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Abstract

Women have a 1 in 8 chance of being diagnosed with breast cancer, and 1 in 30 will
die of this disease over her lifetime. Although mammography is the current procedure of
choice for breast cancer screening, radiologists fail to detect cancer in 10 to 30 percent
of patients with breast cancer. Also, only 10 to 20 percent of patients reffered for biopsy
based on mammographic findings prove to have cancer. Further, the malignancies missed
by the radiologist are evident in two-thirds of the mammograms retrospectively. To increase
sensitivity, a double reading has been suggested. However, the explosion in the number
of screening mammograms makes this option unlikely. Alternatively, a computer-aided
diagnosis (CADx) system may act as a “second reader” to assist the radiologist in detecting

and diagnosing lesions.

Clustered microcalcifications are one of the earliest indicators of breast cancer, and
are detected only by mammography; 30 to 50 percent of nonpalpable cancers are mam-
mographically visible on the basis of microcalcifications alone. Furthermore, for early
breast cancers, screening studies suggest that 70 to 90 percent were detected based on
microcalcifications alone. This research proposes the following methodology for clustered
microcalcification detection. First, preprocess the digitized film mammogram to reduce
digitization noise. Second, spatially filter the image with a difference of Gaussians (DoG)
kernel. To detect potential microcalcifications, segment the filtered image using global and
local thresholding. Next, cluster and index these detections into regions of interest (ROIs).
Identify ROIs 6n the digitized image (or hardcopy printout) for final radiologic diagnosis.
Finally, to improve detection rates, globally optimize detection parameters using a genetic

algorithm (GA), then locally optimize using the simplex method.

The database of 56 digitized (12 bit, 100 gm) full-breast (20x10 cm?) film mammo-
grams contained 63 biopsy-truthed clustered microcalcification ROIs over 28 cases. This
technique demonstrated a true positive (TP) case detection rate of 96.4 percent (27/28),
and TP ROI (54/63) and TP image (48/56) detection rates of 85.7 percent with 5.75 false
positives (FPs) per full-breast image.




Clustered Microcalcification Detection

Using Optimized Difference of Gaussians

L. Introduction

1.1 Background

Mammography, along with physical examination, is the current procedure of choice
for breast cancer screening. Screening mammography has been responsible for an esti-
mated 30 to 35 percent reduction in breast cancer mortality rates (58). However, in 1996
approximately 185,700 new breast cancer cases will be diagnosed and 44,300 women will
die from this disease (47). Additionally, women have a 1 in 8 chance of being diagnosed,

and 1 in 30 will die of this disease over her lifetime (60).

Although radiographic mammography is a well-studied and standardized methodol-
ogy (85), for 10 to 30 percent of women diagnosed with breast cancer, their mammograms
were interpreted as negative (21, 65). Further, the malignancies missed by radiologists were
evident in two-thirds of the mammograms retrospectively (21, 65). Missed detections may
be attributed to several factors: poor image quality, improper patient positioning, inac-
curate interpretation, fibroglandular tissue obscuration (57), subtle nature of radiographic

findings, eye fatigue, or oversight (21, 65).

To increase sensitivity, a double reading has been suggested (21, 65). However,
the explosion in the number of screening mammograms makes this option unlikely (55).
Alternatively, a computer-aided diagnosis (CAD or CADx) system may act as a “second

reader” to assist the radiologist in detecting and diagnosing lesions (21, 65).

1.2 Computer-aided diagnosis

Researchers at the Air Force Institute of Technology (AFIT) have been developing
modifications to automatic target recognition algorithms used in airborne reconnaissance

sensors (19, 51). These modifications allow the technology previously used to identify




targets in sensor imagery to be used to identify suspect areas in mammography films, and
to render a recommendation to the radiologist as to the pathology (malignancy) of suspect
areas. Previous AFIT CADx studies have resulted in detection successes ranging from 77
to 93 percent (10, 33, 38, 48). The objective of the AFIT CADx system shown in Figure 1
is to improve radiological detection and interpretation of lesions in mammograms. Using
features extracted from detected ROIs, artificial-intelligence techniques can then be used

to determine the possibility of malignancy (21, 65).
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Figure 1. CADx System Methodology: After film digitization, the image is analyzed by
a detection algorithm. Computer-detected ROIs are then identified for the
radiologists to compare against their own detections. Next, the CADx module
provides a computer diagnosis for the radiologist to consider. The radiologist
makes the final diagnosis.




1.8 Problem Statement

The objective of this thesis is to design an automated microcalcification detection

system to be used as an aid in radiologic mammogram interpretation.

1.4 Scope

This research was developed to aid the radiologist in mammogram interpretation;
the radiologist always makes the final diagnosis. Also, this thesis makes no attempt to

detect or classify masses, or other mammographic densities.

The database of 56 digitized (12 bit, 100 pm) full-breast (20x10 cm?) film mam-
mograms contained 63 biopsy-truthed clustered microcalcification ROIs over 28 cases. All
mammograms included a pathology report indicating location and diagnosis of biopsied
regions. The data set included approximately 2 films per case with the following distri-
bution: 1 case with 4 films, 2 cases with only 1 film, and the remaining 25 cases with 2

films.

Full-breast image optimization would have been extremely costly; approximately 30
to 60 minutes per digitized film on a Sun Ultra or Sun Sparc20. Thus, 52 256x256 and
9 512x512 subimages were extracted from these images to facilitate algorithmic develop-
ment. The relationship between full-breast images, subimages, and ROIs is illustrated by
example in Figure 2. The 61 subimages contained all 63 biopsy-truthed ROIs, and a physi-
cian (27) annotated abnormalities identified in corresponding pathology reports. These
subimages considerably reduced algorithmic development times, and reduced corﬁputer
memory requirements. Additional information on digitization and database management

is located in Appendix A.




a036a00m.mam

a036a01m.roi

(a) (b)

Figure 2. Digitized (12 bit, 100 pm) full-breast film mammogram: (a) 20x10 cm’
full-breast image: bounding box identifies biopsy-truthed region of interest
(ROI); (b) 256x256 pixel subimage: the malignant ROI contained a cluster of

microcalcifications.




1.5 Methodology

As shown in Figure 3, the following architecture is used to focus radiologist attention
to computer-detected ROIs. First, the digitized film mammogram is preprocessed to reduce
digitization noise. Second, the image is spatially filtered with an optimized difference of
Gaussians (DoG) kernel. To detect potential microcalcifications, the filtered image is
segmented using global and local thresholding. These detections are clustered and indexed

into ROIs. Finally, these ROIs are identified for final radiologic diagnosis.
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Figure 3. Overview of Cluster Detection Methodology: ¢ controls the DoG filter used
to enhance calcifications; f, ki, kni, and N control the detection stage of the
system; puCspin and d,, control the clustering module.




1.6 Owverview

Chapter II reviews breast cancer and related CADx research efforts. Chapter III
provides an overview of detection methodology. Chapter IV reviews detection results
and analyis. Conclusions are drawn in Chapter V. Appendix A contains digitization and
database information used in this research. Appendix B contains Matlab and C code used

in this research.




II. Background

This chapter reviews breast cancer and related CADx research. Specifically, this

chapter reviews the following topics:

e Breast cancer: statistics, mammographic characterization, radiologist detection and

diagnosis of breast lesions

¢ Related CADx research: computer detection of microcalcifications

2.1 Breast cancer

Breast cancer results from failure of normal regulation of cell differentiation and
proliferation (34). According to Kopans (34), “Breast cancer kills through metastatic
spread and compromise of the function of other organs.” Since many cancers require time
to develop the ability to spread successfully to other organs (34), early detection is the

goal in screening mammography (60).

2.1.1 Statistics.  Screening mammography has been responsible for an estimated
30 to 35 percent reduction in breast cancer mortality rates (58). However, in 1996 approx-
imately 185,700 new breast cancer cases will be diagnosed and 44,300 women will die from
this disease (47). Additionally, women have a 1 in 8 chance of being diagnosed, and 1 in
30 will die of this disease over her lifetime (60). Although mammography is the current
procedure of choice for breast cancer screening, radiologists fail to detect cancer in 10 to
30 percent of patients with breast cancer (21, 65). Also, only 10 to 20 percent of patients

reffered for biopsy based on mammographic findings prove to have cancer (55).

2.1.2 Mammographic characterization.  To improve radiologist performance and
reduce mortality rates, researchers are pursuing computerized analysis to aid in mammo-
gram interpretation (55). Radiologic interpretation of mammograms includes detection
and diagnosis of suspicious masses and clustered microcalcifications. However, once an ab-
normality is detected, one of the first challenges is to determine whether the abnormality
is actually present (2, 16). Numerous overlapping structures in the breast form summation

shadows that may mimic true abnormalities (8, 16).




2.1.2.1 Masses. A mass is a space-occupying lesion shown in two different
projections; otherwise, the term “density” may be used until the three dimensional features
are confirmed (2, 16). Densities that mimic masses include pectoral muscle, nodular breast
tissue, and summation shadows (2). Breast masses may be characterized by shape, margins,
density relative to surrounding tissue, associated findings, and location (2). According to
Adler (2), “Masses are three-dimensional, distinct from the surrounding tissue, and most
often asymmetric compared with the contralateral breast.” Mammmographically seen
margins are one of the major determinants of benign or malignant status because masses
with indistinct margins have a higher risk for malignancy (2, 16). Additional features used
for interpretation of masses are discussed in more detail in Adler’s (2) and Dorsi’s (16)

articles.

2.1.2.2 Microcalcifications. Microcalcifications are calcium deposits typi-
cally on the order of 0.1 to 0.3 mm in diameter (8, 56) and are detected only by mam-
mography (20). Recognition of their presence is the challenge for radiologists because 30
to 50 percent of nonpalpable cancers are visible on the basis of microcalcifications alone
(20). Furthermore, for early breast cancers, screening studies suggest that 70 to 90 percent
were detected based on microcalcifications alone (20). (The terms microcalcification and

calcification will now be used interchangeably to simplify discussion of characteristics.)

As mentioned earlier, one of the first steps in radiologic analysis of calcifications is
to determine whether they have been detected. Mimics or pseudocalcifications include
deodorant, talcum powder, pickoff of film emulsion, dust particles, and scratches (20).
After false detections are eliminated, calcifications are analyzed for potentially benign or

malignant features.

Feig (20) lists the following examples of potentially benign calcifications:

o “Eggshell or rim calcifications” typically have a round calcific rim surrounding a

hollow sphere.

e “Spherical or lucent-centered calcifications” have thicker walls than eggshell, have

smooth surfaces, and are round or oval.




e “Vascular calcifications” typically appear in parallel producing a “railroad track”
appearance. These may be difficult to distinguish from potentially malignant fine

linear calcifications if one wall of the vessel is calcified, or if the segment is short or

discontinuous.

o “Large rod-like calcifications” follow the course of the ducts, radiating from the

retroareolar area and are frequently bilateral.

e “Coarse or popcorn-like calcifications” appear as a circumscribed mass with coarse,

mostly round calcifications.

o “Milk of calcium calcifications” are layers of calcium in the dependent portion of
cysts, and may be meniscus shaped when seen on the mediolateral (ML) view and

less distinct on the craniocaudal (CC) view.
e “Skin calcifications” typically appear as 1 to 2 mm lucent centered or solid spheres.

e “Dystrophic calcifications” have a bizarre shape, typically result from surgery or
radiation therapy, and may be difficult to distinguish from potentially malignant

calcifications.

Shape, distribution, size, and contour are the major criteria used to distinguish
malignant from benign calcifications (20). Feig (20) and Shaw de Paredes (56) list the
following characteristics of potentially malignant calcifications (assuming one or more are

present):

e “Linear shaped calcifications” are typically considered suspicious; however, some

benign conditions may also produce similar calcifications (20).

e “Linearly distributed or segmentally distributed calcifications” are extremely suspi-
cious since most malignant calcifications form within ducts, and over 90 percent of

invasive cancers arise from ducts (20).

e “Markedly clustered and unilateral calcifications” are also extremely suspicious since
malignant calcifications usually appear with this feature (20). The greater the num-
ber of calcifications within an area, the more suspicious (56). As Shaw de Paredes

notes, “malignant calcifications tend to occur in tight clusters of 1 cm diameter or




less” (56). However, Shaw de Paredes cautions: “...the disease and the calcifications
can be extensive, involving an entire quadrant or an entire breast” (56). Finally,
solitary clusters are typically considered for biopsy if no similar calcifications exist

elsewhere in the breast, or in the opposite breast (20).

2.1.8 Radiologist detection and diagnosis of breast lesions.  Although radiographic
mammography is a well-studied and standardized methodology (35), for 10 to 30 percent
of women diagnosed with breast cancer, their mammograms were interpreted as negative
(21, 65). Further, the malignancies missed by radiologists were evident in two-thirds
of the mammograms, retrospectively (21, 65). Missed detections may be attributed to
several factors: poor image quality, improper patient positioning, inaccurate interpretation,
fibroglandular tissue obscuration (57), subtle nature of radiographic findings, eye fatigue,

or oversight (21, 65).

To increase sensitivity, a double reading has been suggested (21, 65). However,
the explosion in the number of screening mammograms makes this option unlikely (55).
Alternatively, a computer-aided diagnosis (CADx) system may act as a “second reader”

to assist the radiologist in detecting lesions and making diagnostic decisions (21, 65).

2.2 Related CADz research: clustered microcalcification detection

To improve radiologist performance, researchers are pursuing computerized analysis
to aid in mammogram interpretation (55). As mentioned earlier, one research area of
interest is detection and diagnosis of microcalcifications. Although researchers generally
desire the same goal, several methodologies exist for each stage of the detection and/or

diagnosis process.

2.2.1 Database.  Several research groups are currently investigating detection of
clustered microcalcifications (9, 44, 46, 64, 68). Most investigators use different databases;
thus, it is not possible to compare results directly (44). Additionally, no universally ac-
cepted criteria exists for the number of bits required to represent available gray levels in

films or minimum resolution required for detection of clustered microcalcifications. How-

10




ever, several researchers use a sample spacing of 100um per pixel, with a gray-level reso-

lution of 10 to 12 bits per pixel (9, 18, 44, 64, 68).

There is also a wide variation in the area of mammograms used for analysis. Image
area is an important factor in increasing the false positive detection rate since the larger the
test area, “...the greater the chance for producing false positives in general” (18). Typical
mammogram image areas generally range from 8x10 cm? to approximately 10x10 cm?
(9, 18, 44, 68); however, robust detection algorithms should not be limited by image area.
As mentioned in Chapter I, we use approximately 20x10 cm? (2Kx1K pixel) full-breast
images.

In the literature, several CADx researchers (9, 44, 46, 68, 64) develop and test de-
tection techniques on the same database (not to be confused with a common database).
Nishikawa et al. (45) have shown “..the choice of clinical cases used to train and test
a computer-aided diagnosis (CAD) scheme can affect the test results (i.e. error rate).”
Nishikawa et al. (45) also argue, “Because of the strong dependence of measured perfor-
mance on the testing database, it is difficult to estimate reliably the accuracy of a CAD
scheme. Furthermore, it is questionable to compare different CAD schemes when different

cases are used for testing.”

Although a common database has been suggested, this would require standardiza-
tion of pixel size and number of gray levels used (45). Also, if the common database
were enlarged, all previously evaluated CADx techniques would need to be reevaluated if
images from new digitized imaging or film-screen systems were added (45). Furthermore,
Nishikawa et al. argue, “...because there is no quantitative or rigorous means of determin-
ing whether a particular common database is representative of the clinical population, it

is difficult to predict the true clinical impact of a CAD scheme.”

2.2.2 Cluster detection criteria.  No universally accepted criteria exist for scoring
detections of clustered microcalcifications (63, 64). Nishikawa et al. (44) rely on visual

“,..it 1s not possible to

interpretation for determining true positive (TP) detections since
determine the z —y location of microcalcifications that are not visible in the mammogram.”

Nishikawa et al. do not define their criteria for false positive (FP) detections.

11




Strickland et al. (63, 64) rely on the cluster detection criteria proposed by Karsse-
meijer (32)-. “A cluster is considered detected if two or more microcalcifications are found
in the region of film (truth circle) identified by the radiologist” (63, 64). Strickland et al.
continue, “...a false positive (FP) is counted if two or more erroneous detections are made
within an empty, closed region of 0.5 cm in width (63, 64). As Strickland et al. note, “One
weakness of this metric is that at high sensitivity thresholds the number of false positives

may actually drop due to merging of previously separated false clusters” (64). However,

this usually occurs at FP rates too high to be of any clinical value (64).

Chan et al. (9) score a signal detected if it was within 0.5 mm of a true microcalcifi-
cation. Further, a cluster is scored as a TP if its centroid is within a cluster radius of 5 mm
from the centroid of a true cluster and at least two of its member microcalcifications are
scored as a TP. Once a microcalcification or cluster is considered detected, it is eliminated

from further matching.

2.2.8 Noise reduction.  In screen-film mammography, the film is used for detec-
tion, storage, and display (15). Since full-area detectors suitable for digital mammography
are still in the experimental stage, an alternative way of acquiring mammograms in digital
form is to digitize a film mammogram (67). Although the main limitation in image quality
should be the granularity of the film emulsion (67), noise is introduced from the process

of digitization (15). This noise may later be detected as a pseudocalcification.

Although noise reduction may be performed prior to processing, Nishikawa et al. (44)
and Yoshida et al. (68) apply a noise reduction technique during the detection process.
To reduce the effects of noise, they propose use of morphological erosion to eliminate
detections less than 3 pixels in area, since very small signals are likely to be due to random

noise, and not by the presence of true calcifications.

2.2.4 Calcification enhancement.  To enhance calcifications, several CAD micro-
calcification detection methods employ a difference image technique; subtraction of a signal
suppressed image from a signal enhanced image (9, 18, 44). In practice, the spatial kernels

used for enhancement and suppression are combined into a single linear filter, equivalent

12




to bandpass filtering (18). Several of these methods use a box-rim based kernel to enhance

calcifications (9, 18, 44).

