
RL-TR-96-257
Final Technical Report
March 1997

MIXED FIDELITY SIMULATION
TECHNOLOGY DEVELOPMENT

Nichols Research Corporation

B. Gossage, W. Roark, J. Bass, J. Kyser, D. Salazar,
and J. Brown

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19970512 048
DTIC QUALITY OXSPBCEBD 9

Rome Laboratory
Air Force Materiel Command

Rome, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-96-257 has been reviewed and is approved for publication.

APPROVED:
ALEX F. SISTI
Project Engineer

FOR THE COMMANDER:
JOSEPH CAMERA, Technical Director
Intelligence & Reconnaissance Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please
notify RL/IRAE, 32 Hangar Road, Rome, NY 13441-4114. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

S^^and ma.Main.ng thtdatan«d«d..ndconipWIlK,ana«^^^^J^^iSaSSSsinrtS»Okeooratefor informanon OpwMion,and Repom 1215 leffenon

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 1997
4. TITLE AND SUBTITLE

3. REPORT TYPE AND DATES COVERED

Final Feb 95 - Feb 96

MIXED FIDELITY SIMULATION TECHNOLOGY DEVELOPMENT

6. AUTHOR(S)

B. Gossage; W. Roark; J. Bass; J. Kyser; D. Salazar;
J. Brown
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Nichols Research Corporation
4040 South Memorial Parkway
Huntsville AL 35815-1502

9. SPONSORING/MONITORING AGENCY NAME(S) AND AODRESS(ES)

Rome Laboratory/IRAE
32 Hangar Road
Rome NY 13441-4114

i. FUNDING NUMBERS

C: F30602-95-C-0035
PE: 62702F
PR: 4594
TA: 15
WU: NO

8. PERFORMING ORGANIZATION
REPORT NUMBER

NRC-TR-96-061

10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

RL-TR-96-257

11. SUPPLEMENTARY NOTES ../Tnw/ni^ «n /.CIO
Rome Laboratory Project Engineer: Alex F. Sisti/IRAE/(315) 330-4518

12a. DISTRIBUTION /AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

fflSSdrSä?^Afferent levels of fidelity within the same simulation present a
difficult challenge to simulation developers and users. Very often, changes in
fidelity impose changes in the model interfaces and the fidelity requirements of

Thifre?ortSpresents the results of our investigation of object oriented approaches
that facilitate simulations composed of models of various fideli^ levels. The terms
"fidelity," "fidelity level," "fidelity boundary," "mixed fidelity, and model
■Validity" are defined to provide a rigorous framework for discussion. Practical
approaches towards defining an interface paradigm that exploits polymorphism and the
inheritance characteristics of an object oriented hierarchy are described. These
techniques are demonstrated within the context of a sample geolocation problem
implemented in C++. In addition, we provide guidelines for model and class reuse in
C++ libraries. Other potential technologies that hold additional potential for _
enhancement of mixed fidelity simulation such as distributed objects and parametrized

types are also explored.

14. SUBJECT TERMS

Mixed Fidelity Simulation
Distributed Simulation

Object Oriented
Hierarchical Simulation

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

NSN 7540-01-280-5500

15. NUMBER OF PAGES
110

16. PRICE CODE

20. LIMITATION OF ABSTRACT

Same as Report
Standard Form 298 (Rev. 2-89)
Pf«<r.b«d by ANSI Sid Ö9-I8
298-102

TABLE OF CONTENTS

1. INTRODUCTION/OVERVIEW..... .' l

1.1 Previous Work •

2. THEORETICAL DISCUSSION l

2.1 Definition of Terms
3

2.2 Fidelity and Model Reuse •

3. TECHNICAL SOLUTIONS 3

3.1 Dynamic Solutions 4
3.1.1 Common Base Classes 4
3.1.2 Interface Expansion ^
3.1.3 "Fat" Base Classes -
3.1.4 Property Decomposition/Aggregation 7
3.1.5 Implicit Model Inconsistencies

. „ , . 8
3.2 Static Solutions 8
3.2.1 Model Reuse via Multiple Inheritance 9

3.2.2 Parameterized Types

4. SAMPLE PROBLEM 10

4.1 FlexSim Overview 1Q
4.1.1 The Flex Class Framework
4.1.1.1 Role of MFC® 12
4.1.2 Sim Class Framework

13 4.2 Geolocation Class Design 13
4.2.1 Measurement Database Classes 14

4.2.1.1 Class: Measurement 15
4.2.1.2 Class: FDOA_Meas 16
4.2.1.3 Class: TDOA_Meas • 16
4.2.1.4 Class: GeoLocation 17
4.2.1.5 Class: DigitalSignal 18
4.2.1.6 Class: InfoFDOA_Meas °
4.2.1.7 Class: InfoTDOA_Meas 19
4.2.1.8 Class: InfoGeoLocation 20
4.2.1.9 Class: InfoDigitalSignal 21
4.2.1.10 Class: InfoCollection 21
4.2.1.11 Class: FDOACntnr 22
4.2.1.12 Class: TDOACntnr 22
4.2.1.13 Class: TrackCntnr 22
4.2.1.14 Class: SignalCntnr 23
4.2.2 Class: GeoLocator 25
4.2.3 Matrix Classes

4.3 Detailed Algorithm Design 27
4.3.1 Geolocation - An Overview 27
4.3.2 TDOA Processing 29
4.3.3 FDOA Processing29

4.4 Geolocation Test Environment 32
4.4.1 Driver Models 32
4.4.1.1 Transmitter Model "^....32
4.4.1.2 Receiver Model 33
4.4.1.3 Environment Model35
4.4.1.4 Signal Processor Model 38
4.4.1.5 Orbital Platform Model 39
4.4.1.6 TDOA_Generator Model 40
4.4.1.7 FDOA_GeneratorModel .'"!!.'!.'.'"!!."!.'"41
4.4.2 Mixed Fidelity Modeling Options/Classes 42
4.4.2.1 Reuse Through Multiple Inheritance Example 42

5. GEOLOCATION PROBLEM — ANALYSES AND RESULTS 43

6. CONCLUSIONS, LESSONS LEARNED 46

7. RECOMMENDATIONS FOR FURTHER WORK 49

8. REFERENCES 50

Appendix A A_4

Appendix B 3...

Appendix C Q_±

11

TABLE OF FIGURES

Figure 3-1 Information Content Increases As ClassHierarchy Is Traversed 4

Figure 3-2 Model Interfaces Through Information Objects

Figure 3-3 The Abstract Base Class SixDofModel

Figure 3-4 The Planet Properties Are Decomposed Into Separate Shape ?

Figure 3-5 Illustration Of The Use Of Multiple Inheritance 8

Figure 3-6 Instantiation Of Template Class Rungekutta4
 11

Figure 4-1 The Attribute Classes

Figure 4-2 Relationship Between MFC® And Flex Frameworks 12

Figure 4-3 Simulation Framework Classes

Figure 4-7 Overview Of The Database Classes
23

Figure 4-8 Class Diagram For The Class GeoLocator
25

Figure 4-9 Class Diagram For The Matrix Classes
29

Figure 4-10 Illustration Of The Time Of Arrival Phenomena
30 Figure 4-11 Illustration Of The Frequency Of Arrival Phenomena

Figure 4-12 Object Scenario Diagram for the Sample Problem 31

Figure 4-13 Class Diagram for the Transmitter Model
34

Figure 4-14 Class Diagram for the Receiver Model

Figure 4-15 The Environment Model Classes
38 Figure 4-16 Class Diagram for the SignalProcessor Class

39
Figure 4-17 Diagram of the FlxOrbPlatform Class

40
Figure 4-18 Class Diagram for the TDOA_Generator Class

Figure 4-19 Class Diagram for the FDOA_Generator Class 41

42
Figure 4-20 Example of Multiple Inheritance

Figure 5-1 System Configuration Used For Monte Carlo Analysis • 43

. . 44
Figure 5-2 Transmitter Characteristics

 45
Figure 5-3 Transmitter Location

in

Figure 6-1

Listing 3-1

Listing 3-2

Listing 4-1

Listing 4-2

Listing 4-3

Listing 4-4

Listing 4-5

Listing 4-6

Listing 4-7

Listing 4-8

Listing 4-9

Listing 4-10

Listing 4-11

Listing 4-12

Listing 4-13

Listing 4-14

Listing 4-15

Listing 4-16

Listing 4-17

Listing 4-18

Listing 4-19

Listing 4-20

Listing 4-21

Listing 4-22

Listing 4-23

Overview of Design that Promotes Class Library Reuse 47

TABLE OF LISTINGS

Definition of "fat" Base Class SixDofModel in C++ 6

Example of Model Creation Through a Parameterized Type in C++ 10

Header File for Class Measurement 15

Header File for Class FDOA_Meas 16

Header File for Class TDOA Meas 1 c

Header File for Class GeoLocation 17

Header File for Class DigitalSignal j g

Header File for Class InfoFDOA_Meas 19

Header File for Class InfoTDOA_Meas 19

Header File for Class InfoGeoLocation 20

Header File for Class InfoDigitalSignal 20

Header File for Class InfoCollection 21

Header File for Class FDOACntnr... 21

Header File for Class TDOACntnr. 22

Header File for Class TrackCntnr. 22

Header File for Class SignalCntnr 23

Header File for Class GeoLocator 24

Class Declaration for DSymMatrix and CholeskyD in C++ 26

Example Use of the Matrix Classes 27

The Transmitter Class Declaration in C++ 33

The FlxTransmitter Class Declaration in C++ 33

The Receiver Class Declaration in C++ 34

The FIxReceiver Class Declaration in C++ 35

Environment and EnvSignal Class Declarations in C++ 37

Signal Processor Class Declaration in C++ 38

iv

Listing 4-24

Listing 4-25

Listing 4-26

Listing 4-27

Table 5-1

Table 5-2

FlxOrbPlatform Class Declaration in C++ 39

Header File for Class TDOA_Generator 40

Header File for Class FDOA_Generator 42

Definition of Class FlxTransmitter Using Multiple Inheritance in C++ 43

TABLE OF TABLES

Satellite Ephemeris Data 45

Position Estimates for Each of the 15 Monte Carlo Trials 46

LIST OF ACRONYMS

FDOA

GPS

GUI

MFC®

MICOM

MIRSAT

RTTI

TDOA

Frequency Time of Arrival

Global Positioning Satellite

Graphical User Interface

Microsoft Foundation Classes

Missile Command

MICOM Infrared Seeker Analysis Tool

Run Time Typing Interface

Time Difference of Arrival

1. INTRODUCTION/OVERVIEW
The complexity of computer models continues to grow with the increase in sophisticated software
technologies and distributed computing resources. The tradeoffs between model fidelity, simulation run
time and the reuse of legacy models generate the requirement for models with different levels of
fidelity within the same simulation. Creating and maintaining the interfaces between models with
different fidelity levels is a challenging task for the simulation developer. Assembling mixed fidelity
simulations in flexible and meaningful ways is also a challenge for the simulation user. Object oriented
technologies can provide solutions to these problems in both dynamic and static simulation
environments. This paper presents some results of our exploration into object oriented solutions to.
mixed fidelity simulation. The design of all classes and object relationships are presented in Booch
diagrams [Bch93][Wht94]. All code examples are presented in C++.

1.1 Previous Work
Over the last five years, Nichols Research Corporation (NRC) has been developing an object oriented
simulation environment that allows users to assemble simulations of arbitrary complexity from
component objects within a visual environment. Currently called "FlexSim," we have used it as the
framework for testing our solutions to mixed fidelity simulation. In FlexSim, objects are characterized
by a set of parameters and a set of references. This approach is based on the ideas developed by
Zeigler [Zei90] and similar to the framework described by Lewandowski and Calhoun [Aan94]. An
object's references define direct connections to other objects. Only objects of the reference class or
subclass type can be assigned to an object's reference. A standard set of services defined by an abstract
base class CFlexObject, must be provided by any object class that participates as a FlexSim object.
These member functions support the visual inspection of object parameters, the resolution of its
references and object archiving. A visual environment is provided that allows the user to manipulate
objects on screen by inspecting/setting their parameters and connecting their references to other
simulation objects. Providing the user with the option of creating and connecting objects with different
levels of fidelity within the same simulation was one goal of this effort.

2. THEORETICAL DISCUSSION

2.1 Definition of Terms
The use of the term fidelity, with respect to a model, is often accompanied by a wide variety of
assumptions about its exact meaning. Very often, the term implies validity. Validity is the degree t~
which a model accurately predicts the behavior of the system. We define fidelity as the degree to which
a model faithfully and accurately represents the details of the system. The details of the system are
captured by a set of assumptions that are used as the basis of a mathematical or logical model. In the
context of computer simulation models, high fidelity does not imply a high degree of validity. A
requirement for high validity in a model does not imply a requirement for high fidelity. We can
illustrate these concepts with the following simple example. Suppose a system FT(x) obeys a cubic

polynomial of the form:

FT(x) = a3x
3 + a2x

2 +a{x + a0

We are given the choice between a "low" fidelity model:

FL{x) = l2x
2 +lxx + l0

and a "high" fidelity model:

FH(x) = h3x
3 + h2x

2 +hix + h0

To build each model we fit these polynomials to N=10 samples of FT(x) using linear regression (with
MathCad(R)). If the true coefficients of FT(x) are a = [0.01, 0.01, 4.0, 1.0] and the measurement error
standard deviation is a = 2.0, then the resulting mean square error between the estimated polynomials
and the sample points for the two models are SSL = 6.465 and SSH = 6.238, but the mean square errors
between the estimated polynomials and the true polynomial are SSLT = 0.245 and SSHT = 0.473. We
may conclude in the absence of knowledge about the true system that the high fidelity model is
"better" since it does a better job of explaining the observed data and is more faithful to the details of
the underlying true system. We would be unaware that the high fidelity model is overfit to the data
[Dra81] resulting in SSLT < SSHT. By this measure of validity we should have chosen the more robust
"low" fidelity model. How can this be avoided without knowledge of the true system? Note that SSL «
SSH so the high fidelity model is only slightly better and if both models meet the acceptance criteria,
we apply "Occam's razor" and choose the simpler, low-fidelity model. Scale analysis [Hol92] can also
be used to avoid unnecessary levels of detail in a model. This example shows that greater model fidelity
does not imply greater model validity. Hence, model fidelity and model validity are separate,
sometimes independent, concepts.

As in our simple example, greater model fidelity often results in greater model complexity. The high-
fidelity model required an extra parameter for the coefficient of x3. Since the interfaces of the two
models are identical, the value of x, the selection of either model in a simulation would have no impact
on the interface requirements of other models. If we change FH to require another input y:

FH has not only greater internal complexity than FL, but also greater complexity in its interface.
Exchanging FL for FH in a simulation imposes a change in the interfaces for all models that supply
inputs to F. Changing model interfaces is one of the fundamental problems in mixing the fidelity of
models within the same simulation system. This is a direct result of the increase in model complexity
that accompanies an increase in model fidelity.

To avoid any ambiguity between terms like "fidelity" and "validity" we present the following
definitions that form the foundation of discussion for this document.

Model Fidelity — the level of detail in a model resulting from a set of modeling assumptions about the
system it represents. Low fidelity models are characterized by simplifying assumptions which reduce

their level of detail compared to high fidelity models.

Model Fidelity Level — a partition into different levels of detail imposed on a set of models by one
or more modeling assumptions. For example, the assumption of a spherical Earth partitions a set of
models into a subset of models all of which assume a spherical Earth.

Fidelity Boundary — An interface between two models in different fidelity levels.

Mixed Fidelity Simulation — a simulation composed of a set of models from different fidelity

levels.

Validity — an objective, often statistical assessment of the ability of a model to accurately predict the

behavior of the system it represents.

Verification — a simulation model is verified when it is shown to be a faithful implementation of the

model.

2.2 Fidelity and Model Reuse
While changing model interfaces presents a constant challenge for mixing model fidelities in a dynamic
modeling environment, static reuse of existing models is also a significant component of the problem.
Static reuse occurs through changes to the model and/or the source code for simulation executive. While
usually tractable, the design of the model class relationships and interfaces can minimize the extent of
the changes required. Encapsulation and polymorphism provided by OOP help, but careful design of
the class hierarchies to prevent dependencies on non-portable class libraries or the creation of direct
dependencies on the model implementations is essential. We will present approaches to model reuse as
a companion problem to mixed fidelity simulation.

3. TECHNICAL SOLUTIONS
We present several proposed solutions to mixed fidelity simulation. Some have only been explored
conceptually while others have been fully implemented in C++ within the FlexSim environment. Some
solutions can be implemented within a dynamic simulation environment that allows a user to choose
the models and their inter-connections at run time. These solutions take advantage of the inheritance
and polymorphism features of object oriented languages. Other solutions are static, compile-time
changes to the implementation of models that take advantage of the multiple inheritance and
parameterized type (template) features found in C++.

3.1 Dynamic Solutions

3.1.1 Common Base Classes

When a high fidelity model produces output to an interface embodied by an information object, models
of the same fidelity or lower may use that information provided that the information object base class
forms the low fidelity interface. The low fidelity model interface is a pointer to an object of base class
type while the high fidelity model output is an object of a type derived from that same base class. This
construct assumes that information content increases as we traverse the information object hierarchy
from base to derived as shown in Figure 3-1. Any object of the derived information object type will
complete the base type interface required by the low fidelity model through public inheritance. This
solution works well within the FlexSim environment since a reference to a low fidelity input can be
connected to either a high or low fidelity object.

