the cortical neuron activity it seems 
necessary to use disinhibition from the basal ganglia side line. This can be achieved 
by the use of summation of activity from a set of N cortical neurons onto a single 
basal ganglia neurons (experimentally there is at least a ratio of a hundred cortical 
neurons to one basal ganglia neuron) and thence to the thalamic cell; the weight of 
the basal ganglia neurons need only be of order 1/N for preservation of the activity. 
There now seems to be two possible sources of active memory in frontal cortex. 
One is that developed in the previous paragraph, which uses a relaxation net of 
recurrent connections which seems to fit the observed pattern of persistence in 
motor cortex. The other is that of the previous paragraph, with a set of attractors 
developed by thalamo-cortical feedback connections (functioning somewhat as a 
bidirectional associative memory or BAM might). However the former model also 
needs the activity of appropriately connected, and active, thalamic neurons to feed 
the threshold disinhibition from thalamus up to the relevant cortical cells. Thus 
there appears to be some sort of a reconciliation of these two proposed modes of 
action of the cortico-thalamic- basal ganglia system. It is clear that further analysis, 
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and much simulation, needs to be performed in order to determine the effectiveness 
of the ACTION network in this case. 

8    Modules for the Mind 
There are clearly many modules involved in the creation of consciousness. An im- 
portant question is if there is a distributed action of the brain to achieve conscious 
awareness or if there are discrete centres which are to be regarded as the true sites 
of such experience which is then shared around or broadcast to other such sites so 
as to give a unified system of response. There is some support for the latter form 
of neural system for consciousness, since inputs are known to be processed up to a 
semantic level without reaching awareness. This is associated with the phenomenon 
of subliminal processing. It is now reasonably well established that awareness and 
response to a later word or other input may be modified by earlier inputs which 
have not gained access to the awareness system but which have been processed up 
to a reasonably high level. The highest level, as noted above, was up to semantic 
memory, but only for words and not for sentences. It is therefore clear that there 
are quite high level modules in the brain whose activation does not directly produce 
consciousness but which are important in the influence their activity may exert on 
later conscious experiences. 
Such a modulating influence has been modelled [19] by means of a coupled set 
of semantic/ working memory modules. The first of these acts in a feedforward 
excitatory manner with dedicated nodes (which might arise from some form of 
topographic map) which feed to similar nodes on a working memory module with 
longer time constants. This latter net acts as a buffer so as to hold activity for 
a second or so, in order that earlier context can be properly incorporated in any 
decision that is taken on the working memory module. This latter has inhibitory 
connections between incompatible nodes, so that their activity may effect the time 
to reach a certain threshold of nodes activated by later inputs from the semantic net. 
It is possible in this manner to model with some accuracy the changes in reaction 
time in lexical decision tasks brought about by subliminally processed letter strings 
at an earlier time. 
Consciousness seems to reside, therefore, on the working memory modules of the 
posterior cortex. These are present for a variety of codes, and allow a detailed 
implementation of the Relational Mind model developed by the author over 20 years 
ago, and published more recently in a more developed form [20]. However there are 
various features of consciousness that are missing from this model, in particular 
the emergence of its uniqueness. Such a feature might be expected to arise from 
some form of competitive action between the different working memory modules. 
Such an action might be able to occur in cortex by suitable connection of excitatory 
outputs from a given working memory module to others. However there is no clear 
picture of such inhibition, especially between the working memory modules which 
appear to be at about the same level in the hierarchy of brain modules following 
cytoarchitectonic and myeloarchitectonic reasoning; these working memory sites 
may be classified as heteromodal cortex. 
In order to resolve this issue of the putative source of long range inhibition in cortex 
(which is also seen to be absent in the modelling of global EEG patterns) it may 
be that there are sub-cortical sites of such inhibition which are of importance. It 
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has been suggested that there are indeed such sites, in particular in the nucleus 
reticularis thalami (NRT for short) which is a sheet of totally inhibitory neurons 
which surround the upper and lateral parts of the thalamic nuclei. NRT cells are 
activated by thalamo-cortical axon collaterals piercing the NRT, as also by cortico- 
thalamic axon collaterals. A model of this system has been constructed [21] which 
has been shown to lead to global competition, and even to allow explanation of the 
relatively long time to reach consciousness determined by the beautiful experiments 
of Libet and his colleagues [22]. 
The picture that emerges from these analyses is of a set of coupled semantic (SM)/ 
working (WM) memories, each for a given code A. There is a competition between 
the activities of the WMs, the winner being that whose content emerges into con- 
sciousness. However this account only deals with posterior sites, so is more correctly 
denoted Cp, the subscript denoting both posterior and passive. The other impor- 
tant component of consciousness will be denoted as Ca, the subscript now denoting 
anterior and active. It is that aspect of awareness which the ACTION network, in- 
troduced above, can also begin to tackle in terms of the various control operations 
it can perform. Various aspects of this have been discussed earlier, as part of the 
consideration of active memory and the comparator action it may support. 

9    Conclusions 
From what has been outlined briefly above the time seems opportune to mount a 
program attempting to simulate the brain on a large scale by modelling it as a set 
of connected modules, each composed of simple neurons connected together by a 
set of well defined rules. The program can be broken down into separate tasks: 

■ construct a software simulation with about 100 modules, each with ever more 
complex neurons, 

■ include increasingly detailed neuroanatomical analyses so as to include increas- 
ing realism, 

■ develop the simulation so as to allow for a modular analysis of psychological 
functions and their component sub-processes, 

■ test the simulation results against non-invasive instrument measurements, 

■ perform mathematical analyses of the resulting equations using techniques from 
dynamical systems and statistical mechanics. 

The resulting set of models will be able to provide an increasingly detailed basis to 
explore the manner in which the brain can support the mind. 
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Reggia [10] explored connectionist models which employed "virtual" lateral inhibition, and in- 

cluded the activation of the receiving node in the equations for the flow of activation. Ahuja [l] 

extended these concepts to include summing the total excitatory and inhibitory flow into a node. 

He thus introduced the concept that the change of activation of a node depended on the integral 
of the flow into that node and not just the present activation levels of the nodes to which it 

is connected. Both Reggia's and Ahuja's models used probability data for the weights. Ahuja's 

model was further extended by Alexander [2], [3], [4] in the RX model to allow both the weights 
and the activations of Ahuja's model to be negative, and further, Alexander's model included 

the prior probabilities of all nodes. Section 1 of this paper contains a complete listing of the RX 

equations and describes their development. The main result of this paper, the demonstration of 

the convergence of the system is presented in Section 2. Section 3 briefly describes the experiments 

testing the RX system and summarizes this article. 

1    The RX Equations 
The net is two-layered, with the lower level being the J input nodes and upper 
level the N output nodes. The values of the upper level nodes, a,-(t), are on [0,1]. 
The prior probability of the existence of the feature associated with the ith node 
is called ä;. Values of a.i(t) greater than 5; indicate a higher than average chance 
of occurrence of the feature represented by node i, and those lower, indicate a less 
than average chance. The activation on the lower level nodes is computed from the 
range of possible input values to a node. If the smallest observed value is Mirij, 
the largest MaXj and the average Avej. Let Observj be the observed value. Then 
define: 

if Observj > Avej    and 
[Observj — Avej] 

[Maxj — Avej] 

[Observj — Avej] 

">-    [Avej-Minj]    °therwise (1) 

Clearly rrij lies on [—1,1]. When rrij assumes the value 1, then the feature repre- 
sented by rrij is present, with probability one. When rrij is -1 the feature is absent 
with probability one. A value of zero indicates that no information exists concern- 
ing the absence or presence of this feature. Two sets of weights exist. The first is 
called Wij, and in absolute value indicates the probability of occurrence (if positive, 
and non-occurrence if negative) of the feature associated with the upper level node 
(ith), given the existence of activation on the lower level node (jth). The second 
weight is called Vij, and in absolute value indicates the probability of occurrence (if 
positive, and non-occurrence if negative) of the feature associated with the lower 
level node, given the existence of activation on the upper level node. 
Two auxiliary functions are to be associated with each a,-(<). The function which 
conveys the excitatory activation is called ExC{(t), and the one which conveys the 
inhibitory is called Inhi(t). Each is the sum of all the excitatory and inhibitory 
flow of activation into node i. These functions are defined by their derivatives and, 
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since the latter are sums of everywhere positive terms, the former are monotone- 
increasing. Each of the terms used in defining the derivative is a function of all the 
a,j(t) and is the variable forcing term. There will be one such function for each lower 
level (j) node, hence a sum need be taken over all the j nodes connected to any 
given i node. The bounded characteristic is achieved by including in the equation 
a factor of the form [N — Exct(t)]. The choice of TV as the bound to which Exci(t) 
approaches is somewhat arbitrary. 

2    Convergence of the RX Equations 
2.1    The RX Equations 

äi(t)    =    K3*cv.*[l-ai(tj\*[Exci{t)-Inhi{t)] (2) 

äi(t)    =    K3*ci*[ai(t)]*[Exci-Inhi] (3) 

According as a,-(<) > a,- or a,-(<) < a, respectively. A3 is a constant of proportion- 
ality, and the values of c; and cu are chosen to keep the derivative continuous at 
a,-: 

cu = 1/(1 - a,-), C( = 1/5,-. 

Exci(t)    =    K\ * a, *[N - Exci(t)] * 

Y^ikn * OUTPPij{t) + Jfci2 * outprriijit) 
i 

+ jfe13 * outmpij (t) + klA * OUTMMij (<)] (4) 

Inhi(t)    =    Ki * ä{ * [N - Inhi(t)] * 

Y^ik2i * outPPij(t) + k22 * OUTPM{j(t) 
j 

+ k23 * OUTMPij (t) + k24 * outmrriij (t)] (5) 

Here ku, ..., k24 are included for generality. 

Wjj * |a,-ft) -a,- 

Yj\wij *\ai(t)-äi\ + ed 

with similar expressions for the other OUTP terms and 

Sfc# ykj * \ak(t) ~ äk 

OUTPPij(t) =       Z'\^\\    Z , ,, * mJ (6) 

outpPij(t) = * rrij * \ai(t) - a; (7) 

with similar expressions for the other outp terms. The e<; is included so that the 
denominator never vanishes. 

2.2    The Dynamics of the RX Net 
The principal result of this section, that the dynamics of the RX system converges, 
is given in Section 2.3 below. Hirsch [8] defines convergent dynamics by stating 
that "the trajectory of every initial condition tends to some equilibrium". Prior to 
stating the theorem, we make some observations about the critical points. 
They are labeled as follows: 

CPo = (rur2,..ri,..rN,N1,..NN,N1,..NN) (8) 

and 

CPL = (ri,r2,..rN-L,äN-L+i..N,Ni, ..NN-L, dN-L+i..dN, Ni, ..NN_L, dN..dN) 

(9) 
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where r,- (the value of a,- ) € (0,1), and the d; (the value of Exci or Inhi) G [0, N). 
By letting L (the number of the at(t) that approach a,-) range from 0 through N, all 
critical points may be described simply by stating the value of L, and that of each 
d,-. Note that the critical points need NOT be isolated. One of the lemmas in [2] 
has demonstrated that Exci(t) and Inh{(t) are monotone increasing functions. As 
a result, points of type CPL may be thought of as "on the way" to CPQ. If Exci(t) 
and Inhi(t) approach N, then the critical point becomes of type CP(x_n. 
The norm adopted in the sequel is the t\ norm [6] where: ||X|| = ]T\ |s,-|. We proved 
[2] that both Exci(t) and Inh{(t) are bounded monotone increasing functions and 
that the RX functions are Lipschitzian throughout their domain of definition. 
We now discuss the details of the interface of the upper and the lower branches 
of the equations. Recall, the upper branch is defined for a,- 6 [a,-, 1], and the lower 
branch for a,- € [0, ä;], Since each branch is analytic on its domain of definition, and 
the composite (upper and lower branches considered as one) function is Lipschitzian 
where the branches meet (at a,- = a,), the solutions through any point exist and 
are unique. To examine stability, it is necessary to look at the derivatives of the RX 
function and we are confronted with the problem that the derivative, per se, does not 
exist on the hyper-plane a, = 5,-. However, the left-hand and right-hand derivatives 
do exist and for the purpose of calculating stability (in our case convergence) of 
the solution, we contend that the above conditions are sufficient since convergence 
is concerned with the behavior of the solutions passing near the critical points. 

2.3     Demonstration of the Convergence of the ai(t): 
Theorem 1   Consider the equations (2) through (9). Given: 

0 < Exci(to), Inhi(to) < N and 0 < a,(io) < 1, all *'; —1 < rrij < 1, some rrij ^ 0. 
(10) 

Then, under the above initial conditions, all trajectories of the RX system tend to 
some equilibrium point. 

Proof From the definition, Exci(t) and Inhi(t) can be shown to be bounded mono- 
tone functions [2], and therefore approach limits, LE, and Lli, respectively (see 
Buck [7], pg 26). The cases that may occur are: 

(1)      LEi    ±    Llr, 
(2a)    LEi    =    Lit = di, (d,- < N) and; 
(26)    LEi    =    Lli = N. 

Case (1) By examining separately the cases where LEi > Lli and Lli > LEi, it is 
easily shown that o,-(<) approaches a limit in either case. (See [2].) 
The remaining two cases are, (2a) in which LEi = Lli = d{ < N, and (2b) in which 
LEi = Lli = N. For the space of any triple, a,-, Exci, and Inhi, a plane is formed 
by Exci = Inhi. This is pictured in Figure 1. The line formed by the intersection 
of the plane with the plane a; = a,- constitutes the ith component of a CPL type 
critical point. Thus, this line forms a continuum of critical points. 
The flow, in both Cases (2a) and (2b), is considered (1) outside a 2rj band (rj 
positive and small) about the plane OJ = 5; and (2) inside this band. It is not 
difficult to analyze what happens outside the band, but pure analysis proofs could 
not be obtained inside the band. Hence, within the 2r\ band of the a,- plane, the 
associated linear system was used to analyze the flow of activation. 
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REGION 2 

REGION I 

ai=äi-rjmsm:rwjl_ 

Region 2 & 4 
Eigenvalues imaginary. 

Region 1 & 3 
Egenvalues real. 

EXC; 

Figure 1    Details of the volume V. 

Case (2a) LE{ = Lli = di: where 0 < d{ < N. 
(1) Flow outside the 2r\ band. Equations (8) furnished the result of formally inte- 
grating equation (4) and equation (5). The results were: 

-Kiäi* f* OUTi(s)ds 
Exci(t)    =    N ■ Exci(to)] *e 

~K20-i* i     outi(s)ds 
Jin 

(11) 

(13) 

(14) 

[N 

Inhi{t)    =    N-[N-Inhi(tQ)]*e  """" Ji<> "—">"" (12) 

Assume that after some time T, a,(t) remains bounded away from the 5; plane, by 
some arbitrarily small amount rj. Therefore: 

/•OO pCO /-00 

h    =     /     OUTi(t)dt=  /    gi\ai-äi\dt>  /     \gi\mmVdt 
Jo Jo Jo 

/•oo />oo yoo 

I2     = OUt(t)dt=   /      flf2|a» -Öj|di>   /       |ff2|mm??cft. 

In equation (9), gi is W;J/(XJ Wy la< — &i\ + e<j), and g2 is 

(^ Vfcj |a; - äi\)/(^2 v'j la< - ä;| + ed) 
ft?*« i 

Not all the dk(t) may approach their äk- Were this to occur, then I2 would ap- 
proach a limit different from I\. Therefore, LE, would be greater than Lit and 
contrary to the assumption (LE, = Lli — d{) would not converge to d,, contrary 
to hypothesis. 
Under the assumption that X^fcaS« Vkj\ak(t) — ä^| ^ 0 we assert that, g2 = O(gi) 
and <7i = 0(g2) (O stands for "order of"). That is, gi and g2 are of the same 
order of magnitude (Olmstead [9], pl41.) since they are both ratios of fractions 
whose denominators are not zero. The integrals 7i, and I2 will therefore diverge 
and, Exci(t) and Inhi(t) will approach N and not d; contrary to assumption. 
(2) The flow inside the 2r] band. Elsewhere [2], the eigenvalues and eigenvectors 
of the Jacobians on each side of the aj(t) — ö,- hyperplane are calculated, and 
solutions of the associated linear system discussed in detail. It suffices to say that 
on one side of the hyperplane a;(f) = a,-, the eigenvalues are imaginary, and cause 
elliptical motion about the line, Exc{(t) = Inhi(t) (at d;), which is in the hyperplane 
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üi(t) = äj. In Figure 1 the imaginary eigenvalues from the linear system characterize 
the motion above the ä; plane, and the real eigenvalues that below this plane. From 
below the a,- plane trajectories in the region where Exc{ > Inhi (called Region 1 in 
Figure 1) approach the ä; plane from below, and penetrate it. Above the a,- plane 
(Region 2 where Exci > Inhi) trajectories travel an elliptic path about the line 
Exci — Inhi and enter Region 4, (where Inhi > Exci). Two situations may occur. 
First, they may leave the n band and go far enough above it that they may not 
return. It is known that the integrals diverge in this region and hence Exct(t) and 
Inhi(t) do not converge to d,-. Second, the trajectories may move back towards the 
hyperplane a;(f) = a,. They penetrate this plane and pass through to the other side. 
Once beneath the a, plane they are in Region 3, where a; < a,-, and Inhi > Exci. 
The trajectory then moves away from the critical point. Since both Exci and Inhi 
are monotone non-decreasing, once past di, they cannot approach this point again. 
Therefore, unless trajectories actually encounter a CPL type critical point, they are 
driven away from it and into the region where |a,- — a; | > n. The integrals 7i and 
I2 therefore increase, and hence Exci and Inhi, being monotone increasing, will 
exceed d, and not approach it as a limit. 
Below the <J,- plane, the eigenvalues are real, but one of them is positive. Bellman, 
[6] (Theorem 3, p88) has shown that, under conditions which the RX equations 
obey, (i.e. differentiability Rudin [11], pg 189) critical points possessing positive 
eigenvalues are unstable. As such, CPL type critical points are unstable equilibrium 
points. Instability is not a strong property, and therefore, the possibility of points 
approaching a CPL type critical point cannot be dismissed. Elsewhere [2] it is 
demonstrated that a solution of the linear system does indeed approach a,. 
We now move on to the last remaining possibility for Exci(t) and Inhi(t): LEi = 
Lh = N. {Case (2b)} 
(1) Flow outside the 2n band. In this case as in the preceding case it is fairly simple 
to show that a;(<) approaches a limit. 
(2) Flow inside the 2r) band. Flow inside the band is approximated by the linear 
system, but all trajectories are now those for which Exci(t) and Inhi(t) are within 
e of N. The approximating linear equations are presented in [2]. As before, the tra- 
jectories will eventually reach Region 3, where, although the constants multiplying 
it are small, the motion is still governed by a positive exponential and a,i(t) will be 
directed away from 5,-. Thus, it would appear that when as(<) leaves the cube of 
figure 1, it will approach a limit. □ 
We conclude by proving a lemma. 

Lemma 2 //lim*-^ Exci(t) = Inhi(t) = N, then Oj(i) will not attain 5; in finite 
time. 

Proof The proof is by contradiction. Assume for t > t* that as(i) = a;. Then, for 
t>t*, OUTi(t) = outi(t) = 0. Therefore: 

/•oo ft* /*oo rt* 

\    OUTi(t) dt=        OUTiit) dt = a /     ouU(t) dt -        ouU(t) dt = ß 
Jo Jo Jo Jo 

(15) 
where a and ß are finite numbers. Integrating (4) we have for a solution to Exci(t): 

lim Exa(t)    =    N-[N- Exa(to)}e-Kl"' iT oc/T.W<« 
i-+oo 
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=    N-[N- Exci(to)]e-Kl's'a ^ N. 

The same can be shown for Inhiit). D 
It would appear from this lemma, and from the fact that a*(i) is very near the a,- 
plane, that the trajectories within the volume being considered are moving very 
slowly. This is to be expected since all terms are small. 
We have thus shown in all three cases (1), (2a) and (2b) that all trajectories of 
the RX system approach limits and hence the demonstration of the convergence of 
a,i(t) is complete. 

3     Summary 
The RX equations have been tested both in associative memory and control appli- 
cations. In associative memory abilities, a back-propagating net's performance only 
slightly exceeded that of the RX net in a test involving classifying RADAR signals. 
In control applications a two input, one output node RX net (three neuron con- 
troller) performed as well or better than a fuzzy controller in the task of backing a 
truck to a loading dock. Because of the apparent biological plausibility of the three 
neuron controller, and the existence of elementary life forms with control circuitry 
yet no memory circuitry, we offer the speculation that neural memory circuitry has 
evolved from neural control circuitry [5]. Recall, that the RX net uses probability 
data as weights and that it involves no learning. In the future, we intend to study 
more biologically plausible versions of the RX net both in memory and control 
applications. 
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This paper proposes a weighted mixture of locally generalizing models in an attempt to resolve the 

trade-offbetween model mismatch and measurement noise given a sparse set of training samples so 

that the conditional mean estimation performance of the desired response can be made adequate 

over the input region of interest. In this architecture, each expert model has its corresponding 

variance model for estimating the expert's modeling performance. Parameters associated with 

individual expert models are adapted in the usual least-mean-square sense, weighted by its variance 

model output. Whereas the variance models are adapted in such a way that expert models of 

higher-resolution (or greater modeling capability) are discouraged to contribute, except when the 

local modeling performance becomes inadequate. 

1 Background 
Artificial neural networks have been widely used in modeling and classification ap- 
plications because of their flexible nonlinear modeling capabilities over the input 
region of interest [3]. The merit of individual networks is generally evaluated in 
terms of cost criterion and learning algorithm by which the free parameters are 
adapted, and the characteristics of the parametric model. These networks often 
employ minimum sum-squared error criteria for parameter estimation such that 
the desired solution is a conditional mean estimator for the given data set, pro- 
vided that the model is sufficiently flexible [2]. The use of such criterion not only 
provides a simple iterative procedure for parameter estimation but also the adapta- 
tion follows the Maximum Likelihood (ML) principle when the model uncertainty is 
a realization of independent Gaussian process. Nevertheless in many applications, 
the generalization performance which utilizes the least-square criterion breaks down 
when the conditional mean response is estimated using a small set of data samples 
with an unknown degree of noise uncertainty. This is because the LS criterion max- 
imizes only the overall fitting performance defined by the data set, rather than 
evaluating the model mismatch in any local input region. Thus, a sufficiently flexi- 
ble model often overfits undesirable noisy components in the data samples whereas 
a model with restricted degrees of freedom is less likely to converge to the condi- 
tional mean of the data response [4]. This paper focuses on an alternative approach 
in dealing with the bias/variance dilemma, which is based on a variation of the 
"Mixture-of-Experts" (or ME) [5]. 

2 Weighted Mixture of Experts (WME) 
One alternative solution to the bias/variance dilemma is to incorporate a weighted 
mixture of expert (or WME) models so that only few experts contribute in any par- 
ticular input region [5]. The internal structure in each of these experts is fixed, and 
a separate variance model is used, one for each expert, to evaluate its corresponding 
expert's performance. If the expert and variance models are chosen to be linear with 
respect to their adaptable parameters, the resulting learning process can be formu- 
lated as a linear optimization problem which enables rapid learning convergence. 
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The learning process for the WME algorithm is based on the competitive nature 
among experts in modeling an unknown mapping, and the overall WME output, 
y(x), is simply a linear combination of individual expert model outputs weighted 
by their variance model outputs, CCJ(X), at x 

"i (       (  \\ m 

*W = £ s£%Ä(.))»W = £»w*w w 
where yj(x) is the jth expert model output, and aj is the corresponding variance 
model output (associated with the jth expert output). Pj(x) can be interpreted as a 
local fitness measure of the jth expert modeling performance at x, and is bounded 
6 [0, 1]. The error criterion for individual expert models is defined as 

1 

whereas the cost criterion for adapting the variance models is 

(2) 

1    " 

n f—' (3) J2 xiPj(xi) (y(xi) - yj(xi)) 
J=1 

where n is the number of data samples, and y(x{) is the data output for a;,-. Ey 

ensures that each of the experts is allowed to best approximate y{xi), weighted by 
Pj(xi), whereas Ea ensures that all experts are specialized in unique input regions 
by assigning a smaller Pj(i) for a larger error variance, and vice versa. The term 
Xj in (3) regulates the variance estimation among models of varying resolution so 
that Xj is larger for higher-resolution experts, and vice versa. If this term was not 
included, the resulting adaptation would lead to a WME model consisting mainly 
of high-resolution experts. Xj can thus be interpreted as a form of regularization 
which takes in prior knowledge about the set of experts for modeling, and can be 
set inversely proportional to their degrees of freedom (e.g. total number of free 
parameters). This criterion is thus different from that proposed in [5] as a result 
of this regularizing factor A. In the case where the model structure of any expert 
is non-uniform across the input region of interest (such as clustering-based radial- 
basis-functions network), Xj can be modified in such a way that it varies from one 
input segment to another. 
Like in many artificial neural networks, the iterative procedure can be modified so 
that the adaptation is carried out sample by sample, and the corresponding cost cri- 
terion can be reduced by dropping the first summation term in (2,3). It is generally 
desirable to maintain equal variance model outputs prior to on-line learning to avoid 
bias toward any particular model structure, unless prior knowledge of the unknown 
mapping is available (e.g. aj(-) = 0). As training proceeds, the variance models 
are adapted to form appropriate prior knowledge for combining the experts. These 
parameterized models can be chosen from a variety of existing locally-generalizing 
models, such as radial-basis-functions, B-Splines or Cerebellar Model Articulation 
Controller (or CMAC) networks. These networks are particularly well suited to the 
WME model implementation because their internal structures are fixed and their 
parameters are defined over a local region of support, thus enabling rapid learning 
convergence. Also, the influence of the variance model is restricted to within the 
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local extent of the training input, and equal contribution will be assigned to regions 
of unseen data samples. If both variance and expert models generalize globally, the 
conditional mean estimation performance is likely to deteriorate considerably as a 
result of temporal instability. 

3    Example 

•~^~m 

12        3        4        5 

I!*'!;! »" #< ;     ,0   - 

10" rn 

10       1        2 

l I l l 

i K„ ,;,|,;;;;yir j; , ;;;■ g ; 

4        5        6        7 

 ' 

10'' 
^i^,^.::..:^.::v::.:::::-::::.- 

10"= 

inJ   

W1 
:   ■;   : 

m"J 

in"4 !..,...! 

Figure 1 (a) Top: The RMS curves as 
a function of training cycle number for 
five different models averaging over 10 
independent sets of 500 noiseless (ran- 
domly drawn) training samples.'-: single 
CMAC (C = 2); '- -': single CMAC (C = 
7); '+': additive CMACs (C = 2, 7); V: 
WME CMACs (1:1 X ratio, C = 2, 7); V: 
WME CMACs (1:3 A ratio, C = 2, 7). (b) 
bottom: same RMS curves as described in 
(a) except that the samples are contam- 
inated with zero-mean Gaussian noise of 
variance 0.1. 

Figure 2 (a) Similar configuration to 
those described in Figure 1 except that 
each independent training set contains 
5000 samples, (b) bottom: same RMS 
curves as described in (a) except that 
the samples are contaminated with zero- 
mean Gaussian noise of variance 0.1. 

In this section, the generalization performance and implementation of the WME 
model are illustrated with an example using a sigmoidal function as desired surface 

y[xi, x2) = 1 + 1/(1 + exp[-100(xi + x2)]) (4) 

This surface has a significant gradient along the ridge on the anti-diagonal but zero 
elsewhere, and thus the WME model is particularly well suited to the surface by 
fitting high-resolution experts near the anti-diagonal and low-resolution experts to 
regions with zero gradient. In this example, the WME model is based on two in- 
dependent expert models, each parameterized as a form of CMAC. As a form of 
a generalized look-up-table, the CMAC output is a linear combination of a set of 
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submodel's output weighted by a set of adaptable parameters. Each of the submod- 
els is defined as a union of non-overlapping basis functions of hypercubic support 
on the input lattice (with the support spanning C number of cells along each in- 
put axis), and these submodels are offset relatively along the input diagonal in the 
standard CM AC where the generalization power is dominant. As the number of 
submodels is also constrained to be C, which is generally greater than 1, the entire 
set of basis functions associated with all submodels are thus sparsely distributed on 
the input lattice. The individual basis function for any input can be either binary 
or continuous (tapered basis function) so that its response is proportional to some 
chosen metric norm between the input and the support center. In addition, the 
layout of the submodels ensures that exactly C parameters are updated at every 
iteration for a given training sample. One important property of the CMAC net- 
work is that a larger C leads to a larger degree of generalization but with fewer 
adaptable parameters, and vice versa. Thus, the trade-off between the computa- 
tional cost and modeling capability must be balanced with great care. The CMAC 
parameters are commonly adapted using the normalized LMS algorithm in order 
to facilitate fast convergence. Further detail of the CMAC modeling capability and 
learning convergence can be found in [3]. 
In the sigmoidal example, the input domains were restricted to [—1.5,1.5]2 and 
their submodel offsets were uniform along univariate axes (see [1] for the improved 
offset scheme). The nonlinear input transformation function associated with each 
of the parameters was chosen to be linearly tapered along each input axis, and the 
function output was formed using the standard product operator. The individual 
expert model output was self-normalized in order to produce a smoother response 
by minimizing bias toward any particular input region. In both expert models, 
each input axis was partitioned into 20 intervals, and the learning rate was initially 
set to 1 (decreased slowly to zero). The generalization parameters, C\ and C2, for 
both expert models (identified as ?/i and 2/2) were chosen to be 7 and 2. Thus, 
the basis support of each cell was seven intervals wide in 2/1, but only two in 2/2. 
and there were 186 and 481 adaptable parameters in j/i and j/2 respectively. Ai 
and A2 were chosen to be 1 and 3 respectively because of the approximate ratio 
of free parameters. The variance models, a\ and »2, were parameterized using the 
same internal structure and learning rule as those of the 1/1 and j/2 respectively, but 
with independent parameter vectors, and the model parameters were adapted using 
least-mean-squares method. In addition to the WME model (Ml), four independent 
models were considered as control comparisons; M2: single CMAC (C = 2); M3: 
single CMAC (C = 7); M4: additive CMACs (C = 2, 7) where pi and p2 were each 
set to 0.5, and finally M5: WME but with A! = A2 = 1. That is, Ml - M4 shared 
identical learning rules and input partitioning with Ml, except the generalization 
width, whereas Ml and M5 were only different in Ai and A2. 
Case 1: RMS Study for Sparse Training Samples 
In this case study, 10 independent sets of 500 data samples {51,52, • • •, 510} were 
generated by uniformly randomly interrogating the sigmoidal function within the 
hypercubic input region £ [—1,1]2. Each of the five models was independently 
adapted using individual sample sequentially drawn from 51, and the training was 
carried out over ten sweeps of 51. Parameters of these models were then nullified, 
and the same run was repeated for the rest of the data sets. An expected root- 
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mean-square (RMS) generalization error curve as a function of training cycle was 
then generated using 3000 independent testing samples for the five models by av- 
eraging the individual RMS performance over the ten data sets. Figure la shows 
the corresponding RMS curves for these models, and Figure lb shows the similar 
curves except that the same set of training samples were contaminated with addi- 
tive Gaussian noise of variance 0.1. It is interesting to observe that Ml and M5 
performed significantly better than the single and additive CMACs (of fixed-pi^), 
indicating the importance of estimating the variance from the data samples. Also, 
Ml provides a better RMS fit as compared to M5, suggesting that the use of A 
can be tuned to provide optimal resource sharing. Similar RMS curves for the first 
500 training samples averaged over the ten runs also indicated similar profiles as 
compared to those in Figure 1, suggesting that the WME model consistently per- 
formed better than the other four models for on-line learning *. More work needs 
to be investigated on the choice of A. 
Case 2: RMS Study for Abundant Training Samples 
In this case study, 10 independent sets of 5000 data samples were instead generated 
using the identical method described above, and the same procedure was carried 
out to form the expected RMS curves for the five models. Figure 2a shows the 
corresponding curves using noiseless samples whereas Figure 2b shows the similar 
curves using noisy samples. It can be observed that except M3 which had almost 
the same RMS characteristics as those shown in case 1, the modeling performances 
among the four models were relatively closer, suggesting that for more abundant 
training samples and sufficient modeling capability, the process for estimating the 
variance becomes less critical, as expected. Note that for all the RMS curves, noise 
overfitting problem was not observed because of the diminishing learning rate for 
adaptation, which can be interpreted as a form of regularization, and is conceptually 
similar to early-stop training approach [6]. 
Case 3: Surface Evaluation 
To visualize the modeling performance, Figure 3 shows the individual model outputs 
evaluated at every point of a 50 X 50 grid after 10 training cycles (1 run) using a 
single set of 500 noisy training samples. The rough surface of M2 was due to the 
smaller local support (less noise averaging) and sparse training samples (insufficient 
generalization), as opposed to that of M3. By estimating the variance over the input 
region of interest, the surface reconstruction was comparatively better, as compared 
to that of MA. Also, the relative weighting surfaces of pi and p2 of Ml were found 
to follow closely the relative gradient of the sigmoidal surface, as desired. 

4    Conclusion 
The validity of the WME model is based on the assumption that the conditional 
mean estimation is the desired learning objective, and the proposed architecture 
makes use of variance models which estimate the error variance for their expert 
models, and assign less weighting to those expert models with larger variance. The 
estimation performance is adapted using a given set of training data, and the set 
of variance models evolves to form the desired prior in choosing an appropriate 
set of expert models. It is intuitive that in order for each and every expert to ex- 
cel in different input regions, their model structures must be unique otherwise the 

1 Results were omitted for space reason. 
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Single CMAC (C = 2) Single CMAC (C = 7) 

0 

Inputl 

Additive CMACs: (C = 2, 7) 

0 

Inputl 

Variance-based CMACs: (C = 2, 7) 

Figure 3 Surface reconstruction after 10 training cycles of iterations using four 
different models and a single set of 500 noisy training samples, (a) top left: single 
CMAC (C = 2); (b) top right: single CMAC (C = 7); (c) bottom left: additive 
CMACs (C = 2, 7); (d) bottom right: WME CMACs (1:3 A ratio, C = 2, 7). 

bias/variance dilemma issue will remain unresolved. Having unique internal expert 
structures also facilitates implicit model selection problems such that one does not 
need to search for an optimal structure for a single model. It would appear that 
having a mixture of experts increases the total number of free parameters for opti- 
mization, and the resulting network will not be parsimonous. Quite differently, the 
objective is not to reduce the number of physical parameters, as advocated in many 
proposed architectures, but rather to reduce the number of effective parameters, 
governed by the variance models, in such a way that the WME model can be more 
robust with respect to noise and model mismatch. 
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The form of a radial basis network is a linear combination of translates of a given radial basis 

function, 4>{r). The radial basis method involves determining the values of the unknown parameters 

within the network given a set of inputs, {x*}, and their corresponding outputs, {fk}- It is usual 

for some of the parameters of the network to be fixed. If the positions of the centres of the basis 

functions are known and constant, the radial basis problem reduces to a standard linear system of 

equations and many techniques are available for calculating the values of the unknown coefficients 

efficiently. However, if both the positions of the centres and the values of the coefficients are 

allowed to vary, the problem becomes considerably more difficult. A highly non-linear problem is 

produced and solved in an iterative manner. An initial guess for the best positions of the centres 

is made and the coefficients for this particular choice of centres are calculated as before. For each 

iteration, a small change to the position of the centres is made in order to improve the quality 

of the network and the values of the coefficients for these new centre positions are determined. 

The overall algorithm is computationally expensive and here we consider ways of improving the 

efficiency of the method by exploiting the local stability of the thin plate spline basis function. 

At each step of the iteration, only a small change is made to the positions of the centres and so 

we can reasonably expect that there is only a small change to the values of the corresponding 

coefficients. These small changes are estimated using local modifications. 

1    Introduction 
We consider the thin plate spline basis function 

<£(r) = r2logr. 

This basis function has not been as popular as the Gaussian, <j>(r) = exp(-r2/2<r), 
mainly due to its unbounded nature. The thinking behind this is that it is desirable 
to use a basis function that has near compact support so that the approximating 
function behaves in a local manner. 
A suitable definition of local behaviour for an approximating function of the form 
given in equation (1) is as follows. The ith coefficient, c,-, of the approximant should 
be related to the values {fk} for values of k where ||xj, - Ai|| is small. Thus, the 
value of the coefficient should be influenced only by the data ordinates whose ab- 
scissae values are close to the centre of the corresponding basis function. Prom this 
definition one deduces that it is advisable to use basis functions that decay, hence 
the desire for basis functions with near compact support. However many authors 
have shown that this deduction is unfounded and it is in fact easier to produce the 
properties of local behaviour by using unbounded functions [4, 2, 3, 1]. 

1.1    The Approximation Problem 
Given a set of m data points, (x*, fk), for k - 1, 2, ..., m, it is possible to produce 
an approximation of the form 

/(x) = f>0(||x-A,||), (1) 
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Data and Centres 

Figure 1    The positions of the data abscissae and the centres of the basis func- 
tions, and the surface approximant to the data. 

such that 

/(Xjfc) «/it. 

It is usual for this approximation problem to be solved in the least-squares sense. 
There are two important categories for such an approximation. The easiest approach 
is to consider the positions of the centres to be fixed, in which case the approxima- 
tion problem is linear and is therefore reasonably efficient to solve. The alternative 
is to allow the positions of the centres to vary or indeed for the number of centres 
to change. For example, once a preliminary approximation has been completed it 
is worth examining the results to determine the quality of the approximation. It 
may be decided that one (or more) regions are unsatisfactory and so extra basis 
functions or an adjustment of the centres of the current basis functions would be 
suitable. 
Under such circumstances it is usual to recalculate the new coefficients for the 
approximation problem with respect to the new positions of the centres. Repeating 
this process too often can be computationally expensive and it is more appropriate 
to modify the current approximation to take into account the small changes that 
have been made to the centres. 

2    Local Stability of the Thin Plate Spline 
This local behaviour of the thin plate spline is demonstrated by the use of an 
example that consists of approximating m = 6,864 data points using n = 320 basis 
functions. The centres for these basis functions are produced using a clustering 
algorithm and the data are fitted in the least-squares sense. Formally, let / be the 
set of indices for the basis functions, {1,2,..., n}. We wish to calculate the values 
of the coefficients {c,} that minimize the ^-norm 0f the residual vector e which 
has the components 

e* = /*-X>^(Hx-A'-H)> 

for k = 1, 2, ..., m. The data, centres and the resulting approximant are shown in 
Figure 1. 
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Figure 2    The differences in the coefficients between the two approximants as a 
function of distance. Standard and logarithmic axes are shown. 

Let j € I be the index for one of the centres. We now perturb this centre by a small 
amount, 6, such that we produce a new centre; 

A* = A; + S. 
All of the other centres are left undisturbed. That is A* = A,- for i € I,i£ j. Again 
the data are fitted in the least-squares sense but this time we use the new set of 
centres, {A*}. Thus we calculate the values of the coefficients c*, for each i g I, 
that minimize the i2-norm of the residual vector e* which has the components 

el=fk-Y,c*<j>(\\x-K\\), 
iei 

for k = 1, 2, ..., m. The two approximants are visually indistinguishable and so 
we compare the coefficients of the respective fits. 
Let di be the distance between the centre of the ith basis function and the position 
of the perturbed centre, d,- = ||A* - A^||. Figure 2 shows the differences between 
the respective coefficients, {(c{ - c*)} of the two fits against the distances {d{}. 
Also shown is the logarithm of the absolute values of the differences between the 
respective coefficients against the same set of distances. 
It can be seen that the differences between the coefficients decay exponentially as 
the distance between the corresponding centre and the perturbation increases. It is 
in this sense that we say that the thin plate spline behaves locally. 
3    Exploiting the Local Behaviour 
Since the effects of perturbing the position of a given centre are only noticeable for 
the coefficients which correspond to basis functions that are centred in the neigh- 
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bourhood of the perturbed centre, it seems reasonable that we should be able to 
retrain the network with these new centre positions by using only the basis func- 
tions from this neighbourhood. The coefficients for the other basis functions can 
be left unchanged on the assumption that they will not be affected by a significant 
amount. By using only a small number of centres we can expect this local approx- 
imation to be significantly faster than the global approach which uses all of the 
centres. 

We adopt an iterative refinement type approach. First we choose to use a given 
number, q, of basis functions whose centres are nearest to the position of the new 
perturbed centre. Let 7* C I be the set of indices for these q basis functions. Then 
we calculate the residuals between the original function values and the current 
estimate for the approximating function. This current estimate is based on the best 
approximant using the original positions of the centres, but with the basis functions 
for the new positions of the centres, 

4=/*-£c^(||x-A*||). 

We wish to approximate these residuals using the approximating form 

£>^(||x-A'||). 

This approximation is again done in the least-squares sense. This produces a "cor- 
rection surface" that we combine with the current estimate for the approximant 
in order to produce an updated estimate (or combined surface) for the required 
approximant. The new approximant has the coefficients 

(new)_ f Ci + Öc? i€P, 
1        Ci i?I*. 

The experiment is repeated for various values of q and the results are discussed 
below. 

3.1     Choice of the Data Subset 
If we use all of the data and therefore all of the residuals, we find that the resulting 
correction surface is fiat in nature and the local variation around the position of 
the perturbation has been largely ignored. The reason for this phenomenon is that 
we are treating each of the data points with equal importance and since there are 
many more data outside the neighbourhood of interest than the number inside, the 
former group of data tend to dominate the approximation. 
Since we are only using the basis functions that are local to the position of the 
perturbation, it seems reasonable to use only the data that lie in the neighbour- 
hood of interest. Unfortunately this too has a problem in that we are effectively 
assigning no importance to the "far-away" data points and so the approximation 
has a tendency to behave in an uncontrolled manner away from the neighbourhood, 
in much the same way that the basis functions are uncontrolled. 
As a compromise we use a subset of data that consists of all of the data points that 
are close to the perturbation and a few data points that are sampled randomly from 
the remainder of the data domain. In the example that we are considering 512 data 
points were used for the local subset and 512 data points were used to represent 
the remainder of the domain. By doing this we wish to give more importance to the 
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local data while still considering the global effect of the correction approximant. 
An advantage that accrues from this approach is that the local approximation 
uses fewer data points than the global method and so we can expect the speed of 
calculating the approximation to be significantly faster. 

4    Concluding Remarks 
Various values for q were chosen and the local modifications were calculated. The 
value of the square root of the mean of the squares of the errors (R.M.S.) between 
all of the original ordinates and the values of the combined surface at the data 
points produced using the global approach was 7.50 x 10-3 which took about 2,870 
seconds to calculate, and the R.M.S. value for the current approximation with the 
new centres was 15.73 x 10-3. By applying the local modification, using q = 7 an 
R.M.S. value of 7.52 x 10~3 was obtained in less than three tenths of a second. 
Clearly it can be seen that an excellent improvement in the R.M.S. value can 
be achieved using only a very small number of basis functions. The required fit 
has been achieved to within an accuracy of one per cent in approximately one 
ten thousandth of the time needed by the global approach. Visually, there is no 
difference between the approximations produced by a) the global approach and b) 
the local modification method. 
Future work in this area would concentrate on the following areas. 

■ Convergence. Since each iteration is so much faster than the global approach 
we can afford to use the technique many times, using different sets of basis 
functions. However it would be necessary to confirm that such an approach 
would continually refine and improve the quality of the approximation. 

■ No attempt has been made to optimize the size or the positions of the subset 
of data used for the local modification. It is envisaged that a small but signif- 
icant improvement in the quality of the approach could be made using such a 
technique. 

■ Similarly the size and position of the subset of centres could be optimized. Par- 
ticular attention could be directed towards the effects of larger perturbations 
and/or several small perturbations. 
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This paper analyses the statistical convergence properties of the modified NLMS rules which 

were formulated in an attempt to produce more robust and faster converging training algorithms. 

However, the statistical analysis described in this paper leads us to the conjecture that the standard 

NLMS rule is the only unconditionally stable modified NLMS training algorithm, and that the 

optimal value of the learning rate and region of convergence for the modified NLMS rules is 
generally less than for the standard NLMS rule. 

1    Adaptive Systems and the NLMS Algorithm 
Nonlinear networks, such as the Cerebellar Model Articulation Controller (CMAC), 
Radial Basis Functions (RBF) and B-splines have an "output layer" of linear param- 
eters that can be directly trained using any of the linear learning algorithms that 
have been developed over the past 40 years. So consider a linear in its parameter 
vector network of the form: 

n 

y(t)    =    ^2xi(t)v>i(t-l) 
«=1 

=    xr(f)w(i-l) (1) 

where y(t) is the system's output, w(* - 1) = (wi(t - 1),..., wn(t - 1)) is the n- 
dimensional weight vector and x(i) = (x\{t),..., xn(t)) is the n-dimensional trans- 
formed input vector at time t. This "input" vector x could possibly be a nonlinear 
transformation of the network's original input measurements. For a linear system 
described by equation 1, the Normalised Least Mean Squares (NLMS) learning 
algorithm for a single training sample {x(t), y(t)} is given by: 

Aw(i) = ?-%&-* x(0 (2) 
IW*)ll2 

where Aw(i) = w(t) - w(t - 1) is the weight vector update, ey(t) = (y(t) - y(t)) 
is the output error, y(t) is the desired network output at time t and ß € [0,2] is 
the learning rate. This simple learning rule has a long history, as it was originally 
derived by Kaczmarz in 1937 [6] and was re-derived numerous times in the adaptive 
control [7] and neural network literature. When the training data are generated by 
an equivalent model with an unknown "optimal" parameter vector w (i.e. there 
is no modelling error or measurement noise), the NLMS algorithm possesses the 
property that: 

IMOIIa < IM< - i)ll2 (3) 
where ew(i) = w - w(t) is the weight error at time t. Hence the estimates of the 
weight vector approach (monotonically) the true values and this learning rule has 
many other desirable properties [3]. 
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2 Modified NLMS algorithms 
In 1971, a set of Modified NLMS (MNLMS) algorithms was proposed by Aved'yan 
[1, 2] and they were again rediscovered over 20 years later by Douglas [5]. The 
MNLMS learning algorithms are derived from the two conditions: 

Find w(i) such that: 
m = xT(t)w(t) (4) 

and    ||Aw(<)||   is minimised. 

for different values of p where 1 < p < oo. 
These instantaneous learning rules are based on generating a new search direction 
by minimising an alternative norm in weight space, and three special cases which 
are worthy of attention are the 1, 2 and oo-norms. The 2-norm corresponds to 
the standard NLMS rule which is denoted by std NLMS, but the L\ learning 
algorithm is: 

A«,,-(i) = H^8iik (5) 

where k - argmax; |x,-(i)|, and this will be referred to as the max NLMS rule. 
The Loo training rule is given by: 

Aw(t) -    ey(«)sg»(*(*)) (6) 

and this will be referred to as the sgn NLMS rule [7]. It is fairly simple to show 
that the a posteriori output error is always zero for these learning rules (with 
p = 1), so the only difference between them is how they search the weight space. 
The max NLMS algorithm always updates the weight vector parallel to an axis, and 
the sgn NLMS rule causes the weight vector update to be at 45° to an axis. This is 
in contrast to the std NLMS training procedure which always projects the weight 
vector perpendicularly onto the solution hyperplane generated by the training data 

[6]. 

3 A Statistical Analysis 
A deterministic analysis of the MNLMS rules has already been completed and 
it is shown in [4] that certain finite training sets can cause unstable learning in 
the linear network for the sgn and max NLMS rules, irrespective of the size of 
the (non-zero) learning rate. The statistical analysis of the MNLMS rules in this 
paper is based on a model of the input vector where all components are mutually 
independent random processes with zero mean values, each of which is a sequence 
of independent identically symmetric distributed random variables. This proivdes 
the conditions of convergence for the modified algorithms, the optimal value of the 
learning rate, and the influence of a noise and the mean value of the input process 
on the convergence conditions. 

3.1    Convergence 
The process w(<) converges (in the statistical mean-square sense) to the optimal 
weight vector, w, if it satisfies the condition limt-K» E (e^(i)ew(<)) = 0, where E () 
denotes the statistical expectation operator. The convergence depends greatly on 
the properties of the input process x(t), for instance the standard NLMS algorithm 
does not converge to its optimal values, when the process x(i) quickly settles to a 
constant value or when it is varies very slowly: the input signal is not persistently 
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exciting. This situation is even worse for both the max and sgn NLMS algorithms 
as they search a restricted section of the parameter space and an optimal solution 
for the training date does not always lie in this region [3]. 
It is possible to write the Euclidean squared norm of the error in the weight vector 
ew(0£w(0 as: 

^(*M*)  = 

y xT(t)s(t)        xT(t)s(t)     r       (xT(<)s(i))2      ) 

where s(t) is the current search direction for the different learning rules, when the 
training data contain no measurment or modelling errors. 
Let us denote by V2(t) = E (e£(i)ew(<)) the statistical expectation of the Euclidean 
squared norm of the error in the weight vectors in equation 7. Taking into account 
the statistical properties of the input vector x(t) and the fact that the trace of 
each matrix in these equations is equal to one, it is possible to generate first-order 
relations: 

V?(t) = (1 - In' V + ß^2) V?(t - 1) (8) 
where a * is used instead of std, sgn and max, and: 

Atd    =    n'1 (9) 

For these parameters we have the following inequalities: 

n"1 <    Agn     < 1 (12) 

n~l <     /?max      < 1 (13) 

The value of the parameters /?sgn and /?max depends on the probability distribution 
function of the vector x(t) and can be calculated analytically in the special cases 
shown below. 
From equation 8, it follows that not only are the convergence conditions for the std, 
sgn and max NLMS algorithms, respectively: 

0<9, = (l-2n-V + /?,//2) < 1 (14) 
but also the optimal value of the learning rate ß by which values of gstd, qsgn and 
?max are minimal: 

£, = {nßty
l (15) 

and consequently: 
9* = (l-/?*n-1) (16) 

These values determine the convergence time of the respective algorithms, and: 

ACgn<    tftd     =1 (17) 
/'max <     /'std     = 1 (18) 

<4n>     «;td     =(l-n~l) (19) 

9max >      ?s*td      = (1 - »-1) (20) 
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Hence it follows that optimal value of the learning rate and the region of convergence 
for the sgn and max NLMS rules are less than for the std NLMS rule, and that 
the convergence time for the std NLMS rule is less than for the other sgn and 
max NLMS rules. However, it is possible to get the analytical expression for ß in 
equations 10 and 11 in certain special cases. 
When Xi(t) has a Laplace distribution: p(x{) = a-1 exp(— \xi\/a), then /?sgn = 
2/(n + 1) and /2sgn = (n + l)/2ra for the sgn NLMS rule. The corresponding region 
of convergence is equal to 0 < (imax < (n + 1) in contrast with the std NLMS rule 
where 0 < fistd < 2. Hence, for large n, the convergence rate of the sgn NLMS rule 
is approximately twice as large as the std NLMS rule. 
When Xi(t) has a uniform distribution p(xi) = l/2a, |x,| < a, then /?max = (n + 
2)/3n, and £max = 3/(n + 2). The corresponding region of convergence is 0 < 
/Wx < 6/(ra + 2) and it follows that for large n, the time of convergence of the 
std NLMS rule is equal to en where c is a constant whereas for the max NLMS rule 
this time is equal to cn(n + 2)/3. 
These examples shows that the std NLMS rule has a larger convergence rate when 
compared with the sgn and the max NLMS algorithm for these specific input distri- 
butions. The MNLMS rules therefore represent a tradeoff between computational 
simplicity and stability/convergence rate. 

3.2    The Influence of Noise 
Assuming that the output data are corrupted with an additive, statistically inde- 
pendent, white noise sequence £(k), with variance <r|, and that the input vector has 
the same statistical properties as were mentioned above, then: 

V?(t) = (1 - 2n/i + ß*n2)V?(t - 1) + jjVf d„ (21) 

where the disturbance terms d„ are given by: 

4td    =    £((xT(i)x(0)"1) (22) 

dsgn    =    n£((xT(*)sgn(x(t)))_1) (23) 

rfmax    =    E(\x-k\t)\) (24) 

Comparing equations 8 and 21, it follows that if the convergence conditions for the 
std, sgn and max NLMS algorithms (see inequality 14) remain constant, then after 
a transient period, the variance equals: 

VL    =    »,?^ (25) 

^ = ^^tzfc^ (26) 

v- = °*<~r±^ (27) 
After the initial "transient" convergence, the mean value of the process w(t) will 
be equal to w and the weight vector will "jitter" around the mean value with a 
variance given in equations 25-27. This region of convergence was termed a minimal 
capture zone by Parks and Militzer [8]. For a specific input distribution, the size of 
the minimal capture zone can be made arbitrary small by choosing a small learning 
rate, fi, but this would also decrease the rate of convergence. 
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3.3 The Influence of Mean Value of the Input Process 
The presence of the mean value in the input vector decreases the rate of convergence 
for all these algorithms. For the std NLMS algorithm, the presence of non zero mean 
value, mx, in the input vector increases the time of convergence approximately 
(l + "4/°"*) times in comparison with the case when the mean value is zero. Hence, 
it is desirable to both centralise the input vector and also transform it such that 
all components of the vector have the same variances. 

3.4 Simulation and Discussion 
The simulation, shown in Figure 1, illustrates the dynamical evolution of the Eu- 
clidean norm of the error in the weight vector for these algorithms. In this figure, the 
learning rates are set to their near-optimal values derived above. The adaptive sys- 
tem has 5 inputs, the optimal weight vector is w = (0.22,0.32,0.42,0.53,0.63) and 
the random, Gaussian input vector has the statistical properties described above 
and these results support the theoretical conclusions. 

*w(*)M<) 

Figure 1 The evolution of the magnitude of the error in the weight vector when 
it is trained using the std NLMS rule (solid line), sgn NLMS rule (dashed line) and 
the max NLMS rule (dotted line), with ^std = 1 and ^Sgn = Mmax = 0.5. 

The MNLMS rules were originally proposed as a computationally efficient method 
for increasing the rate of convergence of the NLMS algorithm as they search weight 
space in orthogonal directions. However, this has serious implications for the stabil- 
ity and rate of convergence of these instantaneous algorithms as has been pointed 
out in this paper. For any network with 3 or more coefficients, the MNLMS pro- 
cedures could potentially be unstable and their persistently exciting conditions are 
more severe than the standard NLMS rule. 
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We extend the recent progress in thermodynamic limit analyses of mean on-line gradient descent 
learning dynamics in multi-layer networks by calculating the fluctuations possessed by finite di- 

mensional systems. Fluctuations from the mean dynamics are largest at the onset of specialisation 

as student hidden unit weight vectors begin to imitate specific teacher vectors, and increase with 

the degree of symmetry of the initial conditions. Including a term to stimulate asymmetry in the 
learning process typically significantly decreases finite size effects and training time. 

Recent advances in the theory of on-line learning have yielded insights into the 
training dynamics of multi-layer neural networks. In on-line learning, the weights 
parametrizing the student network are updated according to the error on a single 
example from a stream of examples, {£",r(£")}, generated by a teacher network 
r(-)[l]. The analysis of the resulting weight dynamics has previously been treated 
by assuming an infinite input dimension {thermodynamic limit) such that a mean 
dynamics analysis is exact[2]. We present a more realistic treatment by calculating 
corrections to the mean dynamics induced by finite dimensional inputs[3]. 
We assume that the teacher network the student attempts to learn is a soft com- 
mittee machine[l] of N inputs, and M hidden units, this being a one hidden layer 
network with weights connecting each hidden to output unit set to +1, and with 
each hidden unit n connected to all input units by Bn(n = 1..M). Explicitly, for 
the N dimensional training input vector £**, the output of the teacher is given by, 

M 

C = £>(Bn.O, (1) 
n = l 

where g(x) is the activation function of the hidden units, and we take g(x) = 
erf(z/\/2). The teacher generates a stream of training examples (f, C), with input 
components drawn from a normal distribution of zero mean, unit variance. The 
student network that attempts to learn the teacher, by fitting the training examples, 
is also a soft committee machine, but with K hidden units. For input f, the student 
output is, 

K 

*(j,n = l>(Jrn, (2) 
»=i 

where the student weights J = {J,-}(i = I..K) are sequentially modified to reduce 
the error that the student makes on an input £**, 

1 1   (K M \2 

*(J,n=2(«r(J,0-C)a = 5    £*(*?)-£</«)      , (3) 
\i=l n = l / 
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with the activations defined xf = Jr£", and y£ = B„-^. Gradient descent on the 
error (3) results in an update of the student weight vectors, 

J"+1=J"--j^'«) (4) 

where, 
" M 

# = *'(*» (5) 
n=l j=l 

and g' is the derivative of the activation function g. The typical performance of the 
student on a randomly selected input example is given by the generalisation error, 

<, = <e(J.O>. (6) 
where (..) represents an average over the gaussian input distribution. One finds 
that eg depends only on the overlap parameters, Ri„ = J,--B„, Qij — J«-Jj, 
and Tnm = B„-Bm(»,j = l..A';n,m = l..M)[2], for which, using (4), we derive 
(stochastic) update equations, 

K?1-< = %*?£. (?) 

We average over the input distribution to obtain deterministic equations for the 
mean values of the overlap parameters, which are self-averaging in the thermody- 
namic limit. In this limit we treat p/N = a as a continuous variable and form 
differential equations for the thermodynamic overlaps, R°n,Q°k, 

jpO 

^ = v(6iyn), (9) 
da 

^-=V(Sixk + 6kxi) + r,2{6iSk). (10) 
da 

For given initial overlap conditions, (9,10) are integrated to find the mean dynamical 
behaviour of a student learning a teacher with an arbitrary numbers of hidden 
units[2] (see fig.(la)). Typically, eg decays rapidly to a symmetric phase in which 
there is near perfect symmetry between the hidden units. Such phases exist in 
learnable scenarios until sufficient examples have been presented to determine which 
student hidden unit will mimic which teacher hidden unit. For perfectly symmetric 
initial conditions, such specialisation is impossible in a mean dynamics analysis. The 
more symmetric the initial conditions are, the longer the trapping in the symmetric 
phase (see fig.(2a)). Large deviations from the mean dynamics can exist in this 
symmetric phase, as a small perturbation from symmetry can determine which 
student hidden unit will specialise on which teacher hidden unit[l]. 
We rewrite (7,8) in the general form 

o^1 - a" = 1 (Fa + rjGa), (11) 

where Fa + r]Ga is the update rule for a general overlap parameter a. In order to 
investigate finite size effects, we make the following ansaetze for the deviations of 
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the update rules Fa (the same form is made for Ga) and overlap parameters a from 
their thermodynamic values,1 

Fa=F°a+AFa+±Fl, a = a^^Aa+^a\ (12) 

where (AFa) = (Aa) = 0. The update rule ansatz is motivated by observing 
that the activations have variance 0(1) which, iterated through (11) yield overlap 
variances of Ö (Ar_1). Terms of the form, Aa represent dynamic corrections that 
arise due to the random examples, and o1 represent static corrections such that 
the mean of the overlap parameter a is given by a0 + r}al/N - the thermodynamic 
average plus a correction. In order to simplify the analysis, we assume a small 
learning rate, rj, so that the thermodynamic overlaps are governed by, 

da0      „„ 
IK = F-' (13) 

where F° is the update rule Fa averaged over the input distribution, and the rescaled 
learning rate is given by 

& = 7)0.. (14) 

Substituting (12) in (11) and averaging over the input distribution, we derive a set 
of coupled differential equations 2 for the (scaled) covariances (AaAft), and static 
corrections a1, 

d(AaAb)      v-^ . A    A  v dF?     ^ dF° 
-^-L = £ (AaAc) -^ + J2 (A&Ac) °fe + (AFaAFb) (15) 

c c 

1 d2a°      da1      v^  . dF°      1 v-^ d2F° 

i be 

Summations are over all overlap parameters, {Qih Rin\i,j = l..K,n= 1..M}. The 
elements (AFaAFb) are found explicitly by calculating the covariance of the update 
rules Fa, and Fb. Initially, the fluctuations (AFaAFb) are set to zero, and equations 
(13,15) are then integrated to find the evolution of the covariances, cov(a,6) = 
(TJ/N) {AaAb), and the corrections to the thermodynamic average values, (rj/N^a1. 
The average finite size correction to the generalisation error is given by 

e' = e°, + jr4> (17) 
where, 

a ab 

These results enable the calculation of finite size effects for an arbitrary learning sce- 
nario. For demonstration, we calculate the finite size effects for a student with two 
hidden units learning a teacher with one hidden unit. In this over-realisable case, 
one of the student hidden units eventually specialises on the single teacher hidden 
unit, while the other student hidden unit decays to zero. In fig.(l), we plot the ther- 
modynamic limit generalisation error alongside the O (N~l) correction. In fig.(la) 
there is no significant symmetric phase, and the finite size corrections (fig.(lb)) 

lli the order parameter represented by c is Qu, then c° = Qjx, and Ac = AQn. 
The small-fluctuations ansatz necessarily yields equations of the same form as presented in 

[4] for the weight component dynamics. Here they are for the order parameter of the system. 
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Figure 1 Two student hidden units, 
one teacher hidden unit. Non zero initial 
parameters: Qn = 0.2,Q22 = Rll = 0.1. 
(a) Thermodynamic generalisation error, 
e°. (b) O (W-1) correction to the gen- 
eralisation error , c*. Simulation results 
for N = 10,7) = 0.1 and (half standard 
deviation) error bars are drawn. 

Figure 2 Two student hidden units, 
one teacher hidden unit. Initially, Qn = 
0.1, with all other parameters set to zero, 
(a) Thermodynamic generalisation error 
e°. (b) O (W-1) correction to the gener- 

alisation error, e*. 

are small. For a finite size correction of less than 10%, we would require an input 
dimension of around N>2br). For the more symmetric initial conditions (fig.(2a)) 
there is a very definite symmetric phase, for which a finite size correction of less 
than 10% (fig.(2b)) would require an input dimension of around N > 50, OOO77. As 
the initial conditions approach perfect symmetry, the finite size effects diverge, and 
the mean dynamical theory becomes inexact. Using the covariances, we can analyse 

U.b 
__'__-!-_!--'     '/^~~ 

0.4 f\ /^-    ' 
i,  

/—Qn 
0.2 ' /    Qn 

0.0  -^      —R,, 

-0.2 

■0.4 " S 

1              1             1             1             1             1             ■ 

Figure 3 (a) The normalised compo- 
nents of the principal eigenvector for the 
isotropic teacher. M = K = 2, (Q22 = 
Q 11,^22 = ßll)- Non zero initial pa- 
rameters Qn = 0.2, Q22 = 0.1, fin = 
0.001 ,fi22 = 0.001. 

Figure 4 Two student hidden units, 
one teacher hidden unit. The initial 
conditions are as in fig.(2).(a) Ther- 
modynamic generalisation error, e°. (b) 

Ö [N~1) correction to the generalisation 

the way in which the student breaks out of the symmetric phase by specialising its 
hidden units. For the isotropic teacher scenario Tnm = 6nm, and M = K = 2, learn- 
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ing proceeds such that one can approximate, Q22 = Qn, R22 = Rn- By analysing 
the eigenvalues of the covariance matrix (AaA6), we found that there is a sharply 
defined principal direction, the components of which we show in fig.(3). Initially, all 
components of the principal direction are similarly correlated, which corresponds to 
the symmetric region. Then, around 5 = 20, as the symmetry breaks, Rn and R21 

become maximally anti-correlated, whilst there is minimal correlation between the 
Qn and Qi2 components. This corresponds well with predictions from perturbation 
analysis[2]. The symmetry breaking is characterised by a specialisation process in 
which each student vector increases its overlap with one particular teacher weight, 
whilst decreasing its overlap with other teacher weights. After the specialisation 
has occured, there is a growth in the anti-correlation between the student length 
and its overlap with other students. The asymptotic values of these correlations are 
in agreement with the convergence fixed point, R2 = Q = 1. 
In light of possible prolonged symmetric phases, we break the symmetry of the 
student hidden units by imposing an ordering on the student lengths, Qn > Q22 > 
••• > QKK, which is enforced in a 'soft' manner by including an extra term to (3), 

1 K-\ 

^jEM^+w-y. (i9) 

where h(x) approximates the step function, 

M*) = ^(l + erf(^)). (20) 

This straightforward modification involves the addition of a gaussian term in the 
student weight lengths to the weight update rule (4). In fig.(4), we show the overlap 
parameters and their fluctuations for /?=10, K = 2, M = 1. This graph is to be 
compared to fig.(2) for which the initial conditions are the same. There is now no 
collapse to an initial symmetric phase from which the student will eventually spe- 
cialize. Also, the initial convergence to the optimal values is much faster. As there 
is no symmetric phase, the finite size corrections are much reduced and are largest 
around the initial value of & where the overlap parameters are most symmetric, 
decreasing rapidly due to the driving force away from this near-symmetric region. 
For the case in which the teacher weights are equal, the constraint (19) prevents the 
student from converging optimally. A naive scheme to prevent this is to adapt the 
steepness, ß, such that it is inversely proportional to the average of the gradients 
Qn, which decreases as the dynamics converge asymptotically. 
We conjecture that such symmetry breaking is potentially of great benefit in the 
practical field of neural network training. 
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The paper presents a theoretical proof revealing an intrinsic limitation of digital VLSI technology: 
its inability to cope with highly connected structures (e.g. neural networks). We are in fact able 
to prove that efficient digital VLSI implementations (known as VLSI-optimal when minimising 
the AT2 complexity measure — A being the area of the chip, and T the delay for propagating the 
inputs to the outputs) of neural networks are achieved for small-constant fan-in gates. This result 
builds on quite recent ones dealing with a very close estimate of the area of neural networks when 
implemented by threshold gates, but it is also valid for classical Boolean gates. Limitations and 
open questions are presented in the conclusions. 
Keywords: neural networks, VLSI, fan-in, Boolean circuits, threshold circuits, Fn|Tn functions. 

1    Introduction 
In this paper a network will be considered an acyclic graph having several input 
nodes (inputs) and some (at least one) output nodes (outputs). The nodes are 
characterised by fan-in (the number of incoming edges — denoted by A) and fan- 
out (the number of outgoing edges), while the network has a certain size (the 
number of nodes) and depth (the number of edges on the longest input to output 
path). If with each edge a synaptic weight is associated and each node computes the 
weighted sum of its inputs to which a non-linear activation function is then applied 
(artificial neuron), the network is a neural network (NN): 

Xk = (z0,...,zn.1)eMn,k=l,...,m, and f(Zk) = a I J2*»izi +A >       C1) 

with W{ £ IR the synaptic weights, 6 6 Ul known as the threshold, and sigma a 
non-linear activation function. If the non-linear activation function is the threshold 
(logistic) function, the neurons are threshold gates (TGs) and the network is just a 
threshold gate circuit (TGC) computing a Boolean function (BF). The cost functions 
associated to a NN are depth and size. These are linked to T « depth and A « size 
of a VLSI chip. Unfortunately, NNs do not closely follow these proportionalities as: 

■ the area of the connections counts [2, 3, 9]; 

■ the area of one neuron is related to its associated weights. 

That is why the size and depth complexity measures are not the best criteria for 
ranking different solutions when going to silicon [11]. Several authors have taken into 
account the fan-in [1, 9, 10, 12], the total number of connections, the total number 
of bits needed to represent the weights [8, 15] or even more precise approximations 
like the sum of all the weights and thresholds [2-7]: 

area ex       £)       (^ \w{\ + \6\ ) . (2) 
all neurons   \i=0 / 

An equivalent definition of 'complexity' for a NN is Y11=o wf [^]- ^ 's wortn 

mentioning that there are also several sharp limitations for VLSI implementations 
like: (i) the maximal value of the fan-in cannot grow over a certain limit; (ii) the 
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maximal ratio between the largest and the smallest weight. For simplification, in the 
following we shall consider only NNs having n binary inputs and k binary outputs. 
If real inputs and outputs are needed, it is always possible to quantize them up to 
a certain number of bits such as to achieve a desired precision. The fan-in of a gate 
will be denoted by A and all the logarithms are taken to base 2 except mentioned 
otherwise. Section 2 will present previous results for which proofs have already been 
given [2-7]. In section 3 we shall prove our main claim while also showing several 
simulation results. 

2    Background 
A novel synthesis algorithm evolving from the decomposition of COMPARISON 
has recently been proposed. We have been able to prove that [2, 3]: 
Proposition 1       The computation of COMPARISON of two rc-bit numbers can 
be realised by a A-ary tree of size C(n/A) and depth C(logn/ log A) for any integer 
fan-in 2 < A < n. 
A class of Boolean functions FA having the property that V/A € FA is lin- 
early separable has afterwards been introduced as: "the class of functions /A of 
A input variables, with A even, /A = f&.(gA/2-i> eA/2-i) ■■■>9o, eo), and comput- 

ing /A = Vfio"1 [9j A [Akl2j+i ek)\"■ By convention, we consider A^1 a d= 

1. One restriction is that the input variables are pair-dependent, meaning that 
we can group the A input variables in A/2 pairs of two input variables each: 
(?A/2-I. 

eA/2-i), •••> (go, eo), and that in each such group one variable is 'dominant' 
(i.e. when a dominant variable is 1, the other variable forming the pair will also be 

1): 

FA =/{/A|/A:{(0,0),(0,l),(l,l)}A/2->{0,l},A/2eIN*, 

A/2-1 

/A=    V 
j=0 

Each /A can be built starting from the previous one /A-2 (having a lower fan-in) 
by copying its synaptic weights; the constructive proof has led to [5]: 
Proposition 2 The COMPARISON of two n-bit numbers can be computed 
by a A-ary tree neural network with polynomially bounded integer weights and 
thresholds (< nh) having size 0(n/A) and depth C(log n/log A) for any integer 
fan-in 3 < A < log  n. 
For a closer estimate of the area we have used equation (2) and proved [5]: 
Proposition 3      The neural network with polynomially bounded integer weights 
(and thresholds) computing the COMPARISON of two n-bit numbers occupies an 
area of 0(n ■ 2A/2/A) for all the values of the fan-in (A) in the range 3 to C(log n). 
The result presented there is: 

ATHn K\~t!l   8"A-6n-5A    log2 „ _     /nlog2n • 2*/2\ 
AT^A)-    A Ä^l—-^-0{    Alog2A     )        (3) 

and for A = logn this is the best (i.e. smallest) one reported in the literature. 
Further, the synthesis of a class of Boolean functions F„im — functions of n input 
variables having m groups of ones in their truth table [13] — has been detailed [4]: 
Proposition 4 Any function / e F„im can be computed by a neural network 
with polynomially bounded integer weights (and thresholds) of size Ö(mn/A) and 

,9i =»e,-,i = 0,1,..., A/2-1 
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depth ö(log(mn)/ log A) and occupying an area of 0(mn ■ 2A/A) if 2m < 2A for 
all the values of the fan-in (A) in the range 3 to C(logn). 
More precisely we have: 

T(n,m,A) = 
log n — 1 

log A - 1 
+ log m + 1 

A(n,m, A) < 2m • 

which leads to: 

An 2A      5(n 

log A 

A) • 2A/2 

A(A - 2) 
+ A< 

/log(mn) 

I   log A 
2m- 1 = o 

and 

mn-2A 

AT2(n,m,A) = 0 
mn • log (run) ■ 1L 

(4) 
A • log2 A 

For 2m > 2A the equations are much more intricate, while the complexity values 
for area and for AT2 are only reduced by a factor (equal to the fan-in [6, 7]). If we 
now suppose that a feed-forward NN of n inputs and k outputs is described by m 
examples, it can be directly constructed as simultaneously implementing k different 
functions from Fn|fn [4, 6, 7]: 
Proposition 5 Any set of k functions /€F„j, i — 1, 2,..., m, i < m < 2A_1 can 
be computed by a neural network with polynomially bounded integer weights (and 
thresholds) having size 0(m(2n + k)/A), depth 0(\og(mn)/ log A) and occupying 
an area of 0(mn ■ 2A/A + rnk) if 2m < 2A, for all the values of the fan-in (A) in 
the range 3 to C(logn). 
The architecture has a first layer of COMPARISONS which can either be imple- 
mented using classical Boolean gates (BGs) or — as it has been shown previously 
— by TGs. The desired function can be synthesised either by one more layer of 
TGs, or by a classical two layers AND-OR structure (a second hidden layer of 
AND gates — one for each hypercube), and a third layer of k OR gates represents 
the outputs. For minimising the area some COMPARISONS could be replaced by 
AND gates (like in a classical disjunctive normal form implementation). 

3    Which is the VLSI-Optimal Fan-In? 
Not wanting to complicate the proofs, we shall determine the VLSI-optimal fan-in 
when implementing COMPARISON (in fact: Fnii functions) for which the solution 
was detailed in Propositions 1 to 3. The same result is valid for F„]m functions as 
can be intuitively expected either by comparing equations (3) and (4), or because: 

■ the delay is determined by the first layer of COMPARISONS; while 

■ the area is determined by the same first layer of COMPARISONS (the ad- 
ditional area for implementing the symmetric 'alternate addition' [4] can be 
neglected). 

For a better understanding we have plotted equation (3) in Figure 1. 
Proposition 6       The VLSI-optimal (which minimises the AT2) neural network 
which computes the COMPARISON of two n-bit numbers has small-constant fan-in 
'neurons' with small-constant bounded weights and thresholds. 
Proof:      Starting from the first part of equation (3) we can compute its derivative: 

d(AT2)    _ 2A'2 log2 n 

dA A2(A-2)2log3A 
x (8nA3 log A - 22nA2 log A + 12n A log A 
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Figure 1 The AT2 values of COMPARISON — plotted as a 3D surface — versus 
the number of inputs n and the fan-in A for: (a) many inputs n < 1024 (4 < A < 
20); and (b) few inputs n < 64 (4 < A < 20). It can be very clearly seen that a 
'valley' is formed and that the 'deepest' points constantly he somewhere between 
&minim = 5 and Amaa:tm = 10. 

5A3logA+10A2logA- 

24 

m~2 
20 

j^nA'logA+^nAlogA 

10 32 
n log A + —— A2 log A - —nA2 + 7—riiA 

In 2 In 2 In 2 
48 

ln2' 

+—A2 

ln2 

40 

ln2' 
which — unfortunately — involves transcendental functions of the variables in an 
essentially non-algebraic way. If we consider the simplified 'complexity' version of 
equation (3) we have: 

d(AT2) _   d   /nlog2n-2A/2 

dA dA V     A log2 A 

2A/2 

A logJ A 

In 2 

2 

1_ 

A AlnA 
which when equated to zero leads to lnA(Aln2 - 2) = 4 (also a transcendental 
equation). This has A = 6 as 'solution' and as the weights and the thresholds are 
bounded by 2A/2 (Proposition 4) the proof is concluded. D 
The proof has been obtained using several successive approximations: neglecting 
the ceilings and using a 'simplified' complexity estimate. That is why we present in 
Figure 2 exact plots of the AT2 measure which support our previous claim. It can 
be seen that the optimal fan-in 'constantly' lies between 6 and 9 (as Aopiim = 6...9, 
one can minimise the area by using COMPARISONS only if the group of ones 
has a length of a > 64 — see [4-7]). Some plots in Figure 2 are also including 
a TG-optimal solution denoted by SRK [14] and the logarithmic fan-in solution 
(A = logn) denoted BJg [5]. 

4     Conclusions 
This paper has presented a theoretical proof for one of the intrinsic limitations of 
digital VLSI technology: there are no 'optimal' solutions able to cope with highly 
connected structures. For doing that we have proven the contrary, namely that 
constant fan-in NNs are VLSI-optimal for digital architectures (either Boolean or 
using TGs). Open questions remain concerning 'if and 'how'such a result could 
be extended to purely analog or mixed analog/digital VLSI circuits. 
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Figure 2 The AT2 values of COMPARISON for different number of inputs n 
and fan-in A (B.A): (a) for 4 < n < 32 including the SRK [14] solution; (b) 
detail showing the optimum fan-in for the same interval (4 < n < 32); (c) for 
32 < n < 256 including the SRK [14] solution; (d) detail showing the optimum 
fan-in for the same interval (32 < n < 256); (e) for 256 < n < 1024 including 
the SRK [14] solution; (f) detail showing the optimum fan-in for the same interval 
(256 < n < 1024). 
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This paper describes classification of UV-Vis optical absorption spectra by binary encoding seg- 

ments of the second derivative of the absorption spectra according to their shape. This allows 

successful classification of spectra using the Back Propagation Neural Network analysis (BPNN) 

algorithm where other preprocessing schemes have failed. It is also shown that once classified, 

estimation of chemical species concentration using a further stage of BPNN is possible. Data for 

the study are derived from laboratory-based measurements of UV-Vis optical absorption spectra 

from mixtures of common chemical pollutants. 

1 Introduction 
This study has the goal of developing artificial intelligence methods, to analyse UV- 
Vis spectra and hence determine actual chemical species and their concentrations in 
real-time in-line monitor systems. Prior to the study, a wide range of NN methods 
(BP, Radial Base, Kohonen, etc.), topologies and iteration conditions were evalu- 
ated for their ability to classify and/or estimate components in the data. All these 
methods were unsuccessful and pointed to the need for a more knowledge-based 
approach. In the present work two approaches to preprocessing the data before 
classification by BPNN are evaluated. The first method, 2nd derivative spectrome- 
try, relies only on the spectral data and if successful would give self-classifying, self 
learning solutions. The second method, a modification of 2nd derivative spectrom- 
etry [1], depends on knowledge of the absorption spectra of expected constituent 
species. 

2 Experimental 
Data for the study were obtained from laboratory-based UV-Vis optical absorption 
spectra measurements taken from mixtures of three common chemical pollutants 
in water prepared at three different concentrations. Stock solutions were prepared 
from addition of Sodium Nitrate, Ammonia solution and Sodium Hypochlorite to 
distilled water and these were mixed in all possible combinations to provide a set 
of training data with 64 members. 64 samples were also mixed for a test set at 
concentrations approximately 30% greater than those for the training set. Species 
and concentrations are summarised in Table 1. The apparatus used in the exper- 
iments consisted of a Hewlett-Packard 8452A diode array spectrometer equipped 
with a 1 cm quartz cell operated remotely using proprietary software. All spectro- 
scopic data were transferred to computer via a serial interface for analysis using 
Microsoft Windows based software including the Neural Desk v2.1 Neural Network 
software package[2]. UV intensity spectra of the solution were recorded from 190 to 
820 nm with 2 nm interval. Absorption spectra were calculated from the intensity 
spectra using equation (1) with spectra from distilled water as a reference. For data 
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TRAINING SET 
NH3-A =    105.83 mg/1 Cla-A    = =    49.23 mg/1 NO3-A    = =    7.75 mg/1 
NH3-B =      32.55 mg/1 Cl2-B    = =    24.62 mg/1 NO3-B     = =    3.88 mg/1 
NH3-C =      11.18 mg/1 Cla-C    = =      6.15 mg/1 NO3-C     = =    1.94 mg/1 

TESTING SET 
NH3-D 137.7 mg/1 CI2-D    = =    60.48 mg/1 NO3-D    = =    9.75 mg/1 
NH3-E 45.9 mg/1 CI2-E    = =    30.24 mg/1 NO3-E     = =    4.88 mg/1 
NH3-F 15.3 mg/1 Cb-F     = 5.04 mg/1 NO3-F     = =    1.95 mg/1 

Table 1    Chemical species and concentrations used to obtain the data sets. 

analysis, data points 4nm apart were used, giving data arrays of 43 points. 

hiank — darkcurrent \ 
10 \Isamph ~ darkcurrent / 

Figure 1 shows absorption spectra obtained for the three individual species and the 
spectra when these are mixed together. These spectra are typical of those obtained 
for this study and they exemplify two important features of UV-Vis spectrometry. 
Firstly, UV-Vis spectral peaks from water are in general broad and overlapping, 
typically 30nm wide - this makes them difficult to discern. Secondly, the dynamic 
range in absorption for the contaminant species is high. Consequently when two or 
more species are mixed at high concentrations very little light is left for measure- 
ment, and the signal to noise level is reduced. The experimental data set is also 
subject to some systematic error due to base line shifts representative of drift in 
the experimental apparatus over long time periods (days) and also because of unde- 
termined chemistry due to reactions between components in the mixture. However 
these factors should not limit the ability to classify the spectra, only the ability 
to quantify, as each constituent in a sample should result in its own distinctive 
adsorption peak, even if the relationship between peak height and concentration 
contains some error and/or is non-linear. 

Figure 1    The absorbance spectra of NO3 7.75 mg/1, NH3 105.83 mg/1 and Cl2 

49.23mg/l and a mixture of these (solid line). 

3    Simulating Data Patterns by Adding Systematic Noise 
To obtain sufficient training and testing sample sets [3], a systematic noise charac- 
teristic of stray light in the optical system was added to the raw data in the range 
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0-5% in intervals of 0.5%, using formula (2), in a similar manner to the work of 
Gemperline et al [4]. This generated 704 training patterns and 704 test patterns 

Aix(generate) - Aix + log (1 + JT^ j (2) 

where A{\ is the absorption of the ith component at the wavelength A, and E is 
the fraction of stray light added. 

4    Results 
A summary of conditions for the BPNN classifiers used after the preprocessing steps 
is given in Table 2. Figure 2 shows a diagram of the root mean square training error 
against iteration epoch and Figure 3 is a diagram of the percentage error in the 
testing set after intervals of 200 epochs. A minimum in the error in Figure 3 indicates 
the best compromise between under training and over training. 

Stochastic back-propagation: 
learning rate = 0.1, alpha = 0.9 
Pre-processing 
2nd derivative values 
Encode the shape of 2nd derivative spectra 

Network Topology 

inputs 
21 
22 

hidden outputs 

Table 2    Summary of conditions for the BPNN classifiers used after the prepro- 
cessing steps. 
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Figure 2 Training error as a function of 
epoch for preprocessing with PCA, 2nd 
Derivative spectra, and Binary Encoded 
2nd Derivative Spectra. 

Figure 3 Testing error after every 200 
training epochs as a function of epoch for 
preprocessing with PCA, 2nd Derivative 
spectra, and Binary Encoded 2nd Deriva- 
tive Spectra. 

5 2nd Derivative Preprocessing with BPNN classification 
Following the procedure of Antonov and Stoyanov [5] whereby the spectra are 
transformed into differential absorption spectra which increase the likelihood of 
discerning spectral features related to the presence of a species, in this trial, a data 
set of 704 spectra of 21 values of the second derivative with respect to wavelength 
(d2A/d\2) were prepared. As shown in Figure 2 and Figure 3 this scheme is not 
successful at classifying the data. 

6 Binary Encoded 2nd Derivative Preprocessing 
The idea behind binary encoding the 2nd derivative spectra is to obtain a code 
that represents the shape of the spectral data that is as independent as possible of 
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the intensity of the data. The procedure consists of binary encoding segments of 
the second derivative of the absorption spectra according to the state of the slope, 
i.e. of the third derivative. Only relevant data are used, that is data from around 
the absorption speaks of expected species. In detail the binary encoding scheme 
consists of: firstly, segmenting the 2nd derivative spectra between 190 - 350 nm into 
10 segments as shown in Figure 3, with the segment between 206 and 224 divided 
into two segments to ensure that the minimum in this region is included; secondly, 
encoding the slope in each segment with a 2 bit binary code of 01 for decreasing, 10 
for increasing, 11 for convex, and 00 for unchanged; and thirdly, using the resulting 
22 bit code as input to a classifying BPNN network. The topology of this network is 
22 input nodes, 5 hidden nodes, and 3 output nodes. The three outputs determine 
whether Nitrate, Chlorine, or Ammonia are present. As can be seen in Figures 2 
and 3, the classification was much more accurate than in the previous attempt 
and the training error converged to a small value very quickly. This results in a 
93.75% prediction confidence overall for classification. However an error of 6.25% is 
obtained for the case of a mixture of Ammonia and Nitrate which is mis-predicted as 
a mixture of Ammonia, Nitrate and Chlorine. However as will be shown in the next 
section when this classification was followed up by the third stage of estimation the 
mis-identified chlorine is predicted as occurring at a low, insignificant level. Thus 
overall the two stages tend to cancel out the error. 

7    Estimation of Concentration 
Following on from the binary encoded second derivative preprocessing, the scheme 
for estimation of concentration also uses a knowledge of components expected in the 
spectra. Here one of seven possible networks which predict concentration is chosen 
depending on the output of the classification network. The seven networks cover all 
the possibilities of the 1. Chlorine, 2. Nitrate, 3. Chlorine and Nitrate, 4. Ammonia, 
5. Chlorine and Ammonia, 6. Nitrate and Ammonia and 7. Chlorine, Nitrate and 
Ammonia. These are described in the next section. In this scheme absorption peak 
shape data for the various components; Nitrate at 210 nm, Hypochlorite at 290 
nm and Monochloramine at 245 nm are used to determine the input variables for 
the seven BPNNs used for estimating concentration. The inputs used are the 7 
values of absorbance centred around the peak region of each species as depicted in 
Table 4. Training and Testing data for these BPNN was generated, using extinction 
coefficient data for each of the expected components and varying the concentration 
of each species over the ranges shown in Table 3. The extinction coefficients data sets 
required for this were obtained by partial least squares fitting the absorption spectra 
using the combined original raw training and testing data sets. Data from this new 
training set was used with one of the following network topologies, depending on the 
output of the classification network. The various networks were: 3 hidden nodes for 
7 inputs for the cases with 1 outputs node, 4 hidden nodes for 14 inputs for the cases 
with 2 outputs, and 5 hidden nodes for 21 inputs for the cases with 3 outputs. The 
algorithm used was Stochastic BP with 0.1 learning rate and 0.9 momentum. It is 
worth noting that these estimation networks are linear since they were trained using 
data from a linear model of absorbance. Testing data for the estimating networks 
were generated by selecting the values of absorption half way between the values of 
absorption used for the training set and adding 5% stray light; i.e. E = 0.05 in (2). 
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The training and testing error for the Ammonia and Chlorine network was typical 
of the result obtained for all the estimation networks. For this the network error 
converged very quickly from an error of 0.1889 at 1st epoch to less than 0.0025 after 
only 100 epochs. The testing error also reduced to a minimum of 0.015 after 500 
training epochs. The overall accuracy of the estimating networks is shown in Table 
4. This figure tabulates the number of training patterns and the resulting error for 
the networks described in the text. 

Concentration Varying (mg/1) 
Net Chlorine Nitrate Ammonia INPUTS Absorption units at 
1. 4.5-40.0 — — 279-303 nm 
2. — 1.2-8.0 — 203-227 nm 
3. 4.0-40.0 1.2-8.0 — 279-303 k 203-227 nm 
4. — — 4.5-40.0 191-219 nm 
5. 4.0-40.0 — 4.0-38.0 191-219 k 231-255 k 279-303 nm 
6. — 1.2-8.0 4.0 - 40.0 191-227 nm 
7. 5.0 - 40.0 1.0-8.0 5.0 - 40.0 191-227 k 231-255 k 279-303 nm 

Table 3 Concentration range of each species used in generating training patterns. 
1.Chlorine (7 inputs) 2. Nitrate (7 inputs) 3. Chlorine and Nitrate (14 inputs) 4. 
Ammonia (7 inputs) 5.Chlorine and Ammonia (21 inputs) 6. Nitrate and Ammonia 
(9 inputs) 7. Chlorine, Nitrate and Ammonia (23 inputs). 

ALGORITHM Stochastic BP with 0.1 learning 
rate and 0.9 momentum 

Network patterns Result Error 
1. Chlorine 356 0.03% 
2. Nitrate 137 0.05% 
3. Chlorine and Nitrate 350 0.18% k 0.20% 
4. Ammonia 356 0.04% 
5. Chlorine and Ammonia 350 0.72% k 0.17% 
6. Nitrate and Ammonia 350 0.68% k 0.56% 
7. Chlorine, Nitrate and Ammonia 512 0.13% k 1.72% k 1.03% 

Table 4    Network's Topology and Performance. 

8    Conclusions 
In laboratory-based trials, 2nd-derivative analysis is found to be an ineffective pre- 
processing method in BPNN classification of UV-Vis absorption from water sam- 
ples. This follows on from earlier work in which various NN algorithms including 
BPNN were evaluated for classification and estimation and also found ineffective. 
Subsequently a more knowledge-based approach has been formulated which restricts 
itself to determining the presence and concentration of a range of expected species. 
The scheme involves a three stage process. In the first stage shape information 
is derived by binary encoding segments of the second derivative of the absorp- 
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Figure    4    Absorption   spectra   and   1st    and   2nd   derivative   spectra   for 
monochloroamine and monochloroamine plus nitrate. 

tion spectra according to their shape. The rationale of this stage is to reduce the 
spectral information to shape sensitive factors. This is found significantly to ease 
classification of the spectra by a second stage of BPNN analysis. For estimation of 
concentration of species absorption data for the expected species is used to train 
a second stage of BPNN, segmentation of the spectra and selection of relevant in- 
puts for the second stage BPNN is determined from the absorption data for the 
expected species, to give the best segmentation pattern and minimum number of 
network inputs. The two-step approach taken to classification and then estimation 
is better than a one step approach. The first-step network specifies which species 
are likely to occur and the second-step network can then focus on a few inputs that 
strongly correlate with the presence of the expected species. Also the second-step 
provides a filter that compensates for classification of species at low concentration 
levels or incorrect identification of species due to low level signals with noise. 
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The statistical mechanical derivation by Simic of the Elastic Net Algorithm (ENA) from a stochas- 

tic Hopfield neural network is criticized. In our view, the ENA should be considered a dynamic 

penalty method. Using a linear distance measure, a Non- equidistant Elastic Net Algorithm (NENA) 

is presented. Finally, a Hybrid Elastic Net Algorithm (HENA) is discussed. 

1     Stochastic Hopfield and Elastic Neural Networks 
Hopfield introduced the idea of an energy function into neural network theory [5]. 
Like Simic [8], we use Hopfield's energy expression multiplied by -1, i.e. 

E(S) = ^WijSiSj +Y^IiSi, (1) 
ij i 

where S 6 {0,1}" and all Wij > 0. Making the units stochastic, the network can be 
analyzed applying statistical mechanics. We concentrate on the free energy [6, 6] 

F = (£(S)) - TS, (2) 

where T — l/ß is the temperature, where (E(S)) represents the average energy, and 
where S equals the so-called entropy. A minimum of F corresponds to a thermal 
equilibrium state [6]. We shall apply the next theorem [10, 11]: 

Theorem 1 In mean field approximation, the free energy Fc of constrained stochas- 
tic binary Hopfield networks, submitted to the constraint £^ Si = 1 equals 

Fc(V) = -§X>yV^ - £ln[X)exp(-)S(5>y V, + *))]• (3) 
ij i j 

The stationary points of Fc are found at state space points where 

V, = P(5,- = 1 A V? ^ i : Sj = 0) = =         '  . (4) 

Let S' denote whether the salesman at time i occupies space-point p or not (S' = 1 
or 0). Then the corresponding Hamiltonian may be stated as [8] 

^(s) = iEE<5p(^+1+5r1) + fEE^^.       (5) 
i      pq i      pq 

The first term represents the sum of distance-squares, the second term penalizes 
the simultaneous presence of the salesman at more than one position. The other 
constraints, which should guarantee that every city is visited once, can be built-in 
'strongly' using Vi : £2- Sij = 1. Eventually, one finds [8, 12] the free energy 

«     PQ i     PI 

iEin[Eexp(-fE^(< + n!'+1+K_1))]-(6) 
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On the other hand, the 'elastic net' algorithm [2] has the energy function 

£en(x)= f £ Ix»1 -x'- |2 -^£ln£eXp(^ |xp -x> |2).        (7) 
» p        i 

Here, x* represents the z'-th elastic net point and xp represents the location of city p. 
Application of gradient descent on (7) yields the updating rule: 

AxJ' = f(xi+l - 2x< + x*-1) + ai J2 Ap(0(xP - x<), (8) 
p 

where Ap(i) = exp(-^- | xp - x!' |2)/£,exp(-^- I X
P ~ x' |2) and where the 

time-step At = 1/ß equals the current temperature T. 

