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Algorithms for the Satisfiability (SAT) Problem: A Survey 

Jun Gu, Paul W. Purdom, John Franco, and Benjamin W. Wah 

ABSTRACT. The satisfiability (SAT) problem is a core, problem in mathemat- 
ical logic and computing theory. In practice, SAT is fundamental in solving 
many problems in automated reasoning, computer-aided design, computer- 
aided manufacturing, machine vision, database, robotics, integrated circuit 
design, computer architecture design, and computer network design. Tradi- 
tional methods treat SAT as a discrete, constrained decision problem. In 
recent years, many optimization methods, parallel algorithms, and practical 
techniques have been developed for solving SAT. In this survey, we present 
a general framework (an algorithm space) that integrates existing SAT algo- 
rithms into a unified perspective. We describe sequential and parallel SAT 
algorithms including variable splitting, resolution, local search, global opti- 
mization, mathematical programming, and practical SAT algorithms. We give 
performance evaluation of some existing SAT algorithms. Finally, we provide 
a set of practical applications of the satisfiability problems. 

1.  Introduction 

An instance of the satisfiability (SAT) problem is a Boolean formula that has 
three components [101, 188]: 

• A set of n variables: xi, x-x, •••, xn. 
• A set of literals. A literal is a variable (Q = x) or a negation of a variable 

(Q = x). 
• A set of m distinct clauses: Ci, C2, ..., Cm.  Each clause consists of only 

literals combined by just logical or (V) connectives. 

The goal of the satisfiability problem is to determine whether there exists an 
assignment of truth values to variables that makes the following Conjunctive Normal 
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Form {CNF) formula satisfiable: 

(1.1) Ci AC2A---ACm, 

where A is a logical and connective. 
The SAT problem is a core of a large family of computationally intractable NP- 

complete problems [101, 188]. Such NP-complete problems have been identified 
as central to a number of areas in computing theory and engineering. Since SAT 
is NP-complete, it is unlikely that any SAT algorithm has a fast worst-case time 
behavior. However, clever algorithms can rapidly solve many SAT formulas of 
practical interest. There has been great interest in designing efficient algorithms to 
solve most SAT formulas. 

In practice, SAT is fundamental in solving many problems in automated reason- 
ing, computer-aided design, computer-aided manufacturing, machine vision, data- 
base, robotics, integrated circuit design automation, computer architecture design, 
and computer network design (see Section 14). Therefore, methods to solve SAT 
formulas play an important role in the development of efficient computing systems. 

Traditional methods treat a SAT formula as a discrete, constrained decision 
problem. In recent years, many optimization methods, parallel algorithms, and 
practical techniques have been developed. In this survey, we present a general 
framework (an algorithm space) that integrates existing SAT algorithms into a uni- 
fied perspective. We describe sequential and parallel SAT algorithms and compare 
the performance of major SAT algorithms including variable setting, resolution, 
local search, global optimization, mathematical programming, and practical SAT 
algorithms. At the end of this survey, we give a collection of practical applications 
of the satisfiability problem. 

The rest of the paper is organized as follows. 

1. Introduction 
2. Constraint Satisfaction Problems 
3. Preliminaries 
4. An Algorithm-Space Perspective of SAT Algorithms 
5. SAT Input Models 
6. Splitting and Resolution 
7. Local Search 
8. Global Optimization 
9. Integer Programming Method 

10. Special Subclasses of SAT 
11. Advanced Techniques 
12. Probabilistic and Average-Case Analysis 
13. Performance and Experiments 
14. Applications 
15. Future Work 
16. Conclusions 

In the next section, we describe the constraint satisfaction problem (CSP) and its 
close relationship to the SAT problem. Section 3 gives preliminaries for the paper. 
In Section 4, we give a general framework (an algorithm space) that puts existing 
SAT algorithms into a unified perspective. This is followed by a brief overview of 
the basic SAT algorithm classes and a discussion of the general performance eval- 
uation approaches for SAT algorithms. In Section 5, some SAT problem-instance 
models are given. Section 6 describes the variable setting and resolution procedures 
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for solving SAT formulas. Local search algorithms, global optimization techniques 
and integer programming approaches for solving SAT formulas are discussed, re- 
spectively, in Sections 7, 8, and 9. Section 10 discusses special subclasses of the 
SAT problem. Some advanced techniques for solving SAT formulas are described 
in Section 11. Section 12 gives probabilistic and average-case analysis of the SAT 
problem. 

Experimental results and performance comparisons of several major SAT al- 
gorithms are given in Section 13. Presently for hard random 3-SAT problem in- 
stances, a complete SAT algorithm could solve a SAT problem with a few hundred 
variables. An incomplete SAT algorithm such as WS AT can solve SAT problem 
instances with 2,000 variables on an SGI Challenge with a 70 MHz MIPS R4400 
processor [472, 471]. The randomized local search algorithm, e.g., SAT 1.5, can 
solve various SAT problem instances with over 10,000 variables on a SUN SPARC 
20 workstation comfortably [211, 212, 222]. Most practical SAT solvers used in 
industrial applications are problem specific. We collected some real experimental 
results in Section 13. Section 14 summarizes some applications of the SAT prob- 
lem. Future work for SAT research is discussed in Section 15. Finally, Section 16 
concludes the paper. 

2.  Constraint Satisfaction Problems 

A constraint satisfaction problem (CSP) is to determine whether a set of con- 
straints over discrete variables can be satisfied. Each constraint must have a form 
that is easy to evaluate, so any difficulty in solving such a problem comes from 
the interaction between the constraints and the need to find a setting for the vari- 
ables that simultaneously satisfies all the constraints [430]. In a SAT formula, each 
constraint is expressed as a clause, making SAT a special case of the constraint sat- 
isfaction problem (see Figure 1). Due to this close relationship, any CSP algorithm 
can be transformed into a SAT algorithm, and this can usually be done in a way 
that maintains the efficiency of the algorithm. 

A discrete CSP model consists of the following three components [206, 226]: 
• n variables: {xi, x2, ■ ■ ■, xn}. An assignment is a tuple of n values assigned 

to the n variables. 
• n domains: {£>i, D2, ■ ■ ■, Dn). Domain Dt contains d possible values (also 

called labels) that xi may be instantiated, i.e., Di = {h,i, h,2, ••-> h,d}- 
• A subset of £>i x D2 x -.. x Dn is a set of constraints. A set of order-l 

constraints (I < n) imposed on a subset of variables {x^, Xi2,... , £;,} C 
{xi, x2, -. • , xn} is denoted as 

Cii,i2,...,». QDh x Di2x ... xDu. 

An order-Z constraint indicates the compatibility (i.e., consistency/inconsistency 
or conflicting measure) among I variables for a given variable assignment. The 
variables conflict if their values do not satisfy the constraint. In practice, two 
frequently used constraints are unary constraints imposed on a single variable (C; C 
Di) and binary constraints imposed on a pair of variables (Cjj C Di x Dj). 

Solving a CSP entails minimizing local inconsistency and finding a consistent 
value assignment (i.e., a consistent labeling) to the variables subject to the given 
constraints. 

Constraint satisfaction problems are extremely common. Most NP-complete 
problems are initially stated as constraint satisfaction problems. Indeed, the proof 
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CSP 

Discrete   f iV-queen problem 
CSP      \ Graph coloring problem 

Binary  J SAT problem 
CSP    1   Max-SAT problem 

FIGURE 1. Some examples of the constraint satisfaction problem 
(CSP). SAT problem a special case of CSP, i.e., a CSP with binary 
values. 

that a problem is NP-complete implies an efficient way to transform the problem 
into a constraint satisfaction problem. For a few special forms of the constraint 
satisfaction problem there exist algorithms that solve such formulas in polynomial 
worst-case time. When no polynomial-time algorithm is known for a particular form 
of constraint satisfaction problem, it is common practice to solve such formulas with 
a search algorithm. 

Problems that are commonly formulated as constraint satisfaction or satisfia- 
bility problems for the purposes of benchmarking include graph coloring and the 
n-queens problems. In the case of the n-queens problem, although analytical solu- 
tions for this problem exist [2, 10, 30], they provide a restricted subset of solutions. 
In practical applications, one must use a search algorithm to find a general solution 
to the CSP or SAT problems. 

3.  Preliminaries 

To simplify our discussion, throughout this paper, let: 

• T be a CNF Boolean formula, 
• m be the number of clauses in T, 
• n be the number of variables in T, 
• d be the ith clause, 
• \d\ be the number of literals in clause d, 
• Qi i be the ?'th literal in the ith clause, and 

• I be the average number of literals: ^^—-, 

where i = 1,..., m and j = 1,..., n. 
On Boolean space {0,1}", let: 

• F(x) be a function from {0, l}n to integer N, 
• Xj be the jth variable, 
• x be a vector of n variables, 
• Cj(x) be the z'th clause function, and 
• Qi,j(x) be the jth literal function of the ith clause function, 

where i = 1, ...,m and j = 1, ...,n. 
On real space En, let: 

N(x) be a real function from {0, l}n to E, 
/(y) be a real function from En to E, 
yj be the jth variable, 
y be a vector of n variables, 

• 
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• Ci(y) be the ith clause function, and 
• qij (y) be the jth literal function of the ith clause function, 

where i = l,...,m and j = l,...,n. 
On real space En, also let: 

• Wj be the jth integer variable, and 
• w be a vector of n integer variables, 

where i — 1,..., m and j = 1,..., n. 
Following [356], a real-valued function / defined on a subset of En is said to 

be continuous at y if /(y^) -*• /(y). A set of real-valued functions fx, /2, ..., fm 

on En form a vector function f = {fi,f2,—,fm) whose ith component is /j. It is 
continuous if each of its component functions is continuous. 

If / has second partial derivatives which are continuous on this set, we define 
the Hessian of / at y to be the n x n matrix denoted by 

(3.1) H(y) = vViy)=[gg; 
We call y G En with /(y) = 0 a solution of /, denoted as y*. 
Two aspects of iterative optimization algorithms are their global convergence 

and local convergence rates [356]. Global convergence concerns, starting from an 
initial point, whether the sequence of points will converge to the final solution 
point. Local convergence rate is the rate at which the generated sequence of points 
converge to the solution. 

4. An Algorithm-Space Perspective of SAT Algorithms 

In this section, we first describe various formulations of SAT, then give an 
algorithm-space perspective that provides some insights into developing efficient 
algorithms for solving SAT. Following this, we give a brief overview of the basic 
sequential and parallel SAT algorithms, and discuss various categories of algorithms 
and performance evaluation methods. 

4.1. Formulations of SAT. SAT problem can be expressed by Conjunctive 
Normal Form (CNF) formulas (e.g., (xx Vx2)A(xi Vx2)) or Disjunctive Normal Form 
(DNF) formulas (e.g., (xi A x2) V (xi A x2)). Instances of SAT can be formulated 
based on discrete or continuous variables [535, 537]. 

Discrete Formulations. These can be classified as unconstrained versus con- 
strained. 

(a) Discrete Constrained Feasibility Formulations. The goal is to satisfy all 
constraints. One possible formulation is the CNF formulas given by (1.1). A second 
formulation is the DNF formulas [207] discussed in Section 7.10. 

(b) Discrete Unconstrained Formulations. A common formulation for CNF 
formulas exists [211, 212, 469]. The goal is to minimize N(x), the number of 
unsatisfied clauses, under the interpretation that numeric variable x; = 1 (x* = 0) 
if Boolean variable Xi = true (x; = false), respectively. That is, 

m 

(4.1) min    N(x)=Yd(x) 
X6{0,1}" f^ 
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where 

(4.2) Ci(x)    =    Y[QiAxi) 
i=i 

{1 - Xj    if Xj in Ci 
Xj ifxjinCi 
1 otherwise 

In this case, JV(x) = 0 when all the clauses are satisfied. 
A similar formulation for DNFformulas exists (See Section 7.10, [234], [207], [217]). 

Under the interpretation that numeric variable x, = 1 (xi = 0) if Boolean variable 
Xi = true (xi = false), respectively, the goal is to solve 

m 

(4.4) min   F(x) = ^Ci(x), 
xe{o,i}n r-f 

*=i 

where 

(4.5) Ci(x)    =    l-f[Qi,j(*j) 

(Xj if Xj in Ci 

1-Xj    ii XJ in d 
1 otherwise 

All the clauses are satisfied when F(x) = 0. 
Alternatively, DNF formulas can be solved as follows: 

771 

(4.7) max   F(x) = ^^(x), 

where 
n 

(4.8) Ci(x) = Y[Qi,j(xj), 

and Qi,j{xj) is given by (4.6). 
Usually, the question of felsifiability for a DNF formula is more interesting than 

the question of satisfiability. This can be solved as follows: 
771 

(4.9) min    F(x) = ^Ci(x), 

where Ci{x) is given by (4.8). A formula is falsifiable if F(x) = 0 for some x. 
(c) Discrete Constrained Formulations. There are various forms of this formu- 

lation. One approach is to formulate SAT formulas as instances of the 0-1 integer 
linear programming (ILP) problem. 

Another approach is to minimize the objective function JV(x), the number ot 
unsatisfiable clauses, subject to a set of constraints, as follows [535, 537]: 

77» 

(4.10) minx€{0,1}n    iV(x)=^Ci(x) 
i=l 

subject to      Ci(x)=0   Vt £ {1,2,.. -,m}. 

A formulation based on DNF can be defined similarly. 
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This formulation uses additional constraints to guide the search. The violated 
constraints provide another mechanism to bring the search out of a local minimum. 
This formulation is used in a Lagrange multiplier-based method to solve the SAT 
problem (see Section 8.7 and [535, 537]). 

Continuous Formulations. In formulating a discrete instance of SAT in 
continuous space, we transform discrete variables in the original formula into con- 
tinuous variables in such a way that solutions to the continuous problem are binary 
solutions to the original formula. Such a transformation is potentially beneficial 
because an objective in continuous space may "smooth out" some infeasible solu- 
tions, leading to a smaller number of local minima explored. In the following, we 
show two such formulations. 

(a) Continuous Unconstrained Formulations. There are many possible formu- 
lations in this category. A simple formulation, UniSAT (Universal SAT Problem 
Models) [207, 211, 210, 209], suggests: 

m 

(4.11) y
i^i

£
n„/(y) = Z]c'(y)' 

where 
n 

(4.12) Ci(y)    =    HqiAvj) 
i=i 

{jj/j - T\ if Xj in d 
\yj+F\ iixjinCi 
1 otherwise 

where T and F are positive constants. 
Two special formulations to (4.13) exist. In the UniSAT5 model [210, 217] 

{\yj — lj if Xj is in C, 
\Vj + l\ H Xj is in d 
1 otherwise 

and in the £/hiS4T7model [210, 217]: 

{(yj - l)2 if Xj is in C; 
(yj + l)2 if £j is in d 
1 otherwise 

Values of y that make /(y) = 0 are solutions to the original formula in (1.1). 
UniSAT5 can be solved with efficient, discrete, greedy local search algorithms (Sec- 
tion 8 and [217]). UniSAT! requires computationally expensive continuous opti- 
mization algorithms, rendering them applicable to only small formulas (Section 8 
and [217, 227]). 

(b) Continuous Constrained Formulations. This generally involves a heuristic 
objective function that measures the quality of the solution obtained (such as the 
number of clauses satisfied). One formulation similar to (4.11) is as follows. 

771 

(4.16) minye£,      f{y) = J2Ci^ 

subject to     Ci(y)=0   Vi 6 {1,2,. ..,m} 
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Unconstrained 

Parallel 

Discrete  .*- 

Sequential 

Continuous 

Constrained 

FIGURE 2. The algorithm space is a unified framework for discrete 
search algorithms and continuous optimization algorithms. The 
octants represent eight basic classes of algorithms. 

where Cj(y) is defined in (4.12). 
The key in this approach lies in the transformation. When it does not smooth 

out local minima in the discrete space or when solution density is low, continuous 
methods are much more computationally expensive to apply than discrete methods. 

Since (4.16) is a continuous constrained optimization problem with a nonlin- 
ear objective function and nonlinear constraints, we can apply existing Lagrange- 
multiplier methods to solve it. Our experience is that a Lagrangian transformation 
does not reduce the number of local minima, and continuous Lagrangian methods 
are at least an order-of-magnitude more expensive to apply than the corresponding 
discrete algorithms [80]. 

4.2. The Algorithm Space. Discrete search algorithms relate to continuous 
optimization methods in operations research. Many discrete search problems can 
be solved with numerical algorithms in the real space. A unified framework for 
search and optimization would shed light on developing efficient algorithms for a 
search problem. Figure 2 shows a typical algorithm space that unifies a variety of 
search and optimization algorithms in terms of variable domain, constraint used, 
and parallelism in the algorithms [217]. 

Satisfiability is expressed with discrete variables, but some algorithms do their 
calculations with continuous variables. This leads to the discrete-continuous axis in 
the space. Satisfiability has a set of constraints that must be satisfied exactly, but 
some procedures (e.g., local search) consider changes in variable values in clauses 
that do not satisfy the constraints (typically, these algorithms assign some cost to 
non-satisfying constraints and then look for the least-cost solution). This defines 
the vertical axis in Figure 2 showing constraint characteristics in the algorithm 
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Unconstrained 

local 
search 

Discrete ♦. 

consistency 
checking 

unconstrained 
optimization 

.». Continuous 

linear 
programming 

Constrained 

FIGURE 3. A 2-dimensional cross section of the algorithm space 
cut at the sequential side. It indicates a unified framework for some 
discrete search algorithms and continuous optimization techniques 
for solving SAT. 

space. Most SAT algorithms are sequential, while some have been implemented 
in parallel. A third axis indicating parallelism in the algorithms is added in the 
algorithm space. Following the three axes, the algorithm space is divided into eight 
octants, representing the four sequential algorithm classes, i.e., discrete constrained 
algorithms, discrete unconstrained algorithms, continuous constrained algorithms, 
and continuous unconstrained algorithms, and four parallel algorithm classes, i.e., 
parallel discrete constrained algorithms, parallel discrete unconstrained algorithms, 
parallel continuous constrained algorithms, and parallel continuous unconstrained 
algorithms. 

Figure 3 gives some typical examples for the four sequential classes of SAT 
algorithms in the space In the discrete search space (left half of Figure 3), vari- 
ables, values, constraints, and the objective functions are defined with discrete 
values. If one handles a discrete search problem with consistency checking or con- 
straint resolution, the approach belongs to the class of discrete constrained meth- 
ods [226, 358, 381, 539]. Alternatively, one can formulate the constraints into 
an objective function and minimize the objective function without looking at any 
problem constraints. Algorithms in this category are usually called the discrete, 
unconstrained methods such as local search procedure. [211, 212, 400, 484, 488]. 

In the continuous search space (right half of Figure 3), variables, values, con- 
straints, and objective functions are defined quantitatively with real values. If one 
solves a continuous optimization problem with explicit constraints, one uses contin- 
uous constrained methods, such as constrained minimization, primal methods, and 
cutting plane methods [356]. If the problem constraints are incorporated into an 
objective function, then the problem is transformed into an unconstrained one. The 
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Unconstrained 

Discrete  -»_ 

Incomplate 

Complete 

Continuous 

Constrained 

FIGURE 4. An algorithm space incorporating algorithm complete- 
ness for solving SAT. Each octant represents one class of SAT al- 
gorithms. 

latter can be solved by the continuous unconstrained methods, such as the descent 
methods, conjugate direction methods, and Newton methods [217, 216, 356]. 

From an operations research point of view, most discrete search algorithms 
have continuous optimization versions, and most constrained search methods have 
unconstrained counterparts. For instance, discrete consistency algorithms are con- 
strained algorithms. If we formulate the amount of "inconsistency" into an objec- 
tive function, a local search method can often be used to solve an input efficiently. 
Furthermore, local search works in discrete search space. By extending a search 
problem into a real search space, constrained and unconstrained global optimization 
algorithms can be developed to solve SAT [35, 216, 217, 257, 284, 283]. 

The algorithm space provides a unified and global perspective on the develop- 
ment of search and optimization algorithms for solving SAT. In general, for a given 
instance of a search problem if one can find an algorithm in one octant, then one 
could possibly find some closely related algorithms in other octants. In the left two 
quadrants in Figure 3, for example, once we had consistency algorithms and local 
search algorithms for solving SAT, it would be natural to think about unconstrained 
optimization algorithms for solving SAT in the right two quadrants — something 
must be put there to meet the natural symmetry. This was the original incentive 
to develop unconstrained optimization algorithms for solving SAT [217]. 

There are other ways of looking at a variety of SAT algorithms. A different 
algorithm space for SAT that incorporates algorithm completeness was given m 
[217] (see Figure 4). 

4.3. Basic SAT Algorithm Classes. Following the algorithm space, a num- 
ber of major SAT algorithm classes can be identified. They are given in Figure 5 
in chronological order.  Most existing SAT algorithms can be grouped into these 
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Discrete   < 

Constrained   < 

Unconstrained   < 

Continuous   < 

1960: Davis-Putnam (DP) algorithm [118] 
1965: Resolution [446] 
1971: Consistency algorithms [95, 206, 270, 538] 
1978: Loveland's Davis-Putnam (DPL) [117, 354] 
1986: Parallel consistency chips [206, 224, 225] 
1986: Binary decision diagrams (BDD) [17, 59] 
1988: Chip and conquer [192] 
1990: DPL plus heuristic (DPLH) [283] 
1989: Local search & backtracking [212] 
1993: Backtracking and probing [430] 
1994: Parallel DP algorithm [38] 
1994: Matrix inequality system [509] 
1996: CSAT [151] 

1987: Randomized Local search (SAT1) [207, 212] 
1987: Parallel local search (SAT1.6) [207, 212] 
1988: Local search for n-queen [206, 481, 482] 
1990: Unison algorithm and hardware [489, 490] 
1991: Local search complexity [220, 400] 
1991: Local search for 2-SAT [399] 
1992: Local search with traps (SAT1.5) [211, 212] 
1992: Greedy local search - GSAT [469] 

Constrained   < 

1986: Branch-and-bound (APEX) [35] 
1988: Programming models [35, 284] 
1988: Cutting plane [258, 256] 
1989: Branch-and-cut [259] 
1989: Interior point method [301, 299] 

Unconstrained   < 

1987: UniSAT models [207, 210, 217] 
1987: Global optimization (SAT6) [207, 217] 
1989: Neural net models [290, 75] 
1990: Global optimization L backtracking [217] 
1991: SAT14 algorithms [217] 

FIGURE 5. Some typical algorithms for the SAT problem. 

categories. 
• Discrete, constrained algorithms. Algorithms in this category treat a SAT 

formula as an instance of a constrained decision problem, applying discrete 
search and inference procedures to determine a solution. One straightfor- 
ward way to solve an instance of SAT is to enumerate all possible truth 
assignments and check to see if one satisfies the formula. Many improved 
techniques, such as consistency algorithms [226, 358], backtracking algo- 
rithms [34, 53, 64, 326, 422], term-rewriting [130, 267], production sys- 
tem [479], multi-valued logic [475], Binary Decision Diagrams [59, 17], chip 
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and conquer [192], resolution and regular resolution [195, 354, 394, 446, 
511, 522, 546], independent set algorithm [280], and matrix inequality 
system [509], have been proposed. 

Many of the discrete constrained algorithms eliminate one variable at a 
time. This can be done either by making repeated use of resolution, as was 
done in the original version of the Davis-Putnam (DP) procedure [118], or 
by assigning some variable each possible value and generating a sub-formula 
for each value, as was done in Loveland's modification to the DP procedure 
[117, 354]. Resolution generates only one new formula, but in the worst 
case the number of clauses in that new formula will be proportional to the 
square of the number of clauses in the original formula. Assigning values to 
a variable (often called searching) generates two new formulas. For random 
formulas, resolution methods are fast when the number of clauses is small 
compared to the number of values [166, 86], while search methods are fast 
except when the number of clauses is such that the expected number of 
solutions is near one [430]. The two approaches can be combined, using 
resolution on some variables and search on others. 

Other specific algorithms using these principles include simplified DP 
algorithms [181, 203, 427], and a simplified DP algorithm with strict or- 
dering of variables [268]. The DP algorithm improved in certain aspects 
over Gilmore's proof method [197]. Analyses of SAT algorithms often con- 
centrates on algorithms that are simple because it is difficult to do a correct 
analysis of the best algorithms. Under those conditions where simple algo- 
rithms are fast, related practical algorithms are also fast. (It is difficult to 
tell whether a practical algorithm is slow under conditions that make the 
corresponding simplified algorithm slow.) 

A number of special SAT problems, such as 2-satisfiability and Horn 
clauses, are solvable in polynomial time [5, 101, 394]. There are several 
linear time algorithms [18, 155] and polynomial time algorithms [399, 459] 
existing. 
Discrete, unconstrained algorithms. In this approach, the number of unsatis- 
fiable CNF (or satisfiable DNF) clauses is formulated as the value of the ob- 
jective function, transforming the SAT formula into a discrete, unconstrained 
minimization problem to the objective function. Local search is a major class 
of discrete, unconstrained search methods [211, 212, 226, 220, 400, 469]. 
It can be used to solve the transformed formula (see Section 7). 

> Constrained programming algorithms. Methods in this class were developed 
based on the fact that CNF on DNF formulas can be transformed to instances 
of Integer Programming, and possibly solved using Linear Programming re- 
laxations [35, 257, 258, 284, 301, 299, 398, 545]. Many approaches, 
including branch-and-bound [35], cutting-plane [258, 256], branch-and-cut 
[259], interior-point [301, 299], and improved interior-point [476], have 
been proposed to solve the integer program representing the inference prob- 
lem. Researchers found integer programming methods faster than resolution 
for certain classes of problems, although these methods do not possess a 
robust convergence property and often fail to solve hard instances of satis- 
fiability [35, 257, 258, 284, 301, 299]. 
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Discrete   < 

Constrained   < 

1983: Parallel CLP algorithms [514, 369] 
1986: Parallel DRA chips [206, 224, 225] 
1987: Parallel DP algorithm [87] 
1988: Parallel AC algorithms [458] 
1988: Parallel CSP architectures [206, 225] 
1990: Unison algorithm and hardware [489, 490] 
1992: Vectorized DP algorithm [157] 
1994: MIMD DP algorithm [38] 

Unconstrained   < 

1987: CNF local search [207, 212] 
1987: DNF local search [207, 217] 
1987: Parallel local search [207, 212] 
1991: Discrete aß relaxation [208] 
1993: Multiprocessor local search [487, 486] 

Constrained   { 1989: Interior point method [301, 299] 

Continuous   < 
Unconstrained   < 

1987: UniSAT models [207, 217] 
1987: Global optimization (SAT6) [207, 217] 
1991: Continuous aß relaxation [208] 
1991: SAT14 algorithms [217] 
1991: Parallel global optimization [210, 217] 
1992: Neurocomputing [218] 

FIGURE 6. Some parallel SAT/CSP algorithms. 

• Unconstrained, global optimization algorithms. Special models have been 
formulated to transform a discrete formula on Boolean space {0, l}n (a de- 
cision problem) into an unconstrained UniSAT problem on real space En (an 
unconstrained global optimization problem). The transformed formulas can 
be solved by many existing global optimization methods [207, 211, 210, 
217, 226] (see Section 8). 

4.4. Parallel SAT Algorithms. In practice, most sequential SAT algorithms 
can be mapped onto parallel computer systems, resulting in parallel SAT algorithms 
[218]. A speedup greater than the number of processors sometimes occurs because 
of correlations among variable settings that lead to solutions [383, 338]. Accord- 
ingly, as given in Figure 6, there are four classes of parallel algorithms for solving 
SAT. 

• Parallel, discrete, constrained algorithms. Many discrete, constrained SAT/CSP 
algorithms have been implemented in parallel algorithms or put on special- 
purpose, hardware VLSI architectures. These include parallel consistent la- 
beling algorithms [514, 369], parallel discrete relaxation (DRA) chips [224, 
206, 225], parallel arc consistency (PAC) algorithms [458], parallel con- 
strained search architectures [206, 225], parallel Unison algorithms [489], 
parallel Unison architectures [490], parallel DP algorithms [38, 87, 157], 
and parallel logical programming languages [99, 350, 529, 530, 531]. 
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1987: CRAY [457] 
1988: BBN butterfly plus [456] 
1988: Connection machine [103] 
1989: KORBX vector computer [301, 299] 
1992: ETA10Q Vector computer [157] 
1994: INMOS Transputer [38] 

1980: Analog processor [371] 
1986: DRA1 architectures [317, 224] 

1986: DRA architectures [206, 224, 225] 
1986: mDRA architectures 
1987: CSP architectures [206] 
1987: mCSP architectures [206] 
1988: DRA model architecture [103] 
1989: DRA model architecture [349] 
1990:  Unison architectures [489, 490] 

FIGURE 7. Computer architectures used for running SAT/CSP algorithms. 
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• ' Parallel, discrete, unconstrained algorithms. A number of discrete local op- 
timization algorithms were implemented on parallel computing machines. 
These include CNF local search [207, 212], DNF local search [207, 217], 
parallel local search [207, 212], and multiprocessor local search [487, 486]. 
A new aß relaxation technique was developed in a parallel and distributed 
environment [208]. 

• Parallel, constrained programming algorithms. Kamath et dl. implemented 
an interior point zero-one integer programming algorithm on a KORBX(R) 
parallel/vector computer [301, 299]. 

• Parallel, unconstrained, global optimization algorithms. Several of these 
algorithms have been implemented: UniSAT models [207, 217], parallel, 
continuous aß relaxation [208], and parallel global optimization algorithms 

[210, 217]. 

Computer architectures affect the data structures, implementation details, and 
thus the performance of SAT algorithms. A variety of computer systems have 
been used for running SAT algorithms (Figure 7). Most early studies of CSP/SAT 
algorithms were performed on sequential computers. Recent work has been concen- 
trated on parallel programming on multiprocessors. McCall et al. [369, 514] sim- 
ulated an 8-processor architecture with various system, topology and performance 
criteria for the forward checking CSP algorithm. Samal implemented several paral- 
lel AC algorithms on a CRAY computer [457] and an 18-node BBN Butterfly Plus 
MIMD, shared-memory, homogeneous parallel processor [456]. Cooper and Swain 
implemented parallel AC algorithms on a Connection Machine [103]. Kamath and 
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Karmarkar et al. implemented an interior point zero-one integer programming al- 
gorithm for SAT on a KORBX(R) parallel/vector computer [301, 299]. Recently, 
Fang and Chen implemented a vectorized DP algorithm on an ETA10Q vector com- 
puter [157]. Speckenmeyer and Böhm have experimented with the parallelization 
of variants of the Davis-Putnam-Loveland (DPL) procedure on a message based 
MIMD Transputer system built with 320 (INMOS T800/4MB) processors [38]. 
In their implementation, for some small k, each of 2k processors solves a formula 
arising at depth A: of a DPL search tree, and computation ceases as soon as one 
processor reports that its formula is satisfiable. Speckenmeyer noticed that the 
time to completion was usually less than JV/2* where N is the time taken by the 
serial version [38]. 

Research works continue by building special-purpose VLSI architectures to 
speed up SAT/CSP computations. For an n-variable and m-value instance of CSP, 
Wang and Gu [540, 541] gave an 0(n2dr) time parallel DRA2 algorithm and 
an SIMD DRA2 architecture. Furthermore, Gu and Wang [224] gave an 0(n2d) 
time parallel DRA3 algorithm and a dynamic DRA3 architecture for solving gen- 
eral DRA problems. Later, Gu and Wang [206, 225] developed an 0{nd) time, 
massively parallel DRA5 algorithm and a parallel DRA5 VLSI architecture. For 
problems of practical interest, parallel DRA algorithms running on special-purpose 
VLSI architectures offer many orders of magnitude in performance improvement 
over sequential algorithms. 

Recently, Sosic, Gu, and Johnson have developed a number of parallel algo- 
rithms and architectures for differential, non-clausal inference of SAT formulas 
[489, 490]. 

An extreme example of parallel processing is to compute using chemistry with 
DNA molecules. This would appear to lead a factor of about 1023 degrees of 
parallelism with a slow down of perhaps 1010 in the time for computation steps, but 
this approach has not been investigated in enough detail to determine its practical 
limitations [3, 352]. This SAT evaluation approach is both parallel and random 
— if it says you have a solution then definitely you do, if it says you do not then 
probably you do not. 

4.5. Algorithm Categories. Some SAT algorithms are complete (they def- 
initely determine whether an input has a solution or does not have one) [59, 
118, 117, 354, 446], while others are incomplete (they sometimes determine 
whether or not the input has a solution, but in other cases they cannot find one) 
[212, 217, 299, 399]. 

Most incomplete algorithms find one solution (or perhaps several solutions) in 
favorable cases, but give up or do not terminate in other cases. In such cases one 
does not know whether the input has no solution or the algorithm did not search 
hard enough. Some incomplete algorithms can verify that a formula has no solution 
but can not find one if at least one solution exists. Such is the case for incomplete 
algorithms that check for patterns that imply unsatisfiability. In the strict sense 
of the word algorithm, incomplete algorithms are not algorithms at all, but such 
procedures are of particular interest for inputs that are so difficult that a complete 
algorithm cannot solve them in reasonable time. 

Complete algorithms can perform one of the following actions: (1) determine 
whether or not a solution exists, (2) give the variable settings for one solution, 
(3) find all solutions or an optimal solution, (4) prove that there is no solution. 
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Algorithms of the first type would be of theoretical interest only were it not for the 
fact that any such algorithm can be modified, with little loss of efficiency, to give 
an algorithm of the second type. Algorithms of the third type are needed when 
there is some measure of the solution quality, and the optimal solution is sought or 
when the overall problem has constraints in addition to those of the SAT instance. 
The algorithms are essential to many important practical applications that are 
NP-hard in nature. Recently, Major et. al. used SAT to precede a program to 
calculate chemical interaction energies to predict RNA folding [359]. Gu and Puri 
developed an efficient complete SAT algorithm for asynchronous computer circuit 
design, aiming at producing the minimal circuit structure [223, 435]. Incomplete 
algorithms cannot optimize solution quality, playing little role in solving practical 
optimization problems. 

Requiring a program to produce each solution in explicit form ensures that 
the worst-case time will be exponential whether or not P = NP (because some 
inputs have an exponential number of solutions). An alternative is to give the 
solutions in some compressed form. For example, some algorithms implicitly list 
all solutions by giving cylinders of solutions, i.e., the settings of some variables 
with the understanding that the remaining variables are don't cares which can have 
any value. For some formulas, using this approach to represent all solutions is 
much more compact than an explicit representation [64, 373]. Binary Decision 
Diagrams (BDD) are a more sophisticated and compact way to represent the set of 
all solutions [59, 17]. Some instances of SAT, however, have a structure such that 
it is faster to generate the solution to various subsets of the constraints (depending 
on a subset of the variables) and then test whether those various solution sets have 
anything in common rather than try to solve the entire formula at once. This 
type of SAT algorithm shows greater efficiency improvements for certain practical 
engineering design problems [436]. 

The techniques used in complete SAT algorithms can usually be adapted to 
provide exact solutions to optimization problems. The techniques used in incom- 
plete SAT algorithms can usually be adapted to provide approximate solutions to 
optimizations problems. They normally lead to algorithms that produce low (but 
not necessarily the lowest) value of the function. 

