
DEPARTMENT OF THE AIR FORCE
HQ Air Force Operational Test and Evaluation Center

AFOTEC PAMPHLET 99-102, Volume 6
1 MARCH 1996

Test and Evaluation

SOFTWARE MATURITY EVALUATION GUIDE

The purpose of this pamphlet is to provide Air Force Operational Test and Evaluation Center (AFOTEC) personnel
information needed to evaluate software maturity. This pamphlet describes AFOTEC s software maturity evaluation
concept, the data requirements to support this evaluation, planning considerations, evaluation instructions, and
guidance on reporting a software maturity evaluation.

This volume is number six in a series of software operational test and evaluation guides prepared by the Software
Analysis Team (SAS) at Headquarters (HQ) AFOTEC. Local reproduction of all volumes in this series is
authorized. This volume is an evolutionary document that will be updated periodically. Comments should be
directed to the office of primary responsibility (OPR).

SUMMARY OF CHANGES

AFOTEC Pamphlet 99-102, volume 6, replaces AFOTEC Pamphlet 800-2, volume 6. This document has been
completely rewritten.

Chapter 1—INTRODUCTION
General
Overview of the Guide
Overview of Software Maturity Evaluation.
Evaluation Planning

Paragraph

1.1
1.2
1.3
1.4

Chapter 2—SOFTWARE MATURITY DATA
Software Failure and Change Data
Software Change Severity Levels
Software Change Data Collection

Chapter 3—MATURITY ANALYSIS AND REPORTING
Software Maturity Evaluation
Weighting
Sample Charts
Other Considerations.

2.1
2.2
2.3

3.1
3.2
3.3
3.4

Chapter 4—LESSONS LEARNED
Section Overview
NoDSE
Not Ready for Test
Incremental or Evolutionary System
Duplicate Items or Deleted Items in Software Maturity Database.
Nonstandard Severity Level Definitions

Figures
1.1. Ideal Software Change Rate
1.2. Types of Software Baseline Changes
1.3. Typical Large Program Software Change Process .
2.1. Software Change Data Collection

4.1
4.2
4.3
4.4
4.5
4.6

Page

3
4
5
7

Supersedes AFOTECP 800-2, Vol 6, 1 Oct 90
OPR: SAS (Capt Brian Hermann)

Please
Recycle o Printed on

Recycled Paper

DTIC QUALITY INSPECTED 3

Certified by: SA(ColA.W. Groves)
Pages: 33

G ¥f '. ; . ^^

AFOTECPAM 99-102 Volume 6 15 March 1996

3.1. Software Maturity is a Synthesis of Many Trends
3.2. Test Rate
3.3. Test Completeness

Tables
3.1. Software Severity Levels and Weighting Factors

Attachments
1. Sample Software Maturity MOE
2. Software Maturity Data
3. Software Change Severity Levels
4. Sample Software Maturity Data Request Letter
5. Sample Software Maturity Evaluation Report Outline.
6. Ideal and Sample Maturity Charts
7. Abbreviations

Page

9
10
11

10

14
15
16
17
18
19
30

Chapter 1

INTRODUCTION

1.1. General. This pamphlet describes how to plan,
conduct, and report a software maturity evaluation in
support of AFOTEC-conducted operational test and
evaluation (OT&E). This guide includes sample
maturity charts to illustrate evaluation techniques.

1.2. Overview of the Guide. This guide is
organized as follows:

Chapter 1 - Provides background information and
definitions related to software maturity and outlines
planning requirements for a maturity evaluation.

Chapter 2 - Describes software
sources, and collection time frame.

maturity data,

Chapter 3 - Outlines the evaluation process by
presenting sample maturity charts and describing
software maturity reporting.

Chapter 4 - Provides lessons learned from past
evaluations to answer frequently asked questions.

Attachment 1 - Sample measure of effectiveness
(MOE). Use this example as a basis for providing
software maturity inputs to test and evaluation master
plans (TEMP).

Attachment 2 - Software maturity data definitions.
This list of data items helps the evaluator determine

what information is required for specific evaluation
functions.

Attachment 3 - Description of software severity
levels. These definitions should be used to
standardize the severity level assignment process in
each program.

Attachment 4 - Sample software maturity data
request letter. This sample letter outlines information
the evaluator should request to perform a maturity
evaluation.

Attachment 5 - Sample software maturity evaluation
report outline. This outline provides a simple frame-
work for most maturity reports.

Attachment 6 - This attachment presents an
explanation of how to evaluate sample and ideal
maturity charts and trends.

Attachment 7 - Definition of acronyms and abbrevia-
tions.

1.3. Overview of Software Maturity Evaluation.

Software maturity is a measure of the progress
the software products are making towards
satisfying user requirements.

AFOTECPAM 99-102 Volume 6 15 March 1996

1.3.1. What is software maturity and why is it
important? Software maturity is a measure of the
progress the software products are making towards
satisfying user requirements. AFOTEC uses this
metric to support operational test readiness decisions
(software's ability to support the rigors of operational
testing) and actual OT&E. Our current software
maturity evaluation techniques do not project change
trends or test readiness, but we expect to add that
capability in future versions of this document.

1.3.2. Why do we evaluate software maturity
before OT&E begins? Software maturity evalu-
ations aid the decision-maker in answering the
question "Is the software ready for test?" Data
collected during system integration and test are used
to prepare various demonstrated failure/change trends
which the software test manager (STM) and deputy
for software evaluation (DSE) use to evaluate
software maturity. The underlying philosophy of
maturity is: the RATE and SEVERITY of software
changes necessary to support new user requirements
or correct errors should decrease over time. A
software system that demonstrates these decreasing
trends indicates maturity or progress toward maturity.
Refer to figure 1.1 for an example of the "idealized."
graphical presentation of a mature/maturing system
when change data are displayed over time. These
demonstrated changes may occur for any of the
following reasons:

to correct errors (corrective change)
to enhance system capability (perfective
change)
to make the software compatible with
changes in the computing environment
(adaptive change)

Software maturity is concerned with all of these
changes but the typical problems found and changes
requested during OT&E should be predominantly
corrective with fewer adaptive and perfective
changes.

1.3.3. If we evaluate software maturity before
OT&E, why do we continue during OT&E? Our
methodologies are progressing toward evaluating
software reliability during OT&E, but many programs
don't have the type or quantity of data required to
evaluate software reliability. If we can't evaluate
reliability, it is valuable to present a final snapshot of
the software's maturity for decision-makers, future
users, and future maintainers before AFOTEC s
involvement ends. In addition, the software maturity
data collected during OT&E are more operationally
representative than data collected during develop-
mental testing. Because the data are more realistic,
the evaluator may choose to place more emphasis on
the software problems found during OT&E.

