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ABSTRACT 

The numerical model of Williams et al. (1992) is used to study frontogenesis 

from unbalanced initial conditions. The dependent variables are assumed to be 

independent of y. The hydrostatic Boussinesq primitive equations are used with no 

diffusion of heat or momentum. The model is bounded at the top and bottom by rigid 

planes. Periodic boundary conditions are used in the horizontal. The lateral boundaries 

are placed far enough from the imbalance region to avoid wave reflection. The 

atmosphere is assumed to have constant vertical temperature stratification. 

The initial imbalance is obtained by allowing a horizontal temperature gradient 

to exist while the initial wind is zero. In a stably stratified atmosphere, gravity waves 

are excited and propagate away from the imbalance region, provided no reflection 

occurs in the lateral boundaries. Therefore, the atmosphere tends toward a geostrophic 

balance away from vertical boundaries. Near these boundaries, the temperature 

gradient oscillates or it collapses into a front, depending on the initial Rossby (Ro) 

and Froude (F) numbers. A relationship between Ro and F is established which 

separates situations where a front may or may not form. Numerical solutions show the 

formation of a front within a finite period of time that tilts toward the cold air. 
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I. INTRODUCTION 

Frontogenesis can be described as the process of formation of small-scale motion 

field from an initial larger scale state. Baroclinic instability is the main source of 

disturbance energy, that can eventually produce the energy cascade from the large to the 

small scale atmospheric states (Williams 1967; Hoskins and Bretherton 1972). Many 

different mechanisms can work to produce or modify a front. Numerical experiments 

(Williams et al. 1992) show the weakening of a front approaching a topographic ridge and 

reintensifying as it goes downslope. Turbulent horizontal and vertical diffusion can play 

an important role in opposing frontogenetical effects and in modifying the frontal 

structure (Williams 1974; Keyser and Anthes 1982). Background shearing or stretching 

deformation wind fields can generate large temperature gradients and are equally 

important in frontogenetical processes (Stone 1966; Hoskins and Bremerton 1972). 

Differential heating can be either frontogenetical or frontolytic, depending on whether it 

enhances or weakens the temperature gradient. 

Balanced frontogenesis has mass and momentum fields in near thermal wind 

balance and relative vorticity is larger than horizontal divergence. Williams (1972) used 

balanced initial conditions to show frontal formation with linear and nonlinear primitive 

equation models. The latter is more realistic in the sense that a discontinuity occurs 

within a finite period of time and the front tilts toward the cold air. This is due to the 

temperature advection by the divergent part of the wind, not present on the linear case. 

Hoskins and Bretherton (1972) suggest that relative vorticity will remain larger than 



horizontal divergence during this process, in the absence of friction, even when the 

Rossby number is greater than one. 

The frontogenesis is unbalanced when the mass and momentum fields are not in 

semi-geostrophic balance. This situation is usually associated with large near-surface 

differential heating. A large temperature gradient can cause a non-geöstrophic horizontal 

pressure gradient that can lead to frontal formation. The imbalance can originate in strong 

baroclinic zones associated with the sea-breeze circulation and in regions where partial 

cloud cover can cause large temperature gradients. Clear skies ahead of and extensive 

cloudiness behind a cold front can produce an imbalance during the morning heating. 

This imbalance can lead to a stronger front than the balanced one, which is forced by the 

large-scale flow. 

Blumen and Williams (1996, hereafter BW96) investigate unbalanced 

frontogenesis for a zero potential vorticity case. In one of their initial conditions, the 

temperature has an error function distribution and the fluid is at rest. A heat source can be 

considered to generate the imbalance but no source exists after the initial time. The 

equations use the Boussinesq approximation and friction is neglected during the process 

of frontal formation. They find an inertial oscillation in the horizontal velocity 

components, and frontogenesis when the Rossby number is sufficiently large. 

The purpose of this study is to extend the work of BW96 for the case of a non- 

zero constant potential vorticity, with similar initial conditions. When the atmosphere is 

vertically stratified, gravity waves are allowed to propagate away from the initial 

imbalance and the frontogenesis process can be significantly modified. The main 



objective of this research is to determine a curve in Rossby number - Froude number 

space which separates frontogenesis from non-frontogenesis cases. Various analyses and 

displays will be used in order to determine whether a frontal discontinuity has formed. 

The boundary conditions are the same as used by BW96, and heat sources and friction are 

neglected. Williams and Kurth (1976) also considered this problem, but with different 

initial conditions. 





H. MODEL FORMULATION 

A.       BASIC EQUATIONS 

The study of surface frontogenesis in this work involves just the lower portion of 

the troposphere where the density variation is small. To simplify the problem of modeling 

the frontal formation, the atmosphere will be considered incompressible, inviscid, and in 

hydrostatic balance. The equations developed here follow Williams et al. (1992) adapted 

to a flat topography. The vertical axis is normalized with the height of the upper 

boundary, H, and defined as 

f =i (D 

Using equation (1) to transform the Boussinesq equations (Ogura and Phillips 

1962) we get 

—+V.VV+C^r = -V0-ykxV+F, (2) 

f + V.W+<f-fl. (3, 

V.V+|^ = 0, (4) 

Jri™' <5) 



where 

e = T(Po/p)K-e0, 

<P=o0[cp(Po/p)K + gz/e0-cp]. 

Friction is neglected and Q represents dry convective adjustment. The quantities po and 

0o are constant and the other symbols have their usual meteorological meaning. 

No along-front variation will be considered here and the two-dimensional domain 

is established in the x-£ plane. The domain is bounded by two horizontal rigid plates and 

periodic boundary conditions are used in x. The top and bottom boundary conditions are 

C=0    at     £=0,1, (6) 

and the dependent variables are 

V = ii(x,£,0i + v(x,C,0J» (7a) 

£ = £(x,£,t), (7b) 

9=0(x,C,t), (7c) 

<j} = (j)(x,;,t). (Id) 

Using the variables in (7) and the condition d/dy = 0, the system (2) - (5) becomes, 

in flux form 



du    duu    duC,     d(f> _ 
dt      dx      dt,       dx 

dv    duv    dvt 
dt     dx      dt, 

de   dud   dec   „  n — + ^- + ^--Q = 0, (10) 
dt       dx       dt, 

du    d£ 

i=im- (12) 

The hydrostatic equation (12) can be vertically integrated and solved for <j>: 

0 = 0o+0s> (13) 

where 

ts^f-HOdC. 

and <t>o is the value at the lower boundary. The variable 0 cannot be determined from the 

hydrostatic equation because of the rigid upper boundary, since <j> is not known at any 

level. To fix this problem, a dynamic condition is obtained   from   the   continuity 



equation. Vertically integrating (11) from £= 0 to £= 1 and using (6) yields 

J^(") = 0, (14) 

where the overbar means vertical integration over the whole domain. This implies that the 

mean flow is independent of x. Multiplying (14) by the depth of the layer H establishes 

that the mass flux is constant in space. We further require the mass flux to be independent 

of time to close the system, so that 

(HÜ)t=(HÜ)t=0. (15) 

To use the condition (15) we will rewrite (8) with the use of (13): 

du       duu    du£     d<t>0     d(j>s 

dt        dx      BC,       dx       dx 
+ Jv. (16) 

The terms on the right-hand side of (16) can be calculated if V and 6 are known, except 

for the unknown term d(po/dx. Equation (16) is used to predict u without considering 

dfo/dx and condition (15) is applied to adjust Hu. 