Strickland et al. (63, 64) and Yoshida et al. (68) use wavelets to enhance calcifica-
tions. Strickland et al. (63, 64) use sub-band decomposition to obtain individual wavelet
matched filter responses. Yoshida et al. (68) use wavelet techniques to decompose, mod-
ify, then reconstruct wavelet-processed mammograms. Finally, other techniques which
have been successfully applied use locally adaptive or region growing methods to enhance

contrast in film mammograms (12, 13, 14, 42, 66).

2.2.5 Detection of signals. Once an image has been preprocessed to enhance
differences between targets and background, the image is more easily segmented. Several
researchers threshold their filtered images to detect potential calcifications (44, 64, 68).
However, thresholding schemes typically vary according to the methodology used for en-

hancement.

Nishikawa et al. (44) and Yoshida et al. (68) use adaptive thresholding based on
local statistics of gray-level values within a 51x51 mm area. Pixels are kept if their value
exceeds 2 to 3.8 times the local standard deviation plus the local mean (44, 68). Nishikawa
et al. (44) use a 64x64 mm region centered on each signal to reduce false positives. If
the first moment of the averaged power spectrum exceeds 3 mm™, the signal is discarded.

Yoshida et al. (68) use texture analysis to reduce false detections.

Since Strickland et al. (63, 64) generate multiple images during processing, they pool
individually thresholded images to establish a test statistic at each pixel location. Each
image is thresholded at some fixed percentile of the corresponding histogram (the authors
do not report these corresponding percentiles). These images are then summed pixel-wise.

Pixels with values of 3 or more are passed to the final detection map.

2.2.6 Detection of clusters.  Recall, Feig (20) listed “markedly clustered and uni-
lateral calcifications” as extremely suspicious since malignant calcifications usually appear

with this feature. Chan et al. (9) and Nishikawa et al (44, 46) also argue true microcalcifi-
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cations of clinical interest typically appear in clusters. Thus, these investigators use fairly

similar methodologies.

Chan et al. (9) use a 1 cm diameter neighborhood criteria; if the number of signals
found within the neighborhood is greater than an input minimum number, the signal is
kept. Similarly, Nishikawa et al. (44, 46) cluster detected signals by passage of a 32x32
mm box over the entire image. If 3 or more signals exist within the box, the box is passed

to the output image as a ROL

2.2.7 Calcification detection results. Chan et al. (9) evaluate the success of
their convolution neural network at detecting clustered microcalcifications over 52 100um,
12-bit films (size/area not reported). To demonstrate the dependance of the performance
of their CAD scheme on the database, they (subjectively) divide their films into obvious,
average-subtle, and subtle sets. For the obvious set, they report a TP rate of 100 percent
with less than 0.1 FPs per image. For the average-subtle set, they achieve a 93 percent
TP rate with one FP per image. Finally, for the subtle set, they report a TP rate of 87

percent with 1.5 FPs per image.

Nishikawa et al. and Yoshida et al. use the same database, as Yoshida’s article
is an earlier investigation of a wavelet enhancement technique (44, 68). Yoshida et al.
achieve a detection rate of 85 percent with 5 FPs per image over 39 100um, 800x1000
pixel (8x10 cm?), 10-bit images (68). Similarly, over this identical dataset, Nishikawa
et al. report a TP cluster detection rate of 85 percent with 2.5 FPs per image (44, 46).

Strickland et al. (63, 64) use 40, 50 pm, 12-bit, 2048x2048 images. Because Strick-
land et al. used 50 um/pixel images, this corresponds to a 10x10 cm? region on a film
mammogram. One of their image pairs accounts for 27 percent of the total clusters in the
database (104 total clusters). Thus, they report results with and without this pair. Over
all 40 images, they achieve a TP detection rate of approximately 84 percent with approx-
imately 3 false clusters per image. (Approximations are made from the cluster detection
performance curve included in their article (64).) Without this pair, at approximately the

same FP rate, they achieve a TP detection rate of approximately 90 percent.
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Table 1. Clustered microcalcification ROI detection results; NR indicates not reported.

Investigators Database Image Area | Resolution | TP rate | FP rate
(# images) | (cm®) (pm/pixel) | (%) (#/image)
Chan et al. (overall) | 52 NR 100 92 1
Yoshida et al. 39 8x10 100 85 5
Nishikawa et al. 39 8x10 100 85 2.5
Strickland et al. 40 10x10 50 84 3
2.8 Summary

As shown in Table 1, several candidate microcalcification detection techniques have
been developed yiélding promising results; however, no single method has been developed
which is able to reliably detect all microcalcification clusters. An alternative may be to fuse
the results from several complimentary techniques. Pattern recognition research at AFIT
focuses on developing algorithms for use in detection and classification of objects in military
imagery (17, 26, 37, 51, 52, 59). Several of these methodologies have also been applied to
the area of breast cancer detection and diagnosis (10, 33, 38, 48). A new technique which
uses DoG filtering for detection of clustered microcalcifications is presented in the next

chapter.
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III. Methodology

3.1 Introduction

This chapter presents a new technique for detecting and labeling clustered microcal-

cifications in digitized film mammograms.

3.2 Algorithm development

In the literature, several CADx researchers (9, 44, 46, 68, 64) develop and test detec-
tion techniques on the same database (not to be confused with a common database). This
research adopts the same approach. Although partitioning the database into a training
and testing set was considered, Nishikawa et al. (45) have shown “...the choice of clinical
cases used to train and test a computer-aided diagnosis (CAD) scheme can affect the test
results (i.e. error rate).” Nishikawa et al. (45) also argue, “Because of the strong depen-
dence of measured performance on the testing database, it is difficult to estimate reliably
the accuracy of a CAD scheme. Furthermore, it is questionable to compare different CAD

schemes when different cases are used for testing.”

Although a common CADx digitized mammogram testing database has been sug-
gested, this would require standardization of pixel size and number of gray levels used (45).
Also, if the common database were enlarged, all previously evaluated CADx techniques
would need to be reevaluated if images from new digitized imaging or film-screen systems
were added (45). Furthermore, Nishikawa et al. argue, “...because there is no quantitative
or rigorous means of determining whether a particular common database is representa-
tive of the clinical population, it is difficult to predict the true clinical impact of a CAD
scheme.” Thus, AFIT researchers are currently facilitating a clinical study to determine

the impact of this research as well as other AFIT CADx schemes (10, 33, 38, 48).

3.3 Database

In screen-film mammography, the film is used for detection, storage, and display.
(15). Since full-area detectors suitable for digital mammography are still in the experi-

mental stage, an alternative way of acquiring mammograms in digital form is to digitize
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a film mammogram (67). This research was performed using digitized film mammograms

and subimages annotated by a physician trained in radiology (27).

Specifically, the database of 56 digitized (12 bit, 100 pm) full-breast (20x10 cm?)
film mammograms contained 63 biopsy-truthed clustered microcalcification ROIs over 28
cases. All mammograms included a pathology report indicating location and diagnosis of
biopsied regions. The data set included approximately 2 films per case with the following
distribution: 1 case with 4 films, 2 cases with only 1 film, and the remaining 25 cases with

2 films.

Full-breast image optimization would have been extremely costly; approximately 30
to 60 minutes per digitized film on a Sun Ultra or Sun Sparc20. Thus, 52 256x256 and
9 512x512 subimages were extracted from these images to facilitate algorithmic develop-
ment. The relationship between full-breast images, subimages, and ROIs is illustrated by
example in Figure 2. The 61 subimages contained all 63 biopsy-truthed ROIs, and a physi-
cian (27) annotated abnormalities identified in corresponding pathology reports. These
subimages considerably reduced algorithmic development times, and reduced computer
memory requirements. Additional information on digitization and database management

is located in Appendix A.

3.4 Cluster detection criteria

As Strickland et al. (64) note, no universally accepted criteria exist for the detection
of clustered microcalcifications. Thus, for each of the subimages extracted from mam-
mograms with corresponding pathology, a physician identifies the bounding box of each
cluster (as shown in Figure 4a) and stores the top left and bottom right vertices in a truth

file. This technique for creating “ROI truth” streamlines tracking of detection results.

For counting TPs, a cluster is considered detected if aﬁy cluster signal is found
within a bounding box and the cluster’s centroid is within 5 mm from the bounding box.
A FP is counted if all detections within the cluster are not made within a bounding
box. TP and FP detection rates are used to determine receiver operator characteristics

(ROC) for performance measurements of radiologic imaging systems (31, 39, 40). Typically,
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these systems are optimized such that the average TP rate is maximized while minimizing
the average FP rate. Judy’s (31) and Metz’s (39, 40) articles provide a more complete

discussion of radiologic ROC analysis.

3.5 Noise reduction module

Although the main limitation in image quality should be the granularity of the film
emulsion (67), noise is introduced from the process of digitization (15). This noise may
be detected later as a pseudocalcification. There are several noise reduction techniques
available in the literature (3, 53, 61). In this research, median filtering is used because this
technique has been shown to be extremely effective at removing noise (3). However, the
type of median filter used differs from the typical since it is cross-shaped. The cross shape
is formed by the set of pixels which include the center pixel and its four nearest neighbors.
The cross shape preserves lines and corners better than the standard block-shaped median
filter (3, 61). Additionally, the cross shape limits the possible substitution to the four
nearest neighbors, reducing the potential for severe edge displacement (3). The subimage

in Figure 4a was processed with this technique, and results are shown in Figure 4b.

3.6 Calcification enhancement module: DoG filter

After noise has been reduced, the image is DoG filtered. This section discusses DoG
filtering by example. First, the physiological basis for and construction of a DoG filter is
identified. Next, DoG spatial kernels are generated based on potential target sizes. These

filters are then individually applied to the noise reduced subimage shown in Figure 4b.

3.6.1 Physiological basis.  In chapter two of Vision (36), Marr reviews require-
ments for and efficient detection of intensity changes, identifies the physiological basis for
the DoG, and (indirectly) provides an engineering rule of thumb for construction of DoG
filters. To detect intensity changes efficiently, Marr argues one should search for a filter
which is a differential operator and is tunable to act at any desired scale (36). Raff (49)
provides further insight into Marr’s argument. In short, two basic ideas underlie detection

of intensity changes in images. First, intensity changes occur at different scales in images,
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a036a01m.ncl

(b)

Figure 4. 256 x 256 subimage: (a) ROI bounding box contains biopsy-truthed malignant
cluster of microcalcifications; (b) noise-reduced subimage
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and second, sudden changes in intensities result in peaks of first derivatives and hence

“zero crossings” in the second derivatives.

Marr argues the Laplacian of Gaussian (LoG) is the optimum filter which satisfles
these conditions (36). There are two basic steps to LoG filtering. First, use a Gaussian
to effectively wipe out all structure at scales smaller than the space constant (standard
deviation) of the Gaussian. Second, use a Laplacian as a differential operator to detect
intensity changes in the blurred image (36). As Marr notes, the benefit of using a Gaussian
is that it is smooth and localized in both the space and frequency domains. Additionally,
the benefits of using the Laplacian are that it is an orientation-independent operator, and
it reduces the extra computational burdens associated with using second-order directional
derivative operators (36). Next, Marr identifles the biological implications of the LoG

filter.

Neurophysiological experiments provide evidence the human visual pathway includes
a set of “channels” that are orientation and spatial frequency selective (36, 49, 61). Essen-
tially, at each point in the visual field, there are four size-tuned filters or masks analyzing
the image (36). The operation of these spatial receptive fields (in the form of retinal gan-
glion cells) can be approximated closely by a DoG (36, 49, 61). Marr argues LoG filters
form the basis for these psychophysically determined channels and the LoG operator can
be approximated closely by a DoG when the ratio of the DoG space constants is 1:1.6 (36).

3.6.2 DoG parameters. The 2-D Gaussian smoothing operator is given as

Gle,y) = ce =55 (1)

where ¢ normalizes the sum of mask elements to unity, z and y are horizontal and vertical
indices, and ¢ is the space constant (61). Using Equation 1, the difference of two Gaussians

with different o yields

—(=3+y2) —(z2+y%)

DoG(z,y) =cre 1 —cye 7 (2)
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For a target of size (average width) ¢ pixels, use
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Figure 5. DoG kernels with their corresponding frequency response; (a) t =

1.0, (b)
t = 2.0, and (c) t = 3.0. Units of ¢ are pixels, where 1 pixel = 100 pym.

3.6.3 DoG-filtered examples.  Since microcalcifications typically range from 100

to 300 um in diameter (8, 56), potential target sizes for the 100 um digitized mammo-

grams correspond to 1 to 3 pixels. Using ¢t = {1.0,2.0,3.0}, we find 0, = {0.5,1.0,1.5}

and o; = {0.3125,0.6250,0.9375}, respectively. DoG filters were constructed using these

paired parameters as shown in Figure 5. These kernels were individually used as spatial

filters on the noise-reduced subimage shown in Figure 4b with corresponding results shown

in Figure 6. Alternatively, an “optimized” DoG kernel is shown in Figure 7a with corre-
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Results of applying three DoG kernels to a noise-reduced subimage; (a) ¢ = 1.0,
(b) t = 2.0, and (c) t = 3.0. Units of ¢ are pixels, where 1 pixel = 100 ym. As
targetsize increases, larger image structures are emphasized as expected.

Figure 6.

targetaize=1.20
DoG filter coefficients
a036a01m.dog

DoG filter Frequency Response

o

siee s
7Ol G
gOSEAB A
«:‘.: 0‘0’0.0‘000.‘ 0555

(a) (b)

Results of DoG filtering noise reduced subimage using “optimized” targetsize;

Figure 7.
(a) DoG kernel, t = 1.1995 pixels, and (b) DoG filtered subimage
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sponding filtered subimage results shown in Figure 7b. (Optimization of ? is discussed in

Section 3.10.)

3.7 Calcification detection module

Once an image has been preprocessed to enhance differences between targets and
background, the image is more easily segmented. The DoG-filtered subimages (Figure 6 and
Figure 7b) contain obvious differences in gray levels between potential microcalcifications
and background; however, the optimum method for segmentation is not so clear. Although
microcalcifications tend to be among the brightest objects in DoG-filtered subimages, they
may exist within regions of high average gray levels and thus prove difficult to reliably
segment. A method that generally addresses these concerns uses pair-wise pixel “anding”

of the results of global histogram and locally adaptive thresholding.

If targets tend to exist within an image’s higher gray levels, then the global threshold
may be approximated by finding the level which segments a preselected percentage of the
corresponding higher levels in the image histogram. Locally adaptive thresholding may be
implemented by varying the high and low thresholds based on the local pixel value mean
and standard deviation (43).

According to Gonzales, “the histogram of a digital image with gray levels in the

range [0, L-1] is given as

p(n) = =% (5)

where ry, is the kth gray level, ny is the number of pixels in the image with that gray level,
n is the total number of pixels in the image, and k = 0,1,2,...,L — 1”7 (24). After the
histogram has been computed, the gray level, g, used to segment (threshold) a preselected

upper fraction of the histogram, f, is found using
g
f=1=3% p(r) (6)

k=0

where 0 <g< L -1.
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The locally adaptive thresholds, t;, and tx;, are found using
to = kloa(m’y) + m(m)y) (7)

and

thi = knio(z,y) +7ﬁ(93,y) (8)

where k;, and kp; are used to preselect the multiple of o(z,y), the local standard deviation,
and m(z,y) is the local mean of the N x N neighborhood centered on the pixel at (z,v)
(43). (Optimization of f, ki, kni, and N is discussed in Section 3.10.)

Once the globally and locally thresholded images are generated, they are combined

into an initial calcification detection mask, M;, using
M;i(z,y) = Ty(z,y) N Tho(2,y) N Tri(2,y) (9)

where T, (z,y) is the globally thresholded image, and Tj,(z,y) and Thi(z,y) are the images
locally thresholded using ki, and kj; respectively. For example, this method was performed
on the DoG filtered subimage in Figure 7b with results shown in Figure 8a. To facilitate
clustering, the centroids of individual detections are used to generate the final calcification

detection mask, My, shown in Figure 8b.

When working with full-breast images, however, detections may occur on film labels
which are obvoiusly not ROIs. Thus, to ensure detections are within the breast, a breast
segmentation utility was developed to segment the breast from the image. This utility
consists of five steps. First, a variance image is computed from a subsampled version of
the full breast image. Second, the original image and the variance image are rescaled
and added. Next, Floyd-Steinberg image dithering is used to reduce the grayscale image
to two gray levels. Only the largest contiguous region is set to one assuming it always
corresponds to the breast. All other regions are set to zero. Finally, the resulting binary
image is upsampled to generate a full-image breast mask. This utility returns a binary

breast mask with ones corresponding to the region of film containing the breast.
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Figure 8.
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: f = 0.0009, k;, = 4.1226, ky; =

7.000, and N = 69, and (b) M;: Centroids of individual detections in M;
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Thus, to ensure detections are within the breast, the centroids of individual locations
are compared with the breast mask. If the centroids are found within the breast mask, the

centroids are then passed to the cluster detection module.

3.8 Cluster-detection module

Recall, “...malignant calcifications tend to occur in tight clusters of 1 cm diameter
or less * (56); however, calcifications can be extensive (56). Thus, the cluster detection
module identifies clusters based on the clustering hypothesis proposed by Chan, et al. (9).
Specifically, a suspicious ROI (cluster) is fCsmin or more detected signals linked by an
Euclidean nearest neighbor distance, d,,. (Optimization of pCsp;, and d,, is discussed

in Section 3.10.)