For random sets of formulas, the probability that a particular formula has at 
least one solution is perhaps the most important parameter for determining how 
difficult the set will be for a particular algorithm. The best known algorithms have 
difficulty when the probability is near 0.5, but are fast when the probability is close 
to 0 or 1. We use formulas generated from the 3-SAT model as an example. Figure 
8 shows, for 50 variables, the real execution results of the DP algorithm for 100 to 
500 clauses. The computing time used by a program for the DP algorithm ([118, 
117, 354]) is shown for the 3-SAT model (solid line) and the average 3-SAT model 
(dotted line) [207, 212, 380, 109]. Random formulas generated in the left region 
are usually satisfiable, and the procedure is fast. Random formulas in the right 
region are usually unsatisfiable, and the procedure is fast. For random formulas in 
the middle, many are satisfiable and many are unsatisfiable; the procedure is slow. 
Because the DP algorithm is a complete algorithm, it is able to verify satisfiability 
and unsatisfiability. So it gives results for random formulas in all three regions. 

The results of the DP algorithm may not hold for a different SAT algorithm. 
A local search may often find a solution for a satisfiable CNF much more quickly 
than the DP algorithm but does not always verify satisfiability and cannot prove 
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FIGURE 8. Computing time for the exact and the average 3-SAT 
models (with 50 variables) on a SUN SPARC 1 workstation. The 
horizontal axis is measured by m or m/n. 

unsatisfiability. In particular, it gives no answer if a CNF formula is not satisfiable. 
Thus, for most formulas in the peak region and nearly all formulas in the right 
region, a local search algorithm will not terminate in a reasonable amount of time. 

4.6. Performance Evaluation. The performance of an algorithm can be de- 
termined experimentally or analytically. It is feasible to do experimental studies 
with typical or random formulas, but not with worst-case formulas (there are too 
many formulas of a given size to experimentally determine which one leads to the 
worst-case time). It is feasible to do analytical studies with random or worst-case 
formulas but not with typical formulas (typical sets of formulas seldom have a 
mathematical structure suitable for analysis). 

Experimental studies are sometimes inconclusive because they consider a rela- 
tively small number of input possibilities. Such restrictions are often forced because 
the space of likely input formulas, and even the size of such formulas, is so large. 
Analytical studies are intended to determine performance over broad families of in- 
puts where each family typically represents a class of formulas of a particular size. 
However, such studies have the drawback that only the simplest of algorithms can 
be analyzed. To compensate for this, several features of a complex algorithm can 
be removed, leaving a rather simple, more analyzable one. The simplified algorithm 
usually contains one or two simple techniques, such as the unit-clause-rule, or the 
pure-literal-rule. An analytical result on the simplified algorithm provides a bound 
on the performance of the complex algorithm, and this bound is sometimes suffi- 
cient to understand the behavior of the complex algorithm. Such an approach has 
the following side benefit: analytical studies can suggest which simple techniques 
should be included in practical algorithms. In fact, most of the 6 prize winners of 
the 1991 SAT contest were associated with analytical studies of SAT algorithms 
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[69, 70]. The two top winners were associated with both experimental and analyt- 
ical'studies of SAT algorithms. The analytical studies of SAT algorithms involve 
the following. 

1. Worst-Case Studies. 

Unless P = NP, all SAT algorithms have a worst-case time that is superpoly- 
nomial in the input size [101]. A number of studies have concentrated on the 
worst-case analysis of variable setting algorithms for solving SAT [192, 382, 318]. 

2. Probabilistic Studies. 

Since the typical performance of many satisfiability algorithms is much better 
than any proven worst-case results, there is considerable interest in evaluating the 
probabilistic performance of these algorithms. Such studies use some model for 
generating random formulas and then calculate the performance of algorithms on 
these formulas. The two most widely used measures of performance are average 
time and probabilistic time. 

Average time is a weighted average of the time (or some related measure, such 
as the number of nodes) to solve a given sample of formulas. An algorithm must 
solve each formula for the average to be defined. In probabilistic time studies, an 
algorithm is given a deadline (usually specified as a polynomial in the length of 
input formulas), and one studies the fraction of formulas that are solved within 
the deadline. Probabilistic time studies can be performed on algorithms which give 
up on some fraction of the formulas so long as that fraction is less than the goal 
fraction. 

For incomplete algorithms, the average time is not defined so only the fraction 
of inputs solved can be studied. One can also use various hybrid measures, such as 
the average time used to solve the easiest 90 percent of the inputs. 

The literature contains a number of studies of the average time and probabilistic 
time performance of certain SAT algorithms [53, 168, 414, 167, 201, 202, 203, 
268, 421, 429, 424]. Despite the worst-case complexity of SAT, algorithms and 
heuristics with polynomial average time complexities have been reported [82, 83, 
165, 422, 426, 427, 428, 549]. This subject is treated in more detail in Section 12. 

3. Number of Solutions. 

Some researchers investigated the number of solutions of random SAT formulas. 
Extending Iwama's work [280] Dubois gave a combinatorial formula computing the 
number of solutions of any set of clauses [148]. Dubois and Carlier also studied 
the mathematical expectation of the number of solutions for a probabilistic model 

[149]. 
' During the past two decades, many performance studies were performed through 

sampling techniques [311, 421, 498],1 experimental simulations [54, 191, 240], 

iKnuth [311] first showed how to measure the size of a backtrack tree by repeatedly following 
random paths from the root. Purdom [421] gave a modified version of Knuth's algorithm which 
greatly increases the efficiency of Knuth's method by occasionally following more than one path 
from a node. Stone and Stone [498] presented a variant of the algorithms of Knuth and Purdom 
for estimating the size of the unvisited portion from the statistics of the visited portion. 
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analytical studies [53, 176, 177, 429, 422, 426, 497], as well as the combined 
effort of the above approaches [191, 265, 311, 421, 497]. 

5. SAT Input Models 

In this section, we describe several basic SAT input models and their charac- 
teristics. 

5.1. Random Input Models. The running time of a SAT algorithm depends 
on the type of input being solved. The following SAT input models are often used 
to generate a variety of input types. 

• Hardest formulas. Generate that formula that is the most difficult for the 
algorithm being measured. This approach is often used for analytical studies. 
There are too many possible formulas to use this approach in experimental 
studies. Bugrara and Brown [65] reported the effects these minor variations 
have on the average time needed by the simple backtracking algorithm. 

Experimental studies sometimes include results for the hardest formulas 
from the set of formulas tested, but such results are quite different from what 
the results would be if the entire set of possible formulas had been tested. 

Most analytical studies use the following two basic models to generate random 
CNF formulas. Each model has several variations depending on whether identical 
clauses are permitted, whether a variable and its negation can occur in a clause, 
etc. 

• The /-SAT model. In the /-SAT model, a randomly generated CNF for- 
mula consists of m independently generated random clauses. Each clause 
is chosen uniformly from the set of all possible clauses of exactly / literals 
that can be composed from a variable set X = {xi,... ,x„} such that no 
two literals are equal or complementary. The number of possible clauses is 
2'("). This model is sometimes called the fixed-clause-length model. Similar 
models were used in [53, 82, 83, 168, 414, 212, 217, 380, 373, 426]. 

• The average /-SAT model. In the average /-SAT model, a randomly gen- 
erated CNF formula consists of m independently generated random clauses. 
In each clause, each of n variables occurs positively with probability p(l-p), 
negatively with probability p(l - p), both positively and negatively with 
probability p2, not at all with probability (1 -p)2, where p can be a function 
of m and n. The average number of literals in a clause is / = 2pn. This model 
is also called the random-clause-length model. This model and variations 
were used in [165, 166, 203, 211, 212, 217, 258, 259, 301, 299, 476]. 

Most papers use just one model, but the performance of simple backtracking 
has been considered under a number of related models [65]. 

5.2. Hardness. Various SAT algorithms differ greatly in the amount of time 
they need to solve particular inputs. For example, Iwama's algorithm [280] is fast 
for random formulas with lots of solutions and slow for random formulas with few 
solutions, while simple backtracking [428] is fast on formulas with few solutions and 
slow on formulas with many solutions. Therefore, the hard-and-easy distributions 
of SAT formulas depend not only on the inherent property of the SAT input models 
but also on the algorithms used to solve the formulas. Any particular SAT formula 
is easy for some algorithm (for example a table lookup algorithm with that formula 
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FIGURE 9. Percentage of satisfiability for formulas with 50 vari- 
ables generated by the 3-SAT and the average 3-SAT input models, 
respectively. The horizontal axis is measured by m or m/n. 

in its lookup table). Thus, hardness is a property of large sets of formulas rather 
than individual formulas. 

For sets of formulas generated by random models with parameters, the proba- 
bility of finding a solution varies with the parameter settings. Those sets generated 
with parameters set in regions where solutions are going from unlikely to common 
are particularly difficult for all algorithms that have been studied (see Figure 9). 

For random /-SAT formulas fewer literals and larger number of clauses reduce 
the possibility of making all clauses jointly satisfiable. Therefore the computing 
time for random /-SAT formulas increases, up to a point, when m/n increases or 
the number of literals I (/ > 3) in each clause decreases (Figure 8). Inspection of 
Figure 8 reveals a "hump" of difficulty for /-SAT formulas where 50% of the sample 
space is satisfiable, but a "flat" increase in difficulty for random /-SAT formulas in 
a correspondingly similar region of the parameter space. 

5.3. Comparison of Random Input Models. The structural properties 
of random formulas generated by the two input models given above can be quite 
different and this can have a significant impact on the performance of a complete 
SAT algorithm. This significance is felt especially in the region of the parameter 
space for which random formulas are nearly equally likely to be satisfiable or unsat- 
isfiable. Figure 8 shows, for 50 variables, the actual computing time of a complete 
SAT (SJ4T14.11) algorithm2 for random formulas generated from the 3-SAT model 
and the average 3-SAT model [207, 212, 216, 217]. Figure 9 shows the percent 
of random formulas that are satisfiable as a function of formula size for both mod- 
els. For a complete algorithm, the problem instances generated from the average 
3-SAT model is much easier than those generated from the 3-SAT model. It takes 

2SAT14.U  is  a backtracking  algorithm  combined  with  coordinate descent  in  the  real 

space [217]. 
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FIGURE 10. Percentage of satisfiability for two average 3-SAT 
problem models with |C|min = 1 and |C|mi„ = 2 (50 variables), 
respectively. Problem instances generated with smaller length of 
the shortest clauses have much lower percentage of satisfiability. 

a complete algorithm much less computing time to solve formulas generated from 
the average 3-SAT model. 

For an incomplete algorithm such as local search, however, the situation is dif- 
ferent. In Figure 9, for the same number of clauses (i.e., the same m/n values), 
problem instances generated from the average 3-SAT model have much lower per- 
centage of satisfiability (compared to those generated from the 3-SAT model). The 
sat-and-unsat boundary of the average 3-SAT model is shifted to the left and is 
drawn by smaller m/n values than those for the 3-SAT problem model. For the 
same m/n values, more problem instances generated from the average 3-SAT model 
are unsatisfiable, making it harder for a local search algorithm to handle the av- 
erage 3-SAT problem model. Experimental results confirmed that it took a local 
search algorithm (SAT1 for example) much longer time to solve problem instances 
generated from the average f-SAT models [211]. 

Many factors can affect the property of the random models significantly. For 
the same average 3-SAT problem model even a slight variation to the length of 
the shortest clause in a CNF formula would significantly shift the sat-and-unsat 
boundary. In Figure 10, the solid curve was generated from an average 3-SAT 
model. The length of the shortest clause in the model was 1. The dotted curve was 
generated from the same average 3-SAT model but the length of the shortest clause 
was set to 2. Clearly, shorter clauses enforce tighter constraints and generate much 
harder random instances for the same model. 

Incomplete algorithms that fail on unsatisfiable inputs can be effective only in 
the half-planes m/n < 2'/I for the Z-SAT model and pn > ln(m) for the average 
/-SAT model, where the probability that a random formula is satisfiable is high (see 
Section 12). Incomplete algorithms that fail on satisfiable inputs can be effective 
only in regions complementary to those above. 
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Experience with the best complete algorithms has caused some to conclude the 
following: 

1. Average J-SAT formulas are easy for the best algorithms; 
2. Z-SAT formulas are difficult even for the best algorithms; and 
3. Formulas generated by both models are of similar difficulty when the average 

clause length is large. 

Obviously, there are some conflicts in these beliefs. 

5.4. Practical Input Models. Random input models such as those discussed 
above are suitable for analytical studies of SAT algorithms because they generate 
formulas which possess a symmetry that can be exploited for analysis. Actual 
formulas often have a different structure. Therefore, structured problem instances 
and practical SAT applications are essential to evaluate the performance of SAT 
algorithms. Examples of these are the following: 

• Regular SAT models. Models derived from problems such as graph col- 
oring and n-queens, are used to assess the performance of SAT algorithms 
[210, 217]. 

• Practical applications problems. Models derived from practical appli- 
cation domains, such as integrated circuit design, mobile communications, 
computer architecture and network design, computer-aided manufacturing, 
and real-time scheduling, have a variety of special characteristics (see Section 
14). 

Some experiments strongly suggest that there is little correlation between the 
performance of a SAT algorithm tested through random input models and the per- 
formance of the same algorithm tested through practical input models. Local search 
is faster for some random inputs but can be slower than a complete SAT algorithm 
for problems raised from practical applications. The boundary phenomenon dis- 
cussed in random models is an artifact of some probabilistic models. It has not yet 
been observed in practical input models. 

Practical applications are ultimately the most important, although it is difficult 
for people outside the area of application to understand how important or difficult 
a particular application problem is. It is also difficult to develop a general theory 
on the speed of SAT algorithms on applications. Much research is, therefore, done 
on the more regular source of problems in the hope of better understanding the 
speed that SAT algorithms will have when applied to a wide range of practical 
applications. 

6.  Splitting and Resolution 

Recursive replacement of a formula by one or more other formulas, the solution 
of which implies the solution of the original formula, is an effective paradigm for 
solving CNF formulas. Recursion continues until one or more primitive formulas 
have been generated and solved to determine the satisfiability of the original. One 
way to achieve this is through splitting. 

In splitting, a variable v is selected from a formula, and the formula is replaced 
by one sub-formula for each of two possible truth assignments to v. Each sub- 
formula has all the clauses of the original except those satisfied by the assignment 
to v and otherwise all the literals of the original formula except those falsified by 
the assignment.   Neither sub-formula contains v, and the original formula has a 
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satisfying truth assignment if and only if either sub-formula has one. Splitting 
insures that a search for a solution terminates with a result. 

Another effective paradigm is based on resolution [446]. In resolution, a vari- 
able v is selected and a resolvent (see below) obtained using v is added to the 
original formula. The process is repeated to exhaustion or until an empty clause is 
generated. The original formula is not satisfiable if a;id only if an empty clause is a 
resolvent. Although there is only one new formula on each step, the total number 
of steps (or resolvents) can be extremely large compared to the number of clauses 
in the original formula. Many algorithms that use resolution form all possible re- 
solvents Using a particular variable at one time. When this is done, the original 
clauses that contain the variable and its negation may be dropped. An algorithm 
may use both splitting and resolution. 

Early examples of these approaches are the two forms of the Davis Putnam 
procedure. The original DP procedure used resolution [118] while the revised 
version, i.e., the Davis-Putnam-Loveland (DPL) procedure, used splitting [117, 
354]. Combining splitting with depth-first search in the DPL procedure avoids 
memory explosion that occurs on many inputs when they are solved by the original 
DP procedure. 

Most recursive SAT algorithms use the following primitive conditions to stop 
the recursion: 

1. formulas with an empty clause have no solution. 
2. formulas with no clauses have a solution. 
3. formulas with no variables (i.e., all variables have been assigned values) are 

trivial. 
The following subsections present various SAT algorithms, organized by the 

basic approach that each algorithm takes. Some of these algorithms are much 
simpler than you would want to use in practice but are of interest because it has 
been possible to analyze their running time for random formulas. 

6.1. Resolution. Given two clauses C\ = {v V xx V ... V xh) and C2 = [y V 
?/i V ... V yi2), where all Xi and j/j are distinct, the resolvent of C\ and C2 is the 
clause (xi V ... V xh V yx V ... V yh), that is, the disjunction of C\ and C2 without v 
or v. The resolvent is a logical consequence of the logical and of the pair of clauses. 
Resolution is the process of repeatedly generating resolvents from original clauses 
and previously generated resolvents until either the null clause is derived or until no 
more resolvents can be created [446]. In the former case (a refutation) the formula 
is unsatisfiable and in the latter case it is satisfiable. 

For some formulas the order in which clauses are resolved can have a big effect 
on how much effort is needed to solve it. The worst-case associated with the best 
possible order (the order is selected after the formula is given) has received con- 
siderable study [181, 511, 231, 519]. These studies all used formulas that have 
no solution, but where this is not obvious to the resolution algorithm. Eventually 
a much stronger result was shown: nearly all random /-SAT formulas need expo- 
nential time when the ratio of clauses to variables is above a constant (whose value 
depends on I) [86]. The constant is such that nearly all of the formulas in this set 
have no solution. 

A number of restrictions and at least one extension to resolution have been 
proposed and applied to CNF formulas. Restrictions aim to shorten the amount of 
time needed to compute a resolution derivation by limiting the number of possible 
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resolvents to choose from at each resolution step. The extension aims to provide 
shorter derivations than possible for resolution alone by adding equivalences which 
offer more clauses on which to resolve. A nice treatment of these refinements can 
be found in [63], Chapter 4. We mention here a few of these. 

Set of Support [548]. Split a given formula into two sets of clauses T\ and 
Ts such that T\ is satisfiable. Permit only resolutions involving one clause either 
in Ts or an appropriate previous resolvent. Set T3 is called the support set. This 
restriction can be useful if a large portion of the given formula is easily determined 

to be satisfiable. 

P- and N-Resolution. If one of the two clauses being resolved has all positive 
literals (resp. negative literals), then the resolution step can be called a P-resolution 
(resp. N-resolution) step. In P-resolution (resp. N-resolution) only P-resolution 
(resp. N-resolution) steps are used. Clearly there is great potential gain in this 
restriction due to the usually low number of possible resolvents to consider at each 
step. However, it has been shown that some formulas solved in polynomial time 
with general resolution require exponential time with N-resolution. 

Linear Resolution. We have linear resolution if every resolution step except 
the first involves the most recently generated resolvent (the other clause can be a 
previous resolvent or a clause in the given formula). Depending on the choice of 
initial clause and previous resolvents it is possible not to complete a refutation. 

Regular Resolutionen]. In every path of a resolution tree no variable is 
eliminated more than once. 

Davis-Putnam Resolution. Once all the resolvents with respect to a partic- 
ular variable have been formed, the clauses of the original formula containing that 
variable can be dropped. Doing this does not change the satisfiability of the given 
formula, but it does change the set of solutions to the extent that the value of that 
variable is no longer relevant. When dropping clauses, it is natural to first form all 
the resolvents for one variable, then all the resolvents for a second variable, and so 
on. When doing resolution in this way, it is easy to find one satisfying assignment 
if the formula is satisfiable. At the next to last step the formula has just one vari- 
able, so each value can be tested to see which one satisfies the formula (perhaps 
both will). Pick a satisfying value and plug it into the formula for the next step, 
converting it into a one variable formula. Solve that formula and proceed in this 
manner until an assignment for all variables is found. 

Extended Resolution [511]. For any pair of variables a, ft in a given formula 
JF, create a variable z not in 7 and append the following expression to T: (z V a) A 
(z V b) A {z V a V b). Judicious use of such extensions can result in polynomial size 
refutations for problems that have no polynomial size refutations without extension. 

The following strategies help reduce the time to compute a resolution derivation. 
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Subsumption. If the literals in one clause are a subset of those in another 
clause, then the smaller clause is said to subsume the larger one. Any assignment 
of values to variables that satisfies the smaller clause also satisfies the larger one, so 
the larger one can be dropped without changing the set of solutions. Subsumption 
is of particular importance in resolution algorithms because resolution tends to 
produce large clauses. 

Pure Literals. A literal is pure if all its occurrences are either all positive 
or all negative. No resolvents can be generated by resolving on a pure literal, but 
all clauses containing a pure literal can be removed without loss. An important 
improvement to the basic resolution algorithm is to first remove clauses containing 
pure literals (before resolving on non-pure literals) [118]. 

Although resolution can be applied to SAT, the main reason for interest in 
resolution is that it can be applied to the more difficult problem of solving sentences 
of first order predicate logic. There is a vast literature on that subject. Bibel has 
a good book on the topic [32]. 

6.2. Backtracking. Backtracking algorithms are based on splitting. During 
each iteration, the procedure selects a variable and generates two sub-formulas 
by assigning the two values, true and false, to the selected variable. In each sub- 
formula, those clauses containing the literal which is true for the variable assignment 
are erased from the formula, and those clauses which contain the literal which is 
false have that literal removed. Backtrack algorithms differ in the way they select 
which variable to set at each iteration. The unit clause rule, the pure literal rule, 
and the smallest clause rule, are three most common ones. We state each algorithm 
informally. 

The flow of control in splitting-based algorithms is often represented by a search 
tree. The root of the tree corresponds to the initial formula. The internal nodes 
of the tree correspond to sub-formulas that cannot be solved directly, whereas the 
leaf nodes correspond to sub-formulas that can be solved directly. The nodes are 
connected with arcs that can be labeled with variable assignments. 

Simple Backtracking [53]. If the formula has an empty clause (a clause 
which always has value false) then exit and report that the formula has no solution. 
If the formula has no variables, then exit and report that the formula has a solution. 
(The current assignment of values to variables is a solution to the original formula.) 
Otherwise, select the first variable that does not yet have a value. Generate two 
sub-formulas by assigning each possible value to the selected variable. Solve the sub- 
formulas recursively. Report a solution if any sub-formula has a solution, otherwise 
report no solution. 

Unit Clause Backtracking [422]. This algorithm is the same as simple 
backtracking except for how variables are selected. If some clause contains only one 
of the unset variables then select that variable and assign it a value that satisfies 
the clause containing it; otherwise, select the first unset variable. 

In practice, this improved variable selection often results in much faster back- 
tracking [34]. 
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Clause Order Backtracking [64]. This algorithm is the same as simple 
backtracking except for how variables are selected. If this setting does not solve 
the formula, then select the first clause that can evaluate to both true and false 
depending on the setting of the unset variables. Select variables from this clause 
until its value is determined. 

By setting only those variables that affect the value of clauses, this algorithm 
sometimes avoids the need to assign values to all the variables. The algorithm 
as stated finds all the solutions, but in a compressed form. The solutions come in 
cylinders, where some variables have the value "don't care." Thus, a single solution 
with unset variables represents the set of solutions obtained by making each possible 
assignment to the unset variables. 

Probe Order Backtracking [430]. This algorithm is the same as simple 
backtracking except for how clauses are selected. Temporarily set all the unset 
variables to some predetermined value. Select the first clause that evaluates to false 
with this setting. Return previously unset variables back to unset and continue as 
in clause order backtracking. 

For practical formulas one should consider adding the following five refinements 
to probe order backtracking: stop the search as soon as one solution is found, 
carefully choose the probing sequence instead of just setting all variables to a fixed 
value [346, 484, 488], probe with several sequences at one time [69, 70], carefully 
select which variable to set [69, 70], use resolution when it does not increase the 
input size [166]. The sixth best prize winning entry in the 1992 SAT competition 
used an improvement on probe order backtracking [70]. 

Franco [165] noticed that a random assignment solves a nonzero fraction of 
the formulas in the average l-SAT model when pn is large compared to Inm. Sim- 
ple uses of that idea does not lead to good average time [430], but combining the 
idea with clause order backtracking leads to probe order backtracking, which is fast 
when pn is above In m. Probe order backtracking appears to have some similarities 
to one method that humans use in problem solving in that it focuses the algorithm's 
attention onto aspects of the problem that are causing difficulty, i.e., setting vari- 
ables that are causing certain clauses to evaluate to false. For the same reason it 
is somewhat similar to some of the incomplete searching algorithms discussed in 

Section 7. 

Shortest Clause Backtracking. This algorithm is the same as clause order 
backtracking except for the clause selected. In this case, select the shortest^ clause. 

The corresponding idea for constraint satisfaction is to first set a variable in 
the most constraining relation. This idea is quite important in practice [34]. 

Jeroslow-Wang [283]. A backtrack search can sometimes be terminated early 
by checking whether the remaining clauses can be solved by a Linear Programming 
relaxation (see Sections 9.2 and 9.3). An implementation of this idea can be expen- 
sive. Jeroslow and Wang have proposed a simpler and effective technique that is 
similar in spirit. The idea is, before splitting, to apply a procedure that iteratively 
chooses the variable and value which, in some sense, maximizes the chance of sat- 
isfying the remaining clauses. The procedure does not backtrack and is, therefore, 
reasonably fast. Assignments determined by the procedure are temporarily added 
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to the current partial truth assignment. If the procedure succeeds in eliminating 
all clauses then the search is terminated and the given formula is satisfiable. Oth- 
erwise, the procedure fails, control is passed to the split, temporary assignments 
are undone, and backtracking resumes. 

The choice of variable and value at each iteration maximizes the weight w(Sij) 

where, for a subset of clauses S, w(S) = Y,ces 2_|C'> and for * e (°> !}> 1 < .7 < n> 
Si,j is the subset of remaining clauses containing variable Vj as a positive literal if 
i = 0 and as a negative literal if i = 1. The length of clause C, denoted \C\ above, 
is the number of literals that are not falsified by the current partial assignment and 
the sum is over clauses that are not satisfied by the current partial assignment. The 
weight given above may be compared to that given by Johnson in [285] (see also, 
Other Non-Backtracking Heuristics below). 

6.3. Backtracking and Resolution. Some algorithms have adapted ideas 
inspired by resolution to splitting algorithms. For example, from the resolution 
view point, pure literals are interesting in that they lead to a single sub-formula 
that is no more complex than the original formula, while from the perspective of 
splitting, pure literals lead to two sub-formulas, but the solutions to the sub-formula 
where the literal has the value false are a subset of the one where the literal has the 
value true. Therefore, the original formula has a solution if and only if the formula 
associated with the true literal does. 

The Pure Literal Rule Algorithm [201]. Select the first variable that does 
not have a value. (If all variables have values, then the current setting is a solution 
if it satisfies all the clauses.) If some value of the selected variable results in all 
clauses that depend on that variable having the value true, then generate one sub- 
formula by assigning the selected variable the value that makes its literals true. 
Otherwise, generate a sub-formula for both values of the selected variable. Solve 
the one or two sub-formulas. 

6.4. Clause Area. A clause with I distinct literals leads to the fraction 1/2' 
of the possible variable settings not being solutions. One can think of the clause as 
blocking out area 1/2' on the Venn diagram for the formula. Iwama showed that 
combining this idea with inclusion-exclusion and careful programming leads to an 
algorithm which runs in polynomial average time when p > y/(\nm)/n [280]. If 
the sum of the area of all clauses is less than 1, then some variable setting leads 
to a solution. This idea works particularly well with shortest-clause backtracking 
since that algorithm tends to eliminate short clauses. See [170] for a probabilistic 
analysis of this idea. No average-time analysis has been done. 

6.5. Improved Techniques for Backtracking. This section considers some 
refinements that can be added to the basic backtracking and resolution techniques. 
Several of these are similar to techniques that have already been discussed. 

Branch Merging. This is complementary to preclusion. Backtracking is 
frequently used on problems such as the n-queens problem where there is a known 
symmetry group for the set of solutions. In such cases many search trees possess 
equivalent branches which can be merged to reduce search effort [34, 544]. The use 
of the symmetry group can greatly speed up finding the solutions. See [72, 73] for 
examples from the field of group theory. Brown, Finklestein, and Purdom [51, 52] 



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 27 

gave additional problems that arise in making the backtracking techniques work 
with a backtracking algorithm which needs to set variables in different orders on 
different branches of the search tree. 

Search Rearrangement. This is also known as most-constrained search or 
nonlexicographic ordering search. When faced with several choices of extending a 
partial solution, it is more efficient to choose the one that offers the fewest alter- 
natives [34]. That is, nodes with fewer successors should be generated early in the 
search tree, and nodes with more successors should be considered later. The ver- 
tical (variable) ordering and horizontal (value) ordering are special cases of search 
rearrangement [54, 176, 422, 426, 429, 498]. The rule used to determine which 
variable to select next is often called the branching rule. Many researchers are 
actively investigating the selection of branching variables in the DP procedures. 
Hooker studied the branching rule and its effect with respect to particular problem 
instances [255]. Böhm and Speckenmeyer experimented with branching effect with 
a parallel DP procedure implemented on an MIMD machine [38]. Boros, Hammer, 
and Kogan developed branching rules that aim at the fastest achievement of q-Horn 
structures [41]. Several particular forms of search rearrangement were discussed in 
Section 6.2. 

Prom 2-SAT to General SAT. In many practical applications, the con- 
straints in the problems are coded as 2-SAT formulas. In SAT problem formulation, 
very frequently in practical applications, many of the constraints will be coded as 
2-SAT clauses. 

An important heuristic to SAT problem solving is to first solve 2-SAT clauses 
with fast polynomial time algorithms. This fast operation can significantly reduce 
the search space. The truth assignment to the rest of the variables can be handled 
with a DP procedure. This idea has been used in SAT solver Stamm [69, 70], 
Gallo and Pretolani's 2-SAT relaxation [69, 70, 419], and Larrabee's algorithm 
[326, 474]. Similar ideas to solving 2-SAT clauses were developed. Eisele's SAT 
solver uses a weighted number of occurrences whereas occurrences in 2-SAT clauses 
count more than other occurrences [69, 70]. Dörre further added a limited amount 
of forward checking to quickly determine 2-SAT formulas in the Eisele-Dörre SAT 
solver [69, 70]. In the SAT contest [69, 70] the winning programs with 2-SAT 
solvers were slightly slower than those without. 

Similar techniques were developed that use Horn-SAT relaxation in satisfiability 
testing [108, 183]. In Crawford's Tableau [108], Horn clauses are separated from 
non Horn clauses. Based on the DPL procedure, Tableau applies in priority the 
unit clause rule and if necessary branches on a variable selected in the non Horn 
clauses using three successive heuristics. 

Backmarking and Backjump. When a failure is observed or detected, the 
algorithm simply records the source of failure and jumps back to the source of 
failure while skipping many irrelevant levels on the search tree [189, 191]. The 
more effective one's search rearrangement is, the less need there is for backjumping. 
Good search orders tend to be associated with the source of failure being one level 

back. 
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Backtracking with Lookahead. A lookahead processor is a preprocessing 
filter that prunes the search space by inconsistency checking [224, 225, 358, 387]. 
Backtracking with lookahead processing is performed by interplaying a depth-first 
tree traversal and a lookahead tree pruning processor that deletes nodes on the 
search tree whose value assignments are inconsistent with those of the partial 
search path. Techniques in this class include partial lookahead, full lookahead 
[224, 225, 240], forward checking [240, 240], network-based heuristics [358, 128], 
and discrete relaxation [224, 225, 310, 448]. 

Backtracking for Proving Non-Existence. Recently, Dubois, Andre, Boufkhad, 
and Carlier proposed a complete SAT algorithm, CSAT [151]. The CSAT was de- 
veloped for the proof of the non-existence of a solution. The algorithm uses a simple 
branching rule and a local processing at the nodes of search trees (to detect further 
search path consistency and make search decision). It performed efficiently on some 
DIMACS benchmarks. 

Intelligent Backtracking. This is performed directly to the variable that 
causes the failure, reducing the effect of thrashing behavior. Methods in this cat- 
egory include dependency-directed backtracking [493, 145], revised dependency- 
directed backtracking [411], simple intelligent backtracking [178], and a number of 
simplifications [56, 119, 120, 121, 123, 125, 190, 240, 449]. 

Freeman [175] recently present an intelligent backtracking algorithm, POSIT, 
for PrOpositional Satlstiability Testbed. In this algorithm he used Mom's heuristic, 
detecting failed literals, and minimizing constant factors to speed up backtracking 
search. 

Some effort was devoted to the development of backtracking-oriented program- 
ming languages, special-purpose computer architectures, and parallel processing 
techniques: 

Macro Expansion. In some applications of backtracking that require rela- 
tively little storage, this method can be used to decrease the running time of the 
program by increasing its storage requirements. The idea is to use macros in as- 
sembly ' nguage in such a way that some work is done at assembly time instead of 
many times at run time. This increases the speed at which nodes are processed in 
the tree [34]. 

Backtrack Programming. Much work has focused on developing a new 
programming language for backtracking search. This includes the sequential3 Pro- 
log programming language [94, 496], Prolog with intelligent backtracking scheme 
[58, 321, 410], and logic programming [247]. 

Special-Purpose Architectures. Special-purpose hardware machines were 
built to prune search space [224, 225, 371], perform backtracking search, and do 
AI computations [528, 529, 531]. 

3There is no backtracking mechanism in parallel Prolog programming languages. 



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 29 

Parallel Processing. Many parallel processing techniques have been devel- 
oped to speed up search computation [23, 99, 528, 341, 532, 342, 340, 249, 
350, 514, 369, 458, 529, 547]. 

Branch and bound. Also known as ordered depth-first search. Select a 
variable. For each possible value of the variable generate a sub-formula and compute 
some quick to compute upper bound on the quality of the solution of the sub- 
formula. Solve recursively all sub-formulas except those that have a cost above that 
of the best solution that has been found so far. Branch and bound is recognized as 
a generalization of many heuristic search procedures such as A", AO*, SSS*, B*, 
alpha-beta, and dynamic programming algorithm [6, 341, 553, 536, 534, 533, 
326, 331, 339, 407, 265, 553, 552, 546, 551]. 

6.6. Some Remarks on Complexity. The worst-case time for all known 
SAT algorithms is exponential in the first power of the input size. The naive 
algorithm that tries every variable setting requires time 2" for n variable formulas. 
For l-SAT, the best known bound on worst-case complexity has been worked down 
from 1.618" [382] to slightly below 1.5" obtained by Schiermeyer [461, 462]. Other 
work on the topic is given in [192]. 

As with other NP-complete problems there are no exponential lower bound 
results for SAT. However, it has been proven that all resolution algorithms need 
time that is exponential in the first power of the input size [231, 86, 519]. No 
such lower bound analyses have been done on splitting-based algorithms. 

For a comprehensive treatment of the complexity of propositional proofs, see a 
recent survey by Urquhart [522]. 

7.  Local Search 

Local search is a major class of discrete, unconstrained optimization proce- 
dures that can be applied to a discrete search space. Such procedures can be used 
to solve SAT by introducing an objective function that counts the number of un- 
satisfiable (CNF) or satisfiable (DNF) clauses and solving to minimize the value of 
this function [207, 211, 212, 220, 400, 469]. 

In this section, we summarize the basic framework, including a search space 
model, four essential components, and present ideas used in the early development 
of local search algorithms for the SAT problem. We then describe randomized 
local search, randomized local search with trap handling, and greedy local search 
in detail. 

7.1. Framework. Local search, or local optimization, is one of the primitive 
forms of continuous optimization applied to a discrete search space. It was one 
of the early techniques proposed to cope with the overwhelming computational 
intractability of NP-hard combinatorial optimization problems. Local search can 
be very efficient in favorable cases. However, when applied to SAT problems, local 
search algorithms only work for formulas that have solutions, and even then there 
is no guarantee that they will work. 