J HighFidelity '\ / LowFidelitylnput""',
Model

HighFidelity"""'-. / lo^e^
Output / C, Model

Figure 3-1 Information content increases as the interface object class hierarchy is traversed from base
to derived.

3.1.2 Interface Expansion

When two models exchange information, a convenient implementation of that interface is a shared
"information" object as illustrated in Figure 3-2. This interface may be a single object or a dynamic
collection of many objects (containers). Such information objects can appear at fidelity boundaries and
can form a key information transport mechanism across fidelity boundaries. When the information
flow is from a low fidelity to a high fidelity model, the interface to the high fidelity model must be
expanded. This can be accomplished through a member function that returns an object which satisfies
the high fidelity interface. In this way, an information object is viewed as a "smart" container which
knows how to represent its contents in various forms. Another solution is for the high fidelity
information object to provide a conversion constructor with a low fidelity object as its argument. The
advantage of the conversion constructor is that a common base class can serve as the low fidelity
interface above. The expansion member function approach would require independent high and low
fidelity object interfaces since derived types are not within the scope of their base class. In either case
it must be noted that the interface expansion is isentropic - no information gain can take place.

LowFidelity
Model

'V,- Information
Object

expand()

HighFidelity
Model

Figure 3-2 Model interfaces through information objects.

3.1.3 "Fat" Base Classes
Another approach that employs inheritance to enable mixed fidelity interfaces is the "fat" base class.
The interface to the highest fidelity model is captured by an abstract base class with all the foreseeable
member functions for that model. To allow maximum flexibility, the number of member functions can
be quite high, hence the term "fat." This approach allows models of any fidelity to be substituted in a
simulation so long as they meet the interface requirements of the base class. For example, low fidelity
models may implement some of the required member functions by returning constants or simple table
lookups while a high fidelity model may accomplish the same result using a set of complex equations.
In C++, all the member functions of the base class are declared as "pure virtual" functions and all other
simulation models requiring access to models of this type will use variables of type: pointer-to-base.
The use of virtual functions will cause the actual model to be accessed correctly at run-time. Their
declaration as "pure" forces derived classes to complete the specified interface or cause a run or
compile-time error. An example of a "fat" base class can be found in the MICOM Infrared Seeker
Analysis Tool (MIRSAT) simulation [Can95]. MIRSAT uses a "6-DOF" model to capture missile
and seeker flight dynamics. Since 6-DOF implementations vary from one missile system to another, it
was necessary to be able to substitute different models without changing the interfaces in the rest of
the seeker model. This was accomplished by defining a "fat" SixDofModel base class. The Booch
diagram of class SixDofModel and its related subclasses appears in Figure 3-3. Listing 3-1 contains
the definition of the SixDofModel class with its numerous member functions. The TrajSixDof model
reads a trajectory file and interpolates the data while the TrapSixDof and TacSixDof models run
legacy FORTRAN 6-DOF codes with high-fidelity flight dynamics.

/' SixDofModel"}

/ TrajSixDof v. / TrapSixDof) TacSixDof s.

Figure 3-3 The abstract base class SixDofModel and its known subclasses.

class SixDofModel: public SimObject

public:

// Pure virtual functions...
// (These MUST be redefined by any derived class.)

// Target related functions...
virtual Vector targetPosO const=0;
virtual Vector targetVel() const=0;
virtual float targetX() const=0; // target x pos (m)
virtual float targetY() const=0;
virtual float targetZ() const=0;
virtual float targetYaw() const=0;
virtual void setTgtZ(float z) =0;

// Missile related functions...
virtual Vector missilePos() const=0;
virtual Vector missileVelf) const=0;
virtual float missileX() const=0;
virtual float missileY() const=0;
virtual float missileZ() const=0;
virtual float range() const=0;
virtual float inertTgtAz() const=0;
virtual float inertTgtEI() const=0;

// Launch aircraft related functions...
virtual float initACaz() const=0;
virtual float initACel() const=0;

// Six DOF control functions...
virtual float timeToGo() const=0;
virtual int terminated() const=0;
virtual String termString() const=0;
virtual void flyoutLoop() =0;
virtual void trackControl(float x, float y) =0;

};// end class SixDofModel

Listing 3-1 Definition of "fat" base class SixDofModel in C++.

3.1.4 Property Decomposition/Aggregation
One of the goals of an object oriented simulation design is to create a transparent mapping from the
classes and objects in the simulation to the objects in the system under study. This provides clarity for
the simulation user and makes the simulation source code easier to maintain. For example, we have
created a class Planet to capture the properties common to all planets. These properties include the
planet's gravity and shape as a function of latitude and longitude. Usually we tie these functions to
planet models with equivalent fidelity - a planet model with a high fidelity shape model would also
have a high fidelity gravity model. If the fidelity of the gravity and shape functions can be considered
independent from one another, a simulation could consist of models which make simple assumptions
about a planet's shape while other models assume a complex gravity field. The decoupled planet
properties can be captured in separate Gravity and Shape base classes. The class Planet is modified
to use instances of Shape and Gravity models through containment by reference as shown in Figure 3-
4. Any Gravity or Shape model can be assigned to the Planet model references provided the base

classes have "fat" interfaces as describe previously.

Planet

.'--<-''m

~ •, n J i m shapeModel
m GravityModel - _

Isotropic ""/ /' GravityField ; / Spherical j y Oblate

Gravity ■ i

Figure 3-4 The Planet properties are decomposed into separate Shape and Gravity models.

3.1.5 Implicit Model Inconsistencies
When the user is provided a dynamic simulation environment which allows mixed fidelity simulation,
no compile time or run time checks are carried out to assure the validity of the results. While the
simulation environment can provide interface checking, parameter verification, and results analysis, it
cannot prevent the naive use of complex models in those cases where interfaces are not violated. Many
simulation models have complex interfaces and operational requirements that overwhelm all but the
most expert of users. The use of these models is often limited to their original developers. A possible
solution to this problem is to embed an expert system within the simulation environment.

By way of the same information services provided to the user interface by the models (parameters and
references) information can be input to the expert system. This information will in turn activate a set
of predefined rules captured from model experts and developers. The effect of rule "firings" would be
to notify the user of potential problems or errors in the simulation and provide corrective guidance. We
have not explored this concept further since it is beyond the scope of the current effort.

3.2 Static Solutions

3.2.1 Model Reuse via Multiple Inheritance

Reusing existing model classes without "contaminating" them with proprietary or non-portable code is
part of efficient mixed fidelity modeling in a static environment. We have defined a static simulation
environment as one in which source code changes must be made to make model substitutions. Careful
use of multiple inheritance can minimize this problem by avoiding direct inheritance of system
dependent classes by external model classes. If a model class is to be kept independent, then it must
not become a descendant of any class within the simulation system hierarchy. To illustrate this,
suppose we are using GUI class library BRANDX (similarity to the names of other class libraries is
strictly unintentional) to implement the interface to our simulation. We use a BRANDX class
Displayable to display model information on the screen. We also have a legacy model class Modellt
that we wish to reuse. At first, we may be tempted to modify Modellt by deriving it from
Displayable and adding the appropriate members. If we use this approach, we have modified Modellt
in a way that prevents it from being ported to any environment that does not have access to
BRANDX. This can be costly or impossible if BRANDX cannot be purchased for the target platform.
Multiple inheritance provides a better solution by allowing a new class DisplayableModel to be
created by inheriting from both Displayable and Modellt. Modellt remains completely independent
of the BRANDX class library allowing it to remain portable. This approach also supports the
configuration management of Modellt to be maintained at a single location. In this project we have
made frequent use of multiple inheritance to keep external models in separate, independent and
portable libraries. The general form for this approach appears in Figure 3-5.

/' CFIexObject" ; / simO^ed""^ /' External"";

^ (from Flex) ; / ^m Simulation).''' V Modelclass ;

NewFlex
SimClass

Figure 3-5 Illustration of the use of multiple inheritance from an external class library.

The inheritance from the external library class may be public or private. Public inheritance would result
in the inheritance of interface of the external class which could create problems if the interface is used
by classes within the simulation and then the external class needs to be replaced by a class with a
different interface. Any classes using the external model interface would require changes. This could be
prevented by inheriting private from the external model class and creating a new generic interface in the
derived class. The implementation provided by the external model would be reused, but not its
interface. For this reason, private inheritance is called implementation inheritance [Str91]. The external
model must declare its member variables protected if the simulation class variables are to be
manipulated in the derived class. An example of the use of multiple inheritance for model reuse within

the sample problem will be presented later.

3.2.2 Parameterized Types
Parameterized types (templates in C++) allow the creation of new models with different levels of
fidelity that depend on the template class argument. For example, different orbital dynamics' models
can be created by instantiating an integrator template class RungeKutta4 with the appropriate model
class that describes the dynamics of the orbit (gravity, solar pressure, etc.) The relationship between
the template and its argument is shown in Figure 3-6. The code fragment in Listing 3-2 illustrates this
idea with a C++ template class. Parameterized types offer some distinct advantages over polymorphic
classes including type safety, efficiency and ease of use [Car95].

«' OrbitModel '• ,' RungeKutta4 ;

'--<?

'' OrbitEqn

'-.. (from Orbital) [

Figure 3-6 Instantiation of template class RungeKutta4 creates new OrbitModel class.

template<class DrffEqn>
class RungeKutta4
{

public:
RungeKutta4(DiffEqn& anEqn, double stepSize);
void integrate(double dt);
void setRelErr(double x) {relErr = x;}
void setAbsErr(double x) {absErr = x;}

};// end template class RungeKutta4

class OrbitEqn
{

public:
OrbitEqn(DoubleArray initState, double aTime);
void derivs(double t, const DoubleArray& x,

DoubleArray& dx);

}; // end class OrbitEqn

// Create a new class by instantiating the template...
typedef RungeKutta4<OrbitEqn> OrbitModel;

Listing 3-2 Example of model creation through a parameterized type in C++.

4. SAMPLE PROBLEM

To establish the feasibility of the various approaches to mixed fidelity simulation, we implemented an
object oriented simulation of a geolocation problem within the FlexSim framework. The geolocation
problem involves the determination of transmitter locations on Earth's surface by Time Difference of
Arrival (TDOA) and Frequency Difference of Arrival (FDOA) measurements [Ho93][Ont89]. The
measurements are generated from signals intercepted by satellites with highly accurate clocks similar to
Global Positioning Satellites (GPS) [Her96].

4.1 FlexSim Overview

FlexSim is composed of two component frameworks: "Flex" and "Sim." The "Flex" framework
supports the manipulation of objects via screen icons in a GUI environment. This manipulation
includes the setting of object properties, connecting objects via "references," and object archival. The
"Sim" framework supports event-based simulation in an object oriented programming environment.
Objects create and schedule events on a global event calendar in step with a global simulation clock.
The two frameworks are combined in FlexSim to create a visual, object oriented simulation
environment.

4.1.1 The Flex Class Framework

The Flex class framework provides support for the key capabilities of the visual object manipulation
system. These capabilities include:

• The creation of object instances of a class given the name of the class.

• The setting of object references.

• The setting of object attributes.

• The storage of objects in a persistent archive.

10

• The grouping of objects into subsystems.

The base class CFlexObject defines the interface requirements for any class that participates in the
Flex system. The virtual functions "Copy," "GetAttributes," "GetReferences," and "Serialize" must
be defined by any class derived from CFlexObject. The "Copy" member is generated automatically
by a system of C++ macros that generate all the required code for the Run-Time Typing Interface
(RTTI) and meta-class behaviors. Currently, the CFlexObject class is derived public from the
Microsoft Foundation Classes (MFC®) class CObject. This direct dependence on a proprietary class
library may be removed in future versions of the Flex framework.

Since C++ does not support the concept of "meta-classes," class names are mapped to a predefined
instance ofthat class. The predefined object is copied by way of the virtual "Copy" member function

defined by all Flex classes.
Support for the setting of object attributes is provided by the abstract base class Attribute and its
derived classes as shown in Figure 4-1. The derived classes allow objects to export attributes to the
Flex system for manipulation by the user. The "GetAttributes" function returns a list of attributes for
a given object. Note that the Integer Attr and RealAttr classes are templates so that the various real
and integer types (e.g. unsigned, float, double) can be easily supported without the need to provide

Attribute subclasses for all integral types.

 ' ^-s
/ Attribute ;

ObjectAttr

Intege

FTimeAttr

Figure 4-1 The Attribute classes.

The resolution of object references (ports) is accomplished via the class Reference. A Reference
contains a pointer to an object reference (a C++ object pointer), the class type of the object reference, a

11

label string, and a flag indicating whether setting the reference is optional. Setting the object reference is
accomplished through the reference pointer.

The reference resolver uses the class type to limit the values of the reference to objects that are
instances ofthat class or its subclasses. The label string represents the relationship of the object to the
referenced object. For instance, a sensor's platform reference captures the relationship between the
sensor and its platform as in "the sensor is on the platform."

4.1.1.1 Role of MFC?

The Flex framework is based on MFC®. MFC®, GUI, RTTI, archival, and collection classes are used
extensively and many of the Flex windowing classes are directly (and publicly) derived from MFC®
base classes. Figure 4-2 shows the relationships between MFC® classes and the Flex framework. All of
the classes that participate as FlexSim objects are derived from Cobject through CFlexObject. This
allows the storage and retrieval of FlexSim objects using MFC® collections e.g., CObList.

CRuntime ",< / CArchive '; / CObject "~; J CScrollView'
Class

.(from MFC) }
(from MFC) : _ (from MFC) : \v (from MFC)

CFIexClass '; / FIxArchive "'; / CFlexObject"'; / View
\

Figure 4-2 Relationship between MFC? and Flex frameworks.

4.1.2 Sim Class Framework

The simulation class framework (see Figure 4-3) provides support for the key capabilities of the event-
based simulation system. The capabilities include:

• The initialization of simulation objects.

• The scheduling and execution of events in time order.

• The maintenance of current simulation time by a simulation clock.

• The start and termination of a simulation run.

12

GObject

'-. (from Utilities)

SortedCltn

(from Collections)'

* i

"T
m events

1

Event
Clock

Calendar ,' \

/ EventBase

Event

Figure 4-3 Simulation framework classes.

4.2 Geolocation Class Design
The geolocation class design was partitioned into three class categories - database classes, the
geolocator class, and matrix classes. The design and construction of each of these class categories will
be discussed in the following three sections.

4.2.1 Measurement Database Classes
The overall structure of the measurement database design, as implemented to support the sample
problem, is illustrated in Figure 4-7. Each database class will be discussed individually in the following

sections.

13

Into
C Collection ;'

TrackCntnr '.

,' Measurement ',

-(from Measurement Data)

/ ClnfoObject

Figure 4-7 Overview of the database classes are shown from the class diagram perspective.

4.2.1.1 Class: Measurement

The class Measurement is the base class for the TDOA and the FDOA measurement classes. It
contains information such as reference sensor position and velocity and other basic information fields
and functions required by both its derived classes. The header file (Measurement.h) for Measurement
is shown in Listing 4-1.

14

{class Measurement
public:

Measurement);
FTime time() const {return m_measTime;}
//Returns the variance of the measurement,

double variance() const {return m_var;}
//Return the measurement error bias,
double bias() const {return m_bias;}

//Return the position vector of the reference sensor.
Vec3 refSensorPos() const;

// Return the velocity vector of the reference sensor.
Vec3 refSensorVel() const;

// Return the position vector of the first (non-reference)
//sensor.
Vec3 firstSensorPos() const;

// Return the velocity vector of the first (non-reference)
//sensor.
Vec3 firstSensorVel() const;

//Sets the measurement time
void setMeasTime(const FTime& aTime) {m_measTime - aTime;}

// Sets the ECR position and velocity of first sensor
void setSensor1Pos(const Vec3& aVec) {m_sensor1Pos = aVec;}

// Sets the velocity of the first sensor
void setSensorl Vel(const Vec3& aVec) {m_sensor1 Vel = aVec;}

// Sets the ECR position of the reference satellite
void setRefSensorPos(const Vec3& aVec) {m_refSensorPos = aVec;}

// Sets the velocity of the reference satellite
void setRefSensorVeK const Vec3& aVec) {m_refSensorVel = aVec;)

//Sets the reference sensor number
void setRefSensorNum(int aNum) {m_refSensorNum = aNum;}

// Sets the first sensor number
void setfirstSensorNum(int aNum) {mJirstSensorNum = aNum;}

// Sets the variance of this FDOA measurement
void setVar(double& aVar) {m_var = aVar;}

//Sets the bias variance
void setBias(double* aBias) {m_bias = aBias;}

protected:
// Measurement time. Arbitrarily the time of arrival at
//reference satellite.
FTime mjmeasTime;

// Caculated difference in time of arrival.
double m_deltaF;

// ECR position and velocity of first sensor
Vec3 m_sensor1Pos;

Vec3 m_sensor1Vel;
// ECR position and velocity of reference satellite.

Vec3 m_refSensorPos;
Vec3 m_refSensorVel;

//Reference sensor number, (arbitrary)
int m_refSensorNum;

//First sensor number
int mJirstSensorNum;

//Variance of this FDOA measurement computed as:
//varSPT + 2 * varAtmR + 2 * varBias
double m_var;

//The bias variance computed as:
//varClock +varAtmB
double m_bias;

}; // end class Measurement

Listing 4-1 Header file for class Measurement

4.2.1.2 Class: FDOA_Meas
The class FDOA_Meas is a derived class of Measurement. FDOA_Meas contains the data required
to describe a FDOA measurement. The header file (FDOA_Meas.h) for class FDOA_Meas is shown

in Listing 4-2.

