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ATR Design via Adaptive Configuration and Control”

Wing Au, Barry Roberts
Honeywell Technology Center
3660 Technology Drive, Minneapolis, MN

Abstract

This paper presents an ATR design para-
digm that self configures and adapts to the
diverse scenarios encountered during a mis-
sion. The technical approach is described,
and the results of a self-evaluation are sum-
marized.

Today’s ATR is constructed via inefficient
and sub-optimal system configuration and
training, whose process is very labor inten-
sive, subjective and inaccurate. The resulting
ATR is only capable of a limited amount of
adaptation to changes in the environment.
Moreover, the operation of such ATR sys-
tems require a user with expert algorithmic
knowledge.

Addressing the above-mentioned problems,
the Honeywell effort is producing a’ self-
adaptive ATR system. The system employs a
Genetic Algorithm to autonomously and
optimally perform configuration and train-
ing; the system also includes a specific
knowledge capture mechanism, the Context
Capture tool, which ties the context of the
mission with the optimal configuration.
Lastly, the system employs Selective Per-
ception software to dynamically configure
and control the ATR system based on the
changing context during an ATR mission.

*_ This effort is supported by the Army Research

1 Introduction

The military community has not accepted Auto-
matic Target Recognition (ATR) systems as being
viable and fieldable due to two key deficiencies: (1)
the lack of reliability or robustness of such systems
and (2) limitations in the usability (ease of use) of
the systems.

Today’s ATR is not highly robust because it does
not work under diverse scenarios. During a
targeting mission, the scenarios and conditions of
the battlefield are constantly changing. For
example, the terrain could be flat or rolling; the
ground cover could be sparse to dense; the time of
day could be morning, noon, or night; the weather
and environmental conditions could be anywhere
between clear to cloudy, dry to humid, cold to hot,
etc. A robust ATR system must recognize targets
of unknown operational history (i.e., clean to dirty,
hot to cold) under all these conditions. There have
been numerous attempts to develop robust ATR
systems but all such attempts have met with limited
success. In the authors’ opinion, the reason for the
limited success lies with the limited amount of
adaptability that the extant systems have with
regard to the scenario and conditions of the
mission.

Current ATR algorithms are only capable of
limited adaptation to changes in context during a
mission. In other words, each ATR algorithm, as
conceptually illustrated in Figure 1, works well
under a specific set of scenarios, but fails miserably
in others. If an ATR system could execute the
proper ATR algorithm for each given scenario, then

Office under contract DAAH04-93-C-0050 with funding
provided by Defense Advanced Research Projects
Agency.
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a truly robust ATR system could be achieved. In

The range of mission scenarios of interest to
ATR users

Range of applicability of ATR N

Figure 1: A static ATR algorithm only performs well
under a limited range of imaging scenarios.

addition, today’s typical ATR algorithm requires
the correct setting of multiple parameters. Each
setting corresponds to an optimal operating point
for a specific image context; poor setting of these
parameters causes the failure of the ATR
algorithm. Thus, to properly change these
parameter values to achieve good performance
requires expert knowledge in algorithm operation
and image understanding technology, which the
typical ATR user does not have. Moreover, ATR
users often have many other critical activities to
which they must devote their attention rather than
the tuning of the parameters of the ATR system.
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This poor usability prevents the acceptance of ATR
system by the potential user.

The poor reliability and usability are inherent in
the traditional ATR design philosophy. Today, an
ATR is constructed using inefficient and sub-
optimal system configuration and training. The
process of configuring an ATR is currently very
labor intensive, subjective and inaccurate, as is the
process of training an ATR for a particular
mission. Neither process ensures that an optimum
ATR system has been produced. This problem is
attributed to the large search space (the numerous
algorithms and the uncountable parameter values)
to be examined to find the optimum ATR system
solution. Also, the amount of adaptability in ATR
systems is currently limited to the modification of
the values of key algorithm parameters within one
static algorithm suite.

To improve the reliability and usability of an ATR
system, this paper presents a new paradigm in ATR
design. What is needed to solve the ATR problem
is not more algorithm development, but rather the
intelligent selection and application of algorithms
(and their parameter values) to best meet the
scenario at hand.

