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Abstract 

In this paper we present the results from an extensive comparison study of three R-tree packing 

algorithms, including a new easy to implement algorithm. The algorithms are evaluated using both 

synthetic and actual data from various application domains including VLSI design, GIS (tiger), and 

computational fluid dynamics. Our studies also consider the impact that various degrees of buffering 

have on query performance. Experimental results indicate that none of the algorithms is best for 

all types of data. In general, our new algorithm requires up to 50% fewer disk accesses than the 

best previously proposed algorithm for point and region queries on uniformly distributed or mildly 

skewed point and region data, and approximately the same for highly skewed point and region data. 

*The work of Leutenegger and Lopez was supported in part by Colorado Advance Software Institute grant number 

TT-97-05. The work of Leutenegger was additionally supported in part by the National Aeronautics and Space 

Administration under NASA contract NASl-19480 while visiting the Institute for Computer Applications in Science 

and Engineering, NASA Langley Research Center, Hampton, VA 23681-0001 



1    Introduction 

R-trees [5] are a common indexing technique for spatial data and are widely used in spatial and 

multi-dimensional databases. By storing the bounding boxes of arbitrary geometric objects, such as 

points, polygons, or more complex objects, R-trees can be used to determine which objects intersect 

a given query region. Typical applications include computer-aided design, geographic information 

systems, computer vision and robotics, multi-keyed indexing for traditional databases, temporal and 

scientific databases. R-trees are dynamic structures, in the sense that their contents can be modified 

without reconstructing the entire tree, and Guttman [5] provides efficient routines for insertion and 

deletion of objects. 

Unfortunately, building an R-tree by inserting one object at a time as specified by Guttman has 

several disadvantages: (a) high load time, (b) sub-optimal space utilization, and, most important, 

(c) poor R-tree structure requiring the retrieval of an unduly large number of nodes in order to 

satisfy a query. Other dynamic algorithms [f, f3] improve the quality of the R-tree, but still are 

not competitive with regard to query time when compared to loading algorithms that are allowed to 

preprocess the data to be stored. Preprocessing is particularly reasonable for applications where the 

data is fairly static (i.e., does not change often) or available a priori and, when done properly, results 

in R-trees with nearly f 00% space utilization and improved query times (due to the fact that fewer 

nodes need to be accessed while performing a query). Such packing algorithms were first proposed 

by Roussopoulos [12] and later by Kamel and Faloutsos [6]. 

Kamel and Faloutsos [6] propose a packing algorithm based on the Hubert Curve ordering, and 

compare it with the Nearest-X algorithm proposed by Roussopoulos [12]. The latter is simpler to 

implement and in some cases results in better trees for point queries. However, due to the smaller 

perimeter of the bounding rectangles at internal nodes, the algorithm of [6] significantly outperforms 

that of [12] for region queries. Consequently, the Hilbert-based packing algorithm is usually the 

preferred choice for region queries while remaining competitive for point queries. 

In this paper we propose a new packing algorithm (Sort-Tile-Recursive) that is simple to im- 

plement and compare it with the Hilbert and Nearest-X packing algorithms for a wide range of data 

and buffer sizes. In addition to area and perimeter metrics, we provide experimental evidence based 

on real implementations utilizing an LRU buffer on VLSI design, GIS, computational fluid dynamics, 

and synthetic data sets. We know of no other work that has considered such a wide range of data set 



Figure 1: A sample R-tree.  Input rectangles are shown solid. 

types and the effect they have on packing performance. In real databases some portion of the tree is 

buffered in main memory. This buffering of portions of the tree can significantly affect performance 

as shown in [8]. Consequently, our experimental studies utilize a buffer as described in Section 3. 

The rest of the paper is organized as follows. In Section 2 we provide background information 

on R-trees and describe the three packing algorithms considered in this paper. In Section 3 we 

present our experimental methodology. Section 4 contains results from our experiments and Section 5 

concludes. 

