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FOREWORD 

Among the responsibilities assigned to the Office of the Manager, National 
Communications System, is the management of the Federal Telecommunication 
Standards Program.   Under this program, the NCS, with the assistance of the 
Federal Telecommunication Standards Committee identifies, develops, and 
coordinates proposed Federal Standards which either contribute to the 
interoperability of functionally similar Federal telecommunication systems or to the 
achievement of a compatible and efficient interface between computer and 
telecommunication systems.   In developing and coordinating these standards, a 
considerable amount of effort is expended in initiating and pursuing joint standards 
development efforts with appropriate technical committees of the International 
Organization for Standardization, and the International Telegraph and Telephone 
Consultative Committee of the International Telecommunication Union.   This 
Technical Information Bulletin presents an overview of an effort which is 
contributing to the development of compatible Federal, national, and international 
standards in the area of facsimile.   It has been prepared to inform interested Federal 
activities of the progress of these efforts.   Any comments, inputs or statements of 
requirements which could assist in the advancement of this work are welcome and 
should be addressed to: 

Office of the Manager 
National Communications System 
Attn: N6 
701 S. Court House Road 
Arlington, VA 22204-2198 
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1 INTRODUCTION 

This document summarizes work performed by Delta Information 
Systems, Inc. (DIS) for the National Communications System (NCS), Office of 
Technology and Standards.  This office is responsible for the management of the 
Federal Telecommunication Standards Program, which develops telecommunication 
standards, whose use is mandatory for all Federal departments and agencies.  The 
purpose of this project, performed under Task 2, Subtask 3 of contract number 
DCA100-91-C-0031 during Option Year 4, was to continue the work on color 
facsimile that was started in 1994. 

This report describes the creation and evaluation of default Huffman codes, 
which were completed in the last year.  The development of default Huffman 
codes was a continuation of work performed in 1994.  The modified Joint 
Photographic Experts Group (JPEG) software developed last year was used to 
compress images from two different classes.   Newly developed software was then 
used on the resulting histograms to create composite Huffman code tables for the 
two image classes which could be used as defaults. 

This report is comprised of two sections. 

Section 1.0 provides a brief description of the objectives of the task and an 
outline of the contents of this report. 

Section 2.0 describes the creation and performance of default Huffman 
coding tables for transmitting color FAX images by the JPEG (Joint Photographic 
Experts Group) baseline standard. 



2 DEFAULT HUFFMAN CODES 

2.1     Background 

In the 1994 study1 eight test images were compressed with three 
candidates for default Huffman code sets.  A "code set" is a set of four codes, one 
each for DC luminance, AC luminance, DC chrominance and AC chrominance. 
The three candidate Huffman code sets were: 

T.81 JPEG default codes 
Contribution D10 ITU-T Delayed Contribution from Japan 

Delta Composite 

The Delta composite code set was derived from the combined histograms of the 

eight test images. 

For any given test image, there was significant variation in the bit counts of 
the compressed data streams across the different Huffman code sets.  That is, for 
a given image, the three Huffman code sets performed significantly differently. 
Typical differences were a few percent for images with data compression scale 
factors of 9 and 24 (low to medium compression, excellent to good image quality), 
and sometimes by more than 10 percent for a data compression scale factor of 71 
(high compression, poorer image quality). 

The theoretically optimal default Huffman code set is based on the total 
probability function of the symbols in a given symbol set.  This probability function 
is the set of relative frequencies of the symbols over the "universe" of all images 
processed with all image processing parameters.  A method of estimating such a 
probability function is presented later in this section.   Had the candidate Huffman 
codes evaluated in 1994 closely approached the theoretical optimal code set, their 
performances for any given image and set of processing parameters would have 

been nearly identical) 

Because of the significant differences in the performance of the test code 
sets, it was concluded that the three candidate code sets suffered from either or 
both of the following deficiencies: (1) they were derived from too few symbol 
samples, or (2) there was an insufficient mix of image characteristics and 
processing parameters that possess their own peculiar statistics. 



2.2 Scope of Renewed Study 

The 1995 study included: (1) obtaining and verifying an estimate of required 
sample size, (2) a measurement of the effects of image characteristics, and (3) the 
development of a theoretically sound procedure for creating a universal default 
Huffman code set that closely approaches the theoretical optimum. 

The study employed some software tools developed in 1994 and 1995. 
These tools are summarized in Appendix A. 

2.3 Image Model 

In the present study, an image is assumed to have four symbol sets 
("components"):   DC luminance, AC luminance, DC chrominance and AC 
chrominance.   In an actual CIELAB image, the "chrominance" comprises the A and 
B color components.  The DC A and the DC B symbols are encoded by a common 
"DC chrominance" Huffman code; similarly, the AC A and the AC B symbols share 
a common "AC chrominance" code. 

The JPEG compression and decompression software, as modified during the 
1994 study, does not generate separate DC and AC histograms for the A and B 
components.   Instead, as a byproduct of constructing the DC and AC 
chrominance Huffman codes, it produces DC and AC chrominance histograms, 
which are composites (sums) of the DC A and B, and the AC A and B, histograms 
respectively. 

Because the 1995 study focuses on the number of bits generated just by 
Huffman coding, exclusive of other bits included in an actual compressed data 
stream, a "test image" in this study is not an image at all.   Instead, the "image" is 
represented by the histograms produced when the actual image is compressed. 
The number of Huffman coded bits, for a given symbol set, is the sum of the 
products, over all symbols, of the number of times each symbol occurs, multiplied 
by the Huffman code word length for that symbol. 

Since the modified JPEG software generates histograms for DC and AC 
"chrominance," and not separate A and B color components, the image model 
employed in this study lumps the A and B components (DC and AC) into DC and 
AC "chrominance" components.  This lumping should not diminish the validity of 
the results and conclusions of this study, which evaluates the effects of random 
sampling and image characteristics on Huffman codes. 



