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INTRODUCTION 

This report documents research performed at the Naval Air Warfare Center Weapons 
Division (NAWCWPNS), China Lake, California, in the Target-Recognition Section 
(Code 452320D) as part of an investigation of learning fuzzy expert systems. This research 
is an application of fiizzy logic to image processing at the pixel level, a simple yet powerful 
concept that is referred to as pixel-level fuzzy-logic image-processing (PDCLFLIP). The 
application is detecting single masts using high-resolution range-only-radar (ROR) profiles 
that have been collected into blocks of signal vectors for detection purposes. Within each 
block, the signals are aligned. Developers have long thought that instead of processing 
these signal blocks as a sequence of signal profiles, one might also process them as image 
chips (ICs) and detect and match pattems in this representation as well. This way, 
developers can easily see and classify these ICs when the statistical classifiers applied to the 
collection of one-dimensional classifiers fail. In part, humans cue on the signal alignment, 
which produces strong vertical edges in the IC when detecting a single mast. 

Because the human eye is capable of quantifying the stability, shape, and strength- 
consistency of edges in an image, researchers thought, "Why not try to enhance the 
featares that humans use as visual clues?" The "curse of dimensionality" precludes direct 
application of statistical pattern recognition to the entire IC; however, after enhancement, 
classical pattern recognition can be applied to the stacked signal vectors making up the 
image. Specific special cases that the eye can identify might also be captured by a sequence 
of fiizzy image-processing rules. This report presents a small example of the power of 
PIXLFLIP to enhance the ICs by using the special properties of the target signals, and, at 
the same time, suppressing the clutter and increasing the distinctions to the confusion class 
signals. This research is an initial exploratory effort supported with very limited 
independent research funds, which indicates the strong potential of processing the ROR 
retums as ICs rather than just a group of profiles. 

BACKGROUND 

Applying fuzzy modeling to image processing is not new, a fact that Pal and King 
(Reference 1) were quick to realize. PIXLFLIP is more recent, circa 1994. Russo and 
Ramponi appear to be the first authors to apply fuzzy logic to construct edge detectors 
(References 2 through 7), and shortly thereafter, Krishnapuram and Choi used fuzzy logic 
for line enhancement (References 8 through 12). This approach was modified for the 
enhancement of the ROR ICs considered in this report. The main concept of PIXLFLIP is 
best described by an operational definition. Each pixel of the digital image is determined 
by a set of fuzzy rules that uses the neighbors of that pixel as antecedents to the rule-base 
(Reference 5). This concept is hardly new if the simple mathematical operations achieved 
by fuzzy rules are examined. For example, replacing the central pixel by the average of aU 
the pixels in a 3 by 3 window centered at the pixel is just a smoothing operation or low- 
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pass filter. The difference is the representation and implementation of the fuzzy rules using 
term sets to determine the firing strength for each of these rules. The fuzzy rules are 
inherently nonlinear, more intuitive and trainable. In addition, not only can multiple tasks 
can be captured in a single rule-base, but the processing can also be made adaptive by 
incorporating the local geometry of the image into the rules themselves (Reference 4). 

As an example of PIXLFLIP, consider an edge detector proposed by Russo 
(Reference 5). A standard image-processing edge detector is the Sobel operator, which is a 
discrete spatial derivative used to detect an edge and measure its strength. An edge detector 
is also modeled as a high- or band-pass filter, in contrast to a low-pass fdter, which is good 
at detecting relatively slowly varying regions. Russo cleverly implements the edge detector 
as the complement of the low-pass filter by using a set of rules or rule-base: " ... to make 
white the pixels of the image that are surrounded by pixels of similar intensity and to make 
black all the other ones (the edge pixels)" (Reference 5). So, if the window of interest is 3 
by 3, and we model the gray-scale levels by three linguistic levels—^LOW, MED, and 
HIGH—^then the rules for the detector have eight antecedent clauses and a hard conclusion 
of either WHITE or BLACK. The window associated with the rule is given in Figure 1. 

A1 A2 A3 

A8 A9 A4 

A7 A6 A5 

FIGURE 1. Inputs for the Edge-Detection Fuzzy Rules. 

