
w&mm^mrmB!^*—^m

Computer Science

0 J ;

COMPILING RECURRENT AND IRREGULAR SERIAL CODE
FOR fflGH PERFORMANCE COMPUTERS

ANWAR MOHAMMED GHULOUM
November 4, 1996
CMU-CS-96-200

&*?*

-Wii<

-gl

■-•:$lE^J*f

-,«*sf

IggffS*

\

ktf$^*

4

rrSS?

Mi
„...^BiSf^

siP>«
-.--rrrSf

W* I
W*

PSmiffüTION 8TAT53SMT X \
Approved tot puDOC laieaMl <

CttaaJaigiflo Hnhaiiwd ^#

SP

-ri«!
W**

ellon

t{j«'r.:.i«i'-,,*""i

■'^'«•■jw-'i'

ä&^&ä*5

«#

J::X;t£Mmt K
xovsa toi p-o&ioc rsioos^

COMPILING RECURRENT AND IRREGULAR SERIAL CODE
FOR HIGH PERFORMANCE COMPUTERS

ANWAR MOHAMMED GHULOUM
November 4, 1996
CMU-CS-96-200

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Computer Science in the School of Com-

puter Science of Carnegie Mellon University, 1996. DTic QUALITV ™
lx INSPECTED

Thesis Committee:
Allan Fisher, Chair

Guy Blelloch
Thomas Gross

P. Geoff Lowney, DEC

This research is sponsored by the Wright Laboratory, Aeronautical Systems Center, Air Force Materiel Com-
mand, USAF, and the Advanced Research Projects Agency (ARPA) under grant F33615-93-1-1330. The US

Government is authorized to reproduce and distribute reprints for Government purposes, notwithstanding
any copyright notation thereon.

■Views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of Wright Laboratory or the United States

Goverment.

19970702 062

Keywords: Compilers, Parallelization, Automatic Parallelization, High Performance Computing, Fortran,
Recurrence, Irregularity

M guCarnegie
^Mellon

School of Computer Science

m

DOCTORAL THESIS
in the field of

Computer Science

Compiling Recurrent and Irregular Serial Code for High
Performance Computers

ANWAR M. GHULOUM

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

ACCEPTED:

THESfs COMMITTEE CHAIR

DEPARTMENT HEAD

MHAJAT 4. WC

ifif/71

DATE

DATE

APPROVED:

DEAN

t/z//f 7
DATE

For Leith

Acknowledgments

I owe a debt of gratitude to my advisor, Allan Fisher, for his contributions to this work and his
support throughout the years. I would also like to thank my thesis committee members, Guy
Blelloch, Thomas Gross, and Geoff Lowney for their guidance.

The Fx compiler group provided the software platform upon which this thesis built. Thomas
Gross, Dave O'Hallaron, and Guy Blelloch provided me with the computing resources I needed at
various times throughout this work. Jaspal Subhlok assisted me at times with compiler issues and
questions.

A number of colleagues of mine deserve special recognition. Juan "Pablo" Leon, in reviewing this
document (as well as countless other documents and presentations), has been so generous with his
time and critical thought processes that I cannot thank him enough in this small space. Marco
Zagha provided important insights into code generation issues for the C90. Anyone who ever
attended a practice talk of mine or answered a question through any electronic media also has my
gratitude.

My mother, Sandra, and my father, Mohammed, have always expressed confidence in me when I
lacked it and support when I needed it. I thank them both enormously for this.

Above all, I would like to thank my wife, Elham, for her support and love throughout this long
and difficult process.

Table of Contents

Chapter 1 Introduction

Programming High Performance Computers
Automatic Parallelization
The Thesis
Example: Quicksort
New Compilation Techniques
Overview of the Dissertation
Organization of the Dissertation

1

2
4
11
12
13
15
16

Chapter 2 Recurrent and Irregular Code and Primitives 17

Reductions and Scans
Combining-send and Multiprefix
Segmentation
Other Primitives
Review

18
22
25
28
29

Chapter 3

Chapter 4

Recurrent Loops I -
Foundations and Analysis 31

Complexity of Parallel Recurrent Primitives 31
An Associative Model for Recurrent Loop Execution 33
Finding Efficient Composition Operators 36
Modeling Other Recurrent Loops 44
Review 46

Recurrent Loops II -
Compilation & Code Generation 47

Compiler Analysis 47
Example: Maximum Subsequence Sum 61
Code Generation 63
Review 65

Chapter 5 Irregular Control Structure I -
Loop Flattening 67

Irregular Loop Nests 67
Parallelization Strategies 71
Loop Flattening 73
Example Code: Sparse Matrix Vector Multiplication 80

Review 81

Chapter 6 Irregular Control Structure II -
Control Embedding 83

Divide and Conquer Recursion 83
Control Embedding 85
Dependence Analysis and Monotonie Induction Variables 86
Preprocessing Steps 95
Embedding Control 99
Functions 109
Mutual Recursion and Other Variations 109
Extended Example: Quicksort 111
Review 113

Chapter 7 Compiler Architecture and Performance 115

Compiler Overview 115
Early Passes 116
Dependence Recycling 117
New Passes 119
Tracking Recurrent Primitives 119
Computation and Space Overhead Reuse 121
Compiler Performance 121
Review 122

VI

Chapter 8 Evaluation 123
Overview 124
Code Template Performance 124
Compiler Passes in Use 129
Algorithms Parallelized 130
Comparison With NESL 158
Space Overhead 159
Early Implementation Experiences 160
Performance Observations 162
Opportunities for Performance Improvement 164
Review 166

Chapter 9 Related Work 167
Automatically Parallelizing Recurrences 167
Flattening Loop Nests 169
Control Emedding 170
Other Parallelization Techniques 171

Chapter 10 Conclusion 173

Summary 173
Future Work 176
Concluding Remarks 178

Chapter 11 Bibliography 181

vii

vm

List of Figures
Recurrent loops parallelized from the Argonne Loop Suite. 9

Dynamic profile of percentage of time spent in recurrent loops. 9

Limitations on achievable speedup due to serialization of recurrent loops. 10

A (a) serial and (b) parallel reduction (bold boxes) and scan (all boxes). 18

A vectorizable scheme for executing a reduction and scan. 21

Combining-send (bold boxes) and multiprefix operation (all boxes). 22

The SPINETREE structure and phases of generalized combining-send and
multiprefix operations. 24

An inclusive segmented reduction (bold boxes) and scan (all boxes). 25

An associative recurrence and its parallel combining trees. 32

Composing the functional model for recurrent, loops. 34

Flow diagram for the model and the corresponding model elements computed. 42

Searching for composition operators and loop modeling function classes. 43

Composition of loop modeling functions in reductions and scans. 44

Tangled and untangled composition of loop modeling functions in
combining-send and multiprefix operations. 45

Composition of loop modeling functions in list-rank operations. 46

Flow diagram for the model and the corresponding model elements computed. 48

A candidate for function modeling in directed acyclic graph form with dependence
information. 49

Composite functions for maximum reduction problem in switching function form. 53

The composite maximum function in CNF-Exp form. 55

Unifying subfunctions with a template predicate. 55

Simplifications of conditional nests by exploiting redundant and infeasible paths. 58

Switching function representations for the maximum subsequence problem. 62

Some possible index space iterations by (a) irregularly nested loops
and (b) regularly nested loops. 71

Loop flattening pass. 79

A prototypical divide-and-conquer algorithm and its control embedded version. 84

IX

Components required for control embedding in recursive subroutine calls
with corresponding section numbers. 85

The resulting code for stable quicksort after control embedding. 114

The compiler organization. 116

Loop interchanges for a loop nest. 117

Relative speedups for integer linear scan and reductions. 125

Relative speedups for double precision linear scan and reductions. 125

Relative speedups for simple histogram with varying key densities
of the index array. 127

Relative speedups for simple multiprefix with varying key densities
of the index array. 127

Relative speedups for generalized (max operator) histogram with varying
key densities of the index array. 128

Relative speedups for generalized (max operator) multiprefix with varying
key densities of the index array. 128

Performance of Livermore Loop 5 over a range of loop trip counts. 130

Performance of Livermore Loop 19 over a range of loop trip counts. 131

Relative speedup of selected Livermore loop suite recurrences over a range
of loop trip counts. 132

Relative speedup of maximum subsequence sum kernel. 133

Performance of CSR sparse matrix-vector multiplication kernel
for a single vector processor. 135

Performance of CSR sparse matrix-vector multiplication kernel
for four vector processors. 135

Performance of CSC sparse matrix-vector multiplication kernel
for a single vector processor. 136

Performance of CSC sparse matrix-vector multiplication kernel
for four vector processors. 136

Relative speedup of CSR sparse matrix-vector multiplication kernel. 137

Relative speedup of CSC sparse matrix-vector multiplication kernel. 137

Ranking performance of bucketsort from NAS benchmark suite. 140

Relative speedup of bucketsort from NAS benchmark suite. 141

Relative speedup of bucketsort from NAS benchmark suite for
varying key densities. 141

Partitioning patterns for simple (top) and segmented (bottom) partition operation. 142

Performance of simple partition loop. 143

Relative speedup of simple partition loop. 143

Relative speedup (slowdown) of partition on short sequences. 144

Performance of segmented partition loop over a range of segmentation factors. 145

Relative speedup of segmented partition loop over a range of segmentation factors. 145

The contribution of segmented scans and flattening overhead to the
execution time of segmented partitions. 146

The overhead of segmentation in a simple scan from the partition loops. 147

Partitioning patterns through several steps of a hypothetical
divide-and-conquer algorithm. 148

Performance of simple quicksort. 150

Relative speedup of simple quicksort. 150

Performance degradation of fully parallelized simple quicksort
without control embedding. 151

Detail on the relative performance of the parallelized partition loop for
small sequence lengths. 151

Performance of simple quicksort without control embedding with
CF77-generated code performance. 152

Speedup of simple quicksort without control embedding with mixed
parallelization and serialization relative to CF77-generated code performance. 153

Performance of stable quicksort. 154

Relative speedup of stable quicksort. 155

Partitioning in the quickhull algorithm, with filled dots denoting points
which are still under consideration for inclusion in convex hull. 155

Performance of quickhull algorithm. 157

Relative speedup of quickhull algorithm. 158

Performance of stable quicksort in code automatically parallelized and
code written in NESL on a single vector processor. 159

Timings of sum reduction on 64 processor iWarp array. 161

Speedup of various reductions on differing iWarp array configurations. 161

XI

XU

Chapter 1

Introduction

High performance computers are difficult to program. Tapping the potential of these systems

requires that careful attention be paid to many system parameters and constraints, usually many

more than lower performance systems. The skills acquired by the programmer to effectively pro-

gram and tune the performance of her application on a particular system is often not applicable to

another high performance system architecture. Higher level models are often tuned to particular

class of architecture, with particular computation, memory access, and/or communication pattern

characteristics and costs. Unless users are given adequate tools to program such systems, the

potential gap between peak and realized performance will grow as systems increasingly rely on

parallelism for higher performance.

Clean and coherent parallel programming models, whether manifested in library routines or new

languages, have difficulty attaining widespread acceptance. Efforts to integrate high performance

language primitives into serial languages have also met with limited success. Such efforts, in def-

erence to the relative inertia to change in programming language usage, try to exploit the main-

stream prevalence of imperative, serial languages. This often results in confusing and

underpowered programming tools. Easy, portable, efficient, and widely used high performance

programming is still an elusive goal.

Serial programming languages, like C and Fortran, satisfy three desirable properties for an effec-

tive programming tool. They embody a simple and intuitive model of computation. Compilers for

such languages are available in a wide range of hardware and software operating environments.

Finally, they dominate software development in all but a few niches. The only place they fall short

1

Programming High Performance Computers

is in efficiently capitalizing on available parallelism. Great strides have been made in parallel-

izing loop nests and exposing instruction-level parallelism, however, there is still a big differ-

ence between achievable performance through careful hand tuning and performance through

compilation.

A major shortcoming of existing compiler optimizations and automatic parallelization tech-

niques is the limited reasoning mechanisms and models compilers rely heavily on. Higher

level models and reasoning mechanisms have not been explored to enough depth thus far. For

example, there are many examples of parallelizable loops which seem to be inherently serial

when examined using only data dependence information, which parallelizing compilers rely

heavily on. The use of perfect data dependence information is still a conservative method of

determining whether a loop is parallelizable. There are alternative ways of characterizing or

modeling serial code which simplify of the discovery of parallelism.

This dissertation uses existing models of control and data dependence and flow as a starting

point for investigating one new analysis model. We focus on an important problem in automat-

ically parallelizing serial code: recurrent and irregular code. Recurrent and irregular code play

an important role in many scientific codes, as well as many sorting, geometric, and symbolic

applications. No general techniques existed prior to this dissertation for automatically paral-

lelizing such code. The extent of current techniques to deal with recurrent loops in automatic

parallelization is to simply search for 'familiar' patterns of common loops in the source code.

This dissertation will demonstrate, through a relatively simple semantic interpretation of loop

bodies, the added power of a small amount of higher-level reasoning in an automatically par-

allelizating compiler.

1.1 Programming High Performance Computers

Computers rely increasingly on multiple processing elements, wider instructions, or deep

pipelines to increase computational throughput and/or hide memory system latency. One

example is Cray's multiple vector processor architecture, which is comprised of relatively few

processors with deep pipelines, vector registers, chaining support, and multiple, shared mem-

ory banks. Distributed memory multiprocessor machines, such as the iWarp [22], Intel's Para-

gon, Cray's T3d, Thinking Machine's CM5 [84], among others, are typically comprised of

processing elements and their own memories coupled by an interconnect network. Shared

Introduction

memory multiprocessors rely on hardware (and sometimes software) mechanisms to give the

programmer the illusion that the computer's memory is shared by all processing elements.

Current and future generations of scalar processors rely increasingly on multiple instruction

issue or long instruction words to keep multiple function units busy.

Mechanisms by which these processors use memory, communicate, and otherwise synchro-

nize vary drastically. It is impractical to expect an application builder, especially one who is

not a computer scientist specializing in systems, to explicitly control such mechanisms. For

example, handling the details of message passing in a distributed memory system can be quite

complicated. At a low level, the must explicitly manage message buffers and eliminate poten-

tial race conditions. At a higher level, the programmer has to explicitly manage the distribu-

tion of data and computation. These tasks are both error prone and cumbersome, in addition to

requiring a good deal of expertise.

Programming tools such as software libraries, compilers and languages can simplify some of

this complexity. High level parallel languages seek to provide intuitive mechanism for

expressing parallel computation. In some cases, an existing serial language is extended with

parallel primitives; for example, as in Fortran (HPF [46]), C (Split-C [29], C* [74][45]), C++

(Compositional C++ [26]), and Lisp/Scheme (Multilisp [40] , *Lisp [54]). In other cases, a

new language is invented with the goal of easing the expression of parallelism; for example,

NESL [18] and Linda [25], among others.

Other approaches provide control of parallelism through preoptimized libraries. Some librar-

ies provide low-level support for expressing parallelism through message passing or shared

memory synchronization primitives, along with support for threading. Other libraries provide

data structures and routines for supporting parallel computation. Libraries such as CVL [17],

CMMD [85], MPI [60], Nexus [37], Paris [83], and PVM [38] all seek to introduce support

for parallelism with library calls linked into the application. The level at which parallelism is

supported ranges from high-level operations on parallel object to low-level thread manage-

ment, message passing and synchronization primitives.

Compilers are critical tools for translating high-level serial and parallel languages to machine

specific code. Compiler translation and optimizations help to mitigate or hide the details of

dealing with constraints on system resources and the low-level management of parallelism

through synchronization. This is true of both compilers for explicitly parallel languages,

Automatic Parallelization

where some of these constraints may be implicitly defined in the language constructs, and

automatically parallelizing compilers for serial languages. However, in the serial case, the

compiler must contend with enforcing the more difficult semantic constraints imposed on it

the source language.

This dissertation is concerned with compilers for programming parallel computers. In addition

to exploring a different compiler model for computation, this research aspires to enable a pro-

grammer to write programs for high performance computers using the algorithms and struc-

tures they have become accustomed to working with, rather than forcing them to work around

the tools by contriving new programming styles.

1.2 Automatic Parallelization1

A large body of research has been done and is ongoing in automated parallelization of serial

source code. There are several rationales for this approach:

Ease of use: Serial languages have a naturally intuitive execution model. They are typically

the languages people are most comfortable using. Widespread acceptance of serial languages,

though certainly not proof of the superiority of such languages, makes them the most accessi-

ble mechanism by which to program parallel systems.

Portability: Compilers for serial languages like C are available for virtually every computer

manufactured today. Building compiler technology to automatically parallelize a serial lan-

guage does not lock the application builder into particular architecture or operating system.

Existing Code Base: There are many programs, so-called "dusty decks", that individuals and

companies are reliant on and have invested much into developing and maintaining. The man-

hours and expertise necessary to rewrite these programs using new parallel constructs or lan-

guages are potentially enormous.

Programmer Base: There is a good deal of inertia and apathy toward the adoption of new

languages and programming paradigms in the programmer community.

1. At this point, we cease to discuss scalar compilation issues, such as instruction-level parallelism (ILP) and

focus on data and task parallelism. However, this is not meant to imply that techniques here are not exploit-

able by compilers seeking to increase ILP.

Introduction

1.2.1 Current Limitations

Compilers which automatically parallelize serial code traditionally rely on dependence and

alias analysis on loop nests to expose potentially parallelizable regions [95]. Dependence

analysis and array data-flow analysis provides detailed flow information for loops with

indexed array expressions. Loop nests are natural candidates for parallelization because of

replication of computation in the loop body over potentially many iterations. The goal of the

compiler is to relax serial execution semantics for parallelization as long as various depen-

dence constraints are not violated. Typically this is manifested in the compiler only paralleliz-

ing those regions for which there are cycles of flow dependence links with loop-carried

dependence(s).

The compiler can do much in the way of loop nest manipulation to expose loops as candidates

for this kind of parallelization. Recently, a resurgence of work in loop transformation frame-

works [91] has created a well defined theory of loop nest transformation to expose parallelism,

improve locality, and perform other optimizations. However, these techniques are limited to

loop nests whose loops bounds and array index expressions are analytically manageable by

the compiler. This typically means that the loop bounds must either be constant, or linear in

surrounding loop indices and variables in scope.

A shortcoming of relying exclusively on dependence information (even if that information is

perfect) is that the nature of the parallelism it will expose is too conservative. There are many

useful computations for which parallel regions cannot be exposed through dependence based

parallelization, but are still parallelizable through algebraic transformation. The prevailing

mechanism that compilers use to deal with such regions is through pattern matching. For

example, consider the following loops:

do i = 1, n
a = a + b(i)

enddo

a(l) = b(l)
do i = 2, n

a(i) = a(i-l) + b(i)
enddo

Automatic Parallelization

The first loop sums all elements of the array b into a scalar variable a and is called a reduc-

tion. The second loop performs essentially the same computation but stores all partial (or pre-

fix) sums and is called a scan ox prefix-sum.

In general, reductions and scans can be parallelized if the operator used is associative (e.g.

addition). However, dependence information for these loops would include parallelization

inhibiting dependences. So, rather than develop more general alternatives to dependence-

based approached, the compiler writer, recognizing that this is still a parallelizable computa-

tion, will often get around this problem by hard coding a search for that pattern of loop in their

compiler.

This approach severely limits the ability of the compiler to generally parallelize the many vari-

ations of these recurrences. There are other useful parallel building blocks expressible through

such recurrent loops, such as combing-send, multiprefix, and list ranking based algorithms

[71] [77]. The outlook for automatically parallelizing these is even bleaker in current compil-

ers.

Support for the expression of nested parallelism is critical to simplifying the parallelization of
r

many algorithms. For example, a matrix can be viewed as an array of rows, which are also

arrays, or an array of columns. Thus, any operation on the entire matrix (such as matrix-vector

multiplication) would be most concisely expressed using nested control structure. For exam-

ple, for a dense matrix-vector multiplication, the following code is typical:

do i = 1, rows
y(i) = 0
do j =1, columns

y(i) = y(i) + matrix(i,j)*vec(j)
enddo

enddo

However, this prototypical matrix-vector multiply code performs poorly for sparse matrices

because of the limited amount of useful work it will accomplish relative to the work it is per-

forming in treating the matrix as if it were dense. One possible representation for sparse

matrix-vector multiply [32] gives the following loop nest:

do i = 1, rows
y(i) = 0
do j = pntr(i), pntr(i+l)-l

y(i) = y(i) + spmatrix(j)*vec(cols(j))

Introduction

enddo
enddo

One problem here is that this code is not amenable to any loop nest transformations to expose

outer loop SIMD style parallelism. However, the dependence based approach can expose

more general parallelism in the outer loop, though this can have other shortcomings, which we

will discuss further in chapter 5. Any finer grained parallelism exposed by parallelizing or

vectorizing the inner loop may be limited by the sparsity of the matrix.

Another kind of programming style which proves problematic for existing compiler technol-

ogy is divide-and-conquer. In this case the nesting control structure is not in loops, but rather

in recursive subroutine calls. Support for automatically parallelizing this kind of irregularly

nested parallelism in serial code efficiently is virtually non-existent.

1.2.2 Current Approaches

The widespread availability of loop kernel suites for evaluation of compilers has constrained

those recurrences that many commercial compilers parallelize to those present in such

suites. Superficially, this seems to be a reasonable approach since those kernels are represen-

tative of most of the recurrent loops one find in scientific code. Evaluating of a new compila-

tion technique is difficult against such a stacked deck.

The flaw of the pattern matching approach to parallelizing recurrent loops is the fixation on

particular forms of recurrences, rather than any meaningful semantic models. The algorithm

that a programmer may hypothetically employ for a matrix multiplication may (arguably) be

predictable, but the particular form or syntax may not be predictable. In other words, the real-

ity is that most people who program may write similar code, but with slight variations. Pattern

matching locks out many reasonable and innocuous variations. These loop kernel suites can

be used to illustrate this problem.

We have tested our compiler on the Argonne loop suite's [55] recurrent loops. The range of

recurrence types in this suite is inclusive of many in other suites. To test the relative robustness

of the underlying detection technique, we have also compiled a set of the Argonne loops with

a slight perturbation. The variation we chose was to add another variable to carry values

across loop iteration, creating a breakable coupled recurrence. For the two recurrences of the

previous section, the transformed code would appear as:

Automatic Parallelization

carry = a
do i = 1, n

a = carry + b(i)
carry = a

enddo

carry = a(l) = b(l)
do i = 2, n

a(i) = carry + b(i)
carry = a(i)

enddo

We have constructed a simple graph comparing our compiler on the original and transformed

code, the Cray Research Fortran Compiler (CF77) and the Applied Parallel Research Forge/

DM Fortran compiler [8] for the Argonne loops and the varied loops in figure 1.1. Our com-

piler compares favorably to both compilers with the basic set of Argonne loops. The one case

in which we do not parallelize where CF77 does (Loop 332) involves a loop exit statement.

This is not a limitation of the underlying model and analysis of our technique. Rather, it is a

limitation of the front end to the recurrence parallelization technique and our choice or primi-

tive templates for code generation.

The disparity in performance with the varied loop set is even more significant. The Cray CF77

compiler can no longer parallelize over half of the loops that it could with the variation, while

the Forge compiler is unable to parallelize any of the loops. This confirms the sensitivity of the

other compilers on the syntactic quality of the source code. Our technique's performance is

undisturbed by the variation.

1.2.3 Frequency of Recurrence and Irregularity

The example in section 1.4 demonstrates the power of recurrences, especially when one can

compile irregular control structure in conjunction with the recurrences. However, an important

consideration for the automatic parallelizing compiler community is the presence of recur-

rences in existing scientific codes.

The graphs in figure 1.2 illustrate the percentage of time spent in recurrent or irregular code in

the whole program benchmark suites PERFECT [88] and NAS [75]2, respectively. Even the

2. Our compiler can profile and instrument programs to measure the dynamic impact of recurrent and irregular

codes. Details on how this profiling is done is presented in chapter 7.

8

Introduction

Loops Parallelized from the Argonne Loop Suite (18 recurrent loops)

Our Method CF77
¥////// /

Forge/APR

Figure 1.1 Recurrent loops parallelized from the Argonne Loop Suite.

100.00%-

90.00% -.

80.00%

70.00%^
CD

j| 60.00%-

| 50.00%^

S 40.00%-3
LU

30.00%

20.00%^

10.00%-

0.00%-

Proportion of Time Spent in Recurrent Loops

S

D Nonrecurrent or Nonioop

El Recurrent Loops

1 r
H

i r
s 22

22.7

■D LU ■c CO ■D ca CO o o l_ k. c c ~ c ■o 5 o
-o

S
O

o o

Q
O.
\-
LL

o
CO

a>

>
o

CO
TO **
3
2

>
o

CO
0_

>
o

CO
H

T3 >-
.C
O

CO
o
o

"5
5 o

CO O

E

CO
CD
Ü
O

CO

0)

c

o

is
CM
2
CO

t:

LL CD _1 co cu V o fc
D _c E E
CO

Program
Figure 7.2 Dynamic profile of percentage of time spent in recurrent loops.

less significant numbers in this graph have a big impact on maximum speedup if recurrent

loops are not parallelized, illustrated by the simple application of Amdahl's Law in figure 1.3.

Automatic Parallelization

Speedup Limitations to Parallelization by Restricting Recurrences

100-

90J^
vT a

•§ 40
CD
V a.

CO

E
3
E
CO

2

30-

20-

10-

£1 J23. JE3.

■o III
£° Q
a Q.

o
O

t
LL

Q
I

CO

o
CO

©

©
c

CD -D
> -c
o 21

co s

CD

o
CD .>
o

CO CO

°- t
CO CD

X Cl> CD
■D

r
CO
o 13 o

CO
CD o *"*

CO c
CD o
£ E

c c *w c TJ 5 >. CO CD o CM n
■o
o
£

CD
O
o

0 "co

'E

2
CO

■D

Program

F/fiii/re 7.3 Limitations on achievable speedup due to serialization of recurrent loops.

Note that this only measures the impact of recurrent loops, and does not include information

about other parallelization inhibiting code structures and overhead. This measure of potential

speedup is extremely optimistic in that regard. Furthermore, many loop kernel oriented bench-

mark suites are comprised of a significant number of recurrent loops [34] [55]. These figures

justify efforts to parallelize such loops, but do not give any indication about which techniques

should be employed. However, taken together with the poor performance of commercial com-

pilers performing pattern matching on the loops in section 1.2.1, along with the more complex

control contexts in which simple recurrences can occur, this provides strong motivation to

improve on current techniques for parallelizing such code.

1.2.4 Our Approach

The success of research in developing expressive and efficient associativity-based parallel

primitives, such as reduction, scan, combining-send, and their segmented variants, is evident

in its broad application to the parallelization of scientific code, sorting, and other recurrent and

irregular applications [15] [20] [77]. The essence of this success is that these primitives grace-

fully encapsulate computation patterns that are both complex and efficiently mappable to

hardware.

10

Introduction

Prior work in this area focused on exploring the expressiveness of the primitives. Support for

these primitives is considered by many critical to the success of various strategies for support-

ing parallelism. Work has also focused on mapping them efficiently to hardware, typically

augmenting an existing programming language or a parallel language with their expressive-

ness. This dissertation leverages off this work and automatically detect and extract those pat-

terns of serial code that can be recast into these powerful parallel primitives.

The cornerstone of this dissertation is a general and robust technique for analyzing recurrent

loops and automatically deriving reductions, scans, and other recurrent primitives over arbi-

trary operators. The technique does not rely on pattern matching to find 'known' recurrences;

rather, it relies only on observations of desirable properties, such as associativity and effi-

ciency, with the concomitant greater breadth of applicability. The technique has been inte-

grated into a parallelizing compiler for serial Fortran.

This dissertation also addresses the problem of compiling nested parallelism as expressed in

irregular loop nests and divide-and-conquer style recursion. Two transformations, loop flatten-

ing and a variant of loop embedding for recursive subroutines, effectively enable the recogni-

tion of segmented variants of the basic recurrent primitives. The essential idea is to transform

the nested iterative or recursive structure into nested conditionals which the underlying recur-

rent loop analysis can successfully parallelize. These control structure transformations and the

recurrence parallelization technique presented in this dissertation exhibit good synergy when

applied to the aforementioned irregular algorithms.

The dissertation will discuss the rationale and design of these analyses and transformations.

We will describe their implementation in a parallelizing fortran compiler and present the

results of compiling both commonly used algorithms and code from scientific benchmark

suites.

1.3 The Thesis

The thesis of this dissertation is that generally parallelizing recurrent and irregular serial code

is possible and worthwhile in an automatic parallelizing compiler. In demonstrating this, the

dissertation will include:

• A description of transformations to support parallelization of recurrent and irregular code.

11

Example: Quicksort

• An implementation of those transformation in a parallelizing compiler.

• A demonstration of the power of these transformation on important algorithms and bench-

mark programs.

1.4 Example: Quicksort

Code that is both recurrent and irregular occurs in many algorithms we are interested in com-

piling. The code for a quicksort is indicative of one such instance of a program. We list that

code below, with annotations at points of interest (for brevity, we restrict ourselves to a non-

stable version for sequences of non-repeating keys):

subroutine qsort(a,b,begin,end,n)
integer begin,end,n
integer a(n), b(n)
integer lower,upper, i, pivot

pivot = a(begin)
lower = begin
upper = end

' if (a(i) < pivot) then
I b(lower) = a(i)

LA2.
W
£L
r _= -J" 2^ —r -J" —

else
b(upper) = a(i)

rupper = upper - 1
endif

I

1.Recurrence

2.Irregularity

,--■•> 3 .Nested Control Structure

uenddo ^^^„„.^^^„„„.^j
;call qsort(b,a,begin,lower-1,n)
;call qsort(b,a,upper+l,end,n)
end

The first item of note in this subroutine is the presence of the recurrence in computing the

monotonic induction variables [94] lower and upper. These can be computed indepen-

dently of the data motion involved in partitioning the sequence. Having done this, the loop can

be executed in two phases: compute lower and upper using a scan, then merge the result and

use it as an index array to a permute. Alternative approaches might use packing operations to

move the data.

12

Introduction

The second item of note is that the loop bounds are symbolic values, about which the compiler

has no knowledge. This means that the compiler has no way of knowing whether sufficient

parallelism exists in the loop to justify a particular parallelization approach. Furthermore, it

has no way of statically characterizing the workload distribution for the loop.

The third thing to notice is that the sequence is partitioned and recursed upon. This nested

control structure essentially iterates over each partition, executing the body of the loop. Since

the embedded computation is a loop with bounds which vary irregularly, we are confronted

with the problem of essentially compiling nested irregular and recurrent computations.

Such combinations of recurrence and irregularity occur frequently in divide and conquer algo-

rithms. Code to partition array based structures tend to be recurrent, while the partitions them-

selves tend to be constructed in an irregular fashion. In light of this, building recurrence

parallelization techniques without regard to irregularity, or vice-versa, makes little sense.

1.5 New Compilation Techniques

1.5.1 General Recurrence Parallelization

A more general analytical approach is preferable to one in which the programmer must, as is

often the case with ad-hoc approaches like source level pattern matching, expected to under-

stand how the compiler works. This dissertation presents a new approach to parallelizing

recurrences based on observations of desirable mathematical properties in the code. In this

case, the desirable mathematical property is associativity. Discovering whether or not asso-

ciative operators are present in loops with parallelization-inhibiting dependences opens up

opportunities for using the parallel primitives we will introduce in the next chapter, which we

will refer to as recurrent primitives.

Our compilation technique first finds associative operators in the recurrent loops. The com-

piler maps the recurrent loops to a particular recurrent primitive (i.e. reduction or combining

send, etc.) by examining the traversal pattern of the computation on the target structure. For

example, if the target structure is a scalar value, then the operation is a simple reduction.

13

New Compilation Techniques

This compilation technique forms the kernel of this research. To compile recurrent code

nested in irregular loop nest or recursive subroutine calls, we layer control structure transfor-

mations which make the code more amenable to the application of this core analysis.

1.5.2 Irregular Control Structure

Many algorithms rely on the ability to partition the problem into smaller sizes or to traverse

nested data structures. For example, code for a matrix operation would iterate over each row,

in which it iterates over each column, or vice-versa. A natural way to express this is through

nesting of loops which iterate over pointers in each dimension of the structure. Another useful

example is that of a divide and conquer style algorithm which solves a problem by subdivid-

ing it into smaller tasks. The most prevalent and natural mechanism used to express these

computation is through the use of divide and conquer style recursion, where the partitions of

the problem are recursed upon, and then subdivided themselves, and so forth [4].

As previously mentioned, current compiler technology excels at parallelizing regular loop

nests, i.e. those whose loop bounds, at their most complex, are linear in outer loop indices.

However, for many problems, especially sparse matrix algorithms, the loop bounds are more

complex. The loops bounds will vary arbitrarily, usually due to dynamically determined data

values. The code in section 1.2.1 is an example of this kind of irregular control structure. The

loops bounds inhibit parallelization via traditional techniques which expose all the parallelism

available in regular loop nests.

Divide and conquer style recursion is currently not compiled effectively in serial code. Most

compilers will try to parallelize the subroutine body. The problem is that at the algorithm

progresses, the problem size decreases, decreasing the amount of parallelism available in the

function body. While there is available inter-procedural parallelism in the recursive calls to the

partitions of a newly subdivided problem, current compilers cannot exploit this.

In both of these cases, it is the control parallelism that is difficult to exploit. This dissertation

presents mechanisms to exploit this control parallelism in a data-parallel context. The tech-

niques presented have the added benefit of being perfectly compatible with the core recur-

rence parallelization technique in our compiler and the back-end compiler, which employs

more traditional parallelization techniques.

14

Introduction

1.6 Overview of the Dissertation

The primary goal of this work is to move beyond dependence analysis and pattern matching

based approaches to automatic parallelization, focusing on parallelizing recurrent and irregu-

lar computation. The main claim of this dissertation is that recurrent and irregular code can be

automatically mapped into useful higher level parallel primitives in a general and reliable

manner. The primary contributions of this dissertation are:

• General and robust compilation techniques for automatically parallelizing recurrent loops

into reduction, scan, combining-send, and multiprefix operations. These techniques are

flexible enough to deal with other important components of the compilation process.

• Compilation techniques for parallelizing irregular loop nests. These techniques are fully

compatible with both the underlying recurrence parallelization technique and traditional

dependence based approaches.

• Compilation techniques for parallelizing divide-and-conquer style algorithms. These tech-

niques are fully compatible with underlying techniques for parallelizing irregular loop

nests, recurrent loops, and non-dependence loops.

In practical terms, these three contributions mean that difficult algorithm classes including

sparse matrix operations, sort, and computational geometry, among others, may be automati-

cally parallelized from their serial encodings. The evaluation of the effectiveness of these

tools has three basic components:

• Profiling prevalent 'whole program' benchmark suites to get dynamic counts of the amount

of time spent in recurrent loops. This will demonstrate that recurrences are a significant fac-

tor at run time to make a serious effort at parallelizing them.

• Comparing the robustness of our technique with commercial (typically, pattern matching)

techniques with respect to collections of loop kernels and variations on them. This will

demonstrate that pattern matching is a poor technique to use.

• Evaluating the performance of automatically parallelized code generated by our compiler

on algorithmic techniques which were heretofore difficult to compile. This will demon-

strate that our framework enables much more than merely the parallelization of a few ker-

nels.