2.4     Sample Size 

Determining an appropriate sample size consists of estimating the required 
number of symbols, selected at random from a much larger pool of symbols, to be 
statistically representative of the entire pool.  This is different from selecting 
images from a large pool of images, because the image characteristics of the 
smaller set of images may be statistically significantly different from those of the 
large pool.  To establish this statistical significance, one must estimate the random 
error associated with sampling symbols from a pool whose image characteristics 
are fixed.   If this random error is small compared to differences arising from image 
characteristics, then the latter are statistically significant. 

2.4.1 Theory 

An analytical method of estimating the appropriate sample size is presented 
in Appendix B.  This method yields an optimistic estimate of only a few thousand 
symbols, and a conservative estimate of high tens to high hundreds of thousands. 
This is small compared to the millions of symbol occurrences for each of the four 
symbol sets in the Delta composite histograms. 

2.4.2 Random Sampling Results 

A C program, SampHist.c, randomly samples, with replacement, symbols 
whose statistics are controlled by an input histogram set. The user specifies a 
percentage sampling rate that sets the number of samples to be taken for each 
image component.  The program output is a set of histograms based on the 
sample results.   If a possible symbol never occurs in the sample, it is assigned a 
count of 1. 

SampHist.c simulates the following experiment: Mix a very large number of 
marbles labeled with symbol names in a box, with the proportion of marbles with a 
given symbol name specified by the input histogram.   Draw N times from the box, 
each time noting the symbol name, and then throwing the marble back in the box 
and remixing the marbles before drawing again.   Build a new histogram based on 
the results of the drawings. 

This program was employed to randomly sample a symbol pool at sampling 
rates of 50 percent and 10 percent, with the symbol pool statistics determined by 
the Delta composite histograms.   Huffman code tables (consisting of code word 
lengths, not the codes themselves) for each image component were generated 
from the original composite histograms, the 50 percent histograms, and the 10 
percent histograms.   AvHuflen.c, a C program written in 1994, was then run to 
compute the average number of Huffman coded bits per symbol when the "image" 



was always represented by the whole composite histogram set (one histogram for 
each of the four image components), and the Huffman codes were the three sets 
mentioned above.  The results for the original composite and the 50 percent 
sample were identical in bit count for all components.  The 10 percent sample 
results agreed exactly for the DC luminance, differed by 1 bit out of approximately 
3 million for DC chrominance, by approximately 2400 bits out of 19.9 million, or 
0.012 percent for the AC luminance, and roughly 2000 bits out of 11.7 million, 
i.e., 0.017 percent for the AC chrominance.    These differences were much 
smaller than those observed in 1994 when different Huffman code sets encoded a 
given image.  The results show that performance differences among the code sets 
tested in 1994 were almost certainly due to differing image characteristics and/or 
processing parameters in the image sets used to derive these codes. 

2.4.3 JPEG Huffman Coding Anomaly 

In the random sampling experiment described above, a startling result 
occurred.  The Huffman codes derived from 10 percent sampling of the Delta 
composite performed slightly better than those derived from the full histogram 
when the "test image" was represented by the full histogram itself.  This anomaly 
occurred in the AC luminance and AC chrominance components.   Even though the 
differences were very small, the fact that another Huffman code could do even 
very slightly better than the full histogram's own Huffman code caused 
considerable consternation. 

A copy of AvHuflen.c was modified to derive pure Huffman code word 
lengths from a supplied histogram, instead of reading the JPEG Huffman code 
word lengths from a file.   Pure Huffman codes are not constrained to the JPEG 
length limit of 16 bits.  When the code performance comparisons were repeated 
with pure Huffman codes, the anomaly disappeared. 

Spreadsheets were created to compare the bit counts produced by various 
Huffman codes for each symbol of the AC luminance symbol set, and to show the 
total differences.  The comparisons were: 

Pure Huffman, full histogram v. pure Huffman, 10 percent sample, 
JPEG v. pure Huffman, both derived from the full histogram, 
JPEG v. pure Huffman, both derived from the 10 percent sample, 
JPEG Huffman, full histogram v. JPEG Huffman, 10 percent sample. 

In all four cases, the encoded "image" is represented by the full, unsampled 
composite histogram, i.e., the Delta composite from the 1994 project. 

The first comparison showed that the pure Huffman code behaved as 



expected, namely, that the code from the 10 percent sample performed very 
slightly worse than that from the full histogram when encoding an "image" whose 
statistics are represented by the latter histogram. 

The second and third comparison showed that the JPEG Huffman code does 
worse than the pure code when both codes are derived from either the full or the 
10 percent histogram.  The degradation was worse, however, for the full 
histogram than for the 10 percent sample, enough worse to cause the anomaly. 

In the fourth spreadsheet, there were only four symbols in which the code 
word lengths differed. Table 2.1 shows these differences. 

TABLE 2.1 - SYMBOLS IN WHICH THE CODE LENGTH DIFFERS 

Symbol 
No. (hex) 

Number of 
occurrences 

Code word length 
(full histogram) 

Code word length 
(10 percent sampled) 

Bit count 
Difference 

25 486 16 14 972 

34 753 15 16 -753 

E1 1478 15 12 4434 

FO 2252 11 12 -2252 

The Huffman code word lengths derived from the full histogram produced 2401 
more bits than did those derived from the 10 percent sample. 

It is evident, therefore, that the JPEG Huffman coding algorithm, with its 16 
bit limit on the code word length, may produce sub-optimal codes in the sense 
that a code produced from a given "image" (e.g., the full composite histogram) 
may not perform quite as well when encoding that same image as code produced 
by another "image" with nearly identical statistics (e.g., the 10 percent sampled 
histogram).   However, the difference is tiny compared with the various differences 
observed in the 1994 Color Facsimile project. 