3.9 Labeling computer-detected ROIs

Once detections have been indexed according to their corresponding ROIs, an ellipse
may be used to identify computer-detected ROIs, as shown in Figure 9a. The shape of the
ellipse may be generated based on the distribution of cluster signals. Figure 9b provides an
example of the final output with corresponding truth for the subimage shown in Figure 4a.
Figure 10 shows the corresponding full image result which may be provided in hardcopy

form to the radiologist. Figure 11 illustrates overall detection methodology.
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Figure 9.
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Cluster detection results for ¢ = 1.1995,f = 0.0009,k;, = 4.1226,k;; =
7.000, N = 69, uCsmin = 3, and d,, = 51.0031; (a) computer-detected ROI
with corresponding microcalcification detections, and (b) computer-detected
ROI for radiologist consumption. Since the “ground truth” for the cluster was
available, the corresponding bounding box is shown and detection results are
reported.
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Figure 10.
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Full image (20x10 cm?) cluster detection results for ¢t = 1.1995,f =
0.0009, k;, = 4.1226,kp,; = 7.000,N = 69, uCspin = 3, and d,, = 51.0031;
Since the “ground truth” for the cluster was available, the corresponding
bounding box is shown. The upper ROI not corresponding to the truth box
contained a true cluster of microcalcifications, however the region was not
biopsied. The lowest ROI was due to scratches on the film.
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Figure 11. Cluster Detection Methodology: ¢ controls the DoG filter used to enhance
calcifications; f, ki, kni, and N control the detection stage of the system;
pCspmin and d,, control the clustering module.
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3.10 Cluster detection optimization

As shown in Figure 11, the following seven parameters are used to control clustered

microcalcification detection:

t, microcalcification target size (average width) in pixels (1 pixel = 100 pm); i.e.,

t={1.0,1.15,2.13,...}, where t > 0

#, upper fraction in intensity of the DoG-filtered image histogram,; i.e., f = {0.001,0.02,0.05, .. 3

where 0 < f <1

e k;, and ky;, multiples of o(z,y), the standard deviation in brightness computed from
neighborhood centered on DoG filtered pixel at (x,y); i.e., ki, = {3.6,3.75,4.17,.. .},
and kp; = {63,70,825, ‘e ‘} where 0 < kj, < kp;.

e N, block size of neighborhood centered on DoG-filtered pixel at (x,y); ie., N =
{51,53,67,...}, where N > 0, and N € Odd

¢ CSpmin, minimum number of detected microcalcifications linked by dy, to trigger a

ROI detection; i.e., uCsmin = {2,3,4,5,...}, where uCspin > 2

e d,.,, Euclidean nearest neighbor distance (in pixels) between detected microcalcifica-

tions; i.e., dpn, = {50.23,51.5,60.4, ...}, where d,, > 0

Recall, t controls the DoG filter used to enhance calcifications. Additionally, f,
k1o, kni, and N control the detection stage of the system. Finally, dn, and pCspin control
the clustering module. Although empirical results may be obtained by manually modifying

these parameters, an alternative, more efficient method is to use an optimization algorithm.

3.10.1 Function optimization. A function optimization problem may be described
as follows: given some finite domain, D, a particular setting of cluster detection parameters,
x = {t, f, k1o, ki, Ny UC8min, dnn} Where x € D, and an objective function fu; : D — R,
find the x in D that maximizes or minimizes fo; (61). Optimization problems require an

objective function which reflects the “goodness” of a solution (61).

fung () = —FP(x) ,TP(x) 2 TPnin (10)

FPyenaisy , otherwise
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Recall, radiologic imaging systems may be optimized to maximize the TP rate while
minimizing the FP rate. This objective may be recast into the functional form shown in
Equation 10, where mazimizationis the goal. (The genetic algorithm technique used in this
research seeks maximization of an objective/fitness function.) For a particular setting of
cluster detection parameters, if the minimum acceptable TP rate, T'Ppn, is exceeded, the
objective function returns the negative of the FP rate. Otherwise, if the TP rate falls below
TP,..n, the objective function returns a constant value, F Ppenaity; 1.€., FPyenaty = —10
because —F P(x) values observed in this research typically range from approximately —.27
to —1.0. Although Richardson et al. (50) argue “..infeasible solutions should provide
information and not just be thrown away,” tfley acknowledge “...many researchers believe
penalty functions should be harsh” so optimization methods “...will avoid the forbidden
spaces.” Furthermore, since Richardson et al. (50) support their argument with only two

contrived optimization problems, a harsh F Pp.pnaiy is used.

Conventional approaches to optimization use calculus-based methods (61). However,
these approaches are generally limited to objective functions that possess “nice” properties
such as continuity, differentiability, etc. (29) Their main limitation is their local behavior;
the search can easily end in a local maximum, and the global maximum can be missed
" (61). Thus, several techniques are used to improve the probability of finding the global
maximum: start at several points in the search space, use dynamic programming, apply
random searches, etc. (61). One relatively new and widely applicable approach is to use

genetic algorithms augmented by one of these standard methods (28, 61).

3.10.2 Genetic algorithms. Genetic algorithms (GAs) have been successfully
applied to many diverse and difficult optimization problems (29) such as jet engine tur-
bine design (28), tracking of criminal suspects through face composites (6), and binary
phase-only filter design for pattern recognition (7). GAs “...are at their best when explor-
ing complex landscapes [solution spaces| to find regions of enhanced opportunity” (28).
However, as Holland (inventor of the GA) (28) notes, “...if a partial solution can be im-
proved further by making small changes in a few variables, it is best to augment the genetic

algorithm with other, more standard methods.” Thus, this research uses a Matlab imple-
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mentation of a GA developed by Houck et al. (29) to find promising parameter settings,
then augments the GA with the simplex method (62) included with Matlab.

GAs search the solution space to maximize a fitness (objective) function using simu-
lated evolutionary operators; i.e., mutation, sexual recombination, etc. (28, 29, 61). GAs
manipulate and maintain a population of solutions while searching for better solutions (29).
The fittest individuals of any population tend to reproduce more and survive longer. This
increases the average fitness in successive generations (29, 61). However, as Houck et al.
(29) note, inferior individuals can survive and also reproduce. A more complete discussion
of GAs and related topics can be found in Michalewicz’s book (41). Houck (29) summarizes

the GA as follows:

1. Supply [an initial] population Py of [n] individuals and respective [fitness] function
values

2. 11

3. P! « selection_function(P; — 1)

4. P; « reproduction_function(P})

5. 1e—1+1

6. Repeat step 3 until termination [termination criteria defined later]

7. Print out best solution found

GA use requires determination of several issues: objective function design, param-
eter set representation, population initialization, choice of selection function, choice of
genetic operators (reproduction mechanisms) for simulated evolution, and identification
of termination criteria (29, 61). Although one may argue the GA itself appears to re-
quire optimization of GA parameter settings, several researchers have closely examined
this “problem” (4, 11, 22, 23, 30, 50, 54). As there is no standard agreement on optimum
GA parameter settings, this research adopts the following general “rules of thumb” culled

from several investigations in the literature:
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e As Sonka et al. (61) note, “No optimization problem can guarantee finding a good

solution to the problem if the objective function does not reflect the goodness of
the solution. Therefore, the design of the objective function is a key factor in the
performance of any optimization algorithm.” Recall Equation 10: if an acceptable

TP rate is reached, then minimization of the FP rate is desired.

For parameter representation, Janikow and Michalewicz (30, 41) showed the real-
valued GA is an order of magnitude more efficient in CPU time than the binary GA
and provides higher precision with more consistent results across replications (29).

Thus, a floating-point representation is used in this research.

Because GAs can iteratively improve existing solutions (29), several GA users seed
the initial population with some members known beforehand to be in an interesting
part of the search space (4, 22). This technique is used because preliminary cluster
detection parameter settings appear to be in an interesting region of the search
space. Also, while the minimum number of members in a GA population is three
(22), Schaffer et al. (54) argue good online performance can be expected with 20 to
30 members. Because Schaffer et al. support their suggestion using a large problem
suite over 8400 genetic searches (10K evaluations/search) (54), and each objective
function evaluation is computationally expensive (approximately 30 to 60 minutes

on a Sun Ultra or Sun Sparc20) 20 members are used in this research.

Several schemes exist for the (typically) probabilistic selection process used to identify
candidates for reproduction: roulette wheel or proportional selection, scaling tech-
niques, tournament, elitist models, and ranking methods (29, 41, 61). According to
Grefenstette and Baker (25), although several selection algorithms have been studied,
many “...have not enjoyed the same level of theoretical analysis as the proportional
selection algorithm.” The authors argue a promising alternative to proportional
selection is ranking because “the resulting algorithm is less prone to premature con-
vergence cause by individuals that are far»a.bove average.” The basic idea of ranking
is to select strings (solutions) for the mating pool based on the relative fitness be-
tween strings. This research uses the ranking method included in the Matlab GA,

normalized geometric ranking (29).

33




e Two basic types of genetic operators are commonly used in GAs: crossover and

mutation (28, 54, 61). According to Sonka et al. (61), “...the basic idea [of crossover]
is to randomly mate the ...strings [solutions] ” identified by the selection process by
« . randomly choosing a position for the border of each pair of strings,” and producing
“_.new strings by swapping all characters between the beginning of the string pairs
and the border position.” Sonka et al. (61) note the mutation operator’s role is
to “..randomly change one character of some string of the population from time to
time.” Mutation is used because “...some local configuration of characters in strings
of the population can be totally lost” due to the selection and crossover operations
(61). As there is no general agreement on specific crossover and mutation schemes,
this research adopts the default crossover and mutation schemes included with the

Matlab GA: arithmetic crossover and nonuniform mutation (29).

Finally, the termination criteria used in this research adopts the commonly used
technique of running each iteration until a specified number of generations are done
(29, 54); here, ten generations are used due to the high computational cost men-
tioned earlier. Although termination due to loss of population diversity and/or lack
of improvement is efficient when crossover is the primary source of variation in a pop-
ulation (4, 22, 29), homogeneous populations can be succeeded by populations with
better (higher) fitness when using mutation (4). Additionally, since Goldberg (22)
argues restarting populations that may have converged proves useful, this research

runs several iterations of the GA until a consistent lack of improvement is recognized.

3.10.3 Simplex method. As mentioned earlier, once potentially optimum solu-

tions are found by the GA, the most fit GA solution may be further optimized using the

simplex method developed by Dantzig (28, 62). The Matlab implementation of the sim-

plex algorithm requires a basic (initial) feasible solution, Xo (found by the GA), and a

cost function (Equation 11) (5, 62). In this research, the simplex method is used to locate

other feasible solutions (members of the “feasible set”) while minimizing the cost func-

tion until the optimal solution is obtained (5). It should be noted, since the GA provides

potentially optimum solutions not necessarily near or equal to the global optimum, the
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simplex method is not guaranteed (nor expected) to locate the global optimum. Rather,
the simplex method is used to further optimize the most fit solution found by the GA. A

cursory overview of the simplex method follows.

Feost(X) = = fopj (x) = FP) » TPGe) 2 T B (11)
—FPpenaity , otherwise

First, several terms must be defined. According to Bronson (5), “A mathematical
program is an optimization problem in which the objective and constraints are given as
mathematical functions and functional relationships.” If these relationships are linear in
each of their arguments a mathematical program is linear (5). The simplex method was
developed to solve linear programs (62). Although the cost function and its constraints
(Equation 11) may not be strictly linear, the simplex method is effective at further opti-

mizing the most fit solutions found by the GA.

The cost function (Equation 11) brings to the problem a family of parallel planes
(62). The solution with zero cost is the plane that goes through the origin; other planes
give all other possible costs (62). These planes sweep out the entire n-dimensional solution

space, and the optimal solution occurs where the planes first touch the feasible set (62).

Thus, as Strang (62) notes, there are basically the two phases in the simplex method:

1. Locate a corner of the feasible set, where a corner is the meeting point of n different

planes.

2. Within the feasible set, go from corner to corner along an edge guaranteed to decrease

the cost. Terminate when a corner is reached from which all edges increase the cost.

Finally, while the total number of simplex steps needed to find the optimum solu-
tion is impossible to answer, Strang (62) reports the simplex method has been shown to
operate in an average time which is polynomial (as opposed to the undesirable class of non-
polynomial, or NP). Because each cost/objective function evaluation is computationally
expensive (approximately 30 to 45 minutes on Sun Ultra or Sun Sparc20), this research
uses 300 simplex steps. A more complete discussion of the simplex method may be found

in Strang (62).
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3.11 Summary

This chapter presented a new technique to detect clustered microcalcifications in
digitized film mammograms. First, the image is preprocessed to reduce digitizaion noise.
Next, a DoG filter is used to enhance microcalcifications. The filtered image is thresholded,
and detections are passed to the cluster detection module. Finally, computer-detected
ROIs are overlaid on the original image for radiological analysis. To improve detection
rates, globally optimize detection parameters using a genetic algorithm (GA), then locally

optimize using the simplex method.
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IV. Results

This chapter presents the results of the clustered microcalcification detection tech-

nique.

4.1 Optimization

As mentioned earlier, full-breast image optimization of detection parameters would
have been computationally expensive. Thus, subimages were used during the optimization
stage. All subimages had at least one biopsy-truthed ROIL If at least one subimage ROI
was detected, a TP of 1 was recorded. All FPs within each subimage were recorded as well.
The goal of the optimization stage was to reduce the subimage FP rate while maintaining

the minimum acceptable TP rate, T'P,,;, = 84.5 percent.

4.1.1 TPp,. Since the optimization method described in Chapter III requires
a minimum acceptable TP rate to minimize the FP rate, an optimized ROC analysis was
performed using TPy, = 84.5,82.5,80.0, and 77.0 percent. Although higher subimage
TP, goals were easily attainable, they were accompanied by higher subimage FP rates

as expected; approximately 0.8 to 2.6 FPs per subimage.

Recall, image area is an important factor in increasing the FP rate since the larger the
test area, “...the greater the chance for producing false positives in general” (18). Thus,
because most of the subimages were approximately 1/32 the area of a database image,
subimage detection rates of 0.8 to 1.3 may lead to approximately 25.6 to 41.6 FPs per
full-breast image. Continuing with the analysis, if a maximum of approximately 5 FPs per
full-breast image is desired, approximately 0.1562 FPs per subimage may be considered

the goal.

4.2 Subimage ROC results

To provide insight from a ROC perspective into how subimage TP and FP detection
rates vary with the choice of T Pn;,, the GA and simplex methods were used to search

the feasible set of parameter settings. Additionally, the case TP rate was tracked to
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Table 2. T P,,;n vs. Optimized subimage parameter settings
I TPmin i t l f | k[o I kh.,; l N l d,m | ,LLCSmin |
84.5 1.1995 | 0.0009 | 4.1226 | 7.0000 | 69 | 51.3019 3
82.5 1.1995 | 0.0009 | 4.1226 | 7.0000 | 69 | 51.3420 3
80.0 1.2286 | 0.0009 | 4.2289 | 7.0000 | 69 | 51.3019 3
77.0 1.2276 | 0.0007 | 4.2306 | 7.0002 | 69 | 51.3031 3

Table 3. Optimized subimage ROC results

[ TPmin | Case TP | Subimage TP | Subimage FP |

84.5 96.43 85.25 0.2295
82.5 96.43 85.25 0.2295
80.0 92.86 81.97 0.1967
77.0 92.86 81.97 0.1803

demonstrate optimization effects. Optimized subimage parameter settings found during
this search are summarized in Table 2, with corresponding TP and FP rates in Table 3.
Recall, ¢t controls the DoG filter used to enhance calcifications. Additionally, f, ki, ki,
and N control the detection stage of the system. Finally, d., and pCsp;, control the

clustering module.

As TP,,;, was lowered, the subimage FP rates fell as expected, however the corre-
sponding drop in subimage TP rates was accompanied by a drop in the case TP rate from
96.43 to 92.86 percent. Also, as mentioned earlier, although higher subimage T P, goals
were attainable, they were accompanied by higher subimage FP rates as expected. Thus,
optimized parameter settings found using T'P,,;, = 84.5 percent were chosen for full digi-
tized mammogram image evaluation. These settings corresponded to a TP case detection
rate of 96.43 percent and a subimage detection rate of 85.25 percent with 0.2295 FPs per

subimage.

4.8 Database results

4.8.1 Physician Evaluation of Detection Scheme.  Ultimately, full image results
were evaluated as shown in Table 4 using the following optimized parameter settings:

t = 1.1995, f = 0.0009, k;, = 4.1226, kp; = 7.000, N = 69, and pCSsp;n = 3. To ensure full
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image detection results were accurate, a physician trained in radiology (27) individually
verified each ROI detection on the original film as a TP or FP. (Recall, the physician only
truthed subimages, not full images.) Again, if at least one image ROI was detected, a
TP of 1 was recorded. Also, since the detection algorithm was evaluated on full-breast
images, several additional non-biopsied microcalcification ROIs were detected. Thus, an
additional category of “Xtra ROIs” was used to track additional physician verified ROIs.
Recall, Figure 10 shows an example of an “Xtra ROL” All FPs within each subimage were

recorded as well.

To provide insight into the sources of FPs, the physician (27) used the following
two additional categories to describe noteworthy FPs: Scratch and BB induced ROIs. As
mentioned earlier, scratches and pick-off of film emulsion are a known source of pseudocal-
cifications in film mammograms (20). The term “scratch induced ROI” is used for ROIs
due to scratches and/or film emulsion pick-off. Recall, Figure 10 shows an example of
a scratch induced ROL BBs are typically used as a marker on mammograms to identify
palpable lesions in the breast. It should be noted that no TPs were due to BBs. Also,
as shown in Table 4, only 9 of 56 images had double-digit FP rates. The high FP rate
on these images may be attributed to parenchymal edge effects; the functioning structure
of thesé breasts (ducts, lobules, etc.) introduced a large number of thin, sharp densities

which appeared calcification-like to the detection scheme.