1.3.4. Where can I find further software maturity
policy guidance?

• Air Force Instruction (AFI) 10-602, Deter-
mining Logistics Support and Readiness
Requirements, defines software maturity and
suggests that major commands include ma-
turity as an operational requirement.

• Secretary of the Air Force for Acquisition
(SAF/AQ) Policy Letter 93M-017, Software
Metrics, provides for the establishment of a
data collection system to support software
maturity evaluations.

• Air Force Manual (AFMAN) 63-119,
Certification of Readiness for Dedicated

Cumulative
Software
Changes

Time

Figure 1.1. Ideal Software Change Rate.

AFOTECPAM 99-102 Volume 6 15 March 1996

Operational Test and Evaluation, presents
templates that include the requirement that
systems will not proceed to dedicated OT&E
with any Priority 1 or 2 software problems
that will affect an OT&E critical operational
issue and the rate of problem identification
must be decreasing.

• Department of Defense Operational Test and
Evaluation Policy Letter, Software Maturity
Criteria for Dedicated Operational Test and
Evaluation of Software-Intensive Systems
(31 May 94), states that systems will not
proceed to dedicated OT&E with any
Priority 1 or 2 software problems that will
affect an OT&E critical operational issue.

1.4. Evaluation Planning.

1.4.1. What are the primary responsibilities of the
STM and DSE? The STM will plan and conduct the
evaluations and report the results for programs
without an assigned DSE. Once assigned, the DSE
will participate in the collection and scoring of
software failures, conduct maturity evaluations, and
report the results.

1.4.2. Maturity Factors. Maturity evaluations are
based on various trends revolving around the
identification and implementation of technical
solutions to requested changes and problems. It is the
responsibility of the STM/DSE to aggregate these
trends and evaluate the maturity of the software and
its potential impact on the system's ability to undergo
the rigors of OT&E. Many outside factors might
influence these trends. Paragraph 3.4 of this guide
describes some common considerations (test rate,
requirements stability, and test completeness) and

their impacts on maturity evaluation. It is the
responsibility of the DSE, in conjunction with the
STM, to identify these external factors and account
for their impact on the evaluation.

1.4.3. Software Change Process. Since every
software development is unique, the number of
different processes for collection of changes,
problems, and the means for tracking corrections are
vast. Instead of attempting to describe every
situation, this pamphlet outlines typical procedures
for large, medium-sized, and small software
development programs. Regardless of size, software
change requests require modification of one or more
of the products illustrated in figure 1.2. Typically,
requirements changes dominate the early portions of a
software effort. As the program evolves, requested
changes shift to design, source code, and test
procedures. No matter which phase the software
development is in, there should be maturity data that
can be evaluated.

1.4.3.1. Large Software Development Programs.
In a large acquisition program, the trouble-reporting
and change-request process may be complex. One
possible example is identified in figure 1.3. In this
situation, software change requests are the result of
either investigated problems, user requirements
changes, adaptive hardware changes, or documenta-
tion changes. The evaluator must ensure the data
used for a software maturity evaluation include
failures, problems, and additional required changes.
At the same time, it is important to verify that there is
no duplication of data.

1.4.3.2. Medium Software Development Pro-
grams. In some programs, evaluators will find their

f Software
(Change
\. Requests

y r i r

/

1 ' i f

y / / / / y y

y
Requirements

Documents
/

D esign
Source
Code

Test
Procedures

Figure 1.2. Types of Software Baseline Changes.

AFOTECPAM 99-102 Volume 6 15 March 1996

Test
Anomalies

Requirements
Changes

User
Documentation

Trouble

Hardware
Changes

(Adaptive)

Documentation

<Configuration
Management New Software

Baseline

Figure 1.3. Typical Large-Program Software Change Process.

program has two unconnected databases; one that
tracks software problems and another that lists new
user requirements. Both sources of data can be used
together to get a complete software maturity picture
and can be used individually to focus on the source of
maturity problems.

1.4.3.3. Small Software Development Programs.
Most small software efforts track software problems
and changes together in one process. This situation
simplifies work for the STM since the data source is
obvious and less likely to contain duplication.

1.4.4. Test Planning Documentation. During test
planning, the STM must ensure software maturity is
addressed in the appropriate acquisition and test
documents. Arrangements must be made via the
applicable Data Item Description (DID) on the
Contract Data Requirements List (CDRL) to collect
and report software change data. The major
documents and recommendations follow.

• Test Resource Plan (TRP). Ensure the
TRP identifies the necessary resources to
collect/analyze software change data. It
might be appropriate to have a dedicated
evaluator to perform these duties in some of

the larger tests. If so, identify this in the
TRP.
Operational Requirements Document
(ORD) and Requirements Correlation
Matrix (RCM). When reviewing/comment-
ing on an ORD/RCM, ensure any specified
software maturity requirements are
consistent with the test readiness templates
(AFMAN 63-119, Certification of Readiness
for Dedicated Operational Test and
Evaluation).
Test and Evaluation Master Plan
(TEMP). AFOTEC Instruction (AFOTECI)
99-101, Management of Operational Test
and Evaluation, states the measures of
performance and MOEs must address system
maturity. Obviously software maturity is an
important aspect of system maturity in most
modern systems. Although TEMPs vary in
format, attachment 1 presents an example
software maturity MOE.
Test Plan. Refer to AFOTECI 99-101 for
details concerning the format of the test
plan. Each test plan is unique and it is
difficult to show how maturity should be
addressed in a particular plan.

AFOTECPAM 99-102 Volume 6 15 March 1996

Chapter 2

SOFTWARE MATURITY DATA

2.1. Software Failure and Change Data. Software
maturity evaluation depends on the adequate
collection of change and failure data. We know all
software systems have an unknown number of faults
when delivered for test or use. In a broad sense, our
goal is to measure the developer's progress toward
finding and correcting these existing problems, but
we're also interested in requirements stability,
suggested enhancements, and design changes that
may indicate the system is not ready for operational
use. To evaluate this progress, we must collect and
analyze change data. Attachment 2 lists all data
required to evaluate software maturity.

...all software systems have an unknown number
of faults when delivered for test or use...our goal
is to measure the developer's progress toward
finding and correcting these existing problems...

2.1.1. Types of Changes. As previously mentioned,
changes can be grouped into adaptive, perfective and
corrective changes. The term software change data
are often used interchangeably with software problem
data and software trouble data. Failure data are
special cases of corrective change which becomes
predominant during OT&E. For the purpose of our
evaluations, AFOTEC uses the following definition
of a software failure.

A SOFTWARE FAILURE is defined as the
inability of a system's software component to
perform a required function, as perceived by the
user, within specified limits.

