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Chapter 1 

Introduction 

High performance computers are difficult to program. Tapping the potential of these systems 

requires that careful attention be paid to many system parameters and constraints, usually many 

more than lower performance systems. The skills acquired by the programmer to effectively pro- 

gram and tune the performance of her application on a particular system is often not applicable to 

another high performance system architecture. Higher level models are often tuned to particular 

class of architecture, with particular computation, memory access, and/or communication pattern 

characteristics and costs. Unless users are given adequate tools to program such systems, the 

potential gap between peak and realized performance will grow as systems increasingly rely on 

parallelism for higher performance. 

Clean and coherent parallel programming models, whether manifested in library routines or new 

languages, have difficulty attaining widespread acceptance. Efforts to integrate high performance 

language primitives into serial languages have also met with limited success. Such efforts, in def- 

erence to the relative inertia to change in programming language usage, try to exploit the main- 

stream prevalence of imperative, serial languages. This often results in confusing and 

underpowered programming tools. Easy, portable, efficient, and widely used high performance 

programming is still an elusive goal. 

Serial programming languages, like C and Fortran, satisfy three desirable properties for an effec- 

tive programming tool. They embody a simple and intuitive model of computation. Compilers for 

such languages are available in a wide range of hardware and software operating environments. 

Finally, they dominate software development in all but a few niches. The only place they fall short 

1 



Programming High Performance Computers 

is in efficiently capitalizing on available parallelism. Great strides have been made in parallel- 

izing loop nests and exposing instruction-level parallelism, however, there is still a big differ- 

ence between achievable performance through careful hand tuning and performance through 

compilation. 

A major shortcoming of existing compiler optimizations and automatic parallelization tech- 

niques is the limited reasoning mechanisms and models compilers rely heavily on. Higher 

level models and reasoning mechanisms have not been explored to enough depth thus far. For 

example, there are many examples of parallelizable loops which seem to be inherently serial 

when examined using only data dependence information, which parallelizing compilers rely 

heavily on. The use of perfect data dependence information is still a conservative method of 

determining whether a loop is parallelizable. There are alternative ways of characterizing or 

modeling serial code which simplify of the discovery of parallelism. 

This dissertation uses existing models of control and data dependence and flow as a starting 

point for investigating one new analysis model. We focus on an important problem in automat- 

ically parallelizing serial code: recurrent and irregular code. Recurrent and irregular code play 

an important role in many scientific codes, as well as many sorting, geometric, and symbolic 

applications. No general techniques existed prior to this dissertation for automatically paral- 

lelizing such code. The extent of current techniques to deal with recurrent loops in automatic 

parallelization is to simply search for 'familiar' patterns of common loops in the source code. 

This dissertation will demonstrate, through a relatively simple semantic interpretation of loop 

bodies, the added power of a small amount of higher-level reasoning in an automatically par- 

allelizating compiler. 

1.1 Programming High Performance Computers 

Computers rely increasingly on multiple processing elements, wider instructions, or deep 

pipelines to increase computational throughput and/or hide memory system latency. One 

example is Cray's multiple vector processor architecture, which is comprised of relatively few 

processors with deep pipelines, vector registers, chaining support, and multiple, shared mem- 

ory banks. Distributed memory multiprocessor machines, such as the iWarp [22], Intel's Para- 

gon, Cray's T3d, Thinking Machine's CM5 [84], among others, are typically comprised of 

processing elements and their own memories coupled by an interconnect network.    Shared 
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memory multiprocessors rely on hardware (and sometimes software) mechanisms to give the 

programmer the illusion that the computer's memory is shared by all processing elements. 

Current and future generations of scalar processors rely increasingly on multiple instruction 

issue or long instruction words to keep multiple function units busy. 

Mechanisms by which these processors use memory, communicate, and otherwise synchro- 

nize vary drastically. It is impractical to expect an application builder, especially one who is 

not a computer scientist specializing in systems, to explicitly control such mechanisms. For 

example, handling the details of message passing in a distributed memory system can be quite 

complicated. At a low level, the must explicitly manage message buffers and eliminate poten- 

tial race conditions. At a higher level, the programmer has to explicitly manage the distribu- 

tion of data and computation. These tasks are both error prone and cumbersome, in addition to 

requiring a good deal of expertise. 

Programming tools such as software libraries, compilers and languages can simplify some of 

this complexity. High level parallel languages seek to provide intuitive mechanism for 

expressing parallel computation. In some cases, an existing serial language is extended with 

parallel primitives; for example, as in Fortran (HPF [46]), C (Split-C [29], C* [74][45]), C++ 

(Compositional C++ [26]), and Lisp/Scheme (Multilisp [40] , *Lisp [54]). In other cases, a 

new language is invented with the goal of easing the expression of parallelism; for example, 

NESL [18] and Linda [25], among others. 

Other approaches provide control of parallelism through preoptimized libraries. Some librar- 

ies provide low-level support for expressing parallelism through message passing or shared 

memory synchronization primitives, along with support for threading. Other libraries provide 

data structures and routines for supporting parallel computation. Libraries such as CVL [17], 

CMMD [85], MPI [60], Nexus [37], Paris [83], and PVM [38] all seek to introduce support 

for parallelism with library calls linked into the application. The level at which parallelism is 

supported ranges from high-level operations on parallel object to low-level thread manage- 

ment, message passing and synchronization primitives. 

Compilers are critical tools for translating high-level serial and parallel languages to machine 

specific code. Compiler translation and optimizations help to mitigate or hide the details of 

dealing with constraints on system resources and the low-level management of parallelism 

through synchronization.    This is true of both compilers for explicitly parallel languages, 
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where some of these constraints may be implicitly defined in the language constructs, and 

automatically parallelizing compilers for serial languages. However, in the serial case, the 

compiler must contend with enforcing the more difficult semantic constraints imposed on it 

the source language. 

This dissertation is concerned with compilers for programming parallel computers. In addition 

to exploring a different compiler model for computation, this research aspires to enable a pro- 

grammer to write programs for high performance computers using the algorithms and struc- 

tures they have become accustomed to working with, rather than forcing them to work around 

the tools by contriving new programming styles. 

1.2 Automatic Parallelization1 

A large body of research has been done and is ongoing in automated parallelization of serial 

source code. There are several rationales for this approach: 

Ease of use: Serial languages have a naturally intuitive execution model. They are typically 

the languages people are most comfortable using. Widespread acceptance of serial languages, 

though certainly not proof of the superiority of such languages, makes them the most accessi- 

ble mechanism by which to program parallel systems. 

Portability: Compilers for serial languages like C are available for virtually every computer 

manufactured today. Building compiler technology to automatically parallelize a serial lan- 

guage does not lock the application builder into particular architecture or operating system. 

Existing Code Base: There are many programs, so-called "dusty decks", that individuals and 

companies are reliant on and have invested much into developing and maintaining. The man- 

hours and expertise necessary to rewrite these programs using new parallel constructs or lan- 

guages are potentially enormous. 

Programmer Base: There is a good deal of inertia and apathy toward the adoption of new 

languages and programming paradigms in the programmer community. 

1. At this point, we cease to discuss scalar compilation issues, such as instruction-level parallelism (ILP) and 

focus on data and task parallelism. However, this is not meant to imply that techniques here are not exploit- 

able by compilers seeking to increase ILP. 
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1.2.1 Current Limitations 

Compilers which automatically parallelize serial code traditionally rely on dependence and 

alias analysis on loop nests to expose potentially parallelizable regions [95]. Dependence 

analysis and array data-flow analysis provides detailed flow information for loops with 

indexed array expressions. Loop nests are natural candidates for parallelization because of 

replication of computation in the loop body over potentially many iterations. The goal of the 

compiler is to relax serial execution semantics for parallelization as long as various depen- 

dence constraints are not violated. Typically this is manifested in the compiler only paralleliz- 

ing those regions for which there are cycles of flow dependence links with loop-carried 

dependence(s). 

The compiler can do much in the way of loop nest manipulation to expose loops as candidates 

for this kind of parallelization. Recently, a resurgence of work in loop transformation frame- 

works [91] has created a well defined theory of loop nest transformation to expose parallelism, 

improve locality, and perform other optimizations. However, these techniques are limited to 

loop nests whose loops bounds and array index expressions are analytically manageable by 

the compiler. This typically means that the loop bounds must either be constant, or linear in 

surrounding loop indices and variables in scope. 

A shortcoming of relying exclusively on dependence information (even if that information is 

perfect) is that the nature of the parallelism it will expose is too conservative. There are many 

useful computations for which parallel regions cannot be exposed through dependence based 

parallelization, but are still parallelizable through algebraic transformation. The prevailing 

mechanism that compilers use to deal with such regions is through pattern matching. For 

example, consider the following loops: 

do  i  =  1,   n 
a = a  + b(i) 

enddo 

a(l)   = b(l) 
do  i  =  2,   n 

a(i)   = a(i-l)   + b(i) 
enddo 
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The first loop sums all elements of the array b into a scalar variable a and is called a reduc- 

tion. The second loop performs essentially the same computation but stores all partial (or pre- 

fix) sums and is called a scan ox prefix-sum. 

In general, reductions and scans can be parallelized if the operator used is associative (e.g. 

addition). However, dependence information for these loops would include parallelization 

inhibiting dependences. So, rather than develop more general alternatives to dependence- 

based approached, the compiler writer, recognizing that this is still a parallelizable computa- 

tion, will often get around this problem by hard coding a search for that pattern of loop in their 

compiler. 

This approach severely limits the ability of the compiler to generally parallelize the many vari- 

ations of these recurrences. There are other useful parallel building blocks expressible through 

such recurrent loops, such as combing-send, multiprefix, and list ranking based algorithms 

[71] [77]. The outlook for automatically parallelizing these is even bleaker in current compil- 

ers. 

Support for the expression of nested parallelism is critical to simplifying the parallelization of 
r 

many algorithms. For example, a matrix can be viewed as an array of rows, which are also 

arrays, or an array of columns. Thus, any operation on the entire matrix (such as matrix-vector 

multiplication) would be most concisely expressed using nested control structure. For exam- 

ple, for a dense matrix-vector multiplication, the following code is typical: 

do i = 1, rows 
y(i) = 0 
do j =1, columns 

y(i) = y(i) + matrix(i,j)*vec(j) 
enddo 

enddo 

However, this prototypical matrix-vector multiply code performs poorly for sparse matrices 

because of the limited amount of useful work it will accomplish relative to the work it is per- 

forming in treating the matrix as if it were dense. One possible representation for sparse 

matrix-vector multiply [32] gives the following loop nest: 

do  i  =  1,   rows 
y(i)   = 0 
do  j   = pntr(i),   pntr(i+l)-l 

y(i)   = y(i)   +  spmatrix(j)*vec(cols(j)) 
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enddo 
enddo 

One problem here is that this code is not amenable to any loop nest transformations to expose 

outer loop SIMD style parallelism. However, the dependence based approach can expose 

more general parallelism in the outer loop, though this can have other shortcomings, which we 

will discuss further in chapter 5. Any finer grained parallelism exposed by parallelizing or 

vectorizing the inner loop may be limited by the sparsity of the matrix. 

Another kind of programming style which proves problematic for existing compiler technol- 

ogy is divide-and-conquer. In this case the nesting control structure is not in loops, but rather 

in recursive subroutine calls. Support for automatically parallelizing this kind of irregularly 

nested parallelism in serial code efficiently is virtually non-existent. 

1.2.2 Current Approaches 

The widespread availability of loop kernel suites for evaluation of compilers has constrained 

those recurrences that many commercial compilers parallelize to those present in such 

suites. Superficially, this seems to be a reasonable approach since those kernels are represen- 

tative of most of the recurrent loops one find in scientific code. Evaluating of a new compila- 

tion technique is difficult against such a stacked deck. 

The flaw of the pattern matching approach to parallelizing recurrent loops is the fixation on 

particular forms of recurrences, rather than any meaningful semantic models. The algorithm 

that a programmer may hypothetically employ for a matrix multiplication may (arguably) be 

predictable, but the particular form or syntax may not be predictable. In other words, the real- 

ity is that most people who program may write similar code, but with slight variations. Pattern 

matching locks out many reasonable and innocuous variations. These loop kernel suites can 

be used to illustrate this problem. 

We have tested our compiler on the Argonne loop suite's [55] recurrent loops. The range of 

recurrence types in this suite is inclusive of many in other suites. To test the relative robustness 

of the underlying detection technique, we have also compiled a set of the Argonne loops with 

a slight perturbation. The variation we chose was to add another variable to carry values 

across loop iteration, creating a breakable coupled recurrence. For the two recurrences of the 

previous section, the transformed code would appear as: 
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carry = a 
do i = 1, n 

a = carry + b(i) 
carry = a 

enddo 

carry = a(l) = b(l) 
do i = 2, n 

a(i) = carry + b(i) 
carry = a(i) 

enddo 

We have constructed a simple graph comparing our compiler on the original and transformed 

code, the Cray Research Fortran Compiler (CF77) and the Applied Parallel Research Forge/ 

DM Fortran compiler [8] for the Argonne loops and the varied loops in figure 1.1. Our com- 

piler compares favorably to both compilers with the basic set of Argonne loops. The one case 

in which we do not parallelize where CF77 does (Loop 332) involves a loop exit statement. 

This is not a limitation of the underlying model and analysis of our technique. Rather, it is a 

limitation of the front end to the recurrence parallelization technique and our choice or primi- 

tive templates for code generation. 

The disparity in performance with the varied loop set is even more significant. The Cray CF77 

compiler can no longer parallelize over half of the loops that it could with the variation, while 

the Forge compiler is unable to parallelize any of the loops. This confirms the sensitivity of the 

other compilers on the syntactic quality of the source code. Our technique's performance is 

undisturbed by the variation. 

1.2.3 Frequency of Recurrence and Irregularity 

The example in section 1.4 demonstrates the power of recurrences, especially when one can 

compile irregular control structure in conjunction with the recurrences. However, an important 

consideration for the automatic parallelizing compiler community is the presence of recur- 

rences in existing scientific codes. 

The graphs in figure 1.2 illustrate the percentage of time spent in recurrent or irregular code in 

the whole program benchmark suites PERFECT [88] and NAS [75]2, respectively. Even the 

2. Our compiler can profile and instrument programs to measure the dynamic impact of recurrent and irregular 

codes. Details on how this profiling is done is presented in chapter 7. 

8 
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Loops Parallelized from the Argonne Loop Suite (18 recurrent loops) 

Our Method CF77 
¥//////   / 
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Figure 1.1 Recurrent loops parallelized from the Argonne Loop Suite. 

100.00%- 

90.00% -. 

80.00% 

70.00%^ 
CD 

j|   60.00%- 

|   50.00%^ 

S   40.00%-3 
LU 

30.00% 

20.00%^ 

10.00%- 

0.00%- 

Proportion of Time Spent in Recurrent Loops 

S 

D Nonrecurrent or Nonioop 

El  Recurrent Loops 

1     r 
H 

i    r 
s 22 

22.7 

■D LU ■c CO ■D ca CO o o l_ k. c c ~ c ■o 5 o 
-o 

S 
O 

o o 

Q 
O. 
\- 
LL 

o 
CO 

a> 

> 
o 

CO 
TO ** 
3 
2 

> 
o 

CO 
0_ 

> 
o 

CO 
H 

T3 >- 
.C 
O 

CO 
o 
o 

"5 
5 o 

CO O 

E 

CO 
CD 
Ü 
O 

CO 

0) 

c 

o 

is 
CM 
2 
CO 

t: 

LL CD _1 co cu V o fc 
D _c E E 
CO 

Program 
Figure 7.2 Dynamic profile of percentage of time spent in recurrent loops. 

less significant numbers in this graph have a big impact on maximum speedup if recurrent 

loops are not parallelized, illustrated by the simple application of Amdahl's Law in figure 1.3. 
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Speedup Limitations to Parallelization by Restricting Recurrences 
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F/fiii/re 7.3 Limitations on achievable speedup due to serialization of recurrent loops. 

Note that this only measures the impact of recurrent loops, and does not include information 

about other parallelization inhibiting code structures and overhead. This measure of potential 

speedup is extremely optimistic in that regard. Furthermore, many loop kernel oriented bench- 

mark suites are comprised of a significant number of recurrent loops [34] [55]. These figures 

justify efforts to parallelize such loops, but do not give any indication about which techniques 

should be employed. However, taken together with the poor performance of commercial com- 

pilers performing pattern matching on the loops in section 1.2.1, along with the more complex 

control contexts in which simple recurrences can occur, this provides strong motivation to 

improve on current techniques for parallelizing such code. 

1.2.4 Our Approach 

The success of research in developing expressive and efficient associativity-based parallel 

primitives, such as reduction, scan, combining-send, and their segmented variants, is evident 

in its broad application to the parallelization of scientific code, sorting, and other recurrent and 

irregular applications [15] [20] [77]. The essence of this success is that these primitives grace- 

fully encapsulate computation patterns that are both complex and efficiently mappable to 

hardware. 
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Introduction 

Prior work in this area focused on exploring the expressiveness of the primitives. Support for 

these primitives is considered by many critical to the success of various strategies for support- 

ing parallelism. Work has also focused on mapping them efficiently to hardware, typically 

augmenting an existing programming language or a parallel language with their expressive- 

ness. This dissertation leverages off this work and automatically detect and extract those pat- 

terns of serial code that can be recast into these powerful parallel primitives. 

The cornerstone of this dissertation is a general and robust technique for analyzing recurrent 

loops and automatically deriving reductions, scans, and other recurrent primitives over arbi- 

trary operators. The technique does not rely on pattern matching to find 'known' recurrences; 

rather, it relies only on observations of desirable properties, such as associativity and effi- 

ciency, with the concomitant greater breadth of applicability. The technique has been inte- 

grated into a parallelizing compiler for serial Fortran. 

This dissertation also addresses the problem of compiling nested parallelism as expressed in 

irregular loop nests and divide-and-conquer style recursion. Two transformations, loop flatten- 

ing and a variant of loop embedding for recursive subroutines, effectively enable the recogni- 

tion of segmented variants of the basic recurrent primitives. The essential idea is to transform 

the nested iterative or recursive structure into nested conditionals which the underlying recur- 

rent loop analysis can successfully parallelize. These control structure transformations and the 

recurrence parallelization technique presented in this dissertation exhibit good synergy when 

applied to the aforementioned irregular algorithms. 

The dissertation will discuss the rationale and design of these analyses and transformations. 

We will describe their implementation in a parallelizing fortran compiler and present the 

results of compiling both commonly used algorithms and code from scientific benchmark 

suites. 

1.3 The Thesis 

The thesis of this dissertation is that generally parallelizing recurrent and irregular serial code 

is possible and worthwhile in an automatic parallelizing compiler. In demonstrating this, the 

dissertation will include: 

•  A description of transformations to support parallelization of recurrent and irregular code. 

11 



Example: Quicksort 

• An implementation of those transformation in a parallelizing compiler. 

• A demonstration of the power of these transformation on important algorithms and bench- 

mark programs. 

1.4 Example: Quicksort 

Code that is both recurrent and irregular occurs in many algorithms we are interested in com- 

piling. The code for a quicksort is indicative of one such instance of a program. We list that 

code below, with annotations at points of interest (for brevity, we restrict ourselves to a non- 

stable version for sequences of non-repeating keys): 

subroutine qsort(a,b,begin,end,n) 
integer begin,end,n 
integer a(n), b(n) 
integer lower,upper, i, pivot 

pivot = a(begin) 
lower = begin 
upper = end 

'  if (a(i) < pivot) then 
I     b(lower) = a(i) 

LA2.
W
£L
r _= -J" 2^ —r -J" — 

else 
b(upper) = a(i) 

rupper = upper - 1 
endif 

I 

1.Recurrence 

2.Irregularity 

,--■•> 3 .Nested Control  Structure 

uenddo ^^^„„.^^^„„„.^j 
;call qsort(b,a,begin,lower-1,n) 
;call qsort(b,a,upper+l,end,n) 
end 

The first item of note in this subroutine is the presence of the recurrence in computing the 

monotonic induction variables [94] lower and upper. These can be computed indepen- 

dently of the data motion involved in partitioning the sequence. Having done this, the loop can 

be executed in two phases: compute lower and upper using a scan, then merge the result and 

use it as an index array to a permute. Alternative approaches might use packing operations to 

move the data. 
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The second item of note is that the loop bounds are symbolic values, about which the compiler 

has no knowledge. This means that the compiler has no way of knowing whether sufficient 

parallelism exists in the loop to justify a particular parallelization approach. Furthermore, it 

has no way of statically characterizing the workload distribution for the loop. 

The third thing to notice is that the sequence is partitioned and recursed upon. This nested 

control structure essentially iterates over each partition, executing the body of the loop. Since 

the embedded computation is a loop with bounds which vary irregularly, we are confronted 

with the problem of essentially compiling nested irregular and recurrent computations. 

Such combinations of recurrence and irregularity occur frequently in divide and conquer algo- 

rithms. Code to partition array based structures tend to be recurrent, while the partitions them- 

selves tend to be constructed in an irregular fashion. In light of this, building recurrence 

parallelization techniques without regard to irregularity, or vice-versa, makes little sense. 

1.5 New Compilation Techniques 

1.5.1 General Recurrence Parallelization 

A more general analytical approach is preferable to one in which the programmer must, as is 

often the case with ad-hoc approaches like source level pattern matching, expected to under- 

stand how the compiler works. This dissertation presents a new approach to parallelizing 

recurrences based on observations of desirable mathematical properties in the code. In this 

case, the desirable mathematical property is associativity. Discovering whether or not asso- 

ciative operators are present in loops with parallelization-inhibiting dependences opens up 

opportunities for using the parallel primitives we will introduce in the next chapter, which we 

will refer to as recurrent primitives. 

Our compilation technique first finds associative operators in the recurrent loops. The com- 

piler maps the recurrent loops to a particular recurrent primitive (i.e. reduction or combining 

send, etc.) by examining the traversal pattern of the computation on the target structure. For 

example, if the target structure is a scalar value, then the operation is a simple reduction. 
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New Compilation Techniques 

This compilation technique forms the kernel of this research. To compile recurrent code 

nested in irregular loop nest or recursive subroutine calls, we layer control structure transfor- 

mations which make the code more amenable to the application of this core analysis. 

1.5.2 Irregular Control Structure 

Many algorithms rely on the ability to partition the problem into smaller sizes or to traverse 

nested data structures. For example, code for a matrix operation would iterate over each row, 

in which it iterates over each column, or vice-versa. A natural way to express this is through 

nesting of loops which iterate over pointers in each dimension of the structure. Another useful 

example is that of a divide and conquer style algorithm which solves a problem by subdivid- 

ing it into smaller tasks. The most prevalent and natural mechanism used to express these 

computation is through the use of divide and conquer style recursion, where the partitions of 

the problem are recursed upon, and then subdivided themselves, and so forth [4]. 

As previously mentioned, current compiler technology excels at parallelizing regular loop 

nests, i.e. those whose loop bounds, at their most complex, are linear in outer loop indices. 

However, for many problems, especially sparse matrix algorithms, the loop bounds are more 

complex. The loops bounds will vary arbitrarily, usually due to dynamically determined data 

values. The code in section 1.2.1 is an example of this kind of irregular control structure. The 

loops bounds inhibit parallelization via traditional techniques which expose all the parallelism 

available in regular loop nests. 

Divide and conquer style recursion is currently not compiled effectively in serial code. Most 

compilers will try to parallelize the subroutine body. The problem is that at the algorithm 

progresses, the problem size decreases, decreasing the amount of parallelism available in the 

function body. While there is available inter-procedural parallelism in the recursive calls to the 

partitions of a newly subdivided problem, current compilers cannot exploit this. 

In both of these cases, it is the control parallelism that is difficult to exploit. This dissertation 

presents mechanisms to exploit this control parallelism in a data-parallel context. The tech- 

niques presented have the added benefit of being perfectly compatible with the core recur- 

rence parallelization technique in our compiler and the back-end compiler, which employs 

more traditional parallelization techniques. 
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1.6 Overview of the Dissertation 

The primary goal of this work is to move beyond dependence analysis and pattern matching 

based approaches to automatic parallelization, focusing on parallelizing recurrent and irregu- 

lar computation. The main claim of this dissertation is that recurrent and irregular code can be 

automatically mapped into useful higher level parallel primitives in a general and reliable 

manner. The primary contributions of this dissertation are: 

• General and robust compilation techniques for automatically parallelizing recurrent loops 

into reduction, scan, combining-send, and multiprefix operations. These techniques are 

flexible enough to deal with other important components of the compilation process. 

• Compilation techniques for parallelizing irregular loop nests. These techniques are fully 

compatible with both the underlying recurrence parallelization technique and traditional 

dependence based approaches. 

• Compilation techniques for parallelizing divide-and-conquer style algorithms. These tech- 

niques are fully compatible with underlying techniques for parallelizing irregular loop 

nests, recurrent loops, and non-dependence loops. 

In practical terms, these three contributions mean that difficult algorithm classes including 

sparse matrix operations, sort, and computational geometry, among others, may be automati- 

cally parallelized from their serial encodings. The evaluation of the effectiveness of these 

tools has three basic components: 

• Profiling prevalent 'whole program' benchmark suites to get dynamic counts of the amount 

of time spent in recurrent loops. This will demonstrate that recurrences are a significant fac- 

tor at run time to make a serious effort at parallelizing them. 

• Comparing the robustness of our technique with commercial (typically, pattern matching) 

techniques with respect to collections of loop kernels and variations on them. This will 

demonstrate that pattern matching is a poor technique to use. 

• Evaluating the performance of automatically parallelized code generated by our compiler 

on algorithmic techniques which were heretofore difficult to compile. This will demon- 

strate that our framework enables much more than merely the parallelization of a few ker- 

nels. 
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I will not explore the following in this dissertation at any great depth, since they fall outside 

the scope of this dissertation, though they do play important supporting roles in my work: 

• Developing high performance implementations on the various parallel primitives we work 

with on various architectures. The primary focus of this dissertation is compiler analysis. 

We have relied on the work of others for my implementations of the various recurrent prim- 

itives in the code generation phase of the compiler. 

• Developing new algorithms or a benchmark suite by which to evaluate compilers. We have 

relied on accepted benchmark suites and straightforward Fortran encodings of basic algo- 

rithms from texts. The collection of programs we compile may turn out to be useful 

benchmarking tools, but we make no claims in this regard. 

• Developing decision mechanisms for deciding when to employ the transformations and 

analyses presented in this dissertation. We do not apply these technique blindly, however 

there is a body of work available and ongoing in profile-driven compilation and predicated 

execution of parallelized code [89]. 

1.7 Organization of the Dissertation 

The rest of this document is structured as follows. Chapter 2 will discuss in more detail the 

recurrent primitives and code that we are interested in compiling. Chapter 3 will discuss the 

basic analysis for compiling recurrent loops. Chapter 4 will detail how to we integrate this into 

a compiler and general code. Chapter 5 will discuss techniques for compiling irregular loop 

nests. Chapter 6 will discuss techniques for compiling divide-and-conquer style recursion. 

Chapter 7 will discuss the compiler architecture. Chapter 8 will discuss the compilation results 

for the evaluation suite we have chosen for the compiler. Chapter 9 will discuss related work. 

Chapter 10 will discuss future work, contributions, and conclusions. 
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Chapter 2 

Recurrent and Irregular Code and 
Primitives 

This chapter reviews the various primitives and the types of serial code we are interested in com- 

piling. In subsequent chapters, we will refer to these operations and their parallel implementations 

frequently, so it is worthwhile explaining them here. 

Since the compiler is a fortran compiler, and our target is a shared memory vector multiprocessor, 

this chapter may specifically address issues pertaining to that context. However, the higher level 

issues of applicability of these primitives to various algorithms and their encoding is general. For 

example, code examples are presented in a pseudo-fortran, but are applicable to other serial, 

imperative languages like C. 

'Recurrent parallel primitives' can be defined as parallel primitives whose natural serial encoding 

is through recurrent loops. Reduction, scan, combining-send, and multiprefix operations are all 

examples of such primitives. The primary goal of this section is to provide an overview of these 

primitives and their serial encodings. We will discuss these in some detail, but refer the reader to 

references for deeper discussions of their implementation on various architectures. 

The recurrent primitives just introduced can be expressed serially in a variety of ways. The compi- 

lation techniques in this thesis target specific methods of expressing those primitives. Specifically, 

we are concerned with code written in imperative languages like C or Fortran, the latter of which 

the compiler is written for. Even with this constraint, there are a number of ways to encode many 

of these primitives. This section provides a breakdown of the various types of code we are inter- 

ested in compiling and to which recurrent primitives they can compile. 
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Reductions and Scans 
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Figure 2.1 A (a) serial and (b) parallel reduction (bold boxes) and scan (all boxes). 

Many parallel algorithms exist to perform these various recurrent primitives. They range from 

fairly high level to very architecture specific. This compiler targets the Cray C90 architecture, 

so this section will focus on algorithms specific to that genre of architecture. This work is 

largely derived from the work of others, and we note where we have made substantial 

changes. We refer the reader to the original work for a deeper treatment of these algorithms. 

2.1 Reductions and Scans 

2.1.1 Description 
A reduction of a binary operator on an array1 (or vector or collection) applies that operator 

across each element of the array and the running sum result of the operation. Figure 2.1a illus- 

trates the flow of values in a serial reduction operation. If the operator reduced upon is asso- 

ciative, we can reassociate the operator applications so that some can occur in parallel. Figure 

2.1b illustrates a reassociation in which the reduction takes O(logw) parallel steps, where n is 

the size of the array. 

1. Since we compile Fortran, we will primarily discuss these primitives in the context of arrays. 
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A scan of a binary operator on an array applies that operator across each element of the array 

and the running sum, while retaining all partial sums. Scans are essentially identical to reduc- 

tions in the serial case, and are very similar to reductions in the parallel case. The primary dif- 

ference in the parallel case is that during the initial phase, which is essentially a reduction, 

partial results at each node are retained, and then propagated back downward. The perfor- 

mance of a parallel scan is thus within a constant factor of the performance of the parallel 

reduction. 

The power of reductions and scans and their segmented variants was first fully explored by 

Guy Blelloch [15]. Work efficient parallel prefix-sum operations were first described by Stone 

[80]. Here is a simple example of their use in parallelizing the following basic linear recur- 

rence: 

do  i  =  2, n 
a(i)   = b(i)*a(i-l)   + c(i) 

end do 

This recurrence can be computed in a parallel scan of the following (associative) operator 

across the two arrays b and c: 

(JC, *') 0 (y, /) = (xy,xy' + x') 

The results of the scan can then be used to evaluate the result at each point in the scan. The 

result computation looks like: 

tmp_pairs(2:n)   = par_scan(f,   a,   b) 

a(2:n) = first(tmp_pairs(2:n))*a(l) + second(tmp_pairs(2:n)) 

Where first and second select the first and second elements of a pair. In Fortran, this can 

be implemented by adding a dimension of size 2 and then using indexing to select the value. 

