RL-TR-96-257
Final Technical Report
March 1997

MIXED FIDELITY SIMULATION
TECHNOLOGY DEVELOPMENT

Nichols Research Corporation

B. Gossage, W. Roark, J. Bass, J. Kyser, D. Salazar,
and J. Brown

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

DTIC QUALITY DISPR(TED 3

19970312 048

Air Force Materiel Command
Rome, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-96-257 has been reviewed and is approved for publication.

A

ALEXF. SISTI
Project Engineer

APPROVED:

/

I [| G

FOR THE COMMANDER:
JOSEPH CAMERA, Technical Director
Intelligence & Reconnaissance Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please
notify RL/IRAE, 32 Hangar Road, Rome, NY 13441-4114. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Pubtic reporting burden for this collection of Information s estimated to average 1 hour per respanse, including the time for revnewm;'; instructions, searching existing data sources,
and r ding thi i

the data g the collection of infor r g this or any other aspect of this
« ion of i ion, including suggestions for s ing this burd to g ters Services, Directorate for Information Operations and Reports, 1215 lefferson
Davis Migh Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork ion Project (0704-0188), Washington, DC 20503.
TAGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 1997 Final ~ Feb 95 - Feb 96
4. TITLE AND SUBTITLE S. FUNDING NUMBERS
C: TF30602-95-C-0035
MIXED FIDELITY SIMULATION TECHNOLOGY DEVELOPMENT PE: 62702F
PR: 4594
6. AUTHOR(S) TA: 15
WU: NO
B. Gossage; W. Roark; J. Bass; J. Kyser; D. Salazar;
J. Brown
S PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Nichols Research Corporation | REPORT NUMBER
4040 South Memorial Parkway
Huntsville AL 35815-1502 NRC-TR-96-061
I .
9, SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
Rome Laboratory/IRAE AGENCY REPORT NUMBER
32 Hangar Road RL-TR-96-257

Rome NY 13441-4114

11. SUPPLEMENTARY NOTES
Rome Laboratory Project Engineer: Alex F. Sisti/IRAE/(315) 330-4518

e ———————————————————————a— e
12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)
Mixed models with different levels of fidelity within the same similation present a

difficult challenge to simulation developers and users. Very often, changes in
fidelity impose changes in the model interfaces and the fidelity requirements of
other models.

This report presents the results of our jrvestigation of object oriented approaches
that facilitate similations composed of models of various fidelity levels. The terms
"fidelity," "'fidelity level," "fidelity boundary," 'mixed fidelity," and model
'validity" are defined to provide a rigorous framework for discussion. Practical
approaches towards defining an interface paradigm that exploits polymorphism and the
inheritance characteristics of an object oriented hierarchy are described. These
techniques are demonstrated within the context of a sample geolocation problem
implemented in C++. In addition, we provide guidelines for model and class reuse in
C++ libraries. Other potential technologies that hold additional potential for
enhancement of mixed fidelity simulation such as distributed objects and parametrized
types are also explored.

14. SUBJECT TERMS 15. NUMBER OF PAGES
. 110
Mixed Fidelity Simulation Object Oriented
Distributed Simulation Hierarchical Simulation 16. PRICE CODE
U
17 St CURITY CLASSIFICATION |18, SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified Same as Report
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. £39-18
298-102

TABLE OF CONTENTS
1. INTRODUCTION/OVERVIEW.........cccunnens e 1
1.1 Previous Work.......coevennnnns 1
2. THEORETICAL DISCUSSIONcuutuniiniinruneeneiniitniaiiseseecititanaitestusnsisiees 1
2.1 DefiNItion OF TEITIIS. ... vvuvenernernernsenreneresuesnsesesaseiaraatisssseretasiitaaaasscesenrasncnsens 1
2.2 Fidelity and Model REUSE.evruuvrreeeiiiniiiiriiiieesiiiiiisss e 3
3. TECHNICAL SOLUTIONSutunttntuniirtrneeeeentitiaiassiettietittnanse st sssnseees 3
3.1 Dynamic SOMILONS ... ovvvereessreeniiirieiitarit et 4
3.1.1 COMMON BASE CLASSES. .. evverunerneremnrinerariarssreeetisaienaatasretsitiatanteass st sn e 4
3.1.2 Interface EXPANSIONueirrtuuueeeriiiiiitiiinertiii sttt s 4
3.1.3 “Tat” Base ClASSES ...evuuereueerrneeunmrunreresseresiaiesiiastesttaitiittiiannestesettnstnssnseneees 5
3.1.4 Property Decomposmon/Aggregatlon .. 7
3.1.5 Implicit Model INCONSISIENCIEScvrvveeeumnnirerertssmimiininnrsesese st 7
3.2 SEATIC SOIUHIONS v vveeneensvrersesnesnnesnesnsrsesarsssaetastenianassateesissustntmnsetuesainsnteeses 8
32.1 Model Reuse via Multiple INheritancec.uuviruneriimnerennieimnirinsii s eeneeees 8
3.2.2 Parameterized TYPES «evvunerrmnerrrunnrerietriittires sttt sttt 9
4, SAMPLE PROBLEM.......ouituitetneenetniinererneenetntnriesstetstsatiettnssscssasssenes 10
4.1 FIEXSIITL OVEIVIEW. .« evevnerneresneseeaneenennasuesaesas i eanassssstasttatianiatastesatatasanses 10
4.1.1 The Flex Class FramMEWOTIK.cueeeeerurniuiiimneurttrniienaniteesaetiitaaaaeseesseenteees 10
4.1.1.1 ROIE OFMEC®. ... uniiueiieen ettt riar et ettt a s s s ea bttt s ta st sa sttt 12
4.1.2 Sim Class FrAMEWOTKceueeuernirntenerumeutieeiiriesiasissntietisrtnt sttt cssaesenes 12
4.2 Geolocation Class DESIENeueuniuuiiurrenreeetiiiirrr ettt e 13
4.2.1 Measurement Database ClaSSESvueuruiurerrnrireereiuiiiiieer ittt 13
4.2.1.1 Class: MEASUIBINENEvuenenerrrninenrsraaeeeseusreusranasstatestonsnatattutntsettinssenetecncesies 14
4.2.1.2 Class: FDOA _MEAS ...cuvvuernenrininirnerrasteeetsiasasttnesuetuitataniantestattssasnsscssees 15
4.2.1.3 Class: TDOA MEAS ...ueuneunieniiniiniiereietsitietasi ettt st e e 16
4.2.1.4 C1ass: GEOLOCAON. ...evurennenininerneruareseeseussierasrastassesitaaraties sttt enene e eene 16
4.2.1.5 Class: DIigitalSignal.........oovuuuiernrereeiiimmiininriirtiiii it e 17
4.2.1.6 Class: INFOFDOA_MEAS ..ceuvvuiuniiniinerierireieietietiaeiaea st ttaat sttt sneneess 18
4.2.1.7 Class: INFOTDOA _MEAS ..c.uevnirnirnirnernrentrertriirisisietitn ittt sttt e seecnes 19
4.2.1.8 Class: INfOGEOLOCAION.euuiuninrneinernereirtietntires sttt cn ettt 19
4.2.1.9 Class: InfoDigitalSignal.........ccvveeiieniriiiiimiiiiiisee s 20
4.2.1.10 Class: INFOCOLECHOMvuvunereianiinrrneieee ettt rre ettt e 21
4.2.1.11 Class: FDOACIEToeuuernernsernrenasenaersessstieraissi e sttt sssrsnsrseneres 21
4.2.1.12 Class: TDOACKIT «...uovvuneenneetuneernerrerreses i esraasrs sttt tiasrs sttt ssrseteess 22
4.2.1.13 Class: TrackCntnroveeeineveiiiiiinenns TP PPPP PSPPI P 22
4.2.1.14 Class: SIGNAICIENT.ccoiirtriiia e ettt ae e it st 22
4.2.2 C1aSs: GEOLOCALOTuevureenenrnrrersasnsesesssurerasasraststisttratrstestssatrrsesesseseess 23
.23 MAtTiX CLASSES . vuevnernernerneeneeneanernernasesssersraeratrasrastastataatintiatestsesrrsnetasreceis 25

4.3 Detailed Algorithm Design...............ceeiiiiniiiiiiiiiiiiiiie e 27
4.3.1 Geolocation - AN OVEIVIEWuuiiveniiieeiiee e e e eee oo 27
4.3.2 TDOAPIOCESSINE ...uuoeivrnneeeiiieeriiit e eeiieeeee e e e e e e e e e e eee e 29
4.3.3 FDOA PrOCESSINEoevvunitiieaiieeitie et e e e e e e 29
4.4 Geolocation Test ENVITONMENLoviuniiiniiiiiiiiine e e 32
4.4.1 DrvVer MOGEIS.ccuuiiiiiiiiieiii e e, 32
4.4.1.1 Transmitter MOEl.........ceuuiiiuiiiiiiiiiiiit e 32
4.4.1.2 ReCEIVEI MOAEl ... cuunitiiiitiii e 33
4.4.1.3 Environment MOdelc..ooouiiiiiiiiiii e 35
4.4.1.4 Signal Processor MOdel...........ccouuiiiiiiiiiiiiiiii e, 38
4.4.1.5 Orbital Platform MOdel...........ooeuuiiiiiiiii e e 39
4.4.1.6 TDOA_Generator MOEl............oiuniinieeie s e 40
4.4.1.7 FDOA_Generator MOloiuuiinneirees e e 41
4.4.2 Mixed Fidelity Modeling Options/Classes.cuvuueeeremneeeseneseses e 42
4.4.2.1 Reuse Through Multiple Inheritance EXampleceuueueeeeerureseeseeeoeeseee 42
5 GEOLOCATION PROBLEM — ANALYSES ANDRESULTSccuveiineeeneeeiiiian, 43
6 CONCLUSIONS, LESSONS LEARNED.......cuuiiniiiiiine e, 46
7 RECOMMENDATIONS FOR FURTHER WORK.......cuouiiueiaieseeeaeeee e 49
8 REFERENCES ...ttt 50
ADDENAIX Aottt ettt s s e sttt eseenene A-i
ADPDCIAIX Bttt sttt st s e s s sttt ese e eee e B-;
APDPCIAIX Cotttc ettt ettt ettt s s s s s s e s e e e eeeeee e C-i

ii

Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-7
Figure 4-8
Figure 4-9
Figure 4-10
Figure 4-11
Figure 4-12
Figure 4-13
Figure 4-14
Figure 4-15
Figure 4-16
Figure 4-17
Figure 4-18
Figure 4-19
Figure 4-20
Figure 5-1
Figure 5-2
Figure 5-3

TABLE OF FIGURES
Information Content Increases As ClassHierarchy Is Traversed........cooosrcesvrennene 4
Model Interfaces Through Information OBJECLS.ovvnersrrrersnnsssseenssasmasnssussusassassasesses 5
The Abstract Base Class SiXDOfMOdEL......oucunreuivesimsimssmsemsesnsinssmsmessmnesmssnssseesss 6
The Planet Properties Are Decomposed Into Separate Shape................ eeerenneeenens 7
Tllustration Of The Use Of Multiple INheritance.ooewvreesserecessermsmssreasemsesssseees .. 8
Instantiation Of Template Class RUNEEKULAY ...cvnreermsenseesnssmsnsassisnassassasensensensees 9
| The AHIIDULE CLASSES...rvereerercisersssrsetssesssrmmsssasesssissirssmssasnssessinssssssssensiss e sssssess 11
Relationship Between MFC® And Flex FrameWOTKS. c..coveeeerceresrernasnencssnsassnasesases 12
Simulation Framework CIaSSES.....eweeserrsmssmussesssssenssnssmssessssssnssnssmsssssssensssssnsessss 13
Overview Of The Database Classes.cvummsreerssirsmsseisemsssmsmmssmssssesssssssseess 14
Class Diagram For The Class GEOLOCALOL.coirsuvessemuesmmmmssmmmssssmm e 23
Class Diagram For The Matrix CLASSES. ovveereereresseressessssssrmenmassosssssssanmensassanssnasassss 25
Tllustration Of The Time Of Arrival Phenomena.cocueeueemsusenssmsmnerassmsenssmreaeess 29
Ilustration Of The Frequency Of Arrival PheNOMENA.uveeeeererreerneresssnsssnsanesans 30
Object Scenario Diagram for the Sample Problem.c..coveiruirieinsisinsmsienseseasenss 31
Class Diagram for the Transmitter MMOGEL .veeereeiremeresreesessessssnenesresnssaseesssnsens 32
Class Diagram for the Receiver MOAEL oveeereeeveeereeresessesseseenesssssssssassnnsesssassnsanses 34
The Environment Model CLaSSes. ..cwwureuscmimssusemsssssmmssmsssssssensenssnsssssmaessssnssssseses 36
Class Diagram for the SignalProcessor CLASS. cevverveererereersneseesstossanssnessssssnsnassases 38
Diagram of the FixOrbPlatform CLaSS...vereeeemeressesressesessessssnsssassssssssnssnsnsonsonsanes 39
Class Diagram for the TDOA_Generator ClASS. ceverererrenrerescssisassnssnensassnssnaseenes 40
Class Diagram for the FDOA_Generator CLASS veeveveervernesrrseesseornssnessessssnssnsssess 41
Example of Multiple INDeritanceooisereveesssssssssmsisssssssssmmsssssssenmmss e 42
System Configuration Used For Monte Carlo Analysis.coeueuneeensuivensmssacacnses 43
Transmitter ChAraCteriStCS. . wrrersessresserssnsassssssmsssssssssssssstasssssas st 44
TranSIItter LOCAON. 1.vvevereeruesrrrssssssesssisssssssssssssssasssasssessmssassnssss s sesess 45
iii

Figure 6-1

Listing 3-1
Listing 3-2
Listing 4-1
Listing 4-2
Listing 4-3
Listing 4-4
Listing 4-5
Listing 4-6
Listing 4-7
Listing 4-8
Listing 4-9
Listing 4-10
Listing 4-11
Listing 4-12
Listing 4-13
Listing 4-14
Listing 4-15
Listing 4-16
Listing 4-17
Listing 4-18
Listing 4-19
Listing 4-20
Listing 4-21
Listing 4-22
Listing 4-23

Overview of Design that Promotes Class Library Reuse.............ooveemrerrernoon. 47
TABLE OF LISTINGS

Definition of “fat” Base Class SixDofModel in C+ oo 6
Example of Model Creation Through a Parameterized Typein C++..................... 10
Header File for Class Measurement ... 15
Header File for Class FDOA_Meas.......ccoomemnneerrreeeeoeeeeeesoeroosoooeoooooooooo 16
Header File for Class TDOA_Meas......cuuuroonoeereommrroooo s 16
Header File for Class GeoLoCRtION............rooooovcrssooo 17
Header File for Class DigitalSignal..............oooooommmmmvomomoomo 18
Header File for Class InfoFDOA_Meas..........ccnrroeeoorereommrrooooo 19
Header File for Class InfoTDOA_Meas.........ccovveereeemmerecomrooooooo 19
Header File for Class InfoGeoLocation...............covvoeroooo 20
Header File for Class InfoDigitalSignal.................oooomovememeo 20
Header File for Class InfoCollection ... 21
Header File for Class FDOACDNT........ooocvvoeooeeesseoeeooooooooo 21
Header File for Class TDOACRNN.oooevveoooeeeesoooo 22
Header File for Class TrackCntnr............oooovvoovooeesooesooooo 22
Header File for Class SignalCntnr. ... 23
Header File for Class GeoL0CQtor.......o.cov.vovovosocessooo 24
Class Declaration for DSymMatrii and CholeskyD in C++...................... 26
Example Use of the MatriX CIasses........co..ooeooovoerovoossoooooooo 27
The Transmitter Class Declaration in C++ ... 33
The FixTransmitter Class Declaration in C+.....vvovooeoo 33
The Receiver Class Declaration in C++........oc.ooooeevooeoooo 34
The FixReceiver Class Declaration in C-+.......ooocvoeoooo 35
Environment and EnvSignal Class Declarations in C++......ooovvvverroo 37
Signal Processor Class Declaration in C+.......ooocovooosoooo 38

iv

Listing 4-24
Listing 4-25
Listing 4-26
Listing 4-27

Table 5-1
Table 5-2

FDOA
GPS

GUI
MFC®
MICOM
MIRSAT
RTTI
TDOA

FixOrbPlatform Class Declaration in CH..eeiiiineiiienene: 39
Header File for Class TDOA_Generator...........coveiieneninnncncstsnsisiinnscenssene: 40
Header File for Class FDOA_Generatorccoovuiimmnmenssecsssnsnsnsinssecses 42
Definition of Class FixTransmitter Using Multiple Inheritance in C++ ...c...c..... 43
TABLE OF TABLES
Satellite EPhemeris Data.......cvueruserssessersessssissmsssssssssssmssississsnsimssssasessesensssnsenssnes 45
Position Estimates for Each of the 15 Monte Carlo Trials.......co.cveeeiniecscescisiiiinns 46
LIST OF ACRONYMS
Frequency Time of Arrival

Global Positioning Satellite

Graphical User Interface

Microsoft Foundation Classes

Missile Command

MICOM Infrared Seeker Analysis Tool
Run Time Typing Interface

Time Difference of Arrival

1.1

21

INTRODUCTION/OVERVIEW

The complexity of computer models continues to grow with the increase in sophisticated software
technologies and distributed computing resources. The tradeoffs between model fidelity, simulation run
time, and the reuse of legacy models generate the requirement for models with different levels of
fidelity within the same simulation. Creating and maintaining the interfaces between models with
different fidelity levels is a challenging task for the simulation developer. Assembling mixed fidelity
simulations in flexible and meaningful ways is also a challenge for the simulation user. Object oriented
technologies can provide solutions to these problems in both dynamic and static simulation
environments. This paper presents some results of our exploration into object oriented solutions to
mixed fidelity simulation. The design of all classes and object relationships are presented in Booch
diagrams [Bch93][Wht94]. All code examples are presented in C++.

Previous Work ,

Over the last five years, Nichols Research Corporation (NRC) has been developing an object oriented
simulation environment that allows users to assemble simulations of arbitrary complexity from
component objects within a visual environment. Currently called “FlexSim,” we have used it as the
framework for testing our solutions to mixed fidelity simulation. In FlexSim, objects are characterized
by a set of parameters and a set of references. This approach is based on the ideas developed by
Zeigler [Zei90] and similar to the framework described by Lewandowski and Calhoun [Aan94]. An
object’s references define direct connections to other objects. Only objects of the reference class or
subclass type can be assigned to an object’s reference. A standard set of services defined by an abstract
base class, CFlexObject, must be provided by any object class that participates as a FlexSim object.
These member functions support the visual inspection of object parameters, the resolution of its
references, and object archiving. A visual environment is provided that allows the user to manipulate
objects on screen by inspecting/setting their parameters and connecting their references to other
simulation objects. Providing the user with the option of creating and connecting objects with different
levels of fidelity within the same simulation was one goal of this effort.

