REPORT DOCUMENTATICN PAGE

Form Approved
OMB No. 07040188

1. AGENCY USE ONLY /Leave blank] 2. REPORT DATE
30 May 97

Puhllc mpnmng burdsn for ﬁns collec\mn nf |nformauon is asurmted to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and complsting and
g the of il g this burden estimate or any other aspect of this callection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorats for
Information Operations and Reports, 1215 Jeffarson Davis nghway Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

AT MULTIPLE TIME SCALES

CHARACTERISTICS OF 20TH CENTURY DROUGHT IN THE UNITED STATES

6. AUTHOR(S)
DANIEL C EDWARDS

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
COLORADO STATE UNIVERSITY FORT COLLINS, COLORADO

8. PERFORMING ORGANIZATION
REPORT NUMBER

97-051

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS{ES)
DEPARTMENT OF THE AIR FORCE

AFIT/CI

2950 P STREET

WRIGHT-PATTERSON AFB OH 45433-7765

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

12b. DISTRIBUTION CODE

13. ABSTRACT /Maximum 200 words/

DISTAETTION eEreet B
Bpproved tor pupic reiocsst
Ep&mmmmn Unbmted

070602 (18

14. SUBJECT TERMS

15. NUMBER OF PAGES
155

[76. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION

19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

DTIC QUALITY INSPECTED 1

Standard Form 298 :SRev 2-89) (EG)
Prescribed by ANSI 9.18
Designed using Psriurm Pro, WHS/DIOR, Oct 94




THESIS

CHARACTERISTICS OF 20TH CENTURY DROUGHT
IN THE UNITED STATES AT MULTIPLE TIME SCALES

Submitted by
Daniel C. Edwards

Department of Atmospheric Science

In partial fulfillment of the requirements
for the Degree of Master of Science
Colorado State University
Fort Collins, Colorado

Summer 1997



Daniel C. Edwards

Characteristics of 20th Century Drought in the United States at Multiple Time Scales
Captain, USAF

1997

155 pages

Master of Science degree in Atmospheric Science

Colorado State University




COLORADO STATE UNIVERSITY

May 5, 1997

WE HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER OUR
SUPERVISION BY DANIEL C. EDWARDS ENTITLED CHARACTERISTICS OF
20TH CENTURY DROUGHT IN THE UNITED STATES AT MULTIPLE TIME
SCALES BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE.

Committee on Graduate Work

/Zm - @w/
ﬁ () el
P
mjfﬂ//(é/

Department Head -




ABSTRACT OF THESIS
CHARACTERISTICS OF 20TH CENTURY DROUGHT
IN THE UNITED STATES AT MULTIPLE TIME SCALES

Characteristics of drought and wet periods were analyzed in terms of areal
coverage, intensity, duration, frequency, and variability at different space and time scales.
This provided insight not only into the historical perspective of anomalously dry and wet
conditions, but also into the long-term variation of climate in the United States. The
Standardized Precipitation Index (SPI) provided the means to analyze drought and wet
periods at different time scales, a perspective that is not achieved with typical drought
indices. The National Climatic Data Center and the Carbon Dioxide Information Analysis
Center compiled the U.S. Historical Climatology Network (USHCN) for the purpose of
analyzing climate in the United States. The USHCN includes monthly precipitation data
for 1,221 stations in the contiguous United States. The distribution of stations provided
the means to examine the areal coverage of drought and wet events both nationally and
regionally, and the climate record of the USHCN provided the means to analyze the
frequency and variability of drought and wet events for the years 1911 through 1995.

The contiguous United States as a whole has become wetter over the period 1911-
1995. Additionally, all nine major regions studied for the United States have also become
wetter over the period. As a result, there has been a lower frequency of both short- and

long-term droughts and a higher frequency of both short- and long-term wet periods

il



during the last 25 years of the period of record. Also, for the country as a whole, the areal
coverage and intensity of long-term droughts between 1911 and 1970 are unmatched by
the long-term droughts of the last 25 years of the period. On the othér hand, the short-
term droughts of the last 25 years of the period do compare in intensity and areal coverage
to short-term droughts of the first 60 years of the period.

For the country as a whole, the average duration and frequency of short-term wet‘
periods have increased at a magnitude opposite to the decreasing average duration and
frequency of short-term droughts over this period. Moreover, the percentages of stations
experiencing drought at all time scales have decreased at rates nearly opposite to the
increasing percentages of stations experiencing anomalously wet conditions at all time
scales. Nevertheless, the contiguous United States was never entirely in or out of drought
at any time scale during this period. Additionally, the contiguous United States was never
entirely experiencing or entirely without anomalously wet conditions.

Regionally, the most dramatic increase in the frequency of long-term wet
anomalies over the last 25 years of the period has occurred in regions along the
Mississippi and Ohio river valleys. Despite the occurrence of a few intense short-term
droughts, these regions have all experienced long-term wet periods in the 1970s, the
1980s, and again in the early 1990s. Furtherfnore, from 1970 through 1995, the most
consistent seasonal wet anomalies for these regions have occurred in the autumn.

Daniel C. Edwards
Atmospheric Science Department
Colorado State University

Fort Collins, CO 80523
Summer 1997
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1.0 INTRODUCTION

When June was half gone, the big clouds moved up out of Texas and the
Gulf, high heavy clouds, rainheads. The men in the fields looked up at the
clouds and sniffed at them and held wet fingers up to sense the wind. And
the horses were nervous while the clouds were up. The rainheads dropped
a litile spattering and hurried on to some other country. Behind them the
sky was pale again and the sun flared. In the dust there were drop craters
where the rain had fallen, and there were clean splashes on the corn, and
that was all.

--John Steinbeck,
from his Pulitzer Prize winning The Grapes of Wrath

Drought may be the most devastating, yet least understood of all weather
phenomena. Drought can erupt in a matter of months, or it can gradually creep up on an
unsuspecting society over several seasons. Drought is rarely forecasted witﬁ any skill, and
goes unobserved by the public until impacts from the drought have already occurred.
Inevitably, officials charged with mitigating those impacts want and need to know how a
current drought measures up historically to other droughts in terms of intensity, areal
coverage, variability, and duration. Additionally, these factors differ in relative time and

space scales from drought to drought.
1.1 Background on Drought

Numerous interpretations of drought have been offered through the years.

However, the most significant determinant of drought is the amount of precipitation an



area gets compared to normal. Dracup ef al. (1980b) state that in order to determine the
cause of drought events, attention should be focused on precipitation drought. Landsberg
(1982) states that droughts are brought about meteorologically by a prolonged lack of
precipitation and that they occur even in regions of usually ample rainfall. Felch (1978)
distinguishes droﬁght from aridity where aridity is permanent low average rainfall and
where drought is temporary lower than average rainfall. Palmer (1965) states that a
drought period is generally on the order of months or years, for they occur when the
moisture supply of a region consistently falls short of what is climatologically expected.
Ogallo (1994) states that meteorological drought generally occurs when there is a
prolonged absence or deficiency or poor distribution of precipitation. Furthermore,
Ogallo (1994) states that meteorological drought has far-reaching impacts on water-use
systemé and therefore others have defined drought according to the degree of impact on
different water-use systems. For example, an agricultural drought is one in which soil
moisture is inadequate and those sources of water normally used to replenish soil moisture
are unavailable. A hydrological drought is one in which reservoirs have been depleted or
streamflows are inadequate for hydroelectric production. Still further, Dracup ef al.
(1980b) define an economic drought in the context of a period of low water supply which
affects society’s productive and consumptive activities. These distinct perspectives on
drought fall in line with Subrahmanyam’s (1967) reasoning that drought is interpreted
variously, thoﬁgh not conflictingly, according to the experiences of individuals,
communities, or nations. Moreover, since impacts from drought differ with location, time

scale, and viewpoint; Wilhite and Glantz (1985) contend that available definitions of



drought simply illustrate the varying and unique perspectives on drought (meteorologic,
agricultural, hydrologic, and socio-economic) and they subsequently conclude that there
can not and should not be a universal definition of drought.

Defining the beginning and ending of a drought may be more challenging than
defining what a drought is. Tannehill (1947) states that the first rainless day in a spell of
fine weather contributes as much to the drought as the last day. Felch (1978) states that
drought does not necessarily begin with the cessation of rain, but when available stored
water supplies (whether soil, reservoir, streams, etc.) are depleted. Similarly, a drought
does not necessarily end when normal rains return, for water storage systems must first be
replenished.

Causes of drought are dependent upon the climatic zone of interest, but overall,
causes are complex and interwoven. Felch (1978) claims the greatest factor in the
prolongation of drought is the absence of large scale vertical motion. Landsberg (1982)
states that the incidence of drought is dominated by circulation anomalies in long wave
patterns and by a weakening of the intertropical convergence zone. For example, Karl and
Quayle.(l 981) state that the emergence of a 700 millibar pressure ridge over the southern
Great Plains in June 1980 strengthened ihto an anticyclone by July resulting in the summer
drought of 1980 in the southern United States. Trenberth and Guillemot (1996) found
that during the summer drought of 1988 in the central United States, the jet stream and
storm track were displaced further northward than normal resulting in weak transient eddy
activity over North America. On the other hand, they found that during the summer

floods of 1993 in the central United States, the storm track was displaced southward of its



usual summer position and this resulted in an increased number of cyclonic disturbances
that were able to tap into the rich moisture source from the Gulf of Mexico. Soil moisture
feedbacks also appear to have influence on anomalously wet or dry conditions. Landsberg
(1982) calls the soil moisture feedback process “a phenomenon of self-perpetuation”.
Oglesby (‘1 991) found that reduced soil moisture in the spring can iﬁduce drought in the
summer. Similarly, Trenberth an& Guillemot (1§96) calculated that much of the
precipitation associated with the floods of 1993 in the central United States appeared to
result from local evaporation and a recycling of moisture. They further state that these
soil moisture feedbacks may be more important in the summer when prevailing westerlies
weaken. Air-sea interactions also play a key role in droughts and anomalously wet
periods. Tannehill (1947) states the oceans, especially the Pacific Ocean, are the medium
through which persistent controls of rainfall are maintained in the United States. Oglesby
(1991) concluded from general circulation model (GCM) simulations that moisture
transport from the Gulf of Mexico plays an important role in modulating or ameliorating
drought conditions for much of the south-central United States. Namias (1966)
hypothesized that the 1960s drought in the northeast United States was associated with
abnormal hemispheric wind patterns from the surface to the mid-troposphere that led to a
cold anomaly in the surface waters along the continental shelf that in turn provided a
reinforcing feedback on the abnon;la] circulation of the overlying atmosphere, thereby
perpetuating the drought. Still others have suggested links to El Nifio, La Nifia, and the
Southern Oscillation. For example, Piechota and Dracup (1996) found relationships

between El Nifio and extreme drought years in the Pacific Northwest of the United St;dtes



as well as a relationship between La Nifia and dry conditions in Texas. The Climate
Prediction Center (1996) states that La Nifia conditions in the tropical Pacific Ocean plus
an extremely persistent negative phase of the North Atlantic Oscillation contributed to the
development of a planetary scale circulation pattern that included strong upper level
ridging across the southwest United States that led to the spring 1996 drought in the
Southern Plains and Southwest of the United States.

Furthermore, Landsberg (1982) states that droughts are a standard part of the
climatic system and they should not be interpreted as a symptom of climate change
because they will inevitably be replaced by years of near average or excessive rainfall.
Hence, droughts are very much a part of the natural variability of climate. Most years will
be near normal, but there will also be some wet years and some dry years, or as Namias

(1966) puts it, abnormality of cumulative weather is in fact a “normal” condition.
1.2 Time Scales of Drought

In the context of drought, a time scale is the period over which precipitation events
are analyzed and compared to what is normal for the period during the history of a
location. Dracup e? al. (1980b) state that the selection of the averaging period or time
scale for a particular drought study is dependent almost entirely on the purpose for which
the study is intended. McKee et al. (1993) explain that the time scale over which
precipitation deficits accumulate functionally separates different types of drought. For
example, a 3 month precipitation deficit (seasonal drought) may have drastic impact on

agriculture with no significant impact on city water supplies. Or as Piechota and Dracup



(1996) put it, what may be a critical drought for farmers may be only a mild dry spell for
an urban water consumer. For example, the Climate Prediction Center (1996) found that
the short-term spring drought of 1996 in the Southwest and Southern Plains of the United
States deteriorated the region’s crops and pastures with the unirrigated winter wheat crop
in New Mexico almost totally lost. However, the Climate Prediction Center (1 996) found
regional reservoir, lake, and river impacts from the drought to be relatively minor.
Fortunately, the summer monsoon season was wetter than normal and ended this short-
term drought before the hydrologic community experienced significant impact. On the
other hand, even if a current season has normal precipitation, a preceding series of seasons
with below normal precipitation may have depleted the holdings of a reservoir causing a
city to ration water while a farmer who is primarily dependent upon that season’s
precipitation for dryland crops may be less affected (the Climate Prediction Center (1996)
states that topsoil responds primarily to short-term moisture anomalies). For example,
Moore ef al. (1993) reported that while California experienced varying degrees of short-
term drought at different times and locations of the state in the late 1980s and early 1990s,
the cumulative effect of these droughts culminated in severe water supply cutbacks and
increased water prices. And while the winter precipitation for 1992-1993 was 155% of
average and represented the best water outlook in six years, the Association of California
Water Agencies (1993) stated that storage in major reservoirs remained well below normal
and that groundwater basins in the San Joaquin Valley would need several years to
recover. Kingery (1992) gives examples of how drought impacts change with time scale.

For example, a dry summer (seasonal or 3 month time scale) in an agricultural region



negatively impacts crop yield. A dry autumn and winter (6 month scale) in the mountains
results in a light snowpack and therefore reduces the upcoming spring’s resultant
streamflow. Below normal precipitation over four years (48 month or long-term time
scale) results in aquifer drawdown.