Figure 2 illustrates the authors’ view of an ATR
system as a collection of many vision modules
working in concert throughout the phases of ATR
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Figure 2: Block diagram of the operation of Configuration and Training as achieved with a Learn-
ing Classifier system and its Genetic Algorithm.
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operation that are required to detect, classify, and
identify targets. Within each module, multiple
algorithms can be employed to implement the
module; each algorithm has its own set of
parameters that can be applied to optimize its own
performance based on the context/characteristics of
the input data (ancillary and sensor). Selection of
the algorithms and their parameter values (called
configuration and training, respectively) under the
context of diverse scenarios, becomes a
combinatoric problem. Under a particular
battlefield scenario, one configuration will likely
work better than all of the rest, but no one
configuration will be the best for all scenarios.

To improve the adaptability of an ATR system and
thereby improve accuracy, robustness, and user
acceptance, ATR needs an automated configuration
and training tool that can be employed for (and/or
applied to) the various mission scenarios. The
knowledge gained from using such a tool should
then be stored (using a second automated tool) in a
knowledge representation that is indexed by the
“context” of the mission scenario. Hence, with a
third tool for probing the knowledge representation
using the context of a current mission, an ATR

configuration tailored to the mission (as
determined by the configuration and training tool)
can be selected and applied to the current sensor
data. Hence, with this triad of tools, a self-adaptive
context/mission-dependent ATR system is formed
that holds the promise of robust performance that is
acceptable to the user community.

In the remainder of this paper, the self-adaptive
ATR system concept and its three fundamental
components are described. The progress to date
and the future directions are also presented.

2 System Overview

Our work, which develops these tools (Figure 3)
for self-adaptive, configuration and control of ATR
algorithms and their parameter values, provides
optimal ATR performance over diverse scenarios
while saving significant time in performing config-
uration and training.

The first tool in the triad is the Configuration and
Training tool implemented by a Genetic Algorithm
(GA). GA produces/learns new configurations of
ATR algorithms and trains them to produce
optimal levels of target recognition performance
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Figure 3: High-level diagram of the Self-Adaptive ATR system being developed.




under given scenarios. The GA operates on a
library of “building blocks”. The building blocks
used in the Genetic search are executable,
component algorithms of an ATR algorithm suite
and simple descriptions of each algorithm
identifying its syntax and functional category (e.g.,
preprocessing, segmentation, clutter rejection,
etc.). Note that source code is not needed, so
proprietary algorithmic information is preserved.

The second tool, which performs the knowledge
(i.e., algorithm and context) capture, is the Context
Capture (CC) tool. For self-adaptation, the ATR
system needs to learn what optimal configuration
to execute under a specific condition. Therefore,
CC, first down-selects the key context types from a
pool of available types. The context consists of the
conditions of the scenarios (i.e., ancillary data and
sensor data metrics). The down-select is based on
the linear discriminant analysis or Karhunen-Loeve
(K-L) transform. Next, CC associates the optimal
configurations with the context extracted from the
input images and ground-truthed information. The
output of the knowledge capture process is a
database (Bayes Net) that maps the key context and
specific tasks to ATR algorithm suites and their
parameters.

Note that these two tools perform the functions that
correspond to the traditional training process.
Therefore they operate in an off-line, pre-mission
environment. Still our design allows distributed
processing on a network of computers, thereby
speeding up the training process.

The third tool, known as Selective Perception (SP),
is responsible for configuration and control of the
ATR engine in field operation using “context”
acquired during the mission to decide which
algorithm suite (plus parameter values) is best for
the current situation. Selective perception chooses
tasks using a priori doctrinal and mission
information, information acquired as the mission
proceeds, and knowledge of configured and trained
ATR algorithms under various operational
scenarios. The choice is based on Bayesian
probabilistic cost and benefit analysis. The analysis
produces an action (what visual action to perform
next, where in the scene to apply it, and how to
implement it) to be executed by the processing
engine.

Honeywell’s adaptive system has been designed
for ease of use from the beginning. For example, it
is very easy to describe to the GA system the
algorithm components on which it is to operate.
This ease of use facilitates the transfer of the
system and the growth of the system via additions
to the Algorithm Archives (see Figure 3). Transfer
of the GA system involves the transfer of C++

-source code and its associated documentation.

Operation within the Khoros environment by both
components of the self-adaptive ATR system, helps
to simplify the technology transfer process.

Simple interfaces allow easy addition of visual
capabilities (i.e., image understanding and ATR
algorithms), such as those developed by others in
the RSTA community, into the population for
Genetic search and/or into the Selective Perception
module. The same interfaces facilitate the transfer
and integration of the system at other sites.