B.       MODEL IMPLEMENTATION 

The system of equations is solved with finite differences centered in space and 

time (leapfrog scheme). The nonlinear terms are formulated to conserve the total energy 

(potential plus kinetic). The Arakawa B (Arakawa and Lamb 1977) grid scheme is used in 

the x direction for hydrostatic consistency, so mass and momentum variables are 
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staggered. In the vertical, the energy conserving Lorenz (1960) scheme is applied where 

all variables but vertical velocity are placed in the middle of the layer, to represent the 

average of that layer. The vertical velocity grid points are set between the layers, and 

represent the interface changes. Figure 1 shows the arrangement of the variables in the 

grid system. 

e • < 
m • 

<t>,e 
• 

u,v 
• 

0,0 
• 

u,v 
• 

<t>,e 
• 

( • • ( • 

0,0 • 
u,v 

• 
<t>,e 

• 
u,v 

• 
0,0 

• 

( • i • i • 

 ► 

Figure 1. Model grid system following Arakawa and Lamb (1977) and Lorenz (1960). 

The Matsuno scheme is applied periodically at time intervals to prevent solution 

separation. Convective dry adjustment is made when static instability is detected in the 

breakdown of waves. The constants and finite difference increments used in the model 

are displayed in Table 1. The grid spacing in the x direction is variable and is set to give 

the finest resolution in the position of the frontal formation. Figure 2 shows the horizontal 

grid spacing as a function of x. In the region of finest resolution, the horizontal increment 



is 507 m. The time increment is variable between cases to satisfy the CFL condition 

because the waves propagate at different phase speeds depending on the static stability. 

Table 1. Constants and finite difference increments employed in the model. 

Parameter/Constant/Increment Symbol Value 

Coriolis parameter / lo-V 

Gravity acceleration 8 9.81 ms"2 

Reference potential temperature do 300 K 

Reference pressure Po 1000 mb 

Vertical domain H 2000 m 

Horizontal domain W 3.7 106m 

Horizontal space increment (minimum) Ax 507 m 

Vertical space increment AC 1/50 

Time increment Ar variable 

Initial static stability ddßz variable 

Initial temperature anomaly Ad variable 

The numerical solutions are nondimensionalized in the following manner: 

X  — XQ,T\ , *' = /'. d' = d/Ae, 

(H,V) = (W,V)/ —— 

1 

Z'=Zi gABH 

K    %    J 

where the primes denote the nondimensional variables and a^ is the length scale of the 

initial temperature anomaly Ad. The vertical dimension £ is already in nondimensional 

10 



form in the model. The variables hereafter referred are the nondimensional even though 

the primes are not shown. 

Ax 

1500 2000 
x 

Figure 2. Horizontal grid spacing as a function of x. Both axis present the values in km. The finest 
resolution (Ax = 507 m) is located from x = 1878 km to x = 1919 km. 
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in. THEORY 

A mass-momentum imbalance in a statically stable atmosphere will generate 

motion as the fluid tends toward a steady state thermal wind balance (Haitiner and 

Williams 1980; BW96). This geostrophic adjustment happens because the initial 

imbalance excites inertial gravity waves that carry energy away from the region of 

imbalance. The final state is dependent on whether the horizontal length scale (a^1) of the 

region of imbalance is larger or smaller than the Rossby radius of deformation (LR). The 

final state is determined by the initial mass field for the former case and by the initial 

wind field for the latter. The Rossby radius of deformation is defined as 

c 

where c is the speed of propagation of the appropriate gravity wave (see Haitiner and 

Williams 1980): 

HN 
c = -—, (17) 

K 

and N is the Brunt-Väisälä frequency, defined by: 

which yields 

13 



HN 
^=—7-. (18) 

K f 

Unless friction is considered, the gravity waves produce a periodic oscillation about the 

geostrophic balance of constant amplitude in a limited domain. In an infinite domain, the 

gravity waves propagate away from the imbalance region, leaving a state of geostrophic 

balance. In a simple unbalanced initial state, there is a temperature gradient and the 

velocity field is zero. As a result of the imbalance between the mass and momentum 

fields, a transient velocity field develops and helps to further intensify the temperature 

gradient. When the motion is independent of y, u is the divergent part of the wind field 

and v is the rotational part of the wind. The divergent wind causes horizontal convergence 

in the region of maximum temperature gradient which intensifies the gradient and 

enhances upward motion. This nonlinear effect does not happen in quasi-geostrophic and 

linear models. Williams (1972) suggests that the nonlinear results are due to ageostrophic 

effects and these effects tend to accelerate frontal formation. The linear models indicate 

the formation of a temperature discontinuity only as t —> °° while nonlinearity can 

produce a front within a finite period of time. Another nonlinear effect is the tilting of the 

front toward the cold air, which is important to avoid a superadiabatic lapse rate in the 

warm sector. 

The result of the geostrophic adjustment is different near the upper and lower 

boundaries than away from it. Without the influence of the boundary and for positive 

values of static stability, the geostrophic adjustment is a function of the initial wind field 

(aD' < LR) or a function of the initial mass field (aD
! > LR). In the former case, the gravity 

14 



waves remove energy from the imbalance region and the temperature gradient decreases 

because the initial wind is zero in the simple case previously mentioned. The larger the 

static stability, the faster the gradient decreases, since the vertical motion plays an 

important role in the temperature change. Near the upper and lower boundaries, the 

vertical motion is much smaller and the temperature changes are much less during 

geostrophic adjustment. When the nonlinear terms are used, the gradient increases near 

the boundaries and the front tilts toward the cold air, in a more realistic fashion. 

Depending on the characteristics of the fluid, the existence of a material boundary 

can cause the temperature gradient to collapse into a front near that boundary, instead of 

oscillate. The formation of a temperature discontinuity in a steady state atmosphere 

depends on the characteristics of the fluid as defined by the Rossby (Ro) and the Froude 

(F) numbers (Williams 1967; BW96). For/* 0, they can be defined as 

Ro= v    „ ,t      , (19) 
VgHA0/eo 

F="h^- (20) 

Another way of characterizing the flow is by using the Rossby and the Burger number 

(B), which is the ratio Ro/F and can be written 

HN 
B = -—_-. (21) 

/«D 

Equations (18) and (21) can be combined to allow: 
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■=$■ = -, (22) 
aD     it 

and thus B/n is a measure of the adjustment regime for the fluid. 

The definition of a frontal formation in a numerical experiment in not a mere 

objective task. This is particularly true for marginal cases since there is no clear cut 

between the frontal and nonfrontal regimes. A useful way to quantify the intensity of the 

front is the d-value {d), used by Williams (1967;1972;1974) and Williams et al. (1992). 