THEORETICAL DISCUSSION

Definition of Terms

The use of the term fidelity, with respect to a model, is often accompanied by a wide variety of
assumptions about its exact meaning. Very often, the term implies validity. Validity is the degree t.
which a model accurately predicts the behavior of the system. We define fidelity as the degree to which
a model faithfully and accurately represents the details of the system. The details of the system are
captured by a set of assumptions that are used as the basis of a mathematical or logical model. In the
context of computer simulation models, high fidelity does not imply a high degree of validity. A
requirement for high validity in a model does not imply a requirement for high fidelity. We can
illustrate these concepts with the following simple example. Suppose a system Fr(x) obeys a cubic
polynomial of the form:

Fr(x)=ax’+a,x*+a,x+a,
We are given the choice between a “low” fidelity model:
F (x)=Lx*+1x+],
and a “high” fidelity model:
Fu (%) =hyx® + hyx* + hyx+h,

To build each model we fit these polynomials to N=10 samples of Fr(x) using linear regression (with
MathCad™). If the true coefficients of Fr(x) are a = [0.01, 0.01, 4.0, 1.0] and the measurement error
standard deviation is 6 = 2.0, then the resulting mean square error between the estimated polynomials
and the sample points for the two models are SS; = 6.465 and SSy = 6.23 8, but the mean square errors
between the estimated polynomials and the true polynomial are SS; 7 = 0.245 and SSur = 0.473. We
may conclude in the absence of knowledge about the true system that the high fidelity model is
“better” since it does a better job of explaining the observed data and is more faithful to the details of
the underlying true system. We would be unaware that the high fidelity model is overfit to the data
[Dra81] resulting in SS; 1 < SSyr. By this measure of validity we should have chosen the more robust
“low” fidelity model. How can this be avoided without knowledge of the true system? Note that SS; =
SSy so the high fidelity model is only slightly better and if both models meet the acceptance criteria,
we apply “Occam’s razor” and choose the simpler, low-fidelity model. Scale analysis [Hol92] can also
be used to avoid unnecessary levels of detail in a model. This example shows that greater model fidelity
does not imply greater model validity. Hence, model fidelity and model validity are separate,
sometimes independent, concepts.

As in our simple example, greater model fidelity often results in greater model complexity. The high-
fidelity model required an extra parameter for the coefficient of x°. Since the interfaces of the two
models are identical, the value of x, the selection of either model in a simulation would have no impact
on the interface requirements of other models. If we change Fy; to require another input y:

Fy(x,y)=h,y+h,x* + hyx+h,

Fy has not only greater internal complexity than Fy, but also greater complexity in its interface.
Exchanging F; for Fy in a simulation imposes a change in the interfaces for all models that supply
inputs to F. Changing model interfaces is one of the fundamental problems in mixing the fidelity of
models within the same simulation system. This is a direct result of the increase in model complexity
that accompanies an increase in model fidelity.

2.2

To avoid any ambiguity between terms like “fidelity” and “yalidity” we present the following
definitions that form the foundation of discussion for this document.

Model Fidelity — the level of detail in a model resulting from a set of modeling assumptions about the
system it represents. Low fidelity models are characterized by simplifying assumptions which reduce
their level of detail compared to high fidelity models.

Model Fidelity Level — a partition into different levels of detail imposed on a set of models by one
or more modeling assumptions. For example, the assumption of a spherical Earth partitions a set of
models into a subset of models all of which assume a spherical Earth.

Fidelity Boundary — An interface between two models in different fidelity levels.

Mixed Fidelity Simulation — a simulation composed of a set of models from different fidelity
levels.

Validity — an objective, often statistical assessment of the ability of a model to accurately predict the
behavior of the system it represents.

Verification — a simulation model is verified when it is shown to be a faithful implementation of the
model.

Fidelity and Model Reuse

While changing model interfaces presents a constant challenge for mixing model fidelities in a dynamic
modeling environment, static reuse of existing models is also a significant component of the problem.
Static reuse occurs through changes to the model and/or the source code for simulation executive. While
usually tractable, the design of the model class relationships and interfaces can minimize the extent of
the changes required. Encapsulation and polymorphism provided by OOP help, but careful design of
the class hierarchies to prevent dependencies on non-portable class libraries or the creation of direct
dependencies on the model implementations is essential. We will present approaches to model reuse as
a companion problem to mixed fidelity simulation.

TECHNICAL SOLUTIONS

We present several proposed solutions to mixed fidelity simulation. Some have only been explored
conceptually while others have been fully implemented in C++ within the FlexSim environment. Some
solutions can be implemented within a dynamic simulation environment that allows a user to choose
the models and their inter-connections at run time. These solutions take advantage of the inheritance
and polymorphism features of object oriented languages. Other solutions are static, compile-time
changes to the implementation of models that take advantage of the multiple inheritance and
parameterized type (template) features found in C++.

3.1

3.1.1

3.1.2

Dynamic Solutions

Common Base Classes

When a high fidelity model produces output to an interface embodied by an information object, models
of the same fidelity or lower may use that information provided that the information object base class
forms the low fidelity interface. The low fidelity model interface is a pointer to an object of base class
type while the high fidelity model output is an object of a type derived from that same base class. This
construct assumes that information content increases as we traverse the information object hierarchy
from base to derived as shown in Figure 3-1. Any object of the derived information object type will
complete the base type interface required by the low fidelity model through public inheritance. This
solution works well within the FlexSim environment since a reference to a low fidelity input can be
connected to either a high or low fidelity object.

. HighFidelity ./ LowFidelitylnput
’ Model . K
,ol'-"‘_"‘-/ s .F‘ '-.-"3
/" HighFidelity Lo epRidely
1S
‘ .

Output

Figure 3-1 Information content increases as the interface object class hierarchy is traversed from base
to derived.

Interface Expansion

When two models exchange information, a convenient implementation of that interface is a shared
“information” object as illustrated in Figure 3-2. This interface may be a single object or a dynamic
collection of many objects (containers). Such information objects can appear at fidelity boundaries and
can form a key information transport mechanism across fidelity boundaries. When the information
flow is from a low fidelity to a high fidelity model, the interface to the high fidelity model must be
expanded. This can be accomplished through a member function that returns an object which satisfies
the high fidelity interface. In this way, an information object is viewed as a “smart” container which
knows how to represent its contents in various forms. Another solution is for the high fidelity
information object to provide a conversion constructor with a low fidelity object as its argument. The
advantage of the conversion constructor is that a common base class can serve as the low fidelity
interface above. The expansion member function approach would require independent high and low
fidelity object interfaces since derived types are not within the scope of their base class. In either case
it must be noted that the interface expansion is isentropic - no information gain can take place.

;;;;;; -

LowFidelity
Model

1
’
1
B
v
3
’
LRy g
.
------ - N,
N
n [
, '
4 ’
'

Information
Object
expand()
HighFidelity
Model

Figure 3-2 Model interfaces through information objects.

3.1.3 “Fat” Base Classes

Another approach that employs inheritance to enable mixed fidelity interfaces is the “fat” base class.
The interface to the highest fidelity model is captured by an abstract base class with all the foreseeable
member functions for that model. To allow maximum flexibility, the number of member functions can
be quite high, hence the term “fat.” This approach allows models of any fidelity to be substituted in a
simulation so long as they meet the interface requirements of the base class. For example, low fidelity
models may implement some of the required member functions by returning constants or simple table
lookups while a high fidelity model may accomplish the same result using a set of complex equations.
In C++, all the member functions of the base class are declared as “pure virtual” functions and all other
simulation models requiring access to models of this type will use variables of type: pointer-to-base. -
The use of virtual functions will cause the actual model to be accessed correctly at run-time. Their
declaration as “pure” forces derived classes to complete the specified interface or cause a run or
compile-time error. An example of a “fat” base class can be found in the MICOM Infrared Secker
Analysis Tool (MIRSAT) simulation {Can95]. MIRSAT uses a “6-DOF” model to capturc missile
and seeker flight dynamics. Since 6-DOF implementations vary from one missile system to another, it
was necessary to be able to substitute different models without changing the interfaces in the rest of
the seeker model. This was accomplished by defining a “fat” SixDofModel basc class. The Booch
diagram of class SixDofModel and its related subclasses appears in Figure 3-3. Listing 3-1 contains
the definition of the SixDofModel class with its numerous member functions. The TrajSixDof model
reads a trajectory file and interpolates the data while the TrapSixDof and TacSixDof models run
legacy FORTRAN 6-DOF codes with high-fidelity flight dynamics.

.
’
M AN

. SixDofModel

~
~
-~

)

- -
’
-
i -

PR

T e T u
- -
’ - ~ Pau e -~ - ~o

TrajSixDof\,‘- " TrapSixDof /! TacSixDof'\,‘-

’

Figure 3-3 The abstract base class SixDofModel and its known subclasses.

class SixDofMode! : public SimObject

{
public:

I/ Pure virtual functions...
/f (These MUST be redefined by any derived class.)

// Target related functions...

virtual Vector targetPos() const=0;

virtual Vector targetVel() const=0;

virtual float targetX() const=0; #/ target x pos (m)
virtual float targetY() const=0;

virtual float targetZ() const=0;

virtual float targetYaw() const=0;

virtual void setTgtZ(float z) =0;

// Missile related functions...

virtual Vector missilePos() const=0;
virtual Vector missileVel() const=0;
virtual float missileX() const=0;
virtual float missileY() const=0;
virtual float missileZ() const=0;
virtual float range() const=0;

virtual float inertTgtAz() const=0;
virtual float inertTtEI() const=0;

/f Launch aircraft related functions...
virtual float initACaz() const=0;
virtual float initACel() const=0;

/1 Six DOF control functions...

virtual float timeToGo() const=0;

virtual int terminated() const=0;

virtual String termString() const=0:

virtual void flyoutLoop() =0;

virtual void trackControl(float x, float y)=0;

}.// end class SixDofModel

Listing 3-1 Definition of “fat” base class SixDofModel in C++.

3.14

3.1.5

Property Decomposition/Aggregation

One of the goals of an object oriented simulation design is to create a transparent mapping from the
classes and objects in the simulation to the objects in the system under study. This provides clarity for
the simulation user and makes the simulation source code easier to maintain. For example, we have
created a class Planet to capture the properties common to all planets. These properties include the
planet’s gravity and shape as a function of latitude and longitude. Usually we tie these functions to
planet models with equivalent fidelity — a planet model with a high fidelity shape model would also
have a high fidelity gravity model. If the fidelity of the gravity and shape functions can be considered
independent from one another, a simulation could consist of models which make simple assumptions
about a planet’s shape while other models assume a complex gravity field. The decoupled planet
properties can be captured in separate Gravity and Shape basc classes. The class Planet is modified
to use instances of Shape and Gravity models through containment by reference as shown in Figure 3-
4. Any Gravity or Shape model can be assigned to the Planet model references provided the base
classes have “fat” interfaces as describe previously.

N

m_GravityModel m_shapeModel

Seaat ~
.~ .o

! GravtyModel /" ShapeModel
.+ GravityModel / apeModel

N

’
1N

- A Y -

LIS— . . ~ v -

’ . -~ 7 . . ~ 7 . -~ -~

< lsotropic ,* GravityField) - Spherical ./ Oblate .

Gravity . SRR ; . ;
\

A

Figure 3-4 The Planet properties are decomposed into separate Shape and Gravity models.

Implicit Model Inconsistencies

When the user is provided a dynamic simulation environment which allows mixed fidelity simulation,
no compile time or run time checks are carried out to assure the validity of the results. While the
simulation environment can provide interface checking, parameter verification, and results analysis, it
cannot prevent the naive use of complex models in those cases where interfaces are not violated. Many
simulation models have complex interfaces and operational requirements that overwhelm all but the
most expert of users. The use of these models is often limited to their original developers. A possible
solution to this problem is to embed an expert system within the simulation environment.

3.2

3.21

By way of the same information services provided to the user interface by the models (parameters and

references) information can be input to the expert system. This information will in turn activate a set

of predefined rules captured from model experts and developers. The effect of rule “firings” would be

to notify the user of potential problems or errors in the simulation and provide corrective guidance. We
have not explored this concept further since it is beyond the scope of the current effort.

Static Solutions

Model Reuse via Multiple Inheritance

Reusing existing model classes without “contaminating” them with proprietary or non-portable code is
part of efficient mixed fidelity modeling in a static environment. We have defined a static simulation
environment as one in which source code changes must be made to make model substitutions. Careful
use of multiple inheritance can minimize this problem by avoiding direct inheritance of system
dependent classes by external model classes. If a model class is to be kept independent, then it must
not become a descendant of any class within the simulation system hierarchy. To illustrate this,
suppose we are using GUI class library BRANDX (similarity to the names of other class libraries is
strictly unintentional) to implement the interface to our simulation. We use a BRANDX class
Displayable to display model information on the screen. We also have a legacy model class Modellt
that we wish to reuse. At first, we may be tempted to modify Modellt by deriving it from
Displayable and adding the appropriate members. If we use this approach, we have modified Modellt
in a way that prevents it from being ported to any environment that does not have access to
BRANDX. This can be costly or impossible if BRANDX cannot be purchased for the target platform.
Multiple inheritance provides a better solution by allowing a new class DisplayableModel to be
created by inheriting from both Displayable and Modellt. ModelIt remains completely independent
of the BRANDX class library allowing it to remain portable. This approach also supports the
configuration management of Modellt to be maintained at a single location. In this project we have
made frequent use of multiple inheritance to keep external models in separate, independent and
portable libraries. The general form for this approach appears in F igure 3-5.

D A AT U

,'I CF|€XOb]ECT—-:' ; SimObject‘-“\ 'r' External ‘,-
(it O/ < delClass /
S, (romFlex) & (_ (fromSimulation) *+. ModeiClass {

-~ ~ M - -

[e ~=

’ T

© NewFlex
7. SimClass
L}

’

M ’

Figure 3-5 Hllustration of the use of multiple inheritance Jrom an external class library.

3.2.2

The inheritance from the external library class may be public or private. Public inheritance would result
in the inheritance of interface of the external class which could create problems if the interface is used
by classes within the simulation and then the external class needs to be replaced by a class with a
different interface. Any classes using the external model interface would require changes. This could be
prevented by inheriting private from the external model class and creating a new generic interface in the
derived class. The implementation provided by the external model would be reused, but not its
interface. For this reason, private inheritance is called implementation inheritance [Str91]. The external
model must declare its member variables protected if the simulation class variables are to be
manipulated in the derived class. An example of the use of multiple inheritance for model reuse within
the sample problem will be presented later.

Parameterized Types

Parameterized types (templates in C++) allow the creation of new models with different levels of
fidelity that depend on the template class argument. For example, different orbital dynamics’ models
can be created by instantiating an integrator template class RungeKutta4 with the appropriate model
class that describes the dynamics of the orbit (gravity, solar pressure, etc.) The relationship between
the template and its argument is shown in Figure 3-6. The code fragment in Listing 3-2 illustrates this
idea with a C++ template class. Parameterized types offer some distinct advantages over polymorphic
classes including type safety, efficiency and ease of use [Car95].

..........

.« OrbitModel .- RungeKuttad

P PR

./ OrbitEgn
'~.\(fr0m Orbital) |

N Foma
' P

Figure 3-6 Instantiation of template class RungeKutta4 creates new OrbitModel class.

4.1

4.1.1

template<class DiffEqn>
class RungeKuttad

{
public:
RungeKutta4(DiffEqn& anEgn, double stepSize);
void integrate(double dt);
void setRelErr(double x) {relErr = x;}
void setAbsErr(double x) {absErr = x;}

}:/ end template class RungeKuttad

class OrbitEgn

{
public:
OrbitEqgn(DoubleAray initState, double aTime);
void derivs(double t, const DoubleArray& x,
DoubleArray& dx);

¥, // end class OrbitEgn

// Create a new class by instantiating the template...
typedef RungeKutta4<OrbitEqn> OrbitModel;

Listing 3-2 Example of model creation through a parameterized type in C++.

SAMPLE PROBLEM

To establish the feasibility of the various approaches to mixed fidelity simulation, we implemented an
object oriented simulation of a geolocation problem within the FlexSim framework. The geolocation
problem involves the determination of transmitter locations on Earth’s surface by Time Difference of
Arrival (TDOA) and Frequency Difference of Arrival (FDOA) measurements [Ho93][Ont89]. The
measurements are generated from signals intercepted by satellites with highly accurate clocks similar to
Global Positioning Satellites (GPS) [Her96].

FlexSim Overview

FlexSim is composed of two component frameworks: “Flex” and “Sim.” The “Flex” framework
supports the manipulation of objects via screen icons in a GUI environment. This manipulation
includes the setting of object properties, connecting objects via “references,” and object archival. The
“Sim” framework supports event-based simulation in an object oriented programming environment.
Objects create and schedule events on a global event calendar in step with a global simulation clock.
The two frameworks are combined in FlexSim to create a visual, object oriented simulation
environment.

The Flex Class Framework

The Flex class framework provides support for the key capabilities of the visual object manipulation
system. These capabilities include:

® The creation of object instances of a class given the name of the class.
e The setting of object references.
e The setting of object attributes.

¢ The storage of objects in a persistent archive.

10

e The grouping of objects into subsystems.

The base class CFlexObject defines the interface requirements for any class that participates in the
Flex system. The virtual functions “Copy,” “GetAttributes,” “GetReferences,” and “Serialize” must
be defined by any class derived from CFlexObject. The “Copy” member is gencrated automatically
by a system of C++ macros that generate all the required code for the Run-Time Typing Interface
(RTTI) and meta-class behaviors. Currently, the CFlexObject class is derived public from the
Microsoft Foundation Classes (MFC®) class CObject. This direct dependence on a proprietary class
library may be removed in future versions of the Flex framework.

Since C++ does not support the concept of “meta-classes,” class names are mapped to a predefined
instance of that class. The predefined object is copied by way of the virtual “Copy” member function
defined by all Flex classes.

Support for the setting of object attributes is provided by the abstract base class Attribute and its
derived classes as shown in Figure 4-1. The derived classes allow objects to export attributes to the
Flex system for manipulation by the user. The “GetAttributes” function returns a list of attributes for
a given object. Note that the IntegerAttr and RealAttr classes are templates so that the various real
and integer types (e.g. unsigned, float, double) can be easily supported without the need to provide
Attribute subclasses for all integral types.

o~
—m—alr N
3 e ~

>~ FTimeAtrr

_———

-
-~
Sme s N

DateAttr M

_____ ’ v

Figure 4-1 The Attribute classes.

The resolution of object references (ports) is accomplished via the class Reference. A Reference
contains a pointer to an object reference (a C++ object pointer), the class type of the object reference, a

11

label string, and a flag indicating whether setting the reference is optional. Setting the object reference is
accomplished through the reference pointer.

The reference resolver uses the class type to limit the values of the reference to objects that are
instances of that class or its subclasses. The label string represents the relationship of the object to the
referenced object. For instance, a sensor’s platform reference captures the relationship between the
sensor and its platform as in “the sensor is on the platform.”

4.1.1.1 Role of MFC®

The Flex framework is based on MFC®. MFC®, GUI, RTTI, archival, and collection classes are used
extensively and many of the Flex windowing classes are directly (and publicly) derived from MFC®
base classes. Figure 4-2 shows the relationships between MFC® classes and the Flex framework. All of
the classes that participate as FlexSim objects are derived from Cobject through CFlexObject. This
allows the storage and retrieval of FlexSim objects using MFC® collections e.g., CObList.