Note that our approach works for any ATR system
regardless of its sensor modality; thus our approach
is applicable to SAR-, FLIR-, and LADAR-based
ATRs. The context of these different ATR types
would be different due to the different sensing
phenomenology. However, the Context Capture is
able to acquire various types of context.

3 Genetic Algorithm System Overview

The process of configuring an ATR is currently
very labor intensive, subjective and inaccurate, as
is the process of training an ATR for a particular
mission. Neither process, performed manually,
will ensure that an optimum ATR system has been
produced. This problem is attributed to the large
“solution” space that must be examined to find the
optimum ATR system solution. The large solution
space is a result of three key dimensions of ATR
algorithm suite variation:
1. many vision modules working in concert
throughout the phases of ATR operation,
2. multiple algorithms that can be used to
fulfill the requirements of each module,
and
3. the range of values that can be taken by
the parameters associated with each algo-
rithm. ’
It is the combinatorics of this search problem
that make the human-generated solution




impractical in producing a robust ATR under
diverse mission conditions.

Honeywell’s RSTA effort has produced a software
system for autonomous configuration and training
of ATR algorithm suites. The system employs a
Genetic Algorithm (GA) [Booker et al, 89;
Holland, 75], which automates the search process
through the large space of ATR solutions. The GA
is needed to intelligently and autonomously search
the space of ATR modules, algorithms, and
parameter values to find the optimum (i.e., best
performing) ATR for the available training
imagery.

Inherently, the GA system is exceptionally well

suited to this search problem for multiple reasons:

* it can handle the combinatoric of the prob-
lem,

* its processing can be performed on a net-
work of distributed processors,

* it does not require algorithm-specific
knowledge or source code,

-« it does not require domain-specific knowl-
edge or any type of performance measure
surfaces,

« it is not deceived by local (i.e., non-global)
maxima in the ATR performance measure.

The GA system efficiently searches the enor-
mous hyperspace of module, algorithm, and
parameter value combinations using a collec-
tion of points within the search space known as
a population; each solution point within the
population is called an individual. The opera-
tion of a GA system is characterized by three
core concepts:

* a “Darwinian” notion of fitness or strength
which determines an individual’s likeli-
hood of affecting future generations
through reproduction,

» a reproduction operation which produces
new individuals by combining the best
members of the existing population, and

* genetic operators which create new indi-
viduals based on the structure of their par-
ents.

The operation of the GA system is iterative; during
each iteration, called a generation, each individual

is computed/executed and evaluated. The process
of evaluation involves the computation of an
overall quality or utility, called fitness, for each
individual. On the basis of the fitness of the
individuals in the population, reproduction takes
place. The entire evolutionary cycle (ie.,
execution,  evaluation,  reproduction,  and
population maintenance) is illustrated in Figure 3.

Seed Population
Population
R=0) ( 1\
Population Reprodu
Maintenance /p; ce
Execute Evaluate

Figure 4: High-level, conceptual diagram of the itera-
tive operation of the Genetic Algorithm

The inherent power of a GA system lies in its
ability to exploit, in a highly efficient manner,
information about a large number of individuals.
In reproduction, individuals with high fitness are
allowed to combine with other high fitness
individuals through the processes of cross-over and
mutation. The “offspring” from this activity,
replace the low fitness individuals within the
population and are subsequently evaluated in the
next iteration. The process of cross-over
interchanges components of the “parents” to create
two offspring which have components from each
parent. By allocating more reproductive
occurrences to above average individuals, the net
effect is an upward shift in the average fitness of
the population. In this manner, the GA system is
focussing on productive regions of the search space
and thereby making intelligent use of processing
resources. The mutation process randomly
modifies the components within individuals. This
reintroduces diversity into the population (by
producing outliers) to keep it from stagnating
within one area of the solution space. By keeping
the population distributed throughout the solution
space, the genetic search effectively eliminates the
problem of converging to local (i.e., non-global)
maxima. A detailed block diagram of the
operation of the GA system is provided in Figure 5.
The GA system requires




" e'’knowledge of the modules of the ATR and
their interconnection,

* knowledge of all the algorithms available
for use within each module, and

* knowledge of the parameters (and their
respective range of values) used by each
algorithm.