2    Why the ENA is a Dynamic Penalty Method 
Three objections against Simic's derivation of (7) (with ai = a2 = 1) from (6) are 
given. To derive a free energy expression in the standard form (2), Simic applies a 
Taylor series expansion on the last term of (6). We try to do the same. Taking 

/(*) = ElntEexp(4)]. (9) 
p     • 

4 = -/?fEW>   and  ^-^E^^ + C1). (10) 
i q 

and using (4) (adapted to the TSP, with a > 1), we obtain [12] 

/(a + h)    =    ;>>[£exP(ap)]+£/4g-(ap) + ö(h2) (11) 
p i ip P 

pi q i    pq 
Substitution of this result in (6) yields: 

JWV) = lEE^W^ + ^'^-fEE^W- 
i      pq i      pq 

?£hE«p(-/»fE«)-       (12) 
p ' q 

Objection 1. Since h'p is proportional to ß, the Taylor-approximation (11) does 
not hold for high values of ß. This is a fundamental objection because during the 
execution of the ENA, ß is increased step by step. 0 

Next, Simic performs a 'decomposition of the particle (salesman) trajectory': 

x!'= <x(o> =5>p<sP> = X>pi/;'. (13) 
p p 

x(i) is the stochastic and x1 the average position of the salesman at time i. Using 
the decomposition, Simic writes ^2gdpqVq' =| xp - x' |2 . By this, he makes 
a crucial transformation from a linear function in V* into a quadratic one in x*. 
Substitution of the result in (12) (with a = ß), neglect of the second term, and 
application of the decomposition (13) on the first term of (12) finally yield (7). 

Objection 2.   Careful analysis [12] shows that in general 

E W = E(
X
P-

X
*)

2
^' * i X

P-
X>

' i2 • D 

q q 
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Energy (6) is a special case of a generalized free energy of type (3), whose sta- 

tionary points are solutions of V* - exp(-ßJ2jq
wpg

Vq)/T,iexP(-ß1l2jq
wpqVq)- 

Whatever is the temperature, these stationary points are found at states where on 
average, all strongly submitted constraints are fulfilled. Moreover, stationary points 
of a free energy of type (3) are often maxima [11, 12]. 

Objection 3. An analysis of the free energy of the ENA (section 3) yields a very 
different view: both terms of (7) create a set of minima. A competition takes place 
between feasibility and optimality, where the current temperature determines the 
overall effect. This corresponds to the classical penalty method. A difference from 
that approach is that here - like in the Hopfield-Lagrange model [9] - the penalty 
weights change dynamically. Consequently, we consider the ENA a dynamic penalty 
method. O 

The last observation corresponds to the theory of so-called deformable templates 
[7, 13], where the corresponding Hamiltonian equals 

£dt(S, x)=f^| x'+1 - x' p + £ Si | xp - x> |2 . (14) 
i pj 

A statistical analysis [7, 13] of EAi yields the free energy (7). A comparison between 
(7) and (14) clarifies that the first energy expression is derived from the second one 
by adding noise exclusively to the penalty terms. 

3    An Analysis of the ENA 
We can analyze the ENA by inspection of the energy landscape [3, 12]. The general 
behavior of the algorithm leads to large-scale, global adjustments early on. Later on, 
smaller, more local refinements occur. Equidistance is enforced by the first, 'elastic 
ring term' of (7), which corresponds to parabolic pits in the energy landscape. 
Feasibility is enforced by the second, 'mapping term' corresponding to pits whose 
width and depth depend on T. Initially, the energy landscape appears to shelve 
slightly and is lowest in regions with high city density. On lowering the temperature 
a little, the mapping term becomes more important: it creates steeper pits around 
cities. By this, the elastic net starts to stretch out. We next consider two potential, 
nearly final states of a problem instance with 5 permanently fixed cities and 5 
variable elastic net points, of which 4 are temporarily fixed. The energy landscape 
of the remaining elastic net point is displayed. Figure 1 shows the case where 4 of 
the 5 cities have already caught an elastic net point. 

Figure 1    The energy landscape, a non- 
feasible state. 

Figure 2    The energy landscape, an al- 
most feasible state. 
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Net points Fig. 1   A 

Net points Fig. 2   * 
City points    • 

Figure 3    Net points and city point positions. 

The landscape of the 5-th ring point exhibits a large pit situated above the only 
non-visited city. If the point is not too far away from the non-visited city, it can still 
be caught by it. It demonstrates, that a too rapid lowering of the temperature may 
lead to a non-valid solution. In figure 2, an almost feasible final solution is shown, 
where 3 net points coincide with 3 cities. A 4-th elastic net point is precisely in the 
middle between the two close cities. Now, the mapping term only produces some 
small pits. The elastic net term has become perceptible too. Hence, the remaining 
elastic net point is most probably forced to the middle of its neighbors making the 
final state more or less equidistant, but not feasible! Thus, it is possible to end up 
in a non-feasible solution if (a) the parameter T is lowered too rapidly1 or if (b) 
two close cities have caught the same net point. 

4    Alternative Elastic Net Algorithms 
In order to use a correct distance measure and at the same time, to get rid of the 
equidistance property, we adopt a linear distance measure in (7): 

Flin(x) = a2 £ | x^1 - x« | -f £ln£exp(^f | xp - x> |2).       (15) 
i p j 

Applying gradient descent, the corresponding motion equations are found [3]. A 
self-evident analysis shows that, like in the original ENA, the elastic net forces try 
to push elastic net points onto a straight line. There is, however, an important 
difference: once a net point is situated in any point on the straight line between its 
neighboring net points, it no longer feels an elastic net force. Equidistance is not 
pursued anymore and the net points have more freedom to move towards cities. We 
therefore conjecture that the NENA will find feasible solutions more easily. Since 
the elastic net forces are normalized by the new algorithm, a tuning problem arises. 
To solve this problem, all elastic net forces are multiplied by a same factor. The 
final updating rule becomes: 

A**=nt i *+i-* i (Slit i+1 xl~! :*!,)+«. EAP(O(XP-X'). x.-+i _ x» 

Finally, we merged the ENA and the NENA into a hybrid one (HENA): the al- 
gorithm starts using ENA (to get a balanced stretching out) and, after a certain 
number of steps, switches to NENA (to try to guarantee feasibility). 

In optimal annealing[l], the temperature is decreased carefully to escape from local minima. 
Instead, here this is done to end up in a local (i.e., a constrained) minimum. 
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5 Experiments 
We started using the 5-city configuration of section 3. Using 5 up to 12 elastic net 
points, the ENA produced only non-feasible solutions. Using 15 elastic net points, 
the optimal feasible solution is always found. Using 5 elastic net points, the NENA 
occasionally produced the optimal solution. A gradual increase of the number of 
elastic net points results into a rise of the percentage of optimal solutions found. 
Using only 10 elastic net points, we obtained a 100% score. Testing a 15-city- 
problem, we had the similar experiences. However, the picture started to change 
having 30-city problem instances. As a rule, both algorithms are equally disposed 
to find a valid solution, but the quality of the solutions of the original ENA is 
generally better. Trying even larger problem instances, the NENA more frequently 
found a non-valid solution: inspection shows a strong lumping effect of net points 
around cities and sometimes a certain city is completely left out. At this point, the 
hybrid approach of HENA comes to mind. Up to 100 cities, we were unable to find 
parameters which yield better solutions than the original ENA. 

6 Conclusions and Outlook 
Elastic neural networks are dynamic penalty methods, therefore always having a 
tuning problem. Contrary to simulated annealing, the network should end up in 
a local, constrained minimum. Trying the ENA, it may come up with a non-valid 
solution if two cities are close to each other. To guarantee feasibility more easily, we 
implemented a new algorithm, having a linear distance measure. The success of it is 
limited to small problem instances, showing that the quadratic distance measure is 
an essential ingredient of the original ENA. Trying a hybrid algorithm, we did not 
find parameters which yield a better performance. In future research, an alternative 
for HENA can be considered by realizing a gradual switch from the ENA to the 
NENA. Likewise, other formulations of penalty terms can be tested. 
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This paper deals with optimal learning and provides a unified viewpoint of most significant results 
in the field. The focus is on the problem of local minima in the cost function that is likely to affect 
more or less any learning algorithm. We give some intriguing links between optimal learning and 
the computational complexity of loading problems. We exhibit a computational model such that 
the solution of all loading problems giving rise to unimodal error functions require the same time, 
thus suggesting that they belong to the same computational class. 
Keywords: Backpropagation, computational complexity, optimal learning, premature saturation, 
spurious and structural local minima, terminal attractor. 

1     Learning as Optimisation 
Supervised learning in multilayered networks (MLNs) can be accomplished thanks 
to Backpropagation (BP), which is used to minimise pattern misclassifications by 
means of gradient descent for a particular nonlinear least squares fitting problem. 
Unfortunately, BP is likely to be trapped in local minima and indeed many examples 
of local extremes have been reported in the literature. 
The presence of local minima derives essentially from two different reasons. First, 
they may arise because of an unsuitable joint choice of the functions which defines 
the network dynamics and the error function. Second, local minima may be inher- 
ently related to the structure of the problem at hand. In [5], these two cases have 
been referred to as spurious and structural local minima, respectively. Problems of 
sub-optimal solutions may also arise when learning with high initial weights, as a 
sort of premature neuron saturation arises, which is strictly related to the neuron 
fan-in. An interesting way of facing this problem is to use the "relative cross-entropy 
metric'" [10], for which the erroneous saturation of the output neurons does not lead 
to plateaux, but to very high values of the cost. When using the cross-entropy met- 
ric, the repulsion from such configurations is much more effective, and underflow 
errors are likely to be avoided. 
There have also been attempts to provide theoretical conditions aimed at guarantee- 
ing local minima free error surfaces. So far, however, only some sufficient conditions 
have been identified that give rise to unimodal error surfaces. Examples are the the 
case of pyramidal networks [8], commonly used in pattern recognition, radial ba- 
sis function networks [2], and non-linear autoassociators [3]. The identification of 
similar conditions ensures global optimisation just by using simple gradient descent. 
Instead of looking for local algorithms like gradient descent, techniques that guar- 
antee global optimisation may be explored. Of course, one of the main problems 
to face is that most interesting tasks give rise to the optimisation of functions 
with even several thousand variables. This makes it very unlikely that most classic 
approaches [11] can be directly and successfully applied. Instead, the proposal of 
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successful algorithms has to face effectively the curse of dimensionality typical of 
most interesting practical problems. 
Statistical training methods have been previously proposed in order to alleviate the 
local convergence problem. These methods introduce noise to connection weights 
during training, but suffer from extremely slow convergence due to their probabilis- 
tic nature. 
Several numerical algorithms for global optimisation have also been presented, in 
which BP is revisited from the viewpoint of dynamical system theory. Barhen et 
al. [1] have proposed the TRUST algorithm (for Terminal Repeller Unconstrained 
Subenergy Tunneling) that formulates global optimisation as the solution of a sys- 
tem of deterministic differential equations, where E(W) is the function to be op- 
timised, while the connection weights are the states of the system. The dynamics 
used is achieved upon application of the gradient descent to a modified cost which 
transforms each encountered local minimum into a maximum, so that the gradi- 
ent descent can escape from it to a lower valley. A related algorithm, called Magic 
Hair-Brushing, has been proposed in [6]. The system dynamics is now modified 
through a deformation of the gradient field for eliminating the local minima, while 
preserving the global structure of the function. All these algorithms exhibit a good 
performance in many practical cases but, unfortunately, their optimal convergence 
is not formally guaranteed, unless starting from a "good'''' initial point. 

2    The Class of Unimodal Loading Problems 
Most experiments with multilayer perceptrons and BP are performed in a sort of 
magic atmosphere where data are properly supplied to the network which begins 
learning without knowing whether or not the experiment will be successful either 
in terms of optimal convergence and generalisation. A trial and error scheme is 
usually employed, aimed at adjusting the architecture in subsequent experiments 
so as to meet the desired requirements. To some extent, this way of performing 
experiments is inherently plagued by the suspect that the used numerical optimi- 
sation algorithm might fail. Moreover, though optimal learning may be attained 
with networks having a growing number of hidden neurons [14], the generalisation 
to new examples is not guaranteed. The intuitive feeling that, in order to obtain a 
good convergence behaviour, generalisation must be sacrificed, may be effectively 
formalised in a sort of "uncertainty principle of learning'" in which the variable 
representing optimal convergence and generalisation are like conjugate variable in 
Quantum Mechanics [7]. These potential sources of failure of learning algorithms 
give rise to a sort of suspiciousness that turns out to be the unpleasant compan- 
ion of every experiment. This seems to be interwound with the ambitious task of 
learning too general functions. 
Let us focus on the complexity issues related to the loading of the weights indepen- 
dently of the consequent generalisation to new examples. This makes sense once a 
consistent formulation of the learning problem in terms of both the chosen examples 
and the neural architecture was provided. We address the problem of establishing 
the computational requirements of special cases in which the loading of the weights 
can be expressed in terms of optimisation of unimodal error functions. 
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2.1     Canonical Form of Gradient Descent Learning 
Let us consider the following learning equation: 

dW 
™=-7VwE = f(t,W), (1) 

where E(W) is the cost function and W £ Mm is the weight vector. Let us choose 

j = Ti^giTT, being \P a non-negative continuous function of E. Based on this choice 
of the learning rate, the dynamics of the error function becomes 

f = (v^ = ,v„£f(-^£Lv^) =.fW,      m 

which makes the cost function continuously decreasing to zero. Those configurations 
for which VwE = 0 are singular points that attract the learning trajectory [4]. 
Special cases of this reduction to a canonical structure, where the learning is forced 
by function \P and is independent of the problem at hand, have been explored 
in the literature. White [13] has suggested to introduce a varying learning rate so 
that the error dynamics evolves following the equation ^ = —*(£') = — aE, a > 0, 
whose solution is a decaying exponential such that reaching the E = 0 attractor will 
theoretically take infinite time. In practice, this may not necessarily be a problem, 
as the attractor may be approached sufficiently close in a reasonable amount of time, 
even if, for ill-conditioned systems, it can still be prohibitive to reach a satisfactory 
solution. Unfortunately, feedforward neural networks do often result in dynamical 
systems that are ill-conditioned or mathematically stiff and thus the convergence 
is generally very slow. 
In [12] the canonical reduction of equation (2) is based on choosing ^(E) = Ek, 
0 < k < 1, which leads to an error dynamics based on the differential equation 
^ = — Ek, having a singularity at E — 0 violating the Lipschitz condition. If 
EQ > 0 is the initial value of the cost, then the closed form solution is E{t) = 

{El~k - (1 - k)t)^, t < te, where te - ^r (FiS- la)- In the finite time ^ the 

transient beginning from .E'(O) = Eo reaches the equilibrium point E = 0, which is 
a "terminal attractor." 
In this paper, we are interested in finding terminal attractors and, particularly, 
in minimising the time te required to approach the optimal solution. The choice 
*(£') = J) fulfills our needs. Consequently te = E0/n and, in particular, when 
selecting r] — Eo/cr, the terminal attractor is approached for te = a (Fig. lb), 
independently of the problem at hand, while the corresponding weight updating 
equation becomes 

A\AT B1.      Y7 B1 

(3) 
dW        E0    VE 

dt a ||V£||2 

This way of forcing the dynamics leads to establish intriguing links between the 
concept of unimodal problems and their computational complexity. In fact, learning 
attractors in finite time is not only useful from a numerical point of view but, in 
the light of the considerations on the canonical equations (2), is interesting for the 
relationships that can be established between different problems giving rise to local 
minima free cost functions. 

2.2     Computational analyses 
Let us introduce the following classes of loading problems [9]. 
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te   t te   t 

(a) (b) 

Figure 1    Terminal attraction using (a) *(E) = Ek, 0 < k < 1, and (b) <&(E) = JJ. 

Definition 1 A loading problem P is unimodal, P £ UV, provided that there exists 
an associated unimodal error function E(P, W) whose optimisation represents the 
solution of P. 

Note that a given loading problem can be approached in the framework of optimi- 
sation using different error functions. For example, the loading of the weights in 
a multilayer perceptron using linearly-separable patterns may led to sub-optimal 
solution when choosing error functions where the targets are different from the 
asymptotical values of the squashing functions. Nevertheless, it is always possible 
to get rid of these spurious local minima and provide a formulation based on a local 
minima free error function. 
In order to evaluate the computational cost for learning problems belonging to UV 
it is convenient to refer to the parallel computational model offered by differential 
equation (1). We assume that there exists a continuous system implementing this 
differential equation and then consider the following computational class. 

Definition 2 Let us consider the class of loading problems P for which there exists 
a formulation according to the differential equation (1) such that Vr > 0 the loading 
of the weights ends in a finite time te :te < T. This class is referred to as the class 
of finite time loading problems and is denoted by TT. 

Because of the previous analysis on gradient descent the following result holds. 

Theorem 3 UV C TT. 

Proof If P £ UV then one can always formulate the loading according to differential 
equation (3) and the gradient descent is guaranteed not to get stuck in local minima. 
Because of equation (2) the learning process ends for te = a. Hence, Vr > 0, if we 
choose a < r we conclude that P £ TT. D 
This theoretical result should not be overvalued since it is based on a computational 
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Figure 2    The class of unimodal learning problem can be learned in constant time. 

model that does not care of problems due to limited energy. When choosing r 
arbitrarily small, the slope of the energy in Fig. lb goes in fact to infinite. 
One may wonder whether problems can be found in TT that are not in UP (see 
Fig. 2). This does not seem easy to establish and is an open problem that we think 
deserves further attention. 

3    Conclusions 
The presence of local minima does not necessarily imply that a learning algorithm 
will fail to discover an optimal solution, but we can think of their presence as a 
boundary beyond which troubles for any learning technique are likely to begin. 
In this paper we have proposed a brief review of results dealing with optimal learn- 
ing, and we have discussed of problems of sub-optimal learning. Most importantly, 
when referring to a continuous computational model, we have shown that there are 
some intriguing links between computational complexity and the absence of local 
minima. Basically all loading problems that can be formulated as the optimisation 
of unimodal functions are proven to belong to a unique computational class. Note 
that this class is defined on the basis of computational requirements and, therefore, 
seems to be of interest independently of the neural network context in which it has 
been formulated. 
We are confident that these theoretical results open the doors for more thoroughly 
analyses involving discrete computations, that could shed light on the computa- 
tional complexity based on ordinary models of Computer Science. 
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1 Introduction 
In this paper we mainly discuss the mapping of a linear tree classifier (LTC) onto a 
feedforward neural net classifier (NNC) with one hidden layer. According to Park 
[9] such a mapping results in a faster convergence of the neural net and in avoiding 
local minima in network training. In general these mappings are also interesting 
because they determine an appropriate architecture of the neural net. The LTC 
used here is a hierarchical classifier that employs linear functions at each node 
in the tree. For the construction of decision trees we refer to [10, 5, 12]. Several 
authors [11, 4, 9] discuss the mapping of an LTC onto a feedforward net with one 
or two hidden layers, see also [3, 2]. A discussion of a mapping onto a net with two 
hidden layers can be found in Sethi [11] and IvanovafcKubat [4]. A mapping onto a 
net with one hidden layer is discussed in Park [9]. In his approach the mapping is 
based on representing the convex regions induced by an LTC by linear membership 
functions. However, in Park [9] no explicit expression for the coefficients of the 
membership functions is given. These coefficients depend on a parameter p that 
in his paper has to be supplied by the user. In section 2 we show that in general 
it is not possible to find linear membership functions that represent the convex 
regions induced by an LTC. It is however possible to find subregions that can be 
represented by linear membership functions. We derive explicit expressions for the 
aforementioned parameter p, in section 3. This makes it possible to control the 
approximation of the convex regions by membership functions and therefore of 
the initialisation of the neural net. In section 4 we also briefly discuss the use of 
LVQ-networks [6, 7] for such an initialisation. 

2 Non-existence of Linear Membership Functions 
Suppose we are given a multivariate decision tree (AT, C, V). In this notation, M is 
the set of nodes of the tree, £ is the set of leaves of the tree and V is the set of 
linear functions d* : IRn —► Ht, k G AT. In any node k of the tree, the linear function 
dk is used to decide which branch to take. Specifically, we go left if dk(x) > 0, right 
if dk(x) < 0, see figure 1. A decision tree induces a partitioning of IRn: each leaf 
I corresponds with a convex region Ri, which consists of all points x E IR", that 
get assigned to leaf £ by the decision tree. For example, region Ä5 consists of all 
x e ffi." with d^x) < 0 and d3(x) < 0. 
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Figure 1    The convex regions induced by a classification tree. 

We will now discuss the idea of linear membership functions to represent the convex 
regions induced by an LTC, and we show that these functions are in general not 
possible. 
In [9] the following 'theorem' is given without proof, though supplied with heuristic 
reasoning for its plausibility, see also equation 2 in the next section: 

Conjecture (Park[9]) For every decision tree (Af,C,T>) there exists a set of linear 
membership functions M = {nn,££ C], such that for any £,£' € C, with £ ^ £': 

mt{x) > mil(x),Kix e Re. (1) 

According to [9] the coefficients of a linear membership function can be used to 
initialise the weights of the connections of a hidden unit with the input layer. 
For example, the decision tree in figure 1 can be mapped onto a one-hidden-layer 
network with 3 inputs, 5 hidden units and 2 outputs. The weights in the input-to- 
hidden layer are chosen according to the membership functions. 
In [2] we have presented a minimal counterexample to Park's conjecture, and we 
also argued that a mapping is only possible if the decision boundaries are parallel. In 
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the next theorem we show that neither linear nor quadratic membership functions 
that represent the convex regions induced by an LTC can exist. 

Theorem 1 Let (A/-, C, V) be a decision tree, with at least two non-parallel decision 
boundaries. Then the convex regions induced by this tree cannot be represented by 
a set of quadratic polynomials. 

Proof Let R\,R2 and A3 be regions induced by a decision tree such that the 
regions R\ and R2 U A3 are separated by the hyperplane dx(x) = 0,x G IR". We 
assume that di(z) > 0 on Ri and d^x) < 0 on R2 U R3. Similarly, R2 and R3 are 
separated by d2(x) = 0, such that d2{x) > 0 on R2 and d2(x) < 0 on R3. Note 
that such regions will always be induced by a subtree of a decision tree, unless 
all decision boundaries are parallel. Let mi,m2 and 7713 respectively denote the 
membership functions of Ri,R2 and R3. By definition mi = 0 on the hyperplane 
dx(x) - 0. Similarly, m2 = 0 on d2{x) - 0. (Note, that we actually know only that 
m2 is zero on half of the hyperplane d2(x) = 0. However, using a simple result 
from algebraic geometry it follows that m2 must be zero on the whole hyperplane 

d2(x) = 0.) 
Now, let D12 = mi - m2. Then D12 is zero on di(x) = 0, because D12 > 0 on 
Ri and Di2 < 0 on R2 U A3. As a consequence of Hubert's Nullstellensatz di is a 
factor of Di2. Therefore, there exists a polynomial function e such that D\2 - die. 
Since Di2 is at most quadratic by assumption, we conclude that e is a constant or 
a linear function. However, since both die and di are positive on i?i and negative 
on R2, the function e is positive on Ri U R2. Since the degree of e is < 1, e must be 
a positive constant. Similarly, we have Ö13 = di/, where / is a positive constant. 
Therefore D23 = di(f-e). This contradicts the fact that D23 is zero on d2(x) = 0. 
D 
Remark In [2] it is shown that under the conditions of Theorem 1, the membership 
functions mi can be represented by multivariate polynomials, albeit of degree > 5. 

3    An Approximated Mapping of a Decision Tree onto a 
One-hidden-layer Neural Network 

We will show in this section that the difficulties encountered in the preceding section 
may be circumvented by requiring that the points we consider are not too close to 
the hyperplanes associated with the decision tree. 
Let (A/-, C, V) be a decision tree. We will restrict the regions Ri by assuming that 
\/k G M : 0 < e < |dfc(a:)| < E, where e and E are positive constants. The set of 
points in Ri satisfying this condition will be denoted by Si. Hence, Se is a convex 
subregion of Ri. Note also that Rt can be approximated by Si with arbitrary 
precision, by varying the constants e and E. 
In [9] Park considers the following set of linear membership functions: 

m^(:c) = ]C st-^kdk{x), (2) 
kePi 

where Pi is the set of nodes on the path from the root to the leaf t. The constants 
sik are defined such that: 

stkdk(x) > 0. (3) 
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The constants Ck > 0 are determined experimentally in [9]. Here we will derive an 
explicit expression for these constants. Since as we have shown above that in general 
these constants cannot exist if x £ Ri,£ £ C, we will now assume that x £ Si. 

Theorem 2 Let (AT, C, V) be a decision tree. Then there exists a set of linear 
functions M = {mt,££ £}, such that for any £,£' £ C, with £ ^ I': 

Vx€Sf.mt(x)>mr(x). (4) 

Proof Let T be the set of terminal nodes of the tree. An internal node t is called 
terminal if both children of t are leaves. Further, if m and n2 are two nodes, then 
we write m < n2 if ni is an ancestor of n2. Suppose that na $ T, and £, £' are two 
leaves such that na is the last common ancestor of £ and £'. 
We decompose the function mf< as follows: mi>(x) = J2n<n sucidi(x) + 
Y^nj>na

si'Jcidj(x)> where n; 6 Pi and rij £ Pt>. By applying (3) to the node 
na, it can be seen that sia — -sea- From this we conclude mi(x) — mi'(x) = 

2siacada(x) + Ei - E2, where Ei = J2ni>na suCidi(x)> with ni € pi and E2 = 
Eni>„a si'jCjdj(x), with rij £ Pi>. To assure that (4) holds, we require that (E2 - 
Ei)/(2siada(x)) < ca. Since Ei is positive we can satisfy the last condition by taking 
E2/(2s£ada(a;)) < ca, or ^Ylnj>na

c3 ^ c"- This yields the following sufficient 
condition for the constants Cj: 

— max 
2e ieca 

I   J2 CH ^ c*> (5) 

where rij £ Pi and £„ is the set of leaves of the subtree with root na. Condition (5) 
implies: ca > £ Y^nj>na 

ch where rij £ V and V is the longest possible path from 
node na to some leaf. From condition (5) it also follows that the constants c0 are 
determined up to a constant factor. It is easy to see that the constants can be 
determined recursively by choosing positive values ct for the set of terminal nodes 
t£T. a 

Theorem 3 Let p = 1/(1 + f). Then mt(x) = J2k W(r)~W4(z) are linear 
functions for which (4) holds. Here S(k) denotes the length of the longest possible 
path from node rik to a terminal node. 

Proof Using the formula for the partial sum of a geometric series this result can 
be obtained straightforwardly, see [2]. D 
Another expression for the constants ca can be obtained by using the fact that a 
decision tree (AT, C, V) in practical situations is derived from a finite set of examples 
V C ER". See [2]. 

4    Another Initialisation Method 
In this section we consider another well-known classifier: Learning Vector Quan- 
tisation (LVQ) networks [6, 7]. This method can be used to solve a classification 
problem with m classes and data-vectors x £ JRn. It is known that the LVQ-network 
induces a so-called Voronoi tesselation of the input space, see [6] chapter 9. Training 
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of an LVQ-network yields prototype vectors Wj £ IR", j = 1,.. .,m such that an 
input vector x belongs to class j iff the distance to Wj is smallest: 

Vi ^ j : \\WJ - x\\ < \\wi - x\\ => x £ Rj. 

It is easy to see that this is equivalent with 

T 1    T        -^      T *■    T Wj X - -Wj Wj > Wl X - -W{ Wi. 

Now define the linear membership function m; as: 

/ \        T       1   T mi(x) — wl x - -Wi Wi. 

Then 
x £ Ri -<=>■ rrii(x) > mj{x),'ij ^ i. 

Since an LVQ-network is good classifier and can be trained relatively fast, it is 
a good alternative for the initialisation of a neural net using linear membership 
functions. In [2] we show that an LVQ-network cannot induce the convex regions 
induced by an LTC. 
Discussion: We have proven that linear (or quadratic) membership functions rep- 
resenting the convex regions of a linear decision tree in general do not exist. How- 
ever, we give explicit formulae for the approximation of such functions. This allows 
us to control the degree of approximation. Currently, we are investigating how to 
determine an appropriate approximation in a given application. Furthermore, we 
discussed the use of another simple classifier, namely an LVQ-network for initialis- 
ing neural nets, see also [2]. 
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Most conventional techniques for estimating conditional probability densities are inappropriate for 

applications involving periodic variables. In this paper we introduce three related techniques for 

tackling such problems, and test them using synthetic data. We then apply them to the problem 

of extracting the distribution of wind vector directions from radar scatterometer data. 

1 Introduction 
Many applications of neural networks can be formulated in terms of a multi-variate 
non-linear mapping from an input vector x to a target vector t: a conventional 
network approximates the regression (i.e. average) of t given x. But for mappings 
which are multi-valued, the average of two solutions is not necessarily a valid solu- 
tion. This problem can be resolved by estimating the conditional probability p(t\x). 
In this paper, we consider techniques for modelling the conditional distribution of 
a periodic variable. 

2 Density Estimation for Periodic Variables 
A commonly used technique for unconditional density estimation is based on mix- 
ture models of the form 

m 

P(O = !>•>•■(*) (i) 
i=l 

where a,- are called mixing coefficients, and the component functions, or kernels, 
<f>i(t) are typically chosen to be Gaussians [7, 9]. In order to turn this into a model 
for conditional density estimation, we simply make the coefficients and adaptive 
parameters into functions of the input vector x using a neural network which takes 
x as input [4, 1, 5]. We propose three methods for modelling the conditional density. 

2.1     Mixtures of Wrapped Normal Densities 
The first technique transforms \ € HI to the periodic variable 6 e [0, lit) by 6 = 
X mod 2ir. The transformation maps density functions p with domain IR into density 
functions p with domain [0, 2ir) as follows: 

p(ß\x)=   Y,   V{0 + N2*\x) (2) 
JV= —oo 

This periodic function is normalized on the interval [0, 2-n), since 

/     p(6\x)d9 = /     p(x\x)dX = 1 (3) 
J0 */-oo 

Here we shall restrict attention to Gaussian <f>: 

where / £ IRC. 
A mixture model with kernels as in equation (4) can approximate any density 
function to arbitrary accuracy with suitable choice of parameters [7, 9]. We use a 
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standard multi-layer perceptron with a single hidden layer of sigmoidal units and 
an output layer of linear units. It is necessary that the mixing coefficients Qj(x) 
satisfy the constraints 

m 

£<*(*) = 1,     0 <<*<(*) <1. (5) 

This can be achieved by choosing the as(z) to be related to the corresponding 
network outputs by a normalized exponential, or softmax function [4]. The centres 
\ii of the kernel functions are represented directly by the network outputs; this was 
motivated by the corresponding choice of an uninformative Bayesian prior [4]. The 
standard deviations ffi{x) of the kernel functions represent scale parameters and so 
it is convenient to represent them in terms of the exponentials of the corresponding 
network outputs. This ensures that <x,(:c) > 0 and discourages <7t(x) from tending 
to 0. Again, it corresponds to an uninformative prior. To obtain the parameters of 
the model we minimize an error function E given by the negative logarithm of the 
likelihood function, using conjugate gradients. (The maximum likelihood approach 
underestimates the variance of a distribution in regions of low data density [1]. For 
our application, this effect will be small since the number of data points is large.) 
In practice, we must restrict the value of N. We have taken the summation over 7 
complete periods of 2T. Since the component Gaussians have exponentially decaying 
tails, this introduces negligible error provided the network is intialized so that the 
kernels have their centres close to 0. 

2.2 Mixtures of Circular Normal Densities 
The second approach is to make the kernels themselves periodic. Consider a velocity 
vector v in two-dimensional Euclidean space for which the probability distribution 
p(v) is a symmetric Gaussian. By using the transformation vx — ||u||cos0, vy = 
\\v || sinö, we can show that the conditional distribution of the direction 9, given the 
vector magnitude ||v||, is given by 

4>{9) =      /       exp{m cos(0 - ^)} (6) 

which is known as a circular normal or von Mises distribution [6]. The normalization 
coefficient is expressed in terms of the modified Bessel function, 7o(m), and the 
parameter m (which depends on \\v\\) is analogous to the inverse variance parameter 
in a conventional normal distribution. The parameter ip gives the peak of the density 
function. Because of the Io(m) term, care must be taken in the implementation of 
the error function to avoid overflow. 

2.3 Expansion in Fixed Kernels 
The third technique uses a model consisting of a fixed set of periodic kernels, again 
given by circular normal functions as in equation (6). In this case the mixing propor- 
tions alone are determined by the outputs of a neural network (through a softmax 
activation function) and the centres ipi and width parameters m; are fixed. We 
selected a uniform distribution of centres, and m,- = m for each kernel, where the 
value for m was chosen to give moderate overlap between the component functions. 

3    Application to Synthetic Data 
We first consider some synthetic test data. It is generated from a mixture of two tri- 
angular distributions where the centres and widths are taken to be linear functions 
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Figure 1 (a) Scatter plot of the synthetic training data, (b) Contours of the condi- 
tional density p{6\x) obtained from a mixture of adaptive circular normal functions 
as described in Section 2.2. (c) The distributionp(ö|x) for x = 0.5 (solid curve) from 
the adaptive circular normal model, compared with the true distribution (dashed 
curve) from which the data was generated. 

of a single input variable x. The mixing coefficients are fixed at 0.6 and 0.4. Any 
values of 6 which fall outside (-TT, IT) are mapped back into this range by shifting 
in multiples of 2ir. An example data set generated in this way is shown in Figure 1. 
Three independent datasets (for training, validation and testing) were generated, 
each containing 1000 data points. Training runs were carried out in which the 
number of hidden units and the number of kernels were varied to determine good 
values on the validation set. Table 1 gives a summary of the best results obtained, 
as determined from the test set. The mixture of adaptive circular normal functions 
performed best. Plots of the distribution from the adaptive circular normal model 
are shown in Figure 1. 

Method Centres Hidden 
Units 

Validation 
Error 

Test 
Error 

Wrapped normal 
Adaptive circular normal 

Fixed kernel 

6 
6 

36 

7 
8 
7 

1177.1 
1109.5 
1184.6 

1184.4 
1133.9 
1223.5 

Table 1    Results obtained using synthetic data. 

4    Application to Radar Scatterometer Data 
The European Remote Sensing satellite ERS-1 [8, 3] has three C-band radar anten- 
nae which measure the total backscattered power <TQ along three directions. When 
the satellite passes over the ocean, the strengths of the backscattered signals are 
related to the surface ripples of the water which in turn are determined by the 
low-level winds. Extraction of the wind vector from the radar signals represents 
an inverse problem which is typically multi-valued. Although determining the wind 
speed is relatively straightforward, the data gives rise to aliases for the direction. 
For example, a wind direction of 9 will sometimes give rise to similar radar sig- 
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nals to a wind direction of 6 + TT, and there may be further aliases at other angles. 
Modelling the conditional distribution of wind direction provides the most complete 
information for further processing to 'de-alias' the wind directions. 
A large set of ERS-1 measurements has been assembled by the European Space 
Agency in collaboration with the UK Meteorological Office. Labelling of the dataset 
was performed using wind vectors from the Meteorological Office Numerical Weather 
Prediction model. These values were interpolated from the inherently coarse-grained 
model to regions coincident with the scatterometer cells. To provide a challenging 
task, the data was selected from low pressure (cyclonic) and high pressure (anti- 
cyclonic) circulations. Ten wind fields from each of the two categories were used: 
each wind field contains 19 x 19 = 361 cells each of which represents an area of 
approximately 26km x 26km. Training, validation and test sets each contained 1963 
patterns. 
The inputs used were the three values of (70 for the aft-beam, mid-beam and fore- 
beam, and the sine of the incidence angle of the mid-beam (which strongly influences 
the signal received). The uo inputs were scaled to have zero mean and unit variance. 
The target value was expressed as an angle (in radians) clockwise from the satellite's 
forward path. Table 2 gives a summary of the preliminary results obtained. This is 
a more complex domain than the synthetic problem so there were more difficulties 
with local optima. This problem was considerably reduced (to about 25% of the 
runs) by starting training with the centres of the kernel functions approximately 
uniformly spaced in [0, 27r). Of the adaptive-centre models, the one with six centres 

Method Centres Hidden 
Units 

Validation 
Error 

Test 
Error 

Wrapped normal 
Adaptive circular normal 

Fixed kernel 

4 
6 

36 

20 
20 
24 

2474.6 
2308.0 
2028.9 

2446.2 
2337.9 
1908.9 

Table 2    Results on satellite data. 

has the lowest error on the validation data: however fewer centres are actually 
required to model the conditional density function reasonably well. 

5    Discussion 
All three methods give reasonable results, with the adaptive-kernel approaches beat- 
ing the fixed-kernel technique on synthetic data, and the reverse on the scatterom- 
eter data. The two fully adaptive methods give similar results. 
Note that there are two structural parameters to select: the number of hidden units 
in the network and the number of components in the mixture model. The use of a 
larger, fixed network structure, together with regularization to control the effective 
model complexity, would probably simplify the process of model order selection. 
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Figure 2 Plots of the conditional distribution p(0|x) obtained using all three 
methods, (a) and (b) show linear and polar plots of the distributions for a given 
input vector from the test set. The dominant alias at 7r is evident. In both plots, 
the solid curve represents method 1, the dashed curve represents method 2, and the 
curve with circles represents method 3. 
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INTEGRO-DIFFERENTIAL EQUATIONS IN 
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Most neural network models take a neuron to be a point processor by neglecting the extensive 

spatial structure of the dendritic tree system. When such structure is included, the dynamics of 

a neural network can be formulated in terms of a set of coupled nonlinear integro-differential 

equations. The kernel of these equations contains all information concerning the effects of the 

dendritic tree, and can be calculated explicitly. We describe recent results on the analysis of these 

integro-differential equations. 

The local diffusive spread of electrical activity along a cylindrical region of a neu- 
ron's dendrites can be described by the cable equation 

8V „     nd2V 
■m=-eV+Dne 

where x is the spatial location along the cable, V(x, t) is the local membrane po- 
tential at time t, e is the decay rate, D is the diffusion coefficient and I(x,t) is any 
external input. Note that equation (1) is valid provided that conductance changes 
induced by synaptic inputs are small; in the dendritic spines the full Nernst-Planck 
equations must be considered [1]. A compartmental model replaces the cable equa- 
tion by a system of coupled ordinary differential equations according to a space- 
discretization scheme [2]. The complex topology of the dendrites is represented by 
a simply-connected graph or tree T. Each node of the tree a € T corresponds to a 
small region of dendrite (compartment) over which the spatial variation of physical 
properties is negligible. Each compartment a can be represented by an equivalent 
circuit consisting of a resistor Ra and capacitor Ca in parallel, which is joined to 
its nearest neighbours < ß, a > by junctional resistors Rap. We shall assume for 
simplicity that the tree T is coupled to a single somatic compartment via a junc- 
tional resistor R from node aQ € T. (Figure 1). The boundary conditions at the 
terminal nodes of the tree can either be open (membrane potential is clamped at 
zero) or closed (no current can flow beyond the terminal node). 
An application of Kirchoff's law yields the result 

dVa Va        yr-^   Vp - Vg      U -Vg0 , , r ,„> 
Ca-7- = -—+     >        -^  +  £ Oaia0 + Ia(t),      CV S 1 (2) 

at Ka     /^^    Maß R <p,a> 

dU _   u    vao-u ,. 

where Va(t) is the membrane potential of compartment a e T and U{t) is the 
membrane potential of the soma. It can be shown that there exists a choice of 
parameterisation (where all branches are uniform) for which equation (2) reduces 
to the matrix.form [3] 

^ = 2<rQV(t) - (e + 2a)V(t) + U(t)a. + I(<) (4) 
at 
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Ra       -r  ca 

R«ß 

Figure 1    Compartmental model of a neuron. 

where aa = Saiao and a,e are global longitudinal and transverse decay rates re- 
spectively. The matrix Q generates an unbiased random walk on the tree T. That 
is, Q = D-1A where A is the adjacency matrix of T, Aap = 1 if the nodes a and 
ß are adjacent and Aap = 0 otherwise, and D = diag(da) where da is the coor- 
dination number of node a. Our choice of parameterisation is particularly useful 
since it allows one to study the effects of dendritic structure using algebraic graph 
theory (see below). More general choices of parameterisation where each branch is 
nonuniform, say, can be handled using perturbation theory. 
Since the output of the neuron is determined by the somatic potential U(t), we can 
view the dendritic potentials as auxiliary variables. In particular, using an integrat- 
ing factor we can solve equation (4) for V(i) in terms of U(t) and I(t). Substitution 
into equation (3) then yields the integro-differential equation (assuming without 
loss of generality that V(0) = 0 and RC = 1) 

dU = -pU(t) + f J2 G°oa(< - t') [U(f)6a,ao + Ia(t')} dt' (5) 
-'0  „c~ dt 

agr 

where p - 1/RC + 1/RC and 

Gaß{t) = e" (c+2<7)t  [2<rtQ 
l^tQU (6) 

is the dendritic membrane potential response of compartment a at time t due to a 
unit impulse stimulation of node ß at time t = 0 in the absence of the term U(t)a. 
on the right-hand side of equation (4). All details concerning the passive effects 
of dendritic structure are contained within G(t). Note that in deriving equation 
(5) we have assumed that the inputs Ia(t) are voltage-independent. Thus we are 
ignoring the effects of shunting and voltage-dependent ionic gates. 
One way to calculate Gap(t), equation (6), would be to diagonalize the matrix Q 
to obtain (for a finite tree) 

Gaß(t) = e-(f+2*)4 £ uraurßJ°^ (7) 
r 

where {Ar} forms the discrete spectrum of Q and ur are the associated eigenvectors. 
It can be shown that the spectral radius p(Q) = 1 and an application of the Perron- 
Frobenius Theorem establishes that (a) A = 1 is a nondegenerate eigenvalue and (b) 
eigenvalues appear in real pairs ±Ar. However, such a diagonalization procedure is 
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rather cumbersome for large trees and does not explicitly yield the dependence on 
tree topology. An alternative approach is to exploit the fact that Q generates a 
random walk on T. That is, expand equation (6) to obtain 

G^^^^E^fwU (8) 
r=0 

where [Qr]a/3 is equal to the probability of an unbiased random walk on T reaching 
a from ß in r steps. Using various reflection arguments, which is equivalent to 
a generalized method of images, one can express Gaß(t) as a series involving the 
response function of an infinite, uniform chain of dendritic compartments [3,4], 

(a/3) 

Gaß(t) = e-(£+2">' Y, 6^ (2at) (9) 

where In is the modified Bessel function of integer order n. In equation (9), the 
summation is over trips y. starting at node ß and ending at node a, and a trip is a 
restricted kind of walk in which changes of direction can only take place at branching 
nodes or terminal nodes of the tree. The length of a trip (number of steps) is given 
by M,j. The constant coefficients b^ are determined by various factors picked up 
along a trip according to the following "Feynman Rules", (i) A factor of +1 on 
reflection from a closed terminal node and a factor of —1 on reflection from an 
open terminal node, (ii) A factor of 2/da when a trip passes through a branching 
node with coordination number da > 2. (iii) A factor of 2/da -1 when a trip reflects 
at a branching node of coordination number da. (iv) A factor of 2/da when a trip 
terminates at a branching node (da > 2) or a closed terminal node (da — 1). 
The series (9) will typically involve an infinite number of terms. However, for any 
fixed t, trips with length M^ » \fai can be neglected so that the sum over fi 
can be truncated to include only a finite number of terms. Thus, using an efficient 
algorithm for generating trips should provide an efficient method for calculating 
G(t) at small and intermediate times. Moreover, one can also extract information 
concerning the long-time behaviour by Laplace-transforming (9) 

z + e f z + e 
A±w = -2T±Vl^rJ -1 (10) 

where e = e + 2<r. The resulting summation over trips can be performed explicitly 
to yield a closed expression for G(z) [5]. In the remainder of this paper we consider 
some examples illustrating the effects of dendritic structure on neurodynamics. We 
shall find that the Laplace transform G(z) plays a crucial role in determining the 
stability of these systems. 
A major issue at the single neuron level is the effect of the coupling between soma 
and dendrites on the input-output response of a neuron satisfying equation (5), 
which may be rewritten in the form 

^    =    -pU(t)+ f H(t-t')U(t')dt' + i(t), 
at J0 
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Figure 2 Schematic diagram of a com- 
partmental model leaky integrator neu- 
ron (LIN) indicating the feedback arising 
from the electrical coupling between the 
soma and dendrites. 

Figure 3 A network of compartmen- 
tal model neurons indicating the axo- 
dendritic connection from neuron j to 
compartment a of neuron i. 

i(t) t')Ia(t')dt' (11) 

z + p-H(z) 
(t)     (12) 

This describes a leaky-integrator neuron with external input I(t) and an additional 
feedback term mediated by the kernel H{t) — Gaoa0(t), which takes into account 
the underlying coupling between U(t) and the dendritic potentials. The model is 
represented schematically in figure 2. Since both H(t) and I(t) are continuous on 
[0, oo) we can apply a variation of parameters formula to obtain 

U(t) = Z(t)U(0) + [ Z(t- t')I(t')dt',    Z(t) = C~1' 1 

Jo 

where £_1 indicates the inverse Laplace transform. An interesting application of 
the model is to the case of reset where the neuron's somatic potential is reset to 
a zero resting level whenever it reaches a threshold h and fires. Let T„ denote 
the nth firing-time of the neuron. Then U(t) evolves according to equation (11) 
for Tn < t < Tn+1 and U(TN) = h so that U(T+) = 0. It can be shown that 
the firing-times evolve according to a second-order difference equation rather than 
a first-order one typical of standard integrate-and-fire models. (For more details 
see Ref. [6]). Thus the coupling between soma and dendrites can have non-trivial 
consequences for dynamical behaviour. 
Now consider a network of TV neurons labelled i = 1,...,TV each with identical 
dendritic structure. Let Wf- denote the synaptic weight of the connection from 
neuron _; impinging on compartment a e T of neuron i. The associated output is 
taken to be of the form W^f(Uj) where / is a sigmoidal output function, (see figure 
3). Equation (5) then leads to a set of coupled integro-differential equations 

dt 
=    -PUi(t) + f 

Jo 
,(t- t')M(t')) dt' (13) 

Note that for simplicity we are neglecting the feedback arising from the coupling 
between the soma and dendrites of the same neuron. Further, let the output function 
/ satisfy f(x) — tanh(/cx). Then /(0) = 0 so that U = 0 is a fixed point solution 
of (13). Linearization about the zero solution with /'(0) = K gives 

dUi = -pUi(t) + Jj2 Hij(t - t'W)*? (14) 
dt 

j& 
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Ha(t) = K^W^Gaoß(t) (15) 
P 

Assume that the weights satisfy the condition XTserl^yl < °° f°r all hj = 
1,..., N so that the convolution kernel H(<) is a continuous N x N matrix whose 
elements lie in L^O, oo). That is, /0°° \Hij(i)\dt < oo for all i,j = 1,..., N It can 
then be proven [7] that the zero solution of equation (14) is asymptotically stable 
if and only if 

A(z) = det Up + z)l - H(z)l ^ 0    when    Rez > 0 (16) 

where H(z) is the Laplace transform of the kernel H and I is the N x N unit 
matrix, which can be calculated explicitly from equations (15) and (10). Condition 
(16) requires that no roots of the so called characteristic function should lie in the 
right-half complex plane. 
It can also be established that if the stability condition (16) is met for the linear 
system (14), then the zero solution of the full nonlinear system (13) is locally 
asymptotically stable [7]. On the other hand, if A(z) has at least one root in the 
right-half complex plane then the linear system (14) is unstable. The corresponding 
instability of the full nonlinear system is harder to analyse; in such cases one has 
to bring in techniques such as bifurcation theory to investigate the effects of the 
nonlinearities on the behaviour of the system at the point of marginal stability 
where one or more eigenvalues cross the imaginary axis [8]. 
It is clear from equation (15) that the stability of a recurrent network depends 
on the particular distribution of axo-dendritic connections across the network. We 
end this paper by presenting some recent results concerning such stability. Detailed 
proofs are presented elsewhere [8,9]. First, suppose that the weights decompose 
into the product form Wf- = JijPa, Pa > 0, and J2a Pa = 1- Thus the distribution 
of axon collaterals across the dendritic tree of a neuron is uncorrelated with the 
location of the presynaptic and postsynaptic neurons in the network. Assuming 
that the weight matrix J can be diagonalized with eigenvalues wr, r = 1,..., N then 
equation (16) reduces to 

(z + p)-KWrJ2PpGaoß(z) = Q (17) 
/?er 

Two particular results follow from equation (17). 
I. The zero solution is (locally) asymptotically stable if 

-l 

K\WT\ < p J2PpGaop(0) 
per 

for all r = 1,..., N. Taking Pß = 8ß ß, for example, shows that the passive membrane 
properties of the dendritic tree can stabilize an equilibrium. This follows from the 
property that for compartments sufficiently far from the soma, Gaos(Q) < Gaoao(0)- 
II. The passive membrane properties of the dendrites can induce oscillations via a 
supercritical Hopf bifurcation [8]. At the point of marginal stability there exists a 
pair of pure imaginary roots z = ±iw satisfying equation (17) for a nondegenerate 
eigenvalues w* = minr{uv} such that w* < 0 and all roots of equation (17) for 
wr > w* have negative definite real part. 
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When one considers the synaptic organisation of the brain, it becomes apparent 
that the decoupling of network and dendritic coordinates is an oversimplification. 
One example of this concerns the recurrent collaterals of pyramidal cells in the 
olfactory cortex [10]. These collaterals feed back excitation onto the basal dendrites 
of nearby pyramidal cells and onto the apical dendrites of distant pyramidal cells. 
This suggests that in our model the distance of a synapse from the soma should 
increase with the separation \i — j\; this leads to a reduction in the effectiveness 
of the connection (ignoring active processes). On the other hand, there is growing 
experimental evidence that the reduction in the effectiveness of distal synapses may 
be compensated by a number of mechanisms including increases in the density of 
synapses at distal locations and voltage-dependent gates on dendritic spines [10]. We 
can incorporate the former possibility by taking W-j to be an increasing function of 
the degree of separation of compartment a from the soma at «o- If this is combined 
with the previous feature then we have a third result. 
III. The passive membrane properties of the dendritic tree can induce spatial pat- 
tern formation (arising from a Turing-like instability) in a purely excitatory or 
inhibitory network when the dependence of the weight distribution on dendritic 
and network coordinates is correlated. Thus one does not require a competition 
between excitatory and inhibitory connections (Mexican hat function) to induce 
the formation of coherent spatial structures. 
Finally, note that all the results presented in this paper have a well-defined con- 
tinuum limit. In particular, introduce a length-scale / corresponding to the length 
of an individual compartment. One then finds that in the limit / —► 0 such that 
a/I2 —► D, equation (4) reduces to the cable equation (1) on each branch of the tree 
such that current dV/dx is conserved at each branching node and V is continuous 
at a branching node. Equation (10) with al = £,/?/ = £', Lß = M^l becomes 
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The statistical principles underpinning hidden-layer feed-forward neural networks for fitting smooth 
curves to regression data are explained and used as a basis for developing likelihood- and bootstrap- 
based methods for obtaining confidence intervals for predicted outputs. 
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1 Introduction 
Hidden-layer feed-forward neural networks are used extensively to fit curves to re- 
gression data and to provide surfaces from which classification rules can be deduced. 
The focus of this article is on curve-fitting applications and two crucial statistical 
insights into the workings of neural networks in this context are presented in Section 
2. Approaches to developing confidence limits for predicted outputs are explored in 
Section 3 and some conclusions given in Section 4. 

2 Statistical Insights 
Consider the following single hidden-layer feed-forward neural network used to 
model regression data of the form, (a:,,y,-), i — 1,..., n. The input layer comprises a 
neuron which inputs the a;-variable and a second neuron which inputs a constant or 
bias term into the network. The hidden-layer comprises two neurons with logistic 
activation functions and an additional neuron which inputs a bias term and the 
output layer provides the predicted y-value through a neuron with a linear activa- 
tion function. The connection weights, 9 = (0i,.. -,97), are denned in such a way 
that the output, o, from the network corresponding to an input, x, can be written 
explicitly as 

_   n    , h 07 /^ 
O   -    »5 +  l + e_(9l+$2x) +  1 + e_{6i+e4x) ■ {>■) 

If in addition the network is trained to minimize the error sum-of-squares, J2i=i(Vi~ 
o,)2, then it is clear that implementing this neural network is equivalent to using 
the method of least squares to fit the nonlinear regression model, j/,- = o,- + e,-, i = 
1,.. . ,n, where the error terms, e», are independently and identically distributed 
with zero mean and constant variance, to the data. The weights of the network cor- 
respond to parameters in the regression model, training corresponds to iteration in 
an appropriate optimization algorithm, and generalization to prediction. In fact the 
nonlinear regression model just described is not in any way meaningful in relation 
to the data and the broad modelling procedure should rather be viewed as one of 
smoothing. In the present example, two logistic functions are scaled and located so 
that their sum, together with a constant term, approximates an appropriate smooth 
curve. Overall therefore it is clear that the underlying mechanism of a hidden-layer 
feed-forward neural network is that of nonlinear regression and that the broad 
principle underpinning such a network is that of nonparametric regression. 

3 Confidence Limits for the True Predicted Values 
Consider a hidden-layer feed-forward neural network represented formally as the 
nonlinear regression model, 

Vi  = r){xi,d) + ei, . i = l,...,n, (2) 
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where j/,- is the observed value at a;,-, 9 = (#i,..., 9P) is a p x 1 vector of unknown 
parameters, 7?(-) is a nonlinear function describing the network, and the error terms, 
e,-, are uncorrelated with mean, 0, and constant variance, a1. Then the least squares 
estimator of 9, denoted 9, is that value of 9 which minimizes the error sum-of- 
squares, S(9) = X)"=1[y,- ~ »K^»^)]2! and the estimator of a2, denoted s2, is 
given by S(9)/{n - p). The mean predicted value at xg for model (2), and hence 

for the underlying neural network, is given by r)(xg, 9) and confidence intervals for 
the corresponding true value, rj(xg,9), can be derived from likelihood theory or by 
resampling methods. 

3.1    Likelihood Theory 
Linearization method : Suppose that the errors in model (2) are normally dis- 
tributed and suppose further that this model can be satisfactorily approximated 
by a linear one, and that V(9), the estimated asymptotic variance of the least 

squares estimator, 9, is taken to be s2 [Y^-i 9(xi>9)g(xi>6)T]§ , where g(xi,9) = 

drj{xi,9)/d9,i = l,...,n, and the subscript 9 denotes evaluation at that point. 
Then the standard error of the mean predicted value at xg is given by SE[r)(xg, 0)] = 
sy9(xg>0)J V(6) g(xg,0)g, where g(xg,6) — dr)(xg,9)/d9, and an approximate 

100(1 — a)% confidence interval for r](xg, 9) can be expressed quite simply as 

r,(xgJ)±t*SE[r1(xg,9)}, (3) 

where t* denotes the appropriate critical t-value with n — p degrees of freedom. 
Example 1 : Data were generated from model (2) with deterministic component 
(1) corresponding to the neural network described in Section 2 and with normally 
distributed error terms. The parameter values were taken to be 

9 = (0.5, 0.5,1,-1,0.1,1,1.5) 

and a = 0.01, 25 x-values, equally spaced between —12 and 12, were selected, and 
simulated y-values, corresponding to these x-values, were obtained. The approx- 
imate 95% confidence limits to T)(xg,9) for xg € [-12,12], were calculated using 

formula (3) and are summarized in the plots of ±t*SE[r)(xg, 9)] against xg shown 
in Figure 1. The interesting, systematic pattern exhibited by these limits depends 
on the design points, #,-, i = 1,..., n. 

Profile likelihood method : Suppose again that the errors in model (2) are normally 

distributed and let S(0\r]g) denote the minimum error sum-of-squares for a fixed 
value, T]cg, of the true predicted value, rj(xg,0). Then the profile log-likelihood for 
rj(xg,9) is described, up to an additive constant, by the curve with generic point, 

(■qc
g,S(9\r]c

g)), and a likelihood-based 100(1 - a)% confidence interval for r](xg,9) 
comprises those values of rfg for which 

S{9\rfg)-S(?)<t*2s2. (4) 

For Example 1 the requisite values of the conditional sum-of-squares, S(9\r]^), for a 
particular z-value, xg, were obtained by reformulating the deterministic component 
of the model as r,(x,9) = r)g + m(x,9) - m{xg,9) with r)i{x,9) = 1+e_&+8^) + 

1+e-(9
7

3+e^) > and by minimizing the resultant error sum-of-squares for appropriate 
fixed values of the parameter, rjg = r](xg,9). For each value of xg  £ [-12,12] 



Brittain & Haines: Nonlinear Models 131 

so considered, the profile log-likelihood for the true predicted value, T](xg,0), was 
approximately quadratic and the attendant 95% confidence limits were calculated as 
the two values of ifg satisfying the equality condition in expression (4) by using the 
bisection method. A plot of these 95% confidence limits, centered at the maximum 
likelihood estimator, n(xg,0), against xg, are shown, together with those found by 
the linearization method, in Figure 1. It is clear from this figure that the confidence 

Figure 1    Linearization (solid line) and profile likelihood (dashed line) methods. 

Figure 2    Bootstrap residuals (solid line) and linearization (dashed line) methods. 

■o-o-o-o-o°-o-o 

Figure 3    Bootstrap pairs (solid line) and linearization (dotted line) methods; 
fitted curve (dashed line) and data points (circles). 

limits for rj(xg, 0) obtained from these two methods are very similar. 
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3.2 Bootstrap Methods 
Bootstrapping residuals ; Suppose that the least squares estimate, 9, of the pa- 
rameters in model (2) is available. Then confidence intervals for true predicted 
values, rj(xg,6), can be obtained by bootstrapping the standardized residuals, e,- = 

[yi - f]{xi, 6)]J-^z^ for i = 1,.. . ,n, following the procedure for regression models 

outlined in [1]. For example 1, the resultant 95% bootstrap confidence limits for 
predicted values, r](xg,8), with x £ [-12,12] were centered at the corresponding 
bootstrap means, and a plot of these limits against x is shown in Figure 2, together 
with the the corresponding limits obtained from the linearization method. It is 
clear from this figure that the broad pattern exhibited by the two sets of confidence 
limits is the same but that the limits are systematically displaced. An attempt to 
correct the bootstrap percentiles for bias by implementing the BCa method of [1] 
produced limits which were very different from the uncorrected ones. 

Bootstrapping pairs : An alternative to bootstrapping the residuals is to bootstrap 
the data pairs, (a,-,j/,-),»' = l,...,rc, directly, following the procedure given in [1]. 
Approximate 95% confidence intervals for the true predicted values of Example 1 
were obtained in this way and the results, in the form of plots of the confidence limits 
centered about the bootstrap mean against x, are shown in Figure 3, together with 
a plot of the corresponding centered limits obtained from the linearization method. 
Clearly the confidence limits obtained by bootstrapping the data pairs are wildly 
different from those found by the other methods investigated in this study. The 
reason for this is clear from the suitably scaled plots of the data points and the 
fitted curve which are superimposed on the plots of the confidence limits in Figure 
3 so that the z-values coincide. In particular, only 4 of the 25 observations are taken 
at x-values corresponding to the steep slope of the fitted curve between x = — 1 and 
x = 2.5 and the probability that at least one of these points is excluded from the 
bootstrap sample is high, viz. 0.8463. As a consequence the bootstrap least squares 
fitted curve is expected to be, and indeed is, extremely unstable in the region of 
this slope. 

3.3 Comparison of Methods 
It is clearly important to generalize the results found thus far. To this end, 400 data 
sets were simulated from the model setting of Example 1 and, from these, coverage 
probabilities with a nominal level of 95% for a representative set of true predicted 
values were evaluated using the likelihood-based and the bootstrap methods of 
the previous two subsections. The results are summarized in Table 1 and clearly 
reinforce those obtained for Example 1. In particular, the coverage probabilities 
provided by the linearization and the profile likelihood-based methods are close to 
nominal, while those obtained by bootstrapping the residuals are consistently low 
over the range of ^-values considered and those obtained by bootstrapping the data 
pairs are very erratic. 

4 Conclusions 
The aim of this present study has been to critically compare selected methods for 
setting confidence limits to the predicted outputs from a neural network. Both of 
the likelihood-based methods investigated produced surprisingly good results. In 
particular, the linearization method proved quick and easy to use, while the profile 
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Method 
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Linearization 95 95.75 95.75 94.75 92.25 92.5 94.75 

Profile likelihood 95.5 94.5 93.5 96 95.25 95 93.25 

Bootstrap residuals 91.75 93.5 94 91.5 90 91.75 94.5 

Bootstrap pairs 89.75 90.75 96.5 97.25 98.5 92.5 91 

Table 1     Coverage probabilities for a nominal level of 95% and 400 simulations. 

likelihood approach, which is more rigorous, was a little more difficult to implement. 
In contrast, the bootstrap methods for finding the required confidence limits were, 
necessarily, highly computer-intensive, and the results disappointing. On balance, 
it would seem that, to quote Wu [2], "The linearization method is a winner". 
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We present and analyze a Self Organizing Feature Map (SOFM) for the NP-complete problem of 

the travelling salesman (TSP): finding the shortest closed path joining JV cities. Since the SOFM 

has discrete input patterns (the cities of the TSP) one can examine its dynamics analytically. We 

show that, with a particular choice of the distance function for the net, the energy associated to 

the SOFM has its absolute minimum at the shortest TSP path. Numerical simulations confirm 

that this distance augments performances. It is curious that the distance function having this 

property combines the distances of the neuron and of the weight spaces. 

1 Introduction 
Solving difficult problems is a natural arena for a would-be new calculus paradigm 
like that of neural networks. One can delineate a sharper image of their potential 
with respect to the blurred image obtained in simpler problems. 
Here we tackle the Travelling Salesman Problem (TSP, see [Lawler 1985], [Johnson 
1990]) with a Self Organizing Feature Map (SOFM). This approach, proposed by 
[Angeniol 1988] and [Favata 1991], started to produce respectable performances 
with the elimination of the non- injective outputs produced by the SOFM [Budinich 
1995]. In this paper we further improve its performances by choosing a suitable 
distance function for the SOFM. 
An interesting feature is that this net is open to analytical inspection down to a 
level that is not usually reachable [Ritter 1992]. This happens because the input 
patterns of the SOFM, namely the cities of the TSP, are discrete. As a consequence 
we can show that the energy function, associated with SOFM learning, has its 
absolute minimum in correspondence to the shortest TSP path. 
In what follows we start with a brief presentation of the working principles of this 
net and of its basic theoretical analysis (section 2). In section 3 we propose a new 
distance function for the network and show its theoretical advantages while section 
4 contains numerical results. The appendix contains the detailed description of 
parameters needed to reproduce these results. 
2 Solving the TSP with self-organizing maps 
The basic idea comes from the observation that in one dimension the exact solution 
to the TSP is trivial: always travel to the nearest unvisited city. Consequently, let 
us suppose we have a smart map of the TSP cities onto a set of cities distributed 
on a circle, we will easily find the shortest tour for these "image cities" that will 
give also a path for the original cities. It is reasonable to conjecture that the better 
the distance relations are preserved, the better will be the approximate solution 
found. In this way, the original TSP is reduced to a search of a good neighborhood- 
preserving map: here we build it via unsupervised learning of a SOFM. 
The TSP we consider is constituted of N cities randomly distributed in the plane 
(actually in the (0,1) square). The net is formed by N neurons logically organized 
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K 

Figure 1    Schematic net: not all connec- 
tions from input neurons are drawn. 

Figure 2 Weights modification in a 
learning step: neurons (small gray circles) 
are moved towards the pattern q (black 
circle) by an amount given by (1). The 
solid line represents the neuron ring. The 
shape of the deformation of the ring is 
given by the relative magnitude of the Aw 
that is in turn given by the distance func- 
tion hrs' 

in a ring. The cities are the input patterns of the network and the (0,1) square its 
input space. 
Each neuron receives the (x,y) = q coordinates of the cities and has thus two 
weights: (wx,wy) = w. In this view both patterns and neurons can be thought as 
points in two dimensional space. In response to input q, the r-th neuron produces 
output or = q-wr. Figure 1 gives a schematic view of the net while figure 2 represents 
both patterns and neurons as points in the plane. 
Learning follows the standard algorithm [Kohonen 1984]: a city gi is selected at 
random and proposed to the net; let S be the most responding neuron (ie the 
neuron nearest to qi) then all neuron weights are updated with the rule: 

Awr — ehrs (qt - wr) (1) 

where 0 < e < 1 is the learning constant and hrs is the distance function. 
This function determines the local deformations along the chain and controls the 
number of neurons affected by the adaptation step (1); thus it is crucial for the 
evolution of the network and for the whole learning process (see figure 2). 
Step (1) is repeated several times while e and the width of the distance function 
are being reduced at the same time. A common choice for hrs is a Gaussian-like 

function like hrs = e~{^~> where drs is the distance between neurons r and s 
(the number of steps r and s) and a is a parameter which determines the number 
of neurons r such that Awr ^ 0; during learning e,ir-+0so that Awr —► 0 and 
flrg       ► ors . 

After learning, the network maps the two dimensional input space onto the one 
dimensional space given by the ring of neurons and neighboring cities are mapped 
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onto neighboring neurons. For each city its image is given by the nearest neuron. 
From the tour on the neuron ring one obtains the path for the original TSP1 

The standard theoretical approach to these nets considers the expectation value 
£7[Awr|ü;r] [Ritter 1992]. In general £7[Ati7r|wr] cannot be treated analytically ex- 
cept when the input patterns have a discrete probability distribution as it happens 
for the TSP. In this case, £[Aü;r|wr] can be expressed as the gradient of an energy 
function, i.e. i?[Aüv|üJr] = -eA^rV(W), with 

V(W) = ^Ehr>   E^'-^)2 (2) 

where W — {wr} and the second sum is over the set of all the cities % having ws as 
nearest neuron, i.e. the cities contained in F, , the Voronoi cell of neuron having ws. 
On average, V^VF) decreases during learning since . ü7[Ay|W] = — eJ2r W^vJrV\\2. 
Substantially, in this case, there exists an energy function which describes the dy- 
namics of the SOFM and which is minimized during learning; formally, the learning 
process is the descent along the gradient of F(W) . Unfortunately V(VF) escapes 
analytical treatment until the end of the learning process when some simplifica- 
tions are applicable. Since at the end of learning hrs —► Srs, we can suppose hrs is 
significantly different from zero only for r = s,s ± 1; in this case (2) becomes 

J_ 
2N 

'    qi£F, 

In addition, simulations support that, at the end of learning, most neurons are 
selected by just one city to which they get nearer and nearer. This means that Fs, 
contains just one city, let's call it ft(j), and that ws —► gi(s), consequently 

V(W) =^J2 [h>-hs(?i(«) ~ 9i(s-i))2 + A.+i,.(fi(.) - fi(.+i))2] (4) 
S 

and assuming hrs symmetric i.e. hs-ijS = hs+i)S = h, we get 

v(w) = ^E[fe-?;-(»-i))2+fe-5W] 
s 

—    JJLTSP
2 

where LTSP* is the length of the tour of TSP considering the squares of the distances 
between cities. Thus the Kohonen algorithm for TSP minimizes an energy function 
which, at the end of the leaning process, is proportional to the sum of the squares 
of the distances. Numerical simulations confirm this result. 

3    A New Distance Function 
Our hypothesis is that we can obtain better results for the TSP using a distance 
function hrs such that, at the end of the process, V(W) is proportional to the simple 
length of the tour LTSp, namely V(W) oc £,(&•(,) ~ 9i(>-i) = LTSP since, in 
general, minimizing JCTSF

2
 is n°t equivalent to minimizing LTSP- We thus consider 

v(w) -wHYl [h-iA?i - «*-i)2 + M« - ™»)2 + A.+i,.(fi - «WO2] 

'The main weakness of this algorithm is that, in about half of the cases, the map produced is 
not injective. The definition of a continuous coordinate along the neuron ring solves this problem 
yielding a competitive algorithm [Budinich 1995]. 
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Figure 3 Distances between neurons 
s = 4 and r = 1: Di,4 = Di + D2 + D3 

and diti = 3. 

Figure 4    Set of his given by (5) for 0 < 
Dis < 1 and d;3 = 0, 1, ..., 4. 

a function hrs depending both on the distance drs and on another distance Dr 

defined in weight space: 

Dr 5Z i^'—-^-11 
J=r+1 

If we define 

h"=i}+I¥T'" (5) 

when a —► 0, we get for ftjii, 

*»±1.« =    1 + 
D, s±l.s 

<r     J D,±iit       \w,-w,±i\ 

and substituting this expression in (4) we obtain V(W) 

|9ii 

|9«(») _ 2»(»±i)l 

2N j——Y,—J^'W ~ 5*(»-i))2 + IT;-—Y,—Ü^'W ~ ««'(«+1))' 

AT 

(7 

77' 
With this choice of hrs the minimization of the energy V(W) is equivalent to the 
minimization of the TSP path. We remark that the introduction of the distance 
Dr, between weights is a slightly unusual hypothesis for this kind of nets that 
usually keep well separated neuron and weight spaces in the sense that the distance 
function hr$ depends only on the distance dr$. 

4    Numerical Results 
Since the performances of this kind of TSP algorithms are good for problems with 
more than 500 cities and more critical in smaller problems [Budinich 1995], we began 
testing the performances produced by the new distance function (5) in problems 
with 50 cities. 
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City set Min. length [Durbin 1987] [Budinich 1995] This algorithm 
1 5.8358 2.47% 1.65% 0.96% 
2 5.9945 0.59% 1.66% 0.31% 
3 5.5749 2.24% 1.06% 1.05% 
4 5.6978 2.85% 1.37% 0.70% 
5 6.1673 5.23% 5.25% 0.43% 

Average 2.68% 2.20% 0.69% 

Table 1 Comparison of the best TSP solution obtained in 10 runs of the vari- 
ous algorithms. Rows refer to the 5 different problems each of 50 cities randomly 
distributed in the (0,1) square. Column 2 reports the length of the best known 
solution for the given problem. Columns 3 to 5 contain the best lengths obtained 
by the three algorithms under study expressed as percentual increments from the 
minimal length; the number of runs of the algorithms is respectively: unknown, 5 
and 10. Last row gives the increment averaged over the 5 city sets. 

We compared the quality of TSP solutions obtained with this net to those of two 
other algorithms both deriving from the idea of a topology preserving map and that 
both actually minimizes LTSP2 : the elastic net of Durbin and Willshaw [Durbin 
1987] and this same algorithm with a standard distance choice. 
As a test set, we considered the very same 5 sets of 50 randomly distributed cities 
used for the elastic net. 
Table 1 contains a comparison of the best TSP path obtained in several runs of 
the different algorithms expressed as percentual increments over the best known 
solution for the given problem. Another measure of the quality of the solution is 
the mean length obtained in the 10 runs. The percentual increment of these mean 
lengths, averaged over the 5 sets, was for this algorithm 2.49%, showing that even 
the averages found with the new distance function are better than the minima found 
with the elastic net. 
These results clearly show that distance choice (5) gives better solutions in this 
SOFM application, thus supporting the guess that an energy V(W) directly pro- 
portional to the length of the tour LTSP, is better tuned to this problem. 
One could wonder if adding weight space information to the distance function could 
give interesting results also in other SOFM applications. 

Appendix 
Here we describe the network setting that produces the quoted numerical results. 
Apart from the distance definition (5) we apply a standard Kohonen algorithm and 
exponentially decrease parameters e and a with learning epoch ne (a learning epoch 
corresponds to N weights update with rule (1)) 

e = eQa
n' a = a0ß"° 

and learning stops when e reaches 5 • 10-3. Numerical simulations clearly indicate 
that best results are obtained when the final value of a is very small (» 5 ■ 10-3) 
and when e and a decrease together reaching their final value at the same time. 
Consequently given values for a and cr0 one easily finds ß. In other words there are 
just three free parameters to play with to optimize results, namely eQ and (TQ and a. 
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After some investigation we obtained the following values that produce the quoted 
results: eo = 0.8, <TQ = 14 and a = 0.9996. 

REFERENCES 
[1]     B Angeniol, de G. La Croix Vaubois and J.-Y. Le Texier, Self Organising Feature Maps and 

the Travelling Salesman Problem, Neural Networks Vol.1 (1988), pp289-293. 
[2]     M Budinich, A Self-Organising Neural Network for the Travelling Salesman Problem that is 

Competitive with Simulated Annealing, to appear in: Neural Computation. 
[3]     R. Durbin and D. Willshaw, An Analogue Approach to the Travelling Salesman Problem 

using an Elastic Net Method, Nature Vol.336 (1987), pp689-691. 
[4]     F Favata amd R Walker. A Study of the Application of Kohonen-type Neural Networks to 

the Travelling Salesman Problem, Biological Cybernetics Vol. 64 (1991), pp463-468. 
[5]     D. S. Johnson, Local Optimization and the Traveling Salesman Problem, in: Proceedings of 

the 17th Colloquium on Automata, Languages and Programming, Springer-Verlag (1990) New 
York, pp446-461. 

[6]     T. Kohonen, Self-Organisation and Associative Memory, Springer-Verlag (1984, 3rd Ed. 
1989), Berlin Heidelberg. 

[7]     E. L. Lawler, J. K. Lenstra , A. G. Rinnoy Kan and D. B. Shmoys (editors), The Traveling 
Salesman Problem — A  Guided Tour of Combinatorial Optimization, John Wiley h Sons, 
New York (1990), IV Reprint, p474. 

[8]     H. Ritter, T. Martinez and K. Schultern, Neural Computation and Self Organising Maps, 
Addison-Wesley Publishing Company (1992), Reading Massachusetts , p306. 



SEMIPARAMETRIC ARTIFICIAL NEURAL 

NETWORKS 

Enrico Capobianco 
Stanford University, Stanford, CA 94305, USA. 

Email: enrico@psych.Stanford.edu 

In this paper Artificial Neural Networks are considered as an example of the semiparametric class 
of models which has become very popular among statisticians and econometricians in recent years. 
Modelling and learning aspects are discussed. Some statistical procedures are described in order 
to learn with infinite-dimensional nuisance parameters, and adaptive estimators are presented. 

Keywords: Semiparametric Artificial Neural Networks; Profile Likelihood; Efficiency Bounds; 

Asymptotic Adaptive Estimators 

1 Introduction 
We look at the interface between statistics and artificial neural networks (ANN) 
and study stochastic multilayer neural networks with unspecified functional com- 
ponents. We call them Semiparametric Neural Networks (SNN). The fact that 
no absolute requirements come from biological considerations represents an impor- 
tant motivation for SNN. Many technical issues arise from the statistical inference 
perspective; we (A) stress the importance of computing likelihood-based criterion 
functions in order to exploit the large sample statistical properties pertaining to 
the related estimators and (B) measure the asymptotic efficiency of the estimators 
from given network architectures. 

2 ANN and Likelihood Theory 
A stochastic machine with a vector of synaptic weights w, the input(output) vectors 
x(y) (given a conditional density function f(y/x)) and the data set dimension T, 
is used to compute w through a learning algorithm based on the minimization of 
some fitting criterion function of estimated residuals or prediction errors. Consider 
a likelihood function L(Y,6), where Y = (j/i, • • .,J/T)' is the sample observation 
vector and 6 = (0i,...,0p)' is a vector of parameters. These three elements can 
fully characterize a taxonomy of models, differentiated by the sample size and the 
dimension of the parameter space where the optimization of the chosen criterion 
function must be done. For instance, in a network where all the activation functions 
are specified and the dimension of 6 is p < oo, i.e., in a fully parametric situation, 
the solution to the optimization problem is to maximize / = YA=I lnL(yi,8) over 
the weight space 0. On the other hand, the activation functions can be reasonably 
left unspecified, apart from some smoothness conditions. This choice permits a shift 
from a parametric to a more nonparametric setting, where the likelihood function 
now admits a modified form L(Y, A), with A = (w,g,h) and w,g,h that indicate 
respectively the weight vector, the unknown output and hidden layer activation 
functions. A more restricted context, but still semiparametric in nature, occurs 
when g or h are in fact specified; networks here closely resemble the semiparametric 
and nonparametric extensions of the Generalized Linear Models [7] described in 
[6]. As a result, the likelihood function is now more constrained, with L(Y, 6) and 
6 — (w,g,h) or 6 = (w,g,h). If a stochastic one-hidden layer feedforward neural 
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network is represented by: 
q s 

y = G(x, w) = F[j0 + Yl aif(li + H ViiXi^ W 

where w — (a',v',y')' is the vector of weights and F/f are the specified out- 
put/hidden layer activation functions, then a likelihood-based criterion function, 
under a gaussian distribution of p(y/x,w), is directly related to the sum-of-squared 
errors scaled by the output variance. For F(z) = z, we have that: 

max   ^2 lnp(yt/xt, w) = min  - ^ — (j/t - G(xt, w))2 (2) 
t t   °* 

Whenever Gaussianity is assumed but not verified, a quasi-maximum likelihood 
criterion is given. Conditionally gaussian time series models are specified in terms of 
a gaussian distribution for yt, conditioned on the information available at time t-1; 
here too a likelihood function can be computed and thus (2) holds1. When the likeli- 
hood function relies on unknown components we deal with an ill-posed optimization 
problem and some form of regularization is required. If the entire parameter vec- 
tor can be decomposed in "interest" w and "nuisance" -q components, such that 
6 = (w, fj) represents the ML estimator of 6, 6(w) = (w, fjü) is a constrained initial 
estimator for 6, i.e., an estimator computed from an initially fixed value of the 
parameters of interest, not necessarily a ML value. Inference for w can be based on 
the so-called profile or concentrated log-likelihood function PL(w) = L(0(w)). 
We seek the value w* which maximizes PL(w); it is w* — w, at least for the case 
of a finite dimensional nuisance parameter space. In other words, a ML estimate 
is computed in two sequential stages: (1) an estimate is obtained for n, given an 
initial consistent value of w; (2) the MLE for w conditional to fj^ is calculated by 
maximizing a likelihood-based criterion function where the previous estimate of 77 
has been plugged-in. Hence the name profile log-likelihood. 

3    The Semiparametric Approach to ANN 
The bias/variance dilemma [4] is crucial in ANN as it is in nonparametric statistical 
inference. If the relation between the input and the output variables is unknown, 
as for the function E{yt/Tt) in nonlinear regression or E(yt/yt-i) in time series 
prediction problems 2 ANN will try to exploit their "universal approximation" 
properties. But whereas parametric and potentially incorrect models lead to high 
bias, nonparametric models lead to high variance, given the presence of parameters 
of infinite dimension; therefore, the loss of efficiency is a likely price to pay. We 
usually observe noisy input data, according to some underlying probability distri- 
bution; thus, for some aspects, the advantage is that data could be replicated under 
certain conditions that offer a solution for the data-size constraint and thus soften 

JThe normalized mean squared error [12] cost function E  =        2 y)t(yt — it)2  can also 

be used. Otherwise, the likelihood can be formed in terms of the prediction errors vt = 
yt — E(yt/yt—i,...,yi), given that var(yt) = var(yt/yt—1, ■ ■ • ,yi)- Moreover, the w value that 
minimizes i Y^Ayt — G(xt,w))2 is equivalent to the NLS estimator [13] and this converges to the 

network optimal weights w* as n —* oo. 
2^t or yt—i represent information up to the time t or t-1 (lags only included for ^t—1 )• 
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the "curse of dimensionality"3. 

An important aspect in SNN is related to the functional form of the I/O rela- 
tion. The approximation ability of the network depends on the characteristics of 
the underlying functional relation; usually sigmoidal-type or RBF-type ANN work 
well, but when the activation functions are left unspecified, projection pursuit re- 
gression [3] and other highly parameterized techniques represent possible solutions. 
We consider pure minimization and iterative estimation strategies; the former are 
based on the decomposition of the parameter vector, 6 — (w, 77), where w represents 
the weights and the bias terms considered together and 77 represents the infinite- 
dimensional nuisance parameter4, and the latter are Newton-Raphson (NR)-type 
procedures. We address the optimization problem in the Profile ML setting in- 
troduced before. But another challenging issue is the weight estimation accuracy, 
at least asymptotically. By working with an initially unrestricted likelihood-based 
performance measure we would like to obtain, in statistical terms, a lower bound 
[8, 9, 10] for the asymptotic variance (AV) of the parametric component of the semi- 
parametric model such that we are able to generalize the usual parametric bound 
given by the inverse of the Fisher Information Matrix (FIM). We equivalently 
calculate the Semiparametric Efficiency Bounds (SEB) for the parameters of 
interest, which quantify the efficiency loss resulting from a semiparametric model 
compared to a parametric one5. 

4    Parametric and Nonparametric Estimation Theory 
The discussion here draws mainly on [8], [10] and [11], where the concept of marginal 
Fisher's bound for asymptotic variances in parametric models is generalized. If it is 
true that a nonparametric problem is at least as difficult as any of the parametric 
problems obtained by assuming we have enough knowledge of the unknown state 
of nature to restrict it to a finite dimensional set, it is important to look for a 
method that obtains a lower bound for the AV of the parametric component of the 
initially unrestricted model6. Since a one-dimensional sub-problem asymptotically 
as difficult as the original multidimensional problem often exists, we could express 
the parameter space as a union of these one-dimensional sub-problems (paths or 
directions along w, like Fw : Fw 6 T) and estimate the parameter of interest to 
select one of the sub-problems proceeding as if the true parameter would lay on 
this curve. The question is: which sub-problem should be selected? First, we should 
verify the existence of an estimator for a " curve " defined in the infinite-dimensional 
nuisance parameter space, corresponding to one of the possible one-dimensional 

3These distributional assumptions make a substantial difference in terms of the global or 
local statistical efficiency that an estimator can achieve. While for global efficiency we mean 
that an estimator is accurate regardless of the true underlying distributions, for local efficiency 
the same holds only for some specific distributions related to the nonparametric component of the 
model. 

*r] can stand for the unknown hidden layer activation functions, the noise density which ran- 
domly perturbs the input/output pattern data, the weights or even the same activation functions. 

5In the ANN context we could make comparisons between SNN and sigmoidal-type or other 
networks on the grounds of the statistical efficiency of the related learning algorithms. 

6If a sequence of estimators (0n) satisfies \/n(6n — 9) —+<j JV(0, V), then V is the asymptotic 
variance of (6n) and for the ML estimator, under regular conditions, equals Ig , where Ig is the 
FIM. 
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sub-problems. Given 0 = (w,rj), consider the smooth curve 6{i) : a < t < b 
designed in the space W x T by the map t —► 0(t) = (w(t), r)(t)). According to a 
possible parameterization inducted by w(t) = t, the map becomes w —► (w, rjw) with 
VWQ = >7o and for each curve T)w we can compute the associated score functions Uw ,Un 

such that, -£;l(w,r)w) \w=Wo= ^(wo,»?o) + ^(w0,r)o)(-£r]w \w=Wo) (or simply 

Uw+Un) and the information matrix E0(-^l{w, r]w) \W=WO)
2
 - E(UW + U)2, where 

U € span(Uv). Repeating the procedure for all the possible rjw we can find the 
minimum FIM, which is given by inf(E0(Uw + U)2 = E0(UW + U*) = iw, where 
U* is the projection of Uw onto span(Un). In particular, we define the curve 77* for 
which this minimum is achieved as the Least Favorable Curve (LFC). With a 
semiparametric model, in order for 77* to be LFC, the following relation must be 
^ P\ 11 ^Tl (* (1' 

di(w,v*w) 2       di(w,nw) 2 

^     dw     J 'u,=u'o)   -    ^—dw—' \w=w°> W 
for each curve w —n]win the nuisance functional space T7. Following the parametric 
case, the marginal FIM for w in a semiparametric model is given by: 

iw = infnE([    K
d'J '} \w=Wo)

2 (4) 

or alternatively iw = E0(UW + U*), with U$ = jjKwo,Vo)(t*))2, where t* € T 

represents the tangent vector to the curve r)w at wo and jp- is a Frechet derivative8. 
Now, i"1 = V is the lower bound for the AV of a regular9 estimator of w in the 
semiparametric model. In summary, every semiparametric estimator has an AV 
comparable to the Cramer-Rao bound of a semiparametric model; therefore, the 
bound is not less than the bound of every parametric sub-model, i.e. the sup V of 
all these bounds. This is the semiparametric AV bound or SEB, whose attainment 
reflects the ability to estimate adaptively. 

5    Adaptive Estimation 
In practice, accurate estimation and unrestricted model specification can be con- 
trasting aspects of a problem. Adaptive estimation is a solution since it suggests 
that full efficiency can still be attained even under an initially unrestricted model10. 
A pure minimization method for adaptively estimating semiparametric models is 
the one described in Section 2 and adopted in [10], the Generalized Profile Like- 
lihood (GPL)11. For a regular estimator the convolution theorem [2] applies, 

In practice [10] for a nonparametric regression or density estimation problem i)w often con- 
verges to the LFC; otherwise, we could verify that its limit is such that a least favorable direction 
is found. 

8We say that T is Frechet differentiable at x if there exists a function fx : X —► Y which is 

linear and continuous such that lim\h\^0 ^*+^~mffi~^c<h)H = 0 (see [2]). 
Given a local DGP, i.e. a stochastic process where for every sample size n the data are 

distributed according to 9„, with y/n(S„ — So) bounded, an estimator Wc6is called regular 
in a parametric sub-model if, for each true value BQ of the parameter vector, */n(w — w(6n)) 
has a limit distribution not dependent on the local DGP and regular if the property holds for 
every parametric sub-model. 

10An adaptive estimator can be found to exist or not. In any case, the model is required to 
satisfy conditions related more to the underlying structure or functional relations than to the 
possible adaptive estimation procedures [9]. 

11 Generalized because the first step estimator for the nuisance parameter vector is not required 
to be an ML estimator. 
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thus giving an asymptotic distribution for y/n(w — WQ) equal to that of Z+TJ, where 
Z ~ N(0, V) and U an independent noise; V is the SEB, as shown when U is gaus- 
sian and thus Var(w) = V + E(UU') » V . If r)w is a curve in T, we require that 
the estimator w obtained by maximizing l(w,fj<j}) has an asymptotic distribution 
as the one of the estimator obtained by l(w,r]w), or equivalently we require that 
the two functions have the same local behavior; then, the SEB should be attained. 
If w is the maximizer of l(w, rjü), then */n(w — WQ) —►£> N(0, i"1) is expected, be- 
cause when f]w is LFC the bias disappears asymptotically, due to the orthogonality 
of the score functions. Thus, under some regularity conditions, an estimator for w 
can be obtained by maximizing the GPL criterion function and the estimator is 
asymptotically efficient. The value of the SEB is given by the inverse of: 

l.d2l(w,tjn)). . 
tu,  =  (5) w'ow 

5.1 The Algorithm Applied to ANN; an Example 
Consider the example in [1]: suppose we have a stochastic machine with an input 
vector x C Rs, a p-dimensional weight vector w and the binary output is y = ±1 
according to p(y/x,w), where p(y = \/x,w) = k[f(x,w)] and p(y = —l/x,w) — 
1 — k[f(x,w)], k(f) = 1+e-4y , ß is the inverse of the so-called temperature pa- 
rameter and f represents a smooth hidden layer activation function (therefore our 
nuisance parameters). The general form of the conditional log-likelihood function 
l(y/x,w) - lnp(y/x,w) is C = £,-[y{ In D(w)] + (1 - j/,-)ln[(l - D(w))], where 
D(w) = k[f(xi,w)]. According to the GPL procedure, we (1) estimate initially w 
via BP with a network of fixed structure (i.e. {represented with one of the usually 

specified forms) (2) obtain a nonparametric estimate f conditionally on the esti- 

mated w, thus finding D (3) plug in fm and maximize the GPL criterion function 
w.r.t. w (where D in fact replaces D* which represents an estimable and locally ap- 
proximating version of the unknown function D) (A ) calculate w and repeat steps 
2-3-4 tM we 9° as close as possible to the SEB12. Thus the stochastic machine 
specifies the probabilities p(y = ±l/x, w). 

5.2 Relationships between GPL and Learning Consolidation 
When fully iterative algorithms are considered, consolidation of network learn- 
ing proposed in [13] becomes important, since BP is only one of the possible recur- 
sive m-estimators that locally solve optimization problems and is asymptotically 
inefficient relative to a NR-type estimator, regardless of the local minimizer. Thus, 
BP can be improved with regard to the accuracy of the estimate through just one 
NR step. In [8] one-step semiparametric m-estimators are considered13; they are 
based on the zero mean and finite variance influence function (IF) ip(z) of a single 

observation on the estimator, such that \fn{<j) — </>) = 5Z» 7/^ "*" °P(1)> 
anc' tney 

12Note that (A) w(D) that maximizes L(D(w)) should behave like w(D), where w(D) = 
argsupwL(D(w)) (a consistent estimator is required, given that L(D(w) —>pr L(D(w)) uni- 
formly in w) (B) given AV = ^, where according to [1] G = (gij) is the FIM and gij = 

ß2 I 2J k(l — tyg~Q~p(2)dx is the generic component of G, we must compare AV with the 

inverse of (5). 
13These estimators are asymptotically efficient after one iteration from a consistent initial esti- 

mate of the parameter of interest and with the functions of the likelihood consistently estimated. 
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solve moment equations of the form ^'mJ" = 0, given a general interest pa- 
rameter </>. The m(.) function, similar to the estimating functions adopted in [5], 
can represent the First Order Conditions for the maximum of a criterion func- 
tion Q, and 77 maximizes the expected value of the same function. This method is 
equivalent to GPL when f is the density from a given distribution function F, Q is 
the log-likelihood function, m(.) the score function and r)(<j>, F) is the limit, for the 
nonparametric component, that maximizes the expected value of lnf(z/4>, 77). With 
^ = argmax<i,'52ilnf(zi/<f>,TJj) as the GP(Max)L estimator, where the estimation 

of 77 does not affect the AV, and given M = 8g(mM'"°))  |0=0o nonsingular, we 

have 4>(z) = M~1m(z, <j>, 770) and <j> - <j> + ^' n*" , which is the one-step version 
of GP(Max)L estimator. 