Given a minimization (maximization) problem with objective function / and 
feasible region R, a typical local search procedure requires that, with each solution 
point xfc € R, there is a predefined neighborhood N{xk) C R. Given a current 
solution point x* € R, the set N(xk) is searched for a point xk+i with f(xk+i) < 
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/(xfc) (/(x,t+1) > f(xk))- If such a point exists, it becomes the new current solution 
point, and the process is iterated. Otherwise, x^ is retained as a local optimum with 
respect to iV(xfc). Then, a set of feasible solution points is generated, and each of 
them is "locally" improved within its neighborhood. To apply local search to a 
particular problem, one needs only to specify the neighborhood and the procedure 
for obtaining a feasible starting solution. 

Local search can be efficient for two reasons. First, at the beginning of search, 
a full assignment is assigned to all the variables in the search space. Search efforts 
are focused on a single path in the search space. Second, local search refines for 
improvement within its local neighborhood using a testing for improvement and, 
if there is any improvement, takes an action for improvement. Since the objective 
function has a polynomial number of input numbers, both testing and action can 
be done efficiently. Little effort is needed to generate the next solution point. A 
major weakness of local search is that the algorithm has a tendency to get stuck at 
a locally optimum configuration, i.e., a local minimum. 

Greedy local search pursues only paths where every step leads to an improve- 
ment, but this leads to a procedure that becomes stuck much more often than the 
randomized local search. Greedy local search procedure gets stuck in flat places as 
well as at local minima. 

Many search techniques, such as statistical optimization [74, 464], simulated 
annealing [306], stochastic evolution [454], and conflict minimization [206, 377, 
482, 488], are either local search or variations of local search. For most search 
problems encountered, in terms of computing time and memory space, local search 
often achieves many orders of magnitude of performance improvement over conven- 
tional techniques such as Branch-and-Bound [211, 212, 433, 484, 488]. 

7.2. A Three-Level Search Space Model. A large number of real exper- 
imental data suggest that there are several typical local minimum structures (see 
Figure 11). A valley and a basin are ideal cases that one can find a global minimum 
quickly. Local search and the related heuristics can handle a terrace and a plateau 
without much difficulty. The most difficult situation is a trap where a group of local 
minima is confined in a "well." The search process walks around the set of local 
minima periodically and cannot get away without special mechanism. In general 
there may be many traps in a search problem. The characteristics of a trap are 
closely related to the search algorithm, the objective function used, and the search 
space structure. 

Further observations suggest that a search space may be roughly divided into 
several different levels, depending on the problem structures. A three-level search 
space structure was proposed during the development of the SAT1.5 algorithm (see 
Section 7.7) [211, 222]. An informal example of the model is given in Figure 12. 
In the model, a search space is roughly viewed in three levels: top level, middle 
level, and bottom level. The top level is the upper open portion of the search 
space with smoothing edges. Most optimization algorithms can descend quickly in 
the top level and thus perform quite well. The middle level is the middle portion 
of the search space where there are relatively "big mountain peaks." During the 
descent, the search process may encounter problems and it may have to use some 
tunneling and random heuristics (see Section 7.3) to proceed. The bottom level 
is the bottom portion of the valleys (particular the lowest valley) where there are 
many traps. When local search falls into a trap it may become locked into a loop 
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FIGURE 11. There are a number of local minimum structures. A 
trap is a "well" of local minima and is difficult to deal with. 

of local minima. Most algorithms do not succeed in this stage and have difficulty 
continuing. 

For the SAT problem, with high probability, a greedy local search will fall into 
a trap much more easily. In this case some variables are updated very quickly. The 
related clauses oscillate between the sat and unsat states. The search is limited to 
these states. Without any help, there is little chance of getting out to explore other 
states. 

The above observations suggest to use multiphase search to handle the NP-hard 
problems [211, 214, 222]. That is we may use an open search in the top level, a 
peak search for searching "coarse" peak structures in the middle level, and a trap 
search for tracking "fine" rugged trap surface structures in the valleys. 

The major heuristics used in local search are discussed in the next subsection. 

7.3. Four Components in Local Search. A number of efficient local search 
algorithms for the SAT problem have been developed since 1987. Previous expe- 
rience indicated that the greedy local search strategy alone can not be adapted to 
perform well on SAT formulas. Past lessons showed that the following four com- 
ponents are crucial to the development of an efficient local search algorithm for 
the satisfiability and NP-hard problems. They are: (1) the min-conflict heuristics, 
(2) the best-neighbor heuristics, (3) the random value/variable selection heuristics, 
and (4) the trap handling heuristics. 



32 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAH 

FIGURE 12. An informal example of the three-level search space 
model. A search process would go through an open search in the 
upper open portion of the search space, a peak search in the middle 
portion of the search space, and a trap search in the valley portion 
of the search space. 

1. The Min-Conflict Heuristics. 

Different forms of min-conflict heuristics were proposed during 1985 and 1987 
for solving the SAT and CSP problems [206].4 The min-conflict heuristics aim at 
performing local conflict minimization in Boolean, discrete, and real spaces [451]: 
5 

Min-Conflict Heuristic (Boolean Space) [206]. Multiple values to be 
assigned to a variable are represented by a vector of Boolean labels. Each Boolean 
label, either "1" or "0," indicates the variable's instantiation to a specific value. 
Two labels are conflicting if their values do not satisfy the given constraint. The 
conflicts (due to an assignment) are formulated as a set of objective functions. The 
objective functions are minimized by changing values assigned to the labels. 

Min-Conflict Heuristic (Discrete Space) [206]. Interrelated objects are 
chosen as variables. Two variables are conflicting if their values do not satisfy the 
given constraint. The number of conflicts (due to an assignment) is formulated in 
an objective function. The objective function is iteratively minimized by changing 
values assigned to the variables. 

4In the early days min-conflict was variously called inconsistency removing, inconsistency 
resolution, conflict resolution, enforce local consistency, and local conflict minimization [206]. 
Later, Minton shortened these words into a concise term: min-conflict. 

5The min-conflict heuristics also work in real space (see examples in [209, 210, 217] and 
Section 8). 
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Min-Conflict for SAT [207, 220, 211, 209, 212]. Using inconsistency as 
objective [206], the objective function for the SAT problem gives the number of 
unsatisfied clauses. A CNF is true if and only if the objective function takes the 
global minimum value 0 on the corresponding solution point. 

This objective function is the basis of the design of the SAT1, SAT2, SAT3, 
and GSAT algorithms [211, 209, 220, 212, 469]. 

Performance. The min-conflict heuristics have been applied to solve the SAT 
and CSP problems since 1985 [206, 207, 482, 481, 220, 211]. They showed 
significant performance improvements when compared to traditional backtracking 
search algorithms. The effectiveness of min-conflicts heuristic was further observed 
by Rüssel and Norvig [451], Kumar [319, 320], Johnson [293], Minton et al. [377], 
and Selman et al. [469]. 

2. The Best-Neighbor Heuristics. 

Local search proceeds by taking any feasible solution point that reduces the 
objective function. Among many neighboring feasible solution points, local search 
does not take into account its neighbors' relative performance with respect to the 
objective function. 

Best-Neighbor Heuristic [211, 212, 217]. A greedy algorithm selects the 
best neighbor that yields the minimum value to the objective function and takes 
this best neighbor direction as the descent direction of the objective function. 

In a real search space, continuous optimization algorithms can find the best 
neighbor feasible solution efficiently. A number of local and global optimization 
algorithms have been developed to solve the SAT problem [211, 212, 217]. The 
first version of the GSAT algorithm was proposed as a greedy local search algorithm 

[469]. 

Performance. A greedy local search alone may become stuck at local minima 
much more often and therefore may not be efficient in practice. Therefore, the 
best neighbor heuristic should be used in conjunction with random value/variable 
selection and trap handling heuristics described next. 

3. The Random Value/Variable Heuristics. 

Random value assignment and random variable selection techniques are funda- 
mental to the design of an effective local search algorithm for NP-hard problems 
[226, 215]. 

Random Flip Heuristic [206, 211, 220, 209, 212]: Randomly flip the truth 
values of 1 < k < n variables in the SAT formula. 

This simple heuristic was first implemented in several SAT1 algorithms as local 
handler^) in 1987. It has been proven to be effective in improving the performance 
of greedy local search algorithms [211, 220, 209, 212]. 
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During 1988 to 1990, a similar heuristic, random swap, was used to develop 
local search algorithms for the n-queen problems. It showed significant performance 
improvement for solving large-size n-queen problems [206, 483, 484, 485, 488]. 

Random Value (Assignment) Heuristics [206, 211, 220, 212, 484, 485, 
488]. These include: randomly select a value that generates the minimum number 
of conflicts; randomly select a value if there is a symmetry (i.e., more than one 
value producing the same performance); and randomly select a value for conflict 
minimization when local minima are encountered. 

Random Variable (Selection) Heuristics [206, 211, 220, 212]. There 
are two important heuristics: 

1. Any Variable Heuristic: select any variable randomly. 
2. Bad Variable Heuristic: select a variable from the set of conflicting vari- 

ables randomly. 

The random variable selection heuristic is one of the most important heuristics 
in the design of local search algorithms for NP-hard problems. It was first used 
in the local search solution for the SAT problem [207] and then used for the local 
search solution for the n-queen problems [484]. 

Conflicting variables in the SAT problem contribute to the unsatisfied clauses. 
Accordingly we have: 

Bad Variable Heuristic for the SAT problem [211, 212, 484, 485, 
488, 483, 481]: randomly select a variable in the unsatisfied clauses for conflict 
minimization. 

The bad variable heuristic was first implemented to solve the large size n-queen 
problems during 1988 to 1990 [484, 485, 488, 483, 481] and was implemented in 
the SAT2 algorithm in 1990 [211, 212]. The bad variable heuristic was indepen- 
dently developed by Papadimitriou for the 2-SAT problem in 1991 [399] and was 
used in the WS AT algorithm by Selman et al. in 1994 [472]. 

Partial/Pre- Random Variable Selection Heuristics [206, 211, 220, 
212]. Partial variable random selection makes use of partial or alternating variable 
selection techniques. Variants of partial random selection include partial and alter- 
nating selection of conflicting and non-conflicting variables, a combination of partial 
deterministic and partial random variable selection, partial interleaved selection of 
the different search phases, and partial random selection with meta-heuristic con- 
trol. The simplest selection strategies include: select a variable deterministically 
(randomly) and select another variable randomly for conflict minimization; select a 
variable deterministically (randomly) from the set of conflicting variables and select 
another variable randomly for conflict minimization; select a variable deterministi- 
cally and select another variable randomly from the set of conflicting variables for 
conflict minimization; during certain periods of search, select a variable determinis- 
tically (randomly) and select another variable randomly for conflict minimization; 
during certain periods of search, select a variable deterministically (randomly) from 
the set of conflicting variables and select another variable randomly for conflict min- 
imization; during certain periods of search, select a variable deterministically and 
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select another variable randomly from the set of conflicting variables for conflict 
minimization. 

Partial Random Variable Selection Heuristics for the SAT problem: 
a variable may be selected from the unsatisfied clauses in a random, partially al- 
ternating, partially periodic, or partially interleaving order. 

The partial and pre- random variable selection heuristics were implemented 
in the SAT3 algorithm in 1990 [211, 212] and were used to solve the large size 
n-queen problems around 1990 [484, 485, 488, 483, 481]. A similar heuristic to 
the partial random variable selection, random walk, was developed by Selman, 
Kautz, and Cohen independently in 1994 [472]. 

Performance. Random and partial variable selection heuristics were intro- 
duced in the design of SATl, QS2, QS3, and QS4 algorithms [207, 220, 211, 
212, 482, 484, 485, 488]. They can overcome the weakness of the greedy local 
search algorithms. Compared to greedy local search, they can offer many orders of 
magnitude of performance improvements in terms of computing time, solving hard 
and large satisfiability problems and multi-million n-queens problems in seconds 
[211, 212, 484, 488]. They were used in the design of SAT1.5, SAT2, and SAT3 
algorithms [211, 212]. 

Selman et al. have recently developed and applied a number of random variable 
selection heuristics to improve the performance of the greedy GSAT algorithm 
[472]. 

4. The Trap Handling Heuristics. 

The search is a process of combating local minima. When the search process 
is approaching the final search stage, trap handling heuristics are needed to cope 
with local minima and traps (see Sections 7.2 and 7.7). 

Tunneling Heuristic [220, 212, 542]: Change the value of a variable if it 
does not change the value of the objective function. 

Tunneling Heuristic for the SAT Problem [220, 212, 469]: Flip the 
truth value of a variable if it does not change the value of the objective function 
(see Section 7.6). 

Local Tracking Heuristics [211, 222]. Local tracking heuristics are used to 
track and break local loops (a periodic occurrence of a set of local minima). Several 
frequently used heuristics include: track local loop(s) when falling into a trap; give 
low priority to flip to variables in a local minimum loop; give high priority to flip to 
variables that lead to a new descending direction; lock and release trapping variables 
periodically, adaptively, or statistically; move gently in a trap to handle fine local 
structures; move strongly in a trap to handle coarse local structures; jump out of a 
trap if walking inside it sufficiently long. 

Multiphase Search Heuristics [207, 211, 485, 488, 212, 433, 542, 222]. 
Multiphase heuristics are a part of multispace search heuristics [213, 226, 215]. 
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They have been developed to adapt to the different phases of a search process: per- 
form a poor initial search and then a serious local search for conflict minimization; 
perform a good initial search and then a serious local search for conflict minimiza- 
tion; perform a good initial search, then a rough local search, and a serious local 
search for conflict minimization; perform an initial search, and then a rough local 
search and a serious local search alternatively for conflict minimization; perform a 
rough initial search, then a coarse local search, and finally, a fine local search for 
conflict minimization. 

Multispace Search Heuristics [213, 226, 215]. Structural multispace op- 
erations have been developed that empower a search process with an information 
flux which is derived from a sequence of stepwise structural transformations (see 
Section 11.4). These include multispace scrambling, extradimension transition, 
search space smoothing, multiphase search, local to global passage, tabu search, 
and perturbations. They can disturb the environment of forming local minima and 
facilitate efficient local search when there are many local minima. 

Performance. Trap handling heuristics have significantly improved the search 
efficiency of the SAT1.5 algorithm [211, 212, 222] (see Section 7.7). Multiphase 
and multispace search heuristics have been applied to a variety of practical appli- 
cations and found to be effective [213, 211, 212, 215, 222, 433, 542, 485, 488]. 

7.4. Boolean Local Relaxation. Boolean local relaxation may be viewed 
as a deterministic local search. It was an early inconsistency relaxation technique 
developed for solving the constraint satisfaction and satisfiability problems. For 
a variable having a domain with m values, m Boolean labels are used to indicate 
the variables' instantiation to the particular Boolean values. An assignment may 
produce conflicts which are coded in a set of Boolean objective functions (one for 
each label). The objective function for the z'th variable and fcth label, /,,*, is defined 
as [206] :6 

n     m 

(7.1) fi,q = IJ J2 li<1 A Ci'J (9' P) A ^>' 
j=l p=l 

where Cij(q,p) is a constraint between labels Zj,, and ljiP. Note that the right-hand 
side of Eq. (7.1) is a CNF formula with extended literals. 

The Boolean relaxation is a local conflict minimization process (Figure 13) 
[206]. During each iteration, the algorithm checks each variable for every label and 
iteratively minimizes the objective functions by flipping bits (truth values) assigned 
to the labels: If the objective function does not change, keep it; If the objective 
function reduces, keep the best (update the label) and report the inconsistency 
status globally. The iteration will terminate once the inconsistency signal turns off. 

The Boolean local relaxation algorithm was suitable to VLSI implementation. 
During 1985 to 1988, several parallel algorithms and architectures, such as DRA2, 
DRA3, and DRA5 were implemented to speed up CSP/SAT computations [206, 
224, 541, 225]. Furthermore they were combined with backtracking search for 
CSP/SAT applications [206]. 

6In [206J the objective function was defined for label !;_* directly. 
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procedure DRA() 
boolean inconsistency; 
begin 

inconsistency := TRUE; 
k:=0; 
while inconsistency = TRUE do 
begin 

inconsistency := FALSE; 
for variable i := 1 to n 

for label q := 1 to m 
begin 

f!°+1 := evaluate.objective_function(/,C); 
/* local conflict minimization */ 
if /,*j"1 = fi<q then continue; 
if fig1 < fitq then update label value; 

inconsistency := TRUE; 
end; 

k := k + 1; 
end; 

end; 

FIGURE 13. DRA: A local relaxation algorithm. 

Because of its iterative local conflict minimization and its direct applications 
to SAT/CSP, Boolean local search made itself a predecessor of several early local 
search algorithms for CSP and SAT problems. 

7.5. Constraint Satisfaction, Simulated Annealing, and Complexity 
Study. Early work on constraint satisfaction, simulated annealing, and complexity 
theory contributed significantly to the original development of local search algo- 
rithms for the SAT problem. Four notable early developments are: (1) the SAT1 
algorithms, (2) the n-queen models and algorithms for scheduling applications, (3) 
a simulated annealing algorithm, and (4) a 2-SAT algorithm. 

1. The SAT1 Algorithms. 

Objective functions in DRA algorithms were defined for Boolean labels. Dur- 
ing the late eighties, Gu [206] observed that if the conflicts from all the Boolean 
objective functions were formulated in one objective function, then the global min- 
imum of the objective function would correspond to a conflict-free solution of the 
given CSP problem. Accordingly, the iterative local minimization procedure used 
in the Boolean relaxation would become a local search procedure to minimize the 
objective function. This idea led directly to the early design of SAT1 algorithms 
where the objective function was defined as the number of unsatisfied clauses over 
all the variables [206, 207]. Thus, the global minimum of the objective function 
corresponds to the solution of the SAT problem. Following this, Gu developed a 
number of randomized local search algorithms for the SAT problem. Furthermore 
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efficient heuristics (described in Section 7.3) were developed to improve the perfor- 
mance of the local search algorithms. Due to the important industrial applications 
at that time, the effectiveness of the SAT1 algor-'thms was tested through two CSP 
benchmarks, i.e., the SAT problem and the n-i. .een problems. 

An important industrial application for SAT is VLSI engineering. The SAT1 
algorithm family, the first local search algorithm for SAT, was developed for the- 
oretical study and VLSI applications. During the late eighties, there was little 
progress in the theoretical analysis of the SAT1 algorithms. The SAT1 algorithm 
was applied to VLSI circuit testing and synthesis. All these problems can be for- 
mulated as instances of the SAT problem with additional performance objectives. 
The SAT1 algorithm was found to be efficient for many problems but it was not 
able to handle some other problems since many VLSI design problems are NP-hard. 
There is only one optimum solution in some practical applications. 

Another important application area for the SAT problem is industrial schedul- 
ing. During the late eighties, IBM and NASA were working on a number of impor- 
tant scheduling projects. These applications involved solving large size scheduling 
problems under critical spatial, resource and timing constraints. The scheduling 
problem is well-known as the satisfiability problem since the SAT problem can 
characterize an existing scheduling problem and the constraints completely. Signif- 
icant local search solutions to the scheduling problems were derived from the SAT1 
algorithm family. Due to its abstract CNF formulation, however, the SAT problem 
was not able to provide a descriptive geometric model that was able to demonstrate 
the scheduling operations expressively. 

2. N-Queen Scheduling Models and the QS Algorithms. 

The n-queen problem is a benchmark for constraint satisfaction problem. Dur- 
ing the middle and late eighties, Gu worked on various n-queen problem models for 
combinatorial optimization [206, 226]. He found that, by a remarkable coincidence, 
the n-queen model represents a significant model for scheduling applications. The 
underlying structure of the n-queen problem, represented by a complete constraint 
graph, gives a relational model with fully specified constraints among the multiple 
objects [206]. Variations on the dimension, the objects' relative positions, and the 
weights on the constraints led to a hyper-queen problem model. The hyper-queen 
problem model consisted of a combination of several simple and basic models, in- 
cluding: 

• n—queen problem: the base model. 
• k-n-queen problem:   k n-queen patterns superimposed together.   When 

k = n we have a special case, the n2-queen problem model. 
• m-n-queen problem: the board size is an m by n rectangular. 
• t-n-queen problem:   the queens' placement follows the topological con- 

straints. 
• w-n-queen problem: the constraints from queen to queen are weighted to 

model special constraints. 
• s-n-queen problem: the model requires the shortest queen placement. 

Based on the n-queen, the hyper-queen problem can model the object composition, 
the performance criteria, the spatial, timing, and resource constraints for an existing 
scheduling problem.  This made the n-queen problem a general model for a wide 
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range of industrial scheduling problems having critical performance criteria. By a 
remarkable coincidence, the models of several difficult scheduling projects at that 
time were either the n-queen or the /it/per-queen problems [498]. All of them 
required efficient solutions to the n-queen problems. 

Polynomial time, analytical solutions for the n-queen problem exist but they 
cannot solve the general search problems and have no use in practice [2, 10, 30, 
156, 251, 442]. The scheduling problems modeled by various hyper-queen models 
have specific performance criteria and are known to be NP-hard. When scheduling 
computational tasks to multiprocessors, for example, one can use an s-w-t-m-n- 
queen model. Let m denote the execution time, n the number of processors, and w 
the individual tasks' execution/communication times, the goal is to place the task 
queens onto the m by n board and minimize the longest execution path, following 
the given topological constraints. 

The hyper-queen models freed the original n-queen problem from its puzzle 
game background. Many practical applications of the n-queen and hyper-queen 
models to real world problems have been found. Local search solutions for various 
scheduling applications were developed during the later eighties. 

Following local conflict minimization [206, 224], a QS1 algorithm was devel- 
oped during late 1987 and was implemented during early 1988. It was the first 
local search algorithm developed for the n-queen problem [206, 481, 482, 483]. 
Three improved local search algorithms for the n-queen problem were developed 
during 1988 to 1990 [319, 320, 293, 451]. QS2 is a near linear-time local search 
algorithm with an efficient random variable selection strategy [484]. Q53 is a near 
linear-time local search algorithm with efficient pre- and random variable selection 
and assignment [484]. QS4 is a linear time local search algorithm with efficient 
partial and random variable selection and assignment techniques [485, 488]. Com- 
pared to the first local search algorithm [206], partial and random variable selec- 
tion/assignment heuristics have significantly improved search efficiency by orders of 
magnitude. QS4, for example, was able to solve 3,000,000 queens in a few seconds. 

Three years after releasing the QS1 algorithm, Minton et al. independently 
reported a similar local search algorithm for the n-queen problem [376, 377]. A 
major difference between Minton's algorithms and Sosic and Gu's algorithms was 
that Minton's algorithm was a one dimensional local search without using random 
heuristics. 

3. A Simulated Annealing Algorithm for Max-SAT. 

Motivated by the method of simulated annealing, Hansen and Jaumard [238] 
proposed a steepest ascent, mildest descent algorithm for the maximum satisfia- 
bility (Max-SAT) problem. In this approach, Hansen and Jaumard focused on a 
local change and defined an objective function based on a switching variable and 
its related clauses. The objective function maximizes local compensation for each 
variable which can be used for solving the Max-SAT problem. The objective func- 
tion can not be used for the SAT problem unless another objective function whose 
global minimum corresponds to a solution of the SAT problem is given. Further- 
more, Hansen and Jaumard used local optima checking to handle the local optimum 
and found it by providing additional guidance to the search direction. 

4. Theoretical Study for SAT1 and 2-SAT. 
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During the early ninties, researchers started to work on the theoretical analysis 
of local search algorithms for CSP and SAT problems. In 1991 two theoretical 
studies that focused on the SAT problem were reported. Gu and Gu took three 
algorithms (i.e., SATl.l, SAT1.2, and SAT 1.3) from the SAT1 algorithm family 
and made average time complexity study for the SAT problem [220]. 

During the study of the complexity of a certain natural generalization of SAT, 
Papadimitriou gave a randomized algorithm for the 2-SAT problem [399]. Further- 
more Papadimitriou showed that such a randomized algorithm finds assignments 
for 2-SAT instances in 0(n2) steps with probability approaching one, where n is 
the number of variables. With further extensions [401], in theory, the algorithm 
can be applied to solve the random 3-SAT problems. 

Early on, local search method for the large size n-queen scheduling problem 
attracted great attention in the AI area. This was due to the close relationship 
between CSP and SAT: the SAT problem is a special case of CSP. The n-queen 
problem, on the other hand, is a typical benchmark problem in CSP. If one can find 
an efficient (non-analytical) search algorithm for the n-queen problem, then the 
algorithm can be directly translated to an efficient algorithm for the SAT problem. 

Analytical solutions exist for the n-queen problem with n greater than or equal 
to 4 [10, 156, 251, 442]. They consist of a restricted subset of solutions [10]. If 
one formulates the n-queen problem as a CSP, backtracking can be used to search 
for any general solution. In practice, backtracking search is too slow to solve the n- 
queen problem for n larger than 96 [498]. Thus local search algorithms for solving 
large size n-queen problems become a breakthrough point in this direction. Fol- 
lowing recent work for solving large scale n-queen problems, Selman, Levesque and 
Mitchell reported empirical results of GSAT, a greedy local search algorithm for 
solving SAT [469]. Selman [468] has recently acknowledged that local search solu- 
tions to large-size n-queen problems was "the original impetus" to the development 
of the GSAT algorithm [469]. 

7.6. Randomized Local Search. In this section, we describe the basic struc- 
ture and major components of the randomized local search algorithms for the SAT 
problem. 

Model. Most discrete local search procedures were developed based on a 
discrete, unconstrained optimization model, the SAT1 model [207, 211, 212, 220]. 
In this model, the truth values assigned to the variables are defined as: 

(7.2) x' = {-i 
if the variable has value true 
if the variable has value false 

The objective function, F(x), in the SAT1 model counts the number of unsatisfied 
clauses as its objective value. A CNF is true if and only if F(x) takes the global 
minimum value 0 on the corresponding x. 

Basic Local Search. The SAT1.0 algorithm for the SAT problem is shown in 
Figure 14. It consists of an initialization stage and a search stage. At the beginning 
of search, a SAT formula is generated. An initial random solution is chosen. The 
number of unsatisfiable clauses is computed and is assigned as the value of the 
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procedure SAT 1.0 () 
begin 

/* initialization */ 
get-aJS AT _instance(); 
Xo := select-a_random_initial_point(); 
F(xo) := evaluate_objective_function(xo); 

/* search */ 
k := 0; 
while F(xfc) ^ 0 do 
begin 

for each variable i := 1 to n do 
/* if flip(ii,ii) does not increase F */ 
if testJlip(ii,i7) then 
begin 

Xfc+i := perform_flip(a;i,x7); 
F{xk+i) := evaluate-objective_function(xfc+i); 

end; 
/* random flips */ 
if local then local-handlerQ; 
k:=k + l; 

end; 
end; 

FIGURE 14. SAT1.0: a randomized local search procedure for the 
SAT problem [211, 212, 220]. Random flips are introduced (1) 
to disorder the sequence with which the variables are selected for 
local optimization, and (2) to perturb local search with randomized 
downhill, tunneling, or uphill moves [220, 212]. 

objective function. During each iteration, function testswapQ performs a test to see 
if the objective function would increase. If test.flipQ returns true, a flip operation is 
performed by procedure perform.flipQ. Then function evaluate.objective.function{) 
updates the objective function. 

The procedure terminates when the objective function is reduced to zero, i.e., 
a solution to the given SAT instance is found. In practice, before the objective 
function reduces to zero, the procedure may become stuck at local minima. In 
the SAT1.0 algorithm [211, 220], a simple local handler performing random flips 
was used (Figure 15). This combined the greedy local descent (reducing objective 
function) with the random uphill moves (increasing objective function), improving 
SATl's convergence performance effectively. In the SAT1 algorithm family, one or 
more local handlers were implemented [220, 211, 212]. If the algorithms have 
difficulty to proceed, the algorithms will call the local handlers and use special 
heuristics (see Section 7.3) to improve algorithms' convergence performance. 

The random flips used in the SAT1 algorithms make the order of selecting which 
variable for local examination (i.e., the for loop) trivial [220, 211, 212]. One can 
essentially select any variable randomly for examination during any phase of the 

local search. 
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procedure Local-handler () 
begin 

random select some variable x4's; 
Xjfc-i-i := performJlip(xi's,x7's); 
F(xfc+i) := evaluate.objective_function(xfc+i); 

end: 

FIGURE 15. A simple local handler used in the SAT1 algorithms 
[211, 212, 220]. Random flips or a new random solution were 
applied to the algorithm if (1) F ^ 0 (SAT1.0 algorithm), (2) F > 
0 (SAT1.1 algorithm), (3) F(xk+l) = F(xk) (SAT1.2 algorithm), 
and (4) F > 0 and F(xk+1) = F(xk) (SAT1.3 algorithm) [211, 
212, 220]. 

Random Flips (Noise). If the local search procedure becomes stuck at a 
local minimum, further progress may be achieved by using a noise perturbation to 
change its location in the search space. The effectiveness with which local min- 
ima are handled significantly affects the performance of a local search algorithm. 
Researchers have proposed a number of techniques such as jumping, climbing, an- 
nealing, and indexing to handle local minima [213]. In simulated annealing, a 
search process occasionally moves up rather than down in the search space, with 
large uphill moves being less likely than small ones. The probability of large uphill 
moves is gradually reduced as the search progresses. 

A variety of local handlers have been designed for use in the local search algo- 
rithms [220, 212]. SAT1.0 [207, 220, 211, 212] used a local handler that may 
randomly negate the truth values of one or up to n variables (a new solution point) 
(Figure 15). The basic idea is to generate random exchanges in some current so- 
lution points when the search is stuck at a local minimum. The search accepts a 
modified point as a new current solution not only when the value of the objective 
function is better but also when it is worse [220, 207, 211, 212] (Traditional local 
search such as GSAT used the greedy local descent and restart [469]). This simple 
local handler has effectively improved the convergence performance of the 5.4T1.0 
algorithm. 

Tunneling Heuristic. A local handler and its activating condition(s) have 
significant effect on the performance (running time and average running time) of 
a local search algorithm for the SAT problem. The conditions for activating local 
handlers differ from algorithm to algorithm (see Figure 15). In SATl.i algorithm, 
the local handler is called if the objective function is not zero (an aggressive strat- 
egy) [220, 212]. In SAT1.2 algorithm, the local handler is called if the objective 
function does not increase [220, 212]. In SAT1.S algorithm, the local handler is 
called if the objective function does not increase or the objective function is greater 
than zero for some iterations [220, 212]. In the last two algorithms, the condi- 
tion "objective function does not increase" means that the objective value is either 
reduced (local descent) or remained unchanged (tunneling heuristic). 
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FIGURE 16. Tunneling 

Instead of making a random swing in the vertical direction in the search space, 
whenever a local minimum is encountered, one can tunnel through the rugged ter- 
rain structure in a horizontal direction, moving from one local basin to another 
local basin in an attempt to locate a better locally optimal solution. A tunnel 
(see Figure 16) can be thought of as a short-cut passing through a mountain sep- 
arating points of equal elevation. Whenever a local minimum is encountered, a 
tunnel is made through a mountain to a neighboring basin as long as this does not 
change/increase the objective function. Tunneling can be used to search a region 
with local minima effectively. The behavior of local search with tunneling illustrates 
the fact that seemingly innocuous changes in an optimization routine can have a 
surprisingly large effect on its performance. When tunneling was first implemented 
in the SAT1 algorithm in the late eighties, it was proven to be effective in solving 
some SAT problems. 

Parallel Local Search. Several parallel algorithms and VLSI architectures 
have been developed to accelerate CSP and the SAT problems [224, 225, 212, 
489]. Depending on implementations, there are several ways of grouping variables 
or clauses together in parallel so they can be evaluated simultaneously. In the 
SAT1 algorithms, the most frequently used part of computation is the function 
evaluate-objective-functionQ. It takes 0(ml) time to update the objective function. 
The execution of evaluate.objective-function can be done in a simple bit-parallel 
manner in O(m) time on a sequential computer. 

A computer word has 32 or 64 bits (such as the DEC Alpha machine). The 
number of literals in a clause of most practical CNF formulas is much less than 32. 
In a local search algorithm, therefore, one can pack all the literals in a clause into the 
bits of a computer word and then evaluate all the literals in one clause in parallel. 
For m clauses, instead of O(mZ), it will take procedure evaluate.objective junction 
Q(m) time to evaluate and update the objective function. Occasionally, a clause 
may have more than 32 literals, they can be packed in several computer words and 
all of them can be evaluated simultaneously. This general bit-parallel evaluation 
method was implemented in the SAT1.7 algorithm [207, 212]. 
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Complete Local Search. Local search algorithms are incomplete, i.e., they 
can find some solutions for certain CNF formulas and give no answer if the CNF 
formula is not satisfiable. To overcome this problem, researchers developed com- 
plete local search algorithms to test satisfiability as well as unsatisfiability. The 
basic idea in the SAT1.11 and SAT1.13 algorithms [207, 212] was to combine lo- 
cal search with a systematic search procedure, keeping local search's efficiency while 
maintaining search completeness by the systematic search method [207, 212]. If at 
a node of the search tree a solution point is found unsatisfiable, then the algorithm 
backtracks and continues searching until a solution is found or unsatisfiability is 
proven. 

The SAT 1.11 and SAT 1.13 algorithms were two early experiments of complete 
local search algorithms [207, 212]. Probe order backtracking is a simplified version 
of complete local search [430, 431]. Recently Crawford studied a complete local 
search algorithm [110]. He used weights assigned to clauses to help choose branch 
variables. Variables occurring in heavily weighted clauses were given precedence. 

7.7. Randomized Local Search with Trap Handling. Based on early 
observation of trap phenomenon and the development of a three-level search space 
model (Section 7.2), Gu et al. developed a SAT 1.5 algorithm with trap handling 
ability [211, 222]. The SAT1.5 algorithm can monitor and break local minimum 
loops and can handle multiple traps during the search. The current version of the 
SAT 1.5 algorithm contains advanced data structures and complicated trap detec- 
tion/handling methods [211, 212, 222]. For the sake of simplicity, Figure 17 gives 
a brief outline of the algorithm. 

The SAT 1.5 starts with an initial random solution and a set of limiting pa- 
rameters. Max.Time, for example, specifies the maximum number of times allowed 
to restart a new search. The number of unsatisfiable clauses is computed and is 
assigned as the value of the objective function. The first while loop is limited by 
the Max-Time. Procedure complete-flipQ flips all the variables that can reduce the 
value of the objective function. Evaluate-objective-functionQ updates the objective 
function. 

The second while loop is a randomized local search with trap tracking and han- 
dling. Trap detection facilities are installed several places in the while loop to record 
trap statistics. They are essential to figure out trap "height," "width," and other 
parameters for subsequent decision making. A trap may contain a global minimum 
solution and it must be searched with reasonable effort. Leaving a trap too early 
or too late could result in either losing solutions or wasting computing time. The 
time to jump out of a trap is determined by parameter Max-Trapping.Times. 

When the search algorithm jumps out of a trap, there are several alternatives 
to pursue. One is to start a new search. In the while loop, several randomized 
local search procedures deploying random value and random variable heuristics 
(see Section 7.3) are grouped together with partial random selection heuristics. 
They together select a variable for randomized local search (the objective function 
F may increase during the search). 