4.3.2 Analysis: Detection Scheme Results. The detection technique demon-

strated the following results (Table 4) over 56 full-breast digitized film mammograms:

o 96.4% (27/28) TP case detection rate

85.7% (54/63) TP ROI detection rate

85.7% (48/56) TP image detection rate

5.75 FPs per full-breast image (20x10 cm, 12 bit, 100 pm)

0.68 scratch induced FPs per image

3 BB induced false ROIs

2.1964 “Xtra ROIs” per image
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Table 4. Results using t = 1.1995, f = 0.0009, k;, = 4.1226,k,; = 7.000,N = 69, and
pC8min = 3t a TPy rate of 96.43%, and T'Pror and T Pipnage rates of 85.7%
with 5.75 FPs per full-breast image. Note: Only 9 images had double digit FPs
mostly due to parenchymal edge effects.

a068d00b.mam
a069a00m.mam
a069c00m.mam
a073b00b.mam
a073d00b.mam

[ image [ TP | FP | Xtra ROIs | Scratch ROIs | BB ROIs | ROIs detected [ ROIs in image |
a002a00m.mam 1 2 6 2 0 1 1
a002b00m.mam 1 1 8 1] 0 2 2
2002c00m.mam 1 2 4 0 0 1 1
a002d00m.mam 1 6 6 0 0 1 1
a003a00m.mam 0 7 2 1 0 0 1
a003c00m.mam 1 8 0 3 0 1 1
a004b00m.mam 1 3 3 0 1 1 1
a004d00m.mam 1 6 0 2 0 1 1
a005b00m.mam 1 7 0 0 1] 1 1
a005d00m.mam 1 7 0 0 0 1 1
a006b00b.mam 1 10 1 0 0 1 1
a006d00b.mam 1 14 0 0 0 1 1
2009a00m.mam 1 10 1 0 0 1 1
a009c00m.mam 0 12 2 0 0 1 1
a010b00b.mam 1 4 0 0 0 1 1
2010d00b.mam 1 2 1 0 0 1 1
a011b00m.mam 1 1 2 0 0 1 1
a011d00m.mam 0 3 2 1 0 0 1
a014b00m.mam 1 1 8 0 0 1 1
a014d00m.mam 1 8 1 0 0 1 1
a015a00m.mam 1 1 3 0 0 1 1
a015c00m.mam 0 8 2 2 0 0 1
a016d00b.mam 1 13 7 1 0 1 1
a024b00b.mam 1 5 5 0 0 2 2
a024d00b.mam 1 8 1 1 0 2 2
a026d00m.mam 1 16 1 1 0 1 1
a029b00b.mam 1 3 0 0 0 1 1
2029d00b.mam 1 2 1 0 0 1 1
a031a00b.mam 1 3 2 0 0 1 1
a031c00b.mam 1 1 3 0 0 1 1
2033b00m.mam 1 5 5 1 1 1 1
a033d00m.mam 1 7 3 0 0 1 1
a036a00m.mam 1 1 1 1 0 1 1
a036c00m.mam 1 5 0 1 0 1 1
a043b00b.mam 1 9 2 2 0 1 1
2043d00b.mam 1 16 3 1 0 1 1
a049b00m.mam 1 12 0 2 1 0 1
a049d00m.mam 1 6 0 0 0 1 1
a052b00b.mam 1 1 1] 1 0 1 1
a052d00b.mam 1 4 0 1 0 1 1
a053b00m.mam 0 12 2 0 1] 0 1
a053d00m.mam 0 6 0 2 0 0 1
a058b00m.mam 1 5 2 0 0 1 1
a058d00m.mam 1 2 1 0 0 1 1
a060b00m.mam 1 2 10 0 0 2 2
2060d00m.mam 1 3 14 0 0 2 2
a062a00m.mam 0 4. 0 0 0 0 1
a062c00m.mam 1 3 1 2 0 1 1
a067a00b.mam 1 1 1 0 0 1 1
a067c00b.mam 1 6 2 2 0 1 1
a068b00b.mam 1 8 2 3 0 1 1

1 7 0 1 0 1 1

1 6 1 3 0 1 1

1 8 1 0 0 1 1

0 3 0 0 0 0 2

1 6 0 1 0 2 2
4




Table 5. Clustered microcalcification ROI detection results; NR indicates not reported.

Investigators Number | Image | Resolution| TP | FPs Area ad-
of Area (um/pixel) (%) | (#/image)| justed
images | (cm?) FPs

(#/image)

Chan et al. (overall) | 52 NR 100 92 1 NR

Yoshida et al. 39 8x10 100 85 5 12.5

Nishikawa et al. 39 8x10 100 85 2.5 6.25

Strickland et al. 40 10x10 | 50 84 3 6

Ochoa et al. 56 20x10 | 100 85.7 | 5.75 5.75

As mentioned earlier, a direct comparison of detection results against other CADx
detection schemes (9, 44, 46, 64, 68) cannot be done since CADx researchers use different
databases. However, as shown in Table 5, the 85.7 percent ROI TP detection rate found
using this detection scheme is comparable with reported ROI TP detection rates of 84 to
93 percent (9, 44, 46, 64, 68). Although the performance of a CAD scheme is difficult
to reliably estimate (45), the number of images used to determine TP and FP rates was
larger than those used by Chan et al. (9), Yoshida et al. (68), Nishikawa et al. (44, 46),
and Strickland et al. (64) as shown in Table 5.

A direct comparison of FP rates is made even more difficult due to the lack of
standardized images areas, and image area has shown to be an important factor in FP
detection rates (18). As shown in Table 5, several researchers use images half the area of
those used in this research. Additionally, as shown in Table 3, if subimages are used, this
research could claim FP rates as low as 0.2295 if image area is ignored. Nevertheless, the
detection scheme’s FP rate of 5.75 per full-breast image is comparable with reported rates of
1 to 5 FPs per (sub)image (9, 44, 46, 64, 68) as shown in Table 5. (Because Strickland et al.
used 50 um/pixel images, this corresponds to a 10x10 cm? region on a film mammogram,
and the region of film covered in this research corresponds to a 20x10 cm? area.) Moreover,
if image area is used to adjust FP rates for comparison purposes, then the Ochoa et al.

detection scheme’s FP rate is the lowest of the results shown in Table 5.
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Additionally, although other investigators do not provide the following level of detail
when reporting detection results, the following malignant and benign detection rates were

identified:

e Malignant detection rates

94.1% (16/17) TP case detection rate

81.6% (31/38) TP ROI detection rate

|

80.0% (28/35) TP full-breast image detection rate
— 5.6 FPs per full-breast image (20x10 cm?, 12 bit, 100 pm)

e Benign detection rates

|

100% (11/11) TP case detection rate

92.0% (23/25) TP ROI detection rate

95.2% (20/21) TP full-breast image detection rate

6.0 FPs per full-breast image (20x10 cm?, 12 bit, 100 xm)

Because other investigators do not report this level of detail when describing their detection
schemes, a direct comparison of these detection rates is not an option. However, the
fairly large number of images used to estimate malignant or benign TP and FP rates is
comparable with the size of the entire database used by Yoshida et al. (68), Nishikawa
et al. (44, 46), and Strickland et al. (64) as shown in Table 5.

4.4 Summary

The database of 56 digitized (12 bit, 100 um) full-breast (20x10 cm?) film mammo-
grams contained 63 biopsy-truthed ROIs over 28 cases. This technique demonstrated a TP
case detection rate of 96.43 percent (27/28) and TP ROI (54/63) and TP image (48/56)
detection rates of 85.7 percent with 5.75 FPs per full-breast image.
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V. Conclusion

5.1 Summary

This research proposes the following methodology for clustered microcalcification
detection. First, preprocess the digitized film mammogram to reduce digitization noise.
Second, spatially filter the image with a difference of Gaussians (DoG) kernel. To detect
potential microcalcifications, segment the filtered image using global and local threshold-
ing. Next, cluster and index these detections into regions of interest (ROIs). Identify ROIs
on the digitized image (or hardcopy printout) for final radiologic diagnosis. Finally, to
improve detection rates, globally optimize detection parameters using a genetic algorithm

(GA), then locally optimize using the simplex method.

'As mentioned earlier, a direct comparison of detection results against other CADx
detection schemes (9, 44, 46, 64, 68) cannot be done since CADx researchers use different
databases. However, as shown in Table 5, the 85.7 percent ROI TP detection rate found
using this detection scheme is comparable with reported ROI TP detection rates of 84 to
93 percent (9, 44, 46, 64, 68). Although the performance of a CAD scheme is difficult
to reliably estimate (45), the number of images used to determine TP and FP rates was
larger than those used by Chan et al. (9), Yoshida et al. (68), Nishikawa et al. (44, 46),
and Strickland et al. (64) as shown in Table 5.

A direct comparison of FP rates is made even more difficult due to the lack of
standardized images areas, and image area has shown to be an important factor in FP
detection rates (18). As shown in Table 5, several researchers use images half the area of
those used in this research. Additionally, as shown in Table 3, if subimages are used, this
research could claim FP rates as low as 0.2295 if image area is ignored. Nevertheless, the
detection scheme’s FP rate of 5.75 per full-breast image is comparable with reported rates
of 1 to 5 FPs per (sub)image (9, 44, 46, 64, 68) as shown in Table 5. Moreover, if image
area is used to adjust FP rates for comparison purposes, then the Ochoa et al. detection

scheme’s FP rate is the lowest of the results shown in Table 5.
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5.2

Contributions

The following list summarizes significant contributions made during the course of

this research:

5.8

A complete, simple to use, end-to-end microcalcification detection system was devel-
oped which demonstrated a 96.4% case TP rate, and an 85.7% TP rate with a 5.75
FPs rate over 56 biopsy-truthed full-breast images (20x10 cm?, 12 bit, 100 pm).

This system is the first reported clustered microcalcification detection technique de-
veloped using optimization methods rather than mostly ad-hoc modification of de-

tection parameters.

If the average targetsize is known, the DoG methodology presented here may easily
be used in other target recognition schemes because the algorithm is independent of
image area and has been shown to be insensitive to large variations in image quality;

i.e., subtle targets in noisy backgrounds.

The relatively straightforward optimization approach presented here may also be used
in other target recognition research to efficiently determine optimimum detection
parameter settings.

Three of AFIT’s most recent CADx schemes (10, 38, 48) were integrated into the
first AFIT CADx system for batch-detecting radiographic ROIs in digitized film

mammograms.

During the course of this work, an image histogram equalization utility was de-
veloped and included in Abrahamson’s (1) Pulse-Coupled Neural Network (PCNN)
magnetic resonance imaging (MRI) research. The equalization step was included in

a preprocessing stage to allow a PCNN to accurately segment brain MRIs.

Conclusions and Recommendations

The objective of this thesis was to design an automated microcalcification detection

system which may be used by radiologists as an aid in mammogram interpretation. This

objective was met as indicicated by a TP case detection rate of 96.43 percent (27/28) and
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TP ROI (54/63) and TP image (48/56) detection rates of 85.7 percent with 5.75 FPs per
full-breast image (20x10 cm?, 12 bit, 100 pm).

To evaluate the clinical impact of this system, a clinical study should be performed
on this research, as well as the other CADx techniques (10, 38, 48) included in the foremen-
tioned batch-capable system. Also, to reduce the FP rate, future AFIT CADx researchers
should investigate the utility of fusing the results of this research with other clustered
microcalcification detection methods. Alternatively, augmenting this system with a neu-
ral network using features derived from detected ROIs may also help reduce the FP rate.
Finally, the optimized DoG filtering approach developed during the course of this research
has strong potential for detecting small targets in other cluttered imagery, such as detecting

SCUD missile launchers in “noisy” long-range infrared images.
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Appendiz A. Database Information
A.1 Overview

In screen-film mammography, the film is used for detection, storage, and display.
(15). Since full-area detectors suitable for digital mammography are still in the experi-
mental stage, an alternative way of acquiring mammograms in digital form is to digitize
a film mammogram (67). This research was performed using digitized film mammograms
and subimages annotated by a physician trained in radiology.

Specifically, the database of 56 digitized (12 bit, 100 pm) full-breast (20x10 cm?)
film mammograms contained 63 biopsy-truthed clustered microcalcification ROIs over 28
cases. All mammograms included a pathology report indicating location and diagnosis of
biopsied regions. The data set included approximately 2 films per case with the following
distribution: 1 case with 4 films, 2 cases with only 1 film, and the remaining 25 cases
with 2 films. Full-breast image optimization would have been extremely costly; approx-
imately 30 to 60 minutes per digitized film on a Sun Ultra or Sun Sparc20. Thus, 52
256 %256 and 9 512x512 subimages were extracted from these images to facilitate algorith-
mic development. The 61 subimages contained all 63 biopsy-truthed ROIs, and a physician
annotated abnormalities identified in corresponding pathology reports. These subimages
considerably reduced algorithmic development times, and reduced computer memory re-
quirements. Additional information on digitization and database management is located
in the Appendix.

The following sections were written by Capt. William E. Polakowski, Capt. Edward
M. Ochoa, and Jill Leighner.
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A.2 Digitization of film mammograms

Film Mammogram Digitization Instructions

. Power up the Big Mac (Mac lifx) in the X-ray filing room. (if necessary)
Il. To calibrate the digitizer.

m m oOOw >»0O

G.
H. Remove the barcode slip from the machine to the left of the small Mac.

IeTMOU O WX

. Note that the digitizer only needs to be calibrated once per digitization session.
. From the large folder in the center of the screen with three icons on it, click on Film

Digitizer.

. Note that to enter data into Mac text entry windows, you must hit the TAB

key instead of return.

. Login as AFIT then press TAB.
. Type in the password then press RETURN.

From the button bar on top of the screen, select “Special then Calibrate”.

. Obtain any 6, 14" x 17” films from underneath the digitizer.
. Load the 6 films into the digitizer, which is located to the right of the Big Mac.

To begin the calibration procedurs, select “OK”.

tain and use the 16 hour bar code. (Do this while calibrating.)
. Login to the small Mac (Mac llsi) located to the left of the Big Mac. There should be a large

folder in the center of the screen with two icons on it.

. Select Paris.
. Below the box stating Patients Name, type “AFIT, TEST". Then select Find Patient.
. From the top of the Paris window click on icon called “Exams for patient’. (An exam

is one digitization session.)

. Under the list of exams for AFIT, TEST select any exam. (It does not

matter which exam is selected during one digitization session.)

. On the top of the screen, on the button bar, select “Exams then Duplicate”.

1. (If necessary), in the center right portion of the screen, in the Requesting Ward/Clinic
box, type “MAMMOGRAPHY".
At the bottom of the screen, click the “New Exam” button.

Select “File then Quit”. Remember the barcode slip is good for 16 hours.

V. .To digitize the films.

A.
B.

mm o O

G.

Scan the barcode and listen for the beep from the Big Mac.

Prepare mammography films you intend to digitize.

1. Make sure that the films are as clean as allowable. (If OK, wipe off any grease pencil or
smudge marks, and if possible remove stickers - they tend to make the digitizer refuse
to scan the film.)

. Orient the films as the radiologist views them.

. Order the films by stacking them (sticker side down) in the following bottom to top
order: RCGC, LCC, RMLO, LMLO (if all are available).

. Flip the stack (top toward you) so the RCC view is now on the top of the stack and
rotate the top of the films away from you.

. Remember, the digitizer pulls the films from the top of the stack to the bottom, so the
final order of digitization will be RCC, LCC, RMLO, LMLO.

(S I S VN

. Place and align the films in the digitizer, put the long side of the films flush against the right

side of the digitizer’s auto feeder.

. To begin the digitization process, on the Big Mac, in the Film Digitizer window, click

“Digitize” then click “OK".

. After the films have completed digitization, click “OK".
. To end digitization, go to the top of the screen, and from the button bar, select “File then

Quit” from the pull down menu, then select “Quit’ when the Login window reappears.
Return/Store films that have been digitized.
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A.8 Digitized film storage instructions

Digitized Mammogram Storage Instructions

I. To connect portable hard drive for digitized film downloading.
A. Follow directions carefully.
B. Locate the drive adapter cable for the portable Mac drive.
C. To connect the portable Mac drive to the Big Mac.
1. From the main window, select “Special then Shutdown”. THE SYSTEM
MUST BE SHUT DOWN BEFORE CONNECTING THE PORTABLE
HARD DRIVE.
2. To attach the drive.

a. Remove the digitizer's black connector in back of the Big Mac.

b. Attach the portable drive’s power cord. Make sure the portable drive’s
power switch is OFF. (The switch in the back of the drive should be to
the empty circle position.)

c. Attach the portable drive to the Big Mac’s socket the digitizer was connected
to. Check to make sure that the keyboard was not disconnected during
this process.

3. To activate the drive.

a. Note that the next few steps may need to be repeated untii the Big Mac
recognizes the portable drive.

b. Turn on the drive (switch in the back of the drive). The light in front will
turn off.

¢. Press the Big Mac startup key. If the Big Mac fails to turn on check that
the keyboard was not disconnected while attaching the drive or push
the reset switch in the rear, bottom right corner of the back of the Big Mac.

d. As the Big Mac powers up, the drive will tun on, then off.

e. From the large folder in the middle of the screen select “File then
Go to Finder’ and enter the password.

f. To use each disk.

1. Insert disk (Be sure to keep track of the ones you have already used.)
2. Open the numbered icon (click on it).
3. Clear each disk so it can hold the digitized mammograms. Select
from the top menu “Special then Erase Disk then Initialize”
Il. To getimage information and download images to disks.
A. From the large folder in the main window, double click on FWD060 and double
click on Lite Box.
B. Login as AFIT, then press TAB.
C. Type the password, then press RETURN.
D. To obtain the image name and size information.
1. Go to the Patient Name box and type AFIT, TEST (no return key is required
here, it will automatically find the AFIT list for you).
. Select your exam (the last exam at the bottom of the list). It should be an exam
with an “I” in the ONLINE column. The “I” means that the process is still active.
. To display all of the exam images, on top of the “All exams” window , click on
“Images then Display”.
. Select OK when prompted.
. Click on the first image.
. To obtain specific image information.
a. From the top button bar select “image then Image About”.
b. Record filenames (only the last 8 characters) and image sizes, the size
is in the middle of the list and the filename is near the bottom.
c. Repeat for all remaining images.
E. To download images to portable disks.
1. Close AFIT, TEST window.
2. Select “File then Open” (the same exam should already be selected).
3. Select “Images then Verify” to change “I” to “Y”.

D o1 w I\
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. Select “Images then Store Exam”.

. Make sure the numbered disk is already selected.