6    Conclusions 
We analyzed semiparametric neural networks, described a general model set-up 
and discussed the related asymptotic estimation issues. The degree of success in 
solving the bias/variance dilemma is often a case-dependent problem requiring a 
reparameterization of the model in the hope of finding adaptive estimators. SEB 
tell us about the asymptotic statistical efficiency of the chosen estimator. 
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This paper describes an event-space feedforward network based on partitioning of the input space 

using maximum entropy criterion. It shows how primitives defined as partitioned hypercells (event 

space) can be selected for the purpose of class discrimination. Class discrimination of a hypercell 

is evaluated statistically. Observed primitives corresponding to observed characteristics in selected 

hypercells are used as inputs to a feedforward network in classification. Preliminary experimental 

results using simulated data and as it pertains to speaker discrimination using low-level speech 
data have shown very good classification rates. 

1 Introduction 
This paper proposes a feedforward network whose input layer is reconfigured during 
the training phase depending on the generation and selection of newly defined prim- 
itives. As the primitives are identified through partitioning of the input outcome 
space, so would the construction of the input nodes which corresponds to defining 
the primitive set. The primitives are defined through the selection of partitioned 
hypercells corresponding to certain feature values of the data selected for classifi- 
cation. Thus, an observed primitive in a datum would correspond to an observed 
selected characteristic (or range of values) which eventually determine the datum's 
classification. Since the input layer in the network is reconfigured depending on the 
selected hypercells identified, we call it a self-configurable neural network [2]. The 
two processes of primitive generation and classification are integrated and "closely 
coupled". 

2 Maximum Entropy Partitioning 
When discretizing the outcome space based on partitioning of the data, the dis- 
cretization process becomes a partitioning process. The Maximum Entropy Par- 
titioning (MEP) process generates a set of hypercells through partitioning of the 
outcome space of n continuous valued variables (or features) [1,3,4,7]. This method 
bypasses the problem of non-uniform scaling for different variables in multivariate 
datum compared to the commonly used equal-width partitioning algorithm, and 
minimizes the information loss after partitioning [3]. 
Given n variables in n-dimensional space, the MEP process partitions a data set 
into kn hypercells based on the estimated probabilities of the data. The value k 
represents the number of intervals that a dimension is divided into. Let P be the 
probability distribution where the process produces a quantization of P into: 

P(Ri),i = l,2,...,kn, (1) 

where Ä,- denotes a hypercell. To maximize the information represented by Ä,-, the 
partitioning scheme which maximizes Shannon's entropy function defined below is 
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used: 
kn 

H(R) = -Y^P(Ri)^gP(Ri). (2) 
i=i 

The function H(R) now becomes the objective function where information can 
be maximized according to the maximization of H(R). With one variable, maxi- 
mization occurs when the expected probability P(Ri) is approximately l/k of the 
training data with repeated observations. This creates a narrower interval where the 
probability density is higher [3]. In the proposed method, the partitioning process 
is done based on the marginal probability distribution on each variable to avoid 
combinatorial complexity. 
In our data representation (such as low-level speech data), the jth datum is repre- 
sented by a set of I(j) points which are denoted by Zj = {x, — (xu, X2i, ..., x„i)\i = 
1, ...,I(j)}. That is, Zj composes of sets of n-vectors. A set of partition boundaries 
are determined by combining all the data into a single set that we call the "data 
universe" denoted by U. Hence, U is defined as the union of all the training data: 

U = {Zj\j = l,...,J} = Z1\JZ3\J---öZj (3) 
Each data is assumed to have an assigned class label Cm in Lc classes, 1 < m < 
Lc. In n-dimensional space, the set of hypercells generated after partitioning is 
then defined as R = {Ri\i = 1,2, ...,&"}, where each Ri is bounded by intervals 
that partition the data universe. The intervals that bound Ä,- are composed of the 
boundary points which will be determined by an algorithm [3]. 

3    Selection of the Partitioned Hypercells 
Representation of individual datum Zj is based on the same partitioning scheme 
generated from partitioning the data universe. Each generated hypercells from the 
partitioning cordons off a set of points in Zj. Since our partitioning is based on the 
marginal probability distributions, a hypercell Ri on datum Zj that has significantly 
more points than expected can be evaluated using the following statistic also known 
as the standard residual [5]: 

D{Ri>Zj) = °bs(i^)-exp(i^) (4) 

x/exp(Ä!-,Zj) 
where exp(Ä;, Zj) is defined as the average number of points observed in a hyper- 
cell Ri, calculated as M(Zj)/kn, and obs(Ri,Zj) is the number of points in Zj 
observed in the same hypercell, given that M(Zj) is the total number of points 
in Zj. Since the statistic follows a normal distribution, it is therefore possible to 
evaluate a hypercell which has significant characteristic in the data, based on the 
normal distribution according to a confidence level. If the expected value calculated 
using the null hypothesis so that each hypercell has equal probability of occurrence, 
then this equation has the properties of an approximate normal distribution with 
a mean of 0 and a variance of 1. In cases where the asymptotic variance differs 
from 1, then an adjustment to the standard residual is required in order to yield 
better approximations [5]. The significance of a hypercell is determined by com- 
paring D(Ri,Zj) to the tabulated «-values of a predefined confidence level using 
the standard normal distribution. That is, the hypercell Ri is selected as significant 
based on: 
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where z is the tabulated z-value of a certain degree of confidence level. 
As each datum is partitioned using the same scheme generated from partitioning the 
data universe, the number of data Zj with significant D(Ri,Zj) (or 8{Ri,Zj) = 1) 
and class label Cm is denoted as r)(Ri,Cm), (or rj(RiyCm) = J2z KRi>zj) for 

Zj £ Cm). Let e(Ri) be the average number of data per class whose hypercell fi, is 
significant, or: 

e{Ri) =^mU^Ri'Cm),    VZj&U (6) 

and let 

^)=E[^'C7)"e(fl°32,   vzjeu (7) 
m=l 6(Ki> 

reflects the extent of class discrimination for a hypercell Ä,- in the data universe. 
Since 0(Ri) has an asymptotic Chi-square distribution, the relevance of a hypercell 
can be evaluated by applying the Chi-square test. After 6(R{) is calculated, it 
is compared to a tabulated \2 value with Lc — 1 degrees of freedom based on a 
presumed confidence level. The function described in equation (3.5) indicates the 
hypercell's statistical relevance for class discrimination: 

Hypercells that are not identified as statistically relevant are partitioned further, 
using the same criterion of maximum entropy, until there exists an insufficient 
number of points, or a predefined depth has been reached. We call this method hi- 
erarchical maximum entropy partitioning [1,3]. The rationale of using partitioning 
iteratively is to identify useful characteristics at a more restricted interval when rel- 
evant characteristic is not found at a larger interval. The hypercells that surpass the 
threshold value are marked as having an acceptable degree of class discrimination 
with ß(R{) = 1, and these selected hypercells can be relabeled as {R^} indicated 
by the superscript. The set {R*s} corresponds to the set of input nodes in the feed- 
forward network. When labeled, as (R*lt R^,..., R*s), they correspond to a set of 
data value characteristics that are selected to have acceptable class discrimination 
information. 

4    Self Configurable Event-Space Feedforward Network 
The number of inputs to the feedforward network depends on the number of iter- 
ations and selected hypercells. As more iterations of the partitioning process are 
performed, then more hypercells are generated and identified as statistically rele- 
vant. This is analogous to the use of more refined characteristics of the data for 
class discrimination if sampling reliability is not a concern. 
Given a datum Zj and the generated hypercell R*s. Let obs(R*s,Zj) be the number 
of points Zj has in R*s, exp(R*s, Zj) = M(Zj)/kn be the expected average number of 
points, where M(Zj) is the total number of points in Zj. Substituting obs(R*s, Zj) 
and exp(R*s,Zj) into equation (4), we calculate the statistic for Zj, denoted as 
D(R*s,Zj). Define a binary decision function for all the selected hypercells {R*s} 
for Zj as: 

«*•«>={;  ü25^)ä* (9) 
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where z is a tabulated z-value for a given confidence level. Then Zj is represented 
by a vector as: 

Wj = (a(R*1,Zj)e(R*1)>a(R;,Zj)e(R*2),...a(R:,Zj)e(R*s),) (10) 
where a(R*s,Zj) indicates whether a selected characteristic is observed in Zj , that 
is, a selected primitive is observed, and 6(R*S) is the estimated relevance of R* based 
on the analysis from the data universe. 
A binary vector Vj can be used as an approximation to Wj, for each data where 
simplicity of inputs is desired. It is defined as: 

Vj=(a(Rl,Zj)ß(R*1),a(R*2,Zj)ß(R*2),...a(R;,Zj)ß(R:),) (11) 
Each component a(R*,Zj)ß(R*) is the product of a(R*,Zj) which identifies sig- 
nificant characteristics in the data Zj, and ß(R*s), which identifies the hypercells 
(or primitives) based on the data universe. In other words, a component is 1 only 
if the primitive is statistically significant in Zj, and statistically discriminating in 

U. 
This approximation does not provide the detailed information contribution to the 
class discrimination as does the Wj vector. However, Vj usually provides faster 
training times with additional analysis information. ß(R*) is defined as a binary 
element in the vector Vj and is always equal to 1 for the selected hypercells. The 
ß{R*) value replaces 9(R*) in equation (10) so that it is now represented by a 1, 
thus Vj is rewritten as: 

Vj ={a{R\,Zj),a{R*2,Zj),...a{R*s,Zj),) (12) 

5 Training and Classification of the Network 
A network can be trained using the standard back-propagation algorithm with the 
supervised class label for each datum where the vector Wj or Vj is the input. In the 
testing phase, a new datum Zj with an unknown class label is assumed to belong to 
one of the given classes, hence it is expected that the partitioning scheme generated 
from the training session can be applied as well. Zj is partitioned to the predefined 
levels according to the same scheme identified in training on the data universe. 
Then Zj is converted to the corresponding vectors Wj or Vj using equation (10) or 
(12). 
These vectors are applied to the feedforward network. The output node with the 
highest activation which surpasses a threshold value, identifies the class of the 
unknown input datum. If there is no output node with an activation surpassing the 
threshold, then the datum remains as unclassified (or rejected). 

6 Experimentation with Speech Data 
To show how the algorithm performs on low level speech data, we performed an 
experiment on its ability to identify relevant speech characteristics as well as its 
ability to distinguish the speaker identity. The data used for these experiments 
involved 3 speakers, on 3 words pronounced as "quit", "printer" and "end". Three 
classes of data were defined, one corresponding to each speaker. Each of the three 
words was spoken 10 times by each speaker, resulting in 30 speech sample data per 
speaker, and a total of 90 samples. Each speech sample is represented by a set of 
points composed of three variables as a 3-vector (time, frequency, amplitude). A 
single utterance generated slightly over 12,000 data points. 
The experiment used the "hold-out test" to evaluate the algorithm for speaker 
identification. Each run consisted of selecting 5 samples on a word randomly from 
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each speaker class for training. The remaining 5 samples were used for testing. With 
3 speakers, each run consists of 15 test data and 15 training data. With 3 words, 
and performing 10 runs on each word, a total of 30 runs was done for a total of 450 
test samples. The results from the experiments showed that the system performed 
reasonably well. A total of 369 out of 450 were classified correctly. Of those that 
were not classified, about half were rejected. Total success rate was about 82%. 

7    Experimentation with Classifying Data Forming Interlocking 
Spirals 

These experiments illustrate the algorithm on classifying overlapping interlocking 
spirals of points [6]. In this set of experiments, the data are generated using different 
parameters to define two classes of data so that each data consists of a number of 
points forming spirals. Here, the points in a spiral were artificially generated so 
that the points in a spiral could overlap with points in another data even though 
they may belong to different class. Thus classification of each data has to depend 
on a large number of points jointly. Each data sample was composed of 96 points. 
To create a problem with probabilistic uncertainty, but more difficult, a degree of 
randomness was introduced so that each spiral as well as each point in it had the 
radius shifted by a random quantity. 
In total, 60 data samples were generated for use in all the experiments. The exper- 
iment consisted of 10 runs where each run was composed of 30 training data, 15 
per class. The test set then used the remaining 30 unchosen samples, once again 
15 per class. In 89 runs, using different confidence levels and number of intervals. 
The results based on a total of 2670 test samples were: correctly recognized 92.9%, 
rejected 5.0% and incorrectly classified 2.1%. 
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The aim of this paper is to examine the application of radial basis function (RBF) network to 
realise the decision function of a symbol-decision equaliser for digital communication system. The 
paper first study the Bayesian equaliser's decision function to show that the decision function 
is nonlinear and has a structure identical to the RBF model. To implement the full Bayesian 
equaliser using RBF network however requires very large complexity which is not feasible for 
practical applications. To reduce the implementation complexity, we propose a model selection 
technique to choose the important centres of the RBF equaliser. Our results indicate that reduced- 
sized RBF equaliser can be found with no significant degradation in performance if the subset 

models are selected appropriately. 

Keywords: RBF network, Bayesian equaliser, neural networks. 

1    Introduction 
The transmission of digital signals across a communication channel is subjected 
to noise and intersymbol interference (ISI). At the receiver, these effects must be 
compensated to achieve reliable data communications[l, 2]. The channel, consisting 
of the transmission filter, transmission medium and receiver filter, is modelled as a 
finite impulse response (FIR) filter with a transfer function H(z) = YA=O o,(i)z~'. 
The effects on the randomly transmitted signal s(k) = s = {±1} through the 
channel is described by 

n„ — 1 

r(k) = r(k) + n(k) = £ s(k - i)a(i) + n(k) (1) 
•=o 

where r(k) is the corrupted signal of s(k) received by the equaliser at sampled 
instant time k, r(k) is the noise-free observed signal, n(k) is the additive Gaus- 
sian white noise, a(i) are the channel impulse response coefficients, and na is 
the channel's memory length[l, 2]. Using a vector of the noisy received signal 
r(fc) = [r(k), • • ■, r(fc - m + 1)]T, the equaliser's task is to reconstruct the trans- 
mitted symbol s(k - d) with the minimum probability of mis-classification, PE- 

The integers m and d are known as the feedforward and delay order respectively. 
The measure of an equaliser's performance PE, or more commonly expressed as the 
bit error rate (BER), BER = log10PB, in communication literature [1], is expressed 
with respect to the signal to noise ratio (SNR) where the SNR is defined by 

^R=isa=^m^m=m^i      (2) 
E[n2(k)] <J\ erf 

where a\ = 1 is the transmit symbol variance and v\ is the noise variance. 
The transmitted symbols that affect the input vector r(fc) is the transmit sequence 
s(fc) = [s(k), ■■■,s(k-m-na+2]T. There are N, - 2m+n°~l possible combinations 
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of these input sequences, i.e. {sj}, 1 < j < Ns[2]. In the absence of noise, there are 
Ns corresponding received sequences fj(k),l < j < Ns, which are referred to as 
channel states. The values of the channel states are defined by, 

cj = rj(k) = F[sj], l<j<Ns, (3) 

where the matrix F e #mx(m+"<>-i) is 

a(0)    a(l)     ...     a(n„-l) 0   0 
0      a(0)    a(l) ... a(na-l) 0        0 

: : : •••   0 
0           a(0)    a(l)    ...    a(n0-l) 

(4) 
Due to the additive noise, the observed sequence r(k) conditioned on the channel 
state i(k) = Cj is a multi-variable Gaussian distribution with mean at c,-, 

p(r(A)|c,) = (2ir*2
e)-™/*exp(-\\r(k) - cj\\2/(2a2

e)). (5) 

The set of channel states Cd = {cj}f^i can be divided into two subsets according 
to the value of s(k — d), i.e. 

Cd
+) = {v(k)Kk-d) = +l)}! (6) 

c(-) = {f(fc)|5(*-d) = -l)}1 (7) 
where the subscript d in Cd denotes the equaliser's delay order applied. 
To minimise the probability of wrong decision, the optimum decision function is 
based on determining the maximum a posteriori probability P(s(k-d) - s\r(k)) [2] 
given observed vector r(k), i.e., 

i(t-«0 = sgn(  P(s(k - d) =+l\r(k)) - P(s(k - d) =-l\r(k))  )        (8) 

where s(k - d) is the estimated value of s(k - d). It has been shown in [2] that the 
Bayesian decision function can be reduced to the following form, 
fb(v(k)) = 

J2   exp(-||r(fc)-cj||
2/(2^))-    £    exp(-||r(*) - ckf/(2a2

e)) (9) 

c;ec<+> CkeC<-> 

It is therefore obvious that ft(.) has the same functional form as the RBF model [2, 

3] /rbfM. 
JV 

/rbf(r) = I>^(llr-c'll2A*) (10) 
«=i 

where A^ is the number of centres, w{ are the feedforward weights, </>(.) are the 
nonlinearity, c,- are the centres of the RBF model, and a is a constant. The RBF 
network is therefore ideal to model the optimal Bayesian equaliser [2]. 
Example of decision boundary: As an example, the Bayesian decision bound- 
aries realised by a RBF equaliser with feedforward order m = 2 for channel H(z) = 
0.5+ l.Oz-1 is considered. Fig la lists all the 8 possible combinations of the trans- 
mitted signal sequence s(k) and the corresponding channel states c,. Fig. lb depicts 
the corresponding decision boundaries for the different delay orders. Note that the 
decision boundary is dependent on the channel state positions and delay order 
parameter. 
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S/No Transmitted symbols Channel State 

i s(k) c. 
t 

I s(k) s(k-I)   s(k-2) ] [ m    Hk-l) ] 

; 1         1         1 1.5      1.5 

2 1         1       -1 1.5    -0.5 

3 1       -1         1 -0.5     0.5 

4 1       -1       -1 -0.5    -1.5 

5 -1         1         1 0.5      1.5 

6 -1         1       -1 0.5    -0.5 

7 -1       -1         1 -1.5      0.5 

8 -1       -1       -1 -1.5    -1.5 

3 N, Delay order = 1 
Delay order = 2 

2 \ 
Channel State r v © 

0 

Ns n\   \- . / 
*-< 
1* --€     (7) © 

-1 

-2 
© ®     \ 

-1 
Delay order = 0\ 

0 1 
r(k) 

Fig (a): State Table Fig (b): Decision boundaries 

Figure 1    (a) Transmit sequences and channel states for channel H(z), 
(b) Corresponding Bayesian decision boundaries for various delay orders. 

2    Selecting Subset RBF Model 
The implementation of the full RBF Bayesian equaliser requires the use of all Ns 

channel states. Such implementation however may be impractical if Ns is large. In 
some cases, the complexity may be reduced by using a subset of the Ns channel 
states to generate the RBF decision function. For example, it is obvious that the de- 
cision boundary using delay d = 1 for H(z) (Fig. lb) can be realised approximately 
by a RBF network using {c3, c4, c5, c6} as centres. If the realised decision boundary 
using the subset RBF equaliser is very similar to the full Bayesian equaliser, the 
classification performance of the two equalisers would also be very similar. That is, 
the implementation complexity of the RBF equaliser is reduced by using only the 
important channel states that define the decision boundary. 
To understand how centres affect decision boundary, we analyse the effects of centre 
positions on boundary position when ae —► 0. Let r0 be the set of all boundary 
points. I.e., /&(r0) equals to 0. Therefore, if r(k) € r0, Eq. 9 becomes 

J2     exP(-||r0-ci||
2/(2<Tc

2))=    £     exp(-||r0 - c,||2/(2<re
2)). (11) 

C,-6CW ck6C<-> 

When <7e —► 0, the sum on the l.h.s. of Eq. 11 becomes dominated by the closest 
centres to ro, i.e. 

{U+}    =      min   {llro-cj}. (12) 
cjeC<+> 

This is because the contribution from the terms exp(-||r0 -c,- ||2/(2<r2)) for centres 
cj $ Ud converges much more quickly to zero when ue-t0 than terms for centres 
belonging to f/j". Similarly, the sum on the r.h.s of Eq. 11 becomes dominated by 
the closest terms for centres belonging to UJ , where Uj  = mm

Ctec<->{llr° _ C*H}- 
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At very high SNR, the asymptotic decision boundaries are hyper-planes between 
pairs of channel states belonging to {Ut} and {UJ} [4]. 
However, not all channel states of {Uj,UJ} are required to define the decision 
boundary. This can be observed from the example illustrated in Fig. lb for decision 
boundary realised using delay order d = 2. By visual insepection (Fig. lb), it is 
obvious that {c3, c7} £ UJ and {c4, c8} e UJ. The decision boundary formed using 
centres {c3,c4} and {c7,c8} are however the same. Therefore, in this case, only 1 
pair of channel states, either {c3,c4} or {c7,c8}, is sufficient to approximate that 
region of decision boundary. 
To find the set of important centres {UJS,UJS} for the subset RBF equaliser, we 
propose the following algorithm, 

Algorithm 1 : Finding UJS, UJ 

For Cj e C(
d
+) 

For c* £ C<-) 

'ik^cj + C-^) 

if 
/»(r;it) = 0 and 
Cj = minc 6C(+){||r0 - c*||} and 

cJ^UJs,ck^Uj 
next cj, 

next Cj. 

where fs(.) = RBF model formed using the current selected channel states from 
{Uds'Ud,}*8 centres and /»(.) is the full RBF Bayesian equaliser's decision function. 

2.1 Subset Model Selection : Some Simulation Results 
Simulations were conducted to select subset RBF equalisers from the full model. 
The following channels which have the same magnitude but different phase response 
were used, 

Hl(z)    =    0.8745 + 0.4372z-1 -0.2098z-2 (13) 

H2(z)   =   0.2620 -0.6647z-1 -0.6995z-2 (14) 
The feedforward order used was ra = 4, resulting in a full model with Ns - 
2m+na-i _ 64 centres Using SNR COI1(iition at jgdB, simulations were conducted 
to compare the performance of the subset RBF and full RBF equalisers for the two 
channels. The results are tabulated in Table la and lb respectively; The first col- 
umn of each table indicates the delay order parameter, the second column indicates 
the number of channel states selected to form the subset model while the third and 
fourth columns list the BER performance of the two equalisers and the last column 
indicates if the channel states belonging to the different transmit symbol, i.e. C^ 

and Cd , are linearly or not-linearly separable. Our results show that reduced size 
RBF equaliser with performance very similar to the full model's performance can 
usually be found for equalisation problem that is linearly separable. 
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Delay 
Subset 

Size 

Subset 

log(Pe) 

Full-model 

log(Pe) 

Decision 

Boundary 

0 56 -4.09 -4.09 Linear Sep. 

1 57 -4.14 -4.14 Linear Sep. 

2 32 -4.11 -4.12 Linear Sep. 

3 32 -4.11 -4.12 Linear Sep. 

4 48 -1.91 -1.91 Not-Linear Sep. 

5 64 -0.97 -0.97 Not-Linear Sep. 

Delay 
Subset 

Size 

Subset 

log(Pe) 

Full-model 

log(Pe) 

Decision 

Boundary 

0 56 -0.80 -1.30 Not-Linear Sep. 

1 46 -2.99 -2.99 Linear Sep. 

2 38 -3.38 -3.38 Linear Sep. 

3 56 -3.43 -3.43 Linear Sep. 

4 55 -3.32 -3.32 Not-Linear Sep. 

5 64 -3.41 -3.41 Not-Linear Sep. 

Table a: Channel HI (z) Table b : Channel H2(z) 

Table 1 Comparing the performance of the full-size (64 centres) RBF equaliser, 
subset RBF equaliserfor Channel Hl(z) (Table la) and Channel H2(z) (Table lb) 
at SNR=16db. 

3    Conclusions 
This paper examined the application of RBF network for channel equalisation. It 
was shown that the optimum symbol-decision equaliser can be realised by a RBF 
model if channel statistic is known. The computational complexity required to im- 
plement the full Bayesian function using the RBF network is however considerable. 
To reduce implementation complexity, a method of model selection to reduce the 
number of centres in the RBF model is proposed. Our results indicate that the 
model size, and hence implementation complexity, can be reduced without signifi- 
cantly compromising classification performance in some cases. 
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This paper presents applications of graph theory to the design of graph matching neural networks 

for automated fingerprint identification. Given a sparse set of minutiae from a fingerprint image, 

complete with locations in the plane and (optionally) other labels such as ridge angles, ridge 

counts to nearby minutiae and so on, this approach to matching begins by constructing a graph- 

like representation of the minutiae map, utilizing proximity graphs, such as the sphere-of-influence 

graphs. These graph representations are more robust to noise such as translations, rotations and 

deformations. This paper presents the role of these graph representations in the design of graph 

matching neural networks for the matching and classification of fingerprint images. 

1 Introduction 
Matching the representations of two images has been the focus of extensive research 
in computer vision and artificial intelligence. In particular, the problem of matching 
fingerprint, images has received wide attention and varying approaches to its solu- 
tion. In this paper we present results of an ongoing collaborative research program 
which combines techniques and methods from graph theory and neural science to 
design algorithms for graph matching neural networks. 
This collaborative approach with Eric Mjolsness, University of Southern California, 
San Diego, and Anand Rangarajan, Center for Theoretical and Applied Neural 
Science at Yale, is an outgrowth of an initial investigation for the Federal Bureau 
of Investigation to their existing Integrated Automated Fingerprint Identification 
System, IAFIS. 
In this research program, algorithms and techniques from discrete mathematics, 
graph theory and computer science are combined to develop methods and algo- 
rithms for representing and matching fingerprints in a very large database, such as 
the one at the FBI. The Federal Bureau of Investigation and National Institute of 
Standards and Technology provided a small database of fingerprints. This database, 
together with the software environment at the Center for Theoretical and Applied 
Neural Science at Yale University have provided a test bed for these algorithms. 
The following presents the background of the fingerprint problem and this research 
together with a special emphasis on the role of proximity graphs in the design of 
the graph matching neural networks. 

2 Fingerprint Images, Minutiae and Graph Representations 
2.1     Minutiae Maps 
Fingerprint matching and identification dates back to 1901 when it was introduced 
by Sir Edward Henry for Scotland Yard. After sorting the fingerprints into classes 
such as whorls, loops and arches, matches are made according to comparisons of 
minutiae. Minutiae include such indications as ridge endings, islands and bifurca- 
tions, with fingerprints averaging 100 or more per print. Today fingerprints are 
initially stored on computer as a raw minutiae map in the form of a list of minutiae 
positions and ridge angles in a raster-scan order. In American courts a positive 
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matching of a dozen minutiae usually suffices for identification. However, for an 
average computer to make these dozen matches the process would entail locating 
every minutiae in both prints and then comparing all ten-thousand-plus possible 
pairings of these minutiae. In addition, the minutiae map itself is very non-robust 
to likely noise such as translations, rotations, and deformations, which can change 
every minutiae positions. A subtler form of noise is the gradual increase in ridge 
width or image scale typically encountered in moving from the top of the image to 
the bottom. Thus, it is desirable to determine graph- like representations which are 
more robust to noise and less susceptible to problems with missing minutiae. 

2.2    Graph Representations of Minutiae Maps 
Given a sparse set of minutiae from one fingerprint image, complete with their 
locations in the plane and (optionally) other labels such as ridge angles, ridge 
counts to nearby minutiae and so on, we construct a graph- like representation of 
the minutiae map. By considering relationships between pairs of minutiae such as 
their geometric distance in the plane, or the number of intervening ridges between 
them, we can begin to construct features which are robust against translations and 
rotations at least. However, there still exists the very serious problem of reorderings 
of the minutiae forced by rotation and missing or extra minutiae. This "problem" 
must be addresses by defining a reordering- independent match metric between two 
such graphs. 
Complete Graphs and Planar Distances 
The simplest example of a labelled graph representation would be the complete 
graph where every pair of minutiae are linked by an "edge" in the graph. Edges 
would be labelled by the 2-d Euclidean distance between the minutiae. Note that 
this graph would require a special definition of the match metric to handle miss- 
ing, extra and reordered minutiae. Furthermore, most of the edges would connect 
distant minutiae whose relationships, such as planar distance or ridge count, are 
subject to noise and provide less real information than nearby edges. So for reasons 
of robustness and computational cost, it makes sense to consider instead various 
kinds of "proximity graphs", which keep only the edges between minutiae that are 
"neighbors" according to some criterion. 
Sphere-of-influence Graphs and Other Proximity Graph Representations 
Sphere-of-Influence graphs comprise the first set of proximity graphs which we 
considered in our goal of determining a better class of minutiae map representations. 
First introduced by Toussaint [9], sphere- of-influence graphs provide a potentially 
robust representation for minutiae maps. These graphs are capable of capturing 
low-level perceptual structures of visual scenes consisting of dot patterns. . A very 
active group of researchers have developed a series of significant results dealing 
with this class of graphs. We refer the reader to the work of M. Lipman, [4,5,6]; F. 
Harary, [5,6]; M. Jacobson, [5,6]; T. S. Michael,[7,8]; and T. Quint, [7,8]. 
The following definition is referred to by Toussaint, [ 9 ]. Let V = (P\,...,Pn) 
be a finite set of points in the plane. For each point p in V, let rp be the closest 
distance to any other set of points in the set, and let Cp be the circle of radius 
rp centered at p. The sphere- of-influence graph, or SIG, is a graph on V with an 
edge between points p,q if and only if the circles Cp,Cq intersect in at least two 
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places. For various illustrations of sphere-of-influence graphs we refer the reader to 
the excellent presentation by Toussaint in [9]. 
One can note from the prior example that perceptually salient groups of dots be- 
come even more distinct in the corresponding sphere-of-influence graph. However, 
SIGs represent only one group of an even richer class of graphs we refer to as 
proximity graphs. These graphs also offer various benefits in their potential for 
providing robust representations of minutiae maps. Proximity graphs all share the 
property that they only contain edges corresponding between minutiae that are 
"neighbors" according to some given criterion. The graphs which have turned out 
to be most promising representations include relative neighborhood graphs, delauney 
triangulations, voronoi diagrams, minutiae distance graphs and generalized sphere- 
of-influence graphs. We refer the reader to an excellent survey article by Toussaint 
for more details on proximity graphs. [9] 

Generalized Sphere-of-Influence Graph Representations 
K-sphere-of-influence graphs (k-SIGs) are generalizations of SIGs, in which a vertex 
is connected to k nearby, vertices depending only on their relative distances, not 
absolute distances.(Guibas, Pach, and Sharir [10]). Given a set V of n points in Rd, 
the kth sphere-of- influence of a point x in V is the smallest closed ball centered at x 
and containing more than k points of V (including x). The case for k = 1 yields the 
standard sphere-of-influence graph. The it kth sphere-of-influence graph, Gk{V) of 
V is a graph whose vertices are the points of V, and two points are connected by 
an edge if their k-th spheres -of- influence intersect. 
K-SIGs are especially suitable for minutiae map representations because of the fact 
that connections depend on relative distances. This property provides a form of 
scale invariance. Each edge can be labelled with the integer k, recording whether 
it connects nearby (k = 1) or farther minutiae pairs. Unfortunately, this scale 
robustness is bought at the price of increased susceptibility to missing minutiae. 
When a minutiae goes missing, not only is there an unavoidable effect on the graph 
by the deletion of the node, but there is a gratuitous "splash" effect of the edges 
between nearby pairs of the remaining minutiae: their k-numbers change despite 
the fact that their planar distance do not. This effect is mitigated by the match 
metric, which changes only gradually with k, but it is still undesirable. 
Finally, we define yet another graph which is a hybrid between planar distance 
graphs and k-SIGs. We begin by creating a k-SIG with an overly large value of 
k. However, we label the edges with the planar distance d. Next we find the local 
image scale factor by finding the best constant of proportionality between d and k 
in each image region. Divide all d's by this coefficient to turn them into less noisy, 
noninteger versions of k, and then let this scaled version of d be the importance 
rating for an edge. Then proceed to a graph and a match metric as in the planar 
distance example. For this hybrid representation minutiae deletion only affects d 
via the local scaling factor, which is determined by many different value of k and 
is therefore fairly robust, preserving scale invariance. 

3     Graph-Matching Neural Network Implementation 
Graph representations of minutiae maps provide only the first step in developing a 
matching scheme for fingerprints. This second part of this research effort is devoted 
to the design of graph matching algorithms and their implementation as neural 
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networks. As outlined in prior sections these algorithms are based on proximity 
graphs which only contain edges for nearby minutiae. These edges are then la- 
belled with features and with and "edge importance rating" that directly affects 
the weight given to that edge in the match metric. In this scenario one can construct 
a nested series of graphs including more and more edges of less and less importance 
or greater and greater distance, until either some cut off limit is reached or all 
possible edges between minutiae in the map are included in the largest graph. In 
this class of algorithms the match metric between two such graphs is insensitive to 
arbitrary reorderings of the minutiae in either graph, and is implementable as an 
analog neural network. Finally, the match metric will contain adjustable weighting 
parameters which determine the relative weights of matching edges as a function 
of their importance rating, and the relative weights of any other labelling infor- 
mation attached to the vertices or edges of the graphs. These parameters are then 
determined statistically by a steepest-descent training algorithm applied to a data 
base of minutiae maps, followed by testing-set validations, exactly as is done in the 
conventional neural network paradigm. 

3.1     Relaxation Networks for Graph Matching — Deterministic 
Annealing and Lagrangian Decomposition 

The neural network implementation of this research effort has been conducted at 
Yale University's Center for Theoretical and Applied Neural Science in cooperative 
efforts with E. Mjolsness and A. Rangarajan. This implementation has concen- 
trated on the use of relaxation neural networks for matching the labelled graphs 
corresponding to minutiae maps. It should be noted that neural network approaches 
to graph matching share the feature of other recent approaches to graph matching 
in that they are not restricted to looking for isomorphisms, but seek to minimize 
the distance between two graphs. Graph isomorphism occurs when the distance is 
zero. The approach at Yale utilizes deterministic annealing to generalize to inexact, 
weighted graph matching. 
In [11] Mjolsness and Rangarajan formulate the problems as follows: given graphs 
G and g, find a permutation matrix m that brings the two sets of vertices into corre- 
spondence. A permutation matrix is a zero one matrix whose rows and columns sum 
to one. Within the framework of deterministic annealing one can easily formulate 
the permutation matrix constraints. In this setting the row or column constraints 
are winner-take-alls and either set (but not both sets) of constraints separately can 
be exactly imposed used deterministic annealing methods. 
This deterministic annealing approach is similar to a Lagrangian decomposition 
approach in that the row and column constraints are satisfied separately. Lagrange 
multipliers are then used to equate the two solutions. Other methods do exist to 
satisfy both the row and column constraints and this method (for obtaining a 
permutation matrix) is equivalent w.r.t. fixpoints to the one presented in [12]. A 
fixpoint preserving transformation [13] is applied to the graph matching distance 
resulting in the ability to express the combination of the graph matching distance 
constraint and the permutation matrix constraint using terms that are linear in the 
permutation matrix M. 
Due to the existence of unavoidable symmetries in graph matching and the result- 
ing global minima, a symmetry- breaking term is added in order to always obtain 
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a permutation matrix. The symmetry-breaking term is similar to the hysteretic 
annealing performed in [14,15] and is suitable for the deterministic approach be- 
ing used. The symmetry-breaking term is reversed via another fixpoint preserving 
transformation. The network then performs minimization with respect to the La- 
grange parameters and maximization with respect to the permutation matrix. In 
11] simulation results are shown for the isomorphism problem with 100 node ran- 
dom, undirected graphs and for the weighted graph matching problem with 100 
node random graphs with uniform noise added to the connections. 
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In this paper the differential geometric control theory is used to define the key concepts of relative 

degree and zero dynamics for a Dynamic Recurrent Neural Network (DRNN). It is shown that the 

relative degree is the lower bound for the number of neurons and the zero dynamics are responsible 

for the approximating capabilities of the network. 

1 Introduction 
Most of the current applications of neural networks to control nonlinear systems 
rely on the classical NARMA approach [1,2]. This procedure, powerful in itself, has 
some drawbacks [3]. On the other hand, a DRNN is described by a set of nonlinear 
differential equations and can be analysed using differential geometric techniques 

[4]- 
In this work, the important concepts of zero dynamics and relative degree from the 
differential geometric control theory are formulated for a control affine DRNN. 

2 Mathematical Preliminaries 
Consider the nonlinear control affine system 

Xi    =    x2 

X2      =      Xz 

Xr-\      -     Xr (1) 

Xr    -    fr(xi,...,xr,xr+i,...,xn) + gr -u 

xr+i    =    fr+i{xi,. ■ -,xr,xr+1,...,xn) + gr+i ■ u 

xn    —    jn\xi,...,xr,xr+\,..., xn) -f-gn ■ u 

y   -   xi 

these equations can be written in compact form 

x    =    f(x) + g -u 
V   =    h(x) (2) 

where a; e IRn, u E IR, y € IR, f(x) and g are vector fields, h(x) is a scalar field. For 
the system (1) there are two key concepts in the differential geometric framework, 
that is the zero dynamics and the relative degree. 

2.1     Zero Dynamics 
The zero dynamics of the system (1) describe its behaviour when the output y{t) 
is forced to be zero [4]. With the output zero, the initial state of the system must 
be set to a value such that (a:i(0),..., a;r(0)) are zero, whereas (o;r+i(0),..., x„(Q)) 
can be chosen arbitrarily. In addition, the input u(t) must be the solution of the 
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equation 

0 = /r(0,..., 0, xr+1(t),..., xn(t)) + gr-u (3) 

Solving for u(t) in (3) and replacing in the remaining equations, the zero dynamics 
are given by the set of differential equations 

*r+l      =      fr+l(0,...,0,Xr+1,...,Xn)-^fr(0,...,0,Xr+1,...,Xn) 

(4) 

=     fn(0,...,0,Xr+i,...,Xn) -fr(0,...,0,xr+i,...,xn) 
9r 

The zero dynamics play a role similar to that of the zeros of the transfer function 
in a linear system. If the zero dynamics are stable then the system (1) is said to be 
minimum phase. 

2.2    Relative Degree 
The relative degree of a dynamical system is denned as the number of times that 
the output y(t) must be differentiated with respect to time in order to have the 
input u{i) appearing explicitly or is the number of state equations that the input 
u(t) must go through in order to reach the output y{t). 
The nonlinear system (2) is said to have relative degree r [3,4] if 

LgVfh(x)    =    0, i = 0,...,r-2 

LgL
rflh{x)    ^    0 

3    DRNN 
A DRNN is described by the set of nonlinear differential equations 

N 

Xi    =    -Xi + J2 Wii ' a(*i) + 7' ' u (5) 

y   =   Xi,        i = l,...,N 

or in matrix form 

X    =    -x + W-Y,{x) + T-u (6) 

V = Xi 

where X£JRN,W£ MNxN, T £ ffi/^1, and E(X) = (a(Xi),.... <T(XN))
T

 ■ 
For control purposes it was demonstrated [3] that the network (6) can approximate 
nonlinear systems of the class (2), the resulting model can be analysed using the 
differential geometric framework. The aim of this paper is to propose a canonical 
structure for the network (6) in order to get any desired relative degree with a zero 
dynamics similar to (4). 
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Theorem 1  The DRNN (6) with the following matrices W and T can have any 
relative degree r € [2, N] 

W = 

W21 

Wi2 0 
w22        w23      0 

Wr-11      Wr_i2 

Wr+ll      Wr+12 

WJVI WJV2 

r= [ o  o 0     Tr 

Wr-lr 

WjVr 

7r 

0 

Wr+liV 

UNN 

IN   ] 

in other terms 

Uij =0;7i = 0,    i=l,...,r-l,    j' = i + 2,...,JV 

This particular structure is called the staircase structure. Note that the minimum 
number of neurons is the relative degree r. For a desired relative degree r = 1, the 
coefficient 71 must be nonzero. 
Proof Applying the definition of relative degree 

V    =    Xi 

y    =    xi = wii -<T(XI) + WI2 -<r{X2) 
after the first derivative, every new derivative of y(t) introduces a new state equation 
(staircase structure). Then after r derivatives of the output y(t), the input u(t) 
appears explicitly. d 

Theorem 2  The network of the Theorem 1 with a sigmoid function cr(0) = 0 has 
a zero dynamics described by the set of differential equations 

N 
~ti 

Xi = ~Xi+   Y  (W«V - —urj) ■ O-(Xi), 
j=r+i 

r+l,...,N 

Proof The zero dynamics are defined as the resulting dynamics when the output 
y(t) is constrained to be zero. In the structure proposed y(t) = 0 means that the 
first r state variables are zero Xi(t) = • • • = Xr(t) = 0 and cr(xi(t)) — &(■ • •) = 
a(Xr(t)) = 0 The equation for Xr{t) becomes 

N 

0=   Y Uri ■a(X:) + 7r -w 
j=r+i 

solving for u 
N 

u = -— Y Urj 'a^ 
fr j=r+i 

replacing the control u in the last N — r equations 
JV N 

Xi = -Xi +   Y  Uii ' ^Xj) ~ ~   Y  Wr3 ' ""(Xi)        i = r+l,...,N 
j=r+l 7r j=r+l 
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Finally 
N 

Xi = ~Xi+  XI (W!'J ~ —"n) ' °"fe)        i = r+l,...,N 
J=r+1 Tr 

D 

Example: Consider the following staircase DRNN 

Xi    =    -Xi+wn -o-(xi)+wi2-o-(X2) 

X2      =      -X2+W21 -0"(xi)+W22 ■ 0"(X2) + ^23 • 0-(X3) + 72 •« 

X3      =      -X3+W31 •<T(XI)+W32 •0-(X2)+W33-CT(X3)+73 "« 

2/    =    Xi 

o-(O)    =   0 

Relative Degree: The first derivative of the output is 

jf = Xi = -Xi + W11 • <r(xi) + W12 ■ <r(x2) 

the input « does not appear so the relative degree is greater than one. The second 
derivative of the output is 

V = -Xl + W11 • cr'(xi) • Xl + W12 ■ c-'(X2) ■ X2 

where 

•<*) = **>. 

Replacing xi and X2 

2/    =    (-I+W11 ■ <T'(XI))(-XI +W11 •<T(XI)+W12-O-(X2)) 

+W12 ■ <r'(x2) • (-X2 + W21 • o-(xi) + W22 • o-(X2) + w23 ■ <r(x3) + 72 ■ «) 

notice that the input appears explicitly so the relative degree is r = 2. 
Zero Dynamics: The proposed network has three states and relative degree two, so 
the zero dynamics has one state. 
Following the definition of zero dynamics [4], y = xi = 0. The first state equation 
is reduced to 

0 = -0 + wii ■ <r(0) + W12 • <r(jCi) 

this yields X2 = 00. The second state equation is 

0 = -0 + W21 • c(0) + W22 ■ <T(0) + w23 • cr(x3) + 72 ■ w 

solving for the input 
W23 /      X 

« = o-(Xs) 
72 

replacing u in the remaining state equation, the zero dynamics is 
T3 

X3 = -X3 + (W33 W23) ■ <r(X3) 
72 

In the simulations [5, 6] a single link manipulator of relative degree 2 and without 
zero dynamics was identified with a DRNN, the resulting model has the same 
relative degree but it needs the zero dynamics in order to improve the plant 
approximation. 
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4    Conclusions 
A DRNN, is described naturally by a set of nonlinear differential equations and 
can be analysed within the framework of the differential geometric control theory. 
There are two key concepts in this framework : the zero dynamics and the relative 
degree. 
Two theorems were formulated and proved, as a result a particular structure is 
proposed for a DRNN in order to get any desired relative degree r E [1, JV] and 
the canonical zero dynamics (4). The relative degree is a lower bound for the 
number of neurons and the zero dynamics are responsible for the approxi- 
mating capabilities of the neural network. That is, for multilayer networks the 
approximating capabilities reside in the hidden layers and for recurrent networks 
the approximating capabilities reside in the zero dynamics. 
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IRREGULAR SAMPLING APPROACH TO 
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The use of feedforward neural networks (FNNs) for non-linear control based on the input-output 
discrete-time description of systems is presented. The discussion focusses on coupling of reconstruc- 
tion techniques for n-D irregularly sampled space- and/or band-limited functions with feedforward 
neural networks. The essence of the approach is to use the multi-dimensional irregular sampling 
theory to obtain the neural network representation of interpolating filter as well as bounds for 
accuracy of the interpolation from the finite set. Key questions from the relations between band- 
and space-limited functions are addressed and their consequence on neurocontrol are underlined. 
Subject classification: AMS(MOS) 62D05, 93C10, 92B20, 93C35 

Keywords: sampling theory, nonlinear control systems, neural networks, multi-dimensional systems 

1 Introduction 
This paper focusses on the discrete-time input-output model of a deterministic 
non-linear single-input single-output (SISO) system 

y(k + 1) = f(y(k), ...,y(k-n + l), u{k),..., u(k - m + 1)) (1) 
with output y 6 [a, b] C IR, and input u € [c, d\ C IR and /:£>—► [a, b] with the 
domain of definition D - [a,b]n x [c,d\m C IRn+m. This model is referred to as 
NARMA (Non-linear Auto-Regressive Moving Average) model (see [1]) and is usu- 
ally obtained by discretisation of a deterministic non-linear (Lipschitz) continuous- 
time SISO system described by controlled ordinary differential equations. NARMA 
models are valid only locally and with this caveat it may be a starting point for 
the considerations of non-linear dynamic systems modelling in the context of neu- 
rocontrol (see [6]) 

2 Generation of Irregular Samples by a Dynamic System 
In practice / in (1) is often unknown, and modelling has to be based on the given 
pairs of multi-dimensional samples ((yk,..., yk_n+1,uk,..., uk-.m+i), yk+i), where 
we put yk = y(k) etc. for brevity. Given the samples 

ffc = (Vk, ■ ■ ■ ,yk-n + l,1ik, ■ ■ -,Uk-m+l) 

and /(£*), the issue is to reconstruct the multi-variable function /, a problem from 
multi-dimensional signal processing (note that it is completely separate from the 
question of band-limiting of y). The approach was introduced by Sanner k Slotine 
[3], but they assumed that the multi-dimensional samples are uniform, i.e., regularly 
distributed in the domain D of /. This seems to be a simplification, as the dynamics 
of (1) manifest themselves through irregular samples. For example, if/ is linear, i.e., 
Vk+i = aoyk + ■ ■ . + an-iyk-n+i +60«^ + .. . + 6m_i«(t_m+i, then even for constant 
input the output will not take values in constant increments, but according to the 
slope of the hyperplane determined by /. Thus even uniformity of u cannot, in 
general, ensure regular distribution of values of y, because the irregularity of the 
distribution represents /. 
We now examine in detail the nature of this process in low dimensions (as this can 
be illustrated graphically). We look at the way nonuniform samples, i.e., £* in the 
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x
i=f(x2'xi) 

Vi=/^'W 

Figure 1    Iterative map /:[0,1] X [0,1] ->■ [0,1] defined by yk+1 = f{yk,Vk-i)- 

pairs (£jfc,/(6;)), are generated when / is the right-hand side (RHS) of a dynamic 
system. For simplicity, instead of dealing with a controlled system of type (1), we 
concentrate on the low-order autonomous case 

Vk+i = f(yk,yk-i), (2) 

with y 6 [0,1]. Thus &, = (yu,yk-\)- We also assume that / is continuous; its 
domain, D = [0, l]2 for (2), is compact (and connected). 
The essential observation is that yk, i.e., & of the pairs (£&, /(&,)) occur in the xxx2 

plane in a nonuniform (irregular) way. They will be, in general, unevenly spaced 
and their pattern of appearance will depend on the dynamics of (2), or the shape 
of/:[0,l]x[0,l]^[0,l]. 
The sample points £k = (yk,yk-i) appear in the x\x2 plane, according to the 
iterative process (2); see Fig. 1. If we start with £i = (2/1,2/0), where j/i 6 Ox2 and 
2/o S Oxi, then we can read out y2 from the surface representing /. Then y2 is 
reflected through x3 = x2 on the x2x3 plane, becoming a point on the Ox2 axis. In 
the same time yi is reflected through x2 = x\ on the x\x2 plane, becoming a point 
on the Oxi axis. This results in the point (2/1,2/2) in the x^x2 plane, corresponding 
to the sample £2 = (2/2,2/1)- We can now read out 2/3 from the surface representing 
/ and repeat the process for k = 3. Now y3 'migrates' from Ox3 to Ox2 and y2 

from Ox2 to Ox\ generating the point (2/2,2/3) on the x\x2 plane corresponding to 
the sample £3 = (2/3, y2) etc. 
Thus, we have to address the issue of nonuniform sampling and to provide at least 
the existence conditions for function recovery with any degree of accuracy from a 
sufficiently large finite number of irregular samples making this way the application 
of neural networks plausible. 
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3    Band-limited and Space-limited Functions 
The crucial question we are dealing with is whether the non-linear functions de- 
scribing dynamical systems as NARMA models (1) are strictly band-limited or 
space-limited in the sense usually used in Signal Processing. Also important are 
the consequences of these properties for the reconstruction of such functions. The 
related question is how their extensions to the whole domain IRn+m functions are 
constructed. This is important, because we are going to use the harmonic analy- 
sis tools and especially Fourier Transform or Fourier Series. Thus we extend / to 
be equal to 0 outside its natural domain D = [a,b]n x [c, d]m. For simplicity, the 
subsequent considerations concern mainly the 1-D case. 
We shall say that a function f(x) is band-limited if its Fourier transform (multi- 
dimensional) is zero outside a finite region, and its energy is finite, i.e., 

F(w) = 0       for        |w|>£2       and       E = -!- /    |F(w)|2dw < oo. 
1     fn 

w and fi being vectors, in general. Analogously we shall say that a function is 
space-limited in multi-dimensional case if 

f(x) = 0 for |x| > X and E < oo. 

The problem is: are the 'usual' functions encountered in dynamic systems descrip- 
tion really band-limited or space-limited? From the theory of complex functions 
we know that any function that is band-limited is analytic in its domain, i.e., is 
an entire function. On the other hand, an entire function cannot vanish on an in- 
terval, except for the case f(x) = 0; thus it is not space-limited. So / cannot be 
band-limited and space-limited at the same time. This is a manifestation of the 
uncertainty principle of harmonic analysis. For if we want to localise a function 
f(x) in its (spatial) domain, it must be composed of very many sin a;a; and thus 
Aw must be large and vice-versa. Generally, the uncertainty principle of harmonic 
analysis says: It is impossible for a non-zero function and its Fourier transform to 
be simultaneously very small. 

4    Concentration Problem and Prolate Spheroidal Wave 
Functions 

Knowing that a non-trivial band-limited function cannot be space-limited we nat- 
urally come to the question: what kind of approximately space-limited function 
corresponds to a given band-limited function. In practical terms we are looking 
for a function whose 'energy' outside the given spatial region is small enough to be 
indistinguishable from the energy of (strictly) space-limited function. Therefore, we 
may define a meaningful measure of concentration of a function as 

a[ }~ r»i/(*)p& ■ 
We want to determine how large a2(X) can be for a given band-limited /; dually 
one may define an appropriate measure of concentration of the amplitude spectrum 
of f{x), say ß2{Q). Note that if f(x) were indeed space-limited to (-X/2,X/2), 
then a2iX) would have its largest value, namely unity. To solve the problem of 
maximising a2(X) we have to express fix) in terms of its amplitude spectrum 
F(u) and find the F(u) for which a2(X) achieves maximal value. This is a classical 
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J-i 

problem of mathematical physics (see [2]) and we know that the maximising F(ui) 
must satisfy the integral homogeneous Fredholm equation of the second kind 

""^"'"""W')*'" = <*\X)F{u>),        |o/| < 0. (3) 

The solutions to equation (3) are known as prolate spheroidal wave functions (pswf) 
and they provide a useful set of band-limited functions (see [5] for more details). 

5     The 2XQ, Theorem 
Our principal question was how well the band-limited and space-limited functions 
(with above mentioned restrictions) are suited to model real-world dynamic au- 
tomatic control systems. To shed more light on it let us recall the so-called 2XQ 
Theorem [4]. Its practical engineering formulation says that if XCi is large enough, 
then the space of functions of space range X and 'bandwidth' ß has dimension 
[2-XT2]. To formulate it in a more rigorous manner we have to introduce the notion 
of space-limited and band-limited functions in a way avoiding their dependence on 
the detailed behaviour of functions or their Fourier transforms at infinity. 
So, we say that a function f(x) is space-limited in multi-dimensional case to the 
interval (X/2, X/2) at level e if 

/ \f(x)\2dx < e, 
J\x\>X/2 

i.e., if the energy outside this space region is less than it is, in some sense, essential 
for us. The same way we say that a function is band-limited with bandwidth ft at 
level e if 

/ \F(u>)\2du<£, 
J\u\>n/2 

i.e., the energy outside the frequency range is less than the value we are interested 
in. Using these newly defined functions we may state that every function is both 
space-limited and band-limited at level £ (for some X and 0) as opposed to only 
one function (f(x) = 0) which is both space-limited and band-limited in the strict 
sense. 
To complete the reformulation of the 2XQ, Theorem we need one more definition. 
We say that a set of functions T has an approximate dimension TV at level s on the 
interval (—X/2, X/2) if there exists a set of TV — N(X, e) functions </>i,<l>2, ■ ■-,<I>N 
such that for each f(x) € T there exist ai, a-i,.. ., ajv such that 

r*/2 r JL -,2 
/(z)-X>^(*)   dx<£ (4) 

-x/2L ~ J 

and there is no set of TV — 1 functions that will approximate every f(x) £ T this way. 
This definition says, in other words, that every function in T can be approximated 
in —X/2 < x < X/2 by a function in the linear span of (j>\, (f>2, ■ ■ ■, 4>N, so that the 
difference between the function and its approximation is less than e. 
Restated version of the theorem has now the following form: 

Theorem 1 Let T£ be the set of functions space-limited to (—X/2, X/2) at level 
£ and band-limited to (—ß,fl) at level £. Let TV(fi, X, £,£') be the approximate 
dimension of Tt at level e'. Then for every s' > £ 

um m^i=m,   limmw)=2X, 

r. 
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In fact these limits do not depend on e and the set of functions which in real 
world we must consider to be limited both in space and frequency will be always 
asymptotically 2Xß-dimensional. 

6    Conclusions 
In this paper we have shown how the irregular samples are generated by a dy- 
namic system. We argue that in general this is an intrinsic feature of the NARMA 
model and our attempts to reconstruct the function / should be set in the ir- 
regular sampling context. The most important question in this setting is the one 
of space- and band-limitedness of the function under consideration. The result of 
paramount importance from the point of view of function approximation by finite, 
linear combinations of functions is given in the form of the IXCl theorem. Equation 
(4) stipulates the existence of a finite approximation of a given nonlinear function 
by a linear combination of functions. It also gives the lower bound for the number 
of these functions. This allows the application of neural network with known (finite) 
number of neurons. 
On the other hand, the 2XQ. theorem is also interesting from the point of view of 
function reconstruction from its irregularly spaced samples. In this case we have 
to assume that our function to be reconstructed is band-limited. From practical 
considerations it has to be space-limited as well. This problem is normally solved 
in the context of the theory of complex functions analytic in the entire domain 
(entire functions and their special types). Let us notice that applying the 2XQ 
Theorem, instead of using entire functions of exponential type (as is usually the 
case in irregular sampling), which is quite restrictive, we deal with functions which 
are square-integrable—a condition that is easily fulfilled in most practical cases. 
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An unsupervised learning principle is proposed for individual neurons with complex synaptic 

structure and dynamical input. The learning goal is a neuronal response to temporal constancies: 

If some input patterns often occur in close temporal succession, then the neuron should respond 

either to all of them or to none. It is shown that linear threshold neurons can achieve this learning 

goal, if each synapse stores not only a weight, but also a short-term memory trace. The online 

learning process requires no biologically implausible interactions. The sequence of temporal asso- 

ciations can be interpreted as a random walk on the state transition graph of the input dynamics. 

In numerical simulations the learning process turned out to be robust against parameter changes. 

1 Introduction 
Many neocortical neurons show responses that are invariant to changes in position, 
size, illumination, or other properties of their preferred stimuli (see review [5]). 
These temporal "constancies" or "invariants" do not have to be inborn: In numerical 
simulations [2, 3, 6] neurons could learn such responses by associating stimuli that 
occur in close temporal succession. Similar temporal associations have also been 
observed experimentally [4]. 
In most numerical simulations [2, 6] temporal associations were formed with the help 
of "memory traces" which are running averages of the neuron's recent activity: If 
the stimulus S, is often followed by the stimulus Sj, a strong response of the neuron 
to Si causes a large memory trace at the time of stimulus Sj, which teaches the 
neuron to respont to Sj, too. By presenting the stimuli in reverse temporal order 
Sj —► Si, the response to stimuli Si is likewise strengthened by the response to 
stimulus S{. 
This simple learning scheme does no longer work, if the input dynamics is irre- 
versible, that is if only the transition Si —> Sj occurs. In the following a more 
complex learning scheme will be presented, which can form associations in both 
temporal directions of an irreversible input dynamics. For this purpose an addi- 
tional memory trace will have to be stored in each synapse. Numerical results are 
presented for neuronal input generated by a Markov process which is simpler than 
naturally occuring input, but irreversible and highly stochastic. A temporal con- 
stancy in such a dynamics consists of a set of states which are closely connected 
to each other by temporal transitions. The learned synaptic excitation can be de- 
rived from the neuronal firing pattern by interpreting the sequence of temporal 
associations as a random walk between Markov states. 

2 Neuron Model 
The model neuron was chosen to have the simple activation dynamics of a linear 
threshold unit, but a complicated learning dynamics. The input signal is generated 
by a temporally discrete, autonomous, stochastic dynamics with a finite number 
N of states 5,-. Each state is connected with a sensory afferent. At any time t 
the afferent of the present state R(t) € {So,.. -SN} is set active (xj(t) = 1 for 
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R(t) = Sj), while all the other afferents are set passive (a;,-(i) = 0 for R(t) ^ S;). 
Each afferent forms one synapse with the model neuron. The sum of weighted 
inputs is called the neuron's activity a(R(t)) = £],-u>»£»(<). If the activity exceeds 
a threshold 8, the neurons output y(R(t)) is 1, otherwise it is 0. 
The memory trace <p>r of any quantity p is defined as its exponentially weighted 
past average at time t. The subscript r indicates over which time scale l/r)r the 
average is done (with 0 < rjr < 1). 

oo 

<P>r(t)    :=    »JrX^-rHl-.,,.)^-1) (1) 
T = l 

=>     <p>r(t + 1)- <P>r(t)      =      T)r ■ (p(t)- <p>r(t)) (2) 

The neuron model includes a variable threshold 6(t) and a variable synaptic decay 
term p(t), which serve to keep the neuron's average output y and activity o near 
the preset values y,a > 0. 

8(t)    :=    <e>e(t)-(l + vy(<y>e(t)-y)) (3) 

p(t)    :=    <p>p(t) + ^ ^    (f) • f <X) AWi>,(<) + ijp ■ («*>,(*) - a) j (4) 

(Remember that the memory traces <9>e(t) and <p>p(t) at time < do not depend 
on 0(t) or p(<).) If the total synaptic change Y^i Aw; is positive and if the activity 
a exceeds its target ä, p will decrease on a time scale l/r)p, causing a subsequent 
decrease of synaptic weights in eq. (6). The time scales l/rje and l/r]p of the averages 
are set large compared to the recurrence time of sensory input patterns. The rate 
rjy « 1/3 determines how much the threshold 8 is increased, if the average output 
<y>e exceeds its target y. 
Synaptic learning processes determine the synaptic weights to,- and the synaptic 
short-term memory traces q,, which measure the contribution that a synapse has 
recently made to the neuronal activity a. 

*(*)    :=    f^> (5) 
Awi(t)    :=    T}wWi(t)xi(t) (ap   

Z ^{>-p{t)j   + r)wafz(t)qi(t) (6) 

The decay term p(t) was defined above. The past and future prefactors aj and ap 

will be discussed below. The quantity z(t) models the postsynaptic depolarization 
that effects the learning process. It is defined as a sum z{i) := a(t) + jy(t) of the 
depolarization a caused by other synaptic inputs and the depolarization caused by 
the firing y of the postsynaptic neuron, weighted by a factor j > 0. 
This synaptic learning rule can be rewritten into a more comprehensible form by 
defining modified synaptic changes Aw,-: 

/ oo 

K^i(t)     :=     VwWi(t)xi(t)     (     -2E-,,p£z(f_r)-(l-ifc)(,'-1) 

OO \ 

+ ^/Ez(*+7-)-(1-"/)(T"1) - p®) (?) 
By inserting definitions (1) and (5) into eq. (6) one can easily show that the modi- 
fied synaptic changes cause approximately the same total changes in the long run: 
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Y^t=i Atu,-(i) K J2t=i Aio,-(t) for large T. The approximation is good, if the learn- 
ing period T is much larger than the duration l/r]f of the synaptic memory trace 
g,-. It is exact, if the depolarization z(t) is zero for t < 1 and t > T. 

The definition (7) of Attj resembles resembles an unsupervised Widrow-Hoff-rule, 
in which the desired activity of the neuron depends on an exponentially weighted 
average of past and future postsynaptic depolarizations z(t±r). Because the future 
depolarizations z(t + r) are not yet known at time t, the memory traces qi had to 
be introduced in order to construct the online learning rule (6) of Aw»(<). 

3    Interpretation of Temporal Associations as a Random Walk 
After a sufficiently long time to, any successful learning process should reach a 
quasistationary state, in which synaptic changes cancel each other in the long run. 
In the following we will derive the neural activities a(S,) in the quasistationary 
state from the neural outputs y(Sj) and the transition rules of the input dynamics. 
Even in the quasistationarity state, the quantities w,-, 6, and p will fluctuate ir- 
regularity, if the input is generated by a stochastic dynamics. We assume that the 
learning rates r}w,ne and r]p are so small that these fluctuations can be neglected. 
Then the activity a, the output y, and the depolarization z — a+jy depend on time 
t only through the state R(t) of the input dynamics. Under the assumption that the 

input dynamics is ergodic, the temporal average ^4=1 Awi(t+to)/T can be replaced 
by an average over all possible trajectories ... —► R(—1) —>■ R(0) —> -R(l) —► ... 
of the input dynamics. By definition, quasistationarity has been reached, if these 
average weight changes vanish for all synapses. Using definition (7) of Aw;, the 
condition of quasistationarity now reads: 

/ oo 

a(A(0))    =    21-     £        P/(fl(oHfi(ihii(2)...),/^Z(Ä(r))(l-J//)(r-1) 
P     JJ(1),Ä(2),...\ T = l 

+  -   •       E        (pp(..M-2)^R(-i^RW)r,pf2z(R(-T))(l-r)p^-A(8) 
P        ...,fl(-2),fi(-l)\ T=\ I 

for any state Ä(0). Here Pf(R(0) —+ Ä(l) —►...) denotes the probability mea- 
sure that a trajectory starting at Ä(0) will subsequently pass through R(l), Ä(2), 
.... Analogously, Pp(... —► R(—1) —► Ä(0)) denotes the relative probabilities of 
trajectories ending at R(0). 
The right hand side of eq. (8) can be interpreted as an average over random jumps 
between states of the input dynamics. Every jump starts at state R(0). It jumps 
with probability aj/p into the future and with probability ap/p into the past. 
The jump length r is exponentially distributed, with a mean of 1/??/ (or 1/J]P) 

time steps being transversed. If the dynamics is stochastic, several end states may 
be reached after ±r time steps. The end state Ä(±r) is then chosen according 
to the transition probabilities Pj or Pp, which were defined above. The effective 
depolarization z = a + jy of the end state is averaged over all possible jumps. 
According to eq. (8), this average should equal the activity a(R(0)) at the start 
state Ä(0). 
The activity a(R(0)) at the start state still depends on the unknown activity 
a(R(±r)) at the end state. The latter can again be interpreted as an average over 
random jumps, which start from state R(±T). By repeating this concatenation of 
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Figure 1 IT is the information which a first spike at time t transmits about the 
state of the input dynamics at time i+r. A neuron responding to a randomly chosen 
set of 32 states would convey very little information (stars). A neuron with suitable 
learning parameters (see text) can improve its response: Circle: response to an 
optimal set of 32 states at t Si 106. Triangle: response to 33 states at t fa 2 • 106, if the 
"drift" is slightly positive (aj = 0.55; ap = 0.45; rjj = r)p = 0.8). Bowtie: response 
to 31 states at t « 2.5 • 106, if a maximal drift (aa, = a* = 0) is compensated by 
interactions of two different dendrites. 

jumps, one forms a random walk (which should not be confused with a trajectory 
of the input dynamics). By averaging eq. (8) over all start states R(0) one can 
easily show that the total jump probability aj/p + ap/p fa 1/(1 + jy/ä) < 1, so 
that the random walk is of finite mean length a/(yy). Thus one can sum jy over 
the end states of all jumps in a random walk and average this sum over all the 
random walks starting at Sj. According to construction, this average shold equal 
the activity a(Sj), once that the learning process has reached quasistationarity. 

4     Numerical Results 
The learning algorithm was tested with input generated by a special Markov pro- 
cess, whose high internal symmetry permits an accurate assessment of the learn- 
ing process. Each of its 10 ■ 25 = 320 equally probable states is denoted by a 
digit sequence C B1B2B3BABr>, with C € {0,1,.. .9} and B{ e {0,1}. Each state 
C B1B2B3B4B5 forms two equally probable transitions to the states C .82JB3-B4-85O 
and C B2B3B4B5l, with C" = C + 1 mod 10. 
With suitable learning parameters (y = 0.1, 7 = 0.1, aj = ap = 0.5, and 1/T]J = 
l/riP = 1.25, r)w fa 0.04) and random initial synaptic weights the neuron needed 
1 million time steps of online learning to develop a quasistationary response. It 
responded to 32 states of the Markov process, namely the 8 states 0 5iß25301 (with 
BiB2B3 G {000,001,...Ill}), the 8 states 1 5iß20155, the 8 states 2 Bi015455, 
and the 8 states 3 OIB3B4B5. According to the rules of the input dynamics, these 
four groups of states are always passed in the given order. Thus the neuron always 
responds for 4 consequetive time steps. By its first spike (y(t) = 1 after y(t — 1) = 0) 
it transmits an information IT = log2(320/8) « 5.3 about the state R(t = r) of 
the input dynamics at the present moment r = 0 and the next three time steps 



Eiselt: Unsupervised Learning of Temporal Constancies 175 

T = 1,2 or 3 (see fig. 1). One can prove that this is one of the "most constant" 
responses to the input dynamics, in the sense that no neuron with mean firing rate 
y = 0.1 can transmit more information IT by its first spike or show more than 
4 consequetive responses at some times without showing less than 4 consequetive 
responses at other times. 
A deeper analysis of the properties of the random walk showed that the learning 
process is robust against almost all parameter changes (as long as r]f,r)p,rjw,r]e, nP, 
and 7 remain small enough). The one critical learning parameter is aj/nf — ap/r]p, 
the mean drift of the random walk into the future direction per jump. In the extreme 
case ap = 0 the learning goal (8) would require the neuron's strongest activity to 
preceed its output y = 1 in time, which is inconsistent with the output being 
caused by the neuron's strongest activity. Only if the drift was rather small, did 
the learning process converge to quasistationarity (triangles in fig. 1). 
There is a way to turn the learning process robust against changes in aj and ap. One 
constructs a neuron with two different dendrites, differing in the values p, <p>p, 
<J2i Aiu,->p, and <a>p and the synaptic learning parameters af,ap,r)f,rjp: In 
dendrite a the drift a.a,/'n't — aj/'f]p is chosen negative, in dendrite b the drift oib,/rA — 

ap/np is chosen positive. This learning process always reached quasistationarity in 
numerical simulation. The early part of neuronal responses was caused by dendrite 
6, the late part by dendrite a. The worst choice of learning parameters (maximal 
drift ai — ah = 0) still produced a rather good neuronal response (bowties in fig. 
1). The known anatomical connections in the neocortex suggest that dendritic type 
a might correspond to apical dendrites and dendritic type 6 to basal dendritesfl]. 
This speculative hypothesis might be tested by simulating networks of such neurons. 
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In previous papers e.g. [5] the effect on the learning properties of filtering or other preprocessing 

of input data to networks was considered. A strategy for adaptive filtering based directly on this 

analysis will be presented. We focus in Section 2 on linear networks and the delta rule since 

this simple case permits the approach to be easily tested. Numerical experiments on some simple 

problems show that the method does indeed enhance the performance of the epoch or off line 

method considerably. In Section 3, we discuss briefly the extension to non-linear networks and in 

particuar to backpropagation. The algorithm in its simple form is, however, less successful and 

current research focuses on a practicable extension to non-linear networks. 

1 Introduction 
In previous papers e.g. [5] the effect on the learning properties of filtering or other 
preprocessing of input data to networks was considered. Such filters are usually 
constructed either on the basis of knowledge of the problem domain or on statistical 
or other properties of the input space. However in the paper cited it was briefly 
pointed out that it would be possible to construct filters designed to optimise the 
learning properties directly by inferring spectral properties of the iteration matrix 
during the learning process, permitting the process to be conditioned dynamically. 
The resulting technique is naturally parallel and easily carried out alongside the 
learning rule itself, incurring only a small computational overhead. Here we explore 
this idea. 

2 Linear Theory 
Although not the original perceptron algorithm, the following method known as the 
delta rule is generally accepted as the best way to train a simple perceptron. Since 
there is no coupling between the rows we may consider the single output perceptron. 
Denote the required output for an input pattern x by y, and the weights by the 
vector wT. Then, 

<5w = T)(y — wTx)x 

where 77 is a parameter to be chosen called the learning rate [7],p.322 . Thus given 
a current iterate weight vector wk, 

wk+i = wk + r](y - wk
Tx)x = (I - 7?xxT)wk + rjyx (1) 

since the quantity in the brackets is scalar. The bold subscript k here, denotes 
the kth iterate, not the kth element. We will consider a fixed and finite set of 
input patterns xp, p = 1.. A, with corresponding output yp. If we assume that the 
patterns are presented in repeated cyclic order, the presented x and corresponding 
y of (1) repeat every t iterations, and given a sufficiently small 77, the corresponding 
weights go into a limit t-cycle: see [3] or [5]. Of course this is not the only or 
necessarily best possible presentation scheme [2], but other methods require a priori 
analysis of the data or dynamic reordering. Since we are assuming that we have 
a fixed and finite set of patterns xp, p = 1.. .t, an alternative strategy is not to 
update the weight vector until the whole epoch of t patterns has been presented. 
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This idea is attractive since it actually generates the steepest descent direction for 
the least sum of squares error over all the patterns. We will call this the epoch 
method to distinguish it from the usual delta rule. (Other authors use the term off 
line learning.) This leads to the iteration 

t 

wk+i = fiwk+1 + 77^(ypXp) (2) 
P=I 

where Q = (I—T]XXT) — (I—T]L). Here X is the nxt matrix whose columns are the 
Xp's. The k in (2) is, of course, not equivalent to that in (1), since it corresponds to a 
complete epoch of patterns. There is no question of limit cycling, and, indeed a fixed 
point will be a true least squares minimum w*. To see this, put Wk+i = w^ = w* 
and observe that (2) reduces to the normal equations for the least squares problem. 
Moreover the iteration (2) is simply steepest descent for the least squares problem, 
applied with a fixed step length. Clearly L = XXT is symmetric and positive semi 
definite. In fact, provided the xp span, it is (as is well known) strictly positive 
definite. The eigenvalues of 0 are 1 — n(the corresponding eigenvalues of L), and 
hence for n sufficiently small Q{Q) = ||fi||2 < 1. Unfortunately, however, (2) gen- 
erally requires a smaller value of n than (1) to retain numerical stability [3], [5]. 
How can we improve stability of (2) or indeed (1)? Since these are linear itera- 
tions it is only necessary to remove the leading eigenvalue of the iteration matrix. 
Specifically we seek a matrix T such that if each input vector xp is replaced by 
Txp, more rapid convergence will result. We see from (2) that the crucial issue is 
the relationship between the unfiltered update matrix ß = (7 — nXXT) and its 
filtered equivalent (7 — nTXXTT<r) — fi' say. In general these operations may be 
defined on spaces of different dimension: see e.g. [5], but here we assume T is n x n. 
To choose T we compute the largest eigenvalue and corresponding eigenvevtor of 
XXT. This may be carried out by the power method [6], p. 147 at the same time 
as the ordinary delta rule or epoch iteration: the computation can be performed by 
running through patterns one at a time, just as for the learning rule itself. We get 
a normalised eigenvector pi of XXT corresponding to the largest eigenvalue Ai of 
XXT. Set 

T = 7 + (A-1/2-l)plPl
T. (3) 

A routine calculation shows that TXX7!^ has the same eigenvectors as XXT, 
and the same eigenvalues but with Ai replaced by 1. Each pattern xp should then 
be multiplied by T, and, since we are now iterating with different data, the current 
weight estimate w should be multiplied by 

T-1 = 7 + (AJ/2-l)plPl
T. (4) 

We may then repeat the process to remove further eigenvalues. Basically the same 
idea can be used for the iteration with the weights updated after each pattern 
as in (1), but it is less convenient: for simplicity, our numerical experiments refer 
only to the application to (2). Two small examples are discussed: in each case four 
eigenvalues are removed though in fact for the first example, only the first eigenvalue 
is significant. 
The first example is a 'toy' problem taken from [5],pi 13. There are four patterns 
and n = 3 : xi = (1,0,0)T, x2 = (1,1,0)T, x3 = (1,1,1)T and x4 = (1,0,1)T. The 
corresponding outputs are yi = 0, j/2 = 2/3 = 2/4 = 1- Figure 1 shows the number of 
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epochs required to obtain agreement in the weights (at the end of the epoch for the 
delta rule) to an error or 1E-8, for various values of 77 and for the three methods: the 
delta rule (1), the epoch or off line method (2) and the Adaptive Filtering Method 
(AFT) using (3). 
As a slightly more realistic example we also considered the Balloon Database B from 
the UCI Repository of Machine learning and domain theories [1]. This is a set of 
sixteen 4-vectors which are linearly separable. Figure 2 compares the perfomance of 
the epoch and AFT methods: on this very well behaved database the epoch method 
actually performs better in terms of iterations than the delta rule even though it 
requires a larger value of r\. With 77 = 1, AFT requires only three epochs and good 
performance is obtained over a wide range, whereas the best obtainable with the 
epoch method is 28 with 77 = 0.05 and this is a very sharp minimum: 77 = 0.03 
requires 49 iterations, and 77 = 0.06 requires 45. 

3    Non-linear Networks 
The usefulness of linear neural systems is limited, since many pattern recognition 
problems are not linearly separable. We will define a general nonlinear delta rule. 
The backpropagation rule [7], pp.322-328 used in many neural net applications is a 
special case of this. For the linear network the dimension of the input space and 
the number of weights are the same: n in our previous notation. Now we will let 
M denote the total number of weights and n the input dimension. So the input 
patterns x to our network are in IR", and we have a vector w of parameters in 
IR describing the particular instance of our network: i.e. the vector of synaptic 
weights. For a single layer perceptron with m outputs, the vector w is the the mxn 
weight matrix, and thus M — mn. For a multilayer perceptron, w is the cartesian 
product of the weight matrices in each layer. For brevity we consider just a single 
output. The network computes a function g : IR x IR" —► IR. In [4] or [5] it is 
shown that the generalised delta rule becomes 

<Sw = 77(7/ - g(w, x)Vff(w, x) (5) 

V<7 takes the place of x in (1). Observe that a change of weights in any given layer 
will cause a (linear) change in the input vector to the succesive hidden layer. Thus 
the required gradient is obtained by i) differentiating the current layer with respect 



Ellacott & Easdown: Numerical Aspects of Machine Learning 179 

Figure 3 

to the weights in the layer and ii) multiplying this by the matrix representation 
of the Frechet derivative with respect to the inputs in the succeeding layers. Thus, 
let the kth weight layer, k = 1,2,. ..K, say, have weight matrix Wk '■ each row 
of these matrices forms part of the parameter vector w. On top of each weight 
layer is a (possibly) non-linear layer. At each of the m (say) hidden units we have 
an activation function: hj for the jth unit. The function h whose jth co-ordinate 
function is hj is a mapping IRm —► IRm. However for a multilayer perceptron it 
is rather special in that hj only depends on the jth element of its argument: in 
terms of derivatives this means that the Jacobian H of h is diagonal. Let the H 
and h for the units layer after the kth weight layer also be subscripted k. (Input 
units to the bottom layer just have identity activation, as is conventional.) Finally 
suppose that the input to the kth weight layer (i.e. the output from the units of 
the previous layer) are denoted vk, with Vi = x. A small change 8Wk in the kth 
weight matrix causes the input to the corresponding unit layer to change by <5Witvk. 
The Frechet derivative of a weight layer Wr\r with respect to its input vr is of 
course just Wr- Thus the output is changed by HKWKHK-IWK-I ■ ■. HkSWkVk. 
Since this expression is linear in SWk it yields for each individual element that 
component of the gradient of g corresponding to the weights in the kth layer. To 
see this, recall that the gradient is actually just a Frechet derivative, i.e. a linear 
map approximating the change in output. In fact we might as well split up Wk by 
rows and consider a change ((Sw^k)7 in the ith row (only). This corresponds to 
8Wk = ei(6wi]k), so 6Wkvk = ei(<5wi|k)vk = eiVk

T((5wi]k)T = K\*(<5wi]k)T, say, 
where Vitk is the matrix with ith row vk, and zeros elsewhere. Thus, that section 
of V<7 in (5) which corresponds to changes in the ith row of the kth weight matrix 
is HKWKHK-IWK-I ■ ■ -HkVi^k- The calculation is illustrated in the following ex- 
ample. Figure 3 shows the architecture. The shaded neurons represent bias neurons 
with activation functions the identity, and the input to the bias neuron in the input 
layer is fixed at 1. The smaller dashed connections have weights fixed at 1, and the 
larger dashed ones have weights fixed at 0. (This approach to bias has been adopted 
to keep the matrix dimensions consistent.) All other neurons have the standard ac- 
tivation function a = 1/(1 + ex). Other than the bias input, the data is the same 
as the first example in Section 2. Let the initial weights be 
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0.01 0.03 0.05 o 
0.02 0.04 0.06 0 
0 0 0 1 

between the inputs and hidden layers numbering from the top in 3. Thus no bias 
is applied (but weights in rows 1 and 2 in the last column are trainable), and the 
bottom row of weights is fixed. Weights are 

0.01 0.02 0.02 

between hidden and output layer, so a bias of 0.03 is applied to the output neuron 
and this is trainable. With input Xi = (1,0,0,0)T and y\ — 1, we find that (working 
to 4dp) the output from the non-bias hidden units are 0.5025 and 0.5050. The bias 
output is of course 1. The output from the output unit is 0.5113. Using the fact that 
the derivative of the standard activation function is a(l — a), the diagonal elements 
of the 3x3 matrix H\ are 0.2500, 0.2500 and 1 from the bias unit. The off diagonal 
elements are, of course, 0. H<z is a 1 x 1 matrix (i.e. a scalar) with value 0.2499. 
Ignoring terms corresponding to fixed weights we have 11 trainable weights: 8 below 
the hidden layer and 3 above. V<? is a thus an 11-vector with the first three elements 
(say) corresponding to the hidden-to-output weights. (This is the convenient order- 
ing for backpropagation, as the output gradient terms must be computed first.) So 
the first three elements of Vg are given by HiV\,i — 0.249914,2 = 0.2499V2' (since 
ei is here a 1-vector with element 1) = (0.1256, 6.1262, 0.2499). Proceeding to the 
sub-hidden layer weights, the first four elements are given by HzW^HiVi^. The 
product H2W2Hi evaluates to (0.0006, 0.0012, 0.0075). Vi,i = e^, which has 
(1,0,0,1) as first row and zeros elsewhere. Hence elements 4 to 7 of V</ are (0.0006, 
0, 0, 0.0006). Similarly elements 8 to 11 of Vg are (0.0012, 0, 0, 0.0012). 
Experiments with the adaptive filtering algorithm have as yet been less successful 
than in the linear case, due to problems of underdetermination and non-stationarity. 
These difficulties, which do not appear to be insurmountable, are the focus of 
current research. 
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RAM-based neural networks are designed to be hardware amenable, which affects the choice 

of learning algorithms. Reverse differentiation enables derivatives to be obtained efficiently on 

any architecture. The performance of four learning methods on three progressively more difficult 

problems are compared using a simulated RAM network. The learning algorithms are: reward- 

penalty, batched gradient descent, steepest descent and conjugate gradient. The applications are: 

the 838 encoder, character recognition, and particle classification. The results indicate that reward- 

penalty can solve only the simplest problem. All the gradient-based methods solve the particle 

task, but the simpler ones require more CPU time. 

1 Introduction 
The driving force behind RAM-based neural networks is their ease of hardware 
realisation. The desire to retain this property influences the design of learning algo- 
rithms. Traditionally, this has led to the use of the reward-penalty algorithm, since 
only a single scalar value needs to be communicated to every node [7]. The math- 
ematical tool of reverse differentiation enables derivatives of an arbitrary function 
to be obtained efficiently at an operational cost of less than three times the orig- 
inal function. Using three progressively more complex problems, the performance 
of three gradient-based algorithms and reward-penalty are compared. 

2 HyperNet Architecture 
HyperNet is the term used to denote the hardware model of a RAM-based neural 
architecture proposed by Gurney [5], which is similar to the pRAM of Gorse and 
Taylor [4]. A neuron is termed a multi-cube unit (MCU), and consists of a number 
of subunits, each with an arbitrary number of inputs, j and k reference nodes in the 
hidden and output layers respectively, with i = 1,.. .,7 indexing the subunits. fi 
denotes the site addresses, and is the set of bit strings fii.... ,fin where n denotes the 
number of inputs to the subunit. zc refers to the cth real-valued input, with zc £ [0,1] 
and zc = (1 — zc). For each of the 2n site store locations, two sets are defined: 
c 6 M'J0 if fic = 0; c E M'^ if fic = 1. The access probability P(/utJ) for location /J, 

in subunit i of hidden layer node j is therefore P(n13) = riceM'-7 ^c FLeAf'7 z°- Tne 

subunit response (s) is then gained by summing the proportional site values, which 
are in turn accumulated to form the multi-cube activation (a). The node's output 
(y) is given by passing the MCU activation through a sigmoid transfer function 
(y = a(a) = 1/(1 + e-»)). The complete forward pass of a two layer network of 
HyperNet nodes is given in Table 1. in the form of a computational graph. 
Gradient-based algorithms require the extraction of error gradient terms. Reverse 
differentiation [10] enables derivatives to be obtained efficiently on any architecture. 
Functions are usually composed of simple operations, and this is the basis on which 
reverse accumulation works. A computational graph with vertices 1 to N connected 
by arcs is constructed. The first n vertices are the independent variables, with 
the results of subsequent basic operations fu(.) stored in intermediate variables 
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Table 1    Forward and reverse accumulation of a two layer network of real-valued 
HyperNet nodes. 

xu = fu(-), u = w+1, ...,N with ^(a;) = zjv- The gradient vector p(x) = dF(x)/dx 
can then be obtained by defining x — dxv/dxu,u — 1,...,« for vertex w, and 
applying the chain rule. The process thus starts at vertex N, where XN = 1, and 
percolates down. The reverse accumulation of a two layer HyperNet network is also 
given in Table 1. 

3    Learning Algorithms 
The reward-penalty algorithm used is an adaptation of the P-model associative 
algorithm devised by Barto [2] and modified for HyperNet nodes by Gurney [5]. 
A single scalar reinforcement signal, calculated from a performance measure, is 
globally broadcast. The internal parameters are updated using this signal, and lo- 
cal information. The performance metric used is the mean-squared error on the 

output layer (e = 1/Nk Y^,k=i[<T(ak) ~ 2/H]2 where yki is the target output for 
node k, and Nk is the number of output layer nodes). The binary reward sig- 
nal is then probabilistically generated: r — \ with the probability (1 — e); r = 0 
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otherwise. Given a reward signal (r = 1) the node's internal parameters are mod- 
ified so that the current output is more likely to occur from the same stimulus. A 
penalising step (r = 0) should have the opposite effect. The update is therefore 
ASß = a [r(y — y) + rA(l — y — y)] where a is the learning rate, X is the degree of 
penalising, and y = ykt for output layer nodes and is the closest extreme for hidden 
layer nodes: y = 1 if y > 0.5; y — 0 if y < 0.5; or y — 1 with probability 0.5 if 
y = 0.5. 
Gradient descent is the simplest gradient technique, with the update AS = —aS, 
where a is the step size and S is the gradient term. In the trials reported here, 
batched updating was used, where the gradients are accumulated over the training 
set (an epoch) before being applied. Gradient descent has also been applied to 
RAM-based nodes by Gurney [5], and Gorse and Taylor [4]. 
Steepest Descent represents one of the simplest learning rate adaption techniques. A 
line search is employed to determine the minimum error along the search direction. 
The line search used was proposed by Armijo [1], and selects the largest power of 
two learning rate that reduces the network error. 
Successive steps in steepest descent are inherently perpendicular [6], thus leading 
to a zig-zag path to the minimum. A better search direction can be obtained by 
incorporating some of the previous search direction. Momentum is a crude ex- 
ample. Conjugate gradient utilises the previous direction with the update rule 
AS — a6S = a(—S + ß6S~) where 6S~ refers to the change on the previous 
iteration, ß is calculated to ensure that successive steps are conjugate, and was 
calculated using the Polak-Ribiere rule [9]. 

4    Benchmark Applications 
The 838 encoder is an auto-associative problem which has been widely used to 
demonstrate the ability of learning algorithms [6]. Both the input and output lay- 
ers contain n = 8 nodes, with log2 n = 3 hidden layer nodes. Presentation of n 
distinct patterns requires a unique encoding for each to be formulated at the hid- 
den layer. Of the n" possible encodings, n! are unique. Thus for the 838 encoder, 
only 40,320 unique encodings exist in the 16,777,216 possible, or 0.24%. The net- 
work is fully connected, with every MCU containing only one subunit. The training 
vectors consist of a single set bit, which is progressively shifted right. 
The character set database is a subset ofthat utilised by Williams [11], and con- 
sists of twenty-four examples of each letter of the alphabet, excluding 'I' and 'O'. 
Each are sixteen by twenty-four binary pixels in size, and were generated from UK 
postcodes. Nineteen examples of each letter form the training set. A randomly gen- 
erated configuration was utilised, with each pixel mapped only once. Eight inputs 
per subunit, and seven subunits per MCU resulted in seven neurons in the hid- 
den layer. The output layer contains twelve nodes, each with a single subunit fully 
connected to the hidden layer. 
The particle scattering images were generated by a pollution monitoring instru- 
ment previously described by Kaye [8]. Data was collected on eight particle types, 
namely: long and short caffeine fibres; 12/zm and 3/zm silicon dioxide fibres; copper 
flakes; 3/im and 4.3/im polystyrene spheres; and salt crystals. The training set com- 
prised fifty randomly selected images of each type, quantised to 162 5-bit images 
to reduce computational load. A fully connected network was used, with sixteen 



184 CHAPTER 29 

hidden, and six output layer MCUs. Every MCU consisted of two subunits, each 
with eight randomly generated connections. A more complete description of the 
airborne particle application can be found in [3]. 

5 Experimental Results 
The site store locations were randomly initialised for all but reward-penalty, where 
they simply set to zero. The convergence criteria was 100% classification for the 
838 encoder, and 95% for the other applications. Parameter settings were gleaned 
experimentally for the reward-penalty and gradient descent algorithms. The gradi- 
ent descent setting of p was also used for steepest descent and conjugate gradient. 
The results are averaged over ten networks for the simpler problems, and five for 
the particle task. Table 2 summarises the parameter settings, and results for the 
four algorithms on the three applications. "Maximum", "mean", "deviation", and 
"coefficient" are in epochs, with the latter two being the standard deviation and 
coefficient of variation (V = | ■ 100) respectively. * denotes unconverged networks, 
and hence the maximum cycle limit. "CPU / cycle" is based on actual CPU time 
(sees) required on a Sun SPARCstation 10 model 40. "Total time" is given by 
"mean" x "CPU / cycle". 
For the 838 encoder, conjugate gradient was the fastest, requiring marginally less 
time than reward-penalty and almost six and a half times fewer cycles. The char- 
acter recognition task highlights the difference in learning ability. Reward-penalty 
was unable to converge, being more than three orders of magnitude away from the 
desired error. Batched gradient descent again demonstrated consistent learning, but 
was still the slowest of the gradient-based algorithms. The results for the particle 
task exemplify the problem of steepest descent: every network became trapped and 
required a relatively large number of cycles to be freed. The power of conjugate gra- 
dient also becomes clear, needing five times fewer cycles then gradient or steepest 
descent. Reward-penalty was not tried due to its failure on the simpler character 
problem. 

6 Conclusions 
The performance of various learning algorithms applied to a RAM-based artificial 
neural network have been investigated. Traditionally, reward-penalty has been ap- 
plied to these nodes due to its inherent hardware amenability. The experiments 
reported here suggest that reinforcement learning is bested suited to simple prob- 
lems. With respect to the gradient-based algorithms, gradient descent was consis- 
tently the slowest algorithm. While steepest descent was the fastest on the character 
recognition task, it had a tendency to become trapped. Conjugate gradient was by 
far the best algorithm, being fastest on two of the three applications. 
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Reward- Gradient Steepest Conjugate 
Task Parameters Penalty Descent Descent Gradient 

P 0.35 0.21 0.21 0.21 
A 0.7 NA NA NA 
a 32 4 NA NA 
Maximum 449 578 107 75 

838 Encoder Mean (x) 239 499 55 37 
Deviation (s) 181 74 32 23 
Coefficient (V) 76 15 58 62 
CPU / cycle (sees) 0.004 0.006 0.020 0.024 
Total time (sees) 0.980 2.944 1.089 0.881 

P 1.75 0.21 0.21 0.21 

X 0.8 NA NA NA 

a 4 2 NA NA 

Alphabetic Maximum 10000* 259 60 63 

Character Mean (5) - 244 50 41 

Recognition Deviation (s) - 19 8 14 
Coefficient (V) - 8 16 34 
CPU / cycle (sees) 2.90 6.47 13.85 32.45 
Total time (sees) - 1579 692 1331 

P - 0.9 0.9 0.9 
a - 1 NA NA 
Maximum - 1014 1190 197 

Airborne Mean (x) _ 828 890 156 
Particle Deviation (s) _ 111 250 49 
Classification Coefficient (V) - 13 28 31 

CPU / cycle (sees) - 56.44 133.93 190.55 
Total time (sees) - 46733 119199 29726 

Table 2    Summary of the performance of the training algorithms applied to the 
benchmark tests. 
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This paper describes new work on partial match using Correlation Matrix Memory (CMM), a 
type of binary associative neural network. It has been proposed that CMM can be used as an 
inference engine for expert systems, and we suggest that a partial match ability is essential to 
enable a system to deal with real world problems. Now, an emergent property of CMM is an 
ability to perform partial match, which may make CMM a better choice of inference engine than 
other methods that do not have partial match. Given this, the partial match characteristics of 
CMM have been investigated both analytically and experimentally, and these characteristics are 
shown to be very desirable. CMM partial match performance is also compared with a standard 
database indexing method that supports partial match (Multilevel Superimposed Coding), which 
shows CMM to compare well under certain cirumstances, even with this heavily optimised method. 
Parallels are drawn with cognitive psychology and human memory. 

Keywords: Correlation Matrix Memory, Neural Network, Partial Match, Human Memory. 