For this study, monthly precipitation data for individual stations is utilized. Hence,
a time scale for this study is the number of months (/) over which the precipitation is
totaled and compared to what is normal for i months in the climate record. For example, a
precipitation total for March, 1992 comprises a one month time scale for which the data
for March, 1992 is compared to what is normal for the month of March for the location in
question. This analysis provides a short-term perspective on precipitation for the station.
Likewise, a precipitation total for the period February, 1967 through January, 1971 isa 48
month time scale for which the precipitation total for this period is compared to what is
normal for this 48 mohth period in the station’s history. This provides a long-term

perspective on precipitation for the station.
1.3 Purpose

The purpose of this study is to define the occurrence and variability of drought in
the United States in order to furnish climatologists and drought mitigation planners with
information on how to put current drought into historical perspective. The opposite of
drought is a period of anomalously wet conditions. Analyses of both drought and wet
periods on national and regional scales are provided. Also included are analyses of these
drought and wet periods at different time scales, a perspective that is not achieved with

typical drought indices. Analysié of drought and wet periods in terms of areal coverage,



intensity, duration, and variability at these different space and time ggales provides
valuable insight not only into the historical perspective of anomalously dry and wet

conditions, but also into the long-term variation of climate in the United States.



2.0 DATA

2.1 The USHCN Data Set

The National Climatic Data Center (NCDC) along with the Carbon Dioxide
Information Analysis Center (CDIAC) compiled the United States Historical Climatology
Network (USHCN) for the expressed purpose of analyzing long-term climate variation.
In fact, Easterling et al. (1996a) claim the USHCN is the best data set available for
analyzing long-term climate trends in the United States on regional scales. The third
revision of this data set is used for this study. The USHCN provides the opportunity to
investigate the occurrence of drought in the contiguous United States during the 20th
century. As shown by figure 2.1 from Easterling et al. (1996a) (used with permission
from CDIAC), the 1221 weather stations included in the USHCN are distributed fairly
homogeneously nationwide. Easterling ez al. (1996a) state that the USHCN has been
subjectéd to extensive quality assurance procedures by NCDC and CDIAC to remove
biases, discontinuities, and inhomogeneiﬁes that may have developed during a station’s
history due to station moves or instrument changes. Additionally, the quality assurance
process provides estimates for missing or outlier data. As described by Easterling et al.
(1996b), these data adjustments are made to improve the homogeneity of the data, a
critical characteristic for data sets that are used to study climate variation. Peterson and

Easterling (1994) state that using data that have not been adjusted adequately for
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inhomogeneities can often lead to erroneous conclusions because the climate change signal
can be artificially obscured or enhanced by discontinuities in the data. For an example,
Peterson and Easterling (1994) cited an analysis from Hansen and Lebedeff (1988) that
indicated a considerable warming trend in the 1980s around St. Helena Island when this
‘warming’ was actually due to an inhomogeneity in the St. Helena Isiand time series
caused by the station moving to a’lower elevatioﬁ. For the purpose of this analysis, the
USHCN provides a reliable and representative data base that includes a mostly complete
and long-term climate record.

The precipitation portion of the USHCN is a gauge-based data set. Xie ef al.
(1996) state that gauge observations have the longest recording period, making them the
most suitable source from which a climatology of precipitation can be defined.
Furthermore, they state that gauge observations are the only source that are obtained
through direct measurements, and that satellite estimates and model predictions that are
indirect in nature need to be calibrated or examined using gauge observations in one way
or another.

Monthly precipitation data from the USHCN is available for most stations in three
forms. The “Areal Edited” data is the original raw data that have been screened for
suspect observations or outliers (over 3 standard deviations from the period of record
mean monthly precipitation). Any _suspect or outlier observations are flagged. The “Time
of Observation” data is the “Areal Edited” data that have been adjusted so that all the data
will be consistent with a midnight-to-midnight observation schedule (this adjustment is

made for temperature data in the USHCN and is 2 moot point for the precipitation portion
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of the data set). Finally, the “Filnet” data is the “Time of Observation” data that have
been adjusted for biases and inhomogeneities due to instrument change or station
relocation. Additionally, the “Filnet” data contains estimated values for missing or outlier
data.

For this study, precipitation data was analyzed covering the period January, 1911
through December, 1995. Monthly precipitation data from the USHCN is available-for all

1221 stations, and figure 2.2 shows that there is minimal missing data for this time period.

Percent of USHCN Monthly Precipitation Data Missing by Year
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Fig 2.2 Percent of USHCN monthly precipitation data missing by year for the
period 1895 through 1995.

Whenever available, the “Filnet” data was used for this analysis. The “Filnet” data

contains the adjusted time series of monthly precipitation for the individual stations. An

12



assertion is made by Easterling ef al. (1996b) that the use of an adjusted climatological
time series such as this provides the basis for more robust regional analyses which is a goal
of this study. If the “Filnet” data was missing or unavailable, the “Areal Edited” data was
used. Ifboth sources of monthly precipitation data were missing for a station for a given

month/year, then the data was estimated.
2.2 Estimation of Missing Data

In order to preserve continuity of the monthly precipitation time series for this
study, estimates of missing data were made. Data from a station’s nearest neighbors in the
USHCN were used to make the estimations. A modified version of the Normal-Ratio
Method that was introduced by Paulhus and Kohler (1952) was the procedure used to
estimate the missing data. The Normal-Ratio Method uses the mean annual precipitation
at the target station divided by the mean annual precipitaﬁon at the nearest neighbor
(index station) as a weighting factor. Paulhus and Kohler used 3 index stations. This
method was modified to use mean monthly precipitation values instead of mean annual

values since mean annual values mask the distribution of precipitation throughout the year:

()
3[\N, N, N,

where:
P, = estimated precipitation at the target station for a given month/year
P,, P,, and Ps = precipitation at a respective index station for a given month/year

N, = mean precipitation at the target station for a given month
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Ni, Np, and N3 = mean precipitation at respective index station for a given month
Additionally, the modification suggested by Young (1992) was used to further weigh the
nearest neighbor monthly precipitation values by the square of the 7 statistic. The ¢
statistic is computed using the correlation coefficient for the month in question between
the target station and the nearest neighbor. The 7 statistic is a test statistic for testin;g the
significance of the linear association between two variables. The square of the ¢ statistic

represents the significance of the correlation coefficient:

_ riz (ni - 2)

=W 2.2
" 22)

where:
W, = weight of ith index station attributed to linear correlation

1, = correlation coefficient for month in question between target station and ith
index station

n, = number of observations used from each population to determine the
correlation coefficient

One degree of latitude was assumed to be approximately equal to one degree of longitude.
A search for the nearest neighbors within a 0.1 degree radius of the target station was
accomplished. The radius was extended incrementally by 0.1 degree until atleast 10
nearest neighbors were found. Similar to a method used by Eischeid et al. (1995), from
the 10 or more nearest neighbors, a maximum of 4 index stations were chosen that had the
highest correlation coefficients for the month in question of at least 0.35 with the target
station and that did not have missing precipitation data for the month/year in question. (If
none of the 10 or more nearest neighbors met those requirements, then the precipitation

data for the month/year in question remained missing for the target station). The
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month/year precipitation values from the qualifying index stations were then weighted by
the ratio of the mean monthly precipitation of the target station to the corresponding mean
monthly precipitation of the index station (Paulhus and Kobhler, 1952) and by the
corresponding square of the ¢ statistic (Young, 1992) in order to estimate the missing

month/year precipitation value for the target station:

sl oo oo
ZW/: Nl N2 N3 N4

In the end, this method ensures that the station with a missing observation will
have a monthly precipitation estimate that will emulate the drought (or non-drought)

characteristics of those neighbors it is highly correlated with.
2.3 Time Series of Monthly Precipitation

Landsberg (1982) calls precipitation “fickle” and states that certain people even
have the audacity to designate mean values of precipitation as “normals”. Actually, a
typical frequency distribution of precipitation for a given time scale (monthly, seasonal,
annual, ...) is not Gaussian, but rather skewed towards larger values of precipitation
(skewed to the right). This implies that the mean precipitation for a given period is larger
than the median. Hence, more than half of the time, precipitation totals are below
average. For example, figure 2.3(A) is a histogram showing the frequency distribution of
3 month (January, February, March) precipitation totals for Fort Collins, CO for the
period 1911 through 1995. This figure illustrates the skewness of precipitation frequency
distributions. The mean precipitation for this period is 2.03 inches while the median is

only 1.73 inches. However, with increasing time scale (ie. 2 year or 4 year precipitation
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Fig. 2.3 (A) Frequency distribution of 3 month precipitation amounts (inches)
for the month of March (totals for January, February, and March)
for Fort Collins, CO for the years 1911 through 1995.
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Fig. 23 (B) Frequency distribution of 12 month precipitation amounts (inches) for
the month of March for Fort Collins, CO for the years 1911 through 1995.
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Fig. 2.3 (C) Frequency distribution of 48 month precipitation amounts (inches) for
the month of March for Fort Collins, CO for the years 1911 through 1995,
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amounts), Katz and Glantz (1986) found precipitation frequency distributions to become
approximately Gaussian. For example, figures 2.3(A-C) are histograms showing the
frequency distribution of precipitation for Fort Collins at time scales of 3 months, 12

months, and 48 months. A statistical software package (SAS) was used to calculate the

coefficient of skewness:
. M
a; = (0;3 (2.4)
where:

a, = coefficient of skewness
4, = E(X — y)® =third moment about the mean

o = standard deviation
This measure of skewness is negative for distributions skewed to the left and positive for
distributions skewed to the right. A Gaussian distribution has a skewness of zero. In
figures 2.3(A-C), skewness decreases between the 3 month and 12 month time scales from
+1.74 to +1.04 and actually goes slightly negative at the 48 month time scale.
Neveftheless, the frequency distributions of 48 month precipitation amounts for most

stations are nearly Gaussian.
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3.0 METHODOLOGY

3.1 SPI Defined

McKee et al. (1993) developed the Sta;ldardized Precipitation Index (SPI) for the
purpose of defining and monitoring drought. Among others, the Colorado Climate
Center, the Western Regional Climate Center, and the National Drought Mitigation Center
use the SPI to monitor current states of drought in the United States. The nature of the
SPI allows an analyst to determine the rarity of a drought or an anomalously wet event at
a particular time scale for any location in the world that has a precipitation record.

Thom (1966) found the gamma distribution to fit climatological precipitation time

series well. The gamma distribution is defined by its frequency or probability density

function:
1 1 -x/
g(x)=— x= e ** for x>0 (3.1)
BT(a)
where:
a>0 a is a shape parameter (3.2)
p>0 " [ is a scale parameter 3.3)
x>0 x is the precipitation amount 3.4)
I'a)= j y*le?dy I'(a) is the gamma function (3.5)
0 .
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For example, figure 3.1 shows the gamma distribution with parameters a =2 and f=1.
This distribution is skewed to the right with a lower bound of zero much like a
precipitation frequency distribution.

Computation of the SPI involves fitting a gamma probability density function to a
given frequency distribution of precipitation totals for a station. The alpha and beta
parameters of the gamma probability density function are estimated for each station, for
each time scale of interest (3 months, 12 months, 48 months, etc.), and for each month of
the year. From Thom (1966), the maximum likelihood solutions are used to optimally

estimate @ and f:

&:—1—(1+‘f1+f£l (3.6)
44 3

~ X
B== (3.7)
a
where:

1

A=1n(F) - 2 In() (3.8)
n

n = number of precipitation observations 3.9

The resulting parameters are then used to find the cumulative probability of an observed
precipitation event for the given month and time scale for the station in question. The

cumulative probability is given by:

X 1 X . .
G(x) = | g(x)de = —— | x* e dx (3.10)
Je = )
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Letting t=x/ ,23 , this equation becomes the incomplete gamma function:
1 ..
G(x)=—=—|t*"e"dt (3.11)
I'(a) '!

Since the gamma function is undefined for x=0 and a precipitation distribution may contain
zeros, the cumulative probability becomes:

H(x)=q+(1-9)G(x) (3.12)
where g is the probability of a zero. If m is the number of zeros in a precipitation time
series, Thom (1966) states that ¢ can be estimated by m/n. Thom (1966) uses tables of
the incomplete gamma function to determine the cumulative probability G(x). McKee ef
al. (1993) use an analytic method along with suggested software code from Press ef al.
(1988) to determine the cumulative probability.

The cumulative probability, H(x), is then transformed to the standard normal
random variable Z with mean zero and variance of one, §vhich is the value of the SPI. This
is an equiprobability transformation which Panofsky and Brier (1958) state has the
essential feature of transforming a variate from one distribution (fe. gamma) to a variate
with a distribution of prescribed form (7e. standard normal) such that the probability of
being less than a given value of the variate shall be the same as the probability of being less
than the corresponding value of the transformed variate. This method is illustrated in
figure 3.2. In this figure, a 3 month precipitation amount (January through March) is
converted to a SPI value with mean of zero and variance of one. The left side of figure
3.2 contains a broken line with horizontal hash marks that designate actual values of 3

month precipitation amounts (x-axis) for Fort Collins, Colorado for the months of January
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through March for the period 1911 through 1995. The broken line also denotes the
empirical cumulative probability distribution (y-axis) for the period of record. The
empirical cumulative probabilities were found optimally as suggested by Panofsky and
Brier (1958) where the precipitation data is sorted in increasing order of magnitude so that

the kth value is -1 values from the lowest and where n is the sample size:
.. . - k
empirical cumulative probability = —1 (3.13)
n

The smooth curve on the left hand side of figure 3.2 denotes the cumulative probability
distribution of the fitted gamma distribution to the precipitation data. The smooth curve
on the right hand side of figure 3.2 denotes the cumulative probability distribution of the
standard normal random variable Z using the same cumulative probability scale of the
empirical distn'butioﬁ and the fitted gamma distribution on the left hand side of the figure.
The standard normal variable Z (or the SPI value) is denoted on the x-axis on the right
hand side of the figure. Hence, this figure can be used to transform a given‘ 3 month
(January through March) precipitation observation from Fort Collins, Colorado to a SPI
value. For example, to find the SPI value for a 2 inch precipitation observation, simply go
vertically upwards from the 2 inch mark on the x-axis on the left hand side of figure 3.2
until the fitted gamma cumulative probability distribution curve is intersected. Then go
horizontally (maintaining equal cumulative probability) to the right until the curve of the
standard normal cumulative probability distribution is intersected. Then proceed vertically
downward to the x-axis on the right hand side of figure 3.2 in order to determine the SPI

value. In this case, the SPI value is approximately +0.3.
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Since it would be cumbersome to produce these types of figures for all stations at
all time scales and for each month of the year, the Z or SPI value is more easily obtained
computationally using an approximation provided by Abramowitz and Stegun (1965) that

converts cumulative probability to the standard normal random variable Z:

for 0<H(x)<05 (3.14)

c, +ct +c,t’ )

Z=SPI=-|t-
( 1+dt+d,f* +d,t°

for 0.5<H(x)<10 (3.15)

¢, +ct+e,t ]
1+dt+d,f* +dt°

1
t= fln(mj for 0 <H(x)<0.5 (3.16)

Z=SPI=+(t—-

where:

t= 1n(——-——~1 2) for 0.5<H(x)<10 (3.17)
(1.0 - H(x))
c, =2.515517
¢, =0.802853
¢, =0.010328
(3.18)
d, =1432788
d, =0.189269
d, = 0.001308

Conceptually, the SPI represents a z-score, or the number of standard deviations
above or below that an event is from the mean. However, this is not exactly true for short
time scales since the original precipitation distribution is skewed. Nevertheless, figure 3.3
shows that during the base period for which the gamma parameters are estimated, the SPI
will have a standard normal distribution with an expected value of zero and a variance of

one. Katz and Glantz (1986) state that requiring an index to have a fixed expected value
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and variance is desirable in order to make comparisons of index values among different

stations and regions meaningful.