- PRGN - .
- . .-
- \ Pl N Pl v Pl

-
[3

~

-) - - i -« - ———_

" CRuntime ,/ CArchive >/ CObject ¢ CscrollView s
\, __Class . (omMFC) { _ (romMFC) | "\ (from MFC) !
“(from MFC) : K : \ : \ :

. . . .
.- ' . ' . R -

- . - - -
.- .- .- .-

s - P . o
. -—-- N A T . PN N PN, \

./ CFlexClass /' FlArchive ,/ CFlexObject ™ S View

o~
~

Figure 4-2 Relationship between MFC® and Flex frameworks.

4.1.2 Sim Class Framework

The simulation class framework (see Figure 4-3) provides support for the key capabilities of the event-
based simulation system. The capabilities include:

* The initialization of simulation objects.
¢ The scheduling and execution of events in time order.
® The maintenance of current simulation time by a simulation clock.

¢ The start and termination of a simulation run.

12

4.2

4.2.1

/ GObject
-, (from Utilities):\

e Pl RN .o

, _SottedCin " EventBase
.« (from Collections)l’ ;

~ '
M) [l PR

- -
PEE R 1 -

m_events
e b
7/ Clock ./ Event !
. Event N , ; . .
Y,])
% Calendar / ARESN \ el 4
M '

,,,,,,

-
1
AN

) P N ~_, =" -~ -

Figure 4-3 Simulation framework classes.

Geolocation Class Design

The geolocation class design was partitioned into three class categories — database
geolocator class, and matrix classes. The design and construction of each of these class ¢
be discussed in the following three sections.

Measurement Database Classes

The overall structure of the measurement database design, as implemented to support the sample
problem, is illustrated in Figure 4-7. Each database class will be discussed individually in the following

sections.

classes, the
ategories will

PR

< Info
¢ Collection

\

ClnfoObjec-t“,‘,

SighalCntnr ,(fromlnformatlon,

A -

7 FDOACHMNT 3

‘
H \
'
'

N

PEL T

" TrackCntnr K -l .
4 .- TDOACntnr ", ..

1
AN . S
'

FP ,

. InfoTDOA_ InfoFDOA_ " ./ InfoDigital
S e Y { Meas ! e Meas < Signal
% Geolocation ¢’ v ; ™ o ™
KA ' DigitalSignal
oA Mo a —LOA‘M%S . \/ (frornglnforrf\ations
PR el i Ms_'; (from Measurement Data) :
- _Ceolocation (from Measurement Data) ™, . ! ahiedd
«(from Measurement Data) I ST

N .
PRI

/ Measurement
«{from Measurement Data)

AN ¢
M ‘
Y
R -
s s

Figure 4-7 Overview of the database classes are shown Jrom the class diagram perspective.

4.2.1.1 Class: Measurement
The class Measurement is the base class for the TDOA and the FDOA measurement classes. It
contains information such as reference sensor position and velocity and other basic information fields
and functions required by both its derived classes. The header file (Measurement.h) for Measurement

is shown in Listing 4-1.

14

{ class Measurement
public:
Measurement();
FTime time() const { return m_measTime; }
//Retums the variance of the measurement.
double variance() const { retumn m_var, }
JI Return the measurement error bias.
double bias() const { return m_bias; }
J//Retumn the position vector of the reference sensor.
Vec3 refSensorPos() const;
J/ Return the velocity vector of the reference sensor.
Vec3 refSensorVel() const,
I/ Retum the position vector of the first (non-reference)
/I sensor.
Vec3 firstSensorPos() const;
J/Retumn the velocity vector of the first (non-reference)
// sensor.
Vec3 firstSensorVel() const;
J/ Sets the measurement time .
void setMeasTime(const FTime& aTime) { m_measTime = aTime;}
J/ Sets the ECR position and velocity of first sensor
void setSensor1Pos(const Vec3& aVec) { m_sensor1Pos = aVec}
/I Sets the velocity of the first sensor
void setSensor1Vel(const Vec3& aVec) { m_sensor1Vel = aVec;}
// Sets the ECR position of the reference satellite .
void setRefSensorPos(const Vec3& aVec) { m_refSensorPos = aVec;}
/I Sets the velocity of the reference satellite
void setRefSensorVel(const Vec3& aVec) { m_refSensorVel = aVec; }
1 Sets the reference sensor number
void setRefSensorNum(int aNum) { m_refSensorNum = aNum;}
/1 Sets the first sensor number
void setfirstSensorNum(int aNum) { m_firstSensorNum = aNum;}
J/ Sets the variance of this FDOA measurement
void setVar(double& aVar) { m_var = aVar;}
// Sets the bias variance
void setBias(double& aBias) { m_bias = aBias:}
protected:
J//Measurement time. Arbitrarily the time of arrival at
I/ reference satellite.
FTime m_measTime;
/I Caculated difference in time of amival.
double m_deltaF;
//ECR position and velocity of first sensor
Vec3 m_sensor1Pos;
Vec3 m_sensoriVel;
J/ECR position and velocity of reference satellite.
Vec3 m_refSensorPos;
Vec3 m_refSensorVel,
I/ Reference sensor number. (arbitrary)
int m_refSensorNum;
/I First sensor number
int m_firstSensorNum;
//Variance of this FDOA measurement computed as:
/IvarSPT + 2 * varAtmR + 2 * varBias
double m_var,
/I The bias variance computed as:
//varClock + varAtmB
double m_bias;
}; /f end class Measurement

Listing 4-1 Header file for class Measurement.

4.2.1.2 Class: FDOA_Meas

The class FDOA_Meas is a derived class of Measurement. FDOA_Meas contains the data required
to describe a FDOA measurement. The header file (FDOA_Meas.h) for class FDOA_Meas is shown
in Listing 4-2.

15

class FDOA_Meas : public Measurement

public:
FDOA_Meas();
double cntnrFreq() const { return m_cntnrfreq; }
void setCntnrFreq(double aFreq) { m_cninrFreq = aFreq; }
double deltaFreq() const { return m_deltaFreq; }
void setDeltaFreq(double aFreq) { m_deltaFreq = aFreq; }
double sigmaSPF() const { return m_sigmaSPF; }
void setSigmaSPF(double aSigma) { m_sigmaSPF = aSigma; }

protected:
// Caculated difference in time of arrival.
double m_cntnrFreg;
double m_deltaFreq;
double m_sigmaSPF;

}, // end class FDOA_Meas

Listing 4-2 Header file for class FDOA_Meas.

4.2.1.3 Class: TDOA_Meas

The class TDOA_Meas is a derived class of Measurement. TDOA_Meas contains the data required
to describe a TDOA measurement. The header file (TDOA_Meas.h) for class TDOA_Meas is shown
in Listing 4-3.

class TDOA_Meas : public Measurement

public:
TDOA_Meas();
double delTime() const { retumn m_deltaT; }
void setTime(double aTime) { m_deltaT = aTime; }
//Returns the covarance between this TDOA measurement and
// another.
double covWith(TDOA_Meas& aTDOA) const;

protected:
// Caculated difference in time of arrival.
double m_deltaT;

}, // end class TDOA_Meas

Listing 4-3 Header file for class TDOA_Meas.

4.2.1.4 Class: GeoLocation

The class GeoLocation contains the state information for the position estimates as generated by the
class GeoLocator. The header file (GeoLocation.h) for class GeoLocation is shown in Listing 4-4.

16

class Geolocation
public:
Geol.ocation();

/I Initialize this Geol.ocation with a set of TDOA
/ measurements.
void initializeWith(TDOA_Set& tdoaSet);

/I The time of the estimate.

FTime time() const { retum m_time; }

Vec3 position() const { return m_ecrPos; }

Vec3 velocity() const { return m_ecrVel; }

void setPosition(const Vec3& pos);

void setVelocity(const Vec3& vel) { m_ecrVel = vel, }

protected:

// Data Members

FTime m_time;

/atitude in radians. (pi/2 <= lat <= -pi/2)
double m_lat;

/llocation longitude in radians (pi <= long <= -pi)
double m_long;

// latitude variance

double m_varlat;

/llongitude variance

double m_varlLong;

// Covariance of lat and long

double m_covLationg;

/i The track id number.

unsigned m_trkiD;

/I Rate of change in latitude. (rad/s)
double m_latDot;

// Rate of change in longitude (rad/s)
double m_longDot;

/I Altitude in meters.

double m_alt;

/I Rate of change in altitude (m/s).
double m_altDot;

/i Variance of the altitude estimate.
double m_varAlt;

/I ECR position vector...

Vec3 m_ecrPos;

/I ECR velocity vector...

Vec3 m_ecrVel;

// class variables...
static int ¢_baselD;

}; // end class Geolocation

Listing 4-4 Header file for class GeoLocation.

4.2.1.5 Class: DigitalSignal

The class DigitalSignal contains the information germane to a digital signal. The signal is generated by
the class SignalProcessor. The header file (DigitalSignal.h) is shown in Listing 4-5.

17

class DigitalSignal
{

public:
DigitalSignal();
DigitalSignal(double bandWidth, double cntrFreq,
int receiverID, double refTime, const FTime& aTime,
double sampleRate, double SNR);
virtual ~DigitalSignal();
double bandwidth() const { return m_bandWidth; }
double sampleRate() const { return m_sampleRate; }
double snr() const { return m_SNR; }
double refTime() const { return m_refTime; }
double cntnrFreq() const { return m_cntrFreg; }
double clockError() const { return m_spClockError; }
void setClockError(double error } { m_spClockError = error; }
Vec3 sensorPos() const { return m_sensorPos; }
void setSensorPos(const Vec3& p) { m_sensorPos = p; }
Vec3 sensorVel() const { return m_sensorVel; }
void setSensorVel(const Vec3& v) { m_sensorVel = v; }
FTime time() const { return m_time; }
void setTime(const FTime& aTime) { m_time = aTime; }

protected:
/I Bandwidth of the system that created this signal.
double m_bandWidth;
/I Center freqency of the signal.
double m_cntrFreq;
/I The trave! ime
double m_refTime;
/I time that the signal was created
FTime m_time;
/I Unique ID of satellite which received signal
int m_receiveriD;
/i Sample rate (Hz).
double m_sampleRate;
/I Signal to noise ratio of the system that created this
/I signal.
double m_SNR;
double m_spClockError;
Vec3 m_sensorPos;
Vec3 m_sensorVel;

}// end class DigitalSignal

Listing 4-5 Header file for class DigitalSignal.

4.2.1.6 Class: InfoFDOA_Meas

The class InfoFDOA_Meas inherits from FDOA Meas and CInfoObject. Inheritance from
CInfoObject gives InfoFDOA_Meas the ability to be inspected by the user (CInfeObject inherits
from CFlexObject) and eligibility to be added to a container class derived from InfoCollection.
Inheritance from FDOA_Meas incorporates the FDOA measurement data fields and functions. Note
that multiple inheritance for InfoFDOA_Meas has kept the measurement class FDOA_Meas separate
from the MFC® hierarchy. The header file (InfoFDOA_Meas.h) for this class is shown in Listing 4-6.

18

class InfoFDOA_Meas : public CinfoObject, public FDOA_Meas

{
DECLARE_FLEX_SERIAL(InfoFDOA_Meas);
public:
InfoFDOA_Meas();
InfoFDOA_Meas(const FDOA_Meas& aFDOA);
virtual ~InfoFDOA_Meas();
/I Override CSimObject virtuals
virtual CObList* GetAttributes(),
virtual CObList* GetReferences(),
virtual BOOL ReferencesResolved();
virtual void Serialize(FixArchive& anArc),
BOOL isEqualTo(const InfoFDOA_Meas™);
/I Override GObject virtual
BOOL isEqual(const CinfoObject”) const;
int compare(const CInfoObject") const;
unsigned long hash() const { retumn 0}
void printOn(ostream&) const {;}
};// end class InfoFDOA_Meas

Listing 4-6 Header file for class InfoFDOA_Meas.

4.2.1.7 Class: InfoTDOA_Meas

The class InfoTDOA_Meas inherits from TDOA_Meas and CInfoObject. Inheritance from
CInfoObject gives InfoTDOA_Meas the ability to be inspected by the user (CInfoObject inherits
from CFlexObject) and eligibility to be added to a container class derived from InfoCollection.
Inheritance from TDOA_Meas incorporates the TDOA measurement data fields and functions. Note
that multiple inheritance for InfoTDOA_Meas has kept the measurement class TDOA_Meas
separate from the MFC® hierarchy. The header file (InfoTDOA_Meas.h) for this class is shown in

Listing 4-7.

class InfoTDOA_Meas : public CinfoObject, public TDOA_Meas
{
DECLARE_FLEX_SERIAL(InfoTDOA_Meas);

public:

InfoTDOA_Meas();

InfoTDOA_Meas(const TDOA_Meas& aTDOA);
virtual ~InfoTDOA_Meas();

/I Override CSimObject virtuals

virtual CObList* GetAttributes(),

virtual CObList* GetReferences();

virtual BOOL ReferencesResolved();
virtual void Serialize(FIxArchive& anArc);
BOOL isEqualTo(const InfoTDOA_Meas™);

/I Override GObject virtual

BOOL isEqual(const CinfoObject”) const;
int compare(const CinfoObject”) const;
unsigned long hash() const { return 0;}
void printOn(ostream&) const {;}

};// end class InfoTDOA_Meas

Listing 4-7 Header file for class InfoTDOA_Meas.

4.2.1.8 Class: InfoGeoLocation

The class InfoGeoLocation inherits from GeoLocation and CInfoObject. Inheritance from
CInfoObject gives InfoGeoLocation the ability to be inspected by the user (CInfoObject inherits
from CFlexObject) and eligibility to be added to a container class derived from InfoCollection.

19

Inheritance from GeoLocation incorporates the GeoLocation data ficlds and functions. Note that
multiple inheritance for InfoGeoLocation has kept the measurement class GeoLocation separate from
the MFC® hierarchy. The header file (InfoGeoLocation.h) for this class is shown in Listing 4-8.

class InfoGeol.ocation : public ClnfoObject, GeoLocation

{
DECLARE_FLEX_SERIAL(InfoGeoLocation);
public:
InfoGeol.ocation();
InfoGeol ocation(GeoLocation& gl);
virtual ~InfoGeol.ocation();
/I Override CSimObject virtuals
virtual CObList* GetAttributes();
virtual CObList* GetReferences();
virtual BOOL ReferencesResolved();
virtual void Serialize(FixArchive& anArc);
BOOL isEqualTo(const InfoGeol.ocation®);
/I Override GObject virtual
BOOL isEqual(const CinfoObject*) const;
int compare({ const CinfoObject*) const;
unsigned long hash() const { return 0;}
void printOn(ostream&) const {;}
}// end class InfoGeoLocation

Listing 4-8 Header file for class InfoGeoLocation.

4.2.1.9 Class: InfoDigitalSignal

The class InfoDigitalSignal inherits from DigitalSignal and CInfoObject. Inheritance from
CInfoObject gives InfoDigitalSignal the ability to be inspected by the user (CInfoObject inherits
from CFlexObject) and eligibility to be added to a container class derived from InfoCollection.
Inheritance from DigitalSignal incorporates the DigitalSignal data fields and functions. Note that
multiple inheritance for InfoDigitalSignal has kept the measurement class DigitalSignal separate
from the MFC® hierarchy. The header file (InfoDigitalSignal.h) for this class is shown in Listing 4-9.

class InfoDigitalSignal : public CinfoObject, public DigitalSignal

{
DECLARE_FLEX_SERIAL(InfoDigitalSignal);
public:

InfoDigitalSignal();

InfoDigitalSignal(double bandWidth, double cntrFreq,
int receiverlD, double refTime, const FTime& aTime,
double sampleRate, double SNR};

virtual ~InfoDigitalSignal();

/I Override CSimObject virtuals

virtual CObList* GetAttributes();

virtual CObList* GetReferences();

virtual BOOL ReferencesResolved()

virtual void Serialize(FixArchive& anArc);

BOOL isEqualTo(const InfoDigitalSignal*);

// Override GObject virtual

BOOL isEqual(const CinfoObject*) const;

int compare(const CInfoObject*) const;

unsigned long hashy() const { return 0;}

void printOn(ostream&) const {;}

}// end class InfoDigitalSignal

Listing 4-9 Header file for class InfoDigitalSignal.

20

4.2.1.10 Class: InfoCollection
The class InfoCollection is an information object container. Objects that are descendents of the class
CInfoObject can be contained within this class. The header file (InfoCollection.h) for this class is
shown in Listing 4-10.

class InfoCollection : public CFlexObject
{
DECLARE_FLEX_SERIAL(InfoCollection)

public:
InfoCollection();
virtual ~InfoCollection();

/I Generic public manipulator functions

void add(CInfoObject* value),

void remove(CinfoObject" value);

ClinfoObject* at(int i);

unsigned size() const { return m_contents.size(); }
BOOL isEmpty();

void removeAll();

/I Serializle the objects in this container.
void Serialize(FixArchive& anArc);
OrderedClitn m_contents;

class InfoNode : public GObject
{
public:
/I Override the required virtuals from GObject
int compare(const GObject&) const;
BOOL isEqual(const GObject&)const;
unsigned long hash() const { return 0;}
void printOn(ostream&) const {7}
/I Object to be contained
CinfoObject* m_infoObj;

)/l end class InfoCollection::infoNode

Y./ end template class InfoCollection

Listing 4-10 Header file for class InfoCollection.

4.2.1.11 Class: FDOACntnr
The class FDOACntnr is a derived class of InfoCollection. The FDOACntnr class is designed to
hold objects of type InfoFDOA_Meas. FDOACntnr objects are designed to be manipulated by the
user. The header file (FDOACntnr.h) for this class is shown in Listing 4-11.

class FDOAChHtnr : public InfoCollection

{

DECLARE_FLEX_SERIAL({ FDOACntnr)

public:

FDOACNtnr();

~FDOACNINI();

void removeAlIFDOAs();

/I Override CSimObject virtuals

virtual CObList* GetAttributes();

virtual void Serialize(FIxArchive& anArc);
}; / end class FDOACntnr

Listing 4-11 Header file for class FDOACninr.

21

4.2.1.12 Class: TDOACntnr

The class TDOACntnr is a derived class of InfoCollection. The TDOACntnr class is designed to
hold objects of type InfoTDOA_Meas. TDOACntnr objects are designed to be manipulated by the

user. The header file (TDOACntnr.h) for this class is shown in Listing 4-12.

class TDOACntnr : public InfoCollection
DECLARE_FLEX_SERIAL(TDOAChtnr)

public;
TDOACNRtnr();
~TDOACntnr();

/I Override CSimObject virtuals
virtual CObList* GetAttributes();
virtual void Serialize(FixArchive& anArc);

/I Public manipulator functions for TDOA_Meas
void addTDOA(InfoTDOA_Meas* value);

void removeTDOA(InfoTDOA_Meas* value);
InfoTDOA_Meas* nextTDOA();

BOOL isEmpty TDOACHtnr();

void removeAlITDOAs();

)/l end class TDOACninr

Listing 4-12 Header file for class TDOACntnr.

4.2.1.13 Class: TrackCninr

The class TrackCntnr is a derived class of InfoCollection. The TrackCntnr class is designed to hold
objects of type InfoGeoLocation. TrackCntnr objects are designed to be manipulated by the user.