15

Organization of the Dissertation

I will not explore the following in this dissertation at any great depth, since they fall outside

the scope of this dissertation, though they do play important supporting roles in my work:

• Developing high performance implementations on the various parallel primitives we work

with on various architectures. The primary focus of this dissertation is compiler analysis.

We have relied on the work of others for my implementations of the various recurrent prim-

itives in the code generation phase of the compiler.

• Developing new algorithms or a benchmark suite by which to evaluate compilers. We have

relied on accepted benchmark suites and straightforward Fortran encodings of basic algo-

rithms from texts. The collection of programs we compile may turn out to be useful

benchmarking tools, but we make no claims in this regard.

• Developing decision mechanisms for deciding when to employ the transformations and

analyses presented in this dissertation. We do not apply these technique blindly, however

there is a body of work available and ongoing in profile-driven compilation and predicated

execution of parallelized code [89].

1.7 Organization of the Dissertation

The rest of this document is structured as follows. Chapter 2 will discuss in more detail the

recurrent primitives and code that we are interested in compiling. Chapter 3 will discuss the

basic analysis for compiling recurrent loops. Chapter 4 will detail how to we integrate this into

a compiler and general code. Chapter 5 will discuss techniques for compiling irregular loop

nests. Chapter 6 will discuss techniques for compiling divide-and-conquer style recursion.

Chapter 7 will discuss the compiler architecture. Chapter 8 will discuss the compilation results

for the evaluation suite we have chosen for the compiler. Chapter 9 will discuss related work.

Chapter 10 will discuss future work, contributions, and conclusions.

16

Chapter 2

Recurrent and Irregular Code and
Primitives

This chapter reviews the various primitives and the types of serial code we are interested in com-

piling. In subsequent chapters, we will refer to these operations and their parallel implementations

frequently, so it is worthwhile explaining them here.

Since the compiler is a fortran compiler, and our target is a shared memory vector multiprocessor,

this chapter may specifically address issues pertaining to that context. However, the higher level

issues of applicability of these primitives to various algorithms and their encoding is general. For

example, code examples are presented in a pseudo-fortran, but are applicable to other serial,

imperative languages like C.

'Recurrent parallel primitives' can be defined as parallel primitives whose natural serial encoding

is through recurrent loops. Reduction, scan, combining-send, and multiprefix operations are all

examples of such primitives. The primary goal of this section is to provide an overview of these

primitives and their serial encodings. We will discuss these in some detail, but refer the reader to

references for deeper discussions of their implementation on various architectures.

The recurrent primitives just introduced can be expressed serially in a variety of ways. The compi-

lation techniques in this thesis target specific methods of expressing those primitives. Specifically,

we are concerned with code written in imperative languages like C or Fortran, the latter of which

the compiler is written for. Even with this constraint, there are a number of ways to encode many

of these primitives. This section provides a breakdown of the various types of code we are inter-

ested in compiling and to which recurrent primitives they can compile.

17

Reductions and Scans

n elements

^ ^ 9

(»)

QHHHS0SE

Figure 2.1 A (a) serial and (b) parallel reduction (bold boxes) and scan (all boxes).

Many parallel algorithms exist to perform these various recurrent primitives. They range from

fairly high level to very architecture specific. This compiler targets the Cray C90 architecture,

so this section will focus on algorithms specific to that genre of architecture. This work is

largely derived from the work of others, and we note where we have made substantial

changes. We refer the reader to the original work for a deeper treatment of these algorithms.

2.1 Reductions and Scans

2.1.1 Description
A reduction of a binary operator on an array1 (or vector or collection) applies that operator

across each element of the array and the running sum result of the operation. Figure 2.1a illus-

trates the flow of values in a serial reduction operation. If the operator reduced upon is asso-

ciative, we can reassociate the operator applications so that some can occur in parallel. Figure

2.1b illustrates a reassociation in which the reduction takes O(logw) parallel steps, where n is

the size of the array.

1. Since we compile Fortran, we will primarily discuss these primitives in the context of arrays.

18

Recurrent and Irregular Code and Primitives

A scan of a binary operator on an array applies that operator across each element of the array

and the running sum, while retaining all partial sums. Scans are essentially identical to reduc-

tions in the serial case, and are very similar to reductions in the parallel case. The primary dif-

ference in the parallel case is that during the initial phase, which is essentially a reduction,

partial results at each node are retained, and then propagated back downward. The perfor-

mance of a parallel scan is thus within a constant factor of the performance of the parallel

reduction.

The power of reductions and scans and their segmented variants was first fully explored by

Guy Blelloch [15]. Work efficient parallel prefix-sum operations were first described by Stone

[80]. Here is a simple example of their use in parallelizing the following basic linear recur-

rence:

do i = 2, n
a(i) = b(i)*a(i-l) + c(i)

end do

This recurrence can be computed in a parallel scan of the following (associative) operator

across the two arrays b and c:

(JC, *') 0 (y, /) = (xy,xy' + x')

The results of the scan can then be used to evaluate the result at each point in the scan. The

result computation looks like:

tmp_pairs(2:n) = par_scan(f, a, b)

a(2:n) = first(tmp_pairs(2:n))*a(l) + second(tmp_pairs(2:n))

Where first and second select the first and second elements of a pair. In Fortran, this can

be implemented by adding a dimension of size 2 and then using indexing to select the value.

Performing nth order reductions and scans, linear recurrences, and so on, are trivial with par-

allel scans and reductions. All the programmer and compiler need is to find an appropriate

associative operator, if one exists.

19

Reductions and Scans

2.1.2 Serial Encoding
As previously discussed a serial computation, typically a loop, that is intrinsically a recurrent

operation is what we classify as a recurrence. That is, such a segment of code is a candidate

for parallelization by using reduction, scan, combining-send, and multiprefix operations. For

the moment, consider only non-nested recurrent loops as our targets, since we will the next

type of serial code we discuss will subsume all nested recurrent loops. The code examples pre-

sented thus far are good indications of the type of code we generally target. The general form

is:

do <some_range>
recur_value(<current>) = f(recur_value(<previous>))

end do

A more operational definition for a compiler would be those loops which have loop carried

cycles of flow and control dependences. The latter condition accounts for the presence of

conditional constructs, for example, in the following loop:

do i = 1, n
if (a .It. b(i)) then

a = b(i)
end if

end do

2.1.3 Implementation

The scheme we use for performing reductions and scans is based on a simple block-wise

decomposition of the array, as in figure 2.2. The first phase computes P partial sums on the P

processors. All computation in this phase is local. The following fortran pseudocode, with the

inner loop parallelized, illustrates this operation (this implementation is mostly based on

[19]):

do i = 2, rows
do j =1, cols

prefix((i-l)*cols + j) = prefix((i-2)*cols + j)

$ © val((i-l)*cols + j)

enddo
enddo

The second phase serial sums the P partial sums and propagates them across the processors. A

reduction can stop here.

20

Recurrent and Irregular Code and Primitives

Phase 2
(Serial)

®
pel pel pe3 pe4 peP

Phase 1
(Parallel)

A

®

n/p n

ft ft ft ft ft

„ P/ia^e 3
® (Parallel)

V

F/grure 2.2 >4 vectorizable scheme for executing a reduction and scan.

do j = 2, cols

colsums(j) = colsum(j-l) © prefix((rows-1)*cols+j-l)

enddo

Phase 3 is reserved for scans and segmented reductions and scans. In a scan, phase 3 propa-

gates the partial sums computed in phase 2 to all the partial sums computed in phase 1.

do i = 1, rows
do j = 2, cols

prefix((i-l)*cols + j) = colsum(j)

$ © prefix((i-l)*cols + j)

enddo
enddo

In a segmented reduction or scan, the values are propagated only to those partial sums from

phase 1 involved in segments which cross processor boundaries.

We use approximate versions of this basic computational template on both the iWarp and Cray

C90. For the C90, one can view each slice of the vector register bank as a virtual processor on

which this algorithm runs. On a single vector processor, the value P is the size of the vector

register length. On multiple vector processors, the value P is the size of the vector register

length multiplied by the number of processor.

21

Combining-send and Multiprefix

b

Figure 2.3 Combining-send (bold boxes) and multiprefix operation (all boxes).

2.2 Combining-send and Multiprefix

2.2.1 Description

Combining-send operations are essentially permutations with write conflicts resolved by a

combining operator. Figure 2.3 illustrates such an operation. The computation can be parallel-

ized if the combining operator is associative. It can be parallelize more effectively if the com-

bining operator is commutative, that is if it does not matter in what order the operations are

applied. However, we are interested in the more general case, and consider commutativity a

simple optimization of that. In the general case, the starting point is to find an associative

operator.

The following serial weighted histogram is an example of where a parallel combining send

can be used:

do i = 1, n
a(c(i)) = a(c(i)) + b(i)

end do

Obviously, the combining operator here (addition) is commutative as well as associative.

Combining sends can be used to express more powerful operations, such as the following ver-

sion of sparse matrix-vector multiplication (note the difference in representation from the last

section):

do i = 1, N, 1
do k = pntr(i), pntr(i+l)-l, 1

y(indx(k)) = y(indx(k)) + val(k)*vec(i)
end do

end do

22

Recurrent and Irregular Code and Primitives

A multiprefix operation is very similar to a combining-send operation, except that partial

results for each element of the target array are retained. Figure 2b also illustrates this opera-

tion. The relationship of a multiprefix operation to a combining-send is analogous that of a

scan to a reduction. An example of a place where a multiprefix might be employed is the fol-

lowing code segment:

do i = 1, n
a(c(i)) = a(c(i)) + b(i)
d(i) = a(c(i))

end do

Here, the partial results are stored in the array d. The algorithm for computing a multiprefix

operation is identical to that for implementing the generalized combining-send.

2.2.2 Serial Encoding
Section 2.1.2 described the general form of serial code for expressing recurrences, which

include combining-send and multiprefix operations. The only difference is in the structure tra-

versal pattern, which, in this case, is dependent on an array of indices.

2.2.3 Implementation

Our computational template for computing combining-sends (also called a multireduce opera-

tion) and multiprefix operations is based entirely on the work of Sheffler [76] (the code, illus-

trations, and terminology are all based on his implementations). The basic algorithm,

illustrated in figure 2.4, is comprised of phases similar to those in the reduction and scan tem-

plates. Combining-send and multiprefix operations are essentially generalizations of reduc-

tions and scans: each element has a key or label and each element contribute its value only to

computations involving elements with the same key. That is, each element sums its value to

the value of each previous element which contains the same label.

The key idea is to preserve this property by building and maintaining a structure, called a

SPINETREE, which links together elements with the same label. The array of values the oper-

ation is taking place on is decomposed into a rectangular shape. Each SPINETREE link in

each row points to one element with the same label in the next row. The spinetree can be built

using the following pseudo-fortran loops:

23

Combining-send and Multiprefix

®
Prefixsum

A

© Spinesum

® -5^
Rowsum

Figure 2.4 The SPINETREE structure and phases of generalized combining-send and
multiprefix operations.

do j = rows, 1
do i = 1, cols

spine((i-l)*cols + j) = bucket(label((i-1)*cols + j))
bucket(label((i-l)*cols + j)) = spine((i-1)*cols + j)

enddo
enddo

The SPINETREE structure can be reused for each use of the same label array. The algo-

rithm now progresses as follows. The first phase, the rowsum phase, sums each element's

value in each column into the whatever element its SPINETREE link points to.

do j = 1, cols
do i = 1, rows

rowsum(spine((j-1)*cols + i)) =

$ rowsum(spine((j-l)*cols + i)) ©
$ value((j-1)*cols + i)

enddo
enddo

The net effect is to sum each row, but only summing similarly labelled elements. The second

phase, the spinesum phase, sums elements up the spine of each SPINETREE to create prefix

sums for each label at the start of each row.

24

Recurrent and Irregular Code and Primitives

[Q H HiQnH 0 @ 13]

F/gwre 2.5 An inclusive segmented reduction (bold boxes) and scan (all boxes).

do j = rows, 1
do i = 1, cols

if (this_element_is_on_a_spine) then
spinesum(spine((i-1)*cols + j)) =

$ rowsum((i-1)*cols + j) ©
$ spinesum((i-1)*cols + j)

endif
enddo

enddo

This phase essentially ends the computation in the case of a combining-send, since the bucket

structure will hold the total sums for each label (by adding the rowsum and spinesum). The

final phase, the prefixsum phase, essentially incorporates the spinesum values into each ele-

ment.

do j =1, cols
do i = 1, rows

multi((j-1)*cols + i) = spinesum(spine((j-1)*cols + i))

spinesum (spine ((j-l)*cols + i)) ®= value((j-1)*cols + i)

enddo
enddo

2.3 Segmentation

2.3.1 Description
The real expressiveness of reductions and scans is evident when one adds the ability to 'seg-

ment', or arbitrary restart the computation and points in the sequence [14]. This essentially

allows one to partitions the computation arbitrary. The typical scheme is to have some denota-

tion of partition boundaries on the array, either in the form of a bit-vector, segment length

array, or condition array. The reduction or scan occurs independently in each partition or seg-

ment, as illustrated in figure 2.5.

25

Segmentation

A nice feature of segmented reductions or scans is the flexibility they give the user or compiler

in their implementation. One can either perform the operation within each segment in parallel

perform each segment's parallel reduction or scan, or it can perform both simultaneously. Fur-

thermore, segmented reductions and scans can be flattened so that the computation itself looks

like non-segmented reduction or scan. Trade-offs in selecting one of these depend on multiple

factors, such as the average size and variance of each partition and the communication/mem-

ory access overhead of the target system.

Since our compiler targets primarily the Cray C90, we choose to flatten these segmented oper-

ations wherever possible, to exploit the better load balancing characteristics and higher avail-

ability of parallelism.

The power of a segmented operation is evident in its use in parallelizing the following sparse

matrix vector multiplication kernel:

do i = 1, N, 1
y(i) = 0.0
do k = pntr(i), pntr(i+1)-1, 1

y(i) = y(i) + val(k)*vec(indx(k))
end do

end do

These can be easily and effectively parallelized using a segmented reduction. (Chapter 5 will

discuss this in more detail.)

A nice feature of segmented operations is the arbitrary partitioning. This enables their use in

parallelizing a variety of problems which employ partitioning or divide and conquer tech-

niques.

2.3.2 Serial Encoding
There are two flavors of serial code structure used in implicitly expressing segmented opera-

tions: loop nests and divide and conquer recursion. The primary distinction between the two is

that loop nests tend to reflect the nested structure of the representation of the particular data

structure being traversed, while divide and conquer recursion tends to reflect the partitioning

structure of the algorithm being expressed. In either case the serial code expresses a nesting of

control structure.

• Irregular loop nests

26

Recurrent and Irregular Code and Primitives

Adding nesting to recurrent loops usually means one of two things: either the recurrence is

carried across the entire loop nest, or there are some completely parallelizable levels of the

loop nest. In the former case, the compiler should still try to exploit the recurrence parallel-

ization technique. In the latter case, loop transformation frameworks should be able to

expose non-recurrent parallelism in many cases. Loop transformation frameworks are typ-

ically constrained to work with perfect loop nests, which are loop nests with code only in

the innermost loop. However, there are cases of loop nests which are not fully recurrent for

which these frameworks cannot expose any parallelism.

If the loop nest is not a perfect nesting and cannot be made one the compiler may have to

compile the recurrence rather than avoid it. Furthermore, if the loop bounds are non-linear

in outer loop indices then most loop transformation frameworks are not applicable. We

refer to these case as irregular loop nests. The problem with irregular loop nests is that it is

difficult to determine the variance or amount of parallelize available at each level of the

nesting. Throwing recurrences into the mix makes the task more difficult for the compiler.

A recurrence expressed in a loop nest may most naturally and efficiently parallelized using

a segmented reduction or scan, depending on the machine target.

• Recursive subroutines

Algorithms which employ divide and conquer strategies to solve problems typically subdi-

vide the problem into smaller partitions upon which it can recursively and independently

work on. That the partitions are worked on independence implies an availability of parallel-

ism between work on the partitions. That the work is done recursive implies a similarity in

the type of work done on the partitions that might be amenable to data-parallel style paral-

lelization rather than the more obvious task parallel option.

With this in mind, the kind of recursive code the compiler targets is that in which each

recursive call is independent of its sibling recursive calls. Most divide-and-conquer algo-

rithms on arrays, matrices, or trees fit this particular requirement. (It it is not necessarily

true of graph-based algorithms.)

2.3.3 Implementation
The segmentation structure of a segmented reduction or scan can be stripped away (flattened)

and a non-segmented scan can be used to perform the computation [15]. The idea is to make

the tracking of segment an explicit part of the combining operator. This works well for seg-

27

Other Primitives

mented scans, but there are typically faster mechanism for performing segmented reductions

since the only results which need to be propagated back after the initial reduction is for those

segments which cross processor/vector register slice boundaries [19].

On distributed memory machines, there are other opportunities for optimizing the implemen-

tation of segmented operations. The most obvious is to assure that not segment crosses proces-

sor boundaries. However, this may cause load balancing problems since both the partition size

and amount of computation per element may vary. Either dynamic load balancing support [44]

or algorithmic techniques to ensure balanced computation (i.e. picking good partitioning strat-

egies) are necessary to avoid this problem.

We pursue the flattening strategy in our compiler, since our target is the Cray C90, and archi-

tecture which benefits from such an approach.

2.4 Other Primitives

The structure of these recurrent primitives is similar in that operators are used to combine val-

ues from a source array (or array expression). What differs is the mechanism by which the

source and destination arrays are traversed. In the case of a reduction or scan, the source (and,

in the case of a scan, destination) array can be traversed in a fairly linear manner. Combining-

send and multiprefix operations traverse the destination array in any order determined by the

index vector, while the source array is still traversed linearly.

There are other recurrent primitives that not only traverse arrays differently, but also traverse

more complex, recursively-defined structures such as trees and linked-lists. For example, a

reduction or scan on a linked list defined with an array traverse both the source and destination

arrays in a random order. The following code is an example of such an operation:

do i = 1, n
a(next(i)) = a(next(i-l)) + b(next(i))

end do

Of course, if the list is defined recursively using heap-allocated structures or records (as one

might using C), then the traversal problem is much more difficult.

Finding associative operators is important in all these recurrent primitives so that reassociation

of the operations can be exploited in parallelization. The difficulty of implementing these

28

Recurrent and Irregular Code and Primitives

other primitives is in developing good parallel templates for performing the operation. For a

pointer based structure, this implies a mechanism for supporting pointer dereferences in a glo-

bally shared parallel heap.

2.4.1 Implementation

Though we do not compile primitives involving list-ranks, tree reduction, or graph reduction,

there is a good deal of work in parallel algorithm development and implementation for these

primitives [62][71][77].

2.5 Review

In this chapter, we introduced the basic recurrent primitives we are interested in parallelizing.

We also discussed the kind of serial code they occur in and, consequently, we are interested in

compiling. Parallel implementations the compiler uses were also reviewed, though, for further

detail and insight into their design, we urge the reader to review the source material.

29

Review

30

Chapter 3

Recurrent Loops I -
Foundations and Analysis

This chapter presents the intuition and outline of a method for automatically extracting parallel

prefix programs and other recurrent primitives from sequential loops. Rather than searching for

associative operators in the loop body directly, the method rests on the observation that functional

composition itself is associative. We model the loop body as a multivalued function of multiple

parameters, and look for a closed-form representation of arbitrary compositions of loop body

instances.

This chapter will focus on the basis and motivation for this new analysis. The next chapter will

discuss its integration into a compiler and the details of the specific symbolic analysis we use.

3.1 Complexity of Parallel Recurrent Primitives

The parallel reduction and scan operation introduced in the last chapter be used to efficiently exe-

cute a wide range of recurrences. For example, the simple recurrence in below, where ® is an

associative operator, can be solved using a parallel computation of the form in figure 3.1a:

do i = 1, n
a = a ® B[i-1]

end do

Figure 3. lb illustrates the more realistic case when n > p, where p is the number of processors. A

general form of such algorithms can be described simply. The array or expression being reduced

31

Complexity of Parallel Recurrent Primitives

is distributed blockwise across the processing elements. Each processing element performs

the reduction locally. Then the results for each processing element are combined in pairwise

fashion in a binary combining tree. In the case of a reduction, the algorithm proceeds no fur-

ther.

The recurrence above can be computed by a parallel reduction. Were this recurrence to com-

pute an array rather than a scalar (i.e. a[i] = a[i-l] ® B[i-1];), a parallel scan

would be required to solve this so that all intermediate values are computed. The simple algo-

rithm presented above only performs half the necessary work. After the sweep up the combin-

ing tree, the partial results in the combining tree are propagated back down to the processing

elements, and the local partial sums are updated.

For n array elements and p processors, both parallel reduction and scan operations can be

computed on an EREW-PRAM in 0(n/p) time steps if n = Q(plogp) [28] [53][80] and if the

time complexity relationship T(n) = \n/p~\Cx + C2logp, such that Cx and C2 are both con-

Bi

F^I

a? a2

(a)

■f-
n=8
p=4

ßj B2 > B3 B4 . 65 BQ 'By Bg •

logp

Figure 3.1 An associative recurrence and its parallel combining trees.

32

Recurrent Loops I - Foundations and Analysis

stants, holds. The first product term is the cost of the local computation phase of the reduction,

and the second product term is the cost of the combining phase of the reduction. For the gen-

eral recurrence, the time complexity is:

r«/pi riogpi
T(n) = X T® (j)+ X (7^(0+ T9 (0)

Tcomm is the cost of communicating the intermediate results of the computation (conceptually,

up and down the combining tree). 7® is the cost of each application of the associative com-

bining operator. If the operator ® were addition, T® = 1 and Tcomm = 1, since at most a

single number is communicated at a time during the communication phase.

The associativity of the addition operator allows the decomposition of multiply composed

additions for parallel execution. Some other examples of associative operators are integer mul-

tiplication and MAX. Whether this computation will adhere to a O(nZp) time complexity

bound depends on the complexity of each operator application and the cost of communicating

intermediate results. It is clear that this will hold if the complexities of both Tcomm = 1 and

T® are constant. In the cases of integer multiplication and MAX, it is known that these

operations satisfy the criteria necessary to adhere to this time bound.

In serial code, the problem is that we generally have no knowledge of whether a collection of

operators in a recurrent loop is associative. So, our goal is to find efficient associative opera-

tors in such loops for which we can perform these parallel scans and reductions within the

aforementioned time bounds.

3.2 An Associative Model for Recurrent Loop Execution

In our system, recurrent loop bodies are modeled as a series of functions applied to recurrence

variables. For example, this loop:

do i=l to n
a[i] = a[i-l] + B[i-1]

end do

33

An Associative Model for Recurrent Loop Execution

Figure 3.2 Composing the functional model for recurrent loops.

can be modeled by a series of functions1 g, = Xx -* x + B,_, applied to the recurrence vari-

ables a [i], as below:

do i=l to n
a[i] = gi (ati-1])

end do

We call this function a loop modeling function.

The same computation is achieved by precomputing the composed instances of the functions

gi and then applying the function to the first element in the array a, shown below:

G\ = 81

do i= 2 to n
Gi = Gi_x*gi

end do
do i= 2 to n

a[i] = Gi (a[l])
end do

In this model of the recurrence, we compute final values of the recurrence variable by

0, = Gj(a0), where G, = g/*g,-_i • ... *gi and • is the function composition operator over

gi. We refer to the functions G, as composite functions. Note that no dependences hinder par-

allelization in the application loop. The original loop is effectively "executed" when the com-

1. We denote functions using lambda notation because of the ease of manipulating functions in this form.

34

Recurrent Loops I - Foundations and Analysis

position operator is applied in a prefix operation over the functions g, and then each resulting

G, is applied to a0. The associativity of the composition operator allows for the application of

a parallel prefix operation, as in figure 3.2. The case for a composition reduction is analogous.

Recall that the time complexity bound of 0(n/p) will hold if n = Q(p\ogp), and Tcomm, T.

are both constant. A naive composition strategy might at least double the complexity of the

composed function at each step and yield a result that is as costly to apply as a serial execution

of the loop. Furthermore, the cost of communication in the combining steps of a parallel prefix

operation is proportional to the size of the functions being communicated. If the function size

increases, the communication costs will similarly increase. Under these constraints, finding an

efficiently composable function entails finding a composition method with a constant time

complexity and a static run-time representation for the modeling function. Requiring that the

function representation be closed under composition guarantees both that the representation

scheme will be of a fixed size and that the composition method will be of constant complexity.

For example, the composition of two instances of the modeling function for the loop at the

beginning of this section is g, • gi = Xx -> (x + Bj_x) + B,_,. The composite has doubled in

complexity with respect to its two component functions, requiring two additions where the

original function had only one. Furthermore, the number of symbolic constants necessary to

store with the function has now doubled to two. However, observe that the addition operator in

the composed result allows the reassociation g, • g;- = Xx -> x + (£,_ i + Bj_ x).

At each composition, the two symbolic constants2 can be abstracted into one symbolic con-

stant. The resulting composite function g^gj = Xx-^x + C has not increased in complexity

with respect to the original function. The price paid for this efficiency in representation is that

of a single addition operator at each dynamic composition to compute C = 5,_ j + ß,_ i. Note

that this transformation effectively farms out the work to apply the final composite function to

the composition method, which will be executed in parallel.

In the dynamic composition phase, it is not necessary to communicate the entire function rep-

resentation. Only the abstracted constant C is necessary for the composition method we have

2. We will generally refer to non-recurrent values as "symbolic constants". Note that also includes literal con-

stants, such as numbers.

35

Finding Efficient Composition Operators

derived. In the function application phase, C is used to evaluate the function Xx -» x + C.

Since each composition step takes a constant amount of time and the representation is of a

fixed size, the full composition parallel prefix or reduction operation will perform within the

0(n/p) time bounds.

3.3 Finding Efficient Composition Operators

The example of the last section demonstrated that a simple symbolic composition scheme can

be effective at uncovering efficient composition operators for performing parallel prefix on

loop modeling function. The goal of this section is to examine the foundations of such an anal-

ysis and provide a rationale and outline of a compiler analysis scheme that we will make more

concrete in the next chapter.

3.3.1 Notation and Properties of Modeling Functions

We refer to two expression or functions as structurally equivalent, if their expression are iso-

morphic with respect to all operators and non-bound variables.

The notion of symbolic constants and modeling functions can be viewed as specifying a class

of functions. That is, classes of the structurally equivalent functions are defined as follows:

The class of structurally equivalent functions F is comprised of all functions of the form

/(*„ ..., xn, C],..., C„) with equivalent, fixed algebraic structure, where the m bound vari-

ables xx,..., xm are fixed and the n variables Cu ..., C„ vary over values of some specified

type.

We require that functions in the class have fixed algebraic structure because all modeling

functions look the same, that is, they are structurally equivalent. We will refer more frequently

to the modeling function class, though the term should be considered interchangeable with

class of structurally equivalent functions.

Note that individual elements of this class may be uniquely specified by tuples of values for

the variables (actually, the symbolic constants in our framework) (Cl5..., C„). We refer to

each such tuple as a signature of the corresponding function, and the space of tuples the signa-

ture-representation of the function class. To facilitate manipulation of the signature-represen-

36

Recurrent Loops I - Foundations and Analysis

tation space, we define an operator to extract signatures from functions of the class F:

repF(fi) = (Ci,..., C'n).

The idea is that the signature-representation of a modeling function class is a more operational

representation, since the algebraic structure of the modeling function class is static, and only

the symbolic constants are open to manipulation by operators defined reflexively within the

class. Conversely, we can define an operator to map a function from signature-representation

space to modeling function space:

repF\C\,...,C'n) = fi-

We say that the function class F is closed under composition if there is a composition opera-

tor • such that for any /,-, /,- e F, fi • /, e F.

Theorem 1 The function class F is closed under composition if there exists a composition

operator • which manipulates only the signatures (C\, ...,C'n) and (C{,..., C}„) for each

function /, and /, to generate a new tuple (Ci,..., C„) for which the following holds true:

reprifi'fj) = rep^fj.rep^fj) = (C\,..., Cn) • {C[,..., C{) = (C,,...,C„).

Proof We can easily construct a composition operator of any two functions of F for which it
A

is closed under composition. We first use repF to extract their signatures, then use • to

combine the two signatures, and then to reinject the new signature values into the function

structure using rep~F . (We are simply constructing the composite operator

repF ■ • -repF.) By the definition of • , this is equivalent to repF(fj • fj). Applying

rep~F to this gives us /, • /;-, thus constructing • and guarantees that the resulting function

is in class F. ■

We will refer to • as a signature composition operator.

Given this characterization of function classes, we can now recast our proposed analysis as a

search for both a modeling function class F and a composition operator • which the corre-

sponding signature-representation class Fsig is closed under. In the case of the simple addition

reduction example of section 3.2, the composition operator • was addition and the signature-

representation of the modeling functions were values from the array B.

37

Finding Efficient Composition Operators

The analysis starts by extracting a modeling function. The second step of abstracting out con-

stants can be though of as a first cut at defining the modeling function class F. Composing

two instances of these functions is equivalent to trying to discover whether this modeling

function class is closed under composition. The mechanism by which this was achieved was

by extracting out computations solely on symbolic constants (the signature). These computa-

tions comprise a candidate composition operator • .

If the algebraic structure of the resulting composite function is equivalent to that of the origi-

nal modeling function class, then we need proceed no further. We have a modeling function
A

class which is closed under composition, as well as an operational description in • of how to

compose the modeling functions while retaining this property. This operator will be that

which we will use in our recurrent parallel primitives.

If the algebraic structure of the resulting composite function is not equivalent to that of the

original modeling function class, then we can refine our definition the modeling function class

by using the composite function as a template for the new modeling function class. The fol-

lowing theorem states that a modeling function class created out of the composition of another

modeling function class contains the original modeling function class.

Theorem 2 If we construct a modeling function class F by composing all possible pairs of

instances (i.e. computing the transitive closure over composition) of modeling function class

F and3fIDeF suchthat, V/eF,/ = /„>•/ = /./;D)thenFcF.

Proof For any f e F, f1D» f e F by definition of F and the presumption of the existence

of fw € F. Since fw»f = f'• fID = f, simple substitution gives us / e F. Thus, FQF .

Theorem 2 makes the step of redefining our modeling function class intuitive to the extent that

we can always generalize the original loops modeling function to the new modeling function

class. Note that if F = F, we need not proceed in our analysis. We will have more to say in

38

Recurrent Loops I - Foundations and Analysis

section 3.3.4 about whether structuring the search for an appropriate modeling function class

in this manner is generally useful.

Note that the Theorem 2 is premised on the existence of identity functions fw, such that for

any F, fID» f = f • fID = f, V/ e F. This presents an opportunity to narrow the kinds of

modeling functions we can parallelize in this framework by discussing how flD can be con-

structed for function classes. (If it cannot be constructed, then our analysis may not be not cor-

rect!)

Lemma 1 For modeling functions of linear affine recurrences, fw can be constructed.

Proof Linear affine recurrences are recurrences have modeling functions of the form

f{Xi, X2, ..., Xn) = (fli,!*! + #1,2*2 + ••• + Q-\,nxn + #1» •• •> an, 1*1 + an,2x2 + ••• + <^n,nxn + bn) .

(This is an nth-order recurrence.) f1D is constructed by setting au, = 1 where 1 < i < n,

aUi; — 0 where l<i<nAl<j<nAi^j, and &, = 0 where l<i<n:

fiD(x\,x2,...,x„) = (xi,...,xn). Simple composition by substitution demonstrates that

//£>•/ = /•///? = /•■

Lemma 2 For modeling functions comprised of conditional expressions and linear affine

expressions and inequalities, fw can be constructed.

Proof We assume, without loss of generality, that the function has no condition expressions

nested within relational or affine expressions3. Thus, the function can be viewed as a tree of

conditional expressions, with affine expressions at the leaves. Some path in the expression tree

must be followed down to one of the leaves when evaluating the function. Since the leaves are

3. A conditional expression nested within another expression can always be converted to this form by factoring

out the conditional expression. For example, the expression (end 1TEXP : FEXP) ® EXP =

can be converted to (end 1(TEXP <g> EXP) : (FEXP ® EXP)) . This operation can be performed

recursively until no further conditionals are nested.

39

Finding Efficient Composition Operators

themselves linear affine expressions, by Lemma 1 we can construct each to simply evaluate

fiD for linear affine recurrences. ■

This raises the question of which modeling function class we should define initially. For some

modeling functions, there are potentially infinite variations on the modeling function class that

we can choose. We take the conservative approach of minimizing the tuple size for the signa-

tures of the initial function class. For example, given the loop modeling functions (which uses

C-style shorthand for conditionals in expressions) /,• = Xx -> (x < a, ? a,: x), which might

be extracted from a MAX reduction loop, there are at least two obvious possibilities for initial

modeling function classes. The first possibility is F = {f(x, C) = (x< C ? C : x)} where

FSIG = {(Q> > for a11 C. The second possibility is F = {f(x, C„ C2) = (x < Cx ? C2: x)}

where FSIG = {(Cu C2)}, for all C„ C2.

The second case is more general, including many more functions than are needed initially for

this loop. It may turn out that the more general case is closed under composition, while the

more restrictive case is not. However, we are better off choosing the more restrictive function

class and then generalizing if necessary. We achieve this by abstracting out identical symbolic

constants as the same signature constant. Any expressions of the symbolic constants are repre-

sented as expressions of the signature constants.

Theorem 3 Given two modeling function classes F and F, such that F c F and F is closed

under composition, then for any /,, /_,■ e F, /, • /; e F.

Proof The proof is trivial. If /,, fs e F, /,, /,- e F since FQF. Thus, /, • /,- e F since F

is closed under composition. ■

This theorem implies that for any more restrictive modeling function class contained wholly

within a more general function class which is closed under composition, then all of its com-

posite functions are contained within the more general modeling function class. The intuition

provided by this is that starting with a more restrictive modeling function class is not harmful,

in the long run, since the composite functions will always be members of the solution model-

ing function class, should one exist.

40

Recurrent Loops I - Foundations and Analysis

3.3.2 Bounded Recurrences
Callahan [24] coined the term "bounded recurrence" for those recurrences fitting the complex-

ity constraints we presented in section 3.2. A bounded recurrence uses bounded operators or

junctions, which are a subset of function classes that are closed under composition. The intu-

ition is to characterize the resource requirements of recurrences which are amenable to paral-

lelization. It turns out that the components of this characterization fit nicely with the model of

recurrent loop execution the compiler works with.

The first restriction for a function class to be bounded is that there exists an operator • on the

modeling function class's signature space FSIG such that the following holds:

/,■ • fj = rep-f{repF{fi) • repF(f})).

We proved that the modeling function class is closed under composition if such an operator

exists in Theorem 1.

The second restriction for bounded functions is that the time complexity of repF is 0(1).

What this means, in practical terms, is that the loop modeling functions can be brought into a

useful representation in constant time. The third requirement is that the composition function

• must have an 0(1) time-complexity (i.e., the cost of composition is constant and does not

grow). The final requirement for a bounded function is that repF\repF{fi)){A) has a time

complexity no greater than 0{ft).

A recurrence whose loop modeling function is a bounded function is parallelizable, since we

can find a representation and a composition operator whose complexity is constant. In the

example of section 3.2, constructing the composition operator C = 5,-_,+5,-_i in

g. • g = Xx.x + C satisfies both of these requirements.