2.5     The Effects of Image Characteristics 

Busy and bland images aptly illustrate how image characteristics affect 
JPEG symbol statistics.   Busy images exhibit rapid spatial variations in brightness 
and/or hue; bland images are the opposite.  These two image classes are easily 
distinguished by visual inspection.   Of course, there are intermediate images, parts 
of which are busy and parts bland, and there are degrees of busyness.  The 
images evaluated for the 1995 study were deliberately chosen to be obviously 



busy or obviously bland. 

Busy images are inherently harder to compress than bland images, because, 
as is explained presently, the former generate more symbols to be encoded than 
the latter.   A universal default Huffman code should take this into account by 
favoring busy image statistics according to the proportion of busy image symbols. 
Section 2.6 shows how to determine the extent to which busy image statistics 
should be favored. 

A DC symbol represents the difference between the quantized DC 
coefficient of the block being encoded and that of the block that was most 
recently encoded.    Because the DC coefficients vary more from block to block in 
busy images than in bland, the probability of the zero-value symbol (SSSS = 0) is 
considerably less in busy than in bland images. 

For AC, busy images produce more non-zero quantized coefficients than do 
bland images.  Consequently, busy images produce more AC symbols for a given 
image size, since, in any given block, a symbol is generated for each non-zero 
coefficient. 

Each block almost always includes an end-of-block symbol in both busy and 
bland images.   (In the very rare case of the last coefficient in a block being non- 
zero, an end-of-block symbol is not encoded.)   Since busy images generate, on the 
average, more AC symbols per block, the probability of the end-of-block symbol is 
significantly less in busy than in bland images. 

Evaluation of the statistical differences between busy and bland images 
commenced with the selection of a set of 7 obviously busy and 7 obviously bland 
images, all fully sampled.  Table 2.2 describes the characteristics of each of the 
14 color images chosen.  All images were first converted to the CIELAB color 
space.  The DLB extension on the filenames was added to indicate that the images 
are in the RAW format with the Delta header.   Hard copies of the images (in 
grayscale) are included in Appendix C of this report. 

The images were compressed with the modified JPEG software at a 
compression scale factor of 25 (the JPEG recommendation for satisfactory image 
quality and good compression) to build a histogram for each symbol set of each 
image.  Program CHistv2 then produced composite histograms for the busy image 
set and the bland image set.  In the composite histograms, possible symbols that 
never occurred were assigned counts of 1 to guarantee a Huffman code for each 
possible symbol. 



TABLE 2.2 - BUSY AND BLAND IMAGE SET DESCRIPTION 

File Name Description Image Type Image Size 

img0009.dlb boats busy 1504x2048 

img0005.dlb fish busy 1504x2048 

img0024.dlb train in warehouse busy 1504x2048 

img0012.dlb handbags busy 1496x2040 

img0021.dlb violin & tapestry busy 1504x2032 

n8.dlb woman in photo busy 1504x2048 

bikerace.dlb bike race busy 1504x2048 

img0008.dlb water bland 1520x2048 

img0003.dlb floppy disk bland 1520x2048 

img0020.dlb 2 violins bland 1520x2048 

n6.dlb flower bland 1520x2048 

sunset.dlb sunset bland 1520x2048 

plane.dlb airplane bland 2560x1216 

gcanyon.dlb grand canyon bland 1520x2048 

The next step was to run SampHist.c to perform random sampling at 50 and 
10 percent for both image classes.   For each class, separate Huffman code sets 
were generated from the original composite histogram set and the 50 and 10 
percent samples, and AvHuflen.c measured the performances of the three code 
sets against the original composite histogram set.  The Huffman codes derived 
from the 50 percent samples gave results, for both the busy and bland 
composites, that agreed in average bits per symbol with the results of using the 
Huffman codes from the original histograms to within 0.001 bit for all symbol sets. 
The results of using the Huffman codes derived from the 10 percent samples 
agreed to within 0.001 bit per symbol in all symbol sets, except, in the bland 
composite, the AC luminance and AC chrominance results differed by 0.002 bit. 
Therefore, the "noise level" due to random sampling is no more than 0.002 bit per 
symbol. 

8 



In the final step, the Huffman code set generated by the full busy composite 
was designated "busy Huffman code," and that produced by the full bland 
composite was called "bland Huffman code."  The Huffman code sets from the 50 
and 10 percent histograms were discarded.  AvHuflen.c was then run with both 
the busy and bland Huffman codes, with test "images" represented by the 
following histogram sets: (1) the busy composite, (2) each busy image, (3) the 
bland composite and (4) each bland image. 

The initial plan specified that all images have the same number of pixels, 
and that both the width and height of each image be a multiple of 8 pixels.  The 
second specification ensures that each image component produces a whole 
number of 8 x 8 blocks without the JPEG compression software's having to fill out 
partial blocks. 

The goal of all the images having the same number of pixels was not met. 
All bland images produced 48128 blocks per component, as did five of the seven 
busy images.   The remaining two busy images generated 47685 and 47752 blocks 
per component.   The goal of each image dimension being a multiple of 8 was met. 

Because of the differing sizes, the data for the number of symbols are 
expressed in average symbols per block instead of total number of symbols.   In 
the following tables, the number of luminance blocks in an image is the total 
number of pixels divided by 64.  The number of chrominance blocks is twice this 
value, because the JPEG program generates separate blocks for the A and B color 
components, i.e., two "chrominance" blocks for each luminance block.   The 
average number of symbols per block is always 1 for the DC luminance and the 
DC chrominance, because exactly one DC symbol (the difference between the 
quantized DC coefficients in the current and previous block) is encoded per block. 

In the busy (bland) composite, the numbers of luminance and chrominance 
blocks are the sums of the corresponding numbers over all busy (bland) images. 
However, in the composites, each possible symbol that never occurs in any image 
comprising the composite is assigned a value of 1 for the number of occurrences. 
This slightly increases the total number of occurrences, hence very slightly 
increases the average number of symbols per block.  This effect is so small, 
however, that the average number of symbols per DC block computes to 1.0 with 
several more zeros before another non-zero digit occurs, and hence is negligible. 