If a trap is detected, a number of strategies can be used to conduct a trap 
search [212, 222]. In one approach proposed by Gu et al, a sequence of random 
flip operations is performed (see Figure 17). The intensity of the flip operations 
evolves from strong to weak, tailored to the "coarse" as well as "fine" structures 
in a trap.  That is, a variable is flipped in each unsat clause to force it to value 
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procedure SAT1.5 () 
begin 

/* initialization */ 
get.a-SATJnstance(); 
xo := select_a_randominitiaLpoint(); 
F(xo) ■= evaluate_objectiveJFunction(xo); 

/* search */ 
k := 0; Restart-Times := 0; 
while F > 0 and RestartJTimes < MaxJTime do 
begin 

/* Open Search: flip all variables that reduce F */ 
Xfc+i := complete-flip^); 
F := evaluate_objective_function(xA:+i); 

/* parameters for trap tracking */ 
Clean-trap_records(); Trapping Times := 0; 
/* Peak Search: randomized local search */ 
while F > 0 and Trapping\Times < MaxJTrappingJCimes do 
begin 

/* randomly select one var for randomized local search   / 
Xi := select_one_var-to_flip(xJt+i); 
Xk+i := randomizedJocal-search(a;i,SI); 
F := evaluate_objective_function(xfc+i); 
/* Trap Search */ 
if a trap is detected then 
begin 

Trapping STimes + +; 
/* random flip vars in conflicting clauses */ 

Xfc+i := strong-flip(x,t+i); 
F := evaluate_objectiveJunction(xfc+i); 

/* random flip a few percent (pet) of variables */ 
Xfc+i := gentle-flip (xA+1,pci); 
F := evaluate_objective-function(x&+i); 

/* random flip a small set of variables */ 
Xfc+i := weak_flip(xjfe+i,set); 
F := evaluate_objective_function(x;fc+i); 

/* initialization for a new trap */ 
Clean_trap_records(); 

end; 
end; 
ifF>0 then 

xj;+i := restart-ajrtew-random_point(); 
RestartJTimes + +; 

Jfc:= ft + 1; 
end; 

end; 

FIGURE 17. SAT1.5: a randomized local search procedure with 
trap handling. 
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procedure GSAT () 
begin 

for i := 1 to MAX-TRIES 
T := a randomly generated truth assignment 

for j := 1 to MAX-FLIPS 
if T satisfies a then return T 
p := a propositional variable such that a change 

in its truth assignment gives the largest   • 
increase in the total number of clauses 
of a that are satisfied by T 

T :—T with the truth assignment of p reversed 
end for 

end for 
return "no satisfying assignment found" 

end 

FIGURE 18. GSAT: a Greedy local search procedure for the SAT 
problem [469]. MAX-FLIPS, MAX-TRIES are constants, and a 
is a set of clauses. During each search step, GSAT takes the best 
neighbor that gives the maximum descent to the objective function. 

true (procedure strong-flipi)), followed by a random flip of a few percent of the 
variables (procedure gentlcflipQ), and finally, a random flip of a small number of 
variables (procedure weak.flip{)). Additional facilities for hill climbing, tabu search, 
and variable locking/unlocking were developed. The SAT1.5 algorithm can walk 
on the rugged surface of a trap adaptively. 

The real execution performance of the SA Tl. 5 algorithm (Section 13.2) suggests 
that it is presently one of the fastest local search algorithms for the SAT problem. 

7.8. Greedy Local Search. Traditional local search proceeds by taking a 
feasible solution point that reduces the value of the objective function. Among many 
neighboring solution points, local search does not evaluate its neighbors' relative 
performance with respect to the objective function. A greedy algorithm selects the 
best neighbor that yields the minimum value of the objective function and takes 
this best neighbor direction as the descent direction of the objective function. In 
a real search space, continuous optimization algorithms can find the best neighbor 
solution efficiently. Unconstrained local and global optimization algorithms have 
been developed for solving the SAT problem (see [211, 217] and Section 8). 

In the discrete search space, a greedy local search algorithm searches for the best 
neighbor solution. This requires that during each iteration the algorithm examine 
all the possible moves and select one with maximum descent. Greedy local search 
is a special case of the coordinate descent in the real space [211, 217]. 

Selman et al. proposed a greedy local search procedure, i.e., GSAT, for the 
SAT problem [469]. During each search step, the algorithm evaluates all the moves 
and selects the best one that gives the greatest decrease in the total number of 
unsatisfied clauses. If the algorithm becomes stuck at a local minimum, GSAT uses 
side-walk (a form of tunneling heuristic) to move aside. In GSAT procedure, two 
parameters, MAX-TRIES and MAX-FLIPS, were used to control the algorithm's 
maximum running state. 
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Late eighties VLSI researchers experimented with a large number of practical 
SAT formulas with the greedy local search and found that greedy local search be- 
came stuck at local minima much more easily. Accordingly, Gu proposed a method 
of combining local descent with random, multiphase search, and trap handling 
heuristics (see Section 7.3 and Section 7.7). These ideas were used in the subse- 
quent SAT1 algorithm family design [220, 207, 211, 212]. 

Recently Selman et al. used the bad variable heuristic and the partial random 
variable selection heuristics (Section 7.3) in their random walk heuristic [472, 471]. 
They found that these random heuristics (such as random flips, selecting a variable 
in unsat clause, and partial random variable selection) improved the performance 
of the GSAT algorithm significantly [472]. 

7.9. Tabu Local Search. Mazure, Sais, and Gregoire proposed a tabu search 
algorithm, TSAT, for satisfiability problem [367]. The basic idea behind the TSAT 
is to avoid using randomness in local search algorithm design. TSAT makes a 
systematic use of a tabu list of variables in order to avoid recurrent flips and thus 
escape from local minima. The tabu list is updated each time a flip is made. 
TSAT keeps a fixed length-chronologically-ordered FIFO list of flipped variables 
and prevents any of the variables in the list from being flipped again during a given 
amount of time. 

In this study, Mazure et al.   found that the optimal length of the tabu list 
is crucial to the algorithm's performance.   They showed that, for random 3SAT 
instances, the optimal length of the tabu list L(n) for TSAT is [367]: 

(7.3) L(n) = 0.01875n + 2.8125. 

Furthermore, they noted that a slight departure from the optimal length leads to a 
corresponding graceful degradation of the performance of TSAT. A more important 
distance from this optimal length leads to a dramatic performance degradation. 

7.10. Local Search for DNF formulas. Using the well-known DeMorgan 
laws, we can obtain an unconstrained optimization model, the SAT4 model, for 
DNF formulas [207, 217]: With SAT4, a CNF formula 

(xi + X2) (Xi +X2+ Xi) {x-2 + x3) 

can be transformed into a DNF formula: 
XlX2 + X\X2Xi + X2X3. 

For the transformed formula, the objective is to determine whether there exists an 
assignment where all clauses are falsified. That is, to solve (4.9). 

A number of local search algorithms were developed for DNF formulas. Except 
for different definition and evaluation schemes in the objective function, they have 
similar structures as in CNF local search algorithms. In SATIA [207], one of the 
early DNF local search algorithms, the objective function is defined as the number 
of satisfiable DNF terms. Our goal here is to reduce the objective function to zero. 
Experimental results indicate that DNF local search algorithms are faster than 
CNF local search algorithms. 

7.11. A Historical Note. Early work in constraint satisfaction, simulated 
annealing, and complexity study contributed to the development of local search 
algorithms for the SAT problem (see Sections 7.3, 7.4, and 7.5, and Figure 19). A 
special event was the n-queen debate in ACM SIGART Bulletin during 1990 and 

1992. 
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FIGURE 19. Early development of local search algorithms for SAT 
problem. There were two major approaches: randomized local 
search (SAT1) and greedy local search {GSAT}. The SAT1 was 
the first local search algorithm developed for the VLSI engineering 
and scheduling applications. The GSAT algorithm was derived 
from the early local search algorithms for the n-queen problem. 

Early the SAT1 algorithms were applied to solve VLSI circuit design problems. 
In addition, Gu and Sosic implemented the same local search method for the n- 
queen problems. Later they published two short papers in SIGART Bulletin about 
their results [483, 485]. By accident, these two papers triggered a debate. Major 
discussions centered around two questions raised by the SIGART readers. 

First, Jack Mostow mentioned that Steve Minton at the same time published "a 
hill-climbing algorithm very similar to Gu's" for the n-queen problem at AAAI'90. 
He was interested to know the original source of the local search algorithm for 
the n-queen problem. Lewis Johnson (SIGART editor) reviewed the original local 
search results for the n-queen problem [206] and found that: "It is now clear that 
the n-queens problem is a solved problem; in fact, it has been solved for many 
years" [293]. 

The second question was about local search. Bo Bernhardsson showed (in 
SIGART Bulletin, Vol. 2, No. 2, 1991) that the analytical solutions for n-queen 
problem was published in 1969. In the same issue, Jun Gu wrote an article entitled 
11 On a General Framework for Large-Scale Constraint-Based Optimization." He 
explained that the analytical solutions to n-queen problem only offer a restricted 
set of solutions which cannot solve a general search problem, and the local search 
algorithm for n-queen can be used to solve general constraint satisfaction problems. 
The discussions continued in a number of SIGART Bulletins [294]. In August 1991, 
M. Valtorta showed more analytical solutions to the n-queen problem and the Tower 
of Hanoi problem [523]. Many SIGART readers sent emails to Jun Gu. They agreed 
that the analytical solutions are restricted but some also believed that local search 
can only solve problems like the n-queen. The SAT problem is the core of many NP- 
complete problems. To give a strong case, Gu published a short article "Efficient 
Local Search for Very Large-Scale Satisfiability Problem1 [211] and discussed the 
SAT1 algorithms as examples of local search to the SIGART readers. 

During the two-year period, many researchers including Jack Mostow, Steve 
Minton, Bart Selman, and Dennis Kibler participated in the various discussions. 
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8.  Global Optimization 

Local search proceeds by taking any solution point that decreases the value of 
the objective function as the next solution point. Since there may be many neigh- 
boring solution points and a local search does not take into account its neighbors' 
relative performance to the objective function, a local search may get stuck in a 
local minimum or a basin. To escape from such local minima, global search strate- 
gies need to be developed. One such strategy is the tunneling heuristic discussed 
in Section 7.6. Another strategy is to select the best neighboring point that yields 
the minimum value to the objective function. When there is no neighboring point 
that lead to decrease in the objective function, a direction is picked to minimize 
the increase in the objective function. 

Global optimization is concerned with the characterization and computation of 
global minima and maxima of unconstrained nonlinear functions and constrained 
nonlinear problems [162, 163, 266, 402]. Global optimization problems belong to 
the class of NP-hard problems. 

The concept of optimization is well rooted as a principle underlying the analysis 
of many complex decision problems. When one deals with a complex decision 
problem, involving the selection of values to a number of interrelated variables, 
one should focus on a single objective (or a few objectives) designed to qualify 
performance and measure the quality of the decision. The core of the optimization 
process is to minimize (or maximize) an objective function subject to constraints 
imposed upon values of decision variables in an instance. 

Most optimization algorithms are designed as an iterative refinement process. 
Typically, in seeking a vector that solves an optimization problem, a search algo- 
rithm selects an initial vector y0 and generates an improved vector yx. The process 
is repeated to find a better solution y2. Continuing in this fashion, a sequence of 
ever-improving points y0, yi, ..., y*, •••, is found that approaches a solution point 
y*. When it is not possible to find neighboring points to improve, strategies are 
applied to help escape from local minima. 

There are three aspects in designing global search strategies to solve SAT: 

• Problem formulations and transformations. As discussed in Section 4.1, 
there are alternative formulations of an instance of SAT, and global search 
strategies may need to be tailored to the formulation used. In Section 8.1, we 
present the UniSATmodel that transforms a SAT formula represented as an 
instance of a discrete constrained decision problem in Boolean {0,1} space 
into a continuous optimization problem [207, 210, 217]. In Section 8.7, we 
present strategies based on discrete Lagrange multipliers to transform a SAT 
formula into an instance of a discrete constrained optimization problem [535, 
537]. Other more general transformations are presented in Section 11. 

• Strategies to select a direction to move. Since a search trajectory lacks global 
information in a search space, strategies to select a direction to move are 
either steepest descent or hill climbing. A steepest-descent approach chooses 
the direction with the maximum gradient. A hill-climbing approach, on 
the other hand, chooses the first point in the neighborhood of the current 
point that reduces the objective function. For large formulas, hill-climbing 
methods are much faster than steepest descent because they descend in the 
first direction, rather than the best direction, that leads to improvement. 
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• Strategies to help escape from local minima. Many possible strategies have 
been studied in the past. These include local handlers that use a combina- 
tion of restarts, backtracking and random swaps (see Section 7.3 and [207, 
220, 211, 225, 209]), Morris' "break-out" strategy [385], Wah and Shang's 
Discrete Lagrangian Method (DLM) [535, 537], Glover and Hansen's tabu 
list [199, 238], stochastic methods such as simulated annealing (SA) [306, 
74], and genetic algorithms (GA) [252, 374]. In Section 8.8, we examine 
the effects of some of these strategies. 

8.1. UniSAT: Universal SAT Input Models. In UniSAT models, we ex- 
tend discrete search space x 6 {0,1}" into real space y € En, so that each solution 
point and the objective function can be characterized quantitatively. Furthermore, 
by encoding the solution of a SAT formula into the objective function, a direct 
correspondence between the solutions of the SAT formula and the global minimum 
points of the objective function can be established. Subsequently, the SAT formula 
is transformed into an instance of an unconstrained global optimization problem 
on£". 

In UniSAT models, using the universal DeMorgan laws, all Boolean V and A 
connectives in CNF formulas are transformed into x and + of ordinary addition 
and multiplication operations, respectively. The true value of the CNF formula is 
converted to the 0 value of the objective function. Given a CNF formula T from 
{0,1}™ to {0,1} with m clauses C\,... , Cm, we define a real function /(y) from En 

to E that transforms the SAT into an unconstrained global optimization problem: 

(8.1) mm /(y) 

where 
m 

(8.2) /(y) = $>(y). 

A clause function Ci(y) is a product of n literal functions qij(yj) (1 < j < n): 
n 

(8.3) a = Y[qi,j(yj). 

In the UniSAT5 model [207, 211, 217] 

{\yj — 1| if literal Xj is in clause C\ 
\yj + 1| if literal Xj is in clause d 
1 if neither Xj nor x) is in d 

and in the UniSA77model [207, 210, 211, 217]: 

{(yj — l)2 if Xj is in clause C, 
(yj + l)2 if Xj is in clause C» 
1 if neither Xj nor Xj is in d 

The correspondence between x and y is defined as follows (for 1 < i < n): 

(  1 if Vi = 1 
Xi = I   0 ifyi = -l 

[ undefined   otherwise 

Clearly, T has value true iff /(y) = 0 on the corresponding y€ {-1, l}n. 
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The UniSATS model on real space is a direct extension of the discrete SAT4 
model on Boolean space. A model similar to UniSAT5 was proposed independently 
in the neural network area [290]. A significant difference between the neural net- 
work model and UniSATS is their efficiency and practical applicability. The neural 
network model can only be handled by traditional nonlinear programming methods 
that are extremely slow [290], whereas UniSAT5 can be easily solved in conjunction 
with the local search approach by simple discrete accounting techniques [207, 217]. 

The UniSATmodels transform SAT from a discrete, constrained decision prob- 
lem into an unconstrained global optimization problem [207, 210, 211, 217]. A 
good property of the transformation is that UniSAT models establish a correspon- 
dence between the global minimum points of the objective function and the solutions 
of the original SAT formula. A CNF T has value true if and only if /(y) takes the 
global minimum value 0 on the corresponding solution y*. 

Following the above formulation, with the UniSAT5 and UniSAT! models, a 

CNFF 

(iiVi2) A (xi Vx2 Vz3) 
is translated into 

/(y) = \vi - i|lz/2 + II + l3/i + 1112/1 " llli/3 " II 
and 

/(y) = (!/i - l)2(2/2 + l)2 + (yx + l)2(yi - l)2(2/3 - I)2, 
respectively. 

The solution of the SAT formula corresponds to a set of global minimum points 
of the objective function. Finding a true value of T is equivalent to finding a false 
value, i.e., 0, of f(y). _ 

The translation of SAT formulas into nonlinear programs is quite ditterent from 
the integer programming approach described in the next section. In the integer 
programming approach, one views a SAT formula as an instance of the 0/1 Integer 
Programming problem and tries solving its Linear Programming relaxation [35, 
257, 258, 284, 301, 299, 545]. If the solution is non-integer, one rounds off the 
values to the nearest integers and checks whether the solution corresponds to a 
solution of the original formula. If the rounded off values do not correspond to a 
solution, one computes another solution of the linear programming problem. 

8.2. A Global Optimization Algorithm for solving SAT. Many families 
of unconstrained global optimization algorithms for the UniSAT problem have been 
developed [207, 210, 217]. SAT6.0, a basic global optimization algorithm, is shown 
in Figure 20. To start, procedure obtain.a.SATJnstance{) initializes a (given or 
generated) SAT instance. An objective function, /, is formulated according to a 
given UniSAT model. The SAT formula thus becomes a minimization problem to 
the objective function. To begin, procedure select.anJnitiaLsolution{) selects an 
initial starting point y0 6 En. The corresponding value of the objective function, 
/(y0), is evaluated by function evaluate-objectJunction(). 

The optimization process is an iterative minimization to the objective function. 
Function test.minQ tests if the value of the objective function can be minimized. If 
this is true, the minimization operation is performed by procedure perform-min(), 
followed by evaluate-objectjunctionQ that updates the value of the objective func- 
tion. Procedures fesi_mm(), perform-minQ, and evaluate-objectjunctionQ are usu- 
ally performed together without distinction. Depending on the global optimization 
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procedure SAT6.0 () 
begin 

/* initialization */ 
obtain_a_SAT_instance(); 
yo := select_anJnitial-Solution(); 
y(yo) := evaluate_object_function(yo); 

/* search */ 
k := 0; 
while   not(solution_testing()) do 

for some yi(k)S € y/t 
begin 

/* minimizer */ 
if test_min(/(2/,(j.)s)) then 
begin 

y*+i ~ perform-min(/(yi(A:)s)); 
f{yk+i) '■— evaluate_object-function(); 

end 
if close_to_solution() then x := approximate(yt+i); 

end; 
/* local handler */ 
if local then local_handler(); 
Jfc:=fc + 1; 

end; 
end; 

FIGURE 20. SAT6.0: A general global optimization algorithm for 
the satisfiability problem. 

strategy, the objective function can be minimized in one or up to n dimensions. 
Methods capable of optimizing / in one dimension include line search, coordinate 
descent, and coordinate Newton's methods. Methods that optimize / in more than 
one dimensions include the steepest descent methods, multi-dimensional Newton's 
methods, and many others. 

As the iterative improvement progresses, a global minimum point may be ap- 
proached gradually. The closeness between the present solution point and the global 
minimum solution point can be tested by solution-point testing or objective-value 
testing. Procedure close-tosolution() performs closeness testing. If the present 
solution point is sufficiently close to a global minimum point, procedure approx- 
imate^) performs the round-off operation that converts a solution point y in real 
space En to a solution point x in Boolean space {0, l}n which may be a solution 
of the original SAT formula. Procedure solutionJestingQ takes the solution gener- 
ated from procedure approximate^ and substitutes it into the given CNF formula 
to verify its correctness. 

In practice, the search process could be stuck at a locally optimum point. To 
improve the convergence performance of the algorithm, one or more local handlers 
may be added. One effective local handler in SAT6 is to negate the truth values of 
up to n variables. 
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Procedure SATU.5 () 
begin 

/* initialization*/ 
y := initial. vector(); 
local := search := 0; limit := bnlogn; 

/* search */ 
while (/(y)> 1 and local < limit) do 
begin 

old-f := /(y); search := search + 1; 
/* minimizer */ 
for i := 1 to n do 

minimize /(y) with respect to yr, 
I* local handler */ 
if (f(y)=old.f or (search > b' logn and / (y)> 1)) then 
begin 

y := initiaLvector(); 
search := 0; local :— local + 1; 

end; 
end; 
if/(y) < ! then y* ~ round-off{y) else y* := enumerate(); 

end; 

FIGURE 21. SAT14.5:  A global optimization algorithm for the 
UniSAT5 problem. 

Any existing unconstrained global optimization methods can be used to solve 
the UniSAT problems (see textbooks and literature). So far many global opti- 
mization algorithms have been developed [207, 210, 217]. These include the basic 
algorithms, steepest descent methods, modified steepest descent methods, Newton's 
methods, quasi-Newton methods, descent methods, cutting-plane methods, conju- 
gate direction methods, ellipsoid methods, homotopy methods, and linear program- 
ming methods. In each algorithm family, different approaches and heuristics can be 
used to design objective functions, select initial points, scramble the search space, 
formulate higher-order local handlers, deflect descent directions, utilize parallelism, 
and implement hardware architectures to speed up computations. 

8.3. A Discrete Global Optimization Algorithm. Although nonlinear 
problems are intrinsically more difficult to solve, an unconstrained optimization 
problem is conceptually simple and easy to handle. Many powerful solution tech- 
niques have been developed to solve unconstrained optimization problems, which 
are based primarily upon calculus and simple accounting, rather than upon al- 
gebra and pivoting, as in the Simplex method. Based on a coordinate descent 
method [356], Gu has recently given a simple algorithm, the SATU.5 algorithm 
[217, 216], for the UniSAT5 problem (see Figure 21). The kernel of SATU.5 is a 
discrete minimizer that minimizes objective function / by the discrete coordinate 
descent method. 

Given a function / on En, the SATU.5 algorithm initially chooses a vector y 
from En and then minimize function / with respect to variables y, (1 < j < n) in 
minimizer until / < 1. Since each variable yj appears in one clause function a at 
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most once, function /(y) can be expressed as 

/(y)=Ojli/j-l|+&jll/j + l|+dj 

for (1 < j < n), where a,j, bj, and dj are local gain factors that are independent 
of yj. They can be computed in 0(ln) time. Therefore, /(y) takes its minimum 
value with respect to yj at point either yj = 1 or yj = —1. Thus, the minimizer 
optimizes function / as follows: if cij > bj then set yj equal to 1; otherwise set yj 
equal to —1. 

In practice, before / < 1, the algorithm could be stuck at a local minimum 
point. To overcome this problem, a simple local handler is added. The local 
handler simply generates a new initial vector y to start an independent search. In 
the SAT14.5 algorithm, if the objective function / can no longer be reduced or 
after b'logn (&' is a constant, see [217, 216]) iterations of the while loop / is still 
at least one, then the local-handler is called. 

8.4. A Continuous Global Optimization Algorithm. Based on a contin- 
uous coordinate descent method [356], Gu, Huang and Du have recently developed 
the SATU.7 algorithm for solving UniSATl problems on En [217]. For the objec- 
tive function described in the UniSATl input model, if only one variable, e.g., x», 
is selected for optimization, then 

(8.6) F[xi) = ai(xi - l)2 + bi{xi + l)2 + a 

where m, h, and c; are constants that can be computed in 0(ml) time. Here, F(x*) 
can be minimized at: 

di — bi 
8.7) Xi = ^—ri. 

ai + bi 

8.5. Complete Global Optimization Algorithms. The SAT14.5, SATU.6, 
and SAT14.7 algorithms are incomplete algorithms. In order to achieve high com- 
puting efficiency and to make them complete algorithms, we combine in SAT14A1 
to SAT1A.20 global optimization algorithms with backtracking/resolution proce- 
dures [207, 217]. Therefore, these algorithms are able to verify satisfiability as 
well as unsatisfiability. Figure 22 gives a typical backtracking global optimization 
algorithm. 

For small and medium size problems, backtracking is able to verify unsatisfia- 
bility quickly for certain classes of formulas but is slow when it comes to verifying 
satisfiability, as all possible resolutions need to be tried out before concluding that 
the inference relation holds or that the input formula is satisfiable. From our ex- 
perience, a combined global optimization algorithm with backtracking/resolution 
procedures would perform well for certain classes of satisfiable and unsatisfiable 
formulas. 

Recently some researchers investigated the number of solutions of SAT formu- 
las. Extending Iwama's work [280], Dubois gave a combinatorial formula com- 
puting the number of solutions of a set of any clauses [148]. He and Carlier also 
studied the mathematical expectation of the number of solutions for a probabilistic 
model [149]. For an incomplete SAT algorithm, the number of solutions can have 
a strong effect on its computing efficiency. For a complete SAT algorithm, how- 
ever, the number of search levels plays a crucial role. In SATM.ll to 5AT14.20 
algorithms, the number of solutions is an important strategy to interplay global 
optimization and backtracking/resolution procedures [212, 217]. 
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Procedure SAT14.11 () 
begin 

/* initialization */ 
get-a-S AT Jnstance(); 
xo := select_an_initial-point(); 
/ := evaluate_object_function(xo); 

/* backtracking with global optimization */ 
x* := backtracking(xo); 

end; 

Procedure backtracking^») 
begin 

/* global optimization assigns v to xt */ 
v := global_optimization(); 
Xi := v; 

Vi := Vi - {v}; 
I* append variable Xi to the partial path */ 
path[xt] : i: 

if path broken then backtracking; 
if solution found then return x*; 
else backtracking(next x;); 

end; 

FIGURE 22. SAT14.11: a complete global optimization algorithm 
with backtracking. 

8.6. Continuous Lagrangian-Based Constrained Optimization Algo- 
rithms. In previous subsections, we have discussed unconstrained (discrete or con- 
tinuous) formulations of SAT problems based on optimizing a single unconstrained 
objective function. To avoid getting trapped in local minima, algorithms for solv- 
ing these problems must have strategies to escape from local minima. Some of 
these strategies, such as random restarts and tunneling, move the search to a new 
starting point and start over. In the process of doing so, vital information obtained 
during the descent to the current local minimum may be lost. Other strategies 
may rely on an internal or an external force to bring the search trajectory out of a 
local minimum. Although they work well for continuous problems, they may have 
difficulty in dealing with SAT problems whose objective values are integers. 

One way to bring a search out of a local minimum is to formulate a SAT problem 
as a constrained optimization problem as shown in (4.10) and (4.16). By using the 
force provided by the violated constraints, the search trajectory can be brought out 
of a local minimum. One way to implement this idea is compute the sum of the 
constraints weighted by penalties and to update the penalties continuously during 
the search. The difficulties with this approach lies in the choice of the proper 
penalties. A more systematic approach is to use a Lagrangian formulation. In this 
and the next subsections, we show two Lagrangian formulations of SAT problems, 
one in the continuous space and the other in the discrete space. 
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As indicated in (4.16), a SAT problem can first be transformed into a continuous 
constrained optimization problem. 

m 

(8.8) minye£;n     F(y) = ]Tcj(y) 

subject to     Cj(y) = 0   Vi € {1,2, ...,m} 

where y = (2/1,2/2, •■■ ,2/n), and c;(y) is defined in (4.12) and (4.13) and repeated 
as follows. 

n 

ci(y) = n^^') 
j=l 

{(1-2/j)2    ifxjinCf 
j/? ifijinCj 
1 otherwise 

Here, F(y) is a scalar differentiable function that takes the norm of its argument 
so that F(y) = 0 iff Cj(y) = 0 for all i. 

There are three advantages in reformulating the original discrete unconstrained 
problem into a continuous constrained problem. First, a continuous objective func- 
tion may smooth out local minima in the discrete space, allowing global/local search 
methods to bypass these local minima in the continuous space. Second, a continu- 
ous objective value can indicate how close the constraints are being satisfied, hence 
providing additional guidance in leading to a satisfiable assignment. Third, when 
the search is stuck in a local minimum and some of the constraints are violated, 
the violated constraints can provide a force to lead the search out of the local min- 
imum. This is more effective than restarting from a new starting point, as local 
information observed during the search can be preserved. 

Active research in the past two decades has produced a variety of methods 
for finding global solutions to nonconvex nonlinear optimization problems [505, 
266, 163, 239, 402, 374]. In general, transformational and non-transformational 
methods are two approaches in solving these problems. 

Non-transformational approaches include discarding methods, back-to-feasible- 
region methods, and enumerative methods. Discarding methods [276, 374] drop 
solutions once they were found to be infeasible, and back-to-feasible-region meth- 
ods [297] attempt to maintain feasibility by reflecting moves from boundaries if 
such moves went off the current feasible region. Both of these methods have been 
combined with global search and do not involve transformation to relax constraints. 
Last, enumerative methods [266] are generally too expensive to apply except for 
problems with linear objectives and constraints, and for bilinear programming prob- 
lems [26]. 

Transformational approaches, on the other hand, convert a problem into an- 
other form before solving it. Well known methods include penalty, barrier, and 
Lagrange-multiplier methods [356]. Penalty methods incorporate constraints into 
part of the objective function and require tuning penalty coefficients either before 
or during the search. Barrier methods are similar except that barriers are set up to 
avoid solutions from going out of feasible regions. Both methods have difficulties 
when they start from an infeasible region and when feasible solutions are hard to 
find. However, they can be combined with other methods to improve their solution 
quality. 
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In Lagrangian methods, Lagrange variables are introduced to gradually resolve 
constraints through iterative updates. They are exact methods that optimize the 
objective using Lagrange multipliers to meet the Kuhn-Tucker conditions [356]. 
Eq. (8.8) can be reformulated using Lagrange multipliers into the following uncon- 
strained problem. 

(8.9) L(y, A) = F(y) + Arc(y) (Lagrangian function) 

(8.10) £(y, A) = F(y) + I|c(y)||| + ATc(y) (Augmented Lagrangian function) 

where c = (cx (y),c2(y), ■■■, cm(y)), and AT is the transpose of the set of Lagrange 
multipliers. The augmented Lagrangian formulation is often preferred because it 
provides better numerical stability. 

According to classical optimization theory [356], all the extrema of (8.10), 
whether local or global, are roots of the following sets of equations. 

(8.11) Vy£(y, A) = 0 and V*£(y» A) = 0 

These conditions are necessary to guarantee the (local) optimality to the solution 

of (8.8). 
Search methods for solving (8.10) can be classified into local and global al- 

gorithms. Local minimization algorithms, such as gradient-descent and Newton's 
methods, find local minima efficiently and work best in uni-modal problems. Global 
methods, in contrast, employ heuristic strategies to look for global minima and do 
not stop after finding a local minimum [403, 505, 356]. Note that gradients and 
Hessians can be used in both local and global methods [505]. 

Local search methods can be used to solve (8.11) by forming a Lagrangian 
dynamic system that includes a set of dynamic equations to seek equilibrium points 
along a gradient path. These equilibrium points are called saddle-points of (8.11), 
which correspond to the constrained minima of (8.8). The Lagrangian dynamic 
system of equations are as follows. 

(8.12) ^U_Vy£(y(i),A(i))      and     ^ = VAAY«, A«) 

Optimal solutions to the continuous formulation are governed by the Saddle 
Point Theorem which states that y* is a local minimum to the original problem 
defined in (8.8) if and only if there exists A* such that (y*, A*) constitutes a saddle 
point of the associated Lagrangian function F(y, A). Here, a saddle-point (y*, A*) of 
Lagrangian function F(y, A) is defined as one that satisfies the following condition. 

(8.13) F(y*,\)<F(y*,\*)<F(y,\*) 

for all (y*,A) and all (y, A*) sufficiently close to (y*,A*). 
There are four advantages in using a Lagrangian formulation to solve con- 

strained optimization problems. 

• Saddle points of (8.11) can be found by local gradient descent/ascent meth- 
ods defined in (8.12). The first equation in (8.12) has a minus sign that 
optimizes the original variables along a descending path, whereas the sec- 
ond equation optimizes along an ascending path. Alternatively, (8.12) can 
be considered as a global search algorithm that has a local-search component 
based on a descent algorithm in the original variable space. When the search 
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reaches a local minimum, the search is brought out of the local minimum us- 
ing the weights imposed by its Lagrange multipliers. This mechanism allows 
the search to continue in its present trajectory without any breaks. 

• Lagrangian search is similar to penalty-based methods in the sense that the 
Lagrange variables are increased like penalties when constraints are violated. 
However, it is more general than penalty-based methods because the increase 
of a Lagrange variable is self-adjusting and is governed by the amount that 
the corresponding constraint is violated. 

• The search modeled by (8.12) can be started from any starting point and 
will continue until a saddle point is found. 

• Since assignments of y where the constraints in (8.8) are satisfied are also 
assignments that minimize the objective, saddle points of (8.11) found by 
solving (8.12) correspond to satisfiable assignments to the original SAT prob- 
lem. 

It is important to note out that a Lagrangian search modeled by (8.12) is incom- 
plete: if it does not find a solution in a finite amount of time, it does not prove 
whether the original SAT problem is satisfiable or not. Hence, infinite time will be 
required to prove unsatisfiability. 

Unfortunately, continuous gradient-based local search methods for solving (8.12) 
are very time consuming. Our experience [81] indicates that continuous descent 
methods are several orders of magnitude more complex than discrete descent meth- 
ods. For instance, it takes over one hour of CPU time on a Sun SS10 workstation 
to solve a problem with 200 variables and 60 constraints. Consequently, continuous 
formulations are not promising in solving large SAT problems. In the next subsec- 
tion, we extend continuous Lagrangian methods to discrete Lagrangian methods. 
Surprisingly, discrete methods work much better and can solve some benchmark 
problems that cannot be solved by other local/global search algorithms. 

8.7. Discrete Lagrangian-Based Constrained Optimization Algorithms. 
To overcome the computational complexity of continuous Lagrangian methods while 
preserving their benefits, we show in this subsection a discrete constrained formu- 
lation of a SAT problem and its solution using a discrete Lagrangian method. The 
discrete Lagrangian method is extended from the theory of continuous Lagrangian 
methods. 

Recall (4.10) in Section 4.1 the following discrete constrained formulation of a 
SAT problem. 

m 

(8.14) minye{0,1}.    JV(y) = ^^(y) 
i=l 

subject to      Ui(y)=0   Vi £ {1,2,.. .,m}. 

Without going into all the details [535], the continuous Lagrangian method 
can be extended to work on discrete problems. The discrete Lagrangian function 
for (8.14) is defined as follows. 

(8.15) L(y,X)=N(y)+\TU(y) 

where y e {0,1}", U(y) = (Ui(y),.. .,Um(y)) e {0, l}m, and AT is the transpose 
of A = (Ai, A2,..., Am) that denotes the Lagrange multipliers. (Note that X{ can 
be continuous variables.) 
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1. Set initial x randomly by a fixed random seed 
2. Set initial A to be zero 
3. while x is not a solution, i.e., N(x) > 0 
4. update x: x <— x — AxL(x, A) 
5. if condition for updating A is satisfied then 
6. update A: A <— A + c x U{x) 
7. end if 
8. end while 

FIGURE 23. Generic discrete Lagrangian algorithm A for solving 
SAT problems. 

In a definition similar to 'that in (8.13), a saddle point (y*,A*) of L(y,X) 
in (8.15) is defined as one that satisfies the following condition. 

(8.16) £(y*,A)<L(y*,A*)<L(y,A*) 

for all A sufficiently close to A* and for all y whose Hamming distance between y* 
and y is 1. 

Similar to (8.12), the Discrete Lagrangian Method (DLM) for solving SAT prob- 
lems can be defined as a set of difference equations, 

(8.17) yfc+1    =   yk-AyL(yh,Xk) 

(8.18) A*+1    =    Xk + U(yk), 

where AyL(y,A) is the discrete gradient operator with respect to y such that 
AyL(y,A) = (81,52,--- ,8n) e {-1,0,1}", £?=i \St\ = 1, and (y - AyL(y,A)) e 
{0,1}". Informally, Ay represents all the neighboring points of y. 