It can be defined as 

A0 
d = —n i—. (23) 

a»\dOldx\ 
u i       '       Imax 

If all the temperature change happened in one grid spacing, as seen in Figure 3, 

d —> Ax I a~v, as a result of the discretization of the domain. Since d is a measure of the 

temperature gradient and no friction is considered, it is expected to oscillate when no 

frontogenesis occurs and to collapse (d -^Axl d^) when a front forms. Since Ax imposes 

a constraint for d in the frontal cases, different grid sizes can be used for the same type of 

flow to assess whether or not a front has occurred. It is also important to verify the 

number of grid spaces involved in a frontal region since the collapse is expected to 

behave as in Figure 3. 

BW96 derived a time-dependent analytic solution for the mass and momentum 

fields that applies to level boundaries where w = 0. They used momentum coordinates 

16 
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Figure 3. Hypothetical temperature distribution in a frontal zone. The circles represent grid points. 

following Hoskins and Bretherton (1972): 

X = x + v, 

Z = z, 

T = t, 

(24a) 

(24b) 

(24c) 

where X is conserved (dX/dt = 0), as obtained by substituting (24a) in their y-momentum 
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equation. The use of a domain independent of y allows them to write the momentum 

equations, in nondimensional form, as 

du      du       du      ,    . ,Ä_ 
Ä+"*+w*-v =0' (25) 

dv'       dv        dv _ ,-,. 
—-+H — +H>— + M = 0, (26) 
o(f       etc       dz 

where v = vg + v\ and v' is the ageostrophic velocity. The horizontal pressure gradient 

force is balanced by the geostrophic wind. 

The transformation of (25) into momentum coordinates yields 

du       du        du      ,    du 
__+M—hw——— V +—— 
dT      dX       dZ dX 

dv       dv       dv 
— +U—+W— 
dt       ehe        dz 

= 0. (27) 

Substituting (26) into (27) leads to 

du       du      ,    . ^„. 
-+W--v =0. (28) 

Following the same process, (26) can be expressed as 

dv'       dv 
-+w-+« = 0. (29) 

The solution of v' for the system (28)-(29), when w = 0 (at £= 0,1), has the form 

v'=A(X)sin7: + 5(X)cos7\ 

The initial conditions are u = v = 0, such that on the vertical boundaries 

18 



v'(X) = -vg(X), 

^'(*) = 0 

ar 

Therefore, the solution becomes 

v' = -vgcos7\ 

and the total rotational wind solution is 

v = vg(l-cosr). (30) 

Blumen and Wu (1994) give the condition for frontogenesis following Hoskins 

and Bretherton (1972) as 

i-f-a 

and substituting (30) into (31) leads to the general condition for frontal formation 

(l-cosr)-^-=l. (32) 

For the zero potential vorticity case, the solution for the geostrophic flow can be 

expressed as 

v„ = - 
dxQ 

19 
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Substitution of (33) into (32) gives the particular condition for frontal formation on the 

boundaries when the potential vorticity is zero 

(l_cosr)4rr = _2, (34) 
dxQ 

since d/dX = d/dxo. Using an initial temperature distribution of the form 

e0(xQ) = ^erf(Rox0), (35) 

equation (34) can be rewritten by going back to dimensional quantities 

(Inefi 
l-cos(fi) = ^-^-. (36) 

Blumen and Wu (1994) used the steady state version of this equation which has no cosine 

to compute the critical value of Ro = 2.03. BW96 included the time dependent part of 

(36) which shows that the minimum Ro is given by 

,    ,      2.03 
(Ro)c=-^= 1.435, 

and it occurs at tc = itf'1. This is the limiting case for large Froude number. 

The authors also derived a more general time-dependent solution for d. The 

dimensional temperature gradient necessary for solving (23) is given, in momentum 

coordinates, by 

20 



(de)     A6 de0     i 
dx Jb    a'v Ro dx0 1 - dv/dx0 

Using (30), (33), and (35) leads to 

(dd_\ 
dxja 

Aga^V^ 

1 — 
% V2 

gA6H 
öoai> y\ 

Yl Vin2r I-zl^™/fc;c0eW 
(37) 

y /' 

The maximum temperature gradient can be found by differentiating (37) with respect to 

Ro XQ and setting the result to zero, which gives 

(to*o)max=2 
_„  gAOH (l    7WCA/2) -(^ 

<W*1/2 —z 
v2     , f 

(38) 

Equation (38) can be solved iteratively for ROXQ, which finds the value at the point of 

maximum temperature gradient for a given time. The rf-value is found by substituting 

(38) into (37), and using (23) 

d_l-2(Rox0)
2

max 

A-(*°*o> 
2 
max 

(39) 

Equations (38) and (39) also allow the calculation of the time for a front to form. 

Analytical frontogenesis occurs when d -» 0 which leads to (Äo*0)max =1/2. The time 

for frontal formation can thus be calculated with the use of (38). 
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The time evolution of their solution is shown in Figure 4 for the limiting case. It 

does not consider the barotropic pressure contribution, which is not very significant for 

large temperature forcing associated with frontogenesis. However, this term is important 

for weak forcing. The initial d-value is d = 4K. 

Figure 4. Time evolution of the lvalue for the analytical solution of BW96. It applies to the limiting case 
of frontal formation, for zero potential vorticity. The critical time in this limit is t = nf1 when the analytical 
solution collapses. 

Figure 5 shows some marginal cases of frontal formation as suggested by Blumen 

(personal notes, here denoted Blumen) in a Ro x F plot (Figure 5a is a log-log plot and 

Figure 5b is a linear plot corresponding to the inset in 5a). Blumen extended the analytic 
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theory in BW96 to the stratified solution in Blumen and Wu (1994). The solutions in 

Blumen and Wu (1994) are steady state solutions in geostrophic momentum coordinates. 

The initial state in physical space is the linear geostrophic adjustment solution which 

would result from the initial state used in this thesis. The correction for the time 

dependent factor gives Ro/y/2 ,F\4I . These cases are displayed as circles and the solid 

line is an exponential fit for those points. Frontogenesis occurs for atmospheric flows 

whose Ro and F are located on the concave region of the graph (Region II). The points on 

H 

< 

 1— ■ -i— i1      ,"" 

b 

3.5 - 

3 - 

2.5 .      < ) 

F    2 
"      \ I          Region II 

1.5 
\ 

1 • V 
0.5 ^»<*^- 

n 

Region I 
i             i             i 

3 

Ro 

Figure 5. Blumen's cases for marginal frontogenesis marked as circles. The solid line is an exponential fit 
for those points. Region I represents the nonfrontal cases and Region II the frontal ones, (a) is a log-log plot 
and (b) is a linear plot corresponding to the inset in (a). 
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the other side of the curve (Region I) represent flows where geostrophic adjustment and 

inertia! oscillation occur without collapsing into a front. 
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IV. INITIAL AND BOUNDARY CONDITIONS 

The initial temperature field has an anomaly component which is a function of the 

initial position of the maximum temperature gradient (*o) superimposed on a reference 

temperature that varies with height at a constant positive rate dd/dz: 

N2 

e=—z+e0(x). 
8 

The anomaly component has an error function distribution defined as 

eo=— erf[(x - xQ )aD ], (40) 

where erf is the error function. The initial position XQ is selected for each case in such a 

way as to obtain the minimum d-value in the region of minimum horizontal grid spacing. 