1    Introduction 
Correlation Matrix Memory (CMM) [4] has been suggested as an inference engine, 
possibly for use in an expert system [1]. Touretsky and Hinton [7] were the first to 
implement successfully a reasoning system in a connectionist architecture, and there 
have been several neural network based systems suggested since. However, only the 
systems [1, 7] can be said to use a truly distributed knowledge representation (the 
issue of localist versus distributed knowledge representation will not be discussed 
here), for instance SHRUTI [6] is an elaborate system using temporal synchrony. 
The SHRUTI model was developed with a localist representation and, although 
a way of extending the model to incorporate a semi-distributed representation is 
given, this is not a natural extension of the model; moreover, it is difficult to see 
how learning could occur with either form of knowledge representation. Many of 
the properties that have become synonymous with neural networks actually rely 
on the use of a distributed knowledge representation. These are: (a) a graceful 
degradation of performance with input data corruption; (b) the ability to interpolate 
between input data and give a sensible output, and (c) a robustness to system 
damage. Partial match ability is very much connected with (a) and (b), which 
give neural network systems their characteristic flexibility. Here we suggest that a 
certain flexibility in reasoning is invaluable in an inference engine because, in real 
world problems, the input data is unlikely to be a perfect match for much of the 
time. The CMM-based inference engine suggested by Austin [1] uses a distributed 
knowledge representation, and therefore this system can, in principle, offer the 
desired flexibility. The focus of this paper is a full analysis of the partial match 
ability of CMM, including a comparison with a conventional database indexing 
method that offers partial match. This conventional database indexing method is 
Multilevel Superimposed Coding [3]. Section 2 contains a more detailed description 
of CMM and partial match, including an analysis of the theoretical partial match 
performance of CMM. Section 3 compares CMM partial match with Multilevel 
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Superimposed Coding, and Section 4 considers how these results may be relevant 
to cognitive psychology and the study of human memory. 

2    CMM and Partial Match 
CMM is a type of binary associative memory, which can be thought of as a matrix of 
binary weights. The fundamental process which occurs in CMM is the association 
by Hebbian learning of binary vectors representing items of information, which 
subsequently allows an item of information to be retrieved given the appropriate 
input. CMM allows very fast retrieval and, particularly, retrieval in a time which 
is independent of the total amount of information stored in the memory for given 
CMM size. In [1], a symbolic rule such as X=*Y can be encoded by associating a 
binary vector code for X, the rule antecedent, with a binary vector code for Y, the 
rule consequent. The rule can be recalled subsequently by applying the code for 
X to the memory and retrieving the code for Y. Multiple antecedent items can be 
represented by superimposing (bitwise OR) the binary vector codes for each item 
prior to learning. A fixed weight, sparse encoding is used to generate codes with 
a coding rate that optimizes storage wrt. number of error bits set in the output, 
which are bits set in error due to interactions between the binary representations 
stored in the CMM [11]. CMM learning is given by: 

Mi+1 = M{ © I Ö (1) 

where M' is the mxm CMM at iteration i, I and O are m-bit binary vector codes 
to be associated, and ffi means OR each corresponding element. Hence to obtain 
CMM at iteration i+1,1 and O are multiplied and the result ORed with Af. Note 
that learning is accomplished in a single iteration. CMM retrieval is given by: 

r = 7 M (2) 

O = L-max(r, 1) (3) 

where I would be one of a pair of vectors previously associated in M, and the 
function L—max(r, 1) [2] selects the / highest integers in the integer vector, T, to be 
the / set bits in the output, O. Storage wrt. error is maximised when [11]: 

n = log2 m (4) 

where n is the number of set bits in each m-bit binary vector; usually, we choose 
/ = n. In a symbolic rule matching context, partial match would allow a rule that 
has multiple items in the antecedent to fire when only a subset of the items are 
present. In terms of the binary vector code representation being considered here 
and if the input to the CMM contains z set bits, a full match input is characterised 
by the greatest possible number of set bits (z — n), while a partial match has less 
set bits than this (^ < z < n, where k is the number of antecedent items). Because 
of the way in which multiple input data are superimposed, CMM partial match 
is em insensitive to the order in which items are presented as input. For example, 
consider the following symbolic rule: 

engine-stalled A ignition.ok A fuelgaugeJow =$■ refuel 

Normally, to check if a subset {engine_stalled , ignition_ok} is a partial match, it 
would be necessary at least to look at all the possible orderings of the subset, but 
with CMM this is not necessary. We term this emergent property Combinatorial 
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Partial Match. CMM could equally be used in frame based reasoning, where 
partial match would allow an entire frame to be recalled given a subset of the 
frame. 

Partial Match Performance 
If each input learned by the CMM, 7, is obtained by hashing and superimposing 
the attributes that identify each record, then the CMM can be used subsequently 
to locate the record in memory, using 7 (or a partial match for 7), by associating 
7 with an output code, O, that represents the location of the record. Hence CMM 
can be used as a database indexing method. However, if multiple matches occur 
and multiple locations are represented in the CMM output, then output codes may 
be so overlapped that it is impossible to identify individual codes. Therefore, a 
method is needed to decode the CMM output but giving the minimum number 
of false positives (records that appear to be a match in the CMM but are not 
true matches) and no false negatives (records that appear not to be a match in 
the CMM but are true matches). We suggest here a novel method of identifying 
which output codes may be present in the CMM output, whereby output codes are 
subdivided and stored in buckets in memory, according to where the middle set bit 
(MB) appears in each code (Fig. 1). This approach allows us simply to identify all 
set bits in the output that could be MBs, then if all the buckets corresponding to 
these bits are searched, we are guaranteed no false negative matches. 

!l -1 • I -1 ■ I - -I- l-l- 
!GHmii>:;J'[:J 

yn m 
Figure 1 How output codes are divided 
up into buckets in secondary storage ac- 
cording to the position of the middle set 
bit (MB); in general, m — (n — 1) buckets 
are needed. 

MULTI-LEVEL SIGNATURE TREE 

Figure      2    Multilevel 
Coding (from [3]). 

Superimposed 

The partial match performance of CMM is considered in terms of the fraction, 7, 
of the index memory (which may be held in a slow secondary storage device) that 
must be searched in order to answer a given partial match query; the smaller this 
fraction is, the better. Other measures of performance are: computation reduction 
(the proportion of the total number of bits in the index that must be searched — 
not considered here), and the physical size of the index (in the comparison, we allow 
both methods the same index size). We show that this fraction, 7, depends only 
on: m, the dimension of the mxm CMM; z, the number of set bits in 7, and t, the 
expected number of matches that will be found. If we first consider the absolute 
amount of memory that must be searched, this amount is due to two components: 
wi, the amount of memory that must be searched in order to obtain the CMM 
output, and u>2, the amount of memory representing output codes that must be 
searched in order to decode the CMM output. For wi, only z rows of the mxm 
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CMM are needed to obtain the CMM output, hence: 
wi = zm bits (5) 

To derive an expression for W2, we first look at the expected number of matches 
with items stored in the CMM that will be found, t, which gives us the expected 
number of set bits in the CMM output due only to true matches: 

Kl = (l-(^-^Y)mbits (6) 

But we must also take account of erroneously set bits, which occur due to inter- 
actions between the binary representations stored in the CMM (see [11] for an 
eloquent explanation of why this occurs): 

K.2 = (m — n)qz bits (7) 
where q is the proportion of all m2 bits in the CMM that are set, which at maximum 
storage is 50%. Ki + K2 is now the total expected number of set bits in O; however, 
for our purposes, we can ignore n — 1 of these bits because these n — 1 bits represent 
bits that cannot possibly be MBs1, giving: 

K3 = Ki + K2 - (n - 1) bits (8) 
«3 is the number of set bits in O that could be MBs, or equivalently the number of 
output code buckets that must be searched. Now, each output code bucket contains 
on average m_Fn_u output codes, where p is the number of records in the CMM, 
and each output code can be encoded in n2 bits, hence: 

DTI P7t 
w2 =  7 7TK3 « «3 bits (9) 

m — (n — 1) m 

Note that, for a given p, if m is chosen such that q = 50%, then p « 3(1"m-)2 [5] (i.e. 
p may be expressed in terms of m). We can now write: 

m* + pnz 

This result has been verified experimentally (up to m = 1000, however a lack of 
space unfortunately does not permit the discussion of these experimental results 
here). 
3 A Comparison with Multilevel Superimposed Coding 
Multilevel Superimposed Coding (MSC) [3] has been chosen as the conventional 
database indexing method that supports partial match because of the similarities 
of this method with our method, also MSC is used by several companies (e.g. 
Daylight CIS Inc.) for indexing their large databases. In MSC (Fig. 2), records are 
identified by hashing and superimposing attribute values into a binary code using 
multiple hash functions to gain access at multiple levels to a binary tree. Note that 
the resultant codes are of a different length, which is why multiple hash functions 
are needed. As before, the idea is to search as little of the index as possible, and the 
ideal state of affairs when locating a single record would be if at each node only one 
branch were taken. However, if the index is poorly conditioned then all branches 
may need to be searched, which would then be equivalent to performing a linear 
search on the entire index. 

1 Consider O comprising just one output code: O has n set bits, only one of which can be a 
middle set bit (MB); therefore n - 1 of the set bits are not MBs (this generalises to the general 
case of O comprising multiple output codes). 
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Figure 3 A comparison in terms of partial match performance between CMM 
(left) and MSC (right, (2); from [3]), for varying expected number of matches. 
Overall index size = 1.5 GB (both methods). 

Kim and Lee [3] consider an example case of an index for a database of 224 records, 
for which MSC requires a 24 level tree with 2J, hash functions. The analysis for 
MSC relies on specifying t, the expected number of matches, and both methods 
are allowed the same amount of storage (1.5 GB). The results are shown in Fig. 3, 
and concern the fraction of each index that must be searched versus the expected 
number of matches. Remembering that a full match input is characterised by the 
greatest possible number of set bits (z = n), while a partial match has less set 
bits than this (f- < z < n), we observe from Fig. 3 that CMM approaches the 
performance achieved by MSC provided (1) that the input is well specified, and 
(2) that few true matches exist in the database. Even with a less well specified 
input and with several matches, CMM still performs reasonably well (especially 
considering the relative simplicity of the CMM method in comparison with the 
heavily optimised and much less straightforward MSC method). 

4    Implications for Cognitive Psychology 
In presenting this work to colleagues from differing backgrounds — some in psychol- 
ogy — it has become clear that this work may have relevance to cognitive psychology 
and the study of human memory. The Encoding Specificity Principle due to 
Endel Tulving [10] states: "Only that can be retrieved that has been stored, and how 
it can be retrieved depends on how it was stored." And in [8] Tulving states: "On 
the unassailable assumption that cue A has more information in common with the 
trace of the A-T [T for target word] pair of studied items than with the trace of 
the B-T pair, we can say that the probability of successful retrieval of the target 
item is a monotonically increasing function of the information overlap between the 
information present at retrieval and the information stored in memory." The En- 
coding Specificity Principle is by no means the only theory to explain this aspect 
of human memory function, and a number of experiments have been performed by 
protagonists of this or other theories. The work presented in this paper could be 
taken in support of the Encoding Specificity Principle, but this is not the intention 
of the authors. However, CMM could provide a model of the low level workings of 
human memory and, as such, the results of those experiments performed in relation 
to the Encoding Specificity Principle are most interesting. For instance, in [9], 674 
subjects learned a list of 24 target words, (1) with one of two sets of cue words, or 
(2) without cue words; the cue words were chosen to each have an association of 1% 



Filer & Austin: Analysis of Correlation Matrix Memory 191 

with the corresponding target word. In retrieval, subjects were asked to remember 
the list (a) with cues; (b) without cues, or (c) with wrong cues (a cue word taken 
from the alternative list). The experimental results are given in terms of the mean 
number of words remembered and are as follows, given in descending order of the 
mean number of words remembered: (la) 14.93; (2b) 10.62; (lb) 8.72; (2a) 8.52; 
(lc) 7.45. What is interesting for CMM as a model of memory, is the difference 
between the results of experiments (la) and (lb). If one postulates that the target 
word and the cue word are somehow stored together, like the input to a CMM, and 
that the output would be the equivalent of a pointer to the target word then the 
results of this paper can be interpreted in the light of the results in [9]. To do so, it 
is necessary to envisage some indexing mechanism in the human brain for retrieving 
information from memory that works best when there is little index memory to be 
searched, which is perfectly plausible. Then (la) would correspond to a full match 
input, which would be expected to give best retrieval performance, as was found to 
be the case in the experiments; similarly, (lb) would correspond to a partial match 
input, which would be expected to give a rather worse retrieval performance, again 
as was found to be the case. 

5    Conclusions 
We have analysed the partial match performance of CMM, in line with the proposed 
use of CMM as an inference engine for an expert system that must solve real world 
problems. The analysis has enabled a comparison with a conventional database 
indexing technique that supports partial match, the results of which suggest CMM 
is good at performing partial match when the input is well specified and few matches 
exist. Interestingly, a similar behaviour is observed in human memory experiments 
and, although we would not go so far as to suggest that human memory is so 
simple as CMM, we observe that there are similarities that would support the use 
of CMM, or CMM partial match, as a model of some of the low level workings of 
human memory in further experiments in cognitive psychology. 
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Learning and generalization in a two-layer Radial Basis Function network (RBF) is examined 

within a stochastic training paradigm. Employing a Bayesian approach, expressions for general- 

ization error are derived under the assumption that the generating mechanism (teacher) for the 

training data is also an RBF, but one for which the basis function centres and widths need not 

correspond to those of the student network. The effects of regularization, via a weight decay term, 

are examined. The cases in which the student has greater representational power than the teacher 

(over-realizable), and in which the teacher has greater power than the student (unrealizable) are 

studied. Finally, simulations are performed which validate the analytic results. 

1 Introduction 
When considering supervised learning in neural networks, a quantity of particular 
interest is the generalization error, a measure of the average deviation between de- 
sired and actual network output across the space of possible inputs. Generalization 
error consists of two components: approximation error and estimation error. Given 
a particular architecture, approximation error is the error made by the optimal 
student of that architecture, and is caused by the architecture having insufficient 
representational power to exactly emulate the teacher; it is an asymptotic quantity 
as it cannot be overcome even in the limit of an infinite amount of training data. 
If the approximation error is zero, the problem is termed realizable; if not, it is 
termed unrealizable. Estimation error is the error due to not having selected an 
optimal student of the chosen architecture; it is a dynamic quantity as it changes 
during training and is caused by having insufficient data, noisy data or a learning 
algorithm which is not guaranteed to reach an optimal solution in the limit of an 
infinite amount of data. There is a trade-off between representational power and 
the amount of data required to achieve a particular error value (the sample com- 
plexity) in that the more powerful the student, the greater the ability to eliminate 
the approximation error but the larger the amount of data required to find a good 
student. 
This paper employs a Bayesian scheme in which a probability distribution is derived 
for the weights of the student; similar approaches can be found in [6, 1, 2] and [3]. 
In [7], a bound is derived for generalization error in RBFs under the assumption 
that the training algorithm finds a global minimum in the error surface; regular- 
ization is not considered. For the exactly realizable case, Freeman et al. calculate 
generalization error for RBFs using a similar framework to that employed here [2]. 

2 The RBF Network and Generalization Error 
The RBF architecture consists of a two-layer fully-connected network, and is a uni- 
versal approximator for continuous functions given a sufficient number of hidden 
units [4]. The hidden units will be considered to be Gaussian basis functions, param- 
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eterised by a vector representing the position of the basis function centre in input 
space and a scalar representing the width of the basis function. These parameters 
are assumed to be fixed by a suitable process, such as a clustering algorithm. The 
output layer computes a linear combination of the activations of the basis functions, 
parameterised by the adaptive weights w between hidden and output layers. 
Training examples consist of input-output pairs (£, £). The components of £ are un- 
correlated Gaussian random variables of mean 0, variance <r|, while ( is generated 
by applying £ to a teacher RBF and corrupting the output with zero-mean addi- 
tive Gaussian noise, variance cr2. The number, position and widths of the teacher 
hidden units need not correspond to those of the student, allowing investigation of 
over-realizable and unrealizable cases. The mapping implemented by the teacher is 
denoted fa, and that of the student fs- Note it is impossible to examine generaliza- 
tion error without some a priori belief in the teacher mechanism [9]. The training 
algorithm for the adaptive weights is considered stochastic in nature; the selected 
noise process leads to the following form for the likelihood: 

V(D\w,ß)ocexp(-ßED) (1) 

where ED is the training error. This form resembles a Gibbs distribution; it also 
corresponds to the constraint that minimizing the training error is equivalent to 
maximizing the likelihood [5]. This distribution can be realised by employing the 
Langevin algorithm, which is simply gradient descent with an appropriate noise 
term added to the weights at each update [8]. To prevent over-dependence of the 
distribution of student weight vectors on the noise, it is necessary to introduce a 
regularizing factor, which can be viewed as a Bayesian prior. 

V(w\j) oc exp(-yEw) (2) 

where Ew is a penalty term based here on the magnitude of the student weight 
vector. Employing Bayes' theorem, one can derive an expression for the probability 
of a student weight vector given the training data and training parameters: 

7>(w|D, 7, ß) oc exp (-ßED - jEw) (3) 

The common definition of generalization error is the average squared difference 
between the target function and the estimating function: 

E(w) = ((fs(£,w)-fT(0)2) (4) 
where (■ • •) denotes an average w.r.t. the input distribution. In practice, one only 

has access to the test error, PTIST Sf=fST(Cp ~ fs(£p, w))2. This quantity is an 
approximation to the expected risk, defined as the expectation of (£ — /s(£,w))2 

w.r.t. the joint distribution 7>(£,C). With an additive noise model, the expected 
risk decomposes to E + <r2, where o-2 is the variance of the noise. 
When employing stochastic training, two possibilities for average generalization 
error arise. If one weight vector is selected from the ensemble, as in usually the case 
in practice, equation (4) becomes: 

EG(l,ß) = (J dwV(w\D,y,ß)(fs(t,w) - fT(£))' (5) 

Alternatively, one can take a Bayes-optimal approach which, for squared error, 
requires taking the mean estimate of the network. It is computationally impractical 
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to find this, but it is interesting as it represents the result of the best guess, in an 
average sense. In this case generalization error takes the form : 

EB(L7,ß) = (([dwP(w\D,i,ß)fs(t,w)-fT(t)\  ) (6) 

In order to examine generic architecture performance independently of the particu- 
lar data employed, an average over datasets is performed, taking into account both 
the position of the data in input space and the noise. 
Defining EJJ as the sum of squared errors over the training set and defining the 
regularization term Ew = ||w||2, EG and EB can be found from equations (3), (5) 
and (6). The calculation is straightforward until the average over the dataset; the 
complications and their resolution are discussed in [3]. Schematically: 

EQ    =    Student Output Variance + Noise Error + (7) 

Student-Teacher Mismatch 

EB    —    Noise Error + Student-Teacher Mismatch (8) 

The student output variance and noise error are estimation error only; the student- 
teacher mismatch is both estimation and approximation error. 

. 
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Figure 1 The effects of regulariza- 
tion: the solid curve represents optimal 
regularization(7 = 2.7,ß = 1.6), the dot- 
dash curve illustrates the over-regularised 
case (7 = 2.7,ß = 0.16), and the dashed 
curve shows the highly under-regularised 
case (7 = 2.7,/3 = 16). The student 
and teacher were matched, each consist- 
ing of 3 centres at (1,0), (-0.5, ^3/2) and 
(—0.5,-^/3/2). Noise of variance 1 was 
employed. 

Figure 2    Simulation results. 
The curves are for a realizable case with 
three centres at (1,0), (-0.5,^/3/2) and 
(-0.5,-^/3/2), with centre width ^/2/2 
and noise of variance 2/ß. The empiri- 
cal curves were generated by exhaustive 
training at each value of P, and represent 
averages over 100 trials. The error bars 
are at 1 standard deviation of the empir- 
ical distribution. 

3    Analysis of Generalization Error 
3.1    The Effects of Regularization 
While the effects of regularization are similar for EQ and EB , the optimal param- 
eter settings, found by minimizing equations (7) and (8) w.r.t. 7 and ß, are quite 
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Figure 3 The Over-realizable Case: the 
dashed curve shows the over-realizable 
case with training optimised as if the stu- 
dent matches the teacher (7 = 3.59,0 = 
2.56), the solid curve illustrates the over- 
realizable case with training optimised 
with respect to the true teacher (7 = 
3.59,0 = 1.44), while the dot-dash curve 
is for the student matching the teacher 
(7 = 6.52,ß = 4.39). All the curves 
were generated with one teacher centre 
at (1,0); the over-realizable curves had 
two student centres at (1,0) and (—1,0). 
Noise with variance 1 was employed. 

Figure 4 The unrealizable case: the 
solid curve denotes the case where the 
student is optimised as if the teacher is 
identical to it (7 = 2.22,ß = 1.55); 
the dashed curve demonstrates the stu- 
dent optimised with knowledge of the true 
teacher (7 = 2.22,ß = 3.05), while, for 
comparison, the dot-dash curve shows a 
student which matches the teacher (7 = 
2.22,/? = 1.05). The curves were gener- 
ated with two teacher centres at (1,0) and 
(—1,0); the unrealizable curves employed 
a single student at (1,0); noise of variance 
1 was utilised. 

different. As discussed in [2], for EG it is necessary to optimise 7 and ß jointly, while 
for EB, only the ratio of 7 to ß need be considered; this optimal ratio is indepen- 
dent of P. This dissimilarity is due to the variance term in EG, which is minimised 
by taking ß —*■ 00. These findings hold for both realizable and unrealizable cases. 
To demonstrate the effects of regularization in a realizable scenario, consider figure 
1 where EB is plotted versus P for three cases. The solid curve illustrates opti- 
mal regularization and shows the lowest value of generalization error that can be 
achieved on average; the dot-dash curve represents the over-regularised case, in 
which the prior dominates the likelihood, showing how reduction in generalization 
error is substantially slowed. The dashed curve is for the highly under-regularised 
case, which in the j/ß —► 0 case gives a divergence in both EG and EB- Although 
under-regularization is initially more damaging than over-regularization, its effects 
are recovered from more rapidly. As training proceeds, the likelihood comes to dom- 
inate the prior, making the incorrect setting of the prior irrelevant; this proceeds 
more rapidly when the prior is weak with respect to the likelihood. 

3.2    The Over-Realizable and Unrealizable Scenarios 
Operationally, selecting a form for the student implies that one is prepared to 
believe that the teacher has an identical form. Therefore optimization of training 
parameters must be performed on this basis. When the student is overly powerful 
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this leads to under-regularization, as the magnitude of the teacher weight vector is 
believed to be larger than the true case. This is shown in figure 3; the dashed curve 
represents generalization error for the under-regularised case where the training 
parameters have been optimised as if the teacher matches the student, while the 
solid curve represents the same student, but with training optimised with respect to 
the true teacher. Employing an overly-powerful student rather than the optimally- 
matched student can drastically slow the reduction of generalization error. Even 
with training optimised with respect to the true teacher, the matching student 
greatly out-performs the overly-powerful version due to the necessity to suppress the 
redundant parameters. The effect is shown in figure 3; generalization error for the 
matching student is given by the dot-dash curve, while that of the overly-powerful 
but correctly optimised student is given by the solid curve. In the unrealizable 
scenario, where the teacher is more powerful than the student, optimization of 
training parameters under the belief that the teacher has the same form as the 
student leads to over-regularization, as the assumed magnitude of the teacher weight 
vector is greater than the true magnitude. This effect is shown in figure 4, in which 
the solid curve denotes generalization error for the over-regularised case based on 
the belief that the teacher matches the student, while the dashed curve shows the 
error for an identical student when the parameters of the true teacher are known; 
this knowledge permits optimal regularization. The most significant effect of the 
teacher being more powerful than the student is the fact that the approximation 
error is no longer zero, as the teacher can never be exactly emulated by the student. 
This is also illustrated in figure 4, where the dot-dash curve represents the learning 
curve when the student matches the teacher (with zero asymptote), while the two 
upper curves show an under-powerful student, and have non-zero asymptotes. 

3.3     Simulations 
To validate the analytic results, simulations were performed for 
optimally-regularised and under-regularised realizable cases. The simulations in- 
volved exhaustive training of RBF networks using Langevin updating. The empiri- 
cal results were generated by averaging over 100 runs, approximating generalization 
error using a large, noiseless test set. The results are shown in figure 2; an excel- 
lent fit between analytic and simulated results is found for P > 50. In the region 
where P is small in the under-regularised case, the analytic mean is larger than the 
simulation result. In the small P region, this case is particularly vulnerable to the 
approximation employed in the dataset average (see [3]). The errorbars are also large 
in this region, as the distribution of student weights is relatively unconstrained. 

4    Conclusion 
Under-regularization initially causes very poor generalization, which can be over- 
come rapidly with the addition of more training data. Over-regularization is initially 
less damaging, but requires a large quantity of training data in order to overcome 
the effect. In the over-realizable case, there is a tendency to under-regularise due to 
over-estimating the complexity of the teacher. There is also an increase in sample 
complexity. In the unrealizable case, under-estimating the complexity of the teacher 
leads to over-regularization. 
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A UNIVERSAL APPROXIMATOR NETWORK FOR 

LEARNING CONDITIONAL PROBABILITY 

DENSITIES 
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King's College London, UK. 

A general approach is developed to learn the conditional probability density for a noisy time series. 

A universal architecture is proposed, which avoids difficulties with the singular low-noise limit. A 

suitable error function is presented enabling the probability density to be learnt. The method is 

compared with other recently developed approaches, and its effectiveness demonstrated on a time 
series generated from a non-trivial stochastic dynamical system. 

1 Introduction 
Neural networks are used extensively to learn time series, but most of the ap- 
proaches, especially those associated with the mean square error function whose 
minimisation implies approximating the predictor x(t) —► x(t + 1), will only give 
information on a mean estimate of such a prediction. It is becoming increasingly 
important to learn more about a time series, especially when it involves a consid- 
erable amount of noise, as in the case of financial time series. This note is on more 
recent attempts to learn the conditional probability distribution of the time series, 
so the quantity 

P(x(t+l)\x(t)) (1) 

where x(t) denotes the time-delayed vector with components (x(t), x(t-l),..., x(t- 
m)), for some suitable integer m. 
An important question is as to the nature of a neural network architecture that can 
learn such a distribution when both very noisy and nearly deterministic time series 
have to be considered. A variety of approaches have independently been recently 
proposed (Weigend and Nix, 1994; Srivastava and Weigend, 1994; Neuneier et al, 
1994), and this plethora of methods may lead to a degree of uncertainty as to 
their relative effectiveness. We here want to extend the discussion of an earlier 
paper (Allen and Taylor, 1994) and will derive the minimal structure of a universal 
approximator for learning conditional probability distributions. We will then point 
out the relation of this structure to the concepts mentioned above, and will finally 
apply the method to a time series generated from a stochastic dynamical system. 
2 The General ANN Approach 
2.1     Minimal Required Network Structure 
Let us formulate the problem in terms of the cumulative probability distribution 

F(y\x(t)) = p(x(t + 1) < y\x(t)) = f  p(y'\x(t)) dy' (2) 
J — oo 

first, as this function does not become singular in the noise-free limit of a deter- 
ministic process, but reduces to 

F(y\x(t)) = e(y-f(x(t))) (3) 
(where 6(.) is the threshold or Heaviside function, 6(x) = 1 if x > 0, 0 otherwise). 
We want to derive the structure of a network that, firstly, is a universal approx- 
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imator for F{.) and, secondly, obtains the noise-free limit of (3). It is clear that 
a difficulty would arise if the universal approximation theorem of neural networks 
were applied directly to the function F(y, x(t)) so as to expand it in terms of the 
output of a single hidden layer net, 

F(y\x(t)) = J2 aiS I JT WijXj +ky-dA , (4) 
i       y=o / 

where Xj := x(t - j + 1), S(x) - 1/(1 + e~x), and a,, Wij, &,-, #,■ are constants with 
obvious interpretation in neural network terms (an output weights, $,• thresholds, 
Wij, bi weights between input and hidden layer). Trying to obtain the deterministic 
case (3), the best one can get from (4) in the limit when a,- —► Si^ (Kronecker 
delta) and the weights of the hidden nodes become very large (so that each sigmoid 
function S(.) entering in (4) becomes a threshold function 0(.)), is the expression 

F(y\x(t))^6 ly-J^cjxj-s] , (5) 

with constants Cj, s. Thus at best it is only possible to approximate the deterministic 
limit of a linear process, with /(x) a linear function of its variable. 
To be able to handle the split between the single predicted variable y and the input 
variable x, we proceed by developing a universal one-layer representation for y first, 
and then do the same for the remaining variable x successively. Thus at the first 
step results 

F{y\x(t)) = Y^aiS(ßi(y-vn)), (6) 
i 

where /?; is the steepness of the sigmoid function, and //,• a given threshold. We 
then expand each /i8- by means of the universal approximation theorem in terms of 
a further hidden layer network, resulting in 

^(x) = 5Z hiiS   Y^ c'ikXk ~ ä'i ) • (7) 
j \  k 

In order that the right hand side of (6) be a cumulative probabilty distribution, i.e. 
F(—oo|x) = 0, F(oo|x) = 1 and F(y\x) monotone increasing in the variable y, the 
following conditions are imposed on the coefficients entering eq.(6): 

ft>0,     a;>0,     Ylai = 1 W 
i 

This can be realized by taking /?, and a,- as functions of new variables |, and <?,-, e.g. 
ßi = (&)2, and ai = (?i)2/£fc(«)2 or a* = exp(?,-)/£fc exp(ft). 
It is now possible to see that the deterministic limit (3) arises smoothly from the 
universal two-hidden-layer architecture of equations (6) and (7) when a* —► Sij 
and ßj —► oo, i.e., for one output weight one and all the others zero, and a large 
steepness parameter for the unit connected to the non-vanishing weight. 

2.2     Moments 
One of the attractive properties of the use of sigmoid response functions is that it 
is possible to give (after some algebra) a closed form for the moment generating 
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function (Allen, Taylor, 1994), 

from which all the moments arising from the conditional probability density (1) can 
be calculated, e.g. 

E(Y)    =    |im09=Ew (10) 

TO - >^ = I> 2        1 

* + 3 V A (11) 

For a,- —>• 5,-j, A —► oo the deterministic limit ensues, with E(Ym) = [E(Y)]m. 

2.3 The Error Function 
It is now necessary to suggest a suitable error function in order to make the universal 
expression given by (6) and (7) the true conditional cumulative distribution function 
given by the available data. As the true value for x(t +1) is not known, one cannot 
use standard mean square error. Let us assume that the process is stationary. Then 
the negative expectation value of the logarithm of the likelihood, 

E = -(log(p(x(t + l)|x(t)))) « ~^P«t + l)|x(<)). (12) 

is the appropriate choice, based on Kullback's Lemma (see, e.g., Papoulis, 1984), 
according to which (12) in terms of the true (unknown) probability density, Ptrue> 
is always smaller than (12) in terms of the probability density predicted by the 
network, p. Hence by minimising (12) one can hope to always "get closer" to Ptrue- 

2.4 Regaining the Conditional Probability Density 
In order to get back to the conditional probability density, we have to take the 
derivative of the output of (6) with respect to the target, y, yielding 

P(y|x) = ^E) = °SW-K*))) = W(y-Mx)))(l-5(^(y-Mx))) (13) 

This function is Gaussian-shaped, so our resulting network structure can be sum- 
marized as follows: The output node, which predicts the conditional probability 
density p(x(t + 1) = y\x(t)), is connected to a layer of RBF-like nodes. The out- 
put of the ith "RBF"-unit is determined by its input, x(t + 1) (the same for all 
nodes), and its centre, /x,-, the latter being an x-dependent function implemented in 
a seperate one-hidden- layer network with the usual sigmoidal hidden nodes. The 
parameters a, and /?,- have obvious interpretations as a priori probability and inverse 
kernel width, respectively. (Note that from (10) and (11) one gets <r,- = ir/(v/3/?j) for 
the standard deviation of the z'th kernel, i.e. its "width"). The same structure can 
basically be found in the other approaches mentioned above too, with the following 
differences and simplifications. 

3     Comparison with Other Approaches 
The CDEN (Conditional Density Estimation Network) of Neuneier et al. (1994) 
uses only one hidden layer for computing all of the /i,(x), which corresponds to 
simplifying (7) by making Cyjt and «?,j independent of the subscript i. This simpli- 
fication is certainly justified when the /i,-(x) are of a similar functional form, with 
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Network "RBF"    ker- 
nel function 

Hi 
x-dependent 

<?i 

x-dependent 
a,- 
x-dependent 

As  proposed 
here 

S'(.) yes, seperate 
hidden layers 

no no 

CDEN Gaussian yes, 1 shared 
hidden layer 

yes yes 

Soft 
histograms 

triangular no,         from 
preprocessing 

no,         from 
preprocessing 

yes 

Weigend, 
Nix 

1 Gaussian yes yes unity 

Table 1    Comparison between the different network architectures mentioned in 
the text. 

similar a priori probabilities, but may cause difficulties when this assumption is 
strictly violated. On the other hand, the CDEN includes a further generalisation 
of the architecture proposed here by making the kernel widths, <r,, and the output 
weights, a,-, x-dependent, computing them as outputs of seperate one- hidden-layer 
networks. This is not necessary in order for the architecture to be a universal ap- 
proximator, but may lead to a considerable reduction of the "RBF"-layer size, the 
latter, though, at the expense of additional complexity in other parts of the net- 
work. It thus depends on the specific problem under consideration if this further 
generalisation is an advantage. 
The soft histogram approach proposed by Srivastava and Weigend (1994) is identical 
to a mixture of triangular-shaped "RBF"-nodes, P(y\x) = J2iai(K)Ri(y)' w^h 
Ri(y) - Ä,-(i/-/i,-_i)/(/i,--/ii_i)if^i_i < y<ßi,Ri(y) = Ä,-(^,-+i-j/)/(/ii+i-/i;) 
if /Jj < y < Hi+i, and R,(y) = 0 otherwise. The "heights" /»,- are related to the 
kernel widths <7j =: /i!+i — /*;_i by A,- = 2/<7t- in order to ensure that the the 
normalisation condition f P(y|x) dy = 1 is satisfied. The kernel centres result 
from a preprocessing "binning" procedure (described in [Srivastava, Weigend 1994]). 
The output of the network is thus similar to the CDEN and the model proposed 
in this paper, with the difference that now only the output weights az-(x) are x- 
dependent, whereas the kernel centres, fii, are held constant. 
Finally the architecture introduced by Weigend and Nix (1994) reduces the size 
of the "RBF" layer to only one node, assuming a Gaussian probability distribu- 
tion, which is completely specified by /J. and a, both of which are given as the 
(x-dependent) output of a seperate network branch. Obviously, this parametric 
approximation reduces the network complexity, but leads to a biased prediction. 

4    Simulation 
We tested the performance of our method on an artificial time series generated from 
a stochastic coupling of two stochastic dynamical systems, 

x(t + 1) = 0(£ - ti)ax(t)[l - x(t)] + (1 - 6(£ - 0)) [1 - xK(t)], (14) 

where 0(.) symbolizes the Heaviside function, as before, and the parameters a, K 

and £ are random variables drawn from a uniform distribution, £ € [0,1], a 6 [3,4], 
K € [0.5,1.25]. The prior probabilities of the two processes are determined by the 
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Figure 1 Centres of the "RBF"- 
kemels, m(x(t)), after training (black 
lines). The grey dots show a state-space 
plot of the time series. 

Figure 2 Cross section of the true (nar- 
row graph) and predicted (bold graph) 
conditional probability density, P(x(t + 
i) = y\x(t) = 0.6). 

treshold constant ■d, which was chosen such that we got a ratio of 2:1 in favour of the 
left process (i.e., d = 1/3). We applied a network with ten "RBF"-nodes to learn 
the conditional probability density of this time series. Figure 1 shows a state space 
plot of the time series (dots) and the centre positions of the "RBF"-kernels, ^,(x(t)) 
(black lines). Figure 2 shows a cross-section of the conditional probability density for 
x(t) = 0.6, P(x(t + 1) = y\x(t) = 0.6), and compares the correct function (narrow 
grey line) with the one predicted by the network (bold black line). Apparently the 
network has captured the relevant features of the stochastic process and correctly 
predicts the existence of two clusters. Note that a conventional network for time 
series prediction, which only predicts the conditional mean of the process, would be 
completely inappropriate in this case as it would predict a value between the two 
clusters, which actually never occurs. The same holds for the network proposed by 
Weigend and Nix, which would predict a value for x(t + l) between the two clusters, 
too, and a much too large error bar resulting from the assumption of a Gaussian 
distribution. 

5     Conclusions 
A general approach to the learning of conditional probability densities for station- 
ary stochastic time series has been presented, which overcomes the limitation of 
restricted reduction to the noise-free case. The minimal architecture required for 
the network to be a universal approximator and to contain the non-restricted noise- 
free case was found to be of a two-hidden-layer structure. We have shown that the 
other recently developed approaches to the same problem are of a very similar form, 
differing basically only with respect to the x-dependence of the parameters and the 
functional form of the "RBF"-kernels. Which architecture one should finally adopt 
depends on the specific problem under consideration. While the structure proposed 
by Weigend and Nix is suitable for a computationally cheap, but biased approxi- 
mation of p(x(t + l)|x(i)) (approximation by a single Gaussian), the CDEN, the 
method of soft histograms and the network proposed here offer a more accurate, 
but also computationally more expensive determination of the whole conditional 
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probability density. It is an important subject of further research to assess the rel- 
ative merits and drawbacks of the latter three models by carrying out comparative 
simulations on a set of benchmark problems. 
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The additive neural network model is a nonlinear dynamical system and it is well-known that if 

either the weight matrices are symmetric or the dynamical system is cooperative and irreducible 

(with isolated equilibria) then the net exhibits convergent activation dynamics. In this paper we 

present a convegence thoerem for additive neural nets with ramp sigmoid activation functions 

having a row-dominant weight matrix. Of course, such nets are not, in general, cooperative or 

possess symmetic weight matices. We also indicate the application of this theorem to a new class 

of neural networks - the Cellular Neural Networks - and consider its usefulness as a practical 
result in image processing applications. 

1     Introduction 
In the last few years the definition of the neural network dynamical system has 
expanded rapidly. This paper concerns neural networks associated with the set of 
ODEs: 

n 

it = -xt + ^2 bijf(xj) + I, (1) 
J=I 

where x £ IRn, describes the activity levels of n 'neurons', 6;;- is a real constant 
representing the connection strength from neuron j to neuron i, f is a sigmoid 
function and / represents a clamped input. In order to facilitate the analysis of (1) 
we define / as a ramp sigmoid: 

f(x)=1-(\x + l\-\x-l\). (2) 

We wish to investigate the activation dynamics of these nets operating as CAMs. 
Upon presentation of an input the net should 'flow', eventually settling at a station- 
ary point of the dynamical system which represents output in the form of n reals. 
With this dynamic in mind we wish to prevent, by judicious design, any of the more 
exotic dynamical behaviour exhibited by nonlinear systems. What we seek to prove 
is that the union of the basins of attraction of equilibria comprises the whole phase 
space. It is natural then to make the following definition: 

Definition 1 A dynamical system is said to be convergent if for every trajectory 
<j>t{x) we have: 

lim <j>t(x) = r], 
r—t-oo 

where rj is an equilibrium point. 

It is possible to relax this definition in different ways and still have workable def- 
initions of the behaviour we require. For more details, see the excellent paper by 
Hirsch, [1]. 
It is easy enough to show that solutions, x(t,xo) to (1), have bounded forward 
closure if ||aro|| < K, K > 0, in the sup norm. We will assume boundedness of 

204 
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inital conditions throughout, so that the phase space fi is a compact subset of IR". 
By standard theory, all trajectories can be extended to have domain of definitions 
equal to the whole of IR. 
Since / is linear in the three segments defined by: | x |< 1, x > 1 and x < —1, 
the CNN vector field is piecewise linear. The regions of fi on which the vector field 
is constant will be called partial or total saturation regions depending on whether 
some cells are in their linear region or not. It is clear (by piecewise linearity) that 
if any total saturation region contains a stable equilibrium it is a trapping region; 
whilst the absence of an equilibrium means that all trajectories will leave such a 
region. Finally, Jacobians are constant on the various partial saturation regions. 
The analysis of large-scale interconnected systems often proceeds by investigating 
the behaviour of the system thought of as a collection of subunits. When we can 
describe the dynamical behaviour of the subunits successfully we may make progress 
towards the description of the behaviour of the system as a whole by supposing 
that the connections between units are so weak that the dynamical behaviour of 
the isolated units dominate. In [2] an analysis of a type of additive neural net 
was presented which presumed a strict row-diagonally dominant condition on the 
feedback matrix B = (6,-j); namely: 

bu - 1 > £ | fry | . (3) 

Roughly speaking (3) says that in terms of the dynamics, the self-feedback of each 
CNN cell dominates over the summed influences from its neighbours and may there- 
fore be viewed as an example of the above large-scale system analysis. In section 
III of [2], the authors conjectured that (3) is sufficient to ensure convergence of the 
associated net; furthermore they outlined a method of proof. In this note we show 
that this conjecture is true by giving a rigorous argument built on their ideas. 

2      Convergence of the Dynamical System. 
Of prime importance to our result is the fact that if B — I satisfies (3), then each 
total saturation region contains a (unique) equilibrium point; this is the substance 
of: 

Lemma 2 If B is strictly row-diagonally dominant, then every total saturation 
region contains an equilibrium. 

Proof We borrow some notation from [3]; let S C {1,..., n} be of cardinality m 
and define the following sets: 

Am = {e= (£i,...,£n) | £t = Q,iE S and e e {-1,1}, for« $. S}, 

where: 
A = {(ei,...,e„) | £i e{-l,l}}. 

Then for each e £ A define: 

C(e) = {(xi,...xn) GO || Xi |< 1, if e,- = 0,z; > 1, ife; = l,x,- < -1, otherwise}. 

Firstly we consider the total saturation region C(es), for some es e A0. Suppose 
that an equilibrium x for the linear system of equations restricted to C(es), satisfies 
f(xi) = 1; then: 

Xi = bu + Y^bijf(*j) ^ hii ~ Yl I 6«J I- X' 
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provided that (3) is satisfied. Similarly, if /(£,-) = -1, z, < — 1. Thus each total 
saturation region contains a (unique) equilibrium. G 
Much more than lemma (2) is true, in fact it is possible to show that there exists 
an equilibrium in each partial and total saturation region, if and only if B — I 
satisfies (3). In this case it is possible, by a linearly invertible change of variables 
(Grossberg's S£-exchange), to consider the dynamical system operating on a closed 
hypercube, a so-called BSB system ("Brain-State-In-A-Box"), then the existence 
equilibria at each corner of the hypercube is shown in [4]. 
Our main theorem is: 

Theorem 3 IfB — I is strictly row-diagonally dominant then the dynamical system 
(1) with N cells defined by: 

x = -x + Bf{x), 
is convergent. 

Proof By Gerschgorin's Circle theorem (see [5]), if (3) is satisfied all the Ger- 
schgorin discs lie in the right half-plane. Thus any unsaturated variable, corre- 
sponding to a cell operating in its linear region, has an associated eigenvalue with 
positive real part. It follows that trajectories decay from partial saturation regions 
and the linear region since at least one eigenvalue of the Jacobian has positive real 
part there (unless, of course a trajectory lies in the stable manifold of an unstable 
equilibrium point, in which case it converges to an equilibrium anyway). 
Once a hyperplane xt = ±1 has been crossed by a trajectory </>(<), say at at time 
to, then at no future time t > t0, will this trajectory satisfy | <f>i(t) |< 1. To see this 
consider the vector field along the hyperplane H*, defined by a;,- = 1. We have: 

Xi = bu - 1 + Y^ bijf(xj), (4) 

and it follows that x, > 0 along Hf since the maximum value that the summation 
term in (4) attains equals: 

^2 I bH I. 

because | f(x) |< 1 for all x. (An identical argument along x,- = —1 holds). Thus 
the vector field points 'outwards', i.e in the direction of increasing | X{ |, along the 
hyperplanes forming the boundary of the individual linear regions and therefore no 
trajectory can decay across any Hf with | (j>, | decreasing. 
If we define: 

p(<j)(t, x)) = # (saturated components of <f>(t, x)), 

then the argument in the previous paragraph shows that p{t) is a non-decreasing 
function (defined on {x} x [0, oo)), which is bounded above by N. Thus lim^oo p{t) 
exists and actually must equal N (if not, given some T > 0, there is at least one 
unsaturated cell, i.e there exists ik, say, such that | <j>ik{x,t) |< 1, for all t > T 
and 1 < k < N. However, since the real parts of the corresponding eigenvalues are 
positive, there exists a t0 > T such that | <f>ik(x,t0) \> 1, which is a contradiction). 
Since all total saturation regions contain a stable equilibrium point by Lemma 2, 
and the basin of attraction of such an equilibrium contains the total saturation 
region, all trajectories converge. D 
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By an identical argument we are able to prove the more general result: 

Theorem 4 If an additive neural network described by (1) satisfies the condition: 
n 

bu - 1 > X) I b*i I + I 7« I (5) 

then it is convergent. 

3      Applications to CNNs and Final Remarks 
Recently a new class of neural networks called Cellular Neural Networks (CNNs), 
has been introduced, (see [6]); such nets are recurrent, continuous time networks 
described by (1), with a particular structure on B, called the feedback matrix, (that 
arises from the architecture of the net), together with a ramp sigmoid activation 
function. Therefore our results (3) and (4) from the previous section apply to such 
nets. 
The concept of a CNN is rooted in 2D nonlinear Filter Theory, and Cellular Au- 
tomata. The neurons are arrayed on a two-dimensional grid and any fixed neuron 
can be thought of as a centre neuron which is connected, through a neighbourhood 
of size r > 1, to its nearest neighbours; i. e. any cell which can be arrived at in a 
kings walk of length < r on a chessboard. Neighbourhood sizes can increase in size 
up to a fully interconnected net, but usually we insist on r = 1 so that only the 
'nearest' neighbours are connected. The intention of this architecture is to facilitate 
the fabrication of such a device onto a chip, for reducing connections increases the 
chances of a successful implementation. 
CNNs have found a variety of interesting and useful applications and most cases 
share the common idea that solutions to processing tasks are represented as constant 
attracting trajectories of the associated dynamical system. Upon presentation of an 
input image, coded as an array of grey-scale pixels, the CNN should operate as a 
CAM, 'flowing' to an output image. 
The strict row-diagonal dominance of the feedback matrix is a severe restriction on 
the parameters because in practical terms such a CNN would not process bipolar 
images. A trajectory with a 'bipolar' initial condition would of course lie in a total 
saturation region. If (3) holds all such regions are contained in the basin of attraction 
of a stable equilibrium point x. The output of the CNN, f(x), would then be 
identical to the input image and we would observe no transformation of such an 
image. As proved in [2], (3) is a necessary and sufficient condition for the existence 
of a stable equilibrium in each total saturation region. Conditions weaker than (3) 
would therefore allow bipolar images to undergo change because any trajectory 
with initial conditions in a total saturation region which contains no equilibrium 
must leave this region and hence undergo a nonlinear transformation. In practice 
therefore we seek weaker conditions which ensure complete stability. 
As a final remark, let us return to the more general case considered in the first 
sections of this paper. We have a compact phase space, partitioned by the PWL 
vector field. If the matrix B has eigenvalues with positive real parts one would like 
to be able to say that trajectories are 'expanding' and thus reach total saturation 
regions. However, there are examples of CNNs with such eigenvalues possessing 
closed orbits - all that one can say is that no trajectory can remain in a partial 
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saturation region if such an eigenvalue exists. The diagonal dominance condition 
ensures that recrossing of a partial saturation boundary cannot occur and as we 
have seen this has a profound effect on the global behaviour of trajectories. 
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APPLICATIONS OF THE COMPARTMENTAL MODEL 

NEURON TO TIME SERIES ANALYSIS 

S. Kasderidis and J. G. Taylor 
Department of Mathematics, King's College London,  UK. 

In this paper we discuss an extended model neuron in ANN. It is the compartmental model which 

has already been developed to model living neurons. This type of neuron belongs to the class of 

temporal processing neurons. Learning of these neurons can be achieved by extending the model 

of Temporal Backpropagation. The basic assumption behind the model is that the single neuron 

is considered as possessing finite spatial dimension and not being a point processor (integrate and 

fire). Simulations and numerical results are presented and discussed for three applications to time 

series problems. 

1    Introduction 
Most models of a neuron used in ANN neglect the spatial structure of a neuron's 
extensive dendritic tree system. However, from a computational viewpoint there are 
a number of reasons for taking into account such a structure, (i) The passive mem- 
brane properties of a neuron's dendritic tree leads to a spread of activity through 
the tree from the point of stimulation at a synapse. Hence spatial structure in- 
fluences the temporal processing of synaptic inputs, (ii) The spatial relationship of 
synapses relative to each other and the soma is important, (iii) The geometry of the 
dendritic tree ensures that different branches can function almost independently of 
one another. Moreover, there is growing evidence that quite complex computations 
are being performed within the dendrites prior to subsequent processing at the 
soma. 
The (linear) cable theory models try to explain the creation of the action potential 
[1]. These models belong to the class of Hodgkin-Huxley derived models. The one- 
dimensional cable theory describes current flow in a continuous passive dendritic 
tree using P.D.E.s. These equations have straightforward solutions for an idealised 
class of dendritic trees that are equivalent to unbranched cylinders. For cases of 
passive dendritic trees with a general branching structure the solutions are more 
complicated. When the membrane properties are voltage dependant then the ana- 
lytical approach using linear cable theory is no longer valid. One way to account 
for the geometry of complex neurons has been explored by Abbott et al. [2]. Using 
path-integral techniques, they construct the membrane potential response function 
(Green's function) of a dendritic tree described by a linear cable equation. The re- 
sponse function determines the membrane potential arising from the instantaneous 
injection of a unit current impulse at a given point on the tree. 
A complementary approach to modelling a neuron's dendritic tree is to use a com- 
partmental model in which the dendritic system is divided into sufficiently small 
regions or compartments such that spatial variations of the electrical properties 
within a region are negligible. The P.D.E.s of cable theory then simplify to a sys- 
tem of first order O.D.E.s. From these equations we can then calculate the response 
function, i.e. the law with which the action potential is created, see [3], [4], [5]. Using 
the previous ideas, we construct an artificial neuron through appropriate simplifica- 
tions in the structure of the neurobiological compartmental model and its response 
function. 

209 
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2    The Compartmental Model Neuron 
2.1 The Transfer Function 
The artificial neuron is composed of a set of compartments, in which connections 
from other neurons of the network are arriving. The transfer function for neuron i 
in the layer / in time instance t has the form: 

m(t) = 8{v$(t)) = 8 (EE^Kn)«"^) ] (1) 
\n=0/3=0 ) 

Mu 

uß(n) = YjWtij(n)y(.i-i)j(t ~ n) (2) 

where s is any suitable nonlinear function, usually the sigmoid, V;°(<) is the net 
potential at "soma" (compartment 0) at time t, T is the number of time steps used 
to keep a history of the neuron, m is the number of compartments in the neuron, 
Mjl is the number of incoming weights to compartment ß (note that this number 
is compartment related), u^(n) is the net potential at compartment ß at time 
instance n and f\ß\(n) is a kernel function corresponding to the response function 
of the respective neurobiological model and has the following general form: 

f\a-ß\(t) = G{a,t;ß,0) = e?Iia_ß\   - (3) 

The parameters 7 and r determine effectively the delay rate in the propagation of 
the signal from compartment ß at time 0 (a stimulus is coming there) to compart- 
ment a at time t. The function In(t) is the modified Bessel function of integer order 
n. 
For the purpose of the artificial neuron the parameters can either remain constant 
or adapt during the simulation. The connections that exist between neurons are 
assumed to be like the ones of the Temporal Backpropagation case, i.e. having 
tapped delays up to a desirable order N, see [6]. In this way the neuron produces 
a signal that depends also on the previous values of its input. 

2.2 The Learning Law 
In applying the compartmental model to problems of supervised learning we devise 
a learning law that is based on Temporal Backpropagation, but is modified appro- 
priately to account for the existence of distinct compartments. Assuming an MSE 
error function and a sigmoid transfer function of the type: 

/(*) = rh (4) 

then the learning law (stochastic case) has the following form: 

w Hj w=t«rr>)+A<r>) w 
\w tew)(s) = (-»0/i«i«!/(z-iy (' - «)*«(*) + «At^w (6) 

6li(t) = s'(t)(-2)eli(t)    foil = L (7) 

M/, t+T(l+1)p 

«K(0 = *{,•(*)£   £   k'+Dpit'W-tH+DpS'-t) (8) 
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In the above equations, 77 and o are the learning rate and momentum coefficients, 
s = Q...Tu is a temporal index, Tu is the temporal dimension of neuron i at layer 
/. In equation (6) t is referring to current time and s is then the time delay from 
current time. L is the output layer, eH{t) is the error in the output layer, s' is the 
derivative of the transfer function, M'H is the number of outgoing connections from 
neuron i. WUJ are the weights connecting neuron j at layer (/ - 1) to neuron i at 
layer /. In the notation we take into account that the weights are associated with 
different compartments. The index x in the weights denotes that compartment in 
which an incoming connection is terminated and the index d is the compartment 
(of neuron p at layer (/ + 1)) to which an outgoing connection of i is connected. 
Finally the Su are defined as follows: 

«"<"-S555 (9) 

where E is the error function and Vu(t) is the activation of the neuron before the 
transfer function. 

3    Simulation Results 
We tested the model using three time series: the logistic map series near its chaotic 
region, an astronomical series which describes the interaction of a gravitational 
wave with a distribution of particles in the interstellar media [7], and a solid state 
physics series which describes the chaotic voltage oscillations in the NDR region 
of the I-U characteristics registered in V2 05 single crystals [8]. In all cases the 
parameters 7 and r were kept constant. 

3.1 Logistic Map 
In Fig. 1 we see the performance of the model in comparison with a Temporal 
Backpropagation network of same degrees of freedom. The network for the com- 
partmental model employed was a 1-15-1 architecture with 3 tapped delay lines 
for the case of hidden neurons and 1 line for the output unit. In both networks 
we used 400 points for training, 200 points for validation and 250 points for test- 
ing the mapping that was achieved. In the testing set after the first 200 points we 
used multi-step iterative prediction for the remaining 50 points. The parameters 
7 and T had values 1.0 and 2.0 respectively. The incoming connections from the 
hidden neurons to the output neuron were connected to compartment number zero 

("soma"). 
The parameters for the logistic map were X = 3.8 and the initial condition was 
x0 = 0.1 In Fig. 1 we see the region of multi-step prediction, ranging from number 
900 up to number 932 for both methods. The solid line is the logistic map series, the 
sparse dashed line is the Compartmental model prediction and the dense dashed 
line is the Temporal Backpropagation model. 
We see initially that after two points with correct match the Compartmental model 
does not predict correctly the following twelve points. The same behaviour is ob- 
served for the Temporal Backpropagation model. But afterwards, strangely enough, 
the model closely follows the underlying mapping for the remaining points. This 
behaviour extends further in the series. 

3.2 Astronomical Series 
In Fig. 2 we see a series that is describing the interaction of a gravitational wave 
with the interstellar plasma. The interaction that is shown is chaotic. 
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900 910 920 930 

Figure 1    Logistic Time Series. Logistic map, 1=3.8. T=l, G=2. Network 1-15-1. 
TDimH = 3, TDimO = 1. Multistep Prediction region 900-932. 
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Figure 2    Astrophysical Time Series. T = 1, G = 1. Network 1-5-1. TDimH = 3, 
TDimO = 1. Connections to "soma". 

Again the Compartmental and Temporal Backpropagation models were used for 
comparison. The architecture that was employed was a 1-5-1 network with 3 tapped 
delays for the hidden neurons and 1 delay line for the output neuron. The r and 
7 parameters were 1.0 and 1.0 respectively. The incoming connections to output 
neuron were connected to the "soma" . Again 400 points were used, here though 
from the range 400-800, because we wanted to avoid the initial transient period. 
The prediction that was sought was in the range of 800-1000, and 150 points were 
used for single step prediction and the remaining 50 points were generated by a 
multi-step prediction scheme. 
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The solid line corresponds to the original series, the sparse and dense dashed lines 
represent the Compartmental and Temporal Backpropagation model predictions 

respectively. 
Fig. 2 shows that a good approximation of the underlying map was achieved by 
both models even though a fairly simple architecture was employed and the training 
set was not the most representative. 

3.3    Solid State Series 
In Fig. 3 we see a series that is describing the chaotic voltage oscillations in the 
NDR region of the crystal. 
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Figure 3 Solid State Physics Time Series. T=l, G=2. Network 1-5-1. TDimH = 
8, TDimO = 2. Connections to "soma". Network 1-5-1. TDimH = TDimO = 1.5 
comps/neuron. Fully connected. 

Again the Compartmental and Temporal Backpropagation models were used for 
comparison. The architecture that was employed was a 1-5-1 network with 8 tapped 
delays for the hidden neurons and 2 delay line for the output neuron. The r and 
7 parameters were 1.0 and 2.0 respectively. The incoming connections to output 
neuron were connected to the "soma". For training, 450 points were used, from 
the range 1-450, 200 points were used for validation in the range 500-700. The 
prediction that was sought was in the range of 700-1000, and 200 points were 
used for single step prediction and the remaining 100 points were generated by a 
multi-step prediction scheme. 
Here we try to tackle also the problem of how the incoming weights to a neuron 
should be distributed among its compartments. Here instead of connecting just to 
one compartment, we tested the idea of connecting to all the compartments. For this 
purpose we used a 1-5-1 network structure, with 1 tapped delay line per hidden and 
output neuron. But instead the neurons consist of 5 compartments each, where we 
are connecting the incoming signal from every other neuron. The key to note here 
is that the value of the incoming signal is the same for all the five compartments, 
but different weights exist for every connection to a specific compartment. 
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In Fig. 3 the solid line corresponds to the original series, the flat sparse and expo- 
nentially decaying dense dashed lines represent the Compartmental and Temporal 
Backpropagation model predictions respectively. The dense dashed line is the Com- 
partmental model with full connectivity to all compartments. 
Fig. 3 shows that a good approximation of the underlying map was achieved by both 
models even though a fairly simple architecture was employed. We were surprised 
by the fact that the best approximation to the underlying map was achieved by the 
fully connected model. 
Finally we have to mention here, that for comparison the parameters of the nets were 
chosen to produce exactly the same number of free parameters (weights) namely 
fifty for all three models. 

4    Conclusion 
From these initial simulations we see that in general the Compartmental model is 
at least as successful as the Temporal Backpropagation model for the time series 
involved. Even though fairly simple architectures were used, the underlying mapping 
was approximated reasonably well as the single step predictions are showing. For 
the multi-step predictions further simulations are needed, in order to specify a more 
appropriate architecture and parameter range that leads to better performance. 
Further research is now being carried out to investigate the complex couplings of 
the parameters that control the behaviour of the model. Also a major issue of the 
model is the scheme with which we choose to assign the incoming connections of 
each neuron to its compartments [11]. 
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The purpose of this article is to describe some new applications of information-theoretic concepts 

in unsupervised learning with particular emphasis on the implementation of contextual guidance 

during learning and processing. 

1 Introduction 
Building on earlier work by Linsker, and Becker and Hinton [8,2], Kay and Phillips 
[7] used the concept of three-way mutual information in order to define a new class 
of objective functions designed to maximise the transfer of the information shared 
between a set of inputs (the receptive field) and outputs that is predictably related 
to the context(the contextual field) in which the learning occurs and termed one 
of this new class of objective functions Coherent Infomax. In addition they in- 
troduced a new activation function which combines information flowing from the 
receptive and contextual fields in a novel way within local processors. Two illustra- 
tions of the role of contextual guidance are given in [7] and further demonstrations 
are provided in [9]. This work, however, considered only the case where the local 
processors have binary output units. In this article the methodology proposed in 
[7] is extended to the case of general multivariate Gibbs distributions but will be 
described, for simplicity, in the particular case of multivariate binary outputs. The 
article proceeds as follows. In section 2 notation will be described and probabilistic 
modelling of the multivariate outputs considered. The definition of suitable objec- 
tive functions will be discussed in section 3 and various local objective functions 
introduced. The learning rules will be presented in section 4 and finally in section 
5 computational issues will be briefly considered. 

2 Probabilistic Modelling 
We consider a local processor having multiple outputs. This processor receives input 
from two distinct sources, namely, its receptive field inputs,R = {Ri,R2, ■■■,Rm} 
and its contextual field inputs,C = {CUC2, -,C„} and produces its outputs,X = 
{Xi, X2, -,XP}, where R, C and X are taken to be random vectors and we adopt 
the usual device of denoting a random variable by a capital letter and its observed 
value by the corresponding lower-case letter. In order to allow explicitly for the 
possibility of incomplete connectivity we define connection neighbourhoods for the 
ith ouput unit X{. Let di(r), di(c) and di(x) denote, respectively, the set of indices 
of the RF input units, the set of indices of the CF inputs and the set of indices of the 
outputs that are connected to the ith output unit X{. The corresponding random 
variables are denoted by Rsi,Cai,Xa,- respectively and the set of all components 
of X excluding the ith component is X_j. The weights on the connections into the 
ith output unit are given by u>y,«ij and wy for the jth RF input, jth CF input 
and the jth output unit respectively and we assume that the weights connecting 
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the output units to each other are symmetric. We now define the integrated fields 
in relation to the ith output unit. 
Si(r) = T,j€di(r) wijRj ~ wi0 is the RF integrated field. 
S'(c) = J2jeai(c) vijcj - Via is the CF integrated field. 
Si(x) = Y^jedi(x) uijxj is the output integrated field. 
The weights wi0 and vi0 are biases. 

The activation function at the ith output unit is now a function of three integrated 
fields and we shall take it to have the following form 

At = A(Si(r), Si(c)) + Si(x) = a{ + Si(x). (l) 

although we shall derive the learning rules in the general case. This particular way 
of incorporating the integrated output has been chosen so that this local activation 
function at the ith output unit is consistent with the definition of a multivariate 
model for X. The activation function A which binds the activity of the RF and CF 
integrated fields is that proposed in [7] defined by 

A(Sl,s2) = -s1(l+exp(2s1s2)) (2) 

We assume that the output vector X follows a binary markov random field model 
[3] conditional on the RF and CF inputs, with probability mass function 

P„(Y - „|n - ,t r- - ,.) - exP(£?=i "'•*'■ + I Eil E,-6a.-(g) UijVjXj) 
Z(a,u) *■ ; 

where Z(a, u) is the normalisation constant (i.e. not a function of x) required to 
ensure that the probabilities sum to unity. This model is a regression model in two 
distinct senses. Firstly, via the terms {a,-} which are general nonlinear functions 
of the RF and CF inputs, it is a nonlinear regression of the outputs with respect 
to all of the inputs. Secondly, when written in conditional form in equation (3), 
it expresses an auto-regression for each output unit in terms of the other output 
units in its neighbourhood. The formulation developed in the above model has the 
advantage of interfacing a feed-forward network between layers with a recurrent 
network structure within the output layer within a single coherent probabilistic 
framework. Not only that but it is also possible to connect the multiple output local 
processors themselves in a multi-layered network structure in a probabilistically 
coherent manner. 

From this model the local conditional distributions may be derived. As we shall 
see using these distributions provides a local structure to the learning rules and, 
under the restrictions on the output connection weights, the Hammersley-ClifFord 
theorem [3] ensures that working locally with the conditional models is equivalent 
to assuming a coherent global model for the outputs. However in the case were 
the output units are fully, mutually connected the equations presented here hold 
without any necessity to invoke this theorem to ensure probabilistic coherence and 
are derived using the basic rules of probability. 
The local conditional distribution for the ith output is 

Oi = Pr(Xi = l|R8i = rai, Cdi = cdi, Xai = xai) = 1/(1 + exp(-vlJ-)).      (4) 

Here A{ = at+Si(x), where a{ is any general differentiable function of the integrated 
RF and CF fields. 
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3      Global and Local Objective Functions 
We now consider a global objective function based on the joint distribution of all 
outputs, RF inputs and CF inputs. In the case of multivariate outputs, we consider 
the general version of the objective function introduced in [7] which is 

F = 7(X; R; C) + ^/(X; R|C) + <£27(X; C|R) + foH(X\R, C). (5) 

Here the term I(X;R;C) is the three-way mutual information between the random 
vectors X,R and C given by 

7(X;R;C) = 7(X;R)-7(X;R|C) (6) 

and 
J(X; R) = 77 (X) - H(X|R) (7) 

is the mutual information shared between the random vectors X and R and the 
symbol H denotes Shannon's entropy. For further details see [4]. The objective 
function in equation (5) is based on the three-way mutual information and the 
three possible conditional measures of (two-way) mutual information. 
For the purposes of modelling this is expressed as 

F = H(X) - ^i#(X|R) - faH(X\C) - i>3H(X\R, C). (8) 

In terms of the output, and indeed the input, units this is a global objective 
function and general learning rules have been derived in the general case of Gibbs 
distributions. However these lead to learning rules that are global and also compu- 
tationally challenging in their exact form and so we now describe a particular local 
approximation to the global objective function F; other definitions of locality are 
possible [5]. In this multiple output case, it is natural to think of the processing 
locally in terms of each output unit using the information available to it from its 
RF, CF and output neighbourhoods. This suggests that one might focus in turn on 
the joint distribution of, say, the ith output and its RF and CF inputs given the 
neighbouring output units. From this perspective it then seems natural to intro- 
duce the concept of the conditional three-way mutual information shared by the 
ith output and its RF and CF inputs given the neighbouring outputs denoted by 

I{Xi\ Rg,-; Ca,-|Xai) = 7(X;;Ra,-|X9,-) — I(Xi;Tldi\Cdi,Xdi) (9) 

It is possible to decompose the global three-way mutual information as follows. 

7(X; R; C) = I(Xi;Rdi; Cdi\Xai) + 7(X_;; R; C) (10) 

This decomposition may be repeated recursively and is of particular relevance when 
the output units represent some one-dimensional structure such as a time series ; 
then the well-known general factorisation of joint probability into a product of a 
marginal and conditional distributions allows the general three-way mutual infor- 
mation to be written as a sum of local conditional three-way mutual information 
terms. However such simplicity is not possible here, although this first-step decom- 
position shows that the conditional three-way information is a part of the global 
three-way information in a well-defined sense. The same conditioning idea may be 
applied to the other components of information within the objective function F and 
this leads to the specification of a local objective function for the ith output unit 
defined as follows 

F{    =    I(Xi;Rdi',Cdi\Xdi) +4>iI(Xi;Hdi\Cdi,XQi) 

+<f>2l(Xi;Cdi\Hdi, Xgi) + <f>3H(Xi\R8i, Cdi, Xa,-), (11) 
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and we express {F{} in the more useful form 

(12) 
This means that we envisage each output unit working to maximise Fj and because 
of the the fact that mutually distinct sets of weights connect into each of the 
outputs this is equivalent to maximising the sum of the FiS. We view this sum as 
a locally-based approximation to the global objective function F. In the extreme 
case where the outputs are conditionally independent this sum is equivalent to F. 
Obviously the approximation will be better the smaller are the sizes of the output 
neighbourhood sets relative to the number of outputs. We now provide formulae for 
the local entropic terms and the components of local information for the ith output 
unit. 

H(Xi\Rdi,C9i,Xdi) = {OilogOi + (1 - 0,-)log(l _ 0O)Reilcajlxei        (13) 

if(Xi|Rai,X9!.) = (<,,xa,log4L,xs, + (l-4L,xs,)log(l-4Lxe,))Ra.,xs. 
(14) 

H{Xi\Cdi,Xdi) = (4L,xs,log^„x9, + (l-^Lx8,)log(l-^„xs,))ca„xei 

(15) 
H{Xi\xai) = (4L log41, + (i - 4L) MI - 4L))xa,     m 

It follows that the components of local information at the ith output unit are as 
follows. 

I(Xi;Rai; Cai\Xai) = (16) - (15) - (14) + (13), 

I(Xi;Rdi\Cai,Xai) = (15) - (13), 

I(Xi;Cai\Rai,Xei) = (14)-(13), 

H(Xi\Rai,Cai,Xai) = (13) 

The {E} terms are averages of the output probabilities at the ith unit and are 
defined at the end of section 4. 

4      The Learning Rules 
Using the locally-based objective functions developed in section 2 and the formula- 
tion so far, it turns out that the learning rules for all weights have the same general 
structure as those introduced in [7]. 
We describe the gradient ascent learning rules in relation to the ith output unit. 

g = ((M - ÖtW - öi)^iyfis)Rs„ca.,xs„ (17) 

for each RF input s which connects into the ith output unit. 

dJ± = <(^ - Ö,-)*,-(l - öi)^C8)Ra„Ca„xa„ (18) 

for each CF input s which connects into the ith output. 

g = <(^' - Ö,-)*.-(l - fl,.)^L*.)R8.,ce„c8., (19) 

for each output unit s which connects into the ith output. Note that these learning 
rules are local and this results from the decision to separately maximise the local 
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objective functions {Fi}( or equivalently to maximise the sum of the {Fi}). The 
dynamic average for the ith output unit is 

Ex                                 ER    X                                  EC    X 
Oi = log ^- - ^ log Rs

(f
3-      - 4>2 log c°f°-      .        (20) 

a-4L)        (i-<„x8>)        (i-^L,x„) 
Here the dynamic averages are more complicated than in the single output case 
and their calculation involves storing the average probability at the ith output unit 
for each pattern of the other outputs that connect into the ith output unit, for the 
combination of each of the neighbouring output and RF input patterns and for the 
combination of each of the neighbouring output and CF input patterns. However 
various approximations are possible [5] The various averages of the probability 

at the ith output unit are defined as follows. E^ . — (Qi)Rai,cai\xai! 
E

R ■ x     = 

(0i)cei|Rei,xei> Ecli,Xgi = (öi>R8i|c8i,xei> and the required partial derivatives may 
be easily calculated. 

5      Some Computational Details 
The computation may be performed using on-line learning as was the case in [7] or, 
alternatively, using batch learning. In the case of on-line learning the weight change 
rules are applied with the averaging brackets removed and the required conditional 
averages of output probabilities may be updated dynamically during learning after 
the presentation of each pattern via recursive computation. In particular recursive 
computation may be used to avoid the need to explicitly calculate the statistics of 
the input data and then employ a two-stage approach to the learning. The method- 
ology has been applied in a number of computational experiments described in [6] 
which demonstrate the feasibility of the approach. It is shown there that the differ- 
ences between the Infomax and Coherent Infomax computational goals described 
by [7] hold in this more general set up and that the multiple output unit is capable 
of representing its inputs by means of population codes. Further experimentation 
is currently in progress and this will address the computational feasibility of scal- 
ing up to large multiple output units and evaluate various approximations for the 
conditional dynamic averages. 
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A minimization estimator minimizes the empirical risk associated with a given sample. Sometimes 

one calculates such an estimator based not on the original sample but on a pseudo sample obtained 

by adding noise to the original sample points. This may improve the generalization performance of 

the estimator. We consider the convergence properties (consistency and asymptotic distribution) 

of such an estimation procedure. Subject classification: AMS(MOS)62F12 

1 Introduction 
In backpropagation training one usually tries to minimize the empirical risk 

rn(t)~-f2\\yi-9(Xi,t)\\i = mm\, 
« = 1 

where x \—> g(x,t) denotes the input/output mapping of a multilayer perceptron 
whose weights comprise the vector t. When the training sequence {Zi}, Z{ = 
(Xi,Yi), consists of i.i.d. (independent and identically distributed) random vec- 
tors, it is known that under general conditions the parameter rn minimizing the 
empirical risk is strongly consistent for the minimizer set of the population risk 
r(t) = E\\Y\ — g{Xi,i)^2. Further, if the sequence {rn} converges towards an iso- 
lated minimizer t* of r, then under reasonable conditions, y/n(r„ —t*) converges in 
distribution to a normal distribution with mean zero, see White [8]. 
Here we consider what happens in the above procedure when instead of the original 
data one uses data generated by adding noise to the original sample points. Such a 
practice has been suggested by several authors, see [4] for references. The relation- 
ship of this procedure to regularization has been investigated in many recent papers, 
see [6, 3, 1, 7]. In the present paper we outline both consistency and asymptotic 
distribution results for noisy training. The results are based on the doctoral thesis 
of the author [5], where the interested reader can find rigorous proofs and results 
which are more general than what can be covered here. The consistency results ob- 
tained in the thesis are much stronger than the previous results of Holmström and 
Koistinen [4]. Asymptotic distribution results in our setting have not been available 
previously. 

2 The Statistical Setting 
The original sample is part of a sequence Z\, Z2, ■ ■ ■ of random vectors taking val- 
ues in IR . The noisy sample is generated by replacing each original sample point 
Z\,...,Zn with s > 1 pseudo sample points 

Z^^Zi + hnNij,     i=l,...,n,j=l,...,s. (1) 

Here the hn's are positive random variables called the smoothing parameters. We 
assume that the noise vectors Nij's are i.i.d. and independent of the Z,'s and the 
hn's. The smoothing parameters are allowed to depend on the {Z;}-sequence. We 
need to let hn converge to zero to ensure consistency, and therefore the pseudo 
sample points are not i.i.d. This prevents us from using standard convergence results 
for minimization estimators to analyze the convergence properties of noisy training. 

220 
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We next define empirical measures associated with the original and the pseudo 
observations. Let 6X denote the probability measure with mass one at x £ IR , and 
define the probability measure 

n 

fin ■= n~1'^2öz,, 
« = 1 

i.e., fin places mass \/n at each of the observations Z\,...,Zn. We call (J,n the 
empirical measure of the first n observations. Similarly, we define the empirical 
measure //#, of the pseudo observations Zf-,i = 1,..., n, j = 1,..., s as the prob- 
ability measure which places mass l/{ns) at each of these ns points. The measures 
(i„ and /i*s are examples of what are called random probability measures; the ran- 
domness arises from the fact that the measures depend on the observed values of 
random vectors. 
For the consistency results, we need to assume that the empirical measures ß„ 
converge weakly, almost surely, towards some probability measure \x in IR ; in 
symbols, ^n=£//. The definition of this mode of convergence for any sequence {Xn} 
of random probability measures in IR   is as follows, 

\n*=>/i    if and only if      lvfeCf.fd\n->fdfi\,    almost surely, 

where C& is the set of bounded continuous functions IR* -+ IR. An argument due 
to Varadarajan [2, Th 11.4.1] then implies that for measures in IR , 

\n=£p    if and only if      / / dA„"' / / dfi,    V/ € Cj. (2) 

Unlike the condition of the actual definition, condition (2) is often easy to verify. 
E.g., if Zi,Z2, ■ ■ ■ are i.i.d., then the strong law of large numbers implies that the 
empirical measures fin=$fi, where ft denotes the common law of the Zi's on IR . The 
same conclusion holds by the ergodic theorem, if the sequence {Z{\ is stationary 
and ergodic. 
Suppose that the empirical measures fi„=^fi, where p is some (nonrandom) proba- 
bility measure in IR*. Let T C IRm be our parameter set and let there be defined 
a loss function £ on IR* x IRm. The aim is to select the parameter t G T such that 
the risk 

r{t):=  f t(z,t) ix(dz),    t€T (3) 

is minimal. Here the measure fi is supposed to be unknown, so we cannot solve 
the problem directly. Instead we may try to minimize either the empirical risk 
associated with the original observations 

r„{t):=-f2^i,t)= fe(z,t)tin(dz) (4) 
Z = l 

or the empirical risk associated with the noisy observations 

»•*(*) := ^EE^4-.*) = h(.*,t)&{dz). (5) 
Tib   ...... J 1=1j=l 
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3 Consistency 
If A CT, define the distance oft £ T from A by d(t,A) := ini{\\t-y\\ : ye A}, with 
the convention that d(t,$) = oo. We write argminTr for the (possibly empty) set 
of points that minimize r on T. We seek conditions guaranteeing for our estimators 
6n that 

d(0„, argmin r)-+0. 
T 

If this holds, we say that 9n is strongly consistent for the set argminT r. 
The following result is proved in [5]. 

Theorem 1 Let s > 1. Ifhn—>0, and for some probability measure fi, fj,n^/j,, then 
also (ifs=$>fi, as n —► oo. 

This motivates the following approach. Let {A„} be a sequence of random prob- 
ability measures and ß a nonrandom probability measure such that An=£^ and 
let 

R„{t):= J t{z,t)\n{dz). (6) 

Suppose that 6n is a random vector with values in T such that 

R„(9n) = MRn + o(l),     (a.s.). (7) 

Under certain conditions, 6n is then strongly consistent for the set argminT r, as is 
formulated in the following theorem. Hence we obtain a consistency theorem for any 
estimator T„ coming close enough to minimizing rn. Provided hn^0, we also obtain 
a consistency theorem for any estimator r*, coming close enough to minimizing r*s. 

Theorem 2 Let the parameter set T be compact and let \n*=$-[i. Suppose £ is con- 
tinuous on IR   xT and dominated by a continuous, ji-integrable function, i.e., 

\e(z,t)\<L(z),   zem,k,teT, 

where L > 0 is continuous and J L dfi < oo. Lf in addition, f L d\n°^ f L dp, then 
any random vector satisfying (7) is strongly consistent for the set argminT r. 

In practice, the most useful dominating functions are the scalar multiples of the 
powers \z\P,p > 1. If / |z|p pn(dz)^ J\Z\P p{dz) < oo and E\N\? < oo, then it 
can be shown that also / \z\p [ifs(dz)^> f \z\p ß{dz). This facilitates checking the 
conditions of the previous theorem. 

4 Asymptotic Distribution 
A consistency result does not tell how quickly the estimator converges. One way 
to characterize this rate is by giving an asymptotic distribution for the estimator. 
Our asymptotic distribution results are of the form ^/n(0n —<*)—»• 7V(0, C), i.e., they 
state that \/n(6n — t*) converges in distribution to a normal law with mean zero 
and a covariance matrix C. Here t* denotes a minimizer of r. Such a result says 
that the law of 6n collapses towards a point mass at /* at a very specific rate, e.g., 
in the sense that for any e > 0, n1/2~c\9n —t*\ converges to zero in probability and 
ni/2+£|^ —t*\ converges to infinity in probability. 
Henceforth we assume that the original observations Z\,Zi,- ■ • are i.i.d. and that 
the noise vectors have mean zero. The effect of noisy training in linear regression is 
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relatively straightforward to analyze. This is the case where z is the pair (x, y), x G 
IR*-1;!/ 6 Dt and £(z,t) = (xTt — y)2. Denote the minimizer of rn by rn and the 
minimizer of rfs by r*5. If hn — op(n

-1/4), i.e., if w}lAhn converges in probability 
to zero, then it turns out that rfs and r„ have the same asymptotic distribution. If 
hn converges to zero at some slower rate, then the situation is more complicated; 
when it can be obtained, the asymptotic distribution of r#s then typically depends 
on the sequence {h„}. 
The same kind of results hold also more generally. Let now t* £ T satisfy Vr(i*) = 0, 
i.e., t* is a stationary point of the risk r. We assume that t* is an isolated stationary 
point in the interior of T. Further, we assume that £ is a C3-function on IR x IRm, 
and that Z\ has a compactly supported law. Then the matrices 

A := E[Vt
2e{Zi,t*)], B := Cov[Vt £{Zut*)} 

are well defined. Here V* and V2
t denote the gradient and Hessian operators with 

respect to t, respectively. We assume that A is invertible and that B is nonzero. 
Further, we assume that the noise vectors have a compactly supported law and that 
the smoothing parameters satisfy 0 < hn < M for some constant M. 
Under these assumptions, let hn = op(n-1/4). Let {T„} be a sequence of T-valued 
random vectors such that 

rn^t*,     and   / Vt£(z, r„) fin{dz) = op(n
_1/'2), 

and let {r*.} be a sequence of T-valued random vectors such that 

r*^f,     and Jvtt(z,T*)ii#(dz) = op{n-1'2). 

Here rn and r,# renders the respective empirical risk stationary in an asymptotic 
sense. It is shown in [5] that then 

V^iTn-t^NiO^-ißA-1)   sndi/n(if,-f)^N(0,A-1BA-1).      (8) 

That is, the asymptotic distributions of rn and r*5 coincide. The asymptotic dis- 
tribution for rn is naturally the same as in [8, Th. 2]; the result for r*s is new. 
This asymptotic distribution can be used, e.g., to construct an asymptotic confi- 
dence interval for t* or for r(t*), the risk at t*. Instead of this, we now use this result 
to characterize the generalization performance of our estimators. Let the sequence 
{On} stand either for {T„} or for {T*S}. The generalization performance of 9n can 
be characterized by the law of r(6n), the risk evaluated at the estimator. It can be 
shown that its asymptotic distribution is now given by 

n[r{6n) - r(t*)]^UTAU,    where    U ^ NiO^^BA'1). (9) 

5    Conclusions 
We have outlined new results for the convergence properties of minimization esti- 
mators in noisy training. The main conditions in the consistency result are that 
the empirical measures associated with the original sample converge weakly, almost 
surely, towards some measure (i and that the smoothing parameters hn —► 0, almost 
surely. 
The main conditions for the asymptotic distribution result are the following: the 
original sample points are i.i.d., the noise vectors have zero mean and h„ = op(n

-1'4). 



224 CHAPTER 36 

Under certain additional conditions we then have that the asymptotic distributions 
of T„ and r#5 are identical, where T„ denotes the minimizer of the empirical risk 
associated with original sample and rfs the minimizer of the empirical risk associ- 
ated with the noisy sample. This implies that the asymptotic distributions of r(r„) 
and r(r*s) coincide and hence additive noise can have only a higher-order effect on 
the performance of a minimization estimator as the sample size goes to infinity. 
However, numerical evidence indicates that additive noise sometimes does improve 
the generalization performance of a minimization estimator, at least with small 
sample sizes. It remains to be seen whether this effect can be quantified by analyzing 
the distribution of r(rfs) using more refined asymptotic methods. 
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The diffusing messenger Nitric Oxide plays an important role in the learning processes in the 
brain. This diffusive learning mechanism adds a non-linear and non-local effect to the standard 
Hebbian learning rule. A diffusive learning rule can lead to topographic map formation but also has 
a strong tendency to homogenise the synaptic strengths. We derive a non-linear integral equation 
that describes the fixed point and show which parameter regimes lead to non-trivial solutions. 
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Introduction 
Most learning rules used in neurobiological modelling are based on Hebb's postulate 
that a synaptic connection is strengthened if and only if there is both a post-synaptic 
and pre-synaptic depolarization at that particular synapse. Recent physiological 
research, however, shows that this assumption is not always warranted. Experiments 
in areas varying from rat hippocampus to cats' visual cortex show that there is a 
non-local effect in learning. 
This non-local learning is often thought to be mediated by retrograde messengers. 
Nitric Oxide (NO) is a candidate for such a messenger which is produced post- 
synaptically (both in the dendrites and the soma [1]), then diffuses through the 
intracellular space and is taken up pre-synaptically. The chemical properties of 
NO allow it to diffuse over relatively long distances in the cortex; with a diffusion 
constant of 3.3 x 10~5cm2/s and a half-life in the intracellular fluid of 4 ~ 6 seconds, 
it has an effective range of at least 150/im. If NO were an ordinary neurotransmitter 
it would be hard to understand how the specificity of neuronal connections in the 
brain on a scale smaller than this could be achieved. An explanation has been found 
in experimental setups with locally modifiable concentration of NO: physiologists 
have been able to demonstrate that low levels of NO lead to depression of synaptic 
strengths (LTD) and high levels lead to Long Term Potentiation (LTP) (For recent 
reviews see [3, 8]). This non-linearity in the dependence of the synaptic change on 
the NO concentration is crucial to attain specificity in a network with a diffusing 
messenger. 
Detailed simulations of such a a non-linear and non-local learning rule have been 
performed in [2, 7]. In these simulations pattern formation in the weights was seen 
to occur but, as the input patterns and the initial (partly topographic) weight 
distributions were already organized, it is difficult to tell how general these re- 
sults are. In [5] we analysed networks with a diffusing messenger in a linearised 
reaction-diffusion framework and found that homogeneous weights were the domi- 
nant solutions of the dynamics. Following up a suggestion in [4] that Nitric Oxide 
could underlie a mechanism similar to the neighbourhood function in the SOFM. 
we showed in [6] that a diffusing messenger can indeed support the development of 
topographic maps without the need for a Mexican Hat lateral interaction. 
Here we extend our previous analysis to arrive at a fuller account of the non-linear 
effects. We derive a general fixed point equation for the weights and determine 
which parameter regimes admit non-zero homogeneous solutions. 
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1    The Model 
We consider a neural field consisting of leaky integrator neurons with activity u, 
all sampling their input with a synaptic density function r from a field of synapses 
with strengths s. Note that this implies that synapses do not "belong" to a neuron, 
a neuron just takes its input from the synapses within its reach (determined by 
the function r). Inputs a(x, XQ) are Gaussian shaped with the maximum at XQ and 
spread a. The inputs are presented with equal probability at each position XQ. Nitric 
Oxide is produced in the dendrites at a rate proportional to the local depolarization, 
decays at a rate —1 and has diffusion constant K. Learning is non-linearly dependent 
on the local NO level through the function / which captures the qualitative effects 
described above (see also 2). Given an input centred at XQ, the dynamical equations 
can be written as: 

«(,,«„)    =    -„(,) + Jdx<r{x,z>)s{x>)a{x>,x^ 

TI(X,XQ)    =    —n(x) + s(x)a(x,xo) + KV
2
TI(X,XQ), 

s(x)    =    -s(x) +f[n(x,xo)]a(x,x0). 

We assume (as in [7]) that all learning is dependent on the local NO level and 
there is no direct dependence on the post-synaptic depolarization (see Discussion). 
The local NO level that determines the change in synaptic strength depends on the 
details of the post-synaptic production of NO and the pre-synaptic measurement 
process. As the details of this process are as yet unknown, we use a Gaussian Green's 
function (G(x, x')) to model the spatial distribution of NO. This approximation is 
exact if the NO is produced in a short burst and measured some fixed period of time 
later. The real process of production and measurement will presumably be more 
complicated, but we expect that at least the qualitative features are well described 
by a Gaussian kernel. With these approximations and averaging over all patterns, 
the fixed point equation for the learning dynamics can be written in the form of 
the following non-linear Fredholm integral equation. 

(x) =      dxoa(x,xo)f       dx'G(x,x')s(x')a(x',XQ) (1) 

In section 2 we substitute the simplest non-linear function that still captures the 
qualitative features observed in experiments: 

f(n) = -n(n - D)(n - P) (2) 

with D and P two parameters that can be determined directly from experiments. 
The unphysical values of / for negative NO concentration merely stabilise the triv- 
ial fixed point, and the decrease of / after its positive maximum can either be 
interpreted as toxicity of a high concentration of NO or an easy way of modelling 
a saturation of the NO production. The important features of the function are the 
negative values for small NO concentration (LTD) and positive values (LTP) for 
high NO concentration. 

2    Analysis 
In appendix 4 we use the assumptions about the non-linearity, the spread of NO 
(p) and the width (a) of the Gaussian inputs in equation 1 to derive the following 
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expression in Fourier space for the fixed point of the dynamics. 

s(k)    =   -DPNlS(k)e-ßlk2 

+  (D + P)N2 [ dkls(k')s(k'-k)e-<-k'2-k'kV2l-»+<'h-k2^ (3) 

- N3 f I dk'dk"s(k')s(k")s(k' + k" - k)e~{k  '{%"-l'X+k   V^3*2 

where the parameters are defined by: 
an + l7r(n + l)/2 

Nn    =    ' 
y/(p+ *)(.»-»(<?*+ (n + l)ptr) 

A.   =   Ur± + A\p + a (p + a)n(p2 + (n + l)pa)/ 

To derive the conditions under which the dynamics admit homogeneous solutions 
for the weights, we substitute the solution s(k) = sh6(k) in equation 3 and derive 
the following third order polynomial in Sh: 

sh = -DPNlSh + (D + P)N2s
2

h - N3s
3

h. (4) 

Clearly, the zero-weight solution is a fixed point, and non-trivial homogeneous so- 
lutions can be determined by finding the two remaining roots of this equation. 
Non-trivial homogeneous solutions exist if Sh has at least one positive real solution. 
This is the case if the width a of the stimuli satisfies the following constraint: 

<>    <,_ «e* (5, 
*{* + 3p)2 -        (D + Pf ' 

and in the limiting case, the homogeneous solution is given by 

D + P   I .(a2 + 4pa 

V47ra0y \a2 + 3p(T, 

For widths larger than this limiting case there will be two fixed points of which 
only the largest is a stable solution. This is evident from figure 1 in which we solve 
equation 4 pictorially. 
Even though the couplings between the different Fourier components of the weights 
in equation 3 are limited, a general periodic solution is not easily found. From 
substituting s(k) = 6(k) — 6(k — k*) in the equation it can be seen that in this 
case there is a coupling with only one higher harmonic s(k) = 8{k — 2k*). This 
suggests that a (numerical) iterative procedure to solve the integal equation could 
be fruitful. We will attempt such a solution in future work. 

3    Discussion 
We have shown that the weight dynamics of a neural field with a diffusing messenger 
can be described by a non-linear Fredholm integral equation and that non-zero 
honogeneous solutions for the weights are stable for stimuli wider than a critical 
width. We expect that in real tissue some mechanism would be needed to prevent 
this tendency to homogenise the weights: either the production of NO or its diffusion 
through the tissue has to be controlled. We expect such a mechanism to be found 
when the chemical process by which NO is synthesized is more fully understood. 
The current model assumes that all learning is NO dependent and ignores any 
influence of the activity of the post-synaptic neurons. In reality, the NO effects we 



228 CHAPTER 37 

RHS 

Wide Inputs 

Critical Inputs 

Narrow Inputs 

Figure 1 Solving for the homogeneous solutions of equation 3. RHS indicates 
the Right Hand Side of this equation and the solid line is the Left Hand Side. The 
closed bullets show stable fixed points whereas the open bullets are unstable fixed 
points. The critical size of the inputs is given by equation 5. 

model and the more standard Hebbian learning rules could operate concurrently. In 
that case the interaction between the two learning rules needs to be investigated. 
Furthermore, we assumed that all NO is produced in the dendrites. There is evi- 
dence, however, that the production can take place in the soma and even the axons 
[1]. Our previous analyses [5, 6] considered production of NO in the soma, and 
showed different behaviour than that described here. A full model would include 
all the sources of NO and the interaction between them. 
Lastly, we have modelled all time-dependent effects of the diffusion with the single 
parameter p. Interesting dynamics could result from including the time dependence 
explicitly, especially if the inputs are temporally correlated. We will address this 
issue in future work. 

4    Appendix 
Starting from equation 1 we substitute the Gaussian Green's function with spread 
p and the inputs to derive the fixed point equation. First we derive the NO concen- 
tration at position x when a stimulus is presented at XQ. The weights are written 
as an integral of Fourier components s(k): 

n(x,xQ) =  I dk's(k') I dx'eik'x''a0e-<"'-"^'e~*"-*'?. 

This Fourier integral over a shifted gaussian can be evaluated explicitly: 

n(x,xo) = a0 —^— I dk's(k')e -«'i'(^Voe-(^)(^-^)2 

For the averaged weights' fixed point equation we have to average over all the 
patterns: 

six) =   / dx0 a0e—('-*°?f [n(x, x0)]. 