The header file (TDOACntnr.h) for this class is shown in Listing 4-13.

class TrackCntnr : public InfoCollection
DECLARE_FLEX_SERIAL(TrackCntnr)

public:
TrackCntnr();
~TrackCntnr();

I/ Qverride CSimObject virtuals

virtual CObList* GetAttributes();

virtua! void Serialize(FixArchive& anArc);

/1 Public manipulator functions for DigitalSignals
void addTrack(InfoGeolLocation* value);

void removeTrack(InfoGeolLocation* value);
InfoGeolocation* nextTrack();

BOOL isEmptyTrackCntnr();

void removeAllTracks();

}// end class TrackCninr

Listing 4-13 Header file for class TrackCninr.
4.2.1.14 Class: SignalCntnr

The class SignalCntnr is a derived class of InfoCollection. The SignalCntnr class is designed to
hold objects of type InfoDigitalSignal. SignalCntnr objects are designed to be manipulated by the

user. The header file (SignalCntnr.h) for this class is shown in Listing 4-14.

22

4.2.2

class SignalCntnr : public InfoCollection

{

DECLARE_FLEX_SERIAL(SignalCnfnr)
public:

SignalCntnr();

~SignalCntnr();

/I Override CSimObject virtuals
virtual CObList* GetAttributes();
virtual void Serialize(FixArchive& anArc);

/I Public manipulator functions for DigitalSignals
void addSignal(InfoDigitalSignal* value);
void removeSignal(InfoDigitalSignal* value);
InfoDigitalSignal* nextSignal();

BOOL isEmptySignalCntnr();
void removeAllSignals();

};// end class SignalCntnr

Listing 4-14 Header file for class SignalCntnr.

Class: GeoLocator

Class GeoLocator inherits from CFlexObject and SimObject and is responsible for processing the
FDOA and TDOA measurements to determine the estimated position(s) of the transmitter(s).
GeoLocator contains references to three objects that are satisfied by the user. These references are to a .
TDOACntnr (mandatory), a TrackCntnr (mandatory), and a FDOACntnr (optional). TDOA and
FDOA measurements are take from the attached TDOACntnr and FDOAChtnr objects, processed
by the geolocation algorithms (see Appendix A) and the estimated target position(s) are placed in the
attached TrackCntnr for inspection by the user. The class diagram is shown in Figure 4-8, and Listing

4-15 contains the header file (GeoLocator.h) for this class.

 CFlexObject R
¢ m:l " SimObject
: {_(from Simulation)

m_TrackListRef m_TDOARef
m_FDOARef 1
- g £ N I Tl
/" TrackCntnr & ‘ ,~ TDOACntnr
<.(f_rom Databases)) 1. (.(f[om Databases)
P ’ FDOACntn\r_-",' """"

"\(f{om Databaseé)
Figure 4-8 Class diagram for the class GeoLocator.

23

i
Il A Geolocator processes TDOA and FDOA measurements from
/lmultiple receivers to create estimates of emitter

/llocations.

1l
// Forward declarations...

class TDOACnhtnr;

class FDOACntnr;

class TrackCntnr;

class DSymMatrix;

class DoubleMatrix;

class Geolocator : public CFlexObject, public SimObject

{
DECLARE_FLEX_SERIAL(Geolocator)
public:
Geolocator();
virtual ~Geolocator();
/I Override CFlexObject virtuals
COblist* GetAttributes();
COblList* GetReferences();
BOOL ReferencesResolved();
void Serialize(FixArchive& anArc);
CObject* copy(),
void flexInit();
// Available TDOA and FDOA measurements are processed.
void process();
private:
I/ A reference to a TDOA container. (Set via user interface.)
TDOACHtnr* m_TDOARef;
/I A reference to an FDOA container. (Set via user interface.)
FDOACHtnr* m_FDOARef;
/I The current geolocation estimate.
Geol.ocation* m_geol oc;
/| A reference to the set of output geolocation estimates.
/I (Set via user interface.)
TrackCntnr* m_TrackListRef;
/I Private member functions...
/' Solve for the geolocation estimate using marquardt's
// algorithm.
void doMarquardt(GeoLocation& geoLocEst,
const TDOA_Set& tdoaSet,
const FDOA_Set& fdoaSet,
const DSymMatrix& tdoalnvCov);
/1 The the contribution of the the TDOA measurents to the
// convariance matrix and gradient vector.
void addTdoaContrib(const Geol.ocation& geoLocEst,
const TDOA_Set& tdoaSet,
const DSymMatrix& tdoaCov,
DoubleMatrix& grad,
DSymMatrix& locEstinvCov);
void addFdoaContrib(const GeoLocation& geoLocEst,
const FDOA_Set& fdoaSet,
DoubleMatrix& grad,
DSymMatrix& locEstinvCov);
double computeFdoaChiSqrContrib(const GeolLocation& geol.ocPos,
const FDOA_Set& fdoaSet);
double computeChi2(const Geol ocation& geolLocEst,
const TDOA_Set& tdoaSet,
const FDOA_Set& fdoaSet,
const DSymMatrix& tdoaCov);
DoubleMatrix computeDeltaTs(const Vec3& geoLocPos,
const TDOA_Set& tdoaSet);
typedef Event<Geolocator> FIxEvent;

}./ end class Geolocator

Listing 4-15 Header file for class GeoLocator.

24

423

Matrix Classes

Several matrix classes were developed to support the geolocation algorithms. In particular, a matrix
inverse is required to compute the Chi-Square metric used by the Marquardt optimization algorithm.
Since the covariance matrices are symmetric, the computation of the inverse can be simplified by
decomposing the matrix to triangular form using Cholesky decomposition. Then the inverse can be
computed quickly via back substitution [Pre94]. The classes DoubleArray, DoubleMatrix, and
DSymMatrix implement the basic array and matrix operators including indexing, assignment, and
matrix multiplication. The class CholeskyD holds the result of the Cholesky decomposition of a
DSymMatrix and provides the back substitution algorithm.

The DSymMatrix class employs an internal symmetric matrix storage scheme to reduce redundant
memory use. The design of the matrix classes is shown in Figure 4-9. The interfaces for the
DSymMatrix and CholeskyD classes are shown in Listing 4-16. Listing 4-17 shows an example use
of these classes to compute a matrix inverse and the quadratic form of the chi-square.

" DoubleAray
~.. (from Utilities):

:
‘\’~ ’) .
,

" DoubleMatrix CholeskyD 3
J times() ¢ m R— U . CholeskyD() !
*-._ transpose() 1 - 1 - i

. DSymMatrix
's.. operator()

Figure 4-9 Class diagram for the matrix classes.

25

class DSymMatrix : public DoubleMatrix
{
public:

DSymMatrix(unsigned n); -

DSymMatrix(const DSymMatrix& m);

DSymMatrix(const DoubleMatrix& m);

~DSymMatrix();

double& operator () (unsigned i, unsigned j);

const double& operator () (unsigned i, unsigned j) const;

DSymMatrix& operator = (const DSymMatrix& m);

unsigned getindex(unsigned i, unsigned j);

unsigned dim() const { return m_dim; }

unsigned rows() const { return m_dim; }

unsigned cols() const { return m_dim; }

// Matrix operators...

/I Post multiply...

DoubleMatrix operator * (const DoubleMatrix& m) const;

DoubleMatrix product(const DoubleMatrix& m) const { return (*this)*m; }

/Il Pre-muiltiply...

friend DoubleMatrix operator * (const DoubleMatrix& m, const DSymMatrix & s);
void printOn(ostream& s);

protected:

unsigned m_dim;

UShortArray m_index;
}; // end class DSymMatrix
class CholeskyD
{
public:

/I Construct a Cholesky factorization of a symmetric matrix
CholeskyD(const DSymMatrix& x);

/I Destructor...

~CholeskyD();

void printOn(ostream& s);

const DoubleMatrix& factors() { return m_R; }

void solve(const DoubleMatrix& b, DoubleMatrix& x);
friend DSymMatrix inverse(const CholeskyD& x);

private:

DoubleMatrix m_R;
}:// end class CholeskyD

Listing 4-16 Class declaration for DSymMatrix and CholeskyD in C++.

26

4.3

4.3.1

#include “DSymMatrix.h”
int main()

{ ,
DSymMatrix M;

/I Read the matrix from a file...
M.readFrom(“input.dat’);

{// Compute the inverse...
DSymMatrxi Minv = inverse(M);

/1 Print the matrix inverse...
Minv.printOn(cout),

/I Now compute the Cholesky decomposition...
CholeskyD covDC(M);

/I Create a vector for the chi-square...
DoubleMatrix rhs(M.rows()}
rhs.readFrom(“lhs.dat”);

J Avoid the inverse by computing part of the chi-square by backsubstitution...
covDC.solve(|hs, rhs);

/I Complete the the chi-square calculation...
DoubleMatrix chiSquare = transpose(lhs) * rhs;

// Print the chi-square value...
cout << chiSquare(0) << end!;

Y end main AN N
Listing 4-17 Example use of the matrix classes.

Detailed Algorithm Design

The detailed designs for the geolocation algorithms are described in the following sections. Appendix B
contains the class diagrams for the relevant geolocation classes and Appendix C contains the
corresponding source code.

Geolocation - An Overview

The use of the GPS network to provide precision location information almost anywhere on the surface
of Earth is a proven navigational tool. With a GPS receiver, a person can accurately determine his
geographical location. To accomplish this precision geolocation, each GPS satellite continuously
transmits a signal - time synchronized among the GPS satellites. A GPS receiver intercepts these
signals from three or more GPS satellites, and based on the received times of the signal, determines the
propagation times from each active satellite. The propagation times are converted to distances between
the GPS receiver and the active satellites. When coupled with precise knowledge of the GPS satellite
positions at the time of signal reception, the distance between the GPS receiver and each active GPS
satellite defines a single point (the location of the GPS receiver) and the surface of Earth.

Relative to determining the position of a ship for navigation purposes, the system is more than
adequate. However, relative to the mission of search and rescue, the system has a major flaw. A small
ship lost at sea might very well be able to locate itself, but without adequate communications has no
way of transmitting its position to rescue services. One way to overcome this problem is to reverse the
geolocation process - that is, instead of having a constellation of GPS satellites transmitting a unique

27

time synchronized signal to be received by a GPS receiver, a GPS emitter could transmit a signal to be
received by each visible GPS satellite. By computing the propagation times from transmitter to the
visible GPS satellites, the distances from the transmitter to the visible satellites can be determined.

For this procedure to work, the propagation times from the transmitter to each satellite must be
determined. However, without elaborate and expensive timing, the exact time of signal transmission
cannot be determined; without knowing the time of signal transmission, the propagation time cannot be
computed. But is not necessary to determine the propagation time from the transmitter to each
satellite. Knowing the difference in propagation time from the transmitter to two satellites also
provides information regarding the location of the transmitter. Since correlation techniques can be used
to compute the TDOA without exact knowledge of the time of transmission, TDOA techniques
overcome the unknown time of transmission problem. Each TDOA measurement restricts the
transmitter to lie on a two-dimensional surface in three dimensional space. With two independent
TDOA measurements, the transmitter is restricted to lie on a line (the intersection of the two surfaces).
If the transmitter is further restricted to liec on Earth’s geodetic ellipsoid of revolution (such as would
be the case for a ship at sea), the transmitter’s location will be the intersection of the TDOA line with
the geodetic ellipsoid of revolution, Normally this line will intersect with the ellipsoid of revolution at
two points; however, this dual location ambiguity can usually be resolved on the basis of line-of-sight
visibility. That is, only one of the two points will be visible to the subset of satellites that collected the
transmitted signal. If the transmitter is not restricted to lic on Earth’s geodetic ellipsoid of revolution
(such as an airplanc), a third independent TDOA measurement is required to locate the transmitter.

For stationary or very slowly moving transmitters and rapidly moving satellites, information regarding
the transmitter location can be obtained from the frequency of arrival of the transmitted signal at each
satellite. Motions between the transmitter and the satellites introduce a Doppler shift into the received
frequency relative to the transmitted frequency. The amount of frequency shift is, among other things,
a function of the transmitter’s location. As with time measurements, the exact transmitter frequency is
usually unknown. Thus, to exploit received frequency information to locate the transmitter, the FDOA
of the signal as collected at two satellites is used instead of the absolute frequency shift.

For stationary transmitters restricted to lic on Earth’s geodetic ellipsoid of revolution, it is often
possible to locate the transmitter by using a combination of TDOA and FDOA measurements. The
advantage of using both TDOA and FDOA instead of TDOA alone is the reduction in the number of
satellites required to “see” the signal. A single pair of satellites is often sufficient for TDOA/FDOA
geolocation, whereas for TDOA geolocation alone, three satellites must resolve the transmitted signal.
The drawback of TDOA/FDOA geolocation relative to TDOA geolocation alone is that FDOA
techniques give erroneous results if the transmitter is moving.

In terms of FlexSim++, Geolocation refers to the location of a surface emitter using a constellation of
satellite receivers with GPS orbits.

A track position is determined by calculating an error ellipsoid for a stationary emitter as a function of
signal strength, various error sources, and data fusion techniques (including TDOA and FDOA).

28

43.2 TDOA Processing
TDOAs are computed within the TDOAGenerator from times of arrival which are computed in the
class Environment (see Figure 4-10).

Reference Satellite
Satellite

Ao

TOA

RECEIVER Signals arrive at different times due EMITTER
to path lengths that are different

Figure 4-10 Illustration of the time of arrival phenomena. Note that, TDOA = TOA,f- TOA.

The Time Of Arrival (TOA) is stored in an analog signal which is created by the Environment. The
GPS receiver and signal processor collect the analog signal, process the signal to create a digital signal,
and place the digital signal in the SignalCntnr.

The TDOAGenerator polls the SignalCntnr periodically, extracts signals when present, and
processes the digital signals to produce a TDOA. TDOAs are computed by the TDOAGenerator in

the following manner:

1. Poll the SignalCntnr every deltaT (update rate for the TDOAGenerator).
2. Ifthe SignalCntnr is empty repeat 1., else place the N signals in a local data structure and label

the first signal as the reference signal.

3. Iterate through the list starting with the second signal and subtract the time of arrival for the
reference signal from the time of arrival at the current signal to produce a TDOA. Apply
measurement errors to the TDOA and store the result in the TDOACntnr. Repeat this step N-1

times.

43.3 FDOA Processing
FDOAs are computed within the FDOAGenerator from shifted frequencies which are computed in
the class Environment (see Figure 4-11). The shifted frequency is computed as follows:
Let, f,be the emitted frequency
P. be the position vector of the emitter
V. be the velocity vector of the emitter
P, be the position vector of the receiver
V; be the velocity vector of the receiver

29

C be the speed of light
r be the range rate

fs be the shifted frequency
<vecl, vec2>be the dot product of vecl with vec2

Then, dzlPe'Prl
1=<(Pe-Pp), (Ve-Vy)>/(C*d)
fs=1f*(1-r1)
——
Reference .
Satellite Satellite
/-
ron S
of b P FOA
\Ek_ - I
RECEIVER Signals arrive at different frequencies EMITTER
due to Doppler shifts that are imposed
by spacecraft and Earth motion

Figure 4-11 Illustration of the frequency of arrival phenomena. Note that, FDOA = FOA ref- FOA.

The shifted frequency is stored in an analog signal which is created by the Environment. The GPS
receiver and signal processor collect the analog signal, process the signal to create a digital signal, and
place the digital signal in the SignalCntnr. The FDOAGenerator polls the SignalCntnr
periodically, extracts signals when present, and processes the digital signals to produce an FDOA.

FDOAs are computed by the FDOAGenerator in the following manner:
1. Poll the SignalCntnr every deltaT (update rate for the F DOAGenerator).

2. Ifthe SignalCntnr is empty repeat 1., else place the N signals in a local data structure and label

the first signal as the reference signal.

3. lterate through the list starting with the second signal and subtract the shifted frequency of the
reference signal from the shifted frequency of the current signal to produce an FDOA. Apply
measurement errors to the FDOA and store the result in the FDOACntnr. Repeat this step N-1

times.

30

walqosq 2)dums ay1 10f w43vI(Q 0LDUIIS 13090 ‘71 24n314

woyeld

Jeufiis
Jepwg
E]

|ebip

juLojield
1e9i0

() e|dwes

110$58201d
{eubigejales

10888204
vOQaLuoneispunoig

Japusuel]
JETE]

ZianBIaY
alijjaies

=

(voqie) ppre

(1)) jeubigarauial »\

1apwa) feufigppe

El
LN
(nodappioen) ppe

10553304
u013e0085

JuguIuoIAUg
8yl

A
(zieubisrentip) ppe

{siy1) (eubigaseunes

/

() ojdwes
o

10588201d

-—
(004 Jope
“v0Q4uoneiSpunolg

10ss830)d
[euBigayales

-—
feufitsialiwa

() ssaaoud

718N398Y
aylaies

wiojield

yodayyaes)
-—

() ssevoud
Zuuoyield

(0]

Qeubis
leubip

voaLe Y0Q4e

31

4.4 Geolocation Test Environment

4.4.1

4.4.1.1

In order to investigate the mixed fidelity techniques discussed in earlier sections and to test the
geolocation algorithms, a test environment was created. The driver models created to support the
geolocation tests and the mixed fidelity investigations are discussed in the following sections. The
object scenario diagram for the geolocation problem is shown in Figure 4-12,

Driver Models

To drive the geolocation algorithms, we created several models that combine to generate a digital signal
for processing by the TDOA and FDOA generators. These models capture transmitter signal
properties, environmental cffects, satellite orbit dynamics, receiver characteristics and satellite signal
processing capabilities.

A FlexSim class captures each model’s parameters, interfaces, and behavior. Instances of these classes
are created to model the transmitting platform and receiver satellites in a geolocation problem scenario.

Transmitter Model

The transmitter model is characterized by the bandwidth, center frequency, and power of the signal it
radiates into the environment. These properties are captured by the class Transmitter provided by
the physics library. The class FlxTransmitter adapts the class Transmitter to the FlexSim
environment and provides a reference to the transmitter’s host platform. The parameters of the
Transmitter class are exported to the FlexSim environment by the FIxTransmitter::GetAttributes
member function. At initialization time, the transmitter model adds a signal to the environment with
the appropriate characteristics for possible interception by other models (e.g., a receiver model). The
relationship among these classes is shown in the Booch diagram of Figure 4-13 while the interfaces are
shown in Listings 4-18 and 4-19.

o Transmitter . CFlexObject " SimObject
"\(from Electronics) S, (from Flex) . “.(from Simulatioq)

* FixTransmitter
¢ getAttributes() {
“~. getReferences()\

. _1"/

m_platformRef

1

' AN -
./ FlxPlatform
. ,

Figure 4-13 Class diagram for the transmitter model.

32

class Transmitter : public PhysObject

{
public:

Transmitter();

Transmitter(const Transmitter&);

double bandWidth() const { return m_bandWidth; }
double centerFreqf) const { return m_centerFreq; }
double power() const { return m_power; }

int id() const { return m_id; }

protected:

I/ Bandwidth (Hz) of a signal transmitted by this receiver.
double m_bandWidth;
// Center frequency (Hz) of this transmiiter.
double m_centerFreg;

/I Power (W) of transmitter
double m_power;

{1 Unique 1D for this instance of transmitter
int m_id;

// Unique transmitter ID; as it is declared a static member, it
J/ is common fo all instances of class Transmitter so each
/I time an instance is constructed, it can be incremented to
// represent a unique ID

static int c_uniquelD;
}; // end class Transmitter

Listing 4-18 The Transmitter class declaration in C+.

class FixTransmitter : public CFlexObject, public SimObject, public Transmitter

{
DECLARE_FLEX_SERIAL(FixTransmitter)
public:
FIxTransmitter();
FixTransmitter(const FixTransmitter& trans);
virtua! ~FixTransmitter();
/I Override CFlexObject virtuals
CObList* GetAttributes();
CObList* GetReferences();
BOOL ReferencesResolved();
void flexinit();
void simulate();
CObject* copy();
void Serialize(FIxArchive& anArc);
private:
/I The platform mounting this transmitter. (Set via user
/linterface.)
FlxPlatform *m_platformRef,
}; // end class FixTransmitter

Listing 4-19 The FixTransmitter class declaration in C++.