Table 2.3 shows the results of encoding the busy composite and the 
individual busy images with both the busy and the bland Huffman codes.   Table 
2.4 is a similar table for the bland composite and images. 



TABLE 2.3 

Results of Encoding Busy Images with Busy and Bland Huffman Codes 

Image 
(or composite) 

Number of Blocks 
Luminance 

Symbol Set Average 
Symbols 
per Block 

Average bits per 
symbol 
(busy Huffman code) 

Average bits per 
symbol 
(bland Huffman code) 

Chrominance 

Busy Composite 336077 DC Luminance 
AC Luminance 
DC Chrominance 
AC Chrominance 

1 
12.-71 

1 
3.03 

2.981 
3.374 
2.344 
2.737 

3.690 
3.695 
2.490 
2.822 

672154 

Boats 48128 

96256 

DC Luminance 
AC Luminance 
DC Chrominance 
AC Chrominance 

1 
13.63 

1 
2.76 

2.982 
3.384 
2.202 
2.699 

3.483 
3.655 
2.203 
2.716 

Fish 48128 

96256 

DC Luminance 
AC Luminance 
DC Chrominance 
AC Chrominance 

1 
9.48 

1 
2.75 

2.936 
3.331 
2.318 
2.630 

3.550 
3.462 
2.474 
2.630 

Train in 
Warehouse 

48128 

96256 

DC Luminance 
AC Luminance 
DC Chrominance 
AC Chrominance 

1 
9.14 

1 
2.42 

3.041 
3.442 
2.225 
2.672 

3.260 
3.568 
2.160 
2.618 

Handbags 47685 

95370 

DC Luminance 
AC Luminance 
DC Chrominance 
AC Chrominance 

1 
12.41 

1 
3.16 

2.829 
3.318 
2.295 
2.723 

3.719 
3.676 
2.401 
2.843 

Violin & Tapestry 47752 

95504 

DC Luminance 
AC Luminance 
DC Chrominance 
AC Chrominance 

1 
11.35 

1 
2.97 

3.019 
3.338 
2.330 
2.633 

3.978 
3.670 
2.561 
2.662 

Woman in Photo 48128 

96256 

DC Luminance 
AC Luminance 
DC Chrominance 
AC Chrominance 

1 
25.44 

1 
3.55 

2.983 
3.406 
2.426 
2.948 

3.970 
3.919 
2.605 
3.126 

Bike Race 48128 

96256 

DC Luminance 
AC Luminance 
DC Chrominance 
AC Chrominance 

1 
7.51 

1 
3.63 

3.074 
3.360 
2.613 
2.779 

3.876 
3.526 
3.023 
2.996 
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TABLE 2.4 

Results of Encoding Bland Images with Busy and Bland Huffman Codes 

Image 
(or composite) 

Number of Blocks 
Luminance 

Symbol Set Average 
Symbols 
per Block 

Average bits per 
symbol 
(busy Huffman code) 

Average bits per 
symbol 
(bland Huffman code) 

Chrominance 

Bland Composite 340480 DC Luminance 
AC Luminance 
DC Chrominance 
AC Chrominance 

1 
6.23 

1 
2.28 

3.256 
3.452 
2.095 
2.564 

2.414 
3.217 
1.815 
2.414 

680960 

Water 48640 

97280 

DC Luminance 
AC Luminance 
DC Chrominance 
AC Chrominance 

1 
4.43 

1 
1.16 

3.451 
3.950 
2.000 
2.138 

2.036 
3.405 
1.277 
1.354 

Floppy Disk 48640 

97280 

DC Luminance 
AC Luminance 
DC Chrominance 
AC Chrominance 

1 
6.22 

1 
2.06 

3.311 
3.306 
2.202 
2.587 

2.464 
3.177 
1.813 
2.452 

Two Violins 48640 

97280 

DC Luminance 
AC Luminance 
DC Chrominance 
AC Chrominance 

1 
6.92 

1 
2.24 

3.099 
3.437 
2.192 
2.526 

2.670 
3.271 
2.139 
2.390 

Flower 48640 

97280 

DC Luminance 
AC Luminance 
DC Chrominance 
AC Chrominance 

1 
9.15 

1 
1.54 

3.113 
3.557 
2.094 
2.334 

2.698 
3.416 
1.681 
1.876 

Sunset 48640 

97280 

DC Luminance 
AC Luminance 
DC Chrominance 
AC Chrominance 

1 
4.71 

1 
2.55 

3.417 
3.405 
2.043 
2.623 

2.210 
3.037 
1.772 
2.520 

Airplane 48640 

97280 

DC Luminance 
AC Luminance 
DC Chrominance 
AC Chrominance 

1 
5.29 

1 
2.96 

3.278 
3.337 
2.084 
2.646 

2.412 
3.066 
1.973 
2.632 

Grand Canyon 48640 

97280 

DC Luminance 
AC Luminance 
DC Chrominance 
AC Chrominance 

1 
6.88 

1 
3.42 

3.119 
3.256 
2.051 
2.703 

2.405 
3.047 
2.048 
2.733 
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The composite data serve as an indication of the average performance of 
busy and bland images compressed with busy and bland Huffman codes.  The 
most striking difference was in the DC luminance:  the degradation suffered from 
encoding the busy composite with the bland Huffman code or vice versa was in 
the order of 30 percent.  The other symbol sets gave considerably less 
degradation, in the neighborhood of 5 to 10 percent. 

