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Abstract 
An autonomous vehicle that is to operate outdoors must be able to recognize 

features of the natural world as they appear in ground-level imagery. Geometric 

reconstruction alone is insufficient for an agent to plan its actions intelligently — 

objects in the world must be recognized, and not just located. 

Most work in visual recognition by computer has focused on recognizing objects 

by their geometric shape, or by the presence or absence of some prespecified collection 

of locally measurable attributes (e.g., spectral reflectance, texture, or distinguished 

markings). On the other hand, most entities in the natural world defy compact 

description of their shapes, and have no characteristic features with discriminatory 

power. As a result, image-understanding research has achieved little success towards 

recognizing natural scenes. 

In this thesis we offer a new approach to visual recognition that avoids these limi- 

tations and has been used to recognize trees, bushes, grass, and trails in ground-level 

scenes of a natural environment. Reliable recognition is achieved by employing an 

architecture with a number of innovative aspects. These include: context-controlled 

generation of hypotheses instead of universal partitioning; a hypothesis comparison 

scheme that allows a linear growth in computational complexity as the recognition 

vocabulary is increased; recognition at the level of complete contexts instead of in- 

dividual objects; and provisions for contextual information to guide processing at all 

levels. 

Recognition results are added to a persistent, labeled, three-dimensional model 

of the environment which is used as context for interpreting subsequent imagery. In 

this way, the system constructs a description of the objects it sees, and, at the same 

time, improves its recognition abilities by exploiting the context provided by what it 

has previously recognized. 
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Preface 

The title is intentionally ambiguous. The research reported here has led to the de- 

velopment of a new paradigm for visual recognition of natural objects. It is my hope 

that this novel design may someday be also regarded as a natural approach to object 

recognition. 
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Chapter 1 

INTRODUCTION 

1.1    Motivation 

Much early machine-vision research in the modern signals-to-symbols paradigm was 

concerned with the interpretation of scenes from the "blocks world." Line drawings of 

simple geometric objects were analyzed to infer the shapes of individual objects. More 

recent research has focused on the recognition of man-made objects, such as industrial 

parts in a factory setting, roads in an aerial photograph, and furniture in an office 

environment. In these systems, several complicating factors that were not present 

in the blocks world had to be addressed: namely noisy images, imperfect geometric 

models, and complex lighting. The complexity of description necessary for recognition 

was greater than that required for the blocks world. A logical next step in this 

progression is the interpretation of ground-level images of natural outdoor scenes. In 

the manufactured world, three-dimensional (3D) edges and surfaces are an adequate 

intermediate representation, but for the natural world, such shape descriptions are 

insufficient and perhaps inappropriate. By designing a vision system for interpreting 

ground-level scenes of the outdoor world, we hope to provide a new basis for a theory 

of computational image understanding in complex domains. 

Many computer vision systems have been devised to recover the three-dimensional 

location and orientation of surfaces from image data. However, shape recovery is only 

a part of the functionality that is required of a vision system for autonomous robots 

1 



CHAPTER 1.   INTRODUCTION 2 

that are to operate outdoors. Outdoor robots are of practical importance in roles 

such as military systems for reconnaissance and target acquisition, industrial robots 

for construction site preparation and waste management, and agricultural systems 

for crop planting and harvesting. In order for these systems to interact intelligently 

with their environments, they must be able to recognize things in terms of physical 

attributes and semantic qualities, not just shapes. While geometric reconstruction 

is often sufficient to infer the identity of a man-made artifact, it is insufficient for 

the recognition of many natural objects. To illustrate this point, consider a robot 

observing the scene in Figure 1.1. To plan a path across the scene, the robot needs 

to understand that a river is in the way, it must reason that the current is too swift 

for it to wade across, and it must estimate the physical properties of the bank and 

of the rocks and logs that might be used as stepping stones. Perceptual recognition 

capabilities that are sufficient to enable such reasoning have been developed only 

for some very specific tasks in constrained domains such as inspection of welds and 

identification of machined parts on an assembly line. The understanding of scenes 

from a complex domain such as the natural outdoor world is not possible at present. 

Any autonomous system must have a means for perceiving its environment. Many 

computational vision systems produce image-like, iconic descriptions of a scene. In 

contrast, formal reasoning and planning systems rely on stylized, symbolic represen- 

tations. For example, the robot considering the scene in Figure 1.1 might reason 

that if no bridge exists, it could go upstream until it found a suitable crossing site. 

However, evaluating the "bridge-exists" predicate requires an understanding that is 

far beyond the current capability of computational vision. This mismatch between 

the perceptual demands of symbolic reasoning and the iconic capabilities of machine 

vision has been dubbed the "pixels to predicates problem," and is a fundamental ob- 

stacle to the construction of intelligent autonomous systems [Pentland 1986b]. The 

research reported here is an attempt to bridge this gap in the domain of natural 

outdoor scenes. 
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Figure 1.1: A natural outdoor scene. 



CHAPTER 1.   INTRODUCTION 

1.2    Issues 

A common paradigm for machine vision research has been to choose a structured 

domain in which some capability could be achieved and then attempt to extrapolate 

those results to less constrained (i.e. more complex) domains. One of the clearest 

lessons from research in image understanding has been that systems developed for a 

particular domain do not generalize to more complex domains. Thus, it is unlikely 

that we will ever find a solution to the recognition of natural objects such as rivers, 

trees, or rocks, by studying the recognition of machine parts in a bin, or doorframes 

in a hallway. 
In this thesis, we discard the common practice of working in a well-behaved domain 

where successful recognition is likely, and instead choose to study a complex domain: 

ground-level imagery of the natural outdoor world. In so doing we hope to gain insight 

into the deeper problems inherent in visual recognition — problems whose solution 

might lead to truly flexible, general-purpose machine vision systems. 

We have chosen to design an architecture for machine vision that is intended to 

recognize natural features of the outdoor world. Aside from the practical benefit 

of developing a system that would enable an autonomous vehicle to navigate in an 

unmodified outdoor environment, this goal invites research into a number of funda- 

mental issues that are less relevant in simpler domains: 

• Computer vision presents the following (chicken and egg) paradox: in order 

to recognize an object, its surroundings must often be recognized first, but to 

recognize the surroundings, the object must be recognized first. Is it really 

necessary to recognize everything at once, or can some things be recognized in 

isolation? If so, what are they and how can they be recognized? What is a 

suitable vocabulary for recognition in the natural world? 

• Most man-made artifacts can be recognized by the shape of features extracted 

from an image, but many natural objects cannot. Furthermore, most natural 

objects have no compact shape description. What representation of shape is 

useful for describing natural scenes? What role does geometry play in recog- 

nizing natural objects?   Given that segmentation of natural outdoor imagery 
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is problematic, how should a natural scene be partitioned into discrete compo- 

nents? 

• For any object in a given setting, some features in the scene are useful for 

recognizing the object and others are seemingly irrelevant. What contextual 

information is sufficient to recognize natural objects? How can these contexts 

be represented? How can contextual information be used in recognition? 

• From a computational standpoint, general-purpose recognition is very hard. 

Many algorithms that have been proposed are exponential even in simple do- 

mains. How can the combinatorics inherent in the recognition problem be con- 

tained? What can be done to control the computational complexity of natural 

object recognition? 

• One of the characteristic features of biological vision systems is their ability to 

learn from experience. A rat in a maze learns a path to a reward, a human learns 

to recognize a familiar street corner, but computer vision systems forget what 

they have computed as soon as they are restarted. A perceptual entity should 

learn from its experience. How can this be accomplished? How can a vision 

system be designed so that it can make use of newly acquired information? 

These issues are fundamental problems that prevent automatic recognition of nat- 

ural objects, but are less critical in simpler domains. The investigation of these issues 

in the context of the natural outdoor domain has been the focus of the research 

presented here. In designing and constructing a complete system for natural object 

recognition, we have developed solutions to a number of these problems and tested 

the resulting theories with outdoor imagery. 

1.3     Contribution 

The judicious use of contextual information has proven to be the key to success- 

ful recognition of natural features. The value of context has long been recognized 

[Garvey 1975], but its use was irrelevant in vision systems devised for recognition 
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in many simpler domains. Our solutions to these issues have been incorporated in a 

system called Condor (for CONtext-Driven Object Recognition) to demonstrate their 

validity. 

The Condor architecture for using contextual information revolves around four 

key ideas: 

• Use multiple operators for extracting features of interest. Individually, each 

operator may be unreliable, but at least one of them will usually extract the 

desired feature in any given image. These operators produce hypotheses to be 

considered for integration into a complete scene description. This process of 

intelligent hypothesis generation eliminates universal partitioning as a critical 

first step in recognition. 

• Use mutual consistencxj as the basis for determining whether a labeling hypo- 

thesis is valid. If a hypothesis is incorrect, it is unlikely to be consistent with a 

set of other hypotheses that explain the entire image. Recognition at the level 

of complete contexts rather than individual objects affords a basis for reliable 

interpretation. 

• Test strong hypotheses for consistency before considering weaker ones in order 

to manage the computational complexity. Hypotheses are ranked by pairwise 

comparison based on the scores of context-dependent evaluation functions. This 

mechanism identifies the best interpretations early in the search for mutually 

consistent sets of hypotheses and restricts the computational complexity to grow 

only linearly with the number of classes to be recognized. 

• Use context to guide all phases of the computation. Many operators and tests 

are reliable only in specific contexts; they can be employed sensibly by explicitly 

modeling and recognizing contexts. A specialized construct known as the con- 

text set provides a mechanism for efficiently encoding and invoking contextual 

knowledge. 

These observations form the core of the Condor architecture and are responsible for 

any success that has been achieved. 
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A new knowledge representation structure, the context set, is introduced and used 

in Condor. A context set specifies the set of conditions that must hold for an operation 

to be invoked. We use context sets as the unified representation for the three types of 

knowledge employed by the system: (i) contexts in which an operator is used to gen- 

erate candidate hypotheses; (ii) contexts in which two candidates can be compared; 

and (iii) contexts in which candidates can be considered mutually consistent. 

The set of labels for which context sets are provided constitutes the vocabulary 

for recognition. Unlike previous approaches, this one differentiates between the target 

vocabulary and the recognition vocabulary. The target vocabulary, the set of labels 

that one is ultimately interested in recognizing from imagery, depends on the intended 

task. The recognition vocabulary contains the target vocabulary plus those additional 

terms that may be of use in recognizing instances of the target vocabulary. The 

issue of what terms should be included in the recognition vocabulary is resolved 

through experimentation with the system. None of the classes of objects in the target 

vocabulary could be recognized in isolation. However, instances of all classes in the 

recognition vocabulary have been recognized without knowledge of classes outside 

that set. For example, Condor has recognized trees without knowing about rivers, 

but was unable to recognize sky reliably without knowing about such things as a 

horizon, ground, and foliage. 

Many vision systems attempt to analyze images in isolation. Some others are 

designed to exploit closely spaced image sequences. Condor employs a fully three- 

dimensional database as its world model and uses it to relate information extracted 

from sequential images. The results of an interpretation are stored in the world model; 

they are then available to provide context for analysis of subsequent images. In this 

way, Condor builds up its expertise over time. A robot exploring a piece of terrain 

must move slowly at first as it examines everything in fine detail. As the world model 

is developed, Condor can use more efficient processes in contexts that have become 

understood to be more highly constrained, and can use special-purpose procedures 

that become applicable only in those contexts. This gives the robot the ability to 

learn about its environment and to learn how to recognize something the next time 

it is seen.  Even processing the same image over and over (perhaps while the robot 
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is "sleeping") may permit new information to be extracted and stored, and a better 

interpretation to be obtained. 

1.4    Example of Results 

Condor has currently analyzed 38 images acquired from a 2-square-mile area just 

south of the Stanford University campus. These ground-level images represent a 

cross section of the variability exhibited in this area; they span a two-year period 

including all seasons and all times of day and feature trees and bushes at all scales. 

Input to the recognition system consists of an image (either monochrome, color, 

or stereo) and, optionally, a database containing map data and previous recognition 

results. Emphasis has been placed on achieving labeling accuracy while recovering 

qualitatively correct geometry, rather than reconstructing the precise scene geometry, 

which has been studied extensively by others. As output, Condor is expected to 

provide a 3D model of the viewed area, labeled with terms from the recognition 

vocabulary. 

To accomplish this goal, Condor makes use of a knowledge base in the form of a 

collection of 156 context sets that prescribe which operations to carry out in various 

circumstances. Some of these context sets are specifically tailored to the experi- 

mentation site, while others are of general utility. This knowledge base has enabled 

recognition of natural scenes with considerable success and has been used to obtain 

all the results presented in this thesis. 

As an example, one of the color images that Condor has analyzed is reproduced in 

Figure 1.2 (in black and white). Context provided to Condor at the time of analysis 

consisted only of a digital terrain model and the forest boundaries as extracted from 

a map. Condor used this information to recognize the sky, the ground, the grass, and 

five trees, as shown in Figure 1.3. The result is a semantically labeled 3D model of 

the scene, which can be viewed from any perspective, such as shown in Figure 1.4. 

Substantial experimentation with Condor has been performed to evaluate key 

issues concerning its competence and limitations. Our conclusions stemming from 

these tests are: 
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Figure 1.2: A natural outdoor scene of the experimentation site. 
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Figure 1.3: Result of analyzing Figure 1.2. 
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Figure 1.4: A perspective view of the 3D model produced from the analysis of the 
image shown in Figure 1.2. 
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• The approach is adequate for recognizing, under a variety of viewing conditions, 

the trees, bushes, trails, and grass that occur in a limited region. 

• A reasonably complete 3D model of a large area can be constructed by combin- 

ing the results from the analysis of individual images. 

• Condor's own recognition results can be used as context to enable it to improve 

its recognition abilities incrementally through experience. 

In conclusion, the Condor architecture appears to be well-suited as the basis for 

an outdoor robotic vision system because it not only learns a description of the 

host's environment, but also learns how to use that description to achieve still better 

recognition of natural objects. 



Chapter 2 

NATURAL OBJECT 

RECOGNITION 

2.1     Visual capabilities for autonomous robots 

If robots are ever to attain versatile and autonomous behavior, it will be necessary to 

endow them with perceptual abilities that go far beyond the geometric reconstruction 

that modern robots perform. There is a tremendous difference between the expecta- 

tions placed by robot designers on a perception system and the capabilities that the 

field of machine vision has so far provided. 

At first glance, it may seem that an accurate three-dimensional geometric model 

is all that a robot should need to successfully navigate its environment. Why should 

an agent have to recognize its surroundings? 

Imagine a rabbit hopping around in a field. If it didn't know that the blades 

of grass were flexible, it would have to conclude that the field is impassable. If it 

attempted to walk across the flat surface of a pond, it would drown. Similarly, an 

autonomous vehicle that couldn't discriminate between a bush that could be driven 

over and a rock that could not would have limited navigational ability. Recognition 

of physical properties is necessary — for survival of a rabbit, and for viability of a 

robot. 

The need for understanding goes beyond physical properties.  The rabbit, upon 

13 
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encountering a large blob, had better be able to discern whether it is a tree stump or 

a wolf. An autonomous construction robot may be given the knowledge that granite 

can be made into a strong building foundation and that sandstone cannot. If it is to 

use its knowledge of construction materials, that robot must be able to distinguish 

the two types of rock. In general, objects in the world must be identified so that an 

agent's large store of knowledge can be brought to bear. We refer to the process of 

identification as semantic recognition. 

Perhaps the most important call for semantic recognition is in support of planning. 

No agent can be considered intelligent if it lacks the ability to plan its future actions 

based on current goals. The rabbit, which must decide where it is going to look for 

food, would starve if it relied on a purely geometric model of its environment because 

the lack of semantic information would prevent the rabbit from devising a meaningful 

plan. Planning is just as important for a robot; automated planning has been an area 

of intense study since the inception of artificial intelligence. AI planners for outdoor 

robots make reference to such semantic categories as bridge, road, river, and tree — 

none of which can be instantiated from a purely geometric model. 

Finally, there is the need to fill in gaps where information is missing. A robot 

cannot be expected to have a complete and up-to-date model; it will be limited to 

knowledge of areas already explored. To infer the shape and appearance of the back 

side of a tree requires first that the object be recognized as an instance of a tree, 

so that the appropriate defaults and global shape can be assigned. Completing the 

unobserved side of a hill requires even more understanding, such as knowledge of 

drainage, distribution of trees, limits on surface slope, and the like. 

Completions along the dimensions of scale and time are also required. One need 

not recognize individual leaves to infer that there are leaves on a tree. Similarly, the 

prediction of the appearance of a tree in winter cannot be made without determining 

if the object is a deciduous tree. 

No matter how extensive and detailed is the representation possessed by an agent, 

it will never be complete for all purposes. Augmenting a geometric model with an 

understanding of physical and semantic properties gives the agent the ability to infer 

the information that it cannot sense directly. However, augmentation can take place 
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only if at least part of the scene has been semantically recognized. 

In summary, recognition involves more than geometric reconstruction. 

2.2    Related research 

Recognition is the crucial element of a vision system that is to understand what it 

sees. The pixels-to-predicates gap is bridged when symbolic labels are assigned to 

image features. 

2.2.1     Recognizing objects 

The term 'recognition' has been used to describe a variety of machine-vision goals 

based on different assumptions. The vast majority of research on recognition relies 

on the use of a known geometric model of the object being recognized [Binford 1982]. 

Such systems are often cast in an industrial setting where one or a small num- 

ber of parts are to be located within a scene. Historically, some of the earliest 

work in 3D model recognition was performed in the early 1970s with the aim of 

finding polyhedra [Roberts 1965, Shirai and Suwa 1971] and generalized cylinders 

[Agin 1972, Agin and Binford 1973, Nevatia 1974] in light-stripe range data. Exam- 

ples of more recently implemented systems that use geometric models are 3DP0 

[Bolles, Horaud, and Hannah 1983], ORA [Huttenlocher and Ullman 1988], and the 

curved 3D object-positioning system of Ponce and Kriegman [1989]. The goal of these 

systems is the location and orientation of the objects of interest. 

Some research has been directed toward relaxing the strict assumption of a fully 

specified geometric model. These techniques employ a parameterized model (as in 

Acronym [Brooks 1983] and One-Eyed Stereo [Strat and Fischler 1986]) or a generic 

model (as in [Fua and Hanson 1987] and [Kriegman and Binford 1988]). While much 

less restrictive in scope, these techniques all rely on shape as the primary attribute 

for recognition. 

A third category of recognition research avoids the use of stored geometric mod- 

els.   Recognition is attempted on the basis of cues other than shape, such as size, 
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location, appearance, purpose, and context. Hawkeye [Barrow et. al. 1977a], MSYS 

[Barrow and Tenenbaum 1976], and the present approach, Condor, are examples of 

the few systems that have been designed without a primary reliance on geometric 

models. 

2.2.2     Recognizing natural scenes 

Nearly all research on recognition has been conducted in a context where a precise ge- 

ometric model of the desired object is known beforehand, and the major goal has been 

to find a projection of the model that best matches some part of an image. Precise geo- 

metric models have proven to be invaluable in many systems that recognize man-made 

artifacts [Bolles, Horaud, and Hannah 1983, Faugeras and Hebert 1983, Goad 1983, 

Crimson and Lozano-Perez 1984, Ponce and Kriegman 1989]. For the natural world, 

however, these models are inadequate. Although it may be possible to construct a 

3D model of a tree to some level of precision, the model is not likely to be of much 

use in recognition. Furthermore, no two trees have the same shape, and even individ- 

ual trees change their appearance and shape over time. Statistical models of natural 

objects using fractal functions or particle processes are extensively used in computer 

graphics to render realistically appearing images of natural scenes, but these models 

are of only limited use in machine vision. 

To relax the requirement for complete and accurate models, Fischler and 

Elschlager [1973] introduced the technique of spring-loaded templates, which rep- 

resent objects as a combination of local appearances and desired relations among 

them (the "springs"). An object represented in this way is located in an image by 

using dynamic programming to minimize local and global evaluation functions simul- 

taneously. Some geometric recognition systems, such as ACRONYM [Brooks 1983], 

accept parameterized models to describe a class of objects, but these too are overly 

restrictive to be of much use for recognizing natural features. Research at Schlum- 

berger has made extensive use of elastically deformable, symmetry-seeking models to 

recover the geometry of some natural objects, such as fruits, vegetables, and the grain 

pattern in a piece of wood [Terzopoulos, Witkin, and Kass 1987]. 

The amount of work toward the goal of semantic understanding of natural outdoor 
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scenes has been relatively small and, surprisingly, almost none has occurred in the last 

ten years. The interpretation of natural scenes requires methods that do not assume 

the existence of a priori geometric models. All of these approaches begin by parti- 

tioning the image into regions, which presumably mirrors the natural decomposition 

of the scene into "objects." The regions are then analyzed in one way or another to 

determine their interrelationships, to merge them into larger regions, and ultimately, 

to assign to each region a label that categorizes it semantically. The predominance 

of this approach is surprising considering that the notion of an "object" in a natural 

scene is ill-defined. This basic reliance on an initial universal partitioning is a critical 

weakness that is avoided in the approach offered in this thesis. 

Sloan used a production system in which domain knowledge is encoded as rules to 

use in analyzing regions and assigning labels [Sloan 1977]. The approach was handi- 

capped by the use of a single-pass segmentation: if the initial segmentation contained 

errors (as it surely would), the interpretation would also be wrong. Furthermore, the 

knowledge base was limited to two-dimensional relations only, had no notion of scale, 

and could not make use of prior expectations of objects. 

Ohta also used a rule-based approach to assign labels to regions generated by a 

single-pass segmentation [Ohta 1980]. Labels were assigned to regions by matching 

each region with predefined models of typical region properties. Ohta made the use 

of color a central concern but his system exhibited the same limitations as that of 

Sloan. 

Yakimovsky and Feldman used Bayesian decision theory to label regions 

[Yakimovsky and Feldman 1973]. Their implementation allowed intermediate results 

to guide the segmentation by merging regions when doing so was more likely to 

result in a correct interpretation. Domain knowledge was encoded as conditional 

probabilities, and prior expectations were incorporated as prior probabilities. The 

probabilistic approach has several drawbacks, as the estimation of probabilities is 

notoriously difficult and the final interpretation can be highly dependent on these 

estimates. Furthermore, probabilistic updating rules invariably require independence 

assumptions that are seldom warranted in practice. This early approach was also 

limited to 2D relations and suffered from the restriction that the interpretation of a 
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region depended only upon adjacent regions. 

Rosenfeld, Hummel, and Zucker used iterated parallel operations to allow local 

information to propagate throughout the image in a search for convergence to a 

consistent interpretation. Their effort was directed toward exploring the mechanisms 

and computational properties of such a relaxation approach and did not address the 

interpretation of natural scenes [Rosenfeld, Hummel, and Zucker 1976]. 

Tenenbaum and Barrow used a relaxation method on natural scenes 

[Tenenbaum and Barrow 1976]. This approach established a set of possible labels 

for each region and used Waltz filtering to act on local constraints in an attempt to 

find a consistent labeling. Variations on this method performed region-merging to 

generate a more acceptable segmentation and used geometric models when available. 

In MSYS [Barrow and Tenenbaum 1976], the technique was extended to reason with 

uncertain information and inexact rules of inference. 

Tenenbaum [1973] and Garvey [1975] recognized that feature extraction cannot 

be performed bottom-up and developed methods that pose perception as a planning 

problem in order to focus resources on critical subproblems. A given object is found 

by first planning a strategy that might identify it using simple features in the context 

of already known facts about the scene, and then executing the plan. This process 

exploits distinguishing features that can be recognized easily and can be reliably used 

for classifying an object. Experimentation was performed in the domain of office 

scenes. 