2     Overview of R-tree and Packing Algorithms 

In this section we provide a brief overview of the R-tree and describe several packing algorithms for 

R-trees. including Nearest-X [12]. Hilbert [6], as well as Sort-Tile-Recursive (STR), a new packing 

algorithm which we are proposing. Detailed knowledge of Nearest-X and Hilbert packing is useful 

but not required for understanding the remainder of this paper. Readers interested in more detailed 

descriptions should refer to [12, 6]. 



2.1     R-trees 

An R-tree is a hierarchical data structure derived from the B-tree and designed for efficient execution 

of intersection queries. R-trees store a collection of rectangles which can change over time through 

insertions and deletions. Arbitrary geometric objects are handled by representing each object by its 

minimum bounding rectangle, i.e., the smallest upright rectangle which encloses the object. R-trees 

generalize easily to dimensions higher than two, but for notational simplicity we review only the two 

dimensional case. 

Each node of the R-tree stores a maximum of n entries. Each entry consists of a rectangle R 

and a pointer P. For nodes at the leaf level, R is the bounding box of an actual object pointed to by 

P. At internal nodes, R is the minimum bounding rectangle (MBR) of all rectangles stored in the 

subtree pointed to by P. Note that every path down through the tree corresponds to a sequence of 

nested rectangles, the last of which contains an actual data object. Note also that rectangles at any 

level may overlap and that an R-tree created from a particular set of objects is by no means unique. 

Figure 1 illustrates a 3-level R-tree where a maximum of 4 rectangles fit per node. We assume 

that the levels are numbered 0 (root), 1, and 2 (leaf level). There are 64 rectangles represented by 

the small dark boxes. The 64 rectangles are grouped into 16 leaf level nodes, numbered 1 to 16. The 

MBR enclosing each leaf node is the smallest box that fully contains the rectangles within the node. 

The MBR.s of the leaf nodes are the rectangles stored in the nodes at the next higher level of the 

tree. 

For example, leaf nodes 1 through 4 are placed in node 17 which is at level 1. The MBR of node 

17 (and nodes 18,19,20) is purposely drawn slightly larger than needed for clarity. The root node 

contains the four level 1 nodes: 17, 18, 19, and 20. 

To perform a query Q, all rectangles that intersect the query region must be retrieved and 

examined (regardless of whether they are stored in an internal node or a leaf node). This retrieval 

is accomplished by using a simple recursive procedure that starts at the root node and which may 

follow several paths down through the tree. A node is processed by first retrieving all rectangles 

stored at that node which intersect Q. If the node is an internal node, the subtrees corresponding to 

the retrieved rectangles are searched recursively. Otherwise, the node is a leaf node and the retrieved 

rectangles (or the data objects themselves) are simply reported. 

For illustration, consider the query Q in the example of Figure 1.   After examining the root 
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node, we determine that nodes 19 and 20 of level 1 must be searched. The search then proceeds to 

each of these nodes. It is then determined that the query region does not intersect any rectangles 

stored in node 19 or node 20 and each of these two subqueries are terminated. 

The R-tree shown in Figure 1 is fairly well structured. Inserting these same rectangles into an 

R-tree using the insertion algorithms of Guttman [5] would likely result in a less well structured tree. 

Algorithms to create well structured trees have been developed and are described in Section 2.2. 

These algorithms cluster rectangles in an attempt to minimize the number of nodes visited while 

processing a query. 

For the rest of the paper we will assume that exactly one node fits per disk page, and hereafter 

we use the two terms interchangeably. 

2.2    Packing Algorithms 

In this section we describe three packing algorithms. All of the algorithms use a similar framework. 

In the following text we assume that the data file consists of r rectangles and that each R-Tree node 

can hold n rectangles. 

The general process is similar to building a B-tree from a collection of keys by creating the leaf 

level first and then creating each successively higher level until the root node is created [11]. 

General Algorithm: 

1. Preprocess the data file so that the r rectangles are ordered in \r/n] consecutive groups of n 

rectangles, where each group of n is intended to be placed in the same leaf level node. Note 

that the last group may contain fewer than n rectangles. 

2. Load the \r/ii\ groups of rectangles into pages and output the (MBR, page-number) for each 

leaf level page into a temporary file. The page-numbers are used as the child pointers in the 

nodes of the next higher level. 