4.4.1.2 Receiver Model

The receiver model is characterized by the bandwidth of possible signal it can receive from the
environment. No modeling of the receiver antenna beamwidth and direction is accomplished at this
time. These properties are captured by the class Receiver provided by the physics library. The class
FlxReceiver adapts the class Receiver to the FlexSim environment and provides a reference to the
receiver’s host platform. The parameters of the Receiver class are exported to the FlexSim
environment by the FIxReceiver::GetAttributes member function. When the Receiver::sample
member function is invoked, the receiver model retrieves signals from the environment that have been
placed there by a transmitter. The relationship among these classes is shown in the Booch diagram of

Figure 4-14 while the interfaces are shown in Listings 4-20 and 4-21.

33

-~ .- PR

PR
- P
- - - ~eos ~

," CFlexObject /" SimObject ,© Receiver
~._ (from Flex) ‘.« (fram Simulation) "\ (from Electronics)
*y lI e : .\\ :

- .
] Pie

/" FixReceiver y

(: getAttributes() ¢
“--getReferences()’

,
' Lt aae-

) g

a"

1

m_platformRef

.- FixPlatform

’ .
I, '
)

-\ v

[1

Figure 4-14 Class diagram for the receiver model.

class Receiver : public PhysObject

{

public;

Receiver();

Receiver(const Receiver& r);

// Return an analog signal that is the result of sampling
I/ the environment for signal within the bandwidth and
// beamwidth of this Receiver.

AnalogSignal sample(Environments.);

unsigned id() const { return m_receiverID; }
protected:

// Receiver bandwidth.
double m_bandWidth;

/7 Unique ID for this instance of receiver
int m_receiveriD;

/1 Unique receiver ID; as it is declared a static member, it
/l"is common to all instances of class Receiver so each

/I time an instance is constructed, it can be incremented to
/I represent a unique ID

static int c_uniquelD;

}; // end class Receiver

Listing 4-20 The Receiver class declaration in C++.

34

class FIxReceiver : public CFlexObject, public SimObject, public Receiver
{
DECLARE_FLEX_SERIAL(FixReceiver)

public:

FixReceiver();

FIxReceiver(const FIxReceiver& r),
virtual ~FIxReceiver();

/I Override CFlexObject virtuals
virtual CObList* GetAttributes();
virtual CObList* GetReferences();
BOOL ReferencesResolved();
void flexinit();

void simulate();

CObject* copy();

void Serialize(FixArchive &anArc),
FixPiatform* getPlatformRef() { return m_platformRef;}

private:

J/ The platform mounting this receiver. (Set via user interface.)
FixPlatform* m_platformRef;

}; // end class FixReceiver
Listing 4-21 The FixReceiver class declaration in Ct+.

4.4.1.3 Environment Model

For the geolocation problem, the primary purpose of the environment model is the manipulation of
signals as they are transmitted into and received out of Earth environment. Signals that are added to the
environment are stored in their original form along with their point of origin. This allows any
transformations due to travel distance, path attenuation, and Doppler shift to be applied at the time
that a receiver samples the environment. Currently, the signal phase and Doppler shifts are given
respectively by:

¢p=d/C

N = (B - B)*(V,-V,)/(C*d)

Where d is the distance between the satellite and the transmitter, C is the speed of light and P and V are
the transmitter and satellite velocities. Transmitters do not have to have any knowledge of the receivers
that may intercept their signals. When a transmitter ceases to transmit its signal, it removes the signal
from the environment. Receivers are returned a modified copy of the original signal that reflects the
applied environmental effects or no signal at all if the Earth-satellite geometry prevents interception.
The environment model is implemented by the class Environment provided by the physics library.
The class FixEnvironment adapts the class Environment to FlexSim. Transmitted signals are
represented by the class EnvSignal. The Environment class maintains a list of all environment signals
as a class (static) variable. A single, global Environment object is created for access by all the models
within FlexSim. The design of the environment model is illustrated in Figure 4-15 and the interface is
shown in Listing 4-22.

35

.- PR
- \ -
~Sao” ~ ron- ’
¢ ~o
~

l_-‘--, \‘
- Environment .~ FIxEnvironment - Vec3 K
’ . L4 s s’ ’
: addSignal() !

‘«—_ (from FlexSim) ¥ "~ _(from Math)
"~ _retrieveSignal() :

! ’
]
1 _—— o
\\ t " P4
’

X P S 1 -

[y , -= ' -

\ -

~ -~

\,1
-

\ -
- 1 ~ - =

m_ptOfOrigin
c_signals

1 ST J EnvSignal B
,/ Object %+
.+ OrderedCltn)

| m_bandWidth : double .’
: , (from Utilities) -4._. II m_centerFreq : double:
(from Collections).) ‘..

Figure 4-15 The Environment Model Classes.

36

class EnvSignal : public Object

public:

EnvSignal(const Transmitter&);

~EnvSignal();

double centerFreq() const { return m_centerFreq;}
void setCenterFreq(double) { m_centerFreq =, }
double phase() const { return m_phase; }

void setPhase(double p) { m_phase =p; }

double bandWidth() const { return m_bandWidth:}
Vec3 originPos() const { return m_ptOfOrigin;}
Vec3 originVel() const { return m_velOfOrigin;}

int transmitterlD() const { return m_transmitterlD; }
/I Override Object virtuals

intisEqual(const GObject&) const;

int compare(const GObject&) const,

unsigned long hash() const { return 0;}

void printOn(ostream&) const {;}

private:

/I The signal bandWidth (Hz)

double m_bandWidth;

/I The center frequency of the signal. (Hz)

double m_centerFreq;

/I The phase of the signal (secs)

double m_phase;

/I The signal power (dB)

double m_power,

/I A unique identifier for the source transmitter. Allows
Il signal to be deleted from the environment when

i transmitter is silent.

int m_transmitteriD;,

/I The ECR position of the source transmitter.

Vec3 m_ptOfOrigin;

/I The ECR velocity vector of the source transmitter.
Vec3 m_velOfOrigin; ’

};// end class EnvSignal

typedef OrderedCitn EnvSignalList;
class Environment

public:

~Environment();

const FTime& epochTime() { return m_epochTime; }
const void epochTime(FTime& t) { m_epochTime = t; }
// Adding signal to the environment means that a

Jl transmitter is current transmitting the signal. If

J transmitters cease transmitting, the signal should be
// removed.

void addSignal(EnvSignal* aSignal);

1/ All signals within the beamwidth, and bandwidth of the
/I receiver are modified according to the relative geometry
J/ of the emitter and the receiver including atmospheric
/I attenuation effects and added to the retumed list of

// signal detectable by that receiver.

EnvSignalList retrieveSignal(const Receiver& receiver);
1/ The signal with the given transmitter ID is removed.
void removeSignal(const Transmitter& transmitter);
protected:

FTime m_epochTime;

// Alist of all signals currently fransmitted into the

/{ environment by transmitters.

static EnvSignallist c_signals;

}:// end class Environment

Listing 4-22 Environment and EnvSignal class declarations in C+.

37

4.4.1.4 Signal Processor Model
The signal processor model is parameterized by the sample rate (integration time) and effective SNR
(Signal to Noise Ratio) of the satellite receiver electronics. The model is implemented directly in
FlexSim by the SignalProcessor class. A reference to receiver and to an output signal container is also
provided. The signal processor calls the receiver sample function to create an analog signal. This analog
signal is then converted to a digital signal and added to the output signal container. Figure 4-16 shows
the Booch class diagram for the SignalProcessor class and the interface is shown in Listing 4-23.

~all LR .

/___SimObject K /' CFlexObject
; (romSimuiatin) 0 (from Flex)

.
’

NeL.rT
L=
N
PRt T PR S

. Sel

SignalProcessor ™,

" || m_sampleRate : double,”
. i m_SNR : double

Figure 4-16 Class Diagram for the SignalProcessor Class.

class SignalProcessor : public CFlexObject, public SimObject

{
DECLARE_FLEX_SERIAL(SignalProcessor)
public:
SignalProcessor();
~SignalProcessor();
SignalProcessor(const SignalProcessor& sp);
1/ Override CSimObject virtuals
CObList* GetAttributes();
CObList* GetReferences();
BOOL ReferencesResolved();
void flexInit();
void simulate();
CObject* copy();
void Serialize(FIxArchive& anArc);
protected:
void Process();
private:
// Sample Rate (Hz). (Set via the user interface)
double m_sampleRate;
1/ Signal-to-noise ratio. (Set via the user inteface)
double m_SNR,;
I A reference the collection containing the output digital
// signals. (Set via user interface.)
SignalCninr* m_outputRef;
/I Reference to a receiver. {Set via the user interface)
FixReceiver* m_receiverRef:
}. / end class SignalProcessor

Listing 4-23 SignalProcessor class declaration in C++.

38

4.4.1.5 Orbital Platform Model

The orbital platform model simulates the dynamics of a satellite in Earth orbit. The class
FixOrbPlatform implements the model and is derived from the FlxPlatform class to allow any
object’s FixPlatform reference to be assigned to a FlxOrbPlatform object. An orbital platform
periodically updates its position by propagating its orbital state to the current simulation clock time.
Asynchronous updates of the platform state are allowed through the propagateTo member function.
The orbital dynamics are modeled as planar, elliptical trajectories using orbital elements. [Bat71].

~a
- -——

/' SimObject 7 ./ FixPlatform
(from Simulation);” ! i

-

Figure 4-17 Diagram of the FlxOrbPlatform Class.

class FixOrbPlatform : public FixPlatform, public SimObject

{
DECLARE_FLEX_SERIAL(FIxOrbPlatform)
public:

FixOrbPlatform();

FixOrbPlatform(const FIxOrbPlatform&);
FIxOrbPlatform(const FTime& aTime,
const FixOrbState& aState);
~FIxOrbPlatform();

void Serialize(FixArchive&);

CObList* GetAttributes();

void flexinit();

virtual Vec3 getPos();

virtual CObject* copy();

void propagateTo(const FTime& aTime});
void simulate();

void log();

virtual Vec3 getVel();

virtual double angularVel();

private:

double logRate;

FixOrbState state;

typedef Event<FIxOrbPlatform> FIxEvent;

}.// end class FixOrbPlatform
Listing 4-24 FixOrbPlatform class declaration in C++

39

4.4.1.6 TDOA_Generator Model

The TDOA_Generator model generates TDOA measurements from digital signals.
TDOA_Generator contains two user-setable references (see Figure 4-18) to a SignalCntnr and a
TDOAChntnr.

Signals are extracted from the SignalCntnr, processed to produce “noisy” TDOA measurements, and
the TDOA measurements are then placed in the TDOA Cntnr to await processing by the
GeoLocator. TDOA_Generator has an associated “flex” class, FIXTDOA_Generator, that handles
the simulation and user interface duties keeping the model code separate from the simulation and user
interface hierarchy. The separation of model code and administrative code (simulation and GUI) greatly
facilitates portability and code reuse. The header file (TDOA_Generator.h) is shown in Listing 4-25.

. .~
—— _—— .
s . --

./ CFlexObject £ TDOA_

;
S e—_ ,)
S._ (from Flex) ¢ < Generator /

.

m_signalsRef
m_TDOARef

1

" FIXTDOA_ ./ SignalCntnr
‘.. Generator |

,«'l TDOACntn}--:- SoS=T
\ (eré) *(from Databases)

\
'

P A

[} -
.o \ . - [

Figure 4-18 Class Diagram for the TDOA_Generator and Class FIxTDOA_Generator.

11
//ATDOA_Generator creates Time Difference of Arrival
/' measurements from two digital signals created by the
H/reception of a signal by two or more satellites.

I

class TDOA_Generator : public SimObject
{

public:
TDOA_Generator();
virtual ~TDOA_Generator();
protected;
/I Periodically iteratives throught the input signal list
/I and creates new TDOA meaurements.
void Process();
/ a random number seed for generating measurement errors
long m_Seed:;
/" A reference to a collection digital signals. (Set via
/I user interface.)
SignalCntnr *m_signalsRef;
Il A reference to the the output TDOA set. (Set via user
/I interface.)
TDOACNtnr *m_TDOARef;
}; // end class TDOA_Generator

Listing 4-25 Header file for class TDOA_Generator.

40

4.4.1.7 FDOA_Generator Model

The FDOA_Generator model generates FDOA measurements from digital signals.
FDOA_Generator contains two user-setable references (see Figure 4-19) to a SignalCntnr and a
FDOAChntnr. Signals are extracted from the SignalCntnr, processed to produce “noisy” FDOA
measurements, and the FDOA measurements are then placed in the FDOA_Cntnr to await processing
by the GeoLocator. FDOA_Generator has an associated “flex” class, FIXFDOA_Generator, that
handles the simulation and user interface duties keeping the model code separate from the simulation
and user interface hierarchy. The separation of model code and administrative code (simulation and
GUI) greatly facilitates portability and code reuse. The header file (FDOA_Generator.h) is shown in
Listing 4-26.

 CFlexObject “ Fpoa_
s.._ (from Flex) @ < Generator !

Lo g s vl

R &
m_signalsRef m_FDOARef

T 7T 1~\ 1 bl N »
/" FIFDOA_ " SignalCntnr > " FDOACntnr
s e . (from Databases) ‘. (from Databases)

- -

- .-)
1 . i

[y -

Figure 4-19 Class diagram for the FDOA_Generator and class Fix FDOA_Generator.

41

1
//A FDOA_Generator creates Time Difference of Arrival
/'measurements from two digital signals created by the
//reception of a signal by two or more satellites.

i
class FDOA_Generator : public SimObject
{

public:
FDOA_Generator();
virtual ~FDOA_Generator();

protected:

/I Periodically iteratives throught the input signal list
i/ and creates new FDOA meaurements.
void Process();

// a random number seed
long m_Seed;

1 A reference to a collection digital signals. (Set via
/I user interface.)
SignalCntnr *m_signalsRef:

I A reference to the the output FDOA set. (Set via user
/I interface.)
FDOACNtnr *m_FDOARef:

typedef Event<FDOA_Generator> FixEvent;

}, // end class FDOA_Generator
Listing 4-26 Header file for class FDOA_Generator.

44.2 Mixed Fidelity Modeling Options/Classes

4.4.2.1 Reuse Through Multiple Inheritance Example

One example from the sample problem of model reuse through multiple inheritance is shown in Figure
4-20. We create new class FIxTransmitter by multiply inheriting from the CFlexObject class and the
external model class Transmitter.

Using this approach, the Transmitter class can be maintained in a separate library while only those
services necessary for interaction with the simulation environment need be added to the derived class.
Listing 4-27 shows the actual implementation in C++.

em——e "

R CFIexObjectN}
/" Transmitter K. “(from Flex) |

':.(from Electronicé) s P

’
Y - ’

=

;
. FiXTransmitter
/

getAttributes()
“~~-getReferences()\

N .=

Figure 4-20 Example of multiple inheritance in the creation of the
Geolocation Transmitter Model.

42

5.

{
public:
FixTransmitter();
FIxTransmitter(const FixTransmitter8 trans);
virtual ~FIxTransmitter();
1/ Override CFlexObject virtuals...
COblList* GetAttributes();
CObList* GetReferences();
BOOL ReferencesResolved();
void flexinit();
void simulate();
CObject* copy();
void Serialize(FixArchive& anArc);
private:
I The platform mounting this transmitter. (Set via user
/linterface.)
FixPlatform *m_platformRef,
}, /1 end class FixTransmitter

class FixTransmitter : public CFlexObject, public SimObject, public Transmitter

Listing 4-27 Definition of class FixTransmitter using multiple inheritance in C+.

GEOLOCATION PROBLEM — ANALYSES AND RESULTS

-

Crbital Recewer :

Platform Signal
Processor

. ol o

Orbital Receiver

FlexSim++ v2.0 - [TdoaAndFdoa.SYS]

Platform Signat

Slgnal

Processot
w ‘M
4

Signal
Orbital Receiver

e Ty : Container
Plotf
ererm Signal
ﬂ Processor
.) g :
s ;

Orbital Receiver
Platform

Signal
Processor

|

Fixed Site

Transmitter

@ —

TDOA

TDOA
Generator

/
\

DOA|

FDOA
Generator

TDOA

Container \

’F"
e

Geolocator
FDOA
FDOA
Container Track
Track
Container

Teady . —

Figure 5-1 System configuration used for Monte Carlo analysis of TDOA/FDOA geolocation.

43

In order to test the ability of the geolocation algorithms to estimate the position of a transmitter, a
modest Monte Carlo analysis was performed. The system configuration that was the basis for the
Monte Carlo analysis is shown in Figure 5-1. The principle components of the system include the
following:

* constellation of four GPS satellites in representative orbits (ephemeris’ data shown in Table 5-1)

* single transmitter (transmitter parameters shown in Figure 5-2 and transmitter positions shown in
Figure 5-3)

* position estimates based on a single TDOA and FDOA measurement per satellite

Transmitter

Band Width Hz
Center Frequency Hz
Power W
FixPlatform Reference Fized Site

Transmitter

Figure 5-2 Transmitter Characteristics.

44

rF|xd3|te T

Fised Site

5-3 Transmitter location.

Table 5-1 Satellite Ephemeris Data

Satellite Ephemeris Data (Earth Centered Rotational (ECR) Coordinates)
x (m) y (m) z (m) x dot (m/s) | y dot (m/s) | zdot (m/s
Satellite 1 12836945.0 | 22234240.0 | 6868244.0 -1000.0 1012.0 -1406.0
Satellite 2 9400573.0 | 16282271.0 | 18770904.0 500.0 -1580.0 1120.0
Satellite 3 24799072.0 | 6644891.0 | 6868244.0 -500.0 -131.0 1932.0
Satellite 4 16269153.0 | 9393000.0 | 18786000.0 1000.0 1039.0 -1385.0

The simulation was run 15 times, where the random number seeds for both the TDOAGenerator and
the FDOAGenerator were the only parameters changed from run to run. The results of the Monte
Carlo analysis are shown in Table 5-2. The average absolute error (magnitude of the vector difference)
between the estimated positions and the actual transmitter position is approximately 90 meters. The
standard deviation for the estimates was nearly zero. It should be noted that the transmitter position
was in a “sweet spot” with respect to the satellite positions and that other transmitter positions show
greater errors. The determining factor for this geolocation scheme is the relative geometrics between the
transmitters and the satellites. As such, a more comprehensive study would have investigated a larger
matrix of transmitter positions with geolocation occurring at various times of the day and year with a
full complement of GPS satellites. A study of this magnitude was beyond the scope of this project but
could be accomplished using the simulation in its current state of development.