The individual image data produced some surprises.   Among the busy 
images, the Train image DC and AC chrominance did slightly better with the bland 
than with the busy Huffman codes.  The AC chrominance for the Fish image 
scored a dead heat with the two Huffman codes.  The DC chrominance results in 
the Boats image differed by 0.001 bit, which is not statistically significant because 
of the random sampling uncertainty.   In the bland set, the AC chrominance of the 
Grand Canyon image produced 0.01 fewer bits per symbol with the busy Huffman 
code than with the bland.  These small "reversals" in the chrominance data may 
have occurred because the luminance data probably contribute more than the 
chrominance to a visual judgement of whether an image is busy or bland. 

2.6     Designing a Universal Huffman Code Set 

Building a universal default Huffman code set (one code for each image 
component) to cover all image classes and processing parameters is 
straightforward in principle when one employs a probability tree to obtain the total 
probability of each symbol in a symbol set.2  The method is illustrated by an 
example. 

Let all images be classified into two or more mutually exclusive classes (no 
image can belong to more than one class).  The current example assumes two 
classes, d and c2, for example, busy and not busy.   Assume that the processing 
parameters are characterized by three compression scale factors and two sub- 
sampling rates.   Let f1, f2 and f3, for example 8, 25 and 71, be the compression 
scale factors; let  r1 and r2,  e.g., 1:1:1 and 4:2:2, be the sub-sampling rates. 

Each combination of class, scale factor and sub-sampling rate may produce 
significantly different statistics for the encoded symbols.   Consequently, a 
separate default Huffman code set for each combination would be expected to do 
better when used to encode images characterized by that combination than one 
"universal" code set.   However, if a single default code set is required, the 
procedure described below leads to the best compromise across all image 
characteristics and processing parameters. 
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2.6.1 Required Data 

The required data are: 

• Conditional probability estimates 
• Composite histograms 

The present example assumes that the image sub-sampling rate is 
conditioned on the compression scale factor, which, in turn, is conditioned on 
image class.  This is a purely arbitrary assumption for illustrative purposes only.   If 
other dependencies become evident, then the probability tree must be restructured 
accordingly. 

For this example, the required probability estimates for each image 
component are: 

d and c2 (unconditional), 
f1, f2 and f3 given c1, and f1, f2 and f3 given c2, 
r1 and r2 given d and f1, r1 and r2 given d and f2, 

r1 and r2 given c2 and f3. 

In all, there are 20 probabilities to be estimated: 2 for the classes, 6 for the 
compression scale factors (3 for each class) and 12 for the sub-sampling rates (2 
for each compression scale factor and each class).   For simplicity, one might 
assume that the various parameters are statistically independent, in which case 
there are only 3 scale factor and 2 sub-sampling rate probabilities.  The example 
given here is not restricted to this assumption. 

A composite histogram for each image component is compiled from several 
images for each of the 12 combinations of class, scale factor and sub-sampling 
rate.   From each such histogram an estimated symbol probability function is 
computed. 

2.6.2 The Probability Tree 

Figure 2.1 shows the probability tree. At the bottom of the tree there is a 
"leaf" for every symbol in the set for each of the 12 combinations; for clarity, the 
figure shows a leaf representing just one symbol for each combination. 
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Class 

Compression 
Scale 
Factor 

Sampling 
Parameters 

Symbol 

0.1      0.2    0.05 0.02     0.03 
Probability of symbol s'for each combination of class, compression scale factor and sampling rate 

Figure 2.1 Probability Tree for Image Classes and Processing Parameters 

The general rules for any probability tree are: 

The probability associated with any tree branch is the probability of the 
event represented by that branch, given the set of events associated with 
the node from which the branch leads. 

The sum of the probabilities associated with all branches leading away from 

any one node is always 1. 

The probability of passing through the root (top) node is 1. 

The probability of passing through any other node is the product of the 
usually conditional probabilities associated with all the branches in the path 
from the root to the node. (The probabilities associated with branches 
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leading from the root node are unconditional, since the probability of 
passing through the root node is 1.) 

• Events represented by a tree node may be conditioned on events 
represented by higher-level nodes in the tree (toward the root node), but not 

by lower-level nodes. 

To compute the total probability of symbol s, one forms a sum of products. 
Each product is the probability of the symbol given one of the (in this example) 12 
combinations of class, scale factor and sub-sampling rate, times the probabilities 
associated with the path leading from that combination back to the tree root. 

In the example shown in the figure, the various probabilities are chosen 
arbitrarily for illustrative purposes only.   With some terms missing, the method of 
computing the total probability for one symbol is shown: 

tp(s)    = (0.1 x 0.2 x 0.4 x 0.7) 
+ (0.2 x 0.8 x 0.4 x 0.7) 
+ (0.05 x 0.6x0.5 x0.7) 
+ 7 terms 
+ (0.02 x 0.6 x 0.5 x 0.3) 
+ (0.03 x 0.4 x 0.5 x 0.3). 

With accurate symbol probability estimates for the 12 combinations of 
image class and processing parameters (from the 12 composite histograms), and 
good conditional probability estimates (f1 given d, r2 given f2 given c2, etc.), 
one can compute the total probabilities of all the symbols, and from this probability 
function, derive an optimal Huffman code that is universal over all image class and 

processing combinations. 

2.6.3 Estimating Tree Branch Probabilities 

When estimating the probabilities for the probability tree branches, one must 
remember that one is in effect counting symbols, not images.   For example, 
suppose that the two image classes, d and c2, represent busy and not-busy 
images.  The probability of d is not defined as the probability that an image is 
busy, but rather as the proportion of symbols that are generated by busy images. 
Busy images tend to generate more AC symbols than do bland images, because 
the former produce more non-zero AC spatial frequency coefficients. 

For the DC components, the number of symbols is independent of whether 
the image is busy or bland; therefore, d and c2 are the probabilities that the 
image is busy and bland respectively. 
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The following treatment shows how to estimate the d and c2 probabilities 
for AC luminance or chrominance in terms of the probability that an image is busy, 
while allowing for the difference in symbol production by busy and bland images. 