8.8. An Implementation of a Basic Discrete Lagrangian Algorithm. 
Figure 23 shows the pseudo code of A, a generic discrete Lagrangian algorithm 
implementing (8.17) and (8.18). It performs descents in the original variable space 
of y and ascents in the Lagrange-multiplier space of A. In discrete space, AyI(y, A) 
is used in place of the gradient function in continuous space. We call one iteration 
as one pass through the while loop. 

In the following, we describe some of the considerations in implementing DLM 

A. 
(a) Initial Points and Restarts (Lines 1-2). DLM is started from either the 

origin or from a random initial point generated by calling drand48() using a fixed 
random seed 101. Further, A is always set to zero. The fixed initial points allow 
the results to be reproducible easily. 

(b) Descent and Ascent Strategies (Line 4). There are two ways to calculate 
AyL(y, A): greedy and hill-climbing, each involving a search in the range of Ham- 
ming distance one from the current y (assignments with one variable flipped from 
the current assignment y). 

In a greedy strategy, the assignment leading to the maximum decrease m the 
Lagrangian-function value is selected to update the current assignment. Therefore, 
all assignments in the vicinity need to be searched every time, leading to computa- 
tion complexity of 0{m), where m is the number of variables in the SAT problem. In 
hill-climbing, the first assignment leading to a decrease in the Lagrangian-function 
value is selected to update the current assignment. Depending on the order of search 
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and the number of assignments that can be improved, hill-climbing strategies are 
generally less computationally expensive than greedy strategies. • 

A comparison of the two strategies show that hill-climbing is orders of magni- 
tude faster and results in solutions of comparable quality. 

(c) Conditions for updating A (Line 5). The frequency in which A is updated 
affects the performance of a search. The considerations here are different from those 
of continuous problems. In a discrete problem, descents based on discrete gradients 
usually make small changes in L(y, A) in each update of y because only one variable 
changes. Hence, A should not be updated in each iteration of the search to avoid 
biasing the search in the Lagrange-multiplier space of A over the original variable 
space of y. 

Experimental results show that A should be updated only when AxL(x, A) = 0. 
At this point, a local minimum in the original variable space is reached, and the 
search can only escape from it by updating A. This strategy amounts to pure 
descents in the original y variable space, while holding A constant, until a local 
minimum is reached. 

Note that this strategy is similar to Morris' "break out" strategy [385] and 
Selman and Kautz's GSAT [470, 471] that applies adaptive penalties to escape 
from local minima. One problem that is overlooked in these strategies is the growth 
of penalty terms. In solving a difficult SAT problem, penalty terms may grow to 
become very large as the search progresses, causing large swings in the objective 
function and delaying convergence of the search. Solutions to this issue are discussed 
next. 

(d) Amount of update of X (Line 6). A parameter c controls the magnitude of 
changes in A. In general, c can be a vector of real numbers, allowing non-uniform 
updates of A across different dimensions and possibly across time. For simplicity, 
c = 1 has been found to work well for most of the benchmarks tested. However, 
for some larger and more difficult problems, a smaller c can result in shorter search 
time. 

The update rule in Line 6 results in nondecreasing A. This is true because U(x) 
is either 0 or 1: when a clause is not satisfied, its corresponding A is increased; and 
when a clause is satisfied, its corresponding A is not changed. In contrast, in ap- 
plying Lagrangian methods to solve continuous problems with equality constraints, 
the Lagrange multiplier Aj of constraint gi(x) = 0 increases when gi(x) > 0 and 
decreases when g{x) < 0. 

When there is no mechanism to reduce the Lagrange multipliers, they can grow 
without bound, causing large swings in the Lagrangian-function value and making 
the search terrain more rugged. Although this strategy does not worsen the search 
time for most of the benchmark problems tested, A values can become very large as 
time goes on for a few difficult problems requiring millions of iterations. When this 
happens, the search has difficulty in identifying an appropriate direction to move. 

This situation is illustrated in the first two graphs of Figure 24 that show the 
behavior of DLM when it was applied to solve one of the more difficult DIMACS 
SAT benchmark problems. Here, the search is stuck in a sub-optimal basin in the 
space of the objective function where the number of unsatisfied clauses fluctuates 
around 20. Since the search terrain modeled by L becomes more rugged as the 
Lagrange multipliers increase, the search will have difficulty to escape from this 
region. 
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FIGURE 24. Execution profiles of "gl25-17," one of the difficult 
DIM ACS benchmark problem. Figures (a), (c), and (e) plot the 
Lagrangian-function values and the number of unsatisfied clauses 
versus the number of iterations. Figures (b), (d), and (f) plot the 
minimum, average and maximum values of Lagrange multipliers. 
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To overcome this problem, A should be reduced periodically. For instance, in 
the last two graphs of Figure 24, A was scaled down by a factor 1.5 every 10,000 
iterations. This strategy, when combined with other strategies to be discussed next, 
restricts the grown of Lagrange multipliers, leading to the solution of some of the 
more difficult benchmark problems. 

(e) Plateaus in the Search Space. In binary problems like SAT, a search may 
find a very small subset of variables that can lead to no degradation in the objective 
function. Flipping variables in this small subset successively may likely, lead to a 
cycle in the search space. To avoid such an undesirable situation, variables that 
have been flipped in the recent past can be stored in a tabu list [199, 238] and will 
not be flipped until they are out of the list. 

Further, for large SAT problems formulated as discrete optimization problems, 
the search may encounter large and flat, but suboptimal, basins. Here, gradients 
in all directions are the same and the search may wander forever. The discrete 
gradient operator AyL(y, A) may have difficulties in basins/plateaus because it 
only examines adjacent points of L(y, A) that differ in one dimension. Hence, it 
may not be able to distinguish a plateau from a local minimum. 

One way to escape is to allow uphill moves. For instance, in GSATs random 
walk strategy [472], uphill walks are allowed based on probability p. However, the 
chance of getting a sequence of uphill moves to get out a deep basin is small since 
each walk is independent. 

There are two effective strategies that allow a plateau to be searched. 
(a) Flat-move strategy. We need to determine the time to change A when the 

search reaches a plateau. As indicated earlier, updating A when the search is in 
a plateau changes the surface of the plateau and may make it more difficult for 
the search to find a local minimum somewhere inside the plateau. To avoid this 
situation, a strategy called flat move [535] can be employed. This allows the search 
to continue for some time in the plateau without changing A, so that the search 
can traverse states with the same Lagrangian-function value. How long should 
fiat moves be allowed is heuristic and possibly problem dependent. Note that this 
strategy is similar to Selman's "sideway-move" strategy [471]. 

(b) Tabu list. This search strategy aims to avoid revisiting the same set of 
states in a plateau. In general, it is impractical to remember every state the search 
visits in a plateau due to the large storage and computational overheads. A tabu 
list [199, 238] can be kept to maintain the set of variables flipped in the recent 
past and to avoid flipping a variable if it is in the tabu list. 

The last four graphs of Figure 24 illustrate the performance of DLM when 
the search maintains a tabu list of size 30, when it is allowed to stay in a basin 
within 50 moves (flat-move limit), and when all Lagrange multipliers are peri- 
odically scaled down. These graphs show significant reduction in the growth of 
Lagrangian-function values and Lagrange multipliers. 

By using these strategies, DLM can solve successfully many of the hard prob- 
lems in the DIM ACS benchmark suite [535]. These results are presented in Sec- 
tion 13. 

8.9. Convergence Property and Average Time Complexity. Gu, Gu 
and Du [227] have analyzed the convergence ratios of three basic methods: the 
steepest descent method, Newton's method, and the coordinate descent method for 
objective function / defined in the UniSATlinput model. They prove that, subject 



ALGORITHMS FOR THE SATISFIABILITY (SAT) PROBLEM: A SURVEY 63 

to certain conditions [356], the steepest descent method has a linear convergence 
ratio [(.4 - a)/(A + a)}2 < 1, Newton's method has a convergence ratio of order 

two, and the coordinate descent method has a convergence ratio ^1 - A("-i)) < *' 

where A > a > 0 are the largest and smallest eigenvalues of the Hessian matrix 
H(y), respectively. 

From these convergence properties, Gu, Gu, and Du roughly estimate that, sub- 
ject to certain conditions [356], the UniSAT7problem can be solved in 0(log(n + 
m)) iterations by the steepest descent method and can be solved in 0(m log(n + m)) 
iterations by the coordinate descent method, on the assumption that the algorithm 
is not stuck at a local minimum point. 

Gu and Gu have made some preliminary analysis of the typical time complexity 
of some global optimization SAT algorithms [216]. It shows that, the SATU.5 
algorithm, with probability at least l-e-n, finds a solution within k = 0(n(logn)2) 
iterations of the while loop for a randomly generated satisfiable CNF formula with 
I > 3 and m/n < a2l/l, where a < Us a constant. From this and the fact that 
the run time of procedure enumerate^ is 0(2"), the typical time complexity of the 
SAT14.5 algorithm is 

(1 - e-n)0(n(log n)2(lmn)) + e~n0(2n) = 0{ln{nlogn)2). 

Clearly, the SAT14.5 algorithm can give an answer to an unsatisfiable CNF for- 
mula in 0(2") time. 

9.  Integer Programming Method 

In this section, we first give an integer program (IP) formulation of SAT. Then 
we describe some traditional techniques of using the integer programming approach 
to solve SAT. 

9.1. An Integer Programming Formulation for SAT. In order to repre- 
sent SAT inputs in the framework of mathematical programming, we identify logic 
value true with integer 1 and false with -1. Similar in C/m'5^Tmodels (Section 8.1), 
all Boolean V and A connectives are transformed into + and x of ordinary addition 
and multiplication operations, respectively. Using a standard transformation, the 
ith clause d is transformed into a linear inequality [301, 299]: 

n 

(9.1) £>,;(«>,•)> 2-|<?iI 
i=i 

where 
{w if literal Xj is in clause d 

-w if literal Xj is in clause d 
0 if neither Xj nor Xj is in Ci 

where Wj is the jth integer variable. 
To restrict Wj = ±1, j = 1,2,...n, requires that extra constraints be added 

to insure that each Wj be in the closed interval [-1,1], i.e., -1 < Wj < 1 for 
j = l,2,...n. 

Following the above formulation, for example, a CNF T 

(xi V x2) A (xi V x-2 V x3) A (x2 V x3) 
is translated into 
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W\ — W2 > 0 

— Wi +W2 + UI3 > — 1 

Wo + W$ > 0 

so an integer programming formulation is obtained for SAT as: finding Wj = ±1, 
such that 

(9.3) 

or 

(9.4) 

While the Simplex method is effective for solving linear programs (LP), there is 
no single technique that is fast for solving integer programs. Therefore, approaches 
developed try to solve the integer program as an integer linear program (ILP).7 If 
the solution is non-integer, one rounds off the values to the nearest integers and 
checks whether this corresponds to a solution of the original input. If the rounded 
off values do not correspond to a solution, adds a new constraint and computes a 
solution of the modified linear program. So far most methods developed to solve 
the integer programs for SAT indirectly work on the corresponding integer linear 
programs. 

Researchers have observed that the optimal integer-programming solution is 
usually not obtained by rounding the linear-programming solution although this is 
possible in certain cases (see Section 10). The closest point to the optimal linear- 
program may not even be feasible. In some cases, the nearest feasible integer point 
to the linear-program solution is far removed from the optimal integer point. Thus, 
when using an integer linear program to solve the integer program for SAT, it is 
not sufficient simply to round linear-programming solutions. 

In the following sections, we describe existing integer programming methods to 
solve SAT. 

9.2. Linear Program Relaxation. A basic method to solve an integer pro- 
gram is the linear program relaxation. In this approach, the LP relaxation is 
achieved by replacing x; G {0,1} with 0 < xt < 1. The LP relaxation can be solved 
efficiently with some sophisticated implementations of Dantzig's Simplex method, 
such as MINOS [386], or some variations of Karmarkar's interior point method 
[303]. 

Hooker early reported that by solving a linear programming of SAT, one fre- 
quently produces an integer solution [258]. Kamath et al. used MINOS 5.1 to 
solve linear programming relaxation [301, 299]. They tried some small SAT in- 
puts and found that the Simplex method failed to find integral solutions to the 
linear programming relaxations in majority of instances tested. 

7An integer linear program (ILP)  is a linear program further constrained by integrality 
restrictions. 
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xx>0 

x2>0 

FIGURE 25. An example of a branch-and-bound tree. 

9.3. Branch and Bound Method. Branch-and-bound is essentially a strat- 
egy of "divide and conquer." It is a straightforward and the most successful way 
to solve the integer programming problem. The idea is to systematically partition 
the linear-programming feasible region into manageable subdivisions and make as- 
sessments of the integer-programming problem based on these subdivisions. When 
moving from a region to one of its subdivisions, we add one constraint that is not 
satisfied by the optimal linear-programming solution over the parent region. So the 
linear programs corresponding to the subdivisions can be solved efficiently. In gen- 
eral, there are a number of ways to divide the feasible region, and as a consequence 
there are a number of branch-and-bound algorithms. 

We show the basic procedures of branch-and-bound with a simple example 
shown in Figure 25. The method starts with the fractional solution given by its 
corresponding LP relaxation. Then a variable of fractional solution is selected. For 
example, let xx be a variable, and set xi < 0 as an additional constant; i.e., branch 
on X! with constraint xx < 0. Resolve the LP relaxation with this augmented con- 
straint. If it still produces a non-integer solution, branch on another non-integer 
variable, say x2, first with constraint x2 < 0, and resolve the LP with extra con- 
straint Xi < 0 and x2 < 0. This process continues until solving the augmented LP 
yields an integer solution, i.e., an incumbent solution, so there is no need to branch 
further at that node. Since we do not know this to be optimal, a backtracking pro- 
cedure is required to search with extra constraints xi < 0 and x2 > 0 and resolve 
the augmented LP and continue the process until an integer solution is obtained. 

The above process produces a binary tree as shown in Figure 25. In this way, 
we implicitly exhaust all possibilities and conclude with an optimal solution. Note 
that each time we obtain an incumbent solution we get a new upper bound on the 
minimum value of the objective function. It at the same node the LP yields an 
objective function with value that exceeds the best upper bound obtained so far, 
then we can fathom that node, since any solution obtained at its successors can 
only be worse. 

9.4. Cutting-Plane Method. Unlike partitioning the feasible region into 
subdivisions, as in branch-and-bound approaches, the cutting-plane algorithm solves 
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FIGURE 26. An illustration of the cutting-plane method. 

integer programs by modifying linear-programming solutions until an integer solu- 
tion is obtained. It works with a single linear program, which it refines by adding 
new constraints. The new constraints successively reduce the feasible region until 
an integer optimal solution is found. 

The idea of the cutting plane method can be illustrated from a simple geomet- 
ric interpretation (Figure 26). The feasible region for the integer program, i.e., an 
integer polytope, consists of those integer lattice points satisfying all constraints. A 
cut is an inequality satisfied by all the feasible solutions of the integer program. A 
cutting plane is a hyperplane defined by that inequality and it conflicts with the so- 
lution X* of the linear-programming relaxation. The cutting plane passes between 
X* and the integer polytope and cuts off a part of the relaxed polytope containing 
the optimal linear-programming solution X* without excluding any feasible integer 
points. After the cut, the resulting linear program is solved again. If the optimal 
values for the decision variables in the linear program are all integer, they are op- 
timal; otherwise, a new cut is derived from the new optimal linear-programming 
tableau and appended to the constraints. 

In practice, the branch-and-bound procedures almost always outperform the 
cutting-plane algorithm. Nevertheless, the algorithm has been important to the 
evolution of integer programming. Historically, it was the first algorithm developed 
for integer programming that could be proven to converge in a finite number of 
steps. In addition, even though the algorithm generally is considered very inef- 
ficient, it has provided insights into integer programming that have led to other, 
more efficient algorithms. 

9.5. Interior Point Method. The most important advance in linear pro- 
gramming solution techniques was recently introduced by Karmarkar [303].   As 
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FIGURE 27. The basic ideas of the Simplex method and Kar- 
markar's method. 

shown in Figure 27, compared to the Simplex method which jumps from a cor- 
ner point to another corner point of the LP polytope until the optimal solution 
is found, Karmarkar's algorithm constructs an ellipsoid inside the polytope and 
uses nonlinear transformations to project better solution guesses in the interior of 
the polytope. Unlike the Simplex method which approaches the optimal solution 
indeed by step-by-step searching and has an exponential worst-case complexity, 
Karmarkar's algorithm has been proven to be a polynomial time algorithm^ 

To apply Karmarkar's algorithm on integer programming, first the 0/1 integer 
program is transformed to a ±1 integer program. Then the potential function 
x2 is used, and obviously the optimal integer solution to the original IP problem 
is at the point that the potential function achieves a maximum. However,^ using 
Karmarkar's algorithm on integer programming may get stuck at a local minimum, 
i.e., it does not guarantee to find the optimal solution by projection. Therefore, it 
is an incomplete algorithm. 

9.6. Improved Interior Point Method. It is expected that a sequence of 
interior points 

(9.5) wk+1 = wk + a A w* 

is generated such that the potential function in Karmarkar's algorithm is minimized. 
It is crucial to determine the descent direction Aw* of the potential function around 
wk and the step size a. 

In the original Karmarkar's algorithm, the step size a is assumed with (0,1]. 
They used a = 0.5 in their experiments to solve SAT inputs. If the potential 
function is well represented by the quadratic approximation around the given point, 
then if we move along the Newton direction and have the appropriate values for 
certain parameters, we will reach the minimum; otherwise, recall that the step size 
is chosen so that it reaches a minimum of the objective function on that line of the 
given descent direction. So there is no reason to restrict a within (0,1]. 
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This suggests the necessity to use line search to choose optimal step size. Fol- 
lowing this idea, Shi, Vännelli, and Vlach have recently given an improved interior 
point algorithm [476]. In their algorithm, the step size a is determined by a golden- 
section search [356]. Experiments show significant improvements on Karmarkar's 
algorithm. 

10.  Special Subclasses of SAT 

Certain subclasses of SAT that are known to be solved in polynomial time have 
been identified and explored. There are at least three reasons for discussing such 
subclasses in this section. First, a given formula can be preprocessed and examined 
to determine whether it is a member of a polynomial-time solvable subclass of SAT. 
If so, a special, fast algorithm can be brought to bear on the formula. Second, a 
portion of a given formula may a member of such a subclass and its solution may 
make solving the given formula easier. Third, study of such subclasses reveals, 
in part, the nature of "easy" SAT formulas. On the other hand, as reported in 
Section 12, studies of random formulas indicate that these known classes contain 
only a small fraction of the formulas that can be solved rapidly. 

Below, we consider some of the more notable polynomial-time subclasses. When 
we say apply unit resolution we mean apply the unit clause rule to exhaustion. 

10.1. 2-SAT. A CNF formula containing clauses of one or two literals only is 
solved in linear time by applying unit resolution [18, 155]. 

10.2. Horn and Extended Horn Formulas. A CNF formula is Horn if 
every clause in it has at most one positive literal. This class is widely studied, in 
part because of its close association with Logic Programming. Horn formulas can 
be solved in linear time using unit resolution [144, 278, 466]. 

The class of extended Horn formulas was introduced by Chandru and Hooker [79] 
who were looking for conditions under which a Linear Programming relaxation 
could be used to find solutions to propositional formulas. A theorem of Chan- 
drasekaran [84] characterizes sets of linear inequalities for which 0-1 solutions can 
always be found (if one exists) by rounding a real solution obtained using an LP 
relaxation. Extended Horn formulas can be expressed as linear inequalities that be- 
long to this family of 0-1 problems. The following graph-theoretic characterization, 
taken from [501], is simpler than the LP characterization. 

Let C be a clause constructed from a variable set V, and let R be a rooted 
directed tree with root s (i.e., a directed tree with all edges directed away from 
s) and with edges uniquely labeled with variables in V. Then C is extended Horn 
w.r.t. R if the positive literals of C label a (possibly empty) dipath P of R, and the 
set of negative literals in C label an edge-disjoint union of dipaths Qi, Q2,..., Qt of 
R with exactly one of the following conditions satisfied: 

1. Qi,Q^,---,Qt start at the root s. 
2. Qi,Q~2,—,Qt-i, (say), start at the root s, and Qt and P start at a vertex 

q jt s (if P is empty, Qt can start from any vertex). 

A clause is simple extended Horn w.r.t. R if it is extended Horn w.r.t. R and only 
Condition 1 above is satisfied. A CNF formula is (simple) extended Horn w.r.t. R 
if each of its clauses is (simple) extended Horn w.r.t. R. A formula is (simple) 
extended Horn if it is (simple) extended Horn w.r.t. some such rooted directed tree 
R. 
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One tree R for a given Horn formula is a star (one root and all leaves with an 
edge for each variable in the formula). Hence, the class of extended Horn formulas 
is a generalization of the class of Horn formulas. 

Chandru and Hooker [79] showed that unit resolution alone can determine 
whether or not a given extended Horn formula is satisfiable. A satisfying truth as- 
signment for a satisfiable formula may be found by applying unit resolution, setting 
values of unassigned variables to 1/2 when no unit clauses remain, and rounding the 
result by a matrix multiplication [79]. This algorithm cannot, however, be reliably 
applied unless it is known that a given formula is extended Horn. Unfortunately, 
the problem of recognizing extended Horn formulas is not known to be solved in 
polynomial time. 

10.3. Formulas from Balanced (0,±1) Matrices. The class of formulas 
from balanced (0, ±1) matrices, which we call balanced formulas here, has been 
studied by several researchers (see [100] for a detailed account of balanced matri- 
ces and a description of balanced formulas). The motivation for this class is the 
question, for SAT, when do Linear Programming relaxations have integer solutions? 

Express a CNF formula of m clauses and n variables as an m x n (0, ±1)- 
matrix M where the rows are indexed on the clauses, the columns are indexed on 
the variables, and a cell M(i,j) has the value +1 if clause i has variable j as an 
unnegated literal, the value -1 if clause i has variable j as a negated literal, and 
the value 0 if clause i does not have variable j'asa negated or unnegated literal. 
A CNF formula is a balanced formula if in every submatrix of M with exactly two 
nonzero entries per row and per column, the sum of the entries is a multiple of 
four [507]. 

Let a CNF formula be cast, in standard fashion, as a linear programming 
problem of the form {x : Mx > 1 - n(M),0 < x < 1} where n(M) is a column 
vector whose components are the number of negated literals in clauses at the rows 
corresponding to those components. If M is balanced, then for every submatrix A 
of M, the solution to {x : Ax > 1 - n(A),0 < x < 1} is integral [100]. From this 
it follows that balanced formulas may be solved in polynomial time using linear 
programming. 

Balanced formulas have the property that, if every clause contains more than 
one literal, then for every variable v there are two satisfying truth assignments: one 
with v set to true and one with v set to false. Thus, the following is a simple linear- 
time algorithm for finding solutions to known balanced formulas [100]. Apply unit 
resolution to the given formula. If a clause is falsified, the formula is unsatisfiable. 
Otherwise, repeat the following as long as possible: choose a variable and set its 
value to true, then apply unit resolution. If a clause becomes falsified, then the 
formula is unsatisfiable, otherwise all clauses have been satisfied by the assignment 
resulting from the variable choices and unit resolution. 

Unlike extended Horn formulas, balanced formulas are known to be recognized 
in polynomial time [100]. 

10.4. Single-Lookahead Unit Resolution. This class was developed as a 
generalization of other classes including Horn, extended Horn, simple extended 
Horn, and balanced formulas [463]. It is peculiar in that it is defined based on 
an algorithm rather than on properties of formulas. The algorithm, called SLUR, 
selects variables sequentially and arbitrarily and considers both possible values for 
each selected variable.   If, after a value is assigned to a variable, unit resolution 
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does not result in a clause that is falsified, the assignment is made permanent and 
variable selection continues. If all clauses are satisfied after a value is assigned 
to a variable (and unit resolution is applied), the algorithm returns a satisfying 
assignment. If unit resolution, applied to the given formula or to both sub-formulas 
created from assigning values to the selected variable on the first iteration, results 
in a clause that is falsified, the algorithm reports that the formula is unsatisfiable. 
If unit resolution results in falsified clauses as a consequence of both assignments of 
values to a selected variable on any iteration except the first, the algorithm reports 
that it has given up. 

A formula is in the class SLUR if, for all possible sequences of selected variables, 
SLUR does not give up on that formula. SLUR takes linear time with the modi- 
fication, due to Truemper [510], that unit resolution be applied simultaneously to 
both branches of a selected variable, abandoning one branch if the other finishes 
first without falsifying a clause. Note that due to the definition of this class, the 
question of class recognition is avoided. 

All Horn, extended Horn, and balanced formulas are in the class SLUR. Thus, 
an important outcome of the results on SLUR is the observation that no special 
preprocessing or testing is needed for a variety of special subclasses of SAT when 
using a reasonable variant of the DPL algorithm. 

A limitation of all the classes above is that they do not represent many inter- 
esting unsatisfiable formulas. There are several possible extensions to SLUR which 
improve the situation. One is to add a 2-SAT solver to the unit resolution step. 
This extension is at least able to handle all 2-SAT formulas which is something 
SLUR cannot do. This extension can be elegantly incorporated into SLUR due 
to an observation of Truemper: "Whenever SLUR completes a sequence of unit 
resolutions, and if at that time the remaining clauses are nothing but a subset of 
the original clauses (which they would have to be if all clauses have at most two 
literals), then effectively the SLUR algorithm can start all over. That is, if fixing 
of a variable to both values leads to an empty clause, then the formula has been 
proved to be unsatisfiable. Thus, one need not augment SLUR by the 2-SAT algo- 
rithm, because the 2-SAT algorithm (at least one version of it) does exactly what 
the modified SLUR does." Another extension of SLUR is to allow a polynomial 
number of backtracks, giving up if at least one branch of the DPL tree does not 
terminate at a leaf where a clause is falsified. Thus, unsatisfiable formulas with 
short DPL trees can be solved. However, such formulas are uncommon. 

10.5. q-Horn Formulas. This class of propositional formulas was developed 
by Boros, Crama, Hammer, Saks, and Sun in [44] and [43]. We choose to charac- 
terize the class of q-Horn formulas as a special case of monotone decomposition of 
matrices [508, 510]. As in the case of balanced (0, ±1) matrices, express a CNF 
formula of m clauses and n variables as an m x n (0, ±l)-matrix M where the rows 
are indexed on the clauses, the columns are indexed on the variables, and a cell 
M(i,j) has the value +1 if clause i has variable j as an unnegated literal, the value 
-1 if clause i has variable j as a negated literal, and the value 0 if clause i does not 
have variable j as a negated or unnegated literal. In the monotone decomposition 
of M, columns are scaled by -1 and the rows and columns are partitioned into 
submatrices as follows: 
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A1  | E 
D | A2 

where the submatrix A1 has at most one +1 entry per row, the submatrix D 
contains only -1 or 0 entries, the submatrix A2 has no restrictions other than the 
three values of -1, +1, and 0 for each entry, and the submatrix E has only 0 entries. 
If the monotone decomposition of M is such that A2 has no more than two nonzero 
entries per row, then the formula represented by M is q-Horn. 

A recent result by Truemper [510] can be used to find a monotone decomposi- 
tion for a matrix associated with a q-Horn formula in linear time. Once a q-Horn 
formula is in its decomposed form it can be solved in linear time as follows. Treat 
submatrix A1 as a Horn formula and solve it in linear time using a method such 
as in [144, 278, 466] which returns a minimum, unique truth assignment for the 
formula with respect to true. If the Horn formula is unsatisfiable then the q-Horn 
formula is unsatisfiable. Otherwise, the returned assignment satisfies A1 and some 
or all rows of D. The set of true variables in every truth assignment satisfying 
A1 contains the set of variables true in the returned minimum, unique truth as- 
signment. Therefore, since elements of D are either 0 or -1, no truth assignment 
satisfying A1 can satisfy any rows of D that are not satisfied by the minimum, 
unique truth assignment. Hence, the only way A1 and D both can be satisfied is 
if A2, minus the rows collinear with those of D that are satisfied by the minimum, 
unique truth assignment, can be satisfied. Since A2 represents a 2-SAT formula, 
any subset is also 2-SAT and can be solved in linear time. If the answer is unsat- 
isfiable then the q-Horn formula is unsatisfiable; if the answer is satisfiable then 
such a satisfying assignment plus the minimum, unique truth assignment returned 
earlier are a solution to the q-Horn formula. 

The developers of the class q-Horn also offer a linear-time solution to formulas 
in this class. The main result of [43] is that a q-Horn formula can be recognized in 
linear time. See [42] for a linear-time algorithm for solving q-Horn formulas. 

Formulas in the class q-Horn are thought to be close to what might be regarded 
as the largest easily definable class of polynomially solvable propositional formulas 
because of a result due toBoros, Crama, Hammer, and Saks [44]. Let {vi,v-2, ...,vn} 
be a set of Boolean variables, and Pk and Nk, PA niVA = 0 be subsets of {1,2,..., n} 
such that the Jfeth clause in a CNF formula is given by Vi€pkVi \Zi£Nk «»• Construct 
the following system of inequalities: 

Y,ai+ X^1_Qi)-Z' (k = l,2,...,m), and 
i€Pk i€Nk 

0 < a-i < 1, [i = l,2,...,n). 

where Z € R+. If all these constraints are satisfied with Z < 1 then the formula 
is q-Horn. On the other hand, the class of formulas such that the minimum Z 
required to satisfy these constraints is at least 1 + l/ne, for any fixed e < 1, is 
NP-complete. For more information on the subject of q-Horn formulas will appear 

in [510]. 

10.6. Renamable Formulas. Suppose clauses of a CNF formula T are con- 
structed from a set V of variables and let V C V. Define switch{T,V) to be the 
formula obtained as follows: for every veV, reverse all unnegated occurrences of 
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v in T to negated occurrences and all negated occurrences of v to unnegated occur- 
rences. For a given formula T, if there exists a V C V such that switch(T, V) is 
Horn, extended Horn, etc., then the formula is said to be renamable Horn, extended 
Horn, etc., respectively. 

The algorithms given above work even if a given formula is renamable to a 
formula in the class for which they apply. Additional classic references to Horn 
renamability are [337] and [19]. 

It is interesting to note that there exist formulas in the class of SLUR, formulas 
that are not members of either renamable extended Horn formulas or balanced 
formulas [463]. 

10.7. Formula Hierarchies. Some sets of clauses not falling into one of the 
polynomially solvable classes denned above may be reduced to "equivalent" for- 
mulas that are members of at least one of these classes. If such reductions are 
efficient, these sets can be solved in polynomial time. Such reductions can take 
place in stages where each stage represents a class of polynomially solved formulas, 
and lower stages represent classes of perhaps lower time complexity than classes 
represented by higher stages. The lowest stage is a polynomially solved base class, 
such as one of the classes above. 

An example of such a hierarchy is found in [182]. The base class, at stage 
0, is Horn. Consider a stage 1 formula that is not Horn. By definition of the 
hierarchy, there is a variable v which, if set to true, leaves a set of non-satisfied 
clauses and non-falsified literals that is Horn. If this Horn formula is found to be 
satisfiable, we can conclude the original formula is. Otherwise, setting v to false 
leaves a set of clauses that is a stage 1 formula (empty formulas are considered 
to belong to every stage). Thus, the above process can be repeated (on stage 1 
formulas) to exhaustion. Since it takes linear time to solve Horn formulas and in 
the worst-case a linear number of Horn systems must be considered, the process for 
solving formulas at stage 1 has quadratic complexity. The above concept can be 
expanded to higher stages to form a hierarchy: at stage i, when setting v to true, a 
sub-formula is at stage i - 1, and when setting v to false, a sub-formula is at stage 
i. Thus, solutions to stage i formulas are carried out recursively leading to a time 
complexity that is bounded by m\ An alternative way to solve formulas at stage i 
in the hierarchy is to use i-resolution (resolution is not applied unless at least one 
clause has at most i literals) [62]. 

The only remaining question is to determine whether a given formula is a stage 
i formula. This can be done with a bottom-up approach described in [182]. 

For other information on such Hierarchies see, for example, [113, 184]. 

10.8. Pure Implication Formulas. Pure implication formulas are defined 
recursively as follows: 

1. A variable is a pure implication formula. 

2. If T\ and JF2 are pure implication formulas then [T\ -> To) is a pure impli- 
cation formula. 

Eliminating parentheses on right to left associativity, a pure implication formula 
can be written T\ -> T-2 ->• ••• -> Fp -> z where 2 is a variable. We call the z 
variable of a formula the right-end variable. 
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The satisfiability problem is trivial for a pure implication formula but the prob- 
lem of falsifiability is NP-complete even if all variables except the right-end variable 
occur at most twice in the formula. Furthermore, the complexity of determining 
falsifiability seems to increase at least exponentially with the number of occurrences 
of the right-end variable [248]; this yields a hierarchy of classes starting from linear- 
time solvability and going through NP-completeness. This is possibly due to the 
fact that the expressive power of pure implication formulas at the lower levels of 
the hierarchy is extremely limited. Despite this lack of expressibility, it seems that 
the lower levels of the hierarchy are incomparable with other special polynomial- 
time-solvable classes such as 2-SAT and SLUR. To make this more concrete, define 
a class of CNF formulas related to pure implication formulas and call it PICNF(fc). 

A formula in the class PICNF(fc) consists only of the following kinds of clause 

groups: 
1: (SW1 V xK2 V x„3) A (xWl V xV2) A (xWl V xK3) 
2: (iTl V £„, Vi»3)A (xffl Vil2)A (xWl V x„a) 
3: (a:Wl) 

where the number of type 2 groups is fixed at k and each variable occurs at most 
twice in a PICNF(fc) formula. The falsifiability question for a given pure implica- 
tion formula with right-end variable occurring at most k times is identical to the 
satisfiability question for a formula in class PICNF(fc). If all but one totally negated 
clauses are removed from such a formula, a complete set of at most n partial truth 
assignments, each of which can be extended to satisfying truth assignments, can 
be constructed in linear time. Doing this for each totally negated clause results 
in k such sets of partial truth assignments. Multiplying these sets to find consis- 
tent assignments spanning all k sets can determine whether the given formula is 
satisfiable. This can be accomplished in 0{nk) time, matching the complexity of 
falsifiability of pure implication formulas. A recent result [172] shows this can be 
reduced to 0(kkn2) time. We remark that the problem of determining satisfiability 
for formulas of the union of the classes PICNF(fc), for all k, is NP-complete. 

The class PICNF(fc), k fixed, is incomparable to other polynomially solved 
classes discussed above. For example, there are SLUR CNF formulas that are not 
represented as PICNF(fc) formulas and vice versa (particularly many unsatisfiable 
PICNF(fc) formulas are not SLUR CNF formulas). Also, although it is easy to 
construct a PICNF(ib) formula that is renamable Horn (and therefore q-Horn), even 
thePICNF(l)set (xiVx2Vx3)A(a:1Vx2)A(a;1Vx3)A(5iVx3Vx4)A(a;1Vx3)A(xiVa;4) 

is not q-Horn. 
PICNF(Jfc) is interesting because, for k fixed, it contains formulas that are not 

in other polynomial-time solvable classes and the severe lack of expressibility of 
PICNF(fc) formulas may be exploited to assist complexity investigations of class 
hierarchies. In particular, why should the hierarchies discussed above have 0(\F\ ) 
complexity when a complexity of 0{2k\F\), say, is not inconsistent with any devel- 
oped theory? PICNF(fc) may be useful in answering this question. 