2.1.2. Software Failure Process. When a system
failure occurs it can be traced to a fault or faults. A
software fault, sometimes called a bug, is a software
condition that causes a functional unit to fail to
perform its required function. A fault or bug is
caused by an error or defect that occurs during the
software development effort. While software
reliability is only concerned with these demonstrated
failures and remaining faults, maturity includes all
changes.

2.1.3. Unintended Software Effects. Whenever the
topic of software failures is brought up, someone
inevitably points out software does not break.
Technically speaking, they are correct. Software does

exactly what it is programmed to do. However,
software can cause a system to fail, operate in a
degraded mode, or not properly support the user in
accomplishing the mission. The AFOTEC-adopted
definition of software failure focuses on the system
impact of a software failure. A dramatic example of
software causing a system to fail occurred during
Operation Desert Storm when an Iraqi Scud Missile
hit an American barracks in Dhahran, Saudi Arabia.
Twenty-eight Americans lost their lives. The United
States Army determined the Patriot anti-missile
defensive system did not fire at the incoming Scud
because of a software failure in the computer system
that tracks incoming missiles (Lauren Ruth Wiener.
Digital Woes. Reading, Massachusetts: Addison-
Wesley Publishing Company, 1993).

AFOTEC-adopted definition of software failure
focuses on the system impact of a software
failure

2.2. Software Change Severity Levels. Software
problems have different levels of severity. For
example, a misspelled word on a menu may be
assigned a low severity level. A software failure that
causes the radar on an airborne warning and control
system (AWACS) aircraft to shutdown (prohibiting
mission accomplishment) would be assigned a high
severity level. AFOTEC severity levels (refer to
attachment 3) are basically the same as those found in
the following publications:

• Department of Defense-Standard (DOD-
STD) 2167A, Defense System Software
Development, Appendix C (Category and
Problem Classifications for Problem
Reporting)

• Military-Standard (MIL-STD) 498, Software
Development and Documentation, Appendix
C (Category and Priority Classifications for
Problem Reporting)

• AFI 10-602, Determining Logistics Support
and Readiness Requirements, attachment 10
(Software Design and Supportability
Measures)

2.3. Software Change Data Collection. Figure 2.1
shows the system acquisition life cycle. The chart
also displays when the procedures for collecting

AFOTECPAM 99-102 Volume 6 15 March 1996

change data should be in place, when maturity data
are actually collected, and finally when maturity
evaluations take place. As explained earlier, different
types of software maturity data are available at
different stages of the development. During software
requirements definition and allocation, changes to the
requirements can be used to measure requirements
stability. During the design phase, additional
information about design changes can be added to on-
going requirements change data collection. Each
phase of the development adds additional information
to the previous maturity data. The solid line for
software maturity data collection (figure 2.1)
indicates that changes and problems found during
integration and testing are the primary source of
software maturity data as a program moves toward
OT&E. Note that data must be delivered on a regular
basis to support planned evaluations as described in
section 3.

2.3.1. Data Collection and Delivery. Depending on
the evaluation schedule, data collection may begin as
early as the beginning of the software requirements
analysis phase of the program. If early evaluation of
requirements maturity is not required, software
maturity data collection must begin no later than
when the software is placed under formal
configuration control or at the beginning of system
integration testing.

2.3.2. Normal Data Collection Process. Collection
of software maturity data is almost always under way
in a software development prior to AFOTEC
involvement. Typically the program office places one

of the following DIDs on contract with the software
developer (depending on the standard used for a
particular system):

• DOD-STD-2167A, Defense System Software
Development.
DI-MCCR-80030 - Software Development
Plan

• MIL-STD-498, Software Development and
Documentation.
DI-IPSC-81427 - Software Development
Plan

Delivery of this data should be reflected on the
CDRL. As stated earlier, the SAF/AQ Policy Letter
93M-017, Software Metrics, directs system program
offices (SPO) to collect various software metrics.
One of the metrics, software quality, is very similar to
software maturity. If the SPO is collecting the data to
support software quality, AFOTEC can use that same
data set to support software maturity evaluations.
Although each program is different, the software
maturity database is often identified as the software
trouble report, software problem report, software
change report, or test discrepancy report database.

In the rare case where this information is either not
available or deliverable, the STM should identify and
correct this situation early in the OT&E planning
phase.

2.3.3. Requesting Software Maturity Data. The
STM/DSE should send a letter as early as possible
requesting the SPO task the developer to collect and

MILESTONE 0 MILESTONE 1 MILESTONE 2

I I I
MILESTONE 3

1
SYSTEM
PHASE

SYSTEM
ACTIVITY

CONCEPT
EXPLORATION
AND DEFINITION

DEMONSTRATION
AND VALIDATION

ENGINEERING AND MANUFACTURING
DEVELOPMENT

PRODUCTION AND
DEPLOYMENT

MISSION/SYSTEM
REQUIREMENTS
DEFINITION

SOFTWARE
REQUIREMENTS

COMPUTER
SOFTWARE
DEVELOPMENT

SYSTEM
INTEGRATION
AND TESTING

OT&E PRODUCTION AND
DEPLOYMENT

A Establish Data
Collection Mechanism

Collect Data to Support A
Software Maturity Evaluation

'fi "zr 7L~~A

Collect Data to Support Jfc
Software Reliability Evaluation

Figure 2.1. Software Change Data Collection.

AFOTECPAM 99-102 Volume 6 15 March 1996

send the data to the SPO and make arrangements for
AFOTEC to receive the data. A sample letter of
request is at attachment 4. The table at attachment 2
describes the required data and suggests additional
data that could be collected for a more in-depth
maturity evaluation. The maturity data should be
delivered in electronic format (e.g., database, spread-
sheet, or delimited text file) whenever possible.

2.3.4. Data Integrity. It is important for all
interested organizations to agree on the software
change request database format, scoring, and
responsibility for upkeep of the database. Typically,
the developer is responsible for assigning severity

levels and verifying uniqueness of change requests
during integration testing. Later, during develop-
mental test and evaluation, the program office or test
team may also be involved in scoring SPRs and
change requests. During OT&E, the STM/DSE is
responsible for tracking software problems and
failures. The Joint Reliability and Maintainability
Evaluation Team (JRMET) verifies and scores each
problem and failure during operational testing while
the Test Data Scoring Board is responsible for
resolving scoring conflicts as a government only
board. As a member of these groups, the STM/DSE
will provide major input to scoring and evaluating
software-related problems during OT&E.

Chapter 3

MATURITY EVALUATION AND REPORTING

3.1. Software Maturity Evaluation.

3.1.1. Timing. AFOTEC can begin maturity analysis
as soon as data are collected and delivered.
Depending on the system's complexity, size, or
oversight, the STM/DSE will decide how often to
conduct and report maturity evaluations. Evaluations
are normally conducted more often as OT&E
approaches. For many systems, maturity is evaluated
monthly and reported quarterly, but more frequent
evaluations may be necessary prior to the operational
test readiness certification. The evaluator should also
consider additional maturity evaluations and reports
to coincide with acquisition events. For example,
maturity could be evaluated regularly, and reported
for program management reviews, test readiness
reviews, or other decision events.