For each of the terms in /, the integral over the distribution of patterns has to be 
done seperately. Here we do the linear case; the quadratic and cubic terms follow 
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by analogy but will include interactions betweeen the different fourier components. 
Substituting the non-linearity / from equation 2, the integral over the pattern 
positions XQ in the linear term (s^) is another Fourier integral and gives: 

s^Xx)    =    -a\DP 
p + a \  a + 

*      / dk' s(fc')e-«'*e-*'2/4^+<)e_ff2*'2/((p+a)('72+2',<T)). 

In Fourier space this integral equation can be written as: 

s^\k) = -DPNi8^(k)e-ßlk'. 

The quadratic and cubic terms can be determined analogously which results in 
equation 3. 
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The purpose of this paper is to show how fundamental results from variational approximation 
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1 Introduction 
Learning from a set of input-output patterns, and sometimes from additional a pri- 
ori knowledge, in neural networks usually amounts to determining a set of param- 
eters relative to a given network. In the case of feedforward networks, the problem 
may be equivalent to determining a continuous mapping. Such a problem can be 
stated in the framework of multivariate approximation theory which, in some cases, 
is closely linked to regularization [11]. Concerning learning in recurrent associative 
memory networks, one usually has to determine a set of parameters connected with 
the dynamics of a given network so that the patterns (memories) to be stored are 
stable states of such a network [1, 3, 7]. Complete characterization of the network 
dynamics may be achieved by defining a global Lyapunov function (energy) which 
decreases during the network evolution (the recalling process) and whose local min- 
ima are the network's stable states [3, 6, 7]. 
The procedure followed here for the design of an associative memory network is the 
reverse of the general approach: using methods from variational approximation, 
we determine a function (or a hypersurface) which has as many local maxima as 
the number of patterns to be memorized, and then define a dynamics on such a 
hypersurface (actually, the gradient dynamics) which has its stable states close to 
the patterns to be memorized. 
We begin by proving that the problem is well posed from the approximation point 
of view, and that the desired function can be explicitly computed when choosing 
convenient constraints and parameters in the variational formulation of the prob- 
lem. We finally show that the derived gradient dynamics can be implemented by an 
associative memory network. Such a network can be viewed as a recurrent radial 
basis function network which has as many stable states as there are fundamental 
patterns to be stored. We also discuss how basins of attraction can be shaped so 
that no spurious stable states can be encountered during the recalling process. 

2 Statement of the Problem 
Let us consider a set of patterns, A = {Si, S2,..., Sm} C Q C IRn- The first 
stage of the proposed approach is to construct a hypersurface defined by a bounded 
smooth function, F : JRP —* IR whose unique local maxima are close to the patterns 
Si,i = 1,..., m. Therefore, we will reduce the problem to a functionnal minimization 
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under constraints which aim to translate the following assumptions: i) F should 
interpolate the data (Si,y,),i = l,...,m, where yi = F(Si) are large positive real 
values, and F should tend to zero outside of the data. This constraint is reduced 
here to the minimization of the £2 norm of F. ii) F should not oscillate between 
the data. This constraint is reduced to surface tension minimization, which usually 
amounts to minimize the L2 norm of the gradient of F. iii) F should be smooth 
enough. This constraint is usually imposed by minimizing the L2 norm of smoothing 
differential operators (Dp) to be introduced in the following. 
Let us define Cy = {/ € HT >-> Ht, / € C(lRn), r > 0, and f(St) = yt}. Determining 
an approximation of F regarding the given three constraints can be reduced to the 
minimization of a cost functional J over Cy, 

J(/) = Ao||D0/||2 + Ai||-D1/||2 + ... + Ap||JD"/||2 feCy (1) 

The operators Dk are defined by, Dkf{X) = E,-1+...+*.=t ^f dx>Jix),k> °- 

To solve the minimization problem, we can either use standard methods from the 
calculus of variations by means of the Euler-Lagrange equation [4, 11], or use direct 
methods based on functional analysis. Herein, we use the latter method which is 
closely related to the reproducing kernels method [5, 15]. 
First, let us consider the Hubert space, #P(IRn) = {/ £ ^(IR"); ELo II-0*7II2 < 
oo}endowed with the inner product, < /,g >H? —   Yfk=o < f>9 >k, where < 
/, g >jfe=< Dkf,Dkg >. When p and n satisfy the condition, p >   | + r,r >0,then 
Fp(IRn) is a subset of C""(IR") [12]. We assume this condition is satisfied in the 
following. 
To show that the problem is well-posed (i.e. it has a unique solution in Cy), we 
consider the following vector space, Hp

A(]Rn) = {/ G L2(R
n),YTk=o xk\\Dk f\f < 

00, and Ajt > 0}. It can easily be shown [8, 12] that H^(Mn) endowed with the 
inner product, < /, g >HP= Y7k=o h < f,9 >k,is a, Hilbert space whose norm is, 

ll/ll/f" = (</>/ >if)3- Moreover, Hp and HA are topologically equivalent since 
their norms are equivalent. 
Now, observe that the norm of i7^(IRn) is identical to the functional J to be 
minimized, so the minimization problem can be rewritten as, 

(V)     Minimize J(f) =|| / \\2H' J £ CY 
A 

(V) is then reduced to a special class of approximation problems in normed linear 
spaces [14, 9]. We will use convenient methods of such theory to prove the existence 
and give a characterization of a solution to the problem. 

Theorem 1 Given strictly positive real parameters, Xk,k = l,...,p, the problem 
(V) has a unique solution F   €   H^JR"), which is characterized by, 
< F, u >H"= Y^ILißi- < Si,u >,    Vw S HP

A, where /?;  are real parameters and 
< 6{,. > are Dirac operators supported by Si,i = 1,..., m. 

Proof The proof1 is based on the projection theorem for the existence and the 
charactrization of the best approximation in a linear manifold of a Hilbert space 
[8, 9, 14]. In order to use such results, we first show that Cy is a linear manifold of 
H\. This is achieved by considering the set Co defined as, 

1 the details of the proof can be found in [8] 
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Co = {v £ HP
A,< 6i,v > = v(Sj) = 0, i = l,...,m}, which is a vector subspace 

of H^, and observing that Cy is a translation of Co- Therefore, the projection 
theorem asserts that there is a unique function F £ Cy which solves (V), and 
since Cy is linear manifold associated to Co, F can be characterized by the relation, 
< F,u >H

P
= I3i=i ßi- < t>i,u>, V« £ H\ where /?; are real parameters. G 

The previous theorem provides only a characterization of the solution, but we are 
interested in determining explicitly such a solution. Therefore, we consider the 
differential operator P defined as a combination of iterated Laplacians, 
Pf = Xof - AiA/ + ... + (-l)?\pA

2Pf, V/ £ ff£(ntn), which leads us to the 
following theorem. 

Theorem 2 Consider the functions (kernels) G(.,Si),G(.,S2), ...,G(.,Sm) as re- 
spective solutions of the partial differential equations (in the distributions sense), 
PG(X,Si) = 6(X — Si),i = l,...,m,Vl6 WC .Then, there exist unique parameters 
/?i,/?2, ■■■,ßm such that the solution F of the problem (V) is, 
F(X) — YALI Pi-G{X, Si),where (Pi, ...,ßm) is the solution of the linear system, 

F(Sj) = £r=i &-G(Sj, Si) = yj, j = 1,.... m. 

Proof First, let us show that any function f(X) = YALI ßi-G(X, Si), with arbitrary 
ßi's, satisfies the characterization of theorem (1). If we consider any pair of functions 
<t> and ip in HP

A, an integration by parts in the sense of distributions gives [13], 
< <j),i> >k= (-1)* < A2k<f>, ip > -This relation allows us to write, for any u G HP

K, 
m m p 

<F,u>Hp    =   ^Ä-<G(X,50,«>^=^Ä<E(-l)*A,A2iG(X,50,w> 

=    E 
i=l k=0 

Pi < 6i,U> 
« = 1 

So the function F given in the theorem satisfies the characterization stated in 
theorem (1). Finally, to show that F is the solution of the problem (P), we have to 
show that F £ Cy, which amounts to show that there is a unique solution (in ßi 's) 
to the following linear system, F(Si) = X^JLi ßiG{Sj, Si) = yt, i = 1,..., m. Since 
P is a linear combination of iterated Laplacians, it is rotation and translation 
invariant [5, 13], and the kernels G(.,Si) are radial, centered respectively on 5», 
and can be written as, G(X, Si) = G(\\X — Xi\\). 
To show that the linear system has a unique solution, it suffices to show that the 
function G(t) is positive definite [10]. Since G verifies the equations, 

A0G(||X - S,-||) - AiAGfll-Y - S,-||) + ... + (-1)PXPA
PG(\\X - S.-||) = 6(\\X - 5,-||) 

it can be shown that G(t) can be written as [11], G(t) = J^ A +A ^Tl 2\ W2P du = 

fmexp(itui)dV(u>), where V is a bounded nondecreasing function. G is then writ- 
ten in the form required by the Bochner theorem [2] which characterizes positive 
definite functions. Therefore, F(X) = Y?=i ßi-G{X, Si) is the solution of (V). G 
Poggio & Girosi [11] considered a similar variational problem for learning continu- 
ous mappings under a priori assumptions. They derived similar kernels G(t) using 
the Euler-Lagrange equation. Setting Aj, to some particular values gives some il- 
lustrations of the solution F in figure 1. If we let p tend to infinity in the problem 
(V) as in [11] (considering only functions with infinite smoothness degree), and 
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Figure 1 The solution F: [left) for A0 = a > 0, Ai = 1, and Afc = 0, k > 2, we 
have G\(t) = ^.exp(—a.\t\) which is not differentiable at the origin; (right) for 
A0 = oi,Xx = 2<r2,A2 = 1, and \k = 0, k > 3, we have G2(i) = Gi(i)*Gi(<) (the 
convolution product) which is differentiable. 

choose Afc = fc!2fcgafc) then following the same reasoning as the previous sections, 

we obtain, G(u>) = exp(— fj^), and hence F is a linear combination of Gaussians 
centered on S,'s with positive coefficients /?,■ since, in the linear system, Y — G.B 

where (B)i = ft, (G)a = exp(-l|5i
2~^112), and (Y),- = y{ » 0, if we take a small 

a, and decompose the matrix G as G = I + Q, where / is the identity matrix, and 
II Q .  c . 1)2 t - 

(Q)ij — exp(—" '2^2'' ) for i ^ j, we can make the approximation, G = I — Q. 
Therefore, we get, B — G~1.Y ~ (I — Q).Y. Since the elements of Q can be reduced 
as desired by choosing a small a, we get positive ß[s, and so the computed function 
preserves the a priori constraints imposed on the desired function (see figure 1). 

3    Building an Associative Memory Network 

Let us consider the solution F(X) = J2T=i ßi exP(— \X-Sj 
2(72 -) obtained by setting 

Afc = k,2ka2k ■ The last stage of our approach is to build an associative memory 
network whose unique attractor states are close to the patterns Si- If we consider 
the gradient dynamics applied to F, then from any initial state Xo, we stabilize 
on a local maximum of F which is close to a pattern £,-. The closeness of the 
actual maxima of F to the patterns Si depends on the size of a. For a large a, 
the deviation is more important because of the overlap between Gaussians, while 
it is less important for a small <r. This is a natural consequence, since large penalty 
parameters Afc would result from a small a, and hence the constraints would be 
better preserved. A discretization of the gradient dynamics applied to F gives, 

Xi(t + 1) = Xi(t) + a. £jli(*« - Sj)li exp(-l£jj£l£), i = 1, ...,n 
This dynamics can be implemented by a two-layer recurrent RBF network (see 
figure 2). The first layer consists of n units encoding the input/output pattern, and 
the second -hidden- layer consists of m units computing radial functions centered 

on the patterns Sj, Gj (X) = ft exp(- " 2<72
jl1 ). The connection weight between an 

input/output unit i and a hidden unit j is Sj (jth component of Si). The network 
has been used as a part of a system for handwritten character recognition and 
reconstruction [8]. 
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Figure 2    The associative memory network architecture. 
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In this paper we present a novel method for transforming nonseparable nonlinear programming 
(NLP) problems into separable ones using multilayer neural networks. This method is based on 
a useful feature of multilayer neural networks, i.e., any nonseparable function can be approxi- 
mately expressed as a separable one by a multilayer neural network. By use of this method, the 
nonseparable objective and (or) constraint functions in NLP problems can be approximated by 
multilayer neural networks, and therefore, any nonseparable NLP problem can be transformed 
into a separable one. The importance of this method lies in the fact that it provides us with a 
promising approach to using modified simplex methods to solve general NLP problems. 

Keywords: separable nonlinear programming, linear programming, multilayer neural network. 

1    Introduction 
Consider the following NLP problem: 

Minimize        p(x) for x 6 IR," (1) 

subject to gi(x) > 0      for i — 1, 2, • • •, m, 

hj{x) = 0     for j = 1, 2, • • •, r. 

where p(x) is called the objective function, gt{x) is called an inequality constraint 
and hj(x) is called an equality constraint. 
NLP problems are widespread in the mathematical modeling of engineering design 
problems such as VLSI chip design, mechanical design, and chemical design. Unfor- 
tunately, for the general NLP problems, computer programs are not available for 
problems of very large size. For a class of NLP problems known as separable [4, 1], 
some variation of the simplex method, a well-developed and efficient method for 
solving linear programming (LP) problems, can be used as a solution procedure. 
Separable nonlinear programming (SNLP) problem refers to a NLP problem where 
the objective function and the constraint functions can be expressed as the sum of 
functions of a single variable. A SNLP problem can be expressed as follows: 

Minimize        ^PfcOcfc) (2) 
fc=i 

n 

subject to 2_,ffifc(zit) — 0     for i = 1, 2, • • •, m, 

n 

^2hjk(xk) = 0     for j = 1, 2, •••, r. 
k=i 
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An important problem in mathematical programming is to generalize the simplex 
method to solve NLP problems. In this paper we discuss how to use multilayer 
neural networks to transform nonseparable NLP problems into SNLP problems. 

2 Transformation of Nonseparable Functions 
Let q(x) be a multivariable function. Given a set of training data sampled over 
q(x), we can train a three-layer network1 to approximate q(x) [2]. After training 
the mapping q(x) formed by the network can be regarded as an approximation of 
q(x) and expressed as follows: 

q(x) = a + ß(f 1^2 w3ijf I ^2 w2jiXi + bias2j J + bias3i I - 7), (3) 

where Xj is the input of the jth unit in the input layer, Wkji is the weight connecting 
the ith unit in the layer (k — 1) to the jth unit in the layer k, biaskj is the bias of 
the jth unit in the layer k, f is the sigmoidal activation function, Nk is the number 
of units in the layer k, a, ß, and 7 are three constants which are determined by the 
formula used for normalizing training data. 
Introducing auxiliary variables 631, 621, b22, •••, and b2w2 into Eq. (3), we can 
obtain the following simultaneous equation 

q(b31) = a + ß(f(b31)-j) 

631 - ^2w3ijf(hj) = bias31 

j=i 

iVi 

621 - ^2 W2lixi = &">«21 \   ' 
i = l 

b2N2 - 22W2N2'Xi = bias2N2, 
»=i 

where bkj for k = 2, 3, j = 1, 2, • ■ ■, NK, and ar,- for i = 1, 2, ■■ ■, Ni, are variables. 
We see that all of the functions in Eq. (4) are separable. The importance of Eq. (4) 
lies in the fact that it provides us with an approach to approximately expressing 
nonseparable functions as separable ones by multilayer neural networks. 
In comparison with conventional function approximation problems the training task 
mentioned above is easier to be dealt with. The reasons for this are that (a) an 
arbitrary large number of sample data for training and test can be obtained from 
q(x), and (b) the goal of training is to approximate a given function q(x), so the 
performance of the trained network can be easily checked. 

3 Transformation of Nonseparable NLP problems 
According to the locations of nonseparable functions in NLP problems, nonsepa- 
rable NLP problems can be classified into three types: (I) only the objective func- 
tion is nonseparable function; (II) only the constraint functions are nonseparable 

1 For simplicity of description, we consider only three-layer networks throughout the paper. The 
results can be extended to M-layer [M > 3) networks easily. 
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functions; and (III) both the objective and constraint functions are nonseparable 
functions. 
For Type I nonseparable NLP problems, we only need to transform the objective 
function into separable one. Replacing the objective function with its approximation 
in Eq. (4), we can transform a Type I nonseparable NLP problem into a SNLP 
problem as follows: 

Minimize       a + /?(/(&£) - 7) (5) 

subject to        6°! - J2 w%i,f{b%) = bias^ 

&21 - X! w2Uxi ~ 6?'as21 
» = 1 

b2N° -^2w2N°ixi = bias O 
2NZ 

£ gik(xk) > 0     fori = 1, •••, m, 
=1 

£' ihjk(xk) = 0     forj = l, 
*=i 

where the "0" superscript refers to quantities on the objective function. 
Using the similar approach mentioned above, we can transform the Type II and 
III nonseparable NLP problems into SNLP problems, and deal with unconstrained 
nonlinear programming problems. 
Suppose that the accuracy of approximating nonseparable functions is good enough 
for a given problem. The transformed SNLP problems are equivalent to their origi- 
nal nonseparable NLP problems, since the transformations only change the expres- 
sion forms of the objective function and (or) the constraint functions. The accuracy 
of approximation may be effected by many factors such as the network size, the 
learning algorithms and the number of training data. There are several methods 
for dealing with this problem, for example see [3, 8, 7]. We can use these results to 
guide our training and get a good accuracy. 

4    Analysis of Complexity 
Now let us analyze complexity of the original and transformed problems. Suppose 
that each nonseparable function is approximated by the network with same number 
of hidden units (N). Also suppose that there are s (s < m) nonseparable inequality 
and t (t < r) nonseparable equality constraint functions in Type II and III problems. 
The numbers of variables and constraints in original and transforming problems are 
shown in Table 1. 
From Table 1 we see that as the number of hidden units grows both the number 
of variables and the number of constraints in the transformed problems increase. 
Therefore, it is desirable that each nonseparable function is approximated by a 
network with as few number of hidden units as possible. But on the other hand 
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Problem No. of variables No. of constraints 
Original 
I 
II 

III 

n + N + 1 
n + sN +tN + (s + t) 

n + N + sN + tN + (1 + s + t) 

m + r 
m + r + N+1 
(ra — s) + (r — t) 

+sN +tN + s + t 
(m-s) + (r-t) + N 

+sN + tN + (l + s -0 

Table 1    The numbers of variables and constraints in the original and transformed 
problems. 

it may become more difficult for a smaller network (e.g., fewer number of hidden 
units) to approximate a nonseparable function. There exists a trade-off between the 
complexity of the transformed SNLP problems and the approximating capability 
of neural networks. 

5     Simulation Results 
Consider the following simple NLP problem: 

Minimize        2 — sin2 x\ sin2 Xi (6) 

subject to 0.5 < x\ < 2.5 

0.5 <x2 < 2.5 

Clearly, this is a Type I nonseparable NLP problem. A three-layer perceptron with 
two input, ten hidden, and one output units is used to approximate the objective 
function. The training data set consists of 524 input-output data which are gathered 
by sampling the input space [0.5, 2.5] x [0.5, 2.5] in a uniform grid. The network 
is trained by the back-propagation algorithm [6]. In this simulation, the learning is 
considered complete when the sum of squared error between the target and actual 
outputs gets less than 0.05. Replacing the objective function with its approximation 
formed by the network, we obtain a SNLP problem. 
Approximating the sigmoidal activation function in the SNLP problem over the 
interval [—16, 16] via 14 grid points, we obtain an approximate SNLP problem. 
Solving this problem with the simplex method with the restricted basis entry rule 
[4], we obtain the solution: x\ — 1.531488 and x^ = 1.595567. If the sigmoidal 
activation function is approximated over the interval [—16, 16] via 40 grid points, 
we can obtain a better solution: x\ = 1.564015 and x\ = 1.569683. Solving this 
problem directly with the Powell method [5], we obtain a more accurate solution: 

= 1.57079 and x% 1.57079. It should be noted that there exits a trade-off 
between the accuracy of the approximation of SNLP problems and the number of 
grid points for each variable. 
In general, several local solutions may exist in a SNLP problem. But only one solu- 
tion can be obtained by solving the approximate SNLP problem using the simplex 
method with the restricted basis entry rule. It has been shown that if the objective 
function is strictly convex and all the constraint functions are convex, the solution 
obtained by the modified simplex method is sufficiently close to the global optimal 
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solution of the original problem by choosing a small grid. Unfortunately, the SNLP 
problems transformed by our method are non-convex since the sigmoidal activation 
function is non-convex. In such case, even though optimality of the solution can not 
be claimed with the restricted basis entry rule, good solutions can be obtained [1]. 

6    Conclusion and Future Work 
We have demonstrated how multilayer neural networks can be used to transform 
nonseparable functions into separable ones. Applying this useful feature to nonlinear 
programming, we have proposed a novel method for transforming nonseparable NLP 
problems into separable ones. This result opens up a way for solving general NLP 
problems by some variation of the simplex method, and makes connection between 
multilayer neural networks and mathematical programming techniques. As future 
work we will perform simulations on large-scale nonseparable NLP problems. 
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The purpose of this paper is to present a probabilistic theory of self-organising networks based 

on the results published in [1]. This approach allows vector quantisers and topographic mappings 

to be treated as different limiting cases of the same theoretical framework. The full theoretical 

machinery allows a visual cortex-like network to be built. 

1 Introduction 
The purpose of this paper is to present a generalisation of the probabilistic approach 
to the static analysis of self-organising neural networks that appeared in [1]. In the 
simplest case the network has two layers: an input and an output layer. An input 
vector is used to clamp the pattern of activity of the nodes in the input layer, 
and the resulting pattern of individual "firing" events of the nodes in the output 
layer is described probabilistically. Finally, an attempt is made to reconstruct the 
pattern of activity in the input layer from knowledge of the location of the firing 
events in the output layer. This inversion from output to input is achieved by 
using Bayes' theorem to invert the probabilistic feed-forward mapping from input 
to output. A network objective function is then introduced in order to optimise 
the overall network performance. If the average Euclidean error between an input 
vector and its corresponding reconstruction is used as the objective function, then 
many standard self-organising networks emerge as special cases [1, 2]. 
In section 2 the network objective function is introduced, in section 3 a simpler 
form is derived which is an upper bound to the true objective function, and in 
section 4 the derivatives with respect to various parameters of this upper bound 
are derived. Finally, in section 5 various standard neural networks are analysed 
within this framework. 

2 Objective Function 
The basic mathematical object is the objective function D, which is defined as 

m . 

J2 dxdx' Pr (x) Pr (y!, y2, • ■ •, y„|x) Pr (x'|yi, y2, ■ ■ ■, y„) ||x - x'f 
yi,ya,-",y»=i 

where x is the input vector and x' is its reconstruction, (yi,y2, • ■ ■ ,yn) are the 
locations in the output layer of n firing events, and ||x — x'|[ is the Euclidean 
distance between the input vector and its reconstruction. The various probabili- 
ties arise as follows: J dx Pr (x) (• ■ ■) integrates over the training set of input vec- 
tors, Pr(yi,y2, • • -,y„|x) is the joint probability of n firing events at locations 
(yii V2, ■ ■ ■, y„), Pr (x'|yi, y2, ■ ■ •, yn) is the Bayes' inverse probability that input 
vector x' is inferred as the cause of the n firing events, Y^"1 „ , (■ ■ ■) sums 

„.,,,., ° ' •'-^yi,y2,--,yn=iv    ' 
over all possible locations (on an assumed rectangular lattice of size m) of the n 
firing events. The order in which the n firing events occurs will be assumed not to be 
observed, so that Pr (yi,y2, • • • ,y„|x) is a symmetric function of (yi,y2, • • •, yn)- 

240 
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A simplifying assumption will be made where the observed firing events are assumed 
to be statistically independent, so that 

Pr(yi>y2!---,yn|x) = Pr(y1|x)Pr(y2|x)---Pr(yn|x) (2) 

Normally, a simple form for Pr (y|x) is used such as 
m 

Pr(y|x) = Q(x|y)/]TQ(x|y') 
y'=i 

where   Q(x|y)     >     0,   which   guarantees   that   the   normalisation   condition 
^"L1Pr(y|x) = 1 holds. However, a more general expression will be used here 
based on the definition 

Pr(y|x;yO^Q(x|y)^(;\ (3) 
2^y"eAf(y') V VXiy   ) 

which implies that J2yeAT(y') Pr(y|x;y') = 1> where AT(y') is the set of node lo- 
cations that lie in a predefined "neighbourhood" of y'. This neighbourhood can be 
used to introduce "lateral inhibition" between the firing neurons if the expression 
for Pr (y|x) is written as a sum over Pr (y|x; y') as follows 

Pr(yW = F     £     Pr(y|x;y') = ^Q(x|y)     £     = ^—TTV 

(4) 
where J\f~l (y) is the "inverse neighbourhood" of y defined as 
A/"-1 (y) E {y' : y £ A/"(y')}, and M is the total number of locations in the output 
layer that have a non-zero neighbourhood size (M = ]Cy:jV(y)^0 -0- This expression 
for Pr (y|x) is identical to one that arises in the context of optimising a special class 
of mixture distributions [3], and it satisfies 2^ Pr(y|x) = 1. The expresson for 
Pr (y|x) in (4) may readily be generalised to the case where the neighbourhood is 
non-uniformly weighted. The expression for D in (1) and the expression for Pr (y|x) 
in (4) are the two basic ingredients in the theory of self-organising neural networks 
presented in this paper. 
There is one further ingredient that proves to be very useful. Pr (y|x) will be allowed 
to "leak" as follows [1, 3] 

Pr(y|x)^      J2     Pr(y|y')Pr(y'|x) (5) 
y'ec-i(y) 

where Pr (y|y') is the amount of probability that leaks from location y' to location 
y, and £-1 (y) is the "inverse leakage neighbourhood" of y defined as £-1 (y) = 
{y' : y E £ (y')} > wnere £ (y') is the "leakage neighbourhood" of y'. The purpose of 
leakage is to allow the network output to be "damaged" in a controlled way, so that 
when the network is optimised it automatically becomes robust with respect to such 
damage. For instance, if each node is allowed to leak probability onto its neighbours 
in the output layer, then when the network is optimised the node properties become 
topographically ordered. 

3    Simplify the Objective Function 
The network objective function can be simplified to yield [1] 

/m 
dxPr(x)        J2        Pr(yi,y2,---,yn|x)||x-x'(y1,y2,---,yn)||

2   (6) 

yi,y2,-,y»=i 
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where x' (yi,y2, • • •,yn) is a "reference vector" defined as x' (yi,y2, • • -,yn) = 
JdxPr(x|yi,y2, ■ ■ -,yn) x. If x' (yi,y2, • • -,yn) is treated as an independent vari- 
able (i.e. its definition is ignored) then minimisation of D with respect to it yields 
the result x'(y1,y2,-- -,yn) = /^xPr(x|yi,y2, • • • ,yn) x, which is consistent with 
how it should have been defined anyway. This convenient trick allows the inverse 
probability Pr (x|yi,y2, • • ■ ,yn) to be eliminated henceforth, provided that D in 
(6) is tacitly assumed to be minimised with respect to x' (yi, y2, • • •, yn). 
D can be further simplified to the form D = D\ + L>2 — D3 [2], where 

Ö1 

Do    = 

If m 

- /dxPr(x)]TPr(y|x)||x-x'(y)||2 (7) 
J y=i 

^-lI2|dxPr(x)    f]    Pr(yily2|x)(x-x'(yi))-(x-x'(y2)) 
yi,y2=i 

£>3 x'(yi,y2,---yn)- Y" x'(y<) 2     J2     Pr(yi.y2,---y») 
yi,y2,-yn=i 

To obtain this result Pr (yi, y2, • • ■, yn |x) has been assumed to be symmetric under 
permutation of the locations yi, y2, • • •, yn (e.g. the locations, but not the order of 
occurrence of the n firing events is known). If the independence assumption in (2) 
is now invoked, then £>2 may be simplified to 

2(n-l) ™ 2 

D? = ■ / rfxPr(x) x-^]Pr(y|x)x'(y) 
y=i 

(8) 

The dependence of D3 on the n-argument reference vectors x'(yi,y2, ■ •-y„) is 
inconvenient, because the total number of such reference vectors is 0(|m|n), where 
|m| is the total number of output nodes (|m| = mim2 ■ ■ -m^ for a <i-dimensional 
rectangular lattice of size m). However, the positivity of D3, together with D = 
D\ + .D2 — D3, will be used to obtain an upper bound to D as D < D\ 4- D2, 
which depends only on 1-argument reference vectors x'(y). The total number of 
1-argument reference vectors is equal to |m|. 

4     Differentiate the Objective Function 
In order to implement an optimisation algorithm the derivatives of D\ and D2 

with respect to the various parameters must be obtained. The expressions that are 
encountered when differentiating are rather cumbersome, but they have a simple 
structure which can be made clear by the introduction of the following notation 

Py = Ey< 
Pr(y'|y) Pyy=Pi(y'\x;y) 

y'eJV- i^-Py'.y 
dy = x - x' (y) 

(PLd)y = Zy^y)Py,y'(Ld)y 

ey = ||x-x'(y)||2 

(^)y = Ey^(y)^y,y<(^)y, 

3 = ^I(£'P)A 

(LTp)y = E ■y'££-i(y) 
Ly',yPy' 

(Ld)y = Ey-gz;(y) ^y.y'dy' 

(pTpLd)y = Zy €tf-l(y)py',y (PLd)y 

(Le)y = Ey'e£(y) ^Y.y'V 

(PTPLe)y = ZyeAf-Hy) py'« (PLe)y 
ora=E™=1(^d)y 

(9) 
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which allows (5) to be written as Pr (y|x) -*■ ^ (^Tp)y- Di and D2 may be differ- 
entiated with respect to x' (y) to obtain 

8Dl    -   -^/^(«K^A dx'(y) 
8D2 4(n-l)   f,   _,   ,  WrT x   -, v / dxPr(x)(Z/p)yd (10) 

(11) 

dx'(y) nM2    J    ----v--'v     -/y 
£>i and £>2 may be functionally varied with respect to log Q (x|y) to obtain 

8DX    =    ^ I rfx Pr (x) f; 6 log Q (x|y) (py (Le)y - (PTPLe)y) 
y=l 

«I>2    =    i^|=^/rfxPr(x)f;61ogQ(x|y)(py(Ld)y-(FTPId)y)-d 
y=l 

If Q (x|y) is assumed to be a sigmoid function 
Q (x|y) = 1/ (1 + exp (-w (y) • x - 6 (y))) 

then the derivatives of £>i and D2 with respect to the "weight" vector w (y) and 
"bias" b (y) may be written as 

(py(Le)y-(PTPLe)y) 

b(y) 
w(y) 

dD2 

4F /dxPr(x) nM J 

b(y) 
w(y) 

4(n-l) 
nM2 I dxPr(x) 

x(l-Q(x|y)) 

(py(Id)y-(PTPLd)y)-d 

x(l-Q(x|y)) 

(12) 

The gradients in (10) and (12) may be used to implement a gradient descent algo- 
rithm for optimising Di + D2, which then leads to a least upper bound on the full 
objective function D (= Di + D2 — D3). 

5     Special Cases 
Various standard results that are special cases of the model presented above are 
discussed in the following subsections. 

5.1 Vector Quantiser and Topographic Mapping 
Assume n = 1 so that only 1 firing event is observed so that D2 = D3 = 0, 
y € Af(y') Vy,y' so that the neighbourhood embraces all of the output nodes, 
and probability leakage of the type given in (5) is allowed. Then D reduces to 
D = 2/dxPr(x)£y^iPr(y|y(x))llx-x'(y)H2 [l], which leads to a behaviour 
that is very similar to the topographic mappings described in [5], where Pr(y|y') 
now corresponds to the topographic neighbourhood function. In the limit where 
Pr (y|y (x)) = 6y y(x) this reduces to the criterion for optimising a vector quantiser 

[4]- 
5.2 Visual Cortex Network 
A "visual cortex"-like network can be built if the full theoretical machinery pre- 
sented earlier is used. This network has many of the emergent properties of the 
mammalian visual cortex, such as orientation maps, centre-on/surround-off detec- 
tors, dominance stripes, etc (see e.g. [7] for a review of these phenomena). There is 
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an input layer with a pattern of activity representing the input vector, an output 
layer with nodes firing in response to feed-forward connections (i.e. a "recogni- 
tion" model), and a mechanism for reconstructing the input from the firing events 
via feed-back connections (i.e. a "generative" model). The output layer has lateral 
inhibition implemented as in (4); the neighbourhood of node y' has an associated 
inhibition factor 1/ J2y"eAf(y') Q (xly") > and tne overall inhibition factor for node y 

is Ey'ejif-i(y) (V !Cy"ejV(y') Q (x|y"))' which is the sum of the inhibition factors 

over all nodes y' that have node y in their neighbourhood. This scheme for intro- 
ducing lateral inhibition is discussed in greater detail in [3]. The leakage introduced 
by Pr(y|y') induces topographical ordering as usual. 
In the limit n-»l where Dx is dominant, this network behaves like a topographic 
mapping network, except that the output layer splits up into a number of "do- 
mains" each of which is typically a lateral inhibition length in size, and each of 
which forms a separate topographic mapping. These domains are seamlessly joined 
together, so no domain boundaries are actually visible. In the limit n —► 00 where 
D2 is dominant, this network approximates its input as a superposition of reference 
vectors Z^! Pr (y|x)x'(y) (see (8)). Thus the network is capable of explaining 
the input in terms of multiple causes. 

6    Conclusions 
A single theoretical framework has been shown to describe a number of standard 
self-organising neural networks. This makes it easy to understand the relationship 
between these neural networks, and it provides a useful framework for analysing 
their properties. 
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In this contribution a new method for supervised training is presented. This method is based on 
a recently proposed root finding procedure for the numerical solution of systems of non-linear 
algebraic and/or transcendental equations in H". This new method reduces the dimensionality of 
the problem in such a way that it can lead to an iterative approximate formula for the computation 
of n - 1 connection weights. The remaining connection weight is evaluated separately using the 
final approximations of the others. This reduced iterative formula generates a sequence of points in 
IRn_1 which converges quadratically to the proper n - 1 connection weights. Moreover, it requires 
neither a good initial guess for one connection weight nor accurate error function evaluations. The 
new method is applied on some test cases in order to evaluate its performance. 
Subject classification: AMS(MOS) 65K10, 49D10, 68T05, 68G05. 
Keywords: Numerical optimization methods, feed forward neural networks, supervised training, 

back-propagation of error, dimension-reducing method. 

1 Introduction 
Consider a feed forward neural network (FNN) with / layers, / G [1,1]. The error 
is defined as ek(t) = dk(t) - yj;(t), for k = 1,2,..., K, where dk(t) is the desired 
response at the jfcth neuron of the output layer at the input pattern t, y%(t) is the 
output at the jfeth neuron of the output layer L. If there is a fixed, finite set of input- 
output cases, the square error over the training set which contains T representative 

cases is: T T    K 

<=i      t=i *=i 

The most common supervised training algorithm for FNNs with sigmoidal non- 
linear neurons is the Back-Propagation (BP), [4]. The BP minimizes the error 
function E using the Steepest Descent (SD) with fixed step size and computes the 
gradient using the chain rule on the layers of the network. BP converges too slow and 
often yields suboptimal solutions. The quasi-Newton method (BFGS) [2], converges 
much faster than the BP but the storage and computational requirements of the 
Hessian for very large FNNs make its use impractical for most current machines. 
In this paper, we derive and apply a new training method for FNNs named Dimen- 
sion Reducing Training Method (DRTM). DRTM is based on the methods studied 
in [3] and it incorporates the advantages of Newton and SOR algorithms (see [4]). 

2 Description of the DRTM 
Throughout this paper IR" is the n-dimensional real space of column weight vectors 
to with components wuw2, ■ ■ ■, wn; (y; z) represents the column vector with com- 
ponents 2/i, j/2,..., ihn, zu «2, ■ • • ,*k\ diE(w) denotes the partial derivative of E(w) 
with respect to the ith variable w;; g(w) = (ji(«i),.. .,gn(w)) defines the gradi- 
ent VE(w) of the objective function E at w while H - [Hij] defines the Hessian 
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V2E(w) of Eaiw; A denotes the closure of the set A and E(wi,..., Wi_lt ■, wi+x, 
■.., w„) defines the error function obtained by holding wi,..., w,-_i, U),-+i, ...,wn 

fixed. 

The problem of training is treated as an optimization problem in the FNN's weight 
space (i.e., n-dimensional Euclidean space). In other words, we want to find the 
proper weights that satisfy the following system of equations : 

9i(w) = 0,   i=l,...,n. (2) 

In order to solve this system iteratively we want a sequence of weight vectors 
{wp},p = 0,1,... which converges to the point w* = (tüj,.. .,«;*) g V c IR" 
of the function E. First, we consider the sets Bit to be those connected com- 
ponents of flrf^O) containing w* on which dngi ^ 0, for i = 1,..., n respec- 
tively. Next, applying the Implicit Function Theorem (see [4, 3]) for each one 
of the components gt we can find open neighborhoods A\ C IR"-1 and A*2i C 
IR of the points y* - (w\,..., w*_j) and w*n respectively, such that for any 
V = (wi,...,w„_i) e A[ there exist unique mappings ip, defined and continu- 
ous in A\ such that : wn = <pi(y) £ A*2)i, and gi(y;<pi(y)) =0, i = l,...,n. 
Moreover, the partial derivatives dj<pi,j = 1,..., n - 1 exist in A\ for each <pf, 
they are continuous in A\ and they are given by : 

Q     / \ djgi(y;<pi(y))      . 
dj<Pi(v) = —z—7 7TT,   i = l,...,n,   j = l,...,n-l. (3) 

Working exactly as in [3], we utilize Taylor's formula to expand <pi(y), about yP. 
By straightforward calculations, utilizing approximate values for #,(•) and djgi(-) = 
dfjE (see [5], where error estimates for these approximations can also be found) we 
obtain the following iterative scheme for the computation of the n - 1 components 
of w* : 

yp+1 = yp + A;%,  P=0,1,..., (4) 

where yP = [wf], Vp = [Vi] = [wfr1 - <>"] and the elements of the matrix Ap are : 

ra..i = \9i(yp + hej;w?-i) - 9i(yP; <>')     gn{yv + hej;<■")- gn(yP; <■")' 
13       [ffi(yp;t«S,, + Aen)-ft(yP;t^'i)     gn(yp;wP-n + hen)-gn(yP;wp

n-
n) 

" (5) 
with wp-' = (pi(yp), h a small quantity and ey the j-th unit vector. After a de- 
sired number of iterations of (4), say p - m, the nth component of w* can be 
approximated by means of the following relation : 

,m+1 = ,„™.» - V^,„-+i _ „»i. gn(ym + fteJ-;<-")-gn(y'";<.") ucT = w: 
ön(t/m;<'n + ^)-ffn(2/m;<'n) 

Note that the iterative formula (4) uses the matrices Ap and T/p. The matrix Ap 

constitutes the reduced-Hessian of our network and its components incorporate 
components of the Hessian but are evaluated at different points. The matrix Vp 

uses only the points »£>*' (i = 1,..., n - 1) and u#n instead of the gradient values 
employed in Newton's method. A proof for the convergence of (4) and (6) can be 
found in [6]. 
Relative procedures for obtaining w* can be constructed by replacing wn with any 
one of the components wu ..., wn-U for example wint. The above described method 
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FR PR BFGS DRTM 

wu IT FE IT FE IT FE IT FE ASG 
(0.3,0.4) F F F F F F 5 20 100 

(-1,-2) F F F F 14 274 7 28 140 
(-1,10) F F F F 14 285 7 28 140 
(0.2,0.2) F F F F F F 5 20 100 

(2,1) F F F F 13 298 5 20 100 
(0.3,0.3) F F F F F F 5 20 100 
(-1.2,1.2) F F F F F F 7 28 140 

Table 1     Comparative results for Example 1. 

does not require the expressions ipi but only the values wp
n'

% which are given by the 
solution of the one-dimensional equations gi(w[,..., wP

l_v ■) = 0. So, by holding 

yp = (u)P,..., wP
2_1) fixed, we can solve the equations : gi(yp;rp) = 0, i = l,...,n, 

for an approximate solution rf in the interval (a, b) with an accuracy D. In order 
to solve the one-dimensional equations, we employ a modified bisection method 
described in [3, 12] and given by the following formula : 

wp+1=wp+sgni>(wp)q/2p+\        p = 0,l,..., (7) 

with w° - a, q = sgnip(a) (b-a) and where sgn defines the well known sign function. 
This method computes with certainty a root when sgnip(w°) sgntp(wp) = -1 (see 
[12]). It is evident from (7) that the only computable information required by this 
method is the algebraic signs of the function ip. 
A high-level description of the new algorithm can be found in [8]. 

3    Simulation Results 
Here we present and compare the behavior of the DRTM with other popular meth- 
ods on some artificially created but characteristic situations. For example, it is 
common in FNN training to take minimization steps that increase some weights by 
large amounts pushing the output of the neuron into saturation. Moreover, in vari- 
ous small and large scale neural network applications the error surface has flat and 
steep regions. It is well known that the BP is highly inefficient in locating minima 
in such surfaces. In the following examples, the gradient is evaluated using finite 
differences for the DRTM and analytically for all the other methods. 
Example 1 The objective function's surface has flat and steep regions 

£(u>) = $>?.        gi(w1,w2) = 2 + 2i-(ei^+ei"). (8) 
i = l 

System (8), which is a well-known test case, (Jennrich and Sampson Function) (see 
[9]), has a global minimum at Wl = w2 = 0.2578.... In Table 1 we present results 
obtained by applying the nonlinear conjugate gradient methods Fletcher-Reeves 
(FR) and Polak-Ribiere (PR) and the quasi-Newton Broyden-Fletcher-Goldfarb- 
Shanno (BFGS) method with the corresponding numerical results of DRTM. In this 
Table IT indicates the total number of iterations required to obtain w* (iterations 
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BP DRTM 
MN STD sue MN STD sue AL4S 
100.4 77.3 38.5 2.3 1.2 72.5 67.8 

Table 2    Comparison of Back-propagation with DRTM for Example 2. 

limit= 500); FE the total number of function evaluations (and derivatives) and 
ASG the total number of algebraic signs of the components of the gradient that 
are required for applying the iterative scheme (7). Because of the difficulty of the 
problem FR and PR failed to converge in all the cases (marked with an F in the 
table). The results are mixed with the BFGS method. Especially, when we are close 
to the minimum BFGS leaves the appropriate region moving to wrong direction in 
order to minimize the objective function. 
Example 2 The objective function's surface is oval shaped and bent. 
We can artificially create such a surface by training a single neuron with sig- 
moid non-linearity using the patterns {-6,1}, {-6.1,1}, {-4.1,1}, {-4,1}, {4,1}, 
{4.1,1}, {6,1}, {6.1,1} for input and {0}, {0}, {0.97}, {0.99}, {0.01}, {0.03}, {1}, 
{1} for output. The weights wi,w2 take values in the interval [-3,3] x [-7.5, 7.5]. 
The global minimum is located at the center of the surface and there are two valleys 
that lead to local minima. The step size for the BP was 0.05. The initial weights were 
formed by spanning the interval [-3, 3] in steps of 0.05 and the interval [-7.5,7.5] 
in steps of 0.125. 
The behavior of the methods is exhibited in Table 2, where MN indicates the mean 
number of iterations for simulations that reached the global minimum; STD the 
standard deviation of iterations; SUC the percentage of success in locating the 
global minimum and MAS the mean number of algebraic signs that are required 
for applying the iterative scheme (7). Note that for DRTM, since finite differences 
are used, two error function evaluations are required in each iteration. BP succeeds 
to locate the global minimum when initial weights take values in the intervals 
wi G [-0.8,1.5] and w2 6 [-2.5,2.5]. On the other hand, DRTM is less affected 
by the initial weights. In this case we exploit the fact that we are able to isolate 
the weight vector component most responsible for unstable behavior by reducing 
the dimension of the problem. Therefore, DRTM is very fast and possesses high 
percentage of success. 

4     Conclusion and Further Improvements 
This paper describes a new training method for FNNs. Although the proposed 
method uses reduction to simpler one-dimensional equations, it converges quad- 
ratically to n - 1 components of an optimal weight vector, while the remaining 
weight is evaluated separately using the final approximations of the others. Thus, 
it does not require a good initial estimate for one component of an optimal weight 
vector. Moreover, it is at the user's disposal to choose which will be the remaining 
weight, according to the problem. Since it uses the modified one-dimensional bisec- 
tion method, it requires only that the algebraic signs of the function and gradient 
values be correct. It is also possible to use this method in training with block of 
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weights using different remaining weights. In this case, the method can lead to a 
network training and construction algorithm. This issue is currently under devel- 
opment and we hope to address it in a future communication. 
Note that in general the matrix of our reduced system is not symmetric. It is 
possible to transform it to a symmetric one by using proper perturbations [6]. If 
the matrix is symmetric and positive definite the optimal weight vector minimizes 
the objective function. Furthermore, DRTM appears particularly useful when it is 
difficult to evaluate the gradient values accurately, as well as when the Hessian at 
the optimum is singular or ill-conditioned [8]. 
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1     Introduction 
Consider a Discrete Multilayer Neural Network (DMNN) consisting of L layers, 
in which the first layer denotes the input, the last one, L, is the output, and the 
intermediate layers are the hidden layers. It is assumed that the (M)-th layer has 
iV/_i units. These units operate according to the following equations : 

JVi-i 

"^ = E<1''^1 + ^.    ^ = -'H), a) 
«'=1 

where net1- is the net input to the j'th unit at the /th layer, tujj1'' is the connection 

weight from the ith unit at the (/ - l)-th layer to the jth unit at the /th layer, y\ 
denotes the output of the ith unit belonging to the /th layer, 0j denotes the threshold 
of the jth unit at the /th layer, and a is the activation function. In this paper we 
consider units where o-{net\) is a discrete activation function. We especially focus 
on units with two output states, usually called binary or hard-limiting units [1], 
i.e. a'(net]) - "true", if net] > 0, and "false" otherwise. 
Although units with discrete activation function have been superseded to a large 
extent by the computationally more powerful units with analog activation function, 
still DMNNs are important in that they can handle many of the inherently binary 
tasks that neural networks are used for. Their internal representations are clearly 
interpretable, they are computationally simpler to understand than networks with 
sigmoid units and provide a starting point for the study of the neural network 
properties. Furthermore, when using hard-limiting units we can understand better 
the relationship between the size of the network and the complexity of the training 
[2]. In [3] it has been demonstrated that DMNNs with only one hidden layer, can 
create any decision region that can be expressed as a finite union of polyhedral sets 
when there is one unit in the input layer. Moreover, artificially created examples 
were given where these networks create non convex and disjoint decision regions. 

250 
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Finally, discrete activation functions facilitate neural network implementations in 
digital hardware and are much less costly to fabricate. 
The most common feed forward neural network (FNN) training algorithm, the 
back-propagation (BP) [4] that makes use of the gradient descent, cannot be ap- 
plied directly to networks of units with discrete output states, since discrete ac- 
tivation functions (such as hardlimiters) are non-differentiable. However, various 
modifications of the gradient descent have been presented [5, 6, 7]. In [8] an approx- 
imation to gradient descent, the so-called pseudo-gradient training method, was 
proposed. This method uses the gradient of a sigmoid as a heuristic hint instead of 
the true gradient. Experimental results validated the effectiveness of this approach. 
In this paper, we derive and apply a new training method for DMNNs that makes 
use of the gradient approximation introduced in [8]. Our method exploits the impre- 
cise information regarding the error function and the approximated gradient, like 
the pseudo-gradient method does, but it has an improved convergence speed and 
has potential to train DMNNs in situations where, according to our experiments, 
the pseudo-gradient method fails to converge. 

2    Problem Formulation and Proposed Solution 
We consider units with two discrete output states and we shall use the convention 
/ (or —/) for "false" and t (or +t) for "true", where /, t are real positive numbers 
and f < t, instead of the classical 0 and 1 (or —1, and +1). Real positive values 
prevent units from saturating, give to the logic "false" some power of influence 
over the next layer of the DMNN, and help the justification of the approximated 
gradient value which we shall employ. 
First, let us define the error for a discrete unit as follows: ej(t) = dj(t) — yf(t), 
for j = 1,2, ...,NL, where dj(t) is the desired response at the jth neuron of the 
output layer at the input pattern t, yf(t) is the output at the fcth neuron of the 
output layer L. For a fixed, finite set of input-output cases, the square error over 
the training set which contains T representative cases is: 

T T   NL 

£ = 2>W = ££<#)■ (2) 
t=i        t=ij=i 

The idea of the pseudo-gradient was first introduced in training discrete recurrent 
neural networks [9, 10] and extended to DMNNs [8]. The method approximates 
the true gradient of the error function with respect to the weights, i.e. VE{w), by 
introducing an analog set of values for the outputs of the hidden layer units and 
the output layer units. 

Thus, it is assumed that j/j in (1) can be written as j/j  = a11 s(ne£J)J, where 

cr(x)= "true" if x> 0.5, and "false" otherwise, if s(-) is defined in [0,1]. If s(-) is 
defined in [—1,1] then cr(x)= "true" if x> 0, and "false" otherwise. 
Using the chain rule, the pseudo-gradient is computed : 

dwij 

where the back-propagating error signal 8 for the output layer is Sj"  —  Idj — 

s(netf)\ ■ s'(netf) and for the hidden layers (/  €  [2,L - 1]) is 6)   = s'(net)) 
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J2nwj'r? <5"+1- *n these relations s'(netj) is the derivative of the analog activation 
function. 
By using real positive values for "true" and "false" we ensure that the pseudo- 
gradient will not reduce to zero when the output is "false". Note also that we do 
not use a' which is zero everywhere and non-existent at zero. Instead, we use s' 
which is always positive, so <5j gives an indication of the direction and magnitude 

of a step up or down as a function of net'j in the error surface E. 
However, as pointed out in [8], the value of the pseudo-gradient is not accurate 
enough, so gradient descent based training in DMNNs is considerably slow when 
compared with BP training in FNNs. 
In order to alleviate this problem we propose an alternative to the pseudo-gradient 
training method procedure. To be more specific, we propose to solve the one- 
dimensional equation : 

E(w1,...,w?_1,wlw?+1,...,w°)-E(wl...,w?_1,wlw?+u...,w°) = 0, 

for wi keeping all other components of the weight vector in their constant values. 
Now, if wi is the solution of the above equation, then the point defined by the 
vector (wi, w°,..., w°) possesses the same error function value with the point w°, 
so it belongs to the same contour line of w°. Assuming that the error function 
curves up from w* in all directions, we can claim that any point which belongs to 
the line with endpoints w° and (w\, w°,...,»") possesses smaller error function 
value than these endpoints. With this fact in mind we can now choose such a point, 
say, for example w{ = w° + 7 (u>i — w°), 7 € (0,1), and solve the one-dimensional 
equation : 

E(wlw2,...,w°_1,wlw°+1,...,w
0

n)-E(wlw°2,...,wl1,w°,w°+1,...,w
0

n) = 0, 

for W2 keeping all other components in their constant values. If u>2 is the solution 
of this equation then we can obtain a better approximation for this component by 
taking w\ = w§ + 7 (w2 - w°)> 7 € (0,1). 
Continuing in a similar way with the remaining components of the weight vector 
we obtain the new vector w1 = (w{,.. ., w*) and replace the initial vector w° by 
w1. The procedure can then be repeated to compute w2 and so on until the final 
estimated point is computed according to a predetermined accuracy. So, in general 
we want to find the parameter x (a weight or threshold) that satisfies : 

E(xl    ,..., xi_1, x, xi+1,..., xn) — Eyx^    ,..., xi_l, xt, xi+1,..., xn) = 0, 

by applying the modified bisection (see [12, 13]) in the interval (a;, b{) within accu- 
racy d : 

x?+1 =x? + Csgn (E(z") - E{z0)) /2?+\   p = 0,1,... , flog2((6,- - aOOl, 

where the notation [•] refers to the smallest integer not less than the real number 
quoted and z° = (x*+1,..., x™, ait xf+l! . ..,xk

n), z? =J**+1, • • •, x™, x?, xf+1, 

.. .,x*), C = sgnE(z°)(bi -a,i), <n = x* - \{l + sgndiE(xk)}hit b{ — a{ + h{. If an 
iteration of the algorithm fails we switch to the pseudo-gradient training method. 
So, the justification of the new procedure is based on the heuristic justification of the 
pseudo-gradient which can be found in any one of [8, 9, 10]. A formal justification 
of the proposed procedure in case of differentiable objective functions can be found 
in [11]. 
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BP New method 
MN STD MNE MN STD MNE MAS SAS 

a) 561 550.4 0.0396 40.6 4.2 0.0000008 239.6 54.12 
b) 18121 3048.7 0.49 28.5 13.43 0.45 20673 9310.9 

Table 1    Experimental results a) XOR, b) sin x cos 2x. 

3 Experimental Results 
Here we present and compare the behaviour of the new training method with the 
BP [4] and the pseudo-gradient training method [8] for the XOR problem and 
training an 1-10-1 network to approximate the function sin x cos 2x (Table 1). In all 
problems y = 0.5, d = 10~10, ft = 10 and no pseudo-gradient subprocedure has been 
applied with the proposed method in order to get more fair evaluation. MN indicates 
the mean number of iterations; STD the standard deviation of iterations; MNE the 
mean value of the error; MAS the mean number of algebraic signs required for the 
bisection scheme and SAS the standard deviation of the required algebraic signs. 
The results are for 10 simulation runs, for the same initial weights; the maximum 
number of iterations was set to 2000, the weights were initialised in the interval 
[—10,10] and the step size for BP was set to the standard value 0.75. For the XOR 
the thresholds were set as follows: "true" — 0.8 and "false" = 0.2. Under the 
same conditions the pseudo-gradient training needed more than 2000 iterations to 
converge. The frequency with which the algorithm became trapped in local minima 
seems to be about the same as for BP for binary tasks. We also used the new 
method in training DMNN to learn smooth functions. One hidden layer of hard- 
limiting units and one output unit with linear activation function was used in all 
our experiments. We did not manage to train DMNNs using the pseudo-gradient 
training method due to oscillations, although various step sizes and different discrete 
activation functions have been tried. With the new algorithm and discrete activation 
functions such as 0.5 for "true" and —0.5 for "false" DMNNs were trained as fast 
as, and often faster than, BP trained FNNs until E < 0.5 (over 21 input/output 
cases). After this error bound, the convergence speed was reduced due to saturation 
problems. 
However, it is worth noticing the difference in the behaviour between BP and the 
new method. Back-propagation trained FNNs exhibit a greater tendency to fit 
closely data with higher variation than data with low variation. On the other hand, 
although DMNNs do not produce smooth functions, they learn the general trend of 
the data values and therefore might be more useful than FNNs when there is noise 
in the data and the error goal can be set so high that the network does not have 
to fit all the target values perfectly. Situations like this usually occur in system 
identification and control (see [14]). 

4 Conclusion and Further Improvements 
This paper describes a new training method for DMNNs. The method does not 
directly perform gradient evaluations. Since it uses the modified one-dimensional 
bisection method it requires only that the algebraic signs of the function and gra- 
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dient values be correct; so it can be applied to problems with imprecise function 
and gradient values. The method can also be used in training with block of network 
parameters, for example train the entire network, then the weights to the output 
layer and the thresholds of the hidden units, etc. We have tested such configurations 
and the results were very promising, providing faster training. 
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A methodology for investigating the invariant structural characteristics of the different approx- 
imations produced by Hopfield networks is presented. The technique exploits the description of 
the dynamics of a network as a Generating series which relates the output of a network to the 
past history of inputs. Truncations of a Hopfield Generating series are approximations to unknown 
dynamics to a specified order. As a truncated series has finite Lie rank, a local minimal realisation 
can be formulated. This realisation has a dimension whose lower bound is determined by the 
relative order of the network and whose upper bound is determined by the order of truncation. 
The maximal dimension of the minimal realisation is independent of the number of nodes in the 
network. 
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1 Introduction 
Trained recurrent networks are commonly used to provide models of an unknown 
nonlinear dynamic system. The representations are in the form of state-space models 
which are usually characterised as sets of nonlinear differential equations. However, 
different combinations of network weight parameters often produce comparable 
approximation capabilities. Thus a fundamental problem is the interpretation of 
these representations. One approach to this problem is to attempt to reduce the 
state-space model to a minimal form as this is the description to which all other 
representations are related by diffeo-morphisms. 
In practice, network model building is concerned with producing a suitable ap- 
proximation of the unknown dynamic system, thus what is required is a method 
for specifying the order of the approximation and for producing the corresponding 
minimal realisation which has the same approximation capability. The input-output 
behaviour of a trained network can be formulated as a formal power series in non- 
commutative variables. This formal power series, the Generating series [2], has a 
minimal realisation if its Lie rank is finite [1]. If the infinite Hopfield Generating 
series which, in general, is not of finite Lie rank can be truncated, it can be used to 
produce minimal realisations whose input-output behaviour match that of the net- 
work up to a specified arbitrary order. This is equivalent to producing the minimal 
realisation of the unknown dynamics to a specified order of approximation. 
In this article the tools for constructing minimal realisations of truncated Gener- 
ating series are applied to Hopfield recurrent networks. These tools were originally 
described by Fliess [1]. The approach was further developed by Jacob & Oussous 
[3]. 

2 Hopfield Networks and their Local Solutions 
The Lie derivatives, Ao and A\, that define the state-space of the single-input 
(m = 1) single-output (SISO) Hopfield RNN are 

N N f) N ß 
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where a(xj) is the output of the ith node in a single layer of TV hidden nodes, K,- 

acts as a time constant of the ith node, w,j is the weight between node i and j, 
and jiii is the weighted input u into node i. It is assumed that the a nonlinearity 
is the tanh function and that the output of the network is y = h(x) = cr(xi). 
The Generating series solution of this specific linear analytic system is formed by 
the Peano-Baker iteration of the state-space differential equations. It can be shown 
to be [2] 

m 

y(t) = S = h[Xo +Y,    Yl    AhAJ2-AjÄh)\x0zj„ ■ ■ ■ zhzh 
v>0ju..,jv=0 

where S is a mapping between the free monoid Z*, constructed from the alphabet 
set zo,Zi, into IR and the subscript |x0 means evaluated at the initial conditions of 
the state vector. Each word, ZjlZj2..Zjk corresponds to the iterated integral 

r* rTi rTk-i 

/     UJl(n) UJ2(T2)--- Ujk(Tk)dTk---dT2dTl 
JO Jo Jo 

defined recursively on its length,(«o is defined to be unity). The coefficient of the 
word Zj1Zj2..Zjk is the iterated Lie derivative Ajk..Aj3Aj1 operating on the output h 
and evaluated at the initial conditions. The Generating series is a causal functional 
expansion about a point and is valid local to this position in state space, for a short 
time and for small input u. 
Two systems are locally equivalent if and only if their Generating series match. In 
this framework any training algorithm for a recurrent network can be viewed as a 
method for adjusting the coefficients of words to produce this matching by altering 
the contribution of the weights, to each term, in the Generating series. 

3    Network Minimal Realisations 
The Generating series form of the Hopfield network is an infinite series. Truncation 
of this series produces an approximation of the local input-output behaviour of the 
network and therefore of the unknown system. 
To produce the minimal realisation of this approximation depends upon identifying 
the structural characteristics of a truncated Generating series which does not include 
a constant term. This latter constraint can always be satisfied by considering the 
dynamics from a specific position in state space. The truncated Generating series 
of arbitrary order k can be expressed in terms of a Lie-Hankel matrix [3]. A Lie- 
Hankel matrix, LHs, of a Generating series S is an (infinite) array whose rows are 
indexed by a totally ordered basis of the Lie algebra of Z, L(Z), and the columns 
are indexed by Z*. The finiteness of the rank of this matrix determines whether 
a corresponding minimal state-space realisation exists, while the magnitude of the 
rank governs the dimension of the realisation [1]. 
As the basis of L(Z), the Lyndon basis (the specific Lie polynomials, Pi) can be 
chosen [3, 4]. 
For example, if the Generating series of a n state Hopfield network is truncated so 
that the length of the words < 2, then the Lyndon words are the set {zo, z\, ZQZI) 

and the corresponding Lie polynomials P,- are {ZQ, Z\, [ZO, ZI]} where [zo,2i] is the 
Lie bracket of the words ZQ, Z\ and is defined as ZQZI —Z\ZO- The Lie-Hankel matrix 
is shown in Table 1 whose elements are evaluated at a point in the state space of 
the Hopfield network. Similar analyses can be made for truncated Generating series 
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e zo Z\ 

zo 
z\ 
[20,21] 

A0(h) 
A!(h) 
A^oih) - AoA^h) 

Al{h) 

0 

A^ih) 
A\{K) 
0 

Table 1 

order rank 
1 
2 
3 
4 

1 
3 
5 
8 

Table 2 

of higher order. The maximum rank, as a function of truncation order is shown in 
Table 2. 
The rank, and therefore the dimension of the minimal realisation, is not determined 
by the number of hidden nodes in the network as the elements of the Lie-Hankel 
matrix are defined for an arbitrary number of hidden nodes. The rank reduces if 
certain network weights result in either linear row interdependence or rows having 
zero entries. This latter condition can occur if the networks have relative order 
greater then unity as then particular terms in the Generating series are zero. The 
lower bound on the rank of the Lie-Hankel matrix is determined by the relative 
order of the network. 

3.1     Construction of the Minimal Realisation 
Lyndon words can be used to construct a basis set of polynomials Qj. The basis set 
Q represents the local coordinates of the minimal state-space realisation. The set 
Q is used to reconstruct the truncated Generating series S. The series is expressed 
in terms of linear combinations and shuffle products of the elements Qj of the basis 
set Q. Thus, for the truncated Hopfield network of relative order unity, the set Q 
consists of the elements Qi = ZQ, Q2 = 21 and Q3 = ZQZ\. 

The truncated series is reconstructed from the basis set Q by using a modification of 
the algorithm proposed by Jacob k, Oussous [3] to deal with Generating series with 
arbitrary coefficients of words. The algorithm iteratively searches for and identifies 
proper left factors of the truncated series. 
The vector fields are reconstructed in terms of linear combinations and shuffle 
products of the elements of Q and translated into the state space coordinates q. 
Thus, in the length two example, the vector fields of the minimal realisation are 

ö      „ d d 
A0 = -x—, Ai - h qi-^— 

oqi dq2 oq3 

The output function is given by 

y    =    (A0A1(h)-A1A0(h))q3+-A2
1(h)q2

2 + A1(h)q2 
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+A1A0(h)q1q2 + 2^o(%i + A0(h)qi 

4    Discussion 
This article is concerned with local approximations to unknown nonlinear dynamics 
up to a specified order. The approximation order is in terms of the length of the 
Generating series that represents the input-output behaviour of a trained network. 
A trained recurrent network can closely approximate, in a local sense, an unknown 
dynamic when the network Generating series is similar to that of the unknown 
system. It should be noted that the unknown dynamic system may not necessarily 
be represented by a suitable global model and therefore one should seek local models 
in the first instance. The Generating series, like the Taylor series, is a local functional 
expansion. 
In this article only an upper and lower bound on the rank of the Lie-Hankel matrix 
is described. The upper bound is determined by the length of the truncated Gen- 
erating series and is directly related to the order of approximation of the unknown 
dynamics by the Hopfield network. 
The rank determines the dimension of the minimal realisation. The dimension of 
the minimal realisation is independent of the number of hidden nodes in the Hopfield 
network. The network trajectory evolves locally on a submanifold of the Hopfield 
state-space. 
The local minimal realisation of a truncated Generating series of a Hopfield network 
is a set of polynomial differential equations and an output which is polynomial 
in the states. The state-space dynamics are fixed and do not depend upon the 
position in the original Hopfield state space. The minimal state space dynamics 
are input driven, with zero initial conditions. The state space dynamics reflect the 
local influence of the system input. However, the output map is dependent upon 
the position in the Hopfield state space. These observations on the form of the local 
minimal realisations imply that any two networks which are used to approximate 
an unknown system have the same minimal state-space dynamics and differ only 
in the form of the output function. 
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We show that in supervised learning from a particular data set Bayesian model selection, based 

on the evidence, does not optimise generalization performance even for a learnable linear prob- 

lem. This is achieved by examining the finite size effects in hyperparameter assignment from the 

evidence procedure and its effect on generalisation. Using simulations we corroborate our ana- 

lytic results and examine an alternative model selection criterion, namely cross-validation. This 

numerical study shows that in the learnable linear case for finite sized systems leave one out 

cross-validation estimates correlate more strongly with optimal performance than do those of the 

evidence. 

1    Introduction 
The problem of supervised learning, or learning from examples, has been much 
studied using the techniques of statistical physics ( see e.g. [7]). A major advantage 
of such studies over the usual approach in the statistics community is that one can 
examine the situation where the fraction (a) of the number of examples (p) to the 
number of free parameters (N) is finite. This contrasts with the asymptotic (in a) 
treatments found in the statistics literature (see e.g. [6]). However, one draw back of 
the statistical physics approach is that it is based on the, so called, thermodynamic 
limit where one allows N and p to approach infinity whilst keeping a constant. A 
quantity is said to be self averaging if its variance over data sets of examples tends to 
zero in the thermodynamic limit. We show that in Bayesian model selection based on 
the evidence, conclusions drawn from the thermodynamic results are qualitatively 
at odds with the finite size behaviour. 
In the supervised learning scenario one is presented with a set of data 

V = {(yt(x»),x»):» = l..p} 

consisting of p examples of an otherwise unknown teacher mapping denoted by 
the distribution P(yt | x). Furthermore, we assume that the N dimensional input 
space is sampled with probability P(x). The learning task is to use this data V 
to set the Ns parameters w of some model (or student) such that it's output, 
j/s(x), generalizes to examples not contained in the training data, V. Often this is 
achieved by minimising a weighted sum, /?£'w(X') + 7C(w) of the quadratic error of 
the student on the training examples, Em(V), and some cost function, C(w), which 
penalises over complex models. Provided 7 is non-zero this serves to alleviate the 
problem of overfitting. It is the setting of the, so-called, hyperparameters ß and 7 
which we will examine in this presentation. 
In terms of practical methods for hyperparameter assignment there are essentially 
two choices. Firstly one can attempt to estimate the generalisation error (e.g. by 
cross-validation [6]) and then optimise this measure with respect to the hyperpa- 
rameters. However, such an approach can be computationally expensive. Secondly, 
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one can optimise some other measure and hope that the resulting assignments pro- 
duce low generalisation error. In particular, MacKay [6] advocates the evidence as 
such a measure. Model selection based on the evidence, in the case of a linear stu- 
dent and teacher, has been studied by Bruce and Saad [1] in the thermodynamic 
limit. Their results show that optimising the average, over all possible data sets 
V, of the log evidence with respect to the hyperparameters optimises the average 
generalization error. An average case analysis of an unlearnable scenario can be 
found in [3] and shows that in general the evidence need not be optimal on average. 
In this paper we examine hyperparameter assignment from the evidence based on 
an individual data set, in the learnable linear case. In the next section we review 
the evidence framework and introduce the generalization error. In section 3, we 
show that the evidence procedure is unbiased and that the evidence and generaliza- 
tion error are self averaging. In section 4 we examine hyperparameter assignment 
from the evidence based on a particular data set. First order corrections to the 
performance measures show that in general the evidence procedure does not lead 
to optimal performance. Finally, we corroborate these conclusions using a numeri- 
cal study which, furthermore, reveals that even leave one out cross-validation is a 
superior model selection criterion to the evidence in the learnable linear case for 
small systems. 

2     Objective Functions 
2.1 The Evidence 
Since EW(T>) is the sum squared error then, if we assume that our data is corrupted 
by Gaussian noise with variance 1/2/?, the probability, or likelihood of the data(X>) 
being produced given the model w and ß is P(V | /?, w) oc e~

ßE^v\ The complex- 
ity cost can also be incorporated into this Bayesian scheme by assuming the a priori 
probability of a rule is weighted against 'complex' rules, P(w | 7) oc e-7^™). Mul- 
tiplying the likelihood and the prior together we obtain the post training or student 
distribution, P(w | V,j,ß) oc e-ßE„(v)-,c(v,)_ u ig dear that the mog(. probable 

model w* is given by minimizing the composite cost function ßE^V) + jC(-w) 
with respect to w. 
The evidence, P(V | j,ß), is the normalisation constant for the post training dis- 
tribution. That is, the probability of (or evidence for) the data set (V) given the 
hyperparameters ß and 7. Throughout this paper we refer to the evidence proce- 
dure as the process of fixing the hyperparameters to the values that simultaneously 
maximize the evidence for a given data set. 

2.2 The Generalization Error 
We will use the notation {f(z))P to denote the average of the quantity f(z) over 
the distribution P{z). However, we will use the short hand (.}w to mean the average 
over the post training distribution P(w | V,y,ß). As our performance measure we 
choose the expected difference over the input dimension P(x) between the average 
student and the average teacher. That is, the data dependent generalisation error, 
€g(D) = (((^(x))p(ä/t|x) - (2/s0<0)w)2)p(x)- If we were to average over all possible 
data sets of fixed size then this would correspond to the generalization error studied 
in [1]. 
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3 Finite System Size 
Since the student is linear with output j/(x) = w.x/x/Ä/7, Ns = N. We also assume 
that the teacher mapping is linear, with weights w°, and corrupted by zero mean 
Gaussian noise of variance a2. Thus, P(yt | x^) ex e-{yt-^0^lVNf/2a\ further, 
we assume P(x) is Af(Q,<Tx)

1 and adopt weight decay as our regularization proce- 
dure, that is C(w) = wTw. In this case we can explicitly calculate the evidence, 
or rather the normalised log of the evidence f(T>)= -l/Nln(P(V | A,/?), where 
we have introduced the weight decay parameter A = j/ß. The generalisation error 
and the consistency can be calculated from f(T>) by averaging appropriate expres- 
sions over the input distribution P(x). Details of these calculations will appear in 
a subsequent paper [4], 

3.1     Consistency, Unbiasedness and Self Averaging 
Firstly, we examine the free energy, f(V), and the generalisation error in the limit 
of large amounts of data (i.e. as p —► oo with N fixed). Using the central limit 
theorem we can show that, in this limit, to first order the generalisation error is 
independent of the weight decay whilst / is optimised by Ae„ = A0 = a2/{<Txaw) and 
ßev = ß0 = l/(2<72). As we shall see later in the context of large N this insensitivity 
of the generalisation error to the value of the weight decay is associated with a 
divergence in the variance of the optimal weight decay as the number of examples 
grows large. This asymptotic insensitivity to the weight decay is a reflection of the 
fact that our linear student is mean square consistent. We will thus focus on the 
following quantity when assessing the evidence procedure's performance, 

n   ,     e,(Aeu(P))-eg(Aopt(P)) 

£g(\opt(T>)) 

Secondly, it can be shown that (ffy)p({x*:/j=i..p}) « &j> then the resulting average 
free energy, f={f(V))p(V-) is extremised by A = Ao and ß = ßQ. Similarly, the 
average generalisation error is optimised by Ao- This corresponds to the average 
case result obtained for the thermodynamic limit in [1] but is valid for all N and 
p. Thus, the particular conclusion, of the thermodynamic average case analysis, 
for the learnable linear scenario, that the evidence procedure optimises average 
performance is valid for all N and in this sense the procedure is unbiased. 
Finally using results of [9] 2 one can show that the variance, over possible reali- 
sations of the data set, of the free energy, f(T>) is order Ö(\/N) as we approach 
the thermodynamic limit; it is a self averaging quantity. Similarly, it can also be 
shown that the generalization error is self averaging. This means that in the ther- 
modynamic limit the behaviour exhibited by the system for any particular data set 
will correspond to the average case behaviour, that is the fluctuations around the 
average vanish. Thus, the average case analysis of [1] corresponds to the case for a 
particular data set because their results were obtained in the thermodynamic limit. 

4 Data Dependent Hyperparämeter Assignment 
Having now established that the evidence procedure is unbiased and that the free 
energy and performance measures are self averaging we now wish to examine the 
system behaviour for particular data sets of finite size. This is clearly the regime 

1 Where N(x,c) denotes a normal distribution with mean x and variance a2. 
2 Alternatively one can show this result using diagrammatic methods. 
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Figure 1 The variance in the optimal weight decay (Var(\eg)) for various noise 
levels, (i) Ao = 0.04, (ii) A0 = 0.25 and (iii) A0 = 4/9 is shown in the left-hand 
graph. Notice the linear divergence in a which corresponds to our result in section 
3.1 that, for sufficiently large p, the generalization error is independent of A. The 
variance in the evidence optimal weight decay (Var(\ev)) is shown, in the right- 
hand graph, for the same noise levels. The ö(\/a) decay of this quantity is a 
reflection of the fact that for large p \ev(V) = AQ. 

of interest to real world applications since one is then in the business of optimising 
performance based on a particular data set. To obtain the hyperparameter assign- 
ments made by the evidence procedure we must simultaneously solve d\f(D) = 0 
and dßf{T>) = 0, where def = df/89. We can linearize these equations, close to the 
thermodynamic limit, by expanding around A = A0 and ß = ß0. Similarly, we can 
also expand the true optimal weight decay about the thermodynamic limit value, 
Ao. 
We find that (co)-variances of these quantities are 0(1/N). Figure 1 shows, to first 
order, the scaled variances 3 in the evidence optimal weight decay, Var(Xev) and 
that in the true optimal weight decay, Var(Xopt). The asymptotic ö(\/a) decay 
of the former reflects the fact that, as discussed in section 3.1, lima^oo \ev(V) = 
A0. Similarly, the divergence of the latter is indicative of the insensitivity of the 
generalization error to the weight decay for large a. The divergence of both curves 
for small a is order 0(1/Na) and reflects the break down of the thermodynamic 
limit when the number of examples p does not scale with the system size N, 
Similarly we find that the average squared distance between the evidence assign- 
ment and the optimal, < (A0(X>) - Aet,(X>))2 >p(x>), is order 0(1/N). This distance 
is non zero, except for a > 1 in the noiseless limit. Further, in the large a limit 
this distance diverges, revealing the inconsistency of the evidence weight decay 
assignment. 

4.1    Effects on Performance 
We now examine the effects on performance of this sub-optimal hyperparameter 
assignment. Firstly, to order 0(1/VN) the optimal performance, eg(\opt, V), and 
that resulting from use of the evidence procedure, eg(\ev, V) are the same. However, 

3 i. e. N times the true variances 
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to order 0(1/N) they differ thus we can write the correlation between them, some- 
what suggestively, as 1 — 0(1/N). Unfortunately, we are unable to calculate this 
correlation to Ö(l/N). Therefore, we examine < Ke$ >P(T>) which tends to l/N in 
the limit of large a reflecting the inconsistency of the evidence weight decay assign- 
ments. In the limit of no noise for a > 1 we find that < K€g >P^= (a+l)/N(a — l) 
revealing that even for small noise levels the evidence procedure is sub-optimal. 

4.2     Comparison with Cross-validation 
Given, that the evidence procedure is sub-optimal it is natural to ask if another 
model selection criteria could do better. Here we compare the evidence procedure 
with leave-one-out cross-validation using simulations of a 1-dimensional system. 
That is we set the weight decay using the cross-validatory estimate and the evi- 
dence estimate and compare the resulting generalisation error to the optimal. The 
results, averaged over 1000 realisations of the data set for each value of p, are plot- 
ted in figure 2. These show that the evidence weight decay assignment results in 
sub-optimal performance with €g(Xev, V) not fully correlated with eg(\o,V). More- 
over, the left-hand graph shows that the resulting error from the cross-validatory 
estimate correlates more strongly with the optimal generalisation error than does 
that resulting from the evidence estimate. In addition, the right-hand graph shows 
that the fractional increase in the generalisation error is considerably larger for the 
evidence procedure than for cross-validation. 

OfgMtf*) **g (A) 
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Figure 2 1-D simulation results: The left-hand graph shows the correlation be- 
tween the optimal generalization error and those obtained using the evidence (solid) 
and cross-validation (chain) with Ao = 1.0. The right-hand graph shows the frac- 
tional increase in generalization error KCg (A) = (eg(A) — eg(\opt))/tg(^opt)- A is set 
by the evidence (dashed) and by cross-validation (chain) for Ao = 1.0. For Ao = 0.01 
the evidence case is the solid curve cross-validation the dotted curve. In the latter 
case the error bars are not shown for the sake of clarity. 

5    Conclusion 
We have shown that, despite thermodynamic and average case results to the con- 
trary, model selection based on the evidence does not optimise performance even 
in the learnable linear case. In addition, numerical studies indicate that for small 
systems cross-validation is closer, than the evidence procedure, to optimal perfor- 
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mance. However, for large systems the evidence might still be a reasonable alterna- 
tive to the computationally expensive cross-validation. 
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Radial basis function (RBF) networks have the great advantage that they may be determined 

rapidly by solving a linear least squares problem, assuming that good positions for the radial 

centres may be selected in advance. Here it is shown that, if there is some structure in the data, 

for example if the data he on lines, then variables in Gaussian RBFs may be separated and a 

near-optimal least squares solution may be obtained rather efficiently. Second, it is shown that 

a system of Gaussian RBFs with structured or scattered centres may be orthogonalized over a 

continuum or discrete data set and thereafter the least squares solution is immediate. Keywords: 

Gaussians, orthogonalization, RBF, separability. 

1    Introduction 
Suppose that there are m input data x^\ .. .,x^m\ and that each datum x has d 
components x\,..., x&. Suppose that we adopt a radial basis function network with 

the centres w^1),..., w("), given by wW = (wy, wy,..., wy) , for i = 1,..., n. 

The components, Wj of the centres are "weights" in the network, between the input 
and hidden layer. Frequently good choices of centres may be made by clustering 

techniques [3], and so we assume w^ to be fixed. Suppose that coefficients c,-, for 
i = 1,.. .,n, are associated with radial basis (transfer) functions 4>i{r) applied to 
the argument r,-, where 

1/2 

irC»") II £(*>-*")' . wv 

J 

The coefficients {c,} are weights between the hidden and output layers, and the 
output function /(x) is approximated by an RBF, F(x), as follows, 

/(x)«F(x) = X>*(|x-w<0|). 
i=i 

Frequently the RBFs {<j>i(r)} are taken to be the same function <f>(r) for each i. In 
this paper we consider the basis function <j>(r) = exp(—r2). 

2    Separability of Gaussians 
The Gaussian has some particular advantages in terms of (i) its separability and 
(ii) the simplicity of its inner product. In this section, we consider separability and 
in Section 3 we exploit the inner product in discussing orthogonalization. 
If 4>{r) = exp(—r2), then 

<ß(\\x\\) = <f,(x1)^x2)...<j>(xd). 
Thus the RBF is a product of d one-dimensional Gaussians. 

265 



266 CHAPTER 45 

2.1    Fast Approximation on a Mesh 
Suppose that the 2-dimensional data x = (#1,2:2)' and the corresponding centres 
w = (iüi, W2)' are each placed on meshes 

Xk,e.    =      ij   ,4        f°r k = 1,.. .,mx and £ = 1,.. .,my, 

W'J    =    [wi  1 w2   )     for i = 1,..., nr and j = 1,...;, %, 

where nx < mx and n^ <my. 
Here nx and ny are the numbers of different values for the two respective compo- 
nents of the centres, and mx and my are the corresponding numbers of different 
values for the two components of the data. Then our RBF approximation on the 
data is 

n.    / ny 

f(*k,t) = ^ I U Cijftx? - «#>)    *(*<*> ~ «4°). (1) 
«■=1 v=i / 

For each £ = 1,..., my, we obtain the (overdetermined) linear system, 

f(xkil) = -£bfU(x^-w^) (2) 

., nx, we have the (overdetermined) for k = 1,. 
«=1 

.,mx, where, for each i = 1,. 
system 

2 (3) 

for £ = 1,..., mj,. 
Using matrix notation, we may express the system of equations (2) as 

AxbW = fW 

for £ = 1, 2,..., my, where Ax is a matrix whose (k, z)th element is <f>{x\ ' — w±), 

b^ is a vector of the elements 6; ' for i = 1, 2,..., nx, and fW is a vector of the 
elements /(x^x) for k = 1,2,.. .,mx. We note that the matrix Ax is independent 
of £ and so it is only necessary to factorize it once. 
Similarly, we may express the system (3) as 

A,c(0 = b,- 
for i = 1,2,.. .,nx, Here, the matrix Ay is independent of i and so, again, it is 
only necessary to factorize this matrix once. Thus, the solution of (2) and (3) by 
QR factorization can be achieved in Ö (mynx(mx + ny)) operations. This is a great 
saving over the Ö (mxmynlny) operations that would be required if the system (1) 
of mxmy equations were solved by least squares without exploiting any structure. 

2.2     Data on Lines 
If the data are less structured than a mesh, but do form lines, then fast methods 
may be adopted. Consider lines of data, where the «2 values are fixed but the x\ 
values are scattered (in different positions on each line). The data abscissae may 

be written as {x\ ' ', x\,'), for k = 1,..., rat and £ — 1,..., my, so the x\ values 

now vary with both k and £. Equations (2) and (3) are still valid, but with x\ ' and 

mx replaced by x\ ' ' and mi. We may therefore still solve (2) and (3) in the least 
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squares sense. However, the solution is no longer the true least squares solution 
of (1). Indeed the solution of (2) now involves a different matrix for each value of £, 
and this also means that the solution is less efficient — O (mxmynl) operations are 
needed to solve (2), although only O (mynynx) operations are still required for (3). 
The method we describe here is the Gaussian RBF analogue of the methods of 
Clenshaw and Hayes [2] for polynomial approximation and of Anderson, Cox and 
Mason [1] for spline approximation of data on lines. 

3    Orthogonalized Gaussians 
Gaussians can be orthogonalized in a number of ways. Suppose that for data {x} = 
{(xi,..., Xd)'}, we have centres w^ for i — 1,..., n, and Gaussian RBFs <fo(||x||) = 

exp(-||x- wW||2) for i- l,...,n. 
Then a general orthogonalization technique, based on the Gram-Schmidt procedure, 
is to form a new basis ipi,... ,ipn as, 

A = £4°^ (4) 
fc=i 

= £4% (5) 

for i = 1, 2,..., n, where e^ and d^ are appropriate coefficients such that of' = 1 

and e\'' = 1. The values of the remaining coefficients are determined by requiring 
the new basis functions, ip\,..., ipn, to be orthogonal with respect to some specified 
inner product. Thus we have 

< ipi,ipj >= 0       for i ^ j. 

Let us define 
Uj =< 4>i,<f>j >, (6) 

and 
"Jfc =< ipk,i>k >, 

the values of tij being constants that may be calculated once and for all, and the 
values of n^ being normalization constants. Then, by setting < i>i,i>j >= 0 where 
(without loss of generality) i < j we deduce, using equations (4) and (5), that 

By taking inner products of both sides of equation (5) with themselves, we deduce 
that 

i-l 

rai=*i,i, and m = titi - ^(e^)2^. (8) 
it=i 

Expanding equation (5) using (4) and equating similar terms, we derive 

k—i 

Equations (7)-(9) suffice to determine nk, e^p and cfp for all i < j given values of 

eU) 
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3.1 Continuum 
Let us adopt an inner product over IR  = (—oo, oo)d and define 

V=f   exp(-||x||2)dS= /    exP(-||x-w||2)dS, 

for any fixed w. Now itJ- is readily calculated by using the following formula (whose 
derivation follows from the cosine rule), 

||x - w^H2 + ||x - w^||2 = 2||x - wy f + i||wW - w^H2, (10) 

where wy = |(wM + w^). 
Now equation (6) becomes, 

=     /exp(-||x - w^H2 - ||x - wü)||2) dS 

=    exp(-i||w(i) - w^')||2) /"exp(-2||x- wyf)dS 

=    (V2)~dV (^(w(i)))1/2 • 

Thus tij is immediately determined from {w^} without sums or integrals (V being 
a scalar multiplier), and the orthogonalization procedure is particularly straight- 
forward. 
This inner product is the natural one to use for a continuum of data. Indeed the 
best least squares approximation to / of the form 

n 

F(x) = ^c^(x) 
i=l 

is defined by setting 
Ci =< F,tpi > /rii. 

3.2 Scattered Discrete Data 
We might also adopt this inner product for a discrete data set, since it has the 
advantage of being data independent. The snag is that we do not then obtain a 
diagonal system for determining a least squares approximation on the data set and 
must solve 

n 

»=i 

for i = 1,..., n, where [F, </>] denotes the inner product over the discrete data set. 
However, we would expect the matrix with entries [ipi, ipj] to be "close to diagonal". 
Alternatively, if we define a discrete inner product over the data {x^)} 

</,<?>=£/(x^Mx«) 

and write 
Skli = expHlx^ - w(J')||2) = &(x<*>) 

then 

U,j =< <ßi,4>j >= (STS)ij 
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where S is the matrix of Sk,i- Thus we are effectively forming the components of 
the normal matrix. The calculation is similar to that of Section 3.1, except that 
STS is now used rather than S (hence requiring a more complicated calculation). 

4    Results 
The validity of the procedure of Section 3.2 has been successfully tested by using 
orthogonalized RBFs to recognize the ten digits 0,.. .,9 from their pixel patterns — 
we do not have sufficient space here to give details, but note that the procedure is 
very fast compared with using back propagation procedures and sigmodal approxi- 
mations. We have also calculated condition numbers for a variety of RBF matrices 
which occur in data fitting, and there are apparent advantages for conditioning in 
using orthogonality on a continuum rather than on a discrete data set. However 
further work is needed to develop an orthogonalization algorithm which consistently 
improves conditioning compared with the use of a conventional Gaussian basis. 
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We consider the problem of estimating a density function from a sequence of JV independent and 

identically distributed observations x, taking values in IR1'. The estimation procedure constructs 

a convex mixture of 'basis' densities and estimates the parameters using the maximum likelihood 

method. Viewing the error as a combination of two terms, the approximation error measuring the 

adequacy of the architecture, and the estimation error resulting from the fmiteness of the sample 

size, we derive upper bounds to the total error, thus obtaining bounds for the rate of convergence. 

These results then allow us to derive explicit expressions relating the sample complexity and model 
complexity needed for learning. 

1 Introduction 
There have traditionally been two principal approaches to density estimation, namely 
the parametric approach which makes stringent assumptions about the density, and 
the nonparametric approach which is essentially distribution free. In recent years, 
a new approach to density estimation, often referred to as the method of sieves [2] 
has emerged. In this latter approach, one considers a family of parametric models, 
where each member of the family is assigned a 'complexity' index in addition to 
the parameters. In the process of estimating the density one usually sets out with a 
simple model (low complexity index) slowly increasing the complexity of the model 
as the need may be. This general strategy seems to exploit the benefits of both the 
parametric as well as the nonparametric approaches, namely fast convergence rates 
and universal approximation ability, while not suffering from the drawbacks of the 
other methods. In this paper we consider the representation of densities as convex 
combinations of 'basis' densities, thus permitting an interpretation as a mixture 
model. We split the problem into two separate issues, namely approximation and 
estimation, which are discussed at more length in section 2. 

2 Statement of the Problem 
The problem of density approximation by convex combinations of densities can be 
phrased as follows: we wish to approximate a class of density functions, by a convex 
combination of 'basis' densities. In this work we consider the class, T, of compactly 
supported and continuous a.e density functions. We thus seek linear combinations 
of densities of the form 

n n 

/„*(x) = ]Ta^(x;0O (ai>0    &     £a,- = l), W 
t=i i=i 

where </>(x;0j) represent a family of densities, the members of which are parame- 
terized by the parameter vectors {#;}. We denote the full set of parameters by 6, 
namely 9 = {{a,}, {#,•}}. In particular, we wish to find values n* and 6* such that 
for any c > 0, d(f,f*) < e, where /* is the value of /* evaluated at 9 — 0* and 
n = n*. This objective can be attained by a specific choice of the basis densities <j>, 
so that U^°=1/^ is dense in T (see [2] for exact conditions). Here d(f,g) represents 
some generic distance function between densities / and g, whose exact form will 
be specified in the next section. We note that in the usual formulation of mixture 
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estimation, one usually considers a fixed value of n, assuming that the true density 
is a member of the class. In our formulation n is a parameter, whose magnitude 
will be bounded. 
Another line of recent work is that of function approximation through linear com- 
binations of non-linearly parameterized 'basis' functions (for example neural net- 
works). The novel feature concerning the representation given in eq. (1), as com- 
pared with the function approximation literature, is that we demand the coefficients 
on to be nonnegative and sum to one, and moreover require the functions ^(x; 8) 
to be densities, i.e. <j>(x; 8) > 0 and f <j>(x; 8)dx = 1. 
As discussed above, the establishment of the existence of a good approximating 
density /* is only the first step in the estimation procedure. One still needs to 
consider an effective procedure, whereby the optimal function can be obtained, at 
least in the limit of an infinite amount of data. Assuming the estimation is based on 
the finite data set {x;}^, and denoting the estimated density by /nijv,the minimal 

requirement (referred to as consistency) is that /„_# —+ /* as N —► oo, where 
the convergence takes place in some well defined probabilistic sense. Since we are 
interested in this paper in convergence rates, we will in fact make use of stronger 
results [4] which actually characterize the rates at which the above convergence 
takes place (see section 4). 
In summary then, the basic issue we address in this work is related to the rela- 
tionship between the approximation and estimation errors and (i) the dimension 
of the data, d, (ii) the sample size, TV, and (iii) the complexity of the model class 
parameterized by n. 

3 Preliminaries 
In order to discuss approximation of densities we must define an appropriate dis- 
tance measure, d(f,g), between densities / and g. A commonly used measure of 
discrepancy between densities is the so-called Kullback-Leibler (KL) divergence, 
given by d}^(f\\g) — //log ^. As is obvious from the definition, the KL divergence 
is not a true distance function since it is not symmetric. To circumvent this prob- 
lem one often resorts to an alternative definition of distance, namely the squared 

Hellinger distance d^(f, g) = J (Vf - y/g) , which can be shown to be a true 
metric and is particularly useful for problems of density estimation. 
Using the results of [2] concerning the method of sieves we conclude that under 
appropriate conditions on <j>, the target density / belongs to the closure of the 
convex hull of the set of basis densities $ = {(/>(■,&)}. The question arises, however, 
as to how many terms are needed in the convex combination in order to achieve an 
approximation error smaller than some arbitrary e > 0. The answer to this question 
can be obtained using a remarkable lemma of Maurey which is proved for example 
in [1]. 