The Schema system of the VISIONS project at the University of Massachusetts is 

perhaps the only completely implemented system for interpreting ground-level out- 

door scenes [Hanson and Riseman 1978, Draper et. al. 1989]. In this approach, in- 

terpretation of an image involves low-level filtering and segmentation processes and 

high-level interpretation processes embedded within a blackboard framework. The 

system analyzes isolated images, having no mechanism for applying prior knowledge 

about the scene or for relating one image to the next. Schemas are used at the higher 

abstraction levels to control the invocation of relevant knowledge sources. Empirically 

derived likelihoods guide the interpretation, which is entirely two-dimensional. 
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There is a large body of literature on the related topics of interpreting aerial im- 

agery (e.g.   [Ballard, Brown, and Feldman 1978] and [Nagao and Matsuyama 1980]) 

and on knowledge-based interpretation of medical images (e.g. [Tsuji and Nakao 1981]). 

Many of these papers contain information that is at least indirectly related to the do- 

main of ground-level natural scenes. 

The approach taken in this thesis differs from previous efforts in that it includes 

• explicit representation and use of contextual information throughout the recog- 

nition process 

• recognition in the absence of explicit shape description 

• a limited search space, as a result of the context-based orientation 

but avoids 

• reliance on accurately partitioned and delineated objects 

• requirement for logically consistent absolute constraints 

• use of probabilistic models requiring a priori probability values and indepen- 

dence assumptions. 

The combination of these features makes Condor unique among computer vision sys- 

tems. 

2.3    Fundamental limitations of current machine- 

vision technology 

The realization of robust recognition in the natural outdoor world will require that 

four current limitations of machine vision be overcome: 

• The almost exclusive reliance upon shape 

• The ill-defined nature of the partitioning problem 
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• The lack of an effective way to use context 

• The inability to control the growth and complexity of the recognition search 

space. 

These four obstacles must be overcome if machine recognition is to be possible in any 

complex domain. A domain can be considered complex for purposes of recognition 

if it exhibits some combination of the following properties: objects of interest do not 

have unique shapes; photometric appearance varies among individuals in a class; the 

vocabulary needed to describe the domain is open-ended; three-dimensional objects 

exist at all scales; and recognition involves a solution space that is too large to be 

searched completely. Examples of recognition domains that meet these complexity 

criteria are natural ground-level scene analysis, human face recognition, and medical 

image interpretation. 

2.3.1     Shape 

In most existing approaches to machine recognition, the shape of an object or of its 

parts has been the central issue. Indeed, many artifacts of human technology can be 

recognized solely on the basis of shape, which, to a large degree, accounts for the lim- 

ited success so far achieved by machine recognition systems. These techniques cannot 

be extended to the natural world because shape alone is insufficient (even for people) 

to recognize most objects of interest (e.g., a rock or a river). It is easy to recognize 

a line drawing of an isolated telephone, but, as previously discussed, it is doubtful 

that one could correctly classify a river based entirely upon edges extracted from an 

image (Figure 2.1). Indeed, most natural objects fail this line drawing test, which re- 

quires identification based solely on observed shape. Similarly, when resolution is too 

coarse to discern shape, recognition is often possible on the basis of size and context. 

Marr [1982] has proposed the existence of a geometric surface description, known as 

the 2.5D sketch, as a significant intermediate representation in image understanding. 

While it is undeniably important in recognition of many objects, the 2.5D sketch is 

nearly meaningless for a tree. The fact that few natural objects have compact shape 

descriptions further complicates the use of shape in describing natural scenes. Thus a 
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(a) Sobel edges from an image of (b) Sobel edges from the image 
a telephone shown in Figure 1.1 

Figure 2.1: Recognition by shape. The telephone is recognizable from edges extracted 
from an image, but the river is not. 

rather complex and cumbersome description would be required to describe the shape 

of something as common as a tree or a bush. It is obvious that shape cannot be the 

sole basis for a general-purpose recognition system. 

2.3.2    Universal partitioning 

A common paradigm in machine vision has been to partition an image into distinct 

regions that are uniform in intensity, texture, or some other easily computed attribute, 

and then assign labels to each such region. For natural scenes, however, it is seldom 

possible to establish complete boundaries between objects of interest. Consider.the 

difficulty of associating leaves with their correct trees. Other examples are abundant: 

Where does a trunk end and a branch begin? What are the boundaries of a forest? 

Is a partially exposed root part of the ground or the tree? 

Figure 2.2 shows a natural image that has been partitioned by a standard seg- 

mentation algorithm with several parameter settings using intensity and texture data 
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Figure 2.2: Partitions of a natural scene obtained using various parameter settings. 
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simultaneously. The resulting map is of questionable utility for recognition regardless 

of the choice of parameters. 

The reliance upon universal image partitioning algorithms in machine vision is sur- 

prising, given the abundance of evidence against their use by biological vision systems. 

Treisman has shown that the human visual system does not compute boundaries on 

the basis of any particular set of attributes [Treisman 1985]. She suggests that 

... the preattentive visual system does not produce a single represen- 

tation such as a single partitioned image. Rather, it provides different 

initial partitions to support distinct channels in the human visual sys- 

tem, which analyze imagery along a number of separate dimensions to 

extract such information as depth, movement, color, orientation, and so 

on. [Fischler and Firschein 1987b, p. 170]. 

Image partitioning is also dependent upon its intended use. In an experi- 

ment in which subjects were asked to partition a curve into five segments, quali- 

tatively different points were chosen depending on the objective conveyed to the sub- 

jects [Fischler and Bolles 1986, p. 100]. Fischler and Bolles concluded "Thus, even in 

the case of data with almost no semantic content, the partitioning problem is NOT 

a generic task independent of purpose." 

Despite these difficulties, it remains necessary to perform some form of partitioning 

to do recognition, otherwise we have nothing to refer to when making a classification. 

Because of the impossibility of partitioning natural scenes reliably (even if such a 

goal were well-defined), we cannot rely on partitioning in the usual sense. Instead, 

we need an alternative view that allows object recognition without requiring complete 

or precise object delineation. 

2.3.3    Contextual knowledge 

It is widely known that an object's setting can strongly influence how that object 

is recognized, what it is recognized as, and if it is recognizable at all. Psychological 

studies have shown that people cannot understand a scene in the absence of sufficient 

context, yet when such contextual information is present, recognition is unequivocal 
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[Fischler and Firschein 1987a, pp. 220-229]. Very little can be recognized when a 

scene is viewed through a small window or peephole. Furthermore, individual objects 

may exhibit a multitude of appearances under different imaging conditions, and many 

different objects may have the same image appearance. Their correct interpretation 

must be decided entirely by context. From these studies it is clear that computa- 

tional vision systems will be unable to classify an object competently using only local 

information. 

A perceptual system must have the ability to represent and use nonlocal informa- 

tion, to access a large store of knowledge about the geometric and physical properties 

of the world, and to use that information in the course of recognition. However, the 

few computational vision systems that make use of context do so superficially or in 

severely restricted ways. For example, Hawkeye used the location of a pier (obtained 

from a stored map of a port facility) to constrain the regions where a ship might be 

found [Barrow et. al. 1977a]. SPAM used a map and domain-specific knowledge to 

find features in aerial imagery of airports [McKeown, Harvey, and McDermott 1985]. 

Of course, context is not necessary for everything. Many artifacts and some 

natural objects, such as a bird or a pine cone, can be instantly recognized even when 

all contextual clues have been removed. It is also possible to recognize some scenes 

in which contextual constraints have been violated. An image of an office scene with 

a telephone on the floor is unusual but not impossible to recognize. An image turned 

sideways is instantly recognized as such, despite the fact that relevant contextual 

knowledge is violated. 

In natural scenes, however, contextual constraints are strong, and are less likely 

to be violated than in artificial scenes. In our work, we make the use of contextual 

information a central issue, and explicitly design a system to identify and use context 

as an integral part of recognition. 

2.3.4    Computational complexity 

The standard control structures currently employed in scene analysis lack an essential 

attribute of intelligent behavior — an explicit mechanism for generating a solution 
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without requiring some form of combinatoric search. In controlled or simple envi- 

ronments, exhaustive search may be computationally feasible, but the complexity of 

the natural world imposes the requirement for a more direct solution mechanism. A 

key aspect of our approach is the provision of an explicit mechanism for generating 

high-quality assertions about the scene without the need for searching the exponen- 

tial space of potential labels associated with image regions. Instead, we search the 

space of potential regions for each label, a space that is smaller because of the use 

of context to limit region generation. The customary region-oriented approach based 

on universal partitioning is exponential in the number of classes, which casts serious 

doubt on whether large-scale systems can be derived on that basis. 

2.4    Key ideas 

This section outlines the intuition behind our design for context-based vision. Chap- 

ter 4 provides a more formal description of the approach. 

2.4.1     Context-limited vision 

General-purpose machine vision is difficult — indeed, it seems impossible to many of 

us who have studied it. In fact, completely duplicating the human ability to recog- 

nize objects is probably equivalent to duplicating human intelligence. Nevertheless, 

it has been possible to attain a fair level of competence for machine vision systems 

in many important domains (e.g., optical character recognition, printed-circuit board 

inspection, industrial part positioning, and aerial-survey land-use classification). The 

common aspect of domains in which success has been achieved is the limited variabil- 

ity within the domain. In optical character recognition, fewer than 100 characters 

are usually considered and they occur in predictable locations. In industrial part 

positioning, there are only a few objects, and these have exactly the shapes specified 

in computer-aided design (CAD) models. 

What prevents successful machine vision in more complex domains, such as the 

natural outdoor world or human face recognition, is the infinite variety of shapes and 
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appearances that must be considered. When that variety is reduced, by searching for 

a particular tree in a particular image, or distinguishing just two human faces, the 

problem becomes far simpler. This observation can be summarized as the 

Principle of Contextual Simplicity: Within any given image, there 

is usually a relatively straightforward technique that will find the 

object or feature of interest. 

Of course, that particular technique is likely to fail when used out of context, but if 

an appropriate context for its use can be found, successful recognition in a complex 

domain is possible. For example, the trees in Figure 2.3 can be isolated simply 

by thresholding the output of a texture operator. Employing the texture operator 

only where a tree is likely to be silhouetted against the sky allows some trees to be 

identified. Applying this operator out of context (e.g., below the skyline) is likely to 

produce a meaningless result. 

In Condor we associate a data structure, called a context set, with each opera- 

tor. The context set identifies those conditions that must be true for that operator 

to be applicable. Context sets can incorporate many kinds of contextual informa- 

tion including very general ("hilly terrain"), domain-specific ("under a palm tree"), 

image-specific ("silhouetted against the sky"), and instance-specific ("next to the 

Lone Cypress Tree"). Efficient visual recognition can be achieved by invoking visual 

operations only in those contexts in which they are likely to succeed. Context sets 

and their design considerations are discussed in detail in Chapters 3 through 5. 

2.4.2    Global consistency 

Even when the context associated with an operation is satisfied, the results may 

not be correct. Simple techniques are going to make mistakes, even in constrained 

contexts. Therefore, a means to verify the output of the various operators is required. 

This goal is accomplished through the application of the 

Principle of Global Coherence: The best interpretation of an image 

is the one that coherently explains the greatest portion of the sensed 

data. 
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Figure 2.3: Some trees that can be delineated by a simple texture operator. 
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Figure 2.4: An impossible scene: no globally consistent interpretation exists. 

The rationale behind this principle is the fact that a correct and complete inter- 

pretation should be entirely self-consistent and should explain the entire image. In 

practice, this ideal may not be realized, but the best interpretation ought to be the 

one that comes closest. Nothing is considered to be recognized unless it exists in the 

largest consistent set of hypotheses. 

Traces of this strategy can be found in many places, including Waltz [Waltz 1972], 

SPAM 

[McKeown, Harvey, and McDermott 1985] and Hwang [Hwang 1984]. McKeown et 

al. recognized the value of mutual consistency among fragment interpretations of 

airport scenes. Hwang grouped large numbers of potential hypotheses into consistent 

interpretations of suburban house scenes. 

The principle demands global consistency because local constraints are not suf- 

ficient.    The impossible object pictured in Figure 2.4 is an image that is locally 
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consistent, but lacks a global interpretation. Such an image would be erroneously 

labeled by a system that used only local consistency checks, but is rejected by the 

Principle of Global Coherence. 

A notion of consistency must be defined in order to make use of the Principle of 

Global Coherence. Many possibilities exist: neighboring region compatibility, image 

constraints, 3D occupancy, and so on. We have chosen to employ three-dimensional 

consistency because the constraints of the visual world are more naturally expressed 

that way. Many constraints that are easy to express with a 3D representation are diffi- 

cult or impossible to express with a 2D (image plane) representation. For example, re- 

strictions on size, distance, orientation, and support are all inherently 3D constraints. 

To attempt to define them as 2D constraints in the image plane would require the 

manipulation of projection artifacts such as occlusion, foreshortening, and perspec- 

tive distortion. Other authors have also recommended the expression of constraints 

in 3D coordinate systems [McKeown, Harvey, and McDermott 1985, Jain 1989], and 

we strongly concur with that view. 

Consistency constraints are represented by another form of context set. Each 

constraint is a predicate that can be used to decide if a candidate is consistent within 

a group of candidates. A context set specifies the conditions that must be true for 

that predicate to be appropriately applied. 

2.4.3    Candidate comparison to control complexity 

The Principle of Contextual Simplicity is used to generate candidate interpretations 

of parts of an image. The Principle of Global Coherence is used to determine the 

best interpretation of an entire image. However, the search for the largest coherent 

set of candidates can be combinatorically infeasible without further constraint. For 

this reason, mutually consistent sets of candidates (called cliques) are generated in a 

special order. The following principle allows cliques to be constructed such that the 

best cliques are generated early in the search: 
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Principle of Relative Recognition: Given an image feature, it is often 

possible to determine whether it is a more likely example of a given 

class than another feature — even when it is impossible to make an 

absolute determination of class membership. 

Consider the difficulty of assigning a label to a group of pixels in an image. Image 

information is unlikely to be sufficient for making a categorical determination of the 

region's identity. However, given two image regions, it is frequently easy to decide 

which is a better example of a specified class. This observation can be used to 

advantage when searching for mutually coherent sets of candidate hypotheses. Only 

when a sufficiently large and consistent clique is found is a final labeling assignment 

made. 

At any point during the processing of an image, there will be a collection of 

candidates for each semantic category. Some of these candidates are obviously better 

examples of a given labeled class than others. The candidates for each class can be 

compared pairwise to find those that are most likely to be instances of the label, and, 

therefore, are most likely to be present in the best (largest consistent) interpretation 

of the image. For example, Figure 2.5 shows several candidates for the label sky 

from the image shown in Figure 2.3. Region 1373 is a better example of sky than 

Region 1368 because it is brighter and less textured. 

Once again, the context set is the representation employed to encode the criteria 

for comparison. These context sets contain a set of conditions under which one 

candidate can be considered better than another as an instance of a particular label. 

When all these conditions favor one candidate over the other, a preference ordering 

is established betwen them. When there is disagreement among the context sets, the 

candidates are left unordered. Application of all such context sets imposes a partial 

order on the candidates for each label. 

These partial orders are then used when forming cliques of mutually consistent 

candidates. The candidates at the top of a partial order are tested for consistency 

with a clique before those candidates lower in the order. This increases the chance 

that the largest consistent clique will be found early in the search because it increases 

the likelihood that a consistent candidate will be added to a clique. 
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Figure 2.5: A collection of sky candidates that were generated by Condor. 

The usual paradigm for scene interpretation is to pose the labeling of a par- 

titioned image as a search problem — to find the best assignment of labels 

to regions in the space of all possible labelings [Yakimovsky and Feldman 1973, 

Barrow and Tenenbaum 1976]. To focus on search efficiency would be misdirected. 

If a search space is very large, no search method will succeed. If a search space is 

small, the method used doesn't matter. Therefore, a key to successful recognition is 

the restructuring of the usual paradigm to induce a smaller search space. In Condor, 

the search problem is inverted: the goal is to find the largest consistent collection 

of regions for the set of relevant labels. The context-based generation of candidate 

regions limits the size of the search space. The partial orders imposed by candidate 

comparison are a powerful tool for ordering the search through the space of mu- 

tually consistent cliques. Together, these two mechanisms avoid the combinatorics 

that prevent traditional techniques from achieving successful recognition in complex 

domains. 
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Figure 2.6: Some trees on the Stanford campus. 

2.4.4    Layered partitions 

Regardless of how. it is derived, the final interpretation in most recognition systems is 

a labeled, partitioned image. In our approach, the final interpretation is a (maximal) 

clique of mutually consistent labeled regions. These regions will not be disjoint in 

general (may overlap) and may not cover the entire image. The clique can thus 

be viewed as a layered partition, where each layer is separated from others by the 

occlusion relations that have been determined during clique formation. Using the 

image shown in Figure 2.6, the difference between an ordinary partition and a layered 

partition is illustrated in Figure 2.7. As can be seen, the layered partition need not 

assign every pixel to a region, nor does it need to assign each pixel to only one region. 

The layered partition has these advantages over the ordinary partition: 
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(a) normal partition 

(b) layered partition 

Figure 2.7: An ordinary partition vs. a layered partition. 
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• Ambiguous pixels can be represented explicitly. For example, some pixels in 

the tree crown may be indistinguishable as sky or foliage. The layered partition 

allows those pixels to occur in regions for both sky and foliage. 

• Occlusion relations are readily determined from the layered partition. For ex- 

ample, the thin weeds are in front of the large ground region and therefore must 

partially occlude it. No such relationship can be inferred from an ordinary par- 

tition. 

• Coherent objects are represented as single units in the layered partition. In the 

ordinary partition, the ground has been split into several separate pieces and 

the relation among them has been lost. The layered partition, in which the 

ground is a single region, is more useful for performing higher-level reasoning 

about the scene content. 

Thus in our approach, no single partitioning is created that supposedly describes the 

best segmentation of a scene. Rather, the layered partition is a flexible representation 

that is much in the spirit of the multiple partitions that Treisman found useful for 

describing human perception. 

2.5     Experimental results 

The ideas that we have proposed for overcoming the fundamental limitations of tra- 

ditional approaches to machine vision have inspired the design of a complete archi- 

tecture for visual recognition in complex domains. The adequacy of the approach is 

largely an empirical question that we address experimentally, using real imagery. The 

implementation of this architecture, known as Condor, has been used to assess the 

merits and limitations of the approach. 

We have carried out extensive experimentation using Condor in the domain of 

ground-level views of natural scenes. Figure 2.6 depicts one of several hundred images 

that have been acquired from the hilly region immediately south of the Stanford 

University campus. A database of road networks and forested areas which is used by 

Condor as initial context has been manually constructed from the map in Figure 2.8. 
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Figure 2.8: A map of a portion of the Stanford campus. 
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A digital terrain elevation model acquired from the United States Geological Survey 

is also stored in the world model. A knowledge base of 156 context sets tailored to 

this 2-square-mile region has been constructed and used in our experimentation. 

So far, 38 of the images acquired have been digitized, some in color and some as 

stereo pairs, and analyzed by Condor. Figure 2.9 illustrates the process of candidate 

generation using various operators on the image shown in Figure 2.6. The resulting 

hypotheses are compared pairwise to identify the best candidates for each semantic 

label. The partial orders assembled for sky, foliage, ground, and tree-trunk are shown 

in Figure 2.10. Notice that there is no single partitioning — many candidates overlap 

each other and some pixels are left unexplained. While it would be nearly impossible 

to determine valid candidates in an absolute sense, the relative comparisons have 

correctly ranked good candidates above poor ones. Before making a final determina- 

tion, Condor constructs cliques of mutually consistent candidates. The portion of the 

image included in the first two cliques is depicted in Figure 2.11. Although the labels 

are not shown in the figure, Clique (a) mistakenly labeled as sky the area below the 

foliage on the left. This prevented a large portion of the ground from being identified, 

so that it remained unlabeled. Clique (b) correctly labeled the area below the foliage 

as ground, and accordingly was able to find other ground candidates consistent with 

it. Clique (b) explains the larger portion of the image and the layered partition com- 

prising it is preferred as the final interpretation. The tree and bushes identified in 

Clique (b) are added to the terrain database to be used as context for analyzing future 

images. A synthetic view of the contents of the updated world model is depicted in 

Figure 2.12. 

Knowledge of the approximate position, size, shape, and appearance of a tree, 

for example, enables Condor to more competently extract that tree in another image 

by employing suitable procedures with appropriate parameter settings. In this way, 

Condor bootstraps its recognition abilities. When first introduced to an area, Condor 

knows only the topography and some gross features such as roads and forests. As 

Condor recognizes each new tree, bush, trail or other feature using generic operations, 

it adds to the context that is available for analyzing successive imagery. Eventually, a 

fairly complete, semantically labeled, 3D model of the environment is attained, which 
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(a) Black-and-white image 
of some trees near Stanford 

(d) Sky region hypotheses - 
The entire scene was parti- 
tioned by Laws' segmenter, 
KNIFE [Laws 1988]. Each 
region displayed is above 
the geometric horizon, rela- 
tively bright, and relatively 
untextured. 

(b) Homogeneity operator — 
Each pixel value is the maxi- 
mum difference in intensity be- 
tween it and all neighboring 
pixels. 

(e) Tree trunk hypotheses — 
Coherent regions were grown 
from the output of the ho- 
mogeneity operator (b) above. 
Skeletons of the major regions 
were constructed and filtered 
to remove short and highly 
convoluted skeletons. The tree 
trunk and its major limbs have 
been identified. 

(c) Striations operator — 
Line segments show the ori- 
entation of any texture pat- 
tern in a small window. 

(f) Ground region hypothe- 
ses — Regions of hori- 
zontal striations were ex- 
tracted from (c) above. 
Small regions have been 
discarded. Horizontal sur- 
faces tend to have horizon- 
tal striations when viewed 
from an oblique angle due 
to perspective foreshorten- 
ing. 

Figure 2.9: Output of various operators applied to a natural scene. 
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Figure 2.10: Partial orders of candidates. 
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(a) (b) 

Figure 2.11: Region coverage maps for two cliques formed by analyzing the tree image 
shown in Figure 2.6. 

Figure 2.12: A synthetic view of the experimentation area after updating the world 

model. 



CHAPTER 2.  .NATURAL OBJECT RECOGNITION 40 

enables relatively rapid and reliable recognition of natural features in ground-level 

imagery using more specialized operators. To summarize, starting with a sparsely 

populated database of major terrain features, Condor learns a detailed description of 

the terrain, and learns how to recognize natural objects in a limited geographic area. 

Using digitized images, we have performed numerous experiments demonstrating 

this behavior. In one set of experiments, Condor is tasked to analyze an image and 

to reanalyze it after updating the world model with its recognition results. On the 

first pass, Condor rarely mislabeled an object but often left a significant feature 

unlabeled. In some cases, the additional context provided from a partial recognition 

result allowed Condor to recognize features on the second pass that were not identified 

on the first. 

In a second experiment, Condor is presented with a sequence of up to eight images 

that might be obtained from a vehicle on a cross-country traverse. By incrementally 

updating the world model, Condor recognizes some features in the sequence that it 

was unable to recognize in the images individually. 

Other experiments have been performed using imagery widely separated in time 

and in viewing direction. Numerous tests show that the prior context is responsible 

for recognition of new features (using newly satisfied context sets with more focused 

procedures); or makes recognition faster (fewer cliques need to be constructed). In 

some cases, recognition was slower because additional procedures were applied that 

happened to be of no help. There has not yet been a case in which the additional 

context prevented recognition of a feature. 

The experiments conducted led to the following conclusions: 

• The Condor architecture can reliably recognize natural features in images from 

the environment for which its knowledge base was constructed. 

• The contextual information stored in the world model is essential for the recog- 

nition of some features. 

• The system can learn to recognize objects in a limited geographic area by storing 

partial recognition results and using them as contextual information. 
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2.6     Conclusions 

An autonomous vehicle that is to operate intelligently in a nontailored environment 

must have the ability to recognize the objects it encounters. Navigation, task execu- 

tion, and planning all require a semantic understanding of the environment that is 

not available in a geometric representation, no matter how precise. Visual recognition 

is indispensable for an autonomous system, but no existing approaches are competent 

to provide recognition in complex domains. 

We have identified four fundamental obstacles that have hindered efforts to con- 

struct a viable system for visual recognition in the natural world: 

• Geometric models alone are insufficient for recognizing objects in complex do- 

mains. 