45

Table 5-2 Position estimates for each of the 15 Monte Carlo trials

Results of Monte Carlo Trials
Latitude Longitude Altitude (meters)
(radians) (radians)

3.26E-06 1.50000 116.3300
-2.28E-07 1.50000 99.7084
-8.14E-06 1.50001 50.4425
1.44E-06 1.50000 99.2963
4.36E-06 1.49990 126.9280
5.90E-07 1.50000 103.4750
2 05E-07 1.50000 105.8900
-6.27E-07 1.50000 92 6837
-2.88E-06 1.50000 80.8904
-1.10E-06 1.50000 93.0702
6.74E-07 1.50000 104.5140
2. 76E-06 1.50000 117.6170
1.55E-06 1.50000 108.1250
-1.89E-06 1.50000 82.1709
-7.43E-06 1.50001 57.3046

CONCLUSIONS, LESSONS LEARNED

We have presented several promising solutions to mixed fidelity simulation. We have explored both
dynamic solutions that support flexible assembly of mixed-fidelity simulations and static solutions
that support implementation of mixed-fidelity models via software reuse. The use of multiple
inheritance for external model reuse has been established as a viable approach and the separation of
object model properties in the design of model components has been established as a design alternative.
A stable set of geolocation algorithms has been created that provides a foundation for further analysis.
Some of our design approaches have been implemented in software and their use demonstrated in the
geolocation sample problem.

46

The choice of solution for a particular model or project depends not only on technical merit, but also
on software reuse considerations. For example, the creation of a “fat” 6-DOF class was driven by a
need to reuse large, monolithic, legacy programs. The selection of a static solution such as
parameterized types may be preferred if efficiency is given priority over flexibility for the user. Other
potential solutions such as interface expansion and embedded expert systems remain candidates for
future work. A simulation developer needs to have a number of design approaches available and we
have attempted to expand that list.

Since one of the main motives for mixed-fidelity simulation is model reuse, we have also explored
design approaches that enhance the development of reusable class libraries and portable model classes.
We have defined a significant set of lessons learned in the creation of reusable class libraries for

modeling and simulation.

RPN |
. CFiexObject 7 Environment
...... Lo \\\(from Flex) t : (' (from EnvModeIs)'

|
|
, |

‘ ~.'\
,/ Clock |
|
1

....... — I FixClock

.’ SimObject | {,.. (romFlex)
| .
l

I """"" P
1 S Celestial
1 <. Body

| m Env Models)

(Y ag

Planet

’
.

((frpm Env Mode(s)

| \
. !
] . et
[y . -
I .-
PR
| ' ;

Body 7

" FixPlanet

.
.

|
|
I
|
Simulation FlexSim ‘...-~’ | Environment
|
]
|

Classes

Classes Classes

Figure 6-1 Overview of design that promotes class library reuse.

Figure 6.1 illustrates several design constructs that we employed to promote software portability and
model reuse. We used multiple inheritance from both external model and simulation classes to keep
their source libraries independent of the FlexSim software. Note that the Planet class had to be derived
“yirtual” from the base class CelestialBody to prevent the multiple inclusion of a CelestialBody

47

object in instances of the FlexSim FIxPlanet class. The use of virtual inheritance must be implemented
apriori in the external class library to promote reuse by application developers that may not have
access to that libraries source code. Also note that no path exists up the inheritance hierarchy of the
external library classes to any base class in the FlexSim application class hierarchy. This prevents any
dependence of the external library classes on the CFlexObject class and by inheritance on the class
CObject from MFC®. Use of private (implementation) inheritance can also limit the dependence of
application classes on proprietary class libraries like MFC®. This form of inheritance reuses the
implementation of the windowing system without exporting that interface to the rest of the
application. When this approach is used, the application depends on the interface exported by the
reuse class - insulating the application from any changes to the proprietary library (changes in new
versions of MFC® have already adversely affected this project) or re-implementation via another class
library. The following are lessons learned for class library reuse:

* Do not declare global variables in the global name space from within a class library.

* Declare member variables “protected” to allow access by derived classes. (Remember that in
doing so you are promising the users of this class that you will not change or delete this
variable!)

e Use “virtual” inheritance within the class library when both the base and derived classes are
to be reused. (This will prevent casting pointers down to virtually derived classes thus
limiting the use of certain container class implementations.)

¢ Declare member functions, including destructors, as “virtual” to allow overriding wherever
sensible to do so.

® Use “const” wherever that promise is kept. If a member function does not change its object,
then declare it “const.”

48

RECOMMENDATIONS FOR FURTHER WORK

Further work is required to explore the use of expert systems to be able to detect model inconsistencies
when no interface type rules are violated. The relationships that exist between this work and simulation
formalisms such as DEVS [Zei90] also need to be explored. The combination of flexible model
assembly, a broad simulation formalism, a GUI environment, automated expert user support, data
analysis tools, and an object oriented software development environment can achieve far better use of
simulation in the support of system development and scientific research.

49

8.

REFERENCES

[Bch93]
[Car95]

[Str91]
[Wht94]

[Can95]
[Ho93]
[Otn89]

[Her96]
[Zei90]

[Aan94]

[Dra81]

[Hol92]
[Bat71]

[Pre94]

Grady Booch, Object oriented Analysis and Design with Applications, Benjamin/Cummings,
Redwood City, CA, 1993.

Martin D. Carrol and Margaret A. Ellis, Designing and Coding Reusable C++, Addison
Wesley, 1995.

Bjarne Stroustrup, The C++ Programming Language, 2nd Ed. Addison Wesley, 1991.
Iseult White, Using the Booch Method: A Rational Approach, Benjamin/Cummings,
Redwood City, CA, 1994.

Cannon et al., Development of the MICOM Infrared Seeker Analysis Tool, Proceedings 1995
KRC Conference.

K. C.Ho and Y. T. Chan, Solution and Performance Analysis of GeoLocation by TDOA,
IEEE Transactions on Aerospace and Electronic Systems, Vol 29, No. 4, October 1993.

Robert K Otnes, Frequency Difference of Arrival Accuracy, IEEE Transactions on
Acoustics, Speech, and Signal Processing, Vol. 37, No.2, February 1989.

Thomas Herring, The Global Positioning System, Scientific American, February 1996.

Bernard Zeigler, Object oriented Simulation with Hierarchical, Modular Models, Academic
Press, 1990.

Aandrzej Lewandowski and Donna Calhoun, Object oriented Framework for Dynamical
Systems Modeling, Object oriented Simulation Conference Proceedings, 1994.

Draper and Smith, Applied Regression Analysis, Wiley Inc., 1981.
James Holton, An Introduction to Dynamic Meteorology, Acadamic Press, 1992.

Roger R. Bate, Donald D. Mueller, Jerry E. White, The Fundamentals of Astrodynamics,
Dover Publications, Inc., 1971.

Press, Veterling, Teukolsky, & Flannery, Numerical Recipes in C, 2nd Edition, Cambridge
University Press, 1994.

50

APPENDIX A

This appendix contains the detailed algorithm design flowcharts for the geolocation algorithm. These
designs, in conjunction with the class designs shown in Appendix B, were used to produce the

geolocation source code.

Ai

Appendix A

INPUTS:

N, Number of TDOA Measurements, = 0 IF FDOA Only

NS1() First Sensor Number for each TDOA/FDOA Measurement

NS2() Reference Sensor Number for each TDOA/FDOA Measurement

S1(6,) ECR Position and Veiocity of First Sensor for each TDOA/FDOA
Measurement

S2(6,) ECR Position and Velocity of Reference Sensor for each TDOA/FDOA
Measurement

O ser 1 SIGMA Uncertainty in TDOA Measurements Due to Signal Processing:

\3

w B JBeTe SNR
Where B is the Signal Bandwidth,
T is the Integration Time, and SNR is the Signal to Noise Ratio

O cLock 1 SIGMA Clock Error (Sec)

O amv, 1 SIGMA Measurement to Measurement Uncertainty in Travel Time Due to
the Atmosphere

O amv, 1 SIGMA Residual Bias Error in Travel Time Due to the Atmosphere After
Calibration

O spr 1 SIGMA Uncertainty in FDOA Measurements Due to Signal Processing:

3

n T vBeTeSNR

N.s Number of FDOA Measurements, = 0 IF TDOA Only

TMEAS() Time of each TDOA/FDOA Measurement (Arbitrarily the Time of Arrival at
Reference Satellite)

R, Radius of the Earth (Nominal)

NSTATE

AT()
AF()

F()
MAPOPT
O mar

O vos
OveL

Number of State Elements (3 or 6)

Speed of Light (m/s)

TDOA Measurements

FDOA Measurements

Mean Frequency for each FDOA Measurement

= 1 IF Topographical Map Used, = 0 Otherwise

1 SIGMA Uncertainty in Topographical Map Altitude

1 SIGMA Uncertainty in each Sensor Position Component

1 SIGMA Uncertainty in each Sensor Velocity Component

BUILD THE TDOA
COVARIANCE MATRIX
AND INVERT

l

INITIALIZE A STATE
ESTIMATE

;

DETERMINE AN
INITIAL

2

x

l

PERFORM
MARQUARDT
ALGORITHM

l

CONVERT ECR STATE
AND COVARIANCE
TO LAT AND LON

BUILD TDOA COVARIANCE MATRIX

o2 =(o2 + 02)
BIAS CLOCK ATMg

o2 =02 +202 +20:2
AT; SPT ATMy BIAS

Orrar; Cpwms IFNSI(i) =NS1()
=0h. IFNS2()=NS2()
=~0l.s IFNSI@)= NS2()
=~0L.s IFNS23i)=NS1()
=2 o« IFNSI®) = NS1(j) and NS2(i) = NS2(j

==202 IR NSI(i)= NS2(j) and NS2(i) = NS1(j)

(02 O e]
AT, AT,AT,

02
ATy,

INITIALIZE A STATE ESTIMATE

GET MEASUREMENT NUMBERS OF ALL MEASUREMENTS TAKEN AT
LAST MEASUREMENT TIME Ty_: Iy, I .. Iy

Ty =gs1(1,1i)+sz L)
N
T, = _2_1231 (2.1)+S2 2.1)

T, = gm G.1)"s2(3,1,)

STATE ESTIMATE:

T

Ty =R X
x ¢ 2424 2\1/2
(Tx Ty + T,)

r T NUMBER OF SYMMETRIC
v Remiprm® COVARIANCE ELEMENTS:
: NCOV =6
T,=R L

T+

IF NSTATE =6 THEN

T;=T, =T, =0 NCOV = 21

A-5

DETERMINE X2
X,=0

- DOI=],
MAX (NAT. NAF)

DT =TMEAS() - T,
X =Ty + Ty (DT)

Y =T, + Ty (DT)
Z="T, +T;(DT)

Y

D1 =((x-510,D)’ +(Y-S12,D)* +(2 - s16,1)?)"

D2 =((x-521,0)+ (v ~52(2,)’ +(z - 5263,1)*)

AT =(D1-D2)kc

F IF
- N, #0

T

v1={(x- 510, D) - 5164, D}+ (¥ - sDC,D) (13- 51(5,1)
+(Z-S13,))(T, - S1(6,1)) /D1
v2 = ((X-s201, DXT; - $2(4,D)+ (- 52)2,1)) (1~ s2(5.1))
+ (Z-5203,D)(T, - S2(6,1))/D2
AE=(F@Q)/c)(V2-V1) -
Xi=x* + ((AF(I) - Al‘:)/asp,:)2

AT(®) - AT(1)
X=X [AT(l) ~AT(1)..AT(N)-AT (N,)] o'

A 'i‘(NAT) - A%(NAT)

A-6 Y

DETERMINE %2 (Cont'd)

IF

MAPOPT=1

T

DETERMINE
LATITUDE,
LONGITUDE, AND
LOCAL EARTH
RADIUS =RL

Re= (2 ¥+ D)
=2+ (RL—feL)%:W

G)

PERFORM MARQUARDT ALGORITHM

A=1x106
ITER=0

P ITER=ITER +1

CONSTRUCT INVERSE
COVARIANCE AND
GRADIENT VECTOR

Y

MODIFY INVERSE

»{ COVARIANCE WITH

A AND INVERT
DETERMINE NEW
STATE ESTIMATE
AND X2,
IFATOO
LARGE EXIT T * x2 IMPROVED GO TO
F T NEXT ITERATION
A<10.5 X2 x2 -
A F
DETERMINE ANGLE o« BETWEEN GRADIENT
DIRECTION AND SEARCH DIRECTION
A 10;.
INCREASE A TO FORCE
SEARCH DIRECTION TOWARD

GRADIENT DECREASE STEP

SIZE TO OBTAIN Y

IMPRO;EMENT I poe—— I
IF STEP TOO o LOoADNEW
SMALLEXIT <STEP>.01 " | STATE ESTIMATE
F
- CHECK FOR
-] CONVERGENCE
DETERMINE COVARIANCE
¥ MATRIX OF STATE ESTIMATE
LOAD UNMODIFIED
INVERSE COVARIANCE
_ —»(' RETURN CHECK FOR MAX
cov=Ccovl
INVERT ITERATIONS
- =32y
A=M10
A-8

CONSTRUCT INVERSE CONVARIANCE AND GRADIENT VECTOR

COVI {..NCOV) =0
CORR (I..NSTATE)=0

ZERO OUT STATE COVARIANCE
INVERSE AND GRADIENT VECTOR

@ F
T

BUILD UP MATRICES
BY LOOPING OVER
FDOA MEASUREMENTS

N.>0 z
T

ADD CONTRIBUTION
OF TDOA
MEASUREMENTS

@ F

ADD CONTRIBUTION
OF TOPOGRAPHICAL

MAP
+<

)

BUILD UP MATRICES BY LOOPING OVER FDOA MEASUREMENTS

DT = TMEAS()-T,
X=T* T, (DT)
Y =T, +T, (DT)
X=T,+T, (DT)

L]
D1 = (X-S1(1D) + (Y - S12. 1))+ (Z - $1(5,1)))"
D2 = ((x $20.D)) + (Y - S22, 1)) + (2~ 52(3,1)))“2

vi=(x-510,0) (T, -s1(4,1))+ (Y -s12,))(T,-51(5,1))
+ (2-816,D)(T, - $1(6,1)) /D1

V2= ((X- S2(1.1)) (T; - S2(4,1))+(Y - S22, D)(T, - $2(5.1))

+ (Z-52(3,1)) (T, - S2(6, 1))/D2

AF=(E@)/c) (V2-v1)

Y .
p1= F(I)[T- S2(4,1) _ V2(X - S2(1,1)) _ T, -S1(4,1) + VI(X- 51(1,1))J
C D2 (D2)? D1 (D12

py= F(I)(TY S2(5,1) _ V2(Y-S22,1)) _T,-S1(5,1) + Vi (Y-Sl(2,I)))
C D2 (D2)? D1 (D1)?

1:(1)(1*Z S2(6 D) _ V2(Z -S26,1)) _ T, -S1(s, 1), V1(zZ-S16, 1)))

P3=
C D2 (D2)? D1 (D1)?

F

NSTATE = 6

p4 = 1+ pr+ FO (x S2(1,1) - X - Sl(l I))
C

E(1) (Y -S20,1)_Y - 31(2 1))
C

p6 = p3xp+ FO [Z= 32(3 D_Z- 31(3 D
C D2

ﬂ

P5=P2+DT+

Pf P:P: -« PiPxsmam
— 1 :
covr = covi* =~ | PPy P :
SPF ®
e,
i Pnstare Py - Pizmms_
B 1
P
A P:
AF(Q) — AF .
GRAD = GRAD + AFD —2F :
O sz *
PNS'TATB

C RETURN)

A-11

ADD CONTRIBUTION OF TDOA MEASUREMENTS

DT = TMEAS(I) - T
X=Tx+Tx(DT)
Y=Tr+Tv(DT)
Z=Tz+TZ(DT)

GET STATE TO
TIME OF MEASURMENT

Y

AT(=(D1-D2)/C

D1 = (X~ S1(1,)% + (Y - $1(2,)* + (Z- S1(3, D)2
D2 = (X - S2(1,) + (¥ - S2(2,)+ (Z - 52(3, N)H'?

DETERMINE TDOA
ESTIMATE

Y

-s1(1, 1)

1 /X
P, 1= _E'C D1

X-52(1,1)
D2

Pa,2)= — (X
(')‘c D1

-S1(2,l) Y-S22 |)>

Dz

D1t

P(,3)= %‘ (z

-81(3,1) Z-82(3, |)>

D2

Y

A

O e o e e e e e e E e E e e e e e e e e = o e e e e me e

NSTATE=6

T

P(I, 4) = P(l, 1) » DT
P(l, 5) = P(l, 2) » DT
P(l, 6) = P(l, 3) » DT

COVI=COVI +

GRAD = GRAD +

[P(1, 1) 00 PN, 1)
P(1,2)+ e P(N,, 2)

| P, NSTATE) e+ e PN, NSTATE)J
["P(1, 1)see PN, 1) 7]
P(1,2)eesP(N,, 2)

P(1, NSTATE) e e e P(Ny;. NSTATE)J

(0-1

m—‘l

FP(‘l. 1)eeeP(1,2) e e« P(1, NSTATE)

* . L]

| P(Njp 2) oo 2 P(N,,, 2) # »# P(N,, .. NSTATE)

[AT(1) - AT(1)

*

| AT(NA) - AT(N)

RETURN

A-12

MODIFY INVERSE COVARIANCE WITH A AND INVERT

COV=COVI LOAD INVERSE COVARIANCE

l

COV (i) =
COV(@i(1+A)

l

INVERT

A-13

DETERMINE NEW STATE ESTIMATE AND X2,

DEL (1..NSTATE) = [COV] [GRAD]

'

Ty=T; + DEL(1)
T,=T, + DEL(2)
T3=T, + DEL(3)

NSTATE =6

T; = Ty + DEL(4)
T, = T; + DEL(5)

s

T; =Tz + DEL(6)

i

COMPUTE X* USING
T

RATHERTHANT

¢ (%

o~

DETERMINE ANGLE o BETWEEN GRADIENT

NSTATE

%

NSTATE

DIRECTION AND SEARCH DIRECTION

4
GRAD(I)’) MAGNITUDE OF GRADIENT VECTOR

2

i=zl DEL(I)2 MAGNITUDE OF SEARCH DIRECTION VECTOR

NSTATE

Y. GRAD()* DEL(H) DOTPRODUCT

o = cos’ (

i=1

P
G*D

A-15

DECREASE STEP SIZE TO OBTAIN IMPROVEMENT

T} = T, + DEL(1) » STEP
—»{ T, =T, + DEL(2) » STEP
T,=T, + DEL(3) + STEP

<G>

T

T} = Ty + DEL(4) « STEP
T =Ty + DEL(5) « STEP
Ti= T + DEL(6) » STEP

-]

Y

COMPUTE 12
USING T’ RATHER
THAN T

A-16

APPENDIX B

This appendix contains the class diagrams for the core classes used for performing geolocation. The
class diagrams are presented in the Booch method, as generated in Rational Rose/C++.

Bi

Appendix B

DigitalSignal
(from Information)

TDOA_

SimObject
Generator

CFlexObject
(from Simulation

(from Flex)

FDOA_
Generator

FIxFDOA_

Geolocator Generator

FIXTDOA_)
"1 Generator m_TDOARef m_signalsRef

m_signalsRef

m_TrackListRef \ m_TDOARef m_FDOARef

TrackCntnr

(from Databases TDOACNtnr

(from Databases)

FDOACnNtnr
(from Databases

m_FDOARef

Measurement Databases
Data

B-1

File: d:\work\design\flexsim.mdl Mon Apr 15 15:25:44 1996 Class Diagram: Sample Problem / Main Page 1

Measurement

Geol.ocation

TDOA_Meas FDOA_Meas

B-2
Mon Apr 15 15:26:14 1996 Class Diagram: Measurement Data / Main Page 1

File: d:\work\design\flexsim.md!