10.9. Non-linear Formulations. An optimization problem with 0-1 vari- 
ables can be reduced to a constrained nonlinear 0-1 program. Such programs are 
expressed as follows: 

p 

(10.1) max   F(x) = J2ckTk 



74 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAH 

subject to 
pi 

gi{x) - Y2aikTik <bii i = 1,2,... ,m 

where 

(10.2) Tk=  JJ xy, NkCN = {l,2,...,n}, k = l,2,...,p 
j€Nk 

and 

Tik=   IJ  x^ Nik *^N> fc=1>2>--- -Pi- »' = 1,2,... ,m 

Problems in prepositional logic, originating, for example, in graph theory, can be 
expressed this way by associating 0 to false, 1 to true, 1 - a to ä, and a-b to a Ab. 

Several methods for solving the above formulation have been proposed [234, 
236]. In some restricted cases these methods have polynomial time complexity. 
Thus, the rich literature on this subject can be carried over to the domain of 
propositional satisfiability to provide low complexity algorithms for SAT under 
corresponding conditions. 

A notable example involves functions for which the co-occurrence graph is a 
partial k-tree [107]. The DNF formulation expressed by equations (4.7)-(4.8) is 
in the form of equations (10.1) and (10.2). Let F(x) be such a DNF function. 
The co-occurrence graph of F(x) has a vertex set corresponding to the variables 
{xi,x2,.-- ,xn} with an edge between n and Xj (i ^ j) if these variables occur 
simultaneously in at least one product term of -F(x). A simple, undirected graph G 
is a fc-tree if there is an ordering {x^1 ,x„2,... , x„n } of all its vertices such that, for 
all j = 1,2,... , n — k, in the subgraph Gj induced by vertices {xXj, xffj+1,... , £„•„ } 
the vertex xw. has degree k and its neighbors induce a complete subgraph of Gj. 
A partial fc-tree is any graph obtained by deleting edges from a A;-tree. If the co- 
occurrence graph of F(x) is a partial fc-tree, then F(x) can be solved in linear 
time [107]. Since the maximization problem for DNF formulas is the same as the 
minimization problem for CNF formulas (by using 1 - x for literal x and x for literal 
x), CNF formulas can be solved in linear time if their corresponding co-occurrence 
graph is a partial fc-tree. 

Another example is a linear time algorithm for determining whether a 2-SAT 
formula has exactly one solution, that is, uniquely solvable. The question of deter- 
mining unique solvability is a tough one in general and it is even hard to determine 
whether linear time algorithms exist for special subclasses of SAT8. However, one 
is presented for 2-SAT in [235] using the framework of pseudo-boolean Junctions 
(that is, of the form (10.1) and (10.2)). Finally, we mention the result of [106] 
where a polynomial time algorithm for producing a parametric representation of all 
solutions to a 2-SAT formula is presented. 

10.10. Nested and Extended Nested Satisfiability. The complexity of 
nested satisfiability has been studied in [312]. That study was inspired by Lichten- 
stein's theorem of planar satisfiability [345]. Index all variables in a CNF formula. 
A clause C\ straddles a clause C2 if the index of a literal of Co is strictly between 

8An almost linear algorithm for unique Horn-SAT has been obtained by Berman et al. [29] 
and improved into a linear time algorithm by a slight modification due to Pretolani [418] (Minoux 
developed a quadratic time algorithm in [375]) 
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two indices of literals of Cx ■ Two clauses overlap if they straddle each other. A for- 
mula is nested if no two clauses overlap. The problem of determining satisfiability 
for nested formulas, the clauses ordered so that clause d does not straddle clause 
Cj when i < j, can be solved in linear time [312]. 

An extension to nested satisfiability has been proposed in [237]. We prefer to 
skip the details and just mention that this extension can be recognized and solved 
in linear time. For details, the reader is referred to [237]. 

11.  Advanced Techniques 

In this section, we describe a number of advanced optimization techniques for 
satisfiability testing. They have been used in practical engineering applications and 
have proven to be effective for certain classes of SAT. 

11.1. General Boolean Representations. In practice, many problems in 
integrated circuit design, such as logic verification, test pattern generation, asyn- 
chronous circuit design, logic optimization, sequential machine reduction, and sym- 
bolic simulation, can be expressed as Boolean satisfiability problems with arbitrary 
Boolean functions. Each representation has corresponding algorithms for satisfia- 
bility testing. A Boolean representation affects the performance of Boolean ma- 
nipulation methods accordingly. Thus, efficient representation and manipulation 
of Boolean functions is crucial to many practical applications. Many different rep- 
resentations have been proposed for manipulating Boolean functions. However, 
many Boolean functions derived from practical circuit design problems suffer from 
an exponential size in their representations, making satisfiability testing infeasible. 

Most SAT algorithms work on conjunctive normal form (CNF) formulas, i.e., 
input formulas must be expressed as a product of sums of literals. The CNF formula 
is a canonical formula used in most analytical studies but is not an efficient represen- 
tation in practical application problems. Many real engineering design problems use 
non-clausal representations rather than the CNF formula. Algorithms in this cat- 
egory may be regarded as non-clausal inference algorithms for satisfiability testing 
[218]. Compared to CNF formulas, a non-clausal, general Boolean representation 
is much more compact and efficient, although the transformation of an arbitrary 
non-clausal expression into CNF can be done in polynomial time by introducing 
new variables. This will result in clause-form representation of substantially larger 
sizes [192, 412]. While this is not critical in complexity theory, it will have serious 
impact in solving practical application problems. 

In practice, a SAT algorithm can be made much more efficient if it works 
directly on problems represented in a compact number of general Boolean formulas 
rather than a large collection of CNF clauses. For a non-clausal SAT algorithm, the 
evaluation of arbitrarily large, complex Boolean functions is a key to its efficiency 

[226]. 
The next two subsections describe a sequential and a parallel Boolean repre- 

sentation and manipulation methods. 

11.2. Binary Decision Diagram (BDD). Ordered Binary Decision Dia- 
grams (OBDDs) [59, 60] is an efficient representation and manipulation method for 
arbitrary Boolean functions. This representation is defined by imposing restrictions 
on the Binary-Decision-Diagram (BDD) representation introduced by Lee [332] and 
Akers [9], such that the resulting form is canonical. The OBDD representation and 
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FIGURE 28. A simple BDD example for F = (a + b) ■ (a + c) 

its manipulation method are an extremely powerful technique in various practical 
applications. It is particularly useful with formulas where one needs to consider ev- 
ery solution, such as cases where one must search for optimal solutions. Although 
the OBDD representation of a function may have size exponential in the number 
of variables, many useful functions have more compact representations in practice. 

A BDD gives a graphical representation of Boolean functions. It is a directed 
acyclic graph with two types of leaf nodes, 0 and 1. Each non-leaf node is labeled 
with a Boolean variable v and has two out-going edges labeled 0 (the left edge) and 
1 (the right edge). A BDD can be utilized to determine the output value of the 
function by examining the input values. Every path in a BDD is unique, i.e., no 
path contains nodes with the same variables. This means that if we arbitrarily trace 
out a path from the function node to the leaf node 1, then we have automatically 
found a value assignment to function variables for which function will be 1 regardless 
of the values of the other variables. 

Given a simple example Boolean function F = (a + b) ■ (a + c), the BDD of 
function F can be constructed to determine its binary value, given the binary values 
of variables a, b, and c. At the root node of BDD, we begin at the value of variable 
a. If a = 1, then F = 1 and we are finished. If a = 0, we look at b. If b — 0, 
then F = 0 and again we are finished. Otherwise, we look at c, its value will be 
the value of F. The complete BDD for function F is shown in Figure 28, where all 
the paths from the root function node F to the leaf node 1 are highlighted. Each 
highlighted path yields a satisfiable assignment. For F, the satisfiable assignments 
are a - 1, b - -, c = - and a = 0, b = 1, c = 1, where '-' denotes a don't care 
assignment. 

It is well known that the BDD size for a given function depends on the variable 
order chosen for the function (e.g., {a,b,c} in Figure 28). Since the early intro- 
duction of BDDs, several extensions have been proposed to reduce BDD sizes in 
practical applications. In an ordered BDD [59, 60], the input variables are ordered, 
and every path from the root node to the leaf node visits the input variables in an 
ascending order. In practice, a simple topological based ordering heuristic [360] 
yields small size BDDs for practical Boolean instances. A reduced ordered BDD 
is an ordered BDD where each node represents a unique logic function.   Bryant 
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showed that the reduced ordered BDD of a Boolean function is well-defined and is 
a canonical representation of the function; i.e., two functions are equivalent if their 
reduced ordered BDDs are isomorphic [59, 60]. 

The DBDD is efficient to search for optimal solutions for arbitrarily compli- 
cated Boolean expressions. In VLSI circuit design, many practical problems require 
the enumeration of all possible assignments for a given Boolean formula. The best 
assignment that yields the minimum cost (e.g., minimal circuit structure, minimum 
chip area, and maximum circuit speed) is then selected from these possible assign- 
ments. Since most algorithms for satisfiability testing are designed for finding one 
truth assignment, they are impractical for selecting an optimal assignment. BDDs 
are very useful in such situations, since a simple and incremental enumeration of 
all possible paths from the root node to the leaf node 1 yields all the truth as- 
signments. Thus, once the BDD for a Boolean function has been constructed, it is 
straightforward to enumerate all assignments or find an optimal solution. 

The BDD method can effectively handle small and medium size formulas. For 
larger size formulas, a partitioning into a set of smaller sub-formulas before applying 
the BDD algorithms has been suggested. This approach works well for asynchronous 
computer circuit design problems [223, 435]. 

11.3. The Unison Algorithms. Based on total differential of a Boolean func- 
tion, the Unison algorithm is capable of evaluating arbitrarily large, complex Boolean 
functions [218, 490, 489]. The Unison algorithm is built with a network of multiple 
universal Boolean elements (UBEs). The topology of the Unison network specifies 
the structure of Boolean functions. By dynamically reconfiguring the UBE's func- 
tionality, Unison is adaptable to evaluate general Boolean functions representing 
the SAT/CSP problems. 

The total differential, dF, of a Boolean function F represents the difference in 
the function value due to the difference in input values.  For a Boolean function 
F(x, y) of two variables, x and y, the total differential is calculated from differences 
in input, dx and dy, as: 

(11.1) dF = Fxdx@Fydy@Fxydxdy, 

where © is the Exclusive-OR operation [503]. Let F{x,y) be a Boolean function of 
two dependent variables x and y; i.e., x = G(xux2) and y = H{yi,y2). Following 
(11.1), the total differential dF is: 

(11.2) 
dF{G{x),H{y)) = Fx dG{xux2) ® Fy dH(yi,y2) © Fxy dG(x1,x2) dH{yi,y2). 

It can be observed from (11.2) that the value of dF depends on total differentials 
dG and dH, rather than the function values G(xi, x2) and H{yi, y2)- By recursively 
applying (11.2) to dG, dH, and their dependent variables, the total differential dF 
can be evaluated based on only total differentials of the independent variables (see 

Figure 29). 
The Unison algorithm works in two phases: initialization and evaluation. The 

initialization phase computes partial derivatives that determine the function to be 
evaluated in the evaluation phase. The partial derivatives are constant during the 
evaluation phase. The evaluation phase reads input values and computes the final 
results. The calculation is performed in a bottom-up fashion, starting from the 
independent variables. 
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FIGURE 29. The relation between total differentials. 

A computer word is used to evaluate one Boolean operation, so the code to cal- 
culate dF would produce only one result. With one computer word, however, the 
computer is able to perform many bitwise AND and bitwise Exclusive-OR opera- 
tions in one instruction. In Unison algorithm's implementation, we take advantage 
of this machine feature to increase execution speed and to reduce memory space. 
In one of our implementations on the NeXT and SUN workstations [489], the 
Unison algorithm uses 32 bits of a computer word to pack 32 Boolean operations. 
If the ith bit in each operand is initialized to represent the ith Boolean operation, 
then the ith bit of dF will have the result of the ith Boolean operation. Each of 
the 32 bitwise operations is independent of the others. And the Unison algorithm 
simultaneously evaluates 32 Boolean operations in one machine instruction. The 
parallel implementation of the Unison algorithm is straightforward which can be 
implemented in any programming language that supports bitwise Boolean oper- 
ations. Data structures and implementation details of the Unison algorithm are 
discussed in [489]. 

The Unison architecture is built with a network of multiple universal Boolean 
elements (UBEs). The connection topology of the Unison network specifies the 
structure of the Boolean function evaluated by Unison. The structure of Boolean 
functions specifies the connectivity between Boolean expressions of two variables. 
Each UBE accomplishes a 2-variable, simple Boolean function in Unison. The 
outputs of two UBEs can be used as inputs to another UBE. This enables the 
construction of a network of UBEs capable of evaluating arbitrarily large, complex 
Boolean functions. By dynamically reconfiguring the UBE's functionality, Unison 
is adaptable to the evaluation of different Boolean functions representing SAT/CSP 
problems. In Unison architectures, there is essentially no limit on the number of bits 
one would like to implement. One can put as many UBE's on a chip as possible as 
long as the hardware resource permits. The detailed implementations of the Unison 
architecture, e.g., its network structure, UBE structures, and two CMOS hardware 
implementations, are described in detail in [490, 489]. 
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Combined with parallel evaluation, partial evaluation, and incremental eval- 
uation techniques, Unison can be incorporated into a variety of search and opti- 
mization algorithms for satisfiability testing. It is especially important in real-time 
applications where hardware processing with different Boolean functions is required. 
It provides an efficient approach for fast non-clausal processing of SAT inputs. 

11.4. Multispace Search. Many search and optimization methods have been 
developed in combinatorial optimization, operations research, artificial intelligence, 
neural networks, genetic algorithms, and evolution programming. An optimization 
algorithm seeks a value assignment to variables such that all the constraints are 
satisfied and the performance objective is optimized. The algorithm operates by 
changing values to the variables in the value space. Because value changing does 
not affect the formula structure and the search space, it is difficult for a value search 
algorithm to handle the pathological behavior of local minima. 

Multispace search is a new optimization approach developed in recent years 
[213, 226, 215]. The idea of multispace search was derived from principles of 
non-equilibrium thermodynamic evolution that structural changes are more funda- 
mental than quantitative changes, and that evolution depends on the growth of new 
structure in biological system rather than just information transmission. A search 
process resembles the evolution process, and structural operations are important to 
improve the performance of traditional value search methods [213, 226, 215]. 

In multispace search, any active component related to the given input structure 
can be manipulated, and thus, be formulated as an independent search space. For 
a given optimization problem, for its variables, values, constraints, objective func- 
tions, and key parameters (that affect the input structure), we define the variable 
space, the value space (i.e., the traditional search space), the constraint space, the 
objective function space, the parameter space, and other search spaces, respectively. 
The totality of all the search spaces constitutes a multispace. 

The basic idea of multispace search is simple. Instead of being restricted in the 
value space, the multispace is taken as the search space. In the multispace, com- 
ponents other than value can be manipulated and optimized as well. During the 
search, a multispace search algorithm not only alters values in the value space; as 
shown in Figure 30, it also walks across the variable space and other active spaces, 
changes dynamically the input structure in terms of variables, parameters, and 
other components, and constructs systematically a sequence of structured, interme- 
diate instances. Each intermediate instance is solved by an optimization algorithm, 
and the solution found is used as the initial solution to the next intermediate in- 
stance. By interplaying value optimization with structured operations, multispace 
search incrementally constructs the final solution to the search instance through 
a sequence of structured intermediate instances. Only at the last moment of the 
search, the reconstructed instance structure approaches the original instance struc- 
ture, and thus the final value assignment represents the solution of the given search 

input. 
Multispace search algorithm combines traditional optimization algorithms with 

structural multispace operations. In each search step, multispace search performs 
two fundamental operations: a traditional value search and the structural reconfig- 
uration of the intermediate instance during each individual search phase. According 
to the active event in the scrambling schedule [213, 214], the search process en- 
ters a specified search space and performs structural operations to the intermediate 



80 JUN GU, PAUL W. PURDOM, JOHN FRANCO, AND BENJAMIN W. WAH 

Value space 

'■^ '"•-,.     Variable space 
F 

\  S 

Constraint space 

-- - 4 Objective space 

Other space 

Parameter space 

FIGURE 30. In the value space, a traditional search process 
(dashed line) cannot pass a "wall" of high cost search states 
(hatched region). It fails to reach the final solution state, F. A 
multispace search process (solid lines) scrambles across different 
search spaces. It could bypass this "wall" through the other search 
spaces. 

instance structures, followed by a traditional value search that optimizes the con- 
structed intermediate instance. The resulting intermediate solution is then used as 
the initial instance to the next phase of multispace search. 

The major structural operations in multispace search [213, 214] include mul- 
tispace scrambling [214, 226], extradimension transition (e.g., air bridge, real di- 
mension, and extra dimension) [212, 216, 217], search space smoothing [221], 
multiphase search [485, 488, 212, 433, 542, 208, 222], local to global passage 
[208, 208], tabu search [199], and perturbations (e.g., jumping, tunneling, climb- 
ing, and annealing) [209, 210, 212, 217, 306]. 

In the next two subsections we describe two preprocessing methods for satisfia- 
bility testing in multispace search: partitioning input size and partitioning variable 
domain. 

11.5. Partitioning to Reduce Input Size. Due to excessive computing 
time, a large size NP-hard problem is difficult to solve. Partitioning a large input 
into a set of smaller sub-instances may permit efficient solution of the input. There 
are two partitioning methods, each consisting of a partitioning, a conquer, and 
an integration procedure. For constructive partitioning (e.g., divide and conquer), 
partitioning, conquer, and integration procedures are well defined and easy to im- 
plement. For destructive partitioning, it is difficult to design the partitioning and 
integration procedures. 

We give an industrial case study that requires a SAT solver. The SAT solver 
uses an efficient input size partitioning as a preprocessing step. This problem arises 
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in asynchronous circuit design. Asynchronous circuits are indispensable in many 
low power and high performance digital computer systems. Due to their important 
applications in mobile, portable, and military communication systems, there has 
been great interest in the automated design and synthesis of asynchronous circuits 
[89, 328, 348, 525]. The design of asynchronous control and interface circuits, 
however, has proven to be an extremely complex and error-prone task. The core 
problem in asynchronous circuit synthesis can be formulated as an instance of 
SAT to satisfy the complete state coding (CSC) constraints, i.e., the SAT-Circuit 
problem [526]. 

In this practical application problem, an optimal solution with minimal circuit 
layout area is sought. An incomplete SAT solver such as local search, unfortunately, 
does not guarantee an optimal solution, and therefore, is not applicable. Previous 
researchers used efficient resolution and branch-and-bound procedures to handle 
the SAT-Circuit problem. For most asynchronous circuit design problems, unfortu- 
nately, they were not able to find an optimal solution and, for difficult asynchronous 
circuit design problems, they could not locate even one solution. 

Gu and Puri have recently developed a partitioning technique for satisfiability 
testing and applied it to asynchronous circuit design [214, 223, 435]. The parti- 
tioning preprocessor, at the beginning, decomposes a large size SAT formula that 
represent the given asynchronous circuit design into a number of smaller, disjoint 
SAT formulas. Each small size SAT formula can be solved efficiently. Eventually, 
the results of these sub-formulas are integrated together and contribute to the so- 
lution of the original formula. This preprocessor avoids the problem of solving very 
large SAT formulas and guarantees to finding one best solution in practice. ^ This 
partitioning preprocessing is destructive since, during the search, extra variables 
are introduced to resolve the critical CSC constraints. Furthermore, they built a 
complete, incremental SAT solver based on binary decision diagrams (BDD). Their 
system is able to find an optimal solution to the asynchronous circuit design prob- 
lem efficiently. 

11.6. Partitioning Variable Domains. A variable domain contains values 
to be assigned to variables. The size of a variable domain, along with the number of 
variables, determine the computational complexity of an optimization algorithm. 
From a theoretical point of view, even a small reduction in the variable domain 
would result in significant improvements in computing efficiency. It is, however, 
difficult to make use of variable-domain reduction techniques in solving optimization 
problems. Recently, Wang and Rushforth have studied mobile cellular network 
structures and developed a novel variable-domain reduction technique for channel 
assignment in these networks [542, 543]. 

The rapid growth of mobile cellular communication services has created a direct 
conflict to the limited frequency spectrum. Channel assignment is an important 
technique to the efficient utilization of frequency resource for mobile cellular com- 
munications. Among several channel assignment problems, the fixed channel as- 
signment (FCA) is essential to the design and operation of cellular radio networks. 
An FCA algorithm assigns frequency channels to calls such that the frequency sep- 
aration constraints are satisfied and the total bandwidth required by the system 
is minimized. By encoding the constraints into clauses, the problem becomes an 
instance of SAT." For a given cellular communication system, there are numerous 
ways to assign a channel to a call request. An optimal channel assignment decision 
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can significantly improve the cellular system capacity without requiring extra cost. 
For a fixed mobile cellular system, the capacity of the cellular system is mainly 
determined by the performance of the channel assignment algorithms. 

Wang and Rushforth's channel assignment algorithm was developed based on 
the structure of cellular frequency reuse patterns. Using their variable domain 
partitioning technique, they partition a mobile cellular network with larger variable 
domain into two networks: a minimum network with a fixed and small variable 
domain (due to the known frequency reuse patterns) and a difference network with 
an even smaller variable domain [542, 543]. Channels are assigned separately to 
the minimum network and to the difference network, and the superposition of these 
two assignments constitutes an assignment to the original network. 

Because this variable domain partitioning approach decomposes an instance 
of a channel assignment problem with a large number of assignments into two 
separate channel assignment sub-instances with considerably smaller numbers of 
assignments, it dramatically reduces the computational complexity and thus the 
computing efficiency for solving given inputs, in addition to the significantly im- 
proved solution results. This novel partitioning technique can be applied to solve 
the channel assignment problem with any existing channel assignment algorithms. 
During numerous channel assignment experiments, this algorithm outperformed all 
available algorithms for solving the practical channel assignment problem bench- 
marks. Experimental evidence suggests that this partitioning approach is both 
efficient and effective. 

11.7. Parallel SAT Algorithms and Architectures. Many parallel SAT/CSP 
algorithms have been developed.  In a recent survey [218], the following parallel 
algorithms for solving SAT were discussed: 

1. 1987: Parallel DP algorithms 
2. 1986: Parallel discrete relaxation chips 
3. 1987: Parallel backtracking architecture 
4. 1987: Parallel local search algorithm 
5. 1989: Parallel interior point method 
6. 1990: Parallel, differential, non-clausal inference 
7. 1991: Parallel aß relaxation 
8. 1991: Parallel global optimization 
9. 1992: Neural network approach 

10. 1993: Multiprocessor local search 

Some of ideas of these techniques are described in this paper. 
For the following two reasons, algorithms running on loosely-coupled, multipro- 

cessor parallel computers offer limited performance improvements for solving SAT. 
First, in the worst case, a SAT algorithm may suffer from the exponential growth in 
computing time. In order to solve a SAT formulas effectively, we will need a com- 
puter that has much larger speedup than what is available today. This computer 
will require the integration of at least a few million processors in a tightly-coupled 
manner. This is infeasible in the current computer system integration technology. 

Second, as the processor gets much faster, the communication overhead among 
processors in a parallel machine becomes a bottleneck, which may often take 70 % to 
even 90 % of the total computing time [291]. Ideally one would expect the speedup 
on a parallel computer to increase linearly with increasing number of processors. 
Due to serious off-processor communication delays, after certain saturation point, 
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adding processors does not increase speedup on a loosely-coupled parallel machine. 
Processor communication delay also makes process creation, process synchroniza- 
tion, and remote memory access very expensive in a loosely-coupled multiprocessor 
system. For this reason, the speedup on a multiprocessor is normally less than 
the number of processors used. With simple SAT algorithms, however, speedup is 
sometimes greater than the number of processors [383]. Variable settings similar 
to those that are already known not to lead to a solution are also unlikely to lead 
to a solution. The obvious methods of parallelizing simple SAT algorithms break 
up the tendency to search similar settings at about the same time. 

From our experience, tightly coupled parallel computing, which effectively re- 
duces off-processor communication delays, is a key to the parallel processing of 
SAT formulas [218]. In order to use a tightly-coupled parallel architecture for SAT 
computation, one must map a computing structure to the input structure and must 
reduce the total number of sequential computing steps through a large number of 
symmetrical interactions among simple processors [206, 218]. Several different ap- 
proaches, e.g., special-purpose parallel VLSI architectures [224, 225], bit-parallel 
programming on sequential machines [207, 212, 490, 489], and tight programming 
on parallel computer systems, are promising alternatives in this direction. These 
approaches are capable of providing a tight mapping between a formula structure 
and a computing structure, resulting in faster computation. The computational 
power of these approaches are orders of magnitude greater than standard sequen- 
tial algorithms running on uniprocessor machines or parallel algorithms running on 
loosely coupled multiprocessors. 

Parallel processing does not change the worst-case complexity of a SAT al- 
gorithm unless one has an exponential number of processors. Parallel processing, 
however, does delay the effect of exponential growth of computing time, allowing 
one to solve larger size instance of SAT. 

11.8. The Multi-SAT Algorithm. The problem structures of real world prac- 
tical applications vary significantly, making it difficult to develop an efficient SAT 
algorithm to solve a wider range of the practical application problems. Many effi- 
cient algorithms have been developed for the SAT problem. They each can solve 
a class of problem instances efficiently. Backtracking algorithms can handle some 
small size, hard problem instances, providing complete solutions. Local search could 
handle fairly large-size satisfiable problem instances quickly. BDD SAT solver is 
able to solve practical problem instances with performance criteria. Lagrangian- 
base global search method can provide solutions to wide range of SAT problem in- 
stances. Furthermore, problem size partitioning and problem domain partitioning 
techniques empower the existing SAT algorithms to solve much larger size practical 
problem instances. If we combine the niches of several efficient algorithms together, 
they may be able to handle a much wider range of SAT problem instances efficiently. 

Another school of concern for the Multi-SAT algorithm comes from the existing 
challenge for SAT algorithm's design and testing. A good local search algorithm, 
for example, consists of several basic components. These components are sensitive 
to algorithm parameter setting, algorithm running environment, input size, and 
problem structure. When designing a local search algorithm, we will select among 
several min-confiicts heuristics, several random value assignment heuristics, several 
random variable selection heuristics, more than a dozen partial random variable 
selection heuristics, several multiphase search heuristics, and several multispace 
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search meta-heuristics. Combined with hundreds of problem instances/benchmarks, 
the major time of a SAT algorithm's design, implementation, and testing was spent 
on large number of parameterized executions, i.e., running/experimenting different 
versions of the algorithm for different, parameterized problem instances. A Multi- 
SATalgorithm can relieve the load of this task, facilitating quick design and testing 
of the algorithm. 

Two algorithm integration methods have been proposed to integrate different 
algorithms into a coherent and effective structure. In hybrid algorithm approach, 
algorithms in different classes are integrated together in a single algorithm. The 
hybrid algorithm would make use of different algorithmic niches according to some 
decision procedures. Early practices of this approach include combining local search 
with backtracking [206, 212] and combining global optimization with backtracking 
[210, 217]. The effectiveness of this type of algorithm can be limited due to the 
overheads of decision making and algorithmic context switching. 

In the algorithm clustering approach ("Future Work" in [217]), algorithms in 
different classes are implemented and optimized individually to achieve the best 
performance. Each algorithms is executed on a computer and a cluster of computers 
is used to execute several selected algorithms from different classes. The individual 
results of the algorithms' executions are hardwired together, producing the final 
result. The algorithm clustering approach will not suffer from any performance 
degradation due to algorithm integration, and thus can be run efficiently on a 
cluster of computers. Computer hardware prices continue to decrease, a cluster 
of computers can be built in a cost-effective way (e.g., a powerful PC can now be 
purchased with around SI,000). The only requirement for clustering computation 
is a multi-tasking integration software. 

In a recently proposed Multi-SAT algorithm [219], we select several efficient 
SAT algorithms from different algorithm classes including, for examples, DPL and 
CSAT from backtracking algorithm, SAT1, SAT3, and GSAT from local search 
algorithm, BDD SAT solver from binary decision diagram algorithm, and DLM 
from Lagrangian-base global search method. Combining problem size partitioning 
and problem domain partitioning techniques, they together support an effective 
satisfiability testing for problem instances with uncertain structures, using "many 
stones" to shoot "one bird." In addition, they permit an automated tracking of a 
suitable algorithm structure, allow a detailed study of the entire problem spectrum, 
and provide a cost-effective multi-tool kit for practical satisfiability testing. 

A basic software system for the Multi-SAT, Clustor, is shown in Figure 31. 
We have an algorithm tool kit collecting candidate algorithms from different algo- 
rithms' classes, a problem instance database for user to select the problem instances, 
a distributed system software, job dispatcher, for remote job execution control and 
execution result collection, and a network of computers executing the selected al- 
gorithms. The software system can be run on a PC platform or a UNIX platform 
under interactive graphical interface/operations. Users or system software can gen- 
erate a number of jobs and then submit them to the queue management system. 
The job are run on available machines and the results returned to the controlling 
machine. A number of efficient Clustor software systems have been proposed for 
the Multi-SAT algorithm. 
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FIGURE 31. A software system, Clustor, for Multi-SAT algorithm. 

12.  Probabilistic and Average-Case Analysis 

Probabilistic and average-case analysis can give useful insight into the question 
of what SAT algorithms might be effective under certain circumstances. Sometimes, 
one or more structural properties shared by each of a collection of formulas may 
be exploited to solve such formulas efficiently; or structural properties might force 
a class of algorithms to require super-polynomial time. Such properties may be 
identified and then, using probabilistic analysis, one may hope to argue that these 
properties are so common for a particular class of formulas that the performance 
of an algorithm or class of algorithms can be predicted for most of the formulas in 
the class. 

The main drawbacks of this approach are: 1) some distribution of input formu- 
las must be assumed and chosen distributions may not represent reality very well; 2) 
results are usually sensitive to the choice of distribution, unlike results obtained us- 
ing randomized algorithms; 3) the state of analytical tools is such that distributions 
yielding to analysis are typically symmetric with independent components; 4) few 
algorithms have yielded to analysis. Despite these drawbacks, probabilistic results 
can be a useful supplement to worst-case results (which can be overly pessimistic, 
especially for NP-complete problems) in understanding algorithmic behavior. 

This section reviews some notable probabilistic and average-case results for 
certain SAT algorithms. The results we present are based mainly on two distribu- 
tions, the IS AT distribution and average l-SAT distribution (see Section 5), partly 
because these have been the most widely used. Both are distributions over CNF 
formulas. Since the character of results is different for both distributions, we devote 
one subsection to each. 

12.1. Average /-SAT Model. The parameters of this distribution are the 
number of clauses m, the number of variables n from which clauses are constructed, 
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and the probability p(n, m) that an unnegated variable or negated variable appears 
in a given clause (see Section 5.1 for more details). Since variables are placed in 
clauses independently, it is possible that null clauses, clauses with complementary 
literals (tautological clauses), or unit clauses exist in a random formula. This does 
not mimick reality very well. However, the mathematics associated with average- 
time analyses for average /-SAT models is usually tractable. It would be straight- 
forward but tedious to modify average /-SAT calculations to account for no clauses 
of length 0 or 1, but such results are unknown to us. In addition, tautological 
clauses exist with high probability only over part of the parameter space. 

Results presented below are asymptotic (that is, they apply when n,m -> oo). 

Satisfiable and Unsatisfiable Formulas. The following results highlight 
those regions of the parameter space where random formulas are unsatisfiable or 
satisfiable with high probability. It is easy to see that the average number of lit- 
erals in a clause is 2pn and the average number of times a variable appears in a 
random formula is 2pm. If pn > ln(m), a random truth assignment satisfies a 
random formula in probability [165], and if pn = cln(m) : 1 > c > 1/2, and 
limn)m_>oo m1_c/n1_£ < oc, 1 > e > 0, a random formula is satisfiable in prob- 
ability [167]. If pn < ln(m)/2, a random formula contains an empty clause, and 
therefore is unsatisfiable, in probability. Thus, the only region of the parameter 
space where random formulas may be difficult, in a probabilistic sense, is defined 
by pn = cln(m) : 1 > c > 1/2, lim^-x» m1"0/^-6 = oo, 1 > e > 0. 

Polynomial-Time Solvable Classes. Many of the special polynomial-time 
solvable classes discussed in Section 10 can be identified with regions in the param- 
eter space as well. Here we give some examples taken mainly from [171]. 

If pn < l/\/m1+e : e > 0, a random formula is a Horn formula in probability. 
That is, all the non-empty clauses are Horn clauses. If pn < ^nl~e/m : 1 > e > 0, 
limnim_>00 m/n < 1, a random formula is extended Horn in probability. If pn > 
y/n1+e/m : e > 0, a random formula is not extended Horn in probability. This 
implies, when Ipn -> oo (no empty clauses, in probability), the parameter subspace 
where random formulas are usually extended Horn is sharply defined. Surprisingly, 
simple extended Horn formulas are abundant in a relatively small subspace of the 
parameter space. If pn < l/Vm1+e : e > 0, a random formula is a simple extended 
Horn formula in probability but if pn > l/Vm1-' : e > 0, a random formula is not 
simple extended Horn, in probability. 

Random formulas are balanced, in probability, only if pn < s/nT~t/m : e > 0. 
Thus, when limn,m_>oo m/n < 1, balanced formulas are generated in abundance 
over a region of the parameter space that is no larger than the subspace over which 
random formulas are extended Horn in probability. The same statement is believed 
to hold when limn,m_>.oo m/n > 1. 

Weakening SLUR so that it always chooses to expand the true path of a selected 
variable, if possible, the parameter subspace where random formulas can be solved 
by SLUR in probability is at least as large as given by the three regions 1) p < 1 
and pn > 31n(m) : lim„)m_s.0O m/n > 1; 2) p < 1 : limn,m-+cc m/n < 1; 3) pn < 
ln(m)/2. This is because no clauses containing either all negated (pure negative 
clause) or all unnegated variables (pure positive clause) are in a random formula, 
in probability, in region 1) (see Exploitable Properties below); random formulas are 
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extended Horn, or have no pure positive or negative clauses, in probability, in region 
2); and random formulas contain empty clauses, in probability, in region 3). 

In summary, the SLUR class, modified as above, dominates nearly the entire 
parameter space; balanced and extended Horn formulas are frequently generated 
only when either the average number of occurrences of a variable in a formula 
tends to 0 or random formulas tend to have a large number of empty clauses; Horn 
formulas and simple extended Horn formulas are commonly generated over a small 
portion of the parameter space. 

Exploitable Properties. If a random formula is in one of the special, polynomial- 
time solvable subclasses of SAT discussed earlier, it can be dealt with efficiently. 
The same is true if a random formula has one or more of certain other exploitable 
properties. Three of these are described here (taken from [171]). 

A clause is pure if it contains only negated variables or only unnegated variables. 
Call a formula that has no pure clauses a non-P-formula. A satisfying truth assign- 
ment for any non-P-formula can be obtained in linear time. If pn > (1 + e)ln(m) : 
e > 0, a random formula is a non-P-formula, in probability. 

A clause is a tautology if, for some variable v, both v and v are in the clause. 
Such clauses may be removed from a formula without affecting the Boolean function 
it expresses. If enough tautological clauses exist in a formula, it is relatively easy to 
solve. If p2n > (1 + e) ln(m) : e > 0, all clauses of a random formula are tautological, 
in probability. 