It is a simple matter to define these items of
information for the GA system. This is
accomplished by producing a text file contain-
ing the Interface Specification whose simple
format is described in [ITUW94, BR]. It is
important to note that the GA system does not
require source code for the algorithms or an
understanding of the operation of the algo-
rithms (hence proprietary information need not
be disclosed by the provider of algorithms).
Also, the GA system can be adapted to operate

on any ATR architecture (i.e., any combina-

tion, connection, or order of modules).

Program execution of an individual is carried out
through the use of an Qutput Interface which, for
now, creates a UNIX™ shell file that can
subsequently be executed by the system. Recall
that an “individual” is a complete ATR algorithm
suite with a particular set of parameter values.
Within the GA system, the command line that can
execute each algorithm within an individual is
constructed from the internal description of the

algorithms in the algorithm archive (see [ITUW94,
BR]). The concatenation of the respective
command lines is used to form the shell file.

The Evaluation of each individual involves the
computation of a performance metric that
characterizes the results produced by the
individual. The operation of the GA system is not
dependent on the choice of performance metric(s).
The computation of any performance metric is
performed by an executable function, which is
called by the GA system; the system will operate
with any desired metric(s). Undoubtedly, the
metric or metrics (e.g., the probability of detection
and false alarm rate) will rely upon the ground-
truth associated with the training imagery.

The execution of ATR shell files and the associated
evaluation command are distributed to a network of
UNIX workstations. Thus, the speed of
configuration and training of an ATR suite is
increased greatly.

The product of the GA system (after operating on
one or more training images which characterize a
particular mission scenario) is a trained and
configured ATR algorithm suite which performs
best in that scenario. Note that it is only necessary
to train on the scenarios that are expected to be
encountered during a mission.

Ground Truth

Tiginirgg Imagery
i.e., imagery Image > ;
characteristic Analysis Sfflescégé" Global
of mission) #1 Population Population

Ancillary Data
(time of day,
time of year,
background,
target type,
weather, etc.)

Y
Target
Recognition
Evaluation

> Genetic | Evaluation 3

Population [ Algorithm
~—_ _ —Evolved .
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Output ATR
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Execution
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Figure 5: Block diagram of the operation of Configuration and Training as achieved with a Learn-
ing Classifier system and its Genetic Algorithm.
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4 Context Capture System Overview

For self-adaptation, the ATR system must learn
what optimal configuration to execute under
each class of mission conditions. The goal of
Context Capture (CC) system is to build a
knowledge database that the self-adaptive ATR
system can use to configure and control the
ATR processor(s) during in-the-field opera-
tion.

CC’s objective of providing a software mechanism
for knowledge representation (for storage of the
relationship between environment and sensor
characteristics and the best performing ATR
algorithms and parameter settings) is accomplished
by performing three key tasks:

» Identifying the key context and quantizing
the range of context into discrete bins,

* Associating the best ATR configurations
with the context of the input scenarios,

* Building the Bayes net structure.

Identifying the key context that the adaptation
is based upon is critical to the success of the
self-adaptive ATR system. Since the context is
used to cue the optimal configuration, an erro-
neous context description will mislead the
Selective Perception process causing it to
choose an incorrect algorithm configuration
and parameter values.

Initially, a context set was selected that describes
the environment and mission description. This
context set, which could be easily acquired or
measured, includes time of day, background type,
(e.g., open field, desert, mountain, rough terrain),
vegetation type, temperature, cloud coverage,
expected range to target, etc. However, we found
that the context had a broad coverage. That is,
many input images fit the same context description,
but resulted in many different, optimal, ATR
algorithm configurations. Hence, the initial
context set was not suitable for indexing the
optimal algorithm configurations.

Then a set of image metrics were chosen and added
to the context set for the ATR system. The image
pixel intensities are assumed to be random with a
distribution which is well defined by its statistical
moments, such as mean, standard deviation,

skewness, and kurtosis. The distribution of the
energy throughout the image is measured using the
Shannon entropy measure. A contrast measure
was also included as one of the image metrics. All
of the metrics are computed over the entire image.
Often images may be characterized by certain local
peculiarities due to the image formation process
and/or diversities in the captured scene context. It
is more appropriate to consider regions of the
images, preferably where targets of interest reside.
In the metric computation process, certain local
metrics are computed using multiple sizes of
windows (to account for the possible range of
target size). All computed metric values are
included in the metric set. It is also important to
include in the metric set some of the statistics on
the distribution of the metric values that are
computed for multiple windows.