Performing nth order reductions and scans, linear recurrences, and so on, are trivial with par- 

allel scans and reductions. All the programmer and compiler need is to find an appropriate 

associative operator, if one exists. 
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2.1.2 Serial Encoding 
As previously discussed a serial computation, typically a loop, that is intrinsically a recurrent 

operation is what we classify as a recurrence. That is, such a segment of code is a candidate 

for parallelization by using reduction, scan, combining-send, and multiprefix operations. For 

the moment, consider only non-nested recurrent loops as our targets, since we will the next 

type of serial code we discuss will subsume all nested recurrent loops. The code examples pre- 

sented thus far are good indications of the type of code we generally target. The general form 

is: 

do <some_range> 
recur_value(<current>) = f(recur_value(<previous>)) 

end do 

A more operational definition for a compiler would be those loops which have loop carried 

cycles of flow and control dependences. The latter condition accounts for the presence of 

conditional constructs, for example, in the following loop: 

do  i  =   1,   n 
if   (a   .It.   b(i))   then 

a = b(i) 
end if 

end do 

2.1.3 Implementation 

The scheme we use for performing reductions and scans is based on a simple block-wise 

decomposition of the array, as in figure 2.2. The first phase computes P partial sums on the P 

processors. All computation in this phase is local. The following fortran pseudocode, with the 

inner loop parallelized, illustrates this operation (this implementation is mostly based on 

[19]): 

do i = 2, rows 
do j =1, cols 

prefix((i-l)*cols + j) = prefix((i-2)*cols + j ) 

$ © val((i-l)*cols + j) 

enddo 
enddo 

The second phase serial sums the P partial sums and propagates them across the processors. A 

reduction can stop here. 
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F/grure 2.2 >4 vectorizable scheme for executing a reduction and scan. 

do j = 2, cols 

colsums(j) = colsum(j-l) © prefix((rows-1)*cols+j-l) 

enddo 

Phase 3 is reserved for scans and segmented reductions and scans. In a scan, phase 3 propa- 

gates the partial sums computed in phase 2 to all the partial sums computed in phase 1. 

do i = 1, rows 
do j = 2, cols 

prefix((i-l)*cols + j) = colsum(j) 

$ © prefix((i-l)*cols + j) 

enddo 
enddo 

In a segmented reduction or scan, the values are propagated only to those partial sums from 

phase 1 involved in segments which cross processor boundaries. 

We use approximate versions of this basic computational template on both the iWarp and Cray 

C90. For the C90, one can view each slice of the vector register bank as a virtual processor on 

which this algorithm runs. On a single vector processor, the value P is the size of the vector 

register length. On multiple vector processors, the value P is the size of the vector register 

length multiplied by the number of processor. 
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b 

Figure 2.3 Combining-send (bold boxes) and multiprefix operation (all boxes). 

2.2 Combining-send and Multiprefix 

2.2.1 Description 

Combining-send operations are essentially permutations with write conflicts resolved by a 

combining operator. Figure 2.3 illustrates such an operation. The computation can be parallel- 

ized if the combining operator is associative. It can be parallelize more effectively if the com- 

bining operator is commutative, that is if it does not matter in what order the operations are 

applied. However, we are interested in the more general case, and consider commutativity a 

simple optimization of that. In the general case, the starting point is to find an associative 

operator. 

The following serial weighted histogram is an example of where a parallel combining send 

can be used: 

do  i  =  1,   n 
a(c(i))   =  a(c(i))   + b(i) 

end do 

Obviously, the combining operator here (addition) is commutative as well as associative. 

Combining sends can be used to express more powerful operations, such as the following ver- 

sion of sparse matrix-vector multiplication (note the difference in representation from the last 

section): 

do  i  =  1,   N,   1 
do k = pntr(i),   pntr(i+l)-l,   1 

y(indx(k))   = y(indx(k))   + val(k)*vec(i) 
end do 

end do 
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A multiprefix operation is very similar to a combining-send operation, except that partial 

results for each element of the target array are retained. Figure 2b also illustrates this opera- 

tion. The relationship of a multiprefix operation to a combining-send is analogous that of a 

scan to a reduction. An example of a place where a multiprefix might be employed is the fol- 

lowing code segment: 

do  i  =  1,   n 
a(c(i))   = a(c(i))   + b(i) 
d(i)   = a(c(i)) 

end do 

Here, the partial results are stored in the array d. The algorithm for computing a multiprefix 

operation is identical to that for implementing the generalized combining-send. 

2.2.2 Serial Encoding 
Section 2.1.2 described the general form of serial code for expressing recurrences, which 

include combining-send and multiprefix operations. The only difference is in the structure tra- 

versal pattern, which, in this case, is dependent on an array of indices. 

2.2.3 Implementation 

Our computational template for computing combining-sends (also called a multireduce opera- 

tion) and multiprefix operations is based entirely on the work of Sheffler [76] (the code, illus- 

trations, and terminology are all based on his implementations). The basic algorithm, 

illustrated in figure 2.4, is comprised of phases similar to those in the reduction and scan tem- 

plates. Combining-send and multiprefix operations are essentially generalizations of reduc- 

tions and scans: each element has a key or label and each element contribute its value only to 

computations involving elements with the same key. That is, each element sums its value to 

the value of each previous element which contains the same label. 

The key idea is to preserve this property by building and maintaining a structure, called a 

SPINETREE, which links together elements with the same label. The array of values the oper- 

ation is taking place on is decomposed into a rectangular shape. Each SPINETREE link in 

each row points to one element with the same label in the next row. The spinetree can be built 

using the following pseudo-fortran loops: 
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Figure 2.4 The SPINETREE structure and phases of generalized combining-send and 
multiprefix operations. 

do j = rows, 1 
do i = 1, cols 

spine((i-l)*cols + j) = bucket(label((i-1)*cols + j)) 
bucket(label((i-l)*cols + j)) = spine((i-1)*cols + j) 

enddo 
enddo 

The SPINETREE structure can be reused for each use of the same label array. The algo- 

rithm now progresses as follows. The first phase, the rowsum phase, sums each element's 

value in each column into the whatever element its SPINETREE link points to. 

do j = 1, cols 
do i = 1, rows 

rowsum(spine((j-1)*cols + i)) = 

$ rowsum(spine((j-l)*cols + i)) © 
$ value((j-1)*cols + i) 

enddo 
enddo 

The net effect is to sum each row, but only summing similarly labelled elements. The second 

phase, the spinesum phase, sums elements up the spine of each SPINETREE to create prefix 

sums for each label at the start of each row. 
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F/gwre 2.5 An inclusive segmented reduction (bold boxes) and scan (all boxes). 

do j = rows, 1 
do i = 1, cols 

if (this_element_is_on_a_spine)   then 
spinesum(spine((i-1)*cols + j)) = 

$ rowsum((i-1)*cols + j) © 
$ spinesum((i-1)*cols + j) 

endif 
enddo 

enddo 

This phase essentially ends the computation in the case of a combining-send, since the bucket 

structure will hold the total sums for each label (by adding the rowsum and spinesum). The 

final phase, the prefixsum phase, essentially incorporates the spinesum values into each ele- 

ment. 

do j =1, cols 
do i = 1, rows 

multi((j-1)*cols + i) = spinesum(spine((j-1)*cols + i)) 

spinesum (spine ( (j-l)*cols + i) ) ®=  value((j-1)*cols + i) 

enddo 
enddo 

2.3 Segmentation 

2.3.1 Description 
The real expressiveness of reductions and scans is evident when one adds the ability to 'seg- 

ment', or arbitrary restart the computation and points in the sequence [14]. This essentially 

allows one to partitions the computation arbitrary. The typical scheme is to have some denota- 

tion of partition boundaries on the array, either in the form of a bit-vector, segment length 

array, or condition array. The reduction or scan occurs independently in each partition or seg- 

ment, as illustrated in figure 2.5. 
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A nice feature of segmented reductions or scans is the flexibility they give the user or compiler 

in their implementation. One can either perform the operation within each segment in parallel 

perform each segment's parallel reduction or scan, or it can perform both simultaneously. Fur- 

thermore, segmented reductions and scans can be flattened so that the computation itself looks 

like non-segmented reduction or scan. Trade-offs in selecting one of these depend on multiple 

factors, such as the average size and variance of each partition and the communication/mem- 

ory access overhead of the target system. 

Since our compiler targets primarily the Cray C90, we choose to flatten these segmented oper- 

ations wherever possible, to exploit the better load balancing characteristics and higher avail- 

ability of parallelism. 

The power of a segmented operation is evident in its use in parallelizing the following sparse 

matrix vector multiplication kernel: 

do  i  =   1,   N,   1 
y(i)   =   0.0 
do k = pntr(i),   pntr(i+1)-1,   1 

y(i)   = y(i)   + val(k)*vec(indx(k)) 
end do 

end do 

These can be easily and effectively parallelized using a segmented reduction. (Chapter 5 will 

discuss this in more detail.) 

A nice feature of segmented operations is the arbitrary partitioning. This enables their use in 

parallelizing a variety of problems which employ partitioning or divide and conquer tech- 

niques. 

2.3.2 Serial Encoding 
There are two flavors of serial code structure used in implicitly expressing segmented opera- 

tions: loop nests and divide and conquer recursion. The primary distinction between the two is 

that loop nests tend to reflect the nested structure of the representation of the particular data 

structure being traversed, while divide and conquer recursion tends to reflect the partitioning 

structure of the algorithm being expressed. In either case the serial code expresses a nesting of 

control structure. 

•  Irregular loop nests 
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Adding nesting to recurrent loops usually means one of two things: either the recurrence is 

carried across the entire loop nest, or there are some completely parallelizable levels of the 

loop nest. In the former case, the compiler should still try to exploit the recurrence parallel- 

ization technique. In the latter case, loop transformation frameworks should be able to 

expose non-recurrent parallelism in many cases. Loop transformation frameworks are typ- 

ically constrained to work with perfect loop nests, which are loop nests with code only in 

the innermost loop. However, there are cases of loop nests which are not fully recurrent for 

which these frameworks cannot expose any parallelism. 

If the loop nest is not a perfect nesting and cannot be made one the compiler may have to 

compile the recurrence rather than avoid it. Furthermore, if the loop bounds are non-linear 

in outer loop indices then most loop transformation frameworks are not applicable. We 

refer to these case as irregular loop nests. The problem with irregular loop nests is that it is 

difficult to determine the variance or amount of parallelize available at each level of the 

nesting. Throwing recurrences into the mix makes the task more difficult for the compiler. 

A recurrence expressed in a loop nest may most naturally and efficiently parallelized using 

a segmented reduction or scan, depending on the machine target. 

• Recursive subroutines 

Algorithms which employ divide and conquer strategies to solve problems typically subdi- 

vide the problem into smaller partitions upon which it can recursively and independently 

work on. That the partitions are worked on independence implies an availability of parallel- 

ism between work on the partitions. That the work is done recursive implies a similarity in 

the type of work done on the partitions that might be amenable to data-parallel style paral- 

lelization rather than the more obvious task parallel option. 

With this in mind, the kind of recursive code the compiler targets is that in which each 

recursive call is independent of its sibling recursive calls. Most divide-and-conquer algo- 

rithms on arrays, matrices, or trees fit this particular requirement. (It it is not necessarily 

true of graph-based algorithms.) 

2.3.3 Implementation 
The segmentation structure of a segmented reduction or scan can be stripped away (flattened) 

and a non-segmented scan can be used to perform the computation [15]. The idea is to make 

the tracking of segment an explicit part of the combining operator. This works well for seg- 
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mented scans, but there are typically faster mechanism for performing segmented reductions 

since the only results which need to be propagated back after the initial reduction is for those 

segments which cross processor/vector register slice boundaries [19]. 

On distributed memory machines, there are other opportunities for optimizing the implemen- 

tation of segmented operations. The most obvious is to assure that not segment crosses proces- 

sor boundaries. However, this may cause load balancing problems since both the partition size 

and amount of computation per element may vary. Either dynamic load balancing support [44] 

or algorithmic techniques to ensure balanced computation (i.e. picking good partitioning strat- 

egies) are necessary to avoid this problem. 

We pursue the flattening strategy in our compiler, since our target is the Cray C90, and archi- 

tecture which benefits from such an approach. 

2.4 Other Primitives 

The structure of these recurrent primitives is similar in that operators are used to combine val- 

ues from a source array (or array expression). What differs is the mechanism by which the 

source and destination arrays are traversed. In the case of a reduction or scan, the source (and, 

in the case of a scan, destination) array can be traversed in a fairly linear manner. Combining- 

send and multiprefix operations traverse the destination array in any order determined by the 

index vector, while the source array is still traversed linearly. 

There are other recurrent primitives that not only traverse arrays differently, but also traverse 

more complex, recursively-defined structures such as trees and linked-lists. For example, a 

reduction or scan on a linked list defined with an array traverse both the source and destination 

arrays in a random order. The following code is an example of such an operation: 

do  i  =  1,   n 
a(next(i))   =  a(next(i-l))   + b(next(i)) 

end do 

Of course, if the list is defined recursively using heap-allocated structures or records (as one 

might using C), then the traversal problem is much more difficult. 

Finding associative operators is important in all these recurrent primitives so that reassociation 

of the operations can be exploited in parallelization. The difficulty of implementing these 
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other primitives is in developing good parallel templates for performing the operation. For a 

pointer based structure, this implies a mechanism for supporting pointer dereferences in a glo- 

bally shared parallel heap. 

2.4.1 Implementation 

Though we do not compile primitives involving list-ranks, tree reduction, or graph reduction, 

there is a good deal of work in parallel algorithm development and implementation for these 

primitives [62][71][77]. 

2.5 Review 

In this chapter, we introduced the basic recurrent primitives we are interested in parallelizing. 

We also discussed the kind of serial code they occur in and, consequently, we are interested in 

compiling. Parallel implementations the compiler uses were also reviewed, though, for further 

detail and insight into their design, we urge the reader to review the source material. 
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Chapter 3 

Recurrent Loops I - 
Foundations and Analysis 

This chapter presents the intuition and outline of a method for automatically extracting parallel 

prefix programs and other recurrent primitives from sequential loops. Rather than searching for 

associative operators in the loop body directly, the method rests on the observation that functional 

composition itself is associative. We model the loop body as a multivalued function of multiple 

parameters, and look for a closed-form representation of arbitrary compositions of loop body 

instances. 

This chapter will focus on the basis and motivation for this new analysis. The next chapter will 

discuss its integration into a compiler and the details of the specific symbolic analysis we use. 

3.1 Complexity of Parallel Recurrent Primitives 

The parallel reduction and scan operation introduced in the last chapter be used to efficiently exe- 

cute a wide range of recurrences. For example, the simple recurrence in below, where ® is an 

associative operator, can be solved using a parallel computation of the form in figure 3.1a: 

do i =  1,   n 
a = a   ®   B[i-1] 

end do 

Figure 3. lb illustrates the more realistic case when n > p, where p is the number of processors. A 

general form of such algorithms can be described simply. The array or expression being reduced 

31 



Complexity of Parallel Recurrent Primitives 

is distributed blockwise across the processing elements. Each processing element performs 

the reduction locally. Then the results for each processing element are combined in pairwise 

fashion in a binary combining tree. In the case of a reduction, the algorithm proceeds no fur- 

ther. 

The recurrence above can be computed by a parallel reduction. Were this recurrence to com- 

pute an array rather than a scalar (i.e. a[i] = a[i-l] ® B[i-1];), a parallel scan 

would be required to solve this so that all intermediate values are computed. The simple algo- 

rithm presented above only performs half the necessary work. After the sweep up the combin- 

ing tree, the partial results in the combining tree are propagated back down to the processing 

elements, and the local partial sums are updated. 

For n array elements and p processors, both parallel reduction and scan operations can be 

computed on an EREW-PRAM in 0(n/p) time steps if n = Q(plogp) [28] [53][80] and if the 

time complexity relationship T(n) = \n/p~\Cx + C2logp, such that Cx and C2 are both con- 

Bi 
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Figure 3.1 An associative recurrence and its parallel combining trees. 
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stants, holds. The first product term is the cost of the local computation phase of the reduction, 

and the second product term is the cost of the combining phase of the reduction. For the gen- 

eral recurrence, the time complexity is: 

r«/pi riogpi 
T(n) =   X T®    (j)+  X (7^(0+ T9   (0) 

Tcomm is the cost of communicating the intermediate results of the computation (conceptually, 

up and down the combining tree). 7® is the cost of each application of the associative com- 

bining operator. If the operator ® were addition, T® = 1 and Tcomm = 1, since at most a 

single number is communicated at a time during the communication phase. 

The associativity of the addition operator allows the decomposition of multiply composed 

additions for parallel execution. Some other examples of associative operators are integer mul- 

tiplication and MAX. Whether this computation will adhere to a O(nZp) time complexity 

bound depends on the complexity of each operator application and the cost of communicating 

intermediate results. It is clear that this will hold if the complexities of both Tcomm = 1 and 

T®     are constant. In the cases of integer multiplication and MAX, it is known that these 

operations satisfy the criteria necessary to adhere to this time bound. 

In serial code, the problem is that we generally have no knowledge of whether a collection of 

operators in a recurrent loop is associative. So, our goal is to find efficient associative opera- 

tors in such loops for which we can perform these parallel scans and reductions within the 

aforementioned time bounds. 

3.2 An Associative Model for Recurrent Loop Execution 

In our system, recurrent loop bodies are modeled as a series of functions applied to recurrence 

variables. For example, this loop: 

do  i=l  to n 
a[i]   = a[i-l]   + B[i-1] 

end do 
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Figure 3.2 Composing the functional model for recurrent loops. 

can be modeled by a series of functions1 g, = Xx -* x + B,_, applied to the recurrence vari- 

ables a [i], as below: 

do i=l  to n 
a[i]   = gi (ati-1]) 

end do 

We call this function a loop modeling function. 

The same computation is achieved by precomputing the composed instances of the functions 

gi and then applying the function to the first element in the array a, shown below: 

G\ = 81 

do i= 2  to n 
Gi = Gi_x*gi 

end do 
do i= 2  to n 

a[i]   =  Gi (a[l]) 
end do 

In this model of the recurrence, we compute final values of the recurrence variable by 

0, = Gj(a0), where G, = g/*g,-_i • ... *gi and • is the function composition operator over 

gi. We refer to the functions G, as composite functions. Note that no dependences hinder par- 

allelization in the application loop. The original loop is effectively "executed" when the com- 

1. We denote functions using lambda notation because of the ease of manipulating functions in this form. 
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position operator is applied in a prefix operation over the functions g, and then each resulting 

G, is applied to a0. The associativity of the composition operator allows for the application of 

a parallel prefix operation, as in figure 3.2. The case for a composition reduction is analogous. 

Recall that the time complexity bound of 0(n/p) will hold if n = Q(p\ogp), and Tcomm, T. 

are both constant. A naive composition strategy might at least double the complexity of the 

composed function at each step and yield a result that is as costly to apply as a serial execution 

of the loop. Furthermore, the cost of communication in the combining steps of a parallel prefix 

operation is proportional to the size of the functions being communicated. If the function size 

increases, the communication costs will similarly increase. Under these constraints, finding an 

efficiently composable function entails finding a composition method with a constant time 

complexity and a static run-time representation for the modeling function. Requiring that the 

function representation be closed under composition guarantees both that the representation 

scheme will be of a fixed size and that the composition method will be of constant complexity. 

For example, the composition of two instances of the modeling function for the loop at the 

beginning of this section is g, • gi = Xx -> (x + Bj_x) + B,_,. The composite has doubled in 

complexity with respect to its two component functions, requiring two additions where the 

original function had only one. Furthermore, the number of symbolic constants necessary to 

store with the function has now doubled to two. However, observe that the addition operator in 

the composed result allows the reassociation g, • g;- = Xx -> x + (£,_ i + Bj_ x). 

At each composition, the two symbolic constants2 can be abstracted into one symbolic con- 

stant. The resulting composite function g^gj = Xx-^x + C has not increased in complexity 

with respect to the original function. The price paid for this efficiency in representation is that 

of a single addition operator at each dynamic composition to compute C = 5,_ j + ß,_ i. Note 

that this transformation effectively farms out the work to apply the final composite function to 

the composition method, which will be executed in parallel. 

In the dynamic composition phase, it is not necessary to communicate the entire function rep- 

resentation. Only the abstracted constant C is necessary for the composition method we have 

2. We will generally refer to non-recurrent values as "symbolic constants". Note that also includes literal con- 

stants, such as numbers. 
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derived. In the function application phase, C is used to evaluate the function Xx -» x + C. 

Since each composition step takes a constant amount of time and the representation is of a 

fixed size, the full composition parallel prefix or reduction operation will perform within the 

0(n/p) time bounds. 

3.3 Finding Efficient Composition Operators 

The example of the last section demonstrated that a simple symbolic composition scheme can 

be effective at uncovering efficient composition operators for performing parallel prefix on 

loop modeling function. The goal of this section is to examine the foundations of such an anal- 

ysis and provide a rationale and outline of a compiler analysis scheme that we will make more 

concrete in the next chapter. 

3.3.1 Notation and Properties of Modeling Functions 

We refer to two expression or functions as structurally equivalent, if their expression are iso- 

morphic with respect to all operators and non-bound variables. 

The notion of symbolic constants and modeling functions can be viewed as specifying a class 

of functions. That is, classes of the structurally equivalent functions are defined as follows: 

The class of structurally equivalent functions F is comprised of all functions of the form 

/(*„ ..., xn, C],..., C„) with equivalent, fixed algebraic structure, where the m bound vari- 

ables xx,..., xm are fixed and the n variables Cu ..., C„ vary over values of some specified 

type. 

We require that functions in the class have fixed algebraic structure because all modeling 

functions look the same, that is, they are structurally equivalent. We will refer more frequently 

to the modeling function class, though the term should be considered interchangeable with 

class of structurally equivalent functions. 

Note that individual elements of this class may be uniquely specified by tuples of values for 

the variables (actually, the symbolic constants in our framework) (Cl5..., C„). We refer to 

each such tuple as a signature of the corresponding function, and the space of tuples the signa- 

ture-representation of the function class. To facilitate manipulation of the signature-represen- 
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tation space, we define an operator to extract signatures from functions of the class F: 

repF(fi) = (Ci,..., C'n). 

The idea is that the signature-representation of a modeling function class is a more operational 

representation, since the algebraic structure of the modeling function class is static, and only 

the symbolic constants are open to manipulation by operators defined reflexively within the 

class. Conversely, we can define an operator to map a function from signature-representation 

space to modeling function space: 

repF\C\,...,C'n) = fi- 

We say that the function class F is closed under composition if there is a composition opera- 

tor • such that for any /,-, /,- e F, fi • /, e F. 

Theorem 1 The function class F is closed under composition if there exists a composition 

operator   •   which manipulates only the signatures (C\, ...,C'n) and (C{,..., C}„) for each 

function /, and /, to generate a new tuple (Ci,..., C„) for which the following holds true: 

reprifi'fj) = rep^fj.rep^fj) = (C\,..., Cn) • {C[,..., C{) = (C,,...,C„). 

Proof We can easily construct a composition operator of any two functions of F for which it 
A 

is closed under composition. We first use repF to extract their signatures, then use • to 

combine the two signatures, and then to reinject the new signature values into the function 

structure using rep~F . (We are simply constructing the composite operator 

repF ■ • -repF.) By the definition of • , this is equivalent to repF(fj • fj). Applying 

rep~F to this gives us /, • /;-, thus constructing • and guarantees that the resulting function 

is in class F. ■ 

We will refer to  •  as a signature composition operator. 

Given this characterization of function classes, we can now recast our proposed analysis as a 

search for both a modeling function class F and a composition operator • which the corre- 

sponding signature-representation class Fsig is closed under. In the case of the simple addition 

reduction example of section 3.2, the composition operator • was addition and the signature- 

representation of the modeling functions were values from the array B. 
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The analysis starts by extracting a modeling function. The second step of abstracting out con- 

stants can be though of as a first cut at defining the modeling function class F. Composing 

two instances of these functions is equivalent to trying to discover whether this modeling 

function class is closed under composition. The mechanism by which this was achieved was 

by extracting out computations solely on symbolic constants (the signature). These computa- 

tions comprise a candidate composition operator • . 

If the algebraic structure of the resulting composite function is equivalent to that of the origi- 

nal modeling function class, then we need proceed no further. We have a modeling function 
A 

class which is closed under composition, as well as an operational description in • of how to 

compose the modeling functions while retaining this property. This operator will be that 

which we will use in our recurrent parallel primitives. 

If the algebraic structure of the resulting composite function is not equivalent to that of the 

original modeling function class, then we can refine our definition the modeling function class 

by using the composite function as a template for the new modeling function class. The fol- 

lowing theorem states that a modeling function class created out of the composition of another 

modeling function class contains the original modeling function class. 

Theorem 2 If we construct a modeling function class F by composing all possible pairs of 

instances (i.e. computing the transitive closure over composition) of modeling function class 

F and3fIDeF suchthat, V/eF,/ = /„>•/ = /./;D)thenFcF. 

Proof For any f e F, f1D» f e F by definition of F and the presumption of the existence 

of fw € F. Since fw»f = f'• fID = f, simple substitution gives us / e F. Thus, FQF . 

Theorem 2 makes the step of redefining our modeling function class intuitive to the extent that 

we can always generalize the original loops modeling function to the new modeling function 

class. Note that if F = F, we need not proceed in our analysis. We will have more to say in 
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section 3.3.4 about whether structuring the search for an appropriate modeling function class 

in this manner is generally useful. 

Note that the Theorem 2 is premised on the existence of identity functions fw, such that for 

any F, fID» f = f • fID = f, V/ e F. This presents an opportunity to narrow the kinds of 

modeling functions we can parallelize in this framework by discussing how flD can be con- 

structed for function classes. (If it cannot be constructed, then our analysis may not be not cor- 

rect!) 

Lemma 1 For modeling functions of linear affine recurrences, fw can be constructed. 

Proof   Linear affine recurrences are recurrences have modeling functions of the form 

f{Xi, X2, ..., Xn)   =   (fli,!*! + #1,2*2 + ••• + Q-\,nxn + #1» •• •> an, 1*1 + an,2x2 + ••• + <^n,nxn + bn) . 

(This is an nth-order recurrence.) f1D is constructed by setting au, = 1 where 1 < i < n, 

aUi; — 0 where l<i<nAl<j<nAi^j, and &, = 0 where l<i<n: 

fiD(x\,x2,...,x„) = (xi,...,xn). Simple composition by substitution demonstrates that 

//£>•/ = /•///? = /•■ 

Lemma 2 For modeling functions comprised of conditional expressions and linear affine 

expressions and inequalities, fw can be constructed. 

Proof We assume, without loss of generality, that the function has no condition expressions 

nested within relational or affine expressions3. Thus, the function can be viewed as a tree of 

conditional expressions, with affine expressions at the leaves. Some path in the expression tree 

must be followed down to one of the leaves when evaluating the function. Since the leaves are 

3. A conditional expression nested within another expression can always be converted to this form by factoring 

out the conditional expression. For example, the expression (end 1TEXP  : FEXP) ® EXP = 

can be converted to (end 1(TEXP <g> EXP)  : (FEXP ® EXP)) . This operation can be performed 

recursively until no further conditionals are nested. 
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themselves linear affine expressions, by Lemma 1 we can construct each to simply evaluate 

fiD for linear affine recurrences. ■ 

This raises the question of which modeling function class we should define initially. For some 

modeling functions, there are potentially infinite variations on the modeling function class that 

we can choose. We take the conservative approach of minimizing the tuple size for the signa- 

tures of the initial function class. For example, given the loop modeling functions (which uses 

C-style shorthand for conditionals in expressions) /,• = Xx -> (x < a, ? a,: x), which might 

be extracted from a MAX reduction loop, there are at least two obvious possibilities for initial 

modeling function classes. The first possibility is F = {f(x, C) = (x< C ? C : x)} where 

FSIG = {(Q> > for a11 C. The second possibility is F = {f(x, C„ C2) = (x < Cx ? C2: x)} 

where FSIG = {(Cu C2)}, for all C„ C2. 

The second case is more general, including many more functions than are needed initially for 

this loop. It may turn out that the more general case is closed under composition, while the 

more restrictive case is not. However, we are better off choosing the more restrictive function 

class and then generalizing if necessary. We achieve this by abstracting out identical symbolic 

constants as the same signature constant. Any expressions of the symbolic constants are repre- 

sented as expressions of the signature constants. 

Theorem 3 Given two modeling function classes F and F, such that F c F and F is closed 

under composition, then for any /,, /_,■ e F, /, • /; e F. 

Proof The proof is trivial. If /,, fs e F, /,, /,- e F since FQF. Thus, /, • /,- e F since F 

is closed under composition. ■ 

This theorem implies that for any more restrictive modeling function class contained wholly 

within a more general function class which is closed under composition, then all of its com- 

posite functions are contained within the more general modeling function class. The intuition 

provided by this is that starting with a more restrictive modeling function class is not harmful, 

in the long run, since the composite functions will always be members of the solution model- 

ing function class, should one exist. 
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3.3.2 Bounded Recurrences 
Callahan [24] coined the term "bounded recurrence" for those recurrences fitting the complex- 

ity constraints we presented in section 3.2. A bounded recurrence uses bounded operators or 

junctions, which are a subset of function classes that are closed under composition. The intu- 

ition is to characterize the resource requirements of recurrences which are amenable to paral- 

lelization. It turns out that the components of this characterization fit nicely with the model of 

recurrent loop execution the compiler works with. 

The first restriction for a function class to be bounded is that there exists an operator • on the 

modeling function class's signature space FSIG such that the following holds: 

/,■ • fj = rep-f{repF{fi) • repF(f})). 

We proved that the modeling function class is closed under composition if such an operator 

exists in Theorem 1. 

The second restriction for bounded functions is that the time complexity of repF is 0(1). 

What this means, in practical terms, is that the loop modeling functions can be brought into a 

useful representation in constant time. The third requirement is that the composition function 

• must have an 0(1) time-complexity (i.e., the cost of composition is constant and does not 

grow). The final requirement for a bounded function is that repF\repF{fi)){A) has a time 

complexity no greater than 0{ft). 

A recurrence whose loop modeling function is a bounded function is parallelizable, since we 

can find a representation and a composition operator whose complexity is constant. In the 

example   of  section   3.2,   constructing   the   composition   operator   C = 5,-_,+5,-_i   in 

g. • g = Xx.x + C satisfies both of these requirements. 

The notion of a bounded recurrence is implicit in our model and analysis of recurrent loops. 

However, we not only seek to verify that a recurrence is bounded by verifying these proper- 

ties; we also search for a representational function class which both includes the loop model- 

ing functions and is bounded. 
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Figure 3.3 Flow diagram for the model and the corresponding model elements computed. 

3.3.3 An Analysis Scheme 

This simple model is effective in abstracting away syntactic details of a recurrent loop to 

expose its relevant computational properties as they pertain to parallel recurrent primitives. 

The example in section 3.2 suggested an automated analysis by which recurrent loop compu- 

tation is modeled as function composition, outlined in figure 3.3. The analysis will search for 

composition operators that satisfy our complexity restraints by composing functions using 

various composition operators and checking whether the loop modeling functions are closed 

under that operator. The details of this analysis will be discussed in the next chapter. Here, we 

provide a high level view, referring the more formal notions we have just discussed. 

The compiler extracts the loop modeling functions for the recurrent loops by treating the 

recurrence variables as bound variables in functions. Then symbolic constants and expressions 

which do no include the recurrence variables are abstracted out as simple symbolic constants. 

This relieves the analysis of the particular syntax of the code, e.g. details of indexing expres- 

sions, etc. It also creates an initial modeling function class F. 