Standard Normal
Distribution

P(SPI > 1) = .1587
P(SPI < —1) = 1587

Fig. 3.3  Standard normal distribution with the SPI having a mean of zero and a variance
of one.

Tannehill (1947) states that rainfall in the worst drought ever experienced in Ohio
would be abundant rainfall in Utah. Akinremi ez al. (1996) state that the spatial and
temporal dimensions of drought create problems in generating a drought index because
not only must an anomaly be normalized with respect to location, but the anomaly must
also be normalized in time if it is to produce a meaningful estimate of drought. The SPI
accomplishes both. The SPI is normalized to a station location because it accounts for the
frequency distribution of precipitation as well as the accompanying variation at the station.

Additionally, the SPI is normalized in time because it can be computed at any number of
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time scales, depending upon the impacts of interest to the analyst. Additionally, no matter
the location or time scale, the SPI represents a cumulative probability in relation to the
base period for which the gamma parameters were estimated. Table 3.1 is a table of SPI

and its corresponding cumulative probability.

Table 3.1: SPI and Corresponding Cumulative Probability
' in Relation to the Base Period

SPI Cumulative Probability
-3.0 0.0014
-2.5 0.0062
-2.0 0.0228
-1.5 0.0668
-1.0 0.1587
-0.5 0.3085
0.0 0.5000
+0.5 0.6915
+1.0 0.8413
+1.5 0.9332
+2.0 0.9772
+2.5 0.9938
+3.0 0.9986

An analyst with a time series of monthly precipitation data for a location can
calculate the SPI for any month in the record for the previous / months where /=1, 2, 3, ...,
12

24, ... 48, ... depending upon the time scale of interest. Hence, the SPI can be

PREEETS .s

computed for an observation of a 3 month total of precipitation as well as a 48 month total
of precipitation. For this study, a 3 month SPI is used for a short-term or seasonal
drought index, a 12 month SP1 is used for an intermediate-term drought index, and a 48
month SPI is used for a long-term drought index. Therefore, the SPI for a month/year in
the period of record is dependent upon the time scale. For example, the 3 month SPI

calculated for January, 1943 would have utilized the precipitation total of November,
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1942 through January, 1943 in order to calculate the index. Likewise, the 12 month SPI
for January, 1943 would have utilized the precipitation total for February, 1942 through
January, 1943 while the 48 month SPI would have utilized the precipitation total for
February, 1939 through January, 1943.

Figure 3.4 is a graph of the SPI calculated for McPherson, Kansas for the period
1911 through 1995. Three time scales are showrllz 3 months, 12 months, and 48 months.
As stated by McKee ef al. (1993) as well as being evident in the figure: the frequency,
duration, and intensity of drought at any particular point during the historical record is
dependent upon time scale. The long-term drought index (48 month SPI) shows that
McPherson was impacted by the long-term droughts of the 1930s and 1950s. Further
inspection at the short-term (3 month SPI) shows that the 1930s for McPherson was a
series of several short-term droughts with some intermediate normal periods. Skaggs
(1975) described this as “waves” of drought. For the 1950s, even though the long-term
drought was shorter in duration, the short-term droughts were more consecutive and
resulted in a more intense long-term drought (with the 48 month SPI going below a -3.0).
Overall, the late 1940s and early 1950s was a long-term wet period. But looking at the
short-term drought index, it is evident that some short-term droughts did occur during tﬁis
period. For example, the summer drought of 1947 is similar in magnitude to droughts that
occurred during the 1930s and 1956s. In fact, United States Department of Agriculture
(1951) records show that the corn yield per harvested acre was at a 7 year low in Kansas
following this dry summer. However, this drought was preceded and followed by

anomalously wet conditions and therefore this drought does not show up at the longer

27



'¢661 99 ySno1yy 1161 uef pousd oy} 10J sesueY ‘UOSISYJOA 10J [dS YIUOW §H PUB YIUOW 7| ‘YIUOW ¢ JO SIS SWIL], '€ ISy

1094
0661 0861 0L6l 0961 0s6l ovél ogel 0z6l |
r - , —_— — v . — — ———— A
\\\t// A |
\\ f T fﬁ )
»> ; Al A . . M _\r/,> ' ; L : . AL . A )\,\ZK . L ; H _\‘Q,W/\\(/ o 2
r\\sw& t <f<eg<\f;1s< zi<<‘(L/st1(J>a(yexe&\z 7 | S T rr>f/)\?& J;?gc:\fm/\\\~<i ) i Y TN 3
N
s ~
CGLGY| UODIS IS UIUOAN 8%
0661 0861 0L61 0961 0561 0?61 0e6l 0Z61
: ———— e ————— ————— ———— r———— ——r———r T -
~
5&7 | |

,i"?:;::\} \:)\j N & _, W) A\ $§<§ \_»\/\2_?\/ ?g >3>x"3z
LRV IRy, /H<£<< P " ,

]
L1
™S

4
£
=

L

=
=
£
=
—é__
<
0

IdS

CSLSY | UOlIPIS dS YIUOW Z1

| A | _ | | N | | | | “ _. | | | .. | .. | | | | ) | _h “ | | | | | w w
N Lrm .__,g%; A A il e TN,
% RN \,. Ty c <:§2i 1 I { Ul 7.1

CSLGPL UORDIS :IdS YIWON ¢

28



time scales. This is a similar situation to the 1980 summer drought in the southern United
States. Karl and Quayle (1981) state that the ample rains during the spring of 1980
prevented the 1980 summer drought in the southern United States from being far worse
(hence, a short-term drought that didn’t translate into a long-term drought). They state
that the difference between the summer drought of 1980 and the summer d'roughts of the
1930s and 1950s was that the summer droughts of the 1930s and 1950s occurred when é

very high moisture demand had already developed (in other words, long-term drought).
3.2 Climatological Base Period (1941-1980)

For this analysis, a base period of 1941 to 1980 was utilized to estimate the gamma
parameters that are used to calculate the cumulative probabilities of precipitation events.
One reason for doing this is that missing data is minimal in the USHCN for this period
(figure 2.2). Also, most stations in the USHCN experienced at least one long-term
drought and one long-term wet period during this timeframe. Since the cumulative
probability is converted to the standard normal random variable Z, the SPI will have a
standard normal distribution during the base period. Figure 3.3 shows that about 16% of
the time the SPI will be -1.0 or below indicating drought conditions. Similarly, about 16%
of the time the SPI will be +1.0 or above indicating anomalously wet conditions. About

68% of the time, the SPI will be between -1.0 and +1.0 indicating normal conditions.
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3.3 Relationship of SPI to Palmer Drought Severity Index

Most people that have an interest in current or past conditioné of drought are
familiar with the Palmer Drought Severity Index (PDSI). A commonly asked question is
how the SPI compares with the PDSIL.  Although the PDSI is also dependent upon soil
moisture and temperature data in order to estimate evapotranspiration, McKee ef al.
(1995) found that much of the variation in the PDSI is driven by the variation in
precipitation. Additionally, Stern and Dale (1982) state that the variability in a drought
index will largely be a reflection of the variability of rainfall such that drought indices can
be calculated using average values of evapotranspiration. Hence, methods of analysis of
these indices are then the same as for rainfall totals themselves (which the SPI utilizes
exclusively). Unlike the SPI, time scale is not explicitly defined for the PDSI and most
other drought indices. However, McKee ez al. (1995) found that time scale does
inherently exist in the PDSI. McKee et al. (1995) found that for most individual stations
in the United States, the PDSI correlates highest to an SPI with a 10 to 14 month time
scale. The Climate Prediction Center (1996) finds that the PDSI is relevant for hydrologic -
concerns and water-supply applications, but is less indicative of agricultural stress which is
usually a shorter term drought phenomenon. Of course, the advantage of the SPI is that it
can be used to monitor drought over a wide variety of time scales. In fact, Wilhite (1996)
contends that the SPI is a more reliable indicator of developing drought conditions than
the PDSI because the SPI at shorter time scales is more responsive to emerging
precipitation deficits based on experience with the spring 1996 drought in the Southern

Plains and Southwest of the United States. For example, the top of figure 3.5 shows the
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Southern Plains and Southwest.
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areal extent and intensity of the spring 1996 drought utilizing the 3 month SPI for May
1996. Short-term drought regions are shaded in yellow for SPI < -1.0, red for

SPI < -2.0, and gray for SPI < -3.0. Anomalously wet regions are shaded in green and
blue. The bottom of figure 3.5 shows the areal extent and intensity of the summer 1996
wet period in the Southern Plains and Southwest that prevented the 1996 spring dréught
from translating into a longer term drought. Indices such as the PDSI that inherently
contain an intermediate or longer time scale are unable to respond as quickly or as
accurately to short-term drought and wet period events especially if a short-term drought
is preceded or followéd by a short-term wet period such as occurred during the spring and

summer of 1996.
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4.0 ANALYSIS

You know what kinda years we been havin’. Dust comin’ up an’ spoilin’
ever 'thing so a man didn’t get enough crop to plug up an ant’s ass.

--Muley the preacher,
from Nobel Prize winner John Steinbeck’s The Grapes of Wrath

For both the national and regional analyses in this study, expansive areal averages
are used. As Karl and Quayle (1981) state, it is important to remember that small areas of
even abnormal conditions are not likely to have substantial impact on areal averages if
other areas are near normal or opposite in sign. Nevertheless, the intent of this study is to

detect and contrast anomalies over large regions of the United States.

4.1 National Perspective

4.1.1 Distribution of Precipitation

Figure 4.1 shows the average annual distribution of monthly average precipitation
of all USHCN stations. The chart shows for the country as a whole, there is a June

maximum with a secondary maximum in December. Minima are in February and October.
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Monthly Average Precipitation of all USHCN Stations
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Figure 4.1 Annual distribution of monthly average precipitation of all USHCN stations
for the period January, 1911 through December, 1995.

Figure 4.2 shows the running 12 month mean precipitation of all USHCN stations.
Overall, the last 25 years of the record have been wetter than any other 25 year period
during the record. In fact, in the 1970s and again in the 1980s, the running 12 month
mean precipitation exceeds 38 inches unlike any other point in the record. Additionally,
there is a peak in the running 12 month mean precipitation in the early 1990s that also
exceeds all other maximum peaks experienced during the first 60 years of the record.
Minimums in the running 12 month mean precipitation over the last 25 years are similar in
magnitude to the minimums achieved during the notorious drought decades of the 1930s,
1950s, and 1960s; however, these minimums are comparatively less frequent over the last

25 years of the record. The overall mean of the running 12 month mean precipitation of
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all USHCN stations for the period 1911 through 1995 is 32.49 inches. The mean for the

period 1970 through 1995 alone is 33.81 inches.

Running 12 Month Mean Precipitation of USHCN Stations with Trendline
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Fig 4.2 Running 12 month mean precipitation of all USHCN stations with trend line
for the period January, 1911 through December, 1995.

Dracup et al. (1980a) suggest a method to determine stationarity in terms of the
linear trend of a time series. They test the slope of the least squares regression line by
using a  statistic and the resulting p-value. The p-value is the probability, when assuming
the slope is zero (stationary), of obtaining a sample result that is at least as unlikely as
what was observed. Hence, they state that a p-value less than 0.01 indicates the time

series is very nonstationary (trend, or rejecting the assumption that the slope is zero),
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‘while a p-value greater than 0.20 indicates the time series is very stationary (no trend, or
failing to reject the assumption that the slope is zero).

In the case of figure 4.2, the slope of the least squares regression line is +0.0301
(indicating a linear increase of 0.0301 inches per year over the 85 year period of record).
The least squares regression line is depicted as a trend line in figure .4.2. The slope
indicates that the 12 month running mean preci;;itation of all USHCN stations has risen
2.56 inches over this 85 year record (hence, an average increase in each station’s annual
mean precipitation of 2.56 inches). The p-value was calculated to be 0.0001, indicating
that the time series is very nonstationary, and hence, there appears to be a positive trend in
the running 12 month mean precipitation of all USHCN stations for this period of record.
This supports the conclusion that the country as a whole has become progressively wetter

over this particular period of record.
4.1.2 Areal Coverage of Drought/Wet

Figure 4.3 shows the percentage of all USHCN stations with SPI less than or equal
to -1.0 for the period January, 1911 through December, 1995. Three different time scales
are shown (3 month, 12 month, and 48 month SPI for short-term, intermediate-term, and
long-term drought respectively). Since the USHCN stations have fairly homogeneous
coverage across the contiguous Ur;ited States, this figure provides a reasonable estimate
of the areal coverage of drought at different time scales over the period. Similarly, figure
4.4 shows the percentage of all USHCN stations with SPI greater than or equal to +1.0

for the period January, 1911 through December, 1995. This figure provides a reasonable
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estimate of the areal coverage of anomalously wet conditions at different time scales over
the period.

Since the SPI has a standard normal distribution within the base period, the percent
of all USHCN stations with SPI less than or equal to -1.0 should average about 16%.
However, as can be seen in figure 4.3, often the percentages are higher or 1ower than 16% -
depending upon if the country as a whole is experiencing wet or dry conditions. |
Nonetheless, table 4.1 shows that the maximum percentage of stations with SPI less than
or equal to -1.0 never exceeds 65% at the short-term, 60% at the intermediate-term, or
55% at the long-term. Also, the minimum percentage of stations with SPI less than or
equal to -1.0 approaches, but never reaches 0% for all five time scales.