Lower temperatures lie on the western portion of the domain. Since the amplitude of the 

error function is 2, the amplitude of (40) is given by A0. The temperature distribution 

given by (40) is seen in Figure 6, as a function of x - XQ. The initial momentum field is 

zero and thus is out of geostrophic balance with the mass field. 

The assumption that the atmosphere is incompressible and the use of an 

antisymmetric temperature field will lead to antisymmetric solutions on the upper and 

lower boundaries. There is in fact a small difference between the solutions on both 

boundaries due to the different grid spacing such that the fronts will form in regions of 

different resolution. Since the lower front will form in a region of finer resolution, the 
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numerical solution there will be more accurate. Therefore, the lower boundary processes 

will be described in this work, even though it applies to the upper boundary as well. 

Figure 6. Initial temperature anomaly as defined by equation (40), as a function of x - *o- 

The model uses variable grid size in the horizontal to give a fine resolution in the 

region of interest. The horizontal domain is large enough to preserve the region of 

imbalance from lateral boundary effects. The boundaries are far enough so gravity waves 

cannot reach them. Zero vertical velocity condition is used on the vertical boundaries. 

The model uses periodic lateral boundary conditions and two symmetric temperature 

gradient regions to match the temperature in those boundaries. One of the regions is in 
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thermal wind balance with the initial wind field and does not change during the 

integration period. Only the unbalanced region is depicted in this study. 
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V. NUMERICAL SOLUTIONS 

The starting point for this investigation is the Blumen's curve shown in Figure 5. 

The work consists of integrating the model for several cases, whose characteristics are 

described by Ro and F. For convenience, all the parameters of the fluid (listed in Table 1) 

are held constant, except the initial temperature anomaly (A0) and the static stability 

(bOßz). The nondimensional numbers Ro and F of every case allow the calculation of A0 

and dö/dz, by using equations (19) and (20). For each situation, two different horizontal 

grid spacings are used to help determine whether or not a front occurs. The minimum grid 

spacing in one is twice as large as the minimum for the other. Therefore, the rf-value in 

the former is expected to be roughly twice the value of the latter for a front. If there is no 

front, the values will be the same. 

Figure 7 shows the selected cases (circles) for this study and the curve fit (solid 

line) for Blumen's points, as displayed in Figure 5. The dashed line represents B = n that 

separates the two different regimes of geostrophic adjustment in large (a^ > LR) and 

small (a^ < LR) scale processes, obtained from setting LR/ü'^ = 1 in equation (22). The 

two lines divide the domain in four regions. In regions I and II there is no frontal 

formation, while near-boundary fronts occur in regions in and IV. Regions I and DI are 

characterized by large scale geostrophic adjustment whereas the small scale adjustment 

occurs in regions II and IV. 

Section A presents the analysis of the zero potential vorticity (large F) atmosphere 

to compare with the numerical and analytical solutions of BW96. Examples of the four 
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Figure 7. Distribution of cases in the present study (circles) and the exponential fit for Blumen's cases 
(solid line). The dashed line represents B = n (separation of large- and small-scale geostrophic adjustment). 
The axes are in logarithm scale. The two lines separate the domain in four regions, shown in roman. The 
numbers identify the closest circle and will be refered in the next sections. 

regions shown in Figure 7 are presented in the next four sections. The transition zone 

between large-  and  small-scale  geostrophic  adjustment  and  between  frontal  and 
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nonfrontal regions are discussed in section F. The zero planetary vorticity case is analyzed 

in section G to compare to a \zrge-Ro nonzero case. 

A.       ZERO POTENTIAL VORTICITY 

The main characteristic of the zero potential vorticity (F -» °°) atmosphere is that 

gravity waves cannot propagate away from the imbalance region due to the absence of 

vertical stability. This means that the mid-level region (away from the upper and lower 

boundaries) does not show a significant change except for the tilting of the isothermals. 

The model levels near the vertical boundaries, however, do suffer significant 

modification. The larger the Ro, the more these levels change. 

Figure 8 shows the time evolution of the d-value for case 36 (Ro = 1.43). The 

solid line is the numerical value, and the dashed line is the analytic solution obtained 

from equations (38) and (39). There is no front and the temperature gradient oscillates 

with period 2itfA (the inertial period). Although the period of oscillation matches, the 

amplitude differs due to the absence of the barotropic term in the analytic solution of the 

d-value. The temperature anomaly and the rotational wind component are displayed in 

Figure 9, for t - nf ~l. The divergent component of the wind is zero at that time. 

If the temperature forcing is sufficient to form a front, as in case 38 (Ro = 1.63), 

the inertial oscillation is interrupted because of the temperature jump. Figure 10 depicts 

the time evolution of the d-value for this case. The solid line is the numerical value, and 

the dashed line is the analytic solution obtained from equations (38) and (39). Again, the 

absence of the barotropic term in the analytic solution of the d-value causes a difference 

between the numerical and the analytic solutions. For frontal cases, the analytic solution 
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Figure 8. Time evolution of d for the zero potential vorticity case (no front). The solid line is the numerical 
value, and the dashed line is the analytic solution. The period of oscillation is 2nfl (the inertial period). 

Figure 9. The (a) temperature anomaly and (b) rotational component (v) of the wind for t = itf'1 (no front). 
The divergent component of the wind is zero at that time. The contour interval in (b) is 0.1 and the zero line 
is removed for clarity. The maximum southerly wind occurs in the lower boundary. 
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precedes the numerical as shown by BW96. The temperature anomaly and the rotational 

wind component, for case 38, are displayed in Figure 11, for t = 2.7/"\ The divergent 

component of the wind tends to zero at that time. 
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Figure 10. Time evolution of d for the zero potential vorticity case, with frontal formation. The solid line is 
the numerical value, and the dashed line is the analytic solution for the zero potential vorticity frontal 
formation. 

B.       NO FRONT - LARGE-SCALE ADJUSTMENT (REGION I) 

The time evolution of the total temperature gradient of point 48 is presented in 

Figure 12. The fluid initially has Ro = 1.3 and F = 15.3. The temperature gradient 

increases at the boundaries as the zone of maximum gradient moves toward the warmer 
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Figure 11. The (a) temperature anomaly and (b) rotational component (v) of the wind for t = 2.7/"1, with 
frontal formation. The divergent component of the wind tends to zero at that time. The contour interval in 
(b) is 0.1 and the zero line is removed for clarity. The maximum southerly wind occurs in the lower 
boundary. 

air in the lower boundary and toward the colder air in the upper one (the axis of 

maximum gradient tilts so that the colder air is underneath). The oscillatory nature of the 

temperature distribution can be noticed by comparing the cross-sections at t = 0 and 

t = 2izfA. This case is very similar to that shown in section A, despite the large difference 

inF. 