. Select “Store”. When the disk is full, remove the disk and insert a new one (make
sure that you are using clear disks). Note that each disk holds approximately 12-15
mammograms.

F. To exit Lite Box select “File then Quit” from the top button bar, DO NOT SAVE CHANGES.

IIl. To reset the Big Mac and digitizer.

A. To remove the remaining 150MB disks from the drive, select “Special then Eject Disk”.
B. From the main window select “Special then Shutdown”. THE SYSTEM MUST BE SHUT
DOWN BEFORE RECONNECTING THE DIGITIZER.
C. Carefully reconnect the digitizer. (Reverse drive connect steps.)
D. Press the restart button and then the startup key.
IV. Store the drive adapter cable.

[ ¢, 00 -8
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A.4 File transfer instructions

Digitized Mammogram Image Transfer Instructions

I. To transfer digitized mammogram files to AFIT.

OQUOZEr X~ IOMMUOm>

. Gotoroom2011.

. Locate the adapter cable.

. Shut down the host system.

. Connect the portable hard drive.
. Insert disk.

Open the numbered drive window.

. Select local exams and then open the numbered folder.
. Now rename the files, removing all but the last 8 characters.

Open Vulcan and select Applications folder.
Open TCP/Connect |l Folder and select TCP/Connect Il.
Select “Services” on the button bar, then “FTP”.

. Click on “more options” and unselect “Use Web-Style FTP client”
. Set the host name to pinna and set username.
. Click Image data type.

Under “Options”, select “Binary” and unselect “Prompt for filenames”.

. Set the directory for storage (for example /home/pinnai/bdata/Uncut).
. Click on Desktop, select the files and click on “Copy”.

50




Breast Cancer Group Filenaming Guide

Breakdown of a003a05m.dog: a 003 a 0 5 m .dog
a Source a: Wright-Patterson AFB Medical Center, WPAFB, OH
g: Grandview Hospital, Dayton, OH
s: Southview Hospital, Dayton, OH
f: Franciscan Health Center, Dayton Campus, Dayton, OH
003 Case Number | Each case typically contains 1-4 digitized mammograms, and
corresponds to a single date
a Orientation a: RCC
b: LCC
c¢: RMLO
d: LMLO
e: RML
f: LML
0 Date Number | Dates are represented in increasing order, where the earliest
is represented by 0 and the latest is the highest integer value.
5 Subimage Index | If not 0, then this number is used to index subimages ex-
tracted from each digitized mammogram.
m Diagnosis m: Malignant, Cancer
b: Benign
u: Unknown, no biopsy
n: Not available yet
.dog File Type dog - Difference of Gaussians filtered, grayscale, BIN
hit - Hit and miss filtered, grayscale, BIN
mam - Original mammogram, grayscale, BIN
nul - Region without lesions, 256 x256 pixels, grayscale, BIN
pen - PCNN processed SUBIMAGE
roi - SUBIMAGE, 256 x256 pixels, grayscale, BIN
ro2 - SUBIMAGE, 512x512 pixels, grayscale, BIN
tru - Radiologist and/or pathology verified truth, ASCII
txt - Comments (corresponding date, etc.), ASCII
unc - Uncut (full digitized mammogram), grayscale, BIN
wav - Wavelet processed, grayscale, BIN
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Appendiz B. Matlab and C Code

The file eucdet.m is the parent Matlab function used to automatically detect clustered
microcalcifications. The CMEX file, findcluster.c was written by Capt. Amy Magnus and
modified by Capt. Edward Ochoa to compile on Solaris.

..........

function [FullFileNames,JustFileNames] = GotFileNames (List0fFiles,Dir0fFiles);
Y% GETFILENAMES Used to load ascii filenames into matlab.

% function FullFileNames = GetFileNames(ListOfFiles ,DirDfFiles);

Y% ASSUMES: All filenames have the same number of characters

Y% EX: FullFileNames = GetFileNames(’filenames.txt’,’/home/DataBaseDir’)

Y% EX: FullFileNames = GetFileNames(’filenames.txt’,0) % if in cwd

L

A

% by: Capt. Edward M. Ochoa, GED-96D

FileID = fopen(ListO0fFiles,’'r’);
if FileID == -1,

error (sprintf(’ERROR: %s did not open correctly (GetFullFileNames.m)’,List0fFiles));
end;

FileList=fread(FileID);
FileList=setstr(FilelList’);

for filenum=1:sum(isspace(FileList))
if isstr(Dir0fFiles)
if "isdir(Dir0fFiles),
error(sprintf(’ERROR: /s is not a directory (GetFullFileNames.m)’,Dir0fFiles));
end;

[FileN,FileList]=strtok(FileList);
FullFileNames (filenum, :)=sprintf (’%s/%s’ ,Dir0fFiles,FileN);
JustFileNames (filenum, :)=sprintf (*}s’,FileN);

else
[FullFileNames(filenum,:),FileList]=strtok(FileList);

end

FileNameID = fopen(FullFileNames(filenum,:),’r’);
if FileNamelID == -1,
error (sprintf (’ERROR: %s not found\nCheck Dir0fFiles (GetFullFileNames.m)’,FullFileNames(filenum,:)));
end;
fclose(FileNamelID) ;

end

fclose(FilelID);

function mammo=GetMammo (fullfilename ,NUMROWS,DISPLAYTF) ;
% GETMAMMO Used to load a breast cancer database image.
% mammo=GetMammo (fullfilename,NUMROWS,DISPLAYTF);

% LOADS FULL MAMMO, REGARDLESS OF SIZE

% by: Capt Amy Magnus, Capt. Edward M. Ochoa, GE0-96D

FileNotFound = 0;

fid = fopen(fullfilename, ’r’);
if £id == -1
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FileNotFound = 1;
end;

% IF FILE IS FOUND, LOAD DIGITIZED MAMMOGRAM

if “FileNotFound
[mammo,cnt] = fread(fid,inf,’ushort’);
numcols = cnt/NUMROWS;
mammo = reshape (mammo ,NUMROWS ,numcols) ;

clear cnt

fclose(fid);
else

error (sprintf(’%s not found’ ,fullfilename));
end;

if DISPLAYTF
mamodisp=mammo(1:4:NUMROHS,1:4:numcols);
colormap(gray(4096))
image (mamodisp)
axis image
title(sprintf(’Ys’,fullfilename));
axis off

end

function PutMammo(M,fullfilename)

Y% PUTMAMMO Used to write out an image using the breast cancer database format.
Y% PutMammo(M,fullfilename)

% This m-file writes the matrix M to

% the file ’fullfilename’. The onus

% is on the user to remeber M’s dimensioms.

% by: Capt Amy Magnus, Capt. Edward M. Ochoa, GED-96D

fid=fopen(fullfilename, 'w+’);

fwrite(2id,M, *ushort’);
fclose(id);

function detect = ebuildpt(xon,yon,numrows,numcols);
% EBUILDPT Given a set of pixel coordinates, construct an mask image.
% detect = ebuildpt(xon,yon,numrows,numcols);
% by: Capt. Edward M. Ochoa, GE0D-96D
detect=zeros (numrows,numcols) ;
for i=1:length(xon)
detect (xon(i),yon(i))=1;
end

function [centers]=ecenters(inlist,map);
% ECENTERS Compute centroids of clusters.
Y% [centers]=ecenters(inlist,map);

% by: Capt. Edward M. Ochoa, GE0-96D

centers=zeros(size(map));
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for i=1:size(map,1);
xy=inlist (map(i,1) :map(i,2),:);
if size(xy,1)==1
centers(i,:)=xy;
else
centers (i, :)=round(mean(xy));
end

function [goodpts]=echeckpts(origimg,ptcoords);

Y% ECHECKPTS Used to verify detections were made within breast
% [goodpts]l=echeckpts(origimg,ptcoords);

% by: Capt. Edward M. Ochoa, GED-96D

if ptcoords(1,1)~=-1
mask=esegmam(origimg) ;
numpts=size(ptcoords,1);
keep=ones (numpts,1);
for i=1:numpts
i? “mask(ptcoords(i,1),ptcoords(i,2))
keep(i)=0;
end
end
goodpts=ptcoords (keep, :);
if isempty(goodpts)
goodpts=[-1 -1];
end
olse
goodpts=ptcoords;
end

function [outimgl=ecrnois(img);

% ECRNOIS Cross-shaped hybrid median filter an image.
% [outimgl=ecrnois(img);

% by: Capt. Edward M. Ochoa, GEO-96D

winsize=3;

[numrows ,numcols]=size(img) ;
bufr = (winsize-1)/2;

% MY "MIRROR" PADDING TO ELIMINATE EDGE EFFECTS IN CODE
img=emirrpad(img,winsize);
% INITIALIZE OUTPUT IMAGE;

outimg = zeros(numrows,numcols);

% ELIMINATE NOISE
grpv=zeros(5,1);
temp=0;

j=0;

i=0;
minval=0;
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minind=0;

for m=1:numrows

end

mb=m+bufr;
for n=1:numcols

nb = n+bufr;

% GET + PIXELS
grpv(1)=img(mb,nb-1);
grpv(2)=img(mb,nb) ;
grpv(3)=img(mb,nb+1);
grpv(4)=img(mb-1,nb) ;
grpv(5)=img(mb+1,nb);

for i=1:3
minval=grpv(i);
minind=i;
for j=i+1:5
if grpv(j)<minval
minval=grpv(j);
minind=j;
end
end
if (minval<grpv(i))
temp=grpv(i);
grpv(i)=minval;
grpv(minind)=temp;
end
end

outimg(m,n)=grpv(3);

end

pairs = epairs(list,radius);
inlist=[];
map=[];

if “isempty(pairs)
[ind,indmap]=erecolr(paifs);
startr=1;

for i=1:size(indmap,1)
inds=ind(indmap(i,1):indmap(i,2));

clstr=list(inds,:);

numepts=size(clstr,1);

if numcpts>=numpts
inlist=[inlist;clstr];
endr=startr+numcpts-1;
map=[map;startr endr];
startr=endr+1;

end

function [inlist,mapl=edetclst(list,radius,numpts);
% EDETCLST Used to detect clusters of pts

% [inlist,map]l=edetclst(list,radius,numpts);

% by: Capt. Edward M. Ochoa, GE0-96D

55




end
end

if isempty(inlist)
inlist=[-1 -1];
map=inlist;
end

function [dogkernel,G1,G2]=edogk(targetsize);

% EDOGK Used to construct the DoG kernel given targetsize.
% [dogkernel,G1,G2l=edogk(targetsize);

% by: Capt. Edward M. Ochoa, GED-96D

if (targetsize>33) | (targetsize<=0)
disp(’Sorry, limited to 0 < targetsize < 33 pixels’);
return

end

91 .625 1 1.6 2.66 4.096 6.536 10.486 16.777];

sig = [.3
=369 11 16 21 29 43 55];

Nsize

82 = targetsize/2;
81=82/1.6;

% Find optimum N (kernel size)

i=1;

while sig(i)<s2
i=i+l;

end

N=Nsize(i);

G1 = fspecial(’gaussian’,N,sl);
G2 = fspecial(’gaussian’,N,s2);
dogkernel = G1 - G2;

function edravRDI(inlist,map,numrows,numcols,drauPtsTF)
% EDRAWROI Used to highlight ROIs

% edrawR0I(inlist,map,numrows,numcols,drawPtsTF)

% by: Capt. Edward M. Ochoa, GED-96D

for i=1:size(map,1)
index=map(i,1) :map(i,2);
M=[inlist(index,2) inlist(index,1)];
if i==
if det(cov(M))
ellipse(mean(M),inv(cov(M)),3.5);
else
axis(’ij’);
plot (M(:,1) ,M(:,2),°r+’);
end
axis(?ij’);
hold on;
if drawPtsTF & (det(cov(M)))
plot (M(:,1),M(:,2),°b+’);
end
axis ([1 numcols 1 numrows]);
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axis(’image’);
else
if drawPtsTF & (det(cov(M)))
plot(M(:,1),M(:,2),'b+?);
end
if det(cov(M))
ellipse(mean(M),inv(cov(M)),3.5);
else
axis(*ij’);
plot (M(:,1),M(:,2),°r+’);
end
end

function [outimg] = efilt(img,numbits,kernel);

% EFILT Handy utility for convolving (filtering) an image with a kernel.
% [outimg] = efilt(img,numbits,kernel);

% by: Capt. Edward M. Ochoa, GED-96D

[numrows ,numcols]=size(img) ;
N=size(kernel,1);
bufr = (N-1)/2;

% MY "MIRROR" PADDING TO ELIMINATE EDGE EFFECTS IN CODE
img=emirrpad(img,N);

% RESCALE THE IMAGE TO INTENSITY VALUES [0,1];
img=erescale(img);

% CONVOLVE THE KERNEL WITH THE IMAGE
outimg=conv2(img,kernel,’valid’);

% RESET THE OUTPUT IMAGE TO THE COLORDEPTH DESIGNATED BY NUMBITS
outimg=round((2 numbits-1)*erescale(outimg));

function truth=egettruth(SOURCEDIR,IMGNAME,class);
% EGETTRUTH Utility for loading pathology truth.

% truth=egettruth(SOURCEDIR,IMGNAME,class);

% by: Capt. Edward M. Ochoa, GE0-96D

TRUTHFULLFILENAME=[SOURCEDIR IMGNAME ’.tru’];
aval(sprintf(’load %s;’,TRUTHFULLFILENAME))
eval(sprintf (’truth=Ys;’,IMGNAME)) ;
targetindex=find(truth(:,6)==class);
if “isempty(targetindex)
truth=truth(targetindex,:);
else
truth=-1;
end

function glthr=eglth2(fimg,NUMBITS,globp,segwinsize,k,ktop);
% EGLTH Implements global and local thresholding for segmentation/detection.
% glthr=eglth2(fimg,NUMBITS,globp,segwinsize,k,ktop);
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% by: Capt. Edward M. Ochoa, GED-96D
y P

gl=ehistgr (fimg ,NUMBITS,globp) ;
glthr=althresh2(fimg,NUMBITS,segwinsize,k,gl,ktop);
glthr=bumorph(glthr,’bridge’); % BRIDGE 1 PIXEL-WIDE GAPS

function hgram = ehist(img,numbits);

% EHIST Utility for computing an image histogram.
% hgram = ehist(img,numbits);

% by: Capt. Edward M. Ochoa, GE0-96D

ind=0;

img=round(img(:));

limg=size(img,1);

hgram=zeros( realpow(2,numbits) , 1 );

for i=1:1limg
ind=img(i)+1;
hgram(ind)=hgram(ind)+1;

end

function [gr,imhst]=ehistgr(img,NUMBITS,percentile)

% EHISTGR Used to segment an image using a percentile of an image histogranm.
% gr=ehistgr(img,NUMBITS,percentile)

% by: Capt. Edward M. Ochoa, GE0-96D

imhst=ehist (img,NUMBITS) ;
numcolrs=length(imhst);
chst=cumsum(imhst);
cdf=chst/chst (numcolrs) ;
gr=min(find(cdf>=percentile));

..............

function ellipse(m,Q,k);
% ELLIPSE Used to plot an ellipse.
% ellipse(m,Q,k);

% Plots the ellipse described by

% {x: (x-m)’Q(x-m) = rsq}

% where

% m = mean of data points. (vector)

% Q = inverse of covariance of data points. (matrix)

% k = number of std devs to include in ellipse. (3 works well)

% USAGE: ellipse(mean([xpts yptsl),inv(cov([xpts yptsl)),k)
% by: Maj Ruck

m=m(:);

pts = 266;

circle_cmplx = exp(j*2%pi/(pts-1)*[0:pts-1]1);
circle = [real(circle_cmplx); imag(circle_cmplx)];
ellip = sqrt(k)*Q~(-0.5)*circle + m*ones(1,pts);

ecolori=’k’;

1widthl=2;
stylel=’-’;
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ecolor2=’r’;
1lwidth2=1;
style2=’-";

hi=plot(ellip(i,:),ellip(2,:));
set(hl,’LineWidth’,lwidthl);
set (h1,’Color’,ecolorl);
set(hi,’LineStyle’,stylel)
hold on

h2=plot(ellip(1,:),ellip(2,:));
set (h2,’LineWidth’,1width2);
set (h2,’Color’,ecolor?) ;

set (h2,’LineStyle’,style2)

function [outimg]=elthresh2(img,numbits,winsize,LTH,MINTHRESH,LTHTOP);
Y% ELTHRESH Implements local and global thresholding

% [outimg]=elthresh2(img,numbits,winsize,LTH,MINTBRESH,LTHTOP);

% by: Capt. Edward M. Ochoa, GED-96D

MAXGRAY=2"numbits-1;
% BEGIN THRESHOLD TEST

[numrows ,numcols]=size(img);
bufr = (winsize-1)/2;

% MY "MIRROR" PADDING TO ELIMINATE EDGE EFFECTS IN CODE

img=emirrpad(img,winsize);

% INITIALIZE OUTPUT IMAGE;
outimg = zeros(numrows,numcols);
% COMPUTE FIRST ROW WINDOW’S TOTALS

tot=0;

01ldtot=0;

tot0fsquares=0;
0ldtot0fsquares=0;
winsize2=realpow(winsize,2);

for m=1:vinsize
for n=1:winsize
tot = tot + img(m,n);
tot0fsquares = totOfsquares + img(m,n)"2;
end
end

% INITIALIZE FIRST ROW WINDOW’S RESULTS
0ldtot=tot;
0ldtot0fsquares = tot0fsquares;

% COMPUTE LOCAL MEAN AND STANDARD DEVIATION
mn = tot/winsize2;
sdev = realpow( (totOfsquares - tot~2/winsize2)/(winsize2-1), 1/2 );