3. Recursively pack these MBRs into nodes at the next level, proceeding upwards, until the root 

node is created. 

The three algorithms differ only in how the rectangles are ordered at each level. 



Nearest-X (NX): 

This algorithm was proposed in [12]. The rectangles are sorted by ^-coordinate. No details are 

given in the paper so we assume that the ^-coordinate of the rectangle's center is used. The 

rectangles are then packed into the nodes, in groups of size n, using this ordering. 

Hilbert Sort (HS): 

A fractal based algorithm was proposed in [6]. The algorithm orders the rectangles using the 

Hilbert (fractal) space filling curve. The center points of the rectangles are sorted based on 

their distance from the origin, measured along the Hilbert Curve. This determines the order 

in which the rectangles are placed into the nodes of the R-Tree. 

Kamel and Faloutsos only provide details on how to handle integer coordinates, which can be 

extended to arbitrary floating point values as described below. 

Floating point numbers are usually stored as a sign, signed exponent, and a mantissa (which 

may or may not be normalized). Since the exponent determines the starting position of the 

mantissa relative to the binary point, all floating point numbers could be represented using 

2sizeot{Exponent) _j_ sjZeof(Mantissa) bits. For example, for 32-bit float numbers native in the 

Sun Sparc architecture, 28 + 23 bits would required. (This is a conceptual representation 

only. Coordinates are not stored in this form.) Once the numbers are viewed using this 

representation, it is clear that the method used for integers can be applied. 

We now briefly describe the processing of a 2-dimensional data set. Consider a grid of size 

22sizeof(£.^»enO+sizeof(Ma«^a). Tlie Hilbert Curve for this grid is used to produce the packing 

order of the rectangles. The first bit of the x- and y-coordinates of a point determine which 

quadrant, contains it. Successive bits determine which successively smaller subquadrants con- 

tain the point. When two center points (x\,y\) and {x2,y-2) need to be compared, the bits 

of each coordinate are examined until it can be determined that one of the points lies in a 

different subquadrant than the other (one can use the sense and rotation tables described in 

[6] to accomplish this task). The information gathered is used to decide which point is closer 

to the origin (along the Hilbert Curve). Conceptually, the process computes bit positions, one 

at a time, until discrimination is possible. In practice, one does not store or compute all bit 

values on the hypothetical grid. 



Sort-Tile-Recursive (STR): 

Consider a fc-dimensional data set of r hyper-rectangles. A hyp er-rectangle is defined by k 

intervals of the form [A;, B{] and is the locus of points whose i-th coordinate falls inside the 

2-th interval, for all 1 < i < k. 

STR is best described recursively with k = 2 providing the base case. (The case k = 1 is 

already handled well by regular B-trees.) Accordingly, we first consider a set of rectangles in 

the plane. The basic idea is to "tile" the data space using ^/rjn vertical slices so that each slice 

contains enough rectangles to pack roughly \frjn nodes. Once again we assume coordinates 

are for the center points of the rectangles. Determine the number of leaf level pages P = \r/n] 

and let S = \\/P]. Sort the rectangles by .r-coordinate and partition them into S vertical 

slices. A slice consists of a run of S ■ n consecutive rectangles from the sorted list. Note that 

the last slice may contain fewer than S ■ n rectangles. Now sort the rectangles of each slice 

by y-coordinate and pack them into nodes by grouping them into runs of length n (the first n 

rectangles into the first node, the next n into the second node, and so on). 

The case A- > 2 is is a simple generalization of the approach described above. First, sort the 

hyper-rectangles according to the first coordinate of their center. Then divide the input set into 

S = [\Ps] slabs, where a slab consists of a run of n ■ \P~*~~\ consecutive hyper-rectangles from 

the sorted fist. Each slab is now processed recursively using the remaining k - 1 coordinates 

(i.e., treated as a k - 1-dimensional data set). 

To aid in visualizing the result of these packing algorithms, consider the leaf level nodes obtained 

by using the Long Beach Tiger data set assuming 100 rectangles fit per node. Figures 2, 3, and 4 

show the resultant leaf level MBR. for the same data set for each of the three algorithms. Note the 

vertical slices in Figure 4 for the STR packing algorithm. 