Figure 13 displays the d-value evolution with time for the levels (a) £= 0 and (b) 

£= 0.5. The changes in the maximum temperature gradient at the former level are much 

larger than those in the latter. The static stability is very small and gravity waves are very 

slow, which results in very little energy propagating away from the initial imbalance 

region. The main cause of temperature distribution change is due to the divergent part of 

the wind (w), near the vertical boundaries. Figures 14 and 15 show the wind distribution 

(w and v respectively) associated with the temperature distribution in Figure 12.   The 
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Figure 12. Time evolution of the total temperature cross-section for point 48 in Figure 7, for (a) t = 0, (b) 
t= 1.8T1, (c)t = nf\ (d)t = 4.1f\ (e)t = 2nf\ and (f) t = 9.8/"1. 
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Figure 13. Time distribution of d-value (case 48) for levels (a) £= 0 and (b) £=0.5. 

«-component works both to intensify the temperature gradient when it is small and to 

diminish it when it is strong, causing the oscillation seen in Figure 13. This component 

shifts sign in the points of maximum and minimum d-value. The rotational component 

anomaly (v), on the other hand, attains its maximum (minimum) when and where the 

temperature gradient is maximum (minimum). Both components are nearly zero in the 

vicinity of the level £=0.5. This relationship is depicted in Figure 16 that shows the time 

series for the point where the d-value is calculated (maximum temperature gradient), in 

the lower boundary. As a result of the inhomogeneous surface convergence, the 

temperature distribution near the boundaries loses the antisymmetric characteristic as 

seen in Figure 17, at t = 0 and t = 7t/"1. 

The use of a grid spacing with the minimum Ax twice as large as the previous one 

results in similar fields and d-value. The other points in this region also show analogous 

behavior except that the points with larger Ro have a small decrease in the temperature 

gradient near £=0.5. In these cases, the oscillation can be noticed in the tilt of the 
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Figure 14. Time evolution of u for point 48, 
for (a) t = 1.8f \ (b) t = 4.7f \ and (c) t = 9.Sf\ 
The u field is nearly zero for the other times in 
Figure 11. The isoline interval is 0.1. In the 
lower boundary, u is positive in (a), and negative 
in (b) and (c). The zero isoline is removed for 
clarity. 

X-XQ 

Figure 15. Time evolution of v for point 48, 
for (a)f=1.8/"\ (b)t = nf\ and (c) r = 4.7f1. 
The v field is zero for f = 0 and t = 2itfA, and 
very similar to (b) for t = 9.8/ *'. In the lower 
boundary, v is negative in the three frames. The 
zero isoline is removed for clarity. 
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isotherms. Another difference is the change in the period of oscillation that decreases as 

Ro increases, but no difference is observed when F changes. 

 1 1"             "        T- 1                   I                           l                            i 

l                           l                           1                           1                           1                           1                            1 

u 

-0.5 

Figure 16. Time series for (a) cf-value, (b) u, and (c) v in the point of maximum temperature gradient, in the 
lower boundary (case 48). 

C.       NO FRONT - SMALL-SCALE ADJUSTMENT (REGION H) 

Figures 18 and 19 show the time variation of the temperature field of point 33 (see 

Figure 7), which has Ro = 2.975 and F = 0.602. The former presents the total temperature 

whereas the latter depicts the temperature anomaly field. The main feature of this case is 

the tendency of the temperature gradient, away from the boundaries, to be strongly 
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Figure 17. Temperature profile for the lowest level, at t = 0 (solid line) and t = -nf1 (dashed line). 

damped. This is expected since in this region the steady state solution is a function of the 

initial momentum field, which is initially zero. Therefore, in the long run, the temperature 

gradient will tend to vanish. 

The temperature gradient in the lower boundary, on the other hand, behaves the 

same way as in region I, where the key player is the divergent wind field. Figure 20 shows 

the d-value for the lower boundary, where the characteristic oscillation is seen. The 

period is much smaller than that of region I. The d-value for the mid-level region is not a 

good indication in this case because the gravity waves become very fast and distort the 
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Figure 18. Time evolution of the total temperature field (point 33 in Figure 7) at (a) t = 0, (b) t = l.l/"\ 
(c) t = 1.8f \ (d) t = 2.9T1, (e) r = 3.6f\ and (f) f = 5.0/"1. 
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Figure 19. Same as in Figure 18, except for the temperature anomaly (removed the average value of each 
horizontal layer). 
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Figure 20. Time distribution of d-value at the lower boundary for case 33. 

isotherms considerably. This distortion can mask the larger scale temperature gradient in 

the d-value calculation. 

Another important difference is that the momentum field lags the mass field. 

Although the spatial wind distribution in this case (not shown) is similar to those in 

region I, the lagging is substantial. This is due to the rapid change in the temperature 

field by the gravity waves compared to the inertial period (27t/"1). Figure 21 shows the 

time series for (a) J-value, (b) u, and (c) v in the point of maximum temperature gradient, 

in the lower boundary. 
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Figure 21. Time series for (a) d-value, (b) u, and (c) v in the point of maximum temperature gradient, in the 
lower boundary (point 33). 

For points with larger Ro the period of oscillation decreases considerably 

compared to 27c/*"1. The propagation speed of the fastest gravity waves increases and 

therefore the geostrophic adjustment process becomes much faster. As a result, the 

temperature gradient away from the vertical boundaries decreases faster. 

D.       FRONTOGENESIS WITH LARGE-SCALE ADJUSTMENT (REGION IH) 

The distinct characteristic for this region is the temperature collapse into a frontal 

zone in the upper and lower boundaries, while little change is observed away from the 

boundaries. The temperature anomaly at t = 2Jf'1, in the lowest level, for  case 29 
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Figure 22. Temperature anomaly in the lower boundary for case 29 at t = 2.7/"1. The frontal zone is the 
steep slope located at x - xo = 1.5 aD. 

(Ro = 1.630 and F = 15.302), is depicted in Figure 22. The large temperature change in a 

very narrow zone characterizes the collapse, which causes the model solution to be 

discontinued. It can be noticed that only a fraction of the total temperature anomaly is 

present in the frontal region (at x - xo = 1.5 a'^), while the remainder goes into a very 

smooth gradient. The frontal zone near the surface moves rapidly toward the warmer air, 

causing the front to tilt toward the colder air. Figure 23 shows the d-value changes at the 

surface for case 29, which agrees very well with BW96. The dashed line has the 
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minimum grid size twice as large as the solid one. The grid size imposes a constraint on 

the d-value when the collapse occurs. Therefore, the minimum d-value in the first case is 

roughly twice that of the latter. The d-value at level £= 0.5 (not shown) indicates very 

small changes in the temperature gradient at this level. 

Figure 23. Time variation of the d-value for the lower boundary, for case 29. The minimum d-value is 
lower for the smaller grid scheme (solid line) than for the larger (dashed line). Note the fast decrease and 
the collapse near t = 2.7/"1. 

Figure 24 shows the evolution of the temperature anomaly field for (a) t = 0, 

(b) t = 1.1 f'\ (c) t = 1.8 jf1, and (d) t = 2.7 f'\ The momentum field for the same time is 

shown in Figures 25 (u component) and 26 (v component). This result is similar to the 
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Figure 24. Time evolution of the temperature anomaly cross-section for point 29 in Figure 7, for (a) t = 0, 
(b) t= 1.1 f\ (c) r= 1.8/-1, and (d) r = 2.7/"1. 

case showed in BW96, with F -> °°. The same relationship between mass and momentum 

fields observed in region I also occurs in this region. The rotational component increases 

in phase with the gradient increase, due to the Coriolis force. The divergent component, 

on the other hand, increases initially because of the unbalanced pressure gradient, but is 

very small when the temperature collapses. This is more evident in Figure 27, which 

displays the time series of d-value, u and v. 
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Figure 25. Time evolution of u for point 29 in 
Figure 7, for (a) f = 1.1 Z"1, (b)*=1.8/-\ 
and (c) f = 2.7/"1. The zero isoline is removed 
for clarity. 