4 Main Results 
Using the results of Maurey referred to above, it can be shown that given any e > 0 
one can construct a convex combination of densities, <j>a £ $, in such a way that 
the total error between an arbitrary density and the model is smaller than e. We 
consider now the problem of estimating a density function from a sequence of d- 
dimensional samples, {x,}, i — 1,2,..., TV, which will be assumed throughout to 
be independent and identically distributed according to /(x). As in eq. (1) we let 



272 CHAPTER 46 

n denote the number of components in the convex combination. The total number 
of parameters will be denoted by m, which in the problem studied here is 0(nd). 
In the remainder of this section we consider the problem of estimating the pa- 
rameters of the density through a specific estimation scheme, namely maximum 
likelihood, corresponding to the optimization problem, d„iN = argmax« L(xN;6) 
where L(xN;0) is the likelihood function, L(xN;0) = Ukfnfa), xN = {x;}^ 
and /n(x) = E"=i ai<f>(x;0i). We denote the value of fnN evaluated at the max- 

imum likelihood estimate by fn<N. Now, for a fixed value of n, the finite mixture 
model, f%, may not be sufficient to approximate the density /, to the required 
accuracy. Thus, the model for finite n falls into the so called class of misspecified 
models [4] and the procedure of maximizing L should more properly be referred 
to as quasi maximum likelihood estimation. Thus, 0niN should be referred to as 
the quasi maximum likelihood estimator. Since the data are assumed to be i.i.d, 
it is clear from the strong law of large numbers that ^L(xN;0) -► £log/*(x) 
almost surely as TV —► co, where the expectation is taken with respect to the true 
(but unkown) density, /(x), generating the examples. From the trivial equality 
-Elog/nOO = -rfK(/||/*) + -Elog/(x) we see that the maximum likelihood estima- 
tor en<N is asymptotically given by 0* , where 0* = argmin<, dK(f\\fn)- For further 
discussion see [4]. 
Now, the quantity of interest in density estimation is the distance between the 
true density, /, and the density obtained from a finite sample of size N. Using the 
previous notation and the triangle inequalitiy for metric d{-, •) we have d(f, f„iN) < 
rf(/> fn) + d(f*,fn,N)- This inequality stands at the heart of the derivation which 
follows. We will show that the first term, namely the approximation error, is small. 
This demonstration utilizes Maurey's lemma as well as several inequalities. In order 
to evaluate the second term, the estimation error, we make use of the results of 
White [4] concerning the asymptotic distribution of the quasi maximum likelihood 
estimator 0HiN. The splitting of the error into two terms in the triangle inequality, 
is closely related to the expression of the mean squared error in regression as the 
sum of the bias (related to the approximation error) and the variance (akin to the 
estimation error). 
As mentioned above, Maurey's lemma provides us with an existence proof, in the 
sense that there exists a parameter value 0° such that the error of the combination 
(1) is smaller than c/n. Since we are dealing here with a specific estimation scheme, 
namely maximum likelihood, which asymptotically approaches a particular param- 
eter value 0*, the question we ask, however, is whether the parameter 0* obtained 
through the maximum likelihood procedure also gives rise to an approximation er- 
ror of the same order as that of 0°. The answer to this question is affirmative, as 
we demonstrate in the next theorem, which is the first main result of this section. 

Theorem 1 (Approximation error) Given appropriate assumptions, the Hellinger 
distance between the true density f and the density f* minimizing the Kullback- 

Leibler divergence, is bounded as follows: d^(f,f*) < e+ ^^ where CV,$ is a 
constant depending on the class of target densities T and the family of basis densities 
$ and e is an arbitrary precision constant. 
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Proof (sketch) The proof follows by a series of inequalities relating the Kullback- 
Leibler divergence and the Hellinger distance. By bounding the KL divergence from 
above and below by the Hellinger distance and utilizing the fact that the maximum 
likelihood estimator minimizes the KL divergence we conclude the proof. □ 
We note that the arbitrary precision constant e appearing in the theorem can be 
eliminated by restricting attention to densities belonging to the information closure, 
defined as Q - {/ G T | infaee <*K(/II0) = 0}, where Q = U£„ and Qn comprises all 
convex combinations of n terms as in (1). We will restrict ourselves in the sequel 
to this subspace. We stress that the main point of theorem 1 is the following. 
While Maurey's lemma guarantees the existence of a parameter value 0 and a 
corresponding function f° which lies within a distance of 0(l/n) from /, it is not 
clear apriori that /*, evaluated at the quasi maximum likelihood estimate, 9*n, is 
also within the same distance from /. Theorem 1 establishes this fact. 
Up to now we have been concerned with the first part of the triangle inequality. In 
order to bound the estimation error resulting from the maximum likelihood method, 
we need to consider now the second term in the same equation. To do so we will need 
to make use of a lemma of White [4], which characterizes the asymptotic distribution 

of the estimator 0niN obtained through the quasi maximum likelihood procedure. 
A quantity of interest, which will be used is C(9) = A(9)~1 B(9)A(9)-1 where 

A(0) = E [VVTlog/«(x)] and B(9) = E [(Vlog/»(x)) (Vlog/^(x))T] with the 

expectations taken with respect to the true density /, and the gradient operator 
V represents differentiation with respect to 8. White's lemma then proceeds to 
give sufficient conditions so that the distribution of the quasi maximum likelihood 
estimator is asymptotically normal. 
Finally, we will make use of the Fisher information matrix defined with respect to 
the density /*, which we shall refer to as the pseudo-information matrix, given by 
I* = £'*[Vlog/*(x)Vlog/^(x)T]. The expectation E* is taken with respect to /*, 
the density /' evaluated at 9 = 0*. Denoting expectations over the data (according 
to the true density /) by £x>[-], we have: 

Theorem 2 (Error bound) For sample size N sufficiently large, and given appro- 
priate smoothness assumptions (see [4]), the expected estimation error, 

Evdn(f,fn,N), 

obtained from the quasi maximum likelihood estimator, fn,N, is bounded as follows: 

Ev \dn(f,fn,N)\ < O (Cr^/n) + O (m*/N), where d denotes the data dimension, 

and rn* = Tr(C*7*) with C* and I* given above. 

Proof (sketch) The initial step in the proof is to expand djj(f*, U.N) to a first 
order Taylor series with remainder. Some simple algebraic manipulations yield an 
approximation in terms of the quasi maximum likelihood estimator and the pseudo 
information matrix. Taking expectation with respect to the data we obtain the 

bound O (Vfi-) utilizing the asymptotic results of White (1982). The final derivation 

follows by the triangle inequality and the approximation bound. □ 
If we take n, N ->• oo so that (n/N) —> 0 the matrix C* converges to the inverse of 
the 'true' density Fisher information matrix, which we shall denote by I~l(9), and 
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the pseudo-information matrix, I*, converges to the Fisher information I{9). This 
argument follows immediately from Theorem 2, which ensures the convergence of 
the misspecified model to the 'true', underlying density. Therefore their product 
converges to the identity matrix, with a dimension of the parameter vector m = 
n(d + 2). The bound on the estimation error will therefore be given asymptotically 

by Ev  4(/, fn>N)\ < O (%*) +0 ($) which is valid in the limit (N -> oo, n -» 

oo, ^--tO). The optimal complexity index n may be obtained from the asymptotic 
I  fry 

convergence rate bound, and is given by nopt — (Cp^N/d) ' where d is the 
dimension of the data in the sample space. 
We remark that the parameter m* may be interpreted as the effective number of 
parameters of the model, under the misspecification of finite n. This parameter 
correlates the misspecified model's generalized information matrix C*, with the 
pseudo-information matrix related to the density /*, so that the effect of misspec- 
ification results in a modification in the number of effective parameteres. 

5     Discussion 
We have considered in this paper the problem of estimating a density function over a 
compact domain X. Specifically, the problem is phrased in the language of mixture 
models, for which a great deal of theoretical and practical results are available. 
Moreover, one can immediately utilize the powerful EM algorithm for estimating 
the parameters. Finally, we comment that the method we used, namely combining 
approximation error bounds with White's framework for misspecified models, gave 
rise to lower estimation bounds than those obtained so far for function estimation. 
We believe that this result is not restricted to density estimation, and can be directly 
applied to function estimation using, for example, least-squares estimation. 
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We had earlier constructed neural networks which are capable of providing optimal approximation 

rates for smooth target functions. The activation functions evaluated by the principal elements 

of these networks were infinitely many times differentiable. In this paper, we prove that the 

parameters of any network with these two properties must satisfy certain lower bounds. Our results 

can also be thought of as providing a rudimentary test for the hypothesis that the unknown target 

function belongs to a Sobolev class. 

1    Introduction 
The notion of a generalized translation network was introduced by Girosi, Jones and 
Poggio [4] {generalized regularization networks in their terminology). Let 1 < d < s 
be integers, and <f> : IRd -+ 1R be a fixed function. A generalized translation network 
with n neurons evaluates a function of the form 

n 

Y^ak<p(Akx + bk), (1) 
fc=i 

where x e IRS, ak's are real numbers, bt's are vectors in TRd, and Ak's are dx s real 
matrices. This mathematical model includes the traditional neural networks, where 
d = 1, as well as the radial basis function networks, where d = s, Ak's are all equal 
to the s x s identity matrix, and <j> is a radial function. Girosi, Jones, and Poggio 
have discussed the importance of the more general networks for applications in 
computer graphics, robotics, control, image processing, etc., as well as emphasized 
the need for a theoretical investigation of the capabilities of these networks for 
function approximation. 
One important reason for using generalized translation networks for function ap- 
proximation is to obtain a concrete, trainable model for the typically unknown 
target function. Some of the features required of the model are the following. Of 
course, the model should approximate the target function within a given margin 
of error, utilizing as few neurons as possible. It is also desirable that the function 
evaluated by the model be smoother than the target function. Moreover, it is also 
expected that the parameters ak,Ak,bk of the model remain bounded as the margin 
of error approaches zero. In this paper, we prove that these goals are incompatible 
with each other: the parameters of a model that evaluates a good approximation, 
with <j> smoother than the target function, must tend to infinity as the margin of 
error tends to zero. In order to motivate this result further, we first review certain 
known "positive" results. 
It is well known [1], [2], [5], [6] that an arbitrary continuous function of s variables 
can be approximated arbitrarily closely on an arbitrary compact subset of IRS by 
neural networks. A similar result was established in [8] for the case of generalized 
translation networks. A deeper problem in this context is to determine the number 
of neurons required to approximate all functions in a given function class within 
a given margin of error. Equivalently, one seeks to estimate the degree of approx- 
imation of the target function in terms of the number of neurons, n. Since the 
target function is typically not known in advance, it is customary to assume that 

275 



276 CHAPTER 47 

it belongs to some known function class. A simple assumption is that the function 
possesses continuous derivatives up to order r, where r > 1 is some integer. It is 
well known [12] that for any function satisfying this condition, there is an algebraic 
polynomial of degree not exceeding m, which gives a uniform approximation to this 
function on [-1, l]s with an order of accuracy 0{rrTr). In terms of the number n 
of parameters involved, this order is 0{n~rls). According to a result of DeVore, 
Howard, and Micchelli [3], this is asymptotically the best order of approximation 
that can possibly be achieved for the entire class of target functions, using any 
"reasonable" approximation process involving n parameters. It is an open problem 
to determine whether the same degree of approximation can be achieved with gen- 
eralized translation networks. One expects that the actual degree of approximation 
should depend upon certain growth and smoothness characteristics of the activation 
function <j>. 

This author and Micchelli investigated this problem in detail in [10], starting with 
the case when both the target function and the activation function are 27r-periodic. 
When <j> is a 2ir- periodic function, we were able to approximate the trigonometric 
monomials by generalized translation networks, with a bound on the accuracy of 
approximation in terms of the trigonometric degree of approximation of <j>. This 
turned out to be a very fruitful idea, enabling us to establish a connection between 
the degree of approximation provided by generalized translation networks on one 
hand, and the degree of trigonometric polynomial approximation to the target func- 
tion and to the activation function </> on the other hand. The general theorem was 
applied to the case when <j> is not periodic, establishing degree of approximation 
theorems for a very wide class of activation functions. As far as we are aware, our 
estimates on the degree of approximation by radial basis functions were the first 
of their kind, in that the estimates were in terms of the number of function evalu- 
ations, rather than a scaling factor. These results were announced in [11]. In [10], 
we constructed networks to provide to an optimal recovery of functions, as well as 
networks to provide simultaneous approximation of a function and its derivatives. 
The idea was also applied in [9] to obtain certain dimension-independent bounds. 
Both in [9] and [10], we give explicit constructions of the networks. The results 
indicated that both the growth and smoothness of the activation function play a 
role in the complexity problem. 

In [7], we concentrated on activation functions that are infinitely often differentiable 
in an open set, and for which there is at least one point in this open set at which 
none of the partial derivatives is zero. Using the ideas in the paper [6] of Leshno, Lin, 
Pinkus, and Schocken, we proved that generalized translation networks with such 
activation functions provide the optimal degree of approximation for all smooth 
functions. We also obtained estimates for the approximation of analytic functions. 
The activation functions to which our results are applicable include the squash- 
ing function, (1 + e~x)-1 when d = 1, and the Gaussian function, the thin plate 
splines, and multiquadrics, when 1 < d < s. We give explicit constructions, and 
the matrices Ak and "thresholds" bk in the networks thus obtained are uniformly 
bounded, independently of the degree of approximation desired. Unfortunately, the 
coefficients ak in the networks may grow exponentially fast as the desired degree of 
approximation tends to zero. 
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In this paper, we demonstrate that this phenomenon cannot be avoided if the acti- 
vation function is a bounded analytic function in a poly-strip; the coefficients and 
the matrices cannot all be bounded independently of the desired degree of approxi- 
mation. This fact persists even if <j> satisfies less stringent conditions. In particular, 
all the special functions <j> mentioned above necessarily have this drawback. For the 
sake of simplicity, we have presented our results in the context of uniform approx- 
imation. They are equally valid when the approximation is considered in an Lp 

space. 

2    Main Results 
Let k,m > 1 be integers, and B be a closed subcube of IRm (not necessarily 
compact). The class of all functions / : Htm -> IR having continuous and bounded 
partial derivatives of order up to (and including) k on B will be denoted by C|. 
In this section, we prove that if the activation function <f> € C^d for some integer 
£ > 1, and the target function / is not infinitely often differentiable on [-1,1]*, 
then the coefficients ak in any generalized translation network of the form (1) that 
provides a uniform approximation of / on [-1, l]s must satisfy certain lower bounds. 
These lower bounds will be obtained in terms of the norms of the matrices Ak. If 
x = (xi,.. .,xm) € IR™, we define 

|x|m :=   max  \xA. (2) 
l<j<m 

If d, s > 1 are integers, and A is a d x s matrix, we define its norm by 

\\A\\ := max \Ax\d. (3) 
|x|,<l 

In the sequel, c, ci, • • • will denote positive constants, which may depend upon fixed 
quantities, such as <j>, d, and s, and other indicated parameters only. 
We prove the following theorem. 

Theorem 1 Let 1 < d < s, t, r > 1 be integers, and a,e be positive real numbers. 
Suppose that 4> £ C^d, f : [-1, l]s -► IR, and f $ C[ab], for some [a, b] C (-1,1). 
Suppose that for every integer n>\, there exists a generalized translation network 

n 

AT„(x) := ^ akln<l>(Ak,nx + bk>n), (4) 
Jb = l 

such that 
|/(x)-M,(x)|<cn-°, xe[-l,l]s, (5) 

where c is a positive constant that may depend upon f,<f>,d,s, and a but is inde- 
pendent of n. Then there exists a subsequence A of integers and a positive constant 
c\ depending on f,(j>,d,s,a, and e such that 

£K„| > Cl(? — J ,       n e A, (6) 

where 
Mn :=  max ||AÄ,„||. (7) 

l<k<n 

We recall that one of the objectives of approximation is to obtain approximants 
which are smoother than the original function. The theorem is therefore most in- 
teresting if <j> has more derivatives than /. In this case, if the matrices Ak,n 

m the 
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approximating networks are o(n°(1/(r+0-i/*))) then the sum of the absolute values 
of the coefficients must tend to infinity. The smoother the activation function <f>, the 
faster is this growth. Thus, the goals of smoothing and having bounded parameters 
are not compatible. 

Another way to interpret this theorem is that if, for a function /, a sequence of 
approximating networks of the form (4) can be found to yield the order of approxi- 
mation as in (5), but with the growth of the matrices Aki„ and the coefficients ak,n 

controlled so that (6) is not satisfied, then / must have continuous partial deriva- 
tives of order at least r. Thus, for an infinitely many times differentiable activation 
function <f>, we have a "converse theorem" : the existence of networks with properly 
controlled growth for the matrices and coefficients implies a smoothness of the tar- 
get function, which is unknown to start with. We observe that in the case of the 
neural networks (d = 1) constructed in [10], the "weights" Ak>n are 0(n) and an 
upper estimate on the sum of the absolute values of the coefficients is also known. 
The networks of [10] can therefore be used to verify the accuracy of the starting 
hypothesis about the smoothness class to which the target function belongs. 
The ideas behind the proof of Theorem 1 lead us to the following corollary, which 
gives sharper lower bounds than in (6) in the case when the activation function is 
analytic. 

Corollary 2 Let 6 > 0 be a real number, <j> : JRd -» ffi, have an extension to the 
poly-strip 

{(*i, •••,*<*)   :   \$smzk\<6,   k=l,...,d} 
as a bounded, analytic function. Then the estimate (6) can be replaced by 

n / \ m/2 X>Ml>cim-r-£(l + _y       _ n€A; (g) 

where m := C2na/(r+(\ 

Proof of Theorem 1. Let n, m > 1 be integers. We observe that the function <t> 
has continuous and bounded partial derivatives of order I on IRd. Therefore, the 
Jackson theorem for algebraic polynomial approximation [12], §5.3.11, shows that 
there exist polynomials Pk<n, each of coordinatewise degree at most m, such that 

\H^-k,n^ + hk)-Pkin(x)\<cM^m-e, xe[-l,l]s,fc = l,...,n (9) 
Writing Qm := J2k=i ak,nPk,n, we see that Qm is a polynomial of coordinatewise 
degree at most m. Moreover, from (5) and (9), we obtain 

|/(x)-Qm(x)|<cjn-a + M^m-^|aM|j,        X€[-l,l]s, m,n = 1,2,-■ ■. 

(10) 
If possible, let (6) be not true. Then, choosing n to be the smallest integer exceeding 
m(r+0/«) we see that 

|/(x)-Qm(x)|<cm-(r+f)> x£[-l,l]s 

for all sufficiently large integer m. In view of the converse theorems for algebraic 
polynomial approximation, [12] §6.3.4, this implies that / £ C[a b]. for every [a, b] C 
(-1,1). This contradiction completes the proof of the theorem! D 
The proof of Corollary 2.2 is similar, except that one uses Bernstein's estimates 
similar to [12] §5.4.1, instead of the Jackson-type estimates. 
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3    Conclusions 
We have discussed our previous work on the degree of approximation by gener- 
alized translation networks. It is shown here that the goals of having a smooth 
approximation, and bounded coefficients and weights are incompatible when the 
target function to be approximated fails to have at least as many continuous par- 
tial derivatives as the activation function. Our theorem can also be thought of as 
providing a rudimentary test for the hypothesis that the unknown target function 
belongs to a Sobolev class. 
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This paper proposes a new technique called Reguhrisation by Convolution to improve the gener- 
alisation of GaRBF networks. The technique is based on the convolution after training of GaRBF 
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1    Introduction 
Nowadays generalisation and regularisation are two of the most challenging topics 
in neural computation. By generalisation it is generally understood that, from a 
given training set consisting of input-output observations {x,-, ?/,-}, i = l,...,n, 
of an underlying event F*, such that F*(x,-) = t/,-, it is desired to construct an 
estimated map F which, for a new test set of input observations {x;} will provide 
a good prediction for the unobserved output observations {yj}. 
One way of achieving generalisation, known as regularisation or smoothing, is to 
find the mapping F by means of a neural network, subject to some constraints on 
the solution. One possible constraint is to limit the number of units in the neural 
network, or to employ pruning techniques during learning in order to limit the 
degree of freedom of F and thus avoid overfitting of the observations (see [1] for a 
survey). A second class of regularisation techniques involves the determination of a 
mapping F in the d-dimensional Hilbert space H of functions with continuous first 
derivatives and square integrable second derivatives which minimise, 

2 = 1 

MSE = l • X> - F(x°-))2 

subject to the regularisation condition 

)2rfx < K (2) /(^(2)(x))2 

for different values of a regularisation parameter K (see [2] and references contained 
therein). Equation (1) is known as the Mean Squared Error (MSE) of the training 
set and (2) as the regularisation constraint, which is equal to the energy of the 
second derivative of the mapping F. If K is made large the F will just interpolate 
the training data and, conversely, if it is chosen very small then the mapping, al- 
though smooth, will not represent the underlying event F*. A good regularisation is 
achieved by adapting K to reach the convenient tradeoff between the fitting and the 
smoothness of the solution. Normally this is achieved by choosing different values 
for K, training under these K constraints, and testing the generalisation error results 
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on a test set by cross-validation. Although this solution may generalise well, it is 
computationally expensive and needs retraining for each of the possible values of K. 

Moreover, the final results may be biased by the capacity of the neural network or 
the training rule to escape from local minima. In this paper, we propose a new reg- 
ularisation technique based on convolution after training a Gaussian Radial Basis 
Function (GaRBF) network with gaussian filters. This technique, which does not 
need retraining, consists in essence of the following steps: 

■ Training a GaRBF network with a large number of units. 

■ Convolve the network with gaussian niters of different widths and normalise 
the network so that the final Z,i-norm of the convolved F(x) remains the same 
(this implicitly leads to a reduction of the energy of the second derivative of 
F(x)). 

■ Verify the generalisation performance of the convolved GaRBF networks by 
cross-validation, and retain the best solution. 

The paper is organised as follows: Section 2 presents the mathematical principles 
of this technique. Section 3 describes the main algorithm for regularisation and a 
binary technique for searching for the best gaussian filter. Section 4 gives an exper- 
imental evaluation of the regularisation technique on the regression of a synthetic 
problem. 

2    GaRBF Network Convolution with Gaussian Filters 
GaRBF networks are defined as a linear combination of Gaussian units. Let this be 
denoted by, 

N 

F(x) = ^aJ/i(x) (3) 
«=i 

(*-«i)2 

where N is the number of GaRBF units of general expression, /,(x) = e      ";     , 
and with amplitude a; 6 $ , centre m € 5ftd and width <7; 6$+. 

_*i 
Let #(x, <J) be a Gaussian filter given by, g(x, a) = e °i , with CTJ as width. We first 
define the integral convolution in the Hilbert space H of these two functions, /2(x) 
and <7(x, a) as 

/oo 

fi(x)g(T-x,<r)dx (4) 
-oo 

Since GaRBFs are bounded and absolutely integrable on H, the computation of 
their convolution may more easily be done by means of the convolution property, 
T{h}{u) = y/^Tif^Tig], where T{) is the Fourier transform. Fourier trans- 
forms of /,■ and g respectively are 

(u) = afV^e   V   4 '? ) T{f}{u) = o/vV e   V   4 -i ) (5) 
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and, 

2    2 

F{g}(to) = cT*V^e-^- (6) 

Finally, from the inverse Fourier transform of their product, a new GaRBF of same 
location but different amplitude and width is obtained, 

„2    2 _(lz2üif. 
Kr) = (^~^^e    W (7) 

i j 

The integral convolution of a GaRBF network F(x) as defined in (3) and a gaussian 
filter g(x, a) is a straightforward consequence of equation (7), since, 

/oo N -co 

F(x) ■ g(r - x, <r)dx =J2ai &(*) ' s{T ~ *, <r)dx (8) 
■°° i = l       •'-oo 

and is equal to a new GaRBF network with same number of units, located at the 
same positions but with different amplitude and width. In the particular context 
of regularisation by convolution, it is of great importance to keep the convolved 
function h(r) as close as possible to the original F(x) except at those points where 
high frequencies have been filtered. This may be achieved by requiring the Li-norm 
of the GaRBF network to remain constant. A good alternative is to calculate the 
Li-norm of the gaussian filter, as follows, 

f e   'i dx = af (ir)> (9) 

and then convolve the network with a normalised filter which leads to the same 
results as the normalisation of the GaRBF network. Thus, the ii-normalised con- 
volution F(x) ® g(x, a) of a GaRBF network F(x) and a gaussian filter g(x, a) 
which retains the same norm of the original network may then be stated as, 

,  . f°!L F(x)g(T - x, a)dx 
F(x)®g(x,<7)= J-°°    V  m    d        

> (10) 

3      The Regularising Technique 
This section describes the regularising technique based on the convolution of GaRBF 
units with gaussian filters, developed in previous section. The technique is to be 
applied to a pre-trained GaRBF network as defined in equation (3), and uses the 
Root Mean Squared (RMS) error obtained on a cross-validation set after regulari- 
sation as a performance criterion. The best regularising gaussian filter is found by 
binary search under the assumption that the RMS error has no local minima in 
the search space. Reasonable bounds for the binary searching are easily obtained 
from the bounded space on which the underlying function F* lies. Thus the minimal 
bound for the width filter is equal to zero and the maximal bound is equal to the 
maximal distance between two points of the bounded space TL. 
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The structure of the related regularisation algorithm and its initialisation is shown 
below as pseudo-code, 

Initial parameters and data 

- Neural Network : F(x) = Y^Li a,-/.-(x) 

- Cross Validation set : CV = {XJ , yj } j = 1,..., n 

- Gaussian Filter : g(x, a) = e_x I" 

- Bounds of Gaussian filter widths and their average: 

°~min — U 

amax = (max (^Li (*? - ^f))"2 Vx € CV 

0~avg — \&max T 0~min) /~ 

- ÄMS errors obtained on the CV data set after convolving F(x) with 

ff(x,<Tmin), ff(x,<7a„s) and sr(x,crma:r): 

RMSmin, RMSavg and RMSmax 

- Stop threshold for the binary search : e 

Regularising Algorithm 

Loop until | RMSmax - RMSmin |< e 

1. Calculate the RMS\ and RMS2 errors obtained after convolution of 
F(x) with #(x, a), for widths <7i and <r2, where, 

Cl = (Omtn + 0~avg) /2 

<^2 = (f"a«s + "'moir) /2 

2. If RMSi < RMS2 then, 

&max —~ &avg o£      &avg — ^"l 

RMSmax = RMSavg & RMSavg = RMSi 

else 

0~min = fauj &       Cau^ = °~2 

RMSmin = RMSavg k RMSavg = RMS2 

end loop 

4      Numerical Results 
In order to illustrate the performance of Regularisation by Convolution, we have 
applied the algorithm to Wahba's synthetic problem [2]. This problem consists of 
the regression of a noisy function generated synthetically according to the model, 
F*(x) = 4.26 (e~2x - Ae~x + Ze~3x) + u, where v is normally distributed random 
noise with zero mean and standard deviation 0.2. In the original problem, 100 noisy 
observations were generated and used as learning set for the training of a sigmoid 
feed-forward neural network. Wahba performed regularisation during training us- 
ing equation (2). The K value which provided the lowest RMS error was obtained 
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Figure 1 Original Wahba's function (dash-dot). Neural Network regression 
(solid). CV observations (circles), a) LRAN regression with RMS error equal to 
0.3011 on the CV data set. b) The same LRAN after regularisation by convolution 
with the best Gaussian filter obtained by binary search (cravg = 0.1709) with RMS 
error equal to 0.2116. 

by having-one-out cross-validation. Thus retraining was needed for each different 
choice of K. 

In our case we applied Regularisation by Convolution to the same problem af- 
ter training a Limited Resource Allocating network (LRAN) by the F-Projections 
learning rule [3]. Training was only performed once, after which the network had 
learnt the underlying problem Ft with over-fitting of the noisy data as shown in 
Figure (l.a). The original training data was interpolated by a factor often to pro- 
vide a sufficiently representative training set for the noisy problem, and a LRAN 
with 200 units (twice the number of training samples) was used to ensure learning 
with overfitting. We used an extra set of 100 samples as Cross-Validation set CV to 
calculate the best regularising filter. The stop threshold e was fixed at 10~4. Figure 
(l.b) illustrates the final result. 

5     Summary 
This paper has shown how a technique based on a convolution operator can be 
succesfully applied for regularising and then improving the performances on gen- 
eralisation of Gaussian RBF networks. The advantage of this technique over other 
approaches is that it is independent of training processes and algorithms. 
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In this paper we study the problem of the prediction of autonomous continuous-time dynamical 
systems from discrete-time measurements of the state variables. We show that the predictor of such 
a system needs to be an invertible map from the state-space into itself. The problem then becomes 
one of how to approximate invertible maps. We show that standard approximation schemes do 
not guarantee the property of invertibility. We therefore propose a new approximation scheme 
based on the composition of invertible basis functions which preserves invertibility. This approach 
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Baker-Campbell-Hausdorff formula. The method is implemented in a neural-like form. We also 
present a more general implementation which we call " MLP in dynamics space". 
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1    Introduction 
We will study here the problem of the prediction of nonlinear dynamical systems 
from a set of sampled measurements of the state of the system. The nonlinear 
systems which we will consider are governed by a multidimensional ordinary dif- 
ferential equation. Although the dynamics of the system is continuous in time, the 
samples that we will use for prediction are the state variables measured at discrete 
time-intervals only. We are therefore led to postulate a discrete-time form for our 
prediction: x(k + 1) = F(x(k)). In the first section, we will show - using the fact 
that the underlying dynamics of the system is time-continuous - that the function 
F used for prediction should be invertible. The problem then becomes that of build- 
ing an approximation scheme specifically designed for invertible maps. The main 
drawback of standard approximation schemes is that they are based on summing 
basis functions to build an approximation. However, this operation does not pre- 
serve invertibility. Using the operation of composition instead of addition, we are 
able to guarantee invertibility. We will thus build approximation schemes based 
on composition of invertible basis functions. In the second section, we will analyze 
those compositions within the framework of Lie algebra theory. Starting from a 
method from numerical analysis we will be able to derive a new approach to the 
prediction of nonlinear systems. In section three, this new method will be presented 
in a neural-like form and illustrated by an example. We will also present a general 
model for approximation which we call "MLP in dynamics space". Finally, we will 
conclude. 

1.1    Invertibility of Dynamical Systems 
The systems considered here are denned by an ordinary differential equation (ODE) 
on some rc-dimensional manifold M. We follow the differential geometric description 
of dynamical systems [2] and assume the standard smoothness assumptions. For 
each initial condition xo, we can solve the initial value problem. We then collect all 
those solutions in one function $(xo,t) which gives the solution of the ODE as a 
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function of the initial condition: 

f i = /(*(*)) 
< => x(t) = $(x0,t) (1) 
[  x{0) = x0 

$ is called the flow of the dynamical system. The flow is a remarkable object which 
possesses the group property. We refer the reader to [4] for a general presentation 
of the group theoretic approach to dynamical systems. If we assume, for simplicity, 
that the flow is defined for all times, the group property writes as follows: 

$  :  M xIR-> M 

(2) 
<!>(x,t + s) = $($(x,t),s),   Vi,s6lR 

As we will see, this gives the flow the structure of a group. We define the time-tf 
map as 

ip\x0) = *(x0,t) (3) 

This map (p* associates to any initial condition its image under the flow of the 
differential equation after a given time t. The map ip* is a map from the manifold 
M into itself. Using the group property of the flow, we can deduce the properties 
of ip: 

<P* o<ps(x0) = $($(x0,s),t) = $(x0,t + s) = <ft+s(x0)     composition 
tp° = I <= <p°(x0) = $(zo, 0) = x0 = I(x0) identity (4) , 
ip* o ip-f(x0) = $(x0, 0) = a?o = I(x0) => ip-1 = {^Y1    inverse 

Moreover, if/ is C then tp is C. Hence, since <p is a smooth invertible map with a 
smooth inverse, ip is a diffeomorphism. Furthermore, the properties of (p show that 
{*?*} is a group. We therefore say that a flow $(x,t) is a one-parameter group of 
diffeomorphisms <p%. 

1.2    Dynamical System Prediction 
Even if we assume that the underlying dynamics of the system is governed by anN 

ODE, the system is generally observed only at discrete time-intervals. So, if we 
choose a sampling period At, we can assume a functional relationship between the 
current state and the next sample. The system becomes of the form: 

x((k + l).At) = F(x{k.At)),       x(k)eM (5) 

And, from what we have shown before, we see that F is a diffeomorphism as 

H-) = <PA\-) (6) 
The following figure (Fig. 1) summarizes those observations. On the left we con- 
sider a square grid of initial conditions. We let each point of that grid follow its 
trajectory for a time-interval Al After this time, all the points of the grid have 
moved and the shape of the grid has changed. The diffeomorphism <pAt is that 
transformation from the manifold (here, IR2) into itself which maps the square grid 
on the left into the deformed grid on the right. One can see that this transformation 
is smooth and invertible, hence a diffeomorphism. So, the question of predicting a 
continuous-time system observed at discrete time-intervals becomes one of how we 
can approximate those diffeomorphisms which arise from the sampling of an ODE. 
The basic idea is that the set of all C diffeomorphisms is also a group. In a group, 
the natural operation is the composition of the elements of the group. While most 
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Figure    1    Diffeomorphic   transforma- 
tion of a square grid after one time-step. 

x(k + l) 
t 

exp(uj22 • M) . M022J 

t 
exp(ui2i • A\) ■ rwaij 

i 
e*p(u>l2 • M) ■ rwiaj 

t 
exp(tun • Ai) , (^11) 

t 
x(k) 

Figure 2    Implementation of the com 
position network. 

standard approximation schemes are based on the summation of some basis func- 
tions, this operation does not preserve the property of being a diffeomorphism. On 
the other hand, composition does preserve this property, so we propose to build an 
approximation scheme based on composing basis functions instead of adding them. 

2    Lie Algebra Theory 
Lie algebra theory has a long history in physics, mostly in the areas of classical 
mechanics [1] and partial differential equations [8]. It is also an essential part of 
nonlinear system theory [5]. Our approach to system prediction can be best cast in 
this framework. A Lie algebra is a vector space where we define a supplementary 
operation: the bracket [.,.] of two elements of the algebra. The bracket is an oper- 
ation which is bilinear, antisymmetric and satisfies the Jacobi identity [8]. In the 
case where the Lie algebra is the vector space of all C vector fields, the time-t map 
ipx plays a very important role. If the vector field is A, we define the exponential 
map as follows: exp(t.A) = ip*. This notation is an extension of the case where the 
vector field is linear in space and where the solution is given by exponentiation of 
the matrix. The exponential is thus a mapping from the manifold into itself. And 
this map depends on the underlying vector field A and changes over time. From 
here on, the product of exponentials will denote the composition of the maps. One 
can then define the Lie bracket by 

d2 

exp(-s.B). exp(-t.A). exp(s.B). exp(t.A) (7) [A,B] = 
ds.dt 

In the case where the manifold is IRn, the bracket can be further particularized to 

i=i 
dxi 

(8) 

2.1     The Baker-Campbell-Hausdorff Formula 
The Baker-Campbell-Hausdorff (BCH) formula gives an expansion for the product 
of the exponentials of two elements of the Lie algebra, see [6]: 

exp(^). exp(S) = exp(A + B+\[A,B} + ±{[A, [A, B}} - [B, [B, A]}) + ...)   (9) 

The problem of predicting a dynamical system with vector field X then becomes 
that of building an approximation for exp(Ai.X) as we have that x(k + 1) = 
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exp(At.X)[x(k)]. This problem has recently been the focus of much attention in the 
field of numerical analysis for the integration of Hamiltonian differential equations 
[6] [7]. Suppose that the vector field X is of the form X = A + B where we can 
integrate A and B directly. We can use the BCH formula to produce a first-order 
approximation to the exponential map: 

BCH : exp(At.X) = exp(At,A). exp(Af .5) + o(M2) (10) 

This is the essence of the method as it shows that one can approximate an expo- 
nential map (that is the map arising from the solution of an ODE) by composing 
simpler maps. By repeated use of the BCH formula, we can show that the following 
leapfrog scheme is second-order. 

Leapfrog : exp(AlX) = exp(-.A). exp(At.B). exp(-.A) + o(At3)       (11) 

Using this leapfrog scheme as a basis element for further leapfrog schemes, Yoshida 
[9] showed that it was possible to produce an approximation to exp(At.X) up to 
any order. Forest and Ruth [3] showed that approximations could be built for more 
than two vector fields. Combining the two we can state that it is possible to build an 
approximation to the solution of a linear combination of vector fields as a product 
of exponential maps: 

X = J2T=1ai.Ai 

=> 3wij : exp(At.X) = Y\j=1 UT=i exp(Wij .At.Ai) + o(AtP+1) ^ 

3    Network Implementation 
Such an approximation scheme can be easily implemented as a multilayer network 
as can be seen in the following figure (Fig. 2). The problem of predicting the system 
can now simply be solved by minimizing the prediction error of the model by tuning 
the weights W{j using some gradient-based optimization technique. 

3.1 Example 
We will now present an example to illustrate how this method can be applied. We 
will do this by looking at the Van den Pol oscillator. This system can be written as 
a first-order system in state-space form which can be seen as a linear combination 
of two vector fields Ai,Ä2 which can be solved analytically: 

I) = (i.) * --((i-O = *+•>■*•  <"> 
One can then build a predictor according to the architecture just presented (Fig. 2), 
simply choosing an appropriate number of layers. One then finds the appropriate 
weights W{j by minimizing the error on the training set. One interesting property 
of this method is that we are able to use the a priori knowledge we have about the 
system. Such a feature is uncommon in the field of system prediction using neural 
networks. This method allowed us to build a predictor for the Van der Pol oscillator 
in the case where the parameter a was unknown. We also produced a similar result 
for the Lorenz attractor. 

3.2 MLP in Dynamics Space 
If we decide to approximate the vector field of our system by a multi-layer per- 
ceptron, one can derive a composition network to implement this. The form of the 
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vector field is 
n 

X{x) = J2 Cj .*& .x + bj0) = J2 A?'bi(x) (14) 
j=i i=i 

where a(x) =  tanh(a;) and Cj,bj 6 IR +1,j = l,,..,n. 
But the differential equation x = a(x) can be solved explicitly in the one-dimensional 
case. We can use this to explicitly integrate the multidimensional system x = 

Ac'b(x) for any value of the parameters Cj, bj. So, we can design a network of the 
following form: 

x(k + 1) = F{x(k)) = exp(wk.A
Stf*) o ... o exp^i.^1'*1)^*)) (15) 

We call this an "MLP in dynamics space" as the MLP is implicitly used to parametrize 
the vector field. Further work will be devoted to finding computationally efficient 
methods for the training of such a network. 

4    Conclusions 
We have studied the problem of predicting an autonomous continuous-time non- 
linear dynamical system from discrete-time measurements of its state. We showed 
that because the predictor must have the form of an invertible map, it is interesting 
to have an approximation scheme which has this property. This can be achieved 
by using compositions instead of additions in the approximation. The theory of Lie 
algebras provided the framework to develop such a method. We showed that this 
resulted in a multi-layer architecture and we illustrated it by a simple example. 
Further, the method was extended to some form of "MLP in dynamics space". 
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We present here a method for the study of stochastic neurodynamics in the master equation frame- 
work. Our aim is to obtain a statistical description of the dynamics of fluctuations and correlations 
of neural activity in large neural networks. We focus on a macroscopic description of the network 
via a master equation for the number of active neurons in the network. We present a systematic 
expansion of this equation using the "system size expansion". We obtain coupled dynamical equa- 
tions for the average activity and of fluctuations around this average. These equations exhibit 
non-monotonic approaches to equilibrium, as seen in Monte Carlo simulations. 

Keywords: stochastic neurodynamics, master equation, system size expansion. 

1    Introduction 
The correlated firing of neurons is considered to be an integral part of informa- 
tion processing in the brain[12, 2]. Experimentally, cross-correlations are used to 
study synaptic interactions between neurons and to probe for synchronous net- 
work activity. In theoretical studies of stochastic neural networks, understanding 
the dynamics of correlated neural activity requires one to go beyond the mean field 
approximation that neglects correlations in non- equilibrium states[8, 6]. In other 
words, we need to go beyond the simple mean-field approximation to study the 
effects of fluctuations about average firing activities. 
Recently, we have analyzed stochastic neurodynamics using a master equation[5, 8]. 
A network comprising binary neurons with asynchronous stochastic dynamics is 
considered, and a master equation is written in "second quantized form" to take 
advantage of the theoretical tools that then become available for its analysis. A 
hierarchy of moment equations is obtained and a heuristic closure at the level of 
second moment equations is introduced. Another approach based on the master 
equation via path integrals, and the extension to neurons with a refractory state 
are discussed in [9, 10]. 
In this paper, we introduce another master equation based approach to go beyond 
the mean field approximation. We concentrate on the macroscopic behavior of a 
network of two-state neurons, and introduce a master equation for the number of 
active neurons in the network at time t. We use a more systematic expansion of 
the master equation than hitherto, the "system size expansion" [11]. The expansion 
parameter is the inverse of the total number of the neurons in the network. We 
truncate the expansion at second order and obtain an equation for fluctuations 
about the mean number of active neurons, which is itself coupled to the equation 
for the average number of active neurons at time t. These equations show non- 
monotonic approaches to equilibrium values near critical points, a feature which is 
not seen in the mean field approximation. Monte Carlo simulations of the master 
equation itself show qualitatively similar non-monotonic behavior. 

290 
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2    Master Equation and the System Size Expansion 
We first construct a master equation for a network comprising N binary elements 
with two states, "active" or firing and "quiescent" or non-firing. The transitions 
between these states are probabilistic and we assume that the transition rate from 
active to quiescent is a constant a for every neuron in the network. We do not 
make any special assumption about network connectivity, but assume that it is 
"homogeneous", i.e., all neurons are statistically equivalent with respect to their 
activities, which depend only on the proportion of active neurons in the network. 
More specifically, the transition rate from quiescent to active is given as a function 
<j) of the number of active neurons in the network. Taking the firing time to be 
about 2ms, we have a « 500s-1. For the transition rate from quiescent to active, 
the range of the function is « 30 - 100s_1 reflecting empirically observed firing- 
rates of cortical neurons. With these assumptions, one can write a master equation 
as follows. 

-i-PN[n, t] = a(nPN[n, t] - (n + l)PN[(n + 1), t]) 
at 

+    N(l - ±m±)PN[n, t] - N(l - ^l)(t>(^)PN[(n - 1), t],   (1) 

where PN[TI, t] is the probability that the number of active neurons is n at time t. 
(We absorbed the parameter representing total synaptic weight into the function 
(j>.) This master equation can be deduced from the second quantized form cited 
earlier, which will be discussed elsewhere. The standard form of this equation can 
be rewritten by introducing the "step operator", defined by the following action on 
an arbitrary function of n: 

£f(n) = f(n + l),    S-lf{n) = f(n - 1) (2) 

In effect, £ and £_1 shift n by one. Using such step operators, Eq. (1) becomes 

jtPN[n, t} = (£- l)rnPN[n, t] + (£~l - l)gnPN[n, t], (3) 

where rn = an, and gn = (N - n)^(^). This master equation is non-linear since 
gn is a nonlinear function of n. Linear master equations, in which both rn and gn 

are linear functions of n, can be solved exactly. However, in general, non-linear 
master equations cannot be solved exactly, so in our case, we seek an approximate 
solution. 
We now expand the master equation to obtain approximate equations for the 
stochastic dynamics of the network. We use the system size expansion, which is 
closely related to the Kramers-Moyal expansion, to obtain the "macroscopic equa- 
tion" and time-dependent approximations to fluctuations about the solutions of 
such equation. In essence, this method is a way to expand master equations in 
powers of a small parameter, which is usually identified as the inverse size of the 
system. Here, we identify the system size with the total number of neurons in a 
network. 
We make a change of variables in the master equation given in (3). We assume that 
fluctuations about the macroscopic value of n are of order M1/2). In other words, 
we expect that Ppf(n,t) will have a maximum around the macroscopic value of n 
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with a width of order M1/2). Hence, we set 

n(t) = Nß(t) + N^(t) (4) 

where \i satisfies the macroscopic equation and £ is a new variable, whose distribu- 
tion is equivalent to PN(n, t), i.e., PN(n, t) = E((, t). We expand the step operators 
as: 

f = i + *-»»+*-.£...,   f- = i-Ar»»+ff-'£...     (5) 
as £ shifts £ by £ + JV(""1/2). With this change of variables, the master equation is 
given as follows: 

+Ar(_Ar-iA + i #-i J£ .. .)[l _ (/1 + TV" ifl]^ + J\T ^p«, *)       (6) 

Collecting terms, we obtain, to order iV^1/2), 

-£ = ^-(i-ti)d>(ii) (7) 
This is the macroscopic equation, which can be obtained also by using a mean-filed 
approximation to the master equation. We make fi satisfy this equation so that 
terms of order JV^1/2) vanish. 
The next order is N^°\ which gives a Fokker-Planck equation for the fluctuation 

öin = ~ö?[_^ " MA + (1" »M'WF1 + l^e + (1~ A0#A0]n   (8) 
We note that this equation does not depend on the variable N justifying our as- 
sumption that fluctuations are of order iV^1/2). 
We now study the behavior of the equations obtained through the system size 
expansion to the second order. ./.From Eqs. (7) and (8), we obtain 

dx i 
— = -aX + (1 - X)HX ~V) + V(1-X + r])<t> (x ~ v) (9) 

— = -ar] - r)<t>(x -r)) + T)(l-X + r))<j>'(x ~ *l) (10) 

where x = y = V + V, and V = N~^. Equations (9) and (10) can be numerically 
integrated. Some examples are shown in Figure 1(B). For comparison, we plot 
solutions of the macroscopic equations with the same parameter sets in Figure 
1(A). We observe a physically expected bifurcation into an active network state 
with decreasing a, for either approximation. However, different dynamics are seen 
as one approaches bifurcation points. In particular, the coupled-equations exhibit 
a non-monotonic approach to the limiting value. The validity of the system size 
expansion is limited to the region not close to the bifurcation point, as discussed 
in the last section. The point is that by incorporating higher order terms into the 
approximation, we can extend its validity to a domain closer to the bifurcation 
point and thereby better capture stochastic dynamical behavior of such networks. 
Monte Carlo simulations [3] of the two dimensional network based on (1) with 2500 
neurons with periodic boundary conditions were performed. The connectivity is 
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set up as follows: a neuron is connected to a specified number k of other neurons 
chosen randomly from the network. The strength of connection is given by the 
Poisson form: 

(11) s\ 
where rzj is the distance between two neurons, and WQ and s are constants. We 
show in Figure 2 the average behavior of x f°r (A) k = 200 (k/N = 0.08) and (B) 
k = 15m (k/N = 0.006). The non-monotonic dynamics is more noticeable in the 
low connectivity network. More quantitative comparisons between simulations and 
theory will be carried out in the future. The qualitative comparison shown here, 
however, indicate the need to model fluctuations of total activity near critical points 
in order to capture the dynamics of sparsely connected networks. This is consistent 
with our earlier investigations of a one-dimensional ring of neurons via a master 
equation. 

A 

(b) M 

10      12      14 

Figure 1 Comparison of solutions of (A) the macroscopic equation, and (B) (23) 
and (24). The parameters are set at ß = 15, 9 - 0.5 and a = (a) 0.2, (b) 0.493, 
and (c) 0.9. The initial conditions are x = 0.5, and r\ =(A)0.01, and (B) 0. 

3    Discussion 
We have here outlined an application of the system size expansion to a master 
equation for stochastic neural network activity. It produced a dynamical equation 
for the fluctuations about mean activity levels, the solutions of which showed a non- 
monotonic approach to such levels near a critical point. This has been seen in model 
networks with low connectivity. Two issues raised by this approach require further 
comment: (1) In this work we have used the number of neurons in the network 
as a expansion parameter. Given the observation that the overall connectedness 
affects the stochastic dynamics, a parameter representing the average connectivity 
per neuron may be better suited as an expansion parameter. We note that this 
parameter is typically small for biological neural networks. (2) There are many 
studies of Hebbian learning in neural networks[l, 4, 7]. In such studies attempts 
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A 

(b) 

10        30        ]0       40        SO        60 

Figure 2 Comparisons of Monte Carlo simulations of the master equation with 
high (k = 200) and low (A: = 15) connectivities per neuron. The parameters are set 
at ß = 15, S = 0.5, w0 = 100.0, s = 3.0, and for (A) a = (a) 0.05, (b) 0.1, and 
(c) 0.4, and for (B) a = (a) 0.001, (b) 0.05, and (c) 0.2. The initial condition is a 
random configuration. 

have also been made to incorporate correlations of neural activities. It is of interest 
to see if we can formulate such attempts within the framework presented here. 
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In the Bayesian framework, predictions for a regression problem are expressed in terms of a 

distribution of output values. The mode of this distribution corresponds to the most probable 

output, while the uncertainty associated with the predictions can conveniently be expressed in 

terms of error bars given by the standard deviation of the output distribution. In this paper we 

consider the evaluation of error bars in the context of the class of generalized linear regression 

models. We provide insights into the dependence of the error bars on the location of the data 

points and we derive an upper bound on the true error bars in terms of the contributions from 

individual data points which are themselves easily evaluated. 

1 Introduction 
Many applications of neural networks are concerned with the prediction of one or 
more continuous output variables, given the values of a number of input variables. 
As well as predictions for the outputs, it is also important to provide some measure 
of uncertainty associated with those predictions. 
The Bayesian view of regression leads naturally to two contributions to the error 
bars. The first arises from the intrinsic noise on the target data, while the second 
comes from the uncertainty in the values of the model parameters as a consequence 
of having a finite training data set [1, 2]. There may also be a third contribution 
which arises if the true function is not contained within the space of models under 
consideration, although we shall not discuss this possibility further. 
In this paper we focus attention on a class of universal non-linear approximators 
constructed from linear combinations of fixed non-linear basis functions, which we 
shall refer to as generalized linear regression models. We first review the Bayesian 
treatment of learning in such models, as well as the calculation of error bars [3]. 
Then, by considering the contributions arising from individual data points, we pro- 
vide insight into the nature of the error bars and their dependence on the location 
of the data in input space. This in turn leads to the key result of the paper which is 
an upper bound on the true error bars expressed in terms of the single-data-point 
contributions. Our analysis is very general and is independent of the particular form 
of the basis functions. 

2 Bayesian Error Bars 
We are interested in the problem of predicting the value of a noisy output variable 
t given the value of an input vector x. Throughout this paper we shall restrict 
attention to regression for a single variable t since all of the results can be extended 
in a straightforward way to multiple outputs. To set up the Bayesian formalism we 
begin by defining a model for the distribution of t conditional on x. This is most 
commonly chosen to be a Gaussian function in which the mean is governed by the 
output y(x;w) of a network model, where w is a vector of adaptive parameters 

295 
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(weights and biases). Thus we have 

where crl is the variance of the distribution. 
In the Bayesian framework, our state of knowledge of the weight values is expressed 
in terms of a distribution function over w. This is initially set to some prior distri- 
bution, from which a corresponding posterior distribution can be computed using 
Bayes' theorem once we have observed the training data. A common choice of prior 
is a Gaussian distribution of the form 

1 '"|l/2 f     1  „T, K») = J^m IST'exp |--«, 'Swj (2) 

where M is the total number of weight parameters, S is the inverse covariance 
matrix of the distribution, and \S\ denotes the determinant of S. Since the param- 
eters in S control the distribution of other parameters they are often referred to as 
hyperparameters. The noise variance a\ is commonly also called a hyperparameter 
since, in a Bayesian framework, it can be treated using similar techniques to S. 
Here we shall assume that the values of o~l and S are fixed and known. 
The training data set D consists of N pairs of input vectors x" and corresponding 
target values tn where n = l,...,N. From this data set, together with the noise 
model (1), we can construct the likelihood function given by 

P(D\W) =  II P(H*n,«0 =  {2Jl)m exp |-^ ^{y(an; „,) _ fn}2|        (3) 

We can then combine the likelihood function and the prior using Bayes' theorem to 
obtain the posterior distribution of weights given by p(w\D) = p(D\w)p(w) / p(D). 
The predictive distribution of t given a new input x can then be written in terms 
of the posterior distribution in the form 

p(t\x,D)=     p(t\x,w)p(w\D)dw (4) 

where p(t\x,w) is given by (1). 
Throughout this paper we consider a particular class of non-linear models of the 
form 

M 

y(x;w) = Y^Wj(j)j(x) = (i>T(x)w (5) 

i=i 
which we shall call generalized linear regression models. Here the <f>j{x) are a set 
of fixed non-linear basis functions, with generally one of the basis functions <j>i = 
1 so that wi plays the role of a bias parameter. Such models possess universal 
approximation capabilities for reasonable choices of the <f>j(x), while having the 
advantage of being linear in the adaptive parameters w. 
Since (5) is linear in w, both the noise model p(t\x, w) and the posterior distribution 
p(w\D) will be Gaussian functions of w. It therefore follows that, for a Gaussian 
prior of the form (2), the integral in (4) will be Gaussian and can be evaluated 
analytically to give a predictive distribution p{t\x,D) which will be a Gaussian 
function oft. The mean of this distribution is given by y(x\WMp) where W>MP is 
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found by minimizing the regularized error function 

-ij f> T(x")w -tn}2 + \w ^Sw (6) 
1<T" „=i i 

and is therefore given by the solution of the following linear equations 

AWMP = a"2* Tt (7) 

where t is a column vector with elements tn, A is the Hessian matrix given by 

1    N 1 

a" n = l <T" 

and # is the N x M design matrix with elements $nj = <j>j{xn). Solving for U>MP 

and substituting into (5) we obtain the following expression for the corresponding 
network output 

yMp(x) = <l>r(x)w = <T;2<pT(x)A-1$Tt (9) 

The covariance matrix for the posterior distribution p(w\D) is given by the inverse 
of the Hessian matrix. Together with (4) this implies that the total variance of the 
output predictions is given by 

a\x) = al + al(x) = cr2v + <j> T(x)A~l<j>{x) (10) 

Here the first term represents the intrinsic noise on the target data, while the second 
term arises from the uncertainty in the weight values as a consequence of having a 
finite data set. 

3    An Upper Bound on the Error Bars 
We first consider the behaviour of the error bars when the data set consists of a 
single data point. As well as providing important insights into the nature of the 
error bars, it also leads directly to an upper bound on the true error bars. 
In the absence of data, the variance is given from (8) and (10) by 

CT2(x)^<Tl + (f>T(x)S-1<t>(x) (11) 
where the second term, due to the prior, is typically much larger than the noise 
term a2. If we now add a single data point located at x° then the Hessian becomes 

S+a~2(p(x°)4>    (x°). To find the inverse of the Hessian we make use of the identity 

/               T\-i            ,      (M-1v)(vTM-1) ,    N 
(M + vvT)     =M~1-± ^ = '- (12) 

which is easily verified by multiplying both sides by (M + vv ). The variance at 
an arbitrary point x for a single data point at x° is then given by 

^M^tClMl-^ (13) 

where we have defined the prior covariance function 

C(x,x,) = ({>T(x)S-1<f>(x') (14) 

The first two terms on the right hand side of (13) represent the variance due to 
the prior alone, and we see that the effect of the additional data point is to reduce 
the variance from its prior value, as illustrated for a toy problem in Figure 1. From 
(13) we see that the length scale of this reduction is related to the prior covariance 
function C(x,x'). 
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If we evaluate a2(x) in (13) at the point x° then we can show that the error 
bars satisfy the upper bound a2(x°) < 2a2.. Since the noise level is typically much 
less than the prior variance level, we see that the error bars are pulled down very 
substantially in the neighbourhood of the data point. Again, this is illustrated in 
Figure 1. 
We now extend this analysis to provide an upper bound on the error bars. Suppose 
we have a data set consisting of N data points (at arbitrary locations) and we add 
an extra data point at xN+1. Using (8) the Hessian AN+I for the N +1 data points 
can be written in terms of the corresponding Hessian AN for the original N data 
points in the form 

AN+1 =AN + a;24>{xN+1)4> T(xN+1) (15) 

Using the identity (12) we can now write the inverse of A;v+i in the form 

AN
1<l,(xN+')4,T(xN+1)AN

1 

crl + ^ixK+^A-^^x^) 
Substituting this result into (10) we obtain 

2        ,    , 2,    , \4>T(XN+1)AN
14>(*)}2 

<TN+I(
X

) = <TN(
X

) L T ;  (17) + <r2 + <f>T(x^)AN
14>(x^) K    ' 

From (8) we see that the Hessian AN is positive definite, and hence its inverse will 
be positive definite. It therefore follows that the second term on the right hand side 
of (17) is negative, and so we obtain 

VN+I(X) < <rrt(x) (18) 
This represents the intuitive result that the addition of an extra data point cannot 
lead to an increase in the magnitude of the error bars. Repeated application of this 
result shows that the error bars due to a set of data points will never be larger than 
the error bars due to any subset of those data points. 
It can also be shown that the average change in the error bars resulting from the 
addition of an extra data point satisfies the bounds 

(Aa2(x)) = 1 £ K+1(x") - *%(x»)] > -^ (19) 
n = l 

A further corollary of the result (18) is that, if we consider the error bars due 
to each of a set of N data points individually, then the envelope of those error 
bars constitutes an upper bound on the true error bars. This is illustrated with a 
toy problem in Figure 1. The contributions from the individual data points are 
easily evaluated using (13) and (14) since they depend only on the prior covariance 
function and do not require evaluation or inversion of the Hessian matrix. 

4     Summary 
In this paper we have explored the relationship between the magnitude of the 
Bayesian error bars and the distribution of data in input space. For the case of a 
single isolated data point we have shown that the error bar is pulled down close to 
the noise level, and that the length scale over which this effect occurs is characterized 
by the prior covariance function. From this result we have derived an upper bound 
on the error bars, expressed in terms of the contributions from individual data 
points. 
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Figure 1 A simple example of error bars for a one-dimensional input space and 
a set of 30 equally spaced Gaussian basis functions with standard deviation 0.07. 
There are two data points at x — 0.3 and x = 0.5 as shown by the crosses. The 
solid curve at the top shows the variance c2 (x) due to the prior, the dashed curves 
show the variance resulting from taking one data point at a time, and the lower 
solid curve shows the variance due to the complete data set. The envelope of the 
dashed curves constitutes an upper bound on the true error bars, while the noise 
level (shown by the lower dashed curve) constitutes a lower bound. 
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In this paper an upper bound of the capacity or Vapnik-Chervonenkis dimension of structured 

multi-layer feedforward neural networks with shared weight vectors is derived. It mainly depends 

on the number of free network parameters analogous to the case of feedforward networks with 

independent weights. This means that weight sharing in a fixed neural architecture leads to a 
significant reduction of the upper bound of the capacity. 

1 Introduction 
Structured multi-layer feedforward neural networks gain more and more importance 
in speech- and image processing applications. Their characteristic is that a-priori 
knowledge about the task to be performed is already built into their architecture 
by use of nodes with shared weight vectors. Examples are time delay neural net- 
works [10] and networks for invariant pattern recognition [4, 5]. One problem in 
the training of neural networks is the estimation of the number of training sam- 
ples needed to achieve good generalization. In [1] is shown that for feedforward 
architectures this number is correlated with the capacity or Vapnik-Chervonenkis 
dimension of the architecture. So far an upper bound for the capacity has been de- 
rived for two-layer feedforward architectures with independent weights: it depends 
with ö(^ ■ In £) on the number w of connections in the architecture with q nodes 
and a output elements. In this paper we focus on the calculation of upper bounds 
for the capacity of structured multi-layer feedforward neural architectures. First we 
give some definitions and introduce a new general terminology for the description 
of structured neural networks. In section 3 we apply this terminology on structured 
feedforward architectures first with one layer then with multiple layers. We show 
that they can be transformed into equivalent conventional multi-layer feedforward 
architectures. By extending known estimations for the capacity we achieve upper 
bounds for the capacity of structured neural architectures which increase with the 
number of independent network parameters. This means that weight sharing in a 
fixed neural architecture leads to a significant reduction of the upper bound of the 
capacity. The capacity mainly depends on the number of free parameters analogous 
to the case with independent weights. At the end we comment the results. 

2 Definitions 
A layered feedforward network architecture Af*a is a directed acyclic graph with a 
sequence of e input nodes, r — 1 (r £ IN) intermediate (hidden) layers of nodes, and 
a final output layer with a nodes. Every node is connected only to nodes in the 
next layer. To every node k with indegree nglNa triplet (wk,sk,fk) is assigned, 
consisting of a weight vector wk E Mn, a threshold value sk G IR, and an activation 
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function fk : IR, —► {0,1}. The activation function for all but the input nodes 
is the hard limiter function, and without loss of generality we choose s = 0 for 
the threshold values of all nodes. We define an architecture Afl a with given triplets 
(w, s, /) for all nodes as a net JVJ a..With the net itself a function F : IRe i-+ {0, l}a 

is associated. 
Let 5 be a fixed (m x e)-input-matrix for Afl a. All nets N£a that map S on the 
same (m x a)-output-matrix T are grouped in a net class of A/]f related to S. A(5) 
is the number of net classes of Afl a related to S. The growth function g(m) of an 
architecture Afl a with m input vectors is the maximum number of net classes over 
all (m x e)-input matrices S. Now we consider the nodes of the architecture Afl a 

within one layer (except the input layer) with the same in degree d 6 IN. All nodes 
k whose components of their weight vectors Wk E IRd can be permuted through a 
permutation Wk : IRd —+ IRd so that iTk(wk) = w Vfc for some vector w e IRd are 
elements of the same node class Kw We call an architecture Afl a structured if at 
least one node class has more than one element. Then the architecture with b node 
classes KWi(i = 1,..., 6) is denoted Afla(KWl,..., Kwb)- 
The Vapnik-Chervonenkis dimension dye [9] of a feedforward architecture is defined 

by dvc := sup {m G IN | g(m) = 2ma}. Let Q := {m G IN ^ > |} . Then 

c := supQ for Q ^ 0, or c := 0 for Q = 0, is an upper bound for the Vapnik- 
Chervonenkis dimension and is also defined as capacity in [2, 7]. 

3    Upper Bounds for the Capacity 
In this section is shown how structured architectures can be transformed into 
conventional architectures with independent weights. The upper bounds for the 
capacity of these conventional architectures then are applied to the structured 
architectures. A basic transformation needed in the following derivations is the 
transformation of structured one-layer architectures N{Kw\, • • •, Kwi,) with input 
nodes of outdegree > 1 and input vectors X\ into structured one-layer architectures 
Af'(Kwi, • • • j Kwh) wi*h input nodes of outdegree 1 only and dependent input vec- 
tors x\ (I = l,...,m): Every input node with outdegree z > 1 is replaced by 
z copies of that input node. The outgoing edges of the input node are assigned 
to the copies in such a way that every copy has outdegree 1. The elements of 
the input vectors are duplicated in the same way. By permuting the input nodes 
and the corresponding components of the input vectors we get the architecture 
Af"(K-wi, ■ ■ ■, Kwi,) without any intersecting edges. 

3.1     Structured One-layer Architectures 
I) First we focus on structured one-layer architectures J\f^a(Kw) with a set 
I := {«!,... ,ue] of e input nodes and the output layer K := {k\,..., ka}. Let 
Kw := K be the only node class. All nodes in Kw = K have the same indegree 
d£ IN. 

Theorem 1 Let a structured one-layer architecture Af^ a(Kw) with only one node 
class Kw = K be given. Suppose d G IN as the indegree of all nodes in Kw The 
number of input nodes is e < a ■ d. For m input vectors of length e an upper bound 
for the growth function g(m) of the structured one-layer architecture Af^a(Kw) is 



302 

given by 
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C(m.a)d):=2.|:(ra"""1). 

Proof At first we examine structured one-layer architectures with outdegree 1 for 
every input node, equivalent to architectures M\<a{Kw) with e = a ■ d input nodes. 
By permuting the input nodes and the corresponding components of the input 
vectors we get the architecture Af"(Kw). Without loss of generality we consider 
the permutation 7r of the node class Kw as the identity function. Thus we have 
w = w(ki) = ... = w(ka) £ IRd for the a weight vectors (cf. Figure 1 a)). For m 
fixed input vectors x, := (xj,..., xf) £ JRad (x) <E IRd, / = 1,..., m, i = 1,..., a) 
let S be an (m x a-d)-input matrix for AQa(Kw): 

Xi 

S:= 

A given weight vector iui g IRd defines a function Fi :   m,ad -> {0,1}" or a net 

a)   äA äA ^A 
/TMK) /r\dk^ ...  /r\{to 

gji—r—1! 
U2d 

i::::::U3::::::nzn3::::::CD 

b) jjA 

«1«. 

xl xf 
]:::::;B 

2? 
gf I    I—i: :□ 

Figure   1    a)  Structured architecture N(KW)" with an input vector x;   (/   G 
{1,.. .,m}).b) Architecture ^Aj j with the corresponding a input vectors x\,.. .,xf. 

JVi, respectively. Let u;2 be a weight vector that defines a function F2 (a net N2) 
different to Fx on the input matrix S. Thus these two nets are elements of different 
net classes of Af^a(Kw) related to the input matrix S. Now we consider the one- 
layer architecture Af}x, consisting of a single node with in degree d. By rearranging 
the m rows of the input matrix S for Af"(Kw) to one column of the m-a input 
vectors x) £ IRd (/ = 1,..., m, i = 1,..., a) we derive the (m-a x d)-input matrix 
SfoiAQA (cf. Figure lb)): 

/   *\   \ 

S := (1) 

On Afj j the weight vector wx (w2) defines a function J\ : IRd -► {0,1} (F2 : Md -► 

{0,1}) or a net JVX (Ar
2), respectively. Because of Fi(xs) jt F2(xs) for at least one 

input vector xs (s € {1,..., m}) and definition (1) the nets TV! and N2 are elements 
of different net classes of Afj1 related to the input matrix 5. Summarizing we get: 
if two nets of the architecture Af} a(Kw) are different related to any input matrix 
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S we can define an input matrix S for A/} x by (1), so that the corresponding nets 
are different, too. For the number of net classes this yields 

A(5)  < A(5) . (2) 

With the results of [7] the growth function of the architecture Af^ is given by 
C{m-a,d). From (2) also follows that this is an upper bound for the growth func- 
tion of the structured one-layer architecture Af"(Kw) or Nlda{Kw) respectively: 
g{m) < C(m-a,d). The inequation g(m) > C(m-a,d) can easily be verified in a 
similar way, so it yields g(m) = C(m-a,d) for the growth function of structured 
one-layer architectures Af^a(Kw) with outdegree 1 for every input node. 
Now we consider structured one-layer architectures Af^a(I<w) with outdegree z > 1 
for some input nodes. These architectures can be transformed into structured one- 
layer architectures N"(KW) with e = a ■ d input nodes all with outdegree 1. But 
the input vectors of the input matrix for the transformed architecture N"(KW) 
cannot be chosen totally independent. Thus, C(m-a,d) is an upper bound for the 
growth function of structured one-layer architectures J\fja(Kw) with exactly one 
node class Kw = K. n 

Remark 1 With [7] we find ^ as an upper bound for the capacity of structured 
one-layer architectures Mla(Kw) with exactly one node class Kw. 

II) Second we focus on structured one-layer architectures Af}a(Kwi, ■ ■ ■, Kwi) with 
o (2 < b < a) node classes K Wi ,■■■, KWi ■ These classes form the set K of the a 
output nodes: K = KwyÜ ■ ■ ■ UÄ'iuj,. 

Theorem 2 Assume a structured one-layer architecture J\f^a(Kwi, ■ ■-jKwt,) 

with e < YA=I 
afdi input nodes, a = Y%=i ai 0UlPui nodes, and b S IN (2 < b < a) 

node classes KWi («' = 1, ■••,&)• Let cti := \KWi\ be the sizes of the node classes 
Kwi, and d{ the indegrees of the nodes in KWi (i =l,...,b). For m input vectors 
the product 

b 

JJC(m-a;,dj) 
! = 1 

is an upper bound for the growth function ofJ\f^a(Kwi, ■ ■ ■, Kwi)- 

Proof At first we examine structured one-layer architectures Nla{KWl,..., Kwt) 

with e = 5Zi=i ai'di input nodes (all with outdegree 1) and an (m x e)-input ma- 
trix S. The a nodes in the output layer K are permuted so that we get the ordered se- 
quence K = {Kwi ,■■■, Kwt} with KWi := {k{,..., k'ai} (i = 1,..., 6). These per- 
mutations generate b structured one-layer sub architectures Nlia.{KWi) with e; := 
ai-di input nodes, a,- output nodes and (m x ej)-sub input matrices S' (i = 1,..., 6). 
With Theorem 1 we get gi(m) < C(m-ai,di) for the growth functions 3,(m) of 
these sub architectures. For the determination of the growth function g{m) of 
M^a(Kwi, ■ ■ ■, Kwi,) the 6 input matrices S' for the sub architectures can be cho- 

sen independently. Thus we get g(m) = ]\b
i=1 gi(m) < Y[b

=1 C(m-ai, d,). The result 
for structured one-layer architectures Af^a(KWi, ■■■, Kwi) with outdegree > 1 for 

some input nodes, equivalent to e < J2i=i afdi input nodes, follows in a similar 
way to Theorem 1. n 
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Theorem 3 For the capacity of a structured one-layer architecture 
•N'e,a(

Kw1,--.,Kwi) with b g IN (2 < b < a) node classes KW{ (i = 1,...,&), 

maximum indegree d > 2 for all nodes, maximum size a := \KWi \ of the node 

classes, and t := — > 2 we get 

otl,at 

Proof For the growth function g(m) of the architecture Afla(KWl,..., KWb) we 
get with the above definitions and Theorem 2: 

i b 

9(m) < JJCim-aiJi) < J\C{m-a,d) = C(m-a,d)b . 

This yields an upper bound for the capacity: c < sup | m € IN     c(~m'J*fi   > -\ . 

With some estimations and const := 2+2,'"^) it follows: 

m < const ■ ^r- ■ ln(tf) . 
a 

For details and further information see [8]. □ 

3.2    Structured Multi-layer Architectures 
Consider a structured r-layer architecture with e input nodes, a,j nodes in the 
hidden layers H> (j = l,...,r - 1) and a nodes in the output layer K. Let 
the layers W be the disjoint union of the bj < o,j node classes HWJ ,...,H   ; 

and the output layer the disjoint union of the node classes KWi (i = 1,..., 6). 

The number of node classes is J^jZl bi +b =: ß. The structured architecture is 
denoted by J^la{Hwx,..., KWi). A structured r-layer feedforward architecture 

■MZia(Hwi, ■ ■ -,Kwi) can be regarded as a combination of r structured one-layer 
feedforward architectures since the output matrices of each layer are the input ma- 
trices for the following layer. Thus, we get an upper bound for the growth function 
g{m) of Afla(Hwi,..., KWb) by multiplying the growth functions of the r struc- 
tured one-layer architectures (refer to Theorem 2): 

r-i / tj \      b 

9{m) < J]    l[C(m.c4,4)    -Jldm-a^d,) . (3) 
i=i V=i /    i=i 

With the maximum size a := max{ai,..., ah a\,..., oj-ij Gf the ß node classes, 

and the maximum indegree d of all nodes of the architecture 
Nlta{Hwi,..., KWb), C(m-a, d)ß is an upper bound for (3). 

Theorem 4 Let Afla(Hwi,..., KWb) be a structured r-layer feedforward architec- 

ture with ß > 2 node classes Hw[,..., KWh, d > 2 the maximum indegree of all 

nodes, a the maximum size of all ß node classes, andt:= ^f- > 2. For the capacity 
0f^e,a(Hw\, ■ ■ ■, KWb) we get 

\    a 
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Proof Analogous to the proof of Theorem 3. a 

An architecture J\f^a(Hwi,..., KWb) with Y^Z\ bj+b = Y^Zl aj + a node classes 
is equivalent to an architecture A/"Ja in which every node class has size 1. So the 
above upper bounds for the capacity hold good for conventional r-layer feedforward 

architectures, too. 

4    Conclusion 
By transforming architectures with shared weight vectors into equivalent conven- 
tional feedforward architectures and the extension of the definitions of the growth 
function and the capacity to multi-layer feedforward architectures we obtain estima- 
tions for the upper bounds of the capacity of structured multi-layer architectures. 
These upper bounds depend with 0(§ ■ lnf) on the number p of free parameters 
in the structured neural architecture with maximum size 5 of the ß node classes, 

i •— SLA > 2, and a nodes in the output layer. So weight sharing in a fixed neural 
architecture leads to a reduction of the upper bound of the capacity. The amount of 
the reduction increases with the extent of the weight sharing. With S = 1 the upper 
bounds hold good for conventional feedforward networks with independent weights, 
too. It is known that the generalization ability of a feedforward neural architecture 
improves within certain limits with a reduction of the capacity for a fixed number of 
training samples. As a consequence of our results a better generalization ability can 
be derived for structured neural architectures compared to the same unstructured 
ones. This is a theoretic justification for the generalization ability of structured 
neural architectures observed in experiments [5]. Further investigations focus on 
an improvement of the upper bounds, on the determination of capacity bounds 
for special structured architectures, and on the derivation of capacity bounds for 
structured architectures of nodes with continuous transfer functions [3, 6]. 
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We present an analytic solution to the problem of on-line gradient-descent learning for two-layer 

neural networks with an arbitrary number of hidden units in both teacher and student networks. 

The technique, demonstrated here for the case of adaptive input-to-hidden weights, becomes exact 
as the dimensionality of the input space increases. 

Layered neural networks are of interest for their ability to implement input-output 
maps [1]. Classification and regression tasks formulated as a map from an TV- 
dimensional input space £ onto a scalar £ are realized through a map C, = /j(£), 
which can be modified through changes in the internal parameters {J} specifying 
the strength of the interneuron couplings. Learning refers to the modification of 
these couplings so as to bring the map /j implemented by the network as close 
as possible to a desired map /. Information about the desired map is provided 
through independent examples (£",C"), with C = f{Sß) for all fi. A recently in- 
troduced approach investigates on-line learning [2]. In this scenario the couplings 
are adjusted to minimize the error after the presentation of each example. The re- 
sulting changes in {J} are described as a dynamical evolution, with the number of 
examples playing the role of time. The average that accounts for the disorder in- 
troduced by the independent random selection of an example at each time step can 
be performed directly. The result is expressed in the form of dynamical equations 
for order parameters which describe correlations among the various nodes in the 
trained network as well as their degree of specialization towards the implementa- 
tion of the desired task. Here we obtain analytic equations of motion for the order 
parameters in a general two-layer scenario: a student network composed of TV input 
units, K hidden units, and a single linear output unit is trained to perform a task 
defined through a teacher network of similar architecture except that its number 
M of hidden units is not necessarily equal to K. Two-layer networks with an ar- 
bitrary number of hidden units have been shown to be universal approximators [1] 
for 7V-to-one dimensional maps. Our results thus describe the learning of tasks of 
arbitrary complexity (general M). The complexity of the student network is also 
arbitrary (general K, independent of M), providing a tool to investigate realizable 
(K = M), over-realizable (K > M), and unrealizable (K < M) learning scenarios. 
In this paper we limit our discussion to the case of the soft-committee machine 
[2], in which all the hidden units are connected to the output unit with positive 
couplings of unit strength, and only the input-to-hidden couplings are adaptive. 
Consider the student network: hidden unit i receives information from input unit 
r through the weight Jir, and its activation under presentation of an input pattern 
£ = (6, • • • ,&v) is xt = J, ■ £, with J,- = (Ja,..., JiN) denned as the vector of 
incoming weights onto the i-th hidden unit. The output of the student network is 
°"(J>£) = Si=i  9 (Ji ■ £)> where g is the activation function of the hidden units, 
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taken here to be the error function g(x) = erf(a;/\/2), and J = {J;}i<,<ic is the set 
of input-to-hidden adaptive weights. Training examples are of the form (^, C). The 
components of the independently drawn input vectors f are uncorrelated random 
variables with zero mean and unit variance. The corresponding output C is given 
by a deterministic teacher whose internal structure is that of a network similar to 
the student except for a possible difference in the number M of hidden units. Hid- 
den unit n in the teacher network receives input information through the weight 
vector Bn = {Bn\,..., B„N), and its activation under presentation of the input 

pattern f is y£ = B„ ■ f. The corresponding output is C,» = J2n=i 9 (Bn ■ iß)- 
We will use indices i, j, k, I... to refer to units in the student network, and n,m,... 
for units in the teacher network. The error made by a student with weights J on a 
given input £ is given by the quadratic deviation 

1 , r K M 

L i=l n = l 
Performance on a typical input defines the generalization error eg(3) = 
< e(J,£) >{£} through an average over all possible input vectors £, to be per- 
formed implicitly through averages over the activations x = (X\,...,XK) and 
y = (t/i,..., VM)- Note that both < a,- >=< y„ >= 0, while the components of the 
covariance matrix C are given by overlaps among the weight vectors associated with 
the various hidden units: < ij ii > = J,- • J& = Qik, < %i yn > = JJ ■ Bn = Rin, 
and < yn ym > = Bn • Bm = Tnm. The averages over x and y are performed using 
a joint probability distribution given by the multivariate Gaussian: 

V(*,y)-—.       1 expj-4(x,y)TC-1(x)y)l  , with  C = 

(2) 
The averaging yields an expression for the generalization error in terms of the order 
parameters Qik, Rin, and Tnm. For g{x) = eii(x/y/2) the result is: 

£.(J)   =   ;  LMCffll,/Ua.,./uo    +LMfflm — 

J29^XiS>~J29^ 

Q    R 
RT   T 

VI + Qii Vl + Qkk       f£ VI + Tnn VI + Tmm 

-2?arcsin7fW7rr^:}- (3) 

The parameters Tnm are characteristic of the task to be learned and remain fixed, 
while the overlaps Qik and Rin are determined by the student weights J and evolve 
during training. A gradient descent rule for the update of the student weights results 
in Jf+1 = Jf + ff <5f ^, where the learning rate 77 has been scaled with the input 

size N, and 6f = g>(x?) [£f=1 <?(<) - Ef=i ff«)] *s defined in terms of both 

the activation function g and its derivative g'. The time evolution of the overlaps 
Rin and Qik can be explicitly written in terms of similar difference equations. The 
dependence on the current input f is only through the activations x and y, and the 
corresponding averages can be performed using the joint probability distribution 
(2). In the thermodynamic limit N —<■ 00 the normalized example number a = fi/N 
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can be interpreted as a continuous time variable, leading to the equations of motion: 

=    vlY^^'^'Y1^'71'^ f   ' 
dRin 

da 

dQik 
da 

1 { Y Is(k' '> m) - Y /3^' *'• J) \ + 

if \ Y ^ k,n,m)-2Y h{i, k,j, n) + Y M«> *>i, 0 \ •    (4) 

The two multivariate Gaussian integrals: I3 = < g'(u) v g(w) > and J4 = < 
ff'(") <7'(«) ff(w) g{z) > represent averages over the probability distribution (2). The 
averages can be performed analytically for the choice g(x) - erf(x/\/2). Arguments 
assigned to I3 and 74 are to be interpreted following our convention to distinguish 
student from teacher activations. For example, I3(i, n, j) = < g'(xi) yn g(xj) >, and 
the average is performed using the three-dimensional covariance matrix C3 which 
results from projecting the full covariance matrix C of Eq. (2) onto the relevant 
subspace. For I3(i, n,j) the corresponding matrix is: 

*Hn      J-nn      *tjn     I 

Qij      ttjn      Qjj   ) 

I3 is given in terms of the components of the C3 covariance matrix by 

2       1       C23(l + Cn) - C12C13 /rx 
l3-*W3 TTc^ ■ (5) 

with A3 = (l+Cn)(l+C33)-Ci3. The expression for I4 in terms of the components 
of the corresponding C4 covariance matrix is 

r 4 l ■     (        A°        \ 
arCSln     ./T-./Ä7     ' (6) 7T2  VA4 V\/Äi\/A 

where A4 = (1 + di)(l + C22) - C\2, and 

A0 = A4C34 - C23C24(1 + C11) - Ci3Ci4(l + C22) + C12Ci3C24 + Ci2C14C23 , 

A! = A4(l + C33) - C2
2
3(l + C11) - ^3(1 + C22) + 2Ci2C13C23 , 

A2 = A4(l + C44) - C2
2
4(l + C11) - C2

4(l + C22) + 2C12C14C24 . 

These dynamical equations provide a novel tool for analyzing the learning process 
for a general soft-committee machine with an arbitrary number K of hidden units, 
trained to perform a task defined by a soft-committee teacher with M hidden units. 
This set of coupled first-order differential equations can be easily solved numeri- 
cally, even for large values of K and M, providing valuable insight into the process 
of learning in multilayer networks, and allowing for the calculation of the time 
evolution of the generalization error [3]. In what follows we focus on learning a re- 
alizable task (K = M) defined through uncorrelated teacher vectors of unit length 
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(Tnm = 8nm). The time evolution of the overlaps Ri„ and Qik follows from inte- 
grating the equations of motion (3) from initial conditions determined by a random 
initialization of the student vectors {J«}i<j<x- Random initial norms Qu for the 
student vectors are taken here from a uniform distribution in the [0, 0.5] interval. 
Overlaps Qik between independently chosen student vectors J,- and Jj, or Ri„ be- 
tween J; and an unknown teacher vector Bn are small numbers, of order 1/VN for 
N > K, and taken here from a uniform distribution in the [0,10~12] interval. We 
show in Fig. la-c the resulting evolution of the overlaps and generalization error for 
K = 3 and t] = 0.1. This example illustrates the successive regimes of the learning 
process. The system quickly evolves into a symmetric subspace controlled by an 
unstable suboptimal solution which exhibits no differentiation among the various 
student hidden units. Trapping in the symmetric subspace prevents the specializa- 
tion needed to achieve the optimal solution, and the generalization error remains 
finite, as shown by the plateau in Fig. lc. The symmetric solution is unstable, 
and the perturbation introduced through the random initialization of the overlaps 
Rin eventually takes over: the student units become specialized and the matrix 
R of student-teacher overlaps tends towards the matrix T, except for a permuta- 
tional symmetry associated with the arbitrary labeling of the student hidden units. 
The generalization error plateau is followed by a monotonic decrease towards zero 
once the specialization begins and the system evolves towards the optimal solution. 
Curves for the time evolution of the generalization error for different values of n 
shown in Fig. Id for K — 3 identify trapping in the symmetric subspace äs a small 
■q phenomenon. We therefore consider the equations of motion (3) in the small r] 
regime. The term proportional to rj2 is neglected and the resulting truncated equa- 
tions of motion are used to investigate a phase characterized by students of similar 
norms: Qu = Q for all 1 < i < K, similar correlations among themselves: Qa = C 
for all i ^ k, and similar correlations with the teacher vectors: Ä,„ = R for all 
1 < i,n < K. The resulting dynamical equations exhibit a fixed point solution at 
Q* = C* = 1/(2K - 1) and R* = y/Q*/K = \/yjK{2K - 1). The corresponding 
generalization error is given by £* - (K/ir) {w/6 - K arcsin ((2/f)-1)}. A simple 
geometrical picture explains the relation Q* = C* = K(R*)2 at the symmetric 
fixed point. The learning process confines the student vectors {J;} to the subspace 
SB spanned by the set of teacher vectors {Bn}. For Tnm = 5nm the teacher vectors 
form an orthonormal set: B„ = en, with e„ ■ em = 6nm for 1 < n,m < K, and 
provide an expansion for the weight vectors of the trained student: J* = J^n Rin&n- 
The student-teacher overlaps R(n are independent of i in the symmetric phase and 
independent of n for an isotropic teacher: Ri„ — R* for all 1 < i, n < K. The 
expansion JJ = R* £„ e„ results in Q* = C* = K(R*f. The length of the sym- 
metric plateau is controlled by the degree of asymmetry in the initial conditions [2] 
and by the learning rate n. The small n analysis predicts trapping times inversely 
proportional to n, in quantitative agreement with the shrinking plateau of Fig. Id. 
The increase in the height of the plateau with decreasing 77 is a second order effect 
[3], as the truncated equations of motion predict a unique value of e* = 0.0203 
at K — 3. Escape from the symmetric subspace signals the onset of hidden unit 
specialization. As shown in Fig. lb, the process is driven by a breaking of the 
uniformity of the student-teacher correlations [3]: each student node becomes in- 
creasingly specialized to a specific teacher node, while its overlap with the remaining 
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Figure 1 The overlaps and the generalization error as a function of a for a three- 
node student learning an isotropic teacher (T„m = Snm). Results for 7j = 0.1 are 
shown for (a) student-student overlaps Qik, (b) student-teacher overlaps R,n, and 
(c) the generalization error. The generalization error for different values of the 
learning rate T\ is shown in (d). 

teacher nodes decreases and eventually decays to zero. We thus distinguish between 
a growing overlap R between a given student node and the teacher node it begins 
to imitate, and decaying secondary overlaps S between the same student node and 
the remaining teacher nodes. Further specialization involves the decay to zero of 
the student-student correlations C and the growth of the norms Q of the student 
vectors. The student nodes can be relabeled so as to bring the matrix of student- 
teacher overlaps to the form Rin = R6in +S(l-6in); the matrix of student-student 
overlaps is of the form Qik = Q5ik + C(l - Sik). The subsequent evolution of the 
system converges to an optimal solution with perfect generalization, characterized 
by a fixed point at (R*)2 = Q* = 1 and S* = C* = 0, with e* = 0. Linearization 
of the full equations of motion around the asymptotic fixed point results in four 
eigenvalues, of which only two control convergence. An initially slow mode is char- 
acterized by a negative eigenvalue that decreases monotonically with TJ, while an 
initially faster mode is characterized by an eigenvalue that eventually increases and 
becomes positive at r]max = w/(y/SK), to first order in l/K. Exponential conver- 
gence of R, S, C, and Q to their optimal values is guaranteed for all learning rates 
in the range (0, rjmax); in this regime the generalization error decays exponentially 
to e* = 0, with a rate controlled by the slowest decay mode. 
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Freeman's investigations on the olfactory bulb of the rabbit showed that its dynamics was chaotic, 

and that recognition of a learned pattern is linked to a dimension reduction of the dynamics on 

a much simpler attractor (near limit cycle). We adress here the question wether this behaviour 

is specific of this particular architecture or if this kind of behaviour observed is an important 

property of chaotic neural network using a Hebb- like learning rule. In this paper, we use a mean- 

field theoretical statement to determine the spontaneous dynamics of an assymetric recurrent 

neural network. In particular we determine the range of random weight matrix for which the 

network is chaotic. We are able to explain the various changes observed in the dynamical regime 

when sending static random patterns. We propose a Hebb-like learning rule to store a pattern 

as a limit cycle or strange attractor. We numerically show the dynamics reduction of a finite- 

size chaotic network during learning and recognition of a pattern. Though associative learning 

is actually performed the low storage capacity of the system leads to the consideration of more 
realistic architecture. 

1     Introduction 
Most part of studies on recurrent neural networks assume sufficient conditions of 
convergence. Relaxation to a stable network state is simply interpreted as a stored 
pattern. Models with symmetric synaptic connections have relaxation dynamics. 
Networks with asymmetric synaptic connections lose this convergence property and 
can have more complex dynamics. However, as pointed out by Hirsch, [8], it might 
be very interesting, from an engineering point of view, to investigate non convergent 
networks because their dynamical possibilities are much richer for a given number 
of units. 

Moreover, the real brain is a highly dynamic system. Recent neurophysiological 
findings have focused attention on the rich temporal structures (oscillations) of 
neuronal processes [7, 6] which might play an important role in information pro- 
cessing. Chaotic behavior has been found out in the nervous system [2] and might 
be implicated in cognitive processes [9]. Freeman's paradigm [9] is that the basic 
dynamics of a neural system is chaotic and that a particular pattern is stored as an 
attractor of lower dimension than the initial chaotic one. The learning procedure 
thus leads to the creation of such an attractor. During the recognition process, first, 
the network explores a large region of its phase space through a chaotic dynamics. 
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When the stimulus is presented then the dynamics is reduced and the systems fol- 
lows the lower dimensional attractor which has been created during the learning 
process. The question arises wether this paradigm which has been simulated in [11] 
using an artifical neural network is due to a very specific architecture or if it is a 
general phenomenum for recurrent network. 
The first step to adress this problem was to determine the conditions for the exis- 
tence of chaotic dynamics among the various architecture of recurrent neural net- 
works. A theoretical major advance in that direction was achieved by Sompolinsky 
[10]. They established strong theoretical results concernig the occurence of chaos for 
fully connected assymetric random recurrent networks in the thermodynamic limit 
by using dynamical mean field theory. In their model, neurons are formal neurons 
with activation state in [-1,1] with a symmetric transfer function and no threshold. 
The authors show that the system exhibits chaotic dynamics. These results were 
extended by us in [5] to the case of diluted networks with discrete time dynamics. 
One can ask whether such results remain valid in a more general class of neural net- 
works with no reversal symmetry i.e. with activation state in [0,1] and thresholds. 
The presence of thresholds is biologically interesting. Moreover, it allows to study 
the behaviour of the network when submitted to an external input. In this paper, 
we describe this model and report the main results about spontaneous dynamics in 
section 2. In section 3, we define a hebbian learning rule. We study the reduction of 
the dynamics during the learning process and the recognition of a learned stimuli. 
We then discuss the results and conclude (4). 

2    Spontaneous Dynamics of Random Recurrent Networks with 
Thresholds 

The neurons states are continuous variables Xi,i=l...N. The network dynamics 

is given by: 

i = 1... AT :     Xi(t + l) = f ^NJijXjW-Oi (1) 

where J;;- is the synaptic weight between the neuron j and the neuron i . The 
Jij's are independant identically distributed random variables with expectation 

E(Jij) = jj and a variance Var(Jij) - £ . The thresholds (0;) are independant 

identically distributed gaussian random variables of expectation E(6{) = 9 and 
variance Var(6i) = a]. Our numerical studies are made with the sigmoidalfunction: 
f(x) - 1+lig* so that the neurons states x{(t) belong to [0,1]. Thus xt(t) may be 
seen as the mean firing rate of a neuron. 
This kind of system is known to present the "propagation of chaos" property in the 
thermodynamic limit. This approach was initiated for neural networks by Amari, 
[1]. Though the denomination of "chaos" for this basic properties of vanishing finite- 
size correlations is quite confusing and has nothing to do with determinsitic chaos 
which will be considered afterwards, we shall keep it. Namely the intra-correlations 
between finite sets of neuron activation state and between neurons and weights 
vanish and each neuronal activation state process converges in law in the thermo- 
dynamic limit towards independant gaussian processes. This statement allow us to 
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derive mean field equations 
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We shall now restrict ourselves for numerical studies to the case where 7=0. 
The second mean-field equation^ is self-consistent and we are able to determine the 

critical surface in the space (j.gJ,2^) between a single stable fixed point and 

two stable fixed points (saddle-node bifurcation) . Consider a fixed point x* of the 
system (1). Its components (z?) are i.i.d. gaussian random variables, their moments 
are given by the previous mean-field equations. To determine the stability of x* in 
(1), we compute the Jacobi matrix of the evolution operator 

D(x*) = 2gL(x*)J (4) 

where L(x*) is the diagonal matrix of components (x*{ - xf) and where J is the 
connection weight matrix . The spectral radius of this random matrix can be com- 
puted and this computation determines a stability boundary surface as shown below 
in figure 1. At the thermodynamic limit, it is possible to use the "propagation of 
chaos" property to compute the evolution of the quadratic distance between two 
trajectories of the system coming for arbitrary close initial conditions [3]. 0 is a fixed 
point for this recurrence and the critical condition for its destabilization is exactly 
the same than the previous condition for the first destabilization of the fixed point 
of the network. This proves, that at the thermodynamic limit, one observes a sharp 
transition between a fixed point regime and a chaotic regime. So in the bifurcation 
map of figure 1 there are four different regions: - region 1 : there is only one stable 
fixed point - region 2 : there are two stable fixed points (actually region 2 is a very 
small cusp) - region 3 : one stable fixed point and one strange attractor coexist. 
One may converge towards one or the other depending on the intial conditions. 
- region 4 : there is only one strange attractor Regions 2 and 3 shrink when aO 
increases. When <x0 = 0.2, only regions 1 and 4 remain. For finite size systems, the 
destabilization and apparition of chaos boundaries are different. There exists an in- 
termediate zone where the system is periodic or quasiperiodic. This corresponds to 
the quasiperiodicity route to chaos we observe in the system when g J is increased 
[5, 4]. The simulations confirm with accuracy all these theoretical predictions for 
medium-sized networks (from 128 units up to 512 units), showing the progressive 
stretching of the transition zone where periodic and almost-periodic attractors take 
place. 
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Figure  1    Saddle-node bifurcation surface and destabilization boundary in the 
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3    Learning and Retrieving Random Patterns. 
3.1     Network Submitted to a Static Random Input 
We study now the reaction of our network when submitted to an external input. 
The input is a vector of random gaussian variables I,- independent of 6{ 's with a 
mean value / and a variance <r|. We get 

' N 

Xi(t+l) = f 

i=i 

Oi + Ii (5) 

Hence the input is equivalent to a threshold. The global resulting threshold has a 
mean value 9 — 1 and a variance. We can then interpret the presentation of an input 
as a change of the parameters of the system. Its effect can therefore be predicted 
from the bifurcation map. 
If the configuration of the network stands in the chaotic region near the boundary 
of this region, then the presentation of an input will tend to reduce the dynamics of 
the system on a limit cycle by crossing the boundary, falling into the limit cycles and 
T2 torus area. The same input may lead to different answers by different networks 
with the same statistical parameters. This modification of the parameters by a 
pattern presentation creates a new system (with a different attractor). 