I ...

Info
Collection

|]
InfoTDOA _
Info Meas {
Geolocation
TDOA_Meas

(from Measurement Data)

Geolocation
(from Measurement Data)

B-3

SignalCntnr
1

S

InfoFDOA _
Meas

FDOA_Meas
(from Measurement Data)

Measurement
(from Measurement Data)

File: d:\work\design\flexsimmdl Mon Apr 15 15:26:28 1996 Class Diagram: Databases / Main Page 1

ClnfoObject

(from Information)
-~

InfoDigital
Signal

DigitalSignal

(from Information)

APPENDIX C

This appendix contains the source code for several of the core classes whose diagrams appear in
Appendix B. The source code was printed from Microsoft Visual C++, Version 2.2.

Appendix C
JIIIIE717070070000707707777707070000707017011717707777

//

// NRC FlexSim

//

/7 $Workfile:: GEOLOCATOR.CPP
// $Revision:: 21

// SDate:: 2/23/96 2:22p

// $Modtime:: 2/22/96 9:26a
//
JI177170007100707701770077177077100771777771771177771777

L Ur

#include "stdafx.h"
#include <math.h>
// Geolocator

#include "CholeskyD.h*

#include "DSymMatrix.h"
#include "constants.h*

#include "reference.h"

#include *"TDOACntnr.h"

#include *"FDOACntnr.h"

#include "TrackCntnr.h"
#include *FlxSim.h*

#include *GeoLocator.h"

IMPLEMENT_FLEX_SERIAL(Geolocator, CFlexObject, 1, TRUE)

$ifdef _DEBUG
#define new DEBUG_NEW
#endif

Geolocator: :Geolocator ()

: m_TDOARef (NULL),
m_FDOARef (NULL) ,
m_geoLoc (NULL) ,
m_TrackListRef (NULL)

{
m_hame = "Geolocator";
}Y// end constructoxr ///////1/17177/17717777

Geolocator: :~Geolocator ()

m_TDOARef = NULL;
m_FDOARef = NULL;
m_geoLoc = NULL;
m_TrackListRef = NULL;
}Y// end destructoxr ////////11/17177717177777

void Geolocator::flexInit ()

{
FTime eventTime = FlexSim::c_Clock.time{) + Period(10.0);
FlxEvent* firstEvent = new FlxEvent({ eventTime, this,
EVENT_METHOD (Geolocator,process));

FlexSim: :c_EventCalendar.schedule(firstEvent };
Y// end flexInit /////7//1/171717/77177777777177777777717777
void Geolocator::process()
{

unsigned i, 3j;

GeoLocation locEst;

TDOA_Set tdoas;

FDOA_Set fdoas;

unsigned numTDOAs = m_TDOARef->size();

if(numTDOAs == 0) return;

// Build the TDOA Set...
for(i=0; i<m_TDOARef->size(}); ++i)

{
InfoTDOA_Meas* tdoaInfo = (InfoTDOA_Meas*)m_TDOARef->at (i) ;
TDOA_Meas* tdoaMeas = (TDOA_Meas*)tdoaInfo;
tdoas.add(tdoaMeas);

}

// Build the FDOA Set
if(m_FDOARef != NULL)

{
for(i=0; i<m_FDOARef->size(); ++i)
{
InfoFDOA_Meas* fdoaInfo = (InfoFDOA_Meas*)m_FDOARef->at (i) ;
FDOA_Meas* fdoaMeas = (FDOA_Meas*)fdoaInfo;

fdoas.add(fdoaMeas);

}

// Build the TDOA covariance matrix and invert...
DSymMatrix tdoaCov{ numTDOAs);

for(i=1; i<=numTDOAs; ++i)
{
TDOA_Meas* tdoa_i = tdoas[i];

for(j=1; j<=numTDOAs; ++j)
tdoaCov(i-~1,j-1) = tdoa_i->covWith({ *(tdoas[j)) };

}// end for i

// Initialize the geolocation estimate...
locEst.initializeWith{ tdoas);

// Perform Marquardt algorithm...
doMarquardt { locEst, tdoas, fdoas, tdoaCov)

// Add to TrackCntnr
m_TrackListRef->addTrack(new InfoGeoLocation{locEst) });

// here remove all tdoas and fdoas
if (m_FDOARef != NULL)
m_FDOARef->removeAllFDOAs () ;
m_TDOARef->removeAllTDOASs () ;

// Convert ECR state and covariance to lat/long...

Y// end process [////1//111117117711777171771777777771777777

DoubleMatrix Geolocator::computeDeltaTs(const Vec3g geoLocPos,
const TDOA_Set& tdoaSet)
{
unsigned i;
unsigned numTDOAs = tdoaSet.size();
double d1(0), d2(0);
DoubleMatrix dt (numTDOAs), dtdoa (numTDOASs) ;

for(i=1; i<=numTDOAs; ++i)

{
TDOA_Meas* tdoa_i = tdoaSet[i];
dl = (geoLocPos - tdoa_i—>firstSensorPos()).magnitude();
d2 = (geolLocPos - tdoa_i->refSensorPos()) .magnitude() ;
dt(i-1) = (d1 - d42) / c;
dtdoa(i-1) = tdoa_i->delTime();
C-2

}// end for i

DoubleMatrix dts = dtdoa - dt;

return dts;

Y// end computeDeltaTs /////////////1/111171171171177111717717771

{
double fdoaContrib(0.0), v1(0.0)}, v2(0.0), d1(0.0), 42(0.0};

double deltaF(0.0), c{ 299792458.0);
unsigned i;
Vec3 sensorPos, sensorVel,refSenPos,refSenvel;

Vec3 locPos
Vec3 locVel

geoLocEst .position();
geoLocEst.velocity();

double numFDOAs = fdoaSet.size(),diff,avgFreq(0.0 };

if(numFDOAs > 0)
{

for(i=1; i<= numFDOAs; i++)
avgFreq += fdoaSet[i]->cntnrFreq()/numFDOAs;

for(i=1; i<= numFDOAs; i++)

{
FDOA_Meas* fdoa_i = fdoaSet[il;

fdoa_i->firstSensorPos

sensorPos ();
fdoa_i->firstSensorVel();

sensorVel
refSenPos
refSenvel

fdoa_i->refSensorPos ()
fdoa_i->refSensorVel ()

dl
dz2

{ locPos - sensorPos).magnitude(

)
{ locPos - refSenPos).magnitude();

vl

deltaF = (avgFreq/C }*{ v2 - vl);

diff = fdoa_i->deltaFreq() - deltaF;

{ (locPos - sensorPos).dotProduct(locVel - sensorVel)

v2 = { (locPos - refSenPos).dotProduct(locVel - refSenvel)

double Geolocator::computeFdoaChiSqgrContrib(const GeoLocation& geoLocEst,
const FDOA_Set& fdoaSet)

y / di;

y / 4z2;

fdoaContrib += { (fdoa_i->deltaFreq() - deltaF)/fdoa_i->sigmaSPF ()

((fdoa_i->deltaFreq({) - deltaF)/fdoa_i->sigmaSPF()

deltaF = 0.0;

}// end i for

}// end if
return fdoaContrib;
}// end computeFdoaChisqrContrib /////////771/171717171711171171717777
void Geolocator::addFdoaContrib(const GeoLocation& geoLocEst,
const FDOA_Set& fdoasSet,

DoubleMatrix& grad,
DSymMatrix& locEstInvCov)

double fdoaContrib(0.0 v1(0.0), v2(0.0), d1(0.0), 42(0.0);

Vec3 sensorPos,sensorVel,refSenPos,refSenvel;

C-3

)l
’ double deltaF(0.0), c{ 297992458.0),£fdivC(0.0),avgFreq(0.0);

geoLocEst.position();
geoLocEst.velocity();

Vec3 locPos
Vec3d locVel

unsigned size = locEstInvCov.dim(),1i,3,k;
DoubleMatrix pArray(size, size), pVec(size) tempCovInv(size , size Y;
double numFDOAs = fdoaSet.size(),z,before,after,after_before;

if(numFDOAs > 0)
{

for(i=0; i<size; i++)
for(j=0; j<size; j++)
tempCoviInv(i,j) = locEstInvCov (i,3 };

for(i=1; i<= numFDOAs; i++)
avgFreq += fdoaSet[i]—>cntanreq()/numFDOAs;

for(i=1; i<= numFDOAs; i++)
{
FDOA_Meas* fdoa_i = fdoaset[i];

fdoa_i->firstSensorPos

sensorPos (
fdoa_i->firstSensorvel (
H
i

sensorVel
refSenPos
refSenvel

)
) ;
fdoa_i->refSensorPos ()
fdoa_i->refsensorvel ()

LI | I

d1i
dz

{ locPos - sensorPos) .magnitude();
(locPos - refSenPos) .magnitude () ;

inn

il

vl ((locPos - sensorPos) .dotProduct (locVel - sensorVel)) / d4i;

v2 = { (locPos - refSenPos) .dotProduct (locVel - refSenvel)) / d2;

fdivC = avgFreq / C;

deltaF = fdivC*{ v2 - vl)i

fdoaContrib = ¢{ (fdoa_i->deltaFreqg() - deltaF) /
(fdoa_i—>sigmaSPF()*fdoa_i—>sigmaSPF()));

for(j=0; j< 3; j++)
{

pVec(J) = fdivC*(({ (locVel(J) - refsenvel(j))/d2) -
(v2*{ locPos(J) - refSenPos(j))/ (d2*a2)
((locVel(j) - sensorvel (j)ysar) o+
(v1*(locPos{ j) - sensorPos(i))/(di*d1)
z=pVec(]j);

zZ=pVec(j) *fdoaContrib;
z=pVec(j) *fdoaContrib;

for(j=0; J<3; j++)
for({ k=0; k<3; k++)

{
PArray(j,k) = pVec(j)*pVec (k) ;
Z=pArray (j,k);
Z=pArray(j,k);

}

tempCovInv += (1.0/(fdoa_i—>sigmaSPF()*fdoa_i—>sigmaSPF()))*pArray;
grad += fdoaContrib*pvec;
}// end i for

for({ 1i=0; i<size; i++)
for(3j=0; j<size; Jj++)

before = locEstInvCov(i,j);
after = tempCoviInv(i,j);

locEstInvCov(1i,j) = tempCovInv{ i,j);
after = locEstInvCov({ i,j);
after_before = after - before;

z = locEstInvCov{ i,J);

}
} // end if

}// end addFdOaCOntrib LR RS S E AR LR R RS RS SRS EEIEE SRS SR AR RS R XXX X
double Geolocator::computeChi2(const GeolLocation& geoLocEst,
const TDOA_Set& tdoaSet,
const FDOA_Set& fdoaSet,
const DSymMatrix& tdoaCov)
Vec3d locPos = geolocEst.position{();

DoubleMatrix dts = computeDeltaTs(locPos, tdoaSet);

double fdoaContrib = computeFdoaChiSqgrContrib(geoLocEst, fdoaSet);

CholeskyD covDC{ tdoaCov };
DoubleMatrix y(dts.rows());

covDC.solve{ dts, y);

DoubleMatrix chiSquare = transpose(dts) * y;
double zerocElem = chiSquare(0);
//fdoaContrib = 0.0;

double chiSqr = zeroElem + fdoaContrib;

return chisqr;
Y// end computeChi2 ///////17//7/777777777777777/77777777777

void Geolocator::doMarquardt(GeoLocation& geoLocEst,
const TDOA_Set& tdoaSet,
const FDOA_Set& fdoaSet,
const DSymMatrix& tdoaCov)
{
// Initialize.
unsigned iter(0), nstate(3), maxIter(1000);
double lambda(l.0e-6), step(l.0), angle(0.0),error(0.0);
unsigned numTDOAs = tdoaSet.size();
int converged(0);
DsymMatrix stateCovInv(nstate), stateCov(nstate);
DoubleMatrix grad(nstate), del(nstate);
Vec3d locPos = geoLocEst.position();
Vec3 locVel = geoLocEst.velocity();
Vec3d locPos_p = locPos;
Vec3 locVel_p = locVel;
Vec3 delvVec;

// Compute an initial chi-square...
double chisSqgqr0ld = computeChi2(geoLocEst, tdoaSet, fdoaSet,
double chiSgrNew,z,y;
unsigned i, j,k;

while(!converged)

{
// Construct inverse covariance matrix and correction
// gradient...

grad.fill(0.0);
stateCovInv.£ill(0.0);

tdoaCov);

addTdoaContrib(geoliocEst, tdoaSet, tdoaCov, grad, stateCovInv);
addFdoaContrib{ geoLocEst, fdoaSet, grad, stateCovInv);

do
{
// Modify inverse covariance with lambda and invert...
//stateCov = stateCovInv;
// stateCov *= (1.0 + lambda);
for(i=0; i<nstate; i++)
stateCovInv(i,i) = stateCovInv(i,i)*(1.0 + lambda);
stateCov = inverse(stateCovInv);

// Determine new state estimate and new chi-square....

del = stateCov * grad;

locPos_p += Vec3(del(0), del(l), del(2));

geoLocEst.setPosition{ locPos_p);

if(nstate ==)

{
locVel _p += Vec3(del(3), del(4), del(5) };
geoLocEst.setVelocity(locVel_p };

}// end if

chiSgrNew = computeChi2{ geoLocEst, tdocaSet, fdoaSet, tdoaCov);

// Check for improvement...
if(chisgrNew < chisSqrold)
{

locPos = locPos_p;
goto labell;
}

// Determine angle between gradient and search
// directions...
double gmag(0.0), dmag(0.0), gdotd(0.0);
for(i=0; i<nstate; i++)

{
gmag #= grad{(i)*grad(i);
dmag += del(i)*del(i);
gdotd += grad(i) * del(i);
}
angle = ::acos{ gdotd / {(::sqrt{gmag) * ::sgrt (dmag)));

double degAngle = angle*57.2958;
if(angle > Pi)
angle = 2.0 * Pi - angle;

// Check angle...
if(angle > Pi/4.0)
{

lambda *= 10.0;

continue;
}
else

break;

} while(lambda < 10.5);

// Decrease step size to obtain improvement...
delVec = Vec3(del(0), del(1l), del(2));
do
{
locPos_p += delVec * step;
geoLocEst.setPosition(locPos_p);
if(nstate == }
{
locVel p += Vec3(del(3), del{4), del(5));
geoLocEst.setVelocity{ locVel_p);
}// end if
chiSgrNew = computeChi2(geoLocEst, tdoaset, fdoaSet, tdoaCov);
if{ chisqgrNew < chiSqrold)
break;

C-6

else
step /= 2.0;
}while(step > 0.01);

// If step too small exit...
if(step > 0.01)
locPos = locPos_p;

else

break;
labell
// Check for convergence...

if(((chisgrold - chiSqgrNew)/chiSqrold < 0.0001) || (iter == maxIter)
converged = TRUE;
locPos = locPos_p;

}

else

{
chisSqrold = chiSgrNew;
lambda = lambda / 10.0;
iter++;
geoliocEst.setPosition{ locPos_p);

} // end if

}// end while

// Load the state estimate...
double chisSgrRat = {(chisgrold - chiSgrNew) /chisqrold;
geoLocEst.setPosition(locPos);

}// end doMarquardt J111007107170771707717701111177171111171177

void Geolocator::addTdoaContrib(const Geolocation& geoLocEst,
const TDOA_Set& tdoaSet,
const DSymMatrix& tdoaCov,
DoubleMatrix& grad,
DSymMatrix& locEstInvCov)

unsigned i;

unsigned numTDOAs = tdoaSet.size();

double d41(0), 42(0);

DoubleMatrix dt (numTDOAs), dtdoa (numTDOAs);
Vec3 locPos = geoLocEst.position();

Vec3 sl, s2;

Vec3 pVec;

DoubleMatrix P(grad.rows () ,numTDOAs) ;

for(i=1; i<=numTDOAs; ++i)
{
TDOA_Meas* tdoa_i = tdoaSet[i];

sl = tdoa_i->firstSensorPos{);

s2 = tdoa_i->refSensorPos(});

dl = (locPos - sl).magnitude();

d2 = (locPos - s2).magnitude();

dt(i-1) = (41 - 4az2) / c;

dtdoa(i-1) = tdoa_i->delTime();

pVec = 1.0/C * { (locPos - sl1l)}/dl - (locPos - s2}/42);
| P(0,i-1) = pVec.x{);

P(1,i-1) = pVec.y();

P(2,i-1) = pVec.z{();

' }// end for i
DoubleMatrix dts = dtdoa - dt;
DSymMatrix tdoalnvCov = inverse{ CholeskyD(tdoaCov));

locEstInvCov = (P * tdoaInvCov) * transpose(P);

)

grad = (P * tdoaInvCov) * dts;

}// end addTdoaContrib //////////17717171717711717177711771777

CObject* Geolocator::copy ()

{
return ((CObject *) new Geolocator(*this});

Y// end copy /1771717171770 00010000777177

CObList* Geolocator::GetAttributes()

{
CObList* pList = CFlexObject::GetAttributes();

if(pList == NULL)
pList = new CObList();

// Add local attributes...

// Return the accumulated attributes...
return plList;

Y// end GetAttxibutes ////////7/71717177717711711777777

CObList* Geolocator::GetReferences()

{
CObList* ans = CFlexObject::GetReferences();

if(ans == NULL)
ans = new CObList(});

// Add the local ports and return...

ans->AddTail {(new Reference (RUNTIME_CLASS (TDOACntnr),
(CFlexObject**) (&m_TDOARef)));

ans->AddTail (new Reference(RUNTIME_CLASS (FDOACntnr),
(CFlexObject**) (&m_FDOARef))) ;

ans->AddTail {new Reference (RUNTIME_ CLASS (TrackCntnr),
(CFlexObject**) (&m_TrackListRef)}});

return ans;
}// end GetReferences ///////////////771/77/717771777777/77

BOOL Geolocator: :ReferencesResolved()

{
// Returns TRUE if the references of the Geclocator have been set.