If all m clauses of a formula contain more than log2(m) literals then the formula 
must be satisfiable. A random formula has this property, in probability, when 
pn > 1.551og2(m). 

Average-Case Results. Although the above results show that random for- 
mulas are efficiently solved, in probability, over nearly all of the parameter space 
of the average J-SAT model, they do not imply that polynomial-average-time al- 
gorithms exist over a significant portion of the parameter space. For example, if, 
out of a set of n100 formulas, n100 - 1 formulas can be solved by algorithm A in 
0(n) time but one formula requires 2n time using A, then the set is solved by 
A in polynomial-time, in probability, but the average complexity of A over the 
set is exponential in n (assuming all formulas are equally likely). Thus, A would 
get "stuck" on the above set of formulas even though it almost always finds a so- 
lution to a random formula in linear time. This consideration has motivated the 
average-case analysis of algorithms under the average /-SAT model. The results say 
that exploiting some of the above properties individually is not enough to insure 
polynomial-time average complexity but, by exploiting certain properties collec- 
tively, nearly the entire parameter space is covered by a collection of algorithms 
with polynomial-average-time complexity. Here we give two examples. 

Determining unsatisfiability from the existence of an empty clause in a given 
formula alone is not strong enough to give polynomial-average-time if pn < ln(m)/2 
since the probability that an empty clause exists in a random formula does not tend 
to 1 fast enough. However, the empty clause check can be combined with other 
methods to achieve polynomial-average-time complexity. For example, preprocess 
a given formula by making all unit resolutions and all resolutions involving vari- 
ables that occur in the formula exactly twice; use backtracking, with the empty 
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clause check, to find solutions to the processed formula. Polynomial-average-time 
is achieved when either 

1. pn < (e-l-<5)ln(m)/(2e): m = ne,c > 1, and, 5 is such that e-1-5 > 0; or 

2. 2.64(1 - e~2ßpn{l + 2ßpn)) < ße~2pn : m = ßn, ß a constant; or 

3. pn < (1-e-J) ln(m)/e: m - n% 1 > e > 2/3, and, 5 is such that 1-e-S > 0; 
or 

4. pn < (ln(m)/4)x/3n2/3-e: m = n% 2/3 > e > 0 [166]. 

This subspace includes nearly all of the half plane pn < ln(m)/2; that is, the region 
for which empty clauses exist, in probability. 

We remark that the above algorithm finds all solutions to a given formula. 
A variant of the DPL algorithm, called probe-order backtracking, that works 

well for the half plane pn > ln(m) exploits the preponderance of non-P-formulas 
that results from generating formulas in that region [430]. Given formula T, if 
an empty clause exists in T, output "unsatisfiable." If there is no clause in T 
containing only unnegated variables, output "satisfiable." Otherwise, select a clause 
in T containing only unnegated variables {vi,V2,—,Vk}- For i = l,...,k, set V{ to 
true, set vi,v2,—,Vi-\ to false, and recursively apply probe-order backtracking. 
Output "satisfiable" if and only if at least one of these invocations has output 
"satisfiable." Probe order backtracking runs in polynomial-average-time when pn > 
ln(m). 

Other interesting results are found in [168, 414, 169, 203, 280, 428, 427, 
422]. 

Average Number of Solutions. In the average /-SAT model, the average 
number of solutions per formula is approximately 

exp[nln2 + mln(l-e-pn)]. 

Thus, when m/n and pn are such that the exponent is negative, formulas have very 
few solutions, but when the exponent is positive formulas have many solutions, on 
average. When m/n is below ln(2), the average number of sub-formulas generated 
by simple backtracking is about the same as the average number of solutions. When 
m/n is above ln(2), small values of pn still lead to few sub-formulas and large values 
lead to a huge number of sub-formulas, but there is an intermediate range of values 
where the average number of solutions is near zero while the average number of 
nodes is an exponential function of n [428]. 

The average-time analysis for backtracking is done for a version of the algorithm 
that finds all solutions. When one wants just one solution, there is no need for the 
algorithm to solve the second sub-formula in those cases where the first sub-formula 
has a solution. So far no analysis has shown just how much time can be saved 
by stopping early. Since stopping early can have an effect only on formulas that 
have solutions, the analysis in [428] shows that there is a considerable range of pn 
values where simple backtracking takes exponential average time whether or not 
the algorithm stops at the first solution. 
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Additional Commentary. An average /-SAT analysis of unit clause back- 
tracking [422] shows that the conditions under which it is fast or slow are similar 
to the conditions under which simple backtracking is fast or slow. Again, the an- 
alyzed version of the algorithm finds all solutions. However, for moderate values 
of m/n there is a range of pn values where simple backtracking takes exponential 
time but unit clause backtracking takes polynomial time. For small values of m/n 
unit clause backtracking has no significant advantage because the number of solu- 
tions controls the running time, and for large values of m/n it has little advantage 
because interesting formulas occur with large pn values, and so unit clauses are 

rare. 
The average /-SAT analysis of probe order backtracking shows that, in addition 

to being fast under conditions where simple backtracking is fast, it is fast under 
various other conditions. It is fast when pn is below 1. When m/n is small, the 
typical /-SAT formula does not use most of the variables. Thus, most formulas 
with one solution have an exponential number of solutions (one for each setting of 
the unused variables). Simple backtracking takes no advantage of variables that 
do not appear in the formula, but clause order backtracking does. Clause order 
backtracking is also fast when pn2 is large compared to Inm + Inn. When p is this 
large, setting just a few variables (to a random setting) tends to satisfy all of the 
clauses. Clause order backtracking notices this while simple backtracking does not. 

No average /-SAT analysis has been done for shortest clause backtracking. (See 
[373] for a partial analysis of the /-SAT case.) It clearly has all the advantages of 
unit clause backtracking and it should be much faster when pn is large, but it is 
hard to know just how much faster. The first four prize winning entries in the 
1992 SAT competition all used shortest clause backtracking [70] with refinements 
to decide which of the various variables from shortest clause to select. (The fifth 
prize winning entry used a form of hypergraph searching.) 

The pure literal rule algorithm is one of the first to have its average time 
computed [66, 201, 203, 427]. It has the essence of the pure literal rule from 
the DP procedure [118]; by removing most of the good features, an analyzable 
algorithm is obtained. Although one would never use this algorithm in practice 
(other simple algorithms are much better) it rapidly solves a wide class of formulas 
in polynomial average time, but does not find all solutions. It played an important 
role in the early history of average-time analysis of SAT algorithms because its 
analysis is so simple, and the cases where it is fast are so different from those of 
simple backtracking (the other simple to analyze SAT algorithm). 

The almost pure literal algorithm [423] extends this idea by noting that when 
there are few occurrences of a literal, then assigning a value that makes that literal 
false leads to a sub-formula that is almost a subset of the sub-formula obtained 
by setting the literal to true. Thus, if a formula contains one clause that has the 
only occurrence of a literal, any solutions to the false sub-formula that are not also 
solutions to the true sub-formula have false values for all remaining literals in the 

special clause. 
Another case where resolution does not increase the input size is when a variable 

has one positive and one negative occurrence. Franco used this idea plus the pure 
literal rule to develop an algorithm that is fast for small m so long as p is not 
too large [166]. Using this algorithm for small p and probe order backtracking for 
large p leads to an algorithm that is fast for m < n1/3 times logarithm factors. 
More clever algorithms based on the same ideas combined with better analyses will 
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probably lead to an algorithm that is fast when m is smaller than a constant times 
n. 

12.2. The /-SAT Model. The parameters of this distribution are the num- 
ber of clauses m, the number of variables n from which clauses are constructed, and 
the number of variables / in each clause. Clauses are constructed independently. 
A clause is uniformly given by a set of / distinct variables that are negated inde- 
pendently with probability 1/2. Thus, it is not possible that null clauses or clauses 
with complementary literals exist in a random formula. 

The probabilistic analysis of SAT algorithms using the /-SAT model often seems 
to be more difficult than using the average /-SAT model. Some of this difference is 
associated with the structure of sub-formulas generated as a result of assigning a 
value to a variable on an iteration of a particular algorithm. If such sub-formulas 
are distributed according to the same model as the original formula, the analysis 
can proceed easily. In the case of the /-SAT model, statistical dependence between 
clauses after an iteration often prevents this. A notable exception, however, is in 
the analysis of variants of the unit clause rule. 

Another reason for the relative success of analysis under the average /-SAT 
model is many algorithms that are unworkable under the /-SAT model are effective 
under the average /-SAT model. A notable example is the probe order backtracking 
algorithm of the previous section. Under the average /-SAT model, if pn > ln(m), 
purely negative or positive clauses are rare so probe order backtracking works well. 
However, in the case of the /-SAT model, negative clauses and positive clauses make 
up a fixed percentage of input clauses, so probe order backtracking is ineffective in 
this case. 

In what follows, when we refer to /-SAT, we assume / > 3 unless specifically 
stated (as in, for example, 2-SAT). 

Satisfiable and Unsatisfiable Formulas. It is easy to show that random 
/-SAT formulas are unsatisfiable, in probability, if m/n > -l/log2(l - 2-') « 
2' [168, 414]. It has also been shown that a random 2-SAT formula is satisfiable, 
in probability, if m/n < 1 [86, 200]. This implies that random /-SAT formulas are 
satisfiable, in probability, if m/n < 1. The gap between 1 and -l/log2(l - 2"') 
has intrigued a number of researchers. The question is whether there is some 
function /(/) such that, for large n,m, if m/n < /(/) then random /-SAT formulas 
are satisfiable, in probability, and if m/n > /(/) then random /-SAT formulas are 
unsatisfiable, in probability. Several results have shaved some of the gap from above 
and below but the question is still open for / > 2. For the 2-SAT case, /(2) = 1 [86, 
200]. For the 3-SAT case, from above, it is known that random /-SAT formulas 
are unsatisfiable, in probability, if m/n > 4.758 [302]. This has been recently 
improved to 4.64 [150, 309]. From below, for / > 2, it is known that random 
/-SAT formulas are satisfiable, in probability, if m/n < max{2l/(4l), 1} [91]. This 
result comes with an algorithm for SAT (explained in Algorithms below) that finds 
a solution in polynomial time, almost always. For 3-SAT, this has been improved 
to m/n < 3.003 [179] (algorithm explained in Algorithms below). 

Polynomial-Time Solvable Classes. /-SAT formulas that are members of 
certain polynomial-time solvable classes are not generated frequently enough, for 
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interesting ratios m/n, to assist in determining satisfiability. This is unlike the 
situation for the average /-SAT model. We illustrate with a few examples. 

The probability that a clause is Horn is (/ + l)/2'. Therefore, the probability 
that a random /-SAT formula is Horn is ((/ + l)/2')n which tends to 0 for any 
fixed /. A formula is hidden Horn if there is a set of variables (a switch set) whose 
literals can all be reversed to yield a Horn formula. Regardless of switch set, there 
are only I + 1 out of 2' ways (negation patterns) that a random clause can become 
Horn. Therefore, the expected number of successful switch sets is 2n((/ + l)/2 )m 

which tends to 0 if m/n > 1/(1 - log2(/ + 1)). Thus, random /-SAT formulas are 
not hidden Horn, in probability, if m/n > 1/(1 - log2(Z + 1))- 

Associated with a q-Horn formula (see Section 10.5) is a partition C\, C2 of 
clauses, and a partition V\,V2 of variables such that no clause in Ci has a variable in 
V2 and, for each clause in C2, there are at least one and at most two variables taken 
from V2. The probability that a particular pairwise partition has this property 
can be computed. Multiplying by the number of pairwise partitions gives the 
expected number of such partitions which is an upper bound on the probability 
that one exists. We find that no such partitions exist with \V\\ < (|Vi| + |V2|)/2, in 
probability, if m/n > l/log,(2<+7(/2-/ + 2)) = l/(/-log2(/

2-/ + 2) + l). Coupled 
with the above hidden Horn result on /-SAT formulas, we have the remarkable result 
that random /-SAT formulas are not q-Horn, in probability, if m/n > 2/(l-\og2(l + 
1)). This bound can be reduced considerably, however the point we make is that, 
for large enough /, even the following simple algorithm is more effective, in some 
probabilistic sense, on random /-SAT formulas than looking for q-Horn formulas: 
randomly remove all but 2 literals from every clause; solve the resulting 2-SAT 
formula; if it's satisfiable, return a satisfying truth assignment, otherwise give up. 

Algorithms. We mention the two best positive results to date and one negative 
result. The first algorithm, called SC for Short Clause, iteratively selects a variable 
and assigns it a value until either a solution is found or it gives up because it has 
reached a dead end. Such an assignment may satisfy some clauses and falsify some 
literals. There is no backtracking in SC. Variables are selected as follows: if there 
is a clause with one non-falsified literal, choose the variable and value that satisfies 
that clause; otherwise, if there is a clause with two non-falsified literals, choose one 
of the variables and value that satisfies that clause; otherwise, choose the variable 
arbitrarily. This algorithm is a restricted version of GUC [83] (Generalized Unit 
Clause) that always chooses a variable and value that satisfies a clause with the 
fewest number of non-falsified literals. The analysis of SC is given in [91]. The 
result is that SC does not give up, in probability, if m/n < 2l/(4l). 

By adding a limited amount of backtracking to GUC, Frieze and Suen get an 
algorithm for 3-SAT, called GUCB, that finds a satisfying assignment, in proba- 
bility, when m/n < 3.003 [179]. Backtracking is managed as follows. Consider 
the sequence of variable selections and assignment up to a given iteration h in 
the execution of GUCB. Let this sequence be represented as a list of variable- 
value pairs {(xiri,v1),(x^2,v2)1...,(^h,vh)}- Suppose, for p > 1, yp = false, 
Vp+l = ... = vh = true, and two clauses contain one non-falsified literal but no 
truth assignment will satisfy both. Then set vp+i = vp+2 = - = vh = false, 
update all clauses accordingly (satisfied clauses and falsified literals) and continue 
iteratively selecting variables and assigning values. 
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Finally, we mention the important result in [86] that resolution proofs must be 
exponentially large, in probability, for random unsatisfiable /-SAT formulas gener- 
ated with m/n fixed. Thus, for m/n > log2(l - 2~l) (fixed), resolution requires 
exponential time, in probability. This, of course, implies that DPL trees are also 
exponential in size for m/n > log2(l - 2~l). 

Other Non-Backtracking Heuristics The algorithms SC and GUC men- 
tioned above repeatedly choose a variable and a value until either a satisfying 
assignment is found or a clause becomes falsified in which case the algorithm gives 
up. The heuristic used to select the variable and value is strongly associated with 
how often the algorithm succeeds. A reasonable heuristic is to make the choice 
that maximizes the number of assignments satisfying the formula that remains af- 
ter the selected value is assigned to the selected variable. Alternatively, the selected 
variable and value might maximize the expected number of satisfying assignments. 
This expectation can be approximated as follows. Suppose a formula has m; clauses 
of i literals for all 1 < i and n distinct variables. If all clauses are statistically in- 
dependent and all clauses of i literals are equally likely, the average number of 
satisfying assignments is 2n(l/2)mi(3/4)m2(7/8)ra3.... Thus, we may choose a vari- 
able and value that maximize this number. Equivalently, the choice may be made 
to maximize the log of this number orn + milog(l/2)+m2log(3/4)-m3log(7/8)... 
which is approximately n + mi(l/2) + m2(l/4) +m3(l/8).... Removing n, which is 
unimportant, leaves Johnson's heuristic described in [285]. Although this heuristic 
has not been analyzed on the /-SAT model, experiments have shown it to be quite 
effective when used in conjunction with unit resolution. 

13. Performance Evaluation 

The most important measure of a SAT algorithm's performance remains its 
practical problem-solving ability. For inputs requiring only one solution, both com- 
plete algorithms and incomplete algorithms are applicable. For inputs requiring all 
solutions or an optimal solution, only complete algorithms will work. The past two 
decades have seen the proliferation of different algorithms for solving SAT: reso- 
lution, local search, global optimization, BDD SAT solver, and multispace search, 
among others. Previous experience indicates that these techniques complement 
rather than exclude each other by being effective for particular instances of SAT. 

In this section, we summarize the experimental performance of several typical 
SAT algorithms on some random instances, DIMACS benchmarks, structured in- 
stances, and practical industrial benchmarks. A fuller version of SAT algorithms' 
benchmarking results will appear in a forthcoming paper, "Algorithms for the Sat- 
isfiability (SAT) Problem: Benchmarking," by the same authors. 

13.1. Experiments on Random Formulas. In this section, we give exper- 
imental results for the following SAT algorithms in solving random /-SAT formulas 
and random average /-SAT formulas: 

1. SAT1.3: a sequential CNF local search algorithm [207, 220, 211, 212]. 
2. SAT1.T. a parallel CNF local search algorithm [207, 212]. 
3. SAT1.13: a complete CNF local search algorithm [207, 212]. 
4. SAT1.4: a sequential DNF local search algorithm [207]. 
5. SAT1.8: a parallel DNF local search algorithm [207]. 
6. SATI. 18: a complete DNF local search algorithm [207]. 
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7. SAT14.6: an optimized, discrete global optimization algorithm [207, 211, 
217]. 

8. SAT14.16: a complete global optimization algorithm [207, 211, 217]. 
9. SAT14.7: a continuous, global optimization [207, 211, 227]. 

10. SATi4.ll: a complete, continuous global optimization [207, 211, 210]. 
11. DPL: a Davis-Putnam algorithm in Loveland form [117]. 
12. GSAT: a sequential, greedy local search algorithm [469]. 
13. IP: a parallel interior point zero-one integer programming algorithm [301, 

299]. 

Real Execution Times. In Table 1 we give real execution times of some 
local search and global optimization algorithms for solving /-SAT instances. All 
the results were run on a SUN SPARC 2 workstation. The number of clauses (m), 
the number of variables (n), and the number of literals per clause (/), are given in 
the first three columns. Symbol "G/L" in Column 4 stands for the number of times 
that all the algorithms hit global/local minimum points. From these results we can 
observe that, in terms of global convergence and local convergent rate, these local 
search and global optimization algorithms exhibit desirable convergent properties 
and fast computing speed for instances in the table. 

Among optimization algorithms, the parallel CNF local search (SAT 1.7) algo- 
rithm was much faster than the sequential local search (SAT1.3) algorithm. The 
5.4T1.7 algorithm had comparable computing performance with the DNF parallel 
local search (SAT 1.8) algorithm. Discrete global optimization (SATU.6) algo- 
rithm was slightly slower than parallel local search algorithms. Complete local 
search (SATI.13) algorithm and complete global optimization (SATU.16) algo- 
rithm, due to a systematic bookkeeping, were slightly slower than parallel local 
search but significantly faster than the sequential local search algorithm. 

As discussed in [220, 212], beyond a certain range of hardness, for example, 
for m = 8500, n = 1000, and I = 4, the computing time of these optimization 
algorithms started to increase. 

The experimental results shown in Table 1 were collected from early reports in 
[207, 212, 217]. The present local and global optimization algorithms are much 
more faster than their previous versions [211, 212, 222]. 

Performance Comparison with the DP Algorithm. The execution re- 
sults of the DPL algorithm and some optimization algorithms for solving /-SAT 
instances are given in Table 2. We executed each algorithm ten times and report 
the average execution times. Because DPL was slow for large size instances, we set 
a maximum execution time of 120 x m/n seconds as the time limit of its execution. 
Symbol "S/F" in Column 4 stands for DPL's success/failure in giving an answer 
within such a time limit. For DPL, the average execution time does not include the 
maximum execution time limit if some of the ten executions were successful; the 
average execution time was taken as the maximum execution time limit only if all 
ten executions failed. Symbol "G/L" in Column 6 stands for the number of times 
that all the remaining SAT optimization algorithms hit the global/local minimum 

points. 
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TABLE 1. Real execution performance averaged over ten runs 
of some local and global optimization algorithms on a 
SUN SPARC 2 Workstation. Time Units: seconds. Symbol 
"G/L" stands for the number of times that all the algorithms hit 
global/local minimum points. 

Problems Execution Time 

m n 1 G/L SAT1.3 SAT1.7 SAT1.13 SAT1.8 SAT14.6 SAT14.16 

100 100 3 10/0 0.003 0.001 0.001 0.002 0.002 0.003 

200 100 3 10/0 0.007 0.004 0.010 0.004 0.005 0.008 

300 100 3 10/0 0.035 0.008 0.015 0.004 0.014 0.012 

400 100 3 10/0 0.464 0.027 0.145 0.030 0.040 0.215 

1000 1000 3 10/0 0.036 0.030 0.048 0.029 0.033 0.051 

1500 1000 3 10/0 0.087 0.055 0.078 0.049 0.058 0.081 

2000 1000 3 10/0 0.192 0.084 0.113 0.080 0.093 0.115 

2500 1000 3 10/0 0.371 0.124 0.158 0.114 0.133 0.180 

3000 1000 3 10/0 0.872 0.179 0.310 0.164 0.241 0.359 

3500 1000 3 10/0 6.878 0.636 1.008 0.588 0.919 1.357 

1000 1000 4 10/0 0.026 0.022 0.045 0.027 0.029 0.040 

2000 1000 4 10/0 0.094 0.061 0.103 0.061 0.057 0.092 

3000 1000 4 10/0 0.239 0.094 0.160 0.091 0.109 0.166 

4000 1000 4 10/0 0.483 0.144 0.230 0.135 0.162 0.234 

5000 1000 4 10/0 1.004 0.227 0.-538 0.210 0.267 0.330 

6000 1000 4 10/0 2.410 0.383 0 -65 0.359 0.388 0.478 

7000 1000 4 10/0 5.999 0.865 0..-29 0.852 0.756 0.840 

8000 1000 4 10/0 36.17 1.896 2.088 1.821 2.595 2.641 

8500 1000 4 10/0 140.3 10.79 7.974 10.51 12.79 12.12 

10000 1000 5 10/0 2.899 0.451 0.610 0.393 0.464 0.567 

11000 1000 5 10/0 3.799 0.489 0.800 0.426 0.580 0.750 

12000 1000 5 10/0 6.729 0.593 0.839 0.505 0.649 0.844 

13000 1000 5 10/0 9.541 0.761 1.154 0.681 0.978 1.064 

14000 1000 5 10/0 21.41 1.107 1.308 0.969 1.282 1.652 

15000 1000 5 10/0 60.80 1.671 2.207 1.429 2.047 2.166 

10000 400 6 10/0 12.58 0.497 0.625 0.463 0.514 0.771 

10000 500 6 10/0 4.353 0.377 0.640 0.342 0.345 0.553 

10000 600 6 10/0 2.571 0.328 0.439 0.280 0.331 0.534 

10000 700 6 10/0 1.989 0.284 0.550 0.248 0.289 0.491 

10000 800 6 10/0 1.776 0.277 0.494 0.256 0.287 0.452 

10000 900 6 10/0 1.305 0.289 0.523 0.248 0.278 0.476 

10000 1000 6 10/0 1.140 0.264 0.488 0.227 0.269 0.473 

20000 1000 7 10/0 3.238 0.500 1.124 0.421 0.496 1.004 

30000 2000 7 10/0 4.110 0.882 1.733 0.722 0.910 1.460 

40000 3000 7 10/0 5.557 1.289 2.382 1.114 1.250 2.196 

50000 4000 7 10/0 6.793 1.666 3.036 1.386 1.632 2.730 

60000 5000 7 10/0 7.942 1.260 3.719 1.833 1.971 3.402 

10000 1000 10 10/0 0.143 0.050 0.377 0.034 0.048 0.312 

20000 2000 10 10/0 0.408 0.124 0.821 0.090 0.099 0.664 

30000 3000 10 10/0 0.726 0.258 1.311 0.197 0.179 1.076 

40000 4000 10 10/0 0.963 0.305 1.826 0.241 0.328 1.511 

50000 5000 10 10/0 1.262 0.441 2.372 0.357 0.395 1.887 

From numerous algorithm executions, we observe that, for random /-SAT in- 
stances listed in Table 2, DPL was slower than the rest of the SAT optimiza- 
tion algorithms. As the input size increases, the number of failures, F, increased 
quickly.   For some slightly large inputs, such as m = 5000, n = 500, and I = 5, 
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TABLE 2. Performance comparison averaged over ten runs between 
a DPL and some optimization algorithms on a SUN SPARC 2 
workstation for solving 3-SAT problem instances. Time units: sec- 
onds. Symbol "S/F" in Column 4 stands for DPL's success/failure 
to give an answer within a time limit of 120 x m/n seconds, whereas 
symbol "G/L" stands for the number of times that all the remain- 
ing SAT optimization algorithms hit global/local minimum points. 
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Problems Execution Time 

m n 1 S/F DPL G/L SAT1.7 SAT1.13 SAT1.8 SAT14.6 SAT14.16 

500 500 3 10/0 2.159 10/0 0.013 0.021 0.011 0.013 0.027 

750 500 3 10/0 2.916 10/0 0.015 0.030 0.013 0.021 0.033 

1000 500 3 10/0 3.657 10/0 0.035 0.048 0.032 0.031 0.047 

1250 500 3 9/1 5.797 10/0 0.049 0.064 0.044 0.067 0.072 

1500 500 3 6/4 9.147 10/0 0.108 0.117 0.089 0.115 0.108 

1000 500 4 10/0 4.684 10/0 0.026 0.040 0.024 0.024 0.038 

1500 500 4 10/0 7.960 10/0 0.040 0.075 0.043 0.042 0.066 

2000 500 4 8/2 10.27 10/0 0.066 0.105 0.062 0.069 0.088 

2500 500 4 2/8 15.96 10/0 0.074 0.130 0.085 0.109 0.152 

3000 500 4 1/9 46.33 10/0 0.118 0.201 0.115 0.153 0.234 

3000 500 5 10/0 16.90 10/0 0.094 0.137 0.082 0.074 0.139 

4000 500 5 5/5 28.39 10/0 0.119 0.204 0.103 0.144 0.188 

5000 500 5 0/10 >1200 10/0 0.180 0.253 0.170 0.196 0.288 

6000 500 5 0/10 >1440 10/0 0.313 0.370 0.267 0.313 0.471 

7000 500 5 0/10 >1680 10/0 0.591 0.575 0.478 0.604 0.623 

10000 1000 10 10/0 101.8 10/0 0.047 0.382 0.038 0.049 0.315 

12000 1000 10 10/0 124.3 10/0 0.073 0.458 0.053 0.052 0.382 

14000 1000 10 10/0 145.2 10/0 0.077 0.562 0.058 0.063 0.430 

16000 1000 10 10/0 167.1 10/0 0.098 0.596 0.073 0.078 0.517 

18000 1000 10 10/0 188.6 10/0 0.136 0.716 0.102 0.095 0.583 

all ten algorithm executions failed after a reasonably long time limit. Due to its 
O(mo("/')) average run-time complexity, even for some fairly easy instances, such 
as m = 10000, n = 1000, and / = 10, DPL took an excessive amount of time to find 
a solution. In comparison, local search and global optimization algorithms were 
successful for all ten executions. They were able to find a solution to the given 
instances efficiently. 

Table 2 suggests that DPL may not be a suitable candidate for large size random 
Z-SAT instances. This observation should not be generalized to other application 
cases. In many other applications, as observed by others [69, 70, 126], DPL 
performed very well. 

Performance Comparison with GSAT. Table 3 compares the performance 
between some local search and global optimization algorithms running on a SUN 
SPARC 2 workstation and GSAT [469] running on a MIPS computer with com- 
parable computing power [468]. Since GSAT is essentially a version of sequential 
local search (i.e., SAT1) algorithm, for solving 3-SAT instances generated from the 
same input model used in [380], local search and global optimization algorithms 
performed approximately tens to hundreds times faster than GSAT. Among them, 
parallel DNF local search (SAT 1.8) algorithm and complete global optimization 
(S.4T14.16) were the best. 

Performance Comparison with Interior Point Zero-One Integer Pro- 
gramming Algorithm. Recently, Kamath et al. used an interior point zero-one 
integer programming algorithm to solve SAT [301, 299]. They implemented their 
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TABLE 3. Performance comparison between some optimization al- 
gorithms running on a SUN SPARC 2 workstation and the GSAT 
algorithm running on a MIPS computer with comparable com- 
puting power for the 3-SAT problem instances. Time units: sec- 
onds. 

Problems Execution Time 
m n 1 GSAT SAT1.7 SAT1.13 SAT1.8 SAT14.6 SAT14.16 

215 50 3 0.400 0.019 0.100 0.006 0.020 0.030 
301 70 3 0.900 0.054 0.010 0.020 0.020 0.020 
430 100 3 6.000 0.336 0.040 0.420 0.050 0.370 
516 120 3 14.00 0.596 0.810 1.136 0.410 0.040 
602 140 3 14.00 0.260 8.060 0.750 1.990 0.170 
645 150 3 45.00 0.102 0.190 0.120 0.040 0.870 
860 200 3 168.0 1.776 0.970 0.070 6.710 0.490 
1062 250 3 246.0 3.106 20.71 0.070 12.43 0.090 
1275 300 3 720.0 8.822 19.66 3.750 19.14 4.510 

TABLE 4. Performance comparison between some optimization al- 
gorithms running on a SUN SPARC 2 workstation and an interior 
point zero-one integer programming algorithm running on 
a KORBX(R) parallel/vector computer for solving average 3-SAT 
problem instances. Time units: seconds. Symbol "S/F" stands for 
the number of times that IP hits the global/local minimum points, 
whereas symbol "G/L" stands for the number of times that the 
remaining SAT algorithms hit the global/local minimum points. 

Problems Execution Time 
m n 1 S/F IP G/L SAT1.7 SAT1.13 SAT1.8 SAT14.6 SAT14.16 

100 50 o 52/0 0.7 10/0 0.001 0.004 0.001 0.001 0.004 

200 100 5 70/0 1.1 10/0 0.006 0.010 0.006 0.005 0.007 

400 200 7 69/0 3.5 10/0 0.007 0.014 0.007 0.007 0.018 

800 400 10 31/0 5.6 10/0 0.009 0.034 0.009 0.003 0.030 

800 400 7 20/0 7.8 10/0 0.014 0.032 0.014 0.009 0.026 

1000 500 10 49/0 7.4 10/0 0.012 0.037 0.012 0.006 0.039 

2000 1000 10 10/0 18.5 10/0 0.032 0.091 0.032 0.019 0.083 

2000 1000 7 50/0 21.5 10/0 0.056 0.099 0.056 0.055 0.055 

2000 1000 3 49/1 50.4 10/0 2.657 0.162 2.657 3.917 27.19 

4000 1000 4 1/1 1085.4 10/0 10.63 11.07 10.63 6.826 9.555 

4000 1000 10 10/0 25.1 10/0 0.055 0.189 0.055 0.044 0.163 

8000 1000 10 10/0 38.0 10/0 0.219 0.456 0.219 0.254 0.353 
16000 1000 10 10/0 66.4 10/0 0.603 1.042 0.603 0.625 1.052 

32000 1000 10 10/0 232.4 10/0 1.701 2.720 1.701 1.611 2.434 

algorithm in FORTRAN and C languages and ran the algorithm on a KORBX(R) 
parallel/vector computer with instances generated from the average 3-SAT input 
model. The KORBX(R) parallel computer operates in scalar mode at approxi- 
mately 1 MFlops and at 32 MFlops with full vector concurrent mode. Their exe- 
cution results are given in Columns 4 and 5 of Table 4. 

We ran local search and global optimization algorithms for the same instances 
(listed in [301, 299]) on a SUN SPARC 2 workstation. The results are given in 
Table 4. Apparently, as compared to the interior point zero-one integer program- 
ming algorithm running on a parallel computer, in addition to improved global 
convergence, local search and global optimization algorithms were much simpler 
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TABLE 5. WSAT (GSylTwith random walk)'s real execution per- 
formance for hard random 3-SAT problem instances on an SGI 
Challenge with a 70 MHz MIPS R4400 processor. Time unit: sec- 
onds [472]. 
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Problems GSAT Walk 

n m time flips R time flips R 

100 430 .4 7554 8.3 .2 2385 l.U 

200 860 22 284693 143 4 27654 1.0 

400 1700 122 2.6 x 106 67 7 59744 1.1 

600 2550 1471 30 x 106 500 35 241651 1.0 

800 3400 * * * 286 1.8 x 106 1.1 

1000 4250 * * * 1095 5.8 x 106 1.2 

2000 8480 * * * 3255 23 x 106 1.1 

TABLE 6. WSAT (G5^1Twith random walk)'s real execution per- 
formance for hard random 3-SAT problem instances on a PC. Time 
unit: seconds [367]. 

n m inst. time flips solved ratio 

100 430 500 0.18 2803 88% 31,85 

200 860 500 1.99 18626 73% 255,85 

400 1700 500 15.03 204670 100% 2046,70 

600 2550 500 19.59 250464 62% 4013,85 

800 3400 500 140.61 1809986 67% 26854,39 

1000 4250 500 369.88 4633763 57% 81009,84 

2000 8240 50 3147.26 26542387 16% 1658899,19 

and achieved several orders of magnitude of performance improvements in terms of 
computing time. 

13.2. Experiments on Hard Random Formulas. We compare the per- 
formance of two local search algorithms and a tabu search algorithm for the hard 
random 3-SAT problem instances generated from the mwff generator. All three 
programs were written in C. Table 5 give the real execution performance of the 
WSAT {GSAT with random walk) on an SGI Challenge with a 70 MHz MIPS R4400 
processor [472, 471]. 

Tables 6 and 7 show the experimental results of WSAT and TSAT (Tabu search 
for SAT) programs written in C under Linux 1.1.59 for PC [367]. On a same 
machine, Mazure, Sais, and Gregoire compared the GSAT with TSAT and found 
that TSAT was more efficient in most cases. In addition, TSAT was able to solve 
more problem instances compared to the GSAT. The testing for TSAT for large size 
example with n = 2000 and m = 8240, however, was terminated at n/m = 4.12, 
before entering into the hard region of the random 3-SAT instances. 
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TABLE 7. TSAT's real execution performance for hard random 
3-SAT problem instances on a PC. Time unit: seconds [367]. 

n m inst. time flips solved ratio 

100 430 500 0.11 1633 93% 17,60 

200 860 500 0.73 9678 74% 130,78 

400 1700 500 11.51 145710 100% 1457,10 

600 2550 500 13.92 167236 65% 2580,80 

800 3400 500 99.45 1143444 71% 16150,34 

1000 4250 500 292.10 3232463 62% 51802,29 

2000 8240 50 3269.15 29415465 40% 735386,63 

The performance of the SAT1.5 algorithm [211, 222] (Section 7.7) is shown 
in Table 8. For hard problem instances in the transition region [380], SAT1.5 can 
solve large-size SAT problem instances efficiently. It took WSAT on average 3,255 
seconds to solve the n = 2,000 and m = 8,480 instances on an SGI Challenge with 
a 70 MHz MIPS R4400 processor. On a SUN SPARC 20 workstation, the SAT1.5 
algorithm was able to solve the same problem instance in some 530 seconds on 
average [222, 219]. For hard, large size problem instances with n > 5,000, SAT1.5 
algorithm was able to handle them comfortably. 

13.3. Experiments on Structured Instances. We now take a look at the 
performance of SAT algorithms for some structured instances. 

Instances Generated from the JV-Queens Problem. To assess the per- 
formance of local search and global optimization algorithms with non-binary in- 
stances, we also tested SAT instances generated from instances of the n-queens 
problem. Figure 32 compares the performance between DP and some optimization 
algorithms. It also compares the performance between DP and 5AT14.11 [210], 
a complete, continuous global optimization algorithm. Due to expensive floating 
point computations, the execution time of SAT14.11 is higher than those of other 
discrete local search and global optimization algorithms. 