For many systems, maturity is evaluated monthly
and reported quarterly, but more frequent
evaluations may be necessary prior to the
operational test readiness certification.

3.1.2. Workload. This evaluation should not be a
time burden on the evaluator. It is intended to require
no more than 2 days to perform a maturity evaluation
and report results. If your evaluation requires
significantly more time, contact HQAFOTEC/SAS
for help in reducing the effort required.

3.1.3. Indenture Level. For most programs,
software maturity evaluations should be conducted at
the computer software configuration item (CSCI)
level as well as the system level. Conducting the

evaluation on each CSCI is important because
sometimes good software hides the high failure rate
of other software, or the reverse might also be true.
In addition, evaluating maturity at the CSCI level
helps the SPO more effectively address problems
with immature software components. Determining
what indenture level is appropriate for your system is
a function of three factors.

3.1.3.1. Length of Time Software Maturity Data
are Collected. Most trends require a minimum of 10
to 15 time periods to clearly demonstrate trends.
These time periods could be weeks, months, quarters,
or years. It will be difficult to evaluate maturity at
any indenture level without at least 10 weeks of
maturity data.

3.1.3.2. Number of Changes. Although the number
of changes required to show trends is related to the
length of time the data are collected, a minimum of
about 50 changes is a good rule of thumb. If a CSCI
does not have approximately 50 changes, it may be
better to evaluate maturity at the software system
level, rather than at the CSCI level.

3.1.3.3. New or Modified Lines of Code. Finally, if
a CSCI consists of less than 30,000 new or modified
lines of code, the defect density will be extremely
volatile at the CSCI level. This means that a single
remaining change will have an unusually large impact
on the defect density of the CSCI.

3.1.3.4. Large Programs. Extensive data collection
efforts within some programs enable the software

AFOTECPAM 99-102 Volume 6 15 March 1996

For most programs, software maturity
evaluations should be conducted at the CSCI
level as well as the system level.

It is important to keep in mind no single trend is
a direct measure of software maturity. AU
trends must be considered together.

evaluator to further focus the maturity evaluation. If
software maturity data can be tracked to the computer
software component (CSC) or computer software unit
(CSU), very specific problem areas can be identified.
Since most CSCs or CSUs will be fewer than 30,000
new or modified lines of code, defect density
information is best evaluated at the CSCI level.

3.1.3.5. Small Programs. Many small programs do
not have the number of problems, length of data
collection, or number of new or modified lines of
code required to create trends at the CSCI level. For
these small programs, a meaningful maturity
evaluation can only be accomplished at the system
level.

3.1.4. Synthesis of Multiple Trends. It is important
to keep in mind no single trend is a direct measure of
software maturity. All trends must be considered
together. Figure 3.1 emphasizes this point. Addi-
tional trends beyond the ones covered here may be
appropriate for a particular system. The test team,
DSE, and STM should agree on what trends to
evaluate, how to collect the data, and how to analyze
the trends.

3.1.5. Reporting. Maturity should be reported to the
lowest reasonable level. While small programs may
only have meaningful results at the system level, most
programs should also include results at the CSCI
level. It is the responsibility of the STM/DSE to
investigate the underlying causes of the indicators and
trends. Attachment 5 presents a high-level outline of
a typical software maturity report.

3.1.6. Archival of Results. As with other AFOTEC
software evaluations, provide your HQ AFOTEC/
SAS point of contact with a copy of your evaluation
data, charts, and report. These items are an important
part of our historical data used to improve current
methodologies and research new evaluation techni-
ques.

3.2. Weighting. Some of the maturity trends are
"weighted" based on the severity level of the failure.
The weighting factor is listed in table 3.1. The
failures/changes are multiplied by their respective
weighting factor to produce values called "change
points." These change points are used to produce
some of the trends. Each trend will be identified as
weighted or unweighted.

All Trends Contribute to Maturity

ill ■-■ lil if!

Figure 3.1. Software Maturity is a Synthesis of Many Trends.

10 AFOTECPAM 99-102 Volume 6 15 March 1996

Table 3.1. Software Severity Levels and
Weighting Factors.

Severity Level Title Weighting
1 System Abort 30
2 System Degraded -

No Work-around
15

3 System Degraded -
Work-around

5

4 System Not Degraded 2
5 Minor Change 1

3.3. Sample Charts. Attachment 5 presents sample
maturity charts and explains the analysis of each
chart. All charts in attachment 5 were produced by
the HQ AFOTEC/SAS Maturity Evaluation and
Analysis Tool (MEAT) version 3.0. This evaluation
guide may be used with MEAT version 3.0 or higher.

3.4. Other Considerations. Software maturity
trends cannot be fully understood without specific
program knowledge described in the following
paragraphs. The charts presented in this section are
intended only as examples and are not produced by
MEAT version 3.0. The goal of this section is for the
evaluator to understand the impact of the external
factors on maturity evaluation.

3.4.1. Test Rate. The software maturity trends must
be used in conjunction with data representing test
progress and completeness. The rate of testing is
required because changes in this rate will affect the
slope of the total originated changes curves in the
weighted and unweighted accumulated software
change charts. If testing slows, the slope of the
changes (problems) discovered curve should decrease
since fewer failures should be found per unit time.
Conversely, if the rate of testing increases, the
number of changes (problems) found per unit time
potentially increases, thereby causing a steeper slope
in the changes (problems) discovered curve. The data
required to illustrate test rate is included in
attachment 2. Figure 3.2 is a sample test rate chart.
It is not produced by MEAT version 3.0. Since many
program offices already collect and present this
information, most evaluators should simply obtain
current test rate information from the program office.

3.4.2. Test Completeness. This measure helps the
evaluator to determine how many of the formally
identified test procedures have been successfully
accomplished. This understanding helps to estimate
confidence in the overall maturity evaluation. Test
completeness is expressed as a ratio between the
number of successfully passed test procedures and the
total number of test procedures. In many cases, these
data are readily available from the SPO (see

Test Rate

3
as
S u
3

■3
O) u
2

Cu
09
01
H

01

3

90

80 +

70

60

50-

40

30

20

10

0 iilll
cs

Week

Figure 3.2. Test Rate by Week.

AFOTECPAM 99-102 Volume 6 15 March 1996 11

attachment 2). Figure 3.3 is a sample test complete-
ness chart. Notice that the total number of test
procedures normally grows as the program evolves.
The evaluator must remember that successfully
completing all test cases (complete testing) does not
guarantee thorough testing. Traceability between test
procedures and requirements or functions, which is
not part of this chart, is necessary to verify thorough
functional testing.