15

class FDOA_Meas : public Measurement
{
public:

FDOA_Meas();
double cntnrFreqO const {return m_cntnrFreq;}
void setCntnrFreq(double aFreq) { m_cntnrFreq = aFreq;}
double deltaFreqQ const {return m_deltaFreq;}
void setDeltaFreq(double aFreq) {m_deltaFreq = aFreq;}
double sigmaSPFO const {return m_sigmaSPF;}
void setSigmaSPF(double aSigma) { m_sigmaSPF = aSigma;}

protected:
//Caculated difference in time of arrival,
double m_cntnrFreq;
double m_deltaFreq;
double m_sigmaSPF;

}; // end class FDOA_Meas

Listing 4-2 Header file for class FDOA Meas.

4.2.1.3 Class: TDOAJleas

The class TDOA_Meas is a derived class of Measurement. TDOA_Meas contains the data required
to describe a TDOA measurement. The header file (TDOA_Meas.h) for class TDOA_Meas is shown
in Listing 4-3.

class TDOAJVIeas : public Measurement
{

public:
TDOA_Meas();
double delTime() const {return m_deltaT;}
void setTime(double aTime) {m_deltaT = aTime;}
//Returns the covarance between this TDOA measurement and
//another,
double covWith(TDOA_Meas& aTDOA) const;

protected:
//Caculated difference in time of arrival,
double m deltaT;

I}; // end class TDOAJVIeas

Listing 4-3 Header file for class TDOAJMeas.

4.2.1.4 Class: GeoLocation

The class GeoLocation contains the state information for the position estimates as generated by the
class GeoLocator. The header file (GeoLocation.h) for class GeoLocation is shown in Listing 4-4.

16

class GeoLocation
public:
GeoLocation();

// Initialize this GeoLocation with a set of TDOA
//measurements.
void initializeWith(TDOA_Set& tdoaSet);

// The time of the estimate.
FTime time() const {return mjime;}
Vec3 position() const {return m_ecrPos;}
Vec3 velocity() const {return m_ecrVel;}
void setPosition(const Vec3& pos);
void setVelocity(const Vec3& vel) {m_ecrVel = vel;}

protected:

// Data Members
FTime m_time;
//latitude in radians, (pi/2 <= lat <= -pi/2)
double mjat;
//location longitude in radians (pi <= long <= -pi)
double mjong;
//latitude variance
double m_varLat;
//longitude variance
double m_varLong;
//Covariance of lat and long
double m_covLatLong;
//The track id number.
unsigned m_trklD;
//Rate of change in latitude, (rad/s)
double mJatDot;
//Rate of change in longitude (rad/s)
double mJongDot;
//Altitude in meters.
double m_alt;
// Rate of change in altitude (m/s).
double m_altDot;
//Variance of the altitude estimate.
double m_varAlt;
// ECR position vector...
Vec3 m_ecrPos;
// ECR velocity vector...
Vec3 m_ecrVel;

// class variables-
static intc baselD;

}; // end class GeoLocation

Listing 4-4 Header file for class GeoLocation.

4.2.1.5 Class: DigitalSignal
The class DigitalSignal contains the information germane to a digital signal. The signal is generated by
the class SignalProcessor. The header file (DigitalSignal.h) is shown in Listing 4-5.

17

class DigitalSignal
{

public:
DigitalSignal();
DigitalSignal(double bandwidth, double cntrFreq,

int receiverlD, double refTime, const FTime& aTime,
double sampleRate, double SNR);
virtual ~DigitalSignal();
double bandwidth() const {return m_bandWidth;}
double sampleRate() const {return m_sampleRate;}
double snr() const {return m_SNR;}
double refTime() const {return m_refTime;}
double cntnrFreq() const {return m_cntrFreq;}
double clockError() const {return m_spClockError;}
void setClockError(double error) {m_spClockError = error;}
Vec3 sensorPos() const {return m_sensorPos;}
void setSensorPos(const Vec3& p) {m_sensorPos = p;}
Vec3 sensorVel() const {return m_sensorVel;}
void setSensorVel(const Vec3& v) {m_sensorVel = v;}
FTime time() const {return mjime;}
void setTime(const FTime& aTime) {mjime = aTime;}

protected:
// Bandwidth of the system that created this signal,
double m_bandWidth;
// Center freqency of the signal,
double m_cntrFreq;
// The travel time
double m_refTime;
// time that the signal was created
FTime m_time;
// Unique ID of satellite which received signal
int m_receiverlD;
// Sample rate (Hz),
double m_sampleRate;
// Signal to noise ratio of the system that created this
// signal,
double m_SNR;
double m_spClockError;
Vec3 m_sensorPos;
Vec3m sensorVel;

|};// end class DigitalSignal

Listing 4-5 Header file for class DigitalSignal

4.2.1.6 Class: InfoFDOAMeas

The class InfoFDOA_Meas inherits from FDOA Meas and CInfoObject. Inheritance from
CInfoObject gives InfoFDOAJMeas the ability to be inspected by the user (CInfoObject inherits
from CFlexObject) and eligibility to be added to a container class derived from InfoCoIlection.
Inheritance from FDOA_Meas incorporates the FDOA measurement data fields and functions. Note
that multiple inheritance for InfoFDOA_Meas has kept the measurement class FDOA_Meas separate
from the MFC® hierarchy. The header file (InfoFDOAMeas.h) for this class is shown in Listing 4-6.

class lnfoFDOA_Meas : public CInfoObject, public FDOA_Meas

DECLARE_FLEX_SERIAL(lrvfoFDOA_Meas);
public:

lnfoFDOA_Meas();
lnfoFDOA_Meas(const FDOA_Meas& aFDOA);
virtual ~lnfoFDOA_Meas();

// Override CSimObject virtuals
virtual CObList* GetAttributes();
virtual CObList* GetReferences();
virtual BOOL ReferencesResolved();
virtual void Serialize(FlxArchive& anArc);
BOOL isEqualTo(const InfoFDOAJvleas*);

// Override GObject virtual
BOOL isEqual(const CInfoObject*) const;
int compare(const CInfoObject*) const;
unsigned long hash() const {return 0;}
void printOn(ostream&) const {;}

};// end class InfoFDOAJvleas

Listing 4-6 Header file for class InfoFDOAJMeas.

4.2.1.7 Class: InfoTDOA_Meas
The class InfoTDOA_Meas inherits from TDOA_Meas and CInfoObject. Inheritance from
CInfoObject gives InfoTDOA_Meas the ability to be inspected by the user (CInfoObject inherits
from CFlexObject) and eligibility to be added to a container class derived from InfoCollection.
Inheritance from TDOA_Meas incorporates the TDOA measurement data fields and functions. Note
that multiple inheritance for InfoTDOA_Meas has kept the measurement class TDOA_Meas
separate from the MFC® hierarchy. The header file (InfoTDOA_Meas.h) for this class is shown in

Listing 4-7.

class InfoTDOAJVIeas : public CInfoObject, public TDOA_Meas

DECLARE_FLEX_SERIAL(lnfoTDOA_Meas);

public:
lnfoTDOA_Meas();
lnfoTDOA_Meas(const TDOA_Meas& aTDOA);
virtual ~lnfoTDOA_Meas();

// Override CSimObject virtuals
virtual CObList* GetAttributes();
virtual CObList* GetReferences();
virtual BOOL ReferencesResolved();
virtual void Serialize) FlxArchive& anArc);
BOOL isEqualTo(const lnfoTDOA_Meas*);

// Override GObject virtual
BOOL isEqual(const CInfoObject*) const;
int compare(const CInfoObject*) const;
unsigned long hash() const {return 0;}
void printOn(ostream&) const {;}

};// end class InfoTDOAJVIeas __

Listing 4-7 Header file for class InfoTDOAMeas.

4.2.1.8 Class: InfoGeoLocation
The class InfoGeoLocation inherits from GeoLocation and CInfoObject. Inheritance from
CInfoObject gives InfoGeoLocation the ability to be inspected by the user (CInfoObject inherits
from CFlexObject) and eligibility to be added to a container class derived from InfoCollection.

19

Inheritance from GeoLocation incorporates the GeoLocation data fields and functions. Note that
multiple inheritance for InfoGeoLocation has kept the measurement class GeoLocation separate from
the MFC® hierarchy. The header file (InfoGeoLocation.h) for this class is shown in Listing 4-8.

class InfoGeoLocation : public ClnfoObject, GeoLocation

DECLARE_FLEX_SERIAL(InfoGeoLocation);
public:

InfoGeoLocationf);
lnfoGeoLocation(GeoLocation& gl);
virtual ~lnfoGeoLocation();

// Override CSimObject virtuals
virtual CObList* GetAttributesQ;
virtual CObList* GetReferences();
virtual BOOL ReferencesResolved();
virtual void Serialize(FIxArchiveS anArc);
BOOL isEqualTo(const InfoGeoLocation*);

// Override GObject virtual
BOOL isEqual(const ClnfoObject*) const;
int compare(const ClnfoObject*) const;
unsigned long hashO const {return 0;}
void printOn(ostream&) const {;}

};// end class InfoGeoLocation J
Listing 4-8 Header file for class InfoGeoLocation.

4.2.1.9 Class: InfoDigitalSignal

The class InfoDigitalSignal inherits from DigitalSignal and ClnfoObject. Inheritance from
ClnfoObject gives InfoDigitalSignal the ability to be inspected by the user (ClnfoObject inherits
from CFlexObject) and eligibility to be added to a container class derived from InfoCollection.
Inheritance from DigitalSignal incorporates the DigitalSignal data fields and functions. Note that
multiple inheritance for InfoDigitalSignal has kept the measurement class DigitalSignal separate
from the MFC® hierarchy. The header file (InfoDigitalSignal.h) for this class is shown in Listing 4-9.

class InfoDigitalSignal: public ClnfoObject, public DigitalSignal

DECLARE_FLEX_SERIAL(InfoDigitalSignal);
public:

InfoDigitalSignal);
lnfoDigitalSignal(double bandwidth, double cntrFreq,
int receiverlD, double refTime, const FTime& aTime,
double sampleRate, double SNR);

virtual ~lnfoDigitalSignal();
// Override CSimObject virtuals

virtual CObList* GetAttributes();
virtual CObList* GetReferences();
virtual BOOL ReferencesResolved();
virtual void Serialize(FlxArchive& anArc);
BOOL isEqualTo(const InfoDigitalSignal*);

// Override GObject virtual
BOOL isEqual(const ClnfoObject*) const;
int compare(const ClnfoObject*) const;
unsigned long hash() const {return 0;}
void printOnf ostreamS) const {;}

|};// end class InfoDigitalSignal

Listing 4-9 Header file for class InfoDigitalSignal

20

4.2.1.10 Class: InfoCollection
The class InfoCollection is an information object container. Objects that are descendents of the class
CInfoObject can be contained within this class. The header file (InfoCollection.h) for this class is

shown in Listing 4-10.

class InfoCollection : public CFIexObject

DECLARE_FLEX_SERIAL(InfoCollection)

public:
lnfoCollection();
virtual -lnfoCollection();

// Generic public manipulator functions
void add(CInfoObject* value);
void remove(CInfoObject* value);
CInfoObject* at(int i);
unsigned size() const {return m_contents.size();}
BOOL isEmptyO;
void removeAII();

// Serializle the objects in this container,
void Serialize(FlxArchive& anArc);
OrderedCltn m_contents;

class InfoNode : public GObject

{
public:
// Override the required virtuals from GObject
int compare(const GObject&) const;
BOOL isEqual(const GObject&)const;
unsigned long hash() const {return 0;}
void printOn(ostream&) const {;)
// Object to be contained
CInfoObject* mjnfoObj;

};//end class lnfoCollection::lnfoNode

};// end template class InfoCollection

Listing 4-10 Header file for class InfoCollection.

4.2.1.11 Class: FDOACntnr
The class FDOACntnr is a derived class of InfoCollection. The FDOACntnr class is designed to
hold objects of type InfoFDOA_Meas. FDOACntnr objects are designed to be manipulated by the
user. The header file (FDOACntnr.h) for this class is shown in Listing 4-11.

class FDOACntnr: public InfoCollection

DECLARE_FLEX_SERIAL(FDOACntnr)
public:
FDOACntnr();
~FDOACntnr();
void removeAIIFDOAsO;
// Override CSimObject virtuals
virtual CObList* GetAttributes();
virtual void Serialize(FlxArchive& anArc);

}; // end class FDOACntnr

Listing 4-11 Header file for class FDOACntnr.

21

4.2.1.12 Class: TDOACntnr

The class TDOACntnr is a derived class of InfoCollection. The TDOACntnr class is designed to
hold objects of type InfoTDOA_Meas. TDOACntnr objects are designed to be manipulated by the
user. The header file (TDOACntnr.h) for this class is shown in Listing 4-12.

class TDOACntnr: public InfoCollection
{

DECLARE_FLEX_SERIAL(TDOACntnr)

public:
TDOACntnr();
-TDOACntnr();

// Override CSimObject virtuals
virtual CObLisf* GetAttributes();
virtual void Serialize(FlxArchive& anArc);

// Public manipulator functions forTDOA_Meas
void addTDOA(lnfoTDCA_Meas* value);
void removeTDOAf InfoTDOAJvleas* value);
InfoTDOAJVIeas* nextTDOA();
BOOL isEmptyTDOACntnrO;
void removeAIITDOAs();

);// end class TDOACntnr

Listing 4-12 Header file for class TDOACntnr.

4.2.1.13 Class: TrackCntnr

The class TrackCntnr is a derived class of InfoCollection. The TrackCntnr class is designed to hold
objects of type InfoGeoLocation. TrackCntnr objects are designed to be manipulated by the user.
The header file (TDOACntnr.h) for this class is shown in Listing 4-13.

class TrackCntnr: public InfoCollection
{

DECLARE_FLEX_SERIAL(TrackCntnr)

public:
TrackCntnr();
~TrackCntnr();

// Override CSimObject virtuals
virtual CObList* GetAttributes();
virtual void Serialize; FlxArchive& anArc);
// Public manipulator functions for DigitalSignals
void addTrack(InfoGeoLocation* value);
void removeTrack(InfoGeoLocation* value);
InfoGeoLocation* nextTrack();
BOOL isEmptyTrackCntnr();
void removeAIITracks();

};// end class TrackCntnr

Listing 4-13 Header file for class TrackCntnr.

4.2.1.14 Class: SignalCntnr

The class SignalCntnr is a derived class of InfoCollection. The SignalCntnr class is designed to
hold objects of type InfoDigitalSignal. SignalCntnr objects are designed to be manipulated by the
user. The header file (SignalCntnr.h) for this class is shown in Listing 4-14.

22

class SignalCntnr: public InfoCollection
{

DECLARE_FLEX_SERIAL(SignalCntnr)
public:

SignalCntnr();
~SignalCntnr();

// Override CSimObject virtuals
virtual CObList* GetAttributes();
virtual void Serialize! FlxArchive& anArc);

// Public manipulator functions for DigitalSignals
void addSignalf InfoDigitalSignal* value);
void removeSignalf InfoDigitalSignal* value);
InfoDigitalSignal* nextSignal();
BOOL isEmptySignalCntnrO;
void removeAIISignals();

};// end class SignalCntnr

Listing 4-14 Header file for class SignalCntnr.

4.2.2 Class: GeoLocator
Class GeoLocator inherits from CFlexObject and SimObject and is responsible for processing the
FDOA and TDOA measurements to determine the estimated position(s) of the transmitter(s).
GeoLocator contains references to three objects that are satisfied by the user. These references are to a
TDOACntnr (mandatory), a TrackCntnr (mandatory), and a FDOACntnr (optional). TDOA and
FDOA measurements are take from the attached TDOACntnr and FDOACntnr objects, processed
by the geolocation algorithms (see Appendix A) and the estimated target position(s) are placed in the
attached TrackCntnr for inspection by the user. The class diagram is shown in Figure 4-8, and Listing
4-15 contains the header file (GeoLocator.h) for this class.

,-' CFlexObject

K (from Flex)
/ SimObject ;

.(from Simulation)

Geolocator

m TrackListRef

/ TrackCntnr

■-.(from Databases)

v-!o

m FDOARef

m TDOARef

,' FDOACntnr ;

V(from Databases)

TDOACntnr ;

.(from Databases)

Figure 4-8 Class diagram for the class GeoLocator.

23

//
Ilk Geolocator processes TDOA and FDOA measurements from
//multiple receivers to create estimates of emitter
//locations.
//
// Forward declarations...
class TDOACntnr;
class FDOACntnr;
class TrackCntnr;
class DSymMatrix;
class DoubleMatrix;
class Geolocator: public CFIexObject, public SimObject

DECLARE_FLEX_SERIAL(Geolocator)
public:

Geolocator();
virtual ~Geolocator();

// Override CFIexObject virtuals
CObList* GetAttributes();
CObList* GetReferences();
BOOL ReferencesResolved();
void Serialize(FlxArchive& anArc);
CObject* copy();
void flexlnit();

//Available TDOA and FDOA measurements are processed.
void process();

private:
Ilk reference to a TDOA container. (Set via user interface.)