Figure 26. Time evolution of v for point 29 in 
Figure 7, for (a) t = 1.1 f\ (b) t = \.%f\ 
and (c) t = 2.1 fA. The zero isoline is removed 
for clarity. 
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Figure 27. Time series for (a) d-value, (b) u, and (c) v in the point of maximum temperature gradient, in the 
lower boundary for case 29. 

E.       FRONTOGENESIS WITH SMALL-SCALE ADJUSTMENT (REGION IV) 

As in region HI, the temperature gradient collapses into a front but more rapidly. 

Figure 28 presents the d-value time variation for case 44 (Ro = 4.000 and F = 0.701), 

which is not different from the cases in region m, except for the time scale. Again, the 

dashed line represents the case where the grid spacing is twice the one in the solid line. 

Figure 29 shows the temperature anomaly field in the lowest level, close to the lower 

boundary, at t - 1.25 f'1. There is only part of the temperature change involved in the 

frontal zone as before. The main difference between this region and the previous one is 
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the strong damping in the mid-level temperature gradient as depicted in Figures 30 

and 31. 

Figure 28. Time variation of the d-value for the lower boundary, for case 44. The minimum d-value is 
lower for the smaller grid scheme (solid line) than for the larger (dashed line). The frontal formation occurs 
nearr= 1.25 f1. 

The u and v fields are shown in Figures 32 and 33. Note that unlike the case in 

region IE, the divergent wind is not negligible at the time of the frontal formation. There 

is a lag in the momentum field with respect to the mass field, as seen in Figure 34. This 

time series show the correlation and the lag between those fields. 
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Figure 29. Temperature anomaly in the lower boundary for case 44 at t = 1.25 f~l. The frontal zone is 
located x - xo = 2.2 OQ . 

The other cases in this region present the same behavior as case 44. A difference 

is the time scale involved in the frontal formation in the lower boundary. The other 

distinct characteristic is the geostrophic adjustment process in the midlevel zone. This 

adjustment is stronger for larger Ro. 

F.       TRANSITION ZONES 

The transition zone between the large- and small-scale geostrophic adjustment 

regions is not very large. Although the cases in each region show some variation in terms 

of geostrophic adjustment as they approach the transition zone, this change is much more 
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Figure 30. Time evolution of the total temperature field  for  point 44  in  Figure 7,  for  (a)  t = 0, 
(b) t = 0.63/-1, (c) t = 0.90 f\ and (d) t = 1.35 Z"1. 

abrupt near the line B = K. This is true both when changing between regions I and II, and 

between DI and IV. Cases 2 and 6 (see Figure 7) are located in both sides of the line 

B = %. They show very distinct characteristics in the mid-level temperature gradient. The 

former lies slightly to the right of the curve (small-scale region), and undergoes a large 

change in the temperature gradient as gravity waves move away from the imbalance zone. 

This changes are very similar to those depicted in Figures 18 and 19. The latter case is 

located in the region of large-scale geostrophic adjustment, and little change occurs in the 
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temperature gradient away from the boundaries. This behavior is analogous to the case 

showed in Figure 12. 

c 

1 

a 
0.8 

0.6 

0.4 

0.2 

-5 

1 

0.8 i I \ >. 

0.6 • 

0.4 ■ 

0.2 

n \ I / 

-5 0 

5 -5 

Figure 31. Same as in Figure 30, except for the temperature anomaly. 

The transition from nonfrontal to frontal regions is not clear cut. The approach 

here is to consider that frontogenesis has occurred if all the situations below have 

occurred in the lowest level of the model (near the lower boundary): 
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Figure 32. Time evolution of u for point 44, for 
(a) t = 0.63f\ (b) t = 0.90/"\ and (c) * = 1.35/1. 
The zero isoline is removed for clarity. 

Figure 33. Time evolution of v for point 44, for 
(a) t = 0.63/1, (b) t = 0.90/-1, and (c) t = 1.35/"1. 
The zero isoline is removed for clarity. 
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•d-value at critical time is bounded by the grid size; 

•rf-value tends to zero at the critical time; 

• there is no oscillation in the temperature gradient after the critical time; and 

• there is a large temperature change in a few grid points. 

u 

-0.5 

Figure 34. Time series for (a) d-value, (b) u, and (c) v in the point of maximum temperature gradient, in the 
lower boundary for case 44. 

The first criteria is evaluated by comparing the d-value for a given characteristic 

flow (Ro, F), run with two different grid spacings. Figure 35 presents the d-value for 

Ax = 0.01 (dashed) and Ax = 0.005 (solid), for case 20. The ratio of the two Ac is 1:2 
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while the ratio of the d-values is 1:1.7. This is very close considering that finite difference 

models have different precision for different Ax and that this is a non-linear model. 

However, not all the change in temperature is in the frontal zone and thus the ratio 

between the different Ax is not a precise measurement of the ratio between the two 

d-values. Nine cases were found to be in this transition zone. The average ratio of J-value 

is 1:1.6 with a standard deviation of 6%. 

Figure 35. Time evolution of J-value for case 20 for Ax = 0.01 (dashed) and Ax = 0.005 (solid). The front 
collapses near t = itf1. 
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Model runs have shown that d = 0.10 marks the beginning of the frontal region. 

There is no frontal formation when d > 0.10 and a front has formed when d < 0.10. 

Analysis of case 20 (Ro = 1.543 and F = 7.999) shows a good consistency with the above 

characteristics. It is located between a nonfrontal and a frontal case and has a minimum 

d - 0.10 which is much smaller than the initial d-value. It is important to notice that this 

limiting d = 20 Ax and for stronger frontal cases d —» Ac. 

The frontal formation causes the collapse of the temperature gradient and thus 

interrupts the oscillation observed in nonfrontal cases, which leads to the third criteria. It 

can be seen in Figure 35 that the temperature gradient in case 20 does not oscillate as in a 

nonfrontal situation. After the temperature collapse, there is no meaningful numerical 

solution and the model output is discontinued. The last criteria consists in observing how 

close the temperature distribution resembles the ideal case shown in Figure 3. The 

temperature distribution in the lowest level of the model is shown in Figure 36 (case 20). 

The circles represent the grid points and indicate the number of grid spaces that are 

involved in the temperature jump. This jump usually happens in three to four grid spaces, 

which is a rather small frontal zone with horizontal scale of 0(0.020^) for the smaller 

grid spacing and 0(0.0400') f°r me larger one. It is important to notice that the scale 

continues to fall as long as Ac is decreased. 