3     Experimental Methodology 

In this section we describe our experimental methodology. Our goal is to provide a solid experimental 

comparison of the algorithms through actual R-tree implementations over a wide range of data using 

both "real world" and synthetic data sets. We intend to provide insight into how well R-trees would 

perform as part of a typical database system which supports spatial queries.   Thus, in order to 



provide realistic and meaningful performance measurements, the effect of buffering must be taken 

into consideration. 

Our primary comparison metric is the number of disk accesses required to satisfy a query of a 

given size. Note that this metric also allows us to get an accurate indication of performance even 

using non-dedicated workstations. If we had focused on retrieval time, interference from other users 

would have clouded our results. 

We assume an LRU buffer management routine. A slightly better buffer management routine 

may arguably be to pin the root and some number of the first few R-tree levels and then use an 

LRU scheme for the remaining nodes of the R-tree. As shown in [8] there is often no gain from this 

pinning, except in unusual circumstances where a level near the root just fits into the buffer pool, in 

which case it should be pinned. We use LRU for all the nodes (regardless of their level) to simplify 

the parameter space of our experiments. 

To accurately assess the impact of buffer size, we implement our buffer manager using a raw 

disk partition. When a node is pushed out of the buffer the node is immediately written to disk and 

not "false-buffered" by the operating system's virtual memory manager. Thus, we can easily vary 

the actual buffer size without reconfiguring the OS or hardware. 

Many of our data sets are larger than those used in previous studies, yet they are still smaller 

than data sets likely to be used by near term future applications. Data set size affects R-tree 

performance in two ways: 1) it increases the depth of the R-tree, and 2) it decreases the percentage 

of the data set that will fit in the buffer. Since most R-trees have a fan out of 25 to 100 the first 

consideration is not as significant as the second. Thus, one of the experimental parameters of interest 

is the percentage of the data set that can be buffered. Since several of our experiments use small 

data sets (approximately 50,000 rectangles), we consider small buffer sizes. This allows us to obtain 

the same type of results as would be obtained using larger data sets and buffers, at a great savings 

in experimental time. Even with these smaller data sets our experiments took two months utilizing 

four Sun Sparc 5 workstations. 

For each of our experiments, we build the R-tree according to the specific packing algorithm 

being considered. In each experiment the exact same data set is used for all algorithms. We then 

query the data set with 2,000 queries. No attempt at collecting confidence intervals or smoothing 

curves is made. Thus, to err on the side of caution we advise that differences of less than a few 

percent should not be considered significant. 



To provide a uniform experiment space we normalize all data sets to the unit square. Point 

queries are uniformly distributed in the unit square. We consider region queries whose region equals 

1% and 9% of the unit square. The lower left hand corner is uniformly distributed in the unit square. 

The upper right hand corner is computed by adding e to the x- and ^-coordinates where e = 0.1 or 

0.3 for region queries of 1% and 9% respectively. If the x- or ^-coordinate is larger than 1.0 we set 

the coordinate to 1.0. For uniformly distributed data a region query of 9% will return roughly 9% 

of the data, but for highly skewed data (as in the VLSI and CFD data sets described below), the 

variance on amount of output is large and a query that covers 9% of the unit square may return 

much more or much less than 9% of the data. 

Our secondary comparison metric is the sum of the area and perimeter of the MBRs of the 

R-tree nodes. These measures are good indicators of the number of nodes accessed by a query [6] 

but can be misleading if buffering is not considered [8]. We include these measures as additional 

information and present area and perimeter metrics for both the whole tree (summed over all nodes 

at all levels) and also only for the leaf level. We argue that the leaf level metric is of most interest 

since the non-leaf level nodes will likely be buffered. 

The applicability of our conclusion in a general setting is dependent on how representative our 

data sets are. This is a non-trivial question. We address this issue by considering many different 

types of real data as well as synthetic data. In particular we consider the following data sets: 

1. (GIS): As a data set representative of geographic information systems we chose the Long Beach 

data of the TIGER system of the U. S. Bureau of Census. This data set contains 53,145 line 

segments and has been used extensively in past studies. 