• Image partitioning, as traditionally defined, is not able to accomplish its in- 

tended purpose — a universal decomposition of an image into semantically 

meaningful regions. 

• Contextual information cannot be represented or exploited effectively in con- 

ventional scene-understanding systems. 

• Exhaustive search is not feasible in complex domains, but conventional vision 

systems have no mechanisms for avoiding exponential growth in search time as 

the recognition vocabulary increases. 

Several ideas are described that offer partial solutions to these problems. 

The use of a multiplicity of simple techniques in constrained contexts produces 

recognition tactics that can take advantage of appearance, setting, and purpose, as 

well as shape. Context sets are used to represent those conditions that should be 

satisfied for a particular operation to be meaningful. Thus, there is no need to rely 

on shape as the primary recognition cue, and the use of contextual information is 

embedded uniformly into every level of the system. 

In a departure from the usual practice of complete image partitioning, there is 

no need to segment an image before interpreting it. Instead, a layered partition is 

produced as a result of image interpretation. 
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The insistence on global coherence among all candidates in a clique is the key 

to achieving reliable recognition, even when the individual operations are fallible. 

Construction of partial orderings before nominating candidates to a clique reduces 

the combinatorics that otherwise would inhibit consistency checking. Together, these 

ideas allow robust recognition in a computationally feasible paradigm. 

In this chapter a number of ideas have been expressed that can serve as ingredients 

of a realistic system for natural object recognition. In succeeding chapters, these 

ingredients are molded together into a complete strategy designed to achieve robust 

recognition in complex domains by exploiting contextual information. 



Chapter 3 

A VISION SYSTEM FOR 

OFF-ROAD NAVIGATION 

Rather than study natural object recognition in the abstract, we have chosen to 

focus our research on the visual requirements of a particular task. Evaluation of 

the merits of any approach or theory can be carried out only within the scope of an 

intended purpose. Natural object recognition is too broad and ill-defined to serve as a 

useful goal for machine vision unless a task is chosen that allows the accomplishments 

of various approaches to be measured. Further, in defining the task we constrain 

the breadth of capabilities that must be developed before a practical contribution is 

attained and we establish a concrete foundation that can be referred to when design 

decisions are to be made. 

3.1     Task scenario 

An autonomous ground vehicle is to operate in a natural outdoor environment of 

limited geographic extent. Its ultimate task may be anything from cattle herding to 

military surveillance, but our primary concern will be to endow it with the ability to 

recognize features useful for navigation. 

Such a vehicle cannot rely entirely upon a range sensor for obstacle avoidance if 

it is to navigate intelligently. Simply avoiding every obstruction detected by a range 

43 
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sensor is wasteful — why go around a small bush when the vehicle may proceed safely 

over it? Worse, this avoidance strategy may force the vehicle to conclude that there 

is no safe path from its present location to its goal when in fact there may be many. 

An intelligent vehicle must have the ability to discriminate between a bush and a 

rock, between a tall weed and a rigid pipe, between a pile of leaves and a tree stump. 

Additionally, the range sensor will fail to detect some features that pose true obstacles 

to the vehicle. To a rangefinder, an impassable muddy road appears the same as a 

dry one, a marsh and a grassy field may be indistinguishable, and a lake may look 

like a parking lot. It is probably not wise to risk the well-being of an autonomous 

vehicle without reducing these hazards. 

Recognizing some of these obstacles through tactile sensing may be possible but 

could impose significant demands on the vehicle in terms of weight, power, maximum 

safe speed, and modes of operation. Visual recognition of these and other obstacles 

seems more desirable and may be feasible based on the results presented in this thesis. 

When the vehicle is first introduced into an area, it will have little or no under- 

standing of the geographic arrangement or appearance of the features it will encounter. 

Before being released to carry out its intended mission, the vehicle will undergo an 

exploration of the environment. During the initial exploration, the vehicle will collect 

and analyze imagery, storing the results in a geographic database. There is no need 

for this to occur in reai time — it may even be desirable for the vehicle to interpret 

its imagery overnight. The goal is to store sufficient information about each object 

so that it or a similar object will be recognized when seen again. 

After the exploration phase has been conducted, the vehicle will begin its mission- 

oriented work. The information gleaned from its prior experience should enable it 

to reliably identify the natural features it encounters. Ideally, this will allow the 

vehicle to operate safely and to plan its actions intelligently based on knowledge of 

its environment. 
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3.2    Prior knowledge 

A vehicle operating within the scenario just described has the possibility of making use 

of a substantial collection of information that could help it perform object recognition. 

Whereas early attempts at natural scene recognition were conducted in the absence 

of such a context, our approach is explicitly designed to make maximum use of any 

information that might be available to a vision system employed on a real vehicle. 

Doing so is one of the factors that has made it possible to solve what might otherwise 

be an intractable problem. 

A vehicle-mounted vision system has access to information that is inherent in the 

scenario as well as that provided by on-board sensors. This information includes both 

image-specific and scene-specific knowledge. The following pieces of information are 

presumed to be available to an autonomous vehicle and are used by Condor when 

interpreting an image: 

• Camera position — The position of the vehicle can be provided by some com- 

bination of an inertial navigation system (INS), dead reckoning, a Global Po- 

sitioning System (GPS), and landmark recognition. GPS alone can locate a 

moving vehicle within 5 meters in real time. Better accuracy can be achieved 

by combining several positioning techniques, although it is unrealistic to expect 

arbitrary precision. The camera is assumed to be rigidly mounted to the vehicle; 

therefore, its position in the world is known given the position and orientation 

of the vehicle. 

• Camera orientation — The orientation of the vehicle is provided in three degrees 

of freedom by INS or other sensors. The orientation of the camera relative to 

the vehicle is either fixed or measured by internal sensors. 

• Focal length — The focal length of the camera is assumed to be fixed and 

therefore known. 

• Principal point — The principal point is calibrated before employment of the 

vehicle. The vision system is informed if the images it is presented with have 

been cropped or scaled. 
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• Geometric horizon — The geometric horizon is the line in the image where the 

skyline would appear if the world were flat and level. The geometric horizon 

constrains the scene (for example, the true skyline cannot be below it), and is 

easily computed from knowledge of the camera orientation. 

• Time and date — The sun's position (and the moon's position and phase) can 

be computed from knowledge of the vehicle's position, the date, and the time. 

These objects, if visible in an image, can be recognized by verification. The sun 

position can be used for shadow prediction. 

Because the vehicle is operating in a limited geographic area, there is a perma- 

nence to many of the features it will encounter. How to represent and exploit this 

information for object recognition has been one of our primary research issues. We 

find it reasonable to provide Condor with the following information about the region: 

• Generic knowledge — Just as a rabbit "knows," for example, that trees have 

branches, the vehicle should have access to this type of knowledge as well. Some 

such knowledge may be only locally generic, such as the fact that there are oak 

trees in the area of operation. 

• Topography — Digital terrain elevation data (DTED) are available from the 

United States Geological Survey and from the Defense Mapping Agency. The 

resolution is coarse by ground vehicle standards (30 meter grid), but is of some 

use in scene interpretation. Additional elevation data can be obtained from 

aerial imagery by stereopsis [Barnard and Fischler 1982] for regions and resolu- 

tions not otherwise available. 

• Map data — High-resolution maps exist for nearly every region on earth. This 

information can be provided in a geographic database (digitized manually if 

necessary). The resolution will not be sufficient for navigation, but the data 

should be useful for ground-level image interpretation. 

Some other pieces of knowledge may be sufficiently static that one could provide 

them to the vehicle on a periodic basis (during vehicle maintenance, for example): 
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• Weather — The cloud conditions and precipitation can have a large effect on im- 

age appearance. Periodically providing weather updates (or predictions) should 

be useful for image interpretation. 

• Appearance of distant objects — A faraway object, such as a mountain range, 

has a constant appearance when viewed from anywhere within a sufficiently 

small area. Manual identification of a mountain range should enable a vision 

system to recognize it when seen again later. 

Access to prior information is potentially valuable, but actually worthless without 

a means to exploit it. The ability to make use of prior knowledge using context sets is 

one of the primary attributes separating Condor from other research aimed at natural 

object recognition. 

3.3    The role of geometry 

Although our approach, in contrast to most approaches to object recognition, does 

not rely on geometric models of the objects of interest, 3D geometry clearly plays an 

important role in image interpretation. 

3.3.1    Sources and limitations of range data 

Although humans have little trouble perceiving 3D structure in images of uncon- 

trived scenes, computational vision systems lack the human ability to use semantic 

knowledge to recover geometry. Autonomous vehicles are likely to be equipped with 

laser rangeflnders or stereo cameras to recover depth information, although even these 

forms of direct sensing have severe limitations. Table 3.1 shows the range resolution 

attainable by the latest ERIM laser rangefinder, by a typical binocular stereo setup 

for a ground vehicle application,1 and by the human visual system in the absence 

of semantic cues.  In all three cases, the error associated with depth measurements 

^he binocular stereo computation assumes a 60-degree field of view, a 512 x 512 pixel image, 
and a baseline of 2 meters. 
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Table 3.1: Accuracy of several range-finding systems. 

Sour ce 
Human vision 

Binocular stereo 
ERIM laser scanner 

10 meters 
Range 

30 meters 100 meters 
0.20 m 
0.10 m 
0.12 m 

1.5 m 
0.7 m 
0.9 m 

25 m 
10 m 

4 m 

increases with the square of the distance; clearly, one cannot rely upon 3D shape as 

the primary basis for recognition of anything but nearby objects. 

Our context-based approach is designed to make use of range data when they 

are available, and to proceed without them otherwise. Performance and competence 

are degraded in the absence of range data, but substantial recognition abilities are 

retained. 

Our current implementation of Condor, which is concerned with identifying macro- 

scopic features such as trees, bushes, and rocks, makes quantitative use of range data 

only for objects within 10 meters of the vehicle. Range data out to 100 meters are 

used qualitatively (e.g. for rough estimates of the size of a tree or its placement in 

the world). Beyond 100 meters, the range data are ignored as being too unreliable 

for productive use. It is interesting to note that human stereoscopic capabilities are 

no better than current electronic sensors — people rely on a host of other cues for 

acquiring a 3D model of a scene [Cavanagh 1987]. Human binocular stereovision has 

limited use beyond arm's length. 

When considering objects beyond 10 meters, or when range data are not available, 

Condor makes use of other cues for constraining the 3D interpretation of a scene: 

• Size constraints — Once an object has been recognized (as a tree, for example), 

the natural limits on its size can be used to bound its distance from the camera. 

For example, if a tree region that subtends 20 degrees in the field of view were 

more than 300 meters away, it would have to be over 100 meters tall. 

• Height in image — The natural world consists mainly of a support surface pop- 

ulated with raised objects. Except in the case of overhanging objects (such as 

branches), points higher in any image column are farther from the camera. This 
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rule can be used to constrain the 3D placement of objects, after overhanging 

objects, which typically occur only in the foreground, have been identified. 

• Ridge lines — When looking at hilly terrain, one finds that the ground recedes 

continuously except at ridge lines. Detecting these discontinuities provides in- 

formation for ordering the depth of objects that appear on the ground. 

• Striations — When viewing a natural scene at the highly oblique angles typical 

of a ground-based vehicle, one sees that the ground tends to appear horizon- 

tally striated because of the foreshortening of texture along the view direction. 

Our experiments reveal this to be true, even when tall grass is present. This 

phenomenon is extremely useful for detecting horizontal surfaces. 

• Prior knowledge — Although the absolute distance to an object cannot be pre- 

cisely determined even at moderate ranges, it is often possible to determine 

whether one object is nearer or farther than another. If the position of a refer- 

ence object is known (stored in the geographic database), the possible location 

of an unknown object is constrained. 

Other cues to depth recovery are available, but have not been used in our research. 

Some cues worthy of additional consideration are optic flow; shape-from-shading and 

shape-from-texture (both of which might be feasible within the constrained contexts 

identified by Condor); occlusion boundaries identified by T-junctions that permit a 

depth ordering between two surfaces; the texture gradient that occurs as a surface 

fades off into the distance; and the bluing and whitening effects of the atmosphere on 

distant terrain. 

3.3.2    Using three-dimensional geometric information 

Recovering the 3D layout of a scene is important not only for mission-related tasks 

such as navigation, but also for image interpretation. Constraints imposed by the 3D 

world can be used to detect inconsistent recognition hypotheses that could not be 

detected by 2D reasoning. Condor attempts to recover 3D information about a scene 

that is of value in image understanding. 
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We make no attempt to recover the precise shapes of the ground or objects in 

a scene. Geometric reconstruction has received considerable attention in the past 

decade and has produced some impressive results in special circumstances (for exam- 

ple [Barnard and Fischler 1982, Pentland 1986a, Baker and Bolles 1988, Horn 1989]). 

Our approach has been designed to make use of these results, but not to rely on them 

and not to attempt to duplicate them. Instead, the 3D geometric information that is 

recovered is used to predict the image location of an object and to establish geometric 

constraints such as existence of a support surface and proper balance. 

The geometric container is subdivided into two parts reflecting the absolute and 

relative nature of geometric information. Relative geometry amounts to the relative 

depth relations among objects in an image, and is viewpoint-dependent. It is instan- 

tiated during image interpretation by the various cues listed in Section 3.3.1 and is 

expressed as a layered partition, in which each layer is more distant than some of the 

previous layers. These distance relations among image regions can be expressed as a 

depth lattice, by explicitly linking those objects whose depth ordering is known. 

Absolute geometry involves those objects whose distance from the camera is known 

with some precision. Because we assume that we always know the location and ori- 

entation of the camera with reasonable accuracy, we can compute the world location 

of these objects. We choose to store absolute geometric information in a world co- 

ordinate system for convenience. The Core Knowledge Structure (CKS) is used as 

a geographic database both for objects whose locations are known a priori, as well 

as for objects whose locations are hypothesized during image interpretation. The 

multiple-resolution facilities of the CKS allow these locations to be specified with 

appropriate accuracy bounds [Smith and Strat 1986, Strat and Smith 1987a]. 

Upon completion of the analysis of an image, the absolute geometric information 

is posted in the geographic database to become available for interpreting subsequent 

images. The relative geometric information is used to place objects in the CKS in 

sizable uncertainty regions. For those objects whose uncertainty regions are too large, 

the information is not stored in the CKS and the relative geometry is lost. 
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3.4    A vocabulary for recognition 

Object recognition involves the assignment of labels to image features. The set ol 

labels constitutes a vocabulary for describing a scene. Before one can consider strate- 

gies for recognizing objects one must decide on the classes of objects that are to be 

instantiated. 

Unlike previous approaches, we differentiate between the target vocabulary and 

the recognition vocabulary. The target vocabulary is the set of labels that one is 

ultimately interested in recognizing from imagery. The recognition vocabulary contains 

the target vocabulary plus those additional terms that may be of use in recognizing 

instances of the target vocabulary. 

Human psychologists differentiate between primal or basic-level terms and non- 

primal or subordinate terms [Biederman 1988]. Basic-level terms denote those classes 

of objects whose presence in an image can be decided without deduction, presumably 

from features directly extracted from the image. Recognition of subordinate terms 

first requires recognition of one or more basic-level categories from which the presence 

of the subordinate term is determined. Subordinate categories are not instantiated 

directly from image features — for example, banana is a basic-level term while fruit, 

a subordinate category, is not. 

3.4.1     Target vocabulary 

The target vocabulary is dictated by the task that the vision system is to perform. 

We have been concerned with navigation in the natural outdoor world. Accordingly, 

the appropriate target vocabulary includes terms such as bush, rock, ditch, grass, 

tree, cliff, stream, log, stump, sand, and so on. It would not be appropriate to 

include shadow, since shadow detection is not immediately useful for navigation. It 

may not be useful to include both oak tree and laurel tree, because the difference is 

probably not pertinent for the navigation task. Similarly, the scale of the task makes 

it unnecessary to include spider or paramecium. 

The words included in the vocabulary are used only as labels for particular classes 

of objects.   Many English words have multiple meanings — e.g., rock can denote 
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either a single object or a type of matter. We are not concerned with linguistic 

disambiguation because the labels are chosen to name particular categories. Each 

vocabulary word is intended to denote a single category, and pseudo-words are coined 

when appropriate English words do not exist. We use a special font (as in tree) to 

distinguish vocabulary words from their English counterparts. 

3.4.2    Recognition vocabulary 

Although tree is a member of the target vocabulary, it is probably not possible to 

detect a tree in an image directly. Rather, the presence of a tree is deduced from 

the recognition of a tree trunk and a tree crown in the proper spatial relationship. 

Tree-crown and tree-trunk, therefore, are included in the recognition vocabulary. Other 

classes, such as horizon, skyline, and sky, are of great value in interpreting ground-level 

natural scenes and are included as terms in the recognition vocabulary. Other terms 

are added as experience dictates. A semantic net showing a recognition vocabulary 

for the navigation task and the class containment hierarchy among those terms is 

depicted in Figure 3.1. 

The terms that occur in the recognition vocabulary span a range of spatial scales 

and semantic abstraction levels. These two axes define a space of spatial and seman- 

tic resolution that provides insight into the roles that individual terms play. Several 

example terms from a recognition vocabulary are plotted in this resolution space in 

Figure 3.2. The abscissa shows increasing semantic precision from very generic phys- 

ical and geometric properties to rather specific semantically meaningful categories. 

The ordinate shows increasing spatial scale, from individual voxels, through finite 

volumes of increasing size, to an entire scene. While the target vocabulary consists 

primarily of terms near the right edge of the diagram, image interpretation involves 

instantiating image features at the full range of spatial and semantic scales. 



CHAPTER 3.   A VISION SYSTEM FOR OFF-ROAD NAVIGATION 53 

OBJECT 

/ 

FOREST 

TREE CROWN 
SEMI-TRANSPARENT 

STRUCTURE 
FOLIAGE s BUSH 

BRANCHES 

RAISED 

OBJECT 

THIN RAISED 

OBJECT 
TREE TRUNK 

/                   \ ROCK 

BLOB 

TREE 

CARPET 

CARPET ON 

RAISED OBJECT 

GROUND 

CARPET ON 

GROUND 

SKY 

COMPLETE GROUND 

COMPLETE SKY 

SKYLINE 

GEOMETRIC HORIZON 

MOSS 

BARK 

STONES 

SAND 

LEAF CLUTTER 

GRASS 

TRAIL 

DIRT ROAD 

•t-110890-jd 

Figure 3.1: Abstraction hierarchy of terms in the recognition vocabulary. 
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Figure 3.2: Axes of spatial and semantic resolution. 
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3.5     Contextual information 

We have already observed that contextual information is of great potential value for 

visual recognition of objects, particularly in natural scenes. The difficulty lies in 

devising an effective mechanism for exploiting context. Our solution to this problem 

is presented in Chapter 4, where we describe a computational architecture that has 

been constructed for the express purpose of bringing contextual information to bear 

at all levels of the visual recognition task. 

The scale of contextual information is an important issue. A completely labeled 

scene is a form of context, but one that is impractical to provide. A tradeoff exists 

between the resolution of contextual information and its utility for recognition. A 

very specific context facilitates visual recognition, but will seldom be applicable (and 

therefore would be costly to provide in sufficient numbers). A generic context can be 

used often, but is less powerful in its constraints for recognition routines. Finding 

the middle ground — the proper balance between specificity of context, utility for 

recognition, and frequency of occurrence — is the key to constructing suitable context 

sets for visual routines. 

3.5.1     Types of context 

Before discussing how context is to be used, it is important to assess what contextual 

information is available. In our case, this is dictated in part by the autonomous 

ground-vehicle scenario. Rather than attempt to define what we mean by context, 

we enumerate four broad categories of information that should impart the range of 

information that we wish to include in our concept of context: 

• Photogrammetric context — information surrounding the acquisition of the im- 

age under study. This includes both internal camera parameters (e.g., focal 

length, principal point, field of view, color of filter) as well as external param- 

eters (camera location and orientation). We also include the date and time of 

image acquistion as well as the images themselves. 
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• Physical context — information about the visual world that is independent of 

any particular set of image acquisition conditions. Physical context encompasses 

a range of specificity from the very precise "There is a tree at (342, 124)," to 

the more generic "This area contains a mixed, deciduous forest." Physical 

context may also include information about the appearance of scene features 

in previously interpreted imagery and dynamic information, such as weather 

conditions and seasonal variations. 

• Hypothetical context — information about an image that is hypothesized dur- 

ing computation. Hypothetical context includes tentative conclusions such as 

"Region 943 is a bush" or "The skyline is not visible in this image." This per- 

mits hypothetical reasoning using partial results. X)nce an image is completely 

analyzed, any surviving hypotheses are stored in the geographic database and 

become physical context for use during the analysis of subsequent images. 

• Computational context — information about the internal state of processing. 

The computational context can be used to control the processing sequence based 

on partial recognition results. Different strategies can be used when first initi- 

ating the analysis of an image versus filling in the details of a largely completed 

analysis. 

These four categories of contextual information have been instantiated and have 

proved beneficial for natural object recognition. All contextual information is refer- 

enced uniformly using context sets; the subdivision of context into categories provides 

an organizing principle that is useful during the engineering of context sets. 

3.5.2    Using context 

The value of explicitly representing and using context lies in the relative ease with 

which many features can be recognized in constrained contexts. The ultimate question 

of what elements of context to encode is determined by the task undertaken by the 

system and its associated recognition requirements. 
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In Condor, operations that can benefit from knowledge of context are the gen- 

eration of candidate labeled-region hypotheses, evaluation of those hypotheses, and 

tests for mutual consistency. For instance, in the context of an image acquired from a 

horizontally aimed camera on a clear day, finding bright blue regions is a good way to 

generate candidates for sky. In the context of a foliage candidate silhouetted against 

the sky, strong texture is one reasonable evaluation metric. In the context of the 

hypothetical determination that the lower half of an image is clear ground, it would 

be inconsistent to label an overlapping region as tree-trunk. 

The strategy that Condor employs is to determine as much contextual information 

as is likely to be useful for recognition. Some context is known in advance, by virtue 

of the fact that the visual system is situated in the world (as discussed in Section 3.2). 

Other elements of context are recognized through image analysis. Condor's behavior 

is to bootstrap its recognition abilities by first recognizing features that are easily 

distinguished, then using that information as context to constrain the recognition of 

more difficult features. 



Chapter 4 

CONTEXT-BASED VISION 

This chapter provides details of our context-driven approach to machine vision. It 

describes the Condor architecture, gives details of the algorithms embedded within 

it, and provides an example of its application to natural object recognition. 

4.1     Conceptual Architecture 

Condor has been designed to perform robust recognition in complex visual domains, 

such as ground-level scenes of the natural outdoor world. Its fundamental structure 

can be characterized as following the generate-evaluate-test paradigm found in many 

AI systems, although its use of context within that paradigm is unique. 

4.1.1     Overview 

In describing the architecture of the system, we differentiate between the conceptual 

architecture and the implementation of Condor. The conceptual architecture involves 

many parallel asynchronous operations that access a collection of shared knowledge. It 

has been inspired in part by psychophysical investigations of biological vision systems 

and is designed to have the potential to achieve equivalent recognition abilities. Many 

of its features have been included to assure highly reliable recognition without undue 

concern for efficient execution. 

58 
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Figure 4.1: Conceptual architecture of Condor. 

The architecture as actually implemented is necessarily concerned with compu- 

tational efficiency. The architecture has been serialized to run on a conventional 

uniprocessor. Although Condor has demonstrated significant recognition abilities us- 

ing a variety of ground-level imagery, the knowledge base certainly is not as complete 

as would be needed for the interpretation of arbitrary images from the domain. 

The conceptual architecture of Condor is depicted in Figure 4.1. The input to 

the system is an image or set of images that may include intensity, range, color, or 

other data modalities. The primary output of the system is a labeled 3D model of the 

scene. The labels included in the output description denote object classes (defined 

below) that the system has been tasked to recognize, plus others from the recognition 
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vocabulary that happen to be found useful during the recognition process. 

Definition 1: A class, denoted by L, is a category of scene features where L is one 

of the terms in the recognition vocabulary. That is, 

L € RECOGNITION-VOCABULARY. 