Traceability between test procedures and
requirements or functions, which is not part of
this chart» is necessary to verify thorough
functional testing.

3.4.3. Requirements Stability. One of the
difficulties in determining the status of software
intensive systems is software requirements are a
moving target. This occurs for several reasons
including:

• Initial user requirements are inadequately
defined.

• User requested changes after the initial
requirements baseline are not adequately
controlled.

• Requirements originally assigned to hard-
ware are subsequently reassigned to soft-
ware.

In addition to a changing environment, the SPO may
have difficulty translating the user requirements into
contract specifications. As stated earlier, a software
maturity evaluation is concerned with all types of
software changes. A good understanding of the
nature of software changes within a system can help
the evaluator determine the root cause for software
maturity problems. Data about the type of change
(perfective, adaptive, or corrective) can be used to
measure requirements stability (see attachment 2).

Test Completeness

Successfidry
Completed
Test
Procedures
(Currulatrve)

Total Number
ofTest
Procedures

Date

Figure 3.3. Test Completeness.

12 AFOTECPAM 99-102 Volume 6 15 March 1996

Chapter 4

Lessons Learned

4.1. Section Overview. This section is designed to
be a collection of experiences and guidance. It
addresses common problems found by STMs/DSEs
and typical solutions to those problems. Each
suggested action should be applied with common
sense to a specific program. From their experiences,
evaluators are encouraged to provide additional
problems and solutions to improve this section. The
notes section can be used to write comments about
the applicability of these problems and suggested
actions to your specific programs.

4.2. NoDSE.

4.2.1. Problem: No DSE is on the test team

4.2.2. Suggested Action: The STM will perform all
of the DSE duties.

4.3. Not Ready for Test.

4.3.1. Problem: Pre-OT&E evaluations indicate the
software is not ready for OT&E but it starts anyway.

4.3.2. Suggested Action: The test readiness
templates should enable the evaluator to highlight this
during the test readiness certification process. If the
choice is made to proceed to OT&E despite this risk,
the evaluator should continue the maturity evaluations
into OT&E. The final report should reflect the state
of software maturity at the end of OT&E and should
also state that software maturity was deemed
inadequate at the start of test (i.e., a known system
deficiency at the start of OT&E).

AFOTECPAM 99-102 Volume 6 15 March 1996 13

4.4. Incremental or Evolutionary System

4.4.1. Problem: The system is being acquired as an
incremental or evolutionary acquisition.

4.4.2. Suggested Action: Perform the maturity
evaluation on each release scheduled for OT&E

4.5. Duplicate Items or Deleted Items in Software
Maturity Database.

4.5.1. Problem: Duplicate or canceled software
problems cause the maturity analysis to be incorrect.

4.5.2 Suggested Action: Ensure duplicate, disap-
proved, or canceled software change requests are
deleted from the database prior to analysis. The
following two items are examples of exceptions to
this rule:

• A change request that was disapproved only
because it was out of contract scope is still a
valid request and should remain in the
database.

• Identified changes which are "on hold" or
awaiting future releases should remain in the
database

4.6. Nonstandard Severity Level Definitions.

4.6.1. Problem: Developer or program office uses
different severity-level definitions or uses a priority
system.

4.6.2. Suggested Action: The evaluator should
make an attempt to map the priority or severity levels
into the standard five-level format. In past cases,
systems that use only three severity levels have been
successfully mapped to 1, 3, and 5 in the standard
severity-level format. This enables the evaluator to
use the weighted maturity charts. If the severity
levels cannot be mapped to the standard five-level
format, the weighted maturity charts will be
meaningless. In these cases, the evaluator should
focus on the unweighted charts and completely
disregard the weighted charts.

GEORGE B. HARRISON
Major General, USAF
Commander

14 AFOTECPAM 99-102 Volume 6 Attachment 1 15 March 1996

SAMPLE SOFTWARE MATURITY MOE

ALI. MOE X-Y. Software Maturity. This evaluation measures the system software's progress toward meeting
documented user needs. The developer, development test, and operational test team will collect software change
data in order to track the system's ability to meet requirements. As the development progresses, fewer major
problems should be found. This trend will indicate whether the system is maturing toward meeting its operational
requirements.

Al.2. Evaluation Criteria: If no ORD software maturity requirements exist, then evaluation criteria is in accordance
with AFOTEC Pamphlet (AFOTECP) 99-102, volume 6, Software Maturity Evaluation Guide. Department of
Defense (DoD) and AF/TE guidance on software maturity provide additional evaluation criteria.

AFOTECPAM 99-102 Volume 6 Attachment 2 15 March 1996 15

SOFTWARE MATURITY DATA

A2.1. Mandatory data for basic software maturity trends.

Data Item Format Notes
Software Change/Problem Number Character, Number, or

Alphanumeric
Must be unique

CSCI Character Use a standard set of nomenclature or acronyms
Severity of Change/Problem Number Use definitions to assign severity from 1 to 5
Date Change Requested or Problem
Discovered

Date

Date Change Closed or Problem
Closed

Date

Description of Change/Problem Text

A2.2. Optional data required to evaluate change density and remaining change density.

Data Item Format Notes
Software Size Number New or modified source lines of code, function

points, or other measure by CSCI, CSC, or CSU
(use same measure for each portion)

A2.3. Optional data required for more thorough analysis of basic maturity trends.

Data Item Format Notes
Computer Software Component
(CSC)

Character The additional data can provide more specific
insight into specific maturity problem areas

Computer Software Unit (CSU) Character The additional data can provide more specific
insight into specific maturity problem areas

Type of Change (Adaptive,
Perfective, or Corrective)

A, P, or C Assist in determining whether maturity problems
are due to requirements instability, development
defects, or changes in the environment.

Category of Software Change Text (e.g., requirements,
design, code, data, test, or
manuals)

Provides further insight into the source of software
problems. (See definitions in MIL-STD-498,
Appendix C.)

A2.4. Optional data required to evaluate test rate and test completeness.

Data Item Format Notes
Total Number of Test Procedures Number The together with the following two data items

allow the evaluator to estimate test completeness
Total Number of Test Procedures
Exercised

Number

Total Number of Test Procedures
Passed

Number

Test Procedure/Run Date Test Procedure Identifier
and Run Date

The data can be used to describe test rate

16 AFOTECPAM 99-102 Volume 6 Attachment 3 15 March 1996

SOFTWARE CHANGE SEVERITY LEVELS

A3.1. Severity Level 1 (System Abort).

A3.1.1. A software change is categorized with this severity level if one or more of the following impact statements
apply:

A3.1.1.1. Prevents the accomplishment of an operational mission-essential capability.