Additional measures that are considered are based
on relative entropy in different regions of an
image. This cross entropy, also known as the
Kullback Leibler distance, measures the spread of
the energy with respect to neighboring regions in
the image. Other measures would be based on the
relative contrast measure rather then entropy, using
a similar concept.

This large set of context (image metrics) demands
intensive computations. It would be desirable to
reduce the number of context variables to a key set
that still fully captures the input characteristics,
and whose values yield the greatest distinction
between different input context. One approach is
to use the Karhunen Loeve (K-L) transformation.
The space into which the K-L transform maps the
data is defined by the eigen-vectors of the matrix of
second order statistical moments of the training
data. Two key characteristics of K-L transform are
that (1) the components of the transformed data are
un-correlated, and (2) the information contained in
the data is compressed/represented into a small
number of K-L axes. It is this second characteristic
that we would like to exploit for context capture.

Another technique to reduce the number of image
metrics is based on Linear Discriminate Analysis.
The computation is even simpler than finding the
coefficients of the linear discriminate. The method
can be optimized in the following way. Given K
images associated with K algorithms. Each image
represents a class of an event with a probability p,,




and a mean vector equal to the nx1 predetermined
parameter vector ff,. We must compute within-
parameter discrepancy to be compared to a set of
correlation thresholds. Define §,, to be the
between-images scatter matrix (S, represents the
correlation matrix of these predefined parameters).

K
Sb = z pk(ﬂk_ﬂo)(nk_ﬂﬂ)r

k=1

where

K
ﬂn = 2 pknk

k=1

All probabilities are assumed to be equal to one,
since we are interested in finding the correlation
between the parameters rather than the images.
The simplicity of this approach is that there is no
longer the need to compute the Karhunen-Loeve
Transform that would cost O(n3 )

By setting a threshold on the correlation measure, a
list of m << n parameters is identified which are the
least correlated from the entire list of size n.

Once the key context set and the discrete ranges for
each member are identified, the context set of the
scenario under which the training images were
acquired will be computed and stored along with
the optimal configurations. A one-level Bayes net
is used to store the knowledge. The Bayes net is
used during in-the-field ATR system operation as a
mapping of key context values to ATR algorithm
suites and their parameter values.

5 Selective Perception System Overview

The Selective Perception (SP) system provides
decision analysis algorithms that choose the
proper ATR algorithm, the values for its
parameters, and where to apply it in the scene.
Hence SP is the inference engine for the self-
adaptive ATR system during its field operation.

The intelligent control of vision applications is a
key research issue facing the community today.
Selective and goal-directed perception is becoming
increasingly sophisticated. Rimey’s Thesis work
[Rimey, Brown, 91] demonstrates data structures
and algorithms for knowledge representation using

Bayes Nets and also structures and algorithms for
continuous decision-making to minimize the cost
of information gathering while maximizing its
benefit for the current task. Rimey’s techniques,
perhaps streamlined, will be directly applicable to
the ATR problem and can be so applied without
major modification. Early pilot studies indicate
that this idea is justifiable.

Two sorts of Bayes nets are used in the Selective
Perception module; in both cases the nets are
restricted to be trees. One type of net incorporates
knowledge about how a particular RSTA task is to
be performed; what probabilistic sub-goals or ‘sub’
random variables affect the belief in the top-level
random variable (proposition, labeling problem).
For a multi-task mission, there would be several
such “task nets,” one for each component task.
The how question is answered by conditional
probability tables that give the probability of each
ancestor label, given each label for the descendent.

The other net encodes location information about
the scene, telling where in the scene to look to find
specific objects associated with random variables
in the other net. One such “location net” could
support several separate visual tasks. As the task
proceeds, locations are usually known with more
accuracy and their location, again through
conditional probabilities in the location net, can
constrain the locations of other objects.
Constraining the location and probable identity of
objects means that quicker and more robust visual
tests can be applied. Vision is faster because a
smaller area is to be covered, and can be simpler
because the increased probability of identification
by ancillary cues is propagated through the Bayes
net and the identification problem can take place
within a substantial context rather than from a
position of complete ignorance.