Example: 

L € {sky, ground, geometric-horizon, foliage, bush, tree-trunk, tree-crown, trail, ... } 

A central component of the architecture is a special-purpose knowledge 

base/database used for storing and providing access to knowledge about the vi- 

sual world, as well as tentative conclusions derived during operation of the sys- 

tem. In Condor, these capabilities are provided by the Core Knowledge Structure 

[Smith and Strat 1986, Strat and Smith 1987a]. 

The conceptual architecture is much like that of a blackboard system; many com- 

putational processes interact through a shared data structure. Interpretation of an 

image involves four process types: 

• Candidate generation 

• Candidate comparison 

• Clique formation 

• Clique selection 

Each process acts like a daemon, watching over the knowledge base and invoking itself 

when its contextual requirements are satisfied. All processing occurs asynchronously 

and each process is assumed to have access to sufficient computational resources. All 

processes have access to the entire knowledge base, but each type of process will store 

only the kind of information shown in the diagram (Figure 4.1). 
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4.1.2     Context sets 

The invocation of all processing elements throughout the system is governed by con- 

text. Rather than hard-wire the control structure and control decisions to be made, 

the architecture is driven by context. All processing actions are controlled by context 

sets, and are invoked only when their context sets are satisfied. Thus, the actual 

sequence of computations (and the labeling decisions that are made) are dictated by 

contextual information, which is represented by the data stored in the Core Knowl- 

edge Structure, by the computational state of the system, and by the image data 

available for interpretation. Contextual information is referenced by the context sets, 

each of which is composed of some number of context elements, defined here. 

Definition 2: A context element, CEi, is a predicate involving any number of terms 

that refer to the photogrammetric, physical, hypothetical or computational con- 

text of image analysis. 

Example: Some of the context elements employed by Condor are: 

SKY-IS-CLEAR, CAMERA-IS-HORIZONTAL, LAST-CANDIDATE-IS(FOLIAGE) . 

Definition 3: A context element CEi is satisfied if and only if the known context is 

sufficient to establish the truth of the predicate. 

Often it will not be possible to establish whether a context element is true or false, 

in which case the context element is considered to be unsatisfied. 

Visual interpretation knowledge is encoded in context sets, which serve as the 

uniform knowledge representation scheme used throughout the system. 

Definition 4: A context set, CSk, is a collection of context elements that are suffi- 

cient for inferring some relation or carrying out some operation on an image. 

Syntactically, a context set is embedded in a context rule denoted by 

L:{CEuCE2,---,CEn}=> A 

where L is the name of the class associated with the context set, A is an action to be 

performed, and the CEi comprise a set of conditions that define a context. 
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Example: The context set 

{SKY-IS-CLEAR, CAMERA-IS-HORIZONTAL, RGB-IS-AVAILABLE} 

defines a set of conditions under which it is appropriate to use the operator 

BLUE-REGIONS to delineate candidate sky hypotheses. 

There is a collection of context rules for every class in the recognition vocabulary. 

In theory, Condor performs the actions A that are associated with every satisfied 

context set. 

Definition 5: A context set CSk is satisfied if and only if all of its context elements 

CE{ are satisfied. 

Context sets are employed in three varieties of rules: 

• Type I — Candidate generation 

• Type II — Candidate evaluation 

• Type III — Consistency determination 

Context rules of each type are constructed for each class in the recognition vocabu- 

lary. The most difficult part of building any AI system is encoding the knowledge that 

drives the system. Constructing context sets in Condor is tantamount to knowledge- 

base construction and remains a critical task requiring a solid understanding of the 

limitations and applicability conditions of potential image-understanding routines. 

Condor has been designed with this in mind, and offers several features that facilitate 

this process. 

First, the construction task is eased somewhat by the separation of the knowl- 

edge base according to classes. Therefore, when the designer is constructing context 

rules for class L, the only other classes that must be considered are those that are 

immediately relevant for recognizing instances of class L. 

Second, context sets need only define sufficient conditions for applying the associ- 

ated operation — they need not attempt to define the full boundary of applicability. 
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Thus, the designer can be quite conservative when constructing context sets, encoding 

only knowledge that is clearly relevant and ignoring knowledge that may be dubious. 

Third, although it is desirable that the context sets and their associated operations 

be as infallible as possible, they need not be perfect. The entire architecture of 

Condor has been designed to achieve reliable recognition results, even in the presence 

of unreliable operators, imperfect evaluators, and faulty decision-makers. This is 

achieved primarily through the use of large numbers of redundant operations in every 

stage of processing, so that a single mistake is unlikely to affect the final interpretation. 

Finally, we have proposed a mechanism whereby context sets can be modified 

automatically, using the experiences of the system to refine the knowledge base in- 

crementally. The collection of context sets can be allowed to evolve, with or without 

human intervention. Some form of learning is essential if a large system with a broad 

range of competence is to be constructed — our plans in this endeavor are described 

in Section 4.4. 

4.1.3    Candidate generation 

The customary approach to recognition in machine vision is to design an analysis 

technique that is competent in as many contexts as possible. In contrast to this 

tendency toward large, monolithic procedures, the strategy embodied in Condor is 

to make use of a large number of relatively simple procedures. Each procedure is 

competent only in some restricted context; collectively, however, these procedures 

offer the potential to recognize a feature in a wide range of contexts. The key to 

making this strategy work is to use contextual information to predict which procedures 

are likely to yield desirable results, and which are not. 

While it may be extremely difficult to write a recognition procedure that is com- 

petent across many different contexts, it is often quite easy to devise a procedure that 

works well in some specific context. For example, finding foliage that is silhouetted 

against the sky is far simpler than finding foliage in general. Similarly, finding foliage 

in an environment where only a single species of tree occurs is easier than finding 

foliage associated with trees of many kinds. Assembling a collection of such context- 

specific procedures made it possible to recognize foliage in many different situations 
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under a wide variety of conditions. 

A collection of recognition procedures is associated with each class in the recog- 

nition vocabulary. Of course, no procedure, not even one applied in very restricted 

contexts, will be sufficiently reliable that its results can be accepted with confidence. 

Accordingly, the output of each procedure is treated as a candidate hypothesis. 

Definition 6: A candidate is any image feature that is potentially an instance of 

some specified class L. Every candidate is associated with some class. 

In most of our examples, a candidate is initially associated with an image region, 

but in general, a candidate is a hypothesis that asserts the presence of some object 

in the 3D scene depicted in the image being analyzed. 

A large portion of the Condor architecture is devoted to sorting out the better 

candidate hypotheses from the poorer ones. Figure 4.2 shows the generation and 

subsequent processing of candidates throughout the system. The invocation of recog- 

nition procedures is governed by Type I context sets. 

Definition 7: Type I Context Rule — Candidate Generation: 

L : {CE1,CE2,--- ,CEn} => A 

If all context elements CEi are satisfied, then A should be employed as an 

operator that will generate candidate hypotheses for instances of class L. 

Example: The operator BLUE-REGIONS can be used to find sky candidates only 

when the camera is approximately horizontal, the sky is not cloudy, and color 

imagery is available: 

SKY : {SKY-IS-CLEAR,CAMERA-IS-HORIZONTAL,RGB-IS-AVAILABLE} 

=* BLUE-REGIONS . 

The context elements in a candidate generator context set encode the assump- 

tions that were made when operator A was written. This formalism ensures that 

each operator will be employed only in circumstances in which it can reasonably be 

expected to succeed. The context set not only identifies an applicable procedure, but 
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also supplies the information to establish intelligently the inevitable assumptions and 

parameters (such as a threshold or a window size) associated with that operator. 

Obviously, context sets can be very specific, very generic, or anywhere in between. 

It is intended that candidate generator context sets be provided that span this range. 

One encodes highly specific context sets for operators that work well only in very 

special circumstances, presumably a context that has some special significance to 

the larger goals of the embedded system. Generic operators that provide reasonable 

performance over a broad range of contexts are employed when the more competent 

specialized procedures are not applicable. Generally, the more candidate generator 

context sets that are provided, the more operators that will be applicable in any given 

context. Ideally, multiple operators will always be invoked so that the system need 

never rely on a single routine. 

It should be clear that it is possible to make use of large, carefully constructed 

procedures when they exist. Thus, if one has already expended a great deal of effort 

tuning a large, monolithic recognition procedure, it can be incorporated into Condor 

alongside any other operators that might also exist. 

The interaction of context sets across classes is of interest. The context elements 

in one context set may refer to the existence of other labeled entities. For example, a 

tree-trunk candidate-generation routine may require knowledge of the ground location 

as part of its context. Whenever a need for recognition of other classes is detected, 

Condor adds that class to its list of labels that are actively being recognized. In this 

way, when Condor is tasked to recognize a specific class from its target vocabulary, 

it will automatically seek to instantiate other relevant classes from its recognition 

vocabulary. 

4.1.4    Clique formation 

The result of the candidate generation process is a collection of candidates for each 

label in the active recognition vocabulary. Because the operators cannot be expected 

to be sufficiently robust, extra steps must be taken to find those candidates that truly 

are instances of their associated classes. 
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To obtain this increase in reliability, we make use of the Principle of Global Co- 

herence (Section 2.4.2). Candidates that are not consistent with a partial image in- 

terpretation cannot be part of the final interpretation. The goal is to find a mutually 

consistent set of candidates that explains as much of the image as possible. 

Definition 8: A clique is a set of mutually consistent candidate hypotheses. 

Each clique represents a possible interpretation of the image. Condor builds a 

number of cliques and chooses the "best" one as its final interpretation. Naturally, it 

would be computationally infeasible to generate all possible cliques; instead, cliques 

are generated in a special order (described in Section 4.1.5) to increase the likelihood 

that a good interpretation will be found early. Thus, the longer that Condor analyzes 

an image, the better its interpretation is likely to be, although the chance of improving 

the interpretation diminishes rapidly with time. 

Inconsistency is determined by special-purpose procedures whose application is 

mediated by Type III context rules (see also Figure 4.2). 

Definition 9: Type III Context Rule - Consistency Determination: 

L : {CEi,CE2,- • • ,CEn} =* A 

If all context elements CE{ are satisfied, then procedure A will determine if it 

is possible for a candidate to be an instance of class L. 

Example: A candidate for ground cannot extend above the skyline: 

GROUND : {CUQUE-CONTAINS(skyline)} =* PARTIALLY-ABOVE-SKYLINE. 

As was the case with candidate generation, the routines for inconsistency deter- 

mination are associated with context sets that encode the assumptions necessary for 

their successful application. Each operator tests a candidate for consistency with all 

the incumbents already present in a clique. If any satisfied Type III context rule 

finds a candidate to be inconsistent, that candidate is not admitted into the clique, 
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although it may participate in other cliques. Thus, consistency-determination context 

sets provide necessary (but not sufficient) conditions for clique inclusion. 

A clique contains a collection of candidates annotated with inferred 3D properties 

and relations. The inconsistency operators encode geometric and physical relation- 

ships that must be consistent with known facts about the environment and the various 

semantic classes. The operators may involve either 2D image-plane computations or 

such 3D constraints as size, support, orientation, and occupancy of solid objects. The 

2D constraints are useful for rapidly eliminating some candidates when they are easily 

seen to be inconsistent, or when sufficient 3D information cannot be established to 

allow more sophisticated spatial reasoning procedures to be applied. The consistency- 

determination context sets include context elements that specify what 3D information 

must be known. Their use causes an attempt to infer that information if it is not 

already known. 

The net effect of applying Type III context rules is that consistency is checked by 

constructing a 3D model according to a set of conditions that prevent a nonphysically 

realizable situation from occurring. 

4.1.5    Candidate comparison 

The search for the largest coherent set of candidates can be combinatorially infeasible 

without further constraint — the number of potential cliques is exponential in the 

number of candidates. For this reason, cliques are generated in a special order. 

At any point during the processing of an image, there will be a collection of 

candidates for each label to be instantiated. Some of these candidates are obviously 

better examples of the class denoted by the label than are others. By building cliques 

beginning with the best candidates of each class, we are much more likely to encounter 

good cliques early in the search (typically several within the first half-dozen cliques). 

Condor uses this best-first strategy to avoid the combinatorics that would otherwise 

prevent recognition. 

The task here is to order the candidates within each class so the better ones may 

be added to cliques before the others. The difficulty is choosing a suitable metric to 

use for ordering. For most classes of interest in the outdoor world, no single evaluation 
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metric gives a reliable ordering. It is possible to use multiple metrics that evaluate 

the candidates along various dimensions, but that would still leave the problem of 

comparing multidimensional evaluation vectors. To justify a weighted sum of the 

vector components, it would be necessary to make the unlikely assumption of some 

form of independence. A similar independence assumption would be required if the 

evaluation measures were to be given a probabilistic interpretation and combined 

using probability theory. 

The solution we have adopted is to make use of multiple evaluators, but not to 

assume that they are independent in any way. Instead, they are used to compare two 

candidates for a given label, with each evaluator casting a vote for the candidate it 

ranks higher. If all evaluators favor one candidate over another, a preference ordering 

of the candidates is established. Otherwise, no ordering is imposed. The net effect of 

pairwise comparison of all candidates for a given label is to impose a partial order on 

those candidates. The candidates at the tops of the partial orders will be tested for 

consistency with the cliques before those below them. 

Definition 10: An evaluator is a function that scores the relative likelihood that a 

candidate for class L is actually an instance of L. 

The evaluators that apply in any context are described by candidate evaluation 

context sets. 

Definition 11: Type II Context Rule - Candidate Evaluation: 

L:{CE1,CE2,---,CEn}=> A 

If all context elements CEi are satisfied, then A can be used as an evaluation 

function for comparing two candidates for the class L. 

Example: When viewed obliquely, the ground should exhibit a horizontally stri- 

ated texture. HORIZONTALLY-STRIATED is a function that measures this property 

within a candidate region: 

GROUND : {CAMERA-IS-HORIZONTAL} =► HORIZONTALLY-STRIATED. 
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As before, the context sets allow the relevant knowledge to be subdivided into 

manageable pieces. The context elements encode the conditions under which a rela- 

tively simple-minded evaluation function gives meaningful information. It is intended 

that many evaluation functions be provided within context sets, so that robust com- 

parisons result whenever a unanimous vote occurs. 

Definition 12: Candidate d is preferred over candidate C2 if and only if all evalu- 

ators occurring in satisfied context sets score C\ higher than C2. 

As always, context elements that refer to other object classes cause other compu- 

tations to be triggered. Satisfied context elements also provide information for setting 

parameters that may be required by the associated evaluation functions. 

The structure of the comparisons is noteworthy because it contrasts with the 

way comparisons are performed in nearly every other recognition system. The usual 

approach is to partition an image and to consider which of several potential class 

labels is the best description of a region. In Condor, we start with several partitions 

(candidates) and consider which of several candidates is the most likely instance of 

a class. For example, a conventional recognition system would consider whether a 

particular region was more likely to be a tree trunk or a road. Condor would have 

several potential delineations of a tree trunk and would consider which is the best 

description of the trunk. 

This departs from conventional approaches in two significant ways. First, com- 

paring candidate regions for a given label requires knowledge of the semantics of that 

label only, whereas the customary approach of comparing two labels for a given re- 

gion requires knowledge of the relationships among many semantic categories. When 

considering which candidate is the best tree trunk, Condor needs to know only about 

tree trunks and related categories (such as branches, roots, and the ground). In con- 

trast, deciding what label to assign to a given region using a conventional approach 

requires the ability to compare any pair of labels. This in turn requires knowledge 

of the relationships between every pair of semantic categories, a burden that grows 

rapidly as new classes are added to the recognition vocabulary. The Condor orien- 

tation provides a basis for believing that sufficient knowledge might eventually be 
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encoded in the system to allow robust comparison even in a large-scale system. 

Second, we enforce the condition that the comparisons lead to a preference only 

if one candidate is clearly a better choice than the other. With this conservative 

approach, we can reap additional computational savings by pruning large portions of 

the search for maximally consistent cliques. For example, if candidate C\ is clearly 

a better instance of class L than candidate C2 in the context of a clique A', and C\ 

is found to be inconsistent with clique K, then C2 can be eliminated as a potential 

member of clique K as well. Ruling out C2 may eliminate other candidates recur- 

sively. Thus we avoid the need to test the consistency of C2 and any of its inferiors. 

Furthermore, it may at times be impossible otherwise to establish C2 as inconsistent, 

in which case this pruning step prevents the clique from being contaminated with 

a bad candidate. Although it does not follow logically that C2 cannot be a class L 

instance, its elimination is a powerful heuristic that is nearly always justified. We can 

afford to take this chance because additional cliques will be generated simultaneously 

that may happen to avoid repeating an unjustified elimination. Thus even when 

some generators yield unreliable candidates, and the comparisons make occasional 

mistakes, it may still be possible to build a clique that yields a completely accurate 

semantic labeling of an image. 

4.1.6    The recognition process 

The processing steps described so far are shown in Figure 4.2. For each label in the 

active recognition vocabulary, all Type I context sets are evaluated. The operators 

associated with those that are satisfied are executed, producing candidates for each 

class. Type II context sets that are satisfied are then used to evaluate each candidate 

for a class, and if all such evaluators prefer one candidate over another, a preference 

ordering is established between them. These preference relations are assembled to 

form partial orders over the candidates, one partial order for each class. Next, a search 

for mutually coherent sets of candidates is conducted by incrementally building cliques 

of consistent candidates, beginning with empty cliques. A candidate is nominated for 

inclusion into a clique by choosing one of the candidates at the top of one of the partial 

orders. Type III context sets that are satisfied are used to test the consistency of a 
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nominee with candidates already in the clique. A consistent nominee is added to the 

clique; an inconsistent one is removed from further consideration with that clique. 

Further candidates are added to the cliques until none remain. Additional cliques 

are generated in a similar fashion as computational resources permit. Ultimately, one 

clique is selected as the best semantic labeling of the image on the basis of the portion 

of the image that is explained and the reliability of the operators that contributed to 

the clique. 

Each of the processing steps occurs simultaneously in our conceptual view, but 

there are some implicit sequencing constraints. Candidate evaluators begin to con- 

struct partial orders as soon as candidates become available. Incremental addition 

of candidates to cliques begins as soon as partial orders are available. Theoretically, 

there is no need to wait for one stage to finish before later stages are begun, but it 

may be desirable when computational resources are limited. 

The interaction among context sets is significant. The addition of a candidate to 

a clique may provide context that could trigger a previously unsatisfied context set 

to generate new candidates or establish new preference orderings. For example, once 

one bush has been recognized, it is a good idea to look specifically for similar bushes 

in the image. This tactic is implemented by a candidate-generation context set that 

includes a context element that is satisfied only when a bush is in a clique. 

Similarly, as cliques evolve, the partial orders for each class may change. Ideally, 

all candidate generation and comparison activity should be allowed to subside before 

a candidate is nominated into a clique. This synchronization is an implementation 

issue that is not of theoretical importance because additional cliques will always be 

generated later. 

During clique formation, multiple cliques will be in various stages of construction 

simultaneously. Each clique has its own partial orders from which to choose, al- 

though many candidates will be identical in several or all of the cliques. Context-set 

satisfaction is determined individually for each clique. 
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4.2    Implementation of Condor 

There are two major challenges in implementing the conceptual architecture we have 

described on a serial processor with finite resources.1 One is to decide what action 

to perform next from among the collection of operations that could occur in parallel. 

This is not trivial: the result of one action could change the premises used by other 

actions. The second challenge is how to represent context; this issue is complicated 

by the need to represent and access multiple cliques without interference. 

4.2.1     Processing sequence 

All of the computations carried out by Condor are controlled by context sets. At 

any given time, there might be many satisfied context sets whose operators could be 

invoked. As implemented, Condor evaluates context sets in an order that is designed 

to provide additional information rapidly. For example, it is sensible to build all 

partial orders as completely as possible before starting to build cliques, although 

this is not required by the conceptual architecture. Although the context sets are 

evaluated in a fixed order, their satisfaction depends on the context so far derived. 

Thus, the order in which operators are invoked depends primarily on the contextual 

information. The order of context set evaluation we have chosen serves mainly to 

accelerate the interpretation of images. 

The sequence of operations in Condor is summarized in Figure 4.3. The serial- 

ization of an inherently parallel architecture is complicated by the interdependencies 

among the processing steps. When first presented with an image and tasked to recog- 

nize a target vocabulary, Condor generates candidates and compares them to impose 

a partial order on the candidates in the target vocabulary. Any additional classes 

that are found to be of use are added to the active recognition vocabulary and are 

processed similarly. Next, a candidate from the top of one of the partial orders is 

added to a clique. Because this changes the context relevant to that clique, the candi- 

date generation process is repeated and the partial orders are reevaluated in that new 

xThe architecture is intentionally well-suited for parallel processors. A serial machine was used 
in our experimentation strictly for convenience. 
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Figure 4.3: Sequence of computation. 
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context. A comprehensive caching mechanism is employed to prevent reevaluating 

any operations that have not changed. A new nominee is chosen from the tops of the 

partial orders and checked for consistency with the clique. If it is found to be con- 

sistent, it is added to the clique and removed from its partial order. If inconsistent, 

it is removed from further consideration for membership in that clique, although it 

may join another clique later. The inconsistent nominee is removed from its partial 

order along with any candidate over which it is preferred. This cycle is repeated until 

no candidates remain for nomination, thus completing the development of the first 

clique. 

Additional cliques are generated by iterating the entire process. Any operations 

that occurred before construction of the first clique began need not be repeated as 

their context is still valid. Unnecessary repetition is avoided by rewinding to the 

beginning of clique construction before starting to build the second clique. Condor 

generates additional cliques by nominating candidates in different sequences. Many 

strategies exist for selecting candidate sequences and the heuristic nominating func- 

tion can be modified to implement them. The strategy that Condor routinely uses 

is to seed each clique with a candidate that had been ruled out by an earlier clique, 

thereby guaranteeing that a new and different clique will result. 

After each clique is completed, it is compared with the best previous clique to 

determine which interpretation of the image is better. There is no theoretically sound 

way of comparing two cliques, and the method we employ is somewhat ad hoc. Each 

clique is scored on the basis of the portion of the image that is explained, the specificity 

of each label, and the reliability of the operators that generated the candidates in the 

clique. The higher scoring clique is retained and additional cliques are generated until 

a scoring threshold is exceeded or available computation time is exhausted. At that 

point, the highest scoring clique is accepted as the best interpretation of the image, 

and the candidates it contains are considered to have been recognized. 

The contents of this best clique are then used to update the 3D model of the 

environment. Newly found objects are inserted in the Core Knowledge Structure. 

Candidates depicting previously known objects are used to update the location, size, 

shape, and appearance of that object in the CKS. The name of the operator that 
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successfully delineated each object in the image is stored with the object so that it 

might be invoked again when that object next comes in the field of view. The result 

is an updated model of the visual world, which will provide more context for the 

recognition of objects in subsequent images. 

4.2.2    Representation of context 

Because Condor has been designed to make use of a persistent store of information 

about the visual world, it is necessary to provide a mechanism for its representation. 

Condor requires access to scene objects based on their location or any of various 

semantic properties. This role is filled by the Core Knowledge Structure. 

The CKS is an object-oriented knowledge/database that was specifically designed 

to serve as the central information manager for a perceptual system such as an au- 

tonomous outdoor robot [Smith and Strat 1987, Strat and Smith 1988b]. Four facil- 

ities of the CKS are of particular importance for Condor: 

Multiple resolution — The CKS employs a multiresolution octree to locate ob- 

jects only as precisely as warranted by the data. Similarly, a collection of geo- 

metric modeling primitives are available to represent objects at an appropriate 

level of detail. In parallel with the octree for spatial resolution is a semantic net- 

work that represents things at multiple levels of semantic resolution. Condor's 

recognition vocabulary is represented as nodes in the semantic network, which 

allows the system to refer to objects at an appropriate level in the abstraction 

hierarchy. 