Table 4.1: Maximum and Minimum Percentages of USHCN Stations

Experiencing Anomalously Wet or Dry Conditions by Time Scale
for the Period January, 1911 through December, 1995

% USHCN | Anomaly | Time Scale Max Max Min Min
Stations (wet/dry) {months) (%) |Month/Year (%) Month/Year

SP| <=-1.0 dry 3 64.95 Jan 1977 0.49 Dec 1983
SPI<=-1.0 dry 6 54.30 Jul 1934 0.98 Jun 1975

SPI <=-1.0 dry 12 59.05 Aug 1934 1.56 Jan 1974
SPI<=-1.0 dry 24 55.77 Jun 1931 1.31 | May 1983, Dec 1983
SPl <=-1.0 dry 48 49.80 May 1934 1.88 Nov 1973

SPI >=+1.0 wet 3 62.08 Dec 1983 0.25 Dec 1939

SPi >=+1.0 wet 6 58.07 Apr 1973 1.47 | Oct 1952, May 1963
SPI >=+1.0 wet 12 52.33 Apr 1973 1.39 Feb 1967
SPI>=+1.0 wet 24 51.02 Apr 1974 2.05 Nov 1967

SPI >=+1.0 wet 48 50.37 Aug 1975 2.05 Aug 1957

At the 48 month time scale, it is quite evident from figure 4.3 that the long-term
droughts of the period 1970 through 1995 have not been as widespread as the long-term

droughts of the previous 60 years. The long-term droughts of the late seventies in the
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West, the late eighties in the Southeast, and late eighties/early nineties in the West are
evident in the time series. However, none of these most recent long-term droughts match
the areal extent of the long-term droughts of the teens, twenties, thirties, fifties, and
sixties. It comes as no surprise that the long-term droughts of the thirties and fifties were
the most widespread.

However, the short-term drought index (3 month SPI) tells a different story for the
period 1970 through 1995. Figure 4.3 shows for this index that the short-term droughts
of the winter of 1976-1977 and the summer of 1980 were the two most widespread short-
term droughts of the period of record. Additionally, the intermediate-term drought index
(12 month SPI) shows that the drought of 1988 is similar in areal coverage to
intermediate-term droughts of the fifties and sixties.

Moreover, some extraordinary comparisons can be made between short-term
droughts of the past 25 years to the notorious droughts 6f the thirties and fifties. For
example, figure 4.5 shows a comparison between the winter drought of 1930-1931 and the
winter drought of 1976-1977. Both droughts cover large portions of the northern one half
of the United States as well as much of the Mississippi and Ohio river valleys. In fact, the
color shading indicates that the winter drought of 1976-1977 was more intense overall.
Figure 4.6 shows a comparison between the summer drought of 1980 and the summer
drought of 1954. Both of these droughts cover similar portions of the Southern Plains and
Southeast of the United States and the overall intensities of these droughts are similar.
Figure 4.7 shows a comparison between the spring drought of 1988 and the spring

drought of 1936. Both droughts cover large portions of the Northern Plains as well as
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large portions of the Mississippi and Ohio river valleys. Also, both droughts are of similar
intensity. Therefore, despite the lower frequency of short-term droughts during the period
1970 through 1995, these three figures illustrate that the short-term droughts that did
occur over this most recent period do match the areal coverage and intensity of the
droughts of the previous 60 years.

Figure 4.4 is the complement to figure 4.3. This figure shows that there have been
intermediate- and long-term wet periods during the 1970s, 1980s, and again in the early
1990s exceeding the areal coverage of all other intermediate- and long-term wet periods
during the previous 60 years. At the short-term, there has been an increased frequency of
widespread short-term wet periods during the period 1970 through 1995 compared to the
previous 60 years. However, figure 4.4 does show that the most widespread short-term
wet periods of the first 60 years of the record are of similar areal coverage to the most
widespread short-tenﬁ wet periods of 1970 through 1995. For example, figure 4.8 shows
a comparison between the early spring and late summer wet period of 1915 and the early
spring and late summer wet period of 1993. Both of these wet events have similar areal
coverage in the Northwest as well as the Northern Plains and Missouri Valley. The main
difference between these two short-term wet events is that the one in 1993 occurred
during a period of a high frequency of short-term wet events that led to a long-term wet
period for much of this region during the early 1990s. The short-term wet event of 1915
occurred during a period of a lower frequency of short-term wet events and therefore did

net translate into a long-term wet period for much of this region.
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Similar to the percent of USHCN stations in drought, table 4.1 shows that the
percent of stations experiencing anomalously wet conditions never exceeds 65% at the
short-term, 60% at the intermediate-term, and 55% at the long-term. Likewise, the
percentage of USHCN stations experiencing anomalously wet conditions approaches, but
never reaches O% at all three time scales.

Therefore, while there have been pen'éds of widespread drought or anomalously
wet conditions, this analysis shows that neither drought nor anomalously wet conditions
ever cover the entire contiguous United States. Additionally, this analysis shows that the
country is never completely without drought or anomalously wet conditions at any time
scale.

Similar to the last section, regression lines were fit to the different time series of
percent USHCN stations greater than or equal to +1.0 as well as for the time series of
percent USHCN stations less than or equal to -1.0. Table 4.2 below summarizes the
results. These results indicate that the period of record has seen increasing percentages of
USHCN stations experiencing anomalously wet conditions at all time scales and
decreasing percentages of USHCN stations experiencing drought conditions at all time
scales. Additionally, the slopes of the fitted regression lines are nearly opposite in
magnitude at each respective time scale indicating that the percentages of USHCN stations
experiencing anomalously wet conditions are increasing at rates opposite to the decreasing

percentages of stations experiencing drought.
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Table 4.2: ¢ Test for Nonstationarity of Percent of all USHCN Stations
by Time Scale with SPI < -1.0 or SPI > +1.0
for the Period January, 1911 through December, 1995

% Stations Time Scale Slope P-value Conclusion
{months) (percent/year)
SPl<=-1.0 3 -0.060959 0.0001 nonstationary
SPi<=-1.0 12 -0.121953 0.0001 nonstationary
SPI<=-1.0 48 -0.224491 0.0001 nonstationary
SPI>=+1.0 : 3 0.065281 0.0001 nonstationary
SPi >=+1.0 12 0.120558 0.0001 nonstationary
SP| >=+1.0 48 0.192795 0.0001 nonstationary

4.1.3 Intensity of Drought/Wet

Figure 4.9 shows the average SPI of all USHCN stations for the period January,
1911 through December, 1995. Three different time scales are shown (3 month, 12
month, and 48 month SPI). Since the USHCN stations have fairly homogeneous coverage
across the contiguous United States, this figure provides a reasonable estimate of the
intensity of drought and wet periods at different time scales for the nation as a whole over
this period.

for the long-term, the 48 month SPI shows that the drought of the 1930s was the
most intense for the nation overall, reaching an average SPI of -1.0 in both 1934 and again
in 1936. The drought of the 1950s reached a similar intensity. However, since the 1960s
drought in the Ohio Valley and Northeast, the United States as a whole has not
experienced an intense long-term drought such as those that occurred between 1911 and

1970. In fact, the average national SPI has approached +1.0 in the 1970s, 1980s, and
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again in the early 1990s. Not even the long-term wet period of the late 1940s and early
1950s matches the intense wet periods experienced between 1970 and 1995.

The short-term drought index (3 month SPI) shows that the nation has experienced
short-term droughts during the period 1970 through 1995 matching the intensity of short-
term droughts of the previous 60 years. It was shown in figure 4.3 and figures 4.5
through 4.7 that the intense short-term droughtslof the period 1970 through 1995 also
match the areal coverage of the intense short-term droughts of the previous 60 years.
Likewise, figure 4.9 shows that the first 60 years of the period contain short-term wet
periods matching the intensity of short-term wet periods of the following 25 years. It is
also shown in figure 4.4 that the intense short-term wet periods of the first 60 years of the
record match in areal coverage the intense short-term wet periods of the following 25
years. However, overall the nation has experienced an increased frequency of intense
short-term wet periods the last 25 years of the record and a lower frequency of intense
short-term dry periods. This led to the nation as a whole experiencing long-term wet
periods for much of the last 25 years of the record despite the occurrence of intense short
to intermediate term droughts in 1976-77, 1980-81, and 1988-89.

Least squares regression lines were fit to the time series in figure 4.9 to support
these conclusions. Table 4.3 below shows that all three time scales show a positive, very
nonstationary trend that supports tl;e conclusion that there has been a decreasing number
of intense droughts and an increasing number of intense anomalously wet periods at least
during the period 1970 through 1995 at all time scales. The slopes of the regression lines

are in terms of units of SPI per year.
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Table 4.3: ¢ Test for Nonstationarity of Average SPI of all USHCN Stations
by Time Scale for the Period January, 1911 through December, 1995

Time Scale Slope P-value Conclusion
{months) (units of SPl/year)

3 0.002623 0.0001 nonstationary

12 0.005048 0.0001 nonstationary

48 0.009286 0.0001 nonstationary

4.1.4 Duration/Variability of Drought/Wet

Mckee et al. (1993) define an event a drought when the SPI becomes -1.0 or less.
The beginning of this drought is then defined as when the SPI first went negative. The
end of the drought does not occur until the SPI goes back to zero or above. An
anomalously wet period can be similarly defined when the SPI becomes +1.0 or greater.

Figure 4.10 shows a graph of the mean duration of drought (solid line) of all
USHCN stations by time scale during the period January, 1911 through December, 1995.
Also shown is a graph of the average number of droughts (dashed line) per USHCN
station by time scale in the 85 year period of record (1911 through 1995). This figure
essentially shows that drought duration increases with increasing time scale, but drought
frequency decreases with increasing time scale. This is not surprising since longer term
droughts are essentially made up of multiple shorter term droughts. Additionally, not all
shorter term droughts translate into longer term droughts. A figure comparing the
frequency and duration of anomalously wet periods at different time scales would be

similar.
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Mean Duration and Average Number of Droughts versus SPi Category of all USHCN Stations
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3 6 12 24 48
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Fig 4.10 Mean duration (solid line) and average number of droughts (dashed line) versus
SPI category of all USHCN stations for the period 1911 through 1995.

Figures 4.11(A) and 4.11(B) show a breakdown of the duration of the 1930s and
1950s droughts respectively for McPherson, Kansas at different time scales. Each tick
mark on the x-axis represents one month. Five time scales are shown starting with the 3
month time scale at the bottom and progressing to the 48 month time scale at the top of
each chart. The shaded areas represent the duration of drought at each time scale
according to the definition from McKee ef al. (1993). Both of these charts illustrate that
major droughts begin with short-term droughts, which translate into intermediate-term
droughts and finally into long-term droughts. At the end of the drought period, generally
the short-term droughts end first, then the intermediate-term droughts, and finally the

long-term droughts. Overall, these charts show that longer term droughts are made up of
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McPherson, Kansas: 1930s Drought at Different Time Scales
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Month/Year

Fig 4.11 (A) 1930s drought at different time scales for McPherson, Kansas.

McPherson, Kansas: 1950s Drought at Different Time Scales
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Fig 4.11 (B) 1950s drought at different time scales for McPherson, Kansas.
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multiple shorter term droughts. For example, the 1930s drought for McPherson, Kansas
was made up of 12 short-term droughts at the 3 month time scale, 7 short-term droughts
at the 6 month time scale, and 2 intermediate-term droughts at the 12 month time scale.
There was only one drought at the 24 month time scale and one drought at the 48 month
time scale; but both of these droughts lasted more than 10 years with the drought at the 48
month time scale lasting the longest. Figure 4.11(B) shows that the drought of the 1950s
was shorter in duration at the longer time scales and contained fewer short-term droughts,
however, as was shown in figure 3.4 for McPherson, the intermediate- and long-term
droughts of the 1950s were more intense than the intermediate- and long-term droughts of
the 1930s. One reason for this is the short-term drought at the 3 month time scale
between 1955 and 1957 lasted just mbre than 2 years, about 1.5 times longer than any of
the longest short-term droughts at the 3 month scale McPherson experienced in the 1930s.

Table 4.4 shoWs summary statistics for all drought and wet periods of all USHCN
stations for the period January, 1911 through December, 1995. Statistics are shown for
five different time scales (3 month SPI, 6 month SPI, 12 month SPI, 24 month SPI, and 48
month SPI). Also shown are summary statistics for drought/wet period start and
drought/wet period end. The start of a drought is defined as the number of months it
takes for the SPI to go from zero or above to -1.0 or less. The end of a drought is then
defined as the number of months it takes for the SPI to go from -1.0 or less to zero or
above. Similar logic applies to wet period end/start except the threshold is +1.0.

At all time scales, there have been more droughts than wet periods. This is

because for the country as a whole, the period 1911-1940 was drier than the base period
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1941-1980. This outweighs the fact that 1981-1995 was wetter than the base period for
the country as a whole.

Overall, the mean length of wet periods and drought periods are similar. In fact,
the medians are nearly identical. On the other hand, both the interquartile range and the
standard deviation are larger for drought periods compared to wet periods. This indicates
that the length of droughts are more variable than the length of wet periods for the
country as a whole for this period of record and base period.

Summary statistics for the starting and ending of droughts and wet periods show
that both droughts and wet periods take about as long to start as they do to end. In fact,
both the means and medians of the time it takes a drought or wet period to start at a given
time scale are nearly identical to the means and medians respectively of the time it takes a
drought or wet period to end. Additionally, these statistics indicate that droughts
generally take the same time to start and end as do wet periods at the same time scale
(again, the respective means and medians are nearly identical).

Table 4.4 also contains information on the average period of a drought or wet
event at a station for each time scale. This is essentially the average number of months
from the beginning of one drought to thé beginning of the next drought. This was
calculated by multiplying the total number of months in the period of record times the total
number of stations in the USHCN and dividing the result by the total number of droughts
(or wet periods) at the given time scale. The average period of a long-term drought (48

month SPI) was calculated to be 193.51 months (about 16.1 years) while the average
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period of a short-term drought (3 month SPI) was calculated to be 15.70 months (about
1.3 years).