An empirical exponential-type curve that establishes the limit for frontal 

formation is presented in Figure 37. This limit is defined by the following relation 

between Ro and F: 

F = a^R°-cy+e, (41) 
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where a = 25.0, b = 3.90, c = 1.53, d = 0.23, and e = 0.37. Frontogenesis occurs for F 

larger than the RHS of (41). An important characteristic is the asymptotic convergence to 

Ro =1.53. The lower part of the curve shows the tendency for asymptotic convergence to 

a limiting F. To evaluate the convergence for larger Ro it would be necessary to use a 

finer resolution model with larger domain. The stability increases excessively and causes 

the gravity waves to propagate very fast. As a result, the front also moves very fast and 

requires a larger zone with finer resolution. The domain must be increased so that the 

gravity waves will not reach the lateral boundaries. The curve seems to converge to a 

value close to F = 0.37. 
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Figure 36. Temperature distribution in the lowest level of the model for case 20. The circles represent the 
grid points. The jump occurs in few grid points. 
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Figure 37. Limit of the frontal and nonfrontal formation as defined by equation (41) in a log-log plot. 
Frontogenesis occurs in the concave side of the curve. The curve asymptotically converges to Ro =1.53. It 
also seems to converge to F = 0.37 for large Ro, although not as clear as for the large F convergence. The 
circles are the cases used to establish the curve. The points closer to the curve have d closer to 0.1. 
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G.       ZERO PLANETARY VORTICITY 

The planetary vorticity (/) is very important for small Ro as seen in sections B 

and D. The period of oscillation of the temperature gradient is nearly inertial (litf'1). As 

Ro increases, however, the oscillation departs from the inertial value, as in sections C 

and E. For large values of Ro, the planetary vorticity plays a very small role. Case 57 (see 

Figure 7) has Ro = 9 and F = 0.5, and was integrated using/= 10"V\ It is compared to a 

similar case with/= 10"8 s"1 (Ro -» «>). Figure 38 displays the time evolution of the d- 

value for/= 10"4 s"1 (solid line), and /= 10"8 (dashed line), where the horizontal axis is 

0.6 
t [hours] 

v8 „-1 Figure 38. rf-value evolution for /= 10"4 s"1 (solid line), and /= 10"5 s"1 (dashed line). The former slightly 
lags the latter. 
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the dimensional time (in hours). The two curves start at the same point and slightly 

separate, beginning at t = 0.3 hs. Although the absence of planetary vorticity causes the 

front to form a little earlier than the nonzero case, the 6 and u fields behave similarly in 

both situations. The two cases are different because Ro is not large enough in the former 

case and Ro —» °o as/—> 0. This case is also treated for F -» °° in studies by Simpson and 

Linden (1989) and Kay (1992). 

The temperature and divergent wind component fields for this two cases, close to 

the time of frontal formation (not displayed), show very subtle differences. The only 

significant difference for large Ro atmosphere is in the rotational wind component. There 

is no thermal wind balance due to the lack of planetary vorticity. Therefore, the rotational 

part of the wind is zero when/—» 0. 
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VI. DISCUSSION 

The geostrophic adjustment using the present model is very consistent, and it 

happens in the levels where the influence of the upper and lower boundaries is small. The 

initial unbalanced state excites gravity waves that propagate away from the imbalance 

region, for a very large domain. The mass and momentum fields tend to a geostrophic 

balance as the divergent field vanishes. During the geostrophic adjustment process, the 

temperature and the wind fields oscillate about the steady state solution, as the gravity 

waves propagate away from the imbalance region. 

A limit between the large-scale (a'^ >LR) and small-scale (a^1 <LR) geostrophic 

adjustment regimes is set by B = 7t. Therefore B > n leads to an adjustment that depends 

on the initial wind field (small-scale process), and B < n depends on the initial mass field 

(large-scale process). The transition zone between the two regimes is small, as discussed 

in chapter V, section F. In the type of initial state here presented, large-scale regime tends 

to have small changes in the temperature gradient in the levels distant from the vertical 

boundaries, except for the tilting of the isothermals. When F -» °°, there is just the 

inertial oscillation. In the small-scale regime, on the other hand, the fields tend to a state 

of no temperature gradient and no motion, because the initial state is at rest. If an initial 

imbalance consisted of a uniform horizontal temperature field and a nonzero wind field, 

the geostrophic adjustment would lead to a different final state. The large-scale final state 

would be zero and the small-scale final state would consist of a temperature field in 

thermal wind balance with the rotational wind field. 

61 



The temperature gradients in the lower and upper boundaries are not driven by 

the Rossby radius of deformation (LR). The temperature behavior near the vertical 

boundaries is independent of B/n. Rather, the temperature change depends on the 

intensity of the divergent part of the wind. Convergence near the maximum temperature 

gradient is required for further intensification. The intensity of the divergent wind is a 

function of the initial state of the atmosphere, as defined by the pair (Ro, F). A proposed 

limit for frontal formation is defined by the curve presented in Figure 37. It differs from 

Blumen's curve mainly for large Ro. Figure 39 displays both curves in a log-log plot. The 

curve suggested in this work (solid line) seems to converge to a limiting F = 0.37. 

Blumen's curve (dashed line) suggests the convergence would occur to a smaller Froude 

number and not so rapidly. 

Near the upper and lower boundaries, the temperature gradient also oscillates 

when a front does not occur. The period of oscillation (T) is nearly inertial. For points 

distant from the limiting curve, with no frontal formation, the model is nearly linear and 

the J-value oscillates smoothly with the fundamental period of oscillation. For points 

closer to the curve, however, the nonlinear effects cause high frequency oscillations 

superimposed on the fundamental frequency and the rf-value is no longer smooth. 

Figure 40 presents the time evolution of the temperature gradient for cases 1 (Ro - 2.215, 

F = 0.685) and 2 (Ro = 2.476, F = 0.765), the latter being closer to the limiting curve. 

Case 1 oscillates smoothly while case 2 contains high frequency oscillations. Figure 41 

shows the calculated rf-value variation for case 36 (large F), as well as the distribution 
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after filtering frequencies greater than 27t/""1, with a Chebychev filter. The dashed lines 

represent the analytic solution for that case, whose period is 2itf" . 

Figure 39. Limiting curves for frontogenesis as proposed by Blumen (dashed line) and by this study (solid 
line). The difference increases with Ro. 
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Figure 40. Time evolution of the temperature gradient (d-value) for cases (a) 1, and (b) 2. Case 2 is 
significantly modified by the nonlinear terms. 

The fundamental period of oscillation is not constant for all situations, and seems 

to depend on Ro, F and N. For Ro < 1.53 (the limiting Rossby number), the oscillation is 

inertial and T=2itf1. The period of oscillation changes for Ro > 1.53, as shown in 

Figure 42, where the horizontal axis is RolF and the vertical is NT. The curve seems to fit 

all the cases except the ones located below the limiting F (not shown), because of the 

very high stability. The half-period of oscillation was assumed to be the time the d-value 

takes to achieve its first minimum, starting at the origin. 
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Figure 41. d-value variation for case 36 with (a) regular calculation, and (b) after filtering frequencies 
higher than the inertial frequency, using a Chebychev filter. 