Inheritance and inference — The CKS uses the semantic network to perform 

some limited types of inference when querying the data store. Thus, query 

responses are assembled not only from those objects that syntactically match 

the query, but also from objects that can be inferred to match given the relations 

encoded in the semantic network. For example, the CKS can be queried for all 

trees within 10 meters of any dirt road, and will find all such trees regardless of 

whether they were originally categorized as oaks or pines or whether any road- 

way was present when they were instantiated in the database. Spatial inference 
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is provided based on geometric constraints computed by the octree manipula- 

tion routines. Inheritance of attributes that are unspecified is performed in a 

similar fashion. For example, a query for all objects taller than 5 meters will be 

satisfied by all trees not specifically known to be shorter than 5 meters, but not 

satisfied by any rocks (unless they are individually known to be higher than 5 

meters). 

Accommodation of conflicting data — One of the realities of analyzing imagery 

of the real world is that conflicts will result from mistakes in interpretation and 

from unnoticed changes in the world. The database used by Condor must not 

collapse when conflicting information is stored. Because the CKS treats all 

incoming data as the opinions of the data sources, logical inconsistencies will 

not corrupt the database. Similarly, values derived through multiple inheritance 

paths are treated as multiple opinions. This strategy has several advantages 

and disadvantages. Rather than fusing information as it arises, the CKS has 

the option of postponing combination until its results are needed. This means 

that the fusion can be performed on the basis of additional information that 

may become available, and in a manner that depends on the immediate task 

at hand. Some information may never be needed, in which case the CKS may 

forgo its combination entirely. The disadvantages are a need to store a larger 

quantity of data and a slowed response at retrieval time. 

For an object recognition system such as Condor, the CKS seems to provide the 

right tradeoff. Condor uses the multiple opinion facility to store the attributes 

of recognized objects. Each attribute value is annotated with the image in 

which it was identified, its time of acquisition, and its time of recognition. In 

so doing, it is possible to reason about the validity of the stored data, and to 

react accordingly. 

The opinion mechanism is also used to store multiple cliques in Condor. Each 

candidate is stored in the CKS as the opinion of the clique to which it pertains. 

This partition of information is shown schematically in Figure 4.4. Each sector 

of the "pie" contains the opinions of one clique.   Contextual information is 
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Figure 4.4: Partition of information within CKS. 

ascertained by accessing data within the clique's sector or in the central core, 

which represents data shared by all cliques. For example, prior information and 

recognition results from previous images are in the central core, available to all 

cliques. 

User interface — Although Condor is designed to be a fully automated recog- 

nition system, a comprehensive user interface is invaluable for development 

and debugging. The CKS provides a menu-driven query mechanism that is 

useful for inspecting the intermediate states of computation. In addition, 

the CKS has been integrated with SRI's Cartographic Modeling Environment 

[Hanson and Quam 1988] to provide a capability of generating synthetic views 

of terrain. This allows one to visualize the contents of the database from an ar- 

bitrary viewpoint by rendering a synthetic image. Doing so provides a window 

into the information that Condor is assuming as it interprets an image. 
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4.2.3    Context-set construction 

Context sets are the key to any recognition abilities that Condor demonstrates. While 

we cannot offer-a prescription for designing context sets, we can provide some insight 

based on our experience in building context sets for natural-object recognition. 

Type I context rules (candidate generation) are constructed based on an assess- 

ment of what operators may work for each label in the recognition vocabulary. Using 

a representative sample of imagery from the target domain, we composed image- 

processing operations that work reasonably well in various circumstances. Factors 

that influenced the choice of which operators to include were its likelihood of success, 

its ease of implementation, the lack of any alternative operators, and the availability 

of existing code. Distinct operators are provided to generate hypotheses for natural 

objects when viewed from qualitatively different perspectives or resolution. Table 4.1 

lists the types of operators that are actually employed by Condor to generate candi- 

dates for the Stanford foothill experimentation site. For each operator, the assump- 

tions that it requires are encoded as context elements in a context set that controls 

the invocation of the operator. These context elements limit the situations in which 

the operator will be applied, ensure the existence of any required data, and establish 

the parameter settings associated with the operator. 

Type II context rules (candidate evaluation) are assembled from evaluation met- 

rics that can be used to compare two candidates. Context elements that define the 

conditions under which the metrics are meaningful are collected into context sets for 

each label in the recognition vocabulary. The metrics themselves need not order can- 

didates perfectly, but should perform substantially better than a random ordering. 

Because Condor requires a unanimous vote of all applicable metrics before ordering 

two candidates, the inclusion of a faulty metric may cause some candidates to remain 

unordered, but will not cause any to be reverse ordered. It is important that pref- 

erences be correct when they are made. Flat orderings require more cliques to be 

searched but do not lead to incorrect recognition results, whereas incorrect orderings 

may cause valid interpretations to be missed. Table 4.2 shows some of the evaluation 

metrics that Condor uses. 
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Table 4.1: Categories of candidate-generation operators. 

Algorithm Explanation 
Association 
Striations 
Delineation 
Outlining 
Thresholding 
Edge-finders 
Contrast enhancement 
Smoothing 
Histogramming 
Snakes 
Texture 
Segmentation 
Dense stereo 
Sparse stereo 
Homogeneity 

Finds connected sets of pixels in a binary image. 
Finds the orientation and strength of local texture. 
Finds line-like structure. 
Finds the boundary of a region. 
Uses scale-space techniques to choose thresholds. 
Any of several well-known edge-finding routines 
Stretches the histogram of an image. 
Low-pass filter 

Computes a histogram and associated statistics. 
Optimizes a deformable model to find the best fit. 
Any of several well-known algorithms for measuring texture 
Completely partitions an image using KNIFE [Laws 1988]. 
Computes a dense depth image using CYCLOPS [Barnard 1989]. 
Computes depths at some easily correlated points [Hannah 1985]. 
A noise tolerant algorithm for measuring local homogeneity 

Table 4.2: Evaluation metrics. 

Evaluation metric Explanation 
ABOVE-HORIZON 
ABOVE-SKYLINE 
BELOW-HORIZON 
BELOW-SKYLINE 
BLUE 
BRIGHT 
ELLIPSOIDAL 
ELLIPTIC 
GREEN 
HIGHLY-TEXTURED 
HORIZONTAL 
Horizontally-Striated 
NEAR-TOP 
NO-SKY-BELOW 
REASONABLE-SIZE 
SIMILAR-COLOR 
SIMILAR-TEXTURE 
UNDEFINED-RANGE 
2D-VERTICALITY 
3D-VERTICALITY 

Raised objects are more likely found above the horizon. 
Raised objects above the skyline are preferred. 
Prefer ground candidates below the horizon. 
Prefer ground candidates below the skyline. 
Prefer blue sky candidates on a sunny day. 
Prefer bright sky candidates. 
Prefer ellipsoidal bushes and tree-crowns (in 3D). 
Prefer bushes that are shaped like ellipses (in 2D). 
Prefer green grass in the winter and spring in California. 
Prefer foliage candidates that are highly textured. 
Prefer ground candidates that are horizontal (in 3D). 
Prefer ground candidates that exhibit horizontal striations. 
Prefer sky candidates that are near the top of the image. 
Prefer bush and rock candidates that are not above the sky. 
Prefer trees and bushes that are sized appropriately. 
Prefer candidates that are similar in color to known objects. 
Prefer candidates that have similar texture as a known object. 
Prefer sky candidates that are uncorrelated in stereo. 
Prefer tree trunks that are approximately vertical in the image. 
When range is available, prefer tree trunks that are vertical. 
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Type III context rules define the conditions under which inconsistency of a candi- 

date with the other members of a clique can be established. To form Type III context 

rules, we encode and assemble constraints that make it impossible for a candidate hy- 

pothesis to be valid given the assumption that the candidates already in the clique 

are correct. It is important that inconsistent candidates be correctly identified so 

that physically impossible cliques are not constructed. However, it is not necessary 

that a complete definition of consistent candidates be encoded. This asymmetry was 

designed intentionally because it is far simpler to specify what could not be a tree, for 

example, than it is to specify what is a tree. Some of the consistency-determination 

constraints used by Condor are listed in Table 4.3. 

Table 4.3: Consistency constraints. 

Consistency constraint Explanation 

ABOVE-SKY-REGION 
LEANING 
MISMATCHED-BRIGHTNESS 
NOT-SUPPORTED-BY-GROUND 
OVERLAPS-IN-IMAGE 
PARTIALLY-ABOVE-SKYLINE 
PARTIALLY-BELOW-HORIZON 

Most objects must not be completely off the ground. 
Objects that lean too much are unsupported. 
The intensity of sky must vary smoothly. 
Most plants must be rooted in the ground. 
Inconsistent labels are prohibited. 
The ground cannot extend above the skyline. 
The sky cannot extend below the horizon.       

4.3    Example of natural-object recognition 

To illustrate the basic processing sequence, Condor was tasked to recognize the sky, 

the ground, and the foliage appearing in the image shown in Figure 2.3. This relatively 

easy image was acquired in the foothills behind the Stanford University campus in the 

afternoon of a sunny day using an ordinary 35mm camera. To make the description as 

clear as possible, some of the machinery incorporated in Condor has been deactivated 

while creating this example. In particular, no prior knowledge of the topography or 

features on the terrain is used. The digitized image is a single monochrome 8-bit 

frame; no color, stereo, or other range data are used. 
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Table 4.4: Type I Context Sets: Candidate Generation. 

# Class Context elements Operator 

1 
2 
3 
4 
5 

6 

SKY 
SKY 
SKY 
SKY 
SKY 

SKY 

CLIQUE-IS-EMPTY 
CLIQUE-IS-EMPTY 
CLIQUE-IS-EMPTY 
CLIQUE-IS-EMPTY 
CLIQUE-IS-EMPTY A SKY-IS-CLEAR 
A RGB-IS-AVAILABLE 
LAST-CANDIDATE-IS(sky) 

SEGMENTATION-REGIONS 
WEAKLY-TEXTURED-REGIONS 
WEAKLY-STRIATED-REGIONS 
BRIGHT-REGIONS 
BLUE-REGIONS 

SIMILAR-REGIONS 
7 
8 

9 

10 

GROUND 
GROUND 

GROUND 

GROUND 

CLIQUE-IS-EMPTY 
CLIQUE-IS-EMPTY 
A CAMERA-IS-HORIZONTAL 
CLIQUE-IS-EMPTY 
A DENSE-RANGE-IS-AVAILABLE 
LAST-CANDIDATE-IS(ground) 

SEGMENTATION-REGIONS 
HORIZONTAL-STRIATION-REGIONS 

HORIZONTAL-SURFACE-PATCHES 

SIMILAR-REGIONS-REGIONS 

11 
12 
13 
14 
15 

FOLIAGE 
FOLIAGE 
FOLIAGE 
FOLIAGE 
FOLIAGE 

CLIQUE-IS-EMPTY 
CLIQUE-IS-EMPTY 
CLIQUE-IS-EMPTY A RGB-IS-AVAILABLE 
LAST-CANDIDATE-IS(foliage) 
CLIQUE-IS-EMPTY 
A DENSE-RANGE-IS-AVAILABLE 

TEXTURE-ABOVE-THRESHOLD 
VEGETATIVE-TRANSPARENCY 
GREEN-REGIONS 
SIMILAR-REGIONS 
HIGHLY-FRACTAL-REGIONS 

16 
17 
18 

19 

20 

RAISED-OBJECT 
RAISED-OBJECT 
RAISED-OBJECT 

RAISED-OBJECT 

RAISED-OBJECT 

CLIQUE-IS-EMPTY 
CLIQUE-IS-EMPTY 
CLIQUE-IS-EMPTY 
A DENSE-RANGE-IS-AVAILABLE 
CLIQUE-IS-EMPTY ' 
A SPARSE-RANGE-IS-AVAILABLE 
LAST-CANDIDATE-IS(complete-sky) 

SEGMENTATION-REGIONS 
VERTICAL-STRIATION-REGIONS 
DENSE-REGIONS-ABOVE-GROUND 

SPARSE-REGIONS-ABOVE-GROUND 

NON-SKY-REGIONS-ABOVE-SKYLINE 
21 
22 
23 

COMPLETE-GROUND 
COMPLETE-GROUND 
COMPLETE-GROUND 

LAST-CANDIDATE-IS(geometric-horizon) 
LAST-CANDIDATE-IS(ground) 
LAST-CANDIDATE-IS(skyline) 

REGION-BELOW-GEOMETRIC-HORIZON 
UNION-OF-GROUND-REGIONS 
REGION-BELOW-SKYLINE 

25 COMPLETE-SKY LAST-CANDIDATE-IS(sky) 
A SITE-IS(Stanford-hills) 

UNION-OF-SKY-REGIONS 

4.3.1     Candidate generation 

Condor begins by generating candidates for each of the classes in the target vocabu- 

lary. The relevant candidate generation context sets are shown in Table 4.4. Tables 4.5 

and 4.6 show the relevant Type II and Type III context sets used in this example. 

During the generation of candidates for the sky label, Context Set 5 was not satisfied 

because no color image is available and Context Set 6 was not satisfied because no 

candidates have been selected yet for inclusion in a clique. Context Sets 1 through 4 

are satisfied and the sky candidates they generate are shown in Figure 4.5(a). 

The operator WEAKLY-STRIATED-REGIONS happened to generate no candidates, 

even though its context set was satisfied. The SEGMENTATION-REGIONS operator 

returns the regions found by a conventional segmentation algorithm (Candidates 909, 
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Table 4.5: Type II Context Sets: Cand mate Evaluation. 

# Class Context elements Operator 

41 SKY ALWAYS ABOVE-GEOMETRIC-HORIZON 

42 SKY SKY-IS-CLEAR A TIME-IS-DAY BRIGHT 

43 SKY SKY-IS-CLEAR A TIME-IS-DAY UNTEXTURED 

44 SKY SKY-IS-CLEAR A TIME-IS-DAY 
A RGB-IS-AVAILABLE 

BLUE 

45 SKY SKY-IS-OVERCAST A TIME-IS-DAY BRIGHT 

46 SKY SKY-IS-OVERCAST A TIME-IS-DAY UNTEXTURED 

47 SKY SKY-IS-OVERCAST A TIME-IS-DAY 
A RGB-IS-AVAILABLE 

WHITE 

48 SKY SPARSE-RANGE-IS-AVAILABLE SPARSE-RANGE-IS-UNDEFINED 

49 SKY CAMERA-IS-HORIZONTAL NEAR-TOP 

50 SKY CAMERA-IS-HORIZONTAL 
A CLIQUE-CONTAINS(complete-sky) 

ABOVE-SKYLINE 

51 SKY CLIQUE-CONTAINS(sky) SIMILAR-INTENSITY 

52 SKY CLIQUE-CONTAINS(sky) SIMILAR-TEXTURE 

53 SKY RGB-IS-AVAILABLE 
A CLIQUE-CONTAINS(sky) 

SIMILAR-COLOR 

61 GROUND CAMERA-IS-HORIZONTAL HORIZONTALLY-STRIATED 

62 GROUND CAMERA-IS-HORIZONTAL NEAR-BOTTOM 

63 GROUND SPARSE-RANGE-IS-AVAILABLE SPARSE-RANGES-ARE-HORIZONTAL 

64 GROUND DENSE-RANGE-IS-AVAILABLE DENSE-RANGES-ARE-HORIZONTAL 

65 GROUND CAMERA-IS-HORIZONTAL 
A CLIQUE-CONTAINS(complete-ground) 

BELOW-SKYLINE 

66 GROUND CAMERA-IS-HORIZONTAL 
A CLIQUE-CONTAINS(geometric-horizon) 
A -. CLIQUE-CONTAINS(skyline) 

BELOW-GEOMETRIC-HORIZON 

67 GROUND TIME-IS-DAY DARK 

71 FOLIAGE ALWAYS HIGHLY-TEXTURED 

72 FOLIAGE ALWAYS VEGETATIVE-TRANSPARENCY 

73 FOLIAGE CAMERA-IS-HORIZONTAL NEAR-TOP 

74 FOLIAGE RGB-IS-AVAILABLE GREEN 

76 RAISED-OBJECT SPARSE-RANGE-IS-AVAILABLE SPARSE-HEIGHT-ABOVE-GROUND 

77 RAISED-OBJECT DENSE-RANGE-IS-AVAILABLE DENSE-HEIGHT-ABOVE-GROUND 

78 RAISED-OBJECT CAMERA-IS-HORIZONTAL 
A CLIQUE-CONTAINS(complete-sky) 

ABOVE-SKYLINE 

Table 4.6: Type III Context Sets: Consistency Determination. 

# Class Context elements Operator 

81 
82 
83 

84 

SKY 
SKY 
SKY 

SKY 

GEOMETRIC-HORIZON-KNOWN 
ADDING-TO-CLIQUE 
ADDING-TO-CLIQUE 
A CLIQUE-CONTAINS(sky) 
SPARSE-RANGE-IS-AVAILABLE 

PARTIALLY-BELOW-GEOMETRIC-HORIZON 
INCONSISTENT-WITH-CLIQUE 
MISMATCHED-BRIGHTNESS 

MUST-NOT-HAVE-FINITE-RANGE 

87 
88 
89 

GROUND 
GROUND 
GROUND 

CLIQUE-CONTAINS(complete-sky) 
ADDING-TO-CLIQUE 
DENSE-RANGE-IS-AVAILABLE 

PARTIALLY-ABOVE-SKYLINE 
INCONSISTENT-WITH-CLIQUE 
SLOPE-TOO-STEEP 

91 FOLIAGE ADDING-TO-CLIQUE INCONSISTENT-WITH-CLIQUE 

93 COMPLETE-GROUND ADDING-TO-CLIQUE INCONSISTENT-WITH-CLIQUE 
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Figure 4.5: Some candidates generated by Condor. 
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910, and 911). A fourth region, corresponding to the lower third of the image, was also 

generated, but immediately rejected by an application of the Type III consistency- 

determination context rules, which eliminate candidates that are unacceptable in any 

clique. In this case, for consistency determination, Context Sets 81 through 84 were 

tested for satisfaction. A side result of testing Context Set 81 was to add geometric- 

horizon to the active recognition vocabulary. Because the geometric horizon for this 

image was given, Context Set 81 is satisfied and its operator, PARTIALLY-BELOW- 

GEOMETRIC-HORIZON, eliminates the fourth segmentation region because it is below 

the geometric horizon and, therefore, could never be sky. 

Notice that three of the candidates (910, 912, and 914) are fairly similar — Condor 

must eventually sort out which to include in each clique, based on how well they fit 

in the context of other members in the clique. 

Ground candidates are generated by Context Sets 7 through 10 and are shown in 

Figure 4.5(b). Context Set 7 is satisfied and yields the same four regions obtained 

using the conventional segmentation operation. Context Set 8 is also satisfied and is 

used to extract the horizontally striated region depicted as Candidate 919. Because 

of foreshortening, horizontal surfaces tend to appear to have horizontal striations 

when viewed obliquely. This explains why CAMERA-IS-HORIZONTAL is included as a 

context element essential for invoking the HORIZONTAL-STRIATIONS operator to find 

ground candidates. In this case, most of the ground exhibits horizontal texture, but 

some of the foliage was horizontally striated as well and is merged with this candidate. 

Context Sets 9 and 10 are not satisfied. 

Foliage candidates are generated by Context Sets 11 through 15. In addition, 

the candidate generation context sets for raised-object are used to generate foliage 

candidates as well because foliage is a subcategory of raised-object in the abstraction 

hierarchy (Figure 3.1). Therefore, any raised-object candidates are also candidates for 

foliage. Condor always employs context sets for all superclasses — the CKS returns 

them automatically when queried by Condor. The foliage candidates are depicted in 

Figure 4.5(c). 
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4.3.2    Candidate comparison 

Next, Condor compares the candidates for each class to construct the partial orders. 

Candidate-Evaluation Context Rules 41 through 53 are used for evaluating sky candi- 

dates. Only Context Sets 41, 42, 43, and 49 are satisfied. Their associated operators 

are used to evaluate each of the sky candidates and the result is tabulated below. 

Each evaluator returns a score between 0.0 and 1.0. Only the relative magnitude 

of this score for each evaluator is meaningful. The scores are not normalized across 

evaluators because there is no basis for doing so. 

Table 4.7: Initial evaluation of sky candidates. 

Candidate 
Evaluator 909 910     911     912     914 

ABOVE-GEOMETRIC-HORIZON 1.00 1.00    1.00    1.00    1.00 
BRIGHT 0.44 0.71    0.94    0.76    0.67 

UNTEXTURED 0.19 0.67    0.52    0.50    0.36 
NEAR-TOP 0.51 0.79    0.37    0.73    0.66 

Examining Table 4.7 reveals that every evaluator scored Candidate 910 as high as 

or higher than Candidate 909. Therefore, 910 is preferred over 909 as a sky candidate. 

Other unanimous preferences are 

910 >- 914,   912 >- 909,   912 y 914,   and 914 >- 909 . 

These relations are assembled into a partial order and displayed in Figure 4.6(a), after 

removing transitivities. Candidate 909, which roughly delineates the trees, is at the 

bottom of the partial order, as one would hope. Candidates 910, 911, and 912 were 

found to be equally promising sky regions. Context Set 50 would have been satisfied 

if a complete-sky candidate was already in the clique. There is none, but Condor adds 

complete-sky to the active recognition vocabulary. 

Invocation of candidate evaluation context rules for ground candidates identi- 

fies three relevant evaluators, HORIZONTALLY-STRIATED, NEAR-BOTTOM, and DARK, 

from Context Rules 61, 62, and 67. Their results are tabulated in Table 4.8 and dis- 

played as a partial order in Figure 4.6(b).   Candidate 915 is the only one that can 
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Figure 4.6: Some partial orders generated by Condor. 
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correctly be called ground, and it is indeed at the top of the partial order. Evaluation 

of Context Sets 65 and 66 causes complete-ground and skyline to be added to the 

recognition vocabulary. 

Table 4.8: Initial evaluation of ground candidates. 

Candidate 
E valuator 915     916     917     918     919 

HORIZONTALLY-STRIATED 0.45    0.11    0.11    0.11    0.55 
NEAR-BOTTOM 0.87    0.49    0.21    0.63    0.71 

DARK 0.82    0.56    0.29    0.06    0.64 

Comparison of foliage candidates results in the partial order shown in 

Figure 4.6(c). Type II context sets for foliage yield three relevant evaluators 

(Table 4.9). The Type II context sets for raised-object are also tested to identify 

additional evaluators, but none are satisfied. 

Table 4.9: Initial evaluation of foliage candidates. 

Candidate 
Evaluator 920     921 922 923     924     925 926     927     928 

HIGHLY-TEXTURED 0.93    0.91 0.87 0.86    0.41    0.81 0.33    0.48    0.35 
VEGETATIVE-TRANSPARENCY 0.93    0.92 0.88 0.87    0.45    0.85 0.45    0.52    0.45 

NEAR-TOP 0.48    0.49 0.53 0.52    0.13    0.51 0.79    0.37    0.88 

The active recognition vocabulary is now {sky, ground, foliage, geometric-horizon, 

complete-sky, complete-ground, and skyline} and Condor proceeds to generate candi- 

dates and partial orders for the balance of these classes.2 

4.3.3    Clique formation 

At this point, all satisfied context sets for classes in the active recognition vocabu- 

lary have been employed and Condor begins to build cliques of mutually consistent 

candidates. The candidates at the tops of the four partial orders are eligible to be 

introduced into an (empty) clique. The choice of which candidate to nominate first is 

2These are of no special interest and are not shown. 
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made with the aid of a heuristic that chooses on the basis of the reliability of the op- 

erator that generated the candidate, the desirability of adding the candidate's class to 

the clique, the nearness of the candidate to the camera, and the size of the candidate. 

If this choice is made poorly, it may lead to a small clique and more cliques will have 

to be generated before a large, mutually coherent clique is constructed. Figure 4.7 

shows the order in which candidates were actually nominated for inclusion in the first 

clique. 

According to the heuristic, the geometric-horizon candidate is chosen first and 

added as the sole candidate in Clique 1. This tentative conclusion constitutes new 

context, albeit for Clique 1 only. All Type I context sets are reevaluated to see if any 

new candidates are generated, and all Type II context sets are reevaluated to update 

the partial orders. The only new candidate that is produced is a complete-ground 

candidate generated by Context Set 21. Type II Context Set 66 is now satisfied and 

adds BELOW-GEOMETRIC-HORIZON to the list of evaluators for ground candidates. 