The definition from McKee ef al. (1993) allows the SPI to go below zero without
a drought necessarily occurring. A common question from those who use the SPI to
monitor drought is: “If the SPI is below zero now, what are our chénces of going into
drought?” Table 4.5 below show’s the percent of time by index that the SPI goes below
zero and ends up in drought as computed for all stations in the USHCN. In general, the
percent of the time that the index goes below zero and results in drought increases with
decreasing time scale. For the 3 month SPI, this table states that about half of the time a

drought will occur at the short-term when the 3 month SPI goes below zero.

Table 4.5: Percent of Time SPI Goes Below Zero and Ends in Drought of all USHCN
Stations by Time Scale for the Period January, 1911 through December, 1995

Time Scale Percent
(months)
3 50.2%
6 44.2%
12 36.7%
24 29.4%
48 22.4%

Long-term droughts are essentially made up of a series of short-term droughts,
either consecutive (indicating one or two short-term droughts that are long in duration) or
intermediate with no major intervening wet periods (indicating several short-term droughts
that are shorter in duration). Figure 4.12(A) shows the running mean duration of all
short-term droughts in the USHCN (as defined by the 3 month SPI) for the period

January, 1916 through December, 1990. The running mean includes the avefage duration
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of short-term droughts that either began, ended, or were occurring during the month/year
in question. Since table 4.4 shows that the maximum length of short-term droughts and
wet periods never reaches 5 years, the period of record for this time series is January,
1916 through December, 1990 to ensure that no drought or wet period is missed due to
the period of record. This graph shows that the running mean duration reached peaks
during the major long-term drought periods of the teens, twenties, thirties, fifties, and
sixties. Since 1970, the running mean duration of short-term droughts has not peaked as
high as it did during these other periods. In fact, the slope of the least squares regression
line for this time series is -0.020325 months per year (indicating that the running mean
duration of short-term droughts has decreased 1.73 months over this 85 year period). The
p-value from the 7 test assuming the slope is zero is 0.0001, indicating the time series is
very nonstationary. This supports the conclusion that the average duration of all short-
term droughts in the United States has steadily decreased during this period of record.

Figure 4.12(B) shows a time series of the fraction of USHCN stations experiencing
short-term drought for the period January, 1916 through December, 1990 according to
the McKee ef al. (1993) definition of drought. Here, the slope of the fitted linear
regression line is -0.001344 stations in short-term drought per total number of stations per
year. The p-value from the 7 test assuming the slope is zero is 0.0001, indicating that this
time series is also very nonstationary. This supports the conclusion that the average
frequency of short-term drought has also decreased during this period of record.

Figure 4.13(A) contains a graph of the running mean duration of short-term wet
periods (3 month SPT) of all USHCN stations and figure 4.13(B) contains a graph of the

fraction of USHCN stations expeﬁencing short-term wet periods for the period January,

e
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1916 through December, 1990. The upper graph shows that the running mean duration of
short-term wet periods peaked during the long-term anomalously wet periods of the
1940s, 1970s, and 1980s shown previously in figure 4.9. Additionally, the lower graph
shows that the fraction of USHCN stations experiencing short-term anomalously wet
conditions reached its highest peaks between 1970 and 1990. The slope of the least
squares regression line for the running mean duration of short-term wet periods is
+0.012524 months/year (indicating that the running mean duration of short-term wet
periods has increased 1.06 months over this 85 year period). This indicates that the
duration of short-term wet periods has been increasing at a magnitude nearly opposite to
the decreasing magnitude of the duration of short-term drought periods shown in figure
4.12(A). The p-value from the associated 7 test assuming the slope is zero is 0.0001. This
indicates that the time series is very nonstationary (there is an apparent trend in the data
for this period of record). Likewise, the time series in ﬁgure 4.13(B) has a fitted slope of
+0.001528 stations experiencing short-term wet periods per total number of stations per
year. Again, this is nearly opposite in magnitude to the decreasing fraction of stations
experiencing short-term drought. The p-value from the associated f test is 0.0001, also
indicating a very nonstationary, positive trend over this period of record. Hence, figures
4.12 and 4.13 indicate that for the country as a whole, short-term wet periods have
increased in frequency and duration at rates nearly opposite to the decreasing frequency
and duration of short-term droughts for the period January, 1916 through December,

1990.
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Running Mean Duration of Short-Term Drought (3 Month SPI) of all USHCN Stations
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Fig 4.12 (A) Running mean duration of short-term drought (3 month SPI) of all
USHCN stations for the period Jan 1916 thru Dec 1990 with trend line.
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Fig 4.12 (B) Time series of the fraction of USHCN stations in short-term drought
(3 month SPI) for the period Jan 1916 thru Dec 1990 with trend line.
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Running Mean Duration of Short-Term Wet (3 Month SPI) of all USHCN Stations
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Fig 4.13 (A) Running mean duration of short-term wet (3 month SPI) of all
USHCN stations for the period Jan 1916 thru Dec 1990 with trend line.
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Fig 4.13 (B) Time series of the fraction of USHCN stations in short-term wet
(3 month SPI) for the period Jan 1916 thru Dec 1990 with trend line.
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4.1.5 Seasonal Drought/Wet

Figure 4.14(A) shows a time series of the average 6 month SPI of all USHCN
stations for the month of September. This index is basically an indicator of the drought or
wet conditions of the previous spring and summer for the country as a whole. Figure
4.14(B) is similar except it is for the month of March as an indicator of the i)revious fall
and winter drought or wet conditions. These figures show that both timeframes have had
more wet periods than droughts during the period 1970 through 1995. However, the
fall/winter index (figure 4.14(A)) shows larger anomalies both wet and dry during the
period 1970 through 1995 than the spring/summer index (figure 4. 14(B)).

Figures 4.15(A-D) further breakdown the seasonal anomalies for the country as a
whole. Shown are average 3 month SPI of all USHCN stations for the months of
February (winter index), May (spring index), August (summer index), and November
(autumn index). Figure 4.15(A) shows the winter index where the anomalies for the
period 1970 to 1995 don’t differ significantly from other 25 year periods. The spring
index, figure 4.15(B), shows that there has been an increased frequency of wet anomalies
for the country as a whole during the spring for the period 1970 to 1995. However, there
have been several dry anomalies as well especially in the mid to late 1980s. The summer
index, figure 4.15(C), shows only a slight increase in anomalously wet periods for the
country as a whole for the period 1970 to 1995. The autumn index, figure 4.15(D), shows
the most dramatic increase in anomalously wet periods between 1970 and 1995.
Additionally, the occurrence of anomalously wet autumn periods coincides well with the

long-term wet periods of the 1970s, 1980s, and 1990s shown in figure 4.9.
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Table 4.6 below provides some perspective on the overall trend of precipitation by
season for the country as a whole. For this table, a season is considered a 3 month time
scale ending with the month shown in the table. For the entire period of record, all
seasons except for the December, January, and February season (month 2) have a positive
slope. However, the only season with a very nonstationary trend is fhe May, June, and
July season (month 7) that has a ;;ositive slope. ﬁence, only the late spring and early
summer appears to have a trend towards becoming progressively wetter over the period of
record. Looking back at figures 4.15(B) and 4.15(C), the spring and summer had a high
frequency of short-term dry anomalies during the first 30 years of the record, and a
comparatively lower frequency of short-term dry anomalies the last 55 years of the record.
Table 4.6 shows that the winter and early spring seasons (months 2, 3, and 4) have been
very stationary. This is evident in figure 4.15(A). Table 4.6 shows the largest positive
slopes are during the autumn season (months 11 and 12). However, as seen in figure
4.15(D), since this positive trend is mostly contained in the last 25 years of the record, the
p-values are not below the threshold to call the trends very nonstationary.

Table 4.6: t Test for Nonstationarity of Average 3 Month SPI of all USHCN Stations by
Season and by Time Scale for the Period January, 1911 through December, 1995

time scale siope
month | (months) | (units of SPl/lyear) | p-value | conclusion
1 3 0.003571| 0.0669|none
2 3 -0.000241 0.8852 |stationary
3 3 0.000886| 0.5441|stationary
4 3 0.001794| 0.2366 stationary
5 3 0.003960| 0.0222|none
6 3 0.002554; 0.0929|none
7 3 0.003645| 0.0097 |nonstationary
8 3 0.002960| 0.0146|none
9 3 0.002459| 0.0448|none
10 3 0.001630| 0.2376 stationary
11 3 0.004090, 0.0198|none
12 3 0.004102| 0.0383|none
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Time Series of Average 6 Month SPI (September) of all USHCN Stations (POR: 1911-1995)
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Fig 4.14 (A) Time series of average 6 month SPI for September (spring and summer) of

all USHCN stations for the period January, 1911 through December, 1995.

Time Series of Average 6 Month SPI (March) of all USHCN Stations (POR: 1911-1995)
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all USHCN stations for the period January, 1911 through December, 1995.

Fig 4.14 (B) Time series of average 6 month SPI for March (fall and winter) of
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Time Series of Average 3 Month SPI (February) of all USHCN Stations (POR: 1911-1995)
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USHCN stations for the period January, 1911 through December, 1995.

Time Series of Average 3 Month SPI (May) of all USHCN Stations (POR: 1911-1995)

Fig 4.15 (A) Time series of average 3 month SPI for February (winter) of all
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USHCN stations for the period January, 1911 through December, 1995.

Fig 4.15 (B) Time series of average 3 month SPI for May (spring) of all



Time Series of Average 3 month SPI (August) of alt USHCN Stations (POR: 1911-1995)
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Time Series of Average 3 month SPI (November) of all USHCN Stations (POR: 1911-1995)
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Fig 4.15 (D) Time series of average 3 month SPI for November (autumn) of all
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4.2 Regional Perspective

As Dracup et al. (1980b) state, droughts are inherently regional in nature.
Additionally, long-term droughts are made up of short-term droughts which typically
don’t cover the same exact region from drought to drought. For example, even though a
large portion of the country experienced the 1930s drought, different regions experienced
short-term drought at different times during this decade. For example, both the No;'thwest
and the Central Plains experienced intense long-term drought in the 1930s. However, the
short-term droughts that occurred did not always cover both of these regions at the same
time, nor did the short-term droughts that occurred have the same spatial coverage within
these major regions.

Additionally, the regions in which drought occur aren’t necessarily independent of
each other. For example, in which region does McPherson, Kansas belong? It
experienced both the long-term drought of the Northern Plains in the 1930s as well as the
long-term drought of the Southern Plains in the 1950s. However, McPherson doesn’t
necessarily experience every Southern Plains drought nor does it always experience every
Northern Plains drought.

Karl and Koscielny (1982) performed a principal component analysis on gridded
values of the Palmer Drought Severity Index (PDSI) and determined nine identifiable
patterns of drought in the contiguous United States. Diaz (1983) then grouped states
according to these findings into the 9 regions shown in figure 4.16. The number of
USHCN stations in each region is also shown in figure 4.16. National Climatic Data

Center analysts still use this grouping for regional drought studies utilizing the PDSI
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(Brown and Heim, Jr., 1997). For the purpose of performing a regional analysis in this
study, Diaz’s grouping is adopted here. As Dracup e? al. (1980b) state, the small sample
size of drought events is often a limiting factor in their analysis, and regionalization
provides a means for increasing this sample size. Bear in mind, however, that droughts
don’t obey regional boundan'és and that other groupings may be just as valid for purposes

of analysis.
4.2.1 Distribution of Precipitation

Figures 4.17(A-I) show the average annual distribution of monthly precipitation
for USHCN stations by each of the nine different regions. Stations in the Northwest and
West generally have a winter maximum which explains the secondary maximum in figure
4.1. Stations in the West North Central, South, Central, and East North Central generally
have a late spring maximum while stations in the Southwést, Southeast, and Northeast
generally have a summer maximum.

Figures 4.18(A-I) show time series of the running 12 month mean precipitation of
USHCN stations by region. Table 4.7 shows the results of 7 tests performed on the slopes
of the fitted regression lines to these time series. All 9 regions show a positive, very
nonstationary trend for this period of record. This includes the West which experienced a
long-term drought in the late 1980s and early 1990s. However, the West has also
experienced peaks of the running 12 month mean precipitation ébove 30 inches three times
during the period 1970 to 1995, where this occurred only twice in the previous 60 years.

The Southwest region has the smallest increase over the period of record, while the East
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Fig 4.17(A) Annual distribution of monthly average precipitation of all
West stations for the period January, 1911 through December, 1995.

Precipitation {inches)

Monthty average precipitation of all NORTHWEST stations

Fig 4.17(B) Annual distribution of monthly average precipitation of all
Northwest stations for the period January, 1911 through December, 1995.
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Fig 4.17(C) Annual distribution of monthly average precipitation of all West North
Central stations for the period January, 1911 through December, 1995.
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Monthly Average Precipitation of all SOUTHWEST stations

18 178‘3

Precipitation {inches)

Fig 4.17(D) Annual distribution of monthly average precipitation of all
Southwest stations for the period January, 1911 through December, 1995.

Monthly Average Precipitation of all SOUTH stations

Precipitation (Inches)

Fig 4.17(E) Annual distribution of monthly average precipitation of all
South stations for the period January, 1911 through December, 1995.

Monthty Average Precipitation of all CENTRAL Stations

45
4253

Precipitation (inches)

Fig 4.17(F) Annual distribution of monthly average precipitation of all
Central stations for the period January, 1911 through December, 1995.
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Monthly Average Precipitation of all EAST NORTH CENTRAL Stations
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Fig 4.17(G) Annual distribution of monthly average precipitation of all East North
Central stations for the period January, 1911 through December, 1995.

Monthty Average Precipitation of Al NORTHEAST Stations
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Fig 4.17(H) Annual distribution of monthly average precipitation of all
Northeast stations for the period January, 1911 through December, 1995.

Monthly Average Precipitation of all SOUTHEAST Stations

3883

Precipitation {inches)
@

Fig 4.17() Annual distribution of monthly average precipitation of all
Southeast stations for the period January, 1911 through December, 1995.
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North Central and South regions have the largest increases. Also shown in table 4.7 are

the total increases over the period of record as a percentage of that region’s annual

average. The East North Central, West, and South have the largest increases in the

running 12 month mean precipitation as a percentage of their annual average.

Table 4.7 ¢ Test for Nonstationarity of Running 12 Month Mean Precipitation of
USHCN Stations by Region for the Period January, 1911 through December, 1995

Total Increase
Region Slope Total Increase| Percentof | P-value | Conclusion
(inches/year) (inches) Ann. Avg.