Next, the compiler constructs a composition operator. The first step in achieving this is to 

compose two instances of the modeling function by simple substitution. The second step is to 

symbolically simplify the composite function by forcing expressions involving only symbolic 
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Figure 3.4 Searching for composition operators and loop modeling function classes. 

constants to be computed by the composition operator. The net effect of this is to add (con- 

stant) complexity to the composition operator, while simplifying the composite function (in 

the example of section 3.2, extracting the additive expression of the two symbolic constants 

achieved this). The hope is to find an operator • as defined in section 3.3.1. To this end, the 

goal of the analysis here is to force the composite function to be structurally equivalent to the 

original modeling functions. 

If the analysis does not succeed, it can try again using the (more complex) composite function 

as the new modeling function. The intuition here is that there may be more general loop mod- 

eling functions than our initial choice which are closed under some composition operator. We 

will discuss the details of this analysis further in the next chapter. 

3.3.4 The Search Space 
This analysis is essentially a search for a modeling function class and signature composition 

operator. It is really a search embedded within a search. The first level of search is for an 

appropriate function class. Within each function class, multiple composition operators may be 

considered. Figure 3.4 illustrates the search spaces for the analysis. At points in this analysis, 

we may face may several choices in the search for associative operators. In particular, the 
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Figure 3.5 Composition of loop modeling functions in reductions and scans. 

choices may include deciding how to generalize a (failed) modeling function class, and the 

ordering of conditionals in expressions when we deal with conditional operators. Backtrack- 

ing searches or the use of heuristics to guide the search should be used at these points. 

If conditional expressions are allowed in the modeling function classes, intractable and unde- 

cidable problems will also play a role in the realization of this analysis in a compiler. When 

simplifying conditional expressions, we will employ logic minimization and linear inequality 

decision. Also, in general, when testing whether a function class is closed under composition 

we will test whether a composite function is equivalent to members of that function class, we 

flirt with the undecidable problem of testing whether piece-wise polynomial expressions are 

equivalent. In contrast, loops with no conditional constructs (linear recurrences) can be paral- 

lelized reliably. We will have more to say about these issues while discussing the implementa- 

tion of this analysis in the next chapter. 

3.4 Modeling Other Recurrent Loops 

This modeling scheme is not limited to reductions or scans. Associativity is an important 

property to discover in many recurrent loops. The model presented here is applicable to such 

loops. The syntactic similarity of simple reduction or scan loops to difference equations [61] 

made introducing loop modeling functions simpler in that context. But a more general view of 

loop modeling functions is that they model the computation performed on memory locations. 

The point of finding associative operators is then to parallelize the computation on each loca- 

tions. This is clearer when we decouple the notion of collection traversal from the operator 

used to updates elements of that collection. 

The collection traversal scheme that was implicit in the last section was a linear or affine tra- 

versal, as in figure 3.5. This illustrates the execution of the loops as a series of applications of 

the loops modeling function. The source array is accessed sequentially at each loop iteration 
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Figure 3.6 Tangled and untangled composition of loop modeling functions in combining-send 
and multiprefix operations. 

and used as an argument to the loop modeling functions /,. The function composition pattern 

is fairly straightforward. 

A similar illustration of the combining-send or multiprefix operation below is in figure 3.6: 

do  i  =  1,   n 

A(C(i))   =   /,(A(C(i)),B(i)) 

enddo 

Figure 3.6 separates the operations modifying differing sites in the array A. One can see that 

there is still a pattern of composing modeling functions in executing this loop. So the model is 

still valid here. What has really changed is the underlying primitive we will use the associative 

operator in. The underlying parallel primitive essentially handles the computation and com- 

munication patterns, while all the programmer and compiler needs to specify is an associative 

operator. Thus, the compiler may decouple recurrent primitive determination from the asso- 

ciativity analysis. 

This decoupling allows the use of the same associativity analysis for any recurrent code's tra- 

versal patterns (for example, the linked list-based reduction or scan in figure 3.7). The overall 

analysis for recurrent loops will take place in two phases. First, the compiler determines the 

particular recurrent primitive that is applicable by examining the indexing on the recurrence 

variables. Then the compiler extracts modeling functions and performs the associativity analy- 

sis. These two phases give us all the information we need to parallelize the loop. 
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3.5 Review 

This chapter demonstrates that composing instances of the loop modeling functions, simplify- 

ing the composite, and abstracting out symbolically constant terms is a promising, sound strat- 

egy for automatic parallelization. Chapter 4 discusses the realization of this scheme in our 

compiler. 
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Chapter 4 

Recurrent Loops II - 
Compilation & Code 
Generation 

This chapter discusses the implementation of the analysis introduced in the last chapter in a paral- 

lelizing fortran compiler. The first part of this chapter discusses implementation details of the last 

chapter's analysis. The second part of this chapter discusses code generation issues relating to par- 

allelized recurrent code. 

4.1 Compiler Analysis 

The implementation of the associativity analysis is a straightforward adaptation of what was out- 

lined in the last chapter, which we briefly review here. The first step is to extract modeling func- 

tions from the recurrent loop. The compiler then starts an iterative process of finding modeling 

functions closed under composition. 

First, the analysis composes two instances of the modeling functions. Next, the analysis simplifies 

the resulting composite function through algebraic simplification and the construction of a more 

complex composition operator. Finally, the analysis checks whether the composite is a member of 

the starting modeling function class. If successful, the compiler can use the constructed composi- 

tion operator in a recurrent primitive. Otherwise, the analysis continues with the new composite 

function as the prototypical modeling function. The analysis stops after several iterations through 

this (the number of iterations can be adjusted, but is fixed at compile time). 
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Figure 4.1 Flow diagram for the model and the corresponding model elements computed. 

The steps in the analysis are shown in figure 4.1, with cross-references to the sections in this 

chapter. The sections will refer back to more formal modeling aspects during the discussion of 

the implementation. 

Careful analysis of conditionals allows this analysis to succeed in cases where existing auto- 

matic methods fail. Much of the complexity discussed here is due to the introduction of condi- 

tional expression, which are more difficult to reason about and manipulate (all of sections 

4.1.3.2 and 4.1.4 are concerned with this issue in particular.) The importance of this condi- 

tional analysis will become more apparent in later chapters when we deal with more complex 

control structure and when we examine the problems that pattern matching compilation tech- 

niques have with variations of simple recurrences, especially those embedded within condi- 

tionals. 

4.1.1 Extracting modeling functions 
The code in below for computing a linear recurrence (inspired by loop 19 of the Livermore 

Loops [34]) is used as an example in this section: 

do  i=l,n 
a[i]   = E[i]   - b[i-l] 
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Figure 4.2 A candidate for function modeling in directed acyclic graph form with 
dependence information. 

b[i]   = a[i]*C[i]   + D[i] 
end do 

The starting point for extracting functional models of loops is extracting strongly connected 

components of the expression level data dependence graph [93] for the loop body, as in figure 

4.2 (only flow dependences are shown). We also include control dependences to account for 

the presence of conditionals. 

Strongly connected components are isolated through loop fission and analyzed as separate 

recurrences if they have any loop carried flow dependences. In this example, there exists only 

one strongly connected component. The first pass at extracting functional models assigns a 

recurrence variable to each flow dependence in the graph. Destination nodes of both inter- and 

intra-loop flow dependences are replaced by the recurrence variable corresponding to the 

source of the dependence. The dependence distance determines which instance of the recur- 

rence variable appears. In this code example, we have the coupled recurrences a, = £,-&,_! 

and bj = afii + Z),. 

The next step eliminates non-loop carried dependences to instances of recurrence variables in 

the expressions. The appropriate recurrence bodies are symbolically substituted for such 

recurrence variable references within the expression bodies,  as in  a, = £,-£,_,   and 

fcI. = (EI.-*I._1)C,- + Z>I-. 

The loop-carried recurrence variable instances are assigned bound variable names (function 

parameters). The functions are then constructed by substituting recurrence variable references 

with the bound variables: 
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fa. = "k{x,y)->Ei-y, 

fbi = X(x,y)->(Ei-y)Ci + Di. 

It is obvious in this case that this set of recurrences is not mutually recurrent. Only one of the 

functions need be analyzed and the original forms of the other functions can be used to com- 

pute the rest of the recurrence variables' values. The absence of a true mutual recurrence 

between the functions or subset of functions implies that intra-iteration flow dependences 

were intrinsic parts of the strongly connected component. These strongly connected compo- 

nents would be broken by the symbolic substitution of intra-iteration recurrence variable ref- 

erences. For example, fb. = Xx H> (£, - x)C{ + D, can be used to generate parallel prefix code 

to compute b [ i ]. The loop in below is generated to compute a [ i ] and is trivially parallel- 

izable: 

do  i=l,n 
a[i]   = E[i]   - b[i-l] 

end do 

If the statements were truly mutually recurrent, the functions are combined by forming a func- 

tion which acts on a tuple. For example, consider the two variable linear recurrence below: 

do  i=l, n 
a[i] = C[i]*a[i-1]   + D[i]*b[i-1] 
b[i] =  E[i]*b[i-1]   + F[i]*a[i-1] 

end do 

The modeling function for this loop is /(a?fe) = X(x, y) -> (C,x + D-y, E,x + F-y). 

We can also handle nth order recurrences such as this: 

a[i]   =  f(a[i-l],   a[i-2],    ...,   a[i-n]) 

We transform them into mutual recurrences, as follows: 

a[i] = f(a[i-l], tmpl, tmp2, ..., tmp(n-l)) 
tmp(n-l) = tmp(n-2) 

tmp2 = tmpl 
tmpl = a[i-l] 
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4.1.2 Composing Functions 

The easiest step in this analysis is the composition of two functions. The mechanism by which 

we compose two function is by simple symbolic substitution. Note that this is only during the 

analysis; at run time, we will compose the functions using the derived operator • . For exam- 

ple, given two modeling function instances /, = "kx -» x + C, and /; = Xx -» x + Cj, the 

analysis computes /, • /y = Xx->(x+ Cj) + Cj. 

4.1.3 Templatization 
In the example presented in section 3.2, we found that, by abstracting out symbolically con- 

stant subexpressions, we were able to trade off composition time complexity for composite 

function complexity. In the addition reduction example, using an addition at composition time 

fixed the complexity of the composite function1. 

We build the composition operator as we abstract out symbolically constant terms (i.e. simul- 

taneously building both a candidate composition operator • and the new function class F). 

We call this process of abstraction templatization. 

4.1.3.1 Polynomial Expressions 

Consider this recurrent loop: 

do  i  =  1,   n 
a[i]   = D[i]*a[i-1]   + B[i] 

end do 

Its modeling function is h{ = Xx -> Dtx + Bt. The composition of two abstract instances of h in 

this initial representation results in: 

hi • hj = \x-> D;(Djx + Bj) + B{ = Xx.DtDjX + DtBj + B, 

1. Another way of looking at why this trade-off is important is that we are transferring complexity from an inher- 

ently serial portion to a parallel portion of the computation. The serial portion is that of evaluating each func- 

tion. The final composite function's computational complexity is a lower bound on the time complexity of its 

evaluation in the application loop. If some of the computational load is taken up by the composition method, 

which is applied in parallel, we have effectively converted this time complexity in the form of a serial work 

load into parallel work complexity. 
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= \x->(C}x + C2), where C, = A#; and C2 = DtBj + Bi. 

No further composition is required as the function class is closed under composition. From 

this, the composition function is directly inferred as the two operations C, = £>,£, and 

C2 ^Dfij + B,. 

We call the functional composite with symbolic constants abstracted out a template function. 

We call the symbolic constants which must be computed dynamically template variables. 

Template Function2: 
A template function is a function with symbolically constant subexpressions abstracted out. 

Template Variables: 
Template variables are the variables used to replace symbolically constant subexpressions 

which have been abstracted out. 

Here, by a simple distribution and an abstraction of coefficients in this polynomial, we have 

managed to reduce the complexity of the composite function. We have mitigated the complex- 

ity of the composite by computing portions of it in the composition operator, rather than defer- 

ring evaluation until function application time. We can construct a method by which 

expressions which are polynomial in the bound variables of a function can be templatized by 

simply abstracting out symbolically constant coefficient terms as template variables. 

The polynomial expression level templatizing algorithm expects that its input is processed so 

that all multiplications are distributed through additive terms to create a sum of product terms. 

With this resulting polynomial, the templatizer gathers the coefficients of the bound variables 

of the function, and then abstracts these coefficients out as template variables, eliminating 

redundant or equivalent template variables as necessary. This algorithm will always templatize 

linear recurrences so that the analysis succeeds. 

4.1.3.2 Conditional Structure 

Conditional structure is more difficult to simplify through algebraic transformation than sim- 

ple polynomial expressions. For example, we apply a similar line of analysis to a recurrence 

2. The template function and variables are the components of a modeling function class F. 
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Figure 4.3 Composite functions for maximum reduction problem in switching function 
form. 

with embedded conditionals. Consider the loop body below for computing the maximum ele- 

ment of an array: 

do i = 1, n 
if (B[i] > max) then 

max = B[i] 
endi f 

end do 

The modeling function for this loop is /, = ?u-> ((£,• >*)?£,:*)3. Symbolically composing 

instances of / results in: 

/../. = Xx^((Bi>((Bj>x)Wj:x))Wi:((Bj>x)Wj:x)) 

Switching function representations simplify the analysis of conditional nests, as they facilitate 

the application of standard logic minimization methods. The switching function representa- 

tion of the composite is shown in figure 4.3a. 

The predicate ß, > Bj is symbolically constant. We call symbolically constant predicates tem- 

plate predicates. 

3. modeling functions are extended to include a conditional operator and relational operators. We use the condi- 

tional notation (predicate"! trueval: falseval) for conciseness. 
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Template Predicate: 

A template predicate is a relational expression in which all embedded terms are symboli- 

cally constant. 

The template predicate is abstracted out and evaluated during each dynamic composition, 

yielding the two switching functions in figure 4.3b. Note that certain table entries here require 

logical contradictions between the predicates to be selected. These entries are replaced with 

'NP' in the entries above. 

Applying the logic minimization method we discuss in section 4.1.4 will yield: 

f  _ Ax -> (5, > x)W,:x if {B,> Bj)\ 
Ji   Ij ~ [\x -> (Bj > x)Wf.x if (5, < Bj)J 

While these two functions seem to indicate that the original modeling function was closed 

under composition, somehow they must be unified into one representation while retaining this 

desirable property. Note the similarity in the structure of the two simplified functions. They 

are nearly identical, except where symbolic constants occur. We call this condition structural 

isomorphism. 

Structural Isomorphism: 

Two expressions are structurally equivalent if, when abstracting out symbolically constant 

subexpressions, there exists some ordering of the predicates in the conditional nest for 

which the CNF-Exp representing them is isomorphic. 

Figure 4.4 graphically depicts these two functions. We can unify these two functions by creat- 

ing an isomorphism mapping between them. The composite functions in this example are uni- 

fied by creating the mapping ((ß,-, 5,)). The template variables are selected from the 

mapping(s) based on the template predicate: fi»fj = 'kx->(C>x)?C:x, where 

C = (ß,> Bj^Bj-.Bj, as figure 4.4 illustrates. This template function is structurally equivalent 

to the original looping modeling function, confirming closure under the newly constructed 

composition operator. 

At the expense of one comparison operator at each dynamic composition, we have guaranteed 

that the resulting composite function does not increase in complexity. The effective run-time 

representation of intermediate composite functions is the template variable C, which we use 
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Figure 4.4 Unifying subfunctions with 
a template predicate. 

Figure 4.4 The composite maximum 
function in CNF-Exp form. 

to evaluate the template function in the application phase. Thus, the solution conforms to the 

0(n/p) time bounds. 

While analyzing this problem, we took advantage of the fact that predicates with template 

predicates may be evaluated at composition time. Other than the conditional optimizations we 

discuss in section 4.1.4, the only way to reduce the complexity of composed conditional nests 

is to abstract out template predicates and add them to the composition operator. However, 

when template predicates are abstracted out, multiple versions of the function are generated 

for each combination of logical values of the template predicates. Unifying these subfunctions 

to reduce the complexity of such a composite implies finding some structural correlation 

between them. An simple way to find a correlation is to check for structural equivalence in the 

conditional nest structure. If the isomorphism exists, we find polynomial expression templati- 

zations in the leaves of the conditional nest for each subfunction and then pick among them by 

evaluating template predicates at composition time. It is by this unification mechanism that we 

reconcile the simple polynomial expression templatization algorithm with template predicate 

extraction in conditional nests. 

To facilitate the transformations and traversals necessary for this algorithm, we convert condi- 

tional nests to a normal form, called Conditional Normal Form Expression (CNF-Exp). 
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Condition Normal Form Expression: 

A CNF-Exp is defined to be conditional nest in which all conditional expressions are dis- 

tributed out of arithmetic operators, relational operators, and the predicates of conditional 

operators. 

Figure 4.4 illustrates a CNF-Exp form for the first composite of the maximum reduction 

example. We normalize functions into CNF-Exp form after logic minimization and template 

predicate abstraction. This allows for easy structure traversal when checking for isomorphism. 

If an isomorphism mapping cannot be found to unify subfunctions, then the analysis termi- 

nates with failure. Detection of structural isomorphism and extraction of mappings is a poten- 

tially costly operation, given that the number of possible condition orderings in a conditional 

nest are exponential. However, in the minimization process we use some heuristics to order 

the conditions so that we can apply a simple linear walk over the expressions to construct the 

mapping and detect structural isomorphism. The ordering heuristics checks only that the con- 

ditions of the same rank in the conditional nests of subfunctions are themselves structurally 

equivalent to each other. The algorithm for templatization is described in high level applica- 

tive style is below. The algorithm assumes that its inputs are a set of functions in CNF-Exp 

form and preprocessed for conditional ordering: 

function SimpleTemplatize(SoPs,   TempVarSet) 
;;   collect polynomial  coefficients 

foreach   (ProdTerm in SoPs) 
Coeff = GetCoefficients(ProdTerm) 

;;   check for redundancy 
if   (not   (newTempVar  == find(Coeff,   TempVarSet)))   then 

newTempVar = GenTempVar () 
end if 
add (GenTempVar () ,   Coeff,   TempVarSet) 
replace(Coeff,   newTempVar,   SoP) 

end foreach 
return TempVarSet 

end 

function  Templatize(CNF-Exprs,   CurrTemp) 
if   (PolyExprs(CNF-Exprs))   then 

;;  polynomial   leaf in all   subfunctions 
if   (not   (SimpleExprIsomorph(CNF-Exprs))   then 

;;   no isomorphism between subfunctions 
exit(Failure) 

end if 
return  SimpleTemplatize(CNF-Exprs,   CurrTemp) 
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else if   (CondExprs(CNF-Exprs))   then 
;;   conditional node in all  subfunctions 

return Templatize(map(RightExpr,   CNF-Exprs), 
Templatize(map(LeftExpr,   CNF-Exprs), 

Templatize(map(PredExpr,CNF-Exprs), 
CurrTemp))) 

else 
;;  no isomorphism between subfunctions 

exit(Failure) 
end if 

end 

There is a complication that the maximum reduction example does not expose. The simplified 

composite function 

fkc-*(x + Bj + ß, < 0)?0:;c + B} + ß, if 5, < <h 
fi*JJ -[  lx^(x + Bj<0)?5,-:JC + Bj + B, if B,>0  J 

is from the example in section 4.2. A naive templatization from the mapping {(B} + Bt, Bj), 

(0, Bt), (Bj + B„ Bj + Bi)} might produce three template variables for the template function 

^_>(x + C1)?C2:x + C3,    where     C, = (ß,<0)?(ß; + ß,):ß^     C2 = (5,<0)?0:5,,    and 

C3 = Bj + Bi. 

However, the relationship Cx + C2 = C3 suggests an alternative abstraction 

Xx _» (JC + cx)lC2:x + C, + C2, with the same values for Cx and C2. This relationship might be 

important in subsequent compositions of the composite function. We avoid this over-abstrac- 

tion by eliminating those template variables which can be expressed as simple linear combina- 

tions of other template variables. 

4.1.4 Simplification of conditional operators 
Simplification of conditional operators is essential for dealing with recurrences containing 

conditional control structures. The basic goal of the conditional analysis phase is to find and 

eliminate logical discrepancies and redundancy within an expression. 

The form of simplification shown in figure 4.5a involves redundancy; if a conditional node has 

identical children, the conditional node can be eliminated. Another involves a discrepancy in 

which identical predicates are in an ancestor/descendant relationship within an expression, as 

in figure 4.5b. The first expression represents such a situation. As the conditional node with 
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Figure 4.5 Simplifications of conditional nests by exploiting redundant and infeasible paths. 

the identical predicate is a descendant of the false branch of the root condition node, the true 

branch of that node will never be evaluated, allowing the elimination of that branch. In other 

words, the conditional subnode becomes unnecessary as its evaluation is predetermined by its 

status as a descendant of a conditional node with an identical predicate. The second expres- 

sion is the result of this simplification. 

Other logical discrepancies may require complex symbolic reasoning to deduce relationships 

between dissimilar predicates; for example, the predicates a<b, b<c, and c < a can never all 

evaluate as true, allowing the simplification in figure 4.5c. The module which uncovers logical 

discrepancies between the potential logical evaluations of the predicates in the conditional 

nest can be structured in several different ways. As the analyses involve linear relational 

expressions, linear or integer programming formulations of the problem are options. However, 

the complexities of such algorithms (integer linear programming is NP-complete) make other 

approaches worth considering. We resort to a pruning, heuristic search of the exhaustive set of 

subsets of the predicates in a conditional nest. In spirit, it is an optimized version of the Fou- 

rier-Motzkin method for deciding linear inequalities [33]. Other alternatives include fast 

methods by Shostak for handling special forms of linear inequalities [78]. 
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Optimizations of conditionals are based on the switching function representation introduced 

earlier. The switching function is created by tracing paths from the root to the leaves in the 

conditional nest, forming table entries. Note that we do not build an exhaustive switching 

function representation, though, for conceptual purposes, they are represented as such in this 

paper. Simple conditional contradictions of the form in figures 4.5a and 4.5b are eliminated in 

the tabulation process. Logical inconsistencies are eliminated by striking lines from the 

switching function. Template predicate extraction is trivially achieved by generating multiple 

sub-tables of the original switching function for each possible evaluation of the template pred- 

icate. Conditional redundancies are eliminated by applying multilevel logic minimization to 

the representative switching function. We base this step on the standard logic minimization 

package, Espresso [23]. 

Consider the composite function (in CNF-Exp form) from the example in figure 4.4: 

/,../, = \x-*a(Bj>x)nBi>Bj):(Bi>x))Wi:aBj>x)Wj:x)) 

This function was first converted to the switching function form, as demonstrated in section 

4.1.3.2. Note that while the first occurrence of the predicate Bj > x seems to indicate that there 

may be a circumstance under which this predicate is true and the value x would be returned by 

the function, the second occurrence predicate guarantees that this will never happen. The 

switching function representation indicates this. This is an example of the tabulation eliminat- 

ing a simple conditional contradiction. The subfunction switching functions generated by 

removing the constant conditional 5, > Bj are trivially derived from the switching function. 

The conditional contradictions arising from conflicting predicates are easily struck from these 

switching functions. Finally, the redundant conditional nodes were removed by the logic min- 

imization procedure. 

4.1.5 Testing for Closure 

Testing whether two modeling function classes are closed under composition is fairly easy in 

this framework. The template functions and template variables are those entities that we will 

compare. Since we use ordering heuristics, discussed in prior sections, to generate the tem- 

plate functions, then comparison need only be syntactic. The syntactic check for structural 

equivalence between two template functions, which runs in time linear in the size of the func- 

tions, is defined recursively below in pseudocode: 
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function StructuralEquivalence   (El,   E2) 
case  type(El)   of 

SymbolicConstant: 
return   (type(E2)   == SymbolicConstant); 

BoundVariable: 
return   (type(E2)   == BoundVariable); 

ConditionalExpr: 
return   (type(E2)   == ConditionalExpr) 

and StructuralEquivalence(PredExpr(El), 
PredExpr(E2)) 

and StructuralEquivalence(LeftExpr(El), 
LeftExpr(E2)) 

and StructuralEquivalence(RightExpr(El), 
RightExpr(E2))); 

Expression: 
return   (type(E2)   == Expression) 

and   (operator(El)   == operator(E2)) 
and StructuralEquivalence(LeftExpr(El), 

LeftExpr(E2)) 
and StructuralEquivalence(RightExpr(El), 

RightExpr(E2))); 
end ca.se 

end 

The final check is to assure that there are the same number of template variables in each func- 

tion class. This assures that both signature spaces are equivalent. 

4.1.6 Scope 
The framework presented here is general, however, the specific techniques are tune to a partic- 

ular class of functions. This function class is defined simply as the class of n-dimensional 

piece-wise linear functions with symbolic constants. We define piece-wise linear functions to 

be linear expressions embedded within relational expressions and conditional operators. 

This technique can analyze the class of polyregion-wise polynomial functions. Polyregion- 

wise polynomial functions are the complete class of functions defined over multiplication, 

addition (and subtraction), and conditional and relational operators. However, the underlying 

abstraction mechanism and analytical techniques are suited more toward piece-wise linear 

functions. 

Note that we do not guarantee finding solutions if they exist. Some of the techniques presented 

here are necessarily heuristic in nature. Implementing a full search through the space of func- 

tions is intractable, both theoretically and practically, as some of the subproblems presented 
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here are either intractable or undecidable in nature. From a compiler perspective, trading off 

some thoroughness for speed is necessary. However, standard techniques for dealing with 

these problems efficiently have been utilized in other domains. In the case of logic minimiza- 

tion, work in VLSI design has been a particularly rich source of efficient algorithms [23]. The 

problem of deciding linear inequalities has occurred elsewhere in compiler work [69] [86], as 

well as a multitude of other research domains. 

4.2 Example: Maximum Subsequence Sum 

This code in below computes the largest non-negative contiguous subsequence sum of a series 

of real numbers. 

do i = 1, n 
if (sofar + B[i] < 0) then 

sofar = 0 
else 

sofar = sofar + B[i] 
end if 
if (max < sofar) then 

max = sofar 
end if 

end do 

The second statement in this loop body is simply an articulated maximum reduction. For the 

purposes of this demonstration, the variable sofar is promoted to a vector so that the loop 

may be split between the two conditional statements. 

The loop modeling function is /, = Xx->(x + Bi<0)r>0:x +Bt . The first composition 

results in the following function: 

/. • /. = Xx -> (((* + Bj < 0)?0:* + Bj) + 5, < 0)? 

0:((jc + BJ-<0)?0:* + By-) + fi/  . 

The switching function representation of this function is shown in figure 4.6b. Extracting the 

template predicate 5, < 0 gives the switching functions in figure 4.6c. The three predicates 

(ß,<0 , x + Bj<0 , x + Bj + Bi<0 ) contradict with the logical evaluations (true, true, false) 

and (false, false, true). These cases were struck from the switching functions. 
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Figure 4.6 Switching function representations for the maximum subsequence problem. 

Logic minimization gives the following functions: 

lx^(x + Bj + Bi<0)10:x + Bj + Bi   if   ß,<0 
Si*Si = \^ Xx^(x + Bj<0)lBi:x + Bj + Bi if £;>0 

The isomorphism mapping for these two functions is {(£, + £,, 5,), (0,5,), 

(Bj + Bh Bj + Bi)}. There are two alternatives in templatization. Over-abstracting would elimi- 

nate the quantitative relationship between the first two pairs and the third, namely, that the 

third pair is the sum of the first two. 

The resulting templatized composition is: 

(/; • /;) = kc -» (JC + Cj <0)lC2:x + C{ + C2, 

where C, = (ß,<0)?ßy + ß,:ß; 

and C2 = (5,<0)?0:S,. 

As this is not structurally equivalent to the original function, we must recompose with the new 

template function /,■ = Xx -> (x + Cu < 0)?C2/:x + Cu + C2i. 
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The templatized recomposition of this function will reveal that this template function is closed 

under composition, yielding the following scheme for combining template variables: 

C, = ((Cli + C2j<0)7Cu:Clj + Cu + C2i) 

C2 = aCu + C2j<OmClj+C2j + C2i):C2j) 

4.3 Code Generation 

4.3.1 Code Templates 

The compiler now uses the efficient composing operator it has derived to compute the recur- 

rence in parallel. The first step is to compute the template variables described earlier in this 

chapter. These form the initial signatures used for each modeling function. Then the signatures 

are composed using a parallel reduction or scan on the composition operator. Finally, the 

resulting signatures for the composite functions are used to compute the final recurrence val- 

ues. The primitives used are architecture dependent. On the Cray C90, we use those described 

in chapter 2. 

The basic template the compiler uses is illustrated in below, using the formal concepts we dis- 

cussed in the last chapter: 

1. Compute repF for the loop functions 

2. sig.    = parallel_compose( • , repF) 

3. Compute (rep~F (sig.   ))(initial vals) 

The following pseudo-code is closer to the compiler target and uses the terminology of this 

chapter: 

<original loop header> 
initialize template variables 

<end loop> 

new_template_vars = recurrent_primitive( • , <template vars>) 

<original loop header> 
use new_template_vars in template functions 

and apply to initial value of 
recurrence variables 

<end loop> 
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For example, for the simple linear recurrence of section 4.1.3.1, this piece of code looks like 

the following: 

do  i  =  1,   n 
tmpl[i] = D[i] 
tmp2[i] = B[i] 

end do 

(newtmpl [1 :n] ,newtmp[l :n] ) = 
scant [{tmpl, tmpT) © (tmpV, tmpl) -4 {tmpl ■ tmpY, tmpl ■ tmpl + tmp2)] , 

(tmpl[l:n],tmp2[l:n])) 

do  i  = 1,   n 
a[i] = newtmpl[i]*a[0] + newtmpl[i] 

end do 

The first step is to initialize the template variables for the modeling function classes. These are 

used in the next step, which is to compute the composition of modeling functions using the 

derived composition operator and the template variables. Using the resulting template vari- 

ables, the values of the recurrent variables are computed using the initial value(s). Both loops 

and the primitive here are parallelizable. 

4.3.2 Primitive Selection 

Deciding which primitive to use depends on the form of the indexing patterns on the recur- 

rence variables.   Examples of the patterns of primitives we compile are listed below: 

Reductions • 

do  i  =  1,   n 
a =  f(a) 

enddo 

Scans 

do  i  =  1,   n 
a(i)   =  f(a(i-l)) 

enddo 

Combining-sends/Multiprefix 

do  i  =  1,   n 
a(c(i))   =  f(a(c(i))) 

enddo 
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These are only one of many potential encodings for each primitive. The compiler does not rely 

solely on indexing expression. Rather, it examines the loop carried flow dependences in recur- 

rent cycles and their dependence distances to determine the type and order of the recurrence. 

This simple algorithm abstracts away the details of the indexing expressions and syntax, rely- 

ing primarily on the abstract representation of the dependence graph. 

The presence of a maximum loop-carried dependence distance of two would indicate a sec- 

ond-order recurrence computable by a reduction or scan, and so on. When there is no discern- 

ible dependence distance, the compiler can check to see whether or not the indexing 

expressions are identical to each other, in which case it can generate code for a combining- 

send or multiprefix operation, depending on whether intermediate values are used. 

In cases of complex indexing which do not satisfy these requirements, run-time tests may be 

employed to check whether a particular index set has properties similar to any of these primi- 

tives. This would probably only be worthwhile if the index sets are reused, so that the cost of 

the run-time tests are mitigated. 