DIMACS Instances. For the same SAT formulas generated from instances 
of the Boolean inference problem [300], the performance of SAT1.7 [212], a parallel 
local search algorithm, and a simple backtracking algorithm [326] is shown in Tables 
9 and 10, respectively. An algorithm may be effective for only one type of input. 
The results suggest that it can be much more efficient if we use several different 
types of algorithms to handle the same inputs simultaneously. 

In Table 11, we compare A2 [535] with WSAT, GSAT, and Davis-Putnam's 
algorithm in solving the circuit diagnosis benchmark problems. We present average 
execution times and average number of iterations of A2 as well as published average 
execution times of WSAT, GSAT and Davis-Putnam's method [472]. We did not 
attempt to reproduce the reported results of GSAT and WSAT, since the results 
may depend on initial conditions, such as the seeds of the random number generator 
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FIGURE 32. Comparison of DP with SAT1.7, SAT1.13, 
SAT14.6, SAT14.16, and SAT14.11 for solving SAT instances 
generated from CSP instances 
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TABLE 8. Real execution performance of the SAT1.5 algorithm 
for hard random 3-SAT problem instances on a SUN SPARC 20 
workstation. For each problem, 30 random instances were tested. 
The minimum {Tmin), maximum (Tmax), and average {Tmean) ex- 
ecution times were recorded. "S" indicates the number of success 
cases of finding solutions within the time limit (T-limit). Time 
unit: second. 

n m m/n S/30 T  ■ -Lrmn -* mean -* max T-limit 

1000 4230 4.2300 20/30 6.04 206.90 956.15 1000 

1000 4240 4.2400 15/30 0.55 223.26 891.11 1000 

1000 4250 4.2500 14/30 1.69 88.370 454.79 1000 

1000 4260 4.2600 10/30 24.4 243.25 914.35 1000 

2000 8460 4.2300 12/30 115.8 779.44 2069.9 3000 

2000 8480 4.2400 14/30 17.64 530.32 1360.9 3000 

2000 8500 4.2500 7/30 58.09 789.35 1677.6 3000 

2000 8510 4.2550 9/30 59.08 840.33 2322.8 3000 

2000 8460 4.2300 15/30 58.95 684.32 4508.2 5000 

2000 8480 4.2400 15/30 15.31 1273.5 4057.9 5000 

2000 8500 4.2500 15/30 112.7 1527.8 3644.5 5000 

2000 8520 4.2600 9/30 123.2 1522.9 4338.5 5000 

3000 12690 4.2300 12/30 430.6 1787.2 2876.4 5000 

3000 12700 4.2333 18/30 122.5 2101.5 4479.4 5000 

3000 12720 4.2400 11/30 270.6 1503.6 3840.7 5000 

3000 12740 4.2467 12/30 229.1 2062.9 4807.4 5000 

3000 12680 4.2267 15/30 356.1 2788.3 9510.2 10000 

3000 12700 4.2333 11/30 503.3 3681.1 8247.9 10000 

3000 12720 4.2400 15/30 30.09 2300.3 7002.3 10000 
3000 12740 4.2467 8/30 563.3 2620.5 5330.9 10000 

4000 16920 4.2300 11/30 739.83 4064.5 11498.2 12000 

4000 . 16930 4.2325 10/30 1733.5 5472.0 10187.8 12000 

4000 16940 4.2350 7/30 571.20 1948.9 4768.92 12000 

4000 16960 4.2400 10/30 294.80 3709.0 9921.77 12000 

5000 21150 4.2300 8/30 2024.7 3867.9 8134.81 9000 

5000 21175 4.2350 6/30 1640.1 2982.7 4193.68 9000 

5000 21200 4.2400 3/30 2935.8 4435.7 6357.65 9000 

5000 21225 4.2450 4/30 3883.5 6025.6 10980.9 15000 

10000 41000 4.1000 30/30 294.44 1315.6 3849.38 20000 

10000 41800 4.1800 8/18 4294.5 8387.9 16654.8 20000 

10000 42000 4.2000 4/30 963.53 5877.8 12020.3 20000 

10000 42200 4.2200 2/30 9270.6 14241.9 19213.4 20000 

and other program parameters. We ran ,42 on an SGI Challenge9 so that our timing 

9Based on a single-CPU 150-MHz SGI Challenge with MIPS R4400 at the University of Illi- 
nois National Center for SuperComputing Applications, we estimate empirically that it is 15.4% 
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TABLE 9. Performance of SAT1.7 on a SUN SPARC 10 worksta- 
tion. Time Units: seconds. 
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Problems Ten Trials Execution Time 

Name m 71 Global SAT Min Mean Max 

iilöal.sat 1650 19368 10/10 YES 10.320 125.51 417.42 

iil6bl.sat 1728 24792 10/10 YES 0.6100 6.1130 28.760 

iil6cl.sat 1580 16467 10/10 YES 0.5400 1.8740 3.7500 

iil6dl.sat 1230 15901 10/10 YES 0.4900 1.3810 2.8200 

iilöel.sat 1245 14766 10/10 YES 0.5300 0.9720 1.4800 

iil6a2.sat 1602 23281 N/A 
iil6b2.sat 1076 16121 10/10 YES 1.9000 39.118 102.60 

iil6c2.sat 924 13803 10/10 YES 0.3500 14.109 41.650 

iil6d2.sat 836 12461 10/10 YES 0.3300 19.840 52.410 

iil6e2.sat 532 7825 10/10 YES 0.5000 6.8830 21.980 

ii32al.sat 459 9212 10/10 YES 0.3600 3.5740 10.330 

ii32bl.sat 228 1374 10/10 YES 0.1100 0.7390 1.6700 

ii32b2.sat 261 2558 10/10 YES 0.1000 1.9040 4.4700 

Ü32b3.sat 348 5734 10/10 YES 1.6400 10.559 19.330 

Ü32b4.sat 381 9618 10/10 YES 0.5100 2.3060 4.7800 

ii32cl.sat 225 1280 10/10 YES 0.0100 0.1150 0.4800 

Ü32c2.sat 249 2182 10/10 YES 0.0600 0.3980 0.9000 

Ü32c3.sat 279 3272 10/10 YES 0.6900 5.4900 16.850 

Ü32c4.sat 759 20862 10/10 YES 5.5200 361.80 1496.3 

ii32dl.sat 332 2703 10/10 YES 0.2200 1.0680 3.1000 

Ü32d2.sat 404 5153 10/10 YES 0.2100 0.9140 2.1800 

Ü32d3.sat 824 19478 10/10 YES 1.7100 49.522 109.52 

ii32el.sat 222 1186 10/10 YES 0.0200 0.3260 1.0700 

Ü32e2.sat 267 2746 10/10 YES 0.0400 0.1130 0.3400 

Ü32e3.sat 330 5020 10/10 YES 0.4500 5.2700 13.910 

Ü32e4.sat 387 7106 10/10 YES 0.2700 10.734 46.750 

Ü32e5.sat 522 11636 10/10 YES 0.4900 23.424 84.470 

TABLE 10. Performance of a simple backtracking algorithm 
on a SUN SPARC 10 workstation. Time Units: seconds. 

Name m n SAT Time Name m n SAT Time 

iilöal.sat 
iil6cl.sat 
iil6el.sat 

1650 
1580 
1245 

19368 
16467 
14766 

YES 
N/A 
N/A 

1.285 
1.956 
2.125 

iil6bl.sat 
iil6dl.sat 

1728 
1230 

24792 
15901 

YES 
YES 

1.490 
1.660 

iil6a2.sat 
iil6c2.sat 
iil6e2.sat 

1602 
924 
532 

23281 
13803 
7825 

YES 
YES 
N/A 

1.430 
2.016 
2.051 

iil6b2.sat 
iil6d2.sat 

1076 
836 

16121 
12461 

YES 
YES 

1.505 
1.665 

ii32al.sat 
ii32b2.sat 
Ü32b4.sat 

459 
261 
381 

9212 
2558 
9618 

YES 
YES 
YES 

1.160 
1.035 
1.285 

ii32bl.sat 
ii32b3.sat 

228 
348 

1374 
5734 

YES 
YES 

1.035 
1.240 

Ü32cl.sat 
Ü32c3.sat 

225 
279 

1280 
3272 

YES 
YES 

0.000 
1.240 

ii32c2.sat 
Ü32c4.sat 

249 
759 

2182 
20862 

YES 
YES 

1.325 
1.695 

ii32dl.sat 
Ü32d3.sat 

332 
824 

2703 
19478 

YES 
YES 

1.035 
1.755 

Ü32d2.sat 404 5153 YES 1.525 

ii32el.sat 
Ü32e3.sat 
Ü32e5.sat 

222 
330 
522 

1186 
5020 
11636 

YES 
YES 
YES 

0.000 
1.565 
1.655 

Ü32e2.sat 
Ü32e4.sat 

267 
387 

2746 
7106 

YES 
YES 

1.035 
1.615 
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TABLE 11. Comparison of A2's execution times in seconds av- 
eraged over 10 runs with respect to published results on some of 
the circuit diagnosis problems in the DIMACS archive, including 
the best known results obtained by WSAT, GSAT, and Davis- 
Putnam's algorithm [472]. 

Problem 
Id 

n m A2 WSAT GSAT DP 
SS 10/51 SGI # Iter. 

ssa7552-038 1501 3575 0.228 0.235 7970 2.3 129 7 
ssa7552-158 1363 3034 0.088 0.102 2169 2 90 * 

ssa7552-159 1363 3032 0.085 0.118 2154 0.8 14 * 

ssa7552-160 1391 3126 0.097 0.113 3116 1.5 18 * 

• A2: Sun SpaxcStation 10/51 and a 150-MHz SGI Challenge with MIPS R4400; 
• GSAT, WSAT and DP: SGI Challenge with a 70 MHz MIPS R4400. 

TABLE 12. Comparison of A2's execution times in seconds aver- 
aged over 10 runs with published results on circuit synthesis prob- 
lems from the DIMACS archive, including the best known results 
obtained by GSAT, integer programming, and simulated anneal- 
ing [472]. 

Problem 
Id. 

n m A2 GSAT Integer 
Prog. 

SA 
SS 10/51 SGI # Iter. 

iil6al 1650 19368 0.122 0.128 819 2 2039 12 

iil6bl 1728 24792 0.265 0.310 1546 12 78 11 

iil6cl 1580 16467 0.163 0.173 797 1 758 5 

iil6dl 1230 15901 0.188 0.233 908 3 1547 4 

iil6el 1245 14766 0.297 0.302 861 1 2156 3 

• A2: Sun SparcStation 10/51 and a 150-MHz SGI Challenge with MIPS R4400; 
• GSAT and SA: SGI Challenge with a 70 MHz MIPS R4400; 
• Integer Programming: VAX 8700. 

results can be compared to those of GSAT and WSAT. Our results show that A2 

is approximately one order of magnitude faster than WSAT. 
In Table 12, we compare A2 [535] with the published results of GSAT, integer 

programming and simulated annealing on the circuit synthesis problems [472]. Our 
results show that A2 performs several times faster than GSAT. 

In Table 13, we compare the performance of the three versions of DLM with 
some of the best known results of GSAT on circuit-synthesis, parity-learning, some 
artificially generated 3-SAT, and some of the hard graph coloring problems. The 
results on GSAT are from [473], which are better than other published results. 
Our results show that DLM is consistently faster than GSAT on the "ii" and "par" 
inputs, and that Ai is an order-of-magnitude faster than GSAT on some "aim" 
inputs. 

slower than a Sun SparcStation 10/51 for executing A2 to solve SAT benchmark problems. How- 
ever, we did not evaluate the speed difference between a 150-MHz SGI Challenge and a 70-MHz 
SGI Challenge on which GSAT and WSAT were run. 
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TABLE 13. Comparison of DLM's execution times in seconds 
averaged over 10 runs with the best known results obtained by 
GSAT [473] on the circuit-synthesis, parity-learning, artificially 
generated 3-SAT instances, and graph coloring problems from the 
DIMACS archive. 
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Problem 
Identification 

n m Ai GSAT 

SS 10/51 Success 
Ratio 

Time Success 
Ratio 

aim-100-2-0-yesl-l 100 200 0.19 10/10 1.96 9/10 

aim-100-2.0-yesl-2 100 200 0.65 10/10 1.6 10/10 

aim-100-2_0-yesl-3 100 200 0.19 10/10 1.09 10/10 

aim-100-2.0-yesl-4 100 200 0.10 10/10 1.54 10/10 

A2 GSAT 

ii32b3 348 5734 0.31 10/10 0.6 10/10 

Ü32c3 279 3272 0.12 10/10 0.27 10/10 

Ü32d3 824 19478 1.05 10/10 2.24 10/10 

Ü32e3 330 5020 0.16 10/10_ 0.49 10/10 

par8-2-c 68 270 0.06 10/10 1.33 10/10 

par8-4-c 67 266 0.09 10/10 0.2 10/10 

A3 GSAT 

gl25.17 2125 66272 1390.32 10/10 264.07 7/10 

gl25.18 2250 70163 3.197 10/10 1.9 10/10 

g250.15 3750 233965 2.798 10/10 4.41 10/10 

g250.29 7250 454622 1219.56 9/10 1219.88 9/10 

• Ai, Ai, A3: Sun SparcStation 10/51 
• GSAT: SGI Challenge (model unknown) 

We are designing new strategies to improve A3's [535] performance. Tables 14 
shows some preliminary but promising results of A3 on some of the more difficult 
but satisfiable DIMACS benchmark inputs. 

13.4. Experiments on Practical Industrial Benchmarks. Performance 
of the SAT-Circuit Solver with Partitioning Preprocessing. We compare in 
Table 15 Gu and Puri's SAT solver (having a partitioning preprocessing) [223] 
with existing algorithms [329, 526] for solving industrial asynchronous circuit de- 
sign benchmarks, including the HP and Philips benchmarks. In the table, N and m 
are the initial number of states and initial number of signals, respectively. Corre- 
spondingly, Nf and mf are the final number of states and final number of signals. 
Symbol A indicates the 2-level implementation area. 

The experimental results indicate that, as compared to the previous methods 
[329, 526], the SAT-Circuit solver with partitioning preprocessing achieves many 
orders of magnitude of performance improvement in terms of computing time, in 
addition to a reduced implementation area. For example, in a large circuit mrO, 
SAT-Circuit took 2.80 seconds to solve the problem and yielded a two-level im- 
plementation area with 41 literals.10 In contrast, Lavagno et al.'s algorithm took 
1,084.5 seconds and an area of 86 literals.   For this example, Vanbekbergen et 

10 Literal here is a standard unit measuring layout area. 
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TABLE 14. Execution times in CPU seconds over 10 runs of A3 to 
solve some of the more difficult DIMACS benchmark problems. 

Prob. 
Id. 

Succ. 
Ratio 

Sun SS 10/51 Seconds 
Avg. Min. Max. 

par8-l 
par8-2 
par8-3 
par8-4 
par8-5 
par16-1 
parl6-2 
parl6-3 
parl6-4 
parl6-5 
parl6-l-c 
parl6-2-c 
parl6-3-c 
parl6-4-c 
parl6-5-c 

10/10 
10/10 
10/10 
10/10 
10/10 
5/10 
1/10 
1/10 
3/10 
1/10 
10/10 
10/10 
10/10 
10/10 
10/10 

4.780 
5.058 
9.903 
5.842 
14.628 
11172.8 
856.9 
20281.6 
3523.1 
13023.4 
398.1 
1324.3 
987.2 
316.7 
1584.2 

0.133 
0.100 
0.350 
0.850 
1.167 
4630.6 
856.9 
20281.6 
1015.0 
13023.4 
11.7 
191.0 
139.8 
5.7 
414.5 

14.383 
13.067 
21.150 
16.433 
34.900 
20489.1 
856.9 
20281.6 
7337.9 
13023.4 
1011.9 
4232.3 
3705.2 
692.66 
3313.2 

hanoi4 
flOOO 
f600 
f2000 

1/10 
10/10 
10/10 
10/10 

476.5 
126.8 
16.9 
1808.6 

476.5 
4.4 
2.1 
174.3 

476.5 
280.7 
37.2 
8244.7 

Program parameters 
Flat region limit = 50; A reset interval = 10,000; operation: A = A/1.5. 
Problem group par-16-[1-5] test par problems f hanoi4 

Tabu length 100 50 50 50 

Increment of A 1 1/2 1/16 1/2 

al.'s algorithm could not yield a solution within 3,600 seconds and aborted due to 
backtracking limit. For another benchmark circuit mmuO, SAT-Circuit solved it in 
0.87 seconds, as compared to a pre-aborted 406.3 seconds for Vanbekbergen et al.'s 
approach [526]. 

Performance of a BDD SAT Solver with Partitioning Preprocessing. 
The BDD SAT-Circuit solver was implemented in C language. In this case, Gu 
and Puri tested their BDD SAT-Circuit solver with its ability to find all solutions 
(therefore, an optimal solution) for a large number of industrial asynchronous cir- 
cuit benchmarks including the HP and Philips benchmarks [223, 435]. They also 
compared the performance of their BDD SAT-Circuit solver with the well known 
Lavagno et al.'s [329] asynchronous circuit design technique. The results of these 
experiments are given in Table 16 and Table 17. Table 16 compares the execution 
time of the BDD SAT solver with the execution time of a simple backtracking SAT 
algorithm of [326]. The experimental results are given for SAT instances generated 
from Gu and Puri's SAT formula partitioning preprocessor [223]. Since the BDD 
SAT-Circuit solver yielded all the solutions, they normalized the execution time 
of the backtracking algorithm for all the truth assignment. The experimental re- 
sults (Table 16) show that the BDD SAT solver outperforms the backtracking SAT 
technique for the practical SAT instances representing asynchronous circuit design. 

They also calculated the implementation area of the designed circuits. Table 17 
compares their BDD SAT solver with the well known Lavagno et al.'s asynchronous 
circuit design technique [329]. The BDD SAT-Circuit solver yielded reduced circuit 
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TABLE 15. Experimental results comparing the SAT-Circuit 
solver (with SAT formula partitioning preprocessing), Vanbekber- 
gen et a/.'s algorithm, and Lavagno et al.'s algorithm, on practical 
circuit benchmarks on a SUN SPARC-2 workstation. Time unit: 
seconds. 
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Circuit Specifi cations Preprocessing [223] Vanbekbergen et al. [526] Lavagno it al. [329] 

Name N m N* m' A CPU N*    mf        A CPU m> A CPU 

mrO 302 11 469 14 41 2.80 backtrack limit > 3600 13 86 1084.5 

mrl 190 8 373 12 55 1.73 backtrack limit > 872.9 10 53 237.5 

mmuO 174 8 441 11 49 0.87 backtrack limit > 406.3 state error 

mmul 82 8 131 10 50 0.37 backtrack limit > 101.3 10 37 47.8 

sbuf-ram-write 58 10 93 12 59 0.36 90      12        74 5.21 12 35 54.6 

vbe4a 58 6 106 8 37 0.19 116      8         40 0.25 8 41 5.50 

nak-pa 56 9 59 10 25 0.20 58      10        32 0.08 10 41 20.8 

pe-rcv-ifc-fc 46 8 50 9 48 0.24 53       9         50 0.13 9 62 14.3 

ram-read-sbuf 36 10 44 11 28 0.15 53      11        44 0.06 11 23 65.2 

alex-nonfc 24 6 31 7 26 0.05 28       7         22 0.03 non-free-choice 

sbuf-send-pkt2 21 6 26 7 20 0.04 27       7         29 0.04 7 14 8.6 

sbuf-send-ctl 20 6 32 8 33 0.09 28       8         35 0.03 8 43 3.4 

atod 20 6 26 7 15 0.02 24        7         16 0.01 7 19 2.9 

pa 18 4 34 6 18 0.12 31        6         22 0.06 state error 

alloc-outbound 17 7 29 9 33 0.09 24        9         27 0.04 9 23 2.5 

wrdata 16 4 20 5 17 0.03 19       5          18 0.01 5 21 0.9 

fifo 16 4 23 5 15 0.03 20       5          17 0.02 5 15 0.7 

sbuf-read-ctl 14 6 18 7 16 0.06 16        7         20 0.01 7 15 1.5 

nousc 12 3 16 4 12 0.01 16       4          12 0.01 4 14 0.5 

vbe-ex2 8 2 12 4 18 0.08 12       4          18 0.03 4 21 0.5 

nousc-ser 8 3 10 4 9 0.02 10        4          9 0.01 4 11 0.4 

sendr-done 7 3 10 4 8 0.02 10        4          8 0.01 4 6 0.4 

vbe-exl 5 2 8 3 7 0.01 8        3          7 0.01 3 V 0.3 

TABLE 16. Experimental results comparing the BDD SAT- 
Circuit solver and a backtracking SAT algorithm, both with SAT 
formula partitioning preprocessing, on practical asynchronous cir- 
cuit benchmarks on a SUN SPARC-2 workstation. Time unit: sec- 
ond. 

STG BDD Backtracking STG BDD Backtracking 

Benchmark SAT satisfiability Benchmark SAT satisfiability 

Name Solver testing Name Solver testing 

MrO 58.3 >3,600 Mmul 28.1 >3,600 

SbufRamWr 32.7 >3,600 Vbe4a 1.95 >3,600 

NakPa 0.53 5.4 RamRdSbuf 0.25 76.8 

AlexNonFc 0.37 0.96 Sbuf3ndPkt2 0.37 88.06 

SbufSndCtl 18.27 353.6 AtoD 0.15 11.88 

Pa 0.05 4.50 WrData 0.14 0.24 

Fifo 0.05 0.10 SbufRdCtl 0.09 0.10 

NoUsc 0.09 0.16 VbeEx2 3.94 0.80 

NoUscSer 0.06 0.07 SendrDone 0.05 0.16 

VbeExl 0.03 0.04 
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TABLE 17. Comparison of Implementation area and design time of 
the BDD SAT-Circuit solver (with SAT formula partitioning pre- 
processing) and Lavagno et al's technique for practical asynchro- 
nous circuit benchmarks on a SUN SPARC-2 workstation. Time 
unit: second. 

Benchmark 
Benchmark BDD SAT Solver Lavagno and Moon et at. [329] 

Initial Initial Final Circuit CPU Final      Circuit           CPU 

Name no. of no. of no. of Area time no. of       Area             time 
states signals signal (literals) sec. signal     (literals)           sec. 

MrO 302 11 15 41 58.36 13             86              1084.5 

Mmul 82 8 10 38 28.16 10             37                47.8 

SbufRamWr 58 10 12 47 32.79 12             35                54.6 

Vbe4a 58 6 8 30 1.95 8              41                  5.5 

NakPa 56 9 10 25 0.53 10             41                20.8 

RamRdSbuf 36 10 11 25 0.25 11              23                 65.2 

SbufSndPkt2 24 6 7 21 0.37 7               14                  8.6 

SbufSndCtl 21 6 7 17 0.37 8              43                 3.4 

AtoD 20 6 8 30 18.27 7              19                 2.9 

Pa 20 6 7 14 0.15 Internal State Error 

WrData 16 4 5 18 0.05 5             21                 0.9 

Fifo 16 4 5 15 0.14 5              15                 0.7 

SbufRdCtl 14 6 7 16 0.05 7              15                 1.5 

NoUsc 12 3 4 12 0.09 4              14                 0.5 

VbeEx2 12 3 4 12 0.09 4              21                 0.5 

NoUscSer 8 2 4 18 3.94 4              11                 0.4 

AlexNonFc 8 3 4 9 0.06 Non-Free-Choice STG 

SendrDone 7 3 4 8 0.05 4               6                  0.4 

VbeExl 5 2 3 6 0.03 3               7                  0.3 

implementation area than Lavagno et al.'s algorithm for almost all the circuits in 
the benchmark set [329]. Lavagno et a/.'s method yields a total area of 449 literals 
in 1298.5 seconds. In comparison, for the same benchmarks, the BDD SAT solver 
achieved an area of 379 literals in 145.7 seconds. In addition, Lavagno et a/.'s 
method was unable to solve some benchmark circuits, such as Pa and AlexNonFc. 
These results show that, as compared to existing techniques, the BDD SAT solver 
is capable of achieving an average of 20% reduction in implementation area for 
all the benchmarks. According to critical industrial evaluations, this BDD SAT 
solver offers a practical solution for complex industrial asynchronous circuit design 
problems. 

14.  Applications 

Practical application problems are the driving forces for SAT research. They 
provide the ultimate benchmarks to test SAT algorithms and techniques. An effec- 
tive SAT algorithm in one application problem will shed light on solving problems 
in other application areas. 

The SAT problem has direct applications in mathematical logic, artificial intel- 
ligence, VLSI engineering, and computing theory. It also has indirect applications 
through other transferable problems, e.g., constraint satisfaction problems and con- 
strained optimization problems [226]. Due to the UniSATmodels, some application 
problems in the real space are related to SAT as well. In the following, we list some 
applications that can be formulated as solved as instances of SAT. 
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Mathematics: finding n-ary relations such as transitive closure [67], detect- 
ing graph and subgraph isomorphisms [105, 370, 372, 396, 439, 516, 555], 
the graph coloring problem [57, 242, 366, 372], mathematical cryptology 
[405, 444], the automata homomorphism problem [198], finding spanning 
trees and Euler tours in a graph [393], solving the traveling salesman prob- 
lem [286, 287, 330, 397], and logical arithmetic [93]. 
Computer science and artificial intelligence: the constraint satisfaction prob- 
lem [13, 191, 206, 358, 448], the n-queens problem [191, 241, 482], ex- 
tended inference [22], logical programming [96, 98, 139, 327], abductive 
inference for synthesizing composite hypotheses [295], semantic information 
processing [22, 161, 394], puzzles and cryptoarithmetic [189, 241, 274, 
364, 365, 391], truth maintenance [122, 124, 127, 138, 368], produc- 
tion system [277, 378, 379], the soma cube and instant insanity problem 
[191], theorem proving [268, 314, 424, 554], and neural network comput- 
ing [13, 14, 129, 250, 351, 271]. 
Machine vision: image matching problem [22, 88, 447, 550], line and 
edge labeling problems [76, 159, 512, 538, 558], stereopsis, scene analysis 
and semantics-based region growing [22, 76, 158, 159, 160, 512, 538], 
the shape and object matching problem [67, 115, 246], syntactic shape 
analysis [116, 245, 308], shape from shading problem [12, 50, 173, 261, 
262, 264, 263, 273, 361, 409], and image restoration [193]. 
Robotics: related vision problem [88, 272], packing problem [133], and 
trajectory and task planning problems [46, 152]. 

. Computer-aided manufacturing: task planning [390], design [388, 389], 
solid modeling, configuring task [174], design cellular manufacturing system, 
scheduling [164, 353], and 3-dimensional object recognition [229, 263]. 

■ Database systems: operations on objects [515, 518], database consistency 
maintenance, query-answering and redundancy-checking, query optimiza- 
tion [78, 515], concurrency control [31, 154, 357], distributed database 
systems [185], truth and belief maintenance [122, 124, 127, 138, 368], 
the relational homomorphism problem [241, 515], and knowledge organiza- 
tion for recognition system [243]. 

. Text processing: optical character recognition [90, 384, 499], character con- 
straint graph model [269], printed text recognition [21, 269], handwritten 
text recognition [480], automatic correction of errors in text [517]. 

> Computer graphics: construction of 2-dimensional pictures and 3-dimensional 
graphical objects from constraints, reasoning of the geometrical features of 
3-dimensional objects [55, 180]. 

> Integrated circuit design automation: circuit modeling [75, 506], logic mini- 
mization [253], state assignment [526, 527], state minimization [204, 438], 
asynchronous circuit synthesis [223, 435, 434, 436], I/O encoding for se- 
quential machines [455], power dissipation estimation [135], logic partition- 
ing [85, 143, 325, 395, 453], circuit layout and placement [11, 36, 47, 97, 
112, 134, 233, 491], scheduling and high-level synthesis [48, 323, 406], 
pin assignment [45, 452], floorplanning [415, 500], interconnection analy- 
sis [141, 142], routing [1, 71, 131, 132, 232, 333, 404, 441, 445, 467], 
compaction [68, 140, 244, 304, 324, 344, 460, 477, 524], performance 
optimization [298, 315, 363, 450, 500], testing and test generation [136, 
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279, 326, 146, 416], and verification [313, 502, 513]. Please also see: Jun 
Gu, Satisfiability Problems in VLSI Engineering, 1996. 

• Computer architecture design: instruction set optimization [4, 114, 205, 
282, 433, 437], computer controller optimization [27, 33, 305, 355, 432, 
438], arithmetic logic circuit design [77], compiler system optimization [7, 
343], scheduling [37, 137, 186, 187, 230, 336], fault-tolerant computing 
[24, 260, 20], task partitioning and assignment [39, 40, 111, 275, 478], 
load balancing [347, 392, 557], real time systems [254, 281, 316, 494, 
495, 504], data flow consistency analysis [7], data module assignment in 
memory system [7], and parallel and distributed processing [440, 465]. 

• High-speed networking: contact the authors. 
• Communications: contact the authors. 
• Security: contact the authors. 

In other areas such as industrial (chemical, transportation, construction, nuclear) 
engineering, management, medical research, social sciences, there are numerous 
SAT /CSP applications. 

15.  Future Work 

A number of future research directions for the satisfiability problem have been 
discussed recently. They are further emphasized in the 1996 DIMACS satisfiability 
workshop. 

General Boolean Expressions and Evaluation. Many practical applica- 
tion problems are expressed as Boolean satisfiability problems by a compact set of 
general Boolean functions. Although the transformation of a general Boolean ex- 
pression into CNF can be done in polynomial time, it will result in a substantially 
larger clause-form representation [192, 412]. While this may not be critical in 
complexity theory, it will have serious impact on the time to solve these problems. 
To this end, efficient representation and manipulation of general Boolean functions 
is crucial to solving practical application problems. 

Theoretical Issues. Recent research on SAT has brought up some interesting 
theoretical problems, such as the average time complexity analysis [25, 212, 228, 
268, 362, 420], determining satisfiable-unsatisfiable boundary [109, 307, 380], 
global convergence and local convergence rate [216, 227], and the structure and 
hardness of input models [102, 170, 196]. Some of the problems, e.g., the average 
time complexity analysis, are extremely difficult [335]. So far only some preliminary 
efforts based on simplified assumptions were given [49, 220, 216, 227]. 

One of the recent efforts to solve SAT formulas is to find subclasses for which 
the problem is solvable in polynomial time [153, 184]. Future work in this direction 
aims at building hierarchies of formulae classes, analyzing the properties of such 
hierarchies, and qualitative evaluation of the hierarchies. 

SAT Algorithm Development. The development of new algorithms and 
improved techniques for satisfiability testing has been a long-term effort of the 
research community and the industry. From computation/efficiency point of view, 
specific data structures and implementation details of SAT algorithms are crucial. 
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The algorithm space shows a number of asymmetrical and irregular places, implying 
further opportunity for new SAT algorithm development. 

From an experimental point of view, it is difficult to find a super algorithm 
that performs well for a wide range of SAT instances. Existing SAT algorithms 
complement rather than exclude each other by being effective for particular problem 
instances. One of the future directions is to continue the development of the Multi- 
SAT algorithm, integrating different algorithms using a cluster of computers [219] 
(Section 11.8). Computer hardware and memory space are becoming increasingly 
inexpensive. If one can trade hardware for improved performance, it can show a 
promising approach (in fact, trading memory space for speed was a basic design 
philosophy behind the RISC computer architectures). 

For important practical applications, there may be significant problem domain 
information. Efficient SAT algorithms may be developed by exploring input- and 
application-specific structures (Section 11.5). Specialized algorithms tailored to 
particular applications, on the other hand, do provide key insights to general sat- 

isfiability testing. 

Practical Application Case Study. It has been recognized by SAT re- 
searchers that practical application problems are the driving forces for SAT re- 
search; they are the ultimate benchmarks to test SAT algorithms. This direction 
was further addressed by the NSF, the advisory committee, and the organizing 
committee of the 1996 DIMACS Satisfiability workshop [147, 288, 289]. There 
has been a strong relationship between theory, algorithms, and applications of SAT. 
A major step in the future is to bring together theorists, algorithmists, and prac- 
titioners working on SAT and on industrial applications involving SAT, enhanc- 
ing the interaction between the three research groups. It would be beneficial to 
research community and to industry if we can apply theoretical and algorithmic 
results on SAT to practical problems, while taking these practical problems for 
further theoretical/algorithmic study. In addition to theoretical/algorithmic study, 
in the future, we will also further concentrate on significant industrial case studies 
of SAT, practical applications of SAT algorithms, and practical and industrial SAT 
benchmarks. 

Parallel Algorithms and Architectures. Implementing an algorithm on 
VLSI hardware architectures is a common practice to speed up algorithm execution. 
Not only does it offer faster execution speed, certain sequential portions of the 
algorithm may be implemented in hardware architectures in parallel form. For SAT 
per se, it has certain granularity at the search tree level, clause level, and variable 
level that lend itself well to parallel processing. A number of parallel algorithms and 
architectures for solving SAT have been developed and have been found to perform 
well at different levels of granularity. Two basic approaches have been taken in 
this direction: implementing parallel SAT inference algorithms on special-purpose 
VLSI chips [224, 225], and implementing tightly-coupled, parallel SAT algorithms 
on existing sequential computer machines [207, 212, 212, 490, 489]. 

Algorithm Engineering Approach. Aho, Johnson, Karp, Kosaraju, Mc- 
Geoch, Papadimitriou, and Pevzner have recently proposed an algorithm engineer- 
ing approach for the experimental testing of algorithms [8].   They believe that 
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"Within theoretical computer science algorithms are usually studied within highly- 
simplified models of computation and evaluated by metrics such as their asymp- 
totic worst-case running time or their competitive ratio. These metrics can be 
indicative of how algorithms are likely to perform in practice, but they are not 
sufficiently accurate to predict actual performance. The situation can be improved 
by using models that take into account more details of system architecture and 
factors such as data movement and interprocessor communication, but even then 
considerable experimentation and fine-tuning is typically required to get the most 
out of a theoretical idea. Efforts must be made to ensure that promising 
algorithms discovered by the theory community are implemented, tested 
and refined to the point where they can be usefully applied in practice." 

16.  Conclusions 

The SAT problem is at the core of the class of NP-complete problems and has 
many practical applications. In recent years, many optimization methods, parallel 
algorithms, and practical techniques have been developed for solving the SAT prob- 
lem. The past two decades have seen the proliferation of many SAT algorithms: res- 
olution, local search, global optimization, BDD SAT solver, and multispace search, 
among others. Existing methods complement rather than exclude each other by 
being effective for particular instances of SAT. In this survey, we present a general 
algorithm space that integrates existing SAT algorithms into a unified perspective. 
We describe several major classes of SAT algorithms with the emphasis on intro- 
ducing recent advances in SAT algorithms. We gave performance evaluation of 
some existing SAT algorithms. This survey also provides a set of practical applica- 
tions of SAT. The area of SAT research is a rich land of well-developed theory and 
methods. To apply theoretical/algorithmic results to practical problems seems the 
ultimate way to test and benchmark SAT algorithms. Not only will the end results 
of such an endeavor have a major scientific/industrial impact, but in the process it 
will push optimization technology to its limit. 
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