West 0.030457 2.59 13.20| 0.0001| nonstationary
Northwest 0.027338 2.32 7.88| 0.0001| nonstationary
West North Central 0.016990 1.44 8.00/ 0.0001! nonstationary
Southwest 0.007344 0.62 4.72| 0.0055| nonstationary
South 0.046805 3.97 10.39| 0.0001| nonstationary
Central 0.030262 2.57 6.23; 0.0001| nonstationary
East North Central 0.052489 4.46 15.25| 0.0001| nonstationary
Northeast 0.034046 2.89 7.07| 0.0001| nonstationary
Southeast 0.022705 1.93 3.86| 0.0007; nonstationary

4.2.2 Areal Coverage of Drought/Wet

Figures 4.19(A-T) show the percent of stations by region with SPI less than or

equal to -1.0 for the period January, 1911 through December, 1995. Similarly, figures

4.20(A-T) show the percent of stations by region with SPI greater than or equal to +1.0

for the period January, 1911 through December, 1995. Three different time scales are

shown (3 month SPI for short-term drought/wet, 12 month SPI for intermediate-term

drought/wet, and 48 month SPI for long-term drought/wet). A brief synopsis of each

region follows.
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A look at the 48 month SPI for the West region in figure 4.19(A) shows that
widespread long-term droughts have occurred throughout the period of record, with the
most recent widespread long-term drought occurring in the early 1990s. The first 30
years of the period (1911-1940) appear to be the driest overall, but the frequency of
occurrence and éreal extent of drought at all time scales is similar from decade to decade.
Figure 4.20(A) shows that widespread short-;cenn and intermediate-term wet periods have
occurred intermittently through most of the period of record. However, the intermediate-
term wet periods of the late teens through early thirties were not as widespread as other
intermediate-term wet periods experienced outside of this time period. There have been
two major widespread long-term wet periods, once in the early 1940s, and another one in
the early to mid 1980s. However, in 1995, there was a widespread wet period at all time
scales that peaked as the third most widespread long-term wet period. Hence, though the
West has experienced widespread drought at all time scales during the period 1970-1995,
wet periods are comparatively more frequent at all time scales during the period 1970-
1995 than during any other 25 year period of the record.

Up in the Northwest, it is evident from figure 4.19(B) that the long-term drought
of the early 1930s was the most extensive. Like the West region, the period 1911-1940 is
the most persistent period of widespread long-term drought. While there were some
widespread short-term droughts from 1950 to 1975, the areal extent of intermediate- and
long-term droughts was small compared to other periods of the record. Figure 4.20(B)
shows that the intermediate- and long-term wet periods of the mid 1980s were the most

widespread of the period of record. However, figures 4.19(B) and 4.20(B) show that this
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wet period was sandwiched between fairly widespread intermediate- and long-term
droughts in the late 1970s/early 1980s and the late 1980s/early 1990s.

Figure 4.19(C) shows the most widespread long-term drought for the West North
Central occurred in the 1930s. The most frequent occurrence of widespread drought was
between 1911 and 1940 (like the West and Northwest regions). The least frequent
occurrence of widespread drought was between 1965 and 1990. Figure 4.20(C) shows
for the West North Central that the period 1980 through 1995 contained the highest
frequency of widespread intermediate- and long-term wet periods compared to any other
15 year period during the record despite widespread long-term drought in the early 1990s.

Of the nine regions, the Southwest appears to be the least “homogeneous” in terms
of drought. Portions of the region depend upon the summer monsoon, other areas depend
on systems migrating out of the Pacific, some areas can tap into the Gulf of Mexico when
low level flows are southeasterly, and still other areas depend upon orographic effects.
Figure 4.19(D) shows that only during 1956-1957 did long-term drought cover more than
60% of the region (a period when much of the southern United States was experiencing
long-term drought). Furthermore, there are only a few times in the entire period that
short-term and intermediate-term droughts cover greater than 60% of the region. Lack of
areal homogeneity is not as evident for wet periods as shown in figure 4.20(D). The most
widespread long-term wet period occurred during the mid to late 1980s with another
widespread long-term wet period in the mid 1990s. Furthermore, like the West North

Central, the period 1980 through 1995 for the Southwest contains the highest frequency
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of widespread intermediate- and long-term wet periods compared to any other 15 year
period during the record.

Figure 4.19(E) shows that the areal extent of long-term drought in the South was
most dramatic in the mid to late 1950s. Other widespread long-term droughts have
occurred, but none since the 1960s. While there have been widespfead short-term
droughts such as the spring drought of 1996 (n;)t evident in this graph), there has been a
low frequency of widespread drought at all time scales during the period 1970-1995.
Figure 4.20(E) shows that the most widespread long-term wet periods occurred in the mid
1970s and the early 1990s. The long-term wet periods of the first 60 years of the period
of record never reached 50% areal coverage while these two periods both exceeded 60%.

Figure 4.19(F) shows that the Central region has been affected by many of the
major long-term droughts of the century. For example, portions of the Central were
impacted by the long-term drought of the 1930s. Another portion was impacted by the
long-term drought of the 1950s in the southern United States. Additionally, a large
portion of the region was impacted by the long-term drought of the 1960s in the
northeastern United States. However, since 1970, there has not been widespread long-
term drought such as those experienced during the first 60 years of the period. However,
at the short- and intermediate-term there have been widespread droughts such as those
experienced during the spring of 1»988 and the winter of 1976-77. Much like the South,
figure 4.20(F) shows that the Central has experienced a high frequency of widespread wet
periods at all time scales between 1970 and 1995 unlike any other 25 year period during

the record.
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For the East North Central region, figure 4.19(G) shows the period 1911-1940
also saw the highest frequency of widespread drought at all time scales with the 1930s
being the most dramatic. Between 1970 and 1995, there have been widespread short- and
intermediate- term droughts matching the areal coverages of the droughts of the 1930s.
However, the long-term droughts that have occurred since 1960 have not 'mgtched the
areal coverage of previous long-term droughts. On the other hand, like the South and |
Central regions, figure 4.20(G) shows for the East North Central that the frequency of
widespread wet periods at all time scales was highest for the 25 year period 1970 through
1995. In fact, there have been three widespread long-term wet periods during the 1970s,
1980s, and 1990s unlike any single other long-term wet period during the record.

For the Northeast, figure 4.19(H) shows the long-term drought of the mid to late
1960s was the most widespread. At the short-term, widespread droughts occurred at
other periods matching the areal extent of the short-term droughts of the 1960s, however,
there was a high frequency of widespread short-term droughts from 1963 to 1967 which
lead to the long-term widespread drought of this period. Figure 4.20(H) shows that the
widespread long-term drought of the 1960s was followed by the most widespread
intermediate- and long-term wet periods of the record. The period 1970 through 1985
contains a high frequency of widespread wef periods at all time scales unlike any other 15
year period during the record.

Figure 4.19(I) shows the Southeast region experienced its most widespread long-
term drought in the mid to late 1950s. However, widespread long-term droughts are fairly

evenly distributed throughout the period of record with the most recent occurring in the
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late 1980s. Additionally, widespread short- and intermediate-term droughts are also
distributed fairly homogeneously throughout the period of record. Figure 4.20(T) shows
that widespread wet periods at all time scales are also distributed fairly homogeneously
throughout the period of record with the possible exception that the Southeast did not
experience a widespread long-term wet period exceeding 40% areal coverage between
1911 and 1945.

Least squares regression lines were fit to all of the regional time series of areal
coverages of drought/wet at different time scales. Additionally, # tests of the slopes of the
regression lines were performed to check for stationarity. Results are in table 4.8. From
the analysis in this section, it was not surprising to find that all regions show a positive
slope for areal coverage of wet periods at all time scales and all regions show a negative
slope for areal coverage of droughts at all time scales. The p-values resulting from the ¢
tests show that most of these trends are very nonstatioﬂary, especially at the longer time

scales.
4.2.3 Intensity of Drought/Wet

Figures 4.21(A-T) show the average SPI of stations by region for the period
January, 1911 through December, 1995. This is a reasonable assessment of the overall
drought/wet period intensity for each region as a whole. Three different time scales are
shown.

For the West, figure 4.21(A) shows intense droughts at all time scales are

distributed fairly homogeneously through the period of record. Intense wet periods are
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also distributed homogeneously through the period, however, the most intense
intermediate- and long-term wet periods occurred in the early to mid 1980s. The three
most intense long-term droughts occurred in the early 1930s, the late 1940s/early 1950s,
and the early 1990s.

In the Northwest, figure 4.21(B) shows the long-term drought of the '19205\and
1930s was the most intense. However, the long-term drought of the late 1980s and early
1990s follows as the next most intense long-term drought. Outside of these periods, there
have been very intense short- and intermediate-term droughts such as those in 1944 and
1977. Like the West, the most intense long-term wet period for the Northwest occurred
in the early to mid 1980s.

For the West North Central, ﬁgure 4.21(C) shows the long-term drought of the
1930s was the most intense. No other long-term drought during the period of record
comes close to matchihg the intensity of the 1930s drought. Even the short- and
intermediate-term droughts of the 1930s were the most intense for their respective time
scales, with the droughts of 1934 and 1936 being the most intense. Outside of the 1930s,
there have been intense droughts, especially at the short- and intermediate-term. Intense
wet periods are distributed throughout the period of record, but the most intense long-
term wet period occurred in 1995. Additionally, there was another intense long-term wet
period as recently as the mid 1980s. From the late 1970s through the early 1990s, there
was a high frequency of intense intermediate-term and long-term wet periods unlike any
other period during the record. However, intense drought also occurred at different time

scales during this period, especially in the late 1980s and early 1990s.
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In the last section, the Southwest region appeared to be less homogeneous than
other regions in terms of drought coverage. This bears out as well in figure 4.21(D)
where areal drought intensity at all time scales rarely goes below -1.0. The most intense
long-term drought occurred in 1956-1957. On the other hand, there has been a higher
frequency of long-tem intense wet periods (late 1910s, early 1940s, 1980s, and early to
mid 1990s). This is apparently true since the- period 1910-1940 (before the base period)
and the period 1980-1995 (after the base period) are wetter overall than the base period.
Like the West and Northwest, the mid 1980s contained the most intense long-term wet
period of the record for the Southwest.

Although the South did experience intense short-term droughts during the period
1970-1995, figure 4.21(E) shows there have been no intense long-term droughts during
this period. Additionally, the intermediate-term droughts that occurred were overall less
intense than those of the previous 60 years. Not surprisingly, the mid to late 1950s was
the most intense long-term drought period, made up of a series of very intense short- and
intermediate-term droughts. On the other hand, the mid 1970s and the late 1980s into the
early 1990s contain the most intense long-term wet periods.

Figure 4.21(F) shows the Central region is similar to the South region in that the
last 25 years of the record are marked by an increased frequency of intense long-term wet
periods. And like the South, the Central has had intense droughts during this time period
at the short- and intermediate-term. The Central experienced intense long-term drought in
the 1930s, early 1940s, mid 1950s, and the mid 1960s; but since the 1960s the Central has

not experienced intense long-term drought.
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In the East North Central region, figure 4.21(G) shows the first 30 years of the
period are marked by a high frequency of intense droughts at all time scales with the 1930s
being the most intense overall. On the other hand, like the South and Central regions, the
last 25 years of the record for the East North Central are marked by a high frequency of
intense wet periods at all time scales. Over the last 25 years of the record, there were 3
intense long-term wet periods with one in the 1970s, one in the 1980s, and one again in
the early 1990s. Despite the increased frequency of wet periods, there have been a few
intense droughts at the short- and intermediate-term matching the intensities of droughts
of the previous 60 years.

Figure 4.21(H) shows the Northeast is similar to the East North Central in that the
first 30 years of the period of record contain a high fréquency of intense drought at all
time scales. Nevertheless, the 1960s was the most intense long-term drought period.
Overall, the Northeast has not experienced long-term drought over the last 25 years of the
record matching the intensity that it experienced during the previous 60 years. The most
intense long-term wet period occurred in the 1970s with another intense intermediate-term
wet period in the mid 1980s.

Figure 4.21(I) shows the Southeést has experienced intense long-term drought as
recently as the late 1980s. In fact, the 1980s was marked by very intense short- and
intermediate-term droughts with some intervening short- and intermediate-term wet
periods. The most intense long-term drought overall for the Southeast occurred in the
1950s. However, intense droughts and wet periods at all time scales are distributed fairly

homogeneously through the period of record.
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Figures 4.22(A) and 4.22(B) show periods of long-term drought and long-term
wet by region. To qualify as a regional long-term drought period, the average SPI of all
stations in the region had to reach -1.0 or less sometime during the period. The period
denotes the length of time that the average SPI remained continuously negative.
Determining periods of regional long-term wet is similar except thaf the average SPI had
to reach +1.0 or above sometime during the peﬁod. Periods of regional long-term
drought or wet that occurred between 1970 and 1995 are highlighted in red. Of particular
note is the overall increase in long-term wet periods and the overall decrease in long-term
droughts over the last 25 years of the record for the country as a whole. This is
particularly true for the 3 regions along the Mississippi and Ohio river valleys (East North
Central, Central, and South). All three of these regions have experienced intense long-
term wet periods in the 1970s, 1980s, and the early 1990s. None of these three regions
experienced intense long-term drought during this time period. Additionally, figure
4.22(A) shows that only four of the nine regions experienced intense long-term drought
between 1970 and 1995 while figure 4.22(B) shows that all nine regions experienced at
least one intense long-term wet period between 1970 and 1995.

Least squares regression lines were fit to all of the time series of regional average
SPI at different time scales. Additionally, f tests of the slopes of the regression lines were
performed to check for stationarit)-r‘ Results are in table 4.9. From the analysis in this
section, it is again not surprising to find that all regions show a positive slope for SPI
indicating a wet trend at all time scales for this period of record. The p-values for many of

the tests show that these slopes are very nonstationary, especially at the longer time scales.
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4.2.4 Duration/Variability of Drought/Wet

Summary statistics showing the length and variability of drought at different time
scales for the 9 different regions are shown in tables 4.10(A-E). Since the SPI inherently
accounts for the natural variability of monthly precipitation at a given stati(_)n, it is not
surprising to see that these statistics are comparable between regions at the different time
scales.

Summary statistics for the starting and ending of drought and wet periods by
region are also shown in tables 4.10(A-E). Overall, these statistics are similar between
regions. Again, all regions show that it takes approximately the same time to end a
drought or wet period than it takes to start one. Additiqnally, starting times and ending
times are comparable between drought and wet periods at each respective time scale for
the different regions.