TDOACntnr* m_TDOARef;
// A reference to an FDOA container. (Set via user interface.)
FDOACntnr* m_FDOARef;
//The current geolocation estimate.
GeoLocation* m_jjeoLoc;
Ilk reference to the set of output geolocation estimates.
//(Set via user interface.)
TrackCntnr* m_TrackListRef;

// Private member functions...
//Solve for the geolocation estimate using marquardt's

//algorithm.
void doMarquardt(GeoLocation& geoLocEst,

const TDOA_Set& tdoaSet,
const FDOA_Set& fdoaSet,
const DSymMatrix& tdoalnvCov);

//The the contribution of the the TDOA measurents to the
//convariance matrix and gradient vector,
void addTdoaContrib(const GeoLocation& geoLocEst,

const TDOA_Set& tdoaSet,
const DSymMatrix& tdoaCov,
DoubleMatrix& grad,
DSymMatrix& locEstlnvCov);

void addFdoaContrib(const GeoLocation& geoLocEst,
const FDOA_Set& fdoaSet,
DoubleMatrixS grad,
DSymMatrixS locEstlnvCov);

double computeFdoaChiSqrContrib(const GeoLocationÄ geoLocPos,
const FDOA_Set& fdoaSet);

double computeChi2(const GeoLocation& geoLocEst,
const TDOA_Set& tdoaSet,

const FDOA_Set& fdoaSet,
const DSymMatrix& tdoaCov);

DoubleMatrix computeDeltaTs(const Vec3& geoLocPos,
const TDOA_Set& tdoaSet);

typedef Event<Geolocator> FIxEvent;

I};// end class Geolocator

Listing 4-15 Header file for class GeoLocator.

24

4.2.3 Matrix Classes
Several matrix classes were developed to support the geolocation algorithms. In particular, a matrix
inverse is required to compute the Chi-Square metric used by the Marquardt optimization algorithm.
Since the covariance matrices are symmetric, the computation of the inverse can be simplified by
decomposing the matrix to triangular form using Cholesky decomposition. Then the inverse can be
computed quickly via back substitution [Pre94]. The classes DoubleArray, DoubleMatrix, and
DSymMatrix implement the basic array and matrix operators including indexing, assignment, and
matrix multiplication. The class CholeskyD holds the result of the Cholesky decomposition of a
DSymMatrix and provides the back substitution algorithm.

The DSymMatrix class employs an internal symmetric matrix storage scheme to reduce redundant
memory use. The design of the matrix classes is shown in Figure 4-9. The interfaces for the
DSymMatrix and CholeskyD classes are shown in Listing 4-16. Listing 4-17 shows an example use
of these classes to compute a matrix inverse and the quadratic form of the chi-square.

/ DoubleArray ;

^_ (from Utilities):

DoubleMatrix "'. / CholeskyD

times() ; m_R U-Cx ^ • CholeskyDQ
v transpose() \ 1 1 "*-,

DSymMatrix ";

operator 0 '<

Figure 4-9 Class diagram for the matrix classes.

25

class DSymMatrix : public DoubleMatrix
{
public:
DSymMatrix(unsigned n);
DSymMatrix(const DSymMatrix& m);
DSymMatrix(const DoubleMatrix& m);
~DSymMatrix();
double& operator 0 (unsigned i, unsigned j);
const double& operator () (unsigned i, unsigned j) const;
DSymMatrix& operator = (const DSymMatrixÄ m);
unsigned getlndex(unsigned i, unsigned j);
unsigned dim() const {return m_dim;}
unsigned rows() const {return m_dim;}
unsigned cols() const {return m_dim;}
//Matrix operators...
//Post multiply...
DoubleMatrix operator * (const DoubleMatrix& m) const;
DoubleMatrix product(const DoubleMatrix& m) const {return (*this)*m;}
// Pre-multiply...
friend DoubleMatrix operator * (const DoubleMatrix& m, const DSymMatrix & s)
void printOn(ostream& s);
protected:
unsigned m_dim;
UShortArray m_index;

}; // end class DSymMatrix
class CholeskyD
{
public:
// Construct a Cholesky factorization of a symmetric matrix
CholeskyD(const DSymMatrix& x);
// Destructor...
~CholeskyD();
void printOn(ostream& s);
const DoubleMatrix& factors() {return m_R; }
void solve(const DoubleMatrixS b, DoubleMatrix& x);
friend DSymMatrix inverse(const CholeskyDS x);
private:
DoubleMatrix m_R;

};// end class CholeskyD

Listing 4-16 Class declaration for DSymMatrix and CholeskyD in C++.

26

#include "DSymMatrix.h"

int main()

(
DSymMatrix M;

// Read the matrix from a file...
M.readFrom("input.dat");

// Compute the inverse...
DSymMatrxi Minv = inverse(M);

// Print the matrix inverse...
Minv.printOn(cout);

// Now compute the Cholesky decomposition...
CholeskyD covDC(M);

// Create a vector for the chi-square...
DoubleMatrix rhs(M.rows())
rhs.readFrom("Ihs.daf);

// Avoid the inverse by computing part of the chi-square by backsubstitution..
covDC.solve(Ihs, rhs);

// Complete the the chi-square calculation...
DoubleMatrix chiSquare = transpose(lhs) * rhs;

// Print the chi-square value...
cout« chiSquare(O) « endl;

)iie^ mam mmimwiwwiiiiimiiiiimmiiimiiiiimwiiiwmmmiiimiiiiiiiiiiiiiii

Listing 4-17 Example use of the matrix classes.

4.3 Detailed Algorithm Design
The detailed designs for the geolocation algorithms are described in the following sections. Appendix B
contains the class diagrams for the relevant geolocation classes and Appendix C contains the

corresponding source code.

4.3.1 Geolocation - An Overview
The use of the GPS network to provide precision location information almost anywhere on the surface
of Earth is a proven navigational tool. With a GPS receiver, a person can accurately determine his
geographical location. To accomplish this precision geolocation, each GPS satellite continuously
transmits a signal - time synchronized among the GPS satellites. A GPS receiver intercepts these
signals from three or more GPS satellites, and based on the received times of the signal, determines the
propagation times from each active satellite. The propagation times are converted to distances between
the GPS receiver and the active satellites. When coupled with precise knowledge of the GPS satellite
positions at the time of signal reception, the distance between the GPS receiver and each active GPS
satellite defines a single point (the location of the GPS receiver) and the surface of Earth.

Relative to determining the position of a ship for navigation purposes, the system is more than
adequate. However, relative to the mission of search and rescue, the system has a major flaw. A small
ship lost at sea might very well be able to locate itself, but without adequate communications has no
way of transmitting its position to rescue services. One way to overcome this problem is to reverse the
geolocation process - that is, instead of having a constellation of GPS satellites transmitting a unique

27

time synchronized signal to be received by a GPS receiver, a GPS emitter could transmit a signal to be
received by each visible GPS satellite. By computing the propagation times from transmitter to the
visible GPS satellites, the distances from the transmitter to the visible satellites can be determined.

For this procedure to work, the propagation times from the transmitter to each satellite must be
determined. However, without elaborate and expensive timing, the exact time of signal transmission
cannot be determined; without knowing the time of signal transmission, the propagation time cannot be
computed. But is not necessary to determine the propagation time from the transmitter to each
satellite. Knowing the difference in propagation time from the transmitter to two satellites also
provides information regarding the location of the transmitter. Since correlation techniques can be used
to compute the TDOA without exact knowledge of the time of transmission, TDOA techniques
overcome the unknown time of transmission problem. Each TDOA measurement restricts the
transmitter to lie on a two-dimensional surface in three dimensional space. With two independent
TDOA measurements, the transmitter is restricted to lie on a line (the intersection of the two surfaces)
If the transmitter is further restricted to lie on Earth's geodetic ellipsoid of revolution (such as would
be the case for a ship at sea), the transmitter's location will be the intersection of the TDOA line with
the geodetic ellipsoid of revolution. Normally this line will intersect with the ellipsoid of revolution at
two points; however, this dual location ambiguity can usually be resolved on the basis of line-of-sight
visibility. That is, only one of the two points will be visible to the subset of satellites that collected the
transmitted signal. If the transmitter is not restricted to lie on Earth's geodetic ellipsoid of revolution
(such as an airplane), a third independent TDOA measurement is required to locate the transmitter.

For stationary or very slowly moving transmitters and rapidly moving satellites, information regarding
the transmitter location can be obtained from the frequency of arrival of the transmitted signal at each
satellite. Motions between the transmitter and the satellites introduce a Doppler shift into the received
frequency relative to the transmitted frequency. The amount of frequency shift is, among other things,
a function of the transmitter's location. As with time measurements, the exact transmitter frequency is
usually unknown. Thus, to exploit received frequency information to locate the transmitter, the FDOA
of the signal as collected at two satellites is used instead of the absolute frequency shift.

For stationary transmitters restricted to lie on Earth's geodetic ellipsoid of revolution, it is often
possible to locate the transmitter by using a combination of TDOA and FDOA measurements The
advantage of using both TDOA and FDOA instead of TDOA alone is the reduction in the number of
satellites required to "see" the signal. A single pair of satellites is often sufficient for TDOA/FDOA
geolocation, whereas for TDOA geolocation alone, three satellites must resolve the transmitted signal
The drawback of TDOA/FDOA geolocation relative to TDOA geolocation alone is that FDOA
techniques give erroneous results if the transmitter is moving.

In terms of FlexSim++, Geolocation refers to the location of a surface emitter using a constellation of
satellite receivers with GPS orbits.

A track position is determined by calculating an error ellipsoid for a stationary emitter as a function of
signal strength, various error sources, and data fusion techniques (including TDOA and FDOA).

28

4.3.2 TDOA Processing
TDOAs are computed within the TDOAGenerator from times of arrival which are computed in the

class Environment (see Figure 4-10).

TOA

RECEIVER Signals arrive at different times due
to path lengths that are different i*

Figure 4-10 Illustration of the time of arrival phenomena. Note that, TDOA - TOAref- TOA.

The Time Of Arrival (TOA) is stored in an analog signal which is created by the Environment. The
GPS receiver and signal processor collect the analog signal, process the signal to create a digital signal,
and place the digital signal in the SignalCntnr.
The TDOAGenerator polls the SignalCntnr periodically, extracts signals when present, and
processes the digital signals to produce a TDOA. TDOAs are computed by the TDOAGenerator in
the following manner:
1 Poll the SignalCntnr every deltaT (update rate for the TDOAGenerator).
2. If the SignalCntnr is empty repeat 1., else place the N signals in a local data structure and label

the first signal as the reference signal.
3 Iterate through the list starting with the second signal and subtract the time of arrival for the

reference signal from the time of arrival at the current signal to produce a TDOA. Apply
measurement errors to the TDOA and store the result in the TDOACntnr. Repeat this step N-l

times.

4.3.3 FDOA Processing
FDOAs are computed within the FDOAGenerator from shifted frequencies which are computed in
the class Environment (see Figure 4-11). The shifted frequency is computed as follows:

Let, febe the emitted frequency
Pe be the position vector of the emitter
Ve be the velocity vector of the emitter
Pr be the position vector of the receiver
Vr be the velocity vector of the receiver

29

Then,

C be the speed of light
r be the range rate

fs be the shifted frequency
<vecl, vec2>be the dot product of vecl with vec2
d = |Pe-Pr|

r = <(Pe-Pr),(Ve-Vr)>/(C*d)
fs = fe*(l-r)

FOAR, :ef

RECEIVER

Reference
Satellite

<3^

Signals arrive at different frequencies
due to Doppler shifts that are imposed
by spacecraft and Earth motion

Satellite

FOA

EMITTER

Figure 4-11 Illustration of the frequency of arrival phenomena. Note that, FDOA = FOAref- FOA.

The shifted frequency is stored in an analog signal which is created by the Environment. The GPS
receiver and signal processor collect the analog signal, process the signal to create a digital signal, and
place the digital signal in the SignalCntnr. The FDOAGenerator polls the SignalCntnr
periodically, extracts signals when present, and processes the digital signals to produce an FDOA.
FDOAs are computed by the FDOAGenerator in the following manner:

Poll the SignalCntnr every deltaT (update rate for the FDOAGenerator).
If the SignalCntnr is empty repeat 1., else place the N signals in a local data structure and label
the first signal as the reference signal.

Iterate through the list starting with the second signal and subtract the shifted frequency of the
reference signal from the shifted frequency of the current signal to produce an FDOA. Apply
measurement errors to the FDOA and store the result in the FDOACntnr. Repeat this step N-l
times.

1.
2.

30

•ä •ft

!

«
v. .ft

I
«
C ft
e <*> u

V3

e a
'I5

31

4.4 Geolocation Test Environment

In order to investigate the mixed fidelity techniques discussed in earlier sections and to test the
geolocation algorithms, a test environment was created. The driver models created to support the
geolocation tests and the mixed fidelity investigations are discussed in the following sections. The
object scenario diagram for the geolocation problem is shown in Figure 4-12.

4.4.1 Driver Models

To drive the geolocation algorithms, we created several models that combine to generate a digital signal
for processing by the TDOA and FDOA generators. These models capture transmitter signal
properties, environmental effects, satellite orbit dynamics, receiver characteristics and satellite signal
processing capabilities.

AFlexSim class captures each model's parameters, interfaces, and behavior. Instances of these classes
are created to model the transmitting platform and receiver satellites in a geolocation problem scenario.

4.4.1.1 Transmitter Model

The transmitter model is characterized by the bandwidth, center frequency, and power of the signal it
radiates into the environment. These properties are captured by the class Transmitter provided by
the physics library. The class FlxTransmitter adapts the class Transmitter to the FlexSim
environment and provides a reference to the transmitter's host platform. The parameters of the
Transmitter class are exported to the FlexSim environment by the FlxTransmitter: :GetAttributes
member function. At initialization time, the transmitter model adds a signal to the environment with
the appropriate characteristics for possible interception by other models (e.g., a receiver model). The
relationship among these classes is shown in the Booch diagram of Figure 4-13 while the interfaces are
shown in Listings 4-18 and 4-19.

/' Transmitter *;

■ .(from Electronics)
CFIexObject

(from Flex) !
/' SimObject ;

'-.(from Simulation)

FlxTransmitter

getAttributes()
-getReferences()

m_platformRef

FlxPlatform

Figure 4-13 Class diagram for the transmitter model.

32

class Transmitter: public PhysObject

{
public:
TransmitterO;
Transmitted const Transmitters);
double bandWidthO const {return m_bandWidth;}
double centerFreqO const {return m_centerFreq;}
double power() const {return m_power;}
int id() const {return m_id;}

protected:
// Bandwidth (Hz) of a signal transmitted by this receiver.

double m_bandWidth;
// Center frequency (Hz) of this transmiiter.

double m_centerFreq;
// Power (W) of transmitter

double m_power;
// Unique ID for this instance of transmitter

int mjd;
// Unique transmitter ID; as it is declared a static member, it

// is common to all instances of class Transmitter so each
// time an instance is constructed, it can be incremented to
// represent a unique ID
static int c_uniquelD;

); // end class Transmitter

Listing 4-18 The Transmitter class declaration in C++.

class FIxTransmitter: public CFIexObject, public SimObject, public Transmitter

DECLARE_FLEX_SERIAL(FIxTransmitter)
public:

FlxTransmitter();
FlxTransmitter(const FIxTransmitter«. trans);
virtual -FIxTransmitterO;

// Override CFIexObject virtuals
CObList* GetAttributesO;
CObList* GetReferences();
BOOL ReferencesResolvedO;
void flexlnit();
void simulate();
CObjecfcopyO;

void Serialize(FIxArchiveS anArc);
private:
// The platform mounting this transmitter. (Set via user
//interface.)
FlxPlatform *m_platformRef;

}; // end class FIxTransmitter

Listing 4-19 The FIxTransmitter class declaration in C++.

4.4.1.2 Receiver Model
The receiver model is characterized by the bandwidth of possible signal it can receive from the
environment. No modeling of the receiver antenna beamwidth and direction is accomplished at this
time. These properties are captured by the class Receiver provided by the physics library. The class
FlxReceiver adapts the class Receiver to the FlexSim environment and provides a reference to the
receiver's host platform. The parameters of the Receiver class are exported to the FlexSim
environment by the FlxReceiver::GetAttributes member function. When the Receiver::sample
member function is invoked, the receiver model retrieves signals from the environment that have been
placed there by a transmitter. The relationship among these classes is shown in the Booch diagram of
Figure 4-14 while the interfaces are shown in Listings 4-20 and 4-21.

33

/ CFIexObject"; , ,
'X (from Flex) ;

/' SimObject }

.(from Simulation)

Receiver

.(from Electronics)

FIxReceiver

getAttributes() {
~getReferences();

A
m_platformRef

/ FlxPlatform ";

Figure 4-14 Class diagram for the receiver model.

class Receiver: public PhysObject

public:
Receiver();
Receiver(const Receivers r);

// Return an analog signal that is the result of sampling
// the environment for signal within the bandwidth and
// beamwidth of this Receiver.
AnalogSignal sample(Environments);

unsigned id() const {return m_receiverlD;}

protected:

// Receiver bandwidth,
double m_bandWidth;

// Unique ID for this instance of receiver
int m_receiverlD;

// Unique receiver ID; as it is declared a static member, it
// is common to all instances of class Receiver so each
// time an instance is constructed, it can be incremented to
// represent a unique ID
static int c_uniquelD;

}; // end class Receiver

Listing 4-20 The Receiver class declaration in C-\

34

class FIxReceiver: public CFIexObject, public SimObject, public Receiver

DECLARE_FLEX_SERIAL(FIxReceiver)

public:
FlxReceiver();
FlxReceiver(const FlxReceiver& r);
virtual ~FlxReceiver();

// Override CFIexObject virtuals
virtual CObList* GetAttributes();
virtual CObList* GetReferences();
BOOL ReferencesResolved();
void flexlnit();
void simulate();
CObject* copy();

void Serialize(FIxArchive &anArc);
FlxPlatform* getPlatformRef() {return m_platformRef;}

private:

// The platform mounting this receiver. (Set via user interface.)
FlxPlatform* m_platformRef;

}; // end class FIxReceiver

Listing 4-21 The FIxReceiver class declaration in C++.