A3.1.1.2. Prevents the operator's accomplishment of an operational or mission-essential capability.

A3.1.1.3. Jeopardizes safety.

A3.2 Severity Level 2 (System Degraded - No Work-Around).

A3.2.1. A software change is categorized with this severity level if one or more of the following impact statements
apply:

A3.2.1.1. Adversely affects the accomplishment of an operational or mission-essential capability for which no
alternative work-around solution is known (program restarts/reboots are not acceptable work-around solutions).

A3.2.1.2. Adversely affects the operator's accomplishment of an operational or mission-essential capability for
which no alternative work-around solution is known (Program restarts/reboots are not acceptable work-around
solutions).

A3.3. Severity Level 3 (System Degraded - Work-Around).

A3.3.1. A software change is categorized with this severity level if one or more of the following impact statements
apply:

A3.3.1.1. Adversely affects the accomplishment of an operational or mission-essential capability but a work-around
solution is known.

A3.3.1.2. Adversely affects the operator's accomplishment of an operational or mission-essential capability but a
work-around solution is known.

A3.4. Severity Level 4 (System Not Degraded).

A3.4.1. A software change is categorized with this severity level if the following impact statement applies:

A3.4.2. Results in user/operator inconvenience or annoyance but does not degrade a required operational or
mission-essential capability.

A3.5. Severity Level 5 (Minor Change).

A3.5.1 Any other change is classified as severity level 5. Many documentation changes are considered severity
level 5.

AFOTECPAM 99-102 Volume 6 Attachment 4 Date 1996 17

SAMPLE SOFTWARE MATURITY DATA REQUEST LETTER

DEPARTMENT OF THE AIR FORCE
HEADQUARTERS AIR FORCE OPERATIONAL TEST AND EVALUATION CENTER

KIRTLAND AIR FORCE BASE, NEW MEXICO

Date

MEMORANDUM FOR. SPO

FROM: HQ AFOTEC/SAS
8500 Gibson Blvd SE
KirtlandAFB NM 87117-5558

SUBJECT: Software Maturity Data Requirements/Analysis for the. . Program

1. HQ AFOTEC is tasked by Program Management Directive to perform an Initial Operational Test and
Evaluation (IOT&E) of program. Software evaluations are an integral part of the overall IOT&E
effort. Currently, AFOTEC is using a software maturity metric to aid decision-makers in determining the status
of software intensive systems by providing an indication of the development progress of the software. Software
maturity is a measure of the software's progress in its evolution toward satisfying all documented user
requirements. The primary indicator of this evolution is the trend in the number and severity of software
changes and failures plotted over time.

2. To develop a meaningful trend, software problem and change data must be collected when configuration
control and/or software integration begins. Therefore we request the information in attachment 1 be collected
and provided to HO AFOTEC/SAS on a monthly basis beginning . Attachment 2 defines the
software change severity levels that should be assigned to each problem/change.

3. The data required to perform the analysis should be readily available by the software development contractor
and this data collection should not inhibit the contractor's daily activities. We appreciate your cooperation in
this matter. If you have any questions or would like further information about software maturity, please contact

Signature Block

Attachments
1. Software Maturity Data (all data from AFOTECP 99-102, vol 6, attachment 2)
2. Software Severity Levels

Figure A4.1. Sample Software Maturity Data Request Letter.

18 AFOTECPAM99-102 Volume6 Attachments 15March 1996

SAMPLE SOFTWARE MATURITY EVALUATION REPORT OUTLINE

I. Executive Summary

Identify the evaluator, software program, evaluation methodology, the software maturity database date, and
the evaluation results. For some reports, it may be appropriate to discuss the software maturity impact on
operational test readiness and operational test success, (half page)

II. Detailed Results

1. System-Level Software Maturity

All programs must report this level of software maturity. For smaller programs, this may be the only
reporting level. Each meaningful trend (chart), and other external factors should be presented and discussed,
(one page or less for each chart and discussion)

2. CSCI#X Maturity

Most programs will report down to this level and will include sections for each CSCI. Each meaningful trend
(chart) should be presented with a brief discussion, (one page or less for each chart and discussion

a. CSC #Y Analysis

Present important maturity information at the CSC level. Repeat for each CSC that has a significant impact
on the maturity or immaturity of a particular CSCI. (one page or less for each chart and discussion

III. Summary and Recommendations.

Reemphasize software maturity problem areas, potential solutions, and impact on operational testing.

Figure A5.1. Sample Software Maturity Evaluation Report Outline.

AFOTECPAM 99-102 Volume 6 Attachment 6 15 March 1996 19

Ideal and Sample Maturity Charts

A6.1. All of the figures in this attachment were generated by the HQ AFOTEC/SAS Maturity Evaluation and
Analysis Tool (MEAT) version 3.0. Contact HQ AFOTEC/SAS for a copy of the tool, the MEAT user's guide, or
for further information.

A6.2. Accumulated Software Changes (Weighted). This chart contains three curves, total originated, total
closed, and remaining weighted software changes. Each curve is the accumulated change points versus time. Figure
A6.1 is a sample chart from an actual program.

Accumulated Software Changes (weighted) as of 31 Oct 94

25000

20000

| 15000
a.
o
O)

I 10000

5000

-ToldCrignaled

-Totdao6ed
-Rerrdring

12 3 4 5 6 7 8 9 10

Period Number

11 12 13 14 15 16 17

Monthly

Figure A6.1. Accumulated Software Changes (Weighted).

A6.2.1. What Are We Looking For? The ideal total originated curve should begin to level off as the system
approaches OT&E. In the above example, the developers/testers continue to find problems at a nearly constant rate.
This is an indication the system is not mature. Figure A6.2 represents an ideal weighted chart. Compare the ideal
chart to figure A6.1. The ideal total closed curve should follow the total originated curve and actually get closer to
it as time passes. In figure A6.1, the developer is keeping up with changes, but just can't quite work the backlog of
problems.

A6.2.2. The ideal remaining curve should become closer to zero as the system approaches OT&E. As mentioned in
the previous paragraph, the system shown in figure A6.1 continues to have a consistent backlog of software changes.

CAUTION: As noted earlier, each trend must be considered in context of program
schedule, test rate, test completeness, requirements stability, change density, and
other external factors which affect software maturity. These factors can cause
immature systems to appear mature.

20 AFOTECPAM 99-102 Volume 6 Attachment 6 15 March 1996

Accumulated Software Changes (weighted) as of 25 Dec 95

-TotdQigi rated
-Totd0o6ed
-Remaning

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Period Number Quarterly

Figure A6.2. Ideal Accumulated Software Changes (Weighted).