4.4 Review 

The observations that function composition is associative and that recurrent loop bodies can 

be modeled as function applications lead us to a framework for extracting reduction and paral- 

lel prefix operations in a general and flexible way. The compiler now has a powerful and flex- 

ible kernel for parallelizing recurrent code, upon which it can now layer control structure 

transformations to handle nested of computation. The control structure transformation we will 

describe in subsequent chapters will rely heavily on the ability of the compiler to deal with 

conditional expressions. 
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Chapter 5 

Irregular Control Structure I - 
Loop Flattening 

Irregular loop nests in which the loop bounds are determined dynamically by indexed arrays are 

difficult to compile into expressive parallel constructs, such as segmented scans and reductions. In 

this chapter, we describe a suite of transformations of irregular loop nests to enable automatic par- 

allelization by both tradition parallelization techniques and recurrence analysis. The basis is a 

simple, general loop flattening transformation, along with new optimizations which make it a via- 

ble compiler transformation. Coupled with the recurrence parallelization technique of the last two 

chapters, the transformation enables parallelization of segmented reductions and scans. 

5.1 Irregular Loop Nests 

Many real world parallel applications display little regularity in their computational structure. 

Often, communication and computation patterns are determined dynamically from data values. A 

typical example is the use of sparse matrix and vector representations. Most attempt to conserve 

memory and computation by storing only computationally relevant portions of the data (i.e. non- 

zeros) and a representation space mapping. Other applications may require that a data structure be 

partitioned in an irregular fashion. In some cases, this gives rise to code in which control structure 

depends on dynamically determined data values, such as partition points or pointers into index 

space. Applications which may exhibit these properties include sort, text processing, computa- 

tional geometry, image processing, and molecular dynamics simulations. 

High level parallel primitives, such as reduction and scan, merge, and set operations, are useful in 

parallelizing many of these irregular computations. These primitives can display markedly better 

67 



Irregular Loop Nests 

speedup and/or load balancing characteristics than alternatives. It is important in these cases 

that a parallelizing compiler have the ability to infer such high level primitives from complex 

control structure. 

Consider the sparse matrix-vector multiplication loop below: 

do  i  =  1,  N,   1 
y(i)   =  0.0 
do k = pntr(i),   pntr(i+l)-l,   1 

y(i)   = y(i)   + val(k)*vec(indx(k)) 
end do 

end do 

This loop utilizes the popular Compressed Sparse Row (CSR) representation of sparse matri- 

ces [32], which is also illustrated below. 

VAL: [1 2    3    4    5    6    7    8    9    10 11] 

INDX:        [3 5451342516] 

PNTR:        [13 5    6 8 10        12] 

CSR representation consists of an array of nonzero values of the matrix in row-wise order 

(vai), an array of corresponding column numbers (indx), and an array pointers to the begin- 

ning of each row (patr). The inner loop bounds and trip count are determined solely by the 

array pntr, whose value is generally not known to the compiler. Consequently, despite poten- 

tial benefits (i.e. load balancing, availability of parallelism) in parallelizing across all inner 

loop iterations, it is difficult to compile this way. 

Successful attempts at manual parallelization of the CSR kernel have utilized segmented 

reductions [20] (many irregular computations can be effectively parallelized using segmented 

reductions and scans [15]). Segmented operations allow for arbitrary nesting structure to be 

imposed on the source array. The operation is evaluated independently in each segment, reset- 

ting at the beginning of each segment, as in the example of Figure **. Explicit segmented 

reduction, scan, and elementwise operations can be flattened so that they maximize available 

parallelism in the operation and simplify the load balancing problem. Our compilation 

approach automatically detects these segmented operations and flattens them. 

Combining-send and multiprefix operations have also been shown to effectively parallelize 

sparse matrix kernels [77]. The second representation and kernel below are called Compressed 

Sparse Column (CSC): 
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VAL: [5 10 8    1    6    3    7    2    4    9    11] 

INDX:        [3   651424125    6] 

PNTR:        [13    4 6 8 1112] 

do  i  =  1,   N,   1 
do k = pntr(i),   pntr(i+l)-l,   1 

y(indx(k))   = y(indx(k))   + val(k)*vec(i) 
end do 

end do 

The CSC representation is essentially equivalent to the CSR representation of the transpose of 

the matrix. Current compilers might parallelize the inner loop, generating a simple combine- 

send of limited parallelism nested within the outer loop by using pattern matching or some 

other ad-hoc technique. However, a better approach might be to parallelize the entire loop nest 

using a single combining-send with a more complicated operator. What the compiler will 

derive is not a segmented operation, in this case, but a combining-send operation to compute 

the entire loop. 

We refer to loop nests which display the type of loop bound indirection evident in this exam- 

ple as irregular loop nests, as opposed to regular loop nests in which the loop bounds are 

"analytically manageable" by the compiler. One might consider irregular any loop nest whose 

closed form cannot be determined by the compiler. With current analytical skills of compilers, 

this may be any loop bound that is not either constant or a linear combination of outer loop 

indices. The boundary between regular and irregular loop nests may change with the sophisti- 

cation of the compiler. However, the class of loops we are interested in derive their iteration 

space shape from dynamically determined data values about whose patterns the compiler is 

likely to know nothing, so we are solving a more general problem. Other types of irregular 

loop nests may involve nested while loops which have similar indirection in the loop exit con- 

ditions. 

Our goal in automatically parallelizing these irregular, recurrent loop nests is to automatically 

construct the high level parallel primitives described above from serial code in a reasonably 

general manner. The parallelization technique presented in previous chapters can parallelize 

recurrence well in the presence of complex conditional statements. This enables paralleliza- 

tion of explicitly segmented computations (in non-nested loops). However, many segmented 
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operations are expressed implicitly through loop nests. We seek to transform these loop nests 

so that our recurrence parallelization technique and other standard parallelization transforma- 

tions can be applied across the entire loop nest. 

We use a basic loop flattening transformation that facilitates the parallelization of irregular 

loop nests and provides a basis for recognizing more sophisticated parallel primitives. The 

basic idea is to create a single, non-nested loop that emulates the execution of the original loop 

nest. This is achieved by first computing the original loop nest's index sets. Then, by creating 

a non-nested loop with a trip count equal to the total sum of inner loop trip counts, the pre- 

computed index sets are used to decide which point in the original loop the flattened loop 

should execute. The transformation has the following benefits: 

• The application of most existing parallelization transformations as well as our recurrence 

parallelizing technique to the loop nest in toto by applying the transformations to the flat- 

tened loop. Artifacts of the loop flattening transformation include complicated conditional 

structures, which the recurrence parallelization technique must be able to deal with. 

• The parallelization of the index set computation. This allows the practical use of loop flat- 

tening in a compiler by attacking the remaining artifact of the transformation: the index set 

computation. Also, this leads to some intriguing future possibilities for extracting other 

sophisticated algorithmic idioms from irregular loops. 

• The amortization of the index set computation over repeated executions of the loop nest. 

For sparse matrix-vector multiplication, this is analogous to the preprocessing steps of 

many existing parallel libraries, most of which are applied once for repeat multiplications 

of the matrix. 

Applying parallelizing transformation in toto is important for the following reasons: 

• Load balancing the assignment of outer loop iterations is complicated by unpredictable 

inner loop trip counts. 

• Inner loop trip counts may not be sufficiently large to make parallelizing the inner loop 

body worthwhile. 

This paper will focus on a particular type of irregular loop nest, which we refer to as a seg- 

mented loop nest, in which the inner loop bounds are functions of array references indexed by 

loop index variables and are invariant with respect to the loop nest. However, since the overall 
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DBDBDBDB 
■ ■DDDDDD »«000000000 
BDDBDDBD DOHODODOOOO 
DOBBOOOO DDDBBBDDDDD 
OOBBBODO OOOOODBBOOO 
BBOOOOOO DOOOOOOOBOO 
DDODDBBB OODOOOODOBB 
BDBDBDBD 

(a) 

BDDDDDDG 
BBDDDDDD 
BBBDDDDD 
BBBBDDDD 
BBBBBGDD 
BBBBBBDD 
BBBBBBBD 

(b) 

Figure 5.1 Some possible index space iterations by (a) irregularly nested loops and (b) regularly 
nested loops. 

framework is general, this may be a viable approach for more complicated irregular loop 

nests, such as those that must be parallelized using parallel merge and pattern matching. 

5.2 Parallelization Strategies 

The shape of the index space traversal of an irregular loop nest may vary arbitrarily, as in Fig- 

ure 3a. A nested while loop without a discernible induction variable, or with an induction vari- 

able with a dynamically determined bound, may also be considered an irregular loop nest. 

Some common index space traversal patterns that can be considered regular are shown in Fig- 

ure 3b. 

As previously mentioned, irregular loop nests occur in many applications, including sorting, 

computational geometry, molecular dynamics, image processing, and sparse algorithms. We 

will focus on the examples given in the introduction involving sparse matrices, although the 

majority of the discussion and optimizations here apply to all these algorithms. 
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Consider again them CSR sparse matrix-vector multiplication loop nest, in Figure 1. There are 

a variety of strategies for parallelizing this: 

• Parallelize across the outer loop iterations. This approach would assign outer loop itera- 

tions to processors. The problem here is that the inner loop trip counts may be computed at 

run time and may vary arbitrarily, making static load balancing impossible for this 

approach. This approach can be easily automated, but is not always possible for the other 

irregular loop nests we have discussed, such as the CSC kernel of Figure 1. 

• Parallelize the inner loop. This approach would attempt to parallelize the inner loop only 

(in this case, a reduction). The problem here is that the inner loop trip counts may be small. 

In the case of a sparse matrix, the average sparsity of the rows would probably not yield 

sufficiently long running inner loops. Rudimentary recurrence parallelization capability 

makes this viable approach for an automatically parallelizing compiler. 

• Pad the inner loop trip count. This approach would use the maximum inner loop trip count 

as the trip count for all the outer loop iterations. The main problem here is that useless com- 

putation is performed for the sake of regularity in the loop nest. This approach is less effi- 

cient than one which can perform a global parallel operation to compute the entire loop 

nest without padding. Furthermore, the data structure for the sparse matrix will waste mem- 

ory. This is the approach taken by Ellpack/Itpack storage method [51]. This approach 

would be difficult, and not particularly worthwhile, to generally automate. 

• Parallelize across the entire loop nest with a segmented reduction operation. This solution, 

proposed by Blelloch et al. [20], does not pad the computation. Instead, it treats the values 

of the CSR representation as a segmented vector, with each row treated as a segment. The 

addition portion of all the row-vector inner products can be performed using a single seg- 

mented reduction. The problem of load balancing reduction and scan operations (and their 

segmented variants) is also well understood. 

The last approach is preferred in cases where the inner loop trip counts are small and/or vari- 

able, as they are for many sparse matrices. Current compilers may detect the reduction in the 

inner loop, but cannot recognize that a segmented reduction can be used to perform the com- 

putation in the entire loop nest. The previous chapters' recurrences parallelization technique 

yielded a powerful and extensible technique for reasoning about complex expression and con- 

trol structure in non-nested loops. By applying the technique of loop flattening to the loop 
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nest, followed by applying the recurrence parallelization technique, the compiler is able to 

automatically extract this parallel solution from the serial loops. 

5.3 Loop Flattening 

5.3.1 Motivation 

A key problem in applying the parallelization technique of the previous section is one of mod- 

elling loop nests. Ideally, we would like to be able to encode the control structure of loop nests 

in the functional model of recurrent loop bodies. A simple transformation, similar to loop coa- 

lescing, can be made by flattening the loop nest into a single loop in which the loop index vari- 

ables are explicitly computed and checked. We achieve our goal by injecting the loop index 

variable computation into the recurrent loop body, so that it may be directly modelled and rea- 

soned about using our recurrence parallelization technique. 

In the case of regular loop nests, this may seem unduly complicated for the compiler. Ad-hoc 

changes to the analysis of the previous section might handle a reasonably large family of reg- 

ular loop nests (i.e. the class of triangular iteration patterns). However, irregular loop nests are 

much more interesting for their powerful expressiveness. Furthermore, the technique pre- 

sented here will also work well for regular loop nests. 

The CSR kernel of Figure 1 is flattened below: 

DO  j   =  1,   flatlength <*" ~~ 
en            " \ 

\ 
~- —• ^               \ 

\ 

~~ ~- ^ N    ' 
c(indx(k))     x^\ 

'\\ \ 

M \ 
/ 1 i 

if   (k > pntr(i+l)-l)   th 
|i  =  i  +  1   -+ — __ 
y(i)   =   0.0 
k = pntr(i)1^ 

end if 
y(i)   = y(i)   + val(k)*ve 
k =  k +  1 |^_ _ ___ 

END  DO                                           ~- — 

Index set computation 

The computation for the length of the flattened loop is not shown here. Computation of the 

original loop index set, highlighted in the Figure, adds several instructions to increment and 
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reinitialize the loop index variables. A conditional guard is inserted around the portion of the 

outer loop preceding the inner loop. The condition expression checks whether the outer loop 

body should be executed at that point in the flattened iteration space. 

The problem with this transformed loop is that a complex set of both intra- and inter-loop 

dependences are introduced into the loop. One approach to parallelizing this loop might try to 

use traditional parallelizing techniques along with our recurrence parallelizing technique to 

parallelize the index set computation along with the original loop body components. However, 

for some classes of irregular loop nests, canned preambles can be used to perform this compu- 

tation. This is a better approach, since such a preamble can be hand optimized and the com- 

piler can concentrate on amortizing the cost by hoisting it out of surrounding loops. We will 

discuss this further in section 5.3.5. 

The segmentation of the inner loop's reduction is captured in the flattened loop's control struc- 

ture, that is, the guards using the index sets computed from the original loop nest. Since the 

recurrence parallelization technique easily accommodates such conditional statements, we 

have successfully injected the original loop nest's control structure into our model for analy- 

sis. 

5.3.2 The Basic Transformation 

Throughout this chapter, we refer to a single loop nested within another. The techniques pre- 

sented here can be extended to deeper nested loops by recursively applying the transforma- 

tions. It should be noted that in most practical circumstances, irregular loop nests need only be 

flattened at the innermost level to expose sufficient parallelism. Thus, we refer to a simple 

model of nested loops, illustrated below: 

{DO outerindex = ..., WHILE ...} 

<BODY 1> 
{DO innerindex = ..., WHILE ...> 

<BODY 2> 

END DO 

<BODY 3> 

END DO 

The underlying transformation for loop index flattening is conceptually simple. First, the total 

number of inner loop iterations is computed. This count is the length of the new flattened loop. 
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Next, the original loop indices are computed (only if they are used in the component body 

parts). Finally, the flattened loop is generated by placing guards around the component body 

parts which check whether the inner loop bounds are crossed in the original loop. This trans- 

formation is illustrated below: 

number of inner 
<Cornpute Loop Length>      loop iterations 

<Cortpute Loop Indices>     {inner, upper} 

DO flatindex = 1, flatlength 

IF (inner_loop_finished(flatindex)) THEM 

<BODY 1> 

END IF 

<BODY 2> 

IF (inner_loop_finished(flatindex+1)) THEN 

<BODY 3> 

END IF 

END DO 

The flattened loop is very similar to the original loop. Two conditional guards were introduced 

to check whether the outer loop body components should be invoked. However, since the 

inner and outer loop indices are computed prior to the execution of the flattened loop, the con- 

ditional expressions in the guards are loop invariant with respect to the flattened loop. Thus, 

they present no obstacles to many standard parallelization techniques. Note that although this 

may present an obstacle to many recurrence parallelization techniques, it presents no obstacle 

to the recurrence parallelization technique. 

In this transformation, we must compute the flattened loop length and the original loop indi- 

ces. Computing the flattened loop length in parallel can be performed using a operation over 

each of the inner loop lengths. For example, the following code suffices (with appropriate 

checks for negative or zero trip count segments and zero strides deleted): 

flatlength = SUM((innerupper(outerlower: 
$       outerupper:outerstride) 
$      - innerlower(outerlower: 
$       outerupper:outerstride)) 
$     /innerstride(outerlower: 
$       outerupper:outerstride) 

SUM is simply a global sum or sum reduction. (This is actually computed as a by-product of a 

scan operation used when computing the inner and outer loop index sets in the next section.) 
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Note that the terms innerupper, innerlower, and innerstride in this expression 

may denote array expressions rather than just simple arrays. We make use of this convention 

frequently. 

Since the original loop indices may be used by the loop body, it may be necessary to compute 

these. The tricky part is in parallelizing and optimizing the loop index computation; this will 

be discussed in more detail in the next section. 

5.3.3 Counting Outer Loop Iterations 

The previous discussion implicity assumes that the transformation only counts inner loop iter- 

ations in calculating the flattened loop's trip count. However, there may conceivably be 

instances in which the inner loop's trip count is zero while meaningful computation takes 

place in the outer loop's body components. It is relatively easy to adjust the basic flattening 

scheme and index set computation method to account for such instances. Though this method 

is more rigorous, in all of the cases we have examined, cases which require such an approach 

either never occur, or can be remedied by employing loop fission to isolate the outer loop's 

body components. 

5.3.4 Flattening Indirection 

Indirect array accesses are introduced to the flattened loop by replacing the original loop's 

index expressions with the precomputed indices, which are now array accesses. For some 

arrays, it may be profitable to copy arrays into a flattened structure for repeated references. In 

the case of arrays which are read, but not written, this is usually handled automatically by the 

backend compiler. For arrays which are written, this effect is more problematic since it 

obscures the true nature of the computation. 

Simple array copies, reductions, and scans look like slower combining-send operations, or, 

worse, indeterminate and unparallelizable recurrent operations. In chapter 7, we discuss 

dependence recycling techniques which allow us to track such computations through such 

obscuring transformations. In such cases, the compiler will flatten the target array structure 

and insert code to copy values back into the original array structure. In the case of a sequence 

of flattened loops with similar inner loop structure, the lifespan of the flattened structure can 

be extended through all of the flattened loops to eliminate the costs of copying. 
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An example of this effect: 

do  i  =  1,   N 
do k = p(i),  p(i+l)-l 

y(i)   = y(i)   + b(k) 
end do 

end do 

The flattened loop with indirection looks like superficially like a combining-send operation: 

do f = 1, flatlen 
y(i(f)) = y(i(f)) 

end do 
b(k(f) 

Since the original operation was a reduction, the compiler can infer that this flattened opera- 

tion is actually a segmented reduction. To realize this operation in the transformed code, we 

replace the original array by the flattened array, and then copy the appropriate array elements 

back to original array (lengths is the prefix sum of the inner loop lengths): 
rdo ip = 1, N 
1  y_f(lengths(ip)+l) = y(ip) 
end do 
L     _ 

'do f = 1, flatlen 
if (innerlooptripped) then 

1    y_f(f+1) = y_f(f) + b(k(f) 
endi f 

end do 

.do ip = 1, N I 
y(ip) = y_f(lengths(ip+1)) + b(k(lengths(ip+1))) | 

,end _do i 

Initialize 
flattened 
structure 

Flattened 
loop 

Copy values 
back into 
original array 

Once again, details of how to deal with zero length inner loop trip counts are elided for clarity. 

Note that in the case of uninitialized structures the initialization of the flattened array may be 

either eliminated. 

An important consideration in employing this scheme is the amount of space used by the flat- 

tened data structure. Fortunately, the space used here will be required for use by the recurrent 

primitive templates which implement the computations in these loops. For example, in detect- 

ing a segmented reduction or scan, temporary space proportional to the flattened loop's trip 

count is needed.The amount of space required is precisely the amount of space effectively 

allocated by this array index flattening scheme. 
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5.3.5 Optimizing and Amortizing Index Set Computation 

The simplest approach to computing the original loop indices is to use the original loop nest as 

a template for computing the loop index sets serially. This computation may be amortized over 

an enclosing loop (as in conjugate gradients), allowing us to reap the benefit of the transfor- 

mation to a flattened loop. The next best approach is to have the compiler try to parallelize the 

index set computation. These options are used only as stopgap measures, since we have devel- 

oped methods to parallelize the index computation portion of one of the more important and 

common classes of irregular loop nests. 

The type of loop nest the implementation currently handles is referred to as segmented. In seg- 

mented loop nests, the inner loop bounds are indirect accesses of arrays using the outer loop 

indices, but are loop invariant, as in the case of the CSR sparse matrix-vector multiplication. 

For this class of irregular loops, there is a general parallel template which may be used to par- 

allelize the loop. For readability, we have left out checks for zero or negative segment lengths 

and zero step sizes: 

C Compute segment lengths 
LEN_VEC = +_SCAN(( 
$  INNERUPPER(OUTERLOWER:OUTERUPPER:OUTERSTRIDE)- 
$  INNERLOWER(OUTERLOWER:OUTERUPPER:OUTERSTRIDE))/ 
$  INNERSTRIDE(OUTERLOWER:OUTERUPPER:OUTERSTRIDE)) 

C Compute outer indices at each point in the 

C flattened loop 

OUTER_INDEX(1:LEN_VEC(OUTERUPPER)) = 0 
OUTER_INDEX(LEN_VEC) = OUTERSTRIDE 
OUTER_INDEX(1) = OUTERLOWER 
OUTER_INDEX = +_SCAN(OUTER_INDEX) 

C Compute inner indices at each point in the 

C flattened loop 

FLAG_VEC(1:LEN_VEC(OUTERUPPER)) = 0 
FLAG_VEC(LEN_VEC) = 1 
INNER_INDEX = INNERSTRIDE(OUTER_INDEX) 
INNER_INDEX(FLAG_VEC) = 
$  INNERLOWER(OUTERLOWER:OUTERUPPER:OUTERSTRIDE) 
INNER_INDEX = +_SEGSCAN(INNER_INDEX, FLAG_VEC) 

The first step is to compute the loop trip counts for the inner loop (essentially, the segment 

lengths). Using these, computing the inner and outer loop indices is easy: the outer loop index 
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Loop 
Flattening 

Optimize 
Index Comp 

Figure 5.2 Loop flattening pass. 

is incremented at the beginning of every segment; the inner loop index is initialized to the 

proper lower bound at the beginning of every segment, and incremented otherwise. 

To improve the performance of the flattened loop, we perform certain optimizations on this 

code and the flattened loop: 

• Hoist the index set computation out of enclosing loops. This effectively amortizes the over- 

head of the flattened loop over multiple invocations. This is analogous to amortizing the 

setup time for a specialized sparse matrix-vector multiplication library function. Standard 

data-flow analysis techniques can be employed to achieve this. 

• Compute only the index sets necessary. For example, if either the outer or inner loop indi- 

ces are not necessary, we can save execution time and/or memory usage. 

• Perform run-time tests to eliminate continuous, constant stride index sets with flattened 

loop index expressions. This is essentially induction variable detection, but with a twist. 

Certain properties of the inner loop bounds can be checked symbolically at compile time. 

One property is to check whether the upper and lower bounds are symbolically continuous 

(i.e. Is the expression TmtEBLOVlER(outerindex + 1) equivalent INNERUPPER(oMten'n- 

dex)l) Another is to check that the inner stride is constant. Given this, if we can verify at 

run-time that the bounds for the inner loop (INNERLOWER and INNERUPPER) are mono- 

tonic, then we can replace occurrences of the inner index by simple affine expressions of 

the new flattened index expression. In this way, potentially costly indirection can be elimi- 

nated as well as potentially more expensive primitive selection in later compiler phases. 

The current approach to this is to generate two versions of the flattened loop, one optimized 

and one unoptimized in this manner, to be selected by the run-time test. 

5.3.6 Compiler Pass Architecture 

The pass for this transformation is structured simply as loop flattening, followed by optimiza- 

tions of the index computation, in figure 5.2. The loop flattening pass does not flatten past a 

nesting level of two, though it can recursively flatten deeper loop nests. In our practical expe- 

rience, interesting irregular loop nests of depth greater than two have not arisen. The compiler 
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then attempts to eliminate indirection and hoist index computation out of surrounding loop 

levels. Note that no real parallelization takes place in loop flattening. Rather, it is a preprocess- 

ing step to enable later phases of parallelization. 

5.4 Example Code: Sparse Matrix Vector Multiplication 

The CSR and CSC kernels were compiled using our parallelizing techniques, and compared 

against the best code generated by the CF77 compiler. In compiling for a single head, the 

CF77 compiler vectorizes the reduction in the inner loop of CSR. In compiling for multiple 

heads, the CF77 compiler tasks the outer loop of the kernel and vectorizes the inner loop 

reduction of CSR. For this kernel, our compiler generates a segmented reduction, whose 

pseudo-Fortran is below, which is simultaneously tasked and vectorized: 

flat = pntr(N+l) - 1 
vecwork(l:flat) = val(1:flat:1) * 
$ vec(indx(l:flat)) 

condition = k(l:flat).le. pntr(i(1:flat)+1) - 1 

y(l:N) = APPLY(FUN_REDUCE( 

$ {Xx—> (condition!(x + vecwork):vecwork)}, 
$ flatlength, 
$ (i(l:flat - 1) .ne. i(2:pntr(N+l)-1))) , 
$ Y(1:N)) 

The brackets on the lambda expressions denote the analyzed version of the enclosed loop 

modeling function. The third argument to the function composition reduction (FUN_REDUCE) 

is simply shorthand for a pack of the results. The CF77 compiler only vectorizes the inner 

loop of the CSC kernel on both single and multiple head configurations. Our compiler gener- 

ates a combining-send operations which is simultaneously tasked and vectorized, below: 

vecwork(l:flat) = val(1:flat:1) * 
$ vec(i(l:flat)) 

y(l:N) = APPLY(FUN_COMB_SEND( 

$ {Xx —> JC + vecwork } 
$ i(l:flat) 
$ flat, 
$ N), 
$ Y(1:N)) 
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5.5 Review 

A framework for compiling irregular loops was presented. It enables parallelization by trans- 

forming nested iterative structure to nested conditional structure, which the recurrence paral- 

lelization technique can handle well. The technique will further prove to be useful in the next 

chapter, when we start to general irregular loop nests from divide-and-conquer algorithms. 
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Chapter 6 

Irregular Control Structure II - 
Control Embedding 

In this chapter we discuss a technique to enable the parallelization of divide and conquer style 

recursive functions. In addition to the fundamental control structure transformation, we introduce 

new techniques for gathering accurate dependence information in the presence of partitioning 

code and recursion. 

6.1 Divide and Conquer Recursion 
Recursion is an important mechanism for the expression of algorithms written in a divide-and- 

conquer style. Algorithms in sorting [4], computational geometry [68] [10], and mesh generation 

often use divide-and-conquer. In serial imperative languages, recursive subroutine calls are usu- 

ally invoked upon partitioned problems. This is an elegant and concise control mechanism for 

repeatedly invoking the same basic algorithm on ever smaller partitions of the problem. Using 

iterative structure is not feasible because of the syntactic complexity that such code might intro- 

duce. From a parallelization perspective, this significantly complicates the task of both manually 

and automatically parallelizing such code. 

Examine the generic divide-and-conquer recursive subroutine and its dynamic call graph (DCG) 

in figure 6.1. It is probably relatively easy for both the programmer and the compiler to parallelize 

the body components of the recursive subroutine. Furthermore, with a bit more effort the user can 

parallelize the recursive calls, though it will be difficult for the compiler without some of the anal- 

yses presented in this chapter. Unfortunately, as can be seen in the hypothetical DCG for this 

code, the amount of parallelism available in the loop body will decrease as the partitions grow 
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subroutine recurse(. 
PreBody 
for each partition 

call recurse(...) 
endloop 
PostBody 

.) subroutine recurse_embedded(. 
for each partition 

PreBody 
endloop 
call recurse_embedded(...) 
for each partition 

PostBody 
endloop 

.) 

Figure 6.1 A prototypical divide-and-conquer algorithm and its control embedded version. 

ever smaller. Furthermore, the partition sizes may vary, making load balancing a much more 

difficult task for the user. Such irregularity is inherent in divide-and-conquer algorithms with 

data dependent partitioning strategies. 

There is parallelism within the subroutine and across subroutine call boundaries here. We can 

exploit both simultaneously in an automatic parallelizing compiler by making the following 

observations. The recursive calls are surrounded by an implicit or explicit loop. This loop can 

be embedded within the recursive call so that rather than recursive over each partition, a single 

recursive call performs the subroutine body for each partition. The resulting code and DCG is 

in figure 6.1. The advantage here is that by compiling and exclusively parallelizing the body 

component of the embedded version of the subroutine, we can effectively automatically paral- 

lelize across all sibling recursive calls. This means that the compiler can exploit all available 

parallelism at each level of the DCG. 
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i 
6.2 - Modified Depen- 

dence Analysis 

6.4- Preprocessing 

Steps 

Eliminating Returns -6.4.1 

Winnowing Recursive Calls -6.4.2 

6.5 - Control 

Embedding 

I 

Embedding Loops -6.5.1 

Privatizing Local Variables -6.5.1.1 

Expanding Parameters - 6.5.1.2 

Embedding Conditionals -6.5.2 

Figure 6.2 Components required for control embedding in recursive subroutine calls with 
corresponding section numbers. 

6.2 Control Embedding 

The fundamental mechanism for converting interprocedural to intraprocedural parallelism is 

through control embedding. The control we embed is precisely that control which manages 

the interprocedural parallelism in these algorithms. In the case of divide and conquer algo- 

rithms, the control structure we are interested in manages iterations over partitions, as well as 

conditions for completion of the algorithm. This means that we would like to embed loops 

around recursive calls, either explicitly or implicit. It also means that we would like to embed 

conditional structure surrounding or otherwise affecting (i.e. through a return statement) the 

recursive calls. 

Conceptually, embedding control is simple. Loops and conditionals are folded into function 

calls which they surround, as in figure 6.1. The difficulty is in creating the circumstances in 

which the transformation can be applied and in managing the parameter space. In particular, 

we would like to isolate the recursive calls and their surrounding control structure. Further- 

more, we need to employ semantics-preserving transformations to eliminate difficult con- 

structs such as return statements, as well as marshalling actual parameters and privatizing 

local variables for each sibling recursive call. 
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This chapter begins with a description of a modification of a typical symbolic analysis to sup- 

port the generation of dependence information necessary for the transformation to be legally 

applied. Existing analyses lack the ability to find precise relationships between induction vari- 

ables whose values are alternately modified. In partitioning loops of divide-and-conquer algo- 

rithms, this relationship is important for determining that work between partitions is 

independent. 

Subsequent sections describe preprocessing steps in the transformation to simplify control 

embedding. The two transformations here, return elimination and recursion winnowing, have 

as a goal the transformation of any divide-and-conquer style recursion to the prototypical 

recursive subroutine that had control embedded in figure 6.1. This step facilitates the applica- 

tion of control embedding by effectively isolating that control which must be embedded in the 

recursive subroutine. 

Control embedding for recursive subroutines is the last transformation step discussed in this 

chapter. The basic idea behind facilitating embedding loops for recursive loops is to find a 

fixed point for the embedded loops. The transformation also includes mechanisms for embed- 

ding control structure surrounding the recursive calls, but nested within the embedded loops. 

Thus, we refer to this transformation as the more general 'control' embedding rather than 

'loop' embedding. The loop embedding process also necessitates the promotion of parameters 

to simultaneously track the multiple activation records which are, in effect, being simulta- 

neously emulated. Finally, local parameters may be expanded in a privatization effort to facil- 

itate parallelization. 

6.3 Dependence Analysis and Monotonie Induction Variables 

In the context of dependence analysis, regular induction variables are easy to handle. The 

compiler simply substitutes the equivalent expression of the loop index variable and performs 

traditional dependence analysis. However, there are several other varieties of induction vari- 

ables [94], some of which are used to partition data in divide-and-conquer algorithms. 