4.4.1.3 Environment Model
For the geolocation problem, the primary purpose of the environment model is the manipulation of
signals as they are transmitted into and received out of Earth environment. Signals that are added to the
environment are stored in their original form along with their point of origin. This allows any
transformations due to travel distance, path attenuation, and Doppler shift to be applied at the time
that a receiver samples the environment. Currently, the signal phase and Doppler shifts are given

respectively by:
<p = d/C

Af = (Pt-Pr)*(V,-K)/(C*d)

Where d is the distance between the satellite and the transmitter, C is the speed of light and P and V are
the transmitter and satellite velocities. Transmitters do not have to have any knowledge of the receivers
that may intercept their signals. When a transmitter ceases to transmit its signal, it removes the signal
from the environment. Receivers are returned a modified copy of the original signal that reflects the
applied environmental effects or no signal at all if the Earth-satellite geometry prevents interception.
The environment model is implemented by the class Environment provided by the physics library.
The class FlxEnvironment adapts the class Environment to FlexSim. Transmitted signals are
represented by the class EnvSignal. The Environment class maintains a list of all environment signals
as a class (static) variable. A single, global Environment object is created for access by all the models
within FlexSim. The design of the environment model is illustrated in Figure 4-15 and the interface is

shown in Listing 4-22.

35

Environment

addSignalO U
.retrieveSignal() ',

.1

c_signals

.1-.

OrderedCItn

(from Collections)/

/ FIxEnvironment '
r _ /

(from FlexSim) {

Object

'^ (from Utilities)?

Vec3
L
v (from Math) ;

'"T
m_ptOfOrigin

EnvSignal

II m_bandWidth : double /
II m_centerFreq : double.

Figure 4-15 The Environment Model Classes.

36

class EnvSignal: public Object
{
public:
EnvSignal(const Transmitters);
~EnvSignal();
double centerFreq() const {return m_centerFreq;}
void setCenterFreq(double f) {m_centerFreq = f;}
double phase() const {return m_phase;}
void setPhase(double p) { m_phase = p;}
double bandWidthO const {return m_bandWidth;}
Vec3 originPos() const {return m_ptOfOrigin;}
Vec3 originVelO const {return m_velOfOrigin;}
int transmitterlDO const {return mJransmitterlD;}
// Override Object virtuals
int isEqual(const GObjectS) const;
int compare(const GObject&) const;
unsigned long hash() const {return 0;}
void printOn(ostream&) const {;}

private:
// The signal bandwidth (Hz)
double m_bandWidth;
// The center frequency of the signal. (Hz)
double m_centerFreq;
//The phase of the signal (sees)
double m_phase;
// The signal power (dB)
double m_power;
// A unique identifier for the source transmitter. Allows
// signal to be deleted from the environment when
// transmitter is silent.
int mJransmitterlD;
// The ECR position of the source transmitter.
Vec3 m_ptOfOrigin;
// The ECR velocity vector of the source transmitter.
Vec3 m_velOfOrigin;
};// end class EnvSignal

typedef OrderedCltn EnvSignalList;
class Environment
{
public:
-Environment^);
const FTime& epochTime() {return m_epochTime;}
const void epochTime(FTime& t) {m_epochTime = t;}
// Adding signal to the environment means that a
// transmitter is current transmitting the signal. If
// transmitters cease transmitting, the signal should be
// removed.
void addSignal(EnvSignal* aSignal);
// Al signals within the beamwidth, and bandwidth of the
// receiver are modified according to the relative geometry
// of the emitter and the receiver including atmospheric
// attenuation effects and added to the returned list of
// signal detectable by that receiver.
EnvSignalList retrieveSignal(const Receivers receiver);
// The signal with the given transmitter ID is removed.
void removeSignal(const Transmitters transmitter);
protected:
FTime m_epochTime;
// A list of all signals currently transmitted into the
// environment by transmitters.
static EnvSignalList c_signals;

};// end class Environment

Listing 4-22 Environment and EnvSignal class declarations in C++.

37

4.4.1.4 Signal Processor Model

The signal processor model is parameterized by the sample rate (integration time) and effective SNR
(Signal to Noise Ratio) of the satellite receiver electronics. The model is implemented directly in
FlexSim by the SignalProcessor class. A reference to receiver and to an output signal container is also
provided. The signal processor calls the receiver sample function to create an analog signal. This analog
signal is then converted to a digital signal and added to the output signal container. Figure 4-16 shows
the Booch class diagram for the SignalProcessor class and the interface is shown in Listing 4-23.

SimObject

(from Simulation)
CFIexObject

(from Flex)

SignalProcessor

II m_sampleRate: double
II m_SNR: double

Figure 4-16 Class Diagram for the SignalProcessor Class.

class SignalProcessor: public CFIexObject, public SimObject

DECLARE_FLEX_SERIAL(SignalProcessor)
public:
SignalProcessor();
-SignalProcessorj);
SignalProcessor(const SignalProcessorS sp);
// Override CSimObject virtuals
CObList* GetAttributesO;
CObList* GetReferencesf);
BOOL ReferencesResolvedO;
void flexlnit();
void simulateQ;
CObject* copy();
void Serialize^ FlxArchive& anArc);
protected:
void Process();
private:
// Sample Rate (Hz). (Set via the user interface)
double m_sampleRate;
// Signal-to-noise ratio. (Set via the user inteface)
double m_SNR;
// A reference the collection containing the output digital
// signals. (Set via user interface.)
SignalCntnr* m_outputRef;
// Reference to a receiver. (Set via the user interface)
FIxReceiver* m_receiverRef;

}; // end class SignalProcessor

Listing 4-23 SignalProcessor class declaration in C-i

38

4.4.1.5 Orbital Platform Model
The orbital platform model simulates the dynamics of a satellite in Earth orbit. The class
FlxOrbPlatform implements the model and is derived from the FlxPlatform class to allow any
object's FlxPlatform reference to be assigned to a FlxOrbPlatform object. An orbital platform
periodically updates its position by propagating its orbital state to the current simulation clock time.
Asynchronous updates of the platform state are allowed through the propagateTo member function.
The orbital dynamics are modeled as planar, elliptical trajectories using orbital elements. [Bat71].

SimObject

(from Simulation),'

FlxPlatform

FlxOrbPlatform

Figure 4-17 Diagram of the FlxOrbPlatform Class.

class FlxOrbPlatform : public FlxPlatform, public SimObject

DECLARE_FLEX_SERIAL(FlxOrbPlatforrn)
public:

FlxOrbPlatformO;
FfxOrbPlatform(const FlxOrbPlatform&);
FlxOrbPlatformj const FTimeÄ aTime,
const FlxOrbState& aState);
-FlxOrbPlatformO;
void Serialize(FlxArchive&);
CObList* GetAttributesO;
void flexlnit();
virtual Vec3 getPos();
virtual CObject* copy();
void propagateTo(const FTime& aTime);
void simulate();
void log();
virtual Vec3 getVel();
virtual double angularVel();

private:
double logRate;
FlxOrbState state;
typedef Event<FlxOrbPlatform> FIxEvent;

};// end class FlxOrbPlatform

Listing 4-24 FlxOrbPlatform class declaration in G+

39

4.4.1.6 TDOAjGenerator Model

The TDOA_Generator model generates TDOA measurements from digital signals.
TDOA_Generator contains two user-setable references (see Figure 4-18) to a SignalCntnr and a
TDOACntnr.

Signals are extracted from the SignalCntnr, processed to produce "noisy" TDOA measurements, and
the TDOA measurements are then placed in the TDOA_Cntnr to await processing by' the
GeoLocator. TDOA_Generator has an associated "flex" class, FlxTDOA_Generator, that handles
the simulation and user interface duties keeping the model code separate from the simulation and user
interface hierarchy. The separation of model code and administrative code (simulation and GUI) greatly
facilitates portability and code reuse. The header file (TDOA_Generator.h) is shown in Listing 4-25.

/ CFIexObject

V. (from Flex)

FlxTDOA_
Generator ■'

TDOA_
Generator

,- TDOACntnr ;

-.(from Databases)

/ SignalCntnr ;

^.(from Databases)

Figure 4-18 Class Diagram for the TDOAjGenerator and Class FlxTDOAGenerator.
a
//A TDOA_Generator creates Time Difference of Arrival
//measurements from two digital signals created by the
//reception of a signal by two or more satellites //
class TDOAJSenerator: public SimObject

public:
TDOA_Generator();
virtual ~TDOA_Generator();

protected:
// Periodically iteratives throught the input signal list
// and creates new TDOA meaurements.
void Process();

// a random number seed for generating measurement errors
long m_Seed;

// A reference to a collection digital signals. (Set via
// user interface.)
SignalCntnr *m_signalsRef;

// A reference to the the output TDOA set. (Set via user
// interface.)
TDOACntnr *m_TDOARef;

}; // end class TDQA_Generator

Listing 4-25 Header file for class TDOA Generator.

40

4.4.1.7 FDOAjGenerator Model
The FDOA_Generator model generates FDOA measurements from digital signals.
FDOA_Generator contains two user-setable references (see Figure 4-19) to a SignalCntnr and a
FDOACntnr. Signals are extracted from the SignalCntnr, processed to produce "noisy" FDOA
measurements, and the FDOA measurements are then placed in the FDOA_Cntnr to await processing
by the GeoLocator. FDOA_Generator has an associated "flex" class, FlxFDOA_Generator, that
handles the simulation and user interface duties keeping the model code separate from the simulation
and user interface hierarchy. The separation of model code and administrative code (simulation and
GUI) greatly facilitates portability and code reuse. The header file (FDOA_Generator.h) is shown in

Listing 4-26.

/ CFIexObject)

^_ (from Flex) I

FlxFDOA_
Generator

FDOA_ ;■
Generator ,'

m.signalsRef ">_FDOARef

,--o'"-..
/ SignalCntnr ;

-.(from Databases)

FDOACntnr ;

'^(from Databases)

Figure 4-19 Class diagram for the FDOAjGenerator and class Fix FDOAjGenerator.

41

//
//A FDOA_Generator creates Time Difference of Arrival
//measurements from two digital signals created by the
// reception of a signal by two or more satellites. //
class FDOA_Generator: public SimObject

public:
FDOA_Generator();
virtual ~FDOA_Generator();

protected:
// Periodically iteratives throught the input signal list

// and creates new FDOA meaurements.
void Process();

// a random number seed
long m_Seed;

// A reference to a collection digital signals. (Set via
// user interface.)
SignalCntnr *m_signalsRef;

// A reference to the the output FDOA set. (Set via user
// interface.)
FDOACntnr *m_FDOARef;

typedef Event<FDOA_Generator> FIxEvent;

I}; // end class FDOA_Generator

Listing 4-26 Header file for class FDOAjGenerator.

4.4.2

4.4.2.1

Mixed Fidelity Modeling Options/Classes

Reuse Through Multiple Inheritance Example

One example from the sample problem of model reuse through multiple inheritance is shown in Figure
4-20. We create new class FlxTransmitter by multiply inheriting from the CFlexObject class and the
external model class Transmitter.

Using this approach, the Transmitter class can be maintained in a separate library while only those
services necessary for interaction with the simulation environment need be added to the derived class.
Listing 4-27 shows the actual implementation in C++.

/' Transmitter ;

.(from Electronics)

/' CFlexObject

'v,_ (from Flex) !

'' FlxTransmitter "'

getAttributesQ ;'
v-getReferences()'.

Figure 4-20 Example of multiple inheritance in the creation of the
Geolocation Transmitter Model

42

class FIxTransmitter: public CFIexObjed, public SimObject, public Transmitter

{
public:
FIxTransmitterO;
FlxTransmitter(const FIxTransmitterS trans);
virtual -FIxTransmitterO;

// Override CFIexObject virtuals...
CObList* GetAttributesO;
CObList* GetReferencesO;
BOOL ReferencesResolvedO;
void flexlnitO;
void simulateO;
CObject* copyO;

void Serialize(FIxArchiveS anArc);
private:
// The platform mounting this transmitter. (Set via user
//interface.)
FlxPlatform *m_platformRef;

}; // end class FIxTransmitter __

Listing 4-27 Definition of class FIxTransmitter using multiple inheritance in C4

GEOLOCATION PROBLEM — ANALYSES AND RESULTS

jReady

Figure 5-1 System configuration used for Monte Carlo analysis ofTDOA/FDOA geolocation.

43

In order to test the ability of the geolocation algorithms to estimate the position of a transmitter, a
modest Monte Carlo analysis was performed. The system configuration that was the basis for the
Monte Carlo analysis is shown in Figure 5-1. The principle components of the system include the
following:

• constellation of four GPS satellites in representative orbits (ephemeris' data shown in Table 5-1)

• single transmitter (transmitter parameters shown in Figure 5-2 and transmitter positions shown in
Figure 5-3)

• position estimates based on a single TDOA and FDOA measurement per satellite

Figure 5-2 Transmitter Characteristics.

AA

5-3 Transmitter location.

Table 5-1 Satellite Ephemeris Data

Satellite EDhemeris Data (Earth Centered Rotational (ECR) Coordinates)
x(m) v(m) z(m) x dot (m/s) V dot (m/s) z dot (m/s)

Satellite 1 12836945.0 22234240.0 6868244.0 -1000.0 1012.0 -1406.0

Satellite 2 9400573.0 16282271.0 18770904.0 500.0 -1580.0 1120.0

Satellite 3 24799072.0 6644891.0 6868244.0 -500.0 -131.0 1932.0

Satellite 4 16269153.0 9393000.0 18786000.0 1000.0 1039.0 -1385.0

The simulation was run 15 times, where the random number seeds for both the TDOAGenerator and
the FDOAGenerator were the only parameters changed from run to run. The results of the Monte
Carlo analysis are shown in Table 5-2. The average absolute error (magnitude of the vector difference)
between the estimated positions and the actual transmitter position is approximately 90 meters. The
standard deviation for the estimates was nearly zero. It should be noted that the transmitter position
was in a "sweet spot" with respect to the satellite positions and that other transmitter positions show
greater errors. The determining factor for this geolocation scheme is the relative geometries between the
transmitters and the satellites. As such, a more comprehensive study would have investigated a larger
matrix of transmitter positions with geolocation occurring at various times of the day and year with a
full complement of GPS satellites. A study of this magnitude was beyond the scope of this project but
could be accomplished using the simulation in its current state of development.

45

Table 5-2 Position estimates for each of the 15 Monte Carlo trials

Results of Monte Carlo Trials
Latitude
(radians)

Longitude
(radians)

Altitude (meters)

3.26E-06 1.50000 116.3300
-2.28E-07 1.50000 99.7084
-8.14E-06 1.50001 50.4425
1.44E-06 1.50000 99.2963
4.36E-06 1.49990 126.9280
5.90E-07 1.50000 103.4750
2.05E-07 1.50000 105.8900

-6.27E-07 1.50000 92.6837
-2.88E-06 1.50000 80.8904
-1.10E-06 1.50000 93.0702
6.74E-07 1.50000 104.5140
2.76E-06 1.50000 117.6170
1.55E-06 1.50000 108.1250

-1.89E-06 1.50000 82.1709
-7.43E-06 1.50001 57.3046

CONCLUSIONS, LESSONS LEARNED

We have presented several promising solutions to mixed fidelity simulation. We have explored both
dynamic solutions that support flexible assembly of mixed-fidelity simulations and static solutions
that support implementation of mixed-fidelity models via software reuse. The use of multiple
inheritance for external model reuse has been established as a viable approach and the separation of
object model properties in the design of model components has been established as a design alternative.
A stable set of geolocation algorithms has been created that provides a foundation for further analysis.
Some of our design approaches have been implemented in software and their use demonstrated in the
geolocation sample problem.

46

The choice of solution for a particular model or project depends not only on technical merit, but also
on software reuse considerations. For example, the creation of a "fat" 6-DOF class was driven by a
need to reuse large, monolithic, legacy programs. The selection of a static solution such as
parameterized types may be preferred if efficiency is given priority over flexibility for the user. Other
potential solutions such as interface expansion and embedded expert systems remain candidates for
future work. A simulation developer needs to have a number of design approaches available and we

have attempted to expand that list.

Since one of the main motives for mixed-fidelity simulation is model reuse, we have also explored
design approaches that enhance the development of reusable class libraries and portable model classes.
We have defined a significant set of lessons learned in the creation of reusable class libraries for

modeling and simulation.

Environment
Classes

Figure 6-1 Overview of design that promotes class library reuse.