3.2    Auto-associative Learning. 
The learning procedure we define will enable us to associate a limit cycle or a 
strange attractor to a presented pattern. We modify the connection strength by a 
biologically motivated Hebb-like rule: 

if Xj(t) > 0.5 then J0-(i + 1) = J{j(t) + -^ [Xj(t) - 0.5] [xi(t + 1) - 0.5] 

else Jij(t + 1) = J,j(t) 

We add the constraint that a weight cannot modify its sign, a is the learning rate. 
The learning procedure is implemented at each step when the network has reached 
the stationary regime. 
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In all our simulations the learning procedure reduces the fractal dimension of the 
chaotic attractors of the dynamics. Eventually the system follows an inverse quasi- 
periodicity route towards a fixed point. We have chosen to stop the procedure on a 
limit cycle, thus associating this cycle with the pattern learned. 
In fact, one can speak of learning if the network has a selective response for the 
learned pattern, and if the learning procedure does not affect the dynamical be- 
haviour when an other pattern is presented. On order to study this selectivity 
property, we make the following simulation. We learn one prototype pattern (ie. 
we iterate the learning dynamics upon reaching a limit cycle). Then we present 30 
other random patterns (drawn randomly with the same statistics than the learned 
pattern), and we compare the attractors before, and after learning. For all patterns 
but one, the dynamics before learning were chaotic. For all these patterns, the dy- 
namics were still chaotic after learning (the pattern whose response was periodic, 
had still a periodic attractor). Hence the network reduces its dynamics only for the 
learned prototype pattern. 

3.3    Retrieval Property 
In order to study the retrieval property of this associative learning process, we add 
noise to a pattern previously learned, and show how it affects the recognition. A 
pattern is a vector of gaussian random variables (for the simulations, each com- 
ponent has a mean zero and standard deviation 0.1). We add to each component 
a gaussian noise of mean zero and standard deviation 0.01, and 0.02, which thus 
corresponds to a level of noise of 10% and 20% on the pattern. We recall that the 
presentation of a noisy pattern changes the parameters of the system. So recog- 
nition has to be defined by some similarities between the attractors. In order to 
quantify the similarity between cycles, we compute their gravity center, their mean 
radius and winding (rotation) number and we define a crtierion of similarity based 
on these numerical indexes. 
To estimate the recognition rate, we learn one prototype pattern. Then we present 
30 noisy patterns (derived from the prototype one), and compute the similarity 
values. With a 10% level of noise recognition rate after 7 learning steps is 83%, 
with 20% noise it falls down to 27%. 

4     Discussion and Conclusion 
Our model reproduces the observations by Freeman concerning the dimension re- 
duction of the system attractor by recognition of a learned pattern, in a model 
of the olfactory bulb [11]. The system does not need to wait until a fixed point 
is reached to perform recognition: relying on our experiments, convergence on an 
attractor is very fast. This gives an insight into the mechanism leading to such a 
phenomenon by the extraction of the few relevant parameters related to it. 
However this model suffers severe drawbacks concerning the control of the learning 
process and the storage capacity. Moreover, the modifications supported by the 
weights during the learning process are difficult to interpret theoretically. These 
limitations suggest to introduce at the next step architectural and functional dif- 
ferentiation into the network (inhibitory and excitatory neurons, multiple layers, 
random geometric-dependant connectivity and time delays, modular architecture 
of chaotic oscillators). 
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Coding by dynamical attractors is also particularly suited for learning of temporal 
signals. For the moment, we only focused on the learning of static patterns. However, 
we performed with interesting results some preliminary simulations on presentation 
of temporals sequences. This could lead to connect different chaotic networks in 
order to perform recognition tasks using the synchronization processes highlighted 
by Gray [7]. 
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Statistical mechanics can be used to derive a set of equations describing the evolution of a genetic 
algorithm involving crossover, mutation and selection. This paper gives an introduction to this 
work. It is shown how the method can be applied to to very simple problems, for which the 
dynamics of the genetic algorithm can be reduced to a set of nonlinear coupled difference equations. 
Good results are obtained when the equations are truncated to four variables. 
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1 Introduction 
Genetic Algorithms (GA) are a class of search techniques which can be used to find 
solutions to hard problems. They have been applied in a range of domains: opti- 
misation problems, machine learning, training neural networks or evolving neural 
network architectures, and many others. (For an introduction, see Goldberg [1].) 
They can be naturally applied to discrete problems for which other techniques are 
more difficult to use, and they parallelise well. Most importantly, they have been 
found to work in many applications. 
Although GAs have been widely studied empirically, they are not well understood 
theoretically. Unlike gradient descent search and simulated annealing, genetic al- 
gorithms are not based on a well-understood process. The goal of the research de- 
scribed here is to develop a formalism which allows the study of genetic algorithm 
dynamics for problems of realistic size and finite population sizes. The problems 
we have studied are clearly toy problems; however, they contain some realistic as- 
pects, and we hope their consideration will be a stepping stone to the study of more 
realistic problems. 

2 The Statistical Mechanics Approach 
Ideally, one would like to solve the dynamics of genetic algorithms exactly. This 
could be done, in principle, either by studying the stochastic equation directly, or 
by using a Markov Chain formulation to analyse the deterministic equation for the 
probability of being in a given population (see [2, 3]). However, it is very difficult 
to make progress in this way, because one must solve a high-dimensional, strongly 
interacting, nonlinear system which is extremely difficult to analyse. 
In these exact approaches, the precise details of which individuals are in the popu- 
lation is considered. In our approach much less information is assumed to be known. 
We consider only statistical properties of the distribution of fitnesses in the pop- 
ulation; from the distribution of fitnesses at one time, we predict the distribution 
of fitnesses at the next time step. Iterating this from the initial distribution, we 
propose to predict the fitness distribution for all times. 
This distribution tells you want you want to know - for example the evolution of 
the best member of the population can be inferred. But is it possible, in principle, 
to predict the fitness at later times based on the fitness at earlier times? 
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The answer is no. Although it is possible to predict the effect of selection based solely 
on the fitness distribution, mutation and crossover depend upon the configurations 
of the strings in the population which cannot be inferred from their fitnesses. We 
use a statistical mechanics assumption to bridge this gap. 
We characterise the distribution by its cumulants. Cumulants are statistical prop- 
erties of a distribution which are like moments, but are more stable and robust. The 
first two cumulants are the mean and variance respectively. The third cumulant is 
related to the skewness; it measure asymmetry of the distribution about the mean. 
The fourth cumulant is related to the kurtosis; it measure whether the distribution 
falls off faster or more slowly than Gaussian. 

3 Test Problems 
The method has been applied to four problems. The simplest task, and one which 
will be used throughout this paper to illustrate the method, is the optimisation 
of a linear, spatially inhomogeneous function, counting random numbers. In this 
problem, each bit of the string contributes individually an arbitrary amount. The 
fitness is, 

N 

F[r] = J2J'r'- 
«=i 

Here r is a string of ±1 of length N which the GA searches over. The J;'s are fixed 
random numbers. 
Other problems to which the method has been applied include: the task of max- 
imising the energy of a spin-glass chain [4, 5, 6], the subset sum problem [7] (an 
NP hard problem in the weak sense), and learning in an Ising perceptron [8]. For 
the first two problems, the dynamics can be solved, and the formalism predicts ac- 
curately the evolution of the genetic algorithm. The latter problem has been much 
more difficult to solve, however. 

4 The Genetic Operators 
We now discuss how our approach is applied to the study of three specific GA 
operators: selection, mutation, and crossover. We will use the counting random 
numbers task to illustrate how the calculations are done. 

4.1     Selection 
Selection is the operation whereby better members of the population are replicated 
and less good members are removed. The most frequently used method is to chose 
the members of the next population probabilistically using a weighting function 
R(Fa). We have studied Boltzmann selection 

R(F) oc exp(ßF) 

where ß is a parameter controlling the selection rate. Fitness proportional selection 
(R(F) = F), culling selection (choose the n best), and other forms can also be 
handled by the approach. 
In an infinite population, the new distribution of fitness in terms of the old p(F) 
would simply be R(F)p(F) up to a normalisation factor. In a finite population, 
there will be fluctuations around this. The way to treat this is to draw P levels 
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from p. The generating function for cumulants is 

G(7) 

P 

n i P(Fa)dFa 
log 5>(i^)exp(-7F«) 

This problem is analogous to the Random Energy Model proposed and studied by 
Derrida [9], and can be computed by using the same methods developed for that 
problem. 
For Boltzmann selection, the cumulant expansion for the distribution after selection 
in terms of selection before can be found as an expansion in the selection parameter 
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+ 
Or the cumulants can be found for arbitrary ß numerically. 
For many problems, the initial distribution will be nearly Gaussian. Selection in- 
troduces a negative third cumulant - the low-fitness tail is more occupied than the 
high-fitness one. An optimal amount of selection is indicated. The improvement of 
the mean increases with ß initially, but saturates for large ß. Selection also decreases 
the variance; this effect is small for small ß but becomes important for increasing 
values. The trade-off between these two effects of selection — increase in mean but 
decrease in genetic diversity — are balanced for intermediate values of ß. This has 
been discussed in earlier work [5, 6]. 

4.2    Mutation 
Mutation causes small random changes to the individual bits of the string. Thus, it 
causes a local exploration, in common with many other search algorithms. It acts 
on each member of the population independently. 
To study the effect of mutation, we introduce a set of mutation variables, mf, one for 
each site of each string, which take the value 1 if the site is mutated, 0 otherwise. 
Let m be the mutation probability. In terms of these variables, the fitness after 
mutation is (for counting random numbers) 

F = J2Ji(l-2rnf)Tt
a. (2) 

(3) 

Averaging over all variables gives the cumulants after mutation. This yields, 

«7*    =    (1 - 2m)Ki 

K™    =    K2 + (1 - (1 - 2m)2) (N - K2) 

Kf    =    K3(1 - 2m)3 -2(1- 2m) (l - (1 - 2m)2) i-Vj?(n) 
Fz   i 

where < r > denotes population average. (The fourth cumulant can be calculated 
in a similar fashion). 



Shapiro et. al.: Statistical Mechanics of Genetic Algorithms 321 

The first two equations express obvious effects. Mutation brings the mean and 
variance back towards values of a random population — mean decreases to zero 
and the variance increases toward N. The equation for the third cumulant is more 
interesting. The first term decreases the third cumulant, but the second increases 
its magnitude if it is negative (which it typically is). This is the part which depends 
upon the configuration average. 

4.3 Crossover 
Crossover can be treated in a similar manner to mutation. Introduce a set of 
crossover variables, \i which are 1 if a crossed with ß at site i and 0 other- 
wise, write equations for the cumulants in terms of these variables and average. 
One finds that both the mean and the variance remain unchanged. The third and 
higher cumulants are reduced and brought to natural values which depend upon 
configurational averages. 

4.4 Using the Statistical Mechanics Ansatz to Infer 
Configurational Averages from Fitness Distribution 
Averages 

In the previous section we showed that the effect of mutation on the cumulants 
depends upon the fitness distribution (i.e. on the cumulants) and upon properties 
of the configuration of the strings. As we have argued, one cannot, in principle, 
determine the configuration from the fitness distribution. We invoke a statistical 
mechanics ansatz. We assume that the string variables are free to fluctuate subject 
to the constraint that the cumulants are given. In other words, our assumption 
is that of all the configurations which have the same distribution of fitnesses, the 
more numerous ones are more likely to describe the actual one. This can be seen 
as a maximum entropy assumption. We use a simple statistical mechanics model 
to implement the proposed relationship between fitness statistics and configuration 
statistics. Details are presented in [6]. 

5     Discussion and Future Work 
The equations for each of the genetic operators can be put together to predict the 
whole dynamics. Typical curves are shown in figure 1. The theoretical curves were 
produced by calculation of the initial distribution theoretically, and iterating the 
equations repeatedly. No experimental input was used. Although, the agreement 
between experiment and theory is not perfect, these results are as accurate as any 
approach of which we are aware. 
This gives a picture of the role of crossover, for this simple problem. Selection im- 
proves the average fitness, but decreases variance and introduces a negative skew- 
ness. Mutation increases the variance, introducing genetic diversity; however, it also 
decreases the mean. Crossover has no effect on the first two cumulants. It reduces 
the magnitude of the skewness, however. This replaces some of the low-fitness tail 
with some high-fitness tail, which improves the best member of the population. 
Since, for this problem, crossover has no effect on the mean, there is no cost in 
doing this and crossover is helpful. For a realistic problem, however, crossover will 
introduce a deleterious effect to the mean; whether this effect dominates over the 
improvement due to the decrease of the third cumulant may determine whether the 
crossover operator is a useful one for the problem in question. 
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Figure 1 The solid curves show the evolution of the first two cumulants and the 
fitness of the best member of the population for jV = 127, P = 50, ß = 0.1 and 
m = 1/2N. The ground state is at Fbest R* 101. The dashed curve shows the 
theoretical prediction. The overscore indicates averaging over 10000 runs. From 
reference [6]. 
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VOLUMES OF ATTRACTION BASINS IN RANDOMLY 

CONNECTED BOOLEAN NETWORKS 

Sergey A. Shumsky 
P.N.Lebedev Physics Institute, Leninsky pr.53, Moscow, Russia. 

The paper presents the distribution function of the volumes of attraction basins in phase portraits 

of Boolean networks with random interconnections for a special class of uniform nets, built from 
unbiased elements. The distribution density at large volumes tends to universal power law T ex 
y-3/2 

1 Introduction 
Randomly Connected Boolean Networks (RCBN) represent a wide class of connec- 
tionist models, which attempt to understand the behavior of systems, built from a 
large number of richly interconnected elements [1]. 
Since the early studies of Kauffman [2] RCBN became a classical model for studying 
the dynamical properties of random networks. The most intriguing feature of RCBN 
is the phase transition from the stochastic regime to the ordered behavior, first 
observed in simulations [2], and later explained analytically [3]-[5]. 
In the chaotic phase the phase trajectories are attracted by very long cycles, which 
lengths grow exponentially with the size of the system N [4]. Thus, even for not so 
large systems it is practically impossible to indicate these cycles, and their phase 
trajectories resemble random walks in the phase space. 
On the contrary, in the ordered phase the short cycles dominate [4]. In fact, this 
paper will present a numerical evidence, that almost the whole system's phase 
space belongs to the attraction basins of the fixed points. The distribution of the 
volumes of these attraction basins is an important characteristic, since it gives the 
probabilities of different kinds of asymptotic behavior of the system. 
So far, the distribution of attraction basins is known only for fully connected 
Boolean networks, namely the Random Map Model (RMM) [6], which represents 
the chaotic RCBN. The onset of the ordered phase implies, that the mean number 
of inputs per one element, K, does not exceed some critical value, which depends 
only on the type of the Boolean elements [5]. Thus, this phase takes place only in 
the case of extremely sparse interconnections: K/N —► 0 for N —> oo. 
In the present paper we calculate the distribution of attraction basins in the ordered 
phase, using the fact, that in sparsely connected networks there exists a correlation 
between the number of logical switchings at the consequent time steps, which is 
absent in the RMM. In Sec. 2 we formulate our model as the straightforward exten- 
tion of the RMM, which takes into account the above correlation. Sec. 3 presents 
the solution for our problem found by means of the theory of branching processes. 
Sec. 4 presents the comparison of the theoretical predictions with the simulations 
results for the Izing neural networks. Sec. 5 gives some concluding remarks. 

2 Model Description 
The networks under consideration consist of N two-state automata receiving their 
inputs from the outputs (states) of other automata, connected with the given one. 
These connections are attached at random when the network is assembled and then 
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fixed. The parallel dynamics is governed by the map: 

x=^(x),      (xie{±if). (l) 

Function </>(x) depends vacuously on some of its arguments. 
In a phase portrait of a network there is a unique phase vector, begining at each 
phase state. However, there are no restrictions on the number of vectors coming to 
that state. Thus, any phase portrait represents a forest of the trees with their roots 
belonging to the attractor set. For the ordered phase this attractor set is represented 
mainly by fixed points. 
We shall be interested in the statistical properties of this forest, namely by the 
distribution of volumes of the trees. These statistical properties, of course, should 
characterize not an individual map, but some ensemble of maps. The ensemble of 
RCBN contains all possible variants of interconnections among N automata, chosen 
at random from some infinite basic set of automata. We assume, that this set of 
automata is unbiased, that is, the statistical properties of phase vectors do not 
depend on the state point. Such ensembles will be further referred to as uniform 
ones. 
Such is, for example, the RMM, where phase vector starting in any state may come 
to each state with equal probability. Since there are ft such possibilities for each 
state point (where Q = 2^ is the phase volume of a system), this ensemble con- 
sists of Cln maps, corresponding to all possible variants of fully connected Boolean 
networks. 
In the absence of correlations between consequent vectors, one can characterize the 
uniform ensemble by only one statistical characteristic - the distribution of vectors 
lengths (in the Hamming sense), Wm, which is binomial: 

*'     \ /i \m /      \N—m ffra = ^j(i-„„)>„rm, (2) 
with wo = (l + ^o)/2 being the mean fraction of fixed points in the phase portraits 
of automata from the basic set [5]. For the RMM, for example, VQ = 0 and WQ = 1/2. 
But in the absence of self excitable automata in the basic automata set (i.e. those, 
that oscillate for the fixed values of their inputs), VQ > 0. This leads to exponentially 
large number of fixed points: 

Sl0 = nW0 = (I + v0)
N. (3) 

In general case there exists a correlation between the lengths of consequent vectors. 
This correlation is more pronounced in diluted networks. Indeed, recall, that the 
vector's length is the number of automata, which change state at the corresponding 
time step. In diluted networks the probability, that a given automaton will change 
state is proportional to the probability, that at least one of its inputs has changed 
its value. As a consequence, the mean number of automata switchings at the next 
step is proportional to that at the previous step. 
To take this fact into account we introduce the conditional probability Pm\ that in 
phase trajectories from a given ensemble vector with length m will be followed by 
vector of length /. This is a straightforward generalization of the RMM, for which 
Pml = W,. 
Summarizing, we will deal with an ensemble of phase portraits (l) with the statis- 
tical characteristics of phase trajectories given by Wm and Pmi- We are interested, 
however, not in the characteristics of trajectories, but rather in that of random trees 
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in phase portraits from our ensemble. Such is the mean number II(m of vectors with 
the length m, which precede the vector with the length /: 

Iilm = WmPml/Wh    (m=l,...,N;    1 = 0,...,N). (4) 

Zero-length vectors do not precede any state, and are thus excluded: II;o = 0. The 
normalization condition X^=o Pmi = 1 may be rewritten as: 

N 

^2w,U,m = Wm,       (m=l,...,N). (5) 
1=0 

To complete the description of random forest one needs not only the average num- 
ber Uim, but the whole distribution function for the number of different vectors, 
preceding the given vector of length /. In the limit Q, —► oo this distribution tends 
to a Poisson one with the generating function: 

/(S) = exp[fi(*-i)]. (6) 

The latter is a function of formal parameter s: 

fi{s) —       /__/      fl;ml,...,mNSi    ,---,sN   , 

with /;;m1,...lmN being the probability, that a vector of length / is preceded by mi 
vectors of length 1, ..., mjv vectors of length N. In the following of this paper all 
running indexes range from 1 to iV. 

3    Distribution of the Basins Volumes 
Now, when all the characteristics of random trees are determined, one can use the 
well known results of the theory of brunching processes. For the sake of clarity 
we will not supply the details here, relegating the involved calculations to a more 
extensive publication. 

3.1     General Solution 
The theory of brunching processes allows one to find the distribution of the volumes 
of random trees, provided the generating function f(s) is known [7]. For the one 
given by (6) the fraction of trees of volume V is: 

where k, p and 6 satisfy the saddle point equations: 

3 

]T(fc,- - ki)-Kij = kjdj,       ]T Try (fj -pj)= piSi. (9) 
i j 

Here pt = —8{/ß = £\. 7r-1,j, and matrix 7r,j  = 6ij — Ily has the eigenvalues 
ft = 1 — K{, being the relaxation decrements for the initial Markov process (/q are 
eigenvalues of matrixes P and II). 
The solution of this system of equations reads: 



326 CHAPTER 56 

with Xa, If and rf being the eigenvalues, the left and the right eigenvectors of the 
generalized eigenvalue problem: 

J2 l>ij = KPjlj, J2 *Hrj  = X"Pir?- C11) 
«' j 

Coefficients ka andp" in (10) represent the spectral expansion of the known vectors 
ki = Y2a tfk

a/^a, Pi = Y2a 
r?Pa/^a- The Lagrange parameter ß is found from the 

equation: 
. . . .     r>aka 

I a 

Multiplication of the first equation of (9) on 6j with subsequent summation over j 
gives: £\- kjSj = ß(V — V), and one finally obtains: 

W = =«# (13) 

3.2     Distribution of Basins Volumes 
Distribution (13) is valid for a general branching process with different types of 
branches. Now we will make use of the specific feature of our branching process in 
random phase portraits. Namely, in this particular case the first eigenvalue Ai of 
the above generalized eigenvalue problem is much less than the others, and is so 
small, that the exponential factor in (13) is negligible: Aa = O (iVa(l — VQ)

N/ti) 
The exponential cut-off of the distribution (13) occurs at ß —► Ai, that is at V ~ 
1/Ai. Since 1/Ai ^> Q, the exponential factor is negligible, and distribution (13) is 
represented by a power law. 
For ß < Ai one can leave ß only in the term with m = 1 in (10), obtaining: 

T{V) oc PsiV)-1'2, _ (14) 

with Pz{V) being the polynomial of the third degree. For V !> V the asymptotic 
scaling is: T(V) oc V~3/2, the same as for the RMM. 

4    Simulations 
The above theoretical predictions were checked in the computer simulations of neu- 
ral networks with random diluted asymmetric Izing interconnections. The networks 
consisted of ./V two state elements X{ £ {±1}, connected with K randomly chosen 
other elements. The states of the elements were updated in parallel according to 
the rule: 

X{ -> sign(fc,-),    hi - J2j JijQjXj (15) 

where C is the random interconnection matrix with K units and N — K zeros in 
each row (C;, = 0), and matrix J has the Izing components Jij = ±1 with equal 
probabilities. For a given network these matrixes are fixed during the simulations. 
If hi appears to be zero, the state of the i-th neuron is unchanged. The latter case 
may occur only for the even number of interconnections K. The ordered phase for 
such model takes place only for K < 2. Since the case K = 1 is degenerate, we 
considered networks with K = 2. 
The first thing we examined was the fraction of phase space in the basins of fixed 
points. This quantity was estimated by tracing 103 random trajectories till they 
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Figure 1    Distribution density of basins volumes in the ensemble of 25000 net- 
works with N = 11 and Ä' = 2. 

reached their attractors. The results showed that for sufficiently large N > 25 all 
phase trajectories converge to some fixed point. 
To obtain the distribution of the basins we examined the whole phase space. Since 
the computational time grows exponentially with the size of the network, we chose 
the networks of relatively small size, N = 11 (the measured probability of con- 
vergence was 0.97). For K = 2, 25000 random networks were generated, and each 
phase portrait was examined point by point. Fig. 4 shows the obtained distribution 
of the volumes of the basins of fixed points. The dotted line on this plot repre- 
sents the asymptotic power law T oc V-3/2. The correspondence is good in a wide 
range of volumes, except the very tail of the distribution. The observed cutt-off of 
the power law is due to the finiteness of the state space, ignored by the branching 
process approach. 

5    Conclusions 
The paper presented the distribution of the attraction basins of randomly connected 
Boolean networks, which generalize the Kauffman #Ä"-model. The obtained results 
may be useful, for example, for studying the relaxation processes in nonergodic 
systems. At finite temperature the volumes of basins play a similar role as the 
energy levels of the valleys in spin glasses. 
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In this paper we present an approach to estimation of the confidences of competing classification 

decisions based on the Dempster-Shafer Theory of Evidence. It allows us to utilize information 

contained in the activations of all output nodes of a neural network, as opposed to just one or 

two highest, as it is usually done in current literature. On a test set of 8,000 ambiguous patterns, 

a rejection strategy based on this confidence measure achieves up to 30% reduction in error rates 

as compared to traditional schemes. 

1     Introduction 
Neural network classifiers usually have as many output nodes as there are com- 
peting classes. A trained network produces a high output activation of the node 
corresponding to the desired class and low activations of all the other nodes. In this 
type of encoding, the best guess corresponds to the output node with the highest 
activation. Our confidence in the chosen decision depends on the numeric value of 
the highest activation as well as on the difference between it and the others, es- 
pecially the second highest. Depending on the desired level of reliability, a certain 
percentage of classification patterns can be rejected, and the obvious strategy is to 
reject patterns with lower confidence first. The rejection schemes most commonly 
used in literature are built around two common-sense ideas: the confidence increases 
with the value of the highest activation and with the gap between the two highest 
activations. 
In some systems, only one of these values is used as the measure of confidence; 
in others, some ad-hoc combination of both. For example, Battiti and Colla [1] 
reject patterns with the highest activation (HA) below a fixed threshold, and also 
those with the difference between the highest and the second highest activation 
(DA) below a second fixed threshold. Martin et al. [5] use only DA in their Sac- 
cade System, whereas Gaborski [4] uses the ratio of the highest and the second 
highest activation (RA) as the preferred measure of confidence. Fogelman-Soulie 
et al. [3] propose a distance-based (DI) rejection criterion in addition to HA and 
DA schemes; namely they compare the Euclidean distance between the activation 
vector and the target activation vectors of all classes and reject the pattern if the 
smallest of these distances is greater than a fixed threshold. Bromley and Denker 
[2] mention experiments conducted by Yann Le Cun in support of their choice of 
the DA strategy. 
Logically, one expects the two highest activations to provide almost all the informa- 
tion for the rejection decision, because usually ambiguities involve a choice between 
the right classification and, at most, one predominant alternative. Still, ideally, we 
would prefer a formula combining all the output activations into a single measure of 
confidence. Such formula can be derived if we view this problem as one of integra- 
tion of information from different sources in the framework of the Dempster-Shafer 
Theory of Evidence [6]. We can treat the activation of each output node as the 
evidence in favor of the corresponding classification hypothesis and combine them 
into the measure of confidence of the final decision. 
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2    The Dempster-Shafer Theory of Evidence 
The Dempster-Shafer Theory of Evidence is a tool for representing and combining 
measures of evidences. This theory is a generalization of Bayesian reasoning, but it 
is more flexible than Bayesian when our knowledge is incomplete, and, therefore, 
we have to deal with uncertainty. It allows us to represent only actual knowledge, 
without forcing us to make a conclusion when we are ignorant. 
Let 0 be a set of mutually exhaustive and exclusive atomic hypotheses 0 = 
{01,..., ON}- © is called the frame of discernment. Let 2® denote the set of all 
subsets of 0. A function m is called a basic probability assignment if 

m:2e-*[0,l],    m(0) = O,    and     £) m(4) = 1. (1) 
.4C0 

In the probability theory, a measure of probability analogous to the basic probability 
assignment is associated only with the atomic hypotheses 0n. The probabilities of 
all other subsets are derived as sums of probabilities of its atomic components, 
and there is nothing left to express our measure of ignorance. In the Dempster- 
Shafer theory, m(A) represents the belief that is committed exactly to every (not 
necessarily atomic) subset A. It is useful to ".. .think of these portions of belief as 
semi-mobile 'probability masses', which can sometimes move from point to point 
but are restricted in that various of them are [...] confined to various subsets of 
0. In other words, m(A) measures the probability mass that is confined to A, but 
can move freely to every point of A" [6]. Now it is easier to understand why m(0) 
represents our measure of ignorance: this portion of our total belief is not committed 
to any proper subset of 0. 
The simplest possible type of the basic probability assignment is a simple evidence 
function, that corresponds to the case in which all our belief is concentrated in only 
one subset F C 0, its focal element. If F ^ 0, then we can define m(F) = s, 
m(0) = 1 - s, and m is 0 elsewhere. The degree of support s represents our belief 
in F, while 1 — s represents our ignorance. 
The Dempster-Shafer theory provides us with the rule for the combination of evi- 
dences from two sources. This combination m = ni! ©m2 is called their orthogonal 
sum: 

m(A) = K-    J2    mi(X) ■ m2(y) where K~l =    Y,   miW • m2(y).     (2) 
XnY=A XnY^i 

The main idea expressed in this nonintuitive formula is actually rather simple: the 
portion of belief committed to the intersection of two subsets X and Y should be 
proportional to the product of m(X) and m(y) (Figure 1). Only if this intersection 
is empty, do we have to exclude it from the sum and renormalize it. Obviously, this 
rule can be generalized to accommodate for more than two sources of information. 
Please refer to [6] for more detailed explanations. 

3    Combination of Evidences as the Measure of Confidence 
Consider a frame of discernment 0 = {6>i,..., 0N}, where 0n is the hypothesis that 
a pattern belongs to class n. The activation of the n-th output node of a neu- 
ral network, o„, provides information in favor of the corresponding hypothesis 0n. 
Our partial belief based on this information can be expressed as a simple evidence 
function 

m„(0„) = <£„,        m„(0) = l-^ni (3) 
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m2(Ym) 

m2(y;) 

probability mass of 
measure mi(Xj) ■ m2(Yj) 

committed to Xi fl Y;- 

m2(Yi) 
mi(X!) rnxlX,-) mi(X„) 

Figure 1    The Dempster combination rule. 

where fa is a monotonic function of on. We shall discuss a specific form of this 

function later. 
Now we have to combine these evidences into their orthogonal sum according to 
eqn. (2). Let us start with the case in which N = 2. The first simple evidence 
function mi, with its focal element 0X, has the degree of support fa. Its only other 
nonzero value is mi(0) = 1 - fa. Similarly, 02 is the focal element of m2, with a 
degree of support of fa, and m2(0) = 1 - fa. When we produce the orthogonal 
sum m = mi ffi m2, we have to compute beliefs for the total of four subsets of 0: 0, 
0i, 02, and 0 (Figure 2). The value m(0) should be proportional to mi(0) • m2(0) 

m2(0) = 1 - , 
m2(02) = fa 

01 : <t>i ■ (1 - fo) Q:{l-fa)-(l~fa) 

$:fa-fa 62:(l-fa)-fa 
mi(0i) = fa mi(0) = l-<£i 

Figure 2    Orthogonal sum of two simple evidence functions with atomic foci. 

because this is the only way to obtain 0 as the intersection. Similarly, m(0i) should 
be proportional to mi(0i) • m2(0), while m(02) should be proportional to m2(02) ■ 
mi(0). The only way we can produce 0 as an intersection of a subset with nonzero 
mi-evidence and another subset with nonzero m2-evidence is 0 = 0i l~l 02. The 
corresponding product, fa ■ fa, should be excluded from the normalization constant 

K. Finally, 
m(0i) 

m(0) = K-(1 

K-fa 

i) 

• (1 - fa) 

■(1-fa) 

m(02) = K ■fa-(I-fa), 

(4) 
1 - fa ■ fa- 

it is obvious that if both fa = 1 and fa = 1, our formula cannot work because 
it involves division of §. However, this is quite appropriate, because it indicates 
that both mi and m2 are absolutely confident and flatly contradict each other. In 
such a case, there is no hope of reconciling the differences. If only one of the two 
degrees of support equals 1, for example, fa = 1, then m(0i) = 1, m(02) = 0, and 
m(0) = 0. In this case, m2 cannot influence the absolutely confident mi. 
If neither of the degrees of support equals 1, we can denote an = J±J^ and trans- 

form eqn. (4) into a more convenient form: 

m(fll) = __^__,    m(02)=1  ,   a\ _   ,    m(0)=,  ,  ,* ,  ,   ■       (5) 
1 + ai + a2 1 + ai + a2' 1 + a\ + a2 
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Using mathemaical induction, one can prove that when we have to combine TV 
simple evidence functions with atomic focal elements, their orthogonal sum becomes 

m(g») =       ^      ,        m(0)=—^—. (6) 
1 + Li a* ! + Li <*i 

The combined evidence m(0„) represents our share of belief (or confidence) associ- 
ated with each of N competing classification decisions. Our formula has a number 
of intuitively attractive properties: 

■ the highest confidence corresponds to the highest activation, 

■ the confidence increases with the growth of the corresponding activation, 

■ the confidence decreases with the growth of any other activation. 

Now we can rate all patterns according to the confidence of the best-guess classifi- 
cation and reject them in order of increasing confidence. We will call this rejection 
strategy "evidential". 

4 The Experiment 
We tested the proposed method on the handprint digits classification problem. A 
trained neural network classifier was used to generate sets of activations for two 
test files, both of approximately 25,000 characters. To accentuate the comparisons, 
unambiguous patterns (those with the highest activation above 0.9 and all other ac- 
tivations below 0.1) were excluded from the experiment. Indeed, one can argue that 
any responsible rejection strategy should accept such patterns, especially because 
many neural networks are trained with target activations of 0.9 and 0.1 (sometimes 
even 0.8 and 0.2) instead of 1 and 0. In addition, the error vs reject curves dif- 
fer for different test sets depending on the quality of the data. The exclusion of 
unambiguous patterns allows us to normalize the curves to some extent. 
We found approximately 6,500 ambiguous patterns in the first set, and approxi- 
mately 8,000 in the second set. The first subset was used to select the best mono- 
tonic transformation of the activations into the support functions. Comparison of 
a large number of possible functions led to the choice of the A(x) = log2(l + x) as 
the seed of a whole family of transformations A*, and finally we chose <j> = A15. 
The evidential (EV) rejection strategy was then used on the second subset, and its 
results were compared to those achieved with the rejection scheme based on the 
highest activation (HA), the difference between the highest and the second highest 
activation (DA), the ratio of the highest and the second highest activation (RA), 
and the distance-based rejection criterion (DI) described above. Figure 3 presents 
the comparison of error vs reject graphs for all the five schemes studied. To compute 
data for each of the curves, all patterns are sorted according to the corresponding 
confidence measure. Then the patterns are rejected one by one, and the number of 
remaining misclassifications is counted. Their percent of the total number of the 
remaining patterns constitutes the error rate which is plotted against the percent 
reject. Obviously, there is no difference among the strategies at zero and hundred 
percent reject. 

5 Conclusions 
In this paper we demonstrated how the Dempster-Shafer Theory of Evidence can 
provide the framework for estimation of the confidences of competing classification 
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Figure 3    Percent error vs percent rejected for different strategies. 

decisions. Although we worked with activations generated by a neural network, this 
approach can be applied if it is necessary to combine the outputs of any collection 
of single-class recognizers. 
Our formula consistently utilizes all the output activations of a neural network 
classifier. Extensive experimentation allowed us to select a simple monotonic trans- 
formation of output activations as the basic probability assignment. The testing we 
conducted on the 8,000 strong set of ambiguous patterns confirmed that the evi- 
dential rejection strategy reduces the classification error up to 30%. It is necessary 
to mention here that the best choice of the monotonic transformation for the basic 
probability assignment depends on the concrete application. 
Further work is needed, for we have not analyzed any information we can obtain 
from the distribution of output activation values for different classes. Another pos- 
sible line of action is the analysis of the confusion matrix or, broader still, the joint 
distribution of activation pairs. 
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Discrete dynamical systems and nonlinear response models contaminated with random noise are 

considered. The objective of the paper is to propose a method of extraction of change-points of a 

mapping (system) from a neural network approximation. The method is based on the comparison 

of normalized Taylor series coefficients of the estimator and on the consistency of the estimator and 

its derivatives. The proposed algorithm is illustrated on a simple piecewise polynomial mapping. 

1 Introduction 
Consider real-valued variables y as output and x as input of a system. Their relation 
is modeled by a general piecewise smooth function / : [0, d] —► IR in a model 

y = f(x) + e, (1) 

where e stands for random noise. The analysis of the function f(x) will be based 
on a sequence of observation data, a;,-, y,-, generated by random variables Xj, Yi, i = 
l,..,n. We assume that random variables a = Yi — f(X{), representing random 
noise entering the system, are mutually independent and identically distributed, 
with mean zero and finite variance a2. A discrete dynamical system 

yt=g(vt-h) + et, (2) 

can be viewed as a system of the type (1) where we set xt = yt-h and yt = g(xt)+et. 
Thus the estimation of the generator g of the equation (2) is transformed into a 
regression problem of the type (1). 
Throughout the paper we will be mainly concerned with models (1) and (2). How- 
ever, the proposed solution can be extended to the multivariable nonlinear function 
j/j = f(xii,X{2,...., Xik) + e; and to autoregressive systems, dynamic regression and 
recursive response cases, e.g. yt = g(yt, yt-h, ■■■■, Vt-mh) + e;.The present paper 
considers the use of a feedforward neural network approach. That is the spline net- 
work (as a representative of feedforward neural nets) will be used as the tool for 
estimation of the model functions. 

2 Polynomial Splines and Feedforward Neural Networks 
A neural network is a system of interconnected nonlinear units. The topology of 
connections between units can be complicated. In the simplest scenario a neural 
network model is no more than the sum of units. The nonlinear units are either 
localized (e.g. splines and radial basis functions) or their sums form localized func- 
tions (e.g. perceptrons). The local nature of the units has been exploited for clas- 
sification/pattern recognition problems, e.g. in [4]. We will show usefulness of local 
processing units for the function change-point estimation problems. 

2.1    Polynomial Spline Functions 
A polynomial spline function f(x) is a function that consists of polynomial pieces 
f[x) = fi(x)on\\i, Aj_|_i],     (i = 0,..., M) where /,■ is a polynomial of degree k. The 
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points Ao, Ai,..., \M at which the function f(x) changes its character are termed 
break points or knots in the theory splines (other authors prefer "joints" or "nodes") 
The polynomial pieces are joined together with certain smoothness conditions. The 
smoothness conditions are lira^A,- f^\x) = rimr^,\i+ f^\x), (j = 1, ...,k — 1). 
In other words, a spline function of degree k > 0, having as break points the 
strictly increasing sequence Xj,(j = 0,1, ..M+ 1; Ao = 0, XM+I = d), is a piecewice 
polynomial on intervals [Ay, Ay+i] of degree k at most, with continuous derivatives 
up to order k — 1 on [0, d]. It is known that a uniformly continuous function can 
be approximated by polynomial splines to arbitrary accuracy, see for instance de 
Boor [2]. This concept can be naturally extended to higher dimensions. The set 
of spline functions is endowed with the natural structure of a finite vector space. 
The dimension of the vector space of spline functions of degree k with M interior 
break points ism = M + fc+l.A neural network-like basis of the space of spline 
functions is the basis of B-splines. Each spline function can be written as a unique 
linear combination of basis functions.In this paper we shall use the basis of B-splines, 
which may be defined, for example, in a recursive way (cf. de Boor [2]). Let us define 
{A_fc = A_jb+i = ... = A0 = 0 < Ai < A2 < ... < AM < d = \M+I = • •• = Am} an 
extended set of M + 2k + 2 knots associated with the interval [0, d]. Each B-spline 
basis function (a unit in neural network terminology) -By (z) is completely described 
by a set of k + 2 knots {Xj-k-i, Ay-*, ••■, Ay}. There are two important properties 
of these units [2], namely they are nonnegative, vanish everywhere except on a 
few contiguous subintervals Bj(x) > 0 if Ay_;t_i < x < Ay, BHx) = 0 otherwise, 

and they define a partition of unity on [0, d], ^ZyLi Bj (x) — 1 f°r au* ^[0, d]. We 
shall mainly deal with cubic (k = 3) and quadratic (k = 2) B-splines because 
of their simplicity and importance in applications. Higher-degree splines are used 
whenever more smoothness is needed in the approximating function. For a chosen 
number m of units, the resulting polynomial spline is a function fm from the set 
$m = {fm : [0,d] - IR I fm(x) = Ey"=i WjBf (x)}.By Sk = \JmS^ we denote the 
set of all univariate splines of degree k (order k + 1). All these properties allow us to 
think of spline functions as neural networks. The numbers Wj are called weights (in 
statistics and neural network theory) or control points (in computer aided geometric 
design). 

2.2     Feedforward Neural Networks 
The virtue of neural networks in our approach is their capability to capture more 
information about the true system structure then, e.g. by polynomials. There is 
a number of methods for estimation of the network parameters. For example, in- 
cremental learning algorithms are described in Fahlman and Lebier [4] or Jones's 
approach in [5]. We will assume that neural network parameters have been estimated 
by one of the available learning algorithms. In the case of B-spline networks, the 
simplest approach computes the weights by the least squares method and, eventu- 
ally, iterates the placement of knots in order to optimize it. Neural networks do not 
provide immediate insight into how the modeled mechanism works. This insight 
can be gained by solving an extraction problem. What we mean by an extraction 
problem for a neural net is how to extract the underlying structure of dependence 
in terms of a local polynomial regression model. This framework is useful when a 
simple explicit description (e.g. in terms of the low-degree polynomial regression) is 



Smid & Volf: Dynamics and Change Point Retrieval 335 

required. Also this technique is more feasible than a 'direct' nonlinear polynomial 
regression for systems where the generator g is changing in time. 

3      Extraction of a Piecewise Polynomial Model 
Why we should use nets instead of polynomials? It is well known that the set of 
all polynomials is dense in the space of all continuous functions (Stone-Weierstrass 
theorem). However, for practical purposes approximation by a single polynomial 
may create polynomials of prohibitively high degree. These high degree polynomi- 
als most likely do not reflect the nature of underlying response function. A neural 
network may perform approximation tasks more efficiently. Important questions 
include how to extract the structure of the function /. When speaking about ex- 
traction of the underlying polynomial structure we envision a target function to 
be a polynomial or a piecewise polynomial. These functions admit a local approxi- 
mation by a lower degree polynomial. This local approximation can be arbitrarily 
accurate provided that the interval over which we approximate is sufficiently small. 
This is true even across the break points of a piecewise polynomial. Polynomial 
extraction and diagnosis of the point of change is based on the consistency of the 
approximation and its derivatives, i.e. on their convergence to the target function 
and its derivatives. 
It is well known that a smooth function / and its derivatives can be approximated 
to arbitrary accuracy by splines. This stems for example from the error bounds for 
polynomial splines and their derivatives established by Hall and Meyer [3], Marsden 
[6]. For cubic spline interpolants the error bound is 

IK/ - /™)(r)lloo < CP||/W||A4-r, (r = 0,1,2,3) (3) 
where h is the mesh gauge and Cr are constants. For noisy data the consistency of 
the functional need to be extended for the statistical estimators as well. 
If we assume that the response function / is smooth and has bounded derivatives 
then it can be locally approximated to arbitrary accuracy by the Taylor polynomial 
of degree k. The Lagrange's remainder term of the Taylor expansion at the point a 
has the form 

Rk = (X(k + iy f{k+1)({x-a)e + a)'0^9^1 (4) 
This is particularly true for k = 2, 3 when the mesh gauge h = maxi |A,-+i — A,-|, i = 
0,...n — 1 is sufficiently small. It follows from the equations (3), (4) that good 
approximation of the smooth response function / implies good approximation of the 
coefficients of the local Taylor expansion of /. It means that one polynomial piece 
will be approximated by a spline having polynomial pieces with the same coefficients 
at a common point. If / is not smooth, i.e. it has a finite set of active break points, 
then good approximation by splines is still possible except for arbitrarily small 
neighborhoods around break points. In the neighborhood of a break point of / 
the polynomial piece of the spline approximation will reflect abrupt change of the 
function /. This approach can be generalized for noisy data. We will utilize the 
results of Stone [8] showing that a sequence of the optimal estimates fmn £ Sm of 
/ from a noisy data set (xi, j/i), (x2,3/2), ••, (in, Vn) converges to / as m and n go to 

infinity, and that ,the same holds for derivatives fan, f^k\ for k not greater than 
the degree of estimating splines, provided /(*) is Lipschitz continuous. 
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4 Tests for Functional Change 
A gradually changing response function will produce gradually changing normalized 
polynomial coefficients. By normalized coefficients we mean coefficients of polyno- 
mial pieces expanded about a common point. An abrupt change in response func- 
tion will be reflected by an abrupt change in the normalized coefficients. To test 
for the points of change in the behavior of the neural network approximation fmn 

the polynomial pieces, with coefficients Pij(\j) were recalculated about a common 
point x = 0. A set of new coefficients p,-;-(0, Xj) was obtained and we call those 
coefficients normalized Taylor coefficients. The index i refers to the degree of the 
piece pij and j to the jth interval. The points with the same normalized coefficients 
indicate no change of the functional dependence. 
For stationary functions/systems all normalized coefficients will be constant or al- 
most constant (due to noise and approximation errors). 

5 Large Sample Properties 
To establish the consistency of the estimator fmn and its derivatives we recall 
the results of Stone [8] who deals with optimal rates of convergence of response 

function estimator based on the spline functions fmn(x) = Y^'7=\'",i^{x)- This 
representation is a very useful one because it casts the spline into a multiple linear 
regression context. If the set of knots is fixed, the estimator may be found as the 
least squares solution in parameters Wj,j = l,..,m. Then the vector of weights 
w = (ZTZ)~1ZTY, where Y = (j/i,..., yn)T and Z is a (n,m) matrix such that 
Zij = Bj(x{) . Let us denote Cp a set of all functions / : [0,d] —► ER, having 
continuous the pi ft derivatives, ||.|j the L2 norm on [0,d], and E{.) the mean operator. 
For given sequences of numbers an,bn, bn > 0, by an = 0(bn) we mean that 
sequence an/bn is bounded. When A„ are random variables, Plim,,^,^ An = 0 
means that for each e > 0 lim„-+00P(\A„\ < e) = 1. For simplicity we assume that 
data points x\,...,x„ and interior knots (break points) are uniformly distributed 
in the interval [0,d]. To assure good approximation of the response function we 
assume that we sampled more data points than the number of B-spline units, i.e. 
m = 0(ni) ,7e(0,l). 

Proposition 1 Suppose f is from C\. Then E\\fmn - ff = O^-1) + 0{n-2~<). 
(This follows from the Lipschitz continuity of f). Suppose f is from Cp,p> 0 and k 

is the degree of estimating spline. Let j = JS+T- Then, for / = 0,1,.., min(k,p— 1) 

it holds that E\\f£>n - /(,)||2 = 0{n-2r'),where r, = ^±. 

The consistency of the derivatives gives supports diagnostics based on the Taylor 
expansion, especially for an analysis of the low-order derivatives. The procedure of 
the model retrieval is an iterative process combining techniques of estimation with 
methods of testing, i.e. of comparing the model with the actual behavior of the 
system. 

6 Numerical Example of Estimation of 1-D Discrete Piecewise 
Quadratic Dynamical System 

The algorithm has been applied on a time series of satellite data set, see reference 
[7]. Here, for the numerical illustration, let us consider a following simple example: 
A discrete dynamical system is defined by two quadratic maps: /„ = 4/„_i — 
4/?_i,/„-i   <  0.5 and /„   =   1.2 + 0.4/„_i - 1.6/2_1,/„_!   >  0.5. This map 
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Figure 5    Spline fit error. Figure 6    Quadratic Map time series. 

is from the family of quadratic maps that is known to be chaotic and ergodic. 
The time series generated by this map cannot be predicted for many steps ahead 
but the generator of this series can be identified from the time series. We used 
a quadratic spline fmn with 40 interior break points to identify sets of polyno- 
mial coefficients. Pieces of the spline fmn are represented by local polynomials 
aj(x - Xj)2 + bj(x - Xj) + Cj,(j = 0,1, • • -,39). Figures 1, 2 and 3 show poly- 
nomial coefficients a,j(0),bj(0),Cj(0). These coeffiecient were recalculated from the 
local coefficients at the common break point X0 = 0. Figure 4 shows the piecewise 
quadratic map. Figure 5 shows the error of the spline fit. Figure 6 shows 400 points 
of the chaotic time series generated by the piecewise quadratic map and additive 
gaussian noise N(0,a2 — 0.0001). The dynamical problem then becomes the fol- 
lowing approximation test: a domain is randomly partitioned into a finite number 
of subintervals. On each subinterval are generated data by a noisy polynomial. The 
aim of the analysis is to find those polynomials and/or to find all break points. 
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7    Concluding Remarks 
We have proposed a method employing the B-splines network for estimation of an 
unknown response function from noisy data, and for extraction a potential piecewise 
polynomial submodel. It has been shown how the first terms of the Taylor expansion 
of the estimator, when expanded at different points of its domain, can be utilized 
for revealing the degree of the underlying polynomial model, and for the detection 
of changes in the model. This approach can be adapted for multidimensional and 
discrete dynamical systems (3) or (4). In these cases, we have to work with the 
partial derivatives. However, the multivariate case leads to the use of multivariate 
approximating functions. In such a situation, the estimation becomes less effective ( 
a much greater amount of data is needed ), even the theoretical rate of convergence 
is slower. Many authors (cf. Breiman[l], Stone[8]) recommend the use of additive 
approximations with low-dimensional components. 
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In supervised learning, the redundancy contained in random examples can be avoided by learning 

from queries, where training examples are chosen to be maximally informative. Using the tools of 

statistical mechanics, we analyse query learning in a simple multi-layer network, namely, a large 

tree-committee machine. The generalization error is found to decrease exponentially with the 

number of training examples, providing a significant improvement over the slow algebraic decay 

for random examples. Implications for the connection between information gain and generalization 

error in multi-layer networks are discussed, and a computationally cheap algorithmfor constructing 

approximate maximum information gain queries is suggested and analysed. 

1 Introduction 
In supervised learning of input-output mappings, the traditional approach has been 
to study generalization from random examples. However, random examples contain 
redundant information, and generalization performance can thus be improved by 
query learning, where each new training input is selected on the basis of the existing 
training data to be most 'useful' in some specified sense. Query learning corresponds 
closely to the well-founded statistical technique of (sequential) optimal experimental 
design. In particular, we consider in this paper queries which maximize the expected 
information gain, which are related to the criterion of (Bayes) D-optimality in op- 
timal experimental design. The generalization performance achieved by maximum 
information gain queries is by now well understood for single-layer neural networks 
such as linear and binary perceptrons [1, 2, 3]. For multi-layer networks, which are 
much more widely used in practical applications, several heuristic algorithms for 
query learning have been proposed (see e.g., [4, 5]). While such heuristic approaches 
can demonstrate the power of query learning, they are hard to generalize to sit- 
uations other than the ones for which they have been designed, and they cannot 
easily be compared with more traditional optimal experimental design methods. 
Furthermore, the existing analyses of such algorithms have been carried out within 
the framework of 'probably approximately correct' (PAC) learning, yielding worst 
case results which are not necessarily close to the potentially more relevant average 
case results. In this paper we therefore analyse the average generalization perfor- 
mance achieved by query learning in a multi-layer network, using the powerful tools 
of statistical mechanics. This is the first quantitative analysis of its kind that we 
are aware of. 

2 The Model 
We focus our analysis on one of the simplest multi-layer networks, namely, the tree- 
committee machine (TCM). A TCM is a two-layer neural network with N input 
units, K hidden units and one output unit. The 'receptive fields' of the individual 
hidden units do not overlap, and each hidden units calculates the sign of a linear 
combination (with real coefficients) of the N/K input components to which it is 
connected. The output unit then calculates the sign of the sum of all the hidden 
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unit outputs. A TCM therefore effectively has all the weights from the hidden to 
the output layer fixed to one. Formally, the output y for a given input vector x is 

V = sgn (J2?=i <n)        °i = sgn (x?w,-) (1) 

where the <7; are the outputs of the hidden units, w,- their weight vectors, and 
xT = (xj,... ,x£) with x,- containing the N/K (real-valued) inputs to which hid- 
den unit i is connected. The TV (real) components of the K (7V/A')-dimensional 
hidden unit weight vectors w,-, which we denote collectively by w, form the ad- 
justable parameters of a TCM. Without loss of generality, we assume the weight 
vectors to be normalized to w? = N/K. We shall restrict our analysis to the case 
where both the input space dimension and the number of hidden units are large 
(N —> oo, K —> oo), assuming that each hidden unit is connected to a large number 
of inputs, i.e., N/K > 1. As our training algorithm we take (zero temperature) 
Gibbs learning, which generates at random any TCM (in the following referred to 
as a 'student') which predicts all the training outputs in a given set of p training 
examples 9^ = {(x", y"), fi = l...p} correctly. We take the problem to be per- 
fectly learnable, which means that the outputs yß corresponding to the inputs x^ 
are generated by a 'teacher' TCM with the same architecture as the student but 
with different, unknown weights w°. It is further assumed that there is no noise on 
the training examples. For learning from random examples, the training inputs x.ß 

are sampled randomly from a distribution P0(x). Since the output (1) of a TCM 
is independent of the length of the hidden unit input vectors x,-, we assume this 
distribution Po(x) to be uniform over all vectors xT = (xj,.. . ,x£) which obey 
the spherical constraints x? = N/K. For query learning, the training inputs x*1 are 
chosen to maximize the expected information gain of the student, as follows. The 
information gain is defined as the decrease in the entropy S in the parameter space 
of the student. The entropy for a training set 9^p) is given by 

S(0(p)) = - IdwP(w|0^) InP(w|0W). (2) 

For the Gibbs learning algorithm considered here, P(w|9(p)) is uniform on the 
'version space', the space of all students which predict all training outputs cor- 
rectly (and which satisfy the assumed spherical constraints on the weight vectors, 
w? = N/K), and zero otherwise. Denoting the version space volume by V(Q^), 
the entropy can thus simply be written as S(0(p)) = lnl/(9(p)). When a new 
training example (xp+1, yp+1) is added to the existing training set, the information 
gain is I = S(Q^) - S(e(-N+1^>). Since the new training output yp+1 is unknown, 
only the expected information gain, obtained by averaging over yp+1, is available 
for selecting a maximally informative query xp+1. As derived in Ref. [2], the prob- 
ability distribution of y?+1 given the input xp+1 and the existing training set 9(p) 
is P(yP+1 = ±l\xP+l,e<*)) = v±, where v± = V(e^N+1%P+1=±1/V(e^). The 
expected information gain is therefore 

(-OpG/H-iixP+i.etp)) = ~v+ ^nv+ ~ v~ \nv~ (3) 

and attains its maximum value In2 (= 1 bit) when v± = |, i.e., when the new 
input xp+1 bisects the existing version space. This is intuitively reasonable, since 
^± = | corresponds to maximum uncertainty about the new output and hence to 
maximum information gain once this output is known. 
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Due to the complex geometry of the version space, the generation of queries which 
achieve exact bisection is in general computationally infeasible. The 'query by com- 
mittee' algorithm proposed in Ref. [2] provides a solution to this problem by first 
sampling a 'committee' of 2k students from the Gibbs distribution P(w|0(p)) and 
then using the fraction of committee members which predict +1 or -1 for the out- 
put y corresponding to an input x as an approximation to the true probability 
P(y = ±l|x, 0(p)) = v£. The condition v± = \ is then approximated by the 
requirement that exactly k of the committee members predict +1 and -1, respec- 
tively. An approximate maximum information gain query can thus be found by 
sampling (or filtering) inputs from a stream of random inputs until this condition is 
met. The procedure is then repeated for each new query. As k -* oo, this algorithm 
approaches the exact bisection algorithm, and it is on this limit that we focus in 
the following. 

3    Exact Maximum Information Gain Queries 
The main quantity of interest in our analysis is the generalization error eg, defined 
as the probability that a given student TCM will predict the output of the teacher 
incorrectly for a random test input sampled from Po(x). It can be expressed in 
terms of the overlaps Ä, = ^wfwf of the student and teacher hidden unit weight 
vectors w; and wf [6]. In the thermodynamic limit, the Ri are self-averaging, and 
can be obtained from a replica calculation of the average entropy 5 as a function 
of the normalized number of training examples, a = p/N; details will be reported 
in a forthcoming publication [7]. The resulting average generalization error is plot- 
ted in Figure 1; for large a, one can show analytically that eg oc exp(-a|ln2). 
This exponential decay of the generalization error eg with a provides a marked 

exact 
constructive 
random 

lne, 

exact 
constructive 
random 

Figure 1 Left: Generalization error eg vs. (normalized) number of examples a, 
for exact maximum information gain queries (Section 3), queries selected by con- 
structive algorithm (Section4), and random examples. Right: lneg vs. (normalized) 
entropy s. For both queries and random examples, lnes ft! js (thin full line) for 
large negative values of s (corresponding to large a). 

improvement over the eg oc 1/a decay achieved by random examples [6]. The ef- 
fect of maximum information gain queries is thus similar to what is observed for a 
binary perceptron learning from a binary perceptron teacher, but the decay con- 
stant c in eg « exp(-ca) is only half of that for the binary perceptron [2]. This 
means that asymptotically, twice as many examples are needed for a TCM as for 
a binary perceptron to achieve the same generalization performance, in agreement 
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with the results for random examples [6]. Since maximum information gain queries 
lead to an entropy s = -a In 2 in both networks, we can also conclude that the 
relation s ss In eg for the binary perceptron [2] has to be replaced by s « In eg for 
the tree committee machine. Figure 1 shows that, as expected, this relation holds 
independently of whether one is learning from queries or from random examples. 

4 Constructive Query Selection Algorithm 
We now consider the practical realization of maximum information gain queries in 
the TCM. The query by committee approach, which in the limit k —► oo is an exact 
algorithm for selecting maximum information queries, filters queries from a stream 
of random inputs. This leads to an exponential increase of the query filtering time 
with the number of training examples that have already been learned [3]. As a cheap 
alternative we propose a simple algorithm for constructing queries, which is based 
on the assumption of an approximate decoupling of the entropies of the different 
hidden units, as follows. Each individual hidden unit of a TCM can be viewed 
as a binary perceptron. The distribution P(WJ|0(P)) of its weight vector w,- given 
a set of training examples 0(P) has an entropy Si associated with it, in analogy 
to the entropy (2) of the full weight distribution P(w\B^). Our 'constructive 
algorithm' for selecting queries then consists in choosing, for each new query x^+1, 
the inputs xf to the individual hidden units in such a way as to maximize the 
decrease in their entropies 5,-. This can be achieved simply by choosing each xf+1 

to be orthogonal to wf = (ws)P(.w|6(^)) (and otherwise random, i.e., according 
to -Po(x)) [7], thus avoiding the cumbersome and time-consuming filtering from 
a random input stream. In practice, one would of course approximate wf by an 
average of 2k (say) samples from the Gibbs distribution P(w|0M); these samples 
would have been needed anyway in the query by committee approach. 
The generalization performance achieved by this constructive algorithm can again 
be calculated by the replica method; as shown in Figure 1, it is actually slightly 
superior to that of exact maximum information gain queries. The a-dependence of 
the entropy, s = -a In 2, turns out to be the same as for maximum information 
gain queries; this indicates that the correlations between the individual hidden 
units become sufficiently small for K —► oo, so that queries selected to minimize 
the individual hidden units' entropies also minimize the overall entropy of the TCM. 

5 Conclusions 
We have analysed query learning for maximum information gain in a large tree- 
committee machine (TCM). Or main result is the exponential decay of the general- 
ization error eg with the normalized number of training examples a, which demon- 
strates that query learning can yield significant improvements over learning from 
random examples (for which eg oc 1/a for large a) in multi-layer neural networks. 
The fact that the decay constant c in eg oc exp(-ca) differs from that calculated 
for single-layer nets such as the binary perceptron raises the question of how large 
c would be in more complex multi-layer networks. Combining the worst-case bound 
in [3] in terms of the VC-dimension with existing storage capacity bounds, one 
would estimate that c could be as small as 0(1/ In K) for networks with a large 
number of hidden units K. This contrasts with our result c —► const, for K —► oo, 
and further work is clearly needed to establish whether there are realistic networks 
which saturate the lower bound c = 0(1/ In K). 
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We have also analysed a computationally cheap algorithm for constructing (rather 
than filtering) approximate maximum information gain queries, and found that it 
actually achieves slightly better generalization performance than exact maximum 
information gain queries. This result is particularly encouraging considering the 
practical application of query learning in more complex multi-layer networks. For 
example, the proposed constructive algorithm can be modified for query learning 
in a fully-connected committee machine (where each hidden unit is connected to all 
the inputs), by simply choosing each new query to be orthogonal to the subspace 
spanned by the average weight vectors of all K hidden units. As long as K is 
much smaller than the input dimension N, and assuming that for large enough 
K the approximate decoupling of the hidden unit entropies still holds for fully 
connected networks, one would expect this algorithm to yield a good approximation 
to maximum information gain queries. The same conclusion may also hold for a 
general two-layer network with threshold units (where, in contrast to the committee 
machine, the hidden-to-output weights are free parameters), which can approximate 
a large class of input-output mappings. In summary, our results therefore suggest 
that the drastic improvements in generalization performance achieved by maximum 
information gain queries can be made available, in a computationally cheap manner, 
for realistic neural network learning problems. 
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A technique for obtaining shift, rotation and scale invariant signatures for two dimensional con- 

tours is proposed and demonstrated. An invariance factor is calculated at each point by comparing 

the orientation of the tangent vector with vector fields corresponding to the generators of Lie trans- 

formation groups for shift, rotation and scaling. The statistics of these invariance factors over the 

contour are used to produce an invariance signature. This operation is implemented in a Model- 

Based Neural Network (MBNN), in which the architecture and weights are parameterised by the 

constraints of the problem domain. The end result after constructing and training this system is 

the same as a traditional neural network: a collection of layers of nodes with weighted connec- 

tions. The design and modeling process can be thought of as compiling an invariant classifier into 

a neural network. We contend that these invariance signatures, whilst not unique, are sufficient 
to characterise contours for many pattern recognition tasks. 

1    Introduction 
1.1 The Model-Based Approach to Building Neural Networks 
The MBNN approach aims to retain the advantages of Traditional Neural Networks 
(TNNs), i.e. parallel data-processing, but to constrain the process by which the 
architecture of the network and the values of the weights are determined, so that the 
designer can use expert knowledge of the problem domain. MBNNs were introduced 
in [1]. In that paper we proposed networks in which the weights were functions of the 
relative positions of nodes, and several, possibly shared, parameters. This reduced 
the dimensionality of the space searched during training, and the size of the training 
set required, since the network was guaranteed to respond only to certain features. 
The resultant network was just a collection of nodes and weighted connections, 
exactly as in a TNN. The key notion was that neural networks with highly desirable 
properties could be produced by using expert knowledge to constrain the weight 
determination process. The MBNN approach departs from the TNN view in that 
the operation is not determined entirely by the training set supplied. 

1.2 Model-Based Neural Networks and Invariant Pattern 
Recognition 

That the parameters of TNNs are entirely learnt can be a limitation. To achieve 
good performance, the training set must be sufficiently large and varied to span 
the input space. Collecting this data and training the network can be very time- 
consuming. The MBNN formulation allows the creation of networks guaranteed to 
respond to particular features in, and to be invariant under certain transformations 
of, the input image. A data set containing various shifted, distorted or otherwise 
transformed versions of the input patterns, such has long been a common approach 
to invariant pattern recognition using neural networks [2], is not required. The 
concept of MBNNs is here extended to include modular networks. Each module 
has a well-defined functionality. The weights in each module can be arrived at by 

344 
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any technique at all: some may be set by the designer, others by training the module 
for a specific task. This approach allows the the network designer great flexibility. 
Separately trained modules can perform data processing tasks independent of the 
final classification of the input pattern. 

2    Invariance Signatures 
2.1 Functions Invariant With Respect To Lie Transformation 

Groups 
We wish to determine the invariance of a function F(x,y) with respect to a Lie 
transformation group. 

G(x,y)=[ gx{x,y)    gy(x,y) ] (1) 

is the vector field corresponding to the generator of the group. F is constant with 
respect to the action of the generator if 

dF dF 
S7F-G(x,y) = 0,     i.e.    —gs + —gy = 0. (2) 

Consider a contour parameterised by t on which F is constant: 

F(x(t),y(t)) = C V t. (3) 

Since F is constant on the contour, we have: 

dF      dFdx     dFdy     n ...     If dy . . 
— = V-7.  = 0,     so that    -£§- = - — . (4) 
dt      dx dt      dy dt       ' §£        dx w 

Thus the invariance condition given in equation 2, holds if 
dy = g]L (5) 

dx      gx 

2.2 Mapping Points from Image Space to Invariance Space 
The tangent to the contour at each point is compared with the vector fields charac- 
terising given transformations. Both the tangent vector 9(x, y) and the vector fields 
vc(x,y) are normalised everywhere. The measure of consistency with invariance 
class c at point (x, y) is: 

Lc(x,y)=\6(x,y)-vc(x,y)\. (6) 

This operation maps points from the image to the interior of a unit hypercube in 
an n-dimensional invariance space: 

9(x,y)  ►  [   Iroi      Idil      hrans   ]     ■ (?) 

The origin of the image space is chosen to be the centroid of the contour, so that 
the invariance signature is shift invariant. The vector field for rotation invariance 
is: 

Vrotfa, V) =     , .  ,    . [ -V    x f . (8) 
\Jx2 + yl 

The vector field for dilation invariance is similar. For the translation invariance 
case, the vector field vtranS(»,2/) is constant for all (x,y). The direction is that of 
the dominant eigenvector of the coordinate covariance matrix of the contour. The 
invariance signature of an image consists of histograms of the invariance measures 
for all the "on" points. It is invariant under rotations, dilations, translations and 
reflections of the image. This encoding is not unique, unlike some previous integral 
transform representations [3]. 
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3    A Neural Network System For Computing Invariance 
Signatures 

A MBNN was constructed to compute invariance signatures and classify input pat- 
terns on this basis. This MBNN, consisting of a system of modules, some hand- 
coded and some trained, is shown in Figure 1. Whilst this system appears complex, 

zw 

T. 

X Comp inent    Y Comp men! 

=fe 

Rotation Ir variance 
Signa ure 

Dilation In 'ariance 
Signa ure 

Hi 

Trans! at iot Invariance 
Sign: lure 

Conventional Neural 

Network Classifier 

Final Classification 

Figure 1    Invariance Signature-Based Contour Recognition System. 

it retains the basic characteristics of a TNN1. Each node i computes the sum 
of its weighted inputs, neti = J2j WjXj. This is used as the input to the trans- 
fer function /, which is either linear, f(netj) = netj, or the standard sigmoid, 
f(netj) = 1+e-n.tj ■ The only departure from a TNN is that some of the weights 
are dynamic: the weight is calculated by a node higher up in the network. This 
allows the MBNN to compute dot products2, and some nodes to act as gates. Since 
weights in any neural network implementation are just references to a stored value, 
this should not present any difficulty. There is insufficient space here to describe 
all the modules in the system. Descriptions of the Local Orientation Extractor and 
the Binning Unit are given as examples of the way the modules were constructed. 

1with the exception of the Dominant Image Orientation Unit, for which a neural network 
solution is still being developed. 

2The calculation of dot products is achieved by using the outputs of one layer as the weights 
on connections to another layer. 
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(9) 

3.1 Local Orientation Extraction 
A simple and robust estimate of the tangent vector at a point is the dominant 
eigenvector of the covariance matrix of a square window centred on that point. 
The vector magnitudes are weighted by the strength of the orientation. Let the 
eigenvalues be Ai and A2, Ai > A2. The corresponding unit eigenvectors are ei and 
e2. The weighted tangent vector estimate s is: 

(l-lf)ei    Wo 
0 A1 = 0. 

A TNN with a 3 x 3 input layer, 20 hidden nodes, and 2 output nodes was trained 
using backpropagation [4] to produce this output for all possible binary input im- 
ages with a centre value of 1. Training was stopped after 6000000 iterations, when 
96.89% of the training set variance was fitted. This problem is similar to edge ex- 
traction, except that edge extraction is usually performed on greyscale gradients 
rather than thin binary contours. Srinivasan et al. [5] have developed a neural net- 
work edge detector which produces a weighted vector output like that in equation 
9. We intend to produce a more compact and accurate tangent estimator using a 
MBNN incorporating Gabor weighting functions, as used in [1]. 

3.2 The Binning Unit 

NodeB 

Figure 2    Neural Binning Subsystem. 

The weights for the binning unit in figure 2 were determined by hand. There is a 
binning unit for each of the n bins in each invariance signature histogram. Each 
binning unit is connected to all nodes in the invariance image, and inputs to it are 
gated by the input image, so that only the N nodes corresponding to ones in the 
input image contribute. The bins have width ^j, since the first bin is centred on 

0, and the last on 1 3. Nodes A and B only have an output of 1 when the input x 
is within bin i. This condition is met when: 

2.--1 2i+l (10) < x < 
2(n-l) 2(n-l)' 

To detect this condition, the activations of nodes A and B are set to: 
a(2i - 1) 

net A    —    ax — 
2(n - 1) (11) 

3 A bin ending at 0 or 1 would miss contributions from the extrema since the edge of the neural 

bin is not vertical. 
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netB    =    -ax + ^—jf (12) 

where a is a large number, causing the sigmoid to approximate a step function. Here, 
a = 1000 was used. Node C acts as an AND gate. Node D sums the contributions 
to bin i from all N nodes. 

4 Simulation Results 
To demonstrate the feasibility of such an invariance signature-based classifier, a 
small simulation was done. The task was to classify an input pattern as one of the 
ten first letters of the alphabet. The training set contained four examples of each 
letter4, each differently rotated or reflected5, within an 18 x 18 input image. The 
test set contained three differently transformed examples of each letter. The final 
classification stage of the MBNN used a 9 node hidden layer and was trained using 
backpropagation. A TNN with an 18 x 18 input layer, 9 node hidden layer and 10 
node output layer was also trained. After 1000 iterations, both correctly classified 
100% of the training data. The MBNN correctly classified 76.66% of the test data, 
whereas the TNN did not correctly classify any of it. It is clear that the MBNN 
massively outperformed the TNN. Had the Local Orientation Extractor been ideal, 
the optimal performance on the training data would have been 80%, since "b" and 
"d" are identical under reflection in the font used. 

5 Conclusion 
Using the MBNN approach, neural networks can be constructed which are guaran- 
teed to classify input contours using invariance signatures which are rotation, di- 
lation, translation and reflection invariant. The resultant MBNN retains the useful 
properties of being composed of similar simple nodes joined by weighted connec- 
tions, with inherently parallel computation. The MBNN approach is thus a useful 
technique for compiling a neural network, incorporating the designer's expert knowl- 
edge. 
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More than one example of each letter was required since slightly different signatures were 
generated by different orientations, due to the residual error in the Local Orientation Extractor. 

5 all rotations were by multiples of ^ radians. 
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This paper presents constructive approximations by three-layer artificial neural networks with (1) 
trigonometric, (2) piecewise linear, and (3) sigmoidal hidden-layer units. These approximations 
provide (a) approximating-network equations, (b) specifications for the numbers of hidden-layer 
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1 Introduction 
Previous studies on function approximation by artificial neural networks show only 
the existence of approximating networks by non-constructive methods[l][2] and thus 
contribute almost nothing to developing the networks and to specifying the prop- 
erties of the approximations. This paper presents constructive approximations by 
networks with (1) trigonometric, (2) piecewise linear, and (3) sigmoidal hidden- 
layer units. These approximations provide (a) approximating-network equations, 
(b) specifications for the numbers of hidden-layer units, (c) approximation error 
estimations, and (d) saturations of the approximations. 

2 Preliminaries 
Let IN and IR be the set of natural and real numbers, and INo = IN U {0}. Let 

M = ET=i N for r = (r,)™! € IN? and ||t|| = {TT^lf" for t = (U)?=1 € 
IRm. For p > 1, we denote by L2lr (IR

m) the space of 27r-periodic on each IR 
of IRm pth-order Lebesgue-integrable functions defined on IRm to IR with L2w- 

norm ||/||iL = {(27r)_m /*, ■ ■ ■ J^ \f (x)|pdx}1/? and by CW QRm) the space of 

27r-periodic continuous functions defined on JRm to IR with C27r-norm ||/||c = 
sup {|/ (x)| ; \xi\<ir, i = 1,..., m}. Let * = Lp

2w (IR
m) or C27r (±Rm) throughout 

this paper. For /, g e *, (/(t), g (t)> = (27r)-m /Jx • ■ ■ £T f (t) g (t)dt and the 

convolution / * g (x) = (27r)_m J_ • • • /_ / (t) g (x — t)dt. Let the sigmoidal func- 

tion sig (x) = {1 + exp (—x)}~ . Let / € \t and 6 > 0. We introduce the modulus 
of continuity of / in tf u>* (/, «) = sup{||/(- +t)-/(-)||* ; t€lRm, ||t|| < 6}, 

where ||/(■ + t) - /(■ )\\L^ = {{2^)~m /_% • • •/;j/(x + t) - f^fd^ and 

11/(• +*)" /(Ollc,, = aup{|/(x + t)-/(x)| ; \xi\<v, i=l,...,m}. 

We say / satisfies a Lipschitz's condition with constant M > 0 and exponent v > 0 
in tf, if 

||/(- +t)-/(-)ll*<M||t||" 
for t S IRm. Let LipM (\f; v) be the set of functions satisfying this condition and 
Lipschitz's class of order v Lipzv = U {LipM (^; v) ; M > 0}. We notice that if 
/ € ^ satisfies a Lipschitz's condition with constant M and exponent v in $, then 
w*(/, $) <M6". 

349 
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3    Results 
3.1     Constructive Approximations and approximation error 

estimations 

Let bx = U sin ^tJ-TT for r = <rAm . <= TN™ and Rx = I ,4,1 &r = JI sin A+iK for r = (r>)?=i G No* and ßX = (ill)     for A € IN in this 
8 = 1 ^ ' 

section. 

Theorem 1 (trigonometric case) Let f = (/»)"=i be a function defined on JRm 

to IRn such that f{ g $. for arbitrary parameter A £ IN, a three-layer network with 

trigonometric hidden-layer units TN [f]   = lTN[fi]  ]       approximates to i with 

ty-norm, such that 

TN[fi]
x(x) = e[fi]

x + 
0<pi,gi<\ 

E {a [fit (P> q) cos (p - q) x + ß [fi]X (p, q) sin (p - q) xj, (1) 
(p.q) 

where 6[fi]X = (/,-(*), 1), a [f(}
X (p, q) = 25*6*6* (/,■ (t) , cos (p - q) t), and 

ß [f,] (p, q) = 2BX 6* 6q (/,• (t), sin (p — q) t). (The above summation is over com- 
binations ofp= (Pi)i=i, q = (ft)™;! € INm such that p ^ q, 0 < pi, 9; < A, i.e., if 
the summation is added in the case o/(p, q), it is not added in the case of (q, p). 
This notation of the summation is used throughout this paper.) Then TN [f] has 
(2A + 1) — 1 hidden-layer units. Also the approximation error of each coordinate 
with ty-norm for i = 1,..., n is estimated by 

\\fi-TN\fi]x\\9< (l+yv^) "*(/;, (A + 2)"1) (2) 

The next corollary means that TN [f] can approximate f with any degree of ac- 
curacy if A increases i.e., the number of hidden-layer units increases. 

Corollary 1  ll/,- - TN [ft]
X \\    -^OasA-too   (i = 1,..., n). 

II II* 

Theorem 2 (piecewise linear case) Let f = (/;)"=1 be a function defined on 
ffim to IRn such that /,• 6 L^^fR"1). For two arbitrary independent parameters 

A, a £ IN, a three-layer network with piecewise linear hidden-layer units PN [f] ' = 

(PN[fi] '")       approximates to f with Lp
2lr-norm, such that 

PN[fi]
x-°{*) = e[fi]

x<° + 
°<Pi,9i<^      4|p-q|<7-l 

E" E      a[/i]
A'CT(p,q,Ä:)PIf((p-q)x), (3) 

(p,q) k=0 

0   (rx<-|rK+|f),   1   (rx>-|r| *+<*£*) 

22rx + 2 |r| a - k   (- |r| TT + |i < rx < - |r| TT + ^^)   ' 

0<p;,?;<A 

Ö [fit'* = (ft (t), 1) + 25*sin^  ~J2~   (-l)|p-q| 6p6q (/* (t), cos(p - q)t), 

(p.q) 
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a [fi]"' ° (P, q, *) = 4 (-l)|p-Ql Bx bx bx sin £ x 

| (ft (t), sin (p - q) t) cos ^ + 1} * - (/,- (t), cos (p - q) t) sin ^ + 1} * } , 

TAen PN [f]A'" Aas 2m<rA (A + 1) (2A + l)m_1 hidden-layer units. Also the approx- 
imation error of each coordinate with L\^-norm is estimated by 

\fi-PN[fif'°\\Lp   < (l + yv/i)i-LS,(/i, (^ + 2)_1) + 

•■*i*{m"-'}{^(?-5)r-« 
Theorem 3 (sigmoidal case) Lett = (fi)"=1 be a function defined on IRm to IRn 

such that fi € L^i^R™)- F°r ^wo arbitrary independent parameters \,a S IN, a 

three-layer network with sigmoidal hidden-layer units SN [f] '" = ( 5W [/,•] '" J 

approximates to f with L^-Jiorm, such that 

SN[fi]
x-°(x) = 8[fi}

x'° + 
0<PM9i<->l      4|p-q|CT-l 

E" E      «[/i]V(P,q^)^((p-q)x), (5) 
(p,q) *=0 

öftere SGa
k (rx) = sig (^rx + 8 |r| a - 4k - 2), and 6 [fi]K " and a [/<]*■ff (p, q, Ar) 

are the same as in Theorem 2. Then SN [i]x'° has ImaX (A + 1) (2A + l)m_1 hidden- 
layer units. Also the approximation error of each coordinate with L^-norm is es- 
timated by 

\\fi-SN\f^''\\Lr   < (l+yV™)^(/'-> (A + 2)_1) + 

>8(\ + 2)\m     A f    ,Vm     ^..n     1   ,  4<r , ^ 1/P 

2|I/.II^U^^)   -^l^pv^-ä + T-60*^)?  (6) 

Remark 1 PN[f]A'<T and SN[f]A'ff in Theorems 2 and 3 are based on TN [f]A in 

Theorem 1. In fact, for any A £ IN, PN[f]A'ff and SN[f]A,<7 approach TN[f]A as 
<x increases. Therefore they are almost determined by A, if a is large enough for A. 

For any A £ IN, the second terms of the right-hand members of Inequalities (4) and 

(6) approach 0 as a increases. Then,   /,■ — PN [fi] '" and   /,• — SN [fi] 'a\\ 
II "Ll* II IlL^ 

are almost estimated by the first terms, which are the same as Inequality (2), when 
a is large enough for A. The following two corollaries give conditions on a in terms of 
A that the approximation errors approach 0, if A increases. Under these conditions 
PN[f]A'° and SN[f]A'CT can approximate f with any degree of accuracy, if the 
number of hidden-layer units increases. 

Corollary 2 If a is a higher-order infinity than A 2 , i.e., a = cr(A) —► 00 and 

^-^0 as X^ 00, then \\fi-PN [fi]x>,7\\  p   ^OasA-too    (i = l,...,n). 
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Corollary 3 If er is a higher-order infinity than Xmp, i.e., a = cr (X) —► oo and 

LI. 
^-^0 as X^oo, then \\fi-SN[fi]

X:,'\\rv   -+0asA^oo     (i=l,...,n) 

3.2 Saturation of Constructive Approximations 
We denote 6X = o (CA) (A -► oo), if |*- -+ 0 as A -»• oo and 6X = O (CA) (A -+ oo), if 

there exists a constant M > 0 such that U*-   < M for large enough A. 

Definition 1 (Saturation of an approximation method) A sequence of op- 
erators U — {^AIAGIN 

zn ^ 2S ca"e^ flw approximation method in $, if 

lim ||M/)-/||»=0 
A—»oo 

/or / £ ^. ie< {ÖA}AGIN ie a sequence of real numbers such that 9X —► 0 as 
X -^ oo. An approximation method U in \P is saturated with order 6X, if (SI) 
If f € W and \\U\(f) — f\\9 = o(9x) (A —+ oo), then f is an identical element 
ofU, i.e., Ux{f) = f for X e m and (S2) The saturation class of U S[U] = 
{ / € M? ; \\U\ (/) - /||$ = 0(9X) (A —► oo)} contains at least one element which 
is not an identical element ofU. 

Theorem 4 (trigonometric case)  Approximation  by TAT   =   \ TNA \ in 
I- i AeiN 

Theorem 1 is an approximation method saturated with order A-2 in \P and its 
identical elements are just constant functions almost everywhere on IRm. When 
^ = CW (IRm), the saturation class S[TJ\f] is characterized as 

S[TA/]D j/etf; j^-eLip 1, s=l,...,m\ 

and, ifm = I, S[TAT\ = {/e«; § € Lip l}. 

Remark 2 (piecewise linear and sigmoidal cases) Approximations by 

PN[f] '" and SN [f] ,CT in Theorems 2 and 3 are also saturated with order A-2 

in ijjr (IRm)) if o- is large enough for X. This is because, for any X £ IN, PN[f]A'° 
and SN [f] '" approach TN [f]    as a increases stated in Remark 1. 

3.3 Outline of the Proof 
Multidimensional extension of approximation by the convolution operator and the 
multidimensional Fejer-Korovkin kernel, which are introduced in this study, provide 
a construction of an approximating network with trigonometric hidden-layer units, 
the approximation error estimation, and sturation of the approximation. Then, 
from the network and constructive approximation to multidimensional trigonomet- 
ric functions by networks with piecewise linear and sigmoidal hidden-layer units, 
a constructions of approximating networks with piecewise linear and sigmoidal 
hidden-layer units, the approximation error estimations, and sturation of the ap- 
proximations are derived. 

4     Example 
This is an example of an approximation to the function exp (— (rr2 + y2)) ■ Approx- 
imating networks are calculated at A = 2, 4, 6, 8, 10 and a = 60. The numbers of 
hidden-layer units are respectively 24, 80, 168, 288, 440 in the trigonometric case 
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353 

(a) X= 2 (trigonometric) 

Figure 1    The approximated function 

0.2 

0.15 

0.05 - 

0        2        4        6        8       10       X 

Figure 2    Approximating networks with three kinds of hidden layer units at a = 
60. (When A is the same, the three kinds of networks have almost the same figures.) 

and 7.2 x 103, 4.3 x 104, 1.3 x 105, 2.9 x 105, 5.5 x 105 in the piecewise linear and 
sigmoidal cases. The actual errors with L^-noim are numerically calculated from 
the left-hand members of Inequalities (2), (4), and (6), and the estimated errors are 
calculated from their left-hand members. 

5    Conclusion 
This paper presents constructive approximations by three-layer artificial neural net- 
works with (1) trigonometric, (2) piecewise linear, and (3) sigmoidal hidden-layer 
units to 27T-periodic pth-order Lebesgue integrable functions defined on IRm to 
IRn for p > 1 with L^-norm. (In the case of (1), networks with trigonometric 
hidden-layer units can also approximate 27r-periodic continuous functions defined 
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on IRm to IRn with CW-norm in the same time.) The approximations provide (a) 
approximating-network equations, (b) specifications for the numbers of hidden-layer 
units, (c) approximation error estimations, and (d) saturations of the approxima- 
tions. These results can easily be applied to non-periodic functions defined on a 
bounded subset of IRm. 
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In this article, two neural network clustering techniques are compared to classical statistical tech- 

niques. This is achieved by examining the results obtained when applying each technique to a 

real-world phoneme recognition task. An analysis of the phoneme datasets exposes the clusters 

which exist in the pattern space. The study of the similarity of the patterns which are clustered 

together allows an objective evaluation of the clustering efficiency of these techniques. It also gives 

rise to a revealing comparison of the way each technique clusters the dataset. 

1 Introduction 
Clustering algorithms attempt to organise unclassified patterns into groups in such 
a way that patterns within each group are more similar than patterns belonging to 
different groups. In classical statistics, there exist a wide range of agglomerative and 
divisive clustering techniques [1], which use as distance measures either Euclidean- 
type distances or other metrics suitable for binary data. Recently, techniques based 
on neural networks have been developed and have been found well-suited to cluster- 
ing large, high-dimensional pattern spaces. In this article, the clustering potential 
of two fundamentally different neural network models is studied and compared to 
that of statistical techniques. The network models are: (a) the Self-Organising Logic 
Neural Network (SOLNN) [2], which is based on the n-tuple sampling method and 
(b) the Harmony Theory Network (HTN) [3] which constitutes a derivative of the 
Hopfield network and a variant of the Boltzmann machine. 
In an effort to evaluate the effectiveness of the two network models when discovering 
the clusters which exist in the pattern space, a comparison is made to a number of 
established statistical methods. This comparison is performed in a series of experi- 
ments which use real-world phoneme data. A number of phonemes is selected and 
used as prototypes. Various levels of noise are injected to the prototypes, resulting 
in different datasets, each consisting of well defined phoneme-classes. The varying 
levels of noise cause each dataset to have fundamentally different characteristics. 
The behaviour of the clustering techniques is then studied for each dataset. 

2 Overview of the Clustering Techniques 
The Self-Organising Logic Neural Network (SOLNN) shares the main structure of 
the discriminator network [4]. It is consequently based on the decomposition of the 
input pattern into tuples of n pixels and the comparison of these tuples to the corre- 
sponding tuples of training patterns. In the SOLNN model, the basic discriminator 
structure has been extended by allocating m bits to each tuple combination rather 
than a single one. This allows the network to store information concerning the fre- 
quency of occurrence of the corresponding tuple combination during learning and 
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is instrumental to the SOLNN's ability to learn in the absence of external super- 
vision. The SOLNN has been shown to successfully perform clustering tasks in an 
unsupervised manner [2,5]. The SOLNN model is characterised by the distribution 
constraint mechanism [5] which enables the user to determine the desired radius 
of the SOLNN clusters. This mechanism is similar to the vigilance parameter of 
Adaptive Resonance Theory (ART) [6]. 
The Harmony Theory Network (HTN) [3] consists of binary nodes arranged in 
exactly two layers. For this task, the lower layer encodes the features of the unclas- 
sified patterns and the upper layer encodes the candidate patterns of the clustering 
task. Each connection between a feature and a classified pattern specifies the posi- 
tive or negative relation between them, i.e. whether or not the pattern contains the 
feature. No training is required to adapt the weights, which depend on the local 
connectivity of the HTN [3]. During clustering, each candidate pattern is input to 
the lower layer of the HTN; the activated nodes of the upper layer constitute the 
patterns to which the candidate pattern is clustered (also see [7] for a more detailed 
description). Both the required degree of similarity between clustered patterns and 
the desired number of clusters are monitored by the parameter k of Harmony The- 
ory, which resembles the vigilance parameter of ART [6] and the radius of RBF 
(Radial-Basis Function) networks [8]. Its value is changed, in a uniform manner for 
all candidate patterns, in the search for optimal clustering results. 
Hierarchical statistical clustering techniques [1] of the agglomerative type are used 
for clustering in this article. The techniques employed are (i) the single linkage, (ii) 
the complete linkage, (iii) the median cluster, (iv) the centroid cluster and (v) the 
average cluster. 

3    Description of the Clustering Experiments 
The data employed in the experiments are real-world phonemes which have been 
obtained from the dataset of the LVQ-PAK simulation package [9]. The phonemes 
in this package have been pre-processed so that each phoneme consists of 20 real- 
valued features. The selected phonemes (called prototypes) correspond to the letters 
"A", "0", "N", "I", "M", "U" and "S". Since both the SOLNN and the HTN net- 
works require binary input patterns, the phonemes have been digitised, by encoding 
each real-valued feature into four bits via the thermometer-coding technique [10]. 
Consequently, the resulting prototypes are 80-dimensional binary patterns. 
Each of the prototypes has been used to generate a number of noisy patterns by 
adding random noise of a certain level, namely 2.5, 5, 7.5 and 10%. A different 
dataset (experiment-dataset) is created for each level of noise. Every experiment- 
dataset consists of groups of noisy patterns whose centroids coincide with, or 
are situated very near to, the prototypes. The different levels of noise cause the 
experiment-datasets to occupy varying portions of the input space and the groups 
of noisy patterns to overlap to a different extent. The prototype and the noisy pat- 
terns for each level of noise constitute a phoneme class. An analysis of the phoneme 
classes in each experiment-dataset indicates that the patterns of each phoneme class 
are closer to other patterns of the same class than to patterns of other phoneme 
classes. As the noise level increases, each phoneme class occupies a larger portion 
of the pattern space and the distance between phonemes from different classes is 
reduced, while the probability of an overlap occurring between different classes in- 
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Phoneme 
Class 

Average 
Distance 

within class 

Minimum 
Distance 

within class 

Maximum 
Distance 

within class 

Minimum 
Distance 

between classes 

A 16.11% 10.00% 20.00% 22.50% (A k 0) 
0 16.67% 10.00% 20.00% 22.50% (0 k A) 
N 16.22% 7.50% 20.00% 23.75% (N k 0) 

I 16.33% 10.00% 20.00% 20.00% (I k M) 

M 16.22% 10.00% 20.00% 20.00% (M k I) 

U 16.06% 10.00% 20.00% 23.75% (U k 0) 

S 16.22% 10.00% 20.00% 26.25% (S k I) 

Table 1    Characteristics of the pattern space used for 10% noise level. Distances 
are calculated as percentages of the total number of pixels. 

creases. The 10%-noise dataset is probably the most interesting one since, in that 
case, the minimum distance between two phonemes from different classes (more 
specifically classes "I" and "M") becomes equal to the maximum distance between 
patterns within any phoneme class. Due to this fact, it is expected to be the most dif- 
ficult experiment-dataset to cluster successfully. Its characteristics are summarised 
in Table 1 to allow for a detailed evaluation of the clustering results. 
The task consists of grouping the patterns of each experiment-dataset so that the 
phoneme classes are uncovered. The results obtained by each of the three clustering 
techniques are evaluated by taking into account the characteristics and topology 
of each experiment-dataset, i.e. the pixel-wise similarity between the patterns and 
the clusters in which they have been organised by each technique. This enables (i) 
a comparison of the way in which each technique operates for various data distri- 
butions and (ii) an evaluation of the effect that the relation between the maximum 
distance of patterns of the same phoneme class and the minimum distance of pat- 
terns of different phoneme classes has on clustering. 
Additionally, a statistical analysis of the pattern space created by each experiment- 
dataset has been performed to investigate how effective the clustering techniques 
actually are. This investigation is based on the similarity between classes in the 
pattern space. The comparison of the two neural network techniques and the sta- 
tistical methods, together with an in-depth analysis of the pattern space, provides 
an accurate insight to the capabilities and limitations of each of the techniques 
studied. 