% COMPUTE FIRST THRESHOLD TEST

seed=img(bufr+1,bufr+i);

if (seed>(mn + LTH*sdev)) & (seed<(mn + LTHTOP%sdev)) & (seed> MINTHRESH)
outimg(1,1)=1;
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end
% COMPUTE THRESHOLD TEST FOR REST OF IMG

for m=1:numrows
mb=m+bufr;
tot=01dtot;
totDfsquares=01ldtot0fsquares;
for n=2:numcols
nb = n+bufr;
for index=-bufr:bufr
oldpix = img(mb+index,nb-bufr-1);
newpix = img(mb+index,nb+bufr);
tot = tot - oldpix + newpix;
tot0fsquares = totOfsquares - oldpix~2 + newpix"2;
end

% FOR COLUMNS 2:NUMCOLS, COMPUTE THRESHOLD TEST

mn = tot/winsize2;
sdev = realpow( (totOfsquares - tot~2/winsize2)/(winsize2-1), 1/2 );

seed=img(mb,nb);

if (seed>(mn + LTH*sdev)) & (seed<(mn + LTHTOP*sdev)) & (seed> MINTHRESH)
outimg(m,n)=1;

end

end

% SINCE AT LAST COL, THEN FOR NEXT ROW, COLUMN 1,
% COMPUTE THRESHOLD TEST

if m“=numrows
nb = bufr + 1;
tot=01dtot;
tot0fsquares=0ldtotOfsquares;
for index=-bufr:bufr
oldpix = img(mb-bufr,nb+index);
newpix = img(mb+bufr+i,nb+index);
tot = tot - oldpix + newpix;
tot0fsquares = totOfsquares - oldpix"2 + mnewpix~2;
end

0ldtot = tot;
0ldtot0fsquares = totl0fsquares;

mn = tot/winsize2;
sdev = realpow( (totOfsquares - tot~2/winsize2)/(winsize2-1), 1/2 );

seed=img (mb+1,bufr+1);

if (seed>(mn + LTH*sdev)) & (seed<(mn + LTHTOP*sdev)) & (seed> MINTHRESH)
outimg(m+1,1)=1;

end

function emailmsg(emailaddress,message);

% EMAILMSG Used to send email message to user.
% emailmsg(emailaddress,message);

% by: Capt. Edward M. Ochoa, GED-96D
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UCMD1=sprintf(’echo "Y%s" > /tmp/emailmsg.txt’,message);
UCMD2=sprintf(’echo "~s Ys" >> /tmp/emailmsg.txt’,message);
UCMD3=sprintf (*echo "~." >> /tmp/emailmsg.txt’);
UCMD4=sprintf (*mail %s < /tmp/emailmsg.txt’,emailaddress);
UCMDS=sprintf (’ !rm /tmp/emailmsg.txt’);

UCMDS=[’! * UCMD1 ’;’ UCMD2 ’;’ UCMD3 ’;’' UCMD4 ’;’];

aeval (UCMDS)
eval (UCMD5)

function oddnum = emakeodd(num);

% EMAKEODD Used to convert input to closest odd integer (ex: 60 -> 61)
Y% oddnum = emakeodd(num);

% by: Capt. Edward M. Ochoa, GE0-96D

rnum=round (num) ;
ndiff=num-rnum;

isoddTF=rem(rnum,2) ;

if “isoddTF
orignum=rnum+num;
upnum=rnum+1;
downnum=rnum-1;
if abs(upnum-orignum)<=abs(downnum-orignum)
oddnum=upnum;
else
oddnum=downnum;
end
else
oddnum=rnum,
end

function img=emirrpad(img,winsize)

% EMIRRPAD Used to mirror pad image.
% img=emirrpad(img,winsize)

% by: Capt. Edward M. Ochoa, GED-96D

[numrows ,numcols]=size(img);
bufr = (winsize-1)/2;

% MY "MIRROR" PADDING TO ELIMINATE EDGE EFFECTS IN CODE

tbuf = flipud(img(2:1+bufr,:));

bbuf = flipud(img(numrows-bufr:numrows-1,:));

corner = ones(bufr,bufr);

1buf = [corner;fliplr(img(:,2:1+bufr));corner];

rbut = [corner;f1liplr(img(:,numcols-bufr:numcols-1));cornerl;

img = [1buf [tbuf;img;bbuf] rbufl;

tlc = f£lipud(fliplr (img(1+bufr:winsize,1+bufr:winsize)));

trc = £lipud(£1iplr (img(1+bufr:winsize,numcols:numcols+bufr)));
blc = f£1lipud(£1iplr (img(numrows:numrows+bufr,i+bufr:winsize)));
bre = £1lipud(£1iplr (img(numrows:numrows+bufr,numcols:numcols+bufr)));
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img(1:1+bufr,1:1+bufr)=tlc;
img(l:1+bufr,numcols+butr:numcols+winsize-1)=trc;
img(numrows+bu£r:numrows+winsize-1,1:1+bufr)=b1c;
img(numrows+bufr:numrows+winsize-1,numcols+bufr:numcols+winsize-1)=brc;

function pairs = epairs(list,radius);
% pairs = epairs(list,radius);
% by: Capt. Edward M. Ochoa, GED-96D

numpts=size(list,1);
pairs=[1;
for i=1:numpts
pti=list(i,:);
for j=i+l:numpts
pt2=1list(j,:)’;
if dist(ptl,pt2)<=radius
pairs = [pairs;i jl;
end

function [list,map]l=erecolr(crash);

% ERECOLR Used to identify the number of unique colors given crash list
% [1list,map]=erecolr(crash);

% by: Capt. Edward M. Ochoa, GED-96D

list=[1;
map=[];

blist=1;

tmp=crash;
pairs=[];
i=0;
keepcheckingTF=1;
pairs=tmp(1,:);
while keepcheckingTF
for j=1:size(pairs,2)
rows=[1;
if “isempty(tmp)
[rows,cols]=find (pairs(j)==tmp);
end
if “isempty(rows)
rows=eunique(rows);
newp=tmp(rows, :);
newp=eunique (newp);
pairs=eunique([pairs newpl);
tmp(rows,:)=[1;
end
end
if isempty(tmp)
keepcheckingTF=0;

list=[list; pairs(:)];
elist=blist+size(pairs(:),1)-1;
map=[map;blist elist];
blist=elist+1;

elseif “any(evsame(pairs,tmp(:)))
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list=[list; pairs(:)];
elist=blist+size(pairs(:),1)-1;
map=[map;blist elist];
blist=elist+1;

pairs=tmp(1,:);
end

function imgout = erescale(img);

% ERESCALE Used to rescale any image to the [0,1] range.
% imgout = erescale(img);

% by: Capt. Edward M. Ochoa, GED-96D

lo
hi

min(min(img));
max (max (img) ) ;

imgout=(img-10)/(hi-1lo);

function [truepos, falsepos, goodroi]=erocem(truth,inlist,map);
Y% EROCEM Utility for identifying whether a CLUSTER was detected.
% [truepos, falsepos, goodroil=erocem(truth,inlist,map);

% by: Capt. Edward M. Ochoa, GED-96D

A cluster is considered a TP if any of the following conditions exist
1: ALL cluster pixels were within a truth box.

% 2: At least MINDETS were found within a corresponding

% truth box and the centroid of the cluster is within

% the truth box perimeter.

% 3: At least MINDETS were found within a corresponding

truth box and the centroid of the cluster is within MINDIST

pixels from the truth box perimeter.

N

% Note: (1)-(3) may be combined into the following statement:
% At least MINDETS were found within a corresponding truth box
% and the cluster’s centroid is within MINDIST pixels from the truth box

MINDIST=50; % bmm for 100um digitized images
MINDETS=1;

if truth(1,1)"=-1

truepos=0;
good=ones (size(map,1),1);
goodroi=ones(size(map,1),1);

centroids=ecenters(inlist,map);
for i=1:size(map,1)
good(i)=0;
index=map(i,1):map(i,2);
centroid=centroids(i,:)’;

% FOR EACH CLUSTER, COUNT THE NUMBER OF DETS WITHIN A TRUTH BOX
for k=index
for j=1:size(truth,1)
rlo=truth(j,2);
rhi=truth(j,4);
row=inlist(k,1);
rin=(rlo<=row)&(row<=rhi);
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clo=truth(j,1);

chi=truth(j,3);

col=inlist(k,2);

cin=(clo<=col)&(col<=chi);

inboxTF = (rin & cin);

if inboxTF
good(i)=good(i)+1;

end

end
end

numgood=good (i) ;
good(i)=good (i) >MINDETS-1;

Y% IF MINDETS WITHIN A TRUTH BOX IS SATISFIED AND ALL DETS ARE NOT
Y WITHIN A TRUTH BOX, CHECK IF CENTROID WITHIN TRUTH BOX
it good(i) & (numgood”=size(index,2))
crow=centroid(1);
ccol=centroid(2);
for j=1:size(truth,1)
rlo=truth(j,2);
rhi=truth(j,4);
rin2=(rlo<=crow)&(crow<=rhi) ;
clo=truth(j,1);
chi=truth(j,3);
cin2=(clo<=ccol) &(ccol<=chi);
centroidinboxTF = (rin2 & cin2);
end

if centroidinboxTF
good(i)=1;
Y% IF MINDETS WITHIN A TRUTH BOX IS SATISFIED AND ALL DETS ARE NOT
% WITHIN A TRUTH BOX, AND CENTROID NOT IN BOX, CHECK MINDIST
% OF CLUSTER CENTROID
else
good(i)=0;
for j=1:size(truth,1)
rlo=truth(j,2);
rhi=truth(j,4);
clo=truth(j,1);
chi=truth(j,3);
boxpts = etrubox(rlo,rhi,clo,chi); Y% PERIMETER PIXELS
centroidv=centroid*ones(1,size(boxpts,1));
% dists=dist(boxpts,centroidv);
dists=edist (boxpts,centroidv);
mindistTF=any (any(dists<MINDIST));
if mindistTF
good(i)=good(i) | 1;
end
end
end
end

it “good(i)
goodroi(i,1)=0;
end
end
truepos=sum(goodroi==1)>0;
falsepos=sum(goodroi==0);

else
truepos=0;
falsepos=size(map,1);
goodroi=-1%ones(size(map,1));
end
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function mammask = esegmam(mam);

% ESEGMAM Used to segment breast mass from full mammogram.
Y% mammask = esegmam(mam) ;

% by: Capt. Edward M. Ochoa, GE0-96D

[numrows ,numcols]=size(mam) ;

% SUBSAMPLE TO SIMPLIFY SEGMENTATION
mams=mam(1:16 :numrows,1:16 :numcols);

% HYBRID MEDIAN FILTER TWICE TO MERGE REGIONS
mams=ecrnois(mams) ;
mams=ecrnois(mams) ;

% COMPUTE AND RESCALE VARIANCE IMAGE (TO ENHANCE BREAST EDGE)
mamv=erescale(log(1l+evarop(mams,12,9)));

Y ADD VARIANCE IMAGE TO ORIGINAL (SIMPLIFIES SEGMENTATION)
mamsv=erescale(mamv+erescale(mams));

% USE FLOYD-STEINBERG DITHERING TO CONVERT TO BW
mammask=dither (mamsv) ;

% APPLY MORPHOLDGICAL OPERATORS TO SEGMENT BREAST
mammask=bwmorph (mammask, *majority’,4);
mammask=bwmorph (mammask, *open’,2);
mammask=bwmorph(mammask,’erode’,3);

% REMOVE LABEL IF NECESSARY
mammask=findcluster (mammask) ;
maxlabel=max(mammask(:)) ;
maxc=1;
for i=1:maxlabel-1

it sum(mammask(:)==i)<sum(mammask(:)==(i+1))

maxc=i+1;

end

end

mammask=mammask==maxc;
[numr ,numc]=size (mams);

Y% ORIENT IF NECESSARY (TO SIMPLIFY FILL)
Ths=sum(mams(:,1));
rhs=sum(mams (: ,numc)) ;
if lhs>rhs

ImamTF=1;
else

1mamTF=0;
end
if “1mamTF

mammask=f1iplr (mammask) ;
end

% HORIZONTAL FILL
colsum=sum(mammask) ;
ind=min(find(max(colsum)==colsum));
fillcol=mammask(:,ind);
for i=1:ind

mammask (: ,1i)=mammask(:,i) | f£illeol;
end
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% VERTICAL FILL

rowsum=sum(mammask’) ;

begrow=min(find(rowsum));

endrow=max (find (rowsum)) ;

topr=min (find (rowsum==max (rowsum(find(rowsum~=0)))));
botr=max (£ind (rowsum==max (rowsum(find(rowsum~=0)))));

sumr=max (rowsum) ;
for i=begrow:topr
if (rowsum(i)<sumr) & (rowsum(i)~=0)
sumr=rowsum(i) ;
toprind=i;
end
end
toprfill=mammask(toprind,:);
for i=begrow:topr
mammask (i, :)=mammask(i,:) | toprfill;
end

sumr=max (rowsum) ;
for i=botr:endrow
if (rowsum(i)<sumr) & (rowsum(i)~=0)
sumr=rowsum(i) ;
botrind=i;
end
end
botrfill=mammask(botrind,:);
for i=botr:endrow
mammask(i,:)=mammask(i,:) | botrfill;
end

% CONVERT BACK TO FULL SIZE MASK
if “1mamTF

mammask=f1iplr (mammask) ;
end

mammask=imresize (mammask, [numrows numcols],’nearest’);
mammask=round (mammask) ;

function [name,ext,fname,nrows]=esepname(FULLNAMES,isnameTF);

Y% ESEPNAME Handy string manipulator used to break down filenames, and ID num rows
% [name,ext,fname,nrows]=esepname(FULLNAMES,isnameTF);

% by: Capt. Edward M. Ochoa, GE0-96D

fname=[];
name=[1;
ext=[];

if “isnameTF
revfullname=f1liplr (FULLNAMES) ;

for i=1:size(FULLNAMES,1)
[n,rmder]=strtok(revfullname(i,:),’/’);
fname=[fname;n];

end

fname=£f1iplr (fname) ;
else

fname=FULLNAMES;
end

for i=1:size(fname,1)

66




[n,rmder]=strtok(fname(i,:),’.?);

name=[name;n];

ext=[ext ;rmder (2:size(rmder,2))];
end

for i=1:size(ext,1)

if 3==sum(ext(i,:)=='mam’)
nrows (i, 1)=2048;

elseif 3==sum(ext(i,:)=='roi’)
nrows(i,1)=266;

elseif 3==sum(ext(i,:)=='ro2’)
nrows(i,1)=512;

end

function [pts,ptcoords] = eshrink(detmask);

Y ESHRINK Used to reduce detections to single points. Facilitates clustering.
% [pts,ptcoords] = eshrink(detmask);

% by: Capt. Edward M. Ochoa, GEO-96D

if sum(sum(detmask))==
pts=zeros(size(detmask));

else
[numrows ,numcols]=size(detmask);
detmask=findcluster(detmask);

% Get histogram on ’values’ image
h=ehist (detmask,8);
obj.colors=tind(h~=0);
nc=length(obj.colors)-1;
ptcoords=ones(nc,2);

if (nc”=0)
for i=1:nc
[x,yl=tind(detmask==1i);
if size(x,1)==1
xy=[x yl;
else
xy=round(mean([x y1));
end
ptcoords(i,:)=xy;
end
end

pts=ebuildpt (ptcoords(:,1),ptcoords(:,2),nunrows ,numcols);

end

function boxpts = etrubox(rlo,rhi,clo,chi);

% ETRUBOX Utility for converting truth indicies to perimeter pts
% boxpts = etrubox(truth);

% by: Capt. Edward M. Ochoa, GED-96D

topcol=[clo:chil;
toprow=rlo*ones(size(topcol));

rgtrow=rlo+i:rhi;
rgtcol=chi*ones(size(rgtrow));
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botcol=chi-1:-1:clo;
botrow=rhi*ones(size(botcol));

1ftrow=[rhi-1:-1:rlo+1];
1ftcol=clo*ones(size(1lftrow));

boxpts=[toprow’ topcol’;...
rgtrow’ rgtcol’;...

botrow’ botcol’;...

1ftrow’ 1lftcol’];

function ...

[inlist,map,numrows,numcols,roiTF,TPRDI,FPROI,truth]=...
eucdet ( PARAMS, ...

IMGNAMEEXT, ...

DoStatsTF,...

DisplayTF);

Y% EUCDET Detect Clustered Microcalcifications: Capt. Edward M. Ochoa, GED-96D

%

% [inlist,map,numrows,numcols,roiTF,TPROI,FPRDI,truth]=...

% eucdet( PARAMS,... <-- DETECTION PARAMETERS (described below)
% IMGNAMEEXT,...