The notion of a bounded recurrence is implicit in our model and analysis of recurrent loops.

However, we not only seek to verify that a recurrence is bounded by verifying these proper-

ties; we also search for a representational function class which both includes the loop model-

ing functions and is bounded.

41

Finding Efficient Composition Operators

fi

A.
Extract functional

model

Construct modeling
class

//•/;€ F

,F

F = F?

Compose instances

Extract symbolic
constant terms

Test for structural
equivalence

F^-F

I
Figure 3.3 Flow diagram for the model and the corresponding model elements computed.

3.3.3 An Analysis Scheme

This simple model is effective in abstracting away syntactic details of a recurrent loop to

expose its relevant computational properties as they pertain to parallel recurrent primitives.

The example in section 3.2 suggested an automated analysis by which recurrent loop compu-

tation is modeled as function composition, outlined in figure 3.3. The analysis will search for

composition operators that satisfy our complexity restraints by composing functions using

various composition operators and checking whether the loop modeling functions are closed

under that operator. The details of this analysis will be discussed in the next chapter. Here, we

provide a high level view, referring the more formal notions we have just discussed.

The compiler extracts the loop modeling functions for the recurrent loops by treating the

recurrence variables as bound variables in functions. Then symbolic constants and expressions

which do no include the recurrence variables are abstracted out as simple symbolic constants.

This relieves the analysis of the particular syntax of the code, e.g. details of indexing expres-

sions, etc. It also creates an initial modeling function class F.

Next, the compiler constructs a composition operator. The first step in achieving this is to

compose two instances of the modeling function by simple substitution. The second step is to

symbolically simplify the composite function by forcing expressions involving only symbolic

42

sS"

Recurrent Loops I - Foundations and Analysis

<?
'F' \F"

Increasing
Generality

(e.g. FQF,FQF')

- Transitive
ja Closure of

Composition

Algebraic Simplification
Symbolically Constant
Expression Abstraction

Figure 3.4 Searching for composition operators and loop modeling function classes.

constants to be computed by the composition operator. The net effect of this is to add (con-

stant) complexity to the composition operator, while simplifying the composite function (in

the example of section 3.2, extracting the additive expression of the two symbolic constants

achieved this). The hope is to find an operator • as defined in section 3.3.1. To this end, the

goal of the analysis here is to force the composite function to be structurally equivalent to the

original modeling functions.

If the analysis does not succeed, it can try again using the (more complex) composite function

as the new modeling function. The intuition here is that there may be more general loop mod-

eling functions than our initial choice which are closed under some composition operator. We

will discuss the details of this analysis further in the next chapter.

3.3.4 The Search Space
This analysis is essentially a search for a modeling function class and signature composition

operator. It is really a search embedded within a search. The first level of search is for an

appropriate function class. Within each function class, multiple composition operators may be

considered. Figure 3.4 illustrates the search spaces for the analysis. At points in this analysis,

we may face may several choices in the search for associative operators. In particular, the

43

Modeling Other Recurrent Loops

Loop execution

fi-l -2> Si

—__^

■^-SM -5> Si+2 -5> •/;+.?

A & h * .$.

Figure 3.5 Composition of loop modeling functions in reductions and scans.

choices may include deciding how to generalize a (failed) modeling function class, and the

ordering of conditionals in expressions when we deal with conditional operators. Backtrack-

ing searches or the use of heuristics to guide the search should be used at these points.

If conditional expressions are allowed in the modeling function classes, intractable and unde-

cidable problems will also play a role in the realization of this analysis in a compiler. When

simplifying conditional expressions, we will employ logic minimization and linear inequality

decision. Also, in general, when testing whether a function class is closed under composition

we will test whether a composite function is equivalent to members of that function class, we

flirt with the undecidable problem of testing whether piece-wise polynomial expressions are

equivalent. In contrast, loops with no conditional constructs (linear recurrences) can be paral-

lelized reliably. We will have more to say about these issues while discussing the implementa-

tion of this analysis in the next chapter.

3.4 Modeling Other Recurrent Loops

This modeling scheme is not limited to reductions or scans. Associativity is an important

property to discover in many recurrent loops. The model presented here is applicable to such

loops. The syntactic similarity of simple reduction or scan loops to difference equations [61]

made introducing loop modeling functions simpler in that context. But a more general view of

loop modeling functions is that they model the computation performed on memory locations.

The point of finding associative operators is then to parallelize the computation on each loca-

tions. This is clearer when we decouple the notion of collection traversal from the operator

used to updates elements of that collection.

The collection traversal scheme that was implicit in the last section was a linear or affine tra-

versal, as in figure 3.5. This illustrates the execution of the loops as a series of applications of

the loops modeling function. The source array is accessed sequentially at each loop iteration

44

Recurrent Loops I - Foundations and Analysis

fi-l
4>

fi
i

fi +1 fi i+2
J*

fi +3

....cr

1 2 1 2 s

fi

fi-. fi i+1

fi i+2 fi+3

a H m B
Figure 3.6 Tangled and untangled composition of loop modeling functions in combining-send
and multiprefix operations.

and used as an argument to the loop modeling functions /,. The function composition pattern

is fairly straightforward.

A similar illustration of the combining-send or multiprefix operation below is in figure 3.6:

do i = 1, n

A(C(i)) = /,(A(C(i)),B(i))

enddo

Figure 3.6 separates the operations modifying differing sites in the array A. One can see that

there is still a pattern of composing modeling functions in executing this loop. So the model is

still valid here. What has really changed is the underlying primitive we will use the associative

operator in. The underlying parallel primitive essentially handles the computation and com-

munication patterns, while all the programmer and compiler needs to specify is an associative

operator. Thus, the compiler may decouple recurrent primitive determination from the asso-

ciativity analysis.

This decoupling allows the use of the same associativity analysis for any recurrent code's tra-

versal patterns (for example, the linked list-based reduction or scan in figure 3.7). The overall

analysis for recurrent loops will take place in two phases. First, the compiler determines the

particular recurrent primitive that is applicable by examining the indexing on the recurrence

variables. Then the compiler extracts modeling functions and performs the associativity analy-

sis. These two phases give us all the information we need to parallelize the loop.

45

Review

■>fi-l ^> fi -=5> fi+l "2M+2 -5> fi+3

:\ £ A % <f.

■ ^

- r

NEXT m □
F/gure 3.7 Composition of loop modeling functions in list-rank operations.

3.5 Review

This chapter demonstrates that composing instances of the loop modeling functions, simplify-

ing the composite, and abstracting out symbolically constant terms is a promising, sound strat-

egy for automatic parallelization. Chapter 4 discusses the realization of this scheme in our

compiler.

46

Chapter 4

Recurrent Loops II -
Compilation & Code
Generation

This chapter discusses the implementation of the analysis introduced in the last chapter in a paral-

lelizing fortran compiler. The first part of this chapter discusses implementation details of the last

chapter's analysis. The second part of this chapter discusses code generation issues relating to par-

allelized recurrent code.

4.1 Compiler Analysis

The implementation of the associativity analysis is a straightforward adaptation of what was out-

lined in the last chapter, which we briefly review here. The first step is to extract modeling func-

tions from the recurrent loop. The compiler then starts an iterative process of finding modeling

functions closed under composition.

First, the analysis composes two instances of the modeling functions. Next, the analysis simplifies

the resulting composite function through algebraic simplification and the construction of a more

complex composition operator. Finally, the analysis checks whether the composite is a member of

the starting modeling function class. If successful, the compiler can use the constructed composi-

tion operator in a recurrent primitive. Otherwise, the analysis continues with the new composite

function as the prototypical modeling function. The analysis stops after several iterations through

this (the number of iterations can be adjusted, but is fixed at compile time).

47

Compiler Analysis

Section 4.1.1

Section 4.1.3

Section 4.1.2

Sections 4.1.3,4.1.4

Section 4.1.5

A.
Extract functional

model

Construct modeling
class

Compose instances

Extract symbolic
contstant terms

Test for structural
equivalence

i
Figure 4.1 Flow diagram for the model and the corresponding model elements computed.

The steps in the analysis are shown in figure 4.1, with cross-references to the sections in this

chapter. The sections will refer back to more formal modeling aspects during the discussion of

the implementation.

Careful analysis of conditionals allows this analysis to succeed in cases where existing auto-

matic methods fail. Much of the complexity discussed here is due to the introduction of condi-

tional expression, which are more difficult to reason about and manipulate (all of sections

4.1.3.2 and 4.1.4 are concerned with this issue in particular.) The importance of this condi-

tional analysis will become more apparent in later chapters when we deal with more complex

control structure and when we examine the problems that pattern matching compilation tech-

niques have with variations of simple recurrences, especially those embedded within condi-

tionals.

4.1.1 Extracting modeling functions
The code in below for computing a linear recurrence (inspired by loop 19 of the Livermore

Loops [34]) is used as an example in this section:

do i=l,n
a[i] = E[i] - b[i-l]

48

Recurrent Loops II - Compilation & Code Generation

=

8,

->

=

1/
/ v ̂ s / \

^

ai - h +
1

1 i/
/ \

^ ^
/ \ M

«i hi * di

, 1 is
X \

N
°0 L «i Q

Figure 4.2 A candidate for function modeling in directed acyclic graph form with
dependence information.

b[i] = a[i]*C[i] + D[i]
end do

The starting point for extracting functional models of loops is extracting strongly connected

components of the expression level data dependence graph [93] for the loop body, as in figure

4.2 (only flow dependences are shown). We also include control dependences to account for

the presence of conditionals.

Strongly connected components are isolated through loop fission and analyzed as separate

recurrences if they have any loop carried flow dependences. In this example, there exists only

one strongly connected component. The first pass at extracting functional models assigns a

recurrence variable to each flow dependence in the graph. Destination nodes of both inter- and

intra-loop flow dependences are replaced by the recurrence variable corresponding to the

source of the dependence. The dependence distance determines which instance of the recur-

rence variable appears. In this code example, we have the coupled recurrences a, = £,-&,_!

and bj = afii + Z),.

The next step eliminates non-loop carried dependences to instances of recurrence variables in

the expressions. The appropriate recurrence bodies are symbolically substituted for such

recurrence variable references within the expression bodies, as in a, = £,-£,_, and

fcI. = (EI.-*I._1)C,- + Z>I-.

The loop-carried recurrence variable instances are assigned bound variable names (function

parameters). The functions are then constructed by substituting recurrence variable references

with the bound variables:

49

Compiler Analysis

fa. = "k{x,y)->Ei-y,

fbi = X(x,y)->(Ei-y)Ci + Di.

It is obvious in this case that this set of recurrences is not mutually recurrent. Only one of the

functions need be analyzed and the original forms of the other functions can be used to com-

pute the rest of the recurrence variables' values. The absence of a true mutual recurrence

between the functions or subset of functions implies that intra-iteration flow dependences

were intrinsic parts of the strongly connected component. These strongly connected compo-

nents would be broken by the symbolic substitution of intra-iteration recurrence variable ref-

erences. For example, fb. = Xx H> (£, - x)C{ + D, can be used to generate parallel prefix code

to compute b [i]. The loop in below is generated to compute a [i] and is trivially parallel-

izable:

do i=l,n
a[i] = E[i] - b[i-l]

end do

If the statements were truly mutually recurrent, the functions are combined by forming a func-

tion which acts on a tuple. For example, consider the two variable linear recurrence below:

do i=l, n
a[i] = C[i]*a[i-1] + D[i]*b[i-1]
b[i] = E[i]*b[i-1] + F[i]*a[i-1]

end do

The modeling function for this loop is /(a?fe) = X(x, y) -> (C,x + D-y, E,x + F-y).

We can also handle nth order recurrences such as this:

a[i] = f(a[i-l], a[i-2], ..., a[i-n])

We transform them into mutual recurrences, as follows:

a[i] = f(a[i-l], tmpl, tmp2, ..., tmp(n-l))
tmp(n-l) = tmp(n-2)

tmp2 = tmpl
tmpl = a[i-l]

50

Recurrent Loops II - Compilation & Code Generation

4.1.2 Composing Functions

The easiest step in this analysis is the composition of two functions. The mechanism by which

we compose two function is by simple symbolic substitution. Note that this is only during the

analysis; at run time, we will compose the functions using the derived operator • . For exam-

ple, given two modeling function instances /, = "kx -» x + C, and /; = Xx -» x + Cj, the

analysis computes /, • /y = Xx->(x+ Cj) + Cj.

4.1.3 Templatization
In the example presented in section 3.2, we found that, by abstracting out symbolically con-

stant subexpressions, we were able to trade off composition time complexity for composite

function complexity. In the addition reduction example, using an addition at composition time

fixed the complexity of the composite function1.

We build the composition operator as we abstract out symbolically constant terms (i.e. simul-

taneously building both a candidate composition operator • and the new function class F).

We call this process of abstraction templatization.

4.1.3.1 Polynomial Expressions

Consider this recurrent loop:

do i = 1, n
a[i] = D[i]*a[i-1] + B[i]

end do

Its modeling function is h{ = Xx -> Dtx + Bt. The composition of two abstract instances of h in

this initial representation results in:

hi • hj = \x-> D;(Djx + Bj) + B{ = Xx.DtDjX + DtBj + B,

1. Another way of looking at why this trade-off is important is that we are transferring complexity from an inher-

ently serial portion to a parallel portion of the computation. The serial portion is that of evaluating each func-

tion. The final composite function's computational complexity is a lower bound on the time complexity of its

evaluation in the application loop. If some of the computational load is taken up by the composition method,

which is applied in parallel, we have effectively converted this time complexity in the form of a serial work

load into parallel work complexity.

51

Compiler Analysis

= \x->(C}x + C2), where C, = A#; and C2 = DtBj + Bi.

No further composition is required as the function class is closed under composition. From

this, the composition function is directly inferred as the two operations C, = £>,£, and

C2 ^Dfij + B,.

We call the functional composite with symbolic constants abstracted out a template function.

We call the symbolic constants which must be computed dynamically template variables.

Template Function2:
A template function is a function with symbolically constant subexpressions abstracted out.

Template Variables:
Template variables are the variables used to replace symbolically constant subexpressions

which have been abstracted out.

Here, by a simple distribution and an abstraction of coefficients in this polynomial, we have

managed to reduce the complexity of the composite function. We have mitigated the complex-

ity of the composite by computing portions of it in the composition operator, rather than defer-

ring evaluation until function application time. We can construct a method by which

expressions which are polynomial in the bound variables of a function can be templatized by

simply abstracting out symbolically constant coefficient terms as template variables.

The polynomial expression level templatizing algorithm expects that its input is processed so

that all multiplications are distributed through additive terms to create a sum of product terms.

With this resulting polynomial, the templatizer gathers the coefficients of the bound variables

of the function, and then abstracts these coefficients out as template variables, eliminating

redundant or equivalent template variables as necessary. This algorithm will always templatize

linear recurrences so that the analysis succeeds.

4.1.3.2 Conditional Structure

Conditional structure is more difficult to simplify through algebraic transformation than sim-

ple polynomial expressions. For example, we apply a similar line of analysis to a recurrence

2. The template function and variables are the components of a modeling function class F.

52

Recurrent Loops II - Compilation & Code Generation

fi'fj

Bi>Bj Bj>x Bt>x
false false false X

false false true »i
false true false

*}
false true true *l
true false false X

true false true Hi
true true false tii

true true true Ui

(a)

fi.fj:Bi<Bj

Bj>x Bi>x
false false X

false true NP
true false »J
true true *J

fi.fjiB^Bj

Bj>x B{>x
false false X

false true Bi
true false NP
true true Hi

(b)
Figure 4.3 Composite functions for maximum reduction problem in switching function
form.

with embedded conditionals. Consider the loop body below for computing the maximum ele-

ment of an array:

do i = 1, n
if (B[i] > max) then

max = B[i]
endi f

end do

The modeling function for this loop is /, = ?u-> ((£,• >*)?£,:*)3. Symbolically composing

instances of / results in:

/../. = Xx^((Bi>((Bj>x)Wj:x))Wi:((Bj>x)Wj:x))

Switching function representations simplify the analysis of conditional nests, as they facilitate

the application of standard logic minimization methods. The switching function representa-

tion of the composite is shown in figure 4.3a.

The predicate ß, > Bj is symbolically constant. We call symbolically constant predicates tem-

plate predicates.

3. modeling functions are extended to include a conditional operator and relational operators. We use the condi-

tional notation (predicate"! trueval: falseval) for conciseness.

53

Compiler Analysis

Template Predicate:

A template predicate is a relational expression in which all embedded terms are symboli-

cally constant.

The template predicate is abstracted out and evaluated during each dynamic composition,

yielding the two switching functions in figure 4.3b. Note that certain table entries here require

logical contradictions between the predicates to be selected. These entries are replaced with

'NP' in the entries above.

Applying the logic minimization method we discuss in section 4.1.4 will yield:

f _ Ax -> (5, > x)W,:x if {B,> Bj)\
Ji Ij ~ [\x -> (Bj > x)Wf.x if (5, < Bj)J

While these two functions seem to indicate that the original modeling function was closed

under composition, somehow they must be unified into one representation while retaining this

desirable property. Note the similarity in the structure of the two simplified functions. They

are nearly identical, except where symbolic constants occur. We call this condition structural

isomorphism.

Structural Isomorphism:

Two expressions are structurally equivalent if, when abstracting out symbolically constant

subexpressions, there exists some ordering of the predicates in the conditional nest for

which the CNF-Exp representing them is isomorphic.

Figure 4.4 graphically depicts these two functions. We can unify these two functions by creat-

ing an isomorphism mapping between them. The composite functions in this example are uni-

fied by creating the mapping ((ß,-, 5,)). The template variables are selected from the

mapping(s) based on the template predicate: fi»fj = 'kx->(C>x)?C:x, where

C = (ß,> Bj^Bj-.Bj, as figure 4.4 illustrates. This template function is structurally equivalent

to the original looping modeling function, confirming closure under the newly constructed

composition operator.

At the expense of one comparison operator at each dynamic composition, we have guaranteed

that the resulting composite function does not increase in complexity. The effective run-time

representation of intermediate composite functions is the template variable C, which we use

54

Recurrent Loops II - Compilation & Code Generation

Bt<x

B,

Bj<x

Bj

C = Bi<Bj?Bi:Bj^^

C<x

Bj>x

Bj>Bj

B, Bj>x

B,

B,

Bi>x

Bj>x

5,

Figure 4.4 Unifying subfunctions with
a template predicate.

Figure 4.4 The composite maximum
function in CNF-Exp form.

to evaluate the template function in the application phase. Thus, the solution conforms to the

0(n/p) time bounds.

While analyzing this problem, we took advantage of the fact that predicates with template

predicates may be evaluated at composition time. Other than the conditional optimizations we

discuss in section 4.1.4, the only way to reduce the complexity of composed conditional nests

is to abstract out template predicates and add them to the composition operator. However,

when template predicates are abstracted out, multiple versions of the function are generated

for each combination of logical values of the template predicates. Unifying these subfunctions

to reduce the complexity of such a composite implies finding some structural correlation

between them. An simple way to find a correlation is to check for structural equivalence in the

conditional nest structure. If the isomorphism exists, we find polynomial expression templati-

zations in the leaves of the conditional nest for each subfunction and then pick among them by

evaluating template predicates at composition time. It is by this unification mechanism that we

reconcile the simple polynomial expression templatization algorithm with template predicate

extraction in conditional nests.

To facilitate the transformations and traversals necessary for this algorithm, we convert condi-

tional nests to a normal form, called Conditional Normal Form Expression (CNF-Exp).

55

Compiler Analysis

Condition Normal Form Expression:

A CNF-Exp is defined to be conditional nest in which all conditional expressions are dis-

tributed out of arithmetic operators, relational operators, and the predicates of conditional

operators.

Figure 4.4 illustrates a CNF-Exp form for the first composite of the maximum reduction

example. We normalize functions into CNF-Exp form after logic minimization and template

predicate abstraction. This allows for easy structure traversal when checking for isomorphism.

If an isomorphism mapping cannot be found to unify subfunctions, then the analysis termi-

nates with failure. Detection of structural isomorphism and extraction of mappings is a poten-

tially costly operation, given that the number of possible condition orderings in a conditional

nest are exponential. However, in the minimization process we use some heuristics to order

the conditions so that we can apply a simple linear walk over the expressions to construct the

mapping and detect structural isomorphism. The ordering heuristics checks only that the con-

ditions of the same rank in the conditional nests of subfunctions are themselves structurally

equivalent to each other. The algorithm for templatization is described in high level applica-

tive style is below. The algorithm assumes that its inputs are a set of functions in CNF-Exp

form and preprocessed for conditional ordering:

function SimpleTemplatize(SoPs, TempVarSet)
;; collect polynomial coefficients

foreach (ProdTerm in SoPs)
Coeff = GetCoefficients(ProdTerm)

;; check for redundancy
if (not (newTempVar == find(Coeff, TempVarSet))) then

newTempVar = GenTempVar ()
end if
add (GenTempVar () , Coeff, TempVarSet)
replace(Coeff, newTempVar, SoP)

end foreach
return TempVarSet

end

function Templatize(CNF-Exprs, CurrTemp)
if (PolyExprs(CNF-Exprs)) then

;; polynomial leaf in all subfunctions
if (not (SimpleExprIsomorph(CNF-Exprs)) then

;; no isomorphism between subfunctions
exit(Failure)

end if
return SimpleTemplatize(CNF-Exprs, CurrTemp)

56

Recurrent Loops II - Compilation & Code Generation

else if (CondExprs(CNF-Exprs)) then
;; conditional node in all subfunctions

return Templatize(map(RightExpr, CNF-Exprs),
Templatize(map(LeftExpr, CNF-Exprs),

Templatize(map(PredExpr,CNF-Exprs),
CurrTemp)))

else
;; no isomorphism between subfunctions

exit(Failure)
end if

end

There is a complication that the maximum reduction example does not expose. The simplified

composite function

fkc-*(x + Bj + ß, < 0)?0:;c + B} + ß, if 5, < <h
fi*JJ -[lx^(x + Bj<0)?5,-:JC + Bj + B, if B,>0 J

is from the example in section 4.2. A naive templatization from the mapping {(B} + Bt, Bj),

(0, Bt), (Bj + B„ Bj + Bi)} might produce three template variables for the template function

^_>(x + C1)?C2:x + C3, where C, = (ß,<0)?(ß; + ß,):ß^ C2 = (5,<0)?0:5,, and

C3 = Bj + Bi.

However, the relationship Cx + C2 = C3 suggests an alternative abstraction

Xx _» (JC + cx)lC2:x + C, + C2, with the same values for Cx and C2. This relationship might be

important in subsequent compositions of the composite function. We avoid this over-abstrac-

tion by eliminating those template variables which can be expressed as simple linear combina-

tions of other template variables.

4.1.4 Simplification of conditional operators
Simplification of conditional operators is essential for dealing with recurrences containing

conditional control structures. The basic goal of the conditional analysis phase is to find and

eliminate logical discrepancies and redundancy within an expression.

The form of simplification shown in figure 4.5a involves redundancy; if a conditional node has

identical children, the conditional node can be eliminated. Another involves a discrepancy in

which identical predicates are in an ancestor/descendant relationship within an expression, as

in figure 4.5b. The first expression represents such a situation. As the conditional node with

57

Compiler Analysis

Pred A
a>b

A
b>c | ^

(a) c> a

Pred Pred

\

7\ A
\

A
\ a>b

Pred A
brl br2

b> c

A A
A

(b) (c)

Figure 4.5 Simplifications of conditional nests by exploiting redundant and infeasible paths.

the identical predicate is a descendant of the false branch of the root condition node, the true

branch of that node will never be evaluated, allowing the elimination of that branch. In other

words, the conditional subnode becomes unnecessary as its evaluation is predetermined by its

status as a descendant of a conditional node with an identical predicate. The second expres-

sion is the result of this simplification.

Other logical discrepancies may require complex symbolic reasoning to deduce relationships

between dissimilar predicates; for example, the predicates a<b, b<c, and c < a can never all

evaluate as true, allowing the simplification in figure 4.5c. The module which uncovers logical

discrepancies between the potential logical evaluations of the predicates in the conditional

nest can be structured in several different ways. As the analyses involve linear relational

expressions, linear or integer programming formulations of the problem are options. However,

the complexities of such algorithms (integer linear programming is NP-complete) make other

approaches worth considering. We resort to a pruning, heuristic search of the exhaustive set of

subsets of the predicates in a conditional nest. In spirit, it is an optimized version of the Fou-

rier-Motzkin method for deciding linear inequalities [33]. Other alternatives include fast

methods by Shostak for handling special forms of linear inequalities [78].

58

Recurrent Loops II - Compilation & Code Generation

Optimizations of conditionals are based on the switching function representation introduced

earlier. The switching function is created by tracing paths from the root to the leaves in the

conditional nest, forming table entries. Note that we do not build an exhaustive switching

function representation, though, for conceptual purposes, they are represented as such in this

paper. Simple conditional contradictions of the form in figures 4.5a and 4.5b are eliminated in

the tabulation process. Logical inconsistencies are eliminated by striking lines from the

switching function. Template predicate extraction is trivially achieved by generating multiple

sub-tables of the original switching function for each possible evaluation of the template pred-

icate. Conditional redundancies are eliminated by applying multilevel logic minimization to

the representative switching function. We base this step on the standard logic minimization

package, Espresso [23].

Consider the composite function (in CNF-Exp form) from the example in figure 4.4:

/,../, = \x-*a(Bj>x)nBi>Bj):(Bi>x))Wi:aBj>x)Wj:x))

This function was first converted to the switching function form, as demonstrated in section

4.1.3.2. Note that while the first occurrence of the predicate Bj > x seems to indicate that there

may be a circumstance under which this predicate is true and the value x would be returned by

the function, the second occurrence predicate guarantees that this will never happen. The

switching function representation indicates this. This is an example of the tabulation eliminat-

ing a simple conditional contradiction. The subfunction switching functions generated by

removing the constant conditional 5, > Bj are trivially derived from the switching function.

The conditional contradictions arising from conflicting predicates are easily struck from these

switching functions. Finally, the redundant conditional nodes were removed by the logic min-

imization procedure.

4.1.5 Testing for Closure

Testing whether two modeling function classes are closed under composition is fairly easy in

this framework. The template functions and template variables are those entities that we will

compare. Since we use ordering heuristics, discussed in prior sections, to generate the tem-

plate functions, then comparison need only be syntactic. The syntactic check for structural

equivalence between two template functions, which runs in time linear in the size of the func-

tions, is defined recursively below in pseudocode:

59

Compiler Analysis

function StructuralEquivalence (El, E2)
case type(El) of

SymbolicConstant:
return (type(E2) == SymbolicConstant);

BoundVariable:
return (type(E2) == BoundVariable);

ConditionalExpr:
return (type(E2) == ConditionalExpr)

and StructuralEquivalence(PredExpr(El),
PredExpr(E2))

and StructuralEquivalence(LeftExpr(El),
LeftExpr(E2))

and StructuralEquivalence(RightExpr(El),
RightExpr(E2)));

Expression:
return (type(E2) == Expression)

and (operator(El) == operator(E2))
and StructuralEquivalence(LeftExpr(El),

LeftExpr(E2))
and StructuralEquivalence(RightExpr(El),

RightExpr(E2)));
end ca.se

end

The final check is to assure that there are the same number of template variables in each func-

tion class. This assures that both signature spaces are equivalent.

4.1.6 Scope
The framework presented here is general, however, the specific techniques are tune to a partic-

ular class of functions. This function class is defined simply as the class of n-dimensional

piece-wise linear functions with symbolic constants. We define piece-wise linear functions to

be linear expressions embedded within relational expressions and conditional operators.

This technique can analyze the class of polyregion-wise polynomial functions. Polyregion-

wise polynomial functions are the complete class of functions defined over multiplication,

addition (and subtraction), and conditional and relational operators. However, the underlying

abstraction mechanism and analytical techniques are suited more toward piece-wise linear

functions.

Note that we do not guarantee finding solutions if they exist. Some of the techniques presented

here are necessarily heuristic in nature. Implementing a full search through the space of func-

tions is intractable, both theoretically and practically, as some of the subproblems presented

60

Recurrent Loops II - Compilation & Code Generation

here are either intractable or undecidable in nature. From a compiler perspective, trading off

some thoroughness for speed is necessary. However, standard techniques for dealing with

these problems efficiently have been utilized in other domains. In the case of logic minimiza-

tion, work in VLSI design has been a particularly rich source of efficient algorithms [23]. The

problem of deciding linear inequalities has occurred elsewhere in compiler work [69] [86], as

well as a multitude of other research domains.

4.2 Example: Maximum Subsequence Sum

This code in below computes the largest non-negative contiguous subsequence sum of a series

of real numbers.

do i = 1, n
if (sofar + B[i] < 0) then

sofar = 0
else

sofar = sofar + B[i]
end if
if (max < sofar) then

max = sofar
end if

end do

The second statement in this loop body is simply an articulated maximum reduction. For the

purposes of this demonstration, the variable sofar is promoted to a vector so that the loop

may be split between the two conditional statements.

The loop modeling function is /, = Xx->(x + Bi<0)r>0:x +Bt . The first composition

results in the following function:

/. • /. = Xx -> (((* + Bj < 0)?0:* + Bj) + 5, < 0)?

0:((jc + BJ-<0)?0:* + By-) + fi/ .

The switching function representation of this function is shown in figure 4.6b. Extracting the

template predicate 5, < 0 gives the switching functions in figure 4.6c. The three predicates

(ß,<0 , x + Bj<0 , x + Bj + Bi<0) contradict with the logical evaluations (true, true, false)

and (false, false, true). These cases were struck from the switching functions.

61

Example: Maximum Subsequence Sum

Bi<0 x + Bj< 0

Si* Si

X + BJ + Bi < 0

false false false X + tij + Bt

false false true 0
false true false Bt

false true true B{

true false false x + Bj + B{

true false true U
true true false 0
true true true 0

(b)

x + Bj< 0

Si'Si'-Bi

x + Bj + B

<0

<0
false false x + Bj + Bi
false true 0
true false NP

true true Ü

x + Bj< 0

Si*SrBi>0

x + Bj + Bi < 0

false false X + Üj + Bj

false true NP

true false Bi
true true Bi

(c)
Figure 4.6 Switching function representations for the maximum subsequence problem.

Logic minimization gives the following functions:

lx^(x + Bj + Bi<0)10:x + Bj + Bi if ß,<0
Si*Si = \^ Xx^(x + Bj<0)lBi:x + Bj + Bi if £;>0

The isomorphism mapping for these two functions is {(£, + £,, 5,), (0,5,),

(Bj + Bh Bj + Bi)}. There are two alternatives in templatization. Over-abstracting would elimi-

nate the quantitative relationship between the first two pairs and the third, namely, that the

third pair is the sum of the first two.

The resulting templatized composition is:

(/; • /;) = kc -» (JC + Cj <0)lC2:x + C{ + C2,

where C, = (ß,<0)?ßy + ß,:ß;

and C2 = (5,<0)?0:S,.

As this is not structurally equivalent to the original function, we must recompose with the new

template function /,■ = Xx -> (x + Cu < 0)?C2/:x + Cu + C2i.

62

Recurrent Loops II - Compilation & Code Generation

The templatized recomposition of this function will reveal that this template function is closed

under composition, yielding the following scheme for combining template variables:

C, = ((Cli + C2j<0)7Cu:Clj + Cu + C2i)

C2 = aCu + C2j<OmClj+C2j + C2i):C2j)

4.3 Code Generation

4.3.1 Code Templates

The compiler now uses the efficient composing operator it has derived to compute the recur-

rence in parallel. The first step is to compute the template variables described earlier in this

chapter. These form the initial signatures used for each modeling function. Then the signatures

are composed using a parallel reduction or scan on the composition operator. Finally, the

resulting signatures for the composite functions are used to compute the final recurrence val-

ues. The primitives used are architecture dependent. On the Cray C90, we use those described

in chapter 2.

The basic template the compiler uses is illustrated in below, using the formal concepts we dis-

cussed in the last chapter:

1. Compute repF for the loop functions

2. sig. = parallel_compose(• , repF)

3. Compute (rep~F (sig.))(initial vals)

The following pseudo-code is closer to the compiler target and uses the terminology of this

chapter:

<original loop header>
initialize template variables

<end loop>

new_template_vars = recurrent_primitive(• , <template vars>)

<original loop header>
use new_template_vars in template functions

and apply to initial value of
recurrence variables

<end loop>

63

Code Generation

For example, for the simple linear recurrence of section 4.1.3.1, this piece of code looks like

the following:

do i = 1, n
tmpl[i] = D[i]
tmp2[i] = B[i]

end do

(newtmpl [1 :n] ,newtmp[l :n]) =
scant [{tmpl, tmpT) © (tmpV, tmpl) -4 {tmpl ■ tmpY, tmpl ■ tmpl + tmp2)] ,

(tmpl[l:n],tmp2[l:n]))

do i = 1, n
a[i] = newtmpl[i]*a[0] + newtmpl[i]

end do

The first step is to initialize the template variables for the modeling function classes. These are

used in the next step, which is to compute the composition of modeling functions using the

derived composition operator and the template variables. Using the resulting template vari-

ables, the values of the recurrent variables are computed using the initial value(s). Both loops

and the primitive here are parallelizable.

4.3.2 Primitive Selection

Deciding which primitive to use depends on the form of the indexing patterns on the recur-

rence variables. Examples of the patterns of primitives we compile are listed below:

Reductions •

do i = 1, n
a = f(a)

enddo

Scans

do i = 1, n
a(i) = f(a(i-l))

enddo

Combining-sends/Multiprefix

do i = 1, n
a(c(i)) = f(a(c(i)))

enddo

64

Recurrent Loops II - Compilation & Code Generation

These are only one of many potential encodings for each primitive. The compiler does not rely

solely on indexing expression. Rather, it examines the loop carried flow dependences in recur-

rent cycles and their dependence distances to determine the type and order of the recurrence.

This simple algorithm abstracts away the details of the indexing expressions and syntax, rely-

ing primarily on the abstract representation of the dependence graph.

The presence of a maximum loop-carried dependence distance of two would indicate a sec-

ond-order recurrence computable by a reduction or scan, and so on. When there is no discern-

ible dependence distance, the compiler can check to see whether or not the indexing

expressions are identical to each other, in which case it can generate code for a combining-

send or multiprefix operation, depending on whether intermediate values are used.

In cases of complex indexing which do not satisfy these requirements, run-time tests may be

employed to check whether a particular index set has properties similar to any of these primi-

tives. This would probably only be worthwhile if the index sets are reused, so that the cost of

the run-time tests are mitigated.

4.4 Review

The observations that function composition is associative and that recurrent loop bodies can

be modeled as function applications lead us to a framework for extracting reduction and paral-

lel prefix operations in a general and flexible way. The compiler now has a powerful and flex-

ible kernel for parallelizing recurrent code, upon which it can now layer control structure

transformations to handle nested of computation. The control structure transformation we will

describe in subsequent chapters will rely heavily on the ability of the compiler to deal with

conditional expressions.