4     Experimental Results 
The different clustering techniques are applied to the clustering task described in 
the previous paragraph. The results obtained are summarised in Table 2, where the 
following information is contained: 

(i) the proportion of dataset phonemes that are correctly classified, that is of pat- 
terns assigned to a cluster representing their phoneme class; 

(ii) the number of multi-phoneme clusters, that is clusters containing patterns from 
more than one phoneme class; 
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Noise 
Level Criterion SOLNN HTN Statistical 

2.5%, 
5%, 

7.5% 

Correct classification 100% 100% 100% 
Multi-phoneme clusters formed 0 0 0 
Phonemes in multi-phoneme cluster 1 1 1 
Number of created clusters 7 7 7 
Number of clusters per phoneme 1 1 1 

10% 

Correct classification 86%/100% 97% 100% 
Multi-phoneme clusters formed 4/0 1 0 
Phonemes in multi-phoneme cluster 4/1 2 1 
Number of created clusters 7/10 21 7 
Number of clusters per phoneme 4/2 4 1 

Table 2 Comparative results of the three methods for the different noise levels. 
In the case of the SOLNN, for 10% noise, two sets of results are noted, the first 
corresponding to a 7-discriminator network and the second to a 10-discriminator 
network. In the case of statistical methods, the results are obtained using the Ham- 
ming distance metric. 

(iii) the maximum number of phoneme classes contained in any multi-phoneme 
cluster; 

(iv) the number of clusters created by each method; 

(v) the maximum number of clusters to which patterns of any phoneme class are 
assigned. 

As can be easily seen, the value of criterion (i) should ideally be equal to 100%, 
the value of criterion (ii) should be equal to 0, the value of criterion (iv) should be 
equal to 7, while the values of criteria (iii) and (v) should be equal to 1. 
In the application of the SOLNN to the experiment-dataset, several network sizes 
ranging from 7 to 70 discriminators are simulated in order to investigate the effect 
of the network size on the SOLNN clustering performance. As has been shown 
[5], the SOLNN requires several iterations before settling to a clustering result, 
gradually separating each class. As the clustering task becomes more difficult, that 
is as the pattern classes become less clearly separated, the number of required 
iterations increases. For noise levels up to 7.5%, the SOLNN succeeds in separating 
all phoneme classes for all network sizes by creating a single group for each class. In 
the case of the 10% noise level, when the distance between the phoneme classes is 
considerably reduced, the SOLNN requires a larger number of iterations to settle to 
a clustering result. More specifically, the number of required iterations is of the order 
of 20, 50, 150 and 500 for noise levels of 2.5, 5, 7.5 and 10%, respectively. For high 
noise levels (10%), more than one cluster is generated for some phoneme classes. 
Misclassifications are occasionally observed, as some nodes have patterns assigned 
to them from more than one phoneme class. Such multi-phoneme clusters occur in 
particular when the number of nodes in the SOLNN is reduced. Characteristically, 
for a 10% level of noise, multi-phoneme clusters occur for a 7-node but not for a 10- 
node network. The formation of multi-phoneme clusters for the 7-node SOLNN (see 
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Table 2) is due to the fact that the network uses two nodes for the "U"-phoneme 
class, and is thus unable to form a cluster dedicated exclusively to the "0"-phoneme 
class. It is worth noting that multi-phoneme clusters consist of phonemes which have 
a relatively high degree of similarity. It has been reported [5] that for the optimal 
clustering to be achieved there need to be more nodes in the network than there 
are classes in the dataset. Indeed, this is confirmed by the results obtained with 
the 10-node SOLNN. Still, even for the 7-node system, the SOLNN succeeds in 
consistently clustering the majority of patterns in single-phoneme clusters. 
For the HTN, each test pattern is input into the lower layer of the HTN. In contrast 
to the SOLNN, a single pass of activation-flow from the lower to the upper layer, 
at a pre-specified k value, reveals the patterns to which the test pattern becomes 
clustered. Optimum clustering with a HTN requires finding one (or more) value of k 
for which each test pattern becomes clustered with all the nodes of the upper layer 
representing patterns of the same phoneme class but with no nodes representing 
patterns of different phoneme classes. This has been established for noise levels up 
to 7.5% for k values around 0.650. The range of A; values which result in the optimum 
clustering becomes narrower as the noise level increases. This can be explained by 
the fact that as the noise level rises (i) lower k values are required for grouping 
patterns of the same phoneme class, while at the same time, (ii) higher k values 
are required for patterns of different phoneme classes not to be grouped together. 
When the noise level reaches 10%, no value of k generating the optimum clustering 
can be found; some dataset patterns fail to be clustered with all the nodes of the 
upper layer representing patterns the same phoneme class, while they are clustered 
with nodes representing patterns of other phoneme classes. It is possible, however, 
to achieve a sub-optimum clustering by raising the value of k, whereas the problem 
of multi-phoneme clusters is avoided at the expense of multiple clusters for each 
phoneme class. As shown in Table 2, the sub-optimum clustering performed by the 
HTN for the 10% noise level is due to the network grouping together an "I" with an 
"M", which are the two phoneme patterns from different classes with the minimum 
distance. Due to the fact that this distance is equal to the maximum distance within 
any class (see Table 1), the structure of the pattern space justifies the sub-optimal 
clustering produced by the HTN. 
For the statistical analysis, the five agglomerative clustering techniques mentioned 
in Section 2 have been used to cluster all patterns in the minimum possible num- 
ber of groups, while avoiding the creation of any multi-phoneme clusters. Both the 
Hamming distance and the Euclidean distance were considered as distance mea- 
sures. In the case of the Hamming distance in the 80-dimensional space, which in 
the case of binary patterns is equal to the square of the Euclidean distance, the 
seven phoneme classes are consistently separated by all statistical methods. When 
using the Euclidean distance metric, the seven phoneme classes are separated by 
all statistical methods for all noise levels except for the hierarchical average cluster 
method for the 10%-noise level dataset. In this case, for seven clusters, the phonemes 
"A", "O", "M" and "U" are grouped together, "N" and "S" form an independent 
cluster each, whilst "I" is split into four clusters. The minimum number of clusters, 
in order to avoid multi-phoneme clusters, is fourteen. 
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5     Conclusions 
Both the neural network (SOLNN and HTN) and the statistical techniques have 
been found to perform the selected clustering task satisfactorily. For low noise 
levels, all techniques cluster the dataset successfully, by forming exclusively single- 
phoneme clusters. For higher noise levels, the statistical methods always generate 
the optimum clustering according to the Hamming distance metric, as witnessed by 
the study of the dataset structure. The quality of the clustering generated by the 
two neural network models is slightly inferior to that of the statistical techniques. 
This is indicated by the creation of multiple clusters for a few phoneme classes. 
However, the vast majority of clusters consist of patterns from a single phoneme 
class (see Table 2), thus producing successful clustering. 
It is worth noting that the study of the Hamming distances between the differ- 
ent phoneme patterns in the dataset indicates that the clustering behaviour of all 
three techniques is justified. In particular, for the noise level of 10% when the most 
differences between the clustering results of the three methods are detected, the 
minimum distance between the phoneme classes is equal to the maximum distance 
between phonemes of the same class. This allows for more than one possible clus- 
tering results of almost the same quality. 
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Pulsed oscillatory neural networks are examined for application to analysis and segmentation of 

multispectral imagery from the Satelite Pour l'Observation de la Terre (SPOT). These networks 

demonstrate a capacity to segment images with better performance against many of the resolution 

uncertainty effects caused by local area adaptive filtering. To enhance synchronous behavior, a 

reset mechanism is added in the model. Previous work suggests that a reset activation pulse is 

generated by sacatic motor commands. Consequently, an algorithm is developed, which behaves 

similar to adaptive histogram techniques. These techniques appear both biologically plausible and 

more effective than conventional techniques. Using the pulse time-of-arrival as the information 

carrier, the image is reduced to a time signal which allows an intelligent filtering using feedback. 

1    Introduction 
Histogram image analysis may play an important role in biological vision image 
processing. Structures of artificial neurons can be used to create histogram like sig- 
nals quickly. In this paper, we will examine how algorithms based on fast histogram 
processing may offer advantages for computer vision systems. 
In a biological vision system, the signals detected at the retina are passed to the 
LGN then to the Visual Cortex, where neighborhood preserving maps of the retina 
are repeated at least 15 times over the surface of the cortex. For every path forward, 
there are several neurological pathways in the reverse direction. Reverse direction 
transmission of information suggest feedback signals. Using appropiate feedback, 
the image processing can be controlled using recurrence. Pulses generated by dy- 
namic neuronal models suggest a method for building recurrance into vision models. 

1.1    Dynamic Neural Networks 
Dynamic neural networks, first examined by Stephen Grossberg, Maas and others 
[3] were an attempt to construct models closer to their biological counterpart. In 
this model, the basic computational unit is not the usual static matrix multiplier 
with a non-linear transfer function between layers, but a leaky integrator with a 
pulsed oscillatory output. This work is sometimes refereed to as Integrate and Fire 
Networks. 
To understand the role of synchrony in the cat visual cortex, Eckhorn devised a 
model which would replicate some of this behavior. The Eckhorn [1] dynamic model 
represents a visual neuron as a multi-input element with a single output. The output 
is made up of oscillatory electrical pulses in time. Three types of connections make 
up the input section: the feeding, the linking and the direct inputs. The direct 
input provides pixel information. The feeding inputs provide local information in 
the region of the direct inputs. The combination of the direct and feeding input 
provide texture information in a local region around the direct input. The linking 
field provides a global connection for all sub-regions in the image. The linking 
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Figure 1    Behavior of a clean and noisy signal. 

connections enforce synchrony between local regions. The information is extracted 
using correlation techniques. 
Given these characteristics, several image processing functions are possible. In this 
paper we will explore only one, usually the most difficult: segmentation. If infor- 
mation in a particular part of the image is similar to information in another part 
of the image, they should have the same pulse repetition frequency as the feeding 
field, and the same phase after the linking fields. This information can easily be 
extracted using correlation filters. 
For a single neuron, Uj(t) is given by: 

Uj(t) = (l+ßLj(t))Xj(t) (1) 

Xj(t), are the direct inputs to a neuron, Lj(t) is the contribution from nearby 
neurons weighted by ß the link coefficients. The spiking output, Yj, is provided 
by a step function of a time dependent threshold 6j (t) and the neuronal activity 
according to 

Yj=step[Uj(t)-6j(t)] (2) 

6j(t) and Lj(t) can have different decay constants as and c*£. The dynamics of the 
linking field and threshold are given by 

Lj(t) = £>fcje-'/^ • n(*),0;W = 0mase-
(t-*'-)/a" (3) 

k 

where wkj is the connection weighting for the local field neurons. Sufficient neural 
activity combined with a decaying threshold lead to a spike output which resets the 
threshold to the maximum from which it decays again. 
Built into this neuronal model are a number of characteristics common to biological 
vision: integrate and fire, latency and lateral interConnectivity. Figure 1 provides a 
means to visualize the firing behavior of a one dimensional signal in time. In the 
first graph, the input to the system is 0.8. The energy is integrated and plotted. The 
threshold, a decaying exponential relaxes from its initial maximum. This ensures a 
minimum pulse rate and a refractory period. When the two are equal, the neuron 
fires and both 6, the threshold, and Uj(t) the neuron potential are reset. In the 
second graph, a lower energy input is used, which is characterized by a slower firing 
rate. 
For large clusters of neurons, the group behavior can be characterized by the total 
firing rates over time. A signal based on the total number of neurons firing at a 



Tarr et ah Pulse Coupled Neural Networks 363 

specific time could be used as a control signal for modification of the structure and 
appearance of the image. This is the basis for using pulse coupled neural networks 
to segment images. 
In the following graphs, only the firing patterns are shown. A one dimensional signal 
is used to demonstrate the temporal encoding nature of the output signal. The first 
image, without using coupling between neurons shows, how the pulse frequency rate 
is related to the input strength. 
In the second figure, coupling is added between adjacent neurons. The effect is to 
cluster neurons into separate time bins. By evaluating the behavior of the temporal 
signal, processing is performed on the actual image. 

Figure 2 

2    Pulse Coupled Neurons for Adaptive Histogram Analysis of 
Imagery 

Most dynamic models of neural computation suggest that synchronization between 
regions is the primary information carrier. But if time of arrival is used as the infor- 
mation carrier, it demonstrates that mechanisms exist in the cellural architectures 
to perform histogram analysis and adaptive histogram analysis of images. 
The following 32x32 image chips are taken for the SPOT satellite imagery and 
represent common problems in image segmentation. 
Several variations of edge detection are currently used on these type of images, the 
most common being the Sobel and Canny operators. The difficulty lies in that the 
size of the window used for the operator affects the size of the detectable gradients, 
and the width of the edge. An improvement on the Sobel operator is the Canny 
edge detector, which effectively finds the center of the gradient and places an edge 
there. Its weakness, as with most convolution filter segmentation methods, is that 
overall resolution is usually reduced to the size of the filter window. This effect 
results in rounded and wide edges. In low resolution systems like SPOT, this loss 
of resolution is often unacceptable. 
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An important advantage of the pulsed coupled methods is that segmentation is 
possible for objects smaller than the window size. In the above image a road is 
detected having a width less than two pixels wide in some places. General threshold 
settings for the previous problem are not compatible with detection of features in 
the second image. 
The adaptive nature of the algorithm allows pulses in the histogram to represent 
whole regions in the segmented image. The signal can be used to modify the image 
on the next cycle. 
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Figure 4 

This image was segmented as part of a larger project to perform terrain categoriza- 
tion using a linear approximation to the Eckhorn model developed by Freyss. For 
a relatively complex image such as this, most of the common techniques perform 
relatively poorly. The advantage with this new technique is that there are almost 
no parameters to be set and no buried decisions being made by the operator. 

3    Conclusions and Future Work 
The model we developed demonstrates effective image segmentation over a wide 
variety of image class types. Although many of the results demonstrated here could 
be duplicated using standard techniques, these methods offer a simple modular 
approach to the image analysis, and are easily implemented in silicon devices. 
Our work suggests that the group behavior of clusters of neurons provides a tech- 
nique which encodes images into one dimensional signals in time. Using the temporal 
encoded group output as a control signal will add a large measure of robustness to 
a visual system. 
An important aspect of this work is the new approach to image processing; that is 
expectation filtering for particular characteristics with feedback to enhance desired 
qualities in the signal. Donaho's [2] work on histogram equalization approximation 
for manufacturing processes could easily be implemented using this architecture. 
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The Reasoning Neural Network (RN) has a learning algorithm belonging to the weight-and- 

stracture-change category, because it puts only one hidden node in the initial network structure, 

and will recruit and prune hidden nodes during the learning process. Empirical results show that 

learning of the RN is guaranteed to be completed, the number of required hidden nodes is reason- 

able, that the speed of learning is much faster than back propagation networks, and that the RN 
is able to develop good internal representation. 

1 Introduction 
Intuitively, human learning consists of cramming and reasoning at a high level 
of abstraction [5]. This observation has suggested a learning algorithm as shown 
in Figure 1. This learning algorithm belongs to the weight-and-structure-change 
category, because it puts only one hidden node initially, and will recruit and prune 
hidden nodes during the learning process. Our learning algorithm guarantees to 
achieve perfectly the goal of learning. There are some similar learning algorithms; 
however, most of them have more complex pruning strategies. [7, 4, 1, 2]. 

2 The RN's Network Architecture 
The RN adopts the layered feedforward network structure. Let's suppose that the 
network has three layers with m input nodes at the bottom, p hidden nodes, and 
q output nodes at the top. Let Bc € {-1, l}m be the cth given stimulus input, 
bcj the stimulus value received in the jth input node when Bc is presented to the 
network, wtj the weight of the connection between the jth input node and the ith 
hidden node, 0,- the negative of the threshold value of the «th hidden node, w,- = 
(wn,Wi2, ...,wimy the vector of weights of the connections between all input nodes 
and the ith hidden node, where the superscript t indicates the transposition, X* = 
(0,-,wJ), and X* = (X^X?,, ...,X*). Then, given the stimulus Bc, the activation 
value of the z'th hidden node is computed: 

m 

h(Bc, X,-) = tanh(0, + ^ Wijbcj). 
i=i 

Let h(Bc, X) = (A(BC, Xi), h(Bc, X2),..., h(Bc, Xp)' be the activation value vec- 
tor of all hidden nodes when Bc is presented to the network, r;,- the weight of the con- 
nection between the ith hidden node and the /th output node, r( = (r;i, r(2,..., r^)1 

the vector of weights of the connections between all hidden nodes and the /th output 
node, si the negative of the threshold value of the /th output node, Y,* = (s;,r|), 
Y* = {Y\, Y2,..., Y<), and Z* = (Y'.X4). The activation value of the /th output 
node is computed after h(Bc,X): 

p 

0(Be> Y,, X) = tanh(Si + £ r„A(Be, X,-)). 
j=i 

3 The Learning Algorithm 
The block diagram of the learning algorithm is shown in Figure 1. There are four 
distinguished aspects of this learning algorithm: the linearly separating condition 
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Figure 1    The block diagram of the learning algorithm. The details of the thinking 
box, the reasoning box and the cramming box are shown in Figure 2 and Figure 3. 
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Figure 2 The Generalised Delta Rule part, the thinking part and the reasoning 
part. The values of given constants a and u; in the Generalised Delta Rule part are 
tiny. 

(LSC), the thinking mechanism, the cramming mechanism; and the reasoning mech- 
anism. These aspects are explained in the following. 
With respect to each output node, the network is used as a classifier which learns 
to distinguish if the stimulus is a member of one class of stimuli, called class 1, or 
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p+l —> p, then adds the new Pth hidden nc )de with wp = Bt 0P = l- - m, and 
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riP = 

1 ™.i*hieKn(k-i) EC i1 n»/»(B„ X,-)- n^n .•A(B* > x ) if dki - = -1.0 

Figure 3    The Cramming part. Suppose that / 6 L if, before implementing the 
cramming mechanism, the LSC with respect to the Ith output node is satisfied. 

of a different class, called class 2, by being presented with exemplars of each class. 
With respect to the /th output node, let K = Ä'/i UÄ'12, where I<n and A'j2 are the 
sets of indices of all given training stimuli in classes 1 and 2, respectively; and let 
dci be the desired output value of the /th output node of the cth stimulus, with 1.0 
and —1.0 being respectively the desired output values of classes 1 and 2. Learning 
seeks Z where, for all /, 

dclO(Bc,Y,,X)>v       VcEK (1) 

and 0 < v < 1. With respect to the /th output node, let the LSC be that 

min 0(Bc,Y,,X) > max 0(Bc,Y,,X). 
ceKn ceKl2 

When the LSC with respect to the /th output node is satisfied, the requirement (1) 
with respect to the /th output node could be achieved by merely adjusting Y; [5]. 
At the learning stage, the training stimuli are presented one by one. At the kih 
given stimulus, the objective function is denned as: 

k     g 

E(Z) = TT(0(Bc,YhX)-dcl) 2 

c=l !=1 

and let K(k) = {1, ...,&} and K(k) = Kn(k) U K,2(k), where Kn(k) and K,2{k) 
are, respectively, the sets of indices of the first k training stimuli in classes 1 and 2, 
with respect to the /th output node. Then the thinking mechanism is implemented, 
in which the momentum version of the generalized delta rule (with automatic ad- 
justment of learning rate) is adopted. Learning might converge to the bottom of a 
very shallow steep-sided valley [3], where the magnitude of the gradient will be tiny 
and the consecutive adaptive learning rates will also be tiny. Therefore, as shown in 
the generalized delta rule part of Figure 2, these two criteria are adopted to detect 
if the learning hits the neighborhood of an undesired attractor. 
The desired solution is not required to render the requirement (1) satisfied or to 
be a stationary point in which VZE(Z) = 0. Thus, the magnitude of ||V^i?(Z)|| 
before hitting the desired solution is not necessarily tiny and the learning time is 
rather less, compared with conventional stopping criteria (for example, small E(Z) 
or \\VZE(Z)\\ = 0). 
The thinking mechanism does not guarantee that the LSC with respect to all output 
nodes will be satisfied. Two ideas could render the learning capable of escaping 
from the undesired attractor: add a hidden node and alter the objective function. 
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By adding a hidden node, the dimension of the weight space is increased; while 
altering the objective function will change its function surface on the weight space 
such that the trapped attractor could be no more an attractor. These two ideas are 
implemented in our learning algorithm via the cramming mechanism and that the 
objective function is altered by introducing a new training stimulus. 
The cramming mechanism can be viewed as that, at first a new hidden node with 
the near threshold activation function is added, then the softening mechanism of 
[6] is used immediately to render the activation function of the new hidden node a 
tanh one. The Lemma in [6] shows that the mechanism of adding a new hidden node 
with the near threshold activation function and a finite value of the gain parameter 
can immediately render the LSC with respect to all output nodes satisfied, if the 
training set has no internal conflicts (different outputs for the same input). 
However the number of required hidden nodes may be too many and the generaliza- 
tion ability of the network may be bad. Thus it is necessary to adopt the reasoning 
mechanism for the purpose of rendering the network more compact. The reasoning 
mechanism includes the thinking mechanism and the pruning mechanism of remov- 
ing irrelevant hidden nodes. In a Z, the z'th hidden node is said to be irrelevant to 
the LSC with respect to the /th output node if the LSC is still satisfied with the 
same Z except ru = 0; and a hidden node is irrelevant if it is irrelevant to the LSC 
with respect to all output nodes [5]. 

4    The Performance of the RN 
We report three experiments. In each simulation, there are 100 testing cases, each 
with different input sequence of training stimuli. One experiment is the m-bits 
parity learning problem. In Figure 4a, the numbers of used hidden nodes during 
the 6-bits parity learning process are plotted. The variance of p is due to the different 
input sequence of training stimuli. Figure 4b shows the summary of the simulation 
results, and it shows that the average value p of the m-bits parity problems is merely 
a little bigger than m. However, it is surprising to see that the RN can solve the 
m-bits parity problems with less than m hidden nodes. 
The output/hidden experiment is used to identify the relationship between the 
number of required hidden nodes and the number of used output nodes. The number 
of input nodes is fixed to be 8. The training stimuli and their input sequence are 
randomized; but the number of used output nodes is varied from 1 to 6. In Figure 
4c, the simulation result of the "m = 8, q = 3, and K - 100" problem are plotted. 
Figure 4d shows the summary of the simulation results, and it shows that the 
relationship between the average value p of the RN and the value of q is rather a 

linear one. 
One significant phenomenon of above simulations is that the value of q influences 
the value of p more significantly than the values of K and m do. Another interesting 
phenomenon is that if there is no correlation within current given training stimuli, 
the RN tends to cram them (in other words, memorize them individually) by using 
many more hidden nodes. But when there are correlation within the current given 
training stimuli, it seems that the RN will figure out a smart way to classify the 
given training stimuli by using less hidden nodes. In other words, the RN has the 
ability of developing a good internal representation for the given training stimuli. 
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Figure 4 a) The simulation result of the 6-bits parity problem, b) The summary 
of simulation results of the m-bits parity problem, c) The simulation result of the 
"m = 8, q = 3, and K = 100" problem, d) The summary of simulation results of 
the output/hidden problems, e) The simulation result of the 5-p-5 problem. 

The third experiment is the 5-p-5 problem (Figure 4e)), in which the training stimuli 
are the same as those of the 5-bits parity problem and the desired output vector is 
the same as the stimulus input vector. Somewhat surprisingly, as shown in Figure 
5, each hidden node of one final RN has only one strong connection strength from 
input nodes, and each output node has only one strong connection strength from 



Tsaih: Reasoning Neural Networks 371 

Figure 5 One final RNN of the 5-p-5 encoder problem, where we show only the 
connections with weights of large magnitude, and the signs of their weights. Note 
that the signs of two connected strongest connections are the same. 

hidden nodes. In addition, different hidden nodes have strongest connections from 
different input nodes, different output nodes have strongest connections from a 
different hidden node, and the signs of connected strongest connections are the 
same. It seems that, after learning the full set of training stimuli, the RN had 
learned to use the hidden nodes to bypass the input stimulus, rather than to encode 
them. 

5    Discussions and Future work 
The empirical results show that the learning of the RN is much faster than the 
back propagation learning algorithm, and that the RN is able to develop good in- 
ternal representation with good generalization. The RN has flexibility in its learning 
algorithm; different algorithms have been obtained by integrating the prime mech- 
anisms in different way. These yield different simulation results: it seems that we 
should use different management in the RN for different application problems. 
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The storage capacity of multilayer networks with overlapping receptive fields is investigated for 

a constructive algorithm within a one-step replica symmetry breaking (RSB) treatment. We find 

that the storage capacity increases logarithmically with the number of hidden units K without sat- 

urating the Mitchison-Durbin bound. The slope of the logarithmic increase decays exponentionally 

with the stability with which the patterns have been stored. 

1    Introduction 
Since the ground breaking work of Gardner [1] on the storage capacity of the per- 
ceptron, the replica technique of statistical mechanics has been successfully used 
to investigate many aspects of the performance of simple neural network mod- 
els. However, progress for multilayer feedforward networks has been hampered by 
the inherent difficulties of the replica calculation. This is especially true for ca- 
pacity calculations, where replica symmetric (R.S) treatments [2] violate the upper 
Mitchison-Durbin bound [3] derived by information theory. Other efforts [4] break 
the symmetry of the hidden units explicitly prior to the actual calculation, but 
the resulting equations are approximations and difficult to solve for large networks. 
This paper avoids these problems by addressing the capacity of a class of networks 
with variable architecture produced by a constructive algorithm. In this case, re- 
sults derived for simple binary perceptrons above their saturation limit [5] can be 
applied iteratively to yield the storage capacity of two-layer networks. 
Constructive algorithms (e.g., [6, 8]) are based on the idea that in general it is a 
priori unknown how large a network must be to perform a certain classification 
task. It seems appealing therefore to start off with a simple network, e.g., a binary 
perceptron, and to increase its complexity only when needed. This procedure has 
the added advantage that the training time of the whole network is relatively short, 
since each training step consists of training the newly added hidden units only, 
whereas previously constructed weights are kept fixed. Although constructive al- 
gorithm seem therefore rather appealing, their properties are not well understood. 
The aim of this paper is to analyse the performance of one constructive algorithm, 
the upstart algorithm [8], in learning random dichotomies, usually referred to as 
the capacity problem. 
The basic idea of the upstart algorithm is to start with a binary perceptron unit 
with possible outputs {1,0}. Further units are created only if the initial perceptron 
makes any errors on the training set. One unit may have to be created to correct 
WRONGLY ON errors (where the target was 0 but the actual output is 1) another to 
correct WRONGLY OFF errors (where the target was 1 but the output is 0). If these 
units still cause errors in the output of the network, more units are created in the 
next generation of the algorithm until all outputs are correct. Different versions of 
the upstart algorithm differ in the way new units are connected to the old units and 
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to the output unit. The original upstart algorithm produces a hierarchical network 
where the number of hidden units tends to increase exponentionally with each 
generation. Other versions of the upstart algorithm[8] build a two-layer architecture 
and show only a linear increase of the number of units with each generation, which 
is in general easier to implement. 
We have therefore analysed a non-hierarchical version of the upstart algorithm. 
Within a one-step replica symmetry breaking (RSB) treatment [9], networks con- 
structed by the upstart algorithm show a logarithmic increase of the capacity with 
the number of nodes in agreement with the Mitchison-Durbin bound 

(acocln/^/ln2) 

, whereas the simpler RS treatment violates this bound. Furthermore, the algo- 
rithm does not saturate the Mitchison-Durbin bound for zero stability. We further 
find that the slope of the logarithmic increase of the capacity against network size 
decreases exponentionally with the stability. 

2    Model Description and Framework 
2.1     Definition of the Upstart Algorithm 
The upstart algorithm first creates a binary perceptron (or unit) Vo which learns 
a synaptic weight vector W £ IRN and a threshold 9 which minimize the error on 
a set ofp input-output mappings^ £ {-1,1}N -► C" € {0,1} {fi = 1,.. .,p) from 
an jV-dimensional binary input space to binary targets. The output of the binary 
perceptron is determined by 

where 0{x) is the Heavyside stepfunction, which is 1 for x > 0 and 0 otherwise, 
and hß is the activation of the perceptron. The error is defined as 

f 

where K is the stability with which we require the patterns to be stored. A suitable 
algorithm (e.g., [10]) will converge to a set of weights W which minimizes the above 
error. If the set of examples is not linearly separable with a minimum distance K 

of all patterns to the hyperplane, the binary perceptron will not be able to classify 
all patterns correctly, i.e., <7M ^ C,ß for some fi's and the upstart algorithm has to 
create further daughter units an a hidden layer to realize the mapping. The upstart 
algorithm therefore creates a binary {0,1} output unit O with threshold one and 
the initial perceptron T>0 and all further daughter units to be built by the algorithm 
will form the hidden layer. The first perceptron is then connected to Ö with a +1 
weight, i.e., Ö has initially the same outputs as VQ. 

The basic idea of the upstart algorithm is to create further daughter units D+ 

and T>~ in the hidden layer to correct WRONGLY OFF and WRONGLY ON errors 
respectively. Consider, for example, the creation of the new hidden unit V~, which 
is connected with a large negative weight to O, whose role is to inhibit Ö. V~ 
should be active (1) for patterns for which O was WRONGLY ON and inactive (0) 
for patterns for which O was CORRECTLY ON. Similarly, V~ ought to be 0 if O 
was WRONGLY OFF, in order to avoid further inhibition of Ö. However, we do not 
have to train V~ on patterns for which Ö was CORRECTLY OFF, since an active V" 
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would only reinforce O's already correct response. The resulting training sets and 
the targets of both daughter units are illustrated in Table 1. More formally we 

C = i C = o 

(7= 1 
CORRECTLY ON 

V+   * 
v- 0 

WRONGLY ON 

V+   0 
v- 1 

<r = 0 
WRONGLY OFF 

£>+   1 
v- 0 

CORRECTLY OFF 

V+   0 
v- * 

Table 1 The targets of the upstart II algorithm depending on the requested target 
f and the actual output a of the output unit O. The target "^ means that the 
pattern is not included in the training set of 15±. 

define the algorithm upstart II by the following steps which are applied recursively 
until the task is learned: 

Step 0: Follow the above procedure for the original unit V0 and the creation of 
the output unit O. Evaluate the number of WRONGLY OFF and WRONGLY ON 

errors. 

Step 1: If the output unit Ö of the upstart network of i generations makes more 
WRONGLY OFF than WRONGLY ON errors, a new unit V^+1 is created and 
trained on the training set and targets given in Table 1. If there are more 
WRONGLY ON than WRONGLY OFF errors, a new unit T>f+1 is created with 
training set and targets also given in Table 1. If both kind of errors occur 
equally, two units V^+l and T>f+1 are created with training sets and targets as 
above. 

Step 2: The new units are trained on their training sets and their weights are 
frozen. The units T>f+1, V~+1 are then connected with positive, negative weights 
to the output unit respectively. The modulus of the weights are adjusted so that 
Vf+i overrules any previous decisions if active. The total number of WRONGLY 

OFF and WRONGLY ON errors of the upstart network of generation i + 1 is then 
reevaluated. If the network still makes errors the algorithm goes back to Step 1. 

The algorithm will eventually converge as a daughter unit will always be able to 
correct at least one of the previously misclassified patterns without upsetting any 
already correctly classified examples. 

2.2     Statistical Mechanics Framework for Calculating the 
Capacity Limit 

Since the upstart algorithm trains only perceptrons, we can apply knowledge of 
the capacity limit and of the error rate of perceptrons above saturation derived in 
a statistical mechanics framework to calculate the capacity limit of the upstart II 
algorithm for an arbitrary number of generations. Below, we briefly review this 



West & Saad: Capacity of the Upstart Algorithm 375 

statistical mechanics calculation and refer the reader to [5] and to previous work [1] 
for a more detailed treatment. 
In the capacity problem the aim is to find the maximum number p of random input- 
output mappings of binary TV-dimensional input vectors £M to targets £** 6 {0,1}, 
which can be realized by a network on average. We assume that each component of 
the input vectors £** is drawn independently with equal probability from {—1,1}. 
The distribution of targets is taken to be pattern independent with a possible bias 

b: P(C) = |(1 + b)S(l - C) + K1 ~ b)s(0- We wil1 nere only consider an unbiased 
output distribution for the intial perceptron. The target distributions for daughter 
units however will in general be biased. 
Each binary perceptron is trained stochastically and we only allow weight vector 
solutions with the minimal achievable error. The error rate, i.e., the number of er- 
rors divided by the total number of examples, is assumed to be self-averaging with 
respect to the randomness in the training set in the thermodynamic limit TV —+ oo. 
In this limit the natural measure for the number of examples p is a — p/N. With 
increasing a the weight space of possible solutions shrinks, leaving a unique solu- 
tion at the capacity limit of the binary perceptron. Above the capacity limit many 
different weight space solutions with the same error are possible. In general the so- 
lution space will be disconnected as two solutions can possibly missclassify different 
patterns. As a diverges, the solution space becomes increasingly fragmented. 
The replica trick is used to calculate the solution space and the minimal error rate 
averaged over the randomness of the training set. This involves the replication of 
the perceptron weight vector, each replica representing a different possible solution 
to the same storage problem. In order to make significant progress, one has further 
to assume some kind of structure in the replica space. Below the capacity limit, 
the connectedness of the solution space is reflected by the correctness of a replica 
symmetric (RS) ansatz. Above the capacity, the disconnectedness of the solution 
space breaks the RS to some degree. We have restricted ourselves to a one-step 
replica symmetry breaking (RSB) calculation, which is expected to be at least 
sufficient for small error rates. The form of the equations for the error rate resulting 
from the RS and one-step RSB calculations are quite cumbersome and will be 
reported elsewhere [5, 11]. For the perceptron, the error rate is a function of the 
output bias b and the load a only. 

3    Results of the Upstart Algorithm 
The capacity of an upstart network with K hidden units can now be calculated. 
The initial perceptron is trained with an example load of a and an unbiased output 
distribution 6 = 0. The saddlepoint equations and the WRONGLY ON and WRONGLY 
OFF error rates are calculated numerically. These error rates determine the load 
and bias for the unit(s) to be created in the next generation. Now its (their) error 
rates and the errors of the output unit can in turn be calculated by solving the 
saddlepoint equations. This is iterated until K units have been built. If the output 
unit still makes error, we are above the capacity limit of the upstart net with K 
hidden units and a has to be decreased. On the other hand, if the output unit makes 
no errors, a can be increased. The maximal a for which the output unit makes no 
errors defines the saturation point of the network. The capacity limit, defined here 



376 CHAPTER 65 

U.H 
(b) 

0.3- 

7- 

0.2- 

 7(K) 
1     1     '     1     ' 1     '     1     ' 

10   K   100 1000    0.0     0.02    0.04    0.06    0.08     0.1 
K 

Figure 1 (a) Within the one-step RSB theory, the capacity ac increases log- 
arithmically with the number of hidden units K for large K for the stabilities 
K = 0 (0.1), i.e., ac oc 0.3595 (0.182)^/^ (see superimposed asymptotics). The RS 
theory violates the Mitchison-Durbin bound (third asymptotic: ac oc In K/ In 2) for 
K > 180. (b) The slope 7 of the logarithmic increase of the capacity decreases 
exponentionally with the stability K. 

as the maximal number of examples per adjustable weight of the network, then 
becomes simply ac(K) = a/K. 
In Fig. la we present the storage capacity as a function of the number of hidden units 
for both a one-step RSB and a RS treatment at zero stability of the patterns (K = 0). 
Whereas one-step RSB predicts a logarithmic increase ac(K) oc ln(A') for large 
networks, in agreement with the Mitchison-Durbin bound, the results for the RS- 
theory violate this upper bound1, i.e., the RS theory fails to predict the qualitative 
behaviour correctly. 
In Fig. la we also show that the storage capacity still increases logarithmically with 
the number of units K for non-zero stability, but with a smaller slope 7. Fig. lb 
shows the dependence of the slope 7 as a function of the stability K for one-step 
RSB. The maximal slope for zero stability 7 = 0.3595 ± 0.0015 does not saturate the 
Mitchison-Durbin bound 7 = 1/In 2 fa 1.4427, but is about four times lower. With 
increasing stabilities n this slope decreases exponentionally 7 oc exp(—6.77 ± 0.02 K). 

4    Summary and Discussion 
The objective of this work has been to calculate the storage capacity of multilayer 
networks created by the constructive upstart algorithm in a statistical mechanics 
framework using the replica method. We found that the RS-theory fails to predict 
the correct results even qualitatively. The one-step RSB theory yields qualitatively 
and quantitatively correct results over a wide range of network sizes and stabilities. 
In the one-step RSB treatment, a logarithmic increase with slope 7 of the capacity of 
the upstart algorithm with the number of units K was found for all stabilities. The 
slope decreases exponentionally [7 oc exp(—6.77K)] with the stability K. It would be 
interesting to investigate if this result carries over to other constructive algorithms 
or even to general two-layer networks. 

1The violation occurs for K > 180 and the largest networks in the RS case were K = 999. 
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For zero stability the slope of this increase is around four times smaller than the 
upper bound (l/ln2) predicted by information theory. We suggest that this indi- 
cates that the upstart algorithm uses its hidden units less effectively than a general 
two-layer network. We think this is due to the fact that the upstart algorithm uses 
the hidden units to overrule previous decisions, resulting in an exponential increase 
of the hidden layer to output unit weights. This is in contrast to general two-layer 
networks which usually have hidden-output weights of roughly the same order and 
can therefore explore a larger space of internal representations. For the upstart 
algorithm a large number of internal representations are equivalent and others can- 
not be implemented as they are related to erroneous outputs. However, it would 
be interesting to investigate how other constructive algorithms (e.g., [6]) perform 
in comparison. A systematic investigation of the storage capacity of constructive 
algorithms may ultimately lead to a better understanding, and thus possibly to 
novel, much improved algorithms. 
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The Bayesian analysis of neural networks is difficult because the prior over functions has a complex 

form, leading to implementations that either make approximations or use Monte Carlo integration 

techniques. In this paper I investigate the use of Gaussian process priors over functions, which 

permit the predictive Bayesian analysis to be carried out exactly using matrix operations. The 

method has been tested on two challenging problems and has produced excellent results. 

1 Introduction 
In the Bayesian approach to neural networks a prior distribution over the weights 
induces a prior distribution over functions. This prior is combined with a noise 
model, which specifies the probability of observing the targets t given function 
values y, to yield a posterior over functions which can then be used for predictions. 
For neural networks the prior over functions has a complex form which means 
that implementations must either make approximations [4] or use Monte Carlo 
approaches to evaluating integrals [6]. 
As Neal [7] has argued, there is no reason to believe that, for real-world problems, 
neural network models should be limited to nets containing only a "small" number 
of hidden units. He has shown that it is sensible to consider a limit where the 
number of hidden units in a net tends to infinity, and that good predictions can be 
obtained from such models using the Bayesian machinery1. He has also shown that 
a large class of neural network models will converge to a Gaussian process prior 
over functions in the limit of an infinite number of hidden units. 
Although infinite networks are one method of creating Gaussian processes, it is 
also possible (and computationally easier) to specify them directly using paramet- 
ric forms for the mean and covariance functions. In this paper I investigate using 
Gaussian processes specified parametrically for regression problems2, and demon- 
strate very good performance on the two test problems I have tried. The advantage 
of the Gaussian process formulation is that the integrations, which have to be ap- 
proximated for neural nets, can be carried out exactly (using matrix operations) in 
this case. I also show that the parameters specifying the Gaussian process can be 
estimated from training data, and that this leads naturally to a form of "Automatic 
Relevance Determination" [4], [7]. 

2 Prediction with Gaussian Processes 
A stochastic process is a collection of random variables {Y(x)|x 6 X} indexed by 
a set X. Often X will be a space such as Ht for some dimension d, although it 
could be more general. The stochastic process is specified by giving the probability 
distribution for every finite subset of variables Y(xi),..., Y(xfc) in a consistent 
manner. A Gaussian process is a stochastic process which can be fully specified by 
its mean function /x(x) = E[Y(x)] and its covariance function C(x, x') = E[(Y(x) — 

1 Large networks cannot be successfully used with maximum likelihood training because of the 
overfitting problem. 

2 By regression problems I mean those concerned with the prediction of one or more real-valued 
outputs, as compared to classification problems. 
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fi(x))(Y(x')—fi(x'))]; any finite set of points will have ajoint multivariate Gaussian 
distribution. 
Below I consider Gaussian processes which have fi(x) = 0. This is the case for 
many neural network priors [7], and otherwise assumes that any known offset or 
trend in the data has been removed. A non-zero ^(a;) can be incorporated into the 
framework, but leads to extra notational complexity. 
Given a prior covariance function Cp(x,x'), a noise process CN{X,X') (with 
CN(X,X') = 0 for x ^ x') and data V = ((xi,ti), (x2,<2), •••, (xn,t„)), the pre- 
diction for the distribution of Y corresponding to a test point x is obtained simply 
by marginalizing the (n + l)-dimensional joint distribution to obtain the mean and 
variance 

y{x)    =    kTp(x)(KP + KN)-H (1) 

(T|(X)    =    Cp(x,x) + CN(x,x)-kT
P(x)(Kp + KN)-1kP(x) (2) 

where [Ka}ij - Ca(xi,Xj) for a = P,N, kP(x) = {CP(x, x{),..., CP(x, xn))T 

and t = (ti,.. .,tn)T. c|(x) gives the "error bars" of the prediction. In the work 
below the noise process is assumed to have a variance a% independent of x so that 

KN = CT
2

VL 

The Gaussian process view provides a unifying framework for many regression meth- 
ods. ARMA models used in time series analysis and spline smoothing (e.g. [10]) 
correspond to Gaussian process prediction with a particular choice of covariance 
function3, as do generalized linear regression models (y(x) — J2i wi<t>i(x), with {<f>i} 
a fixed set of basis functions) for a Gaussian prior on the weights {u>,}. Gaussian 
processes have also been used in the geostatistics field (e.g. [3], [1]), and are known 
there as "kriging", but this literature has concentrated on the case where x £ IR 
or IR3, rather than considering more general input spaces. Regularization networks 
(e.g. [8], [2]) provide a complementary view of Gaussian process prediction in terms 
of a Fourier space view, which shows how high-frequency components are damped 
out to obtain a smooth approximator. 

2.1    Adapting Covariance Functions and ARD 
Given a covariance function C — Cp + CN, the log probability / of the training 
data is given by 

/ = -^logdettf-^TK-4-^log27r (3) 

where K = Kp + KN- If C has some adjustable parameters 0, then we can carry 
out a search in ö-space to maximize /; this is simply maximum likelihood estimation 
of 8 4. For example, in a d-dimensional input space we may choose 

C(x, x') = v0 exp (- J2 ^-(xi - x'if j + Vl6(x, x') (4) 

where ^o,^i and the {w;} are adjustable. In MacKay's terms [4] / is the log "evi- 
dence" , with the parameter vector 0 roughly corresponding to his hyperparameters 
a and ß; in effect the weights have been exactly integrated out. 
One reason for constructing a model with variable w's is to express the prior belief 
that some input variables might be irrelevant to the prediction task at hand, and 

3Technically splines require generalized covariance functions. 
4 See section 4 for a discussion of the hierarchical Bayesian approach. 
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Method No. of inputs sum squared test error 
Gaussian process 
Gaussian process 

2 
6 

1.126 
1.138 

MacKay 
Neal 
Neal 

2 
2 
6 

1.146 
1.094 
1.098 

Table 1    Results on the robot arm task. 

we would expect that the w's corresponding to the irrelevant variables would tend 
to zero as the model is fitted to data. This is closely related to the Automatic 
Relevance Determination (ARD) idea of MacKay and Neal [5], [7]. 

3     Experiments with Gaussian Process prediction 
Prediction with Gaussian processes and maximum likelihood training of the covari- 
ance function has been tested on two problems : (i) a modified version of MacKay's 
robot arm problem and (ii) the Boston housing data set. 
For both datasets I used a covariance function of the form given in equation 4 and a 
gradient-based search algorithm for exploring 0-space; the derivative vector 81/89 
was fed to a conjugate gradient routine with a line-search5. 

3.1     The Robot Arm Problem 
I consider a version of MacKay's robot arm problem introduced by Neal (1995). 
The standard robot arm problem is concerned with the mappings 

3/1 = n cos xi + r2 cos(zi + x2) 3/2 = n sinzi + r2 sin(a:i + x2)       (5) 

The data was generated by picking xx uniformly from [-1.932, -0.453] and [0.453, 
1.932] and picking x2 uniformly from [0.534, 3.142]. Neal added four further inputs, 
two of which were copies of xi and x2 corrupted by additive Gaussian noise of 
standard deviation 0.02, and two further irrelevant Gaussian-noise inputs with zero 
mean and unit variance. Independent zero-mean Gaussian noise of variance 0.0025 
was then added to the outputs 3/1 and y2. I used the same datasets as Neal and 
MacKay, with 200 examples in the training set and 200 in the test set. 
The theory described in section 2 deals only with the prediction of a scalar quantity 
Y, so I constructed predictors for the two outputs separately, although a joint 
prediction is possible within the Gaussian process framework (see co-kriging, §3.2.3 
in [1]). Two experiments were conducted, the first using only the two "true" inputs, 
and the second one using all six inputs. For each experiment ten random starting 
positions were tried. The log(u)'s and log(w)'s were all chosen uniformly from [-3.0, 
0.0], and were adapted separately for the prediction of 3/1 and y2. The conjugate 
gradient search algorithm was allowed to run for 100 iterations, by which time the 
likelihood was changing very slowly. Results are reported for the run which gave 
the highest probability of the training data, although in fact all runs performed 

In fact the parameterization log 8 was used in the search to ensure that the v's and w's stayed 
positive. 
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Procedure used ave. squared test error 
Guessing overall mean 

Best result in Quinlan (1993) 
Gaussian process 

Neal (Bayesian network with 2 hidden layers) 

84.4 
10.9 
8.6 
6.5 

Table 2    Results on the Boston housing data task. 

very similarly. The results are shown in Table 1 6 and are encouraging, as they 
indicate that the Gaussian process approach is giving very similar performance to 
two well-respected techniques. All of the methods obtain a level of performance 
which is quite close to the theoretical minimum error level of 1.0. It is interesting 
to look at the values of the w's obtained after the optimization; for the 3/2 task 
the values were 0.243, 0.237, 0.0650, 1.7 x 10~4, 2.6 x 10"6, 9.2 x 10~7, and v0 

and vi were 7.920 and 0.0022 respectively. The w values show nicely that the first 
two inputs are the most important, followed by the corrupted inputs and then the 
irrelevant inputs. 

3.2    Boston Housing Data 
The Boston Housing data has been used by several authors as a real-world regression 
problem (the data is available from ftp: //lib. stat. emu. edu/datasets). For each 
of the 506 census tracts within the Boston metropolitan area (in 1970) the data gives 
13 input variables, including per capita crime rate and nitric oxides concentration, 
and one output, the median housing price for that tract. 
A ten-fold cross-validation method was used to evaluate the performance, as de- 
tailed in [9]). The dataset was divided into ten blocks of near-equal size and distri- 
bution of class values (I used the same partitions as in [9]). For each block in turn 
the parameters of the Gaussian process were trained on the remaining blocks and 
then used to make predictions for the hold-out block. For each of the ten experi- 
ments the input variables and targets were linearly transformed to have zero mean 
and unit variance, and five random start positions used, choosing the log(u)'s and 
log(u>)'s uniformly from [-3.0,0.0]. In each case the search algorithm was run for 
100 iterations. In each experiment the run with the highest evidence was used for 
prediction, and the test results were then averaged to give the entry in Table 2. 
The fact that the Gaussian process result beats the best result obtained by Quinlan 
(who made a reasonably sophisticated application of existing techniques) is very 
encouraging. It was observed that different solutions were obtained from the random 
starting points, and this suggests that an hierarchical Bayesian approach, as used 
in Neal's neural net implementation and described in section 4, may be useful in 
further increasing performance. 

6 The bottom three lines of the table were obtained from [7]. The MacKay result is the test 
error for the net with highest "evidence". 
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4    Discussion 
I have presented a Gaussian process framework for regression problems and have 
shown that it produces excellent results on the two test problems tried. 
In section 2 I have described maximum likelihood training of the parameter vector 
8. Obviously a hierarchical Bayesian analysis could be carried out for a model M 
using a prior P(6\M) to obtain a posterior P(9\V, M). The predictive distribution 
for a test point and the "model evidence" P(V\M) are then obtained by averaging 
the conditional quantities over the posterior. Although these integrals would have 
to be performed numerically, there are typically far fewer parameters in 6 than 
weights and hyperparameters in a neural net, so that these integrations should 
be easier to carry out. Preliminary experiments in this direction with the Hybrid 
Monte Carlo method [7] are promising. 
I have also conducted some experiments on the approximation of neural nets (with a 
finite number of hidden units) by Gaussian processes, although space limitations do 
not allow me to describe these here. Other directions currently under investigation 
include (i) the use of Gaussian processes for classification problems by softmaxing 
the outputs of k regression surfaces (for a &-class classification problem), and (ii) 
using non-stationary covariance functions, so that C(x, x') jt C(\x — x'\). 
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We address the issue of progressive learning of neural networks, focusing on the situation in 

which the environment or the training set for a learner is of fixed size.1 We concentrate on the 

phenomenon of the change in shape of the error surface of a neural network (defined over the 

weight space) as a result of presenting it with a range of intermediate tasks during the course 

of learning, and a goal-driven mechanism is therefore proposed and analysed. The stochastic 

gradient smoothing algorithm (SGSA) [14, 16] is found to be effective in implementing this idea, 

experiments done demonstrate the usefulness of our approach towards progressive learning. 

1    Active Learning: Non-fixed vs Fixed Data Set 
The findings in cognitive science have shown that a learning process is normally a 
bidirectional process involving the interactive actions (information exchange) be- 
tween a learner and its surrounding environment [3]. In active learning of neural 
networks, the learner is a neural network of specified configuration A parameterised 
by some connection weight vector W g Ht^, learning to perform a particular task 
such as function mapping [8], pattern classification [11] and robot control [13] among 
many others. The environment is characterised by a training data set of fixed or 
non-fixed size, or some exploratory space of certain underlying structures. 
Current research on active learning of neural networks has been focusing on the 
design of various well-defined information and/or generalisation criteria [6, 8, 13, 
9, 4] based on which the selection, can be made from among a set of available data 
examples, of a new data example, which, when added to the previous training set 
and learned, allow the trained network has the maximum accuracy of fit to the 
data and improved generalisation performance [10]. Notably, this strategy imposes 
no restrictions on the size of the data set. 
However other approaches to active learning, given that the training data set is of 
fixed size, follow a slight different trend which essentially emphasises the principle 
of progressive learning [11]. This is usually achieved by letting the neural network 
learn a succession of varied subsets that represent, on one occasion, a different level 
of abstraction of the final complex task. Subsequently, the response of the learner 
to the changeable environment - the particular subsets engaged - is monitored, and 
the performance, in terms of model misspecification and network variance, thus far 
achieved will determine what aspects of the environment the learner is to face next 
time. 
There are various ways whereby the whole environment can be decomposed : one 
can consider to divide the entire data set according to sample size from small to 
large [1], the degree of difficulty from low to high [5], [3], etc. This way of division 
of the entire data set is by and large based on the results of empirical studies and 

1 which is often the case in practical applications of neural networks, especially pattern 
recognition. 
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the understanding of individual experimenters to the tasks at hand. In this paper 
we propose an alternative way of performing progressive learning while freeing from 
the difficulties of artificially decomposing the environment. In the following section 
we introduce the view of progressive learning in terms of dealing with the change in 
shape of error surfaces. In section 3 we propose to use stochastic gradient smoothing 
algorithm (SGSA) to implement this idea. In section 4 experiments are conducted 
to demonstrate the usefulness of the approach for active learning of neural networks. 
The paper is concluded in section 5. 

2    Progressive Learning - a Goal-driven Perspective 
It would be instructive if we interpret the progressive way of learning an entire 
environment by a neural network based on the change in shape of its error sur- 
face vs connection weights : Given a neural network A specified by a connection 
weight vector W g MN, a training set ©(5) of |5| pairs of labelled examples, 

©(s) = {xj, yjYjli describing the whole environment, an error function can then 
be expressed as, 

/e(S,(W)   :   Hi" —+IR1, (1) 

the notation &^ in the equation is meant to show the fact that the shape of the 
error surface in the weight space W g IR^ is entirely determined by the training 
set. (Figure 1 (a) shows a two-dimensional profile of such an error surface when a 
final convergence has been reached.) Consequently, the strategy of using a varied 

Figure 1 (a) A two-dimensional profile of an error surface with multiple valleys 
and ridges, (b) A smoothed version of case (a), retaining much of its main features 
while freeing from details - steepness, roughness and ravine. In between, there 
exist a range of intermediate error surfaces that may arise from either of the two 
mechanisms discussed below. 

data subset in session k, &(Sk\ sj. c S, for the training of A will invariably lead 
to the change in shape of its error surface, or /0(»fc)(W), s* C S. This is what we 
mean by the data-driven mechanism detailed in Figure 2 (a). With ©(Sfc), sj, C S 
being properly constructed, it is expected that the shape of the error surface will 
change from initially coarse and more or less smooth terrain to the final one bearing 
all the details but somehow with less regularities. 
We are interested, however, in exploring the idea from an opposite perspective. 
In fact, we can manipulate the shape of the error surface by subjecting it to some 
mathematically smoothing operations to generate at our own disposal a sequence of 
intermediate error surfaces to achieve the same effects as that of previous strategy. 
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Figure 2    Two alternative mechanisms Figure 3    A model-free neural network 
giving rise to a sequence of error surfaces learning paradigm for stochastic forward 
{Efc} (intermediate tasks), given a neural perturbation algorithms. See Note (ii) be- 
network, A, specified by its weight vector low. 

,W € TRN ■■ see Note (i) below. 
Note (i): The data-driven mechanism (a) where {Sfc = /©(.fc) (W), sk C S}. The learner is 
faced, each time, with a varied training set describing different details of the environment, 

and consequently has to learn a different error surface defined by the training (sub)set 

engaged By learning the preceding error surfaces, the weight vector W € THN tends to be 

positioned in an advantageous location to facilitate the process of learning the following 

error surfaces; The goal-driven mechanism (b) where {Ek = /©(s)(W, /?*), k = 1, 2, • ■ ■}. 

The learner in (b) is confronted with the entire training set 0(s), or the whole environment, 

though the actual task for the learner at a time is a simplified version of the error surface 

obtainable by convolving it with an appropriate N—dimensional kernel function (p.d.f.) 

of the same family but a varied "width" ßk. Consequently, this strategy also results in a 

sequence of error surfaces of different shapes. Note that in (b), the convolution operation 

is implicitly carried out in the course of learning by the SGSA. 
Note (ii): The environment is given by the training data set ©(s) = {XJ, 2/>}'=1. All the 

connection weights in A are arranged as a weight vector W 6 IR .In this paradigm 

an extra dimension of randomness characterised by the perturbation vectors P can be 

explored. 

Figure 2 (b) illustrates this idea which we call goal-driven mechanism, where the 

sequence of error surfaces at the output end can be equally viewed as those ranging 

between Figure 1 (b), a smooth shallow surface with established prominent charac- 

teristics, and Figure 1 (a), a surface with all the details (and idiosyncrasies). It is 

from this viewpoint we argue that the stochastic forward-perturbation algorithms 

[15] - the category of learning algorithm that has its roots nurtured by the theory 
of stochastic approximation of nonlinear dynamical processes - can be employed to 

accomplish the task of progressive learning without caring about how to divide the 

training set. 

3    Mathematical Analysis 
As opposed to the back-propagation (BP) algorithm, the operations of updating the 

weight vector W by stochastic forward-perturbation algorithms generally follow an 
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F - P - F - G pattern (Figure 3) i.e. one forward propagation of the training set 
through A to measure as it currently stands error the function; one perturbation 
of the weight vector with some controllable noises P £ IRN; and another forward 
propagation to measure the response of A due to the perturbation just introduced; 
based on these measurements a gradient estimation can be taken by employing 
some intuitive difference approximation or more subtle correlation methods. The 
estimated gradient can then be incorporated into stochastic approximation algo- 
rithms to update the weight vector. 
In the following, the advanced algorithm called stochastic gradient smoothing algo- 
rithm [16] is employed. According to Figure 2 (b), the following smoothing operation 
has been invoked (Note that the data-dependent notation 0(s) has been dropped.) 

/(W,/3)    =    f(W)®[G(-W,ß) + G(W,ß)] 

=    f    G(A,/?)[/(W + A) + /(W-A)]dA (2) 
Jm.N 

where the symbol 'gi' denotes the convolution operator. Following some mathemat- 
ical manipulations, one stochastic gradient estimator £* is shown as follows : 

6 = vj(wk,ßk) = -^-£> «(0/(wt) (3) 

where A,- is a random (perturbation) vector generated from an independent Gaus- 
sian p.d.f. G(A). The scalar ßk, referred to as the smoothing factor, determines the 
width of the underlying p.d.f. or the perturbation strength of the generated random 
vectors. Finally, the difference in the cost function due to the ith perturbation of 
Wfc is 8^f(Wk). Based on the estimated gradient £t, the weight vector Wk is 
updated according to, 

d* = flfc-6 + (l-Pib)-djfc_i, (4) 

Wk+1 =Wk-r]k-dk (5) 

where the direction vector d* = (dki dk2 ■■■ dkN)' £ MN represents a running 
average over the current gradient estimate £k and the previous direction vector 
d*—l- The other two important parameters appeared in the above formulas include 
r]k - the learning rate (or adaptive step size) and pk - the accumulating factor. It 
is desirable that with the iteration k —► oo, r]k —► 0, pk —+ 1. The parameters r}k 

and pk are locally adaptable. 

4    Experimental Results 
A simulated two-class pattern classification problem, of which the details can be 
found in [7], is used to demonstrate our approach for active learning of neural 
networks. The distributions of these two classes {C\ and Co) are overlapped, and a 
complete separation of their examples is impossible even for an optimal classifier. 
In the experiments, the training set consists of 200 examples with 100 drawn from 
each class, while the test set contains 1000 examples with 500 belonging to each 
class. The neural network used for this task has a fully-connected three-layer 2-4 
- 1 structure, amounting to 17 weights including biases. The single output of the 
trained network should ideally be for examples in C\ a "1" and in Co a "0" when 
being shown the unseen data in the testing phase. 
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Figure 4 (a) A typical learning trajectory achieved by the SGSA. The vertical 
dashed lines mark the boundaries where a new intermediate error surface, char- 
acterised by a different value of ßk shown along the lines, is encountered by the 
learner. In this case, there are 4 intermediate error surfaces (where ßk assumes a 
value of 2.6, 1.0, 0.5 and 0.25 in order) to be learned before the learner faces the 
final task (where ßk = 0.1) which is approximate to the error surface imposed by 
the complete environment for which ßk = 0. (b) A set of 10 learning trajectories 
for the test problem by the SGSA with different initial weight vectors. 

For the problem, 10 trials are performed, each starting with a different weight vector 
Wo having random values ranging between ±0.5. Figure 4 (a) shows a typical 
learning trajectory, the mean squared error vs number of iterations, achieved by 

the SGSA. 
Table 1 summarises the average performance among ten trials for the SGSA, where 
Etr denotes the mean squared error (MSE) for the training set; ntr gives, up to 
the indicated iterations, the number of examples yet to be correctly learned in 
the training set (200 examples in total); nte shows the generalisation performance 
measured by the number of examples that are still misclassified, up to the given 
training iterations, in the test set (1000 examples in total). An important result 
is that the generalisation performance given by the nte tends to saturate rather 
than deteriorate with more iterations, as is not the case with the experiments using 
deterministic Quick-prop algorithm (an advanced version of the BP algorithm) [15]. 
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ALGO. Iter. 700 800 900 1000 1100 1200 1300 1400 1500 

SGSA 
Etr 2.658 2.551 2.477 2.410 2.367 2.313 2.290 2.261 2.229 
Utr 11.4 9.9 9.7 9.6 8.9 8.6 8.3 8.4 8.3 
nte 66.9 66.0 64.6 62.2 62.1 62.5 63.2 61.9 61.9 

Table 1    The average performance among 10 trials of the SGSA at selected iter- 
ations when applied to the simulated two-class pattern classification problem. 

Thus the SGSA compares favourably with the Quick-prop in this regard. Figure 4 
(b) describes the corresponding set of 10 learning trajectories obtained. 

5    Summary 
An alternative way has been explored for active learning of neural networks, fo- 
cusing on the viewpoint of interpreting the error surface imposed by the whole 
training set (a certain task) in terms of a range of its intermediate versions, or a set 
of intermediate tasks. We analysed two different perspectives, called, respectively, 
data-driven mechanism and goal-driven mechanism, that give rise to such a range 
of error surfaces. We argued that the later approach could well be an effective way 
to control the amount of information about a complex environment at a time acces- 
sible to a learner, therefore fulfilling the same objective (of progressive learning) as 
the former without explicitly decomposing the environment in a hard fashion. The 
stochastic gradient smoothing algorithm (SGSA) was employed to implement this 
idea. Experiments have been conducted to support our claims. Further theoretical 
studies of this issue are needed. 
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The convergence and the convergence rate of one self-organization algorithm for the 
high-dimensional self-organizing map in the linearized Amari model are studied in the context 
of stochastic approximation. The conditions on the neighborhood function and the learning rate 
are given to guarantee the convergence. It is shown that the convergence of the algorithm can be 
accelerated by averaging. 
Keywords: high-dimensional self-organizing map, neighborhood function, convergence, stochastic 

approximation, acceleration by averaging. 

1 Introduction 
The self-organizing neural networks were found in modeling some self-organized 
phenomena in nervous systems. The typical models are those given by Willshaw and 
von der Malsburg (1976)[14], Grossberg (1976)[8], Amari (1980)[1], and Kohonen 
(1982)[9]. These self-organization systems can alter their internal connections to 
represent the statistical features and topological relations in an input space. 
The self-organizing maps (SOMs) are expressed by the weights of the self-organizing 
networks. They are very effective in modeling the topographic mapping among neu- 
ral fields. Although the SOMs are widely used in neural modeling and applications, 
the theory of the SOMs is far from being complete. The question whether the self- 
organizing maps converge to the topological correct mappings is still open especially 
in the high dimensional case. 
There are many models for the SOMs. Due to the space limit we only consider 
Amari's nerve field model[l, 2]. Another important SOM model is the feature 
map[9]. The stability of the feature map is discussed in [3, 6, 7, 10, 12]. 
The stability of the SOM in the nerve field model is analyzed in [1, 5, 13, 15]. 
The existing convergence results are most for the one-dimensional model. It is very 
difficult to analyze the stability of the SOM in any high dimension. The results in 
[5, 15] are only valid for some special cases of the linearized Amari model. We shall 
formulate the linearized Amari model in any high dimension and discuss not only 
the convergence but also the convergence rate of the self-organization algorithm for 
updating the weights. The approach used can also be used to analyze the stability 
of the feature map. 

2 High-dimensional Self-organizing Maps 
Let the K-dimensional grid CK = {0,1, • • ■, N}K of (N + l)K neurons be the presy- 
naptic    field    in    the    Amari    model.    A    neuron    in    CK    is    denoted    by 

J = (iii •••,3K) e CK- 
Let WK be the space of all mappings W = W(J) : CK -*• C„ C R" where each 
W(J) is a column vector in R". The weight vectors in WK are labeled by the 
neurons in CK- 

2.1    High Dimensional Topographic Map 
Let us consider a system consisting of a presynaptic field £K and a postsynaptic field 
C„. The neighborhood relation between each pair of neurons in CK is determined by 
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their relative positions in £K. A high dimensional topographic map is an ordered 
mapping in WK under which the neighborhood relation in CK is preserved in Cn. 
To achieve a topographic map, we choose a random mapping in WK, then use the 
following algorithm to update the mapping recursively: 

f (1 - \t)Wt{J) + £ J2reNc(t) W),    J e Ne(t) 0 C°K 

wt+1(j) = t wt{j), Jec°K-Nc(t)       (i) 
{  B{J) (boundary condition), J £ 6CK 

where 

At is a learning rate,    C°K = {1, • • •, A^ - \}K the inner lattice of CK, 
6CK = CK - C°K,    Nc(t) = <Tt(It) a neighborhood set, 
h = (ii(t), ■ ■ ■, iK(t)) a random stimulus process on CR, 
at(I) a neighborhood set around / such that at(I) C CK for each 
I e CR and t, and ct the number of points in the set Nc(t). 

The equation (1) is a linearized version of the learning equation in [1]. It does 
not update the mapping on the boundary of CK. But the boundary condition will 
affect the map on C°K (the inner lattice) whenever the neighborhood set touches 
the boundary of the grid CK, and eventually shape the topographic map. 
Let ht(I,J) = ifyg,,,(/) p| £0,) be the characteristic function of the set o-t(I)f)£°K. 

The equation (1) can be rewritten as the following: 

Wt+1(J) = Wt(J)-Xtht(It,J){Wt(J)-- J2 ht(IuJ')Wt(J')} 
Ctj-ec°K 

+ ~ht(IuJ)J2ht(It,J')B(J') (2) 
* J'€6CK 

where ct = YljecJ1^1*^)- Note from tlle definition of c(, it is easy to show that 
Wt{J) is bounded. 

In the rest of this paper, we assume a general neighborhood function ht(I, J) > 0 
on CK x CK in (2). Let the neurons in C°K be arranged in the dictionary order 
{Ji,h, ■■■, Jm} by their indexes in C°K, where Jx = (1, ■ ■ •, 1), J2 = (1, ■ ■ •, 1,2), 
• • •, Jm = (N - 1, • ■ •, N - 1) and m = (N - l)K. Each mapping 

Wt = (Wt(J1),.--Wi(Jm)) 

is a n x m matrix. Using w\ to denote the transpose of the i-th row of Wt, we find 
the following vector form for (2): 

"4+1 = w\ - \tUtw\ + —utujwi + Xtb\ (3) 

where (-)T denotes the transpose, ut = (ht(It, Jj), ht(It,J2), • • •, ht(It, Jm))T, Ut = 
diag(ut), b\ = iu,E//6«K HU, J')5!'(/')- 
To analyze the convergence of the algorithm (2), we rewrite the system (3) as: 

w\+1    = w\ - \t(Qtwi - b\) = w\- \t(Qtw\ -b\+ $) (4) 

where Qt = Ut - ^utuj, Qt = E[Qt], b\ = E[b% $ = {Q, - Qt)w\ - (6j - b\), and 

i\ is a martingale-difference process, i.e., E^W^t-i] = 0 for Tt = a(I0, • • •, It). 
We need the following assumptions: 
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Al ht(I, J) —► h(I, J) and c% —► c (a positive constant) as < —* oo. 

A2 7t is a independent random sequence in C°K with the probability distribution 

{P(Jk)}. 

Denote 

1 ™ 
Q{I) = dtafl(«(/)) - -«(/)«(/)T,   Q = Y,Qih)P{Jk), 

c 
fc=i 

6'"(7) = i«(J) £   hihJ'WiJ'),   b* = Y,bi(Jk)P(Jk) 
c      J'e6cK *=i 

From (4), we have 
wi+1 = Wj-A<(Q«;j-6i+^ + 7?j) (5) 

where 77J = (Qt - Q)w* - (6/ - b') -+ 0 as t -* oo because of Al. 
Let m' = Q-16* be the stationary state of the system (5). The next theorem shows 
that Wj almost surely converges to M = (m1, • • •, m"). 

Theorem 1   Under the assumptions Al and A2, if Q > 0 (positive definite) and 
the learning rate \t > 0 satisfies the following conditions: 

][> = oo,     £>2<oo, (6) 
t * 

then for i = 1, • • •, n, w\ —* ml a.s. (almost sure convergence). 

Proof Let xt be generated by the following equation: xt+i = xt-\t(Q(xt-ml)-\-Q). 
Let h(x) = Q(x - ms), then (aj - m')TQA(ar) = (x - mi)TQTQ(x - m1) > 0, 
Vx ^ m*. Therefore, applying Gladyshev's Theorem (see Theorem 2.2 in [4]), we 
have Xi —+ m*, a.s. 
Let yt = w\- xt, then yt satisfies yt+1 = yt - \t(Qyt + Vt)- Since Q > 0 and n\ 
tends to zero as t tends to infinity, yt also tends to zero. Therefore, w\ -tra', a.s. 
D 
Note an example is given in [15] where Q > 0. When the first condition in (6) is 
not satisfied, the map may still converge but not to the desired stationary state. 
We shall use an approach in [11] to discuss the convergence of W% - \ J2s=o Wt 
assuming that the learning rate satisfies one of the following conditions: 

A« = A,    0<A<2(min^(Q))-1. (7) 
i 

A«i0,     ^i±l = 0(AO (8) 

where {m(Q)} are eigenvalues of Q. Note the learning rate At oc t~a with 0 < a < 1 
satisfies the condition (8).   
The next theorem gives the convergence rate of the averaged weight Wt ■ It also 

 x 
shows that Wt   converges to M in mean square. 

Theorem 2 Let Q > 0, the learning rate satisfy (7) or (8),  and the following 
conditions hold: 
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A3 7 > f, Qt - Q = O(t-T), and b\ - V = 0(t^); 

A4 for each J, suPi Y,Z=i \ht{h,J)-ht{J)\^P(Jk) < oo, where ß > 2 andhAJ) = 

A5 for each J and J', supt £™=1 Mh,J)ht{Jk,J') - ht(J, J')\f>P(Jk) < 00, 
where ht(J, J') = J%=1 ht(Jk,J)ht(Jk, J')P(Jk) < 00; 

A6 limt^00E[$(t\)T] = S( > 0. 

Denote V = Q-lSlQ-1. Then for w\ = \ ££J w\, we have 

Vt(wi - m!) Z- N(0, V) 

Umt->ooE[t(w\ - m°')K - rrJ)T] = V. (9) 

Proof From A4 and A5, we have sup4 E[\Qt - Qtf] < 00 and 
sup4 E[\b\ - 6*|"] < 00. Therefore, 

sup£[|#|"]<oo. (10) 

Because w\ is bounded, we have su^t E^W^Tt-x] < 00. From (10), we have 

Jim Um^ootf[|£'|2l(|e;|>c)|.Ft-i] = 0,     a.s. 

So Assumptions 2.1-2.5 in [11] are satisfied. However, we cannot apply the results 
there directly due to the term r}\ in the system (5). We can use the same approach 
in [11] to get the following: 

where Ät = w\ - m{, and Ä0 = «4 - m\ at = a[, V? = a) - Q~l, with a) = 
XJ HlZj Wk=j+i(I ~ xkQ), at and Vj are bounded, and lim*^«, \ J^jll \\V-\\ = 0. 
Noticing the assumption A3 implies r}\ = 0(i~7), 

1 t'1 1   t~1 

T^tiillf^O,      and   — J2Q-W,-> 0,    asf -f 00, 
»=1 Vt »=1 

we can apply the proofs in [11] to (11) and conclude that y/i(w\ - m!) is asymp- 
totically normal with zero mean and the covariance matrix V, and (9) holds.     D 
Theorem 2 allows us to use a small constant learning rate or even the learning rate 
At oc t~a with 0 < a < \ which tends to zero slower than -±y. The assumption 

ß > 2 in A4 and A5 can be relaxed to ß = 2 if we only want to obtain (9). 
Note we showed the convergence of the SOM but we did not show that the stationary 
states are the topographic mappings which preserves the topology. Based on the 
simulation results in [5, 13] we believe that the SOM converges to a topographic 
map, or a micro-structure consisting of several topographic sub-maps. 
3    Conclusion 
The convergence of the learning algorithm for updating the SOM is studied. The 
conditions on the neighborhood function and the learning rate have been found to 
guarantee the convergence. The learning algorithm can be accelerated by averaging 
the weight vectors in the training history. For the learning algorithm with averaging, 
the convergence rate has been found. 
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Neural networks are statistical models and learning rules are estimators. In this paper a theory 

for measuring generalisation is developed by combining Bayesian decision theory with information 

geometry. The performance of an estimator is measured by the information divergence between 

the true distribution and the estimate, averaged over the Bayesian posterior. This unifies the 

majority of error measures currently in use. The optimal estimators also reveal some intricate 
interrelationships among information geometry, Banach spaces and sufficient statistics. 

1    Introduction 
A neural network (deterministic or stochastic) can be regarded as a parameterised 
statistical model P(y\x,w), where x £ X is the input, y £ Y is the output and 
w £ W is the weight. In an environment with an input distribution P(x), it is 
also equivalent to P(z\w), where z := [x,y] £ Z := X xY denotes the combined 
input and output as data [11]. Learning is the task of inferring w from z. It is 
a typical statistical inference problem in which a neural network model acts as a 
"likelihood function", a learning rule as an "estimator", the trained network as 
an "estimate" and the data set as a "sample". The set of probability measures 
on sample space Z forms a (possibly infinite dimensional) differential manifold 
V [2, 16]. A statistical model forms a finite-dimensional submanifold Q, composed 
of representable distributions, parameterised by weights w acting as coordinates. 
To infer w from z requires additional information about w. In a Bayesian frame- 
work such auxiliary information is represented by a prior P(p), where p is the true 
but unknown distribution from which z is drawn. This is then combined with the 
likelihood function P(z\p) to yield the posterior distribution P(p\z) via the Bayes 
formula P(p\z) = P(z\p)P(p)/P(z). 
An estimator r : Z —+ Q must, for each z, fix one q £ Q which in a sense approxi- 
mate p. 1 This requires a measure of "divergence" D(p, q) between p, q £ V defined 
independent of parameterisation. General studies on divergences between probabil- 
ity distributions are provided by the theory of information geometry (See [2, 3, 7] 
and further references therein). The main thesis of this paper is that generalisation 
error should be measured by the posterior expectation of the information diver- 
gence between true distribution and estimate. We shall show that this retains most 
of the mathematical simplicity of mean squared error theory while being generally 
applicable to any statistical inference problems. 

'Some Bayesian methods give the entire posterior P(p\z) instead of a point estimate q as the 
answer. They will be shown later to be a special case of the current framework. 
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2 Measurements of Generalisation 
The most natural "information divergence" between two distribution p, q £ V is 
the (5-divergence defined as [2] 2 

D6{V,q):=j^-^(l-jp'q1-^, W £ (0, 1). (1) 

The limits as 6 tends to 0 and 1 are taken as definitions of DQ and D\, respectively. 
Following are some salient properties of the 5-divergences [2]: 

Ds(p,q)    =    Dis(q,p)>0. Ds(p,q) = 0  *=> p = q. (2) 

D0(q,p)    =    D1(p,q) = K(p,q):=jp\og^. (3) 

D1/2(p,q)    =    D1/2{q,p) = 2J{^-^q)2. (4) 

D6(P,p + Ap)    «    lyiÄ^I^Alogp)2). (5) 
The quantity K(p, q) is the Kullback-Leibler divergence (cross entropy). The quan- 
tity Di/2{p,q) is the Hellinger distance. The quantity f(Ap)2/p is usually called 
the x2 distance between two nearby distributions. 
Armed with the ^-divergence, we now define the generalisation error 

ES{T) :=  / P[p) f P(z\p)Df(p, r(z)), Et(q\z) := f P(p\z)D6(p, q),       (6) 
Jp Jz Jp 

where p is the true distribution, r is the learning rule, z is the data, and q = 
T{Z) is the estimate. A learning rule r is called 5-optimal if it minimises Es(r). 
A probability distribution q is called a (5-optimal estimate, or simply a 6-estimate, 
from data z, if it minimises Es(q\z). The following theorem is a special case of a 
standard result from Bayesian decision theory. 

Theorem 1 (Coherence) A learning rule r is 6-opiimal if and only if for any 
data z, excluding a set of zero probability, the result of training q = r(z) is a 
S-estimate. 

Definition 2 (<5-coordinate) Let p, := 1/8, v := 1/(1 — 6). Let L^ be the Banach 
space of p,th power integrable functions. Then L^ and Lv are dual to each other as 
Banach spaces. Let p £ V. Its 6-coordinate is defined as h{p) '■= Pö/S £ Lß for 
6 > 0, and IQ(P) := logp [2]. Denote by /^ the inverse of If. 

Theorem 3 (6-estimator in V) The 6-estimate q £ V is uniquely given [14] by 
q~hß{fP{p\z)k{p)). 

3 Divergence between Finite Positive Measures 
One of the most useful properties of the least mean square estimate is the so called 
MSE = VAR + BIAS2 relation, which also implies that, for a given linear space 
W, the LMS estimate of w within W is given by the projection of the posterior 
mean w onto W. This is generalised to the following theorem [16], applying the 
generalised Pythagorean Theorem for «^-divergences [2]. 

2This is essentially Amari's a-divergence, where a 6 [—1,1], re-parameterised by <5 = (1 ■ 
ct)/2 G [0,1] for technical convenience, following [6]. 
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Theorem 4 (Error decomposition in Q) Let Q be a 6-flat manifold. Let P(p) 
be a prior on Q. Then V§ € Q, Vz 6 Z, 

E5(q\z) = E6(p\z) + Ds(p,q), (7) 

where p is the 6-estimate in Q. 

To apply this theorem it is necessary to extend the definition of ^-divergence to V, 
the space of finite positive measures, which is 6-flat for any 6 for a finite sample 
space Z   [2], following suggestions in [2]. 

Definition 5 (^-divergence on V)  The 6-divergence on V is defined by 

Ds(P, «) ~ ^r^y J (6p + (1 - S)q - pY"«) (8) 

This definition retains most of the important properties of ^-divergence on V, and 
reduces to the original definition when restricted to V. It has the additional ad- 
vantage of being the integral of a positive measure, making it possible to attribute 
the divergence between two measures to their divergence over various events [16]. 
In particular, the generalised cross entropy is [16] 

K(p,q):=J L-p + plog?-). (9) 

The (5-divergence defines a differential structure on V. The Riemannian geometry 
and the <5-affine connections can be obtained by the Eguchi relations [2, 7] The most 
important advantage of this definition is that the following important theorem is 
true and can be proved by pure algebraic manipulation [16]. 

Theorem 6 (Error Decomposition on V) Let P(p) be a distribution over V. 
Let q£V. Then 

(D6(p,q)) = (D6(p,p)) + D6{p,q), (10) 

where p is the 6-average of p given by p6 := (p6)- 

Theorem 7 (^-estimator in V) The 6-estimate p = rg(z) in V is given by p6 — 
{p )z. In particular, the 1-estimate is the posterior marginal distribution p= (p)z- 

Theorem 8 (6-estimator in Q) Let Q be an arbitrary submanifold ofV. The 5- 
estimate q in Q is given by the 8-projection ofp onto Q, where p is the 6-estimate 
in V'. 

4    Examples and Applications to Neural Networks 
Explicit formulas are derived for the optimal estimators for the multinomial [15] 
and normal distributions [14]. 

Example 1 Let m e IN", p £ V = A"-1, a £ IRJ. Consider multinomial fam- 
ily of distributions M{m\p) with a Dirichlet prior D{p\a). The posterior is also 

a Dirichlet distribution D(p\a + m). The 6-estimate p 6 V is given by (pi)6 — 
(a,i + mi)s/(\a + m\)s, where \a\ := Y^i a» and (a)b ■= T(a + b)/T(a). In particular, 
Pi = (ai + mi)/\a + m\ for 6 = 1, and pt = exp (W(a, + rm) - \P(|a + m|)) for 6 = 0, 
where W is the the digamma function. The 6-estimate q g V is given by normalising 

P- 
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Example 2 Let z,fi 6 IR, h £ IR+, a E IR, "6 IR+. Consider the Gaussian 
family of distributions f(z\fj.) = N(z — fj,\h), with fixed variance a2 = \/h. Let the 
■prior he another Gaussian f(fj.) = N([i — a\nh), Then the posterior after seeing 
a sample z of size k, is also a Gaussian f(/i\z) = N(n — a^n^K), where n^ = 
n + k, aj; — (na + ^2 z)/rik, which is also the posterior least squares estimate. The 
6-estimate q ET is given by the density f(z'\q) = N (z' — ak\h/(l + 6/nk)). 

The entities \a\ for the multinomial model and n for the Gaussian model are effective 
previous sample sizes, a fact known since Fisher's time. In a restricted model, the 
sample size might not be well reflected, and some ancillary statistics may be used 
for information recovery [2]. 

Example 3 In some Bayesian methods, such as the Monte Carlo method [10], no 
estimator is explictly given. Instead, the posterior is directly used for sampling p. 
This produces a prediction distribution on test data which is the posterior marginal 
distribution. Therefore these methods are implicitly 1-estimators. 

Example 4 Multilayer neural networks are usually not S-convex for any 6, and 
there may exist local optima of Et{-\z) on Q. A practical learning rule is usu- 
ally a gradient descent rule which moves w in the direction which reduces Es(q\z). 
The 1-divergence can be minimised by a supervised learning rule, the Boltzmann 
machine learning rule [1]. The O-divergence can be minimised by a reinforcement 
learning rule, the simulated annealing reinforcement learning rule for stochastic 
networksflS]. 

MmqK(p,q)     <^=*-     Aw ~ (dwl0(q))p - angledwl0(q))q (11) 

MmgK(q,p)     ^     Aw ~ {dwl0(q), l0(p) - \0(q))q (12) 

5    Conclusions 
The problem of finding a measurement of generalisation is solved in the framework 
of Baysian decision theory, with machinery developed in the theory of information 
geometry. 
By working in the Bayesian framework, this ensures that the measurement is inter- 
nally coherent, in the sense that a learning rule is optimal if and only if it produces 
optimal estiamtes for almost all the data. By adopting an information geometric 
measurement of divergence between distributions, this ensures that the theory is 
independent of parameterisation. This resolves the controversy in [8, 12, 9]. 
To guarantee a unique and well-defined solution to the learning problem, it is nec- 
essary to generalise the concept of information divergence to the space of finite 
positive measures. This development reveals certain elegant relations between in- 
formation geometry and the theory of Banach spaces, showing that the dually-affine 
geometries of statistical manifolds are in fact intricately related to the dual linear 
geometries of Banach spaces. 
In a computational model, such as a classical statisitical model or a neural network, 
the optimal estimator is the projection of the ideal estimator to the model. This 
theory generalises the theory of linear Gaussian regression to general statistical 
estimation and function approximation problems. Further research may lead to 
Kaiman filter type learning rules which are not restricted to linear and Gaussian 
models. 
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This paper marks a step towards an algebraic theory of neural networks. In it, a new notion of 

sequential composition for neural networks is defined, and some observations are made on the 

algebraic structure of the class of networks under this operation. The composition is shown to 

reflect a notion of composition of state spaces of the networks. The paper ends on a very brief 

exposition of the usefulness of similar composition theories for other models of computation. 

1 What is an Algebraic Study? 
The view of mathematics that underlies this work is one forged by Category Theory 
(see for example [1]). In Category Theory scrutiny is focused less on objects than on 
mappings between them. Thus the natural question is: "What are the mappings?". 
In this kind of study the answer tends to be: "Functions (or sometimes partial 
functions) that preserve the relevant operations." So before we can start looking 
at the category of neural networks we need to answer the question: "What are the 
relevant operations?" 
For example, recall that a group is a set, G, with a binary operation (*), a constant 
(e), and a unary operation ()-1. To be a group, it is also necessary that these 
operations satisfy some equations to the effect that * is associative, e is a two-sided 
identity for * and ()_1 forms inverses, but these are the defining group operations. 
A group homomorphism is a function, </>, from one group to another satisfying 

<j>(a *b) = <f>(a) * <f>(b),        (j>{e) = e'        and        ^(a)"1 = (^(a))"1. 

That is a group homomorphism is defined to be a function that preserves all of the 
defining operations of a group. 

2 What are the Defining Operations of Neural Nets? 
A synchronous neural net is a set of nodes each one of which computes a function; 
the input for the function at a node at a given time is the output of some nodes 
at the previous time step (the nodes that supply the input to the given node is 
fixed for all time and determined by the interconnection structure of the net). This 
structure is captured diagrammatically by drawing a circle for each node and an 
arrow from node N to node M if M acts as an input for N. For example, the 
following is a picture of a two-noded net each of whose nodes takes an input from 
node /, and g takes another input from itself: 

Figure 1 

The letters indicate that node on the left computes the function f(n) and the node 
on the right computes function g(n,m). So a neural net is a finite directed graph 
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each of whose nodes is labelled by a function. We will call the underlying unlabelled 
graph the shape of the net. 
As well as the shape (the interconnection structure), there is a recursive computa- 
tional structure generated by the network. In this example we get the two recursive 
functions: 

fn + l    =    /(/«)■ 

ffn + l      =      g(fn,9n)- 
where, for example, fi denotes the state of the node labelled by / at time i. Once 
/ and g are known, these equations entirely determine the dynamics of the system: 
that is, the sequence of values of the pair < fi,gi >. 

3    The State Space of a Boolean Net 
In this section we will restrict ourselves to nets whose nodes compute boolean 
functions. A state of such a net is a vector of 0's and l's, representing the states 
of the nodes of the net. When we say that a net is in state vect, we mean that 
for all i, the ith node of the net has most recently computed the ith value of vect. 
Since the next state behaviour of a net is completely determined by the recursion 
equations, we can completely compute a graph of the possible states of the net. In 
the example above if / is invert and g is and then the state graph is given below: 

Figure 2 

This exemplifies a mapping from boolean neural nets to state spaces and points 
to an algebraic relationship whose desirability can guide us in our setting out of 
our algebraic theory: we should ensure that the space of boolean neural networks 
is fibred over the space of boolean state spaces. For a detailed discussion of fibred 
categories see [2], for now it will suffice to give an informal definition. 
Recall that a category is simply a collection of objects and maps between them. 
In essence, what it means for a category , E, to be a fibred over a category, C, 
is that there is a projection from E to C (the part of E that gets projected to a 
particular C-object C constitutes the fibre over C) such that: for every C-mapping 
f : C —* C and E-object, E, in the fibre over C, there is a unique lifting of / to a 
map starting at E and projecting onto /. The idea is that what happens in E gets 
reflected down to C, and, if we are lucky, what happens in C is liftable to E. This 
can hold for maps and operations. We want to ensure that the category of Neural 
Networks is in this relationship to the category of state spaces, and that the state 
space composition is liftable. 
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4    Composition in the State Space 
We wish to define a notion of composition of nets that is a lifting of state space 
composition. The sequential composition of two graphs with the same nodes is quite 
well-known: an arc in the composite graph is an arc in the first graph followed by an 
arc in the second. Two nets with the same nodes automatically yield state graphs 
with the same nodes. Our first lifting of state-space composition will take advantage 
of this fact and only be defined for networks on the same (perhaps after renaming) 
nodes. We shall see that this lifting is all we need to explain the closure properties 
of state spaces under composition. 
To continue with our example, consider the net given by the equations 

fn + l      —     fn * gn 

9n + l     =     ~ fn- 

Notice that the shape of this net differs from the other. The shape is shown by: 

Figure 3 

The state space and the result of composing it with the graph above are pictured 
below: 

© 
t 
© 

© 

© 
Figure 4 

The observation that initiated this work is that the composite state space (and 
all others that can be similarly derived) is the state space of a neural network. 
That is, if SS denotes the function that sends a neural net to its state space, then 
for any two boolean nets, N and M, the composition SS(N) * SS(M) turns out 



402 CHAPTER 70 

to be SS(something). We will now describe an operation on the nets such that 
SS(N) * SS(M) = SS(N * M). 

5 Simple Composition of Nets 
The first form of neural network composition is direct functional composition on 
the recursion equations. The concept is most readily understood in terms of an 
example. Thus, to continue the example above: 

First Net        fn+i =~ /„ and    gn+i = fn * gn 

Second Net     /n+1 = /„ * gn     and     gn+i =~ /„ 
The composition consists of the second net using the results of the first net: 

Composite Net    fn+2 = fn+i * gn+i =~ fn * fn * 9n = 0 
gn+2 =~ fn + l =~~ /„ = /„ 

Note that the composite net works with n + 2 as one step, since its one step is a 
sequence of one step in each of two nets. With that rewriting in mind (n+1 for 
n + 2), the equations for the composite net yield the composite state space above. 
And it is not hard to see that this will hold for any two boolean nets with the same 
set of nodes. 
The set of nets with the same nodes is a monoid under this operation: the compo- 
sition is associative and has an identity. 

6 Two More Complex Notions of Sequential Composition 
More interesting notions of composition allow us to compose nets with different 
nodes. The first of these compositions requires a function from the nodes of the 
second net to the nodes of the first. The composition is then very like the simple 
one except that instead of simply using the same names to say, for example, 

fn+2 = /n + 1 * ffn + 1 =~ fn*fn* Qn 

there is an extra dimension,.say 

fn+2 — fn + l * ffn+1 
in the second net and translate to 

<K/)n + l *<f>(g)n + l 
in the first net. 
This is obviously more general (the simple version is just the special case in which 
/ is the identity) and we believe it will lead to rich composition theories. 
An even more general composition comes from taking the union of these compo- 
sitions for all functions <j>. This composition is related to the concept of wreath 
product for groups and automata (see [3]). 

7 What use is a Composition Theory? 
A proper composition theory can be used to explain how complex things can and 
do get built from simple ones. The theory can be used to break things down as well. 
For example, there could well be a set of primitive objects and a theorem that all 
objects can be built from them. A famous instance of such a theorem was given by 
Krohn and Rhodes: 
Theorem  [Krohn-Rhodes 4]   Given a finite monoid, M, M divides a wreath 
product of simple groups and switches each of which divides M. 
And an instance that we've been using is given by: 
Theorem [5] Given a finite concrete category, C, divides a wreath product of prim- 
itive minimal categories each of which divides C. 



Zimmer: An Algebraic Theory of Neural Networks 403 

This paper marks only the beginning of a composition theory of neural nets. The 
Krohn-Rhodes theorem has fostered a whole branch of algebra that has shed much 
light on automata and semigroups, while the other theorem has found application in 
various fields of computing. We would like our neural net composition to be useful 
in both of these fashions. The mathematics will consist of a study of the category 
of Networks as a fibred category and some projects that natural arise are: uncover 
a set of primitives, study the ordering determined by the decomposition, devise a 
homomorphism theorem, and extend the work to other operations, such as parallel 
composition. And to give some idea of the kinds of application we envisage, here 
are two applications of the categorical composition theory: 
Designing Chips: We take an algebraic description of a chip design and use the 
decomposition to implement it using pre-defined primitive modules (see [6]). 
Problem Solving: We turn difficult problems into sequences of problems that are 
more easily solved (see [7]). 
We hope to find applications that are akin to these. The problem solving work 
automatically makes hierarchies of search spaces. Could we form similar neural 
network hierarchies? Moreover, if one wanted to design a net with a particular 
behaviour this might be a modular way to do it. And to finish with an interesting 
entirely open question: how can we apply a theory like this to nets as they are 
trained? 
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