The type which are of greatest interest to us are monotonic induction variables. These are 

induction variables which are incremented by values of the same sign, but not always by the 

same value. The variable j in the following packing code is such a variable because the condi- 

tional statement implies that the value may not always be incremented: 

86 



Irregular Control Structure II - Control Embedding 

j   =   1 
do i  = 1,   n 

if   (f(a(i)))   then 
b(j)   = a(i) 
j   = j   +  1 

end 
enddo 

The fact which is of importance here is that the monotonic variable guarantees that the data 

movement performed here is a permute, i.e. there is no write conflict. In this instance, a pack 

function or intrinsic can be used to parallelize this loop. However, we will point out that this 

simple observation is not sufficient for more complicated codes. In particular, we are inter- 

ested in the kind of partitioning code that frequently occurs in divide-and-conquer algorithms. 

Here is an example of such a code: 

lower = begin 
upper = end 
do i = begin, end 

if (f(a(i))) then 
b(lower) = a(i) 
lower = lower + 1 

else 
b(upper) = a(i) 
upper = upper - 1 

endif 
enddo 

Either lower or upper individually can be used in packing or gather operations, but to maintain 

the serial semantics of this code, one may not employ such a strategy. The problem is that the 

partitions defined here might overlap with each other. However, in this particular loop, we 

know that this is not the case. We would like the compiler to understand this as well. 

We present extensions to a symbolic analysis scheme [87] which uses an extension of Single 

Static Assignment (SSA) form [30] called Gated Single Assignment (GSA) form [11]. SSA 

form is useful for induction variable recognition [94] and many symbolic analyses [87]. 

The essential idea is to try to encapsulate the guarding of these monotonic induction variables 

with conditionals in the affine constraints. For induction variables, their values are usually 

computable or constrained sufficiently in closed form equations of loop index variables. 

Unfortunately, no accurate closed form representation in the loop indices can be found which 
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in existing analyses sufficiently reflects the interrelationship between the monotonic variables. 

We have developed a mechanism for injecting the proper terms and constraints into the sym- 

bolic analysis that works quite naturally on Gated Single Assignment form. 

The topic discussed in this subsection essentially provides information necessary for the trans- 

formation introduced in this chapter to be legally and confidently applied by the compiler. The 

background work discussed here is essentially derived or directly based on the representations 

and analysis schemes developed in Peng Tu's Ph.D. dissertation [87]. Any deviations from 

that work will be noted. 

6.3.1 Gated Single Assignment Form 

In SSA form for straightline code, exactly one definition of a variable reaches each use ofthat 

variable. Each variable defined is given a new, unique name each time it is defined. To resolve 

multiple definitions from differing paths joining in the control flow graph in more complex 

code, ^-functions are used to resolve which value is used. We will use the following code 

example to illustrates the SSA and GSA forms: 

lower = begin 
upper = end 
do i = begin, end 

if (P) then 
lower = lower + 1 

else 
upper = upper - 1 

endif 
enddo 

The SSA form for this code segment is: 

lowerj = begin 
upper! = end 
do i = begin, end 

lower2 = (p (lower!, lower4) 
upper2 = (p(upperi,upper4) 
if (P) then 

lower3 = lower2 + 1 
else 

upper3  = upper2  -  1 
endif 
lower4 = <p(lower3,   lower2) 
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upper4 = (p(upper3, upper2) 
enddo 
lower5 = (p (lower i, lower4) 
upper5 = <p( upper 1# upper4) 

The insertion of (p-functions here indicate where multiple possible values for a particular vari- 

able converge. This is most often the case in join nodes of the control flow graph. In this 

example, there were (p-functions inserted at the head of loops, immediately following a loop, 

and after a conditional branch in which the variable is modified. This guarantees that only a 

single definition reaches each use of a variable. 

The GSA form preserves the essential reaching definition properties of SSA, but replaces the 

(p-function in some cases with several new gating functions: 

• y functions replace (p functions at join of control paths from differing conditional branches. 

They also include the predicate for the conditional statement. 

• |i functions replace (p functions at the head of a loop. It includes the exit conditions or index 

variable ranges for the loop. 

• T| functions replace (p functions at the exit of a loop. 

From a program analysis point of view, these preserve the looping and conditional structure of 

the program while retaining the useful SSA-like properties. The importance of these GSA fea- 

tures becomes evident in performing symbolic analysis to determine value ranges computed in 

loops and conditional branches. 

The running example, rewritten in GSA form: 

lower! = begin 
upperi = end 
do i = begin, end 

lower2 = [1 ( (i=begin, end) , lower1# lower4) 
upper2 = |i( (i=begin, end)upperj,upper4) 
if (P) then 

lower3 = lower2 + 1 
else 

upper3 = upper2 - 1 
endif 
lower4 = y(P, lower3, lower2) 
upper4 = y(P, upper2, upper3) 

enddo 
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lower5 = y(end < begin,   lower1#   T|((i > end),   lower4) ) 
upper5 = y(end < begin,   upper,,   r| ( (i > end),   upper,,   upper4) ) 

The use of the r| functions in the last two statements deserves some explanation. If the source 

language guaranteed non-zero trip counts, the use of y functions would not be necessary in 

uses of T| functions. In this case, the y functions cases handle the possibility in Fortran of zero 

trip counts. 

Fast and efficient algorithms for constructing both SSA and GSA forms are presented else- 

where [30][87], and their description lies outside the scope of this thesis. 

6.3.2 Symbolic Analysis 

Symbolic analyses typically entail manipulating and propagating symbolic expressions repre- 

senting values computed in the program being analyzed. This is useful for, among other 

things, proving assertions in the program and finding symbolic value range information for 

performing more accurate dependence analysis. For example, the predicate in an if statement 

can be used as a symbolic assertion by the compiler in analyzing its branches. 

There are two mechanisms by which symbolic expressions are propagated. Symbolic forward 

substitution propagates symbolic expressions for variables forward in the program, in a man- 

ner akin to the symbolic execution of the program. The process is similar to constant propaga- 

tion. The problem with this approach is that the size and number of expressions being 

propagated becomes very large, while the portion of those expressions which are relevant to a 

particular compiler goal may be small. Furthermore, it is typically not necessary to express all 

symbolic values in terms of program inputs. 

Symbolic backward substitution starts at an expression and symbolically substitutes symbolic 

expressions for previous definitions of its arguments. The advantages of this approach is that it 

can be more easily tailored to satisfying a particular goal. The starting point for the analysis is 

determined by the compiler objective and the backwards substitution process can be stopped 

when the objective is achieved. This kind of demand-driven symbolic analysis is very effective 

for the kind of dependence analysis we are interested in here. Again, the discussion here is 

based heavily on Tu's dissertation [87] unless otherwise noted. 

We use the following code segment to illustrate backward substitution: 
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upper, = end 
if   (P)   then 

else 
upper3 = upper2 - 1 

endif 
upper4 = y(P, upper2, upper3) 

Here, we are interested in the upper bound for the variable upper4. Substituting backwards 

gives us: 

upper4 =  y(P, upper2, upper3) 

y(P, upper2, upper2 - 1) 

y(P, end, end - 1) 

This gives us an upper bound of (upper4 < end). 

The symbolic expression (SE) for the value of a variable may be composed of multiple 

instances of the three gating functions here. It is useful to be able to compute a qualified SE 

for the variable(s) of interest in different control context. To that end, we describe the notion 

of path projection to determine the path-restricted values (PV) for the SE given the control 

flow conditions (PC) leading to that particular control path. We compute the projection PV = 

SE(PC) as follows: 

SE(PC) = SE if SE contains no gating functions 

y(P, V„ Vf)(PC) = Vt(PC) ifPCz>P 

y(P, V„ Vf)(PC) = Vf(PC) ifPC^^P 

y(P, V„ Vf) = y(P, Vt(PC), Vf(PQ)        otherwise 

\i(L, Vinit, Viter)(PC) = \L(L, Vinit(PQ, Viler(PQ) 

T\(P,V)(PC) = V(PAPC) 

As an example, we consider the previous code segment. Recall that the resulting symbolic 

value we computed using backward substitution was upper4 = y (P, upper2, upper3). 

Assume that we reach a point later in the code with PC = -.P, such as in the false branch of 

this conditional block: 
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if (P) then 

else 
. . . = upper4 

endi f 

Using path projection, we can compute that the value of upper4 at this point is: 

upper4 = y(P, upper2, upper3)(-iP) 

= upper3(->P) 

= upper3 

6.3.3 Extensions for Interrelated Monotonie Induction Variables 

Unfortunately, this symbolic analysis has some shortcomings in dealing with the monotonic 

variables seen in the first example of section 6.3.1. Applying the symbolic analysis introduced 

in the last section to determine the values of lower2 and upper2: 

lower2 = u( (i=begin,end) ,begin, 7(P, lower2 + 1, lower2) ) 
upper2 = H( (i=begin,end) , end, y(P, upper2, upper2 - 1)) 

To determine the dependence of two accesses that use these two variables, the compile must 

computer whether upper2 n lower2 = 0. One conservative estimate is to simply derive the 

maximum and minimum values of the variables. Along with the monotonicity property, we 

can prove that the two do not overlap if the ranges are disjoint. We can determine the maxi- 

mum and minimum values of these variables using these symbolic expressions: 

max(lower2)        < max(|X( (i=begin,end) ,begin,  yp,   lower2 +  1,   lower2) ) 
=  |X( (i=begin, end) ,begin, max(y(P,   lower2  +  1,   lower2) ) 
=  \i( (i=begin, end) ,begin, lower2  +  1) 

min(lower2)        > min(|X( (i=begin,end) ,begin,  y(P,   lower2 +  1,   lower2) ) 
= n( (i=begin, end) ,begin, min(y(P,   lower2 +  1,   lower2) ) 
=  u.( (i=begin, end) ,begin,   lower2) 

max(upper2)        < max(|l( (i=begin, end) ,   end,   y(P,   upper2,   upper2 -   1)) 
= |i( (i=begin,end) ,   end,   max(y(P,   upper2,   upper2  -   1)) 
=  u( (i=begin, end) ,   end,   upper2) 

min(upper2)        > min(u.( (i=begin, end) ,   end,   y(P,   upper2,   upper2  -   1)) 
= |l( (i=begin,end) ,   end,   min(y(P,   upper2,   upper2  -   1)) 
=  \l{ (i=begin, end) ,   end,   upper2  -   1) 

From these expressions, we can directly infer the ranges of values for variables: 

begin <  lower2 < end 
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begin < upper2 ^ end 

The problem here is that the value ranges for lower2 and upper2 overlap. While the ranges 

are useful for determining whether the differing invocations of the containing block overlap, 

they are insufficient for determining whether there is output dependence in the loop body 

between the two branches. Unfortunately, the symbolic boundaries in these ranges cannot be 

tightened further. However, the fact that the conditional expression in the if-branch constrains 

the iterations that the two variables are incremented or decremented to be disjoint can be 

exploited to prove, among other things, that they do not overlap and there is no output depen- 

dence. 

If the compiler recognizes that the if-statement's branches essentially partition the loop's trip 

count so that neither variable is incremented or decremented in the same iteration, then the 

dependence analyzer can build a constraint reflecting the interdependence between the values 

of the variables in question. 

We construct a filter to coalesce affine constraints for symbolic values as well as tag expres- 

sions with trip count information. The operator we define to construct these constraints is 

called TC. This operator adds explicit variables to reflect trip counts and their partitioning by 

conditional branches. It also generates the relevant constraints. 

When applied to u nodes, the TC operator multiplies the current running trip count with the 

trip count of the loop it is applied to. It also generates the necessary constraints for computing 

the symbolic value of the trip count, as well as the constraints on the loop index: 

TC(T,   \l( (index=lower, upper, stride) , init, loop))   = 
H C (index=lower, upper, stride) ,TC(TxT , init),   TC(TxT , loop)) 

Generates constraints: 
(lower < index < upper,   3s,stridexj = index, 

T _ upper-lower    1 . 
stride 

When applied to y nodes, the TC operator splits the current running trip count for each branch 

by adding a new variable whose size is constrained to be less than or equal to the total trip 

count (but greater than 0). The idea here is to symbolically represent the time a conditional 

spends in each of its branches. Thus, the new variable represents the portion of the enclosing 

loops' trip cumulative trip counts spend in each of the conditional's branches: 
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TC(T,   y(P,   tval,   fval))   = 
y(P,   TC(CPj,tval),   TC(T -  Cpj,fval)) 

Generates constraints: 
(0  < CPJ < T) 

The variables T and cPtT are newly generated only if the index range and index range-predi- 

cate pair have not been previously encountered. Not that this implies that for y gates that pred- 

icates will have to be tested for equality, though, in the cases we are interested, variations on 

simple syntactic equality tests should suffice. 

This provides the necessary constraint-based relationships between monotonic variables. 

Operators such as max and min can now be applied to expressions with nested TC operators in 

a straightforward manner. Consider the application of TC to lower2 and upper2: 

TC(lower2)    =   TC(\l{ (i=begin, end) ,begin,  y{P,   lower2 +  1,   lower2) ) ) 
=  u((i=begin,end),TC(1, begin) , 

TC(end-begin,   y(P,   lower2 +  1,   lower2) ) ) 
Generates constraints: 

(0 < C < end-begin) 
=  u((i=begin,end), TC(1,begin), 

y(P,   TC{C,lower2 +  1) ,   TC(end-begin-C, lower2) ) ) 
TC(upper2)    =  TC(|X( (i=begin, end) ,   end,   y(P,   upper2,   upper2  -   1))) 

= \l( (i=begin,end) , TC( 1,end) , 
TC(end-begin+1,   y(P,   upper2,   upper2  -1))) 

=  u((i=begin,end),TC(1,end), 
y(P,   TC(C,upper2) ,   TC{end-begin+1 -C,upper2  -1))) 

Note that we have represented the loop trip count generated for the u gate directly rather than 

using a separate variable, for clarity. We compute the ranges for these variables: 

min(lower2) = min(U((i=begin,end), TC(1,begin), 
y(P,TC(C,lower2 +   1) , TC(end-begin+1-C, lower2) ) ) ) 

=  [i( (i=begin, end) ,   begin, 
min(y(P, TC(C,lower2  +  1) , TC(end-begin+l-C, lower2) ) ) ) 

= |x( (i=begin, end) ,begin, TC(end-begin+l-C,lower2) ) 
=  \i( (i=begin,end) ,begin, lower2) 
= begin 

max(lower2) = max(u((i=begin,end),TC(1,begin), 
y(P,   TC(C,lower2+l) ,   TC(end-begin+1-C, lower2) )) ) 

=  u((i=begin,end),begin, 
max(y(P,   TC(C, lower2+l) , TC(end-begin+l-C, lower2) ) ) ) 

= \i( (i=begin, end) ,begin, TC(C, lower2 +  1)) 
= begin + C 

min(upper2) = min(|X( (i=begin, end) , TC( 1, end) , 
y(P,   TC(C,upper2) ,   TC(end-begin+1-C,upper2-1) ) ) ) 
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=  (i( (i=begin,end) , end, 
min(y(P, TC(C,   upper2) ,   rc(end-begin+l-C,upper2-l) ) ) ) 

= |i( (i=begin,end) ,   end,   TC(end-begin+l-C,upper2-l) ) 
= begin +  1  + C 

max(upper2) = max(u( (i=begin,end) , TC(l,end) , 
J(P,   TC(C,upper2) ,   TC(end-begin+l-C,upper2-l) ) ) ) 

= (i( (i=begin,end) , end, 
max(y(P,   TC(C,upper2) ,   TC(end-begin+l-C,upper2-l) ) ) ) 

=  u( (i=begin, end) , end, TC(C,upper2) ) 
=  end 

So, the resulting constraints are: 
begin <  lower2 < begin + C 
begin + C +  1 < upper2 < end 
0 < C < end-begin   (generated by TC) 

It is easy to see these constraints prove that lower2 and upper2 do not overlap. 

6.4 Preprocessing Steps 

The first step in embedding control in recursive subroutines is to isolate those control struc- 

tures we will embed. Recursive subroutine calls may be embedded, along with other code, in 

loops and conditional constructs. Isolating the calls with their surrounding control structure 

provides a concise description of the number of recursive calls or partitions and conditions for 

liveness of the partitions. We also transform return statements into conditional statements, so 

that embedding loops can correctly be applied. This also serves to create embedable condi- 

tions in which partition workload is implicitly tracked. 

6.4.1 Eliminating Returns 

The presence of return statements in a subroutine presents several challenges to use. Return 

statements are difficult to model in the loop modeling functions employed by the underlying 

recurrent loop analysis. Return statements can also rule out the applicability of control embed- 

ding process. Embedding a loop around a return statement in the subroutine body affects sub- 

sequent loop iterations, consequently affecting all subsequent partitions be worked on. In 

contrast, the return in the non-embedded loop body would only affect the particular problem 

partition being worked on. 

Returns can be eliminated by employing conditional constructs. The essential idea is to sur- 

round code that is affected by a return statement by placing it within if-statements with condi- 
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tions which lead to the execution of the return. Several observations motivate the use of 

conditionals in this case: 

• Conditional constructs are easily represented in loop modeling functions for recurrent loop 

analysis. 

• Conditional constructs can be embedded within recursive calls 

The analysis employed here propagates the conditions under which control flow reaches 

return statements, The code we are interested does not have returns embedded within any kind 

of looping structure. Furthermore, we are not interested in solving the problem over arbitrary 

control flow graphs, though a data flow formulation for more general control flow graphs is 

possible. Thus, the analysis here focuses on structured flow graphs with loops collapsed into 

single nodes. 

In this analysis, there are two variables used to compute path conditions for returns. PChcai 

tracks any contribution to the path conditions by a basic block. PC contains the accumulated 

path condition resulting in prior execution of a return statement. 

PCiocJB) = C ifB is a conditional node in the CFG and C is the condition 

PC,oca,(B) = TRUE     otherwise 

PC(B) = KJpepred(B)(PC(p)APChcal(p)), 

where {J = v (logical-or). 

We can now uses these path conditions to propagate return conditions. RC,ocai contains the 

local return condition if any return is present in the block. RC contains the set of return condi- 

tions propagated to the block and is what we will use to guard execution of the block. 

RCioca!(B) = PC(B)     ifB contains a Return statement 

RClocJB) = 0 otherwise 

RC(B) = KJpEpred(B)(RCloca!(p)vRC(p)), 

where {J = u (set union). 

We remove return statements by first removing all statements that follow return statements in 

the same basic block. Then we delete the return statement. The final step is to insert the return 
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guards for the blocks. The conditions we use in the if-blocks is simply -iRC(B). However, 

note that simply inserting a guard for every subsequent block is likely to generate many redun- 

dant and nested if-blocks. It suffices to simply insert one guard in such cases. To eliminate 

this redundancy, we employ another simple analysis to determine whether to insert a guard or 

not.  RGB notes whether a return guard needs to be inserted prior to the block. 

RGB(B)=Vpepred(B)(RC(B)*RC(p)), 

where {J = v (logical-or). 

We would also like to eliminate redundancy in conditional expressions in the return guards. To 

that end, we keep track of the current running conditional expression effectively guarding the 

current nesting level(s). RCLt tracks the return conditions for which guards have been inserted 

at nesting level i. The code for computing this variable and generating the return guards is 

listed below: 

RCL0 = 0 

for each B e CFG in depth-first order 

if(B is a join node) then 

insert IF?COUNl"LEVEL endif-struts 

LEVEL = LEVEL -1 

endif 

if(B is a split node) then 

LEVEL = LEVEL + 1 

RCLLEVEL 
= RCLIEYEL.2 

IFCOUNTLEVEL = 0 

endif 

RCrefinedB) = RC(B) - RCLLEV£L 

RCLlevel = RC(B) 

ifRGB(B) then 

insert if-stmtprior to block with RCrefineJ,B) 

IFCOUNTLEVEL = IFCOUNTLEVEL + 1 

endif 

endfor 
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6.4.2 Threshing Recursive Calls 

Isolating recursive subroutine calls is important in identifying and embedding surrounding 

control structure for the recursive calls. The process by which we achieve this is by repeatedly 

applying a generalized loop fission transformation distributes both conditional and iterative 

control structure around its statements. In a process we liken to threshing, we apply this trans- 

formation repeatedly to blocks of code that contain recursive code, proceeding from inner- 

most control structure outward, in an effort to isolate the recursive calls. 

The fission transformation takes an arbitrary piece of code and an arbitrary specification of the 

desired clustering of the statements. By cluster, we mean which statements will remain 

together when control structure is distributed. Only outer level control is distributed, so that 

if finer grain distribution is desired then the routine must be applied recursive from inner loops 

or conditional blocks outward. The routine performs any necessary scalar expansion resulting 

for the chosen clustering. We will refer to the routine as fission_by_cluster in the following 

algorithm descriptions. 

The basic outline of the threshing algorithm is as follows. (Again, we are only interested in 

structured code.) It first identifies which control blocks contain recursive calls. Other control 

blocks, such as do-blocks or if-blocks, are abstracted out as single statements since they will 

invariably remain in the same relative position. It then recursively finds the innermost control 

blocks containing recursive calls. It identifies the recursive calls and designates them as the 

middle cluster. The first and last clusters are those statements which must precede or follow 

the recursive calls, as determined by the data dependence conditions. The resulting clusters of 

statements are abstracted as three single statements for the remainder of the analysis. The 

algorithm continues by returning to the surrounding outer level of nesting and performing the 

clustering-fission scheme again, and so forth. 

A high-level pseudo-code description of algorithm is given below. S is a set of individual 

statements and control blocks abstracted into statements. A subroutine call on a control block 

operates on the statements and control blocks enclosed immediately within. It is implicitly 

assumed that fission_by_cluster abstracts the clusters into statements: 

thresh_block( Statements S) 

if (not innermost(S)) then 

foreach (s e S) 
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if (control_block(s) and contains_recursive_call(s)) then 

thresh_block(s) 

endif 

endif 

cluster2 := (s : s e S and contains_recursive_call(s)} 

cluster! := {s : s € (S-cluster2) andprecede_by_dep_info(s, cluster2)j 

cluster3 := fs : s e (S-cluster2) and follow_by_dep_info(s, cluster2)} 

if (cluster! n cluster^ * 0 then abortJranformationQ endif 

S :=fission_by_cluster(S, clusterb cluster2, cluster3) 

end 

6.5 Embedding Control 

Upon isolating control structure around recursive calls and eliminating returns, we have some- 

thing similar in control structure to the prototypical divide-and-conquer subroutine in figure 

6.1. We can now embed that isolated control structure in the recursive calls. On the surface, 

this seems a fairly straightforward proposition until the issue of recursion is thrown into the 

mix. We will examine the issues and techniques of embedding iterative control and condi- 

tional control in turn. 

6.5.1 Embedding Loops 
The loop embedding transformation simply takes surrounding iterative structure and embeds 

it within a subroutine call [39]. The essential idea is to expose the subroutine body to the par- 

allelism created by any surrounding loops. Here is a simple example: 

do  i  =  1,   n 
call mult(a(i),b(i)) 

enddo 

subroutine mult(a,b) 
real a, b 
a = a*b 
end 

Embedding the loop in a cloned version of the subroutine mult yields: 

multclone(a,b,n) 
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subroutine multclone(a,b,n) 
integer n 
real a(n), b(n) 
integer i 
do i = 1, n 

a(i) = a(i) * b(i) 
enddo 
end 

Deciding when to embed loops and clone subroutines depends on an analysis to determine 

whether it is profitable to do so in the face of increasing code size [39]. Unfortunately loop 

embedding as presented here cannot be applied to recursive subroutines, though the benefits 

would be obvious. As demonstrated earlier, there is potentially significant parallelism avail- 

able across partitions in divide-and-conquer algorithms. Unfortunately, the presence of recur- 

sive subroutine calls makes loop embedding pointless, exposing some (typically) constant 

number of partitions to parallelization rather than all the partitions. As the partition sizes (and 

possibly the number of partitions) vary throughout the execution of the algorithm, the amount 

and variance of parallelism we expose is difficult to ascertain by the compiler. We will use the 

following generic code example as a running example. We will elide some of the details of the 

transformation until after we motivate the general mechanics of embedding loops. 

subroutine recur (...) 
Bodyl 

do i = 1, count 
call recur() 

enddo 
Body2 

end 

A simple application of loop embedding gives us: 

subroutine recurclone(..., count_embed) 
do part = 1, count_embed 

Bodyl 
enddo 
do part = 1, count_embed 

call recurclone(...,count) 
enddo 
do part = 1, count_embed 

Body2 
enddo 
end 
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The problem here should be readily apparent. We have exposed the body components Bodyl 

and Bodyl to parallelization within the embedded loop, but all we have done is to defer the 

inevitable degradation of performance due to loss of parallelism by level of the dynamic call 

graph. Furthermore, we now have another loop around the recursive call. Embedding this loop 

gives us: 

subroutine recurclone2(..., count_embed, count_embed2) 
do part = 1, count_embed2 

do part = 1, count_embed 
Bodyl 

enddo 
enddo 
do part = 1, count_embed2 

call recurclone2(...,count, count_embed) 
enddo 
do part = 1, count_embed2 

do part = 1, count_embed 
Body2 

enddo 
enddo 
end 

Continuing in this vein, we get: 

subroutine recurclonen(..., count_embedl, ..., count_embedn) 
do partn = 1, count_embedn 

do parti = 1, count_embedl 
Bodyl 

enddo 

enddo 
do part = 1, count_embedn 

call recurclonen(...,count, count_embedl, ..., count_embedn-l) 
enddo 
do partn = 1, count_embedn 

do parti = 1, count_embedl 
Body2 

enddo 

enddo 
end 

There are several problems with this code. First, the compiler cannot know where to stop 

embedding loops because the partition sizes are likely to be completely data dependent and 

101 



Embedding Control 

the problem size will probably not be known until run-time. Second, the number of clones 

generated here is unacceptable. This amounts to generating a different clone for each level of 

the dynamic call graph, a process similar to peeling off iterations of loops (loop peeling). The 

number of parameters being passed to each clone as well as the level of nesting increases lin- 

early with the number of embeddings. The former problem results in increased subroutine call 

overhead, while the latter complicates parallelization of the loop bodies unnecessarily, 

increasing the cost of applying loop nest transforms and possibly inhibiting parallelizing all 

but the inner loop as the compiler is confronted with problems similar to those in irregular 

loop nests. Finally, note that for the n-wise embedding, (n-2) other clones will have to be gen- 

erated (along with the original subroutine) to reach a point where the n-lth clone can be used. 

The regularity of the structure of the clones does present the compiler with an opportunity to 

take steps that will collapse both the loop nests and the added parameters. A fixed point of the 

embedding artifacts can be constructed by explicitly counting the partitions and passing that to 

the embedded clone as a single parameter. The cloned subroutine need only insert one loop to 

surround its body components. The following clone version illustrates this: 

subroutine recur_fixed(..., count_embed) 
do part = 1, count_embed 

Bodyl 
enddo 
new_count_embed = 0 
do part = 1, count_embed 

new_count_embed = new_count_embed + count(part) 
enddo 
call recur_fixed(...,new_count_embed) 
do part = 1, count_embed 

Body2 
enddo 
end 

The beauty of this simple scheme is that it limits the complexity of the resulting code while 

exposing all the parallelism available at each level of the dynamic call graph. In other words, 

the parallelism available across partitions as well as all the parallelism available in the subrou- 

tine body can be exploited. Note that the computation of the variable new_embed_count 

can be parallelized using a simple sum reduction. 
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We have elided the details of what happens to parameters and local variables through this 

transformation. In the next two subsections, we discuss the analysis and transformation of 

local and parameter variables to make this transformation generate semantically correct code. 

6.5.1.1 Privatizing Local Variables 

Local variables become subject to a unique kind of memory reuse conflict across embedded 

loop iterations. Since the transformation effectively emulates the execution of multiple sibling 

recursive calls through the use of the embedded loops, a local variable may need to be priva- 

tized for each iteration. Interprocedural anti-dependences become output dependences 

between iterations in the embedded loop. This may destroy values potentially needed by both 

the recurrent call and the subsequent phases of computation. For example, the following pat- 

tern is fairly common: 

subroutine recur (...) 

A: a_local_variable = ... 

recursive calls 

B: ... = f(a_local_variable) 

end 

If the definition of a_local_variable in statement A is exposed to the use of 

a_local_variable in statement B, then a_local_variable will have to be privatized for 

each partition. The reasoning here is that, assuming this code has preprocessed (threshing 

recursive calls and eliminating return statements), the portions of code in which statements A 

and statement B reside will be placed in different copies of the embedded loop(s). We priva- 

tize such variables by expansion [65]. For this code example: 

subroutine recur_einbed (. . . ,   count_embed) 

do part = 1, count_embed 

A:   a_local_variable(part) = ... 

enddo 
recursive calls 
do part = 1, count_embed 

B:   ... = f(a_local_variable(part)) 

103 



Embedding Control 

enddo 
end 

The key aspect of privatization, eliminating barriers to parallelization through anti-depen- 

dences, is preserved in our version, though the particular application is somewhat different 

than what is typical. As such, the analysis takes a different approach and is much simpler than 

existing analyses for privatization. 

First, we are concerned whether a variable should be privatized. Clearly, we can simply 

expand all variables used in the subroutine and solve this problem, but this is not particularly 

space efficient. Second, since we are applying this analysis to local variables from different 

procedural contexts (or activations), no true dependences for these variables across embedded 

loops iterations are possible. Thus, we need not be concerned with determining coverage of 

the defs of a variable on its uses (the dominating definitions property) [87]. 

The algorithm which operates under these assumptions is extremely simple. It begins with the 

DEF-USE chains for the variable. Of the three top-level clusters created by the threshjblock 

preprocessing step, if a DEF of a variable and one of its USEs are in different clusters, then we 

tag that DEF as privatized. It any DEFS of a variable are tagged as privatized, then it is priva- 

tized through expansion within the iteration space of the embedded loop. 

6.5.1.2 Expanding Parameters 

Since the actual parameter sets for each recursive call may differ, we need a mechanism for 

simultaneously passing all parameters to the embedded clone of the subroutine. We employ a 

simple expansion on each formal parameter in which we pack the actual parameters prior to 

the recursive call. The parameter set for each partition is accessed by the loop index variable 

for the embedded loop. Note that we need not expand all the parameters, only those that differ 

in the recursive calls. 

The following example illustrates how it works: 

subroutine recur(a,b,begin,end,n) 
integer begin, end, n 
integer a(n), b(n) 

Bodyl 
call recur(b,a,begin,lower,n) 
call recur(b,a,upper,end,n) 
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Body2 
end 

The values passed to the formal parameters begin and end differ. We expand those parame- 

ters and pack them with the parameters for each call: 

subroutine recur_embed(a, b, begin, end, count_embed) 
integer count_embed, n 
integer begin(count_embed), end(count_embed) 
integer a(n), b(n) 

do part = 1, count_embed 
Bodyl 

enddo 
new_count_embed = 0 
do part = 1, count_embed 

new_count_embed = new_count_embed + 2 
enddo 
do part = 1, count_embed 

new_begin(2*part-l) = begin(part) 
new_begin(2*part) = upper(part) 
new_end(2*part-l) = lower(part) 
new_end(2*part) = lower(end) 

enddo 
call recur_embed(b,a,new_begin,new_end,n,new_count_embed) 
do part = 1, count_embed 

Body2 
enddo 
end 

In this case, we chose to consider the case of an implicit loop (whose trip count is 2). In the 

case of an explicit loop, the transformation is somewhat easier because the actual parameters 

which differ are likely to be differing array accesses into the same array. In this case, the 

whole array (or the portion which is used) can be passed rather than the individual reference. 