Y% DoStatsTF,... <-- Compute ROC stats? (yes=1, no=0)

% DisplayTF); <-- Display processing results? (yes=1, no=0)

¥, DESCRIPTION OF DETECTION PARAMS = [pl p2 p3 p4 pb pé p7] AND DEFAULT SETTINGS

% p1 - DOGT, targetsize (1.1995)

% p2 - K, multiple of local std for local thresholding (4.1226)
% p3 - GLOBP, global histogram percentile cutoff (0.9991)

% p4 - DETWINSZ, odd window size used in local thresholding (69)
% pb - CLSTRRAD, max dist between neighbor microcalcs (51.3019)

% p6 - NUMCALCS, min number of calcs to trigger a cluster detection (3)

% p7 - KTOP, mex multiple of local std for local thresholding (¢p]
% EXAMPLE - HOW TO USE DEFAULT SETTINGS:
% [inlist,map,numrows,numcols]=eucdet([],’a036a0im.roi’,1,1);

Y% [inlist.map,numrows,numcols]=eucdet([],’aOSGaOOm.mam’,l,i);

% EXAMPLE - HOW TO DISPLAY DETECTION RESULTS:
% edrawR0I(inlist,map,numrows,numcols,1);

% by: Capt. Edward M. Ochoa, GED-96D

A ALGORITHM SETTINGS ~=-===-======mmm oo oo oo

% DEFAULT PARAMETER SETTINGS
if isempty(PARAMS)

PARAMS=[1.1995 4.1226 0.9991 69 §51.3019 3 7];
end

% IMG INFO
[IMGNAME ,EXT,NAME, IMGNUMROWS]=esepname (IMGNAMEEXT,0) ;
ProcMamTF=(sum( (1*EXT==ones (size (EXT,1),1)%’mam’)’)==3)"';

% DIR, EXT, AND IMG DEPTH INFO
if ProcMamTF
SOURCEDIR=’’;
MAMTRUDIR="/home/hawkeye3/96d/eochoa/Thesis/MC_code/MAMTRU/’ ;
else
SOURCEDIR=’/home/pinnal/bdata/wpatbh/R0Is/’;
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end
NUMBITS=12;

Y BLOCK PROCESSING SIZE (REDUCES MEMORY REQUIREMENTS AND SPEEDS UP PROCESSING)
BLKSZ=256;

BLKSZR=BLKSZ;

BLKSZC=BLKSZ;

% DoG TARGETSIZE and filter KERNEL
DOGT=PARAMS(1);
[KERNEL,dogk1,dogk2] = edogk(DOGT);

Y DETECTION (SEGMENTATION) PARAMETERS
K=PARAMS(2) ;

KTOP=PARAMS(7);

GLOBP=PARAMS(3);

DETWINSZ=emakeodd (PARAMS(4));

% CLUSTERING PARAMETERS

CLSTRRAD=PARAMS (6);

NUMCALCS=round (PARAMS(6)) ;

Y emmmm—————— ALGORITHM BEGINS ---==--==--wsrom—comomoc oo oo oo nmmm=-

% LOAD IMG

img=GetMammo([SDUECEDIR IMGNAME ° .’ EXT ],IMGNUMROWS,0);

% img=GetMammo(IMGNAMEEXT,IMGNUMROWS,0); % if IMGNAMEEXT always includes fullpath
[numrows ,numcols]=size(img);

if ProcMamTF & (sum(img(:,numcols))>sum(img(:,numcols)))
FlipTF=1;
img=f1liplr (img);

else
F1ipTF=0;

end

if DisplayTF | ProcMamTF
origimg=img;

else
origimg=-1;

end

if DisplayTF

NUMGRAY=2"NUMBITS;

figure

imshow ((NUMGRAY-1) *erescale (img) , gray (NUMGRAY))

title(sprintf(’¥s’ ,NAME))

orient tall
end
S
% CLEAN NOISE
img=blkproc (img, [BLKSZR BLKSZC],’ecrnois’);

if DisplayTF
figure
imshow ( (NUMGRAY-1) *erescale (img) , gray (NUMGRAY))
title(sprintf(’%s.ncl’,IMGNAME))
orient tall
end
R e e
% DoG FILTER
P1=NUMBITS;
P2=KERNEL;
img=blkproc(img, [BLKSZR BLKSZC],’'efilt’,P1,P2);

if DisplayTF
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figure

ksize=size (KERNEL,1) ;

subplot(2,1,1) ,mesh(KERNEL) ,axis square

axis ij

axis([1 ksize 1 ksize min([dogki(:)’ dogk2(:)’]) max([dogk1(:)’ dogk2(:)’DD)
title(’DoG filter coefficients’)

subplot(2,1,2) ,freqz2(KERNEL,32,32) ;, axis square

title(’DoG filter Frequency Response’)
textsc(.B,.97,sprintt(’targetsize=%1.2£’,DOGT))

orient tall

figure

imshow (img,gray (NUMGRAY))
title(sprintf(’%s.dog’, IMGNAME))
orient tall

Y, mmmmmmmmm e m e e m—emo oo
Y% USE GLOBAL/LOCAL THRESHOLDING TO SEGMENT/DETECT POTENTIAL TARGETS
P1=NUMBITS;

P2=GLOBP;

P3=DETWINSZ;

P4=K;

P6=KTOP;

img=blkproc(img, [BLKSZR BLKSZC],’eglth2’ ,P1,P2,P3,P4,P5);

if DisplayTF
figure
imagesc(img), colormap(i-gray(2)),axis image
title(sprintf(’Ys.thr’,IMGNAME))
orient tall

Y mmmmmmmmmmmmmmememmmeememmmmmeeee e eeee e oo eemmmmemeeemosesememe—eeenas
% SHRINK DETECTIONS TO SINGLE PIXELS/POINTS
img=blkproc(img, [BLKSZR BLKSZC],’eshrink’);

if DisplayTF
figure
imagesc(img), colormap(1-gray(2)),axis image
title(sprintf(’}s.pts’,IMGNAME))
orient tall
end
SRS
% ELIMINATE FULL MAMMO EDGE DETECTIONS (BASED ON KERNEL SIZE)
if ProcMamTF
N=size (KERNEL,1);
bufr=(N-1)/2;
img(1:bufr,:)=zeros(bufr,numcols);
img (numrows-bufr+1 :numrows, :)=zeros (bufr,numcols);
img(:,1:bufr)=zeros (numrows ,bufr);
img(:,numcols-bufr+1:numcols)=zeros(numrows,bufr);
end

if FlipTF
img=fliplr(img);
end

Y oo oo —eememmmmmememmm oo
% ID DETECTION/POINT LOCATIONS
[xon,yon]=find (img==1);

if isempty(xon),
ptcoords=[-1 -1];
else
ptcoords=[xon yonl;
end
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e e
% CHECK IF POINTS WITHIN BREAST
if ProcMamTF

[ptcoords]=echeckpts(origimg,ptcoords);

Y, USE CLUSTERING CRITERIA TO DETECT ROIS AND INDEX PTS WITHIN ROIS
[inlist,mapl=edetclst (ptcoords,CLSTRRAD,NUMCALCS) ;
Y e e e oo e
if DoStatsTF
% COMPUTE ROI DETECTION STATISTICS
class=2;
if “ProcMamTF
truth=egettruth(SDUBCEDIR,IMGNAME,class);
else
truth=egettruth (MAMTRUDIR, IMGNAME, class) ;
end

if inlist(1,1)"=-1
if truth”=-1
[TPROI, FPROI, roiTF]=erocem(truth,inlist,map);
else
TPROI=0;
FPROI=size(map,1);
roiTF=zeros(size(map,1),1);
end
else
TPROI=0;
FPROI=0;
roiTF=-ones (size(map,1),1);
end
else
truth=-1;
TPROI=~1;
FPROI=-1;
roiTF=-1;
end .
T
Y% IF DESIRED, DISPLAY RESULTS
if DisplayTF
figure
if inlist(1,1)"=-1
edrawR0I(inlist,map,numrows,numcols,1);
title(sprintf(’ROI(s) in %s’,NAME))
if TPROI"=-1
xlabel(sprintf (’ TPROI=Yd FPROI=Y%d’,TPROI,FPROI))
end
else
title(sprintf(’No ROI(s) in %s’,NAME))
if TPROI"=-1
xlabel(sprintf (° TPROI=Yd FPROI=Y%d’,TPROI,FPROI))
end
end
if DoStatsTF
axis ij
axis([1 numrows 1 numcols])
showroitruth(IMGNAME,2)
end
orient tall

figure

imshow ( (NUMGRAY-1) *erescale (origimg) ,gray (NUMGRAY))

hold on

if inlist(1,1)"=-1
edrawRDI(inlist,map,numrows,numcols,o);
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title(sprintf (’ROI(s) in Y%s’,NAME))
if TPROI"=-1
xlabel(sprintf (* TPROI=}d FPROI=Yd’,TPROI,FPROI))
end
else
title(sprintf(*No ROI(s) in %s’,NAME))
if TPROI"=-1
xlabel(sprintt(’TPRUI=Zd,FPRUI=Zd’,TPROI,FPROI))
end
end
if DoStatsTF
showroitruth(IMGNAME,2)
end
orient tall
end

function uniquels = eunique(v);
% uniqels = eunique(v);
% by: Capt. Edward M. Ochoa, GE0-96D

tmp=v(:);
[nrows,ncols]l=size(v);

uniquels=[];
i=0;
keepcheckingTF=1;
vhile keepcheckingTF
i=i+1;
ind=find(v(i)==tmp);
totun=size(ind,1);
tmp(ind)=[1;
if totun(1) | (totun==nrows)
uniquels=[uniquels v(i)];
end
if isempty(tmp)
keepcheckingTF=0;
end
end

uniquels=sort (uniquels);

function [outimg]l=evarop(img,numbits,winsize);

% EVAROP Computes the standard deviation image given neighborhood size (odd)
Y% [outimg]l=evarop(img,numbits,winsize);

% by: Capt. Edward M. Ochoa, GE0-96D

MAXGRAY=realpow(2,numbits)-1;

% BEGIN VAR ALGORITHM

[numrows ,numcols]=size(img);
bufr = (winsize-1)/2;

% MY "MIRROR" PADDING TO ELIMINATE EDGE EFFECTS IN CODE

img=emirrpad(img,winsize) ;
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% INITIALIZE OUTPUT IMAGE;
outimg = zeros(numrows,numcols);
% COMPUTE FIRST ROW WINDOW’S TOTALS

tot=0;

0ldtot=0;

totOfsquares=0;
01ldtotOfsquares=0;
vinsize2=raa1pow(winsize,2);

for m=1:winsize
for n=1:winsize
tot = tot + img(m,n);
tot0fsquares = totOfsquares + realpow(img(m,n),2);
end
end

% INITIALIZE FIRST ROW WINDOW’S RESULTS
0ldtot=tot;
01dtot0fsquares = totOfsquares;

% COMPUTE LOCAL STANDARD DEVIATION
sdev = realpow( (totDfsquares - tot~2/winsize2)/(winsize2-1), 1/2 );

% COMPUTE FIRST LOCAL STANDARD DEVIATION
outimg(1l,1)=sdev;

Y% COMPUTE LOCAL STANDARD DEVIATION FOR REST OF IMG

for m=1:numrows
mb=m+bufr;
tot=01ldtot;
tot0fsquares=01dtot0fsquares;
for n=2:numcols
nb = n+bufr;
for index=-bufr:bufr
oldpix = img(mb+index,nb-bufr-1);
newpix = img(mb+index,nb+bufr);
tot = tot - oldpix + newpix;
tot0fsquares = totOfsquares - realpow(oldpix,2) + realpow (newpix,2);
end

% FOR COLUMNS 2:NUMCOLS, COMPUTE LOCAL STANDARD DEVIATION
sdev = realpow( (totOfsquares - tot~2/winsize2)/(winsize2-1), 1/2 );
outimg(m,n)=sdev;

end

% SINCE AT LAST COL, THEN FOR NEXT ROW, COLUMN 1,
% COMPUTE LOCAL STANDARD DEVIATION

if m"=numrows

nb = bufr + 1;

tot=01ldtot;

tot0fsquares=01dtot0fsquares;

for index=-bufr:bufr
oldpix = img(mb-bufr,nb+index);
newpix = img(mb+bufr+i,nb+index);
tot = tot - oldpix + newpix;
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tot0fsquares = tot0fsquares - realpow(oldpix,2) + realpow(newpix,2);
end

01ldtot = tot;
0ldtot0fsquares = tot0fsquares;

sdev = realpow( (totDfsquares - tot"2/winsize2)/(winsize2-1), 1/2 );

outimg(m+1,1)=sdev;
end

end

outimg=MAXGRAY.*erescale(outimg);

function vsame=evsame(v,value);

% EVSAME Used to identify elements common to both vectors
% vsame=evsame(v,value);

% by: Capt. Edward M. Ochoa

vsame=zeros (size(v));

for i=1:length(v)
for j=1:length(value)
vsame(i)=(v(i)==value(j)) | vsame(i);
end

function myprint(figstart,figend,hardcopyTF,createfileTF)
% MYPRINT A handy utility to print figures

% myprint (figstart,figend,hardcopyTF,createfileTF)

%

% by: Capt. Edward M. Ochoa, GED-96D

for k=figstart:figend
if (k<10), fignoeps=[’fig0’ int2str(k) ’.eps’];
else fignoeps=[’fig’ int2str(k) ’.eps’]; end
eval(['figure(’ int2str(k) ’)’])
eval([’print -deps ' fignoepsl)
if hardcopyTF, eval([’!qmslpr ’ fignoeps]); end
if “createfileTF, eval([’!rm ’ fignoepsl); end
end

function img=showmam(IMGNAMEEXT,displayTF);
% SHOWMAM Used to load/display mammo image
% img=showmam(IMGNAMEEXT,displayTF);
% by: Capt. Edward M. Ochoa, GE0-96D

% IMG INFO
[IMGNAME,EXT,NAME,IMGNUMRUWS]=esepname(IMGNAMEEXT,1);
ProcMamTF=(sum( (1*EXT==ones (size (EXT,1),1)*’mam’)’)==3)’;

% DIR, EXT, AND IMG DEPTH INFO

if ProcMamTF
SOURCEDIR=’/home/pinnal/bdata/wpatbh/’;

else
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SOURCEDIR=’/home/pinnal/bdate/wpafbh/R0Is/’;
end

NUMBITS=12;

% LDAD IMG
img=GetMammo ( [SOURCEDIR IMGNAME ’.’ EXT ],IMGNUMROWS,0);

if displayTF
% DISPLAY IMG
MAXGRAY=realpow(2,NUMBITS)-1;
imshow ((MAXGRAY-1)*erescale(img) ,gray (MAXGRAY))
title(sprintf(’Y%s’ ,NAME))
orient tall
end

function showroitruth(ROINAME,CLASS);

Y SHOWROITRUTH Used to display pathology truth box given class
% showroitruth(ROINAME,CLASS);

% by Capt. Edward M. Ochoa, GE0-96D

Y%SOURCEDIR=’/home/hawkeye3/96d/eochoa/Thesis/MC_code/MAMTRU/’ ;
SOURCEDIR=’/home/pinnal/bdata/wpafbh/R0Is/’;
TRUTHFULLFILENAME=[SOURCEDIR ROINAME ’.tru’]l;
eval(sprintf(’load %s;’, TRUTHFULLFILENAME))
eval(sprintf(’truth=Y%s;’ ,ROINAME));

showtruth (truth,CLASS)

function notruthTF=showtruth(truth,class)

Y SHOWTRUTH Used to display pathology truth box given class of interest
Y% notruthTF=showtruth(truth,class)

% by: Capt. Edward M. Ochoa, GED-96D

if truth(i,1)~=-1
hold on
targetindex=find(truth(:,b)==class);

for index=1:length(targetindex);
target=truth(targetindex(index),1:4);
xstart=target(2);
ystart=target(1);
xend =target(4);
yend =target(3);

xplot=[xstart xstart xend xend xstart] - .5;
yplot=[ystart yend yend ystart ystart] - .5;
hi=plot (yplot,xplot,’k’);
set(hl,’LineWidth’,2);
if index==1

hold on
end
plot(yplot,xplot,’b’)

end

end
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function H = textsc(x,y,txt);
TEXTSC places text in screen coordinates and places
a title at the top of the figure.

R

H = TEXTSC(X,Y,TXT) places the text string, TXT
Y% at the normalized coordinates X and Y. H is the
% handle to the text object.

H = TEXTSC(TXT,’title’) places a title at the top
of the figure window. This is useful when you

% want to place a single title above multiple

% subplots.

R

TEXTSC creates an invisible AXES which occupies

the entire FIGURE. The units of the AXES are
normalized (range from 0 to 1). TEXTSC checks

% all the children of the current FIGURE to determine

% it an AXES exist which meets these criteria already

% exist. If one does, then it places the text relative
% to that AXES.

;s

% NOTE: Requires MATLAB 4.2 or above.

% Written by John L. Galenski III
% All Rights Reserved January 21, 1994
% LDM031695jlg

% Basic error checking
if nargin < 2

error (’TEXTSC requires at least 2 inputs’)
end

% Check to see if AXES already exist
ch = get(get,’Children’);
ax = findobj(gct,’'Type’,’axes’,’Tag’,’TEXTSC’);
if isempty(ax)
ax = axes(’Units’,’Normal’,’Position’,[0 0 1 1], ...
*Visible’,’0f£’,’Tag’, TEXTSC’);
else
axes(ax)
end

% Place the text
if nargin == 2 & isstr(x) & strcmp(lower(y),’title’) J Subplot title
txt = x;
x = .b;
tmp = text(’Units’,’normal’,’String’,’tmp’,’Position’,[0 0 01);
ext = get(tmp,’Extent’); -

delete(tmp)

H = ext(4);

y =1 - .60%H;
end

h = text(x,y,txt,’VerticalAlignment’,’Middle’, ...
'HorizontalAlignment’,’Center’);

% Make the original AXES current
if “isempty(ch)

set(gct,’CurrentAxes’,ch(1))
end

% Check for output
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if nargout ==
H=nh;
end

findcluster.c
MEX file written by Capt. Amy Magnus.

To compile on Solaris, modified by Capt. Edward M.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "mex.h"

typedef struct {
int rows;
int cols;
double *ptr;
} matlab_MATRIX;

static

#ifdef __STDC__

void color_cluster(

int x,

int y,

long *color,

matlab_MATRIX Mask

)

#olse

color_cluster(x,y,color ,Mask)
int x, ¥y;
long *color;
matlab_MATRIX Mask;

#endif

{

int i,j, xi,yj;
Mask.ptr[x*Mask.rows +y] = (double) *color;

for (i=-1; i<2; i++){
xi=x + 1i;
if ((xi >= 0)&&(xi < Mask.cols)){
for (j=-1; j<2; j++){
Yi=y+i
if ((yj >= 0)&&(yj < Mask.rows)){

if ( Mask.ptr[xixMask.rows +yjl] == -1 ){
color_cluster(xi,yj,color,Mask);

}

}
}
return;

}

static

#ifdef __STDC..
void find_clusters(
matlab_MATRIX Mask,
matlab_MATRIX IN,
double *threshold

)

#telse

Ochoa
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find_clusters(Mask,IN,threshold)
matlab_MATRIX IN,Mask;
double *threshold; .