Selective Perception processing is influenced by
expectations about the mission, whether from
general knowledge of physics and sensor
characteristics, from mission planning information
that predicts where the sensing agent will be and
under what circumstances, or from knowledge
about the mission that is picked up along the way.
Mission planning information could be reflected in
the perception module (e.g., daylight vision tasks
might not be loaded for a night mission), and in the
sequence in which they might be expected to arise,




and in the probabilities that govern each one (e.g.,
certain vehicles might be more or less likely on a
route, depending on other aspects of the plan like
time of day that the agent arrives at the route).

The Selective Perception software package
contains a small Bayes Net package, which is a
specialized system for Bayes Net manipulations,
probably only a few percent of the size or
functionality of currently available free-ware or
commercial BN packages. However, the idea is
that it will allow real-time operation. The
Decision-making package is unique and, coupled
with the Bayes net package, will be useful to
anyone desiring to develop or run selective
perception or goal-directed perception algorithms.
Its tech transfer involves the transfer of C and/or
C++ source code and its accompanying
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Conditional
Probabilities

Conditional
Probabilities

ATR Algorithm ATR Algorithm
Cost and Applicability Cost and Applicability

documentation which is sufficient for anyone to
begin to use it productively.

Figure 6 shows two interfaces to the Selective
Perception system. ATR algorithm suites are
produced by the Genetic search or provided from
elsewhere in the community. An estimate of their
cost (say time per pixel of image) is needed if cost-
benefit analysis is to be meaningful. The output of
an algorithm must be translated into probabilities
for a random variable representing the
interpretation of the sensor’s output. Also for each
evidence-gathering task that the module can
perform, a set of conditional probabilities P(H / E)
or P(E / H) is needed that state the likelihood of the
random variable having value H when the output of
the sensor is E, or vice versa.

Supplied by RSTA contractors
eceo and/or

Produced by Genetic algorithm

Figure 6: Selective Perception and its interface with algorithms/actions.

The dashed lines in Figure 6 represent the
separation or independence that exists between the
Selective Perception work and the GA work (or the
outside world in general). The input to Selective
Perception is not the image-level output of a
processing step, but is a probability of a detection
of an event. Current ATR algorithms often are
derived from, and have outputs reflecting,
probabilistic considerations (minimum-entropy
decision trees, for instance). As a result, the output
of the sensor processing can be interpreted as a

probabilistic statement about the world. The
Selective Perception tool expects output at the level
of a probability density function over a hypothesis.
Also, this abstraction of the physical sensor data to
the level of logical sensor data allows simple
simulation of sensor processing output: a simulated
sensor reading is simply a probability density
function over some hypothesis. Thus Selective
Perception strategies can easily be developed with
simulated sensors of more or less accuracy,
performance, discriminating power, etc.




6 Results and Evaluation

The GA, CC and SP components have been
implemented. The current version of CC is a
preliminary version that accepts all the given
context, which is a set of image metrics cur-
rently, and stores the context—configuration
pairs in a Bayes Net. These three components
are integrated into a self-adaptive ATR system.

A variety of FLIR-based ATC algorithms -are
available in-house at Honeywell. For example the
system’s algorithm archive currently uses the
MTAP algorithm suite as developed under Night
Vision Lab funding and the Mine  Detection

7a: Original Image

7c: best result of first generation

algorithm suite as developed under funding from
the Marine Corp. In addition, one ATR algorithm
suite of a RSTA contractor has been added to our
algorithm library. This has been sufficient to
demonstrate the capability of our system. Note
also, that the system has been designed to make it
easy to incorporate other algorithms into our
algorithm library (as they become available) such
that there will be an even larger library to search in
the future.

Figure 7 shows the results of the GA in
configuration and training of an ATR system on an
image. Figure 7a shows the original image.
Figures 7b, 7c, and 7d show the best results of the
initial, first and third generations of the ATR

7b: best result of initial generation

7d: best result of third generation

Figure 7: Generations of results of Genetic Algorithm in optimal ATR system configuration




éystems. Figures 8a, 8b and 8c show the the fitness values of the population increase as the
corresponding ATR systems and the fitness values.  number of generations increased. When the fitness
Note that the GA selected different algorithm  value reaches 1.0, indicating that all targets were
configurations in each generation. Note also that  detected without false alarm, the GA stops.
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8c: Third and last generation ATR configuration

Figure 8: Progressively Improved Performance in Generations of ATR Configurations by GA




At Demo C of the UGV program, the self-adaptive
ATR system was demonstrated in one of the
technology demo sessions. The GA was used to
configure and train on a set of sample images. At
Demo C, the self-adaptive ATR system was shown
to successfully detect targets in a input image (that
was collected “live” from a UGV vehicle), without
any false alarms. As a comparison, the same
image was processed by a baseline ATR suite; the
baseline suite only detected one of the two targets
that were present.