For example, consider the following generic subroutine: 

subroutine recur(a,b,begin,end,n) 
integer n, a(n), b(n), begin, end 

do i = 1, count 
recur(b,a, lower(i),upper(i), n) 

enddo 

end 

This will get transformed to the following subroutine: 
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subroutine recur_embed(a,b,begin,end,n,embed_count) 
integer n, embed_count, a(n), b(n) 
integer begin(embed_count), end(embed_count) 

recur(b,a, lower(1:new_embed_count), 
$    upper(1:new_embed_c ount),n,new_embed_c ount) 

end 

The algorithm for expanding parameters marshals together all the recursive calls and walks 

down each call's actual parameter list, check whether the expressions are identical. If they are 

identical, it does nothing. If they are not identical, it marks the formal parameter in that place 

for expansion. Loops are generated to pack the expanded parameter with the differing values 

prior to the recursive call. Note that this loop is trivially parallelizable as it includes no inhib- 

iting dependences. 

6.5.2 Embedding Conditional Statements 

Embedding conditional statements is performed simultaneously with loop embedding. Unfor- 

tunately, the values used in conditional expressions for such statements are not necessarily 

available in subsequent recursive calls. Even if the values were available, their locations 

would be extremely difficult to determine in the compiler. So we simply precompute the path 

conditions leading to each recursive call (computed already in section 6.4.1 as PC) and pack 

those conditions into a logical array of size equal to the number of partitions. Given the set of 

recursive calls S, we would use the following pseudo code: 

foreach s e S 

CONDs = U„6PCWP. where U = v 

endfor 

We then add the array COND as a parameter and embed the subroutine body components in 

if-blocks with COND as condition. Finally, we reduce the array using logical-or and use the 

result to guard any further recursive calls of the cloned subroutine. We use the generic exam- 

ple from past sections to illustrates this (with expanded parameters, expanded local variables, 

and embedded loop bookkeeping elided for clarity): 

subroutine recur_fixed(..., count_embed, conds_embed) 
logical conds(count_embed), reduce_cond 

106 



Irregular Control Structure II - Control Embedding 

do part = 1, count_embed 
if (conds_embed(part)) then 

Bodyl 
endif 

enddo 

do part = 1, count_embed 
new_conds(2*i-l)   =  conds_embed(part) .and. ( KJpsPC{part)p) 

new_conds (2 * i)   =  conds_embed (part) . and. (\Jp e PC(part)p ) 

enddo 
i f (reduc e_c onds) then 

call recur_fixed(...,new_count_embed, new_conds) 
endif 
do part = 1, count_embed 

if (conds_embed(part)) then 
Body2 

endif 
enddo 

end 

Note that we have used the high-level description of the computation of the COND array in 

this code, a necessity since we have not specified return conditions for this generic example. 

Section 6.8 will present a concrete example. 

The embedded conditionals track partition liveness. When a COND array element is false, 

work on the corresponding partition has completed. This is detected automatically when par- 

allelizing the code with embedded conditionals. Under the transformation as presented, paral- 

lel execution for partition will continue but no meaningful computation will take place. 

Unfortunately, this means that the amount of useful computation in derived parallel operations 

will get ever sparser as the partitions get smaller and partitions are finished. This effect will be 

particularly pronounced if the partitioning strategy of the algorithm results in unbalanced par- 

titioning. 

There are two strategies for dealing with this. The first is to simply ignore the problem and 

rely on the algorithm designer to create reasonable partitioning strategies. This is also a key 

consideration for the serial performance of the code. The second strategy is to prescan the 

COND array for completed partitions and pack the live partitions. This can be simply 

achieved by either replacing the variable count_embed with an array of those partition num- 

bers that are live or simply compressing those expanded subroutine parameters to only include 

the live partitions. We then index expanded variables and parameters with elements of that 
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array. Prior to the recursive call to the clone, the new partition count and COND arrays are 

packed according to the old COND array. Another approach is to insert code to pack the arrays 

by the COND array at the head of the cloned subroutine. 

The approach taken in our compiler is to compress the live partitions in the expanded subrou- 

tine parameters, and to reflect this in the partition count passed to the cloned subroutine. This 

obviates the need for an explicit COND vector, since a record of dead segments is implicitly 

realized by the absence of any information relevant to the execution of the algorithm on those 

partitions. That is, the embedded loops will only traverse structures storing information about 

live partitions. This may create a sparseness or irregularity in the traversal of the array struc- 

tures in the algorithm; however, this is handled by the array index flattening mechanism of 

section 5.3.4. This results in the following code: 

subroutine recur_fixed(..., count_embed) 
integer cond_length(count_embed) 

if <UpePC(1)/>) then 
cond_length(l) = 2 

else 
cond_length(l) = 0 

endif 
do part = 2, count_embed 

if (UJ.PC^P) then 
cond_length(part) = cond_length(part-l) + 2 

else 
cond_length(part) = cond_length(part-l) 

endif 
enddo 
do part = 1, count_embed 

if tU^pc^p) then 
expanded_parameterl(cond_length(part)-1) = ... 
expanded_parameter2(cond_length(part)-1) = ... 

endif 
enddo 
if (cond_length(count_embed).gt.0) then 

call recur_fixed(...,new_count_embed, new_conds) 
endif 

end 
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Note that this approach requires that no conditionals need to be embedded explicitly. The 

embedable conditionals are implicitly embedded by compressing the expanded parameter 

sets. 

6.6 Functions 

Subroutines which return values, or functions, are treated as subroutines with an extra param- 

eter for the return value. Instances of the function name used for returning values are replaced 

with the new formal parameter name. Transformed in this manner, the embedding transforma- 

tion presented here works as expected. 

6.7 Mutual Recursion and Other Variations 

This technique can easily be applied to subroutines that are mutually recursive. We have 

described a method to create a clone of recursive subroutines in which the control is embed- 

ded. This was achieved by adding parameters which count partitions and track embedded con- 

ditionals and by inserting loops and if-blocks which use these partitions. We can create such 

an embedded clone of each of the mutually recursive subroutines as if they were simply recur- 

sive, rather than mutually recursive. There is one major deviation in the mechanics of the 

transformations. Choosing which parameters to expand depends on the recursive calls to the 

subroutine, which are made in another subroutines. Otherwise, the analysis is essentially iden- 

tical. 

For example, consider the generic code below for a mutual recurrence: 

subroutine recursl(. 
prebody 
foreach partition 

call recurs2(.. 
endfor 
postbody 

end 

) subroutine recurs2(...) 
prebody 
foreach partition 

) call recursl(...) 
endfor 
postbody 

end 
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This can be transformed using the embedded clones: 

subroutine recursl_embed(...) 
foreach partition 

prebody 
endfor 
call  recurs2_embed(...) 
foreach partition 

postbody 
endfor 

end 

subroutine recurs2_embed( 
foreach partition 

prebody 
endfor 
call recursl_embed(...) 
foreach partition 

postbody 
endfor 

end 

We have assumed that we can always cluster recursive calls together in preparation for embed- 

ding. However, we may only be able to create several clusters of recursive calls with other 

code in between. Once again, we can create an embedded clone of the subroutine, with several 

differences in the analysis. First, the variable privatization analysis will have to consider sev- 

eral more clusters, which is trivial. Second, the parameter expansion analysis will have to ana- 

lyze each cluster of recursive calls and expand any parameter that needs expansion in any one 

of the clusters. Here is an example with two clusters containing recursive calls: 

subroutine recurs(...) 
bodyl 
foreach partition 

call recurs (...) 
endfor 
body2 
foreach partition 

call recurs (...) 
endfor 
body3 

end 

subroutine recurs_embed( 
foreach partition 

bodyl 
endfor 
call recurs_embed(... 
foreach partition 

body2 
endfor 
call recurs_embed(.. . 
foreach partition 

body3 
endfor 

end 

The technique of creating recursively embedded subroutine clones can generally be applied 

across many such variations, though it is not likely that many more variations are useful to 

consider. 
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6.8 Extended Example: Quicksort 

This section applies control embedding to a (stable) quicksort, a moderately complex example 

of a divide and conquer algorithm. The algorithm sorts an array of integer keys. It divides the 

problem around a chosen element, call a pivot, by creating partitions of smaller key values, 

equal key values, and larger key values. It then recurses on the partitions of smaller and larger 

keys. The sorted results are appended together in order of smallest, equivalent, and largest. (In 

this version, the 'append' is implicit.) The serial code follows: 

SUBROUTINE qsort(a,b,begin,end,n) 
INTEGER begin,end,n 
INTEGER a(n), b(n) 
INTEGER lower, upper, middle, i, pivot 

IF ((end - begin) .le. 1) THEN 
RETURN 

ENDIF 
pivot = a(begin) 
upper = begin 
middle = begin 
lower = begin 
DO i = begin, end 
IF (a(i) .It. pivot) THEN 
middle = middle + 1 
upper = upper + 1 

ELSE IF (a(i) .eg. pivot) THEN 
upper = upper + 1 

ENDif 
ENDDO 
DO i = begin,end 
IF (a(i) -It. pivot) THEN 
b(lower) = a(i) 
lower = lower + 1 

ELSEIF (a(i) .gt. pivot) THEN 
b(upper) = a(i) 
upper = upper + 1 

ELSE 
b(middle) = a(i) 
middle = middle + 1 

ENDIF 
ENDDO 
CALL qsort(b,a,begin,lower-l,n) 
CALL qsort(b,a,middle,end,n) 
RETURN 

END 

The first steps for the compiler are to apply return eliminations, followed by threshing recur- 

sive calls. Return elimination has been applied to the version below: 
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SUBROUTINE qsort(a,b,begin,end,n) 
INTEGER n,begin,end 
INTEGER a(n),b(n) 
INTEGER lower,upper,middle,i,pivot 

IF (.NOT.(end-begin).LE.l) THEN 
pivot = a(begin) 
upper = begin 
middle = begin 
lower = begin 
DO i = begin, end, 1 
IF (a(i).LT.pivot) THEN 
middle = middle + 1 
upper = upper + 1 

ELSE IF(a(i).EQ.pivot) THEN 
upper = upper + 1 

ENDIF 
ENDDO 
DO i = begin, end, 1 
IF (a(i).LT.pivot) THEN 
b(lower) = a(i) 
lower = lower + 1 

ELSE IF(a(i)-GT.pivot) THEN 
b(upper) = a(i) 
upper = upper + 1 

ELSE 
b(middle) = a(i) 
middle = middle + 1 

ENDIF 
ENDDO 
CALL qsort(b,a,begin,lower-l,n) 
CALL qsort(b,a,middle,end,n) 

ENDIF 
END 

Threshing recursive calls results in: 

SUBROUTINE qsort(a,b,begin,end,n) 
INTEGER n,begin,end 
INTEGER a(n),b(n) 
INTEGER lower,upper,middle,i, pivot 

IF (.NOT.(end-begin).LE.l) THEN 
pivot = a(begin) 
upper = begin 
middle = begin 
lower = begin 
DO i = begin, end, 1 
IF (a(i).LT.pivot) THEN 
middle = middle + 1 
upper = upper + 1 

ELSE IF(a(i).EQ.pivot) THEN 

112 



Irregular Control Structure II - Control Embedding 

upper = upper + 1 
ENDIF 

ENDDO 
DO i = begin, end, 1 
IF (a(i).LT.pivot) THEN 
b(lower) = a(i) 
lower = (lower + 1) 

ELSE IF(a(i).GT.pivot) THEN 
b(upper) = a(i) 
upper = upper + 1 

ELSE 
b(middle) = a(i) 
middle = middle + 1 

ENDIF 
ENDDO 

ENDIF 
IF (.NOT.(end - begin).LE.l) THEN 
CALL qsort(b,a,begin,lower-l,n) 
CALL qsort(b,a,middle,end,n) 

ENDIF 
END 

Note that the looping structure in this case is implicit. (This is typically the case for the algo- 

rithms we have found to be useful.) Now the code is ready for control embedding. Figure 6.3 

presents an annotated version of the resulting code. We have dealt with the issue of allocation 

in expansion by using dynamic arrays. This is convenient for code whose DCGs have static 

branching factors. In this case we can also pre-allocate the next DCG level's arrays. Other- 

wise, we employ dynamic allocation routines. 

6.9 Review 
We have presented a technique for embedding control in divide-and-conquer style recursive 

subroutines that enables effective parallelization of divide-and-conquer style algorithms. It 

exposes both intra- and inter-partition parallelism in the algorithm to the compiler by embed- 

ding iterative control structure. It manages the parallel execution across these partitions by 

implicitly embedding conditional control structure to effectively track partition liveness. 
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SUBROUTINE g^ort_embed(a,b,begin,end,n,fxpartitions, 
$  fxnextpartitions) 
INTEGER f»partitions, fxnextpartitions 
INTEGER n, begin(fxpartitions), end(fxpartitions) 
INTEGER a(n), b(n) 
INTEGER lower(f«partitions), upper 
INTEGER middle(f«partitions), i, pivot, fxp 
INTEGER n_begin(fxnextpartitions), n_end(fxnextpartitions) 

DO fxp = 1, f »partitions, 1 
IF (.NOT.(end(fxp) - begin(fxp)).LE.l) THEN 
pivot = a(begin(fxp)) 
upper = begin(fxp) 
middle(fxp) = begin(fxp) 
lower(fxp) = begin(fxp) 
DO i = begin(fxp), end(fxp), 1 

IF ((a(i)).LT.pivot) THEN 
middle(fxp) = middle(fxp) + 1 
upper = upper + 1 

ELSE IF((a(i)).EQ.pivot) THEN 
upper = upper + 1 

ENDIF 
ENDDO 
DO i = begin(fxp), end(fxp), 1 
IF (a(i).LT.pivot) THEN 
b(lower(fxp)) = a(i) 
lower(fxp) = lower(fxp) + 1 

ELSE IF(a(i).GT.pivot) THEN 
b(upper) = a(i) 
upper = upper + 1 

ELSE 
b(middle(fxp)) = a(i) 
middle(fxp) = middle(fxp) + 1 

ENDIF 
ENDDO 

ENDIF 
ENDDO 

Embedded Loop 

-\ IF (.NOT.((end(l) - begin(l)).LE.l)) THEN 
fxplength(l) = 2 

ELSE 
fxplength(l) = 0 

ENDIF 
DO fxp = 2, f»partitions 
IF (.NOT.((end(fxp) - begin(fxp)).LE.l)) 
fxplengtb(fxp) = fxcond(fxp-l) + 2 

ELSE 
fxplength(fxp) = fxcond(fxp-l) 

ENDIF 
ENDDO 

Compressing Expanded 
Parameter Through 

New Embedded 
Conditional 

THEN 

DO fxp = 1, fxpartitions, 1 
n_begin(fxplength(fxp) - 1) = begin 
n_begin(fxplength(fxp)) = middle(fxp) 
n_end(fxplength(fxp) - 1) = lower(fxp) 
n_end(f xplength(fxp)) = end 

ENDDO 

Partition Bookkeeping 

IF (fxplength(f^partitions).gt.O) THEN 
CALL qsort_embed(b,a,n_begin,n_end,n, 

$    fxplength (fxpartitions), fxplength (fxpartitions) * 2) 
ENDIF 

END 

Figure 6.3 The resulting code for stable quicksort after control embedding. 

114 



Chapter 7 

Compiler Architecture and Performance 

This chapter briefly discusses the structure of the whole compiler. The design and ordering of 

compiler phases reveals much of the goals and interdependencies of each phase. This is especially 

true of the three major transformations we have designed in this dissertation. The earlier phases of 

the compiler perform relatively common analyses and transformations. The last three phases of 

the compiler, those new phases we have designed, must be invoked in a particular order to effect 

the kind of parallelization we seek. We will begin by giving an overview of our compiler, then dis- 

cuss some of the standard analyses employed in the early phases of compilation, discuss some 

changes we have made to the dependence analysis system, and then discuss the later phases of 

compilation. 

7.1 Compiler Overview 

This thesis was implemented in the Fx compiler, a parallelizing Fortran compiler which accepts 

standard Fortran 77, as well as subset-HPF and task parallel extensions. This work was realized 

that portion of the compiler which compiled serial Fortran. The compiler generates Single Pro- 

gram Multiple Data (SPMD) programs for distributed memory machines and serial fortran with 

parallelization annotations for the Cray Research family of vector multiprocessors. Only the latter 

code generation scheme is fully supported by our transformations, though earlier work had sup- 

port for SPMD code generation. The code generated for the Cray vector multiprocessors is then 

compiled by the Cray Fortran 77 Compiler. 
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Early Passes 

Flow & Dependence Analyses 
Induction Variable Elimination 
Simple Constant Propagation 

Filtering & Profiling 

— Dependence Recycling 

F2C front end 

1 
Early Phases — 

I 
Recursion Pruning 

Loop Flattening 

Recursion Parallelization ) 

I    *^ 
CF77 

Figure 7.1 The compiler organization. 

The ordering of the phases of the compiler is structured as in figure 7.1. The intermediate rep- 

resentation employed is an abstract syntax tree (AST) [5]. 

Isolate Recurrences 
Loop Fission 

7.2 Early Passes 

The compiler computes def-use chains and dependence information in the earliest phases. The 

dependence analyzer uses the Omega Test [69]. Simple optimizations and transformations like 

loop normalization, induction variable elimination, and simple constant propagation [5] [93] 

are also implemented in these phases. The result is an AST annotated with dependence and 

def-use information. 

7.2.1 Filtering 

The compiler identifies potential candidates for transformation by using heuristics in filtering 

the code. Identifying irregular loop nests and recursive subroutines is relatively straightfor- 

ward and simple. Irregular loops are those whose bounds are non-linear in outer loop indices. 

Recursive subroutines simply contain recursive calls. Those recursive routines of particular 

interest are those which include multiple recursive calls, each of which write to disjoint mem- 

ory locations. 

The difficulty is in identifying candidate recurrent loops. Simply identifying all loops with 

loop carried dependences is not sufficient. The compiler must decide whether within a given 
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do i = 1, N do j = 1, M 
do j = 1, H do i = 1, N 

y(i) = y(i) + b(D) y(i) = yt1) + b<3> 
enddo enddo 

enddo enddo 

Figure 7.2 Loop interchanges for a loop nest. 

loop nest enough parallelism can be exposed by traditional mechanism, or whether the recur- 

rent loop itself must be parallelized. At worst, this decision can only be made at run-time or 

through profiling information. Figure 7.2 illustrates such a case. If N is small, then it may be 

worthwhile to simply parallelize the inner recurrent loops using reductions. If N is large, then 

it may be preferable to interchange the loops as in figure 7.2, enabling the parallelization of 

the outer loop. 

The heuristic we employ to statically determine whether to parallelize recurrences is to simply 

look for loop nests that are completely recurrent, or that are nested within outer loops that 

have other properties inhibiting loop nest transformation. This is conservative in that it does 

not account for potential run-time values which might make it profitable to parallelize the 

recurrence loop, as seen in the previous example. However, we have not run into any cases 

where the wrong choice is made. 

7.2.2 Profiling 

Given the filtering information, the compiler can easily add profiling code. We use profiling to 

measure the dynamic impact of recurrences in serial code runs. Another use might be in the 

filtering process itself, so that run-time conditions and values are accounted for. We have not 

pursued this, however. Profiling directives are inserted around interesting code case. The 

directives used are system dependent. In the case of the Cray systems, we use the Flowtrace 

[2] system to profile interesting cases. 

7.3 Dependence Recycling 

The rough structure of each source code transformation is comprised of two phases. The IR of 

the code is typically examined and analyzed to determine whether and how to apply the trans- 

formations legally. The code is then transformed by either copying the code, transforming the 

code through substitution, or replication. For example, the loop flattening transformation 
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phase first examines the dependence structure of the code and the loop header structure to 

determine whether the transformation can be legally applied. The body components are then 

substituted with the precomputed loop indices and placed in the new flattened loop header. 

Recomputing dependence information after each of the new transformations is not only 

extremely costly, but, more importantly, it might result in a loss of accuracy in the dependence 

information due to the introduction of indirection in array accesses and complex expression 

computed in subroutine calls. However, in all but the recurrence parallelization phase, the 

resulting dependence graph will be isomorphic to the original dependence graph. The reason 

is that we essentially preserve the data flow semantics of the code by only manipulating loop 

control structure in a very restricted manner during the second phase of these transformations. 

That is, though depth of loop nesting may be increased or decreased through the transforma- 

tions presented here, the flow constraints on the ordering of statement execution is not vio- 

lated. We thus preserve the original dependences through the transformations since the 

effective structure of the dependence graph is unchanged. The only thing that may change are 

the distance (or distance) vectors, especially in the case of loop flattening. 

The mapping is implemented in a relatively simple and non-intrusive manner by instrument- 

ing the copying routines in the compiler source to automatically maintain and update a map- 

ping between the original code and transformed code. When a piece of code at one end of a 

dependence link is mapped, the link is either copied or it is updated to reflect the transformed 

code. The first time a dependence link is encountered, it is copied and the unresolved end of 

the link is entered into a mapping table by its old destination address. If the link has already 

been copied, determined by lookup in the mapping table, the end of the link pointing to the 

address being copied is updated to reflect the new address. Note that for a given address, mul- 

tiple links may be updated or copied depending on the order of the copy operation and the 

structure of dependences in the code. 

The code for the transformations is barely changed at all. The basic statement and expression 

copying and substitution are modified to perform the dependence mapping automatically. The 

only thing added to each transformation phase is a subroutine call to turn the mapping process 

on and off around copying phases. 
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7.4 New Passes 

The interdependencies between the new passes are obvious. Since it nests control structure 

which might (and probably will) result in loop nests, the recursion pruning pass must precede 

the loop flattening phase. Both the loop flattening and recursion pruning phases generate 

recurrent loops, so they must precede the recurrent loop parallelization pass. 

The loop flattening pass works on a per loop nest basis, while control embedding works on 

entire subroutines. The recurrent loop parallelization pass is comprised of two phases. The 

first isolates recurrent portions of loops through loop fission, and the second performs the 

actual analysis. The rationale for this decision is to make the parallelization process clean, so 

that unnecessary computation is not embedded within the templates for performing the paral- 

lel recurrent primitives. Furthermore, different recurrent components may need to utilize dif- 

ferent templates. The drawback, however, is that this may lead to inefficient usage of these 

parallel templates. Two reductions in one loop may benefit by sharing the overhead of per- 

forming the reduction. However, these inefficiencies can be mitigated by fusing together the 

generated recurrent primitives. 

The phase which isolates recurrent portions of loop bodies starts by finding strongly con- 

nected components of flow, output and control dependences. The compiler then performs loop 

fission to distribute loops around recurrent sections of code. This entails promoting scalar val- 

ues to arrays if they are computed in one loop and used in another. The recurrent loop parallel- 

ization phase then parallelizes those loops that are recurrent. 

7.5 Tracking Recurrent Primitives 

The type of recurrent primitive applicable to a recurrent loop may change through the control 

structure transformations presented here. For example, consider a recurrent loop which com- 

putes a reduction in a hypothetical recursive subroutine. Control embedding will embed that 

loop in another loop. The transformed code will now include indirect array accesses due to 

promotion of variables during control embedding, the compiler would have to resort to a more 

costly combining-send or multiprefix operation. However, by keeping track of the original 

form of the loop, the compiler can employ a less costly segmented reduction. Furthermore, if 

intermediate results of the computation are used, e.g. in a permutation of an array, then the 

type of primitive employed should be a segmented scan. This is determined in the loop fission 

119 



Tracking Recurrent Primitives 

phase, when recurrences are isolated and extracted from non-recurrent code which may use 

intermediate values computed by the recurrent code. The transformation of the particular 

recurrent primitives used to compute the code can be specified by the following tables. The 

first table specifies recurrent primitive transformation through loop flattening The type of 

resulting primitive depends whether the inner index variable(s) of the flattened loop nest 

occurs: 

Source Primitive 
Resulting Primitive Through Loop Flattening 

No Inner Index Occurrence Inner Index Occurrence 

reduction 

scan 

combining-send 

multiprefix 

segmented reduction 

segmented scan 

combining-send 

other 

combining-send 

multiprefix 

combining-send 

other 

The next table specifies the transformation of the primitive types through the loop fission 

phase. The resulting primitive may change if flow dependences originating in the cluster of 

statements which compute the primitive crosses the cluster boundary: 

Source Primitive 
Resulting Primitive Through Loop Fission 

Flow Deps Cross 
Clusters 

No Flow Deps Cross 
Clusters 

reduction scan reduction 

segmented reduction segmented scan segmented reduction 

scan scan scan 

segmented scan segmented scan segmented scan 

combining-send multiprefix combining-send 

multiprefix multiprefix multiprefix 
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7.6 Computation and Space Overhead Reuse 

Flattened loops and some recurrent primitives have large overheads in building and storing 

data structures which may be reusable. For example, the index computation and arrays for a 

flattened loop can be reused for subsequent flattened loops with similar index iterations 

spaces. Likewise, a combining-send operation builds the SPINE structure, which can be 

reused in other combining-send and multiprefix operations with identical index arrays and 

array sizes. Reuse of such computation and allocated space is crucial to achieving reasonable 

performance. A simple framework for general computation and space reuse is built into the 

compiler. 

The space reuse problem can be framed in a manner similar to the register allocation problem. 

The primary difference is that space reuse is restricted by the type and size of the allocated 

object. Conceptually, this effectively divides up the candidate memory blocks into disparate 

pools in which the reuse algorithm is run separately. To an extent, tricks can be played to avoid 

this division, though the size restrictions are useful to retain to avoid overallocation of space 

for the sake of increasing the occurrence of size affinity in the reuse algorithm. 

The computation reuse problem can be framed similarly. Live ranges of the computed values 

for a recurrent primitive or a flattened loop can be simply inferred as the extent of the trans- 

formed code. The primary reason for this is that is that the values computed in the setup 

phases of the transformed code are likely to be used throughout the execution of that code. 

Despite the apparent conservatism of this approach, it is unlikely that flattened loops or recur- 

rent primitives will overlap in way such that opportunities for reuse will be lost under this 

assumption. 

7.7 Compiler Performance 

Compile speed of the passes described this dissertation is relatively fast, despite being unopti- 

mized. Compilation of large programs is dominated in both speed and time by the dependence 

analyzer for large programs. Loop flattening and recursion pruning take negligible amounts of 
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time. Recurrence parallelization is somewhat more costly, taking between 5 and 12 seconds 

per loop on a Sparestation ELC, a relatively slow workstation compared to more recent work- 

stations: 

Loop 
Analysis 
Time (sec.) 

Linear 4.9 
Max 9.1 
MaxSub 11.5 

(Failure) 13.4 

In the last row of this the table is a case where the analysis fails to find an efficient composi- 

tion operator. Note that in this case, the number of iterations is bounded. If we increase the 

ceiling on the number of iterations through the analysis, this number would be significantly 

higher. 

However, the performance of the recurrence parallelizer is severely unoptimized, the most 

prominent cost being the start-up time for the module responsible for this pass. It is restarted 

for every recurrent loop and takes roughly 8 seconds to start up. 

7.8 Review 

This chapter discussed the overall organization of the compiler. Important techniques like 

space and computation reuse and dependence recycling form the 'glue' which allow the trans- 

formations discussed in prior chapters to work together and generate efficient code. Recogni- 

tion and transformation of recurrent primitive types through transformations provide valuable 

hints to later phases of the compiler to generate more efficient code. The compiler also relies 

on a base of more standard optimizations and analyses to decide when to apply those transfor- 

mations. Finally, measurement of the compile time are given and shown to be reasonable. 
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Chapter 8 

Evaluation 

The evaluation of the compiler transformations in this thesis takes several paths. For the base 

recurrence parallelization technique, a simple measure is to compare the number of loops parallel- 

ized again other compilers, such as the summary of compilation results on the Argonne loops in 

the introduction. Accordingly, we also note here which strategies our compiler and the CF77 

employs to parallelize components of the test programs, which provides a bridge between per 

loop compilation performance and overall program performance. Another important measurement 

to consider for later performance estimates is the performance of the code templates used for par- 

allel recurrent primitives. Since the focus of this thesis is the compiler rather than the intricacies 

of engineering efficient parallel primitives, measurements of the primitive performance serve 

mainly as a useful calibration guide when examining their performance in the larger context of 

whole algorithms or programs. Finally, we examine the impact of the transformations on various 

algorithms. 

Unless otherwise noted, the performance numbers presented here are for a single vector processor 

of a Cray C90 supercomputer1. The performance of our compiler is typically denoted in graphs by 

the word 'auto', while the performance of the Cray Fortran 77 parallelizing compiler is denoted 

by the acronym 'CF77'. 

1. To quote the Pittsburgh Supercomputing Center's Guide to Supercomputing: 

"The CRAY C90-16/512 has 16 processors with a peak aggregate speed of 16 Gflops and a main memory of 512 

MWords or 4 GBytes. " 
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8.1 Overview 

Generally, for each array length multiple arrays were generated randomly and used in each 

test. The results presented are comprised of the arithmetic mean of these runs. In cases were 

appropriate, other testable parameters were varied and tested in the same manner. For exam- 

ple, the key density of the arrays used in combining-send or multiprefix operations was varied 

to assess the sensitivity of the primitive to such variations. The performance numbers pre- 

sented for each program typically includes both a computational throughput measure, if a 

meaningful one exists, as well as a relative speedup graph, which charts the speedup of code 

that we generate relative to code that the CF77 compiler generates. 

The first set of programs presented are essentially simple loop kernels. The relative perfor- 

mance of these kernels as compiled by the various compilers should give an expectation of 

how well the basic recurrence parallelization technique performs in more complex contexts. 

The second set of programs represent higher-level algorithms which use both the recurrence 

analysis technique, as well as the controls structure transformations to various degrees. In 

addition to performance graphs, the particular parallel primitive and control structure trans- 

formed is indicated for each program. 

8.1.1 Other Performance Factors 

The array lengths used were generally sampled uniformly in increments non-integral in the 

vector register length of the machine. The primitive deployed by the compiler picks shape fac- 

tors for the computation to avoid memory bank conflict. In particular, strided memory 

accesses of multiples of 4 are avoided if possible. Thus, the average vector length of the oper- 

ations used typically fluctuates slightly below the vector register length of the machine. The 

fluctuations in the performance graphs generally correlate to the average vector length. 

8.2 Code Template Performance 

The code templates described in Chapter 2, along with the derived modeling functions and 

composition operators, provide the basis for generating parallel code for the recurrence paral- 

lelization phase. The code templates we use are those for reductions, scans, combining-sends, 

and multiprefix. Evaluating the performance of these templates is critical to the overall evalu- 

ation of code parallelized by our compiler. 
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Speedup over CF77 for Linear and Sum Scans for Integers 
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Figure 8.1 Relative speedups for integer linear scan and reductions. 
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Figure 8.2 Relative speedups for double precision linear scan and reductions. 

While the code templates were not highly optimized, the best available algorithms were 

selected and implemented based on the following criteria: performance, operator generality 

(i.e. associativity is sufficient), and mappability to vector multiprocessors. For the purposes of 

evaluating their performance, the templates were each instantiated with several composition 
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operators. In the cases of combining-send and multiprefix operations, performance at various 

key densities were sampled. 