Assume that the following quantities are known, for AC luminance or AC 
chrominance: 

p(bi) probability that an image is busy, 
p(ni) probability that an image is bland (not busy), 
n(b) average number of symbols produced by a busy image, 
n(n) average number of symbols produced by a bland image, 

where, for n(b) and n(n), the images are assumed to be of the same size.   If this 
assumption is false, then size related weighting factors must be included. 
Absolute values of n(b) and n(n) are not required; only the following ratios: 

R(b) = n(b) /[n(b) + n(n)], 
R(n) = n(n) / [n(b) + n(n)]. 

It is now shown that the symbol probabilities for d and c2 (busy and bland) 
are given by: 

p(busy symbol) = p(bi)R(b) / [(p(bi)R(b) + p(ni)R(n)], 
p(bland symbol) = p(ni)R(n) / [(p(bi)R(b) + p(ni)R(n)]. 

Assume that, in the following imaginary experiment, Kb) busy images and 
l(n) bland images are processed.   Let n(b) be the average number of symbols per 
busy image, and n(n) be the average number per bland image.   Let p(bi) and p(ni) 
be estimated by the ratios 

p(bi) = Kb) / [1(b) + l(n)] 
and 

p(ni) = Kn) /[Kb) + l(n)]. 

Then: 
Total number of busy image symbols = n(b)Kb), 
Total number of bland image symbols = n(n)l(n), 
Total number of all image symbols = n(b)Kb) + n(n)l(n). 

To estimate the probabilities of busy and bland image symbols from this 
experiment, one would compute the following ratios: 

p(busy symbol) = total busy image symbols / total symbols, 
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p(bland symbol) = total bland image symbols / total symbols, 

from which 

p(busy symbol) = n(b)Kb) / [n(b)l(b) + n(n)l(n)], 
p(bland symbol) = n(n)l(n) / [n(b)l(b) + n(n)l(n)]. 

Dividing the numerators and denominators of both expressions by the product 

[(n(b) + n(n)][l(b) + l(n}] 

gives 

p(busy symbol) = p(bi)R(b) / [(p(bi)R(b) + p(ni)R(n)], 
p(bland symbol) = p(ni)R(n) / [(p(bi)R(b) + p(ni)R(n)]. 

Estimating the probability that a symbol comes from an image compressed 
by a given scale factor requires similar treatment, because low scale factors 
produce more AC symbols than do high scale factors.   Similarly, different sub- 
sampling rates produce different numbers of symbols. 

2.7     Default Huffman Coding Conclusions 

An optimal universal default Huffman code for any given symbol set is that 
which comes from the total probability function of the symbols.   Unlike many 
random processes, like games of chance, drawing names from a hat, or 
radioactive decay, the probability function of a JPEG symbol set does not lend 
itself to theoretical derivation.  There is no a priori knowledge of the proportions in 
which various kinds of images and image processing parameters will occur. 
Estimating symbol probabilities even for one image by analytical means, without 
actually counting symbols, is probably not feasible.   Consequently, empirical, 
rather than analytical, means are required to estimate the total probability function. 

A brute force method of estimating this probability function would be to 
collect histograms for all the images processed by all sites over a long period of 
time and compile a composite histogram.   Such an estimate would ensure a mix of 
image characteristics and processing parameters that would be representative of 
the "universe."  Unfortunately, such a scheme is economically impractical, because 
every facsimile machine would have to be equipped with the extra hardware and 
software required to collect the histograms.   Selected sites could be so equipped; 
however, this might introduce site-dependent statistics.   There would have to be 
enough sites to average out this effect.   Each such site would have to save its 
histograms and send them to a processing center for compilation after the test 
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period expires. 

The probability tree approach offers the following advantages over the brute 

force method: 

• A few selected test sites would gather the composite histograms for 
the various combinations of image characteristics and processing 
parameters.  The random sampling theory and experiments reported 
above show that only a few images would be required for each 

combination. 

• If the image classes are readily observable by visual inspection (for 
example busy/bland), a large number of sites could, for each of 
hundreds, possibly thousands, of images processed, log the image 
classes and processing parameters, and send the logs to a processing 
center.   Such logs could be entered separately from the facsimile 
machines, for example, into text files on small computers. The 
processing center could then design the probability tree. 

Even the probability tree approach is not simple, because it may be difficult 
to estimate all the conditional probabilities.   Various simplifying assumptions may 
be required; such assumptions would, unless realistic, compromise the universality 

of the default codes. 

In the 1994 project, all three tested code sets performed, for a given image, 
mostly within a few percent of each other, and always within approximately ten 
percent of one another.   If such variations are acceptable,, then an adequate 
default code set can be derived by any facility by compiling composite histograms 
from tens to hundreds of images, representing a thorough mix of image 
characteristics and processing parameters.  To combat the "not invented here" 
syndrome, a compromise code set could be derived by combining the composite 
histograms of all contributors, all sharing credit for the resulting Huffman codes. 

If further effort toward better performance is to be undertaken, then the 
probability tree approach is recommended.   Several contributors should 
independently develop Huffman codes, and all should be tested with each of many 
images.   If, over the various test images, the performances of all codes with any 
given image are nearly the same (for example to within a few tenths of a percent), 
then these codes closely approach the optimum, and, as suggested above, a joint 
code can be developed, with the contributors jointly claiming credit. 

To avoid bias toward any contributor, the images used to test the codes 
should be chosen at random from a set that excludes all images from which the 
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candidate codes are derived. 
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APPENDIX A 

SOFTWARE TOOLS 



This appendix summarizes the various computer programs employed during 

this study. 

JPEG Software Modifications 

In 1994 the JPEG compression and decompression software was modified 
for the following purposes: (1) process or generate the Delta Information Systems 
CIELAB image file format as discussed in Section 3.1.1 of the 1994 final report; 
(2) save into a text file a histogram of symbol occurrences used to generate each 
Huffman code table; (3) use such a histogram text file to generate Huffman tables, 
and (4) to save Huffman tables to a text file. 