A6.3. Accumulated Software Changes (Unweighted). This chart contains three curves, total originated, total
closed, and remaining software changes. Each curve is the accumulated number of changes versus time. Figure
A6.3 is an example chart.

Accumulated Software Changes (unweighted) as of 31 Oct 94

6000

5000-

-ToldQiginaled

-TatdOosed
-Remaining

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Period Number Monthly

Figure A6.3. Accumulated Software Changes (Unweighted).

AFOTECPAM 99-102 Volume 6 Attachment 6 15 March 1996 21

A6.3.1. What Are We Looking For? As described in the weighted version of this chart, the ideal total originated
curve should begin to level off as the system approached OT&E. In the above example, the developers/testers
continue to find problems at a consistent rate. This is an indication the system is not mature.

A6.3.2. The ideal total closed curve should follow the total originated curve and actually get closer to it as time
passes. In this case, the developer is keeping up with changes, but just can't quite work the backlog of problems.

A6.3.3. The ideal remaining curve should become closer to zero as the system approaches OT&E. As mentioned in
the previous paragraph, the system shown in figure A6.3 continues to have a consistent backlog of software changes.

A6.3.4. A sample ideal curve for the unweighted chart has the same shape as the ideal weighted chart shown in the
previous section.

CAUTION: Each trend must be considered in context of program schedule, test
rate, test completeness, requirements stability, change density, and other external
factors which affect software maturity. These factors can cause immature systems
to appear mature. .

A6.3.5. What is the difference between the weighted and unweighted charts? For most programs, the
unweighted chart will match the weighted chart, but figure A6.4 is a weighted version of the same data presented in
figure A6.3. This chart was included to demonstrate how weighting can affect the evaluator's impression of
maturity. If we only used an unweighted chart (figure A6.3), we would see a nearly constant rate of opening new
changes. The weighted chart (figure A6.4) also shows that since month 15, the changes have been of increasingly
higher severity levels. As you can see, we use both charts together to help complete the maturity picture.

• MEAT version 3.0 also provides similar charts for each individual severity level and for each CSCI.

Accumulated Software Changes (weighted) as of 31 Get 94

35000

30000

25000

ö 20000
Q.
O

? 15000

10000-

5000

-ToldCrigrefed
-ToldClc6ed
-Remaning

H| 1—r—*-==¥ 1 1 1 1 1 h-
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Period Number Monthly

Figure A6.4. Accumulated Software Changes (Weighted).

22 AFOTECPAM 99-102 Volume 6 Attachment 6 15 March 1996

A6.4. Average Severity of All Software Changes. This chart contains three curves, total originated, total closed,
and remaining software change severity curves. Each curve is the average severity (change points) versus time.
Figure A6.5 is a sample chart from an actual program.

Average Severity of ALL S/W Changes as of 31 Oct 94

o± ■+■ -+- -+- -+- 4- -+-

-•—T old Crignated

-*—Told Closed

•♦■-■ Rerrdring

4 5 6 7 8 9 10 11 12 13 14 15 16 17. 18

Period Number Monthly

Figure A6.5. Average Severity of All Software Changes.

A6.4.1. What Are We Looking For? In the total originated curve, we hope to find a downward trend in average
severity. This would indicate testing has found the most severe problems early and the system is capable of
accomplishing its required mission with only minor bugs remaining. Even if this curve is decreasing, an evaluator
should be concerned if the average severity is too high. In the above example, the average remaining severity
hovered around five points per change until month 11. This equates to a severity level 3 problem (see table 1).

A6.4.2. Figure A6.6 is an ideal Average Severity Chart. Compare this chart to the sample shown above. The ideal
total closed curve is above the total originated curve. This indicates the developer is fixing more critical problems
before the lower priority changes. The ideal remaining curve is below the total originated curve. This indicates the
remaining problems are of lesser impact than those that have already been closed.

A6.5. Average Closure Time For Changes by Severity. This chart consists of bar charts depicting the average
closure time for closed changes and the average open time of unclosed changes for each severity level. Figure A6.7
is a sample chart from an actual program.

A6.5.1. What Are We Looking For? This chart can be used to get a rough estimate of how long a change of a
given severity will take to implement. A developer's schedule estimate is based on program knowledge, size of
change, and programmer workload. A developer's estimate is normally far more accurate for a specific change. The
evaluator can also use this chart to estimate how much longer an open change will take to implement. Once again,
this estimate is rough. Extremely high average closure times may also indicate that some problems are not being
worked at all.

AFOTECPAM 99-102 Volume 6 Attachment 6 15 March 1996 23

Average Severity of ALL S/W Changes as of 25 Dec 95

30

H 1 1 1 1 1 1 1 1 1 1 1 h 0 6—I 1 1 1 H
T— cnmr^CT>T— coin

H 1 h

-•—T old Oignated

-*— Told Closed

■•♦•-Remaning

i- i- CM
m
CM

Period Number Quarterly

Figure A6.6. Ideal Average Severity Chart

Average Closure Time For Changes by Severity as of 31 Oct 94

78.75

63.ÖT

"53.36"

27.38

Severity Level

67.95

36.31 ■ Closed

D Remaning

Figure A6.7. Average Closure Time For Changes by Severity.

24 AFOTECPAM 99-102 Volume 6 Attachment 6 15 March 1996

A6.5.2. While these averages may hold up statistically, the closure time for a particular change is more closely tied
to its difficulty than its severity level. It is possible to calculate confidence intervals for closure times from the raw
maturity data.

Severity levels do not necessarily indicate the amount of effort required to
implement a suggested change or identified problem.

A6.6. Number of Changes by Severity. This chart consists of bars depicting the number of changes for each
severity level. The bars consist of closed (darkened) and open (white) portions. Figure A6.8 is a sample chart from
an actual program.

Number of Changes by Severity as of 31 Oct 94

ORerrrining

■ Closed

Severity Level

Figure A6.8. Number of Changes by Severity.

A6.6.1. What Are We Looking For? A well developed system should have relatively few severity 1 and 2
problems. Historically, most problems are found to be severity 3 and many low-severity problems are also normal.
The sample chart exaggerates these norms with an unusually large number of severity 3 problems. Figure A6.9 is an
example of the ideal severity level distribution. Notice that the ideal chart shows a system with no open severity
level 1 or 2 problems.

HINT: This chart tends to make the number of remaining changes look small in
comparison to the changes already closed. Use this information in conjunction
with the remaining software changes charts.

A6.7. Remaining Software Problems (Unweighted). The following two charts depict the same data in two
slightly different formats. The bar chart (figure A6.10) shows stacked bars of remaining software problems, while
the line chart (figure A6.ll) shows each severity of remaining software problems over time. MEAT version 3.0
presents these charts in color for easy reading.