The two modeling functions used for measuring reduction and scan template performance 

were a sum and linear recurrence. The relative speedup over the Cray Fortran 77 Compiler 

(CF77) is plotted in figures 8.1 and 8.2. The speedups over CF77mostly range between 2.5 

and 8 for reasonably large array sizes. The sole exception to this is for linear scans of floating 

point numbers and simple sum reductions. In this case, the user can enable pattern recognition 

of linear recurrences through a command-line flag to CF77. The routine invoked (folr2p) [1] is 

a highly optimized assembly-coded routine designed to solve linear recurrences on a single 

head of the C90. In instances where this is invoked, the performance of our code lags behind 

that generated by CF77. However, note that this routine is limited to a single vector processor, 

whereas our template scales to multiple heads. Our template is not particularly optimized, as 

well as being written in Fortran. Finally, our template supports a more general class of recur- 

rences, rather than just linear recurrences. 

This points out a general disparity between the performance of our templates and the CF77 

generated code for reductions and scans. CF77 resorts to highly optimized code when it suc- 

cessfully pattern matches. Otherwise, it must resort to serial code. Our compiler generates 

code template in which little effort has been applied at tuning and optimization. Nevertheless, 

the performance are reasonably close in cases where CF77 resorts to optimized library rou- 

tines, and beats it handily otherwise. However, nothing precludes our compiler from generat- 

ing templates that have been hand-tuned. Results presented later in this section reveal that the 

presence of conditional branching some loops causes larger disparities in performance 

because of the difficulty optimizing conditional branches in the CF77 compiler's serial opti- 

mizer. 

The two modeling functions used for measuring combining-send and multiprefix templates 

are a simple scalar increment (i.e. histogram) and an articulated maximum (maximum 

expressed through conditional statement, rather than intrinsic subroutines). The latter is more 

representative of the general case, as CF77 (and most other compilers) is unable to parallelize 

general combining-send or multiprefix operations.The relative speedup over CF77 is plotted 

in figures 8.3, 8.4, 8.5, and 8.6. Multiple key densities are samples and plotted in each figure. 

The variance due to key density is relatively small, with a general trend toward better relative 
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Histogram Speedup over Serial for Varying Key Densities 

Keys 
Figure 8.3 Relative speedups for simple histogram with varying key densities of the index array. 
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Figure 8.5 Relative speedups for simple multiprefix with varying key densities of the index array. 
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General Histogram Speedup over Serial for Varying Key Densities 
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Figure 8.4 Relative speedups for generalized (max operator) histogram with varying key 
densities of the index array. 
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Figure 8.6 Relative speedups for generalized (max operator) multiprefix with varying key 
densities of the index array. 
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performance with lower key densities. There are several reasons for this. Higher key densities 

increase the storage requirements in the primitive template, and the associated initialization 

costs. Furthermore, the performance of the CF77 version, which, in some cases, is no better 

than that of the serial version, may degrade with lower key densities due to increased serializa- 

tion of memory accesses. The overall performance improvement over CF77 varies a bit more 

than for reductions and scans, ranging from 2 to 14. 

8.3 Compiler Passes in Use 

The particular primitive or control structure deployed by our compiler for the programs is 

denoted in the table below. There are four possible primitives generated: Reduction (RD), scan 

(SC), combining-send (CS), and multiprefix (MP). The two control structure transformations 

loop flattening (LF) and control embedding (CE) are also denoted where they are used. 

Finally, the table includes information about the CF77 compiler success at parallelization. We 

denote cases were that compiler could not parallelize any of the code as 'Scalar', some of the 

code as 'Partial', and all of the code as 'Full': 

Benchmark Parallel Primitive 

LF CE 

CF77 

RD SC CS MP 
Maxsubsequence X X Scalar 

Partition X Scalar 

Segpartition X X Scalar 

Bucketsort X X X Partial 

CSR Spmatmul X X Full 

CSC Spmatmul X X Full 

Simple Quicksort X X X Partial 

Stable Quicksort X X X X Partial 

Quickhull X X X X Partial 

The important cases to note here are those for which the CF77 compiler can fully parallelize. 

The CSR and CSC sparse matrix-vector multiplication kernels can both be parallelized by the 

CF77 compiler. The difference is that our compiler is able to automatically derive a better 

algorithm (really, a primitive) in parallelizing the algorithm, as the performance results pre- 

sented later in this chapter will indicate. 
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Figure 8.7 Performance of Livermore Loop 5 over a range of loop trip counts. 

8.4 Algorithms Parallelized 

From the perspective of the user, the most important measurement is the performance 

improvement in their applications. Furthermore, the impact of the control flow transforma- 

tions built on top of the recurrence parallelization is best measured in applications which uti- 

lize irregular control flow structure. This section discusses algorithms which utilize all of the 

recurrent primitives and control structures discussed in this thesis. 

8.4.1 Livermore Loops 
There are three kernels of interest to us in the Livermore Loop suite [34]. In particular they are 

loops 5,19, and 24, all recurrent loops. Loops 5 and 19 are both linear recurrences. Loop 19 is 

comprised of two similar recurrent loops. 

Do  5   i  =  2,n 
X(i)   =  Z(i)   * (Y(i)   - X(i-l)) 

do  191  k =  l,n 
B5(k) = SA(k) + STB5 * SB(k) 

191  STB5 = B5(k) - STB5 
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Livermore Loop 19 - MFLOPS 
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Figure 8.8 Performance of Livermore Loop 19 over a range of loop trip counts. 

do  193   i  =   l,n 
k = n -  i  +  1 
B5(k)   =   SA(k)   +   STB5   *   SB(k) 

193       STB5   =  B5(k)   -   STB5 

Loop 24 locates the index of the first instance of the maximum value in an integer array: 

do 24  k =  2,n 
24        if(X(k).lt.   X(max24))   max24  = k 

The relative performance and speedups are plotted in figures 8.8, 8.7, and 8.9. The one kernel 

which obviously suffers in performance is Loop 5. The primary reason for this is the overhead 

of instantiating the template variables for the derived scan operation. This overhead can be 

mitigated by fusing the loops in which template variables are instantiated with the loops of the 

scan primitive. 
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Livermore Recurrences - Speedups Over CF77 

■ l ' ' 
en 
o 
o o 

o o o 
o 

Ul 
o o 
o 

o o o 
o 

T 
ro 
o o o 

CO 
o o o 
o 

CO 
Ol o o 
o 

-p>. o o o 
o 

T 
01 
o o 
o 

o o o 
o 

Array Length 

Figure 8.9 Relative speedup of selected Livermore loop suite recurrences over a range of loop 
trip counts. 

8.4.2 Maximum Subsequence Sum 

This kernel computes the largest non-zero sum of contiguous subsequence sum of a series of 

numbers [13]. The difficulty in parallelizing this recurrent loop is that the operator used in a 

reduction or scan is fairly different from the serial loop. So, no associative operator is obvious 

from an inspection of the code: 

integer a(n) 
integer i, sofar, max 

do i = 1, n 
if (sofar + a(i) .It. 0) then 

sofar = a(i) 
else 

sofar = sofar + a(i) 
endif 
if (max .It. sofar) then 

max = sofar 
endif 

enddo 
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Speedup over CF77 for Maxsubsequence 

Array Length 
Figure 8.10 Relative speedup of maximum subsequence sum kernel. 

The CF77 compiler cannot parallelize this kernel, so the performance measured is for serial 

code. The presence of two conditional branches in this code results in poor scalar performance 

for the code, so the resulting performance disparity is high. The relative performance is plot- 

ted in figure 8.10. The derived composition operator for this kernel was discussed in detail in 

section 4.2. 

8.4.3 Sparse Vector-Matrix Multiplication 

The CSR and CSC kernels were compiled for both a single vector processor and 4 vector pro- 

cessors of the C90. In compiling for a single head, the CF77 compiler vectorizes the reduction 

in the inner loop of CSR. In compiling for multiple heads, the CF77 compiler tasks the outer 

loop of the kernel and vectorizes the inner loop reduction of CSR. For this kernel, our com- 

piler generates a segmented reduction, whose pseudo-Fortran is below, which is simulta- 

neously tasked and vectorized: 

flat = pntr(N+l) - 1 
vecwork(l:flat) = val(1:flat:l) * 
$ vec(indx(l:flat)) 

condition - k(l:flat)    .le.   pntr(i(1:flat)+1}   -  1 
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y(l:N)   =  APPLY(FUN_REDUCE( 

$ {Xx.(conditionl(x + vecwork):vecwork)}, 
$ flatlength, 
$ (i(l:flat - 1) .ne. i(2:pntr(N+l)-1))), 
$ Y(1:N)) 

The brackets on the lambda expressions denote the analyzed version of the enclosed loop 

modeling function. The third argument to the function composition reduction (FUN_REDUCE) 

is simply shorthand for a pack of the results. The CF77 compiler only vectorizes the inner 

loop of the CSC compiler on both single and multiple head configurations. Our compiler gen- 

erates a combining-send operations which is simultaneously tasked and vectorized, below: 

vecwork(l:flat) = val(1:flat:1) * 
$ vec(i(l:flat) ) 

(1:N) = APPLY(FUN_COMB_SEND( 

$ {Xx.x + vecwork}, 
$ 
$ 
$ 
$ 

i(l:flat) 
flat, 
N), 

Y(1:N)) 

Sparse matrices were generated randomly, varying the average row lengths and number of 

rows. The relative speedup over the Cray compiler for CSR is plotted in figure 8.15 for 

roughly 100,000 elements, varying the average row length. Our compiled CSR on a single 

processor is faster than the Cray version up to an average row length of 110, with a peak rela- 

tive speedup of 13.5. On four processors, the peak relative speedup for these matrices is over 

6, with a crossover at an average row length of 85. Figures 8.12 and 8.11 plot MFLOPS 

against the average row length for our technique, the Cray CF77 compiler, and the optimized 

assembly level routine [20], which we refer to as SEGMULV. Note that the peak performance 

reported here for this library is slightly lower than reported in the source reference due to the 

differing C90 configurations. For both single and multiple processors, our technique and the 

library routine sustain a relatively flat MFLOPS rate across varying average row lengths. The 

CF77 compiler appears to depend on the average row length, as one would expect given that 

this constrains average vector length for the compiled kernel. There is still a good deal of opti- 

mization that can be performed on our code templates, as evidence by the constant overhead 

between our technique and the library's performance. We will discuss this further below. 
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MFLOPS for CSR Sparse Matrix-Vector Multiplication on 1 Processor 
(100k non-zero elements) 

180- 

FSEGMULV 

SEGMULV 

Average Row Length 
Figure 8.11 Performance of CSR sparse matrix-vector multiplication kernel for a single vector 
processor. 

MFLOPS for CSR Sparse Matrix-Vector Multiplication on 4 Processors 
(100k non-zero elements) 

700- 

Average Row Length 

Figure 8.12 Performance of CSR sparse matrix-vector multiplication kernel for four vector 
processors. 
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MFLOPS for CSC Sparse Matrix-Vector Multiplication on 1 Processor 
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Figure 8.13 Performance of CSC sparse matrix-vector multiplication kernel for a single vector 
processor. 

MFLOPS for CSC Sparse Matrix-Vector Multiplication on 4 Processors 
(100k non-zero elements) 

120 

Average Row Length 
Figure 8.14 Performance of CSC sparse matrix-vector multiplication kernel for four vector 
processors. 
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Speedup of Loop Flattening over CF77 for CSR Sparse Matrix-Vector 
Multiplication (100k non-zero elements) 
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Figure 8.15 Relative speedup of CSR sparse matrix-vector multiplication kernel. 

Speedup of Loop Flattening over CF77 for CSC Sparse Matrix-Vector 
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Figure 8.16 Relative speedup of CSC sparse matrix-vector multiplication kernel. 
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The peak per head performance our compiler generates for CSR now stands at around 75 

MFLOPS for this application on multiple processors, with a typical sustained rate of a little 

over 117 MFLOPS on a single processor. The best current single head performance for this 

particular C90 configuration is a little over 170 Mflops using the assembly level SEGMULV 

routine. So, despite the obvious improvement over current automatic parallelization tech- 

niques, there is significant room for improvement in the back end of the compiler. We believe 

that some performance improvement can be realized by directly generating assembly code for 

portions of the reduction, scan, and combining-send code templates. For example, the Fortran 

version of the optimized library is around 25% slower than the assembly version. Further- 

more, at the source level, there are still some code template optimizations which can be 

employed (i.e. better operator selection). As mentioned earlier, there is some intrinsic over- 

head in using the recurrence parallelization technique in compiler that can likely be made up 

by optimizing the templates. 

For the CSC kernel, the speedup for 100,000 elements is plotted in figure 8.16. The perfor- 

mance on a single and four vector processors is plotted in figure 8.13 and 8.14. The crossover 

point for a single processor is at an average row length of 10-11, with a peak relative speedup 

of 3. The peak relative speedup on 4 processors is 9, with no crossover point. The typical sus- 

tained rate per processor on multiple processors is nearly 30 MFLOPS, while for a single pro- 

cessor the peak is 50 MFLOPS. The CSR kernel performance is more than twice as fast. 

When explicitly parallelizing a CSC kernel, a good approach might be to transform represen- 

tations so that a CSR library routine may be used. The reason for the failure to do this in an 

automated fashion is not intrinsic to the compilation technique. It can be overcome easily in 

most cases. The problem is that we do not subject the templates for reduction, scan, combin- 

ing-send and multiprefix to compiler optimization. 

We currently only attempt to move the loop flattening overhead out of surrounding loops. 

However, we can also move portions of the particular combining-send operator out of sur- 

rounding loops, so that the cost may be amortized over many matrix multiplications. For the 

multiprefix algorithm that we currently use, a good deal of time of the algorithm is spent pro- 

cessing the index array to construct the SPINETREE structure on which we perform what are 

essentially multiple simultaneous reductions and scans [76]. This phase can be amortized over 

multiple invocations of the kernel by hoisting it out of surrounding loops. For a sorting version 

of a combining-send or multiprefix, the sort can be can be performed once for multiple invoca- 
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tions of the parallelized loop nest. The performance of the CSC kernel should more closely 

approximate that of the compiled CSR kernel using this approach. This is especially true for 

the sorting approach (all that would be left after this optimization would be a reduction or 

scan), which would otherwise be slower than the approach we are currently using. Thus, some 

flexibility in code template selection may be necessary. 

The overhead for the index set computation preamble is equivalent to about a single sparse 

matrix-vector multiplication, and in both cases is hoisted out of surrounding loops. 

In the code template for reductions and scans, there is an inherently serial sum across a vector 

register length for each processor. Currently, this entire portion of the computation is serial- 

ized. However, the sum can be performed on each processor in parallel, and then combined 

serially across the processors. For this particular portion of the computation, the speedup 

should approach the vector register length of the machine. The combining-send/multiprefix 

code template does not task as well as the scan and reduction templates, because of indirection 

and added synchronization overhead. 

8.4.4 Bucketsort 
The NAS benchmark suite includes a bucketsort routine to perform integer sort. This is essen- 

tially a single pass radix sort. The code we are concerned with does not actually perform the 

permute for the sort, it only performs the ranking step. The code for this routine: 

subroutine bucksort(key, rank, keyden, N, MAXKEY) 
integer N 
integer MAXKEY 
integer key(0:N) 
int eger rank(0:N) 
int eger keyden(0:MAXKEY) 
integer i, j , k 

do 40 i=l, MAXKEY 
keyden(i) =0 

40     continue 

do 60 i=l, N 
k = key(i) 
keyden(k) = keyden(k) + 1 

60     continue 

do 80 i=2, MAXKEY 
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Figure 8.17 Ranking performance of bucketsort from NAS benchmark suite. 
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80 
keyden(i) = keyden(i; 

continue 
+ keyden(i-l) 

do  110 i=l, N 
k = key(i) 
keyden(k) = keyden(k) - 1 
rank(i)    = keyden(k) 

110     continue 
return 
end 

The first loop is trivially parallelizable. The second loop is parallelizable by a simple histo- 

gramming combining-send. The third loop is an inclusive sum scan. The fourth loop is essen- 

tially a simple multiprefix operation. The CF77 compiler can only parallelize the first and 

second loops. Our compiler parallelizes all the loops in the routine. The absolute and relative 

performance for this program is plotted in figures 8.17 and 8.18. The speedup over CF77 

ranges between 5 and 7 for reasonably large key counts. Over a range of key densities for the 

sorted keys, the performance is charted in figure 8.19. 
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Relative Speedup of Bucketsort over CF77 

Array Length 

Figure 8.18 Relative speedup of bucketsort from NAS benchmark suite. 

Speedups for Bucketsort Varying Key Densities and Keys 

Keys 
Figure 8.19 Relative speedup of bucketsort from NAS benchmark suite for varying key densities. 
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F/gwre 8.20 Partitioning patterns for simple (top) and segmented (bottom) partition operation. 

8.4.5 Partition 
Partition is a pair of simple loops which divides the elements of an array into different parti- 

tions based on their values. The general pattern of the computation is illustrated in figure 8.20. 

This type of code is prevalent in divide-and-conquer style programs. The first loop works on 

arrays with single partitions: 

pivot = a(l) 
lower = 1 
upper = size 
do i = 1, size 

if (a(i) .It. pivot) then 
b(lower) = a(i) 
lower = lower + 1 

else 
b(upper) = a(i) 
upper = upper - 1 

endif 
enddo 

The relative and absolute performance of this loop as parallelized by our compiler is plotted in 

figures 8.21 and 8.22. CF77 is unable to parallelize this loop. Our compiler parallelizes this 

loop by precomputing the monotonic induction variables upper and lower using scan oper- 

ations. Those arrays are used to permute the values of a into the array b. Note, however, the 

detail of the relative performance of this parallelized loop for small sequences plotted in figure 

8.23. This will play an important role when we later consider trade-offs in embedding control 

in divide-and-conquer algorithms. 

142 



Evaluation 

Performance of Partition 
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Figure 8.21 Performance of simple partition loop. 

Speedup over Serial/CF77 of Partition 

Keys 
Figure 8.22 Relative speedup of simple partition loop. 
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Figure 8.23 Relative speedup (slowdown) of partition on short sequences. 

The second loop works on arrays with an arbitrary number of partitions. This is referred to as 

a segmented partition: 

do fxp = 1, fxpartitions 
pivot = a(begin(fxp)) 
lower = begin(fxp) 
upper = end(fxp) 
do i = begin(fxp),end(fxp) 

if (a(i) .It. pivot) then 
b(lower) = a(i) 
lower = lower + 1 

else 
b(upper) = a(i) 
upper = upper - 1 

endif 
enddo 

enddo 

Begin and end are instantiated with the beginning and ending index of each partition. This 

loop has irregular structure and is parallelized with what is effectively a segmented scan via 

loop flattening. The relative and absolute performance of this loop as parallelized by our com- 

piler is plotted in figures 8.24 and 8.25. The speedup over CF77 drops from 5-7 in the non- 
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Performance of Segmented Partition of 200000 Key Sequence over varying partition sizes 

800 

Partitions 
Figure 8.24 Performance of segmented partition loop over a range of segmentation factors. 
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Figure 8.25 Relative speedup of segmented partition loop over a range of segmentation factors. 
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Time components of segmented partition for 200,000 elements 
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Figure 8.26 The contribution of segmented scans and flattening overhead to the execution time 
of segmented partitions. 

segmented case to 1.3-1.5 in the segmented case.The overhead of loop flattening is included in 

our measurements since it is unlikely that this overhead can be amortized over multiple 

instances of this loop. The typical setting for this code is recursive subroutine which has had 

control embedded. There is no opportunity to hoist out the loop flattening overhead in any 

invocations of the subroutines. 

8.4.6 Flattening Overhead in Partition Loops 

There are several causes of the degradation in performance from the simple partition to the 

segmented partition loops. A breakdown of the components which contribute to the execu- 

tion time of the segmented partition are shown in figure 8.26. In segmented partition, as is evi- 

dent from this figure, and simple partitions the data movement (permute) step accounts for a 

negligible amount of time. The loop flattening overhead, which is not paid in the case of a 

simple partition contributes between 30 and 66 percent of the execution time. The segmented 

scan operations in the segmented partition account for the balance of the time. In the case of a 

simple partition, scans dominate the execution time since there is no flattening overhead. The 

loop flattening overhead of computing loop indices and the segmented scans vary in their rela- 

tive contribution to execution time by the fragmentation of the segmented operation. As there 

are more partitions introduced into the sequence, the cost of the loop flattening overhead 
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Overhead of Segmentation in a Simple Scan 

Keys 

Figure 8.27 The overhead of segmentation in a simple scan from the partition loops. 

increases with respect to the segmented scan overhead. The amount of work in the segmented 

scans decreases in the segmented partition loop because the number of 1 and 2 element parti- 

tions becomes a significant factor in the overall effective sequence length the flattened seg- 

mented operation works on. Furthermore, there is a slight increase in execution time of the 

flattening overhead template as the segmentation of the inner loop trip counts become smaller. 

The relative overhead of segmented versus non-segmented operations is plotted in figure 8.27. 

The segmented operations are consistently about a factor of 2 slower than their non-seg- 

mented counterparts. The primary reason is the added computation due to the inclusion of seg- 

ment information (derived implicitly in the composition operator for the recurrent loop). This 

overhead can be reduced by using more efficient representation and computation schemes for 

segmentation, rather than costly arithmetic operations. For example, explicit conditionals can 

be used in bodies of segmented operations instead of the integer addition and multiplication 

which is introduced for each element of the sequence by our analysis. The fortran version of 

the hand-written sparse matrix-vector multiplication routine in section 8.4.3 uses such a 
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F/gfure 8.28 Partitioning patterns through several steps of a hypothetical divide-and-conquer 
algorithm. 

scheme, as well as more efficient packed bit-vector representation for segment descriptors. 

This would be easy to introduce as a post-parallelization code optimization. 

The relative contributions of loop flattening overhead can be mitigated in a number of ways. 

Reuse is the most important mechanism by which this overhead can be effectively reduced. In 

the sparse matrix-vector multiplication example of section 8.4.3, the overhead was reusable 

because the kernel was embedded within a loop which multiplied many vectors. The compiler 

was able to hoist this flattening overhead out of surrounding loop control. Furthermore, in 

cases where multiple loops are flattened within a procedural context, some loop flattening 

overhead may be reused. This plays an important role in the divide-and-conquer algorithms 

we discuss next. Finally, there are opportunities for interprocedural reuse of loop flattening 

overhead, especially in divide-and-conquer style recursion. We will discuss this further at the 

end of this chapter. 

8.4.7 Simple Quicksort 

Simple quicksort is a non-stable sort which works only for sequences of nonrepeating keys. 

Though it has limited application, its simplicity will be contrasted with that of the more com- 

plex quicksort: The routine divides the partition into two parts based on a simple pivot selec- 

tion. Then the partitioned array is copied back into the source array and each partition is 

recursed upon. The progression of the algorithm is illustrated in figure 8.28. 

recursive subroutine qsort_serial(a,b,begin,end,n) 
integer begin,end,n 
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integer a(n),b(n) 
integer lower, upper, i 

if ((end - begin) .le. 1) then 
return 

endif 

pivot = a(begin) 
lower = begin 
upper = end 
do i = begin,end 

if (a(i) .It. pivot) then 
b(lower) = a(i) 
lower = lower + 1 

else 
b(upper) = a(i) 
upper = upper - 1 

endif 
enddo 

do i = begin, end 
a(i) = b(i) 

enddo 

call qsort_serial(a,b,begin,lower-l,n) 
call qsort_serial(a,b,upper+l,end,n) 
end 

When control is embedded the partition loop here is transformed to a segmented partition is 

parallelized as in section 8.4.5. Figures 8.29 and 8.30 plot the relative and absolute perfor- 

mance of this quicksort using our compiler. The sustained speedup over CF77 hovers about 

1.6. 

Control embedding creates segmented partition operations in these divide and conquer algo- 

rithms. Without control embedding, our compiler would simply parallelize the recursive sub- 

routine's body, parallelizing a simple partition. Turning off control embedding and simply 

parallelizing the subroutine body gives the relative performance speedup plotted in figure 

8.31. The compiler in this case has fully parallelized the subroutine body. The reason for this 

degradation in performance is that the parallelism available within each partition quickly gets 

very small. The detail on the parallelized partition loop performance is plotted in figure 8.32. 

The poor performance at small sequences is the primary factor in the poor relative perfor- 

mance the parallelized code without control embedding. It is also important to note that paral- 

lelizing without control embedding does not scale to multiple vector processors as well as the 
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Figure 8.29 Performance of simple quicksort. 

Quicksort (Nonrepeating Keys) - Speedup 

Figure 8.30 Relative speedup of simple quicksort. 
Keys 
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Speedup over CF77 for Simple Quicksort without embedding 
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Figure 8.31 Performance degradation of fully parallelized simple quicksort without control 
embedding. 

Performance Degradation Relative to CF77 in Simple Partition at Low Sequence Lengths 

Keys 
Figure 8.32 Detail on the relative performance of the parallelized partition loop for small 
sequence lengths. 
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Figure 8.33 Performance of simple quicksort without control embedding with CF77-generated 
code performance. 

control embedding approach. Furthermore, the absolute performance degrades significantly 

without control embedding, plotted in figure 8.33. To improve upon this, we might mix the 

serial and parallelized code, resorting to serial code as the partitions grow smaller, as in figure 

8.34. The performance still lags behind the CF77 code, primarily due to the added cost of the 

conditional to check whether the size is large enough to invoke the parallel partition. This 

approach will not scale very well either, though the performance on a single vector processor 

clearly improves. 

8.4.8 Stable Quicksort 

The general, stable version of quicksort partitions by the pivot into three portions, those ele- 

ments less than, equal to, and greater than the pivot. This requires two loops. The first loop 

counts the elements in the first two partitions to set up the proper values for the monotonic 

induction variables lower, middle, and upper. The partitioning loop is a straightforward 

adaptation of the partition loop of the simple quicksort. Only the first and last partitions are 

recursed upon. 

recursive subroutine qsort(a,b,begin,end,n) 
integer begin,end,n 
integer a(n), b(n) 
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Relative Speedup of Simple Quicksort without Control Embedding with Mixed 
Parallelization 
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Figure 8.34 Speedup of simple quicksort without control embedding with mixed parallelization 
and serialization relative to CF77'-generated code performance. 

integer lower, upper, middle, i 

if ((end - begin) .le. 1) then 
return 

endif 
pivot = a(begin) 
upper = begin 
middle = begin 
lower = begin 
do i = begin, end 

if (a(i) .It. pivot) 
middle = middle + 
upper = upper 

else if (a(i) .eq. pivot) then 
upper = upper + 

endif 
enddo 
do i = begin,end 

if (a(i) .It. pivot) 
b(lower) = a(i) 
lower = lower + 1 

elseif (a(i) .gt. pivot) then 
b(upper) = a(i) 

then 
+ 1 
1 
pivot) 
1 

then 
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Figure 8.35 Performance of stable quicksort. 

upper = upper + 1 
else 

b(middle) = a(i) 
middle = middle + 1 

endif 
enddo 
do i = begin,end 

a(i) = b(i) 
enddo 

Keys 

call qsort(a,b,begin,lower-l,n) 
call qsort(a,b,middle,end,n) 
end 

The first loop computes offsets for each partition's monotonic induction variable and is very 

similar to the partition loop, except that it does not require a permutation and the primitive 

used is a reduction (segmented). Since the index computations are identical, the loop flatten- 

ing overhead of this loop can be reused for the two subsequent loops. This keeps the relative 

performance improvement over CF77, plotted in figure 8.36 nearly identical to that of the sim- 

ple quicksort. The absolute performance is plotted in figure 8.35. 
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Figure 8.37 Partitioning in the quickhull algorithm, with filled dots denoting points which are still 
under consideration for inclusion in convex hull. 

8.4.9 Planar Quickhull 

The final divide-and-conquer algorithm we consider is a quickhull routine [68]. While most 

partition steps in divide-and-conquer algorithms will likely resemble those in the quicksort 

examples, the planar quickhull partition step is slightly different. Rather than a partition of all 

the points, the algorithm eliminates points it concludes are definitely not on the convex hull 

and divides the remaining points. This partitioning is illustrated in figure 8.37. More impor- 

tantly, the algorithm reveals more loop flattening possibilities, exposing the pitfall of this con- 
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trol structure transformation approach. Another difference is the non-trivial merge step after 

the recursive calls, which merges the partial convex hull chains computed in each call. The 

code for this algorithm is below: 

recursive subroutine quickhull_serial(xa,ya,xb,yb,begin, 
$ end,count,n) 
integer begin,end,count,n 
integer xa(n),ya(n),xb(n),yb(n) 
integer maxp,maxcross,countl,count2,cross,p 

if (end-begin.le.l) then 
count = end - begin + 1 
return 

endif 
p = begin 
maxp = begin 
maxcross = 0 
do i = begin, end 

cross = (xa(begin)-xa(i))*(ya(end)-ya(i)) - 
$ (ya(begin)-ya(i))*(xa(end)-xa(i)) 

if (cross.ge.O) then 
xb(p) = xa(i) 
yb(p) = ya(i) 
p = p + 1 

endif 
if (maxcross.It.cross) then 

maxcross = cross 
maxp = p - 1 

endif 
enddo 
if (maxp.eq.begin) then 

maxp = maxp + 1 
else if (maxp.eq.end) then 

maxp = maxp - 1 
endif 
call quickhull_serial(xb,yb,xa,ya,begin,maxp,countl,n) 
call quickhull_serial(xb,yb,xa,ya,maxp,p-l,count2,n) 
do i = 1,countl 

xa(begin+i-l) = xb(begin+i-l) 
enddo 
do i = l,count2-l 

xa(begin+countl+i-l) = xb(maxp+i) 
enddo 
count = countl + count2 - 1 
end 
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Figure 8.38 Performance of quickhull algorithm. 

The last two loops in the merge phase of this algorithm are problematic, from a performance 

point of view. Control embedding nests the loops, which then have to be flattened. However, 

the loop index values will differ for each of these loops, so that reuse of loop flattening over- 

head is not reusable across these two loops (or the partition loop). Furthermore, these are rel- 

atively simple, non-recurrent loops. So CF77 does a reasonable job parallelizing the loop, 

though the parallelism decreases as the algorithm recurses deeper. As a result, the total 

speedup hovers around 1.25. The absolute and relative performances are plotted in figures 

8.38 and 8.39. 

This demonstrates a potential problem with loop flattening. Because we view loop flattening 

as a general control flow transformation, the overhead is more expensive in contexts like the 

control embedding for recursive subroutines than some alternatives. One alternative is to sim- 

ply note that embedding control will segment all operations in the subroutine body. More opti- 

mized versions of segmented operations can then be employed. 
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Figure 8.39 Relative speedup of quickhull algorithm. 