Subsequently a small scale evaluation was
conducted, based on a comparison of the self-
adaptive ATR system with two baseline ATR
algorithm suites. The algorithm archives of the
adaptive ATR system included the two baseline
algorithms and another in-house ATR algorithm
suite. The end product” of the ATR processing
during the evaluation was target detection. Three
phases (modules) of the ATR processing include
(1) preprocessing or preconditioning of the data,
(2) region of interest extraction or focus of
attention, and (3) clutter rejection. A total of 16
configurations for the ATR and uncountable
choices of parameter values are possible. Both the
adaptive ATR and the baseline suites were trained
by the GA tool. The difference was that adaptive
ATR was also configured by the GA tool.

The training samples consists of 40 images from 7
different data collections (the vertical dotted lines
in Figures 9-11 partitions these 7 sets). These data
collection included the data from UGV Demo C
(Lockheed Martin at Denver), Multi-sensor
Function Fusion (MSFF) program, Carson
database, Huli9204, Huli9306, and Yuma9202
databases. The testing consists of 90 different
images from the same 7 databases. The context of
these data varies widely, since they were collected
with different sensors (resolution, FOV, and other
characteristics), at different locations, and at
different time of the day and year.

The fitness function, which is a weighted sum of
the probability of detection and the inverse of the
false alarm rate, was computed and plotted as part
of the evaluation.

Figure 9 shows the configuration and trained
results of the self-adaptive ATR system. Figures 10
and 11 show the training results of the baseline 1
and baseline 2 ATRs respectively. In all cases,
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Figure 9: Configuration and training result of the
Self-Adaptive ATR system.
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Figure 11: Training result of the Baseline 2 ATR sys-
tem.

except one, the self-adaptive ATR yielded better or
the same fitness values as compared to that of the
two baseline ATRs. That is, the GA configured




better ATR systems for all 7 data sets, whereas the
baseline algorithms performed well only in some
data sets.

A large scale self-evaluation was also conducted.
Three data sets from Carson, the LMC Sept. 95,
and NVL-amber were used. These three data sets
covered a diverse scenarios (with various clutter
levels, ranges, and time of day). The numbers of
training and testing images and the numbers of
targets are listed in Table 1.

Table 1: Self-Evaluation Data Sets

Data Training | Testing | Testing | Total
Set Images | Images | targets | images
Carson | 15 60 101 75
LMC 92 370 599 462
NVL 122 222 346 344
Total 229 652 1046 881

A context capture experiment was conducted.
Thirty six context measures, which included range,
time of day, and thirty four image metrics, were
measured. From these thirty six measures, twenty
four and fifteen most un-correlated metrics were
selected. These three context sets were used as
indices for the adaptation in three tests. The results
indicated that the set of twenty four measures
performed the best with comparable detections but
less false alarms. We concluded that an optimal
context set exists and the correlation and testing
method to find the optimal set should work. For the
subsequent evaluation, the twenty four measures
were used.

For comparison purpose, a baseline algorithm suite
was selected. The parameter values were manually-
trained to achieve optimal performances on the
training data sets. Then the LMC Sept. 94 and
Carson test data were evaluated using these
parameter values.

Using the same training data sets, the GA and CC
tools were applied to produce three Bayes nets: one
for Carson, one for LMC Sept94 and one for NVL-
amber data. Again these Bayes net couple with the
adaptation paradigm were tested on the
corresponding test data sets.

The manually-trained test results and the ACC
ATR results for the Carson data set are listed in
Tables 2 and 3 respectively. Similarly the two
results on LMC Sept. 94 test data are listed in

Tables 4 and 5. The ACC ATR results on the NVL-
amber data is shown in Table 6.

A comparison between Tables 2 and 3 indicated
that the adaptive approach achieved similar
probability of target detection. However, the
number of false alarm is significantly less in the
adaptive approach than that of the manually trained
approach. Similar conclusion is observed in the
LMC data set by comparing Tables 4 and 5.