Figure 6 1 illustrates several design constructs that we employed to promote software portability and
model reuse We used multiple inheritance from both external model and simulation classes to keep
their source libraries independent of the FlexSim software. Note that the Planet class had to be derived
"virtual" from the base class CelestialBody to prevent the multiple inclusion of a CelestialBody

47

object in instances of the FlexSim FIxPlanet class. The use of virtual inheritance must be implemented
apriori in the external class library to promote reuse by application developers that may not have
access to that libraries source code. Also note that no path exists up the inheritance hierarchy of the
external library classes to any base class in the FlexSim application class hierarchy. This prevents any
dependence of the external library classes on the CFIexObject class and by inheritance on the class
CObject from MFC®. Use of private (implementation) inheritance can also limit the dependence of
application classes on proprietary class libraries like MFC®. This form of inheritance reuses the
implementation of the windowing system without exporting that interface to the rest of the
application. When this approach is used, the application depends on the interface exported by the
reuse class - insulating the application from any changes to the proprietary library (changes in new
versions of MFC® have already adversely affected this project) or re-implementation via another class
library. The following are lessons learned for class library reuse:

• Do not declare global variables in the global name space from within a class library.

• Declare member variables "protected" to allow access by derived classes. (Remember that in
doing so you are promising the users of this class that you will not change or delete this
variable!)

• Use "virtual" inheritance within the class library when both the base and derived classes are
to be reused. (This will prevent casting pointers down to virtually derived classes thus
limiting the use of certain container class implementations.)

• Declare member functions, including destructors, as "virtual" to allow overriding wherever
sensible to do so.

• Use "const" wherever that promise is kept. If a member function does not change its object,
then declare it "const."

48

RECOMMENDATIONS FOR FURTHER WORK
Further work is required to explore the use of expert systems to be able to detect model inconsistencies
when no interface type rules are violated. The relationships that exist between this work and simulation
formalisms such as DEVS [Zei90] also need to be explored. The combination of flexible model
assembly, a broad simulation formalism, a GUI environment, automated expert user support, data
analysis tools, and an object oriented software development environment can achieve far better use of
simulation in the support of system development and scientific research.

49

REFERENCES

[Bch93] Grady Booch, Object oriented Analysis and Design with Applications, Benjamin/Cummings,
Redwood City, CA, 1993.

[Car95] Martin D. Carrol and Margaret A. Ellis, Designing and Coding Reusable C+ +, Addison
Wesley, 1995.

[Str91] Bjarne Stroustrup, The C++ Programming Language, 2nd Ed. Addison Wesley, 1991.

[Wht94] Iseult White, Using the Booch Method: A Rational Approach, Benjamin/Curnmings,
Redwood City, CA, 1994.

[Can95] Cannon et al., Development of the MICOM Infrared Seeker Analysis Tool, Proceedings 1995
KRC Conference.

[Ho93] K. C. Ho and Y. T. Chan, Solution and Performance Analysis of GeoLocation by TDOA,
IEEE Transactions on Aerospace and Electronic Systems, Vol 29, No. 4, October 1993.

[Otn89] Robert K Otnes, Frequency Difference of Arrival Accuracy, IEEE Transactions on
Acoustics, Speech, and Signal Processing, Vol. 37, No.2, February 1989.

[Her96] Thomas Herring, The Global Positioning System, Scientific American, February 1996.

[Zei90] Bernard Zeigler, Object oriented Simulation with Hierarchical, Modular Models, Academic
Press, 1990.

[Aan94] Aandrzej Lewandowski and Donna Calhoun, Object oriented Framework for Dynamical
Systems Modeling, Object oriented Simulation Conference Proceedings, 1994.

[Dra81] Draper and Smith, Applied Regression Analysis, Wiley Inc., 1981.

[Hol92] James Holton, An Introduction to Dynamic Meteorology, Acadamic Press, 1992.

[Bat71] Roger R. Bate, Donald D. Mueller, Jerry E. White, The Fundamentals of Astrodynamics,
Dover Publications, Inc., 1971.

[Pre94] Press, Veterling, Teukolsky, & Flannery, Numerical Recipes in C, 2nd Edition, Cambridge
University Press, 1994.

50

APPENDIX A

This appendix contains the detailed algorithm design flowcharts for the geolocation algorithm. These
designs, in conjunction with the class designs shown in Appendix B, were used to produce the
geolocation source code.

Ai

Appendix A

INPUTS:

NÄT

NS1()

NS2()

Sl(6,)

S2(6,)

CJsPT

(JcLOCK

C7ATM„

C7ATMB

(TsPF

N AF

Number of TDOA Measurements, = 0 IF FDOA Only

First Sensor Number for each TDOA/FDOA Measurement

Reference Sensor Number for each TDOA/FDOA Measurement

ECR Position and Velocity of First Sensor for each TDOA/FDOA
Measurement

ECR Position and Velocity of Reference Sensor for each TDOA/FDOA
Measurement

1 SIGMA Uncertainty in TDOA Measurements Due to Signal Processing:

K B VB«T« SNR

Where B is the Signal Bandwidth,

T is the Integration Time, and SNR is the Signal to Noise Ratio

1 SIGMA Clock Error (Sec)

1 SIGMA Measurement to Measurement Uncertainty in Travel Time Due to
the Atmosphere

1 SIGMA Residual Bias Error in Travel Time Due to the Atmosphere After
Calibration

1 SIGMA Uncertainty in FDOA Measurements Due to Signal Processing:

V3
K T VB«T«SNR

Number of FDOA Measurements, = 0 IF TDOA Only

TMEAS() Time of each TDOA/FDOA Measurement (Arbitrarily the Time of Arrival at
Reference Satellite)

Re Radius of the Earth (Nominal)

A-l

NSTATE Number of State Elements (3 or 6)

C Speed of Light (m/s)

AT() TDOA Measurements

AF() FDOA Measurements

F() Mean Frequency for each FDOA Measurement

MAPOPT = 1 IF Topographical Map Used, = 0 Otherwise

CJMAP ! SIGMA Uncertainty in Topographical Map Altitude

CTPOS 1 SIGMA Uncertainty in each Sensor Position Component

<7VEL * SIGMA Uncertainty in each Sensor Velocity Component

A-2

BUILD THE TDOA
CO VARIANCE MATRIX

AND INVERT

I
INITIALIZE A STATE

ESTIMATE

I
DETERMINE AN

INITIAL
2

X

I
PERFORM

MARQUARDT
ALGORITHM

I
CONVERT ECR STATE
AND CO VARIANCE
TO LAT AND LON

RETURN

A-3

BUILD TDOA COVARIANCE MATRIX

en =YCT2 +(j2 "\
BIAS V CLOCK ATMB /

CT2 = (72 +2(72 +2(T2
AT; SPT ATM* BIAS

C72 = (72
ATiATj BIAS

= <72
BIAS

= -(72
BIAS

= -(72
BIAS

= 2(72
BIAS

=-2(72
BIAS

IFNSl(i)=NSl(j)

IF NS2(i) = NS2(j)

IFNSl(i)=NS2(j)

IFNS2(i)=NSlG)

IF NSl(i) = NSl(j) and NS2(i) = NS2(j)

IF NSl(i)= NS2(j) and NS2(i) = NS10

co =

(72 (7
ATj AT, AT 2

(72
AT, NAT

A-4

INITIALIZE A STATE ESTIMATE

GET MEASUREMENT NUMBERS OF ALL MEASUREMENTS TAKEN AT
LAST MEASUREMENT TIME TL : l1s l2 ... IN

Tx = £si(l,Ii)+S2(l,I1)

TY = Xsi(2,Ii)+ 82(2,0
i=l

Tz = ^Sl(3,Ii)
+S2(3,I1)

STATE ESTIMATE:

Tx = Re

TV=R(

Tz = Re

(Tx- +"TY +

TY

Tz
2r

(Tx
+ TY +

T xz

Tz2)"

(T2+T2+T2) K x Y z'
1/2

NUMBER OF SYMMETRIC
COVARIANCE ELEMENTS:

NCOV = 6

IF NSTATE = 6 THEN

T.=T,=Tz=0 NCOV = 21

A-5

DETERMINE X'

X,= 0

I
DO 1 = 1,

MAX(NATNAF)

ZU
DT = TMEASa)~TL

X = Tx+Ti(DT)

Y = Ty+Ty(DT)

Z = Tz + Tz(DT)

I
D1 = ((X-S1(1,I))2+(Y-S1(2,I))2+(Z-S1(3,I))2)1'

D2 = ((X-S2(1,I))2+(Y-S2(2,I))2 + (Z-S2(3,I))2)

AT(I) = (D1-D2)/C

VI = ((X - S1Ü,l))(Ti- Sl(4,l))+ (Y-Sl)(2,l)) fo- Sl(5,l))

+ (Z-S1(3,I))(T.-Sl(6,l))/Dl

V2 = ((X-S2(l,l)XTx -S2(4,I))+(Y- S2)(2,l)) (T-- S2(5,I))

+ (Z-S2(3,I))(T^-S2(6,I))/D2

AF=(F(l)/c)(V2-Vl)

X2=X2 + ((AF(I)-AF)/O-SPF)
2

I

X = X'+ [AT(l)-AT(l)...AT(NAT)-At(NAT)]co'1

A-6 T

AT(1) -AT(1)

AT(NAT)-AT(NAT)

DETERMINE #2 (Cont'd)

DETERMINE
LATITUDE,

LONGITUDE, AND
LOCAL EARTH
RADIUS = RL

2 2 2\ 1/
X+ Y + z)A

RETURN

A-7

PERFORM MARQUARDT ALGORITHM

XslxlO"6

ITER = 0

I
H ITER = ITER +1 |

CONSTRUCT INVERSE
COVARIANCE AND
GRADIENT VECTOR

IF X TOO
LARGE EXIT

F

♦
MODIFY INVERSE

COVARIANCE WITH
X AND INVERT

T

i
DETERMINE NEW
STATE ESTIMATE

ANDxg™

t X2 IMPROVED GO TO
NEXT ITERATION

DETERMINE ANGLE a BETWEEN GRADIENT
DIRECTION AND SEARCH DIRECTION

INCREASE X TO FORCE
SEARCH DIRECTION TOWARD

GRADIENT DECREASE STEP
SIZE TO OBTAIN
IMPROVEMENT

IF STEP TOO
SMALL EXIT

DETERMINE COVARIANCE
T MATRIX OF STATE ESTIMATE

LOAD UNMODIFIED
INVERSE COVARIANCE

COV = COVI
INVERT

-^RETURN)

CHECKFOR
CONVERGENCE

CHECK FOR MAX
ITERATIONS

A-8

CONSTRUCT INVERSE CONVARIANCE AND GRADIENT VECTOR

COVI(L.-NCOV) = 0
CORR (L.NSTATE) = O

ZERO OUT STATE COVARIANCE
INVERSE AND GRADIENT VECTOR

BUILD UP MATRICES
BY LOOPING OVER

FDOA MEASUREMENTS

ADD CONTRIBUTION
OF TDOA

MEASUREMENTS

ADD CONTRIBUTION
OF TOPOGRAPHICAL

MAP

c E
RETURN

A-9

r
BUILD UP MATRICES BY LOOPING OVER FDOA MEASUREMENTS

ir
DT = TMEAS(I)-TL

X = TX + T.(DT)

Y = TY+Ty(DT)

X=TZ+T- (DT)

I
D1 = ((X-S1(1,I))2 + (Y-S1(2,I))2

+(Z-S1(3,I))2)1/2

D2 = ((X-S2(1,I))2 + (Y-S2(2,I))2 + (Z-S2(3,I))2)1/2

V1 = ((X-S1(1,I))(T,-S1(4,I))+(Y-S1(2,I))(T,-S1(5,I))

+ (Z-S1(3,I))(T-S1(6,I))/D1

V2 = ((X-S2(1,I)) (T, - S2(4,I))+(Y- S2(2,I))(T, - S2(5,I))

+ (Z-S2(3,I))(T.-S2(6,I))/D2

AF=(F(I)/C)(V2-V1)

X

C V D2 (D2)2 Dl (Dl)2 J

P2: = FO) fo^Csj) _ Vg^Y-S^gj)) _ j1^i^+vi(YIsiai))>

c v D2 (D2)2 Di ron2 J (Dl):

z'
p3= F©hk^2^_ VgjZ^SgO^.T^^l^

C ^ D2 (D2)2 Dl (Dl)2 J

P5=P2*DT+-£® |XzS2aj)_Y_IS10j)
C) D2 Dl > Dl /

P6 = P3*DT+-^ Z^SaO^.Z^SlÖJ)
 C ^ D2 Dl

1 A-10

' f

_ -i

9

Pi Pi P2 •••• PIPNSTATE

covi - COVI + \
V SPF

2 •
P2 Pi P2

• •
• •

• 2
PNSTATE PI •••• PNSTATE_

Pi

GRAD =
 AF(I) - AF
GRAD + —^

CFSPp

P2

•

•

•

PNSTATE

\ '

-o

RETURN
)

A-ll

ADD CONTRIBUTION OF TDOA MEASUREMENTS

^DOI = 1,NX

^7
DT = TMEAS(I)- T,
x= Tx + Tx(DT)
Y = TY + TY(DT)

Z = TZ + TZ(DT)

GET STATE TO
TIME OF MEASURMENT

1
D1 = «X - S1(1,1))2 + (Y - S1(2,1))2 + (Z - S1(3,1))2)»

D2 = ((X - S2(1,1))2 + (Y - S2(2,1))2 + (Z - S2(3,1))2)"2

AT(I) = (D1-D2)/C

* ~
P(l »-ie X-S1(1,l) X-S2(1,1)

D1 ~ D2 0
pri 2) - — fY~s1(2,l) Y-S2(2-'A l' '" C V» D1 " D2 J

P(|, 3) = -L fZ-S1(3,l) _ Z-82(3,1A
C ^ D1 D2 J

P(I.4) = P(I,1)«DT
P(l, 5) = P(l, 2) • DT
P(I,6) = P(I,3).DT

DETERMINE TDOA
ESTIMATE

COVI = COVI +

GRAD = GRAD +

P(1,1)"«P(NAr1)
P(1,2)...P(NAr2)

_P(1, NSTATE) • • . P(NÄT, NSTATE)

P(1,1)««'P(NAr1)
P(1,2)...P(NAT,2)

CO'

_P(1, NSTATE). . • P(NAT , NSTATE)

P(1,1)...P(1,2)".P(1, NSTATE)
• • •
• • •
• • •

_P(NAT'2) * * * P<NAT>2) # * * P(NAr NSTATE)

AT(1)-AT(1)

CO'

AT(NAT)-AT(NAl)

±
(RETURN J

A-12

MODIFY INVERSE COVARIANCE WITH X AND INVERT

COV = COVI LOAD INVERSE COVARIANCE

COV (it) =
COV («) (1 + X)

INVERT

A-13

DETERMINE NEW STATE ESTIMATE AND Xl NEW

DEL (1...NSTATE) = [COV] [GRAD] I

I
T;=TX+DEL(1)

T;=TY+ DEL(2)

Ti.= Tz+DEL(3)

Tj=^+ DEL(4)

T*=T$+ DEL(5)

li=T4.+ DEL(6)

I
COMPUTE X2 USING

Y
RATHER THAN T

f RETURN J

A-14

DETERMINE ANGLE a BETWEEN GRADIENT
DIRECTION AND SEARCH DIRECTION

NSTATE / NSTA"

v i= 1 ¥ GRADd)2J MAGNITUDE OF GRADIENT VECTOR

INSTATE
D = 1.2 DEL(I):

i= 1 f MAGNITUDE OF SEARCH DIRECTION VECTOR

NSTATE

P= X GRAD(I)* DEL(I) DOT PRODUCT
i= 1

-1 a = cos
G*D \ J

A-15

DECREASE STEP SIZE TO OBTAIN IMPROVEMENT

| STEP = 0.5 |

T^ = Tx + DEL(1) * STEP

T;=TY+DEL(2)*STEP

r2=Tz + DEL(3)»STEP

T* = Tj + DEL(4) * STEP

T; = T;+DEL(5)*STEP

T'= T- + DEL(6) • STEP

COMPUTEX2

USING V RATHER
THANT

(RETURN)

A-16

APPENDIX B

This appendix contains the class diagrams for the core classes used for performing geolocation. The
class diagrams are presented in the Booch method, as generated in Rational Rose/C++.

Bi

Appendix B

Measurement
Data

Databases

B-1

File: d:\work\design\flexsim.mdl Mon Apr 15 15:25:44 1996 Class Diagram: Sample Problem / Main Page 1

B-2
File: d:\work\design\flexsim.mdl Mon Apr 15 15:26:14 1996 Class Diagram: Measurement Data / Main Page 1

B-3

File: d:\work\design\flexsim.mdl Mon Apr 15 15:26:28 1996 Class Diagram: Databases / Main Page 1

APPENDIX C

This appendix contains the source code for several of the core classes whose diagrams appear in
Appendix B. The source code was printed from Microsoft Visual C++, Version 2.2.