Rule 1: // Al is LOW & ...& A8 is LOW ==> A9 = WHITE 
Rule 2: // Al is MED & ...& AS is MED ==> A9 = WHTTE 
Rule 3: // Al is HIGH & ...<fe AS is HIGH ==> A9 = WHITE 

ELSE ==>A9 BLACK 

Antecedent aggregation or propagation of certainty to the consequent, certainty of the 
else rule, and the defuzzification determine the value of the center pixel level A9.   For 

8 
definiteness, assume antecedent aggregation is the product and that //,- = Yl/J-xji^j) for the 

7=1 
/-th rule, / = 1,2, 3 where xi is LOW, MED, and HIGH, respectively. The else statement 
certainty is ^4. = Hehe = l-maxC/ij). The value of A9 can be determined by any number of 



NAWCWPNS TP 8357 

4 I A 
methods, but assume the defuzzification is just the average A9= Y,^^iyi / L^/ where j,- is 

WHITE for i = 1, 2, 3 and BLACK for / = 4 (Reference 8). 

This hypothetical example was chosen to illustrate the concept of antecedent 
aggregation and defuzzification. Note that unless one of the first three rules fires strongly, 
the output pixel is nearly black, indicating the presence of an edge. To determine the 
memberships, we need the linguistic variables LOW, MED, HIGH, BLACK, and 
WHITE. The latter two linguistic variables are crisp values, taking on the lowest (BLACK 
= 0) and highest (WHITE = 255) values of the gray-scale level, here assumed to be 
defined as [0, 255]. We defined the LOW, MED, and HIGH variables by term sets in 
Figure 2. 

100 150 
PIXEL LEVEL 

FIGURE 2.  Linguistic Variables for the Edge-Detection Fuzzy Rules. 

VERTICAL LINE ENHANCEMENT 

Vertical line enhancement using PDCLFLIP has the same structure as the previous 
example for detecting edges, but with more rules. One advantage of this representation is 
that the intuitive description of the rules is closer to their implementation. In trying to 
mimic how humans perceive an edge, the rules model the difference in pixel level between 
the centerline and its surround, which is defined here to be lines on either side of this bright 
centerline. To quantify this pixel difference, a linguistic variable defmed by its term set 
NEG for negative is described in Figure 3. To refine this model, not only is the difference 
between the centerline and its surround used as inputs to the ftizzy rule, but also the pixel- 
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level of the centerline. Then the rule consequent not only reflects the presence of a 
centerlme but also its strength. The thuteen fuzzy rules used for this model are contained in 
Appendix A along with the fourteenth rule, which is the default fuzzy rule. A typical fuzzy 
rule is as follows: 

Rule 10: // Al is ORANGE & A2 is NEG & A3 is NEG ==> ORANGE 

where 

ORANGE is a liuguistic variable representing the pixel level of the centerline 

NEG is the linguistic variable that tests the contrast between the centerline and 
its two surrounding lines 

This rule is a single-line rule where Al represents the average of the centerline, A2 is 
the difference between the average of the left-surround Une and Al, and A3 is the 
difference between the average of the right-surround line and Al. The Unguistic variables 
are illustrated in Figure 4. 

0.9- 

0.8 

zO.7- 

yo.6 

= 0.51- 

iO.4 

2 0.3 

0.2 

0.1 - 

-300 -200 -100 100 200 300 
PIXEL LEVEL 

FIGURE 3. The Linguistic Variable NEG. 
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150 
PIXEL LEVEL 

FIGURE 4.  Linguistic Variables For Line Enhancement. 

So, the input features are constructed from average pixel levels formed over columns 
that are either part of the centerline or its surround. The columns used for Al depend on 
the centerline width, either one or two pixels. Double-line ftizzy rules have some 
redundancy because a double line cannot be centered with respect to a single-center pixel of 
the 5 by 5 window. A typical pair of rules is as follows: 

Rule 5: // Al is YELLOW & A2 is NEG & A3 is NEG ==> YELLOW 
Rule 6: // Al' is YELLOW & AT is NEG c& A3' is NEG ==> YELLOW 

The columns averaged are different for these two rules.   For example, A3 and A3' are 
averages of different columns. The definitions for these rules are in Appendix A. 