When the pair (Ro, F) is located over or in the concave side of the limiting curve, 

the temperature gradient no longer oscillates. A jump discontinuity forms which 

characterizes frontogenesis. The time (ta) for a front to form in a zero potential vorticity 

atmosphere can be calculated with the help of equations (35) and (36). These equations 

do not consider the barotropic pressure gradient and were derived for the zero potential 

vorticity case. The barotropic term is not significant for strong forcing associated with 

frontal formation and becomes less important form stronger cases (BW96). As a result, 

larger Ro fluids tend to have smaller difference between the analytic   (fa)   and  the 
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Figure 42. Variation of the oscillation period with Ro, F, and N, for Ro > 1.53, and F > 0.37. These cases 
(circles) do not produce fronts and oscillates with period T. The solid line is a cubic spline interpolation for 
those points. 

actual time (tc) for a front to form. However, for nonzero potential vorticity situations, 

this relationship is not so straightforward. Stronger fronts form much more rapidly than 

weaker ones. In this study, the time frontogenesis occurs is considered the intercept of the 

extrapolation of the almost linear part of the d-value curve with the time axis, as 

presented in Figure 43 (for case 22). This procedure is more consistent with the analytical 

solution, as presented in Figure 4, and it avoids the change in the slope of d caused by 

using a discretized domain. The ratio tjtc decreases when F decreases but also decreases 

for weaker frontal cases. This means that the ratio is larger for points located far from the 
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Figure 43. The time for a front to occur is obtained by extrapolating the almost linear part of the d-value 
curve until it intercepts the time axis. In this case, a front is considered to form at t = 2.39/"1. 

limiting curve (in the concave region). Figure 44 presents the ratio tjtc as a function of 

F"1 for the cases analyzed in this work. The crosses represent the cases with 8 < d < 12 

(weak frontogenesis) and the circles, d < 8 (strong frontogenesis). The solid line is a 

second order polynomial fit for the weak cases. The points along the limiting (Ro, F), 

marked with crosses, put a lower bound for the tjtc ratio. Stronger frontogenetical cases 

depart from this lower limit as the barotropic pressure gradient becomes less important. 

Another important characteristic of the frontal temperature distribution is the 

relatively small amount of the total temperature change involved in the jump.  The 
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Figure 44. The ratio tjtc for the limiting frontal cases (crosses) establishes a lower bound for that ratio. 
The solid line is a second order polynomial fit for these cases. Stronger frontogenetical cases (circles) tend 
to lie above the limit. 

temperature gradient near the upper and lower boundaries change due to the divergent 

wind. The point of maximum gradient is initially located in the center of the imbalance 

region and shifts toward the warmer air as shown in Figure 29. The temperature field is 

modified in such a way that part of the temperature gradient becomes steeper and 

collapses into a front. The remaining part of the gradient becomes smoother. The analysis 

of all cases where frontogenesis occurred show no trend in the data. The average of the 

amount of temperature involved in the jump (normalized by A0) is 0.175 with a standard 
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deviation of 0.045 (for a sample of 28 fronts). This amount does not seem to be changed 

for different parameters and characteristics. The variability is probably explained by the 

fact that model outputs are recorded at an interval Ar = 0.09/ "*. It means that the front 

may be formed at a different time than the recorded time. A source of error is the 

difficulty of determining where the jump starts and finishes. The criteria used here was 

the use of the largest changes in the slope of the temperature distribution. 

The change in the position of maximum temperature gradient is also not constant 

for all frontal cases. The speed of the point of maximum temperature from the initial 

position until the jump forms is presented in Figure 45, as a function of Ro. The crosses 

250 

200 

150 

100 

Figure 45. Speed of propagation (Vp) of the position of maximum temperature gradient for frontal cases 
(crosses) as a function of Ro. The solid line is the first order polynomial fit for the crosses. 
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represent the frontal cases in this work and the solid line is the first order polynomial fit 

for those points. The larger the Rossby number, the faster the movement of the 

temperature gradient. The speed is calculated using the change in the position of the 

d-value and the time for frontal formation (tc). 
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VII. CONCLUSIONS 

The numerical model of Williams et al. (1992) is used to study frontogenesis from 

unbalanced initial conditions. The dependent variables are assumed to be independent of 

y. The hydrostatic Boussinesq primitive equations are used with no diffusion of heat or 

momentum. The model is bounded at the top and bottom by rigid planes. Periodic 

boundary conditions are used in the horizontal. Stretching horizontal coordinates are used 

to give fine resolution in the region of frontal formation. The lateral boundaries are placed 

far enough from the imbalance region to avoid wave reflection. The initial temperature 

field has a constant vertical stratification. 

The initial imbalance is obtained by allowing a horizontal temperature gradient to 

exist while the initial wind is zero. In a stably stratified atmosphere, gravity waves are 

excited and propagate away from the imbalance region, provided no reflection occurs at 

the lateral boundaries. Therefore, the atmosphere tends toward a geostrophic balance 

away from vertical boundaries. Near these boundaries, the temperature gradient oscillates 

or it collapses into a front, depending on the initial Rossby (Ro) and Froude (F) numbers. 

A relationship between Ro and F is established to limit situations where a front 

may or may not form. Therefore, if the initial Ro and F of an imbalance region can be 

determined, the unbalanced contribution for future development of discontinuities can be 

estimated. This relationship also shows how intense the process is, depending on the 

distance of the point (Ro, F) from the limiting curve. The scale of the geostrophic 

adjustment far from the boundaries is likewise determined by Ro and F. Large scale 

adjustment happens when F > Rollt and the fluid adjusts to the initial mass field. The 
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adjustment depends on the initial momentum field when F < ROITZ, and the initial 

imbalance scale is small compared to LR. 

Large Ro and small F fluids are more divergent and less dependent on the inertia! 

period, which leads to faster frontogenesis and more rapid geostrophic adjustment. A zero 

planetary vorticity (Ro -> <*>) case is compared to a large Ro flow with / = 10"4 s"1 (the 

other parameters held constant), and the results show very subtle differences. The period 

of oscillation for the nonfrontal cases is inertial when Ro < 1.53, and depends on Ro, F, 

and AT for larger Ro. The amount of temperature involved in the frontal zone is about 17 

% of the temperature anomaly. This differs from the simple inviscid Burger's equation, 

where almost all the temperature collapses into a front. 

For large F Blumen's curve is very close to the critical curve in our study, since 

his value for large F is Ro = 1.45. This is also shown by BW96 who are considering the 

zero potential vorticity case. In this case the critical value should be very close because 

the initial conditions are the same. The latter are the same because the initial state is not 

changed by geostrophic adjustment. The difference between the Blumen's curve and our 

curve for large F is caused by the barotropic pressure contribution which is not included 

in the analytic theory. As F decreases the Blumen's curve falls below and to the left of 

our curve. Although the Blumen's curve is based on a weaker initial temperature field (it 

is the same along the upper and lower boundaries) this does not seem to be important 

because his curve is still to the left of our curve. If this effect were more important it 

would require larger Ro and a larger F. Apparently the geostrophic adjustment in the 

numerical model brings the temperature close to the initial field used by Blumen. 
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The larger difference between the Blumen's curve and our curve in the lower part of the 

Ro-F diagram must be caused by the barotropic pressure gradient term. 
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