#endif

{
long *color,zero;
int x, y;

for (x=0; x<Mask.cols; x++){
for (y=0; y<Mask.rows; y++){

Mask.ptr[x*Mask.rows +y] = IN.ptr[x*IN.rows +y] >= *threshold ? -1 :

}
}

/*initialize colorx/

zaro = 0;
color = &zero;

/* f£ind the first pixel of cluster
increment color
call recursive "color_cluster" */

for (x=0; x<Mask.cols; x++){
for (y=0; y<Mask.rows; y++){
if (Mask.ptr[x*Mask.rows +y] == -1){
*color += 1;
color_cluster(x,y,color,Mask);

}
}

return;

}

#ifdef __STDC__
void mexFunction(

int nlhs,
Matrix xplhs[],

int nrhs,
Matrix =prhs[]

)

#else
mexFunction(nlhs, plhs, nrhs, prhs)
int nlhs, nrhs;
Matrix *plhs[], *prhs[];
#endif
{
matlab_MATRIX 1IN, OUT;
double *threshold;
double default_threshold;

if ((nrhs < 1) || (nrhs > 2)){

mexErrMsgTxt("find_cluster requires one or two input arguments.");
} else if (nlhs > 1) {

mexErrMsgTxt ("find_cluster has one output argument.");

}
IN.rows = mxGetM(prhs[01);
IN.cols = mxGetN(prhs[0]);

IN.ptr = mxGetPr(prhs[0]);

if (nrhs == 1){
default_threshold = 1;
threshold = &default_threshold;
} else {
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threshold = mxGetPr(prhs[1]);

}
OUT.rows = IN.rows;
DUT.cols = IN.cols;

plhs[0] = mxCreateFull(0UT.rows,0UT.cols, REAL) ;
OUT.ptr = mxGetPr(plhs[0]);

find_clusters (0UT,IN,threshold);
return;

}

79




10.

11.

12.

13.

14.

15.

Bibliography

Abrahamson, Shane Lee. Pulse Coupled Neural Networks for the Segmentation
of Magnetic Resonance Brain Images. MS thesis, AFIT/GCS/ENG/96, Graduate
School of Engineering, Air Force Institute of Technology (AETC), Wright-Patterson
AFB OH, 1996.

Adler, Dorit D. “Mammographic Evaluation of Masses,” RSNA Categorical Course
in Breast Imaging, 107-116 (1995).

Bovik, Alan Conrad, et al. “The effect of median filtering on edge estimation and
detection,” IEEE Trans. Pattern Anal. Machine Intell., 181-194 (1987).

Bramlette, Mark F. “Initialization, Mutation, and Selection Methods in Genetic
Algorithms for Function Optimization.” Fourth Int. Conf. Genetic Algorithms. 100~
107. 1991.

Bronson, Richard. Theory and Problems of Operations Research. Schaum’s Outline,
McGraw-Hill Book Company, 1982.

Caldwell, Craig and Victor S. Johnston. “Tracking a Criminal Suspect through “Face-
Space” with a Genetic Algorithm.” Fourth Int. Conf. Genetic Algorithms. 416-421.
1991.

Calloway, David L. “Using a Genetic Algorithm to Design Binary Phase-Only Filters
for Pattern Recognition.” Fourth Int. Conf. Genetic Algorithms. 422-429. 1991.

Carlton, Richard R. and Arlene M. Adler. Principles of Radiographic Imaging (2nd
Edition). Delmar, 1996.

Chan, Heang-Ping, et al. “Computer-aided detection of mammographic micro-
calcifications: Pattern recognition with an artificial neural network,” Med. Phys.,
22(10):1555-1567 (1995).

Dauk, Ronald C. Computer-Aided Detection of Microcalcifications Using Texture
Analysis. MS thesis, AFIT/GEO/ENG/95-D01, Graduate School of Engineering, Air
Force Institute of Technology (AETC), Wright-Patterson AFB OH, 1995.

De Jong, Kenneth. “Genetic Algorithms: A 10 Year Perspective.” First Int. Conf.
Genetic Algorithms and Their Applications. 169-177. 1985.

Dhawan, A. P., et al. “Enhancement of mammographic features by optimal adap-
tive neighborhood image processing,” IEEE Trans. Med. Imaging, 5(1):8-15 (March
1986).

Dhawan, A. P. and R. Gordon. “Reply to comments on enhancement of mammo-
graphic feature by optimal adaptive neighborhood image processing,” IEEE Trans.
Med. Imaging, MI-6(1):82-83 (March 1987).

Dhawan, A. P. and Eric Le Royer. “Mammographic feature enhancement by comput-
erized image processing,” Computer Methods and Programs in Biomedicine, 27(1):25-
35 (1988).

D’Orsi, Carl J. “Digital Mammography,” RSNA Categorical Course in Breast Imag-

ing, 80 (1995).

80




16.

17.

18.
19.

20.
21.
22,
23.

24.
25.

26.
27.
28.
29.
30.

31.

32.

D’Orsi, Carl J. “Use of the American College of Radiology Breast Imaging and Data
System,” RSNA Categorical Course in Breast Imaging, 77-80 (1995).

Eisenbies, Christopher L. Classification of Ultra High Range Resolution Radar Using
Decision Boundary Analysis. MS thesis, AFIT/GE/ENG/94D-07, Graduate School
of Engineering, Air Force Institute of Technology (AETC), Wright-Patterson AFB
OH, 1994.

Ema, Takehiro, et al. “Feature analysis and computer-aided diagnosis in mammogra-
phy: Reduction of false-positive clustered microcalcifications using local edge-gradient
analysis,” Med. Phys., 22(2):161-169 (February 1995).

Ernisse, Brian Everett. Automatic Target Cuer/Recognizer System for Tactical FLIR
Images. MS thesis, AFIT/GE/ENG/96-D, Graduate School of Engineering, Air Force
Institute of Technology (AETC), Wright-Patterson AFB OH, 1996.

Feig, Stephen A. “Mammographic Evaluation of Calcifications,” RSNA Categorical
Course in Breast Imaging, 93-105 (1995).

Giger, Maryellen L. “Computer-Aided Diagnosis,” RSNA Categorical Course in
Physics, 283-298 (1993).

Goldberg, David E. “Sizing Populations for Serial and Parallel Genetic Algorithms.”
Third Int. Conf. Genetic Algorithms. 70-79. 1989.

Goldberg, David E. “Zen and the Art of Genetic Algorithms.” Third Int. Conf.
Genetic Algorithms. 80-85. 1989,

Gonzales, R. C. and R. E. Woods. Digital Image Processing. Addison-Wesley, 1992.

Grefenstette, John J. and James E. Baker. “How Genetic Algorithms Work: A Critical
Look at Implicit Parallelism.” Third Int. Conf. Genetic Algorithms. 20-27. 1989.

Harrup, Georgia K. ROC Analysis of IR Segmentation Techniques. MS thesis,
AFIT/GE/ENG/94D-15, Graduate School of Engineering, Air Force Institute of Tech-
nology (AETC), Wright-Patterson AFB OH, 1994.

Hoffmeister, Jeffrey W., “Personal Interviews.” Aerospace Physician, Armstrong Lab-
oratory, Wright-Patterson AFB, OH. May 1995 - December 1996.

Holland, John H. “Genetic Algorithms,” Scientific American, 66-72 (July 1992).

Houck, Chris, et al. A Genetic Algorithm for Function Optimization: A Matlab Im-
plementation. Technical Report, NCSU-IE TR 95-09, 1995. The GAOT may be
downloaded via WWW at http://www.eos.ncsu.edu/eos/info/ie589k info/ GAOT.

Janikow, Cezary Z. and Zbigniew Michalewicz. “An Experimental Comparison of
Binary and Floating Point Representations in Genetic Algorithms.” Fourth Int. Conf.
Genetic Algorithms. 31-36. 1991.

Judy, Philip F., et al. “Measuring the Observer Performance of Digital Systems.”
Computed Digital Radiography in Clinical Practice edited by R. E. Green and J. W.
Oestmann, 59-69, New York: Thieme Medical Publishers, 1992.

Karrsemeijer, N. “Adaptive noise equalization and image analysis in mammography.”

13th Int. Conf. Inform. Processing Med. Imag.. 472-486. 1992.

81




33.

34.

35.
36.
37.

38.

39.

40.

41.

42,

43.

44.

45.

46.

47.
48.

49,

50.

Kocur, Catherine M., et al. “Neural Network Wavelet Feature Selection for
Breast Cancer Diagnosis,” IEEE Engineering in Medicine and Biology, 95-102,108
(May/June 1996).

Kopans, Daniel B. “The Etiology of Breast Cancer,” RSNA Categorical Course in
Breast Imaging, 29-37 (1995).

Lewis, Brian J. Cecil Textbook of Medicine. W.B. Saunders Co., 1988.
Marr, David. Vision. San Francisco: W. H. Freeman and Co., 1982.

Martin, Curtis E. Non-Parametric Bayes Error Estimation For UHRR Target Iden-
tification. MS thesis, AFIT/GE/ENG/93D-26, Graduate School of Engineering, Air
Force Institute of Technology (AETC), Wright-Patterson AFB OH, 1993.

McCandless, Donald A. Detection of Clustered Microcalcifications Using Wavelets.
MS thesis, AFIT/GE/ENG/95D-17, Graduate School of Engineering, Air Force In-
stitute of Technology (AETC), Wright-Patterson AFB OH, 1995.

Metz, Charles E. “ROC Methodology in Radiologic Imaging,” Investigative Radiology,
21(9):720-733 (September 1986).

Metz, Charles E. “Some Practical Issues of Experimental Design and Data Analysis
in Radiological ROC Studies,” Investigative Radiology, 24(3):234-245 (March 1989).

Michalewicz, Z. GeneticAlgorithms + DataStructures = EvolutionPrograms. Al
Series, New York: Springer-Verlag, 1994.

Morrow, William M., et al. “Region-based contrast enhancement of mammograms,”
IEEE Transactions on Medical Imaging, 11(3):392-406 (September 1992).

Niblack, Wayne. An introduction to digital image processing. Prentice-Hall Interna-
tional (UK) Ltd., 1986.

Nishikawa, R. M., et al. “Computer-aided detection of clustered microcalcifica-
tions on digital mammograms,” Medical and Biological Engineering and Computing,

93(2):174-178 (March 1995).

Nishikawa, Robert M., et al. “Effect of case selection on the performance of computer-
aided detection schemes,” Medical Physics, 21(2):265-269 (February 1994).

Nishikawa, Robert M., et al. “Computer-aided detection of clustered microcalci-
fications: An improved method for grouping detected signals,” Medical Physics,
20(6):1661-1666 (November/December 1993).

Parker, Sheryl L., et al. “Cancer Statistics,” CA, 46(1):5-27 (January 1996).

Polakowski, William E. Computer-Aided Diagnosis of Mammographic Masses. MS
thesis, AFIT/GEQ/ENS/95D-02, Graduate School of Engineering, Air Force Institute
of Technology (AETC), Wright-Patterson AFB OH, 1995.

Raff, Ulrich. “Visual data formatting.” The perception of visual information edited
by William R. Hendee and Peter N. T. Wells, 160-201, New York: Springer-Verlag,
1993. '

Richardson, Jon T., et al. “Some Guidelines for Genetic Algorithms with Penalty
Functions.” Third Int. Conf. Genetic Algorithms. 191-197. 1989.

82




51.

52,

53.

54.

55.

56.

57.

58.
59.

60.

61.

62.

63.

64.

65.

66.

67.

Rogers, S. K., et al. “Neural Networks for Automatic Target Recognition,” IEEE
Transactions on Neural Networks, 8(7/8):1153-1184 (1995).

Rogers, Steven K., et al. “Artificial Neural Networks for Automatic Object Recogni-
tion,” SPIE Institute Series on Automatic Object Recognition, 231-243 (April 1990).

Russ, John C. The Image Processing Handbook. CRC Press, 1992.

Schaffer, J. David, et al. “A Study of Control Parameters Affecting Online Perfor-
mance of Genetic Algorithms for Function Optimization.” Third Int. Conf. Genetic
Algorithms. 51-60. 1989.

Schmidt, Robert A., et al. “Computer-aided diagnosis in Mammography,” RSNA
Categorical Course in Breast Imaging, 199-208 (1995).

Shaw de Paredes, Ellen. “Radiographic Breast Anatomy: Radiologic Signs of Breast
Cancer,” RSNA Categorical Course in Physics, 35-45 (1994).

Sickles, Edward A. “Auditing Your Practice,” RSNA Categorical Course in Breast
Imaging, 81-91 (1995).
Silverberg, E. and J. Lubera. “Cancer Statistics,” Cancer, 39 (1987).

Smiley, Steven E. Image Segmentation Using Affine Wavelets. ~MS thesis,
AFIT/EN/ENG/91D-50, Graduate School of Engineering, Air Force Institute of Tech-
nology (AETC), Wright-Patterson AFB OH, 1991.

Smith, Robert A. “The Epidemiology of Breast Cancer,” RSNA Categorical Course
in Breast Imaging, 7-20 (1995).

Sonka, Milan, et al. Image processing, analysis and machine vision. University Press,

1993.

Strang, Gilbert. Linear Algebra and its Applications (Third Edition). San Diego:
Harcourt Brace Jovanovich, 1988.

Strickland, R. N. and H. I. Hahn. “Detection of microcalcifications using wavelets.”
Digital Mammography: Proceedings of the 2nd International Workshop on Digital
Mammography, edited by Alastair G. Gale, et al. 79-88. York, UK: Elsevier, 10-12
July 1994.

Strickland, Robin N. and Hee Il Hahn. “Wavelet transforms for detecting microcal-
cifications in mammograms,” IEEE Transactions on Medical Imaging, 15(2):218-229
(April 1996).

Swett, Henry A., et al. “Computer Vision and Decision Support.” The perception of
visual information edited by William R. Hendee and Peter N. T. Wells, 272-315, New
York: Springer-Verlag, 1993.

Tahoces, P. G., et al. “Enhancement of chest and breast radiographs by automatic
spatial filtering,” IEEE Transactions on Medical Imaging, 10(3):330-335 (September
1991).

Yaffe, Martin J. “Digital Mammography,” RSNA Categorical Course in Physics,
275-286 (1994).

83




68. Yoshida, Hiroyuki, et al. “Automated detection of clustered microcalcifications in
digital mammograms using wavelet transform techniques.” Image Processing2167.
Medical Imaging, edited by Murray H. Loew. 868-886. Newport Beach, CA: SPIE,
February 1994.

84




Vita

Captain Ochoa obtained a BSEE from the University of Arizona and a commission
as a 2nd Lt in the United States Air Force in September of 1992. From January 1993
through May 1995 he was a Senior Imagery Exploitation Engineer in the Imagery Systems
Division, National Air Intelligence Center, Wright-Patterson Air Force Base (WPAFB),
OH. Currently, he has been assigned to the Air Force Institute of Technology (AFIT),
WPAFB, OH. At AFIT he has been pursuing an MS in Electro-Optics, specializing in
pattern recognition. As of January 1997 he may be reached at the Air Force Information

Warfare Center, Kelly AFB, TX.

Permanent address: 5290 Cobb Dr
Dayton, Ohio 45431

85




REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1996 Master’s Thesis

4. TITLE AND SUBTITLE

CLUSTERED MICROCALCIFICATION DETECTION USING OPTI-
MIZED DIFFERENCE OF GAUSSIANS

6. AUTHOR(S)

Edward M. Ochoa
Captain, USAF

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Institute of Technology, WPAFB OH 45433-6583

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GEO/ENG/96D-13

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Maj. Jeffrey W. Hoffmeister, MD

2255 H Street

Armstrong Laboratory / CFAHV
Wright-Patterson AFB, OH 45433-7022

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; Distribution Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Clustered microcalcifications are one of the earliest indicators of breast cancer, and are detected only by mammog-
raphy; 30 to 50 percent of nonpalpable cancers are mammographically visible on the basis of microcalcifications
alone. Furthermore, for early breast cancers, screening studies suggest that 70 to 90 percent were detected based
on microcalcifications alone. This research proposes the following methodology for clustered microcalcification
detection. First, preprocess the digitized film mammogram to reduce digitization noise. Second, spatially filter
the image with a difference of Gaussians (DoG) kernel. To detect potential microcalcifications, segment the fil-
tered image using global and local thresholding. Next, cluster and index these detections into regions of interest
(ROIs). Identify ROIs on the digitized image (or hardcopy printout) for final radiologic diagnosis. Finally, to
improve detection rates, globally optimize detection parameters using a genetic algorithm (GA), then locally
optimize using the simplex method.

The database of 56 digitized (12 bit, 100 pm) full-breast (20x10 cm?) film mammograms contained 63 biopsy-
truthed clustered microcalcification ROIs over 28 cases. This technique demonstrated a true positive (TP) case
detection rate of 96.4 percent (27/28), and TP ROI (54/63) and TP image (48/56) detection rates of 85.7 percent
with 5.75 false positives (FPs) per full-breast image.

14. SUBJECT TERMS . 15. NUMBER OF PAGES

Pattern Recognition, Breast Cancer, Clustered Microcalcifications, Medical Imaging, 97

. . . . 16. PRICE CODE
Genetic Algorithms, Difference of Gaussians

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION [ 19. SECURITY CLASSIFICATION |20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 739-18
298-102




GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet

optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date
including day, month, and year, if available (e.g. 1
Jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun87-30Jun 88).

Block 4. Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Block 5. Funding Numbers. To include contract
and grant numbers; may include program
element number(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C - Contract PR - Project
G - Grant TA - Task
PE - Program WU - Work Unit

Element Accession No.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s).

Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory. ‘

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the report.

Block 9. Sponsorina/Monitoring Agency Name(s)

and Address(es). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known) ¥

Block 11. Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans. of...; To be
published in.... When areportisrevised, include
a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, "Distribution
Statements on Technical
Documents.”

DOE - See authorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leaveblank.

Block 12b. Distribution Code.

DOD - Leaveblank.

DOE - Enter DOE distribution categories
from the Standard Distribution for
Unclassified Scientific and Technical
Reports.

NASA - Leave blank.

NTIS - Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contains classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

*U.8.GPO:1993-0-336-043

Standard Form 298 Back (Rev. 2-89)