Ci

Appendix C

lll
II
II NRC FlexSim
//
// $Workfile:: GEOLOCATOR.CPP $
// $Revision:: 21 $
// $Date:: 2/23/96 2:22p $
// $Modtime:: 2/22/96 9:26a $
//
lll

♦include "stdafx.h"

♦include <math.h>

// Geolocator

♦include "CholeskyD.h"
♦include "DSymMatrix.h"
♦include "constants.h"
♦include "reference.h"
♦include "TDOACntnr.h"
♦include "FDOACntnr.h"
♦include "TrackCntnr.h"
♦include "FlxSim.h"

♦include "GeoLocator.h"

IMPLEMENT_FLEX_SERIAL(Geolocator, CFlexObject, 1, TRUE)

♦ifdef _DEBUG
♦define new DEBUG_NEW
♦endif

Geolocator::Geolocator()
: m_TDOARef(NULL),
m_FDOARef(NULL) ,
m_geoLoc(NULL),
m_TrackListRef(NULL)

{
m_name = "Geolocator";

}// end constructor 1111111111111111111111

Geolocator::-Geolocator()
{

mJTDOARef = NULL;
m_FDOARef = NULL;
m_geoLoc = NULL;
m_TrackListRef = NULL;

}// end destructor 11111111111111111111111

void Geolocator::flexlnit()
{

FTime eventTime = FlexSim::c_Clock.time() + Periodf 10.0);
FlxEvent* firstEvent = new FlxEvent(eventTime, this,

EVENT_METHOD(Geolocator,process));

FlexSim::c_EventCalendar.schedule) firstEvent);

}// end flexlnit 11

void Geolocator::process()
{

unsigned i, j ;
GeoLocation locEst;
TDOA_Set tdoas;
FDOA_Set fdoas;

unsigned numTDOAs = m_TDOARef->size();

if(numTDOAs == 0) return;

C-1

// Build the TDOA Set...
for(i=0; i<m_TDOARef->size(); ++i)
{

InfoTDOA_Meas* tdoalnfo = (InfoTDOA_Meas*)m_TDOARef->at(i);

TDOA_Meas* tdoaMeas = (TDOA_Meas*)tdoalnfo;
tdoas.add(tdoaMeas);

// Build the FDOA Set
if(m_FDOARef != NULL)
{

for(i=0; i<m_FDOARef->size(); ++i)
{

InfoFDOA_Meas* fdoalnfo = (InfoFDOA_Meas*)m_FDOARef->at(i);
FDOA_Meas* fdoaMeas = (FDOA_Meas*)fdoalnfo;
fdoas.add{ fdoaMeas);

}
}

// Build the TDOA covariance matrix and invert...
DSymMatrix tdoaCov(numTDOAs);

for{ i=l; i<=numTDOAs; ++i)
{

TDOA_Meas* tdoa_i = tdoas[i];

for(j=l; j<=numTDOAs; ++j)
tdoaCov(i-l,j-1) = tdoa_i->covWith(*(tdoas[j]));

}// end for i

// Initialize the geolocation estimate...
locEst.initializeWith(tdoas) ;

// Perform Marquardt algorithm...
doMarquardt(locEst, tdoas, fdoas, tdoaCov);

// Add to TrackCntnr
m_TrackListRef->addTrack(new InfoGeoLocation(locEst)) ;

// here remove all tdoas and fdoas
if (m_FDOARef != NULL)

m_FDOARef->removeAllFDOAs();
m_TD0ARef->removeAllTDOAs();

// Convert ECR state and covariance to lat/long...

}// end process //

DoubleMatrix Geolocator::computeDeltaTs(const Vec3& geoLocPos,
const TDOA_Set& tdoaSet)

unsigned i;
unsigned numTDOAs = tdoaSet.size() ;
double dl(0), d2(0);
DoubleMatrix dt(numTDOAs), dtdoa(numTDOAs);

for(i=l; i<=numTDOAs; ++i)
{

TDOA_Meas* tdoa_i = tdoaSet[i];

dl = (geoLocPos - tdoa_i->firstSensorPos()).magnitude();
d2 = (geoLocPos - tdoa_i->refSensorPos()).magnitude();

dt(i-l) = (dl - d2) / C;
dtdoa(i-l) = tdoa_i->delTime();

C-2

}// end for i

DoubleMatrix dts = dtdoa - dt;

return dts;

}// end computeDeltaTs 11

double Geolocator::computeFdoaChiSqrContrib(const GeoLocationk geoLocEst,
const FDOA_Set& fdoaSet)

double fdoaContrib(O.O), vl(O.O), v2{0.0), dl(O.O), d2(0.0);
double deltaF(0.0), c(299792458.0);

unsigned i;

Vec3 sensorPos,sensorVel,refSenPos,refSenVel;

Vec3 locPos = geoLocEst.position();
Vec3 locVel = geoLocEst.velocity();

double numFDOAs = fdoaSet.size(),diff,avgFreq(0.0);

if(numFDOAs > 0)
{

for(i=l; i<= numFDOAs; i++)
avgFreq += fdoaSet[i]->cntnrFreg()/numFDOAs;

for(i=l; i<= numFDOAs; i++)
{

FDOA_Meas* fdoa_i = fdoaSet[i];

sensorPos = fdoa_i->firstSensorPos();
sensorVel = fdoa_i->firstSensorVel();
refSenPos = fdoa_i->refSensorPos();
refSenVel = fdoa_i->refSensorVel();

dl = (locPos - sensorPos).magnitude();
d2 = { locPos - refSenPos).magnitude();

vl = ((locPos - sensorPos).dotProduct(locVel - sensorVel)) / dl;

v2 = { (locPos - refSenPos).dotProduct(locVel - refSenVel)) / d2;

deltaF = (avgFreq/C)*(v2 - vl);

diff = fdoa_i->deltaFreq() - deltaF;

fdoaContrib += ((fdoa_i->deltaFreq() - deltaF)/fdoa_i->sigmaSPF()) *
((fdoa_i->deltaFreq() - deltaF)/fdoa_i->sigmaSPF());

deltaF = 0.0;

}// end i for

}// end if

return fdoaContrib;

}// end computeFdoaChiSqrContrib 111111111111111111111111111111

void Geolocator::addFdoaContrib(const GeoLocation& geoLocEst,
const FDOA_Set& fdoaSet,
DoubleMatrix& grad,
DSymMatrix& locEstlnvCov)

{

double fdoaContrib(0.0), vl(0.0), v2(0.0), dl(0.0), d2(0.0);
double deltaF(0.0), c(297992458.0),fdivC(0.0),avgFreq(0.0);

Vec3 sensorPos,sensorVel,refSenPos,refSenVel;

C-3

Vec3 locPos = geoLocEst.position();
Vec3 locVel = geoLocEst.velocity();

unsigned size = locEstlnvCov.dim(),i,j,k;

DoubleMatrix pArray(size, size), pVec(size),tempCovInv(size , size);

double numFDOAs = fdoaSet.size(),z,before,after,after_before;

if(numFDOAs > 0)
{

for(i=0; i<size; i++)
for(j=0; j<size; j++)

tempCovInv(i,j) = locEstlnvCovf i,j);

for(i=l; i<= numFDOAs; i++)
avgFreg += fdoaSet[i]->cntnrFreq()/numFDOAs;

for(i=l; i<= numFDOAs; i++)

FDOA_Meas* fdoa_i = fdoaSet[i];

sensorPos = fdoa_i->firstSensorPos();
sensorVel = fdoa_i->firstSensorVel()•
refSenPos = fdoa_i->refSensorPos();
refSenVel = fdoa_i->refSensorVel();

dl = (locPos - sensorPos).magnitude();
d2 = (locPos - refSenPos).magnitude();

vl = ((locPos - sensorPos).dotProduct(locVel - sensorVel)) / dl;

v2 = { (locPos - refSenPos).dotProduct(locVel - refSenVel)) / d2;

fdivC = avgFreg / c;

deltaF = fdivC*(v2 - vl) ;

fdoaContrib = ((fdoa_i->deltaFreq() - deltaF)/
(fdoa_i->sigmaSPF()*fdoa_i->sigmaSPF()));

for(j=0; j< 3; j++)

pvec(j) = fdivCM ((locVeK j) - refSenVel (j))/d2) -

I ^*{J^F0S^ j ' _ refSenPos{ j))/(d2*d2))
((locVel(j) - sensorVel(j))/dl) +'

z=pVec(j);
(vl*< locPos(j) - sensorPos(j))/(dl*dl))

z=pVec(j)*fdoaContrib;
z=pVec(j)*fdoaContrib;

}

for(j=0; j<3; j++)
for(k=0; k<3; k++)

pArray(j,k) = pVec(j)*pVec(k) ;
z=pArray(j,k);
z=pArray(j,k);

}

tempcovlnv += (1.0/(fdoa_i->sigmaSPF()*fdoa_i->sigmaSPF()))*pArray;

grad += fdoaContrib*pVec;

}// end i for

for(i=0; i<size; i++)
for(j=0; j<size; j++)

before = locEstlnvCovfi,j);
after = tempCovInv(i,j);

C-4

locEstInvCov(i,j) = tempCovInv{ i,j);
after = locEstInvCov{ i,j);
after_before = after - before;
z = locEstInvCov(i,j);

}

} // end if

}// end addFdoaContrib ***

double Geolocator::computeChi2(const GeoLocationk geoLocEst,
const TDOA_Set& tdoaSet,
const FDOA_Set& fdoaSet,
const DSymMatrixk tdoaCov)

{
Vec3 locPos = geoLocEst.position();

DoubleMatrix dts = ComputeDeltaTs(locPos, tdoaSet);

double fdoaContrib = computeFdoaChiSqrContrib(geoLocEst, fdoaSet) ;

CholeskyD covDC(tdoaCov);
DoubleMatrix y(dts.rows());

covDC.solve(dts, y);

DoubleMatrix chiSquare = transpose(dts) * y;

double zeroElem = chiSquare(0);

//fdoaContrib = 0.0;

double chiSqr = zeroElem + fdoaContrib;

return chiSqr;

}// end computeChi2 11111111111111111111111111111111111111

void Geolocator::doMarquardt(GeoLocation& geoLocEst,
const TDOA_Set& tdoaSet,
const FDOA_Set& fdoaSet,
const DSymMatrix& tdoaCov)

{
// Initialize.

unsigned iter(0), nstate(3), maxlter(1000);
double lambda(1.0e-6), step(1.0), angle(0.0),error(0.0);
unsigned numTDOAs = tdoaSet.size();
int converged(0);
DSymMatrix stateCovInv(nstate), stateCov(nstate);
DoubleMatrix grad(nstate), del(nstate);
Vec3 locPos = geoLocEst.position();
Vec3 locVel = geoLocEst.velocity();
Vec3 locPos_p = locPos;
Vec3 locVel_p = locVel;
Vec3 delVec;

// Compute an initial chi-square...
double chiSqrOld = computeChi2(geoLocEst, tdoaSet, fdoaSet, tdoaCov

double chiSqrNew,z,y;

unsigned i,j,k;

while([converged)
{
// Construct inverse covariance matrix and correction
// gradient...

grad.filK 0.0) ;
stateCovInv.fill(0.0);

C-5

addTdoaContrib(geoLocEst, tdoaSet, tdoaCov, grad, stateCovInv);

addFdoaContrib{ geoLocEst, fdoaSet, grad, stateCovInv);

do
{
// Modify inverse covariance with lambda and invert...

//stateCov = stateCovInv;
// stateCov *= (1.0 + lambda);
for(i=0; i<nstate; i++)

stateCovInv(i,i) = stateCovInv(i,i)*(1•0 + lambda);
stateCov = inverse(stateCovInv);

// Determine new state estimate and new chi-square....
del = stateCov * grad;
locPos_p += Vec3(del(0), del(l), del(2));
geoLocEst.setPosition(locPos_p);
if(nstate == 6)
{

locVel_p += Vec3(del(3), del(4), del(5));
geoLocEst.setVelocity(locVel_p);

}// end if
chiSqrNew = computeChi2(geoLocEst, tdoaSet, fdoaSet, tdoaCov);

// Check for improvement...
if(chiSqrNew < chiSqrOld)
{

locPos = locPos_p;
goto labell;

}

// Determine angle between gradient and search
// directions...

double gmag(0.0), dmag(O.O), gdotd(0.0);
for(i=0; i<nstate; i++)
{

gmag H-= grad(i)*grad(i);
dmag += del(i)*del(i);
gdotd +,= grad(i) * del(i);

}

angle = ::acos(gdotd / (::sqrt(gmag) * ::sqrt(dmag)));
double degAngle = angle*57.2958;
if(angle > Pi)

angle = 2.0 * Pi - angle;

// Check angle...
if(angle > Pi/4.0)
{

lambda *= 10.0;
continue;

}
else

break;

} while(lambda < 10.5);

// Decrease step size to obtain improvement...
delVec = Vec3(del(0), del(l), del(2));
do
{

locPos_p += delVec * step;
geoLocEst.setPosition(locPos_p);
if(nstate == 6)
{

locVel_p += Vec3(del(3), del(4), del(5));
geoLocEst.setVelocity(locVel_p);

}// end if
chiSqrNew = computeChi2(geoLocEst, tdoaSet, fdoaSet, tdoaCov);
if(chiSqrNew < chiSqrOld)

break;

C-6

else
step /= 2.0;

}while(step > 0.01);

// If step too small exit...
if(step > 0.01)

locPos = locPos_p;
else

break;

labell :
// Check for convergence...

if(((chiSqrOld - chiSqrNew)/chiSqrOld < 0.0001) || (iter == maxlter))
{

converged = TRUE;
locPos = locPos_p;

}
else
{

chiSqrOld = chiSqrNew;
lambda = lambda / 10.0;
iter++;
geoLocEst.setPosition(locPos_p);

} // end if

}// end while

// Load the state estimate...
double chiSqrRat = (chiSqrOld - chiSqrNew)/chiSqrOld;
geoLocEst.setPosition(locPos);

}// end doMarquardt 111111111111111111111111111111111111111

void Geolocator::addTdoaContrib(const GeoLocation& geoLocEst,
const TDOA_Set& tdoaSet,
const DSymMatrix& tdoaCov,
DoubleMatrixk grad,
DSymMatrix& locEstlnvCov)

{
unsigned i;
unsigned numTDOAs = tdoaSet.size();
double dl{0), d2(0);
DoubleMatrix dt(numTDOAs), dtdoa(numTDOAs);
Vec3 locPos = geoLocEst.position();
Vec3 si, s2;
Vec3 pVec;
DoubleMatrix P(grad.rows(),numTDOAs);

for(i=l; i<=numTDOAs; ++i)
{

TDOA_Meas* tdoa_i = tdoaSet[i];
si = tdoa_i->firstSensorPos();
s2 = tdoa_i->refSensorPos() ;
dl = (locPos - si).magnitude();
d2 = (locPos - s2).magnitude();

dt(i-l) = (dl - d2) / C;
dtdoa(i-l) = tdoa_i->delTime();

pVec = 1.0/C * ((locPos - sl)/dl - (locPos - s2)/d2

P(0,i-1) = pVec.xO ;
P(l,i-1) = pVec.yO ;
P(2,i-1) = pVec.zO ;

}// end for i

DoubleMatrix dts = dtdoa - dt;

DSymMatrix tdoalnvCov = inverse(CholeskyD(tdoaCov));

locEstlnvCov = (P * tdoalnvCov) * transpose(P);

C-7

grad = (P * tdoalnvCov) * dts;

}// end addTdoaContrib 11111111111111111111111111111111

CObject* Geolocator::copy()
{

return ((CObject *) new Geolocator(*this));

}// end copy 1111111111111111111111111111

CObList* Geolocator::GetAttributes()
{

CObList* pList = CFlexObject::GetAttributes();

if(pList == NULL)
pList = new CObList();

// Add local attributes...

// Return the accumulated attributes...
return pList;

}// end GetAttributes 11111111111111111111111111111111

CObList* Geolocator::GetReferences()
{

CObList* ans = CFlexObject::GetReferences();

if(ans == NULL)
ans = new CObList();

// Add the local ports and return...
ans->AddTail(new Reference(RUNTIME_CLASS(TDOACntnr),

(CFlexObject**)(&m_TDOARef)));
ans->AddTail(new Reference(RUNTIME_CLASS(FDOACntnr) ,

(CFlexObject**)(&m_FDOARef)));
ans->AddTail(new Reference(RUNTIME_CLASS(TrackCntnr),

(CFlexObject**)(&m_TrackListRef)));

return ans;

}// end GetReferences 11111111111111111111111111111111

BOOL Geolocator::ReferencesResolved()
{

// Returns TRUE if the references of the Geolocator have been set.
// Otherwise, return FALSE

// First check any inherited ports
BOOL answer = CFlexObject::ReferencesResolved();

// Check the local references
if((m_TDOARef == NULL) ||

(m_TrackListRef == NULL))
answer = FALSE;

return answer;

}// end ReferencesResolved 111111111111111111111111111111111111

void Geolocator::Serialize(FlxArchive& anArc)
{

// First, get any inherited members...
CFlexObject::Serialize(anArc);

if(anArc.IsStoring())
{

anArc « m_TDOARef;
anArc « m_FDOARef;
anArc « m_TrackListRef;

}
else
{

C-8

anArc » m_TDOARef;
anArc » m_FDOARef;
anArc » mJTrackListRef;

}

}// end Serialize 111111111111111111111111111111111111

II EOF

C-9

11111 ii mini 111 inn ii 111 ii 111 ii 11111 ii i ii 111 im
ii
II NRC FlexSim
//
// $Workfile:: flxtdoa_generator.cpp $
// $Revision:: 3 $
// $Date:: 1/17/96 3:52p $
// $Modtime:: 1/17/96 3:45p $
//
ii mm ii 11 mi i in in um in mi mm i ii 111 ii 11
♦include "stdafx.h"

finelüde <math.h>
♦include "FlxTDOA_Generator.h"
♦include "Environment.h"
♦include "attrib.h"
♦include "FlxSim.h"
♦include "reference.h"

IMPLEMENT_FLEX_SERIAL(FlxTDOA_Generator, CFlexObject, 1, TRUE)

♦ifdef _DEBUG
♦define new DEBUG_NEW
♦endif

FlxTDOA_Generator :: FlxTDOA_Generator()
: CFlexObject("TDOA Generator")