2. (VLSI): We consider a GIF data set of 453,994 rectangles provided by Bell Labs and used in 

the design of a chip [9]. This data is interesting because the input rectangle distribution is 

highly skewed, both in location and in size. For example, the largest rectangle is roughly 40,000 

times larger than the smallest one. Similarly, there are regions of the chip covered by several 

thousand rectangles and some covered by no rectangles at all. 

3. (CFD): One of the primary motivations of this work is to apply the techniques to scientific data 

sets obtained from Computational Fluid Dynamics. We consider a 2-dimensional problem. A 

system of equations is used to model the air flows over and around aero-space vehicles [10]. The 

data sets are for a cross section of a Boeing 737 wing with flaps out in landing configuration at 



MACH 0.2. The data space consists of a collection of points (nodes) of varying density. Nodes 

are dense in areas of great change in the solution of the equations and sparse in areas of little 

change. To help the reader understand the nature of the data we include a plot of a data set 

with 5088 nodes (see Figure 5). The experimental results use a data set with 52,510 nodes, 

which is similar but looks like a black smudge when plotted due to the density of points. Note 

that the black region in the middle of Figure 5 accounts for the majority of the data. In Figure 

6 we plot only the area around the centroid of the data set. The blank oval-ish areas are parts 

of the wing. It is evident that the data set is highly skewed. 

These CFD data sets and two other (smaller and larger) plus the tiger data sets will soon be 

available from http: //www. es.du.edu/~leut/MultiDimensionalData.html. 

4. (Synthetic): Uniformly distributed data sets were created containing between 10,000 and 

300,000 squares. All squares are fully contained in the unit square. For each square the 

lower left corner was uniformly distributed over the unit square. The area of the square is 

uniformly distributed between 0 and 2 times the average area. The value of the average area of 

a square is determined by the density [6] of the data set, where density equals the sum of the 

areas of all the squares in the data set. Specifically, let r equal the number of squares in the 

data set and d equal the density. Then, the average area of a square equals f. For each square, 

the actual area is chosen uniformly between 0 and two times the average area, The upper right 

corner is chosen to give the desired area unless it exceeds the bounds of the unit square, in 

which case the coordinate(s) that exceeds 1.0 is set to 1.0. We considered data densities of 0 

(point data), 1.0, 2.5, and 5.0. We present results for densities of 0 and 5.0. 

4    Results 

In this section we present the results of our experimental methodology. We present results for point 

and region queries on 2-D synthetic, GIS (tiger), VLSI, and CFD data sets. All results are obtained 

from R-trees with 100 rectangles per node, with a range of buffers sizes examined. The curves for the 

NX algorithm are not included in the figures since the NX algorithm is not competitive, requiring 

2 - 8 times as many disk accesses as the STR algorithm for all experiments except point queries on 

point data. To be complete we do include NX results in the tables of this section. 



Data Size R-Tree Pages Buffer = 10 Buffer = 250 
10,000 101 9.90% 100% 
25,000 254 3.94% 98.43% 
50,000 506 1.98%, 49.41% 
100,000 1011 0.99% 24.73% 
300,000 3031 0.33% 8.25% 

Table 1: Percent of R-Tree Held By Buffer 

4.1     Synthetic Data 

We first consider synthetic data. We consider buffer sizes of 10 and 250 pages. In Table 1 we show 

what percent of the R.-tree fits in the buffer for the different sizes of data sets. The first column is 

the number of rectangles, the second is the number of R-tree pages (including non-leaf) assuming 

100 rectangles per page, the third is the percent of the R-tree a buffer of 10 pages can hold, and the 

fourth is the percent a buffer of 250 pages can hold. We do not consider a data size of 10,000 for a 

buffer of 250 pages as the entire R-tree fits in the buffer. 