8.5 Comparison With NESL 

NESL is a high-level parallel language with support for expressing nested parallelism [18]. It 

allows the concise expression of many algorithms in which nested parallelism is inherent. The 

language is compiled to an intermediate language, whose interpreter has been ported to 

numerous architectures, including the Cray C90. Many of the primitives that NESL compiles 

to are similar or identical to those that our compiler generates, though the types of reductions 

and scans it can compute are limited. The code for a stable quicksort is shown below: 

function qsort(a) = 
if (#a < 2) then a 
else 

let pivot = a[0]; 
rest = a->[1:#a]; 
less_greater = split(rest,{e > pivot: e in rest}); 
result  = {qsort(v): v in less_greater}; 

in result[0] ++ [pivot] ++ result[1]; 

We have plotted the performance of the stable quicksort as coded in both NESL and Fortran 

(and subsequently compiled by our compiler) on a single vector processor of the C90 in figure 
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Figure 8.40 Performance of stable quicksort in code automatically parallelized and code written 
in NESL on a single vector processor. 

dation in the NESL code. This is primarily due to the interpreter overhead of the intermediate 

language, VCODE [16].   The intermediate language is interpreted by a VCODE interpreter 

compiled for a range of architectures. The interpreter adds a constant amount of overhead to 

each operation executed. Furthermore, since the granularity of the intermediate code is at the 

level of parallel operations, there is not much optimization by loop fusion to, among other 

things, exploit Cray architectural features, like chaining of vector operations. However, this 

particular disadvantage is also true of our compiler, where we have expended little effort to 

optimize in this fashion across parallel operations. 

8.6 Space Overhead 

The compiler was not developed with memory usage optimization in mind. The schemes we 

use for the recurrence parallelization technique and the two control structure transformations 

introduced in this dissertation allocate memory fairly liberally, though in the cases of loop flat- 

tening and control embedding, the techniques of section 7.6 attempt to mitigate this. Further- 

more use of more efficient representations, such as bit vectors in place of integer vectors, 
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might make a difference. It is worth discussing the memory usage of the recurrence parallel- 

ization technique since it introduces template variables, which may, in many cases be difficult 

to reuse. 

For a recurrent loop of length n, the space used by the k template variables is simply kn. 

Compared to explicit encodings of the recurrences, the space overhead amounts to one of 

these template arrays. For example, if we do template variable computation "in place", this 

only saves space for one template variable. If the reduction or scan intrinsically requires that 

multiple values be computed in the combining tree, the number of template variables will only 

reflect this. An explicitly parallel encoding of the scan will not necessarily improve the mem- 

ory requirements of the operation. For example, consider the linear recurrence of section 

4.1.3.1. We derive a method which uses two template variables in computing the composition. 

Note, however, that a first order linear recurrence generally requires two values to be propa- 

gated in an explicit parallel prefix or reduction implementation. We can reuse the space for the 

value being computed, the recurrence variable, in the case of a scan operation. Thus, we save 

at most one memory slot over the templatized version. So the space overhead is typically n for 

each reduction or scan of length n generated. We may amortize this overhead between scans 

and reductions by reuse of template variable space. 

8.7 Early Implementation Experiences 

The recurrence parallelization technique has also been implemented and used to generate code 

for the iWarp parallel computer. The iWarp is a 8x8 grid of LIW computation cells with tightly 

integrated, high-speed communication paths [22]. We developed general reduction code tem- 

plates for block-wise distributed arrays. 

Timings from an automatically extracted addition reduction (referred to as Sum) on 64 proces- 

sors are shown in figure 8.41, along with the performance of a serial implementation and the 

performance of the intrinsic. Despite the additional overhead of a function application step 

and broadcast, the slopes of the automatically extracted code and the intrinsic addition reduc- 

tion operation are fairly close. The relative speedup efficiency of the automatically generated 

code (computed as automatic speedup/intrinsic speedup) for 64 processors converges to over 

75%. Figure 8.42 displays speedup vs. number of processors for the sum, maximum, and 
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Figure 8.41 Timings of sum reduction on 64 processor iWarp array. 
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Figure 8.42 Speedup of various reductions on differing iWarp array configurations. 

maximum subsequence reductions. The speedup scales linearly with the number of proces- 

sors. 
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8.8 Performance Observations 

The factors affecting performance of our compiled code are numerous. Program parameters 

such as size, average row length for sparse matrices, and key density for combining-send are 

important considerations. The performance graphs we have presented here give a good indica- 

tion of the type of performance one can expect from such variances in those parameter spaces. 

There are also less predictable factors such as data value distributions that we have attempted 

to mitigate by performing multiple test runs over different data sets. These factors more or 

less impact the performance of the particular primitives parallelized, but they do not reveal 

much about the compiler choices made in parallelizing the code. 

Certain compiler decisions and strategies chosen here have a great impact on the overall per- 

formance. This has lead us to make several observations about the performance results here 

and our experiences in building this compiler: 

• Loop flattening overhead is worth optimizing. 

The loop flattening overhead is primarily responsible for the lower relative performance 

improvements in the divide-and-conquer algorithms. We have optimized the overhead by 

parallelizing and selectively eliminating those portions of the loop index computation 

which are unnecessary. However, there are opportunities for reuse of this overhead that 

have bigger overall payoffs. 

• Reuse is important. 

The loop flattening overhead, as well as the SPINETREE structure construction phase of 

the combining-send and multiprefix templates, can be reused over multiple invocations of 

the compiled primitive or loop under certain circumstances. In particular, if the code par- 

allelized is embedded within another loop, and the factors affecting the loop indices (such 

as the sparse matrix shape) or the mappings created by the combining-send operation are 

invariant with respect to that loop, the code can be hoisted out. Furthermore, for multiple 

flattened loops or combining-send/multiprefix operations which have similar shape and/or 

mapping factors, the respective overheads can be recycled between them. 

The compiler performs this optimization for loop flattening overhead and combining-send 

and multi-prefix overhead. However, in cases where the applicability of these optimizations 

is limited, such as the 'quickhufl' test program, the performance suffers, though it still out- 

performs the native compiler's performance. 
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Loop flattening manages trade-offs in granularity and load balancing. 

Loop flattening, by effecting a flattening of nested parallelism, effectively eliminates the 

trade-off between granularity, load balancing, and run-time system complexity in parallel- 

izing irregularly nested control structure. However, it is important to note that the flatten- 

ing of parallelism is only conceptual from this compiler's point of view. The compiler 

makes note of where loop flattening is applied so that future target architectures can choose 

alternative implementation strategies for the particular segmented operation derived from 

the code. That is, flattening works on our current architecture, but the segmented operation 

can also be executed by parallelizing across segments or within segments depending on the 

target architecture (and data conditions). 

Embedding incurs little performance cost. 

Based on the relative speedups of the 'segmented partition' program over a range of parti- 

tion counts and the divide-and-conquer style programs, one can see that loop flattening is 

the primary constraint on performance. In relation to loop flatteing, embedding of control is 

a relatively cost-free transformations from a performance point of view. This is reinforced 

by profiles of the parallelized code, which reveal relatively insignificant amounts of time 

spent in embedding overhead. 

On the other hand, the space overhead control embedding is higher. This makes sense con- 

ceptually since multiple activation records (all the activation record in a particular level of 

the tree) are effectively being stored in local variables expanded in rank by the embedding 

process. This cost is not unreasonable, since we are conceptually parallelizing across multi- 

ple function or subroutine calls, whose activation records must exist anyway. In fact, the 

cost might be a little lower since we do not necessarily apply expansion to all local vari- 

ables in embedding. 

Recognizing the right parallel primitive(s) is important. 

The algorithms in this dissertation which employ nested control structure often benefit 

greatly from the sum total of the compiler passes in this dissertation. The abilities to gener- 

ally parallelize recurrences and flatten nested parallelism in a serial language setting are 

each individually important. However, the two taken together allow compilers to generate 

what we believe to be the best algorithmic choice for parallelization of these algorithms: 

segmented operations. This is borne out by the positive performance results relative to the 

CF77 compiler, despite the relatively unoptimized quality of the primitive implementations 
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our compiler uses. In other words, the algorithmic quality of the parallelized code out- 

weighs the quality of the particular implementation of a primitive relative to alternative par- 

allelization strategies (i.e. the CF77 compiler's parallelization without flattening). The 

algorithms automatically parallelized by our compiler scales better to multiple processor 

configurations than the code parallelized by the CF77 compiler, as evidenced by the CSR 

and CSC sparse matrix-vector multiplication examples. 

8.9 Opportunities for Performance Improvement 

A number of opportunities exist for improving the performance of code generated by our com- 

piler. These are primarily post-parallelization optimizations. That is, the code is still parallel- 

ized using the techniques in this dissertation, but is further optimized afterwards. 

• Interprocedural reuse of loop flattening overhead 

As mentioned in the previous section. The goal here would be to reuse the loop index com- 

putation portion of the loop flattening overhead incurred during divide-and-conquer algo- 

rithms. Recomputing the entire loop index set is redundant, since less expensive operations 

can be used to recycle that computation. 

• Reuse of combining-send and multiprefix structure 

This entails the reuse of the SPINETREE structure that is built as part of our combining- 

send and multiprefix operations. This may also involve reusing sorted sequences in alterna- 

tive combining-send schemes. One scheme for executing a combining send is to perform a 

stable sort of the source array using the indices as keys. Then a simple segmented reduction 

or scan can be performed to compute the combining-send and multiprefix operations, 

respectively. A scatter or permute of the results might be necessary after this step. The 

advantage of this approach is in contexts where reuse is likely to be high. Though the sort- 

ing step is expensive, if we can reuse it often enough the potential advantage of approach- 

ing reduction and scan performance over using the SPINETREE structure may be 

worthwhile. 

• Scaling to multiple processors 

While we have written multiple processor versions of our basic reduction and scan tem- 

plates and we can generate those, the problem with this is our back-end, the Cray CF77 

compiler. The CF77 compiler does very well at vectorization, which is the primary reason 
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we chose to compare our compiler against it in the single vector processor case. However, 

unless loop nests are present, the CF77 compiler does not simultaneously vectorize and 

parallelize well (the sparse matrix-vector multiplication kernels were exceptions since 

there was a loop nest). So, to exploit parallelism in those parts of the code that our front- 

end was not directly responsible for parallelizing, we would have to build a better mecha- 

nism for parallelizing and tasking those pieces of code that are neither recurrent or irregu- 

lar. Unfortunately, this is outside the scope of this thesis. 

It is important to note that the operations that we parallelize, such as reductions, scans, 

combining-sends, and multiprefix along with their segmented variations, do scale to multi- 

ple processors very well. The CSR example, in which the multiprocessed template conve- 

niently computed the entire loop nest, illustrates the performance of a segmented reduction 

on multiple vector processors. It is also important to note that the speedup scaling is true 

on a wide range of parallel architectures. 

Efficient representation and computation of segments 

The representation of segmentation in the recurrences we parallelize is implicit in the oper- 

ators we derive for use by parallel reductions and scans. The computation involved in com- 

puting with segmentation typically includes two multiplications and an addition for each 

element, in addition to the operator in the reduction or scan. This an artifact of the way the 

underlying analysis treats loop invariant conditions. There are more efficient ways of com- 

puting where segments begin and end that involve conditionals. A conditional expression in 

the combining operator used to select where values should be inserted in a segmented oper- 

ation can be generated with a slight modification to the underlying analysis. 

The compiler has opportunities to reuse segment-related computation across multiple seg- 

mented operations derived automatically from loops with identical loop bounds. One way 

in which this might be effected is to insert explicit representations of the parallelized code, 

rather than subroutine calls to specialized templates. That way, loops across several reduc- 

tions or scan can be fused, creating opportunities to eliminate redundancy. 

Space efficient representation schemes for segmented operation are also possible. Bit vec- 

tors and segment-length vectors are two such candidates. It is possible that the analysis 

could be extended to manage such structures. 
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8.10 Review 

This chapter presented the results of compiling a range of loops and algorithms using the tech- 

niques presented in this dissertation. For simple recurrences, the performance of our general 

code templates are shown to be competitive with the optimized versions used by CF77. For 

more complex recurrences, the code our compiler generates performs significantly better since 

CF77 has limited ability to parallelize such recurrences. The relative performance improve- 

ments gradually decrease with the application of loop flattening and control embedding, espe- 

cially in cases where the loop flattening overhead cannot be eliminated or amortized over 

multiple instances of the loop. 
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Chapter 9 

Related Work 

Some components of this thesis have precedent, though the particular combination of transforma- 

tions and the power they display in a compilation system is unprecedented. In this chapter, we dis- 

cuss work related to the individual components of the compiler. We primarily focus on compiler 

transformations and analysis. Excellent related work references on algorithms and parallel primi- 

tives may be found in the relevant source literature [15] [18] [32] [49] [62] [71] [76] [77] [96]. 

9.1 Automatically Parallelizing Recurrences 

Automatic recognition and efficient solution generation for recurrences from serial code has 

mostly been limited to finding a pattern that matches a known recurrences and then using one of a 

library of fast solutions to solve it. These methods are limited by several factors: 

• They are limited by the set of recurrences programmed into the compiler. 

• They have limited ability to solve recurrences involving arbitrarily nested conditional opera- 

tors. 

• They are dependent on the syntactic quality of the source code. 

Pinter and Pinter's algorithm [66] does well at parallelizing recurrences with simple filtering 

(non-dependent) conditionals. However, they depend on the syntactic quality of the source code 

rather than the semantic content. They pattern match on the dependence graph to find the recur- 

rence operator. Sensitivity to source code forms is generally a problem for the pattern matching 

methods employed in many commercial compilers. 
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Several semantic techniques [6] [50] [72] have been proposed as a step toward using algebraic 

properties to simplify complex loop body structures, thus addressing the problem of source 

code quality. However, they are also limited by pattern matching for fixed set of recurrence 

operators. This, in turn, limits the applicability of some of the powerful control structure trans- 

formations discussed in this thesis. 

Callahan [24] and Chen and Hou [27] both proposed a similar model to ours for recurrent loop 

execution. Callahan does not pursue aggressive symbolic analysis to automatically derive 

solutions, instead suggesting a pattern match against a set of core recurrences. He does sug- 

gest useful ways of combining recurrences to amortize the overhead of computing a recurrent 

primitive and to increase the effective granularity of operations. The mechanisms are useful 

to us because the particular components manipulated are essentially identical to those we 

automatically derive. 

Chen and Hou make the observation that the associativity of function composition can be 

exploited on functions on finite sets. The basic idea is to compute all possible composite func- 

tions, which is tractable since the domains and ranges they consider are small and finite. 

Though interesting, this is not particularly useful for more general computation on integers 

and real numbers. They have not, to our knowledge, used this observation in a compiler. 

Mou et al. [63] characterize whether a recurrence is parallelizable based on topological prop- 

erties of the recurrence. Those topological properties include whether an unfolded (similar to 

unrolling a loop once) recurrence is conservative in the sense of preserving its topology. This 

is analogous to our scheme for composing and testing the result for inclusion in the original 

functions class. However, their work is essentially limited to those recurrences computable by 

reductions and scans, and whose forms are essentially linear. The reason is that they had not 

developed a framework for generally building the necessary associative operators. 

More recently, Rinard and Diniz [73] have developed a mechanism to use commutativity anal- 

ysis to parallelize programs. The idea is that if a collection of operations commute, then they 

can be executed in any order, and thus parallelize. The kind of analysis they employ to 

uncover commuting operations is similar to ours, however the range of operations which com- 

mute is considerably smaller. They exploit the encapsulation properties of C++-based pro- 

grams to parallelize such graph-based algorithms as Barnes-Hut [12]. 
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Induction variables comprise a subset of the type of recurrent computations discussed here. 

Induction variable computations typically have a closed form over the loops index variables 

(though monotonic induction variables do not). Since the compiler can typically eliminate the 

variable by substituting the closed form expressions, using reductions or scans to compute 

induction variables is usually contraindicated because of the higher overhead. The problem of 

identifying various induction variables has been explored in some depth, though typically pat- 

tern matching on various program representations is used. The most recent work relies on the 

Single Static Assignment (SSA) graph [94], or its variants [87]. 

The nature of the analysis is similar to abstract interpretation [3] [35]. This is an analysis tech- 

nique whereby the program is executed in an abstract domain much simpler than the usual 

semantic domain programs run in. The idea is to capture some property of the program based 

on the meaning of language features in that abstract domain. For example, a traditional data- 

flow analysis framework supports particular abstract interpretations of programs for various 

types of data-flow problems. Though very different, the modeling functions in our analysis 

comprise an abstract domain in which we execute a limited type of program and language fea- 

ture: non-nested recurrent loops. 

9.2 Flattening Loop Nests 

Loop flattening is generally not a new concept. Loop coalescing [67] and loop collapsing [52] 

are both similar transformations for regular loop nests. Loop flattening provides essentially 

the same benefits in terms of load balancing and availability of parallelism, but differs signifi- 

cantly in key areas. Subscript simplification in the regular loop transformations may only 

involves simplifying algebraic expressions, while indirection may defeat this approach for 

irregular loop nests. 

Hanxleden and Kennedy [41] proposed a general notion of loop flattening to facilitate paral- 

lelization of nested irregular loops. We benefit from the presence of the advanced recurrence 

transformations in our compiler, which, in concert with loop flattening, allow the recognition 

of segmented reductions, segmented scans, and combining-sends. Also, we attempt to opti- 

mize the potentially costly overhead of computing original loop indices. 

However, these works, with the exception of the loop coalescing work, were all preceded and 

subsumed by the parallelism flattening work of Blelloch [14]. Our work translates this work 
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into an automatically parallelizing compiler context, with the necessary analysis and source 

code transformation to support such a transformation. One primary difference is that our sim- 

ple transformation does not have the breadth of general flattening of parallelism. Another is 

that we choose an a priori flattening scheme rather than a flattening of composed, parallelized 

operations. The primary reason for flattening control structure rather than parallel primitives is 

the difficulty for the compiler in parallelizing complex codes that include mixes of recurrent 

and non-recurrent codes in multiply nested loops. Contrasted with the simpler, yet still power- 

ful, loop flattening approach, the relative cost of engineering the compiler in such a way to 

support the more general approach seemed high. We pay a price of having potentially more 

expensive overhead, as well as more complex source code presented to the parallelizer. How- 

ever, this last issue works to our advantage because of the nature of our recurrence paralleliza- 

tion technique. 

In flattening arbitrarily nested parallelism, we are performing a function similar to one per- 

formed by compilers for some high level parallel languages. One such language is Nesl [18], a 

portable, nested data-parallel language. A phase of the Nesl compiler flattens explicitly speci- 

fied expressions of nested parallelism into non-nested parallelism. 

A good deal of work has been done in parallelizing irregular array access patterns in the form 

of array accesses with multiple levels of indirection [31] [42]. However, this work is somewhat 

orthogonal to the issues discussed in this paper, though some of the data-flow analysis prob- 

lems can be applied here as well. Lucco [56] presents dynamic scheduling algorithms for 

wider range of irregular code. Such scheduling methods might be effective mechanisms for 

parallelizing the primitives derived by the compiler analyses presented in this dissertation. 

Blelloch [15] demonstrated that segmented reductions and scans were useful and efficient par- 

allel primitives for a broad range of algorithms. Blelloch et al. [19] and Sheffler [76] found 

applications of these segmented parallel primitives, merges, and combining-sends to sparse 

matrix algorithms. Other parallelized sparse matrix algorithms are discussed in [19] [51]. 
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9.3 Control Embedding 

To our knowledge, there has been no other work in automatically parallelizing divide-and- 

conquer algorithms in serial, imperative languages. However, the transformation does have 

roots in a variety of compiler transformations for a variety of language and programming par- 

adigms. 

The idea of embedding control structure in function calls has precedence in work on loop 

embedding [39]. Loop embedding exposes code to parallelization by embedding surrounding 

iterative control structure (loops) in subroutine calls. What our embedding transformation 

achieves is more general in the sense that we also embed surrounding conditional structure 

and handle recursions (i.e. we compute, in code, the fix-point of the transformation when 

embedding in a recursive subroutine). However, we apply the transformation more narrowly 

to recursive subroutines. 

The closest transformation to control embedding for recursion is not found in the automatic 

parallelization world. The Nesl compiler [18] folds expressions of nested parallelism into 

embedded function calls, though its task is made considerably easier by the source language. 

The compiler can then apply the general parallelism flattening scheme. 

9.4 Other Parallelization Techniques 

There has been a considerable effort in transforming regular loop nests to expose loops with- 

out loop-carried dependences to parallelization [91][93]. These are effective at transforming 

superficially recurrent loops within loop nests. The more general loop transformation frame- 

works are also quite effective at being adapted to different parallelization styles, as well as 

being extended to solving other important problems in compiling for high performance, such 

as optimizing data layout [7] and improving data locality [92]. However, none of the pro- 

grams or loops considered in this dissertation can be effectively parallelized by such tech- 

niques. The presence of irregularity or lack of nesting of non-recurrent loop is the stumbling 

block. 
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Chapter 10 

Conclusion 

10.1 Summary 

The primary goal of this work is to move beyond dependence analysis and pattern matching based 

approaches to parallelization, specifically as they relate to parallelizing recurrent and irregular 

computation. The main claim of this dissertation is that recurrent and irregular code can be auto- 

matically mapped into useful higher level parallel primitives in a general and reliable manner. 

The thesis of this dissertation was proven through the development and testing of several new 

analyses and transformations. Rather than just comprising a collection of unrelated compiler 

transformations, the design and selection of the new compiler passes complement each other well. 

Each individual transformation is useful, but the combination of them has a significantly larger 

impact. The primary reason is that our recurrence parallelization technique is robust and flexible. 

We have designed and implemented a technique which uses the following concepts and methods 

to automatically extract parallelized code for recurrences: 

• A model for recurrent loop bodies which is always associative. 

• Symbolic substitution of expressions. 

• Linear relation feasibility testing to simplify complex conditional structures. 

• Logic minimization techniques to reduce conditional nesting structure. 

• A specialized unification algorithm which abstracts out subexpressions of loop invariant val- 

ues. 
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We distinguish our technique from existing techniques with the following: 

• We are able to find solutions for a broad class of recurrences by actually extracting an effi- 

cient associative operator from the source code. We rely on the analytical abilities of the 

compiler rather than a fixed collection of recurrences. 

• We handle conditional operators embedded within recurrences in a general way. The abil- 

ity to deal with conditionals in a robust manner is critical for handling more complex con- 

trol structure contexts. 

• Our model of recurrences is more general than prior approaches. The analysis here can be 

extended to other forms of recurrence, such as combining-sends and list-prefix operations. 

We use a basic loop flattening transformation that facilitates the parallelization of irregular 

loop nests and provides a basis for recognizing more sophisticated parallel primitives. The 

basic idea is to create a single, non-nested loop that emulates the execution of the original loop 

nest. This is achieved by first computing the original loop nest's index sets. Then, by creating 

a non-nested loop with a trip count equal to the total sum of inner loop trip counts, the pre- 

computed index sets are used to decide which point in the original loop the flattened loop 

should execute. The transformation has the following benefits: 

• The application of most existing parallelization transformations, as well as our recurrence 

parallelizing technique, to the loop nest in toto by applying the transformations to the flat- 

tened loop. Artifacts of the loop flattening transformation include complicated conditional 

structures, which the recurrence parallelization technique must be able to deal with. 

• The parallelization of the index set computation. This allows the practical use of loop flat- 

tening in a compiler by attacking the remaining artifact of the transformation: the index set 

computation. Also, this leads to some intriguing future possibilities for extracting other 

sophisticated algorithmic idioms from irregular loops. 

• The amortization of the index set computation over repeated executions of the loop nest. 

For sparse matrix-vector multiplication, this is analogous to the preprocessing steps of 

many existing parallel libraries, most of which are applied once for repeat multiplications 

of the matrix. 

Parallelizing irregular loops in toto is important for the following reasons: 
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• Load balancing the assignment of outer loop iterations is complicated by unpredictable 

inner loop trip counts. 

• Inner loop trip counts may not be sufficiently large to make parallelizing the inner loop 

body worthwhile. 

Embedding control for divide-and-conquer style recursion allows the compiler to exploit both 

intra- and inter-procedural parallelism. This parallelism results from using different proce- 

dural contexts to work on independent subproblems of original problem. The problems in 

divide-and-conquer algorithms closely mirror those of irregular loop nests (because they both 

are expressions of arbitrarily nested parallelism [14]). 

• Ever decreasing amounts of parallelism are available in partitions as they are repeatedly 

subdivided. However, the amount of parallelism across all sibling partitions remains rela- 

tively constant with reasonable partitioning functions. Thus, parallelizing across all parti- 

tions simultaneously inures the parallelized code to smaller partition sizes. 

• Partition sizes may vary depending on the strategy. This may result in unpredictable and 

unbalanced load situations. Parallelizing across all partitions simultaneously creates the 

greatest opportunity for avoiding this problem. Furthermore, the number of partitions at 

early stages is relatively small (the reverse of the situation with partition sizes). Paralleliz- 

ing between partitions only would result in a lack of parallelism at early stages of execu- 

tion. Parallelizing across all partitions eliminates the need to consider the relative amounts 

of parallelism in the partitions and across the partitions at various stages of computation. 

Using these three compiler techniques make algorithmic sense, but they also interact well in 

an operational sense. The artifacts created by loop flattening are well-suited for the associativ- 

ity analysis of the recurrence parallelization technique, since loop flattening produces nested 

conditional structure and indirect accesses which look like recurrences, but eliminates nested 

iterative structure. Both of which are, in turn, well-suited to follow control embedding, since 

its control embedding yields nested and, typically, irregular loops. Each compiler pass in 

turn generates exposes more code to parallelization for the next pass of the compiler. The net 

effect is that we have a system which enables the parallelization of many more useful algo- 

rithms than the sum of each transformation's individual impact. The performance improve- 

ments relative to the Cray C90's native CF77 compiler were good across a range of programs. 
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Among the lessons learned from building this compiler and analyzing the code generated was 

that details matter. The new transformations, in choosing superior parallel algorithms, account 

for significant performance improvements, but how they were engineered had a large impact 

upon the performance. Careful selection of code templates for recurrences and mechanisms 

for tracking code transformation through the phases of the compiler were very important to 

both the performance of the compiler and the code it generated. Because some of the higher- 

level primitives incurred relatively high computational and memory overhead, reuse was also 

an important factor in the performance of many of the applications parallelized here. In sec- 

tion 8.9 and future work section (10.2) of this chapter, we discuss further extensions to the 

compiler to improve performance. 

10.2 Future Work 

Based on our experiences, we believe that we have reached a point of diminishing returns in 

parallelizing further recurrent primitives in Fortran. However, we believe that there are signif- 

icant opportunities to apply this work and extensions thereof to parallelizing C and C++. The 

primary opportunity here is the use of pointer-based, recursively defined data structures. 

Recurrent operations on linked lists, graphs, and trees can often be parallelized using a paral- 

lel list-prefix algorithm [96] or parallel tree contraction [62]. An important step toward to 

achieving this is the evolution of dependence analysis for pointer-based structures [48] [90]. 

The compiler currently uses fixed code templates for computing the various recurrent primi- 

tives. However, there are opportunities to exploit both similarities and the structure of those 

templates. First, the compiler uses generally using a pattern matching scheme on the depen- 

dence graph and index expressions to determine the type of parallel primitive to use. It may 

be possible just to have a higher level prototype of a reassociating, recurrent primitives which 

the compiler can specialize to an appropriate primitive based on the target variable and its 

indexing scheme (if any). Furthermore, rather than generate specialized library calls for each 

parallelized loop, as we are essentially doing, there are opportunities for optimizing the struc- 

tures of the recurrent primitives in context. For example, under certain circumstances there are 

reusable portions of a multiprefix operation (the SPINETREE structure or sort, depending on 

the implementation we use). These pieces of code can be moved outside of surrounding loops 

to eliminate redundancy. 
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A fundamental problem in compiling irregular loop nests is finding a way to handle the index 

set computation. A fixed, parallelized preamble for computing index sets for segmented loop 

nests was introduced in this paper. It is possible to optimized this preamble on a case-by-case 

basis, to embed it in other parallelizable loops, and so forth. However, the more general paral- 

lelism flattening scheme might afford the compiler better opportunities to optimize in this 

manner. 

Irregular loop nests come in many flavors. We have briefly studied strategies for compiling 

irregular loop nests that include while loop and conditioned loop exits. Many of these loops 

should be parallelized using parallel merging and pattern matching primitives. 

The overhead of computing index sets for loop flattening is a source of concern. A more gen- 

eral interprocedural partial redundancy elimination scheme would be useful for hoisting loop 

flattening and combing-send overhead (as mentioned in section 10.2) out of subroutines. 

There also may be more efficient mechanism of representing and partially recycling index set 

computations, especially for loops creating by control embedding of a divide-and-conquer 

algorithm. 

As the state of the art in dependence analysis for pointer-based structures and interprocedural 

analysis advances, we expect to find wider applicability of these techniques to languages like 

C and C++. We think this would be useful for many tree- and graph-structure traversal algo- 

rithms, as well as the divide-and-conquer algorithms presented here. The control structure 

transformation presented here can straightforwardly be applied to such codes. The difficulty in 

adapting this work to such domains is in managing such complex data-structures for parallel 

execution contexts. However, we suspect that lessons learned from other projects involved in 

parallelizing C and C++ can be applied here [9] [57]. 

The application of alternative models and more sophisticated reasoning mechanism in a com- 

piler leads to many intriguing possibilities for the future of compiler design. Parallelizing 

compilers now routinely include mechanisms for efficiently deciding linear inequalities, 

which opens the door for sophisticated program analysis. For example, rather than being 

largely restricted to less accurate heuristic dependence tests, more exact (and ever faster) anal- 

yses have been developed [59] [69]. An open question is whether general analysis frameworks 

can be built to support the representation and transformation of new program models. A cru- 

cial issue to the relevance of this question is the relative expense of such a framework and 
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analysis. Both the potential performance payoffs and the applicability of such a framework to 

a wide range of analyses should be considered. In light of this, we hope the analysis presented 

here, as well as elsewhere [73], to be promising first steps toward justifying the expense. 

10.3 Concluding Remarks 

This dissertation bridges the gap between the work of the parallel language and model com- 

munity and the parallelizing compiler community. Powerful primitives, such as reduction, 

scan, combining-send, and multiprefix operations, and support for nested parallelism have 

been extremely effective at providing a concise language in which to expression relatively 

complex algorithms. Unfortunately, the automatic parallelizing compiler community had not 

adequately addressed such expression in serial code, assuming them to be either intractable or 

that stop-gap measures were sufficient. 

The philosophy of our approach is that recurrence parallelization must be extended beyond 

what had been done prior this work, but in a well-founded manner. We have developed general 

and robust compilation techniques for automatically parallelizing recurrent loops into reduc- 

tion, scan, combining-send, and multiprefix operations. These techniques are flexible enough 

to deal with other important components of the compilation process. 

The ability of the recurrence analysis to handle complex conditionals has enabled us to 

develop effective compilation techniques for parallelizing irregular loop nests. These tech- 

niques are fully compatible with both the underlying recurrence parallelization technique and 

traditional dependence based approaches. Furthermore, we have also developed techniques 

and analysis to discover expressions of nested parallelism in serial encoding of divide-and- 

conquer algorithms and to transform them for both parallelization and flattening. Both of these 

control structure transformations are fully compatible with underlying techniques for parallel- 

izing recurrent loops and non-recurrent loops. 

The net effect of these transformations is a radical improvement in the range of programs that 

parallelizing compilers can parallelize effectively. This compiler technology brings useful 

parallel primitives and building blocks to users of serial languages. We have proven this by 

presenting performance results of compiling programs and loop kernels from a range of 
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benchmark suites and application domains. Our compiler beats a good native vectorizing com- 

piler for the C90 in nearly all of these cases. More importantly, the presentation of such auto- 

matic parallelization results for serial, imperative languages is unprecedented. 
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