Its use happens to cause no changes in the ground partial order. 

The second candidate nominated for inclusion in the clique is the complete-ground 

candidate just generated. It is found to be consistent with the clique and is added to 

it. Reevaluation of all context sets provides no significant changes. 

At this point, there are three candidates at the top of the sky partial order (Can- 

didates 910, 911, and 912); there are two top ground candidates (915 and 919); and 

there are four top foliage candidates (920, 921, 922, and 928). The heuristic selection 

function chooses sky Candidate 912 to be tested for consistency with Clique 1. It is 

found to be consistent, is added to the clique, and all context sets are reevaluated. 

This time, Context Set 25 is satisfied, and a candidate for complete-sky is generated 

by the operator UNION-OF-SKY-REGIONS, which grows the existing sky region using 

the constraint that the ground does not slope more than 30 degrees in this area. 

Context Set 6 is also satisfied, and it employs the SIMILAR-REGIONS operator to find 

additional sky candidates that are similar to Candidate 912 in texture and intensity 

using an adaptive threshold algorithm. This implements the idea that anything sim- 

ilar in appearance to a region that is known to be sky is likely to be sky itself. Later 
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comparison with other candidates and checking for consistency with cliques will de- 

termine if this is in fact correct. Type II Context Sets 51 and 52 are now satisfied and 

yield two new evaluators for comparing sky candidates. The new evaluation table is 

shown as Table 4.10. 

Table 4.10: Reevaluation of sk> candidates. 

Candidate 
Evaluator 909 910 911     914 

ABOVE-GEOMETRIC-HORIZON 1.00 1.00 1.00    1.00 
BRIGHT 0.44 0.71 0.94    0.67 

UNTEXTURED 0.19 0.67 0.52    0.36 
NEAR-TOP 0.51 0.79 0.37    0.66 

SIMILAR-INTENSITY 0.72 0.96 0.76    0.95 
SIMILAR-TEXTURE 0.42 0.94 0.94    0.81 

From this table it is computed that 

910 y 909,   910 X 914,   and 914 y 909 

and the sky partial order is updated. 

The newly created complete-sky candidate is the next one added to the clique. 

After reevaluating context sets, ground candidate 919 is nominated for inclusion next. 

Type III Context Rules 87 through 89 are used to test the consistency of Candi- 

date 919 with the clique. Context Set 87 is satisfied and execution of its operation 

PARTIALLY-ABOVE-SKYLINE finds that ground Candidate 919 extends above the sky- 

line and is therefore inconsistent with this clique. It is eliminated from further consid- 

eration, along with Candidates 916, 917, and 918, which are pruned from the ground 

partial order. This leaves Candidate 915 as the only remaining ground candidate. 

Condor next nominates foliage Candidate 920, which is found to be consistent, 

and ground Candidate 915, which is also found to be consistent. Condor continues its 

processing in this manner, until no candidates remain to be tested. Figure 4.7 shows 

the complete sequence of nominations to the first clique. The composite labeling of 

the image that results from those that were accepted is given by Figure 4.8. A total 

of 36 candidates were generated for this clique, 50% of which were accepted in the 

clique while 22% were pruned without testing. 
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^ EHI iMfc. 
907 GEOMETRIC-HORIZON    920 FOLIAGE 914 SKY (inconsistent) 933 FOLIAGE 925 FOLIAGE (inconsistent) 

929 COMPLETE-GROUND      915 GROUND 931 FOLIAGE 934 FOLIAGE 927 FOLIAGE (inconsistent) 

ra Q p 
9!2 SKY 932 COMPLETE-GROUND       928 FOLIAGE (inconsistent)     923 FOLIAGE 937 SKYLINE 

930 COMPLETE-SKY 921 FOLIAGE 922 FOLIAGE 935 FOLIAGE 

n 
919 GROUND (inconsistent)     910 SKY 911 SKY 936 FOLIAGE 

Figure 4.7:   Sequence of candidates nominated for inclusion in Clique 1 (reading 
downward). 

u s 
GROUND SKY 

□ 
SKYLINE P%, 

FOLIAGE 

COMPLETE-GROUND COMPLETE-SKY GEOMETRIC-HORIZON 

Figure 4.8: Composite labeling found by Clique 1. 
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4.3.4     Clique selection 

In this case, the first clique generated did a good job recognizing the target vocabulary, 

but Condor has no definitive way of knowing this. Condor generates additional cliques 

to see if its interpretation can be improved. The sequence of candidates nominated for 

inclusion in Clique 2 is shown in Figure 4.9. This clique starts with sky Candidate 914, 

which was ruled out by Clique 1 as being too aggressive in finding the boundary of 

the sky. By assuming that Candidate 914 is indeed a good delineation of sky, Clique 2 

later rules out the foliage candidates (see Figure 4.9). As a result, nothing explains 

the foliated area very well, and Candidate 909 is eventually accepted as being sky, 

thereby mislabeling the entire top two-thirds of the image as sky. The composite 

labeling found by Clique 2 is given in Figure 4.10. A total of 32 candidates were 

generated for Clique 2, of which 34% were admitted and 25% were pruned. 

A third clique was also generated by Condor. This one started by including the 

ground candidate (919) that was generated by the HORIZONTAL-STRIATIONS operator 

and included part of the foliage in the ground region. Its inclusion results in some of 

the sky being labeled as ground and some of the foliage being left unlabeled. Clique 3 

is depicted by Figures 4.11 and 4.12. Of 33 regions generated, 36% were admitted 

and 21% were pruned. 

Additional cliques could be generated by Condor in hopes of improving the inter- 

pretation. Among the first three, Clique 1 is selected by Condor as being the best 

recognition result because it explains more of the image than does Clique 3, and the 

composite reliability of the admitted candidates is higher than that of both Clique 2 

and Clique 3. 

At this point, Condor normally stores its recognition results in the CKS database 

to be used as context for future reference. In this example, however, Condor did not 

attempt to extract 3D constraints that would be useful for sizing and positioning the 

foliage objects it found. In Chapter 5, several examples are presented that demon- 

strate the capability to recover 3D geometry and to update the 3D models maintained 

by the CKS. 
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!EI 
914 SKY 921  FOLIAGE (inconsistent)      923 FOLIAGE (inconsistent)      909 SKY 

907 GEOMETRIC-HORIZON    928 FOLIAGE (inconsistent)      927 FOLIAGE (inconsistent)      941 COMPLETE-SKY 

□ US 
938 COMPLETE-GROUND      915 GROUND 912 SKY 911 SKY (inconsistent) 

u 
919 GROUND (inconsistent)     939 COMPLETE-GROUND      940 CQMPLETE-SKY 942 SKYLINE 

s n 
920 FOLIAGE (inconsistent)      922 FOLIAGE (inconsistent)      910 SKY 

Figure 4.9: Sequence of candidates nominated for inclusion in Clique 2. 

u 
GROUND SKY SKYLINE 

u FOLIAGE 

COMPLETE-GROUND COMPLETE-SKY GEOMETRIC-HORIZON 

Figure 4.10: Composite labeling found by Clique 2. 
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w 
915 GROUND 

m -^ 

919 GROUND 921  FOLIAGE 

n 
946 FOLIAGE 948 SKYLINE 

^ 

907 GEOMETRIC-H DRIZON    910 SKY 945 COMPLETE-GROUND 947 FOLIAGE (inconsistent) 

L_ ftÄu 
943 COMPLETE-GROUND 944 COMPLETE-SIO 

HI 
< 

0 

922 FOLIAGE (inconsistent) 916 GROUND (incon sistent) 

Tl 
it) 

ItfAlttL 

«fc 

912 SKY (inconsiste 914 SKY (inconsister 923 FOLIAGE 918 GROUND 

•«äst 
*J 

*. ~ 

920 FOLIAGE (inconsistent)      928 FOLIAGE (inconsistent)      911 SKY (inconsistent) 927 FOLIAGE (inconsistent) 

Figure 4.11: Sequence of candidates nominated for inclusion in Clique 3. 

GROUND SKY SKY SKYLINE f 
FOLIAGE 

COMPLETE-GROUND COMPLETE-SKY GEOMETRIC-HORIZON 

Figure 4.12: Composite labeling found by Clique 3. 
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4.4    Automated knowledge acquisition 

The quality of Condor's recognition ability is directly tied to the quality of the context 

rules in its knowledge base. It is unreasonable to expect that a knowledge base of a 

scope sufficient to enable realistic application can be constructed entirely by hand. 

Therefore, like any knowledge-based vision system, Condor must have the ability to 

acquire knowledge automatically through experience in performing its intended task. 

Although the field of machine learning has progressed rapidly in the last five years, 

there does not yet exist a theory of sufficient utility for use in a visual recognition 

system such as Condor. While the focus of our research has not been to advance 

the state of the art in machine learning, we recognize the importance of automated 

knowledge acquisition to machine vision and have made provisions in the Condor 

architecture to enable some forms of learning. 

The Condor architecture is well-suited to the automation of knowledge acquisition 

for the following reasons: 

• Context rules, and the context sets embedded within them, are a declarative 

representation that can be examined and modified by a learning algorithm. 

• Condor uses its own results. Rather than analyzing each new image from 

scratch, Condor stores its recognition results in a persistent database. This 

database establishes context, which Condor exploits to analyze subsequent im- 

ages. In this way, the more objects Condor has recognized, the more it is able 

to recognize. 

• Condor is not reliant on any single part of the system being 100% correct. In- 

deed, nearly every aspect of the architecture was included to achieve robust 

recognition results in the presence of unreliable procedures and inconsistent 

data. This approach has beneficial implications to a learning algorithm in a 

vision system, which must necessarily cope with occasionally incorrect and am- 

biguous data. Some incorrect generalizations made by an embedded learning 

component will not corrupt the integrity of the overall system. 
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Image-understanding systems also pose some impediments to attempts to endow 

them with automated learning algorithms: 

• The image data presented to a recognition system constitute a noisy environ- 

ment for which there are few clear-cut cases, particularly in the outdoor world. 

Any training examples constructed will rely on subjective judgments and will 

contain inconsistencies. The literature on automated learning from noisy exam- 

ples is sparse, and is limited mainly to statistical estimation. 

• Ideally, a learning algorithm will have access to a large number of examples 

from which to generalize. In our experimentation we have been limited to 

images acquired and digitized individually, and have used only about 40 images. 

This limitation is compounded by the fact that analysis of a single image can 

require up to 20 minutes per clique, and by the desire to recognize coarse-grained 

objects, such as trails and trees. Thus each image yields only a few examples 

of each concept and thousands of images would be required to fuel a learning 

algorithm.3 

It is important to discriminate among the many forms of learning.   Within the 

Condor framework, four types of learning are of primary interest: 

• Learning a description of the environment 

• Applying recognition procedures more effectively 

• Refining context sets 

• Discovering new procedures 

We discuss each of these learning opportunities below. 
3The use of new video frame-grabbers on a robotic platform and the use of pixel-parallel processors 

could enable Condor to process thousands of images in seconds per frame. 
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4.4.1    Learning a description of the environment 

In our scenario, Condor is mounted on an autonomous vehicle and tasked with identi- 

fying significant features in the immediate vicinity. Starting with an empty database, 

Condor adds its recognition results to the CKS after analyzing each image. After 

some period of time, the database contains a detailed description of all recognized 

features in the environment. Experiment 2 (described in Chapter 5) illustrates Con- 

dor's ability to learn a description of its surroundings. Several issues arise in the 

construction of 3D models and in updating a persistent world model. 

When Condor has recognized an object, such as a tree, it must determine the 3D 

location of that object in order to store it in the world model. Condor has several 

facilities for accomplishing this: 

• When range data are available through stereopsis or a laser rangefinder, the dis- 

tance to the tree is immediately available. Together with approximate knowl- 

edge of the camera's location and orientation, the world position of the tree 

can be bounded. The tree is stored in the CKS within this volume using the 

multiresolution facilities of the CKS spatial directory. 

• When no range data are available, Condor uses a digital terrain model to esti- 

mate the location. Intersecting the DTM with the ray in space that passes from 

the center of projection through the base of the tree trunk in the image (which 

is presumed to be on the ground) allows an estimate of the tree's location to be 

obtained. The volume of uncertainty inherent in this procedure is stored in the 

CKS as the possible location of the tree. 

• Without range data or a DTM, Condor can still estimate the location of the 

tree. Physical limits on the maximum diameter of a tree trunk and the height of 

a tree bound the distance that the tree could possibly be from the camera. The 

tree's image and the distance constraints form a bounded cone in space that is 

stored as the location of the tree. This relatively large volume can be reduced 

when additional contextual knowledge is available, such as the maximum height 

of any tree in the immediate vicinity. 



CHAPTER 4.   CONTEXT-BASED VISION 98 

Once the distance to the tree is known, its height, width, and trunk diameter can be 

estimated. These estimates are stored in the database along with other attributes of 

the object's appearance for later use. 

A second issue that must be resolved is the reference problem. Given a database of 

objects and an image of some of them, how can the correspondence between image and 

database models be established? This is a thorny philosophical issue when pursued 

to the extreme. For our purposes, we exploit the fact that the objects recognized 

by Condor are for the most part stationary, and we ignore the possibility that, for 

example, a tree has been removed and replaced with a different one. The strategy 

employed by Condor is simply that whenever an image feature could possibly refer 

to a given database object, it is assumed to do so. This sometimes results in images 

of two different trees corresponding to the same tree model in the database, but the 

error can be corrected when an image that disambiguates the situation is eventually 

analyzed. 
After analyzing each image, Condor updates the CKS database to reflect its find- 

ings. By incrementally adding to this description of the environment, Condor learns 

the identity, location, size, shape, and appearance of most of the objects in its vicinity. 

4.4.2    Applying recognition procedures more effectively 

One of the primary goals for the Condor architecture was to exploit contextual in- 

formation during the recognition process. Thus, as the CKS database is populated, 

Condor not only learns the layout of objects in the environment, but also learns how 

to recognize other objects. 
Condor uses three mechanisms to learn how to recognize objects better using its 

existing context rules. 

Same object, different image 

Whenever an object is recognized, it is stored in the CKS database. In addition to its 

location and physical attributes, Condor also stores the name of the operator and the 

associated parameters that extracted the region. When presented with a new image, 



CHAPTER 4.   CONTEXT-BASED VISION 99 

Condor retrieves from the database all objects in the target vocabulary that lie within 

the field of view. For each such object, Condor determines the operator(s) that have 

successfully extracted the object in a previous image. These operators are applied to 

the new image, even if their context sets would not otherwise be satisfied. The results 

are treated as any other candidate hypothesis would be, but their inclusion can be 

responsible for successful recognition. This implements the strategy "If it worked 

once, it just might work again." 

Different object, same class 

It is often the case that similar objects in a limited vicinity have a similar appear- 

ance. To exploit this observation, Condor has been provided with a class of operators 

designed to find similar candidates.  When a candidate is accepted into a clique, a 

Type I context rule such as 
BUSH:   { LAST-CANDIDATE-IS(bush) }  =» 

SIMILAR-REGIONS(intensity, vegetative-texture) 

is invoked that attempts to find other regions in the same image that are similar in 

appearance to the one already accepted.   For example, additional bush candidates 

are generated by finding regions that are within one standard deviation of both the 

INTENSITY and VEGETATIVE-TEXTURE measure of the (tentatively) known bush. 

Similarity is also used for evaluating candidates. For example, if there is already 

a sky candidate in a clique, then the following Type II context rule 

SKY : { CLIQUE-CONTAINS(sky) A RGB-IS-AVAILABLE }  =4> SIMILAR-COLOR(sky) 

is employed to determine how closely each new candidate resembles the region already 

determined to be sky. The algorithm employed uses a histogram matching technique 

similar to that described by Swain [1990]. In the univariate case, we compute the 

histograms HM{i) and Hc(i) of the known model and the candidate respectively. The 

similarity between a model region M and a candidate region C is given by computing 

the RMS difference between the cumulative histograms: 

<r(HM(i),Hc(i)) = l- ,   - £ [NCHM(i)-NCHc{i)]2 (4-1) 
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where n is the number of buckets in the histogram and NCH(i) is the normalized 

cumulative histogram defined by 

NCm - fefsl • (4'2) 

This is better suited for our purposes than Swain's method, which does not use 

cumulative histograms, because it does not overly penalize similar histograms that 

are offset slightly. 

This method is also used to compute similarity based on several attributes 

simultaneously, such as the three bands of a color image, or intensity and texture 

together. In this case the multidimensional normalized cumulative histograms are 

computed as 

NCH{1'y'z) =   E,^n mij,k) (4-3) 

and the similarity is computed using the obvious extension of Equation (4.1). 

Candidate comparison uses this measure of similarity as one of the metrics for 

constructing partial orders. As a result, candidates that are very similar in appearance 

to those already in the cliques tend to rise toward the tops of the partial orders. This 

strategy could be summarized as "After recognizing an object, look for other features 

that are similar in appearance." 

Different object, different class 

Because contextual information is of great value to Condor in recognizing objects, 

anything that is recognized is context for potential use by Condor. This affords an 

opportunity for Condor to bootstrap its recognition abilities. For example, recogniz- 

ing a patch of grass allows Condor to infer where the ground is in an image. This 

may lead to a tree-trunk candidate being accepted into a clique because it can now be 

established to be supported by the ground. That tree-trunk may finally be interpreted 

to be part of a tree that was not previously in the database. 

Furthermore, when a new image is acquired and that same tree is in the field of 

view, Condor will employ an operator that looks in a specific location for a pair of 
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vertical edges that may delineate the trunk: 

TREE-TRUNK: { USING-STORED-KNOWLEDGE, IN-FIELD-OF-VIEW(tree) } 

=> TREE-TRUNK-SNAKE 

The stored location, trunk diameter, and height are used as initial conditions for 

invoking the operator which optimizes the fit of a deformable model, as in Kass's 

snakes [Kass, Witkin, and Terzopoulos 1987].   This approach delineates the desired 

trunk whenever the location is known with sufficient accuracy. 

Condor also uses the CKS database to help rank candidates.   For example, the 

Type II context rule 
TRAIL:     { USING-STORED-KNOWLEDGE, IN-FIELD-OF-VIEW(trail) } 

=► COINCIDES-WITH-KNOWN(trail) 

is employed to measure the amount of overlap between a trail candidate and any 

known trails in the field of view. Candidates that do overlap significantly percolate 

to the tops of the partial order, where they are nominated for inclusion in a clique 

before other candidates. This implements a strategy that could be summarized as 

"Try to recognize known objects before considering other possibilities." 

4.4.3    Refining context sets 

The use of a uniform representation of visual recognition knowledge in the form of 

context sets provides an opportunity to introduce a learning component within the 

Condor architecture. It should be possible to update the context sets automatically by 

retaining those that give generally reliable results and modifying or discarding those 

that do not. The practical impediments to learning discussed earlier have prevented us 

from employing an algorithm that automatically modifies Condor's knowledge base, 

but we remain optimistic that one could be incorporated. Several issues are involved. 

Concept formation 

The construction of a context set knowledge base can be viewed as a concept forma- 

tion problem [Genesereth and Nilsson 1987]. Genesereth and Nilsson define a concept 

formation problem as a tuple, (P,N,C, A), where P is a set of positive instances of 
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a concept, N is a set of negative instances, C is the set of concepts to be used in 

defining the concept, and A is the language to be used in phrasing the definition. 

In our case positive and negative instances are provided by a canonical interpre- 

tation of the image. In a supervised learning mode, the positive instances are those 

candidates that are consistent with a (subjective) labeling provided by a human and 

the negative instances are all other candidates. In an unsupervised learning mode, the 

best clique is assumed correct and its component candidates form the set of positive 

instances. 

The set of concepts C is given by the context elements CEi together with the set 

of available operators when attempting to learn Type I context rules. For Type II 

context rules, the set C is given by the context elements and the set of evaluation 

metrics. 

The language A is given by the syntax of a context rule: 

L : {CEX,CE2,- ■ ■ ,CEn) =* A . 

In other words, A is the set of conjunctions of any number of context elements with 

one operator or evaluator. 

Note that the vast majority of literature in machine learning (for example 

[Mitchell 1978]) deals with situations in which each instance is either positive or 

negative (i.e., the sets P and N are disjoint). In object recognition, ambiguity occurs 

frequently, and the sets P and N may overlap. Furthermore, the classical learning 

paradigm seeks a definition that is exact; that is, it exactly separates all instances 

into the sets P and N. Because of the built-in ability of the Condor architecture 

to achieve robust recognition in the face of an imperfect knowledge base, it is not 

necessary to derive context rules that are perfect discriminators. 

Collecting statistics 

Regardless of the particular learning algorithm employed, it will be necessary to 

collect some form of statistics on the performance of Condor. In the case of Type I 

context rules, several useful tables could be constructed. The utility of a context rule 

L : CSi => 0Pj 
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could be computed as a function 

f(Acc{0Pj,CSi), Gen(0Pj,CSt), Freq(CSi)) 

where 
Acc(Opj,CSi)    is the number of correct candidates generated by Opj 

when CSi was satisfied; 

Gen(Opj, CSi)    is the total number of candidates generated by Opj 

when CSi was satisfied; and 

Freq(CSi) is the number of times that CSi was satisfied. 

This function would reward operators with a high acceptance rate and discount 

context sets CSi that seldom arise. The goal of the learning algorithm then, is to 

find a collection of context rules that maximizes the sum of the utilities of the rules. 

Accomplishing this task is difficult because of the combinatorics in the number of 

potential context sets. 
We have implemented a simplified version of this algorithm which keeps track 

only of the acceptance rate of each operator without regard to satisfaction of context 

elements. The cumulative reliability of each operator in generating accepted candi- 

dates is computed and updated whenever Condor analyzes an image. This reliability 

is used as one of the heuristics when deciding which candidate is to be nominated for 

inclusion into a clique. Generally, the candidate generated by the operator with the 

highest reliability is chosen. This strategy helps build good cliques early by prevent- 

ing unlikely candidates from contaminating a clique before they can be determined 

to be inconsistent. 

Context trees 

Instead of attempting to explore all potential context sets, it is possible to modify a 

given knowledge base incrementally with the goal of improving its performance. In 

one such algorithm that we have investigated, the context rules are encoded as context 

trees. As an example, Figure 4.13 denotes the four Type I context rules shown for 

generating bush candidates. 
After each image is analyzed, Condor updates the statistics for each branch of 
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Class Context elements Operator 
BUSH 
BUSH 
BUSH 
BUSH 

SITE-IS(Stanford-hills) A CAMERA-IS-HORIZONTAL 
SITE-IS(Stanford-hills) A -. CAMERA-IS-HORIZONTAL 
-. SITE-IS(Stanford-hills) A IN-FIELD-OF-VIEW(bush) 
-n SITE-IS(Stanford-hills) A -* IN-FIELD-OF-VIEW(bush) 

VEGETATIVE-TRANSPARENCY 
DARK-REGIONS 
ACTIVE-CONTOUR-MODEL(bush) 
SEGMENTATION-REGIONS 

SITE-IS(Stanford-hllls) 

CAMERA-IS-HORIZONTAL IN-FIELD-OF-VIEW(Bush) 

ACTIVE-CONTOUR-MODEL SEGMENTATION-REGIONS 

Figure 4.13: A context tree for generating bush candidates. 

the context tree, recording how often that branch was invoked and how often it 

generated a candidate accepted by the best clique. When the reliability of any branch 

drops too low, a new context element that helps discriminate between positive and 

negative instances is added to the branch and operators for the two new leaf nodes are 

proposed. Devising optimal criteria for selecting new context elements and operators 

remains an open issue. In the example of Figure 4.13, the repeated failure of the DARK- 

REGIONS operator may cause the context tree to grow to that shown in Figure 4.14. 

Branches that are seldom satisfied can be pruned from the context tree. After 

analyzing many images, the context tree could be expected to evolve into a knowledge 

base with an improved ability to generate good candidate hypotheses. 