Tables 4.10(A-E) also contain information on the average period of a drought or
wet period by region and by time scale. There are some differences, but the differences
change with time scale. For example, while the Northwest has the shortest average period
at the 48 month time scale, the Southeast has the shortest average period at the 24 month
time scale. Hence, since the SPI inherently standardizes the variability of precipitation
between stations, it also appears to standardize the frequency, duration, and variability of
drought and wet periods between stations.

Within regions, there appears to be little difference between the duration of a
drought and the duration of a wet period, especially at the shorter time scales where there

have been more occurrences of droughts and wet periods per station.
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Unlike what was seen in table 4.4 with the summary statistics for all USHCN
stations, some of the regions have wet periods that have greater variability in their
duration than droughts. For example, in the Southwest at the 24 month time scale (24
month SPI), both the interquartile range (IQR) and standard deviation of the wet periods
at this time scale are greater than the IQR and standard deviation of droughts respectively
at this time scale. There are other examples for other regions at different time scales
where either the IQR or standard deviation (or both) is greater for wet periods than it is

for droughts.
4.2.5 Seasonal Drought/Wet

Figures 4.23(A-D) show time series of the average 3 month SPI of all stations in
the West region for the period of record 1911 through 1995 for the months of February
(winter index), May (spring index), August (summer indéx), and November (autumn
index). Again, the West had a widespread long-term wet period in the early to mid 1980s
and a widespread long-term drought in the late 1980s to early 1990s. While figure
4.17(A) shows that this region has a winter maximum in precipitation, it is also apparent
that the early spring and late autumn are also important contributors to the annual cycle of
precipitation. This bears out in these most recent widespread long-term events. While
figure 4.23(A) shows wet winters played an integral role in the widespread long-term wet
period in the early to mid 1980s, figure 4.23(B) shows 6 straight spring seasons with
positive anomalies between 1978 and 1983 also played a key role. Figure 4.23(D) shows

5 straight autumn periods between 1981 and 1985 where the average regional 3 month
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SPI was greater than +0.8 also played a key role in the long-term wet period of the early
to mid 1980s. Once again, figure 4.23(A) shows the winter played a key role in the long-
term drought of the late 1980s and early 1990s in the West region, but figure 4.23 D)
shows that 4 straight autumn periods between 1990 and 1993 where the average regional
SPI was below 0.0 also played a key role. It appears from figure 4.23(B) that the sbn'ng
played little role in the West region’s long-term drought of the late 1980s and early 1990s.
Figures 4.24(A-D) show time series of the average 3 month SPI of all stations in
the Northwest region fbr the period of record 1911 through 1995 for the four different
seasons. It is shown in figure 4.17(B) that the Northwest region has a similar annual
precipitation distribution to the West region where the maximum in seasonal precipitation
occurs in the winter, but that the spriﬁg and autumn seasons play important roles. Similar
to the West region, the Northwest experienced widespread long-term wet in the mid
1980s and widespread.long-tenn drought in the late 1980s and early 1990s. - Figure
4.24(A) shows that anomalies in the winter match up well with the long-term anomalies
experienced in the 1980s and 1990s. Again, like the West region, it appears from figure
4.24(B) that the spring season correlates well with the widespread long-term wet period in
the mid 1980s, but the spring does not appear to have contributed to the long-term
drought of the late 1980s and early 1990s. However, figure 4.24(D) shows that the
autumn period appears to have contributed to both long-term anomalies. For example,
there were 6 anomalously wet autumn seasons between 1981 and 1986 that certainly
contributed to the long-term wet period of the mid 1980s where the average regional SPI

was above +0.5 each year. Additionally, the anomalously dry autumn seasons of 1987,
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1989, and 1993 appear to have contributed to the long-term drought period of the late
1980s and early 1990s.

Figure 4.17(C) shows that the West North Central has a late spring and early
summer seasonal precipitation maximum. The summer drought of 1988 and summer wet
anomaly of 1993 .are quite evident in figure 4.25(C). The most widespread long-term
drought of the period of record for the West North Central occurred in the 1930s. Itis
apparent from figures 4.25(A-D) that all four seasons were anomalously dry at different
times during this period with the summer season being the most consistently dry season
(figure 4.25(C)) and the winter season (figure 4.25(A)) being the least consistently dry.
During the mid 1980s, the West North Central had its longest running, widespread wet
period. It looks from these figures that the winter and summer seasons had little to do
with this wet anomaly, while the spring and autumn seasons had several anomalously wet
occurrences that contributed to this long-term wet period.

Figure 4.17(D) shows the importance of the summer monsoon to the Southwest
region. The year with the most widespread drought at all time scales occurred in 1956
where figures 4.26(B-D) show the spring, summer, and autumn seasons were all
anomalously dry. The most widespread long-term wet period for the Southwest occurred
in the mid to late 1980s where all four seasons played a role in contributing to this long-
term wet anomaly.

From figure 4.17(E), the South region has a maximum seasonal distribution of
precipitation in the late spring and early summer. Figure 4.19(E) shows the mid 1950s

had the most widespread long-term drought of the record for the South. Analysis of the
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seasonal distribution of anomalies in figures 4.27(A-D) shows that while all regions
contributed to this long-term drought at some point during the process, figure 4.27(C)
shows that the autumn was the season with the most consistent series of anomalously dry
periods that corresponded well with this long-term drought. Figure 4.20(E) shows that
the mid 1970s and the late 1980s/early 1990s were two periods with widespread long-
term wet anomalies in the South. There appears to be no overall trend over the past 25
years for the summer index (figure 4.27(C)). Figure 4.27(B) shows a high frequency of
anomalously wet spring seasons in the 1970s and early 1980s while figure 4.27(A) shows
a high frequency of anomalously wet winters in the late 1980s and early 1990s. However,
the most dramatic increase in anomalously wet periods between 1970 and 1995 occurs in
the autumn (figure 4.27(C)) corresponding with the widespread long-term wet periods
shown for the South in figure 4.22(B).

Figures 4.28(C) shows for the Central region that the autumn season has been the
most consistent anomalously wet period over the last 25 years of the record. Figure
4.20(F) shows for the Central region there have been three widespread long-term wet
periods between 1970 and 1995 that correspond well with the short-term anomalously wet
autumn periods of the past 25 years.

Figure 4.22(B) shows that the East North Central has also experienced three
widespread long-term wet periods between 1970 and 1995. While figures 4.29(A-D)
show that different seasons contributed at different times to these long-term wet periods,
like the South and Central regions, the autumn period has been anomalously wet more

consistently than the other seasons.
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Figure 4.17(H) shows that the seasonal distribution of precipitation throughout the
year for the Northeast region is fairly homogeneous with a slight maximum in the summer.
Figure 4.19(H) shows the most widespread long-term drought for the Northeast occurred
in the mid to late 1960s. It is apparent from figures 4.30(A-D), that all of the seasons
were anomalously dry during different points of this major drought aﬁd all seasons played
a key role. Figure 4.20(H) shows that the most ﬁdespread long-term wet period for the
Northeast occurred in the mid 1970s. Again, all four seasons were anomalously wet at
different points within this long-term wet period with the winter season being the most
consistently wet.

Figure 4.17(I) shows the Southeast also has a summer maximum in seasonal
precipitation. Figures 4.31(A-D) show that only the autumn season didn’t contribute
significantly to the widespread long-term drought of the late 1980s. All seasons had a fair
number of anomalously wet periods and anomalously dry periods between 1970 and 1995
with no apparent trends.

Table 4.11 provides some perspective on the overall trend of precipitation by
season and by region. Like for table 4.6, a season is considered a 3 month time scale
ending with the month shown in the table.

In the West, table 4.11 shows that most seasons have a positive slope, but that
most seasons are very stationary. 'l;he two largest positive slopes are for the summer
season (months 8 and 9). However, summer is also the dry season for the West. The next

largest positive slope is the autumn season (month 11).
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Table 4.11 shows that the Northwest has a very nonstationary positive slope for
the summer season (month 8). However, like the West, the summer is the Northwest’s
dry season. Nonetheless, all seasons have a positive slope.

From table 4.11, most of the seasons for the West North Central have positive
slopes except for the winter season (months 1 and 2). However, most seasons are also
very stationary. The largest positive slopes occur in the spring (month 5) and the late
spring/early summer (month 7).

Most seasons for the Southwest have very stationary time series of average 3
month SPI. Only the late autumn/early winter season (month 1) which has a positive slope
is not very stationary.

For the South, table 4.11 shows that the late spring/early summer season (month
7) is very nonstationary. All seasons have a positive slope, but most have very stationary
time series. And while figure 4.27(D) shows that the South has had a high frequency of
anomalously wet autumn periods between 1970 and 1995, this time series is still not very
nonstationary.

For the Central, most seasons have positive slopes, but are very stationary. The
largest positive slopes occur in the summer season (months 7 and 8). Despite the
occurrence of a high frequency of wet anomaiies in the autumn season between 1970 and
1995 (figure 4.28(D)), the slope for the autumn season (month 11) from table 4.11 is still
very stationary. This is true because the negative trend between 1911 and 1965 counters a

portion of the positive trend between 1965 and 1995.
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Table 4.11 shows that the East North Central has a very nonstationary time series
for the summer season (months 8 and 9) where the slopes are positive. This is true
primarily because of the high frequency of anomalously dry summers (figure 4.29(C))
between 1911 and 1940.

Unlike the other regions in the eastern United States, the Southeast has negative
slopes during the summer season (months 7, 8, and 9). However, these time series are
very stationary. The largest positive slopes are primarily in the autumn and winter seasons

(months 11, 12, 1 and 3).
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Table 4.8: ¢ Test for Nonstationarity of Percent USHCN Stations by Region and by Time
Scale with SPI < -1.0 or SPI > +1.0 for the Period January, 1911 thru December, 1995

% Stations Region time scale siope p-value conclusion
SPI {months) (percentiyear)

<=-1.0 West 3 -0.051829 0.0488|none

<=-1.0 West 12 -0.078552 0.0022 nonstationary
<=-1.0 West 48 -0.170388 0.0001 |nonstationary
>=+1.0 West 3 0.087643 0.0006 |nonstationary
>=+1.0 West 12 0.153629 0.0001 [nonstationary
>=+1.0 West 48 0.193343 0.0001 [nonstationary
<=-1.0 Northwest 3 -0.108695 0.0001 |nonstationary
<=-1.0 Northwest 12 -0.172978 0.0001 |nonstationary
<=-1.0 Northwest 43 -0.322313 0.0001 Inonstationary
>=+1.0 Northwest 3 0.086362 0.0001 |nonstationary
>=+1.0 Northwest 12 0.128384 0.0001 |nonstationary
>=+1.0 Northwest 48 0.206020 0.0001 [nonstationary
<=-1.0 West North Central 3 -0.041316 0.0272|none

<=-1.0 West North Central . 12 -0.114142 0.0001 |nonstationary
<=-1.0 West North Central 48 -0.237217 0.0001 [nonstationary
>=+1.0 West North Central 3 0.038457 0.0277|none

>=+1.0 West North Central 12 0.091212 0.0001 |nonstationary
>=+1.0 West North Central 48 0.084149 0.0001 [nonstationary
<=-1.0 Southwest 3 -0.013856 0.4300|stationary
<=-1.0 Southwest 12 -0.042541 0.0145/none

<=-1.0 Southwest 48 -0.054911 0.0008 |nonstationary
>=+1.0 Southwest 3 0.021340 0.2875|stationary
>=+1.0 Southwest 12 0.060381 0.0056 |nonstationary
>=+1.0 Southwest 48 0.066412 0.0067 |nonstationary
<=-1.0 South 3 -0.079572 0.0001 |nonstationary
<=-1.0 South 12 -0.147779 0.0001 {nonstationary
<=-1.0 South 438 -0.243128 0.0001 |nonstationary
>=+1.0 South 3 0.061583 0.0016|nonstationary
>=+1.0 South 12 0.128838 0.0001 |nonstationary
>=+1.0 South 48 0.276251 0.0001 {nonstationary
<=-10 Central 3 -0.061851 0.0163|none

<=-1.0 Central 12 -0.115880 0.0001 |nonstationary
<=-1.0 Central 48 -0.193774 0.0001 |nonstationary
>=+1.0 Central 3 0.057453 0.0150|none

>=+1.0 Central 12 0.099442 0.0001 |nonstationary
>=+1.0 Central 48 0.165675 0.0001 |nonstationary
<=-1.0 East North Central 3 -0.082329 0.0006 |nonstationary
<=-1.0 East North Central 12 -0.230591 0.0001 [nonstationary
<=-1.0 East North Central 48 -0.514936 0.0001 [nonstationary
>=+1.0 East North Central 3 0.136419 0.0001 [nonstationary
>=+1.0 East North Central 12 0.251049 0.0001 |nonstationary
>=+1.0 East North Central 48 0.422883 0.0001 [nonstationary
<=-1.0 Northeast 3 -0.043223 0.0815{none

<=.1.0 Northeast 12 -0.087782 0.0004|nonstationary
<=-1.0 Northeast 43 -0.218563 0.0001 |nonstationary
>=+1.0 Northeast 3 0.090148 0.0003 |nonstationary
>=+1.0 Northeast 12 0.170730 0.0001 [nonstationary
>=+1.0 Northeast 48 0.240852 0.0001 {nonstationary
<=-1.0 Southeast 3 -0.062642 0.0134|none

<=-1.0 Southeast 12 -0.100068 0.0001 |nonstationary
<=-1.0 Southeast 48 -0.124313 0.0001 |nonstationary
>=+1.0 Southeast 3 0.048466 0.0263|none
>=+1.0 Southeast 12 0.050544 0.0133|none
>=+1.0 Southeast 48 0.094876 0.0001 |nonstationary
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Tab 4.9: ¢ Test for Nonstationarity of Average SPI of USHCN Stations by Region
and by Time Scale for the Period January, 1911 through December, 1995

Region time scale slope p-value | conclusion
(months) | (units of SPi/year)

West 3 0.002776| 0.0030|nonstationary
West 12 0.004340| 0.0001|nonstationary
West 48 0.007935 0.0001|nonstationary
Northwest 3 0.004010| 0.0001|nonstationary
Northwest 12 0.006128| 0.0001 |nonstationary
Northwest 48 0.012891 0.0001 |nonstationary
West North Central 3 0.001706| 0.0129|none
West North Central 12 0.004313| 0.0001 |nonstationary
West North Central 48 0.007407; 0.0001|nonstationary
Southwest 3 0.000829| 0.2413|stationary
Southwest 12 0.002325| 0.0014 nonstationary
Southwest 48 0.003558 0.0001 |nonstationary
South 3 0.003008| 0.0001|nonstationary
South 12 0.005890| 0.0001|nonstationary
South 48 0.010887| 0.0001 |nonstationary
Central 3 0.002439| 0.0064 nonstationary
Central 12 0.004525| 0.0001 |nonstationary
Central 48 0.007587| 0.0001 |nonstationary
East North Central 3 0.004567| 0.0001|nonstationary
East North Central 12 0.010291 0.0001 |nonstationary
East North Central 48 0.021829| 0.0001 nonstationary
Northeast 3 0.002841 0.0013|nonstationary
Northeast 12 0.005322 0.0001 |nonstationary
Northeast 48 0.010003; 0.0001 nonstationary
Southeast 3 0.002134| 0.0142|none
Southeast 12 0.003059 0.0002|nonstationary
Southeast 48 0.004307| 0.0001 nonstationary
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Time Series of average 3 month SPl (February) of all WEST stations for the POR (1911-1995)
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West stations for the period January, 1911 through December, 1995.