AFOTECPAM 99-102 Volume 6 Attachment 6 15 March 1996 25

600

500

w
S) 400 c
is
£
Ü
•5 300

0)
D
§ 200

100--

Number of Changes by Severity Level as of 25 Dec 95

DRenrrining

■ Qo6ed

Figure A6.9. Ideal Severity Level Distribution.

Remaining Software Problems (unweighted) as of 31 Oct 94

1400

1 Severity 5
■Severity 4

D Severity 3
■ Severity 2

■ Severity!

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Period Number Monthly

Figure A6.10. Remaining Software Changes (Unweighted) Bar Chart.

26 AFOTECPAM 99-102 Volume 6 Attachment 6 15 March 1996

Remaining Software Problems (unweighted) as of 31 Oct 94

1200

1000

w
S. 800 c

U
■S 600

<u .a
E 400

200 -

Severity 1

Severity 2

Severity 3

Severity 4

Severity 5

6 7 8 9 10 11 12 13 14 15 16 17 18

Period Number Monthly

Figure A6.ll. Remaining Software Changes (Unweighted) Line Chart

A6.7.1. What Are We Looking For? Just like the remaining changes curves in both Accumulated Software
Changes charts, we expect the number of remaining software problems to decrease over time. This trend should
hold for all severity levels. The sample charts show over 300 remaining software changes in month 18. Nearly 200
of these remaining changes are severity 3. The remaining open changes are severity 4 and 5. The sample also shows
no significant downward trend for the last 5 months. This indicates a standing backlog of software changes.

A6.7.2. The ideal remaining software problems bar chart (figure A6.12) shows a shrinking backlog for the entire
program. It also shows the distribution across severity levels at each point in time. To easily determine the total
number of problems for each severity level, consult the line chart.

A6.7.3. The ideal remaining software problems line chart (figure A6.13) shows a good distribution of problems
across severity levels and a shrinking backlog.

A6.8. Total Changes and Change Density by CSCI. Figure A6.14 shows two important pieces of information.
First, the bars indicate the total number of changes for each CSCI. Second, the line represents the change density
(total number of changes normalized by thousands of lines of code) for each CSCI.

A6.8.1. What Are We Looking For? The Total Changes bars on the chart show the evaluator which CSCIs
generate the bulk of the software change requests for the system. These volatile CSCIs will often be well known to
personnel working with the system, but this information is not a complete picture of the problem areas.

A6.8.2. The Changes/KLOC (change density) line gives the evaluator the same information normalized by the size
of the CSCI. We assume that larger CSCIs will generate more changes, so this metric factors out size. Using these
two metrics, the evaluator can begin to identify software maturity drivers from the CSCIs. Given this information,
the STM and DSE can focus their efforts on the portions of the program most likely to require future changes.

A6.8.3. Using the bars in figure A6.14, we see that four CSCIs (#8, #17, #7, and #13) represent the bulk of the
generated change requests. When we consider total change density (the lines on figure A6.14), we add CSCIs #12,
#10, #2, and #4 to the list of CSCIs that drive the maturity of the system.

AFOTECPAM 99-102 Volume 6 Attachment 6 15 March 1996 27

Remaining Software Probelms (Unweighted) as of 25 Dec 95

Period Number Monthly

■ Severity 5

■ Severity 4

■Severity 3

■Severity2

■Severity 1

Figure A6.12. Ideal Remaining Software Changes Bar Chart

70

60

S 50

c
CD

<•- o
a> 30 +
E
3

20

10

Remaining Software Problems as of 25 Dec 95

- -
, /*"
 J*

V *

y^/Sr
x-x-x^

V^ ■&.

W>w
0SHIK##:f'fl I 1 I I I I I I I I I I I I 1 -rryrTtrrrr

Period Number Monthly

Severity!

Severity 2

Severity 3

Severity 4

Severity 5

Figure A6.13. Ideal Remaining Software Changes Line Chart

28 AFOTECPAM 99-102 Volume 6 Attachment 6 15 March 1996

<cnn

Change Density

- Viflh

1400-

1200-
0)

g, 1000-
c
«
S 800

2 600-

400-

200-

-30.00

25.00 0

O
-20.00 *

10
o>

- 15.00 ü»

£
- 10.00 °

-5.00

^m Total
Changes

—♦—Changes/
KLOC

—»

co

Ü
CO
Ü

CM

*
Ö
CO
Ü

t^or^cM^-coiOi-Tj-oomo)
*% — — — % — %%%*_
TTTTOOOTTOTTTTTTTTO
OOcococoOcoOOOüco
COCOüüü»üc"{ßt'5coO
ÜOOOÜOÜ

Computer Software Configuration Item

co
CM

ü
CO
ü

Figure A6.14. Total Changes and Change Density.

A6.9. Remaining Changes and Remaining Change Density by CSCI. Figure A6.15 is similar to the previous
chart, but based on remaining change requests. First, The bars indicate the total number of remaining change
requests for each CSCI. Second, the line represents the remaining change density (remaining number of changes
divided by thousands of new or modified lines of code) for each CSCI.

Remaining Changes

140

O
CO o

o o o o
CO CO CO to
Ü Ü o Ü

-I—♦-
m
CM

Ö
CO
Ü

3.00

2.50
Ü
O

2.00 *
«5 o

1.50 ? a

1.00

-0.50

a a
O

0.00

Computer Software Configuration Item

I Remaining
Changes

-Remaining
Changes/
KLOC

Figure A6.15. Remaining Changes and Remaining Change Density.

AFOTECPAM 99-102 Volume 6 Attachment 6 15 March 1996 29

A6.9.1. What Are We Looking For? The Remaining Changes bars on the chart show the evaluator which CSCIs
have the most remaining change requests at the current time. As in the previous chart, these problem CSCIs will
often be well known to personnel working with the system, but this information is still not a complete picture of the
problem areas.

A6.9.2. The Remaining Changes/KLOC (defect density) line gives the evaluator the same information divided by
the CSCI size (in thousands of lines of new or modified code). We assume that larger CSCIs will generate more
changes, so this metric factors out size. AFOTEC has adopted the standard that software is not ready for release
until the defect density is below 0.5 (Michael A. Foody, "When is Software Ready For Release?" UNIX Review,
March 1995). Using these two metrics, the evaluator can begin to identify software maturity drivers from the CSCIs.

A6.9.3. The bars on the sample chart show four problem areas (CSCIs #8, #17, #7, and #13). If you recall, these
same CSCIs were identified using the total number of problems chart. The line portion of the chart (remaining
changes/KLOC) shows a more distressing problem. Seven of the 15 CSCIs are above the 0.5 changes/KLOC
threshold. This indicates these seven CSCIs (CSCIs #8, #12, #15, #18, #17, #7, and #2) are not ready for release
(i.e., not yet ready for OT&E).