65

Review

66

Chapter 5

Irregular Control Structure I -
Loop Flattening

Irregular loop nests in which the loop bounds are determined dynamically by indexed arrays are

difficult to compile into expressive parallel constructs, such as segmented scans and reductions. In

this chapter, we describe a suite of transformations of irregular loop nests to enable automatic par-

allelization by both tradition parallelization techniques and recurrence analysis. The basis is a

simple, general loop flattening transformation, along with new optimizations which make it a via-

ble compiler transformation. Coupled with the recurrence parallelization technique of the last two

chapters, the transformation enables parallelization of segmented reductions and scans.

5.1 Irregular Loop Nests

Many real world parallel applications display little regularity in their computational structure.

Often, communication and computation patterns are determined dynamically from data values. A

typical example is the use of sparse matrix and vector representations. Most attempt to conserve

memory and computation by storing only computationally relevant portions of the data (i.e. non-

zeros) and a representation space mapping. Other applications may require that a data structure be

partitioned in an irregular fashion. In some cases, this gives rise to code in which control structure

depends on dynamically determined data values, such as partition points or pointers into index

space. Applications which may exhibit these properties include sort, text processing, computa-

tional geometry, image processing, and molecular dynamics simulations.

High level parallel primitives, such as reduction and scan, merge, and set operations, are useful in

parallelizing many of these irregular computations. These primitives can display markedly better

67

Irregular Loop Nests

speedup and/or load balancing characteristics than alternatives. It is important in these cases

that a parallelizing compiler have the ability to infer such high level primitives from complex

control structure.

Consider the sparse matrix-vector multiplication loop below:

do i = 1, N, 1
y(i) = 0.0
do k = pntr(i), pntr(i+l)-l, 1

y(i) = y(i) + val(k)*vec(indx(k))
end do

end do

This loop utilizes the popular Compressed Sparse Row (CSR) representation of sparse matri-

ces [32], which is also illustrated below.

VAL: [1 2 3 4 5 6 7 8 9 10 11]

INDX: [3 5451342516]

PNTR: [13 5 6 8 10 12]

CSR representation consists of an array of nonzero values of the matrix in row-wise order

(vai), an array of corresponding column numbers (indx), and an array pointers to the begin-

ning of each row (patr). The inner loop bounds and trip count are determined solely by the

array pntr, whose value is generally not known to the compiler. Consequently, despite poten-

tial benefits (i.e. load balancing, availability of parallelism) in parallelizing across all inner

loop iterations, it is difficult to compile this way.

Successful attempts at manual parallelization of the CSR kernel have utilized segmented

reductions [20] (many irregular computations can be effectively parallelized using segmented

reductions and scans [15]). Segmented operations allow for arbitrary nesting structure to be

imposed on the source array. The operation is evaluated independently in each segment, reset-

ting at the beginning of each segment, as in the example of Figure **. Explicit segmented

reduction, scan, and elementwise operations can be flattened so that they maximize available

parallelism in the operation and simplify the load balancing problem. Our compilation

approach automatically detects these segmented operations and flattens them.

Combining-send and multiprefix operations have also been shown to effectively parallelize

sparse matrix kernels [77]. The second representation and kernel below are called Compressed

Sparse Column (CSC):

68

Irregular Control Structure I - Loop Flattening

VAL: [5 10 8 1 6 3 7 2 4 9 11]

INDX: [3 651424125 6]

PNTR: [13 4 6 8 1112]

do i = 1, N, 1
do k = pntr(i), pntr(i+l)-l, 1

y(indx(k)) = y(indx(k)) + val(k)*vec(i)
end do

end do

The CSC representation is essentially equivalent to the CSR representation of the transpose of

the matrix. Current compilers might parallelize the inner loop, generating a simple combine-

send of limited parallelism nested within the outer loop by using pattern matching or some

other ad-hoc technique. However, a better approach might be to parallelize the entire loop nest

using a single combining-send with a more complicated operator. What the compiler will

derive is not a segmented operation, in this case, but a combining-send operation to compute

the entire loop.

We refer to loop nests which display the type of loop bound indirection evident in this exam-

ple as irregular loop nests, as opposed to regular loop nests in which the loop bounds are

"analytically manageable" by the compiler. One might consider irregular any loop nest whose

closed form cannot be determined by the compiler. With current analytical skills of compilers,

this may be any loop bound that is not either constant or a linear combination of outer loop

indices. The boundary between regular and irregular loop nests may change with the sophisti-

cation of the compiler. However, the class of loops we are interested in derive their iteration

space shape from dynamically determined data values about whose patterns the compiler is

likely to know nothing, so we are solving a more general problem. Other types of irregular

loop nests may involve nested while loops which have similar indirection in the loop exit con-

ditions.

Our goal in automatically parallelizing these irregular, recurrent loop nests is to automatically

construct the high level parallel primitives described above from serial code in a reasonably

general manner. The parallelization technique presented in previous chapters can parallelize

recurrence well in the presence of complex conditional statements. This enables paralleliza-

tion of explicitly segmented computations (in non-nested loops). However, many segmented

69

Irregular Loop Nests

operations are expressed implicitly through loop nests. We seek to transform these loop nests

so that our recurrence parallelization technique and other standard parallelization transforma-

tions can be applied across the entire loop nest.

We use a basic loop flattening transformation that facilitates the parallelization of irregular

loop nests and provides a basis for recognizing more sophisticated parallel primitives. The

basic idea is to create a single, non-nested loop that emulates the execution of the original loop

nest. This is achieved by first computing the original loop nest's index sets. Then, by creating

a non-nested loop with a trip count equal to the total sum of inner loop trip counts, the pre-

computed index sets are used to decide which point in the original loop the flattened loop

should execute. The transformation has the following benefits:

• The application of most existing parallelization transformations as well as our recurrence

parallelizing technique to the loop nest in toto by applying the transformations to the flat-

tened loop. Artifacts of the loop flattening transformation include complicated conditional

structures, which the recurrence parallelization technique must be able to deal with.

• The parallelization of the index set computation. This allows the practical use of loop flat-

tening in a compiler by attacking the remaining artifact of the transformation: the index set

computation. Also, this leads to some intriguing future possibilities for extracting other

sophisticated algorithmic idioms from irregular loops.

• The amortization of the index set computation over repeated executions of the loop nest.

For sparse matrix-vector multiplication, this is analogous to the preprocessing steps of

many existing parallel libraries, most of which are applied once for repeat multiplications

of the matrix.

Applying parallelizing transformation in toto is important for the following reasons:

• Load balancing the assignment of outer loop iterations is complicated by unpredictable

inner loop trip counts.

• Inner loop trip counts may not be sufficiently large to make parallelizing the inner loop

body worthwhile.

This paper will focus on a particular type of irregular loop nest, which we refer to as a seg-

mented loop nest, in which the inner loop bounds are functions of array references indexed by

loop index variables and are invariant with respect to the loop nest. However, since the overall

70

Irregular Control Structure I - Loop Flattening

DBDBDBDB
■ ■DDDDDD »«000000000
BDDBDDBD DOHODODOOOO
DOBBOOOO DDDBBBDDDDD
OOBBBODO OOOOODBBOOO
BBOOOOOO DOOOOOOOBOO
DDODDBBB OODOOOODOBB
BDBDBDBD

(a)

BDDDDDDG
BBDDDDDD
BBBDDDDD
BBBBDDDD
BBBBBGDD
BBBBBBDD
BBBBBBBD

(b)

Figure 5.1 Some possible index space iterations by (a) irregularly nested loops and (b) regularly
nested loops.

framework is general, this may be a viable approach for more complicated irregular loop

nests, such as those that must be parallelized using parallel merge and pattern matching.

5.2 Parallelization Strategies

The shape of the index space traversal of an irregular loop nest may vary arbitrarily, as in Fig-

ure 3a. A nested while loop without a discernible induction variable, or with an induction vari-

able with a dynamically determined bound, may also be considered an irregular loop nest.

Some common index space traversal patterns that can be considered regular are shown in Fig-

ure 3b.

As previously mentioned, irregular loop nests occur in many applications, including sorting,

computational geometry, molecular dynamics, image processing, and sparse algorithms. We

will focus on the examples given in the introduction involving sparse matrices, although the

majority of the discussion and optimizations here apply to all these algorithms.

71

Parallelization Strategies

Consider again them CSR sparse matrix-vector multiplication loop nest, in Figure 1. There are

a variety of strategies for parallelizing this:

• Parallelize across the outer loop iterations. This approach would assign outer loop itera-

tions to processors. The problem here is that the inner loop trip counts may be computed at

run time and may vary arbitrarily, making static load balancing impossible for this

approach. This approach can be easily automated, but is not always possible for the other

irregular loop nests we have discussed, such as the CSC kernel of Figure 1.

• Parallelize the inner loop. This approach would attempt to parallelize the inner loop only

(in this case, a reduction). The problem here is that the inner loop trip counts may be small.

In the case of a sparse matrix, the average sparsity of the rows would probably not yield

sufficiently long running inner loops. Rudimentary recurrence parallelization capability

makes this viable approach for an automatically parallelizing compiler.

• Pad the inner loop trip count. This approach would use the maximum inner loop trip count

as the trip count for all the outer loop iterations. The main problem here is that useless com-

putation is performed for the sake of regularity in the loop nest. This approach is less effi-

cient than one which can perform a global parallel operation to compute the entire loop

nest without padding. Furthermore, the data structure for the sparse matrix will waste mem-

ory. This is the approach taken by Ellpack/Itpack storage method [51]. This approach

would be difficult, and not particularly worthwhile, to generally automate.

• Parallelize across the entire loop nest with a segmented reduction operation. This solution,

proposed by Blelloch et al. [20], does not pad the computation. Instead, it treats the values

of the CSR representation as a segmented vector, with each row treated as a segment. The

addition portion of all the row-vector inner products can be performed using a single seg-

mented reduction. The problem of load balancing reduction and scan operations (and their

segmented variants) is also well understood.

The last approach is preferred in cases where the inner loop trip counts are small and/or vari-

able, as they are for many sparse matrices. Current compilers may detect the reduction in the

inner loop, but cannot recognize that a segmented reduction can be used to perform the com-

putation in the entire loop nest. The previous chapters' recurrences parallelization technique

yielded a powerful and extensible technique for reasoning about complex expression and con-

trol structure in non-nested loops. By applying the technique of loop flattening to the loop

72

Irregular Control Structure I - Loop Flattening

nest, followed by applying the recurrence parallelization technique, the compiler is able to

automatically extract this parallel solution from the serial loops.

5.3 Loop Flattening

5.3.1 Motivation

A key problem in applying the parallelization technique of the previous section is one of mod-

elling loop nests. Ideally, we would like to be able to encode the control structure of loop nests

in the functional model of recurrent loop bodies. A simple transformation, similar to loop coa-

lescing, can be made by flattening the loop nest into a single loop in which the loop index vari-

ables are explicitly computed and checked. We achieve our goal by injecting the loop index

variable computation into the recurrent loop body, so that it may be directly modelled and rea-

soned about using our recurrence parallelization technique.

In the case of regular loop nests, this may seem unduly complicated for the compiler. Ad-hoc

changes to the analysis of the previous section might handle a reasonably large family of reg-

ular loop nests (i.e. the class of triangular iteration patterns). However, irregular loop nests are

much more interesting for their powerful expressiveness. Furthermore, the technique pre-

sented here will also work well for regular loop nests.

The CSR kernel of Figure 1 is flattened below:

DO j = 1, flatlength <*" ~~
en " \

\
~- —• ^ \

\

~~ ~- ^ N '
c(indx(k)) x^\

'\\ \

M \
/ 1 i

if (k > pntr(i+l)-l) th
|i = i + 1 -+ — __
y(i) = 0.0
k = pntr(i)1^

end if
y(i) = y(i) + val(k)*ve
k = k + 1 |^_ _ ___

END DO ~- —

Index set computation

The computation for the length of the flattened loop is not shown here. Computation of the

original loop index set, highlighted in the Figure, adds several instructions to increment and

73

Loop Flattening

reinitialize the loop index variables. A conditional guard is inserted around the portion of the

outer loop preceding the inner loop. The condition expression checks whether the outer loop

body should be executed at that point in the flattened iteration space.

The problem with this transformed loop is that a complex set of both intra- and inter-loop

dependences are introduced into the loop. One approach to parallelizing this loop might try to

use traditional parallelizing techniques along with our recurrence parallelizing technique to

parallelize the index set computation along with the original loop body components. However,

for some classes of irregular loop nests, canned preambles can be used to perform this compu-

tation. This is a better approach, since such a preamble can be hand optimized and the com-

piler can concentrate on amortizing the cost by hoisting it out of surrounding loops. We will

discuss this further in section 5.3.5.

The segmentation of the inner loop's reduction is captured in the flattened loop's control struc-

ture, that is, the guards using the index sets computed from the original loop nest. Since the

recurrence parallelization technique easily accommodates such conditional statements, we

have successfully injected the original loop nest's control structure into our model for analy-

sis.

5.3.2 The Basic Transformation

Throughout this chapter, we refer to a single loop nested within another. The techniques pre-

sented here can be extended to deeper nested loops by recursively applying the transforma-

tions. It should be noted that in most practical circumstances, irregular loop nests need only be

flattened at the innermost level to expose sufficient parallelism. Thus, we refer to a simple

model of nested loops, illustrated below:

{DO outerindex = ..., WHILE ...}

<BODY 1>
{DO innerindex = ..., WHILE ...>

<BODY 2>

END DO

<BODY 3>

END DO

The underlying transformation for loop index flattening is conceptually simple. First, the total

number of inner loop iterations is computed. This count is the length of the new flattened loop.

74

Irregular Control Structure I - Loop Flattening

Next, the original loop indices are computed (only if they are used in the component body

parts). Finally, the flattened loop is generated by placing guards around the component body

parts which check whether the inner loop bounds are crossed in the original loop. This trans-

formation is illustrated below:

number of inner
<Cornpute Loop Length> loop iterations

<Cortpute Loop Indices> {inner, upper}

DO flatindex = 1, flatlength

IF (inner_loop_finished(flatindex)) THEM

<BODY 1>

END IF

<BODY 2>

IF (inner_loop_finished(flatindex+1)) THEN

<BODY 3>

END IF

END DO

The flattened loop is very similar to the original loop. Two conditional guards were introduced

to check whether the outer loop body components should be invoked. However, since the

inner and outer loop indices are computed prior to the execution of the flattened loop, the con-

ditional expressions in the guards are loop invariant with respect to the flattened loop. Thus,

they present no obstacles to many standard parallelization techniques. Note that although this

may present an obstacle to many recurrence parallelization techniques, it presents no obstacle

to the recurrence parallelization technique.

In this transformation, we must compute the flattened loop length and the original loop indi-

ces. Computing the flattened loop length in parallel can be performed using a operation over

each of the inner loop lengths. For example, the following code suffices (with appropriate

checks for negative or zero trip count segments and zero strides deleted):

flatlength = SUM((innerupper(outerlower:
$ outerupper:outerstride)
$ - innerlower(outerlower:
$ outerupper:outerstride))
$ /innerstride(outerlower:
$ outerupper:outerstride)

SUM is simply a global sum or sum reduction. (This is actually computed as a by-product of a

scan operation used when computing the inner and outer loop index sets in the next section.)

75

Loop Flattening

Note that the terms innerupper, innerlower, and innerstride in this expression

may denote array expressions rather than just simple arrays. We make use of this convention

frequently.

Since the original loop indices may be used by the loop body, it may be necessary to compute

these. The tricky part is in parallelizing and optimizing the loop index computation; this will

be discussed in more detail in the next section.

5.3.3 Counting Outer Loop Iterations

The previous discussion implicity assumes that the transformation only counts inner loop iter-

ations in calculating the flattened loop's trip count. However, there may conceivably be

instances in which the inner loop's trip count is zero while meaningful computation takes

place in the outer loop's body components. It is relatively easy to adjust the basic flattening

scheme and index set computation method to account for such instances. Though this method

is more rigorous, in all of the cases we have examined, cases which require such an approach

either never occur, or can be remedied by employing loop fission to isolate the outer loop's

body components.

5.3.4 Flattening Indirection

Indirect array accesses are introduced to the flattened loop by replacing the original loop's

index expressions with the precomputed indices, which are now array accesses. For some

arrays, it may be profitable to copy arrays into a flattened structure for repeated references. In

the case of arrays which are read, but not written, this is usually handled automatically by the

backend compiler. For arrays which are written, this effect is more problematic since it

obscures the true nature of the computation.

Simple array copies, reductions, and scans look like slower combining-send operations, or,

worse, indeterminate and unparallelizable recurrent operations. In chapter 7, we discuss

dependence recycling techniques which allow us to track such computations through such

obscuring transformations. In such cases, the compiler will flatten the target array structure

and insert code to copy values back into the original array structure. In the case of a sequence

of flattened loops with similar inner loop structure, the lifespan of the flattened structure can

be extended through all of the flattened loops to eliminate the costs of copying.

76

Irregular Control Structure I - Loop Flattening

An example of this effect:

do i = 1, N
do k = p(i), p(i+l)-l

y(i) = y(i) + b(k)
end do

end do

The flattened loop with indirection looks like superficially like a combining-send operation:

do f = 1, flatlen
y(i(f)) = y(i(f))

end do
b(k(f)

Since the original operation was a reduction, the compiler can infer that this flattened opera-

tion is actually a segmented reduction. To realize this operation in the transformed code, we

replace the original array by the flattened array, and then copy the appropriate array elements

back to original array (lengths is the prefix sum of the inner loop lengths):
rdo ip = 1, N
1 y_f(lengths(ip)+l) = y(ip)
end do
L _

'do f = 1, flatlen
if (innerlooptripped) then

1 y_f(f+1) = y_f(f) + b(k(f)
endi f

end do

.do ip = 1, N I
y(ip) = y_f(lengths(ip+1)) + b(k(lengths(ip+1))) |

,end _do i

Initialize
flattened
structure

Flattened
loop

Copy values
back into
original array

Once again, details of how to deal with zero length inner loop trip counts are elided for clarity.

Note that in the case of uninitialized structures the initialization of the flattened array may be

either eliminated.

An important consideration in employing this scheme is the amount of space used by the flat-

tened data structure. Fortunately, the space used here will be required for use by the recurrent

primitive templates which implement the computations in these loops. For example, in detect-

ing a segmented reduction or scan, temporary space proportional to the flattened loop's trip

count is needed.The amount of space required is precisely the amount of space effectively

allocated by this array index flattening scheme.

77

Loop Flattening

5.3.5 Optimizing and Amortizing Index Set Computation

The simplest approach to computing the original loop indices is to use the original loop nest as

a template for computing the loop index sets serially. This computation may be amortized over

an enclosing loop (as in conjugate gradients), allowing us to reap the benefit of the transfor-

mation to a flattened loop. The next best approach is to have the compiler try to parallelize the

index set computation. These options are used only as stopgap measures, since we have devel-

oped methods to parallelize the index computation portion of one of the more important and

common classes of irregular loop nests.

The type of loop nest the implementation currently handles is referred to as segmented. In seg-

mented loop nests, the inner loop bounds are indirect accesses of arrays using the outer loop

indices, but are loop invariant, as in the case of the CSR sparse matrix-vector multiplication.

For this class of irregular loops, there is a general parallel template which may be used to par-

allelize the loop. For readability, we have left out checks for zero or negative segment lengths

and zero step sizes:

C Compute segment lengths
LEN_VEC = +_SCAN((
$ INNERUPPER(OUTERLOWER:OUTERUPPER:OUTERSTRIDE)-
$ INNERLOWER(OUTERLOWER:OUTERUPPER:OUTERSTRIDE))/
$ INNERSTRIDE(OUTERLOWER:OUTERUPPER:OUTERSTRIDE))

C Compute outer indices at each point in the

C flattened loop

OUTER_INDEX(1:LEN_VEC(OUTERUPPER)) = 0
OUTER_INDEX(LEN_VEC) = OUTERSTRIDE
OUTER_INDEX(1) = OUTERLOWER
OUTER_INDEX = +_SCAN(OUTER_INDEX)

C Compute inner indices at each point in the

C flattened loop

FLAG_VEC(1:LEN_VEC(OUTERUPPER)) = 0
FLAG_VEC(LEN_VEC) = 1
INNER_INDEX = INNERSTRIDE(OUTER_INDEX)
INNER_INDEX(FLAG_VEC) =
$ INNERLOWER(OUTERLOWER:OUTERUPPER:OUTERSTRIDE)
INNER_INDEX = +_SEGSCAN(INNER_INDEX, FLAG_VEC)

The first step is to compute the loop trip counts for the inner loop (essentially, the segment

lengths). Using these, computing the inner and outer loop indices is easy: the outer loop index

78

Irregular Control Structure I - Loop Flattening

Loop
Flattening

Optimize
Index Comp

Figure 5.2 Loop flattening pass.

is incremented at the beginning of every segment; the inner loop index is initialized to the

proper lower bound at the beginning of every segment, and incremented otherwise.

To improve the performance of the flattened loop, we perform certain optimizations on this

code and the flattened loop:

• Hoist the index set computation out of enclosing loops. This effectively amortizes the over-

head of the flattened loop over multiple invocations. This is analogous to amortizing the

setup time for a specialized sparse matrix-vector multiplication library function. Standard

data-flow analysis techniques can be employed to achieve this.

• Compute only the index sets necessary. For example, if either the outer or inner loop indi-

ces are not necessary, we can save execution time and/or memory usage.

• Perform run-time tests to eliminate continuous, constant stride index sets with flattened

loop index expressions. This is essentially induction variable detection, but with a twist.

Certain properties of the inner loop bounds can be checked symbolically at compile time.

One property is to check whether the upper and lower bounds are symbolically continuous

(i.e. Is the expression TmtEBLOVlER(outerindex + 1) equivalent INNERUPPER(oMten'n-

dex)l) Another is to check that the inner stride is constant. Given this, if we can verify at

run-time that the bounds for the inner loop (INNERLOWER and INNERUPPER) are mono-

tonic, then we can replace occurrences of the inner index by simple affine expressions of

the new flattened index expression. In this way, potentially costly indirection can be elimi-

nated as well as potentially more expensive primitive selection in later compiler phases.

The current approach to this is to generate two versions of the flattened loop, one optimized

and one unoptimized in this manner, to be selected by the run-time test.

5.3.6 Compiler Pass Architecture

The pass for this transformation is structured simply as loop flattening, followed by optimiza-

tions of the index computation, in figure 5.2. The loop flattening pass does not flatten past a

nesting level of two, though it can recursively flatten deeper loop nests. In our practical expe-

rience, interesting irregular loop nests of depth greater than two have not arisen. The compiler

79

Example Code: Sparse Matrix Vector Multiplication

then attempts to eliminate indirection and hoist index computation out of surrounding loop

levels. Note that no real parallelization takes place in loop flattening. Rather, it is a preprocess-

ing step to enable later phases of parallelization.

5.4 Example Code: Sparse Matrix Vector Multiplication

The CSR and CSC kernels were compiled using our parallelizing techniques, and compared

against the best code generated by the CF77 compiler. In compiling for a single head, the

CF77 compiler vectorizes the reduction in the inner loop of CSR. In compiling for multiple

heads, the CF77 compiler tasks the outer loop of the kernel and vectorizes the inner loop

reduction of CSR. For this kernel, our compiler generates a segmented reduction, whose

pseudo-Fortran is below, which is simultaneously tasked and vectorized:

flat = pntr(N+l) - 1
vecwork(l:flat) = val(1:flat:1) *
$ vec(indx(l:flat))

condition = k(l:flat).le. pntr(i(1:flat)+1) - 1

y(l:N) = APPLY(FUN_REDUCE(

$ {Xx—> (condition!(x + vecwork):vecwork)},
$ flatlength,
$ (i(l:flat - 1) .ne. i(2:pntr(N+l)-1))) ,
$ Y(1:N))

The brackets on the lambda expressions denote the analyzed version of the enclosed loop

modeling function. The third argument to the function composition reduction (FUN_REDUCE)

is simply shorthand for a pack of the results. The CF77 compiler only vectorizes the inner

loop of the CSC kernel on both single and multiple head configurations. Our compiler gener-

ates a combining-send operations which is simultaneously tasked and vectorized, below:

vecwork(l:flat) = val(1:flat:1) *
$ vec(i(l:flat))

y(l:N) = APPLY(FUN_COMB_SEND(

$ {Xx —> JC + vecwork }
$ i(l:flat)
$ flat,
$ N),
$ Y(1:N))

80

Irregular Control Structure I - Loop Flattening

5.5 Review

A framework for compiling irregular loops was presented. It enables parallelization by trans-

forming nested iterative structure to nested conditional structure, which the recurrence paral-

lelization technique can handle well. The technique will further prove to be useful in the next

chapter, when we start to general irregular loop nests from divide-and-conquer algorithms.

81

Review

82

Chapter 6

Irregular Control Structure II -
Control Embedding

In this chapter we discuss a technique to enable the parallelization of divide and conquer style

recursive functions. In addition to the fundamental control structure transformation, we introduce

new techniques for gathering accurate dependence information in the presence of partitioning

code and recursion.

6.1 Divide and Conquer Recursion
Recursion is an important mechanism for the expression of algorithms written in a divide-and-

conquer style. Algorithms in sorting [4], computational geometry [68] [10], and mesh generation

often use divide-and-conquer. In serial imperative languages, recursive subroutine calls are usu-

ally invoked upon partitioned problems. This is an elegant and concise control mechanism for

repeatedly invoking the same basic algorithm on ever smaller partitions of the problem. Using

iterative structure is not feasible because of the syntactic complexity that such code might intro-

duce. From a parallelization perspective, this significantly complicates the task of both manually

and automatically parallelizing such code.

Examine the generic divide-and-conquer recursive subroutine and its dynamic call graph (DCG)

in figure 6.1. It is probably relatively easy for both the programmer and the compiler to parallelize

the body components of the recursive subroutine. Furthermore, with a bit more effort the user can

parallelize the recursive calls, though it will be difficult for the compiler without some of the anal-

yses presented in this chapter. Unfortunately, as can be seen in the hypothetical DCG for this

code, the amount of parallelism available in the loop body will decrease as the partitions grow

83

Divide and Conquer Recursion

subroutine recurse(.
PreBody
for each partition

call recurse(...)
endloop
PostBody

.) subroutine recurse_embedded(.
for each partition

PreBody
endloop
call recurse_embedded(...)
for each partition

PostBody
endloop

.)

Figure 6.1 A prototypical divide-and-conquer algorithm and its control embedded version.

ever smaller. Furthermore, the partition sizes may vary, making load balancing a much more

difficult task for the user. Such irregularity is inherent in divide-and-conquer algorithms with

data dependent partitioning strategies.

There is parallelism within the subroutine and across subroutine call boundaries here. We can

exploit both simultaneously in an automatic parallelizing compiler by making the following

observations. The recursive calls are surrounded by an implicit or explicit loop. This loop can

be embedded within the recursive call so that rather than recursive over each partition, a single

recursive call performs the subroutine body for each partition. The resulting code and DCG is

in figure 6.1. The advantage here is that by compiling and exclusively parallelizing the body

component of the embedded version of the subroutine, we can effectively automatically paral-

lelize across all sibling recursive calls. This means that the compiler can exploit all available

parallelism at each level of the DCG.

84

Irregular Control Structure II - Control Embedding

i
6.2 - Modified Depen-

dence Analysis

6.4- Preprocessing

Steps

Eliminating Returns -6.4.1

Winnowing Recursive Calls -6.4.2

6.5 - Control

Embedding

I

Embedding Loops -6.5.1

Privatizing Local Variables -6.5.1.1

Expanding Parameters - 6.5.1.2

Embedding Conditionals -6.5.2

Figure 6.2 Components required for control embedding in recursive subroutine calls with
corresponding section numbers.

6.2 Control Embedding

The fundamental mechanism for converting interprocedural to intraprocedural parallelism is

through control embedding. The control we embed is precisely that control which manages

the interprocedural parallelism in these algorithms. In the case of divide and conquer algo-

rithms, the control structure we are interested in manages iterations over partitions, as well as

conditions for completion of the algorithm. This means that we would like to embed loops

around recursive calls, either explicitly or implicit. It also means that we would like to embed

conditional structure surrounding or otherwise affecting (i.e. through a return statement) the

recursive calls.

Conceptually, embedding control is simple. Loops and conditionals are folded into function

calls which they surround, as in figure 6.1. The difficulty is in creating the circumstances in

which the transformation can be applied and in managing the parameter space. In particular,

we would like to isolate the recursive calls and their surrounding control structure. Further-

more, we need to employ semantics-preserving transformations to eliminate difficult con-

structs such as return statements, as well as marshalling actual parameters and privatizing

local variables for each sibling recursive call.

85

Dependence Analysis and Monotonie Induction Variables

This chapter begins with a description of a modification of a typical symbolic analysis to sup-

port the generation of dependence information necessary for the transformation to be legally

applied. Existing analyses lack the ability to find precise relationships between induction vari-

ables whose values are alternately modified. In partitioning loops of divide-and-conquer algo-

rithms, this relationship is important for determining that work between partitions is

independent.

Subsequent sections describe preprocessing steps in the transformation to simplify control

embedding. The two transformations here, return elimination and recursion winnowing, have

as a goal the transformation of any divide-and-conquer style recursion to the prototypical

recursive subroutine that had control embedded in figure 6.1. This step facilitates the applica-

tion of control embedding by effectively isolating that control which must be embedded in the

recursive subroutine.

Control embedding for recursive subroutines is the last transformation step discussed in this

chapter. The basic idea behind facilitating embedding loops for recursive loops is to find a

fixed point for the embedded loops. The transformation also includes mechanisms for embed-

ding control structure surrounding the recursive calls, but nested within the embedded loops.

Thus, we refer to this transformation as the more general 'control' embedding rather than

'loop' embedding. The loop embedding process also necessitates the promotion of parameters

to simultaneously track the multiple activation records which are, in effect, being simulta-

neously emulated. Finally, local parameters may be expanded in a privatization effort to facil-

itate parallelization.

6.3 Dependence Analysis and Monotonie Induction Variables

In the context of dependence analysis, regular induction variables are easy to handle. The

compiler simply substitutes the equivalent expression of the loop index variable and performs

traditional dependence analysis. However, there are several other varieties of induction vari-

ables [94], some of which are used to partition data in divide-and-conquer algorithms.

The type which are of greatest interest to us are monotonic induction variables. These are

induction variables which are incremented by values of the same sign, but not always by the

same value. The variable j in the following packing code is such a variable because the condi-

tional statement implies that the value may not always be incremented:

86

Irregular Control Structure II - Control Embedding

j = 1
do i = 1, n

if (f(a(i))) then
b(j) = a(i)
j = j + 1

end
enddo

The fact which is of importance here is that the monotonic variable guarantees that the data

movement performed here is a permute, i.e. there is no write conflict. In this instance, a pack

function or intrinsic can be used to parallelize this loop. However, we will point out that this

simple observation is not sufficient for more complicated codes. In particular, we are inter-

ested in the kind of partitioning code that frequently occurs in divide-and-conquer algorithms.

Here is an example of such a code:

lower = begin
upper = end
do i = begin, end

if (f(a(i))) then
b(lower) = a(i)
lower = lower + 1

else
b(upper) = a(i)
upper = upper - 1

endif
enddo

Either lower or upper individually can be used in packing or gather operations, but to maintain

the serial semantics of this code, one may not employ such a strategy. The problem is that the

partitions defined here might overlap with each other. However, in this particular loop, we

know that this is not the case. We would like the compiler to understand this as well.

We present extensions to a symbolic analysis scheme [87] which uses an extension of Single

Static Assignment (SSA) form [30] called Gated Single Assignment (GSA) form [11]. SSA

form is useful for induction variable recognition [94] and many symbolic analyses [87].

The essential idea is to try to encapsulate the guarding of these monotonic induction variables

with conditionals in the affine constraints. For induction variables, their values are usually

computable or constrained sufficiently in closed form equations of loop index variables.

Unfortunately, no accurate closed form representation in the loop indices can be found which

87

Dependence Analysis and Monotonie Induction Variables

in existing analyses sufficiently reflects the interrelationship between the monotonic variables.

We have developed a mechanism for injecting the proper terms and constraints into the sym-

bolic analysis that works quite naturally on Gated Single Assignment form.

The topic discussed in this subsection essentially provides information necessary for the trans-

formation introduced in this chapter to be legally and confidently applied by the compiler. The

background work discussed here is essentially derived or directly based on the representations

and analysis schemes developed in Peng Tu's Ph.D. dissertation [87]. Any deviations from

that work will be noted.

6.3.1 Gated Single Assignment Form

In SSA form for straightline code, exactly one definition of a variable reaches each use ofthat

variable. Each variable defined is given a new, unique name each time it is defined. To resolve

multiple definitions from differing paths joining in the control flow graph in more complex

code, ^-functions are used to resolve which value is used. We will use the following code

example to illustrates the SSA and GSA forms:

lower = begin
upper = end
do i = begin, end

if (P) then
lower = lower + 1

else
upper = upper - 1

endif
enddo

The SSA form for this code segment is:

lowerj = begin
upper! = end
do i = begin, end

lower2 = (p (lower!, lower4)
upper2 = (p(upperi,upper4)
if (P) then

lower3 = lower2 + 1
else

upper3 = upper2 - 1
endif
lower4 = <p(lower3, lower2)

88

Irregular Control Structure II - Control Embedding

upper4 = (p(upper3, upper2)
enddo
lower5 = (p (lower i, lower4)
upper5 = <p(upper 1# upper4)

The insertion of (p-functions here indicate where multiple possible values for a particular vari-

able converge. This is most often the case in join nodes of the control flow graph. In this

example, there were (p-functions inserted at the head of loops, immediately following a loop,

and after a conditional branch in which the variable is modified. This guarantees that only a

single definition reaches each use of a variable.

The GSA form preserves the essential reaching definition properties of SSA, but replaces the

(p-function in some cases with several new gating functions:

• y functions replace (p functions at join of control paths from differing conditional branches.

They also include the predicate for the conditional statement.

• |i functions replace (p functions at the head of a loop. It includes the exit conditions or index

variable ranges for the loop.

• T| functions replace (p functions at the exit of a loop.

From a program analysis point of view, these preserve the looping and conditional structure of

the program while retaining the useful SSA-like properties. The importance of these GSA fea-

tures becomes evident in performing symbolic analysis to determine value ranges computed in

loops and conditional branches.

The running example, rewritten in GSA form:

lower! = begin
upperi = end
do i = begin, end

lower2 = [1 ((i=begin, end) , lower1# lower4)
upper2 = |i((i=begin, end)upperj,upper4)
if (P) then

lower3 = lower2 + 1
else

upper3 = upper2 - 1
endif
lower4 = y(P, lower3, lower2)
upper4 = y(P, upper2, upper3)

enddo

89

Dependence Analysis and Monotonie Induction Variables

lower5 = y(end < begin, lower1# T|((i > end), lower4))
upper5 = y(end < begin, upper,, r| ((i > end), upper,, upper4))

The use of the r| functions in the last two statements deserves some explanation. If the source

language guaranteed non-zero trip counts, the use of y functions would not be necessary in

uses of T| functions. In this case, the y functions cases handle the possibility in Fortran of zero

trip counts.

Fast and efficient algorithms for constructing both SSA and GSA forms are presented else-

where [30][87], and their description lies outside the scope of this thesis.

6.3.2 Symbolic Analysis

Symbolic analyses typically entail manipulating and propagating symbolic expressions repre-

senting values computed in the program being analyzed. This is useful for, among other

things, proving assertions in the program and finding symbolic value range information for

performing more accurate dependence analysis. For example, the predicate in an if statement

can be used as a symbolic assertion by the compiler in analyzing its branches.