// Otherwise, return FALSE

// First check any inherited ports
BOOL answer = CFlexObject::ReferencesResolved();

// Check the local references
if((m_TDOARef == NULL)
(m_TrackListRef == NULL))
answer = FALSE;

return answer;
}Y// end ReferencesResolved ///////////11/717171771177777777717777
void Geolocator::Serialize(FlxArchive& anArc)
: // First, geﬁ any inherited members...
CFlexObject::Serialize(anArc);

if(anArc.IsStoring())

{
anArc << m_TDOARef;
anArc << m_FDOARef;
anArc << m_TrackListRef;

}

else

{

anArc >> m_TDOARef;
anArc >> m_FDOARef;
anArc >> m_TrackListRef;

}
}// end Serialize ///////1111111111711111111771111011177

// EOF

LILLITITII I 2707000000077 070707777707777717177777777

//

// NRC FlexSim

/7

// $Workfile:: flxtdoa_generator.cpp $
/7 $Revision:: 3 g
// $Date:: 1/17/96 3:52p S
// $Modtime:: 1/17/96 3:45p S
//

LILLLTTTI777 7777000077 00077777777777777747777777777
#include "stdafx.h"

#include <math.h>

#include "F1XTDOA_Generator.h®
#include "Environment.h*
#include "attrib.h*

#include "FlxSim.h"

#include "reference.h"®

IMPLEMENT_FLEX SERIAL(F1xTDOA_Generator, CFlexObject, 1, TRUE)

#ifdef _DEBUG
#define new DEBUG_NEW

#endif

F1XTDOA_Generator :: F1XTDOA_Generator ()
CFlexObject("TDOA Generator®)

{

}

// ***

CObject* FIxXTDOA_Generator::copy ()
{

}

// ***

return ((CObject *) new F1xTDOA_Generator(*this));

CObList* F1xTDOA_Generator::GetAttributes()
{
// Get any inherited attributes
CObList* pList = CFlexObject: :GetAttributes () ;
if{ pList == NULL)
pList = new CObList{();

// Add local attributes
pList->AddTail(new LongAttr(&m_Seed, * Measurement Error Seed", Range(1,1000000)));

’

return pList;

}

// ***

CObList* F1xXTDOA_Generator: :GetReferences ()
{

// Return a list containing the references of the receiver

// First, get any inherited ports, if any
CObList* pList = CFlexObject: :GetReferences () ;

// If no inherited references, create a new object list
if(pList == NULL)
pList = new CObList();

// Add the local references and return

pList->AddTail(new Reference(RUNTIME_CLASS(SignalCntnr),
(CFlexObject**) (&m_signalsRef)));

pList->AddTail (new Reference(RUNTIME_CLASS (TDOACntnr),
(CFlexObject**) (&m_TDOARef)));

return pList;

C-10

}

// ***

BOOL leTDOA_Generator::ReferencesResolved()

{
// Returns TRUE if the references of the receiver have been set.

// Otherwise, return FALSE

// First check any inherited ports
BOOL answer = CFlexObject::ReferencesResolved();

// Check the local references
if((m_signalsRef == NULL) ||
(m_TDOARef == NULL))

answer = FALSE;

return answer;

}

// ***

void F1xTDOA_Generator::Serialize(FlxArchive& anArc)

{
// First, get any inherited members. ..
CFlexObject::Serialize(anArc);
if(anArc.IsStoring())
{
anArc << m_signalsRef;
anArc << m_TDOARef;
anArc << m_Seed;
}
else
{
anArc >> m_signalsRef;
anArc >> m_TDOARef;
anArc >> m_Seed;
}
}

// ***

void F1xTDOA_Generator::flexInit ()

{
//
// Initialize the TDOA generator and place its first event on
// the event calendar.
//
FTime eventTime = FlexSim::c_Clock.time{) + Period(5.0);
FlxEvent *firstEvent = new FlxEvent (eventTime, this,
EVENT“METHOD(TDOA_Generator,Process));
Flexsim::c_EventCalendar.schedule(firstEvent);
}

// ***

// EOF

L1111100777777707717 077707777770 777777777107777777777
//

// NRC FlexSim

//
// SWorkfile:: TDOA_GENERATOR.CPP
// SRevision:: 9

// SDate:: 1/18/96 5:33p

// $Modtime:: 1/18/96 5:25p
/7

L1717 777707077777707777777777777077777777777777777777
#include *stdafx.h"

Ly

#include *gauss.h"

#include <math.h>

#include "TDOA_Generator.h"
#include "Environment.h"®
#include *F1lxSim.h"
#include *reference.h*

#ifdef _DEBUG
#define new DEBUG_NEW
#endif

// LEE S AR AR A SRR R LA SRR R R R LR R R R R R R R R R R I T R T g TR e S VN R A R AV U

TDOA_Generator: : TDOA_Generator ()
: m_signalsRef(NULL),
m_TDOARef (NULL),
m_Seed{ 1)
{
}

// hhkhkhkhkdkdkdhhkhkhhdhhhhddddhhhhkh Ak khd ok h kbbb k ke khkhk kAR Ak Ak k ok h ko kb h kR bk k ko ko k ok k& ok ok

TDOA_Generator: : ~TDOA_Generator ()
{

m_signalsRef = NULL;
m_TDOARef = NULL;
}

// Fhkdkhkkhkhhhkdhhdhhkdhhhhdhhdkhhhkhhkkdkhkdkhkhd kb ke khkkkkkkkhhkkhkkhhh ko kh kb khkhkkkhdkh

void TDOA_Generator::Process ()

{
unsigned numSignals = m_signalsRef->size();
unsigned 1i;
Period dt = 0.0;

GaussianRandGen errorDist(m_Seed);

if(numSignals < 2) return;

// For now, assume zero atmospheric effects...
double sigmaAT™Mb = 0.0;
double sigmaATMr = 0.0;

InfoDigitalSignal* refDigSig = (InfoDigitalSignal*) (m_signalsRef->at (0));
double bandwidth = refDigSig->bandwidth();
double sampleRate = refbDigSig->sampleRate();
double snr = refDigSig->snr{();
double sigmaClock = refDigSig->clockError();
double sigmaSPT = ::sqrt(3.0) / (Pi * bandwidth * sqrt{ bandwidth * sampleRate * snr));
double varBias = sigmaClock*sigmaClock + sigmaATMb*sigmaATMb;
double varTDOA = sigmaSPT*sigmaSPT + sigmaATMr*sigmaATMr + 2.0 * varBias;
// Create TDOA measurements from each sensor pair...
TDOA_Meas tdoa;
for(i=1; i<numSignals; ++i)

{

InfoDigitalSignal* firstDigSig = (InfoDigitalSignal*)(m_signalsRef—>at(i));

// warning: the order here is critical and must match the way the partials
// and dt is computed when computing chisgr and state covariance

dt = firstDigSig->refTime() - refDigSig->refTime();
double meanval = errorDist.randval(dt, ::sqrt{ varBias });
Period measurement (errorDist.randval (meanVal, ::sqgrt(varTDOA Y))

tdoa.setMeasTime (refDigSig->refTime() };
tdoa.setTime(measurement);

Vec3 refSensorPos = refDigSig->sensorPos () ;
tdoa.setRefSensorPos (refDigSig->sensorPos ())i
tdoa.setSensorlPos (firstDigSig->sensorPos() };
tdoa.setRefSensorNum(0);
tdoa.setfirstSensorNum(1);

tdoa.setVar(varTDOA };

tdoa.setBias(varBias };

// Bdd new TDOA to the output collection...
m_TDOARef->add(new InfoTDOA_Meas(tdoa));

}// for

}// end Process ///

// EOF

LITITTI077 7777777007777 7707777077777777777717107717177
//

// NRC FlexSim

//
// SWorkfile:: TDOACNTNR.CPP
// $Revision:: 5

// S$Date:: 12/04/95 10:49a
// $Modtime:: 12/04/95 9:41a
/7

LIETTIET077 107777 07707777707777770071777777717707071777

Y U Ay

#include "stdafx.h"

#include "attrib.h"

#include "TDOACntnr.h"

IMPLEMENT_FLEX_ SERIAL(TDOACntnr, InfoCollection, 1, TRUE)
#ifdef _DEBUG

#define new DEBUG_NEW
fendif

// Fhkdkkdkkkhhdhhkkdkkhhkhhkdhhdhkhdkkdkh ok hkh ko hk bk h ok kkhkkhk kA bk k ko kkk ok kb sk k ko k& v ok ok R

TDOACntnr: : TDOACNntnr ()
{

}

// Fhhkkhkhhkhdkhhdhhhdhdhhhdhhhdkhhdkdhhkdhhhkhhhhhhkhhkk kb kb ko kkk ko khk ko khkh ko kA khkhkkk ko d R

m_name = "TDOA Container";

TDOACntnr: : ~TDOACHtnr ()
{

}

// ***

removeAllTDOAs () ;

CObList* TDOACntnr::GetAttributes ()
{
// Get inherited attributes...
CObList *pList = InfoCollection::GetAttributes();
if (pList == NULL)
pList = new CObList();

// Add local attributes...
if(! isEmptyTDOACntnr())
{
Iterator itr{ m_contents);
while{ itr++)
{
InfoNode* node = (InfoNode*)itr();
InfoTDOA_Meas* aTDOA = (InfoTDOA_Meas*)node->m_infoObj;
pList->AddTail(new ObjectAttr(aTDOA, *"InfoTDOA Meas"));

// Return the accumulated attributes...
return pList;

}

// ***

void TDOACntnr::addTDOA(InfoTDOA_Meas* value)

{
InfoNode* node = new InfoNode();
node->m_infoObj = value;
m_contents.add{ *node);

}

// ***

void TDOACNtnr: :removeTDOA(InfoTDOA_ Meas* value)

{
Tterator itr(m_contents);
while(itr++)
{
InfoNode* iNode = { InfoNode*)itr({);
InfoTDOA_Meas* aTDOA = (InfoTDOA_Meas*)iNode->m_infoObj;
if (aTDOA->isEqual(value})
{
m_contents.remove(*itr()};
delete value;
}
}
}

// **********'k**

InfoTDOA_Meas™ TDOACNtNY: :nextTDOA()

{
InfoNode* node = { InfoNode*)m_contents.first();

return { InfoTDOA_Meas*)node->m_infoObj;

}

// ***

BOOL TDOACHhtnr: :isEmptyTDOACntnr ()

{
if({ !'m_contents.isEmpty({)})
{
Iterator itr(m_contents);
if (itr++ == NULL)
return TRUE;
else
return FALSE;
}
return TRUE;
}

// ***

void TDOACntnr: :removeAllTDOAs({)

{
if(!isEmptyTDOACntnr (})
{
Iterator itr(m_contents);
while{ itr++)
{
InfoNode* node = { InfoNode*)itr();
InfoTDOA_Meas* aTDOA = (InfoTDOA_Meas*)node->m_infoObj;
delete aTDOA;
delete node;
}
}

m_contents.removeAll();

}// end removeAllTracks JI0107701 0000007000707 0000707777070107010777770771177077777

// ***

void TDOACNntnr::Serialize(FlxArchive& anArc)
InfoCollection: :Serialize(anArc };

if{ !isEmptyTDOACntnr())
{
Iterator itr{(m_contents);
while(itr++)
{
InfoNode* node = (InfoNode*)itr();

~C-15

InfoTDOA Meas* aTDOA = (InfoTDOA_Meas*)node->m_infoObj;
aTDOA->Serialize(anArc);

}

// Khhkkdkdkhkdhhdhhkdkhhdhhdhhkhkhhkhdhkhhkhhkhhkhkhkhkhh bk kkkkkkk ko khdk ko hkk kb ek kkok ok dk k& ko sk &

///

//

// NRC FlexSim

//

// $Workfile:: flxfdoa_generator.cpp s
// $Revision:: 3 $
/7 $Date:: 1/24/96 5:28p 8
// &Modtime:: 1/24/96 5:27p $

/7
///
#include *stdafx.h"

#$include *F1xFDOA_Generator.h"
#include "attrib.h"

#include "Environment.h®
#include "FixSim.h®

#include "reference.h”

IMPLEMENT FLEX SERIAL(F1xFDOA_Generator, CFlexObject, 1, TRUE)

#ifdef _DEBUG
#define new DEBUG_NEW

#endif
F1xXFDOA_Generator :: F1xXFDOA_Generator ()
FDOA_Generator ()
{
m_name = “FDOA Generator";
}

// ***

void F1xFDOA_Generator::flexInit ()

{
/7
// Initialize the FDOA generator and place its first event on
// the event calendar.
//
FTime eventTime = FlexSim::c_Clock.time() + Period(5.0);
FlxEvent *firstEvent = new FlxEvent (eventTime, this,
EVENT_METHOD(leFDOA_Generator,Process));
Flexsim::c_EventCalendar.schedule(firstEvent);
}

// ***

CObject™* F1xFDOA_Generator::copy ()}

return ((CObject *) new F1xXFDOA_Generator (*this));
}

// ***

CObList™* F1xFDOA_Generator::GetAttributes()

{
// Get any inherited attributes
CObList* pList = CFlexObject: :GetAttributes();
if(pList == NULL)
pList = new CObList();
// Return the accumulated, local attributes .
pList->AddTail(new LongAttr (&m_Seed, "Measurement Error Seed", Range(1,1000000)));
// Add local attributes
return pList;
}

// ***

CObList* leFDOA_Generator::GetReferences()

// Return a list containing the references of the receiver

// First, get any inherited ports, if any
CObList* pList = CFlexObject: :GetReferences () ;

// If no inherited references, create a new object list
if(pList == NULL)
pList = new CObList{();

// Add the local references and return
pList->AddTail(new Reference(RUNTIME_CLASS (SignalCntnr),
(CFlexObject**) (&m_signalsRef)));
pList->AddTail(new Reference (RUNTIME_CLASS (FDOACntnr),
(CFlexObject**)(&m_FDOARef)));
return pList;
}

// ***

BOOL leFDOA_Generator::ReferencesResolved()

{
// Returns TRUE if the references of the receiver have been set.

// Otherwise, return FALSE

// First check any inherited ports
BOOL answer = CFlexObject::ReferencesResolved();

// Check the local references
1if((m_signalsRef == NULL) [
{ m_FDOARef == NULL))

answer = FALSE;

return answer;

}

// ***

void F1XFDOA_Generator::Serialize(FlxArchive& anArc)

{
// First, get any inherited members...
CFlexObject::Serialize(anArc);
if(anArc.IsStoring())
{
anArc << m_signalsRef;
anArc << m_FDOARef;
anArc << m_Seed;
}
else
{
anArc >> m_signalsRef;
anArc >> m_FDOARef;
anArc >> m_Seed;
}
}

// ***

// EOF

///

//

// NRC FlexSim

//

/7 $Workfile:: fdoa_generator.cpp
// $Revision:: 5

// $Date:: 2/23/96 2:21p
// $Modtime:: 2/22/96 2:40p

L Ur 4

//
///
$include "stdafx.h"

#include <math.h>

#include "FDOA_Generator.h"”
#include *Environment.h"
#include "FlxSim.h"
#$include "reference.h®
#include "gauss.h®

#ifdef _DEBUG
#define new DEBUG_NEW
#endif

// ***

FDOA_Generator::FDOA_Generator()
. m_signalsRef(NULL),
m_FDOARef (NULL) ,
m_Seed(1)
{
}

// ***

FDOA_Generator::~FDOA_Generator()

{
m_signalsRef = NULL;
m_FDOARef = NULL;

}

// ***

void FDOA_Generator::Process()

{
unsigned numSignals = m_signalsRef->size();
unsigned 1i;

GaussianRandGen errorDist{ m_Seed);

if(numSignals < 2)} return;

// For now, assume zero atmospheric effects...

double sigmaATMb = 0.0;

double sigmaATMr = 0.0;

InfoDigitalSignal* refDigSig = (InfoDigitalSignal*) (m_signalsRef->at(0));
double bandwidth = refDigSig->bandwidth();

double sampleRate = refDigSig->sampleRate();

double snr = refDigSig->snr();

double sigmaClock = refDigSig->clockError();

double sigmaSPF = ::sqrt(3.0) / (Pi * sampleRate * sqrt{ bandwidth * sampleRate * snr));
double varBias = sigmaClock*sigmaClock + sigmaATMb*sigmaATMb;

double varFDOA = sigmaSPF*sigmaSPF + sigmaATMr*sigmaATMr + 2.0 * varBias;

// Create FDOA measurements from each sensor pair...
FDOA_Meas FDOA;
for(i=1; i<numSignals; ++i)

{

InfoDigitalSignal* firstDigSig = (InfoDigitalSignal*) (m_signalsRef->at (i));

// warning: the order here is critical and must match the way the partials
// and dt is computed when computing chisqr and state covariance

double df = (firstDigSig->cntnrFreq() - refDigSig->cntnrFreq() };
double mean = errorDist.randval(df, ::sqrt(varBias));
double measurement = errorDist.randval(mean, ::sqrt{ varFDOA));

FDOA.setMeasTime{ refDigSig->refTime());
FDOA.setCntnrFreg(firstDigSig->cntnrFreqg());
FDOA.setDeltaFreq(df);

Vec3 refSensorPos = refDigSig->sensorPos();
FDOA.setRefSensorPos(refDigSig->sensorPos ()
FDOA.setRefSensorVel { refDigSig->sensorVel ()
FDOA.setSensorlPos(firstDigSig->sensorPos ()
FDOA.setSensorlVel(firstDigSig->sensorVel ()
FDOA.setRefSensorNum(0);
FDOA.setfirstSensorNum(i);
FDOA.setSigmaSPF(sigmaSPF);

FDOA.setVar(varFDOA);

FDOA.setBias{ varBias);

~e e Ne N

// Add new FDOA to the output collection...
m_FDOARef->add(new InfoFDOA_Meas(FDOA));
}Y// for

Y// end Process //////1111111117777777707170717771777777777771777777777777177

// EOF

C-20

///

/7

/7 NRC FlexSim

//

// $Workfile:: fdoacntnr.cpp

// $Revision:: 3
// $Date:: 2/12/96 10:4la
/7 $¢Modtime:: 2/05/96 2:33p

Ur U

;j///
#include "stdafx.h"

#include "attrib.h"®

#$include "FDOACntnr.h*

IMPLEMENT_FLEX_ SERIAL(FDOACntnr, InfoCollection, 1, TRUE)
#ifdef _DEBUG

$define new DEBUG_NEW
#endif

// ***

FDOACNntnr: : FDOACntnr ()
{

}

// ***

m_name = "FDOA Container";

FDOACntnr: : ~FDOACntnr ()
{

}

// *****************************_**

removeAll () ;

CcObList* FDOACHtnr::GetAttributes ()

{
// Get inherited attributes...
CObList *pList = InfoCollection: :GetAttributes();
if (pList == NULL)
pList = new CObList();
// Add local attributes...
if(! isEmpty())
{
Iterator itr(m_contents);
while(itr++)
InfoNode* node = (InfoNode*)itr();
InfoFDOA_Meas* aFDOA = (InfoFDOA_Meas*)node->m_infoObj;
pList->AddTail{ new ObjectAttr(aFDOA, *"InfoFDOA_Meas"));
}
}
// Return the accumulated attributes...
return pList;
}

// ***

void FDOACntnr::Serialize(FlxArchive& anArc)
{

InfoCollection::Serialize(anArc };

if(tisEmpty ())
{
Iterator itr{ m_contents);
while{ itr++)
{
C-21

InfoNode* node = { InfoNode*)itr();
InfoFDOA_Meas* aFDOA = (InfoFDOA_Meas*)node->m_infoOb7;

aFDOA->Serialize(anArc);

}

// ***

void FDOACntnr::removeAllFDOAs {)

{
if{ 'isEmpty())
{
Iterator itr(m_contents);
while(itr++)
{
InfoNode* node = (InfoNode*)itr{();
InfoFDOA_Meas* aFDOA = (InfoFDOA_Meas*)node~>m_infoObj;
delete aFDOA;
delete node;
}
}

m_contents.removeAll();

Y// end removeAllTracks ////////17177117771111171177177177717717717777777771777777777

// EOF

#U).S. GOVERNMENT PRINTING OFFICE: 1997-509-127-47156

C-22

MISSION
OF
ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Material
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence,
reliability science, electro-magnetic technology, photonics, signal
processing, and computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

_ |