Fig 423(A) Time series of average 3 month SPI for February (winter) of all

Time Series of average 3 month SPi (May) of all WEST stations for the POR 1911-1995
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West stations for the period January, 1911 through December, 1995.

Fig 4.23(B) Time series of average 3 month SPI for May (spring) of all
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Time Series of average 3 month SPI (August) of all WEST stations for the POR 1911-1995
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West stations for the period January, 1911 through December, 1995.

Fig 4.23(C) Time series of average 3 month SPI for August (summer) of all

Time Series of average 3 month SPI (November) of all WEST stations for the POR 1911-1995

; G661

1661

2861

£861

6.6l

S.61

Li6L

1961

€96}

6561

G561

1661

PALT

£vel

ee6l

Se6l

LE6L

pa4:

413

6i6l

gi6l

Lighk

Year

West stations for the period January, 1911 through December, 1995.

Fig 4.23(D) Time series of average 3 month SPI for November (autumn) of all
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Time Series of average 3 month SPI (Feb) of all NORTHWEST stations for the POR 1911-1995
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Northwest stations for the period January, 1911 through December, 1995.

Fig 4.24(A) Time series of average 3 month SPI for February (winter) of all

Time Series of average 3 month SPI (May) of all NORTHWEST stations for the POR 1911-1995
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Northwest stations for the period January, 1911 through December, 1995.

Fig 4.24(B) Time series of average 3 month SPI for May (spring) of all
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Time Series of average 3 month SPI (Aug) of all NORTHWEST stations for the POR 1911-1995
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Northwest stations for the period January, 1911 through December, 1995.

Fig 4.24(C) Time series of average 3 month SPI for August (summer) of all

Time Series of average 3 month SPI (Nov) of all NORTHWEST stations for the POR 1911-1995
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Northwest stations for the period January, 1911 through December, 1995.

Fig 4.24(D) Time series of average 3 month SPI for November (autumn) of all
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Time Series of average 3 month SP! (Feb) of all W. N. CEN. stations for the POR 1911-1995
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Fig 4.25(A) Time series of average 3 month SPI for February (winter) of all West North
Central stations for the period January, 1911 through December, 1995.

Time Series of average 3 month SPI (May) of all W. N. CEN. stations for the POR (1911-1995)
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Fig 4.25(B) Time series of average 3 month SPI for May (spring) of all West North
Central stations for the period January, 1911 through December, 1995.
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Time Series of average 3 month SPI (August) of all W. N. CEN. stations for the POR 1911-1995
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Fig 4.25(C) Time series of average 3 month SPI for August (summer) of all West North
Central stations for the period January, 1911 through December, 1995.

Time Series of average 3 month SPI (Nov) of all W. N. CEN. stations for the POR 1911-1995
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Fig 4.25(D) Time series of avg. 3 month SPI for November (autumn) of all West North
Central stations for the period January, 1911 through December, 1995.
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Time Series of average 3 month SPI (Feb) of all SOUTHWEST stations for the POR 1911-1995
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Southwest stations for the period January, 1911 through December, 1995.

Time series of average 3 month SPI for February (winter) of all

Fig 4.26(A)

Time Series of average 3 month SPI (May) of all SOUTHWEST stations for the POR 1911-1995
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Fig 4.26(B) Time series of average 3 month SPI for May (spring) of all
Southwest stations for the period January,
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Time Series of average 3 month SPI (Aug) of all SOUTHWEST stations for the POR 1911-1995
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Fig 4.26(C) Time series of average 3 month SPI for August (summer) of all

Southwest stations for the period January, 1911 through December, 1995.

Time Series of average 3 month SPI (Nov) of all SOUTHWEST stations for the POR 1811-1995
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Southwest stations for the period January, 1911 through December, 1995.
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Fig 4.26(D) Time series of average 3 month SPI for November (winter) of all



Time Series of average 3 month SPI (February) of all SOUTH stations for the POR 1911-1995
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Fig 4.27(A) Time series of average 3 month SPI for February (winter) of all
South stations for the period January, 1911 through December, 1995.

Time Series of average 3 month SPI (May) of all SOUTH stations for the POR 1911-1995
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Fig 427(B) Time series of average 3 month SPI for May (spring) of all
South stations for the period January, 1911 through December, 1995.
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Time Series of average 3 month SPI (August) of all SOUTH stations for the POR 1911-1995
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Fig 4.27(C) Time series of average 3 month SPI for August (summer) of all
South stations for the period January, 1911 through December, 1995.

Time Series of average 3 month SPI (November) of all SOUTH stations for the POR 1911-1995
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Fig 4.27(D) Time series of average 3 month SPI for November (autumn) of all
South stations for the period January, 1911 through December, 1995.

139




Time Series of average 3 month SPI (Feb) of all CENTRAL stations for the POR 1911-1995
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Central stations for the period January, 1911 through December, 1995.

Fig 4.28(A) Time series of average 3 month SPI for February (winter) of all

Time Series of average 3 month SPI (May) of all CENTRAL stations for the POR 1911-1995
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Central stations for the period January, 1911 through December, 1995.

Fig 4.28(B) Time series of average 3 month SPI for May (spring) of all
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Time Series of average 3 month SPI (August) of all CENTRAL stations for the POR 1911-1985
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Central stations for the period January, 1911 through December, 1995.

Fig 4.28(C) Time series of average 3 month SPI for August (summer) of all

Time Series of average 3 month SPI (Nov) of all CENTRAL stations for the POR 1911-1995
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Central stations for the period January, 1911 through December, 1995.

Fig 4.28(D) Time series of average 3 month SPI for November (autumn) of all
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Time Series of average 3 month SPI (Feb) of all E. N. CEN. stations for the POR 1911-1995
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Central stations for the period January, 1911 through December, 1995.
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Fig 4.29(B) Time series of average 3 month SPI for May (spring) of all East North



Time Series of average 3 month SPI (August) of all E. N. CEN. stations for the POR 1911-1995
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Fig 4.29(C) Time series of average 3 month SPI for August (summer) of all East North

Central stations for the period January, 1911 through December, 1995.

Time Series of average 3 month SPI (Nov) of all E. N. CEN. stations for the POR 1911-1995
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Fig 4.29(D) Time series of avg. 3 month SPI for November (autumn) of all East North

Central stations for the period January, 1911 through December, 1995.

143




Time Series of average 3 month SPi (Feb) of all NORTHEAST stations for the POR 1911-1995
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Fig 430(A) Time series of average 3 month SPI for February (winter) of all

Northeast stations for the period January, 1911 through December, 1995.

Time Series of average 3 month SP1 (May) of all NORTHEAST stations for the POR 1911-1995
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Northeast stations for the period January, 1911 through December, 1995.

Fig 4.30(B) Time series of average 3 month SPI for May (spring) of all
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Time Series of average 3 month SPI (Aug) of ali NORTHEAST stations for the POR 1911-1995
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Northeast stations for the period January, 1911 through December, 1995.

Fig 4.30(C) Time series of average 3 month SPI for August (summer) of all

Time Series of average 3 month SPI (Nov) of all NORTHEAST stations for the POR 1911-1995
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Northeast stations for the period January, 1911 through December, 1995.

Fig 4.30(D) Time series of average 3 month SPI for November (autumn) of all
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Time Series of average 3 month SPI (Feb) of all SOUTHEAST stations for the POR 1911-1995
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Fig 431(A) Time series of average 3 month SPI for February (winter) of all
Southeast stations for the period January, 1911 through December, 1995.

Time Series of average 3 month SPI (May) of all SOUTHEAST stations for the POR 1911-1995
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Fig 431(B) Time series of average 3 month SPI for May (spring) of all
Southeast stations for the period January, 1911 through December, 1995.
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Time Series of average 3 month SPI (Aug) of all SOUTHEAST stations for the POR 1911-1985
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Fig 4.31(C) Time series of average 3 month SPI for August (summer) of all
Southeast stations for the period January, 1911 through December, 1995.

Time Series of average 3 month SPI (Nov) of all SOUTHEAST stations for the POR 1911-1995
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Fig 4.31(D) Time series of average 3 month SPI for November (autumn) of all
Southeast stations for the period January, 1911 through December, 1995.
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5.0 SUGGESTIONS FOR FURTHER STUDY

Certainly intriguing is the long-term anomalously wet conditions that much of the
Mississippi and Ohio Valleys have experienced between 1970 and 1995. Data was
analyzed through November of 1996 and there is no evidence of this long-term trend
reversing as of this writing. Investigations into the global atmospheric and oceanic
circulation and temperature anomalies of this period may shed some light on this current
long-term phenomenon.

For example, Kushnir (1994) found prevailing warm sea surface temperature
anomalies in the North Atlantic Ocean from about 1930 on into the 1960s along with a
cyclonic sea level pressure anomaly in the North Atlantic that persisted from 1930 to 1970
except for a short break around 1950. These anomalies correspond with the long-term
droughts of the 1930s, 1950s, and 1960s that affected large portions of the eastern one-
half of the United States. Around 1970, Kushnir (1994) found that an anticyclonic sea
level pressure anomaly had developed in the North Atlantic corresponding with cooler
North Atlantic sea surface temperatures. Gray (1993) attributes this cooling to a
weakening of the net northward Atlantic thermohaline circulation that he infers to have
started around 1968. Further investigation into this phenomenon is necessary. For
example, the Bermuda-Azores high pressure belt is normaily well developed during the
summer. Are cold sea surface temperature anomalies in the North Atlantic maintaining the

strength of this high pressure belt longer into the autumn? As a result, has there been an
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increased moisture transport in the autumn out of the Gulf of Mexico and into the
Mississippi and Ohio Valleys between 1970 and 1995? But again, intense and widespread
short-term droughts still occurred during this period. Hence, did these short-term
droughts occur during short breaks in these long-term anomalies? How do these
anomalies in the Atlantic correspond with anomalous positioning of the midlatitude storm
track? Will these long-term anomalies reverse? If so, will the eastern United States again
experience the widespread and long-term droughts that occurred between 1930 and 19707
With increased population and a subsequent increased water demand, is the United States
prepared to effectively mitigate future widespread long-term drought such as those that
occurred between 1930 and 19707

Similar investigations for wet anomalies in the western United States would be just
as valuable. For example, Cayan (1996) found years with anomalously low winter
precipitation in the western United to be associated with 700 millibar pressure anomalies
that resembled the PNA pattern (anomalously low pressure in the central North Pacific
and anomalously high pressure over the Pacific Northwest). Other investigations could
include correlating the SPI at a given time scale for a given region to such phenomena as
El Nifio, La Nifia, the quasi-biennial oscillation, the North Atlantic oscillation, etc. Also,
would a principal component analysis performed on the SPI produce different
homogeneous drought regions than determined by Karl and Koscielny (1982)? How
would the regions differ spatially as the time scale changes? Or at the short-term time
scales, how would the regions differ as the season changes? These are just a few

suggestions on how the SPI can be used for research purposes.
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6.0 CONCLUSIONS

The contiguous United States was never entirely in drought at any time scale
during this period. Additionally, the contiguous United States was never entirely
experiencing anomalously wet conditions either. Conversely, the contiguous United
States was never completely without drought or anomalously wet conditions at any time
scale during the period of record.

The contiguous United States as a whole has become wetter over the period
January, 1911 through December, 1995. Additionally, all nine major regions studied for
the United States have also become wetter over the period. As a result, there has been a
lower frequency of both short- and long-term droughts and a higher frequency of both
short-and long-term wet periods during the last 25 years of the period of record. On the
other hand, the short-term droughts of the last 25 years of the period do compare in
intensity and areal coverage to short-term droughts of the first 60 years of the period.
Likewise, short-term wet periods between 1911 and 1970 compare in intensity and areal
coverage to short-term wet periods of the last 25 years of the period of record. However,
for the country as a whole, the areal coverage and intensity of long-term wet periods that
occurred between 1970 and 1995 are unmatched by the long-term wet periods that

occurred between 1911 and 1970. Also, for the country as a whole, the areal coverage
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and intensity of long-term droughts between 1911 and 1970 are unmatched by the long-
term droughts of the last 25 years of the period of record.

Additionally, for the country as a whole, the average duration and frequency of
short-term wet periods have increased at a magnitude opposite to the decreasing average
duration and frequency of short-term droughts over this period of record. Furthermore,
the percentages of stations experiencing drought at all time scales have decreased at rates
nearly opposite to the increasing percentages of stations experiencing anomalously wet
conditions at all time scales.

Regionally, the most dramatic increase in the frequency of long-term wet
anomalies over the last 25 years of the period has occurred in regions along the
Mississippi and Ohio river valleys. Despite the occurrence of a few intense short-term
droughts, these major regions have all experienced long-term wet periods in the 1970s, the
1980s, and again in the early 1990s.

The autumn has had the most consistent seasonal wet anomalies over the last 25'
years of the period for these regions along the Mississippi and Ohio river valleys.
Additionally, these anomalously wet autumn periods correspond well with the long-term

wet periods these regions have experienced during the last 25 years of the period of

record.
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