There are two mechanisms by which symbolic expressions are propagated. Symbolic forward

substitution propagates symbolic expressions for variables forward in the program, in a man-

ner akin to the symbolic execution of the program. The process is similar to constant propaga-

tion. The problem with this approach is that the size and number of expressions being

propagated becomes very large, while the portion of those expressions which are relevant to a

particular compiler goal may be small. Furthermore, it is typically not necessary to express all

symbolic values in terms of program inputs.

Symbolic backward substitution starts at an expression and symbolically substitutes symbolic

expressions for previous definitions of its arguments. The advantages of this approach is that it

can be more easily tailored to satisfying a particular goal. The starting point for the analysis is

determined by the compiler objective and the backwards substitution process can be stopped

when the objective is achieved. This kind of demand-driven symbolic analysis is very effective

for the kind of dependence analysis we are interested in here. Again, the discussion here is

based heavily on Tu's dissertation [87] unless otherwise noted.

We use the following code segment to illustrate backward substitution:

90

Irregular Control Structure II - Control Embedding

upper, = end
if (P) then

else
upper3 = upper2 - 1

endif
upper4 = y(P, upper2, upper3)

Here, we are interested in the upper bound for the variable upper4. Substituting backwards

gives us:

upper4 = y(P, upper2, upper3)

y(P, upper2, upper2 - 1)

y(P, end, end - 1)

This gives us an upper bound of (upper4 < end).

The symbolic expression (SE) for the value of a variable may be composed of multiple

instances of the three gating functions here. It is useful to be able to compute a qualified SE

for the variable(s) of interest in different control context. To that end, we describe the notion

of path projection to determine the path-restricted values (PV) for the SE given the control

flow conditions (PC) leading to that particular control path. We compute the projection PV =

SE(PC) as follows:

SE(PC) = SE if SE contains no gating functions

y(P, V„ Vf)(PC) = Vt(PC) ifPCz>P

y(P, V„ Vf)(PC) = Vf(PC) ifPC^^P

y(P, V„ Vf) = y(P, Vt(PC), Vf(PQ) otherwise

\i(L, Vinit, Viter)(PC) = \L(L, Vinit(PQ, Viler(PQ)

T\(P,V)(PC) = V(PAPC)

As an example, we consider the previous code segment. Recall that the resulting symbolic

value we computed using backward substitution was upper4 = y (P, upper2, upper3).

Assume that we reach a point later in the code with PC = -.P, such as in the false branch of

this conditional block:

91

Dependence Analysis and Monotonie Induction Variables

if (P) then

else
. . . = upper4

endi f

Using path projection, we can compute that the value of upper4 at this point is:

upper4 = y(P, upper2, upper3)(-iP)

= upper3(->P)

= upper3

6.3.3 Extensions for Interrelated Monotonie Induction Variables

Unfortunately, this symbolic analysis has some shortcomings in dealing with the monotonic

variables seen in the first example of section 6.3.1. Applying the symbolic analysis introduced

in the last section to determine the values of lower2 and upper2:

lower2 = u((i=begin,end) ,begin, 7(P, lower2 + 1, lower2))
upper2 = H((i=begin,end) , end, y(P, upper2, upper2 - 1))

To determine the dependence of two accesses that use these two variables, the compile must

computer whether upper2 n lower2 = 0. One conservative estimate is to simply derive the

maximum and minimum values of the variables. Along with the monotonicity property, we

can prove that the two do not overlap if the ranges are disjoint. We can determine the maxi-

mum and minimum values of these variables using these symbolic expressions:

max(lower2) < max(|X((i=begin,end) ,begin, yp, lower2 + 1, lower2))
= |X((i=begin, end) ,begin, max(y(P, lower2 + 1, lower2))
= \i((i=begin, end) ,begin, lower2 + 1)

min(lower2) > min(|X((i=begin,end) ,begin, y(P, lower2 + 1, lower2))
= n((i=begin, end) ,begin, min(y(P, lower2 + 1, lower2))
= u.((i=begin, end) ,begin, lower2)

max(upper2) < max(|l((i=begin, end) , end, y(P, upper2, upper2 - 1))
= |i((i=begin,end) , end, max(y(P, upper2, upper2 - 1))
= u((i=begin, end) , end, upper2)

min(upper2) > min(u.((i=begin, end) , end, y(P, upper2, upper2 - 1))
= |l((i=begin,end) , end, min(y(P, upper2, upper2 - 1))
= \l{ (i=begin, end) , end, upper2 - 1)

From these expressions, we can directly infer the ranges of values for variables:

begin < lower2 < end

92

Irregular Control Structure II - Control Embedding

begin < upper2 ^ end

The problem here is that the value ranges for lower2 and upper2 overlap. While the ranges

are useful for determining whether the differing invocations of the containing block overlap,

they are insufficient for determining whether there is output dependence in the loop body

between the two branches. Unfortunately, the symbolic boundaries in these ranges cannot be

tightened further. However, the fact that the conditional expression in the if-branch constrains

the iterations that the two variables are incremented or decremented to be disjoint can be

exploited to prove, among other things, that they do not overlap and there is no output depen-

dence.

If the compiler recognizes that the if-statement's branches essentially partition the loop's trip

count so that neither variable is incremented or decremented in the same iteration, then the

dependence analyzer can build a constraint reflecting the interdependence between the values

of the variables in question.

We construct a filter to coalesce affine constraints for symbolic values as well as tag expres-

sions with trip count information. The operator we define to construct these constraints is

called TC. This operator adds explicit variables to reflect trip counts and their partitioning by

conditional branches. It also generates the relevant constraints.

When applied to u nodes, the TC operator multiplies the current running trip count with the

trip count of the loop it is applied to. It also generates the necessary constraints for computing

the symbolic value of the trip count, as well as the constraints on the loop index:

TC(T, \l((index=lower, upper, stride) , init, loop)) =
H C (index=lower, upper, stride) ,TC(TxT , init), TC(TxT , loop))

Generates constraints:
(lower < index < upper, 3s,stridexj = index,

T _ upper-lower 1 .
stride

When applied to y nodes, the TC operator splits the current running trip count for each branch

by adding a new variable whose size is constrained to be less than or equal to the total trip

count (but greater than 0). The idea here is to symbolically represent the time a conditional

spends in each of its branches. Thus, the new variable represents the portion of the enclosing

loops' trip cumulative trip counts spend in each of the conditional's branches:

93

Dependence Analysis and Monotonie Induction Variables

TC(T, y(P, tval, fval)) =
y(P, TC(CPj,tval), TC(T - Cpj,fval))

Generates constraints:
(0 < CPJ < T)

The variables T and cPtT are newly generated only if the index range and index range-predi-

cate pair have not been previously encountered. Not that this implies that for y gates that pred-

icates will have to be tested for equality, though, in the cases we are interested, variations on

simple syntactic equality tests should suffice.

This provides the necessary constraint-based relationships between monotonic variables.

Operators such as max and min can now be applied to expressions with nested TC operators in

a straightforward manner. Consider the application of TC to lower2 and upper2:

TC(lower2) = TC(\l{ (i=begin, end) ,begin, y{P, lower2 + 1, lower2)))
= u((i=begin,end),TC(1, begin) ,

TC(end-begin, y(P, lower2 + 1, lower2)))
Generates constraints:

(0 < C < end-begin)
= u((i=begin,end), TC(1,begin),

y(P, TC{C,lower2 + 1) , TC(end-begin-C, lower2)))
TC(upper2) = TC(|X((i=begin, end) , end, y(P, upper2, upper2 - 1)))

= \l((i=begin,end) , TC(1,end) ,
TC(end-begin+1, y(P, upper2, upper2 -1)))

= u((i=begin,end),TC(1,end),
y(P, TC(C,upper2) , TC{end-begin+1 -C,upper2 -1)))

Note that we have represented the loop trip count generated for the u gate directly rather than

using a separate variable, for clarity. We compute the ranges for these variables:

min(lower2) = min(U((i=begin,end), TC(1,begin),
y(P,TC(C,lower2 + 1) , TC(end-begin+1-C, lower2))))

= [i((i=begin, end) , begin,
min(y(P, TC(C,lower2 + 1) , TC(end-begin+l-C, lower2))))

= |x((i=begin, end) ,begin, TC(end-begin+l-C,lower2))
= \i((i=begin,end) ,begin, lower2)
= begin

max(lower2) = max(u((i=begin,end),TC(1,begin),
y(P, TC(C,lower2+l) , TC(end-begin+1-C, lower2))))

= u((i=begin,end),begin,
max(y(P, TC(C, lower2+l) , TC(end-begin+l-C, lower2))))

= \i((i=begin, end) ,begin, TC(C, lower2 + 1))
= begin + C

min(upper2) = min(|X((i=begin, end) , TC(1, end) ,
y(P, TC(C,upper2) , TC(end-begin+1-C,upper2-1))))

94

Irregular Control Structure II - Control Embedding

= (i((i=begin,end) , end,
min(y(P, TC(C, upper2) , rc(end-begin+l-C,upper2-l))))

= |i((i=begin,end) , end, TC(end-begin+l-C,upper2-l))
= begin + 1 + C

max(upper2) = max(u((i=begin,end) , TC(l,end) ,
J(P, TC(C,upper2) , TC(end-begin+l-C,upper2-l))))

= (i((i=begin,end) , end,
max(y(P, TC(C,upper2) , TC(end-begin+l-C,upper2-l))))

= u((i=begin, end) , end, TC(C,upper2))
= end

So, the resulting constraints are:
begin < lower2 < begin + C
begin + C + 1 < upper2 < end
0 < C < end-begin (generated by TC)

It is easy to see these constraints prove that lower2 and upper2 do not overlap.

6.4 Preprocessing Steps

The first step in embedding control in recursive subroutines is to isolate those control struc-

tures we will embed. Recursive subroutine calls may be embedded, along with other code, in

loops and conditional constructs. Isolating the calls with their surrounding control structure

provides a concise description of the number of recursive calls or partitions and conditions for

liveness of the partitions. We also transform return statements into conditional statements, so

that embedding loops can correctly be applied. This also serves to create embedable condi-

tions in which partition workload is implicitly tracked.

6.4.1 Eliminating Returns

The presence of return statements in a subroutine presents several challenges to use. Return

statements are difficult to model in the loop modeling functions employed by the underlying

recurrent loop analysis. Return statements can also rule out the applicability of control embed-

ding process. Embedding a loop around a return statement in the subroutine body affects sub-

sequent loop iterations, consequently affecting all subsequent partitions be worked on. In

contrast, the return in the non-embedded loop body would only affect the particular problem

partition being worked on.

Returns can be eliminated by employing conditional constructs. The essential idea is to sur-

round code that is affected by a return statement by placing it within if-statements with condi-

95

Preprocessing Steps

tions which lead to the execution of the return. Several observations motivate the use of

conditionals in this case:

• Conditional constructs are easily represented in loop modeling functions for recurrent loop

analysis.

• Conditional constructs can be embedded within recursive calls

The analysis employed here propagates the conditions under which control flow reaches

return statements, The code we are interested does not have returns embedded within any kind

of looping structure. Furthermore, we are not interested in solving the problem over arbitrary

control flow graphs, though a data flow formulation for more general control flow graphs is

possible. Thus, the analysis here focuses on structured flow graphs with loops collapsed into

single nodes.

In this analysis, there are two variables used to compute path conditions for returns. PChcai

tracks any contribution to the path conditions by a basic block. PC contains the accumulated

path condition resulting in prior execution of a return statement.

PCiocJB) = C ifB is a conditional node in the CFG and C is the condition

PC,oca,(B) = TRUE otherwise

PC(B) = KJpepred(B)(PC(p)APChcal(p)),

where {J = v (logical-or).

We can now uses these path conditions to propagate return conditions. RC,ocai contains the

local return condition if any return is present in the block. RC contains the set of return condi-

tions propagated to the block and is what we will use to guard execution of the block.

RCioca!(B) = PC(B) ifB contains a Return statement

RClocJB) = 0 otherwise

RC(B) = KJpEpred(B)(RCloca!(p)vRC(p)),

where {J = u (set union).

We remove return statements by first removing all statements that follow return statements in

the same basic block. Then we delete the return statement. The final step is to insert the return

96

Irregular Control Structure II - Control Embedding

guards for the blocks. The conditions we use in the if-blocks is simply -iRC(B). However,

note that simply inserting a guard for every subsequent block is likely to generate many redun-

dant and nested if-blocks. It suffices to simply insert one guard in such cases. To eliminate

this redundancy, we employ another simple analysis to determine whether to insert a guard or

not. RGB notes whether a return guard needs to be inserted prior to the block.

RGB(B)=Vpepred(B)(RC(B)*RC(p)),

where {J = v (logical-or).

We would also like to eliminate redundancy in conditional expressions in the return guards. To

that end, we keep track of the current running conditional expression effectively guarding the

current nesting level(s). RCLt tracks the return conditions for which guards have been inserted

at nesting level i. The code for computing this variable and generating the return guards is

listed below:

RCL0 = 0

for each B e CFG in depth-first order

if(B is a join node) then

insert IF?COUNl"LEVEL endif-struts

LEVEL = LEVEL -1

endif

if(B is a split node) then

LEVEL = LEVEL + 1

RCLLEVEL
= RCLIEYEL.2

IFCOUNTLEVEL = 0

endif

RCrefinedB) = RC(B) - RCLLEV£L

RCLlevel = RC(B)

ifRGB(B) then

insert if-stmtprior to block with RCrefineJ,B)

IFCOUNTLEVEL = IFCOUNTLEVEL + 1

endif

endfor

97

Preprocessing Steps

6.4.2 Threshing Recursive Calls

Isolating recursive subroutine calls is important in identifying and embedding surrounding

control structure for the recursive calls. The process by which we achieve this is by repeatedly

applying a generalized loop fission transformation distributes both conditional and iterative

control structure around its statements. In a process we liken to threshing, we apply this trans-

formation repeatedly to blocks of code that contain recursive code, proceeding from inner-

most control structure outward, in an effort to isolate the recursive calls.

The fission transformation takes an arbitrary piece of code and an arbitrary specification of the

desired clustering of the statements. By cluster, we mean which statements will remain

together when control structure is distributed. Only outer level control is distributed, so that

if finer grain distribution is desired then the routine must be applied recursive from inner loops

or conditional blocks outward. The routine performs any necessary scalar expansion resulting

for the chosen clustering. We will refer to the routine as fission_by_cluster in the following

algorithm descriptions.

The basic outline of the threshing algorithm is as follows. (Again, we are only interested in

structured code.) It first identifies which control blocks contain recursive calls. Other control

blocks, such as do-blocks or if-blocks, are abstracted out as single statements since they will

invariably remain in the same relative position. It then recursively finds the innermost control

blocks containing recursive calls. It identifies the recursive calls and designates them as the

middle cluster. The first and last clusters are those statements which must precede or follow

the recursive calls, as determined by the data dependence conditions. The resulting clusters of

statements are abstracted as three single statements for the remainder of the analysis. The

algorithm continues by returning to the surrounding outer level of nesting and performing the

clustering-fission scheme again, and so forth.

A high-level pseudo-code description of algorithm is given below. S is a set of individual

statements and control blocks abstracted into statements. A subroutine call on a control block

operates on the statements and control blocks enclosed immediately within. It is implicitly

assumed that fission_by_cluster abstracts the clusters into statements:

thresh_block(Statements S)

if (not innermost(S)) then

foreach (s e S)

98

Irregular Control Structure II - Control Embedding

if (control_block(s) and contains_recursive_call(s)) then

thresh_block(s)

endif

endif

cluster2 := (s : s e S and contains_recursive_call(s)}

cluster! := {s : s € (S-cluster2) andprecede_by_dep_info(s, cluster2)j

cluster3 := fs : s e (S-cluster2) and follow_by_dep_info(s, cluster2)}

if (cluster! n cluster^ * 0 then abortJranformationQ endif

S :=fission_by_cluster(S, clusterb cluster2, cluster3)

end

6.5 Embedding Control

Upon isolating control structure around recursive calls and eliminating returns, we have some-

thing similar in control structure to the prototypical divide-and-conquer subroutine in figure

6.1. We can now embed that isolated control structure in the recursive calls. On the surface,

this seems a fairly straightforward proposition until the issue of recursion is thrown into the

mix. We will examine the issues and techniques of embedding iterative control and condi-

tional control in turn.

6.5.1 Embedding Loops
The loop embedding transformation simply takes surrounding iterative structure and embeds

it within a subroutine call [39]. The essential idea is to expose the subroutine body to the par-

allelism created by any surrounding loops. Here is a simple example:

do i = 1, n
call mult(a(i),b(i))

enddo

subroutine mult(a,b)
real a, b
a = a*b
end

Embedding the loop in a cloned version of the subroutine mult yields:

multclone(a,b,n)

99

Embedding Control

subroutine multclone(a,b,n)
integer n
real a(n), b(n)
integer i
do i = 1, n

a(i) = a(i) * b(i)
enddo
end

Deciding when to embed loops and clone subroutines depends on an analysis to determine

whether it is profitable to do so in the face of increasing code size [39]. Unfortunately loop

embedding as presented here cannot be applied to recursive subroutines, though the benefits

would be obvious. As demonstrated earlier, there is potentially significant parallelism avail-

able across partitions in divide-and-conquer algorithms. Unfortunately, the presence of recur-

sive subroutine calls makes loop embedding pointless, exposing some (typically) constant

number of partitions to parallelization rather than all the partitions. As the partition sizes (and

possibly the number of partitions) vary throughout the execution of the algorithm, the amount

and variance of parallelism we expose is difficult to ascertain by the compiler. We will use the

following generic code example as a running example. We will elide some of the details of the

transformation until after we motivate the general mechanics of embedding loops.

subroutine recur (...)
Bodyl

do i = 1, count
call recur()

enddo
Body2

end

A simple application of loop embedding gives us:

subroutine recurclone(..., count_embed)
do part = 1, count_embed

Bodyl
enddo
do part = 1, count_embed

call recurclone(...,count)
enddo
do part = 1, count_embed

Body2
enddo
end

100

Irregular Control Structure II - Control Embedding

The problem here should be readily apparent. We have exposed the body components Bodyl

and Bodyl to parallelization within the embedded loop, but all we have done is to defer the

inevitable degradation of performance due to loss of parallelism by level of the dynamic call

graph. Furthermore, we now have another loop around the recursive call. Embedding this loop

gives us:

subroutine recurclone2(..., count_embed, count_embed2)
do part = 1, count_embed2

do part = 1, count_embed
Bodyl

enddo
enddo
do part = 1, count_embed2

call recurclone2(...,count, count_embed)
enddo
do part = 1, count_embed2

do part = 1, count_embed
Body2

enddo
enddo
end

Continuing in this vein, we get:

subroutine recurclonen(..., count_embedl, ..., count_embedn)
do partn = 1, count_embedn

do parti = 1, count_embedl
Bodyl

enddo

enddo
do part = 1, count_embedn

call recurclonen(...,count, count_embedl, ..., count_embedn-l)
enddo
do partn = 1, count_embedn

do parti = 1, count_embedl
Body2

enddo

enddo
end

There are several problems with this code. First, the compiler cannot know where to stop

embedding loops because the partition sizes are likely to be completely data dependent and

101

Embedding Control

the problem size will probably not be known until run-time. Second, the number of clones

generated here is unacceptable. This amounts to generating a different clone for each level of

the dynamic call graph, a process similar to peeling off iterations of loops (loop peeling). The

number of parameters being passed to each clone as well as the level of nesting increases lin-

early with the number of embeddings. The former problem results in increased subroutine call

overhead, while the latter complicates parallelization of the loop bodies unnecessarily,

increasing the cost of applying loop nest transforms and possibly inhibiting parallelizing all

but the inner loop as the compiler is confronted with problems similar to those in irregular

loop nests. Finally, note that for the n-wise embedding, (n-2) other clones will have to be gen-

erated (along with the original subroutine) to reach a point where the n-lth clone can be used.

The regularity of the structure of the clones does present the compiler with an opportunity to

take steps that will collapse both the loop nests and the added parameters. A fixed point of the

embedding artifacts can be constructed by explicitly counting the partitions and passing that to

the embedded clone as a single parameter. The cloned subroutine need only insert one loop to

surround its body components. The following clone version illustrates this:

subroutine recur_fixed(..., count_embed)
do part = 1, count_embed

Bodyl
enddo
new_count_embed = 0
do part = 1, count_embed

new_count_embed = new_count_embed + count(part)
enddo
call recur_fixed(...,new_count_embed)
do part = 1, count_embed

Body2
enddo
end

The beauty of this simple scheme is that it limits the complexity of the resulting code while

exposing all the parallelism available at each level of the dynamic call graph. In other words,

the parallelism available across partitions as well as all the parallelism available in the subrou-

tine body can be exploited. Note that the computation of the variable new_embed_count

can be parallelized using a simple sum reduction.

102

Irregular Control Structure II - Control Embedding

We have elided the details of what happens to parameters and local variables through this

transformation. In the next two subsections, we discuss the analysis and transformation of

local and parameter variables to make this transformation generate semantically correct code.

6.5.1.1 Privatizing Local Variables

Local variables become subject to a unique kind of memory reuse conflict across embedded

loop iterations. Since the transformation effectively emulates the execution of multiple sibling

recursive calls through the use of the embedded loops, a local variable may need to be priva-

tized for each iteration. Interprocedural anti-dependences become output dependences

between iterations in the embedded loop. This may destroy values potentially needed by both

the recurrent call and the subsequent phases of computation. For example, the following pat-

tern is fairly common:

subroutine recur (...)

A: a_local_variable = ...

recursive calls

B: ... = f(a_local_variable)

end

If the definition of a_local_variable in statement A is exposed to the use of

a_local_variable in statement B, then a_local_variable will have to be privatized for

each partition. The reasoning here is that, assuming this code has preprocessed (threshing

recursive calls and eliminating return statements), the portions of code in which statements A

and statement B reside will be placed in different copies of the embedded loop(s). We priva-

tize such variables by expansion [65]. For this code example:

subroutine recur_einbed (. . . , count_embed)

do part = 1, count_embed

A: a_local_variable(part) = ...

enddo
recursive calls
do part = 1, count_embed

B: ... = f(a_local_variable(part))

103

Embedding Control

enddo
end

The key aspect of privatization, eliminating barriers to parallelization through anti-depen-

dences, is preserved in our version, though the particular application is somewhat different

than what is typical. As such, the analysis takes a different approach and is much simpler than

existing analyses for privatization.

First, we are concerned whether a variable should be privatized. Clearly, we can simply

expand all variables used in the subroutine and solve this problem, but this is not particularly

space efficient. Second, since we are applying this analysis to local variables from different

procedural contexts (or activations), no true dependences for these variables across embedded

loops iterations are possible. Thus, we need not be concerned with determining coverage of

the defs of a variable on its uses (the dominating definitions property) [87].

The algorithm which operates under these assumptions is extremely simple. It begins with the

DEF-USE chains for the variable. Of the three top-level clusters created by the threshjblock

preprocessing step, if a DEF of a variable and one of its USEs are in different clusters, then we

tag that DEF as privatized. It any DEFS of a variable are tagged as privatized, then it is priva-

tized through expansion within the iteration space of the embedded loop.

6.5.1.2 Expanding Parameters

Since the actual parameter sets for each recursive call may differ, we need a mechanism for

simultaneously passing all parameters to the embedded clone of the subroutine. We employ a

simple expansion on each formal parameter in which we pack the actual parameters prior to

the recursive call. The parameter set for each partition is accessed by the loop index variable

for the embedded loop. Note that we need not expand all the parameters, only those that differ

in the recursive calls.

The following example illustrates how it works:

subroutine recur(a,b,begin,end,n)
integer begin, end, n
integer a(n), b(n)

Bodyl
call recur(b,a,begin,lower,n)
call recur(b,a,upper,end,n)

104

Irregular Control Structure II - Control Embedding

Body2
end

The values passed to the formal parameters begin and end differ. We expand those parame-

ters and pack them with the parameters for each call:

subroutine recur_embed(a, b, begin, end, count_embed)
integer count_embed, n
integer begin(count_embed), end(count_embed)
integer a(n), b(n)

do part = 1, count_embed
Bodyl

enddo
new_count_embed = 0
do part = 1, count_embed

new_count_embed = new_count_embed + 2
enddo
do part = 1, count_embed

new_begin(2*part-l) = begin(part)
new_begin(2*part) = upper(part)
new_end(2*part-l) = lower(part)
new_end(2*part) = lower(end)

enddo
call recur_embed(b,a,new_begin,new_end,n,new_count_embed)
do part = 1, count_embed

Body2
enddo
end

In this case, we chose to consider the case of an implicit loop (whose trip count is 2). In the

case of an explicit loop, the transformation is somewhat easier because the actual parameters

which differ are likely to be differing array accesses into the same array. In this case, the

whole array (or the portion which is used) can be passed rather than the individual reference.

For example, consider the following generic subroutine:

subroutine recur(a,b,begin,end,n)
integer n, a(n), b(n), begin, end

do i = 1, count
recur(b,a, lower(i),upper(i), n)

enddo

end

This will get transformed to the following subroutine:

105

Embedding Control

subroutine recur_embed(a,b,begin,end,n,embed_count)
integer n, embed_count, a(n), b(n)
integer begin(embed_count), end(embed_count)

recur(b,a, lower(1:new_embed_count),
$ upper(1:new_embed_c ount),n,new_embed_c ount)

end

The algorithm for expanding parameters marshals together all the recursive calls and walks

down each call's actual parameter list, check whether the expressions are identical. If they are

identical, it does nothing. If they are not identical, it marks the formal parameter in that place

for expansion. Loops are generated to pack the expanded parameter with the differing values

prior to the recursive call. Note that this loop is trivially parallelizable as it includes no inhib-

iting dependences.

6.5.2 Embedding Conditional Statements

Embedding conditional statements is performed simultaneously with loop embedding. Unfor-

tunately, the values used in conditional expressions for such statements are not necessarily

available in subsequent recursive calls. Even if the values were available, their locations

would be extremely difficult to determine in the compiler. So we simply precompute the path

conditions leading to each recursive call (computed already in section 6.4.1 as PC) and pack

those conditions into a logical array of size equal to the number of partitions. Given the set of

recursive calls S, we would use the following pseudo code:

foreach s e S

CONDs = U„6PCWP. where U = v

endfor

We then add the array COND as a parameter and embed the subroutine body components in

if-blocks with COND as condition. Finally, we reduce the array using logical-or and use the

result to guard any further recursive calls of the cloned subroutine. We use the generic exam-

ple from past sections to illustrates this (with expanded parameters, expanded local variables,

and embedded loop bookkeeping elided for clarity):

subroutine recur_fixed(..., count_embed, conds_embed)
logical conds(count_embed), reduce_cond

106

Irregular Control Structure II - Control Embedding

do part = 1, count_embed
if (conds_embed(part)) then

Bodyl
endif

enddo

do part = 1, count_embed
new_conds(2*i-l) = conds_embed(part) .and. (KJpsPC{part)p)

new_conds (2 * i) = conds_embed (part) . and. (\Jp e PC(part)p)

enddo
i f (reduc e_c onds) then

call recur_fixed(...,new_count_embed, new_conds)
endif
do part = 1, count_embed

if (conds_embed(part)) then
Body2

endif
enddo

end

Note that we have used the high-level description of the computation of the COND array in

this code, a necessity since we have not specified return conditions for this generic example.

Section 6.8 will present a concrete example.

The embedded conditionals track partition liveness. When a COND array element is false,

work on the corresponding partition has completed. This is detected automatically when par-

allelizing the code with embedded conditionals. Under the transformation as presented, paral-

lel execution for partition will continue but no meaningful computation will take place.

Unfortunately, this means that the amount of useful computation in derived parallel operations

will get ever sparser as the partitions get smaller and partitions are finished. This effect will be

particularly pronounced if the partitioning strategy of the algorithm results in unbalanced par-

titioning.

There are two strategies for dealing with this. The first is to simply ignore the problem and

rely on the algorithm designer to create reasonable partitioning strategies. This is also a key

consideration for the serial performance of the code. The second strategy is to prescan the

COND array for completed partitions and pack the live partitions. This can be simply

achieved by either replacing the variable count_embed with an array of those partition num-

bers that are live or simply compressing those expanded subroutine parameters to only include

the live partitions. We then index expanded variables and parameters with elements of that

107

Embedding Control

array. Prior to the recursive call to the clone, the new partition count and COND arrays are

packed according to the old COND array. Another approach is to insert code to pack the arrays

by the COND array at the head of the cloned subroutine.

The approach taken in our compiler is to compress the live partitions in the expanded subrou-

tine parameters, and to reflect this in the partition count passed to the cloned subroutine. This

obviates the need for an explicit COND vector, since a record of dead segments is implicitly

realized by the absence of any information relevant to the execution of the algorithm on those

partitions. That is, the embedded loops will only traverse structures storing information about

live partitions. This may create a sparseness or irregularity in the traversal of the array struc-

tures in the algorithm; however, this is handled by the array index flattening mechanism of

section 5.3.4. This results in the following code:

subroutine recur_fixed(..., count_embed)
integer cond_length(count_embed)

if <UpePC(1)/>) then
cond_length(l) = 2

else
cond_length(l) = 0

endif
do part = 2, count_embed

if (UJ.PC^P) then
cond_length(part) = cond_length(part-l) + 2

else
cond_length(part) = cond_length(part-l)

endif
enddo
do part = 1, count_embed

if tU^pc^p) then
expanded_parameterl(cond_length(part)-1) = ...
expanded_parameter2(cond_length(part)-1) = ...

endif
enddo
if (cond_length(count_embed).gt.0) then

call recur_fixed(...,new_count_embed, new_conds)
endif

end

108

Irregular Control Structure II - Control Embedding

Note that this approach requires that no conditionals need to be embedded explicitly. The

embedable conditionals are implicitly embedded by compressing the expanded parameter

sets.

6.6 Functions

Subroutines which return values, or functions, are treated as subroutines with an extra param-

eter for the return value. Instances of the function name used for returning values are replaced

with the new formal parameter name. Transformed in this manner, the embedding transforma-

tion presented here works as expected.

6.7 Mutual Recursion and Other Variations

This technique can easily be applied to subroutines that are mutually recursive. We have

described a method to create a clone of recursive subroutines in which the control is embed-

ded. This was achieved by adding parameters which count partitions and track embedded con-

ditionals and by inserting loops and if-blocks which use these partitions. We can create such

an embedded clone of each of the mutually recursive subroutines as if they were simply recur-

sive, rather than mutually recursive. There is one major deviation in the mechanics of the

transformations. Choosing which parameters to expand depends on the recursive calls to the

subroutine, which are made in another subroutines. Otherwise, the analysis is essentially iden-

tical.

For example, consider the generic code below for a mutual recurrence:

subroutine recursl(.
prebody
foreach partition

call recurs2(..
endfor
postbody

end

) subroutine recurs2(...)
prebody
foreach partition

) call recursl(...)
endfor
postbody

end

109

Mutual Recursion and Other Variations

This can be transformed using the embedded clones:

subroutine recursl_embed(...)
foreach partition

prebody
endfor
call recurs2_embed(...)
foreach partition

postbody
endfor

end

subroutine recurs2_embed(
foreach partition

prebody
endfor
call recursl_embed(...)
foreach partition

postbody
endfor

end

We have assumed that we can always cluster recursive calls together in preparation for embed-

ding. However, we may only be able to create several clusters of recursive calls with other

code in between. Once again, we can create an embedded clone of the subroutine, with several

differences in the analysis. First, the variable privatization analysis will have to consider sev-

eral more clusters, which is trivial. Second, the parameter expansion analysis will have to ana-

lyze each cluster of recursive calls and expand any parameter that needs expansion in any one

of the clusters. Here is an example with two clusters containing recursive calls:

subroutine recurs(...)
bodyl
foreach partition

call recurs (...)
endfor
body2
foreach partition

call recurs (...)
endfor
body3

end

subroutine recurs_embed(
foreach partition

bodyl
endfor
call recurs_embed(...
foreach partition

body2
endfor
call recurs_embed(.. .
foreach partition

body3
endfor

end

The technique of creating recursively embedded subroutine clones can generally be applied

across many such variations, though it is not likely that many more variations are useful to

consider.

110

Irregular Control Structure II - Control Embedding

6.8 Extended Example: Quicksort

This section applies control embedding to a (stable) quicksort, a moderately complex example

of a divide and conquer algorithm. The algorithm sorts an array of integer keys. It divides the

problem around a chosen element, call a pivot, by creating partitions of smaller key values,

equal key values, and larger key values. It then recurses on the partitions of smaller and larger

keys. The sorted results are appended together in order of smallest, equivalent, and largest. (In

this version, the 'append' is implicit.) The serial code follows:

SUBROUTINE qsort(a,b,begin,end,n)
INTEGER begin,end,n
INTEGER a(n), b(n)
INTEGER lower, upper, middle, i, pivot

IF ((end - begin) .le. 1) THEN
RETURN

ENDIF
pivot = a(begin)
upper = begin
middle = begin
lower = begin
DO i = begin, end
IF (a(i) .It. pivot) THEN
middle = middle + 1
upper = upper + 1

ELSE IF (a(i) .eg. pivot) THEN
upper = upper + 1

ENDif
ENDDO
DO i = begin,end
IF (a(i) -It. pivot) THEN
b(lower) = a(i)
lower = lower + 1

ELSEIF (a(i) .gt. pivot) THEN
b(upper) = a(i)
upper = upper + 1

ELSE
b(middle) = a(i)
middle = middle + 1

ENDIF
ENDDO
CALL qsort(b,a,begin,lower-l,n)
CALL qsort(b,a,middle,end,n)
RETURN

END

The first steps for the compiler are to apply return eliminations, followed by threshing recur-

sive calls. Return elimination has been applied to the version below:

111

Extended Example: Quicksort

SUBROUTINE qsort(a,b,begin,end,n)
INTEGER n,begin,end
INTEGER a(n),b(n)
INTEGER lower,upper,middle,i,pivot

IF (.NOT.(end-begin).LE.l) THEN
pivot = a(begin)
upper = begin
middle = begin
lower = begin
DO i = begin, end, 1
IF (a(i).LT.pivot) THEN
middle = middle + 1
upper = upper + 1

ELSE IF(a(i).EQ.pivot) THEN
upper = upper + 1

ENDIF
ENDDO
DO i = begin, end, 1
IF (a(i).LT.pivot) THEN
b(lower) = a(i)
lower = lower + 1

ELSE IF(a(i)-GT.pivot) THEN
b(upper) = a(i)
upper = upper + 1

ELSE
b(middle) = a(i)
middle = middle + 1

ENDIF
ENDDO
CALL qsort(b,a,begin,lower-l,n)
CALL qsort(b,a,middle,end,n)

ENDIF
END

Threshing recursive calls results in:

SUBROUTINE qsort(a,b,begin,end,n)
INTEGER n,begin,end
INTEGER a(n),b(n)
INTEGER lower,upper,middle,i, pivot

IF (.NOT.(end-begin).LE.l) THEN
pivot = a(begin)
upper = begin
middle = begin
lower = begin
DO i = begin, end, 1
IF (a(i).LT.pivot) THEN
middle = middle + 1
upper = upper + 1

ELSE IF(a(i).EQ.pivot) THEN

112

Irregular Control Structure II - Control Embedding

upper = upper + 1
ENDIF

ENDDO
DO i = begin, end, 1
IF (a(i).LT.pivot) THEN
b(lower) = a(i)
lower = (lower + 1)

ELSE IF(a(i).GT.pivot) THEN
b(upper) = a(i)
upper = upper + 1

ELSE
b(middle) = a(i)
middle = middle + 1

ENDIF
ENDDO

ENDIF
IF (.NOT.(end - begin).LE.l) THEN
CALL qsort(b,a,begin,lower-l,n)
CALL qsort(b,a,middle,end,n)

ENDIF
END

Note that the looping structure in this case is implicit. (This is typically the case for the algo-

rithms we have found to be useful.) Now the code is ready for control embedding. Figure 6.3

presents an annotated version of the resulting code. We have dealt with the issue of allocation

in expansion by using dynamic arrays. This is convenient for code whose DCGs have static

branching factors. In this case we can also pre-allocate the next DCG level's arrays. Other-

wise, we employ dynamic allocation routines.