4.4.4    Discovering new procedures 

Ideally, a visual recognition system would be able to adapt its behavior to any en- 

vironment with only a temporary degradation of competence. In Condor this would 

require adapting the operators, evaluators, and consistency determination routines to 
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Class 
BUSH 
BUSH 

BUSH 

BUSH 
BUSH 

Context elements  
SITE-IS(Stanford-hills) A CAMERA-IS-HORIZONTAL 
SITE-IS(Stanford-hills) A -. CAMERA-IS-HORIZONTAL 

A RGB-IS-AVAILABLE 
SITE-IS(Stanford-hills) A -* CAMERA-IS-HORIZONTAL 

A RGB-IS-AVAILABLE 
-, SITE-IS(Stanford-hills) A IN-FIELD-OF-VIEW(bush) 
-, SITE-IS(Stanford-hills) A - IN-FIELD-OF-VIEW(bush) 

Operator 
VEGETATIVE-TRANSPARENCY 
GREEN-REGIONS 

DARK-REGIONS 

ACTIVE-CONTOUR-MODEL(bush) 
SEGMENTATION-REGIONS  

SITE-IS(Stanford-hllls) 

CAMERA-IS-HORIZONTAL IN-FIELD-OF-VIEW(Bush) 

HIGH- VEGETATIVE-TRANSPARENCY I      RGB-IS-AVAILABLE | ACTIVE-CONTOUR-MODEL [ [SEGMENTATION-REGIONS 

Figure 4.14: Modified context tree for generating bush candidates. 
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suit the new environment. While some improvement could be gained by reconfiguring 

the context sets, it should not be expected that Condor's current suite of procedures 

is adequate for domains much different from the foothills environment for which it was 

constructed. The procedures invoked by context rules are not in a declarative form, 

and it is hard to imagine how new visual operators could be generated automatically. 

4.5    Complexity analysis 

In the region-based approach to machine vision, an image is partitioned into r disjoint 

regions and a program must decide which of / potential labels to assign to each re- 

gion. Because these assignments cannot be made independently, there are V potential 

labelings of the image from which the program must select the best. 

In the model-based approach the regions associated with each model class are 

to be determined. Given / model classes and r possible locations of each model 

instance, there are rl potential configurations of model instances in the worst case. 

(See Tsotsos [1988] for further elaboration.) 

Most, if not all, of the existing systems for recognition can be viewed as strategies 

to explore either of these exponential search spaces. In contrast, Condor defines an 

entirely different search space — one that is polynomial in both the number of regions 

and the number of labels being considered — by identifying and exploring only the 

most promising portions of the space. 

4.5.1    Mathematical details 

To compute the computational complexity of the Condor architecture, it is convenient 

to characterize the algorithm as repeatedly testing candidates for consistency with a 

partially instantiated clique. At each stage, Condor must generate new candidates, 

update the partial orders, select a candidate for inclusion, and test it for consistency 

with the clique. In practice, Condor rarely needs to generate many new candidates 

after the initial iteration, but for analyzing worst-case complexity, we will assume 
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that it does. Let 

/ = the number of labels in the recognition vocabulary 

c = the number of candidates for each label 

r = the number of candidate regions in the largest clique 

q = the total number of cliques constructed. 

At most, Condor must construct a total of lc candidates. Completely rebuilding each 

partial order requires c2 operations, so lc2 operations are required for partial order 

construction in the worst case. Selecting a candidate from the tops of the partial 

orders is no worse than linear in the number of candidates and testing for consistency 

could require as many as r tests. The maximum number of operations required for 

one complete iteration is 
2lc + lc2 + r . (4.4) 

This cycle must be repeated for each of the r candidates introduced into the clique. 

Completely repeating the process for q cliques is not necessary, but would require 

(2/c + lc2 + r)rq (4.5) 

operations. Therefore, the worst-case complexity for analyzing one image is 

0(qr2 + lrqc2)  . (4.6) 

Formula 4.6 gives the total time complexity for analyzing one image and yields two 

important observations: 

• Despite the combinatorics inherent in the recognition problem, our approach 

has no exponential behavior. The complexity is only quadratic in the number 

of regions to be recognized. This behavior is attributable to the fact that 

Condor constructs a fixed number of cliques and does not exhaustively search 

the exponential recognition space. While there is no guarantee that Condor will 

find the optimal clique, the context-based generation and relative ordering of 

candidates ensure that only good cliques are generated early in the search. 
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• The complexity is linear in the number of terms in the recognition vocabu- 

lary. Therefore, expanding the system by adding additional categories to be 

recognized results only in a proportional increase in run time. This behavior is 

important because it allows Condor to be expanded to recognize a broad range 

of categories without a prohibitive increase in computation. We know of no 

other visual recognition system that possesses this property. 

4.5.2    The number of cliques 

The key to achieving desirable computational complexity is to accept candidates into 

cliques with sufficient reliability that the best clique is found early in the search. How 

reliable must candidate acceptance be? 

Let p be the probability that a candidate nominated for inclusion into a clique is 

a member of the best clique (i.e., the label associated with the candidate is correct).4 

The probability of constructing a clique with r valid regions is pr. On average, it will 

be necessary to construct q = \ cliques before the best one is found. Thus, if the 

best clique is to be found within the first q cliques, it will be necessary that 

p>q~. 

This relation is plotted in Figure 4.15 assuming that 40 regions are in the best clique. 

From the graph it is clear that candidate acceptance must be perfect if only one clique 

is to be generated. If 95% reliability is attainable, then 7 cliques would be required; 

if only 90% reliability were attainable, then 68 cliques would be needed. 

Although most of the operations employed by Condor are individually unreliable, 

their collective use is highly reliable. For example, in the course of analyzing the 

image in Figure 2.3, candidates that were accepted into cliques were 98% correct, 

based on a subjective assessment of which candidates were valid. At other stages of 

the analysis, 

• 53% of the candidates generated by the context sets were valid. 

• 78% of the candidates at the tops of the partial orders were valid. 
4We assume for this analysis that the probability is the same for all nominated candidates. 
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Figure 4.15: Graph of probability that a candidate is correct vs. number of cliques 
that would have to be generated to find the best clique. 

• 82% of the candidates nominated for inclusion were valid. 

• 98% of the candidates accepted by the consistency checking context sets to any 

clique were valid. 

• 100% of the candidates in the best clique were valid. 

In summary, the control structure limits the complexity of the approach: 

• Because hypothesis generation is context-sensitive, the only operators that are 

employed are those that can be reasonably expected to succeed. 

• Partial order construction is performed so that the most likely candidates are 

considered first and unlikely ones need never be considered. 

• Global consistency is used as the basis for pruning large portions of the search 

space that would be explored by systems employing only local methods. 
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4.6    Discussion 

4.6.1     Reliability 

One of the implicit goals in formulating the Condor architecture was to achieve reli- 

able recognition despite the complexity of ground-level imagery of the outdoor world. 

Based on our empirical results, we find that Condor seldom misclassifies an object, 

but on occasion will leave a feature unlabeled or labeled with a general term high in 

the abstraction hierarchy. The most desirable stance on this tradeoff between com- 

plete labeling and avoidance of error depends on the intended task. For autonomous 

navigation, it is preferable to insist upon reliable labelings at the expense of complete- 

ness. Therefore, Condor has been designed to minimize the chance of an incorrect 

label and to rely on subsequent images to resolve unlabeled features. 

Four features of the architecture are responsible for the reliability that Condor 

has demonstrated: 

Redundancy — By employing many procedures designed to achieve the same result 

but using different means, Condor increases the chance that at least one of them 

will succeed. 

Use of context — By employing procedures only in situations where they are likely 

to succeed, Condor reduces the chance that the procedure will fail. Furthermore, 

by constructing a model of objects in the world, Condor needs to recognize an 

object only once; it can verify that existence thereafter. 

Global constraint — By allowing partial recognition results throughout the image 

to constrain an interpretation, Condor reduces its dependence on local peephole- 

type operations that are prone to failure. 

Simplicity — Because the transition from signal to symbols in the generate- 

evaluate-test paradigm is short, there are fewer opportunities for error than 

in recognition paradigms that involve many transformations from image feature 

to 3D interpretation. 
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4.6.2    Recognition strategies 

Many approaches to computer vision can be categorized as top-down (model driven) 

or bottom-up (data driven). Condor's control structure blends several strategies into 

a uniform architecture for visual recognition: 

Bottom-up — Objects with distinctive features can be delineated by context rules 

tailored to find those features. 

Top-down — The 3D world model maintained by Condor is used to predict the 

location and appearance of objects in a model-based fashion. 

Lateral — Context rules tailored to find candidates similar to those already recog- 

nized provide an additional strategy for identifying features within an image. 

Tracking — Condor tracks objects through temporal image sequences by predicting 

the location and appearance of objects in the world model and verifying their 

existence. 

The presence of all these strategies in a common framework allows Condor to 

employ those that work best in any given situation and to switch among them as 

circumstances dictate. Rather than hard-coding the recognition strategy in a vision 

program, we allow context to select the appropriate strategy for Condor. 

4.6.3    Knowledge-base construction 

Machine vision algorithms can be very reliable when invoked in specific contexts in 

which all their assumptions are known to be satisfied. However, if these contexts are 

defined too narrowly, they will seldom arise. Constructing the context set knowlege 

base for Condor demands addressing this tradeoff between the specificity of a context 

set and the frequency of its occurrence. 

If contexts are denned too narrowly, an enormous number of rules will be required. 

If contexts are defined too broadly, their associated operations will be unreliable. One 

of our hypotheses has been that it is possible to find procedures that work well in 
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sufficiently broad contexts such that at least one will succeed in nearly every context 

that could arise. While we cannot offer proof that this is the case, it has been our 

experience that the number of new procedures required has decreased dramatically 

as additional images have been presented to Condor. Whether this need for new 

procedures decreases asymptotically to zero remains unknown. If so, it can be ex- 

pected that a knowledge base of modest size will be sufficient for recognition in a 

given domain; if not, it will be necessary to employ automated knowledge acquisition 

to continually amend the knowledge base to match the requirements of the current 

site. 

4.6.4    Multiple-image interpretation 

Condor has been designed to use a terrain database (CKS) to aid its interpretation of 

an image, and then to store its recognition results in that database. The emphasis has 

been on the use of the terrain database as contextual knowledge to support machine 

vision, but the maintenance of that database is equally important if the results from 

the interpretation of multiple images are to be correlated. 

One issue that arises is the association of candidates with objects in the database. 

Candidates that are generated by verifying the presence of something already in the 

database are assumed to refer to that database object. For other candidates, the 

matching of accepted candidates to database objects can be problematic. Condor 

exploits the opinion mechanism of the CKS to resolve this. Rather than attempt to 

solve the reference problem, Condor simply stores a recognized object in the CKS as 

the opinion of the image in which it was found. 

This strategy simplifies Condor's storage requirements, but permits some objects 

to be represented multiple times. Because Condor uses the terrain database only to 

help it generate hypotheses, the only ramification of this will be the generation of 

some additional hypotheses. 

For other purposes, such as path planning, a more consistent representation of 

the environment is necessary. It should be possible to design and implement a meta- 

process which oversees the database, attempting to singularize multiple instances of 

an object using knowledge of the timing and resolution of each image that posited 
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an object in the database. Accounting for Condor's known failings and the behavior 

of objects over time should permit an acceptable resolution to the reference problem, 

but this has not been done. Condor simply adds new opinions to the CKS terrain 

database, never retracting an opinion or collapsing several opinions into a single one. 



Chapter 5 

EXPERIMENTAL RESULTS 

The approach to machine vision that we have described is an attempt to overcome 

some of the fundamental limitations that have hindered progress in image under- 

standing research. The ideas designed into that architecture embody a theory of 

computational vision for complex domains. To evaluate that theory, it is necessary 

to define a goal and to perform experiments that test how well the theory achieves 

that goal. 

5.1    Evaluation scenario 

In Section 3.1, we described a scenario in which an autonomous vehicle explores a 

piece of terrain by interpreting imagery obtained by an on-board camera. The vision 

system is to derive sufficient information from the imagery to enable the vehicle to 

navigate through the environment safely and efficiently. It should avoid real obstacles 

such as trees and large rocks, but not be deterred by insubstantial obstacles such as 

bushes and tall grass. Doing this requires recognition of several natural classes and 

would provide the data necessary for a navigation system to plan an intelligent route 

through the terrain for almost any type of mobility platform on which it is mounted. 

To evaluate the Condor approach we have designed and implemented a knowledge 

base of context rules tailored to recognizing natural objects in a limited area. We 

have selected a two-square-mile region of foothills immediately south of the Stanford 

114 
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University campus as our site for experimentation. This area contains a mixture of oak 

forest and widely scattered oak trees distributed across an expanse of gently rolling, 

grass-covered hills and is criss-crossed by a network of trails. An aerial photograph and 

the corresponding portion of a USGS map depicting the region appear in Figure 5.1. 

The ultimate challenge would be to develop a visual recognition system that could 

reliably recognize instances of a target vocabulary from any non-degenerate image 

acquired within the region. Practical considerations prevent us from thoroughly test- 

ing how closely Condor achieves this goal, but the results presented here and else- 

where [Strat and Fischler 1989, Strat and Fischler 1990] should attest to the degree 

to which progress has been made. Perhaps more important is our belief that this goal 

is achievable by extending the knowledge base without making significant change to 

the architecture. 

We have chosen 14 classes for recognition on the basis of their prevalence in the 

experimentation site and their importance for navigation. These terms are: 

• Geometric horizon — the line in the image where the skyline would appear if the 

world were flat and level. 

• Complete sky — the portion of the image where the sky would appear if all 

raised objects were removed. 

• Complete ground — the portion of the image where the ground would appear if 

all raised objects were removed. 

• Skyline — the boundary between complete sky and complete ground. 

• Sky — that portion of the image which portrays the sky or clouds. 

• Ground — the earth's surface or any object such as grass, leaves, or dirt that 

lie on it. 

• Raised object — any object that protrudes above the surface of the ground. 

• Foliage — any vegetation comprised of branches and/or leaves. 

• Bush — any foliage that has no discernible trunk. 
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(a) Aerial photograph of experimentation site 
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(b) USGS map of the same area 

Figure 5.1: Aerial photograph and map of the Condor experimentation site. 
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• Tree trunk — that part of a tree that extends from the ground to the crown. 

• Tree crown — the foliage suported by a tree trunk. 

• Tree — any foliage with a discernible trunk. 

. Traj| — an elongated, unvegetated portion of the ground that would be reason- 

able for a person to walk on. 

• Grass — any portion of the ground that is predominantly covered by grass. 

Procedures have been devised to extract, evaluate, and check the consistency of 

candidates for each of these classes. Context sets have been constructed to control 

the invocation of each of those procedures. Currently the knowledge base contains 88 

procedures whose invocation is governed by 156 context sets. All the results presented 

in this document have been generated using this knowledge base or a subset of it. 

Initial contextual information was extracted from the USGS map and the aerial 

photograph. In particular, we have made use of a 30-meter-grid digital terrain model, 

the road network, and the location of forested regions as shown on the map. The 

aerial photo, being more recent, was used to update the map information. These data 

were extracted by hand and stored in the Core Knowledge Structure. 

Over 200 images have been acquired from the experimentation site, of which 

38 have been digitized and analyzed by Condor. Included in this image set are 

binocular stereo pairs obtained with a binocular camera and color images in addition 

to monochrome intensity data. Most images were digitized at a resolution between 

250 and 1000 pixels on a side. The following sections detail the results obtained by 

applying Condor to the analysis of these images. 

Three experiments have been devised to test the validity of the following hypothe- 

ses: 

The Condor architecture is suitable for recognizing natural objects in many 

contexts. 

A geographic database of an extended region can be constructed by combining 

the recognition results from several images. 
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• Using context allows Condor to learn how to recognize natural objects. 

While none of these conjectures can be proved conclusively, the results of our exper- 

imentation provide strong evidence of their validity. 

5.2    Experimentation 

The research results presented here are indicative of the performance of Condor when 

analyzing scenes from the Stanford experimentation site. By themselves, these results 

do little to endorse the Condor approach, but together with similar results that have 

been obtained with several dozens of other images, they attest to the validity of the 

ideas contained therein. The cases that are presented have been chosen because they 

exemplify the capabilities and limitations inherent in the Condor architecture. These 

results are summarized but not presented in detail because of the volume of a full 

description. 

5.2.1    Experiment 1 

One shortcoming of many machine vision systems is their brittleness when analyzing 

scenes that exhibit significant variance in the setting or appearance of their com- 

ponents. Our design has attempted to relax this restriction because natural scenes 

possess great variability. How well we have achieved this goal can be assessed by 

testing the following claim: 

Hypothesis 1 The Condor architecture is suitable for recognizing natural objects in 

many contexts. 

In this experiment, Condor analyzed images taken under a variety of conditions at 

the Stanford experimentation site. These images were selected to study how Condor 

deals with changes in scale, view angle, time of day, season, cloud cover, and other 

ordinary changes that occur over the course of several years. Here we present a sample 

of those images that illustrates the breadth of competence exhibited by Condor. 
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Figure 5.2 shows four images of the same tree for which image acquisition param- 

eters are given in Table 5.1. The field of view of each image is overlaid on the aerial 

photograph shown in Figure 5.3. 

In all four of these images, Condor successfully identified the tree without the 

benefit of any prior information (Figure 5.4). In three of the images, the trunk was 

identified by a specialized operator designed to detect thin, dark, vertical lines. In 

the fourth image, one of Condor's wide-trunk detection algorithms (a variant of a 

correlation-based road-tracking algorithm) was responsible for generating the correct 

trunk. Given that context, Condor used several of its texture measures to help identify 

the foliage and assembled the results into 3D models to confirm the existence of the 

tree. These results illustrate Condor's abilities to recognize a tree from any view angle, 

to accommodate a 7:1 range in scale, to be immune from changes that occurred over 

a period of 21 months, and to deal with seasonal variation. When Condor has prior 

knowledge of the existence of this tree, it can be recognized from a distance of 590 

feet (as demonstrated in Experiment 3), thereby extending its abilities to a 20:1 range 

in scale. 

Experiments applying Condor to other images (not reproduced here) confirm the 

adequacy of the approach for recognizing natural objects in a wide variety of settings 

that occur at the experimentation site. The modularity of the context sets makes it 

possible to expand the breadth of competence still further without degrading previ- 

ously demonstrated capabilities. 

5.2.2    Experiment 2 

To support autonomy in an intelligent, ground-based vehicle, it is necessary to syn- 

thesize a reasonably complete description of the entire surroundings, and not just 

recognize a few isolated objects. This description can be built incrementally because 

the world does not change very rapidly considering the spatial and temporal scales 

at which an autonomous ground vehicle would operate. The following hypothesis 

summarizes this notion: 
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Table 5.1: Image acquisition parameters for images used in Experiment 1. 

upper-left lower-left lower-right        upper-right 
range: 

view angle: 
date: 

194 feet 56 feet 87 feet 28 feet 
160° 208° 258° 124° 

12 April 1990    12 April 1990    12 April 1990    28 July 1988 

Jfc 

Figure 5.2: Four images of the same tree, which were used in Experiment 1. 
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Figure 5.3: The field of view of each of the images depicted in Figure 5.2. 
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Figure 5.4: The models of the trees as they were recognized by Condor. 
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Hypothesis 2 A geographic database of an extended region can be constructed by 

combining the recognition results from several images. 

To test this hypothesis, a sequence of imagery was collected which simulates the 

movement of a vehicle through a portion of the Stanford experimentation site. The 

vision system is to construct a labeled, 3D map of the primary features in the vicinity 

of the simulated vehicle by analyzing each image in turn. 

Figure 5.5 displays the eight images used in this experiment and Figure 5.6 shows 

the location of the vehicle when each was acquired. Condor was tasked to locate 

the trees, bushes, trails, and grass in each of these images, beginning with only the 

information extracted from the USGS map (Figure 5.7). 

The results of Condor's analysis are portrayed in Figure 5.8. It would be exceed- 

ingly tedious to describe the complete sequence of computations that led to these 

results. Here we highlight a few of the more interesting chains of reasoning and 

explain the misidentifications that were made: 

Image 1 — Condor has correctly labeled the sky, the ground, the trail, and part of 

the grass, although the trees on the horizon were too indistinct to be recognized. 

These results are normally transformed into three-dimensional models using 

depth data acquired from binocular stereo or a laser rangefinder. In this example 

no range data were available, so Condor estimated the depths by projecting 

each region onto the USGS DTM. The resulting models were added to the CKS 

database to be used as context while analyzing subsequent images. 

Image 2 — The model of the trail from the first image was projected i nto the second 

image and used to help identify a portion of the trail. This is accomplished by 

an operator that superimposes a pair of parallel 3D curves and deforms them 

to find the model with maximum edge strength while minimizing its curvature. 

Statistics from the intensity and texture of the grass in the first image were used 

to help identify the grass in this image. In this case, the trail-finding operators 

failed to find the upper half of the trail; as a result, the grass hypotheses in that 

area were not contradicted. 
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Figure 5.6: The location and orientation of the camera when each image in Figure 5.5 
was acquired. 
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Figure 5.7: Initial context used in Experiment 2. 

Image 3 — The tree is finally close enough to allow reliable recognition and a 3D 

model for it is computed by extracting the boundary of its foliage. The distance 

to the tree is computed by projecting the base of the trunk onto the digital 

terrain model, and the resulting model is stored in the CKS. In this instance, 

the tree is actually situated just beyond the horizon on the back side of the 

hill. Condor is unaware of this and places the tree at the crest of the hill.1 The 

entire visible portion of the trail was correctly identified. 

Image 4 — Two additional trees are recognized and stored. 

Image 5 — The same trees are recognized by predicting their location and verifying 

their existence — a much more reliable process than initially extracting them. 

No trunk was detectable in the foliage to the left of the image, so Condor labeled 

it as bush. 
1More accurate placement might be achieved without range data by finding the tree in the aerial 

photo (Figure 5.1). The Condor approach might be applied to this subproblem, using operators 
that search along the ray from the camera center in the direction of the tree. This has not been 
implemented. 
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Image 6 — The texture in the lower corners of the sixth image was found to more 

closely resemble foliage than grass, so these regions were erroneously identified 

as bushes. Beause they are very near to the camera, they occupy a significant 

part of the image, but the 3D model created for them reveals that they are less 

than 2 feet tall. 

Image 7 — Several more trees, grass areas, and part of the trail are recognized in 

the seventh image. 

Image 8 — The primary tree is recognized despite the strong shadows, but the 

lower portion of the trunk was omitted by all the trunk operators. As a result, 

the tree is misplaced in the 3D model because the base of the detected trunk 

projects onto a distant ridge. Most of the tree crown operators were unable to 

provide a decent candidate because of the overhanging branches in the upper- 

right corner — the only operator that succeeded was the one that predicts the 

crown based on the size and location of the trunk. The combined effects of the 

incomplete trunk, the nearness of the tree, and the lack of range data account 

for the poor extraction of the tree crown. When Condor uses range data instead 

of the DTM positioning method, the tree is placed and sized correctly. 

This experiment illustrates how Condor is able to use the results of analyzing one 

image to assist the analysis of other images. Although some trees and parts of the trail 

were missed in several images, the 3D model that results is nearly complete. Figure 5.9 

shows an aerial view of the composite model contained in the CKS after processing 

all eight images. For comparison, Figure 5.10 portrays a hand-generated model of 

the objects actually present on the ground, constructed by physically measuring the 

locations and sizes of the individual objects. Note that all of the trees that were 

visible in at least one image have been correctly labeled, although some of them 

were misplaced by the DTM positioning method. Most of the trail has been detected; 

enough to allow a spatial reasoning process to link the portions into a single continuous 

trail. Furthermore, everything that was labeled tree actually is a tree. 

This experiment demonstrates that Condor is able to construct a reasonably com- 

plete model of its vicinity by fusing the interpretation results from a sequence of 
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(a) Model constructed without benefit of range data 

(b) Model constructed using simulated range data 

Figure 5.9: The composite model resulting from the analysis of the image sequence 
in Figure 5.5. 
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Figure 5.10: The ground-truth database. 

images. 

5.2.3    Experiment 3 

Regardless of the architecture, knowledge-based vision systems are difficult to build. 