Implementation of the rule-base follows (Reference 7). Each antecedent clause is 
implemented by using Ai or Ai' to obtain the degree of membership into the linguistic 
term. For example, certainty of Al is YELLOW is evaluated by using ^yg/fowCAl), and 
the entire certainty of the consequence for the sixth rule is given by 

t^C6 = i^YellowiA.1) * IJ.NegiA2) * HNeg(A^) • 

The certainty of the alternative hypothesis is 

jUl4=l-max(/Zj). 
i<U 

Defuzzification obtains by using a crisp representative value for each consequent variable, 
denoted by y, . 
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The final pixel value given to the center of the window is 

N IN 

f=i    / 1=1 
where 

N is the number of rules or 14 in this example. 

RADAR EXAMPLES 

The Une-enhancement program was applied to high-resolution ROR data that were 
stacked and aligned in blocks of 25 profiles of length 16. Several examples are given in 
Appendix B. Returns from objects with the most spatial stability and the most consistent 
return strength produced the cleanest signals. For the stable single mast, the object 
appeared as a strong double line in the IC surrounded by clutter. Vertical-line enhancement 
suppressed the clutter, because clutter seldom produced a consistent stable retum. 
Effectively, the fuzzy rules produced a spatially local vertically oriented time-averaging 
filter that reduced clutter. Signals that were spatially unstable or temporally inconsistent or 
consistently weak fu-ed the default rule most often, producing the black background 
signals, which suppressed the clutter. Moreover, strong signals that were spatially unstable 
and time varying produced inconsistent single and double Lines, which were weak in 
response and located away from the center of the IC. This process increased the distinction 
between the stable single-mast IC. Notice, too, that signal dropouts—those rows that 
appear blank—^were discarded from the IC, which was a weak attempt to eUminate the 
effect of single- and double-line dropouts on the fuzzy rules because humans tend to ignore 
these small dropouts when classifying objects from the IC. 

Appendix B contains some examples of line enhancement on several different classes 
of objects that have different spatial extent, stabihty, and consistency. Each figure contains 
the original IC and two passes of line enhancement. Hundreds of ICs exist for each class 
available for testing. Figure B-1 contains the most interesting signal, a stable consistently 
strong single mast. Figures B-2 through B-6 are some of the confusion classes. If the 
goal is to accentuate the difference between the single-mast IC, these figures indicated that 
the fnst pass helps that effort, but the second pass erased the differences. From a real-time 
prospective, that is good. Concentrating on the first-pass results, all the classes had a 
double Une in the center of the IC, but only the first class had a strong consistent double 
centerline, with virmally no anomalous lines or streaks in the surround. Ideally, if this fact 
holds true for the vast majority of ICs, a classifier can distinguish between the first class 
and all other confusion classes. To test this concept in practice, we must take thousands of 
these ICs s, construct a classifier, and determine the error rates. 
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CONCLUSIONS 

The unqualified conclusion of this research is that the PIXLFLIP holds significant 
potential to extract the signal and scrub the clutter in the ROR ICs. The qualification is that 
the algorithm was only to be tested on a few hundred ICs and needs to be tested on 
thousands of ICs. Moreover, a classifier should be built to quantify any improvement in 
signal extraction and noise suppression. However, this effort is being funded on limited IR 
funds, and such a study is not within the scope of this exploratory work. 
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Appendix A 

THE FUZZY RULES 

The fuzzy rules are partitioned into two groups: single-line enhancement and double- 
line enhancement. In addition, there is a default rule. The total number of rules is 14: eight 
double-Une rules, five single-line rules, and one default rule. In the following rules, 
capitalized terms are linguistic variables that represent termsets on the pixel levels. Each 
fuzzy rule has three antecedents. The inputs to the antecedents are constructed on 
5 by 5 windows by averaging columns of pixels. The first antecedent tests the average 
strength of the central strip, the second tests the relative strength of the central strip with 
respect to the left-hand-side strip, and the third tests the relative strength with respect to the 
right-hand-side strip. Figure A-1 shows this configuration, where the columns used to 
construct the inputs are hatched for the single-line rules. The variable Al is the average of 
the pixel values in the central column illustrated by the first window. A2 is the difference 
between the average of the pixels in the first column (see the second window of 
Figure A-1) and the variable Al. Finally, A3 is the difference between the average of the 
pixels in the fifth column (see the third window of Figure A-1) and the variable A1. 

f i L i 
^ 1 

FIGURE A-1.  Single-Line Rules and Columns Needed To Construct 
Al, A2, and A3, Respectively. 