6.9 Review
We have presented a technique for embedding control in divide-and-conquer style recursive

subroutines that enables effective parallelization of divide-and-conquer style algorithms. It

exposes both intra- and inter-partition parallelism in the algorithm to the compiler by embed-

ding iterative control structure. It manages the parallel execution across these partitions by

implicitly embedding conditional control structure to effectively track partition liveness.

113

Review

SUBROUTINE g^ort_embed(a,b,begin,end,n,fxpartitions,
$ fxnextpartitions)
INTEGER f»partitions, fxnextpartitions
INTEGER n, begin(fxpartitions), end(fxpartitions)
INTEGER a(n), b(n)
INTEGER lower(f«partitions), upper
INTEGER middle(f«partitions), i, pivot, fxp
INTEGER n_begin(fxnextpartitions), n_end(fxnextpartitions)

DO fxp = 1, f »partitions, 1
IF (.NOT.(end(fxp) - begin(fxp)).LE.l) THEN
pivot = a(begin(fxp))
upper = begin(fxp)
middle(fxp) = begin(fxp)
lower(fxp) = begin(fxp)
DO i = begin(fxp), end(fxp), 1

IF ((a(i)).LT.pivot) THEN
middle(fxp) = middle(fxp) + 1
upper = upper + 1

ELSE IF((a(i)).EQ.pivot) THEN
upper = upper + 1

ENDIF
ENDDO
DO i = begin(fxp), end(fxp), 1
IF (a(i).LT.pivot) THEN
b(lower(fxp)) = a(i)
lower(fxp) = lower(fxp) + 1

ELSE IF(a(i).GT.pivot) THEN
b(upper) = a(i)
upper = upper + 1

ELSE
b(middle(fxp)) = a(i)
middle(fxp) = middle(fxp) + 1

ENDIF
ENDDO

ENDIF
ENDDO

Embedded Loop

-\ IF (.NOT.((end(l) - begin(l)).LE.l)) THEN
fxplength(l) = 2

ELSE
fxplength(l) = 0

ENDIF
DO fxp = 2, f»partitions
IF (.NOT.((end(fxp) - begin(fxp)).LE.l))
fxplengtb(fxp) = fxcond(fxp-l) + 2

ELSE
fxplength(fxp) = fxcond(fxp-l)

ENDIF
ENDDO

Compressing Expanded
Parameter Through

New Embedded
Conditional

THEN

DO fxp = 1, fxpartitions, 1
n_begin(fxplength(fxp) - 1) = begin
n_begin(fxplength(fxp)) = middle(fxp)
n_end(fxplength(fxp) - 1) = lower(fxp)
n_end(f xplength(fxp)) = end

ENDDO

Partition Bookkeeping

IF (fxplength(f^partitions).gt.O) THEN
CALL qsort_embed(b,a,n_begin,n_end,n,

$ fxplength (fxpartitions), fxplength (fxpartitions) * 2)
ENDIF

END

Figure 6.3 The resulting code for stable quicksort after control embedding.

114

Chapter 7

Compiler Architecture and Performance

This chapter briefly discusses the structure of the whole compiler. The design and ordering of

compiler phases reveals much of the goals and interdependencies of each phase. This is especially

true of the three major transformations we have designed in this dissertation. The earlier phases of

the compiler perform relatively common analyses and transformations. The last three phases of

the compiler, those new phases we have designed, must be invoked in a particular order to effect

the kind of parallelization we seek. We will begin by giving an overview of our compiler, then dis-

cuss some of the standard analyses employed in the early phases of compilation, discuss some

changes we have made to the dependence analysis system, and then discuss the later phases of

compilation.

7.1 Compiler Overview

This thesis was implemented in the Fx compiler, a parallelizing Fortran compiler which accepts

standard Fortran 77, as well as subset-HPF and task parallel extensions. This work was realized

that portion of the compiler which compiled serial Fortran. The compiler generates Single Pro-

gram Multiple Data (SPMD) programs for distributed memory machines and serial fortran with

parallelization annotations for the Cray Research family of vector multiprocessors. Only the latter

code generation scheme is fully supported by our transformations, though earlier work had sup-

port for SPMD code generation. The code generated for the Cray vector multiprocessors is then

compiled by the Cray Fortran 77 Compiler.

115

Early Passes

Flow & Dependence Analyses
Induction Variable Elimination
Simple Constant Propagation

Filtering & Profiling

— Dependence Recycling

F2C front end

1
Early Phases —

I
Recursion Pruning

Loop Flattening

Recursion Parallelization)

I *^
CF77

Figure 7.1 The compiler organization.

The ordering of the phases of the compiler is structured as in figure 7.1. The intermediate rep-

resentation employed is an abstract syntax tree (AST) [5].

Isolate Recurrences
Loop Fission

7.2 Early Passes

The compiler computes def-use chains and dependence information in the earliest phases. The

dependence analyzer uses the Omega Test [69]. Simple optimizations and transformations like

loop normalization, induction variable elimination, and simple constant propagation [5] [93]

are also implemented in these phases. The result is an AST annotated with dependence and

def-use information.

7.2.1 Filtering

The compiler identifies potential candidates for transformation by using heuristics in filtering

the code. Identifying irregular loop nests and recursive subroutines is relatively straightfor-

ward and simple. Irregular loops are those whose bounds are non-linear in outer loop indices.

Recursive subroutines simply contain recursive calls. Those recursive routines of particular

interest are those which include multiple recursive calls, each of which write to disjoint mem-

ory locations.

The difficulty is in identifying candidate recurrent loops. Simply identifying all loops with

loop carried dependences is not sufficient. The compiler must decide whether within a given

116

Compiler Architecture and Performance

do i = 1, N do j = 1, M
do j = 1, H do i = 1, N

y(i) = y(i) + b(D) y(i) = yt1) + b<3>
enddo enddo

enddo enddo

Figure 7.2 Loop interchanges for a loop nest.

loop nest enough parallelism can be exposed by traditional mechanism, or whether the recur-

rent loop itself must be parallelized. At worst, this decision can only be made at run-time or

through profiling information. Figure 7.2 illustrates such a case. If N is small, then it may be

worthwhile to simply parallelize the inner recurrent loops using reductions. If N is large, then

it may be preferable to interchange the loops as in figure 7.2, enabling the parallelization of

the outer loop.

The heuristic we employ to statically determine whether to parallelize recurrences is to simply

look for loop nests that are completely recurrent, or that are nested within outer loops that

have other properties inhibiting loop nest transformation. This is conservative in that it does

not account for potential run-time values which might make it profitable to parallelize the

recurrence loop, as seen in the previous example. However, we have not run into any cases

where the wrong choice is made.

7.2.2 Profiling

Given the filtering information, the compiler can easily add profiling code. We use profiling to

measure the dynamic impact of recurrences in serial code runs. Another use might be in the

filtering process itself, so that run-time conditions and values are accounted for. We have not

pursued this, however. Profiling directives are inserted around interesting code case. The

directives used are system dependent. In the case of the Cray systems, we use the Flowtrace

[2] system to profile interesting cases.

7.3 Dependence Recycling

The rough structure of each source code transformation is comprised of two phases. The IR of

the code is typically examined and analyzed to determine whether and how to apply the trans-

formations legally. The code is then transformed by either copying the code, transforming the

code through substitution, or replication. For example, the loop flattening transformation

117

Dependence Recycling

phase first examines the dependence structure of the code and the loop header structure to

determine whether the transformation can be legally applied. The body components are then

substituted with the precomputed loop indices and placed in the new flattened loop header.

Recomputing dependence information after each of the new transformations is not only

extremely costly, but, more importantly, it might result in a loss of accuracy in the dependence

information due to the introduction of indirection in array accesses and complex expression

computed in subroutine calls. However, in all but the recurrence parallelization phase, the

resulting dependence graph will be isomorphic to the original dependence graph. The reason

is that we essentially preserve the data flow semantics of the code by only manipulating loop

control structure in a very restricted manner during the second phase of these transformations.

That is, though depth of loop nesting may be increased or decreased through the transforma-

tions presented here, the flow constraints on the ordering of statement execution is not vio-

lated. We thus preserve the original dependences through the transformations since the

effective structure of the dependence graph is unchanged. The only thing that may change are

the distance (or distance) vectors, especially in the case of loop flattening.

The mapping is implemented in a relatively simple and non-intrusive manner by instrument-

ing the copying routines in the compiler source to automatically maintain and update a map-

ping between the original code and transformed code. When a piece of code at one end of a

dependence link is mapped, the link is either copied or it is updated to reflect the transformed

code. The first time a dependence link is encountered, it is copied and the unresolved end of

the link is entered into a mapping table by its old destination address. If the link has already

been copied, determined by lookup in the mapping table, the end of the link pointing to the

address being copied is updated to reflect the new address. Note that for a given address, mul-

tiple links may be updated or copied depending on the order of the copy operation and the

structure of dependences in the code.

The code for the transformations is barely changed at all. The basic statement and expression

copying and substitution are modified to perform the dependence mapping automatically. The

only thing added to each transformation phase is a subroutine call to turn the mapping process

on and off around copying phases.

118

Compiler Architecture and Performance

7.4 New Passes

The interdependencies between the new passes are obvious. Since it nests control structure

which might (and probably will) result in loop nests, the recursion pruning pass must precede

the loop flattening phase. Both the loop flattening and recursion pruning phases generate

recurrent loops, so they must precede the recurrent loop parallelization pass.

The loop flattening pass works on a per loop nest basis, while control embedding works on

entire subroutines. The recurrent loop parallelization pass is comprised of two phases. The

first isolates recurrent portions of loops through loop fission, and the second performs the

actual analysis. The rationale for this decision is to make the parallelization process clean, so

that unnecessary computation is not embedded within the templates for performing the paral-

lel recurrent primitives. Furthermore, different recurrent components may need to utilize dif-

ferent templates. The drawback, however, is that this may lead to inefficient usage of these

parallel templates. Two reductions in one loop may benefit by sharing the overhead of per-

forming the reduction. However, these inefficiencies can be mitigated by fusing together the

generated recurrent primitives.

The phase which isolates recurrent portions of loop bodies starts by finding strongly con-

nected components of flow, output and control dependences. The compiler then performs loop

fission to distribute loops around recurrent sections of code. This entails promoting scalar val-

ues to arrays if they are computed in one loop and used in another. The recurrent loop parallel-

ization phase then parallelizes those loops that are recurrent.

7.5 Tracking Recurrent Primitives

The type of recurrent primitive applicable to a recurrent loop may change through the control

structure transformations presented here. For example, consider a recurrent loop which com-

putes a reduction in a hypothetical recursive subroutine. Control embedding will embed that

loop in another loop. The transformed code will now include indirect array accesses due to

promotion of variables during control embedding, the compiler would have to resort to a more

costly combining-send or multiprefix operation. However, by keeping track of the original

form of the loop, the compiler can employ a less costly segmented reduction. Furthermore, if

intermediate results of the computation are used, e.g. in a permutation of an array, then the

type of primitive employed should be a segmented scan. This is determined in the loop fission

119

Tracking Recurrent Primitives

phase, when recurrences are isolated and extracted from non-recurrent code which may use

intermediate values computed by the recurrent code. The transformation of the particular

recurrent primitives used to compute the code can be specified by the following tables. The

first table specifies recurrent primitive transformation through loop flattening The type of

resulting primitive depends whether the inner index variable(s) of the flattened loop nest

occurs:

Source Primitive
Resulting Primitive Through Loop Flattening

No Inner Index Occurrence Inner Index Occurrence

reduction

scan

combining-send

multiprefix

segmented reduction

segmented scan

combining-send

other

combining-send

multiprefix

combining-send

other

The next table specifies the transformation of the primitive types through the loop fission

phase. The resulting primitive may change if flow dependences originating in the cluster of

statements which compute the primitive crosses the cluster boundary:

Source Primitive
Resulting Primitive Through Loop Fission

Flow Deps Cross
Clusters

No Flow Deps Cross
Clusters

reduction scan reduction

segmented reduction segmented scan segmented reduction

scan scan scan

segmented scan segmented scan segmented scan

combining-send multiprefix combining-send

multiprefix multiprefix multiprefix

120

Compiler Architecture and Performance

7.6 Computation and Space Overhead Reuse

Flattened loops and some recurrent primitives have large overheads in building and storing

data structures which may be reusable. For example, the index computation and arrays for a

flattened loop can be reused for subsequent flattened loops with similar index iterations

spaces. Likewise, a combining-send operation builds the SPINE structure, which can be

reused in other combining-send and multiprefix operations with identical index arrays and

array sizes. Reuse of such computation and allocated space is crucial to achieving reasonable

performance. A simple framework for general computation and space reuse is built into the

compiler.

The space reuse problem can be framed in a manner similar to the register allocation problem.

The primary difference is that space reuse is restricted by the type and size of the allocated

object. Conceptually, this effectively divides up the candidate memory blocks into disparate

pools in which the reuse algorithm is run separately. To an extent, tricks can be played to avoid

this division, though the size restrictions are useful to retain to avoid overallocation of space

for the sake of increasing the occurrence of size affinity in the reuse algorithm.

The computation reuse problem can be framed similarly. Live ranges of the computed values

for a recurrent primitive or a flattened loop can be simply inferred as the extent of the trans-

formed code. The primary reason for this is that is that the values computed in the setup

phases of the transformed code are likely to be used throughout the execution of that code.

Despite the apparent conservatism of this approach, it is unlikely that flattened loops or recur-

rent primitives will overlap in way such that opportunities for reuse will be lost under this

assumption.

7.7 Compiler Performance

Compile speed of the passes described this dissertation is relatively fast, despite being unopti-

mized. Compilation of large programs is dominated in both speed and time by the dependence

analyzer for large programs. Loop flattening and recursion pruning take negligible amounts of

121

Review

time. Recurrence parallelization is somewhat more costly, taking between 5 and 12 seconds

per loop on a Sparestation ELC, a relatively slow workstation compared to more recent work-

stations:

Loop
Analysis
Time (sec.)

Linear 4.9
Max 9.1
MaxSub 11.5

(Failure) 13.4

In the last row of this the table is a case where the analysis fails to find an efficient composi-

tion operator. Note that in this case, the number of iterations is bounded. If we increase the

ceiling on the number of iterations through the analysis, this number would be significantly

higher.

However, the performance of the recurrence parallelizer is severely unoptimized, the most

prominent cost being the start-up time for the module responsible for this pass. It is restarted

for every recurrent loop and takes roughly 8 seconds to start up.

7.8 Review

This chapter discussed the overall organization of the compiler. Important techniques like

space and computation reuse and dependence recycling form the 'glue' which allow the trans-

formations discussed in prior chapters to work together and generate efficient code. Recogni-

tion and transformation of recurrent primitive types through transformations provide valuable

hints to later phases of the compiler to generate more efficient code. The compiler also relies

on a base of more standard optimizations and analyses to decide when to apply those transfor-

mations. Finally, measurement of the compile time are given and shown to be reasonable.

122

Chapter 8

Evaluation

The evaluation of the compiler transformations in this thesis takes several paths. For the base

recurrence parallelization technique, a simple measure is to compare the number of loops parallel-

ized again other compilers, such as the summary of compilation results on the Argonne loops in

the introduction. Accordingly, we also note here which strategies our compiler and the CF77

employs to parallelize components of the test programs, which provides a bridge between per

loop compilation performance and overall program performance. Another important measurement

to consider for later performance estimates is the performance of the code templates used for par-

allel recurrent primitives. Since the focus of this thesis is the compiler rather than the intricacies

of engineering efficient parallel primitives, measurements of the primitive performance serve

mainly as a useful calibration guide when examining their performance in the larger context of

whole algorithms or programs. Finally, we examine the impact of the transformations on various

algorithms.

Unless otherwise noted, the performance numbers presented here are for a single vector processor

of a Cray C90 supercomputer1. The performance of our compiler is typically denoted in graphs by

the word 'auto', while the performance of the Cray Fortran 77 parallelizing compiler is denoted

by the acronym 'CF77'.

1. To quote the Pittsburgh Supercomputing Center's Guide to Supercomputing:

"The CRAY C90-16/512 has 16 processors with a peak aggregate speed of 16 Gflops and a main memory of 512

MWords or 4 GBytes. "

123

Overview

8.1 Overview

Generally, for each array length multiple arrays were generated randomly and used in each

test. The results presented are comprised of the arithmetic mean of these runs. In cases were

appropriate, other testable parameters were varied and tested in the same manner. For exam-

ple, the key density of the arrays used in combining-send or multiprefix operations was varied

to assess the sensitivity of the primitive to such variations. The performance numbers pre-

sented for each program typically includes both a computational throughput measure, if a

meaningful one exists, as well as a relative speedup graph, which charts the speedup of code

that we generate relative to code that the CF77 compiler generates.

The first set of programs presented are essentially simple loop kernels. The relative perfor-

mance of these kernels as compiled by the various compilers should give an expectation of

how well the basic recurrence parallelization technique performs in more complex contexts.

The second set of programs represent higher-level algorithms which use both the recurrence

analysis technique, as well as the controls structure transformations to various degrees. In

addition to performance graphs, the particular parallel primitive and control structure trans-

formed is indicated for each program.

8.1.1 Other Performance Factors

The array lengths used were generally sampled uniformly in increments non-integral in the

vector register length of the machine. The primitive deployed by the compiler picks shape fac-

tors for the computation to avoid memory bank conflict. In particular, strided memory

accesses of multiples of 4 are avoided if possible. Thus, the average vector length of the oper-

ations used typically fluctuates slightly below the vector register length of the machine. The

fluctuations in the performance graphs generally correlate to the average vector length.

8.2 Code Template Performance

The code templates described in Chapter 2, along with the derived modeling functions and

composition operators, provide the basis for generating parallel code for the recurrence paral-

lelization phase. The code templates we use are those for reductions, scans, combining-sends,

and multiprefix. Evaluating the performance of these templates is critical to the overall evalu-

ation of code parallelized by our compiler.

124

Speedup over CF77 for Linear and Sum Scans for Integers

4-
. *•

3.5-

3- w i/gi w NS A AJ k/V
2.5-

CL
-e— Linear _*_ Sum

S 2-
a.

CO

1.5-

1-

- f
0.5-

0— , i | i i . , , . , 111111 I ' ' , | , , ■ ■ i 1 ■ ■ i 1 1 1 1

c j en
o o
o

o o o
o

en
o
o
o

o o o
o

ro
en
o
o
o

co
o
o
o
o

CO
en
o
o
o

o o o
o

er
c
c
c

en
o

> o
> o
> o

Array Length
Figure 8.1 Relative speedups for integer linear scan and reductions.

Speedup over CF77 for Linear and Sum Scans for Double Precision

Linear

VYV^WV

Sum

eooooeoeeeQ&eeooooeeo€>eeeQe^e joooooooe&eQ

en _^ _J. ro ro CO CO ■r* js. en
o o en o en o en o en o
o o o o o o o o o o
o o o o o o o o o o

o o o o o o o o o
Array Length

Figure 8.2 Relative speedups for double precision linear scan and reductions.

While the code templates were not highly optimized, the best available algorithms were

selected and implemented based on the following criteria: performance, operator generality

(i.e. associativity is sufficient), and mappability to vector multiprocessors. For the purposes of

evaluating their performance, the templates were each instantiated with several composition

125

Code Template Performance

operators. In the cases of combining-send and multiprefix operations, performance at various

key densities were sampled.

The two modeling functions used for measuring reduction and scan template performance

were a sum and linear recurrence. The relative speedup over the Cray Fortran 77 Compiler

(CF77) is plotted in figures 8.1 and 8.2. The speedups over CF77mostly range between 2.5

and 8 for reasonably large array sizes. The sole exception to this is for linear scans of floating

point numbers and simple sum reductions. In this case, the user can enable pattern recognition

of linear recurrences through a command-line flag to CF77. The routine invoked (folr2p) [1] is

a highly optimized assembly-coded routine designed to solve linear recurrences on a single

head of the C90. In instances where this is invoked, the performance of our code lags behind

that generated by CF77. However, note that this routine is limited to a single vector processor,

whereas our template scales to multiple heads. Our template is not particularly optimized, as

well as being written in Fortran. Finally, our template supports a more general class of recur-

rences, rather than just linear recurrences.

This points out a general disparity between the performance of our templates and the CF77

generated code for reductions and scans. CF77 resorts to highly optimized code when it suc-

cessfully pattern matches. Otherwise, it must resort to serial code. Our compiler generates

code template in which little effort has been applied at tuning and optimization. Nevertheless,

the performance are reasonably close in cases where CF77 resorts to optimized library rou-

tines, and beats it handily otherwise. However, nothing precludes our compiler from generat-

ing templates that have been hand-tuned. Results presented later in this section reveal that the

presence of conditional branching some loops causes larger disparities in performance

because of the difficulty optimizing conditional branches in the CF77 compiler's serial opti-

mizer.

The two modeling functions used for measuring combining-send and multiprefix templates

are a simple scalar increment (i.e. histogram) and an articulated maximum (maximum

expressed through conditional statement, rather than intrinsic subroutines). The latter is more

representative of the general case, as CF77 (and most other compilers) is unable to parallelize

general combining-send or multiprefix operations.The relative speedup over CF77 is plotted

in figures 8.3, 8.4, 8.5, and 8.6. Multiple key densities are samples and plotted in each figure.

The variance due to key density is relatively small, with a general trend toward better relative

126

Evaluation

Histogram Speedup over Serial for Varying Key Densities

Keys
Figure 8.3 Relative speedups for simple histogram with varying key densities of the index array.

Multiprefix Speedup over Serial for Varying Key Densities

-e— keyden = 1010

-¥r~ keyden = 3010

-H- keyden = 5010

keyden = 7010

keyden = 9010

Keys
Figure 8.5 Relative speedups for simple multiprefix with varying key densities of the index array.

127

Code Template Performance

General Histogram Speedup over Serial for Varying Key Densities

16-

keyden = 1010 * keyden = 7010

keyden = 3010 -D- keyden = 9010

H— keyden = 5010

to 4^ O) 00 _A _i _L a -i N>
o o o o o ro *> O) oo o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o

o o o o o o
Keys

Figure 8.4 Relative speedups for generalized (max operator) histogram with varying key
densities of the index array.

General Multiprefix Speedup over Serial for Varying Key Densities

keyden = 1010 keyden = 7010

-*— keyden = 3010 -D- keyden = 9010

keyden = 5010

Keys
Figure 8.6 Relative speedups for generalized (max operator) multiprefix with varying key
densities of the index array.

128

Evaluation

performance with lower key densities. There are several reasons for this. Higher key densities

increase the storage requirements in the primitive template, and the associated initialization

costs. Furthermore, the performance of the CF77 version, which, in some cases, is no better

than that of the serial version, may degrade with lower key densities due to increased serializa-

tion of memory accesses. The overall performance improvement over CF77 varies a bit more

than for reductions and scans, ranging from 2 to 14.

8.3 Compiler Passes in Use

The particular primitive or control structure deployed by our compiler for the programs is

denoted in the table below. There are four possible primitives generated: Reduction (RD), scan

(SC), combining-send (CS), and multiprefix (MP). The two control structure transformations

loop flattening (LF) and control embedding (CE) are also denoted where they are used.

Finally, the table includes information about the CF77 compiler success at parallelization. We

denote cases were that compiler could not parallelize any of the code as 'Scalar', some of the

code as 'Partial', and all of the code as 'Full':

Benchmark Parallel Primitive

LF CE

CF77

RD SC CS MP
Maxsubsequence X X Scalar

Partition X Scalar

Segpartition X X Scalar

Bucketsort X X X Partial

CSR Spmatmul X X Full

CSC Spmatmul X X Full

Simple Quicksort X X X Partial

Stable Quicksort X X X X Partial

Quickhull X X X X Partial

The important cases to note here are those for which the CF77 compiler can fully parallelize.

The CSR and CSC sparse matrix-vector multiplication kernels can both be parallelized by the

CF77 compiler. The difference is that our compiler is able to automatically derive a better

algorithm (really, a primitive) in parallelizing the algorithm, as the performance results pre-

sented later in this chapter will indicate.

129

Algorithms Parallelized

2.5-

Q.
3
•o
ID
CD
Q.

CO

2-

1.5-

1-

0.5-

oi o o o
o o o o

Livermore Loop 5 - MFLOPS

Serial MFLOPS

CF77 MFLOPS

Auto MFLOPS

Ol o o o

1 I ' '
to o o o o

to
Ol o o o

CO o o o o

CO
Ol o o o

o o o o

Ol o o o

Ol o o o o
Array Length

Figure 8.7 Performance of Livermore Loop 5 over a range of loop trip counts.

8.4 Algorithms Parallelized

From the perspective of the user, the most important measurement is the performance

improvement in their applications. Furthermore, the impact of the control flow transforma-

tions built on top of the recurrence parallelization is best measured in applications which uti-

lize irregular control flow structure. This section discusses algorithms which utilize all of the

recurrent primitives and control structures discussed in this thesis.

8.4.1 Livermore Loops
There are three kernels of interest to us in the Livermore Loop suite [34]. In particular they are

loops 5,19, and 24, all recurrent loops. Loops 5 and 19 are both linear recurrences. Loop 19 is

comprised of two similar recurrent loops.

Do 5 i = 2,n
X(i) = Z(i) * (Y(i) - X(i-l))

do 191 k = l,n
B5(k) = SA(k) + STB5 * SB(k)

191 STB5 = B5(k) - STB5

130

Evaluation

Livermore Loop 19 - MFLOPS

1-

0.5-

Serial MFLOPS

CF77 MFLOPS

Auto MFLOPS

o o o
o o o o

o o o

IV) o o o o

N>
Ol o o o

CO o o o o

CO
Ol o o o

■fc. o o o o

OI o o o

Ol o o o o
Array Length

Figure 8.8 Performance of Livermore Loop 19 over a range of loop trip counts.

do 193 i = l,n
k = n - i + 1
B5(k) = SA(k) + STB5 * SB(k)

193 STB5 = B5(k) - STB5

Loop 24 locates the index of the first instance of the maximum value in an integer array:

do 24 k = 2,n
24 if(X(k).lt. X(max24)) max24 = k

The relative performance and speedups are plotted in figures 8.8, 8.7, and 8.9. The one kernel

which obviously suffers in performance is Loop 5. The primary reason for this is the overhead

of instantiating the template variables for the derived scan operation. This overhead can be

mitigated by fusing the loops in which template variables are instantiated with the loops of the

scan primitive.

131

Algorithms Parallelized

Livermore Recurrences - Speedups Over CF77

■ l ' '
en
o
o o

o o o
o

Ul
o o
o

o o o
o

T
ro
o o o

CO
o o o
o

CO
Ol o o
o

-p>. o o o
o

T
01
o o
o

o o o
o

Array Length

Figure 8.9 Relative speedup of selected Livermore loop suite recurrences over a range of loop
trip counts.

8.4.2 Maximum Subsequence Sum

This kernel computes the largest non-zero sum of contiguous subsequence sum of a series of

numbers [13]. The difficulty in parallelizing this recurrent loop is that the operator used in a

reduction or scan is fairly different from the serial loop. So, no associative operator is obvious

from an inspection of the code:

integer a(n)
integer i, sofar, max

do i = 1, n
if (sofar + a(i) .It. 0) then

sofar = a(i)
else

sofar = sofar + a(i)
endif
if (max .It. sofar) then

max = sofar
endif

enddo

132

Evaluation

Speedup over CF77 for Maxsubsequence

Array Length
Figure 8.10 Relative speedup of maximum subsequence sum kernel.

The CF77 compiler cannot parallelize this kernel, so the performance measured is for serial

code. The presence of two conditional branches in this code results in poor scalar performance

for the code, so the resulting performance disparity is high. The relative performance is plot-

ted in figure 8.10. The derived composition operator for this kernel was discussed in detail in

section 4.2.

8.4.3 Sparse Vector-Matrix Multiplication

The CSR and CSC kernels were compiled for both a single vector processor and 4 vector pro-

cessors of the C90. In compiling for a single head, the CF77 compiler vectorizes the reduction

in the inner loop of CSR. In compiling for multiple heads, the CF77 compiler tasks the outer

loop of the kernel and vectorizes the inner loop reduction of CSR. For this kernel, our com-

piler generates a segmented reduction, whose pseudo-Fortran is below, which is simulta-

neously tasked and vectorized:

flat = pntr(N+l) - 1
vecwork(l:flat) = val(1:flat:l) *
$ vec(indx(l:flat))

condition - k(l:flat) .le. pntr(i(1:flat)+1} - 1

133

Algorithms Parallelized

y(l:N) = APPLY(FUN_REDUCE(

$ {Xx.(conditionl(x + vecwork):vecwork)},
$ flatlength,
$ (i(l:flat - 1) .ne. i(2:pntr(N+l)-1))),
$ Y(1:N))

The brackets on the lambda expressions denote the analyzed version of the enclosed loop

modeling function. The third argument to the function composition reduction (FUN_REDUCE)

is simply shorthand for a pack of the results. The CF77 compiler only vectorizes the inner

loop of the CSC compiler on both single and multiple head configurations. Our compiler gen-

erates a combining-send operations which is simultaneously tasked and vectorized, below:

vecwork(l:flat) = val(1:flat:1) *
$ vec(i(l:flat))

(1:N) = APPLY(FUN_COMB_SEND(

$ {Xx.x + vecwork},
$
$
$
$

i(l:flat)
flat,
N),

Y(1:N))

Sparse matrices were generated randomly, varying the average row lengths and number of

rows. The relative speedup over the Cray compiler for CSR is plotted in figure 8.15 for

roughly 100,000 elements, varying the average row length. Our compiled CSR on a single

processor is faster than the Cray version up to an average row length of 110, with a peak rela-

tive speedup of 13.5. On four processors, the peak relative speedup for these matrices is over

6, with a crossover at an average row length of 85. Figures 8.12 and 8.11 plot MFLOPS

against the average row length for our technique, the Cray CF77 compiler, and the optimized

assembly level routine [20], which we refer to as SEGMULV. Note that the peak performance

reported here for this library is slightly lower than reported in the source reference due to the

differing C90 configurations. For both single and multiple processors, our technique and the

library routine sustain a relatively flat MFLOPS rate across varying average row lengths. The

CF77 compiler appears to depend on the average row length, as one would expect given that

this constrains average vector length for the compiled kernel. There is still a good deal of opti-

mization that can be performed on our code templates, as evidence by the constant overhead

between our technique and the library's performance. We will discuss this further below.

134

Evaluation

MFLOPS for CSR Sparse Matrix-Vector Multiplication on 1 Processor
(100k non-zero elements)

180-

FSEGMULV

SEGMULV

Average Row Length
Figure 8.11 Performance of CSR sparse matrix-vector multiplication kernel for a single vector
processor.

MFLOPS for CSR Sparse Matrix-Vector Multiplication on 4 Processors
(100k non-zero elements)

700-

Average Row Length

Figure 8.12 Performance of CSR sparse matrix-vector multiplication kernel for four vector
processors.

135

Algorithms Parallelized

70-

MFLOPS for CSC Sparse Matrix-Vector Multiplication on 1 Processor
(100k non-zero elements)

60-

50-

c/3 40-
Q.
O
_i
u.
5 30-

20-

10-

Serial

CF77

Auto

ooooooooooooooooo ooooooooo

r
o

-r
o

—I—'—<-

o

-) 1 1—

00 o o o 00
o

Average Row Length
Figure 8.13 Performance of CSC sparse matrix-vector multiplication kernel for a single vector
processor.

MFLOPS for CSC Sparse Matrix-Vector Multiplication on 4 Processors
(100k non-zero elements)

120

Average Row Length
Figure 8.14 Performance of CSC sparse matrix-vector multiplication kernel for four vector
processors.

136

Evaluation

Speedup of Loop Flattening over CF77 for CSR Sparse Matrix-Vector
Multiplication (100k non-zero elements)

1 processor speedup

4 processor speedup

1

£~sa~fi 9.9. ifrnn n m a

00 o CO ->■ o o o
Average Row Length

Figure 8.15 Relative speedup of CSR sparse matrix-vector multiplication kernel.

Speedup of Loop Flattening over CF77 for CSC Sparse Matrix-Vector
Multiplication (100k non-zero elements)

10-

1 Processor

4 Processors

1

*~**k^x-*e- ~^—*r~

^^OOOOOOOOQ OOOOQOOO

CO o

T—i—r—i—r-

o
en
o

a>
o o

03 o CD -»■ o o o
Average Row Length

Figure 8.16 Relative speedup of CSC sparse matrix-vector multiplication kernel.

137

Algorithms Parallelized

The peak per head performance our compiler generates for CSR now stands at around 75

MFLOPS for this application on multiple processors, with a typical sustained rate of a little

over 117 MFLOPS on a single processor. The best current single head performance for this

particular C90 configuration is a little over 170 Mflops using the assembly level SEGMULV

routine. So, despite the obvious improvement over current automatic parallelization tech-

niques, there is significant room for improvement in the back end of the compiler. We believe

that some performance improvement can be realized by directly generating assembly code for

portions of the reduction, scan, and combining-send code templates. For example, the Fortran

version of the optimized library is around 25% slower than the assembly version. Further-

more, at the source level, there are still some code template optimizations which can be

employed (i.e. better operator selection). As mentioned earlier, there is some intrinsic over-

head in using the recurrence parallelization technique in compiler that can likely be made up

by optimizing the templates.

For the CSC kernel, the speedup for 100,000 elements is plotted in figure 8.16. The perfor-

mance on a single and four vector processors is plotted in figure 8.13 and 8.14. The crossover

point for a single processor is at an average row length of 10-11, with a peak relative speedup

of 3. The peak relative speedup on 4 processors is 9, with no crossover point. The typical sus-

tained rate per processor on multiple processors is nearly 30 MFLOPS, while for a single pro-

cessor the peak is 50 MFLOPS. The CSR kernel performance is more than twice as fast.

When explicitly parallelizing a CSC kernel, a good approach might be to transform represen-

tations so that a CSR library routine may be used. The reason for the failure to do this in an

automated fashion is not intrinsic to the compilation technique. It can be overcome easily in

most cases. The problem is that we do not subject the templates for reduction, scan, combin-

ing-send and multiprefix to compiler optimization.

We currently only attempt to move the loop flattening overhead out of surrounding loops.