{
}

// **JMti**tijfcii.<.iJ.<.<ri<.<.iit^<:<r

CObj ect* FlxTDOA_Generator::copy()
{

return ((CObject *) new FlxTDOA_Generator(*this));

CObList* FlxTDOA_Generator::GetAttributes()

// Get any inherited attributes
CObList* pList = CFlexObject::GetAttributes();
if(pList == NULL)

pList = new CObList{);

// Add local attributes
pList->AddTail(new LongAttr(&m_Seed, ■ Measurement Error Seed", Range(1,1000000)

return pList;
}

CObList* FlxTDOA_Generator::GetReferences()

// Return a list containing the references of the receiver

// First, get any inherited ports, if any
CObList* pList = CFlexObject::GetReferences();

// If no inherited references, create a new object list
if(pList == NULL)

pList = new CObList();

// Add the local references and return
pList->AddTail(new Reference) RUNTIME_CLASS(SignalCntnr),

(CFlexObject**)(&m_signalsRef)));
pList->AddTail(new Reference(RUNTIME_CLASS(TDOACntnr),

(CFlexObject**)(&m_TDOARef)));
return pList;

C-10

}

I, ***

BOOL FlxTDOA_Generator::ReferencesResolved()

{ // Returns TRUE if the references of the receiver have been set.
// Otherwise, return FALSE

// First check any inherited ports
BOOL answer = CFlexObject::ReferencesResolved();

// Check the local references
if((m_signalsRef == NULL) ||

(m_TDOARef == NULL))
answer = FALSE;

return answer;

}

//

void FlxTDOA_Generator::Serialize« FlxArchivek anArc)

// First, get any inherited members...
CFlexObject::Serialize) anArc);

if(anArc.IsStoringO)
{

anArc « m_signalsRef;
anArc « m_TDOARef;
anArc « m_Seed;

}
else
{

anArc » m_signalsRef;
anArc » m_TDOARef;
anArc » m_Seed;

}

// ***

void FlxTDOA_Generator::flexlnit()
{

// Initialize the TDOA generator and place its first event on
// the event calendar.
//

FTime eventTime = FlexSim::c_Clock.time() + Period« 5.0);
FlxEvent *firstEvent = new FlxEvent(eventTime, this,

EVENT_METHOD{TDOA_Generator,Process));
FlexSim::c_EventCalendar.schedule(firstEvent);

}

// ***

// EOF

C-11

111
II
II NRC FlexSim
//
// $Workfile:: TDOA_GENERATOR.CPP $
// $Revision:: 9 $
// $Date:: 1/18/96 5:33p $
// $Modtime:: 1/18/96 5:25p $
//
i inn i mi inn 11 mi 111 in 11 in 11 ii 11 ii 11 ii i in ii
♦include "stdafx.h"

#include "gauss.h"

♦include <math.h>
♦include "TDOA_Generator.h"
♦include "Environment.h"
♦include "FlxSim.h"
♦include "reference.h"

♦ifdef _DEBUG
♦define new DEBUG_NEW
♦endif

// ***

TDOA_Generator::TDOA_Generator()
: m_signalsRef(NULL),
m_TDOARef(NULL),
m_Seed(1)

{
}

// ***

TDOA_Generator::~TDOA_Generator()
{

m_signalsRef = NULL;
Itl_TDOARef = NULL;

}

// ***

void TDOA_Generator::Process()
{

unsigned numSignals = m_signalsRef->size();
unsigned i;
Period dt = 0.0;

GaussianRandGen errorDist(m_Seed);

if(numSignals < 2) return;

// For now, assume zero atmospheric effects...
double sigmaATMb = 0.0;
double sigmaATMr = 0.0;

InfoDigitalSignal* refDigSig = (InfoDigitalSignal*)(m_signalsRef->at(0));
double bandwidth = refDigSig->bandwidth();
double sampleRate = refDigSig->sampleRate();
double snr = refDigSig->snr();
double sigmaClock = refDigSig->clockError();
double sigmaSPT = ::sgrt(3.0) / (Pi * bandwidth * sqrt(bandwidth * sampleRate * snr));
double varBias = sigmaClock*sigmaClock + sigmaATMb*sigmaATMb;
double varTDOA = sigmaSPT*sigmaSPT + sigmaATMr*sigmaATMr + 2.0 * varBias;

// Create TDOA measurements from each sensor pair...
TDOA_Meas tdoa;
for{ i=l; i<numSignals; ++i)
{

C-12

InfoDigitalSignal* firstDigSig = (InfoDigitalSignal*)(m_signalsRef->at(i));

// warning: the order here is critical and must match the way the partials
// and dt is computed when computing chisqr and state covariance
dt = firstDigSig->refTime() - refDigSig->refTime(); _
double meanVal = errorDist.randVal(dt, ::sqrt{ varBias));
Period measurement(errorDist.randVal(meanVal, ::sqrt(varTDOA)));

tdoa.setMeasTime(refDigSig->refTime());
tdoa.setTime(measurement);
Vec3 refSensorPos = refDigSig->sensorPos() ;
tdoa.setRefSensorPos(refDigSig->sensorPos{));
tdoa.setSensorlPos(firstDigSig->sensorPos());
tdoa.setRefSensorNumf 0);
tdoa.setfirstSensorNum(i);
tdoa.setVarf varTDOA);
tdoa.setBias(varBias);

// Add new TDOA to the output collection...
m_TDOARef->add(new InfoTDOA_Meas(tdoa)) ;

}// for

}// end Process ,,///

II EOF

C-13

111
II
II NRC FlexSim
//
// $Workfile:: TDOACNTNR.CPP $
// $Revision:: 5 $
// $Date:: 12/04/95 10:49a $
// $Modtime:: 12/04/95 9:41a $
//
II111II111111II1111111II1111II111111111111111111111

#include "stdafx.h"

♦include "attrib.h"
#include "TDOACntnr.h"

IMPLEMENT_FLEX_SERIAL(TDOACntnr, InfoCollection, 1, TRUE)

#ifdef _DEBUG
idefine new DEBUG_NEW
#endif

II ***

TDOACntnr::TDOACntnr()
{

m_name = "TDOA Container";
}

// ***

TDOACntnr::-TDOACntnr()
{

removeAHTDOAs () ;
}

II ***

CObList* TDOACntnr::GetAttributes{)
{

// Get inherited attributes...
CObList *pList = InfoCollection::GetAttributes();
if {pList == NULL)

pList = new CObList();

// Add local attributes...
if(! isEmptyTDOACntnr())
{

Iterator itr(m_contents);
while(itr++)
{

InfoNode* node = (InfoNode*)itr();
InfoTDOA_Meas* aTDOA = (InfoTDOA_Meas*)node->m_infoObj;
pList->AddTail(new ObjectAttrt aTDOA, "InfoTDOA_Meas"));

}

// Return the accumulated attributes...
return pList;

}

// ***

void TDOACntnr::addTDOA(InfoTDOA_Meas* value)
{

InfoNode* node = new InfoNode();

node->m_infoObj = value;

m_contents.add(*node);

C-14

// ***

void TDOACntnr::removeTDOA(InfoTDOA_Meas* value)

Iterator itr(m_contents);

while(itr++)

InfoNode* iNode = { InfoNode*)itr();
InfoTDOA_Meas* aTDOA = (InfoTDOA_Meas*)iNode->m_infoOb];
if(aTDOA->isEqual(value))
{

m_contents.remove(*itr ());
delete value;

}
}

}

// ***

InfoTDOA_Meas* TDOACntnr::nextTDOA()

InfoNode* node = (InfoNode*)m_contents.first();
return (InfoTDOA_Meas*)node->m_infoObj;

}

// ***

BOOL TDOACntnr::isEmptyTDOACntnr()

if{ !m_contents.isEmpty())
{

Iterator itr(m_contents);
if (itr++ == NULL)

return TRUE;
else

return FALSE;
}

return TRUE;
}

,, ***

void TDOACntnr::removeAllTDOAs()
{

if(!isEmptyTDOACntnr())
{

Iterator itr(m_contents);
while{ itr++)

InfoNode* node = (InfoNode*)itr() ;
InfoTDOA_Meas* aTDOA = (InfoTDOA_Meas*)node->m_infoObj;
delete aTDOA;
delete node;

}
}
m_contents.removeAll();

}// end removeAHTracks 1111111111111 til 11

II

void TDOACntnr::Serialize(FlxArchive& anArc)

InfoCollection::Serialize(anArc);

if(!isEmptyTDOACntnr())
{

Iterator itr(m_contents);
while(itr++)
{

InfoNode* node = (InfoNode*)itr();

C-15

InfoTDOA_Meas* aTDOA = (InfoTDOA_Meas*)node->m_infoObj;
aTDOA->Serialize{ anArc);

}
}

}

// ***

C-16

Illlllllllllllllllllllllllllllllllll1111111111111"
II
II NRC FlexSim

// $Workfile:: flxfdoa__generator.cpp $
// $Revision:: 3 $
// $Date:: 1/24/96 5:28p $
// $Modtime:: 1/24/96 5:27p $

'I'lllllllllllllllllllllllllllllllllllll1111'111111"

iinclude "stdafx.h"

#include "FlxFDOA_Generator.h"
#include "attrib.h"
iinclude "Environment.h"
iinclude "FlxSim.h"
iinclude "reference.h"

IMPLEMENT_FLEX_SERIAL(FlxFDOA_Generator, CFlexObject, 1, TRUE)

iifdef _DEBUG
idefine new DEBUG_NEW
iendif

FlxFDOA_Generator :: FlxFDOA_Generator()
: FDOA_Generator()

m_name = "FDOA Generator";
}

// ***

void FlxFDOA_Generator::flexlnit()

{

// Initialize the FDOA generator and place its first event on
// the event calendar.
//

FTime eventTime = FlexSim::c_Clock.time() + Period(5.0);
FlxEvent *firstEvent = new FlxEvent(eventTime, this,

EVENT_METHOD(FlxFDOA_Generator,Process));
FlexSim::c_EventCalendar.schedule(firstEvent) ;

}

// ***

CObj ect* FlxFDOA_Generator::copy()

return ((CObject *) new FlxFDOA_Generator(*this));

}

// ***

CObList* FlxFDOA_Generator::GetAttributes()

// Get any inherited attributes
CObList* pList = CFlexObject::GetAttributes();
if(pList == NULL)

pList = new CObList();

// Return the accumulated, local attributes ,
PList->AddTail(newLongAttr(&m_Seed, »Measurement Error Seed», Range(1,1000000))

// Add local attributes

return pList;
}

//

CObList* FlxFDOA_Generator::GetReferences()

C-17

// Return a list containing the references of the receiver

// First, get any inherited ports, if any
CObList* pList = CFlexObject: .-GetRef erences () ;

// If no inherited references, create a new object list
if(pList == NULL)

pList = new CObList();

// Add the local references and return
pList->AddTail(new Reference(RUNTIME_CLASS(SignalCntnr),

(CFlexObject**)(&m_signalsRef}));
pList->AddTail(new Reference(RUNTIME_CLASS(FDOACntnr),

(CF1exObj ect * *) (&m_FDOARef))) ;
return pList;

}

BOOL FlxFDOA_Generator::ReferencesResolvedO
{

// Returns TRUE if the references of the receiver have been set
// Otherwise, return FALSE

// First check any inherited ports
BOOL answer = CFlexObject::ReferencesResolved();

// Check the local references
if((m_signalsRef == NULL) ||

(m_FDOARef == NULL))
answer = FALSE;

return answer;

***********************.,

void FlxFDOA_Generator::Serialize(FlxArchivefi anArc)

// First, get any inherited members...
CFlexObject::Serialize(anArc);

if(anArc.IsStoring())
{

anArc « m_signalsRef;
anArc « m_FDOARef;
anArc « m_Seed;

}
else
{

anArc » m_signalsRef;
anArc » m_FDOARef;
anArc » m_Seed;

}
}

// ***^^^^^^^^^^^^^^

// EOF

C-18

iiiiuimiiiiiimiimiiiiiiiiiiiiiiiiiiiiiiiiiii
ii
II NRC FlexSim

II $Workfile:: fdoa_generator.cpp S
// $Revision:: 5 $
// $Date:: 2/23/96 2:21p $
// $Modtime:: 2/22/96 2:40p $

'I'imiiiiiiimmiiiiiiiimiiiiiiiiiiiiiiiiiiiiii

#include "stdafx.h"

#include <math.h>
#include "FDOA_Generator.h"
#include "Environment.h"
»include "FlxSim.h"
♦include "reference.h"
#include "gauss.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#endif

/f ***

FDOA_Generator::FDOA_Generator()
: m_signalsRef(NULL),
m_FDOARef(NULL),
m_Seed(1)

{
}

/; ***

FDOA_Generator::~FDOA_Generator{)
{

m_signalsRef = NULL;
m_FDOARef = NULL;

}

// ***

void FDOA_Generator::Process()

unsigned numSignals = m_signalsRef->size() ;
unsigned i;

GaussianRandGen errorDist(m_Seed);

if(numSignals < 2) return;

// For now, assume zero atmospheric effects...
double sigmaATMb = 0.0;
double sigmaATMr = 0.0;

InfoDigitalSignal* refDigSig = (InfoDigitalSignal*)(m_signalsRef->at(0));
double bandwidth = refDigSig->bandwidth();
double sampleRate = refDigSig->sampleRate();
double snr = refDigSig->snr();
double sigmaClock = refDigSig->clockError();
double sigmaSPF = ::sqrt(3.0) / {Pi * sampleRate * sqrt(bandwidth * sampleRate * snr))
double varBias = sigmaClock*sigmaClock + sigmaATMb*sigmaATMb;
double varFDOA = sigmaSPF*sigmaSPF + sigmaATMr*sigmaATMr + 2.0 * varBias;

// Create FDOA measurements from each sensor pair...
FDOA_Meas FDOA;
fort i=l; i<numSignals; ++i)
{

C-19

InfoDigitalSignal* firstDigSig = (InfoDigitalSignal*)(m_signalsRef->at(i));

// warning: the order here is critical and must match the way the partials
// and dt is computed when computing chisqr and state covariance
double df = (firstDigSig->cntnrFreq() - refDigSig->cntnrFreq());
double mean = errorDist.randVal(df, ::sqrt{ varBias));
double measurement = errorDist.randVal(mean, ::sqrt(varFDOA));

FDOA.setMeasTime{ refDigSig->refTime());
FDOA.setCntnrFreq(firstDigSig->cntnrFreq()) ;
FDOA.setDeltaFreq(df) ;
Vec3 refSensorPos = refDigSig->sensorPos();
FDOA.setRefSensorPos(refDigSig->sensorPos()
FDOA.setRefSensorVel(refDigSig->sensorVel()
FDOA.setSensorlPos(firstDigSig->sensorPos()
FDOA.setSensorlVel(firstDigSig->sensorVel()
FDOA.setRefSensorNum(0);
FDOA.setfirstSensorNum(i);
FDOA.setSigmaSPF(sigmaSPF);
FDOA.setVar(varFDOA);
FDOA.setBias{ varBias) ;

// Add new FDOA to the output collection...
m_FDOARef->add(new InfoFDOA_Meas{ FDOA)) ;

}// for

}// end Process ///

// EOF

C-20

Illllllllllllllllllllllllllllllllllllll1111111111"
II
II NRC FlexSim
// £
// $Workfile:: fdoacntnr.cpp $
// $Revision:: 3 $
// $Date:: 2/12/96 10:41a $
// $Modtime:: 2/05/96 2:33p $

'I'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
111111111111

#include "stdafx.h"

♦include "attrib.h"
#include ■FDOACntnr.h"

IMPLEMENT. FLEX_SERIAL(FDOACntnr, InfoCollection, 1, TRUE)

#ifdef _DEBUG
idefine new DEBUG_NEW
#endif

// ***

FDOACntnr::FDOACntnr()
{

m_name = "FDOA Container ;
}

/x ***

FDOACntnr::-FDOACntnr()
{

removeAll();
}

n ***

CObList* FDOACntnr::GetAttributes{)

// Get inherited attributes...
CObList *pList = InfoCollection::GetAttributes();
if (pList == NULL)

pList = new CObList();

// Add local attributes...
if(! isEmpty())

Iterator itr(m_contents);
while{ itr++)

InfoNode* node = (InfoNode*)itr();
InfoFDOA_Meas* aFDOA = (Inf oFDOA_Meas*)node->m_infoOb;j ;
pList->AddTail(new ObjectAttrt aFDOA, "InfoFDOA_Meas"));

}
}

// Return the accumulated attributes...
return pList;

}

void FDOACntnr::Serialize(FlxArchive& anArc)

InfoCollection::Serialize(anArc);

if(üsEmptyO)

Iterator itr(m_contents);
while(itr++)
{ C-21

InfoNode* node = (InfoNode*)itr();
InfoFDOA_Meas* aFDOA = { InfoFDOA_Meas*)node->m_infoObj;
aFDOA->Serialize(anArc);

}
}

}

// I'**

void FDOACntnr::removeAllFDOAs()
{

if (! isEmptyO)
{

Iterator itr(m_contents);
while(itr++)
{

InfoNode* node = (InfoNode*)itr() ;
InfoFDOA_Meas* aFDOA = (InfoFDOA_Meas*)node->m_infoObj;
delete aFDOA;
delete node;

}
}
m_contents.removeAll();

}// end removeAHTracks //

II EOF

«U.S. GOVERNMENT PRINTING OFFICE: 1997-509-127-47156

C-22

MISSION
OF

ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Material
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence,
reliability science, electro-magnetic technology, photonics, signal
processing, and computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