In the double-line rules, two of the central columns are averaged to obtain the first 
input and then subtracted from the averaged column on the left and the averaged column on 
the right to generate the second two inputs. For these rules, two definitions for input 
features are needed because of the two possible positions of the double line with respect to 
the center of the data window. 

Figures A-2 and A-3 define the columns over which the averages are taken for the 
two sets of rules. Again, the hatched columns represent the pixel values that are averaged 
to construct the variables, which should explain to the reader why rules appear to be 
duplicated. However, the rules are different because the average is taken over different 
columns. Conceptually, the two sets of rules are doing the same thing but compensating 
for the centering ambiguity of the double line.  Presence of strong central pixels and weak 

A-1 
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adjacent pixels tend to trigger the rules.   The strength of the conclusion is given by the 
product of the degrees that the antecedents are satisfied. The input values are 

Al = average pixel value of the central strip or strips 
A2 = average pixel value of the left-hand-side strip - Al 
A3 = average pixel value of the right-hand-side strip - Al 

Likewise, 

Al' = average pixel value of the central strip or strips 
A2' = average pixel value of the left-hand-side strip - Al' 
A3' = average pixel value of the right-hand-side strip - Al' 

i i i i 
^ 

i i i i 
^ 

FIGURE A-2. First Type of Double-Line Rule and Columns Needed To Construct 
Al, A2, and A3, Respectively. 

1 
i P 
^ 

^ 

1 
^ 

^ 

FIGURE A-3.  Second Type of Double-Line Rule, Columns Needed To Construct 
AT, A2', and A3' Respectively. 

The first eight rules are double-lined rules. There are two sets of rules; the first rule 
corresponds to the window's central pixel being in the first column of the double strip, and 
the second rule has the central pixel in the second column of the double line. Both cases 
must be included to detect a double line in the window. 

A-2 
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Double-Line Rules 

Rule 1: // Al is BRTRED & A2 is NEGc& A3 is NEG ==> DRKRED 
Rule 2: // Al' is BRTREDcfe A2' is NEGc& A3' is NEG ==> DRKRED 
Rule 3: // Al is ORANGE & A2 is NEG & A3 is NEG ==> ORANGE 
Rule 4: // Al' is ORANGE & AT is NEG c& A3' is NEG ==> ORANGE 
Rule 5: // Al is YELLOW & A2 is NEG & A3 is NEG ==> YELLOW 
Rule 6: // Al' is YELLOWc& A2' is NEGcfe A3' is NEG ==> YELLOW 
Rule 7: // Al is GREEN & A2 is NEG & A3 is NEG ==> GREEN 
Rule 8: // Al' is GREEN & AT is NEGc& A3' is NEG ==> GREEN 

Single-Line Rules 

Rule 9:   //Al is BRTRED & A2 is NEG & A3 is NEG ==> BRTRED 
Rule 10: // Al is ORANGE & A2 is NEG & A3 is NEG ==> ORANGE 
Rule 11: //Al is YELLOW & A2 is NEG & A3 is NEG ==> YELLOW 
Rule 12: //A 1 is GREEN & Al is NEGc& A3 is NEG ==> GREEN 
Rule 13: //Al is AQUA & A2 is NEG & A3 is NEG ==> AQUA 

Default Rule 

Rule 14: Else ==> BACKGROUND 

The linguistic variables are defined by term sets illustrated in Figure 4 (repeated in 
Figure A-4 for the reader's convenience). 

A-3 
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100 150 
PIXEL LEVEL 

FIGURE A-4. Linguistic Variables for Line Enhancement. 

A-4 
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Appendix B 

THE RESULTS 

This appendix discusses several alternate classes of data that were processed with the 
fuzzy line enhancement. Placing these data in one section makes it is easier for the reader 
to compare the results. 
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FIGURE B-1. A Single Mast in Clutter, Moderately Weak Signal. 
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FIGURE B-2. A Strong Consistent Confusion Class. 
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FIGURE B-3. A Second Strong Consistent Confusion Class. 
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FIGURE B-4. A Third Strong Consistent Confusion Class. 
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FIGURE B-5. A Fourth Consistent Confusion Class. 
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FIGURE B-6. A Fifth Strong Confusion Class. 
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