If the programmer needed to specify in advance all the information necessary for 

successful recognition, his task would be hopeless. Therefore, it is essential that 

a vision system have the ability to improve its competence autonomously, thereby 

learning through experience how to recognize the objects in its environment. We 

wish to test whether the Condor architecture has an ability to learn from experience. 

Hypothesis 3  Using context allows Condor to learn how to recognize natural objects. 

To test this conjecture, we return to the first image of the sequence used in Ex- 

periment 2 (Figure 5.8). When originally analyzed, Condor recognized the trail and 

part of the grass, but not the trees. Can Condor extract enough information from 

other images to enable it to better interpret this image? 
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Figure 5.11: The results of analyzing the first image from Figure 5.5 with and without 
the information extracted from subsequent images. 

Condor was tasked to reanalyze the first image, this time making use of the 

contents of the entire database constructed as a result of processing the sequence 

of eight images. The resulting interpretation is depicted in Figure 5.11. 

Two trees that could not be extracted on the first pass are now identified. Condor 

employed a tree-trunk operator whose context set requires knowledge of the approx- 

imate location of a tree in the field of view. The operator projects a deformable 

3D model of the trunk onto the image, and optimizes its fit to extract the trunk. 

This operator successfully identified two of the trees without contradicting any of the 

original recognition results. 

Figure 5.12 shows that Condor was also able to recognize a tree in the second 

image of the sequence as well. This tree was not recognizable without the models 

constructed by Condor during its prior analysis of the sequence. 
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Figure 5.12:   The results of analyzing the second image from Figure 5.5 with and 
without the information extracted from subsequent images. 
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These outcomes illustrate that the ability to use recognition results as context 

while interpreting other images enables Condor to learn how to recognize some natural 

objects. 

5.3    Analysis of results 

The experiments presented in the previous section reveal some of the capabilities and 

limitations of Condor. Two questions are explored here: 

• When Condor makes an error, what has gone wrong, and how can it be fixed? 

• What features of the architecture are responsible when Condor interprets a 

scene correctly? 

5.3.1    Fixing mistakes 

As demonstrated in the results presented in Section 5.2, Condor errs in its interpre- 

tation of some scenes. It is important to know the cause of such errors, to determine 

how difficult it would be to fix them. 

A closer look at the mistakes made during the analysis of the sequence of eight 

images used in Experiment 2 (Figure 5.8) gives some insight into the cause of typical 

errors: 

Image 1 — Although nothing was mislabeled, Condor only found several small 

patches of grass while the remainder of the hillside was labeled merely as ground. 

One operator uses known grass regions as models to identify other similar grass 

regions, but in this case the remainder of the hillside was too dissimilar. This 

illustrates an intrinsic conservatism in the approach, which attempts to avoid 

labeling something unless it is clearly supported. Knowledge of other examples 

of grass could be used as prototypes, and would allow Condor to extract these 

grass regions properly. 

Image 2 — Only the lower half of the trail was recognized as trail. The operators 

used for generating trail hypotheses failed to produce candidates that included 
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that part of the trail. As a result, grass candidates that overlapped the trail 

were not contradicted, and the upper part of the trail was mistakenly labeled 

as grass. This situation can be avoided by adding more capable trail operators 

that in this context could delineate the trail better, or by invoking the same 

operators with different parameter values. 

Image 6 — Here, Condor hallucinated two small bushes on either side of the trail. 

The strong texture exhibited by the grass in the lower corners of the image 

caused these regions to be placed relatively low in the partial order of grass 

candidates. As a result, bush candidates at these locations tended to be ac- 

cepted into cliques earlier than the competing grass candidates and remained 

in the final interpretation. It is conceivable that if more cliques had been gen- 

erated, a better interpretation without these bushes would have been obtained. 

A more direct way to fix the problem would be to add a Type II context rule 

that allows highly textured grass candidates in contexts in which they are very 

near to the camera. This would raise their position in the grass partial order 

and allow them to enter cliques before the mediocre bush candidates. 

Image 8 — The tree is misplaced and undersized because of the unfortunate com- 

bination of several problems. The trunk extractors were confused by the strong 

shadow and missed the base of the trunk. One could envision improving the 

trunk operators, but it would probably be more efffective to add shadow to the 

recognition vocabulary, and to reason about shadows directly. 

Each of these errors can be attributed to some shortcoming in the knowledge base 

of context rules employed in these experiments. When fixes are required, the following 

options are available: 

• Adding a new operator 

• Adding a new evaluation metric 

• Adding a new consistency constraint 

• Modifying the context set contained in an existing rule 
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Modifications have been suggested for correcting these mistakes and some have been 

implemented to avoid potential errors in similar cases. All of these problems can be 

fixed by refining the knowledge base without altering the architecture of the system. 

However, unless there is some assurance that additions to the knowledge base will 

not be needed indefinitely, there is the danger that the system will collapse from its 

sheer size, and sufficient recognition ability may never be achieved. While we cannot 

offer definitive evidence that this will not occur, it has been our experience that 

the frequency with which additional context rules have been needed has decreased 

dramatically as the knowledge base has grown. In fact, new images can usually be 

interpreted correctly using the existing knowledge base, 

5.3.2    Accounting for success 

Analyzing the cause of errors provides guidance for improving the competence of 

the system. Analyzing the reasons that correct interpretations are made provides an 

understanding of the essential components of the system. 

In order to gain an appreciation of the source of Condor's ability, the author con- 

ducted a series of ablation experiments in which some selected portion of the system 

was temporarily switched off and an analysis made of the resulting performance: 

No use of context: Is the construction and use of a persistent world model worth 

the effort? 

Experiment 3 showed several images in which some trees were recognized only 

after the world model had been constructed. Without access to that contextual 

information, Condor was unable to find the trees in Figures 5.11 and 5.12. This 

represents one pair of many examples in which Condor's ability can be traced 

directly to the use of information in the world model. Context is definitely 

important for recognition. 

No partial orders: Is it necessary to order the candidates before forming cliques? 

In this experiment, the Type II comparison context rules were not used, and all 

candidates were available for incorporation into cliques at the same time. Out 
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of six images that were analyzed, none yielded a clique that was comparable 

to the best clique obtained with the use of the partial orders. In fact, up to 

100 cliques were assembled for each image and most cliques so generated were 

incomplete or contained silly mistakes that are easily avoided through candidate 

comparison. The partial orders produced by Type II context rules are clearly 

an important component of the architecture. 

No context sets: Is it necessary to use context to decide which procedures should 

be invoked? 

In this experiment, Condor analyzed images while assuming that every context 

set was always satisfied and all procedures were employed. Some procedures 

failed simply because their preconditions were not met. Some hypothesis gener- 

ators produced additional candidates that impaired efficiency but did not affect 

the final interpretation because other mechanisms in the architecture were able 

to eliminate them. The aditional candidate comparators that became available 

tended to conflict with those whose contexts were properly satisfied, yielding 

very flat partial orders that caused the same problems as having no partial or- 

ders. In conclusion, embedding context sets in rules to control the invocation 

of procedures is vital to the integrity of the system. 

5.3.3    Evaluating relevance to the goal 

In summary, Condor appears to be well-suited for guiding the operation of an au- 

tonomous ground vehicle. The effects of the occasional misinterpretation are miti- 

gated by the maintenance of a model of the environment that is incrementally up- 

dated. Even when mistakes are made, they are often of a type that is unlikely to 

affect safe navigation. The fictitious bushes that were identified in the sixth image of 

the sequence from Experiment 2 are small enough that they are unlikely to harm a 

vehicle. The trees that were missed in the first two images are sufficiently distant that 

they pose no immediate threat to the vehicle. Nearby portions of the trail, which are 

most important for navigation, are recognized much more reliably than distant ones. 



Chapter 6 

CONCLUSION 

6.1     Contribution 

The key scientific question addressed in this thesis is the design of a computer vision 

system that can approach human-level performance in the interpretation of ground- 

level scenes of the natural world. Heretofore, no system has been constructed that 

demonstrates significant recognition competence in this domain and, worse, the field 

has not produced a theory about how such a system could be constructed. This 

thesis offers a new paradigm for the design of computer vision systems that holds 

promise for achieving human-level competence, and reports the experimental results 

of a system implementing that theory which demonstrates near-human recognition 

abilities in a natural domain of limited geographic extent. 

Ground-level images of the natural world were chosen as the recognition domain 

for several reasons. The natural world is a complex domain — natural features exhibit 

great variability in appearance from image to image, and defy compact description 

of their shapes. The natural world is thus a difficult visual domain, forcing the 

solution of fundamental problems rather than admitting to ad hoc solutions. The 

fact that biological visual systems evolved in a similar world of natural features and 

later adapted to the recognition of man-made artifacts lends credence to the belief 

that computer vision systems designed for the natural world may also be adapted to 

succeed in a manufactured domain. The converse is not true, and in fact there is much 
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evidence that computer vision systems designed for other domains cannot be extended 

to understand images of the natural world. Finally, numerous potential applications 

could be enabled by the creation of a computer vision system for natural object 

recognition. Autonomous vehicles for the military, for the construction industry, and 

for agriculture are perhaps the most immediate uses of this technology. 

When examining the reasons why the traditional approaches to computer vision 

fail in the interpretation of ground-level scenes of the natural world, four fundamental 

problems became apparent: 

Universal partitioning: Most scene-understanding systems begin with the segmen- 

tation of an image into homogeneous regions using a single partitioning algo- 

rithm applied to the entire image. If that partitioning is wrong, then the inter- 

pretation must also be wrong, no matter how a system assigns semantic labels to 

those regions. Unfortunately, universal partitioning algorithms are notoriously 

poor delineators of natural objects in ground-level scenes. 

Shape: Many man-made artifacts can be recognized by matching a 3D geometric 

model with features extracted from an image, but most natural objects cannot 

be so recognized. Natural objects are assigned names on the basis of their 

setting, appearance, and context, rather than their possession of a particular 

shape. 

Computational complexity: The general recognition problem is NP-hard. As a 

result, computation time must increase exponentially as additional classes are 

added to the recognition vocabulary, unless a strategy to avoid the combinatoric 

behavior is incorporated. Such provisions are a necessary component of any 

recognition system that can be scaled to embrace a real domain. 

Contextual knowledge: Despite the fact that recognition is an intelligent process 

requiring the application of stored knowledge, computer vision researchers typi- 

cally use artificial intelligence techniques only at the highest levels of reasoning. 

The design of an approach that allows stored knowledge to control the lower 

levels of image processing has proved elusive. 
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A new paradigm for computer vision systems has been developed, which addresses 

all four of the problems described above. The key provision of this novel approach is 

a mechanism for the application of stored knowledge at all levels of visual processing. 

A context set, which explicitly specifies the conditions and assumptions necessary for 

successful invocation, is associated with every procedure employed by the recognition 

system. 

The architecture is organized into three modules: 

• Labeling hypothesis are delineated by special-purpose operators whose invoca- 

tion is controlled by context sets, thereby eliminating the need for universal 

partitioning algorithms. This intelligent application of low-level operators pro- 

duces high-quality hypotheses, which limits the combinatorics to be faced when 

searching for consistent sets (cliques) of hypotheses. The employment of large 

numbers of operators ensures that quality hypotheses can be generated in nearly 

every context and provides redundancy that decreases the reliance on the suc- 

cess of any individual operator. 

• Candidates for each label are ranked so that the best ones can be tested for 

consistency before the others. This ensures that the largest consistent cliques 

will be found early in the search, and limits the computational complexity of the 

entire paradigm to a linear growth as the recognition vocabulary is expanded. 

By constructing only a fixed number of cliques for each image, the approach 

loses any guarantee of finding the largest clique, but assures the availability of 

a credible answer compatible with the computational resources of the system. 

• Consistency is enforced by procedures (controlled by context sets) that detect 

and reject physically impossible combinations of hypotheses. The clique that 

most completely explains the available data is offered as the interpretation of 

an image. Thus, individual objects are labeled on the basis of their role in the 

context of the complete clique, rather than individually. 

The approach has been implemented in the form of a complete end-to-end vision 

system, known as Condor. Images that may be monochromatic or color, monocular 
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or stereo, form the input to the system, along with a terrain database containing prior 

knowledge about the environment. Condor produces a 3D model of the environment, 

labeled with terms from its recognition vocabulary. That model is used to update the 

terrain database for use by Condor during the analysis of subsequent imagery. 

A knowledge base of context sets and procedures was constructed for the interpre- 

tation of ground-level images acquired from an undeveloped portion of the Stanford 

campus. So far, 38 images representing a wide variety of viewing conditions and 

seasonal variations have been analyzed by Condor. Experimentation with these im- 

ages reveals Condor's highly successful, although still imperfect, ability to recognize 

instances of 14 classes of natural features. The system has been used to construct 

a labeled 3D model of an environment by analyzing multiple ground level images 

such as shown in Figures 1.2 - 1.4. This model can be used in path planning and 

task exectution by an autonomous vehicle, and Condor has itself used this model to 

improve its own recognition abilities. 

6.2    Evaluation 

The evaluation of a computer vision system is a notoriously difficult endeavor. When 

semantic interpretation is involved, as in the Condor approach, there is no single 

correct answer to which results can be compared. Human vision is subjective and 

depends strongly on the assumed task, so that it is unclear how to determine whether 

a particular recognition result is or is not correct. Because there is no known math- 

ematical or logical mapping from input image to recognition result, it is difficult to 

measure the performance of an approach analytically. Instead, as with all scientific 

theories, computer recognition systems must be tested empirically. 

In this section, we informally evaluate the Condor approach along several dimen- 

sions and propose a plan that could be employed to evaluate Condor (and other 

recognition systems) through comparison of experimental results with human visual 

recognition. 
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6.2.1 Competence 

Before a machine vision system can be employed as part of an autonomous vehicle 

or other host system, it must demonstrate an acceptable level of performance. Our 

current implementation of Condor does not have a sufficiently detailed repertoire 

of context sets and procedures for the general approach to be fairly evaluated, but a 

number of arguments can be made to show that the approach could achieve arbitrarily 

high reliability, at least in principle. 

Contrary to conventional practice in computer vision, which attempts to design 

general-purpose approaches for recognition in as broad a range of contexts as possible, 

Condor provides a framework for applying different special-purpose procedures in 

different narrow contexts. Theoretically, one could achieve arbitrarily high reliability 

by adding a sufficient number of detailed context rules within Condor's knowledge 

base. Although this could conceivably require an indefinite number of rules, our 

experience has been that the number of additional context rules required to interpret 

new images decreased dramatically as the set of test images is expanded. 

The Condor architecture incorporates four mechanisms whose primary purpose is 

to attain reliable recognition results, even in the presence of unreliable components: 

• Control of procedures using context sets allows the invocation of only those 

procedures that have a significant chance of succeeding. 

• The employment of large numbers of operators provides redundancy to increase 

the chance that at least one will generate a valid hypothesis in any circumstance. 

• Evaluation of hypotheses is not performed on the basis of a single metric, but 

by the unanimous vote of many metrics. 

• Recognition decisions are made for entire sets of consistent hypotheses, rather 

than individually. 

6.2.2 Scalability 

A major concern with all recognition systems is how the performance changes as 

the system is scaled to larger domains.  Performance can be characterized in many 
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ways. In Section 4.5, the computational complexity of the approach was shown to 

increase only linearly as the recognition vocabulary is increased. Here we examine 

how the reliability of the interpretation can be expected to change as the recognition 

vocabulary is expanded. 

Increasing the recognition vocabulary in Condor requires extending the abstrac- 

tion hierarchy (Figure 3.1) by adding a term as a subclass of an existing term. For 

example, one could add pine and oak as subclasses of tree. Context rules must be 

created for generating, evaluating, and checking the consistency of pine and oak hy- 

potheses, although appropriate ones can also be inherited from tree. Because of the 

modularity of the knowledge base, context rules for the other terms do not have to 

be modified. 

Extending the vocabulary and its corresponding knowledge base is syntactically 

easy, although devising the new context rules may require a good deal of effort. How 

does such a vocabulary expansion (adding oak for example) affect the quality of the 

recognition? 

The additional context rules will have no effect on other comparisons until an 

instance of the new class is added to a clique, thereby becoming part of the available 

context. Thus, candidates and partial orders for oak will be created, but previous 

computation paths are not changed. 

Eventually, a candidate for the new label, say oak, will be accepted into a clique. 

If this oak happens to be one that would not have been identified as a tree without the 

resolution provided by the oak context rules, a ripple effect on other label hypotheses 

could occur:1 

Candidate generation: Context sets for the generation of candidates for other 

terms, such as tree-trunk, could now become satisfied, causing the generation of 

new tree-trunk hypotheses. 

Candidate evaluation: Candidates may now be ranked differently, given the pres- 

ence of this oak in a clique, because additional metrics may become available 

JThis would not happen if the procedures associated with tree took full advantage of the available 
data (including the narrower context defined for oak trees). 
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through the satisfaction of previously unsatisfied context sets. Although ear- 

lier context sets do not reference oaks, Condor knows through the abstraction 

hierarchy that every oak is a tree (as well as a raised object). 

Clique formation: The presence of an oak in a clique can have two effects on con- 

sistency determination. Other candidates may be found to be inconsistent 

with the oak, thereby eliminating some candidates that might otherwise have 

been accepted into the clique. Second, additional context sets for consistency- 

determination routines may become satisfied, thereby adding additional con- 

straints for use in clique formation. 

All of these changes may lead to results better or worse than those obtained be- 

fore expanding the vocabulary. However, if all the context rules are reliable (i.e., the 

partial orders never rank an incorrect candidate above a correct one, and the consis- 

tency checks never allow an incorrect hypothesis into a clique), then the expanded 

knowledge base will only give a more complete interpretation of the scene. If this 

reliability assumption is correct, the incorporation of context rules for an additional 

term can only add to the already known context, which in turn could only cause 

more context sets to be satisfied, which could only improve the recognition result. 

In practice, this monotonicity is approachable, but cannot be guaranteed in general 

because it is unlikely that a completely reliable knowledge base could be built. For 

a single image however, if Condor attains a correct interpretation without the new 

vocabulary term, it will also attain a correct interpretation with the new term. 

6.2.3    Generality 

The Condor knowledge base has been constructed to enable an autonomous vehicle 

to recognize objects at the Stanford experimentation site and the system has been 

demonstrated using imagery obtained there. What would happen if the vehicle were 

to wander beyond the experimentation site? What would be involved to employ 

Condor in a different domain? 

The system can be divided into three components: the architectural framework, 

the knowledge base of context rules, and the terrain database. 
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• The architecture contains nothing that is peculiar to the Stanford site. In fact, 

it has been designed as a general theory for image interpretation in any complex 

domain. No changes should be necessary to adapt the architecture to a different 

domain. 

• The knowledge base of context rules contains procedures and their associated 

context sets. The context sets can span the range from extremely specialized 

(e.g., horizontal camera, looking south, on a cloudy day, at the Stanford experi- 

mentation site) to the completely general (e.g., always). Certainly the rules with 

specialized context sets cannot be expected to perform well in other contexts, 

and indeed their procedures will not be invoked by Condor. The procedures 

with more general context sets may apply, but cannot be relied upon because 

they were designed without consideration for the unknown characteristics of 

hypothetical unforeseen domains. Thus, the context rules must be reexamined, 

and new ones added to deal with new or unanticipated domains. The collection 

of procedures will contain algorithms that are useful in other domains, but may 

require augmentation with additional procedures. 

• The terrain database is not necessary for Condor's operation, but significantly 

improves its performance when available, as demonstrated in Experiment 3 

(Section 5.2.3). It is always best to provide as much data as possible about a 

new environment, but Condor could walk off the edge of its terrain database 

and gradually extend the data through its own recognition results. 

What domains other than ground-level natural scenes are suitable for analysis 

by Condor? The two most important characteristics of preferable domains are the 

following: 

• It must be possible to construct procedures that delineate the desired features, 

although they need not be reliable. Only a small percentage of all hypotheses 

generated by these procedures must be correct. The domain of extracting build- 

ings and roads from aerial imagery is probably well-suited for Condor, whereas 

the interpretation of ground-level scenes of the Martian surface, for which rock 

delineation is very difficult, is questionable. 
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• The domain must have sufficient contextual constraints. Interpretation of medi- 

cal imagery in which anatomy provides strong constraint is probably well-suited 

for Condor. On the other hand, the industrial bin-of-parts problem provides 

insufficient contextual constraints. 

6.2.4    Evaluation plan 

Direct comparison of the performance of two alternative approaches to natural object 

recognition would be desirable, but is impractical because computer vision systems 

are typically designed to function in distinct domains in support of different tasks; 

they cannot be evaluated independent of scene content or their supporting knowledge 

bases. The only currently feasible alternative is to compare a system's performance 

with human interpretation, despite the subjective nature of human vision. 

Regrettably, the field of computer vision has yet to devise an accepted procedure 

for empirically evaluating the performance of its recognition systems. Here we pro- 

pose a methodology for evaluating Condor, that might hold merit as an evaluation 

procedure for all recognition systems. 

Our goal was to design an architecture that is able to represent and use visual 

knowledge of a limited geographic area so thoroughly that an autonomous vehicle 

could recognize everything relevant to its navigation and planning. The target vo- 

cabulary (Section 5.1) lists the classes of objects that have been deemed relevant and 

within the intended sphere of competence. 

The proposed evaluation plan is as follows: 

• The task to be evaluated is the identification of all instances of the target vocab- 

ulary in any image of a particular scene. The test images may be acquired over 

a period of time, exhibiting a range of viewing and environmental conditions, 

similar to the task employed in Experiment 1 (Section 5.2.1). 

• The vision system designer will know the site in advance and have access to rep- 

resentative imagery. The actual images to be used in the test will not be made 

available beforehand. When ready for evaluation, the system must delineate 

each instance of the target vocabulary in each test image. 
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• The test images will also be given to a number of human subjects, who are 

to identify all instances of the target vocabulary in each image. They are to 

delineate each object as well as possible and name its class. All objects that 

are labeled identically by a preponderance of the human subjects (say 98%) will 

form the standard against which the computer vision system will be compared. 

• Those objects that are not labeled or delineated consistently by nearly all the 

human subjects will not be considered during the evaluation. 

• The comparison of computer and human performance will emphasize the ac- 

curacy of labeling and not the precision of delineation. Any object that is 

delineated approximately the same by both the machine and the human stan- 

dard must be labeled the same. The fraction of correctly labeled objects is 

computed and used as the basis for assessing the performance of the system. 

The difference between this fraction and the percentage (98%) of human sub- 

jects who have agreed measures the degree to which human-level performance 

has been achieved. 

This methodology provides an objective basis for evaluating a computer vision 

system, but requires substantial effort to invoke. Responses must be collected from a 

large number of people to ensure a statistically significant set of test data. Software 

must be written that allows the subject to enter delineations directly into the com- 

puter and that can decide when two delineations are substantially the same. These 

factors have so far precluded a formal evaluation of Condor and should be remedied 

in the future. The value to the field of computer vision warrants expenditure of 

substantial effort on a standard procedure for empirical evaluation such as the one 

described here. 

In its present embodiment, Condor is still a demonstration system which should 

be evaluated primarily in terms of its architectural design and innovative mechanisms, 

rather than its absolute performance. While Condor has demonstrated a recognition 

ability approaching human-level performance on some natural scenes, it is still per- 

forming at a level considerably short of its ultimate potential (even for the Stanford 
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experimentation site). The knowledge acquisition mechanisms, which are a key as- 

pect of the architecture, should allow continued improvement in performance with 

exposure to additional site imagery. 

6.3    Conclusion 

Recognizing an object involves more than a simple classification based on measured 

features. It entails the use of contextual information and stored knowledge of the 

properties of the world, as well as the measured features, to properly interpret sensed 

data. 

A new paradigm for image understanding has been proposed, and used to recog- 

nize natural features in ground-level scenes of a geographically limited environment. 

This context-based approach is exciting because it deemphasizes the role of image 

partitioning and emphasizes the recognition context in a way that has not been at- 

tempted before. This new focus could lead to the construction of vision systems that 

are significantly more capable than those available today. 
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