However, we can also move portions of the particular combining-send operator out of sur-

rounding loops, so that the cost may be amortized over many matrix multiplications. For the

multiprefix algorithm that we currently use, a good deal of time of the algorithm is spent pro-

cessing the index array to construct the SPINETREE structure on which we perform what are

essentially multiple simultaneous reductions and scans [76]. This phase can be amortized over

multiple invocations of the kernel by hoisting it out of surrounding loops. For a sorting version

of a combining-send or multiprefix, the sort can be can be performed once for multiple invoca-

138

Evaluation

tions of the parallelized loop nest. The performance of the CSC kernel should more closely

approximate that of the compiled CSR kernel using this approach. This is especially true for

the sorting approach (all that would be left after this optimization would be a reduction or

scan), which would otherwise be slower than the approach we are currently using. Thus, some

flexibility in code template selection may be necessary.

The overhead for the index set computation preamble is equivalent to about a single sparse

matrix-vector multiplication, and in both cases is hoisted out of surrounding loops.

In the code template for reductions and scans, there is an inherently serial sum across a vector

register length for each processor. Currently, this entire portion of the computation is serial-

ized. However, the sum can be performed on each processor in parallel, and then combined

serially across the processors. For this particular portion of the computation, the speedup

should approach the vector register length of the machine. The combining-send/multiprefix

code template does not task as well as the scan and reduction templates, because of indirection

and added synchronization overhead.

8.4.4 Bucketsort
The NAS benchmark suite includes a bucketsort routine to perform integer sort. This is essen-

tially a single pass radix sort. The code we are concerned with does not actually perform the

permute for the sort, it only performs the ranking step. The code for this routine:

subroutine bucksort(key, rank, keyden, N, MAXKEY)
integer N
integer MAXKEY
integer key(0:N)
int eger rank(0:N)
int eger keyden(0:MAXKEY)
integer i, j , k

do 40 i=l, MAXKEY
keyden(i) =0

40 continue

do 60 i=l, N
k = key(i)
keyden(k) = keyden(k) + 1

60 continue

do 80 i=2, MAXKEY

139

Algorithms Parallelized

4.5-

Relative Speedup of Bucketsort over CF77

4-

3.5-

3-

§■2.5-
©
CD
Q.

CO 2-

1.5-

1-

0.5-

0-

Speedup over Serial

Speedup over CF77

o
o o
o
o

o
o o
o
o

CO
o
o
o o
o

.fe. o o
o o
o

o o
o o
o

CO o
o
o o
o

o o
o
o o

00
o o
o o
o

o
o
o o
o

Array Length
Figure 8.17 Ranking performance of bucketsort from NAS benchmark suite.

o o o o o o

80
keyden(i) = keyden(i;

continue
+ keyden(i-l)

do 110 i=l, N
k = key(i)
keyden(k) = keyden(k) - 1
rank(i) = keyden(k)

110 continue
return
end

The first loop is trivially parallelizable. The second loop is parallelizable by a simple histo-

gramming combining-send. The third loop is an inclusive sum scan. The fourth loop is essen-

tially a simple multiprefix operation. The CF77 compiler can only parallelize the first and

second loops. Our compiler parallelizes all the loops in the routine. The absolute and relative

performance for this program is plotted in figures 8.17 and 8.18. The speedup over CF77

ranges between 5 and 7 for reasonably large key counts. Over a range of key densities for the

sorted keys, the performance is charted in figure 8.19.

140

Evaluation

Relative Speedup of Bucketsort over CF77

Array Length

Figure 8.18 Relative speedup of bucketsort from NAS benchmark suite.

Speedups for Bucketsort Varying Key Densities and Keys

Keys
Figure 8.19 Relative speedup of bucketsort from NAS benchmark suite for varying key densities.

141

Algorithms Parallelized

[H [I el][|«l I"?! P*1 P~N

t.J
Fl] [[71][["<]][

[\~T\ [T] fTl][[T|^[Z g] PI 1*1]

F/gwre 8.20 Partitioning patterns for simple (top) and segmented (bottom) partition operation.

8.4.5 Partition
Partition is a pair of simple loops which divides the elements of an array into different parti-

tions based on their values. The general pattern of the computation is illustrated in figure 8.20.

This type of code is prevalent in divide-and-conquer style programs. The first loop works on

arrays with single partitions:

pivot = a(l)
lower = 1
upper = size
do i = 1, size

if (a(i) .It. pivot) then
b(lower) = a(i)
lower = lower + 1

else
b(upper) = a(i)
upper = upper - 1

endif
enddo

The relative and absolute performance of this loop as parallelized by our compiler is plotted in

figures 8.21 and 8.22. CF77 is unable to parallelize this loop. Our compiler parallelizes this

loop by precomputing the monotonic induction variables upper and lower using scan oper-

ations. Those arrays are used to permute the values of a into the array b. Note, however, the

detail of the relative performance of this parallelized loop for small sequences plotted in figure

8.23. This will play an important role when we later consider trade-offs in embedding control

in divide-and-conquer algorithms.

142

Evaluation

Performance of Partition

MKeys/Second Serial/CF77

MKeys/Second Auto

-o o o—e—e—ooo—o o o o o o o—o o o o o o—e—o o o o—o o o

tn
o
o
o
o

o
o
o
o
o

cn
o
o
o
o

Keys

~
ro o o o o o

ro
01 o o o o

o o o o o

Figure 8.21 Performance of simple partition loop.

Speedup over Serial/CF77 of Partition

Keys
Figure 8.22 Relative speedup of simple partition loop.

143

Algorithms Parallelized

Performance Degradation Relative to CF77 in Simple Partition at Low Sequence Lengths
1.2-

0.8-

Q.

a> 0.6—
a.

0.4-

0.2-

ro co 4^. m o> -j oo CO —L

o o O o o o o o o o
Keys

Figure 8.23 Relative speedup (slowdown) of partition on short sequences.

The second loop works on arrays with an arbitrary number of partitions. This is referred to as

a segmented partition:

do fxp = 1, fxpartitions
pivot = a(begin(fxp))
lower = begin(fxp)
upper = end(fxp)
do i = begin(fxp),end(fxp)

if (a(i) .It. pivot) then
b(lower) = a(i)
lower = lower + 1

else
b(upper) = a(i)
upper = upper - 1

endif
enddo

enddo

Begin and end are instantiated with the beginning and ending index of each partition. This

loop has irregular structure and is parallelized with what is effectively a segmented scan via

loop flattening. The relative and absolute performance of this loop as parallelized by our com-

piler is plotted in figures 8.24 and 8.25. The speedup over CF77 drops from 5-7 in the non-

144

Evaluation

Performance of Segmented Partition of 200000 Key Sequence over varying partition sizes

800

Partitions
Figure 8.24 Performance of segmented partition loop over a range of segmentation factors.

Speedup over CF77 on Segmented Partition over Varying Numbers of Partitions

1.6-

1.5-

1.4-

D.

S 1.3-1 ffi
Q.

CO

1.2-

1.1-

300,000 Keys

400,000 Keys

_t N> co ■fcw Ol O) -J 00 CD _x
o O o o o o o o o o
o O o o o o o o o o
o O o o o o o o o o
o O o o o o o o o o

o
Partitions

Figure 8.25 Relative speedup of segmented partition loop over a range of segmentation factors.

145

Algorithms Parallelized

Time components of segmented partition for 200,000 elements

0

Permute

Flattening
Overhead

H Segmented Scans

0.00% 4

Partitions

Figure 8.26 The contribution of segmented scans and flattening overhead to the execution time
of segmented partitions.

segmented case to 1.3-1.5 in the segmented case.The overhead of loop flattening is included in

our measurements since it is unlikely that this overhead can be amortized over multiple

instances of this loop. The typical setting for this code is recursive subroutine which has had

control embedded. There is no opportunity to hoist out the loop flattening overhead in any

invocations of the subroutines.

8.4.6 Flattening Overhead in Partition Loops

There are several causes of the degradation in performance from the simple partition to the

segmented partition loops. A breakdown of the components which contribute to the execu-

tion time of the segmented partition are shown in figure 8.26. In segmented partition, as is evi-

dent from this figure, and simple partitions the data movement (permute) step accounts for a

negligible amount of time. The loop flattening overhead, which is not paid in the case of a

simple partition contributes between 30 and 66 percent of the execution time. The segmented

scan operations in the segmented partition account for the balance of the time. In the case of a

simple partition, scans dominate the execution time since there is no flattening overhead. The

loop flattening overhead of computing loop indices and the segmented scans vary in their rela-

tive contribution to execution time by the fragmentation of the segmented operation. As there

are more partitions introduced into the sequence, the cost of the loop flattening overhead

146

Evaluation

Overhead of Segmentation in a Simple Scan

Keys

Figure 8.27 The overhead of segmentation in a simple scan from the partition loops.

increases with respect to the segmented scan overhead. The amount of work in the segmented

scans decreases in the segmented partition loop because the number of 1 and 2 element parti-

tions becomes a significant factor in the overall effective sequence length the flattened seg-

mented operation works on. Furthermore, there is a slight increase in execution time of the

flattening overhead template as the segmentation of the inner loop trip counts become smaller.

The relative overhead of segmented versus non-segmented operations is plotted in figure 8.27.

The segmented operations are consistently about a factor of 2 slower than their non-seg-

mented counterparts. The primary reason is the added computation due to the inclusion of seg-

ment information (derived implicitly in the composition operator for the recurrent loop). This

overhead can be reduced by using more efficient representation and computation schemes for

segmentation, rather than costly arithmetic operations. For example, explicit conditionals can

be used in bodies of segmented operations instead of the integer addition and multiplication

which is introduced for each element of the sequence by our analysis. The fortran version of

the hand-written sparse matrix-vector multiplication routine in section 8.4.3 uses such a

147

Algorithms Parallelized

„ ,_, X X v X - - [[3 HnHnHHH QHH QJ
F/gfure 8.28 Partitioning patterns through several steps of a hypothetical divide-and-conquer
algorithm.

scheme, as well as more efficient packed bit-vector representation for segment descriptors.

This would be easy to introduce as a post-parallelization code optimization.

The relative contributions of loop flattening overhead can be mitigated in a number of ways.

Reuse is the most important mechanism by which this overhead can be effectively reduced. In

the sparse matrix-vector multiplication example of section 8.4.3, the overhead was reusable

because the kernel was embedded within a loop which multiplied many vectors. The compiler

was able to hoist this flattening overhead out of surrounding loop control. Furthermore, in

cases where multiple loops are flattened within a procedural context, some loop flattening

overhead may be reused. This plays an important role in the divide-and-conquer algorithms

we discuss next. Finally, there are opportunities for interprocedural reuse of loop flattening

overhead, especially in divide-and-conquer style recursion. We will discuss this further at the

end of this chapter.

8.4.7 Simple Quicksort

Simple quicksort is a non-stable sort which works only for sequences of nonrepeating keys.

Though it has limited application, its simplicity will be contrasted with that of the more com-

plex quicksort: The routine divides the partition into two parts based on a simple pivot selec-

tion. Then the partitioned array is copied back into the source array and each partition is

recursed upon. The progression of the algorithm is illustrated in figure 8.28.

recursive subroutine qsort_serial(a,b,begin,end,n)
integer begin,end,n

148

Evaluation

integer a(n),b(n)
integer lower, upper, i

if ((end - begin) .le. 1) then
return

endif

pivot = a(begin)
lower = begin
upper = end
do i = begin,end

if (a(i) .It. pivot) then
b(lower) = a(i)
lower = lower + 1

else
b(upper) = a(i)
upper = upper - 1

endif
enddo

do i = begin, end
a(i) = b(i)

enddo

call qsort_serial(a,b,begin,lower-l,n)
call qsort_serial(a,b,upper+l,end,n)
end

When control is embedded the partition loop here is transformed to a segmented partition is

parallelized as in section 8.4.5. Figures 8.29 and 8.30 plot the relative and absolute perfor-

mance of this quicksort using our compiler. The sustained speedup over CF77 hovers about

1.6.

Control embedding creates segmented partition operations in these divide and conquer algo-

rithms. Without control embedding, our compiler would simply parallelize the recursive sub-

routine's body, parallelizing a simple partition. Turning off control embedding and simply

parallelizing the subroutine body gives the relative performance speedup plotted in figure

8.31. The compiler in this case has fully parallelized the subroutine body. The reason for this

degradation in performance is that the parallelism available within each partition quickly gets

very small. The detail on the parallelized partition loop performance is plotted in figure 8.32.

The poor performance at small sequences is the primary factor in the poor relative perfor-

mance the parallelized code without control embedding. It is also important to note that paral-

lelizing without control embedding does not scale to multiple vector processors as well as the

149

Algorithms Parallelized

Quicksort - Nonrepeating Keys - Keys per Second

Keys

Figure 8.29 Performance of simple quicksort.

Quicksort (Nonrepeating Keys) - Speedup

Figure 8.30 Relative speedup of simple quicksort.
Keys

150

Evaluation

Speedup over CF77 for Simple Quicksort without embedding

0.7-

0.6-

0.5-

§-0.4-
CD

W0.3-

0.2-

0.1-

-e—e—e—e—-®—e-
-e—e—e—e—e~

en
o
o
o
o

o
o
o
o
o

Ol
o
o
o
o

ro
o
o
o
o
o

Ol o o o o
Keys

Figure 8.31 Performance degradation of fully parallelized simple quicksort without control
embedding.

Performance Degradation Relative to CF77 in Simple Partition at Low Sequence Lengths

Keys
Figure 8.32 Detail on the relative performance of the parallelized partition loop for small
sequence lengths.

151

Algorithms Parallelized

Sorting Rate for Simple Quicksort without Control Embedding

300-

50-

^—©—e—&—Q—o o-

-* '*—*_-*■—* * * * X * * x *—* x

CF77

Auto-No Embed

T
Ol _fc _i IV> N>
o o 01 0 W
o o 0 0 0
o o 0 0 0
o o 0 0 0

o 0 0 0

Keys

Figure 8.33 Performance of simple quicksort without control embedding with CF77-generated
code performance.

control embedding approach. Furthermore, the absolute performance degrades significantly

without control embedding, plotted in figure 8.33. To improve upon this, we might mix the

serial and parallelized code, resorting to serial code as the partitions grow smaller, as in figure

8.34. The performance still lags behind the CF77 code, primarily due to the added cost of the

conditional to check whether the size is large enough to invoke the parallel partition. This

approach will not scale very well either, though the performance on a single vector processor

clearly improves.

8.4.8 Stable Quicksort

The general, stable version of quicksort partitions by the pivot into three portions, those ele-

ments less than, equal to, and greater than the pivot. This requires two loops. The first loop

counts the elements in the first two partitions to set up the proper values for the monotonic

induction variables lower, middle, and upper. The partitioning loop is a straightforward

adaptation of the partition loop of the simple quicksort. Only the first and last partitions are

recursed upon.

recursive subroutine qsort(a,b,begin,end,n)
integer begin,end,n
integer a(n), b(n)

152

Evaluation

Relative Speedup of Simple Quicksort without Control Embedding with Mixed
Parallelization

Ol _l _l N> iO
o o Ol o Ol
o o o o o
o o o o o
o o o o o

o o o o
Keys

Figure 8.34 Speedup of simple quicksort without control embedding with mixed parallelization
and serialization relative to CF77'-generated code performance.

integer lower, upper, middle, i

if ((end - begin) .le. 1) then
return

endif
pivot = a(begin)
upper = begin
middle = begin
lower = begin
do i = begin, end

if (a(i) .It. pivot)
middle = middle +
upper = upper

else if (a(i) .eq. pivot) then
upper = upper +

endif
enddo
do i = begin,end

if (a(i) .It. pivot)
b(lower) = a(i)
lower = lower + 1

elseif (a(i) .gt. pivot) then
b(upper) = a(i)

then
+ 1
1
pivot)
1

then

153

Algorithms Parallelized

140-

20-

Quicksort - Stable - Keys per second

-*--*-, *•—w ■>'■■ X X >■'■■

"e—oooooo—ooo—e—e—e—e—o

CF77 -*- Auto

o
o
o
o
o

O
O
o o
o

CO o o
o o
o

■fc.
o
o
o
o
o

en
o
o
o
o
o

—r
a>
o
o
o
o
o

^1 o
o o
o
o

CO
o
o o
o
o

to o
o o
o
o

Figure 8.35 Performance of stable quicksort.

upper = upper + 1
else

b(middle) = a(i)
middle = middle + 1

endif
enddo
do i = begin,end

a(i) = b(i)
enddo

Keys

call qsort(a,b,begin,lower-l,n)
call qsort(a,b,middle,end,n)
end

The first loop computes offsets for each partition's monotonic induction variable and is very

similar to the partition loop, except that it does not require a permutation and the primitive

used is a reduction (segmented). Since the index computations are identical, the loop flatten-

ing overhead of this loop can be reused for the two subsequent loops. This keeps the relative

performance improvement over CF77, plotted in figure 8.36 nearly identical to that of the sim-

ple quicksort. The absolute performance is plotted in figure 8.35.

154

Evaluation

Quicksort - Stable - Speedup

o _j. I\3 u *. Ol o> ~J CO to
o O o o o o O o o
o O o o o o o o o
o O o o o o o o o
o O o o o o o o o
o o o o o o o o o

8.36 Relative speedup of stable quicksort.
i\e y»

■ ' ~N ' Partition 1 . ;<
/ 'b

Partition 2 \
•

•
•

• • Partition 1 ', •

\
•

Pi

•
•

•
• — __ _^ •

P?

Pi /
O !

\

o

'Pi + £ • • •
■Pl + E x o o V o

•
•

• •
■ •

X3
\
\

Q . /
/
•

\ • • Partition 2 ,' \ Partition 3
•

Partition 4 ,

Figure 8.37 Partitioning in the quickhull algorithm, with filled dots denoting points which are still
under consideration for inclusion in convex hull.

8.4.9 Planar Quickhull

The final divide-and-conquer algorithm we consider is a quickhull routine [68]. While most

partition steps in divide-and-conquer algorithms will likely resemble those in the quicksort

examples, the planar quickhull partition step is slightly different. Rather than a partition of all

the points, the algorithm eliminates points it concludes are definitely not on the convex hull

and divides the remaining points. This partitioning is illustrated in figure 8.37. More impor-

tantly, the algorithm reveals more loop flattening possibilities, exposing the pitfall of this con-

155

Algorithms Parallelized

trol structure transformation approach. Another difference is the non-trivial merge step after

the recursive calls, which merges the partial convex hull chains computed in each call. The

code for this algorithm is below:

recursive subroutine quickhull_serial(xa,ya,xb,yb,begin,
$ end,count,n)
integer begin,end,count,n
integer xa(n),ya(n),xb(n),yb(n)
integer maxp,maxcross,countl,count2,cross,p

if (end-begin.le.l) then
count = end - begin + 1
return

endif
p = begin
maxp = begin
maxcross = 0
do i = begin, end

cross = (xa(begin)-xa(i))*(ya(end)-ya(i)) -
$ (ya(begin)-ya(i))*(xa(end)-xa(i))

if (cross.ge.O) then
xb(p) = xa(i)
yb(p) = ya(i)
p = p + 1

endif
if (maxcross.It.cross) then

maxcross = cross
maxp = p - 1

endif
enddo
if (maxp.eq.begin) then

maxp = maxp + 1
else if (maxp.eq.end) then

maxp = maxp - 1
endif
call quickhull_serial(xb,yb,xa,ya,begin,maxp,countl,n)
call quickhull_serial(xb,yb,xa,ya,maxp,p-l,count2,n)
do i = 1,countl

xa(begin+i-l) = xb(begin+i-l)
enddo
do i = l,count2-l

xa(begin+countl+i-l) = xb(maxp+i)
enddo
count = countl + count2 - 1
end

156

Evaluation

The Performance of Quickhull

1200-

o
o
o
o
o

o
o
o
o
o

w
o
o
o
o

o
o
o
o
o

cn
o
o
o
o
o

Points

Figure 8.38 Performance of quickhull algorithm.

The last two loops in the merge phase of this algorithm are problematic, from a performance

point of view. Control embedding nests the loops, which then have to be flattened. However,

the loop index values will differ for each of these loops, so that reuse of loop flattening over-

head is not reusable across these two loops (or the partition loop). Furthermore, these are rel-

atively simple, non-recurrent loops. So CF77 does a reasonable job parallelizing the loop,

though the parallelism decreases as the algorithm recurses deeper. As a result, the total

speedup hovers around 1.25. The absolute and relative performances are plotted in figures

8.38 and 8.39.

This demonstrates a potential problem with loop flattening. Because we view loop flattening

as a general control flow transformation, the overhead is more expensive in contexts like the

control embedding for recursive subroutines than some alternatives. One alternative is to sim-

ply note that embedding control will segment all operations in the subroutine body. More opti-

mized versions of segmented operations can then be employed.

157

Comparison With NESL

0.2-

Relative Speedup over CF77 of Quickhull

o o o o o

l\3 o o o o o

CO o o o o o

o o o o o

o o o o o
Points

Figure 8.39 Relative speedup of quickhull algorithm.

8.5 Comparison With NESL

NESL is a high-level parallel language with support for expressing nested parallelism [18]. It

allows the concise expression of many algorithms in which nested parallelism is inherent. The

language is compiled to an intermediate language, whose interpreter has been ported to

numerous architectures, including the Cray C90. Many of the primitives that NESL compiles

to are similar or identical to those that our compiler generates, though the types of reductions

and scans it can compute are limited. The code for a stable quicksort is shown below:

function qsort(a) =
if (#a < 2) then a
else

let pivot = a[0];
rest = a->[1:#a];
less_greater = split(rest,{e > pivot: e in rest});
result = {qsort(v): v in less_greater};

in result[0] ++ [pivot] ++ result[1];

We have plotted the performance of the stable quicksort as coded in both NESL and Fortran

(and subsequently compiled by our compiler) on a single vector processor of the C90 in figure

158

Evaluation

Performance of Stable Quicksort for NESL and Auto Parallelization

140

Ol _L _J. ro ro co
o o Ol o 01 0
o o o o 0 0
o o o o 0 0
o o o o 0 0

o o o 0 0

Keys
Figure 8.40 Performance of stable quicksort in code automatically parallelized and code written
in NESL on a single vector processor.

dation in the NESL code. This is primarily due to the interpreter overhead of the intermediate

language, VCODE [16]. The intermediate language is interpreted by a VCODE interpreter

compiled for a range of architectures. The interpreter adds a constant amount of overhead to

each operation executed. Furthermore, since the granularity of the intermediate code is at the

level of parallel operations, there is not much optimization by loop fusion to, among other

things, exploit Cray architectural features, like chaining of vector operations. However, this

particular disadvantage is also true of our compiler, where we have expended little effort to

optimize in this fashion across parallel operations.

8.6 Space Overhead

The compiler was not developed with memory usage optimization in mind. The schemes we

use for the recurrence parallelization technique and the two control structure transformations

introduced in this dissertation allocate memory fairly liberally, though in the cases of loop flat-

tening and control embedding, the techniques of section 7.6 attempt to mitigate this. Further-

more use of more efficient representations, such as bit vectors in place of integer vectors,

159

Early Implementation Experiences

might make a difference. It is worth discussing the memory usage of the recurrence parallel-

ization technique since it introduces template variables, which may, in many cases be difficult

to reuse.

For a recurrent loop of length n, the space used by the k template variables is simply kn.

Compared to explicit encodings of the recurrences, the space overhead amounts to one of

these template arrays. For example, if we do template variable computation "in place", this

only saves space for one template variable. If the reduction or scan intrinsically requires that

multiple values be computed in the combining tree, the number of template variables will only

reflect this. An explicitly parallel encoding of the scan will not necessarily improve the mem-

ory requirements of the operation. For example, consider the linear recurrence of section

4.1.3.1. We derive a method which uses two template variables in computing the composition.

Note, however, that a first order linear recurrence generally requires two values to be propa-

gated in an explicit parallel prefix or reduction implementation. We can reuse the space for the

value being computed, the recurrence variable, in the case of a scan operation. Thus, we save

at most one memory slot over the templatized version. So the space overhead is typically n for

each reduction or scan of length n generated. We may amortize this overhead between scans

and reductions by reuse of template variable space.

8.7 Early Implementation Experiences

The recurrence parallelization technique has also been implemented and used to generate code

for the iWarp parallel computer. The iWarp is a 8x8 grid of LIW computation cells with tightly

integrated, high-speed communication paths [22]. We developed general reduction code tem-

plates for block-wise distributed arrays.

Timings from an automatically extracted addition reduction (referred to as Sum) on 64 proces-

sors are shown in figure 8.41, along with the performance of a serial implementation and the

performance of the intrinsic. Despite the additional overhead of a function application step

and broadcast, the slopes of the automatically extracted code and the intrinsic addition reduc-

tion operation are fairly close. The relative speedup efficiency of the automatically generated

code (computed as automatic speedup/intrinsic speedup) for 64 processors converges to over

75%. Figure 8.42 displays speedup vs. number of processors for the sum, maximum, and

160

Evaluation

Sum Reduction - 64 Processors

5 -

2 -

1 -

-
 I 1 1— 1 1

-

Serial Execution -•—
Automatically Parallelized -i—

Intrinsic Function -a— /

- -4

-
J* __ 4-"

/ K——" Q-

"

tf.nr-

...a
"B~." . i

0 5000 10000 15000 20000 25000
Vector Length

Figure 8.41 Timings of sum reduction on 64 processor iWarp array.

30000

Speedup -128k elements

0 10 20 30 40 50 60 70
Num Procs

Figure 8.42 Speedup of various reductions on differing iWarp array configurations.

maximum subsequence reductions. The speedup scales linearly with the number of proces-

sors.

161

Performance Observations

8.8 Performance Observations

The factors affecting performance of our compiled code are numerous. Program parameters

such as size, average row length for sparse matrices, and key density for combining-send are

important considerations. The performance graphs we have presented here give a good indica-

tion of the type of performance one can expect from such variances in those parameter spaces.

There are also less predictable factors such as data value distributions that we have attempted

to mitigate by performing multiple test runs over different data sets. These factors more or

less impact the performance of the particular primitives parallelized, but they do not reveal

much about the compiler choices made in parallelizing the code.

Certain compiler decisions and strategies chosen here have a great impact on the overall per-

formance. This has lead us to make several observations about the performance results here

and our experiences in building this compiler:

• Loop flattening overhead is worth optimizing.

The loop flattening overhead is primarily responsible for the lower relative performance

improvements in the divide-and-conquer algorithms. We have optimized the overhead by

parallelizing and selectively eliminating those portions of the loop index computation

which are unnecessary. However, there are opportunities for reuse of this overhead that

have bigger overall payoffs.

• Reuse is important.

The loop flattening overhead, as well as the SPINETREE structure construction phase of

the combining-send and multiprefix templates, can be reused over multiple invocations of

the compiled primitive or loop under certain circumstances. In particular, if the code par-

allelized is embedded within another loop, and the factors affecting the loop indices (such

as the sparse matrix shape) or the mappings created by the combining-send operation are

invariant with respect to that loop, the code can be hoisted out. Furthermore, for multiple

flattened loops or combining-send/multiprefix operations which have similar shape and/or

mapping factors, the respective overheads can be recycled between them.

The compiler performs this optimization for loop flattening overhead and combining-send

and multi-prefix overhead. However, in cases where the applicability of these optimizations

is limited, such as the 'quickhufl' test program, the performance suffers, though it still out-

performs the native compiler's performance.

162

Evaluation

Loop flattening manages trade-offs in granularity and load balancing.

Loop flattening, by effecting a flattening of nested parallelism, effectively eliminates the

trade-off between granularity, load balancing, and run-time system complexity in parallel-

izing irregularly nested control structure. However, it is important to note that the flatten-

ing of parallelism is only conceptual from this compiler's point of view. The compiler

makes note of where loop flattening is applied so that future target architectures can choose

alternative implementation strategies for the particular segmented operation derived from

the code. That is, flattening works on our current architecture, but the segmented operation

can also be executed by parallelizing across segments or within segments depending on the

target architecture (and data conditions).

Embedding incurs little performance cost.

Based on the relative speedups of the 'segmented partition' program over a range of parti-

tion counts and the divide-and-conquer style programs, one can see that loop flattening is

the primary constraint on performance. In relation to loop flatteing, embedding of control is

a relatively cost-free transformations from a performance point of view. This is reinforced

by profiles of the parallelized code, which reveal relatively insignificant amounts of time

spent in embedding overhead.

On the other hand, the space overhead control embedding is higher. This makes sense con-

ceptually since multiple activation records (all the activation record in a particular level of

the tree) are effectively being stored in local variables expanded in rank by the embedding

process. This cost is not unreasonable, since we are conceptually parallelizing across multi-

ple function or subroutine calls, whose activation records must exist anyway. In fact, the

cost might be a little lower since we do not necessarily apply expansion to all local vari-

ables in embedding.

Recognizing the right parallel primitive(s) is important.

The algorithms in this dissertation which employ nested control structure often benefit

greatly from the sum total of the compiler passes in this dissertation. The abilities to gener-

ally parallelize recurrences and flatten nested parallelism in a serial language setting are

each individually important. However, the two taken together allow compilers to generate

what we believe to be the best algorithmic choice for parallelization of these algorithms:

segmented operations. This is borne out by the positive performance results relative to the

CF77 compiler, despite the relatively unoptimized quality of the primitive implementations

163

Opportunities for Performance Improvement

our compiler uses. In other words, the algorithmic quality of the parallelized code out-

weighs the quality of the particular implementation of a primitive relative to alternative par-

allelization strategies (i.e. the CF77 compiler's parallelization without flattening). The

algorithms automatically parallelized by our compiler scales better to multiple processor

configurations than the code parallelized by the CF77 compiler, as evidenced by the CSR

and CSC sparse matrix-vector multiplication examples.

8.9 Opportunities for Performance Improvement

A number of opportunities exist for improving the performance of code generated by our com-

piler. These are primarily post-parallelization optimizations. That is, the code is still parallel-

ized using the techniques in this dissertation, but is further optimized afterwards.

• Interprocedural reuse of loop flattening overhead

As mentioned in the previous section. The goal here would be to reuse the loop index com-

putation portion of the loop flattening overhead incurred during divide-and-conquer algo-

rithms. Recomputing the entire loop index set is redundant, since less expensive operations

can be used to recycle that computation.

• Reuse of combining-send and multiprefix structure

This entails the reuse of the SPINETREE structure that is built as part of our combining-

send and multiprefix operations. This may also involve reusing sorted sequences in alterna-

tive combining-send schemes. One scheme for executing a combining send is to perform a

stable sort of the source array using the indices as keys. Then a simple segmented reduction

or scan can be performed to compute the combining-send and multiprefix operations,

respectively. A scatter or permute of the results might be necessary after this step. The

advantage of this approach is in contexts where reuse is likely to be high. Though the sort-

ing step is expensive, if we can reuse it often enough the potential advantage of approach-

ing reduction and scan performance over using the SPINETREE structure may be

worthwhile.

• Scaling to multiple processors

While we have written multiple processor versions of our basic reduction and scan tem-

plates and we can generate those, the problem with this is our back-end, the Cray CF77

compiler. The CF77 compiler does very well at vectorization, which is the primary reason

164

Evaluation

we chose to compare our compiler against it in the single vector processor case. However,

unless loop nests are present, the CF77 compiler does not simultaneously vectorize and

parallelize well (the sparse matrix-vector multiplication kernels were exceptions since

there was a loop nest). So, to exploit parallelism in those parts of the code that our front-

end was not directly responsible for parallelizing, we would have to build a better mecha-

nism for parallelizing and tasking those pieces of code that are neither recurrent or irregu-

lar. Unfortunately, this is outside the scope of this thesis.

It is important to note that the operations that we parallelize, such as reductions, scans,

combining-sends, and multiprefix along with their segmented variations, do scale to multi-

ple processors very well. The CSR example, in which the multiprocessed template conve-

niently computed the entire loop nest, illustrates the performance of a segmented reduction

on multiple vector processors. It is also important to note that the speedup scaling is true

on a wide range of parallel architectures.

Efficient representation and computation of segments

The representation of segmentation in the recurrences we parallelize is implicit in the oper-

ators we derive for use by parallel reductions and scans. The computation involved in com-

puting with segmentation typically includes two multiplications and an addition for each

element, in addition to the operator in the reduction or scan. This an artifact of the way the

underlying analysis treats loop invariant conditions. There are more efficient ways of com-

puting where segments begin and end that involve conditionals. A conditional expression in

the combining operator used to select where values should be inserted in a segmented oper-

ation can be generated with a slight modification to the underlying analysis.

The compiler has opportunities to reuse segment-related computation across multiple seg-

mented operations derived automatically from loops with identical loop bounds. One way

in which this might be effected is to insert explicit representations of the parallelized code,

rather than subroutine calls to specialized templates. That way, loops across several reduc-

tions or scan can be fused, creating opportunities to eliminate redundancy.

Space efficient representation schemes for segmented operation are also possible. Bit vec-

tors and segment-length vectors are two such candidates. It is possible that the analysis

could be extended to manage such structures.

165

Review

8.10 Review

This chapter presented the results of compiling a range of loops and algorithms using the tech-

niques presented in this dissertation. For simple recurrences, the performance of our general

code templates are shown to be competitive with the optimized versions used by CF77. For

more complex recurrences, the code our compiler generates performs significantly better since

CF77 has limited ability to parallelize such recurrences. The relative performance improve-

ments gradually decrease with the application of loop flattening and control embedding, espe-

cially in cases where the loop flattening overhead cannot be eliminated or amortized over

multiple instances of the loop.

166

Chapter 9

Related Work

Some components of this thesis have precedent, though the particular combination of transforma-

tions and the power they display in a compilation system is unprecedented. In this chapter, we dis-

cuss work related to the individual components of the compiler. We primarily focus on compiler

transformations and analysis. Excellent related work references on algorithms and parallel primi-

tives may be found in the relevant source literature [15] [18] [32] [49] [62] [71] [76] [77] [96].

9.1 Automatically Parallelizing Recurrences

Automatic recognition and efficient solution generation for recurrences from serial code has

mostly been limited to finding a pattern that matches a known recurrences and then using one of a

library of fast solutions to solve it. These methods are limited by several factors:

• They are limited by the set of recurrences programmed into the compiler.

• They have limited ability to solve recurrences involving arbitrarily nested conditional opera-

tors.

• They are dependent on the syntactic quality of the source code.

Pinter and Pinter's algorithm [66] does well at parallelizing recurrences with simple filtering

(non-dependent) conditionals. However, they depend on the syntactic quality of the source code

rather than the semantic content. They pattern match on the dependence graph to find the recur-

rence operator. Sensitivity to source code forms is generally a problem for the pattern matching

methods employed in many commercial compilers.

167

Automatically Parallelizing Recurrences

Several semantic techniques [6] [50] [72] have been proposed as a step toward using algebraic

properties to simplify complex loop body structures, thus addressing the problem of source

code quality. However, they are also limited by pattern matching for fixed set of recurrence

operators. This, in turn, limits the applicability of some of the powerful control structure trans-

formations discussed in this thesis.

Callahan [24] and Chen and Hou [27] both proposed a similar model to ours for recurrent loop

execution. Callahan does not pursue aggressive symbolic analysis to automatically derive

solutions, instead suggesting a pattern match against a set of core recurrences. He does sug-

gest useful ways of combining recurrences to amortize the overhead of computing a recurrent

primitive and to increase the effective granularity of operations. The mechanisms are useful

to us because the particular components manipulated are essentially identical to those we

automatically derive.