CHistv2.c 

This C program, written in 1994, reads a list of file names of histogram sets 
(one histogram for each Huffman code table) and builds a composite histogram set 
by, for each symbol in each symbol set, summing the number of occurrences in all 
the files named in the list.   After the summing is completed, the program checks 
each possible symbol, and if it has a count of 0, it sets it to 1.  This ensures that, 
when the composite histogram set produces Huffman codes, a code word is 
generated for every possible symbol. 

SampHist.c 

This program, developed in 1995, is described in the body of this report. 
The user specifies a histogram file and a number representing the sampling 
percentage, for example 10 for 10 percent.  The program determines, for each 
histogram, the number of samples required to be the specified percentage of the 
total symbol count in that histogram. 

Because the sampling process is with replacement (a "marble" is "thrown 
back into the box" after being "drawn"), specifying 100 percent does not 
guarantee that the output histogram will be identical to the input.  That is why this 
report refers to the "whole" or "unsampled" histogram, or similar words, and never 

"100 percent sampling." 

AvHuflen.c 

Written in 1994, this C program measures the performance of a Huffman 
code.  The total bit count produced by the JPEG image compression and 
decompression program includes, among other things, SSSS bits per non-zero 
quantized coefficient, where SSSS is the "size" of the coefficient.  Moreover, the 
bit count combines the bits generated by all image components.   AvHuflen.c, on 
the other hand, counts the bits produced just by the Huffman coding process and 

A- 1 



reports the results separately for each image component.  The only drawback of 
employing AvHuflen.c is the lumping of the A and B DC and AC color components 
of an actual image into DC and AC "chrominance" as explained earlier. 

The program reads a Huffman code file produced by the modified JPEG 
program and constructs, for each symbol set, a one-dimensional array showing the 
code word length for each symbol (0 for impossible symbols).  The program then 
reads a text file containing a list of image histogram file names.   For each such 
histogram file, and for each symbol set, AvHuflen.c  sets the total number of bits 
equal to the sum of the products, over all symbols, of the number of occurrences 
of each symbol times the code word length for that symbol.  The program reports, 
for each component of each image, the total number of encoded bits, the total 
number of encoded symbols, and the average number of bits per symbol. 
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APPENDIX B 

ESTIMATING SAMPLE SIZE 



1 Introduction 

The following theoretical analysis gives an estimate of the required number 
of symbols, randomly sampled with replacement from a large pool, to adequately 
represent the pool.   "Adequately represent" means to produce a Huffman code that 
performs nearly as well as a Huffman code derived from the entire pool when both 
codes encode symbols whose statistics are identical to those of the pool. 

The purpose of this analysis is to ensure that the sample size is large 
enough to make random errors due to sample size small compared to differences 
arising from different image characteristics or processing parameters.  Sampling 
with replacement ensures that the statistics of the pool being sampled are 
independent of samples already selected. 

2 The Estimation Method 

To simplify the analysis, a coding model based on the information content of 
each symbol is assumed instead of Huffman coding.  The information content of 

symbol s is: 

l(s) = - log2 p(s), 

where p(s) is the probability of the symbol.  The coding model has code "words" 
l(s) bits long.  This is clearly not realizable in practice, at least in systems that 
employ a specific binary code for each symbol, because l(s) is not necessarily an 

integer." 

With information coding, the average number of bits per symbol is given by: 

H = Sum [-p(s) log2 p(s)], 

which is the entropy of the symbol set, and is the theoretical minimum average bit 
rate when the symbols are coded independently.   It is well known that the optimal 
Huffman code always produces an average number of bits per symbol that is at 

most 1 greater than H. 

Now, let the code word lengths l(s) be derived from an estimated probability 

Arithmetic coding, which in effect encodes the entire message as a 
long binary fraction, can very closely approach the theoretical 
minimum average number of bits per symbol. 
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function for the symbols.   Let the estimated probability for a given symbol be 

given by 

q(s) = p(s) + dp(s), 

where dp(s) is the estimation error.  Then, the average number of bits per symbol 
over the very long term is given by: 

B = Sum {-p(s) log2 [p(s) + dp(s)]}. 

We now approximate B under the assumption that |dp(s)| < p(s).   First, it is 

noted that 

log2 x = In x / In 2 = K In x, 

where In x is the natural logarithm (base e) of x, and K = 1.44269... . 

The Taylor's series expansion of In (p + dp) about In p is: 

In (p + dp ) = In p + dp / p - dp2 / 2p2 + dp3 / 3p3 - dp4 / 4p4 +    ... 

valid for |dp|  < p.   Substituting into the equation for B yields: 

B = K times { 
Sum [-p(s) In p(s)] 
- Sum [dp(s)] 
+ Sum [dp(s)2 / 2p(s)] 
- Sum [ dp(s)3 / 3p(s)2] 
+   ...}. 

The first sum in the braces, multiplied by K (ratio of log2 x to In x), is H, the 
entropy.  The second sum vanishes, because the sum of the probabilities in both 
the actual and estimated probability functions is 1; therefore, the sum of the 
estimation errors is 0. 

The contribution of each symbol to B - H, the excess average bits per 
symbol over the entropy, is therefore given by b(s): 

b(s)     =        K [dp(s)2 /  2p(s) - dp(s)3 / 3p(s)2 + dp(s)4 / 4p(s)3 -   . . . ] 
K [dp(s)2 / 2p(s)] [1 - (2/3)x + (2/4)x2 - (2/5) x3 + . . .] 

where x is defined as dp(s)/p(s), and Sum [b(s)] = B - H. 
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Consider the infinite series inside the right set of brackets: 

1 - (2/3)x + (2/4)x2 - (2/5) x3 + . . .    . 

For x > 0 (but less than 1, of course, for the Taylor's series to converge), the 
terms alternate in sign and decrease in magnitude as the power of x increases. 
The series sum is therefore bounded by 

1 - (2/3)x < sum < 1 - (2/3)x + (2/4)x2. 