Table3: Test Results on Carson Data by Manually-
trained method

Groundtruth
Target Non-target
Target 60 103
Test
Non-target 41 —

Table 4: Test Results on Carson Data by Adaptive

Approach
Groundtruth
Target Non-target
Target 54 39
Test Non-target 47 -—--

Table 5: Test Results on LMC Sept. 94 Data by
Manually-trained Approach

Groundtruth
Target Non-target
Target 442 690
Test
Non-target 157 -—--
Table 6: Test Results on LMC Sept. 94 Data by
Adaptive Approach
Groundtruth
Target Non-target
Target 399 218
Test
Non-target 200 ———-
Table 7: Test Results on NVL-amber Data by
Adaptive Approach
Groundtruth
Target Non-target
T Target 192 159
t
© Non-target 154 —--

Figure 12 shows three images of diverse scenarios
and their detection results generated by the
manually trained approach and the adaptive
approach. The rectangular box is where the true
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Figure 10: Results of the Manually-trained approach and the Adaptive Approach on Three Diverse Sce-

narios (clutter level, range, and time of day).

target location are. The other blobs are the detected
objects. It is evident that the adaptive approach
produced less false alarms.

7  Future Directions

The GA system allows us to look across the trained
scenarios to identify the weak links in processing
chains (e.g., modules which require different
algorithms in each scenario) and gain insights into
performance of algorithm suite components.
Hence, the GA system has merit as a stand-alone

performance evaluation tool, independent of the
whole self-adaptive ATR system. Honeywell is
developing a Universal Performance Evaluation
Tool (UPET) based on the GA approach under a
Wright Lab funded program.

Note that an alternative to SP would involve the use
of Case-Based Reasoning as described in [Roberts,
Au, 95]. It should be noted that the authors have
yet to develop any software to implement this
alternative.




Ultimately it is the choice of “context” and the
means by which the context -to- configuration pairs
are recorded and indexed that are cornerstones of
the system. The authors are currently studying
these issues in detail and making system
modifications to improve performance.

8 Summary

A self-adaptive ATR system using context-based
configuration and control has been developed.
During the training phase, the system employs a
Genetic Algorithm to autonomously configure
algorithm suites and set the parameter values.
Then, a Context Capture tool determines the key
context for the mission scenarios, and stores the
configuration-context information into a Bayes
Net. During field operation, the adaptive system
employs a Selective Perception tool to dynamically
configure and control the ATR processor based on
the inference of the changing mission context in
the Bayes Net.

Our approach works for any ATR system
regardless of its sensor modality; thus our approach
is applicable to SAR-, FLIR-, and LADAR-based
ATRs. The context of these different ATR types
would be different due to the different sensing
phenomenology. However, the Context Capture
tool is capable of acquiring these different context.

The Genetic Algorithm, the Context Capture and
the Selective Perception modules have been
completed. These three components are integrated
into an adaptive ATR system, which was
demonstrated during the Demo C of the UGV
program. The system successfully detected the
two targets presented without any false alarms. In-
depth self-evaluation on large data sets indicated
that the adaptive ATR system produced better

training results and performed better than
manually-trained baseline algorithms during
testing.

The triad of tools being assembled under the
Honeywell effort, form an adaptive context/
mission-dependent ATR system that holds the
promise of robust ATR performance that will be
acceptable to the user community. The paradigm
used in our effort will change the way image
understanding is performed, raising IU robustness
and user acceptability to a higher plateau.

The system being developed is novel and
innovative in addressing what are major problems/
weaknesses of ATR systems. What is needed to
solve the ATR problem is not more algorithm
development per se, rather the intelligent selection
and application of algorithms to best meet the
scenario at hand. Hence, it is our feeling that the
ACC system will be a key component in the UGV
RSTA system; enabling robust RSTA operation
under the variety of scenarios to be encountered
during an extended UGV mission. The key
measure of success of our ATR system is the
quantifiable improvement in ATR performance that
it produces within the variety of RSTA scenarios.

By-products of the combined effort will include
disseminable code for Bayes Net and Decision
Theory algorithms, and the GA and CC software
tools to facilitate the development,
characterization, and training of a broad category
of algorithms (i.e., not just ATR algorithms). Both
of the code deliverables will be of general use to
the RSTA community (as will the whole self-
adaptive ATR system).

Note that the transfer of technology is not a one-
way street. The development of other teams could
be very useful to the effort described herein.
Certainly, it is desirable to have access to the
algorithms being used by other RSTA contractors;
the algorithms can be included in the algorithm
library being used by the GA system.
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