Chen and Hou make the observation that the associativity of function composition can be

exploited on functions on finite sets. The basic idea is to compute all possible composite func-

tions, which is tractable since the domains and ranges they consider are small and finite.

Though interesting, this is not particularly useful for more general computation on integers

and real numbers. They have not, to our knowledge, used this observation in a compiler.

Mou et al. [63] characterize whether a recurrence is parallelizable based on topological prop-

erties of the recurrence. Those topological properties include whether an unfolded (similar to

unrolling a loop once) recurrence is conservative in the sense of preserving its topology. This

is analogous to our scheme for composing and testing the result for inclusion in the original

functions class. However, their work is essentially limited to those recurrences computable by

reductions and scans, and whose forms are essentially linear. The reason is that they had not

developed a framework for generally building the necessary associative operators.

More recently, Rinard and Diniz [73] have developed a mechanism to use commutativity anal-

ysis to parallelize programs. The idea is that if a collection of operations commute, then they

can be executed in any order, and thus parallelize. The kind of analysis they employ to

uncover commuting operations is similar to ours, however the range of operations which com-

mute is considerably smaller. They exploit the encapsulation properties of C++-based pro-

grams to parallelize such graph-based algorithms as Barnes-Hut [12].

168

Related Work

Induction variables comprise a subset of the type of recurrent computations discussed here.

Induction variable computations typically have a closed form over the loops index variables

(though monotonic induction variables do not). Since the compiler can typically eliminate the

variable by substituting the closed form expressions, using reductions or scans to compute

induction variables is usually contraindicated because of the higher overhead. The problem of

identifying various induction variables has been explored in some depth, though typically pat-

tern matching on various program representations is used. The most recent work relies on the

Single Static Assignment (SSA) graph [94], or its variants [87].

The nature of the analysis is similar to abstract interpretation [3] [35]. This is an analysis tech-

nique whereby the program is executed in an abstract domain much simpler than the usual

semantic domain programs run in. The idea is to capture some property of the program based

on the meaning of language features in that abstract domain. For example, a traditional data-

flow analysis framework supports particular abstract interpretations of programs for various

types of data-flow problems. Though very different, the modeling functions in our analysis

comprise an abstract domain in which we execute a limited type of program and language fea-

ture: non-nested recurrent loops.

9.2 Flattening Loop Nests

Loop flattening is generally not a new concept. Loop coalescing [67] and loop collapsing [52]

are both similar transformations for regular loop nests. Loop flattening provides essentially

the same benefits in terms of load balancing and availability of parallelism, but differs signifi-

cantly in key areas. Subscript simplification in the regular loop transformations may only

involves simplifying algebraic expressions, while indirection may defeat this approach for

irregular loop nests.

Hanxleden and Kennedy [41] proposed a general notion of loop flattening to facilitate paral-

lelization of nested irregular loops. We benefit from the presence of the advanced recurrence

transformations in our compiler, which, in concert with loop flattening, allow the recognition

of segmented reductions, segmented scans, and combining-sends. Also, we attempt to opti-

mize the potentially costly overhead of computing original loop indices.

However, these works, with the exception of the loop coalescing work, were all preceded and

subsumed by the parallelism flattening work of Blelloch [14]. Our work translates this work

169

Flattening Loop Nests

into an automatically parallelizing compiler context, with the necessary analysis and source

code transformation to support such a transformation. One primary difference is that our sim-

ple transformation does not have the breadth of general flattening of parallelism. Another is

that we choose an a priori flattening scheme rather than a flattening of composed, parallelized

operations. The primary reason for flattening control structure rather than parallel primitives is

the difficulty for the compiler in parallelizing complex codes that include mixes of recurrent

and non-recurrent codes in multiply nested loops. Contrasted with the simpler, yet still power-

ful, loop flattening approach, the relative cost of engineering the compiler in such a way to

support the more general approach seemed high. We pay a price of having potentially more

expensive overhead, as well as more complex source code presented to the parallelizer. How-

ever, this last issue works to our advantage because of the nature of our recurrence paralleliza-

tion technique.

In flattening arbitrarily nested parallelism, we are performing a function similar to one per-

formed by compilers for some high level parallel languages. One such language is Nesl [18], a

portable, nested data-parallel language. A phase of the Nesl compiler flattens explicitly speci-

fied expressions of nested parallelism into non-nested parallelism.

A good deal of work has been done in parallelizing irregular array access patterns in the form

of array accesses with multiple levels of indirection [31] [42]. However, this work is somewhat

orthogonal to the issues discussed in this paper, though some of the data-flow analysis prob-

lems can be applied here as well. Lucco [56] presents dynamic scheduling algorithms for

wider range of irregular code. Such scheduling methods might be effective mechanisms for

parallelizing the primitives derived by the compiler analyses presented in this dissertation.

Blelloch [15] demonstrated that segmented reductions and scans were useful and efficient par-

allel primitives for a broad range of algorithms. Blelloch et al. [19] and Sheffler [76] found

applications of these segmented parallel primitives, merges, and combining-sends to sparse

matrix algorithms. Other parallelized sparse matrix algorithms are discussed in [19] [51].

170

Related Work

9.3 Control Embedding

To our knowledge, there has been no other work in automatically parallelizing divide-and-

conquer algorithms in serial, imperative languages. However, the transformation does have

roots in a variety of compiler transformations for a variety of language and programming par-

adigms.

The idea of embedding control structure in function calls has precedence in work on loop

embedding [39]. Loop embedding exposes code to parallelization by embedding surrounding

iterative control structure (loops) in subroutine calls. What our embedding transformation

achieves is more general in the sense that we also embed surrounding conditional structure

and handle recursions (i.e. we compute, in code, the fix-point of the transformation when

embedding in a recursive subroutine). However, we apply the transformation more narrowly

to recursive subroutines.

The closest transformation to control embedding for recursion is not found in the automatic

parallelization world. The Nesl compiler [18] folds expressions of nested parallelism into

embedded function calls, though its task is made considerably easier by the source language.

The compiler can then apply the general parallelism flattening scheme.

9.4 Other Parallelization Techniques

There has been a considerable effort in transforming regular loop nests to expose loops with-

out loop-carried dependences to parallelization [91][93]. These are effective at transforming

superficially recurrent loops within loop nests. The more general loop transformation frame-

works are also quite effective at being adapted to different parallelization styles, as well as

being extended to solving other important problems in compiling for high performance, such

as optimizing data layout [7] and improving data locality [92]. However, none of the pro-

grams or loops considered in this dissertation can be effectively parallelized by such tech-

niques. The presence of irregularity or lack of nesting of non-recurrent loop is the stumbling

block.

171

Other Parallelization Techniques

172

Chapter 10

Conclusion

10.1 Summary

The primary goal of this work is to move beyond dependence analysis and pattern matching based

approaches to parallelization, specifically as they relate to parallelizing recurrent and irregular

computation. The main claim of this dissertation is that recurrent and irregular code can be auto-

matically mapped into useful higher level parallel primitives in a general and reliable manner.

The thesis of this dissertation was proven through the development and testing of several new

analyses and transformations. Rather than just comprising a collection of unrelated compiler

transformations, the design and selection of the new compiler passes complement each other well.

Each individual transformation is useful, but the combination of them has a significantly larger

impact. The primary reason is that our recurrence parallelization technique is robust and flexible.

We have designed and implemented a technique which uses the following concepts and methods

to automatically extract parallelized code for recurrences:

• A model for recurrent loop bodies which is always associative.

• Symbolic substitution of expressions.

• Linear relation feasibility testing to simplify complex conditional structures.

• Logic minimization techniques to reduce conditional nesting structure.

• A specialized unification algorithm which abstracts out subexpressions of loop invariant val-

ues.

173

Summary

We distinguish our technique from existing techniques with the following:

• We are able to find solutions for a broad class of recurrences by actually extracting an effi-

cient associative operator from the source code. We rely on the analytical abilities of the

compiler rather than a fixed collection of recurrences.

• We handle conditional operators embedded within recurrences in a general way. The abil-

ity to deal with conditionals in a robust manner is critical for handling more complex con-

trol structure contexts.

• Our model of recurrences is more general than prior approaches. The analysis here can be

extended to other forms of recurrence, such as combining-sends and list-prefix operations.

We use a basic loop flattening transformation that facilitates the parallelization of irregular

loop nests and provides a basis for recognizing more sophisticated parallel primitives. The

basic idea is to create a single, non-nested loop that emulates the execution of the original loop

nest. This is achieved by first computing the original loop nest's index sets. Then, by creating

a non-nested loop with a trip count equal to the total sum of inner loop trip counts, the pre-

computed index sets are used to decide which point in the original loop the flattened loop

should execute. The transformation has the following benefits:

• The application of most existing parallelization transformations, as well as our recurrence

parallelizing technique, to the loop nest in toto by applying the transformations to the flat-

tened loop. Artifacts of the loop flattening transformation include complicated conditional

structures, which the recurrence parallelization technique must be able to deal with.

• The parallelization of the index set computation. This allows the practical use of loop flat-

tening in a compiler by attacking the remaining artifact of the transformation: the index set

computation. Also, this leads to some intriguing future possibilities for extracting other

sophisticated algorithmic idioms from irregular loops.

• The amortization of the index set computation over repeated executions of the loop nest.

For sparse matrix-vector multiplication, this is analogous to the preprocessing steps of

many existing parallel libraries, most of which are applied once for repeat multiplications

of the matrix.

Parallelizing irregular loops in toto is important for the following reasons:

174

Conclusion

• Load balancing the assignment of outer loop iterations is complicated by unpredictable

inner loop trip counts.

• Inner loop trip counts may not be sufficiently large to make parallelizing the inner loop

body worthwhile.

Embedding control for divide-and-conquer style recursion allows the compiler to exploit both

intra- and inter-procedural parallelism. This parallelism results from using different proce-

dural contexts to work on independent subproblems of original problem. The problems in

divide-and-conquer algorithms closely mirror those of irregular loop nests (because they both

are expressions of arbitrarily nested parallelism [14]).

• Ever decreasing amounts of parallelism are available in partitions as they are repeatedly

subdivided. However, the amount of parallelism across all sibling partitions remains rela-

tively constant with reasonable partitioning functions. Thus, parallelizing across all parti-

tions simultaneously inures the parallelized code to smaller partition sizes.

• Partition sizes may vary depending on the strategy. This may result in unpredictable and

unbalanced load situations. Parallelizing across all partitions simultaneously creates the

greatest opportunity for avoiding this problem. Furthermore, the number of partitions at

early stages is relatively small (the reverse of the situation with partition sizes). Paralleliz-

ing between partitions only would result in a lack of parallelism at early stages of execu-

tion. Parallelizing across all partitions eliminates the need to consider the relative amounts

of parallelism in the partitions and across the partitions at various stages of computation.

Using these three compiler techniques make algorithmic sense, but they also interact well in

an operational sense. The artifacts created by loop flattening are well-suited for the associativ-

ity analysis of the recurrence parallelization technique, since loop flattening produces nested

conditional structure and indirect accesses which look like recurrences, but eliminates nested

iterative structure. Both of which are, in turn, well-suited to follow control embedding, since

its control embedding yields nested and, typically, irregular loops. Each compiler pass in

turn generates exposes more code to parallelization for the next pass of the compiler. The net

effect is that we have a system which enables the parallelization of many more useful algo-

rithms than the sum of each transformation's individual impact. The performance improve-

ments relative to the Cray C90's native CF77 compiler were good across a range of programs.

175

Future Work

Among the lessons learned from building this compiler and analyzing the code generated was

that details matter. The new transformations, in choosing superior parallel algorithms, account

for significant performance improvements, but how they were engineered had a large impact

upon the performance. Careful selection of code templates for recurrences and mechanisms

for tracking code transformation through the phases of the compiler were very important to

both the performance of the compiler and the code it generated. Because some of the higher-

level primitives incurred relatively high computational and memory overhead, reuse was also

an important factor in the performance of many of the applications parallelized here. In sec-

tion 8.9 and future work section (10.2) of this chapter, we discuss further extensions to the

compiler to improve performance.

10.2 Future Work

Based on our experiences, we believe that we have reached a point of diminishing returns in

parallelizing further recurrent primitives in Fortran. However, we believe that there are signif-

icant opportunities to apply this work and extensions thereof to parallelizing C and C++. The

primary opportunity here is the use of pointer-based, recursively defined data structures.

Recurrent operations on linked lists, graphs, and trees can often be parallelized using a paral-

lel list-prefix algorithm [96] or parallel tree contraction [62]. An important step toward to

achieving this is the evolution of dependence analysis for pointer-based structures [48] [90].

The compiler currently uses fixed code templates for computing the various recurrent primi-

tives. However, there are opportunities to exploit both similarities and the structure of those

templates. First, the compiler uses generally using a pattern matching scheme on the depen-

dence graph and index expressions to determine the type of parallel primitive to use. It may

be possible just to have a higher level prototype of a reassociating, recurrent primitives which

the compiler can specialize to an appropriate primitive based on the target variable and its

indexing scheme (if any). Furthermore, rather than generate specialized library calls for each

parallelized loop, as we are essentially doing, there are opportunities for optimizing the struc-

tures of the recurrent primitives in context. For example, under certain circumstances there are

reusable portions of a multiprefix operation (the SPINETREE structure or sort, depending on

the implementation we use). These pieces of code can be moved outside of surrounding loops

to eliminate redundancy.

176

Conclusion

A fundamental problem in compiling irregular loop nests is finding a way to handle the index

set computation. A fixed, parallelized preamble for computing index sets for segmented loop

nests was introduced in this paper. It is possible to optimized this preamble on a case-by-case

basis, to embed it in other parallelizable loops, and so forth. However, the more general paral-

lelism flattening scheme might afford the compiler better opportunities to optimize in this

manner.

Irregular loop nests come in many flavors. We have briefly studied strategies for compiling

irregular loop nests that include while loop and conditioned loop exits. Many of these loops

should be parallelized using parallel merging and pattern matching primitives.

The overhead of computing index sets for loop flattening is a source of concern. A more gen-

eral interprocedural partial redundancy elimination scheme would be useful for hoisting loop

flattening and combing-send overhead (as mentioned in section 10.2) out of subroutines.

There also may be more efficient mechanism of representing and partially recycling index set

computations, especially for loops creating by control embedding of a divide-and-conquer

algorithm.

As the state of the art in dependence analysis for pointer-based structures and interprocedural

analysis advances, we expect to find wider applicability of these techniques to languages like

C and C++. We think this would be useful for many tree- and graph-structure traversal algo-

rithms, as well as the divide-and-conquer algorithms presented here. The control structure

transformation presented here can straightforwardly be applied to such codes. The difficulty in

adapting this work to such domains is in managing such complex data-structures for parallel

execution contexts. However, we suspect that lessons learned from other projects involved in

parallelizing C and C++ can be applied here [9] [57].

The application of alternative models and more sophisticated reasoning mechanism in a com-

piler leads to many intriguing possibilities for the future of compiler design. Parallelizing

compilers now routinely include mechanisms for efficiently deciding linear inequalities,

which opens the door for sophisticated program analysis. For example, rather than being

largely restricted to less accurate heuristic dependence tests, more exact (and ever faster) anal-

yses have been developed [59] [69]. An open question is whether general analysis frameworks

can be built to support the representation and transformation of new program models. A cru-

cial issue to the relevance of this question is the relative expense of such a framework and

177

Concluding Remarks

analysis. Both the potential performance payoffs and the applicability of such a framework to

a wide range of analyses should be considered. In light of this, we hope the analysis presented

here, as well as elsewhere [73], to be promising first steps toward justifying the expense.

10.3 Concluding Remarks

This dissertation bridges the gap between the work of the parallel language and model com-

munity and the parallelizing compiler community. Powerful primitives, such as reduction,

scan, combining-send, and multiprefix operations, and support for nested parallelism have

been extremely effective at providing a concise language in which to expression relatively

complex algorithms. Unfortunately, the automatic parallelizing compiler community had not

adequately addressed such expression in serial code, assuming them to be either intractable or

that stop-gap measures were sufficient.

The philosophy of our approach is that recurrence parallelization must be extended beyond

what had been done prior this work, but in a well-founded manner. We have developed general

and robust compilation techniques for automatically parallelizing recurrent loops into reduc-

tion, scan, combining-send, and multiprefix operations. These techniques are flexible enough

to deal with other important components of the compilation process.

The ability of the recurrence analysis to handle complex conditionals has enabled us to

develop effective compilation techniques for parallelizing irregular loop nests. These tech-

niques are fully compatible with both the underlying recurrence parallelization technique and

traditional dependence based approaches. Furthermore, we have also developed techniques

and analysis to discover expressions of nested parallelism in serial encoding of divide-and-

conquer algorithms and to transform them for both parallelization and flattening. Both of these

control structure transformations are fully compatible with underlying techniques for parallel-

izing recurrent loops and non-recurrent loops.

The net effect of these transformations is a radical improvement in the range of programs that

parallelizing compilers can parallelize effectively. This compiler technology brings useful

parallel primitives and building blocks to users of serial languages. We have proven this by

presenting performance results of compiling programs and loop kernels from a range of

178

Conclusion

benchmark suites and application domains. Our compiler beats a good native vectorizing com-

piler for the C90 in nearly all of these cases. More importantly, the presentation of such auto-

matic parallelization results for serial, imperative languages is unprecedented.

179

Concluding Remarks

180

Chapter 11

Bibliography

[1] Scientific Libraries Reference Manual. Cray Research, Inc. Publication SR-2081.

[2] UNICOS Performance Utilities Reference Manual. Cray Research, Inc. Publication SR-

2040.

[3] S. Abramsky and C.L. Hankin. Abstract interpretation of declarative languages. Ellis

Horwood, 1987.

[4] A. Aho, J. Hopcroft, and J. Ullman. The design and analysis of computer algorithms.

Addison-Wesley, 1974.

[5] A. Aho, R. Sethi, and J. Ullman. Compilers, principles, techniques, and tools. Addison-

Wesley, 1988.

[6] Z. Ammarguellat and W.L. Harrison m. Automatic recognition of induction variables

and recurrence relations by abstract interpretation. In Proceedings of Sigplan 1990,

Yorktown Heights, NY, 1990.

[7] J. Anderson, S. Amarasinghe, and M. Lam. Data and computation transformations for

multiprocessors. In Proceedings of the Fifth ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, pp. 166-178, Santa Barbara, CA, July, 1995.

[8] Applied Parallel Research, Inc. Forge Magic/DM: User's Guide. Version 1.0, 1993.

[9] J. Arabe, A. Beguelin, B. Lowekamp, and E. Seligman. Dome: parallel programming in

a distributed computing environment. In Proceedings of International Conference on

181

Parallel Processing, Honolulu, HI, April 1996.

[10] F. Aurenhammer. Voronoi diagrams - a survey of a fundamental geometric data

structure. In ACM Computing Surveys, Vol. 23, No. 3, pp. 345-405, September

1991.

[11] R. Ballance, A. Maccabe, and K. Ottenstein. The program dependence web: a repre-

sentation supporting control-, data-, and demand-driven interpretation of imperative

languages. In Proceedings of the SIGPLAN '90 Conference on Programming Lan-

guage Design and Implementation, pp. 257-271, June 1990.

[12] J. Barnes and P. Hut. A hierarchical O(NlogN)) force-calculation algonthm.Nature

6096(324):446-449, December 1986.

[13] J. Bentley. Programming Pearls. Addison-Wesley, 1986.

[14] G. Blelloch. Scan primitives and parallel vector models. Ph.D. Dissertation, Massa-

chusetts Institute of Technology Laboratory for Computer Science, 1989.

[15] G. Blelloch. Scans as primitive parallel operations. IEEE Transactions on Comput-

ers, C-38(ll): 1526-1538, November 1989.

[16] G. Blelloch and S. Chatterjee. VCODE: A data-parallel intermediate language. In

Proceedings Frontiers of Massively Parallel Computation, October 1990.

[17] G. Blelloch, S. Chatterjee, J. Hardwick, M. Reid-Miller, J. Sipelstein, and Marco

Zagha. CVL: A C vector library. School of Computer Science, Carnegie Mellon Uni-

versity, Technical Report CMU-CS-93-114, February 1993.

[18] G. Blelloch, S. Chatterjee, J. Hardwick, J. Sipelstein, and M. Zagha. Implementation

of a portable nested data-parallel language. In Proceedings 4th ACM SIGPLAN Sym-

posium on Principles and Practice of Parallel Programming. San Diego, CA, May

1993.

[19] G. Blelloch, S. Chatterjee, and M. Zagha. Solving linear recurrences with loop rak-

ing. In Proceedings Sixth International Parallel Processing Symposium, March

1992.

[20] G. Blelloch, M. Heroux, and M. Zagha. Segmented operations for sparse matrix

182

Bibliography

computation on vector multiprocessors. Carnegie Mellon University, School of

Computer Science Technical Report CMU-CS-93-173, August 1993.

[21] G. Blelloch and G. W. Sabot. Compiling collection-oriented languages onto mas-

sively parallel computers. Journal of Parallel and Distributed Computing, 8(2): 119-

134, February 1990.

[22] S. Borkar, R. Conn, G. Cox, S. Gleason, T. Gross, H.T. Kung, M. Lam, B. Moore, C.

Peterson, J. Pieper, L. Rankin, P.S. Tseng, J. Sutton, J. Urbanski, and J. Webb. iWarp:

An integrated solution to high-speed parallel computing. In Supercomputing '88, pp.

330-339, November 1988.

[23] Robert K. Brayton. Logic minimization algorithms for VLSI synthesis. Kluwer Aca-

demic Publishers, Boston, 1984.

[24] David Callahan. Recognizing and parallelizing bounded recurrences. In Proceedings

of the Fourth Workshop on Languages and Compilers for Parallel Processing, Santa

Clara, CA 1992.

[25] N. Carriero and D. Gelernter. How to write parallel programs: A guide to the per-

plexed. ACM Computing Surveys, 21 (3):323-357, September 1989.

[26] K.M. Chandy and C. Kesselman. Compositional C++: compositional parallel pro-

gramming. In Languages and Compilers for Parallel Computing, 5th International

Workshop Proceedings, New Haven, CT, August 1992.

[27] R.J. Chen and Y.S. Hou. Non-associative parallel prefix computation. In Information

Processing Letters, 44:91-94, 1992.

[28] Shyh-Ching Chen and David J. Kuck. Time and parallel processor bounds for linear

recurrence systems. IEEE Transactions on Computers, C-24(7), July 1975.

[29] D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken,

and K. Yelick. Parallel programming in Split-C. In Proceedings Supercomputing '93,

pp. 262-273, Portland, OR, November 1993.

[30] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F. Zadeck. Efficiently computing

static single assignment form and the control dependence graph. ACM Transactions

on Programming Languages and Systems. 13(4):451-490, October 1991.

183

[31] R. Das, J. Saltz, and R. von Hanxleden. Slicing analysis and indirect accesses to dis-

tributed arrays. Technical Report CS-TR-3076, University of Maryland, May 1993.

[32] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.

Oxford Science Publications, 1986.

[33] R. J. Duffin. On Fourier's analysis of linear inequality systems. Mathematical Pro-

gramming Study no. 1, North-Holland, 1974.

[34] John T. Feo. An analysis of the computational and parallel complexity of the liver-

more loops. Parallel Computing, 7:163-185,1988.

[35] A. Field and P. Harrison. Functional Programming. Addison Wesley, 1988.

[36] A. L. Fisher and A. M. Ghuloum. Parallelizing complex scans and reductions. In

Proceedings of the ACM SIGPLAN '94 Conference on Programming Language

Design and Implementation, pp. 135-146, Orlando, FL, June 1994.

[37] I. Foster, C. Kesselman, and S. Tuecke. The Nexus task-parallel runtime system. In

Proceedings of First International Workshop on Parallel Processing, pp. 26-31,

December 1994.

[38] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM

3.0 User's Guide and Reference Manual. February, 1993.

[39] M. Hall, K. Kennedy, and K. McKinley. Interprocedural transformations for parallel

code generation. In Proceedings Supercomputing '91, Albuquerque, NM, November

1991.

[40] R. Halstead. Multilisp: A language for concurrent symbolic computation. In ACM

Transactions on Programming Languages and Systems, Vol. 7, No. 4, pp. 501-538,

October 1985.

[41] R. von Hanxleden and K. Kennedy. Relaxing SIMD control flow constraints using

loop transformations. In Proceedings of the ACM SIGPLAN '92 Conference on Pro-

gramming Language Design and Implementation, pp. 188-199, San Francisco, CA,

June 1992.

[42] R. von Hanxleden, K. Kennedy, C. Koelbel, R. Das, and J. Saltz. Compiler Analysis

184

Bibliography

for Irregular Problems in Fortran D. In Languages and Compilers for Parallel Com-

puting, 5th International Workshop Proceedings, pp. 97-111, New Haven, CT,

August 1992.

[43] J. Hardwick. Porting a vector library: A comparison of MPI, Paris, CMMD, and

PVM. In Proceedings of the 1994 Scalable Parallel Libraries Conference, pp. 68-

77, October, 1994.

[44] J. Hardwick. An efficient implementation of nested data parallelism for irregular

divide-and-conquer algorithms. In Proceedings First International Workshop on

High-Level Programming Models and Supportive Environments, Honolulu, HI,

April 1996.

[45] P. Hatcher, A. Lapadula, R. Jones, M. Quinn, and R. Anderson. A production-quality

C* compiler for hypercube multicomputer. In Proceedings of the Third ACM SIG-

PLAN Symposium on Principles & Practice of Parallel Programming, Williams-

burg, VA, April 1991.

[46] High Performance Fortran Forum. High Performance Fortran Language Specifica-

tion. Version 1.0. May 1993.

[47] w. Daniel Hillis and Guy L. Steele Jr. Data parallel algorithms. Communications of

the ACM, 29(12), December 1986.

[48] J. Hummel, L. Hendren and A. Nicolau. A general dependence test for dynamic,

pointer-based data structures. In Proceedings of the ACM SIGPLAN '94 Conference

on Programming Language Design and Implementation, Orlando, FL, June 1994.

[49] Joseph Jaja. An Introduction to Parallel Algorithms. Addison Wesley, 1992.

[50] Pierre Jouvelot and Babak Dehbonei. A Unified Semantic Approach for the Vector-

ization and Parallelization of Generalized Reductions. In ACM SIGARCH Interna-

tional Conference on Supercomputing, Crete, 1989.

[51] D. R. Kincaid and T. C. Oppe. Recent vectorization and parallelization of ITPACKV.

Technical report, Center for Numerical Analysis, The University of Texas at Austin,

November 1984.

[52] C. J. Kuck, R. H. Kuhn, B. Leasure, and M. Wolfe. The structure of an advanced vec-

185

torizer for pipelined processors. In the proceedings of The 4th International Com-

puter Software and Applications Conference (COMPSAC 80), October 1980.

[53] Peter M. Kogge and Harold S. Stone. A parallel algorithm for the efficient solution

of a general class of recurrence equations. IEEE Transactions on Computers, C-

22(8):786-793, August 1973.

[54] C. Lasser. The Essential *Lisp Manual. Thinking Machines Corporation, Cam-

bridge, MA, July 1986.

[55] David Levine, David Callahan, and Jack Dongarra. A Comparative Study of Auto-

matic Vectorizing Compilers. Mathematics and Computer Science Division,

Argonne National Laboratory Technical Report MCS-P218-0391.

[56] S. Lucco. A dynamic scheduling method for irregular parallel programs. In Proceed-

ings of the ACM SIGPLAN '92 Conference on Programming Language Design and

Implementation, pp. 200-211, San Francisco, CA, June 1992.

[57] A. Malony, B. Mohr, P. Beckman, D. Gannon, S. Yang, and F. Bodin. Performance

analysis of pC++: a portable data-parallel programming system for scalable parallel

computers. In Proceedings of 8th International Parallel Processing Symposium,

Cancun, Mexico, April 1994.

[58] S. Marlow and P. Wadler. Deforestation for higher-order functions. In Proceedings

of the 1992 Glasgow Workshop on Functional Programming, pp. 154-165, Glasgow,

UK, July 1992.

[59] D. Maydan, J. Hennessy, and M. Lam.Efficient and exact data dependence analysis.

In Proceedings of the ACM SIGPLAN '91 Conference on Programming Language

Design and Implementation, Toronto, Canada, June 1991.

[60] Message Passing Interface Forum. Draft Document for a Standard Message-Passing

Interface. University of Tennessee Technical Report CS-93-214, November, 1993.

[61] Ronald E. Mickens. Difference Equations. Von Nostrand Reinhold Company, New

York, NY, 1987.

[62] G. Miller and J. Reif. Parallel tree contraction. Advances in Computing Research,

Vol. 5, pp. 47-42,1989, JAI Press Inc.

186

Bibliography

[63] Z.G. Mou, A.J. Huang, and T. Hickey. Parallel Recurrece Transformation. In Pro-

ceedings of the 1992 DAGS/PC Symposium, June 1992.

[64] W. Oed. Cray Y-MP C90: system features and early benchmark results. In Parallel

Computing, Vol. 18, No. 8, pp. 947-954, August 1992.

[65] D. Padua and M. Wolfe. Advanced compiler optimizations for supercomputers.

Communications of the ACM, 29(12):1184-1201, December 1986.

[66] Shlomit S. Pinter and Ron Y. Pinter. Program optimization and parallelization using

idioms. In Conference Record of the Eighteenth Annual ACM SIGACT-SIGPLAN

Symposium on Principles of Programming Languages, pp. 79-92, Orlando, FL, Jan-

uary 1991.

[67] C. Polychronopoulos. Loop coalescing: a compiler transformation for parallel

machines. In Proceedings of the 1987 International Conference on Parallel Process-

ing, St. Charles, IL, August 1987.

[68] F. Preparata and M. I. Shamos. Computational Geometry. Springer-Verlag, New

York, NY, 1985.

[69] W. Pugh. The Omega test: a fast and practical integer programming algorithm for

dependence analysis. University of Maryland at College Park, Computer Science

Technical Report CS-TR-2648, 1991.

[70] W. Pugh. Counting solutions to Presburger formulas: how and why. In Proceedings

of the SIGPLAN '94 Conference on Programming Language Design and Implemen-

tation , pp. 121-34, Orlando, FL, June 1994.

[71] M. Reid-Miller and G. E. Blelloch. List ranking and list scan on the Cray C-90. Car-

negie Mellon University, School of Computer Science Technical Report CMU-CS-

94-101.

[72] X. Redon and P. Feautrier. Detection of recurrences in sequential programs with

loops. In PARLE '93, Munich, Germany, pp. 132- 145, June 1993.

[73] M. Rinard and P. Diniz. Commutativity Analysis: A New Framework for Paralleliza-

tion. In Proceedings of the ACM SIGPLAN 1996 Conference on Programming Lan-

guage Design and Implementation, Philadelphia, PA, May 1996.

187

[74] J. Rose and G. Steele Jr. C*: An extended C Language for Data Parallel Program-

ming. Thinking Machines Corporation Report PL87-5, April 1987.

[75] S. Saini and D. Bailey. NAS Parallel Benchmarks Results 10-95. NASA Ames

Research Center Technical Report NAS-95-019, October 1995.

[76] T. J. Sheffler. Implementing the multiprefix operation on parallel and vector comput-

ers. Carnegie Mellon University, School of Computer Science Technical Report

CMU-CS-92-173, August 1992.

[77] T. J. Sheffler. Match and move, an approach to data parallel computing. Ph.D. Dis-

sertation. Carnegie Mellon University, School of Computer Science 1992.

[78] Robert Shostak. Deciding linear inequalities by computing loop residues. Journal of

the Association for Computing Machinery, Vol. 28, No. 4, pp.769-779, October

1981.

[79] H. Simon and E. Strohmaier. Amdahl's law and the statistical content of the NAS

parallel benchmarks. In Supercomputer, Vol. 11, No. 4, September 1995.

[80] H. Stone. Parallel Tridiagonal Equation Solvers. In ACM Transactions on Mathe-

matical Software, Vol. 1, No. 4, pp. 289-307, Deceber 1975.

[81] Jaspal Subhlok, James M. Stichnoth, David R. O'Hallaron, and Thomas Gross.

Exploiting task and data parallelism on a multicomputer. In Proceedings of The

Fourth ACM SIGPLAN Symposium on Principles & Practice of Parallel Program-

ming, May 1993, San Diego, CA.

[82] J. Subhlok, D. R. O'Hallaron, T. Gross, P. A. Dinda, and J. Webb. Communication

and memory requirements as the basis for mapping task and data parallel programs.

In Proceedings Supercomputing '94, Washington, D.C., November 1994.

[83] Thinking Machines Corporation. Connection Machine Parallel Instruction Set

(PARIS). July, 1986.

[84] Thnking Machines Corporation. The Connection Machine CM-5 Technical Sum-

mary. October 1991.

[85] Thinking Machines Corporation. CMMD Reference Manual. Version 3.0. May 1993.

188

Bibliography

[86] R. Triolet, F. Irigoin, and P. Feautrier. Direct parallelization of call statements. In

Proceedings of the SIGPLAN '86 Symposium on Compiler Construction, pp. 176-

185, July 1986, Palo Alto, CA.

[87] Peng Tu. Automatic Array Privatization and Demand-Driven Symbolic Analysis. Ph.

D. Dissertation, Department of Computer Science, University of Illinois at Urbana-

Champaign, 1995.

[88] S. Vajapeyam, G.S. Sohl, and W.-C. Hsu. An empirical study of the Cray Y-MP pro-

cessor using the PERFECT Club benchmarks. In Proceedings of the 18th Interna-

tional Symposium on Computer Architecture, Toronto, Canada, May 1991.

[89] D. Wall. Predicting program behavior from real or estimated profiles. In Proceedings

of the ACM SIGPLAN 1991 Conference on Programming Language Design and

Implementation, Palo Alto, CA, June 1991.

[90] R. Wilson and M. Lam. Efficient context-sensitive pointer analysis for C programs.

In Proceedings of the ACM SIGPLAN 1996 Conference on Programming Language

Design and Implementation, La Jolla, CA, June 1995.

[91] M. Wolf and M. Lam. A loop tranformation theory and an algorithm to maximize

parallelism. Transactions on Parallel Distributed Systems, 2(4):452-470, October

1991.

[92] M. Wolf and M. Lam. A datalocality optimizing algorithm. In Proceedings of the

1991 SIGPLAN Conference on Programming Language Design and Implementa-

tion, pp. 30-44, June 1991.

[93] Michael Wolfe. Optimizing Supercompilers for Supercomputers. MIT Press, Cam-

bridge, MA, 1989.

[94] Michael Wolfe. Beyond induction variables. In Proceedings of the ACM SIGPLAN

'92 Conference on Programming Language Design and Implementation, San Fran-

cisco, CA, June 1992.

[95] M. Wolfe and U. Banerjee. Data dependence and its application to parallel process-

ing. International Journal of Parallel Programming, Vol. 28, No. 2, April 1987, pp.

137-178.

189

[96] J. C. Wyllie. The Complexity of Parallel Computations. Ph.D. Dissertation, Com-

puter Science Department, Cornell University, Ithaca, NY, 1979.

[97] P. Yang, J. Webb, J. Stichnoth, D. O'Hallaron, and T. Gross. Do & Merge: Integrat-

ing parallel loops and reductions. In The Sixth Annual Workshop on Languages and

Compilers for Parallel Computing, Portland, Oregon, August 1993.

190