For x < 0, all the terms are positive.  Because the coefficients decrease with 
increasing powers of x, the sum is less than the geometric series in |x|: 

1  +  |x|  +  |x|2 +  |x|3 +   ...   = 1 / (1-|x|) for |x|  < 1. 

Therefore, for x < 0 (and |x|  < 1), the infinite series is bounded by 

1  < sum < 1 / (1-|x|). 

For |dp(s) | / p(s)   less than 0.1, the infinite series sum is, to good approximation, 
1 to within an error of approximately |dp(s)| / p(s).  With |dp(s)| / p(s) = Vi, the 
sum is bounded below by 2/3 and above by 2.  Therefore, to within a roughly 2 to 
1 range, the contribution of each symbol to the excess number of bits per symbol 

is given by: 

b(s) = (approx.) K dp(s)2 / 2p(s). 

It is now shown that the ratio of the expected value of dp(s)2 to p(s) is 
almost independent of s.  The number of times, n(s), symbol s occurs in a sample 
(with replacement) of size N has a binomial probability function, i.e., the 
probability of k successes in N trials, given the probability, p, of a success in one 
trial.   In the current context, a trial consists of selecting and replacing any symbol 
at random, a success consists of finding that the selected symbol is symbol s, the 
number of successes is n(s), and the number of trials is the sample size.  The 
mean and variance formulas given below are properties of the binomial function, 
but are couched in terms of the symbol statistics. 

The expected value (mean) of n(s) in a sample of size N is: 

E[n(s)] = p(s)N, 

and the variance, which is the expected value of [n(s) - p(s)N]2 is 
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E{[n(s) - p(s)N]2} = p(s)[1 - p(s)]N. 

Factoring out N gives 

n(s) - p(s)N = N[ n(s) / N - p(s)] = Ndp(s). 

This is because n(s) / N is the estimated probability of symbol s based on counting 
the number of times symbol s occurs in a total of N symbols.  Consequently, 

E{[n(s) - p(s)N]2} = E[N2dp(s)2] = p(s)[1 - p(s)]N, 

from which 

E[dp(s)2] = p(s)[1 - p(s)] / N 

and 

E[dp(s)2] / p(s) = [1 - p(s)] / N. 

For p(s) < < 1,1- p(s) is approximately 1; hence the expected contribution of 
symbol s to the excess bit rate is approximately 0.721 / N, and for p(s) nearer to 
1, the contribution is less than 0.721 / N, where 0.721... is K / 2.  Therefore, for 
dp(s) fairly small compared to p(s), the total number of excess bits is given, 

roughly, by: 

B - H < 0.721 times Sum (1 / N); 

whence 

B- H < 0.721 S / N 

where S is the number of symbols in the set, and N is the number of samples. 
For S = 256 (more than the maximum for JPEG AC coefficients), this analysis 
shows that only about two thousand samples are required to create a code with 
which B - H < 0.1; i.e., the estimated probability function would yield a code that 
is less than 0.1 bit per symbol worse than the entropy.  This estimate is optimistic, 

however, as is shown below. 

3 Discussion 

The derivation presented above assumes that: (1) the Taylor's series 
expansion for In (p + dp) converges, which requires that |dp|  < p, and (2) that 

| dp | is fairly small compared to p, so that the approximation for the excess bits is 
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reasonably accurate.   (If condition (2) is satisfied, then condition (1) is also.) 

The expected number of occurrences of symbol s in N samples is Np(s). 
However, when p is small, and N is not sufficiently large, symbol s may not occur 
at all in the sample.  The estimated probability of s would then be 0, dp would be 
minus p, the series would not converge for that symbol, and |dp| / p would be 1, 
violating condition (2). 

However, as p(s) approaches 0, p(s) log p(s) (any logarithm base) 
approaches 0 even though the logarithm approaches minus infinity.   For example, 
if p(s) is 2"14,  the code word length is 14 bits, but the symbol occurs so rarely 
that it contributes only 14 x  2"14, or approximately 0.0009 bit, to the total bit 
rate. Therefore, symbols having very small probabilities may be ignored in 
estimating the sample size. 

The Poisson probability function is an approximation of the binomial function 
when p < < 1.   It expresses the probability of n(s) occurrences of symbol s in N 
samples in terms of m = p(s)N, the expected number of occurrences.   (In printed 
literature, the lower-case Greek letter lambda is often used instead of m.)   For p 
small, N large, and m intermediate, the Poisson function is a good approximation 
of the binomial function. 

To assure, with high probability, that a symbol will occur at least once, and 
preferably several times in the sample, the value of m should be 10 or greater. 
Table B.1 was derived from a spreadsheet for the Poisson function.   The table 
shows that m = pN should be between 10 and 100.  To make m = 10 (100) for a 
probability value of 2"13 would require a sample size of 81,920 (819,200). 

Applying the equation for excess bit rate to a sample size of 81,920, and 
assuming that symbols having probabilities less than 2 13 contribute negligibly to 
the excess bit rate, gives an estimated excess bit rate of about 0.002 bit per 
symbol.  Thus, a code derived from a sample in the order of 105 to 106 symbols 
should very closely approximate that derived from the entire pool. 

Huffman coding is more tolerant of small probability estimation errors than 
information coding, because Huffman code word lengths are always integers. 
Therefore, very small estimation errors may not affect the Huffman code at all. 
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Table B.1 

Probability that dp is within 10 (20) percent of p 
as a function of m = pN 

m Pr. (10 percent) Pr. (20 percen 

10 0.239 0.459 
20 0.339 0.622 

40 0.469 0.792 

60 0.559 0.878 

80 0.627 0.926 

100 0.682 0.955 
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APPENDIX C 

BUSY AND BLAND IMAGES FOR 
GENERATION OF DEFAULT HUFFMAN CODES 
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