Figures 7 and 8 plot the number of disk accesses versus data set size (in thousands of rectangles) 

for point queries using a buffer size of 10 and 250 pages respectively. The top two curves in each 

figure are for a data density of 5 (i.e., the expected sum of the areas of the input rectangles equals 5) 

and the bottom two curves are for a density of 0 (i.e.. point data). The legends in the figures show 

the ordering of the lines from top to bottom. The solid lines are for STR. and the dashed lines are 

for HS. For a buffer of size 10, HS requires 31 - 42% more disk accesses than STR for point data, and 

26 - 32% more disk access for region data of density 5. For a buffer of size 250. HS requires 33 - 41%, 

more disk access than STR for point data, and 26 - 32% more disk access for region data of density 

5. Note, that for the 25,000 rectangle data set almost the entire tree fits and hence the comparison 

is not particularly meaningful. 

In Figure 9 we plot the number of disk accesses versus the data set size (in thousands of 

rectangles) for region queries of 1%, of the data space using a buffer of 10 pages. The plot for a 

buffer of 250 pages is similar. For point data, the bottom two curves, HS requires 6 - 22%, more disk 

access than STR. For region data of density 5, the top two curves, HS requires 6 - 16%, more disk 

access than STR. Note that as the query region size increases, the difference between STR. and HS 

becomes smaller (but STR. always requires fewer disk accesses). This result is not surprising since 

the more data that needs to be retrieved the more naive the search algorithm can afford to be [3]. 
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Point Data Region Data, Density = 5.0 

Data Size STR HS NX       HS/STR NX/STR STR HS NX HS/STR NX/STR 
Point Queries 

10 0.89 1.26 0.87          1.42 0.99 1.40 1.85 3.52 1.32 2.51 
25 1.03 1.41 1.04          1.38 1.01 1.67 2.19 6.11 1.31 3.67 
50 1.27 1.74 1.27          1.37 1.00 1.97 2.57 8.43 1.30 4.28 
100 1.61 2.18 1.57          1.35 0.97 2.31 2.99 12.45 1.29 5.39 
300 1.95 2.55 1.83          1.31 0.94 2.60 3.27 19.70 1.26 7.56 

Region Queries, Query Region = 1% of Data 
10 3.27 3.99 10.86         1.22 3.33 4.25 4.97 13.78 1.17 3.24 
25 6.85 8.00 26.61         1.17 3.89 8.53 9.87 31.44 1.16 3.69 
50 11.48 12.81 50.64         1.12 4.41 13.12 14.55 57.52 1.11 4.38 
100 18.21 19.93 98.47         1.09 5.41 20.40 22.14 108.37 1.09 5.31 
300 41.46 44.02 290.05        1.06 7.00 44.73 47.26 307.38 1.06 6.87 

Region Queries, Query Region = 9% of Data 
10 11.73 13.02 26.86         1.11 2.29 13.57 14.80 29.91 1.09 2.20 
25 26.40 28.07 67.26         1.06 2.55 29.01 30.76 72.17 1.06 2.49 
50 46.20 48.74 131.96        1.05 2.86 49.48 51.97 48.74 1.05 0.98 
100 84.54 87.51 261.35        1.04 3.09 89.25 92.18 271.58 1.03 3.04 
300 229.75 234.82 779.96        1.02 3.39 237.42 242.41 797.94 1.02 3.36 

Table 2:  Number of Disk Accesses, Synthetic Data, Buffersize = 10 

Carrying this argument to an extreme, if the query regions encloses all input data then no search 

needs to be performed: all Rtree packing schemes exhibit the same performance as all leaves need 

to be examined. 

More exhaustive results are presented in Tables 2 and 3 for buffer sizes of 10 and 250 pages, 

respectively. The first column is the number of data items in thousands, the second through fourth 

columns are the number of disk accesses to satisfy the query for STR., HS, and NX on point data, 

the fifth and sixth columns are the ratio of HS and NX relative to STR for point data, and columns 

7-11 are the same as 2-6 but for region data of density 5. Note that NX is not competitive except 

for point queries on point data, and, as expected, the difference between STR and HS diminishes as 

the query size increases. 

We present area and perimeter information for the 50K and 300K data sets in Table 4. We 

include the sum of both area and perimeter for both the MBRs at leaf level and all MBRs in the 

tree. The second through fourth columns are for the 50K data set for STR., HS, and NX respectively, 

while the fifth through seventh column are for the 300K data set. The STR algorithm produces a 

smaller area and perimeter than the HS algorithm for both data sets, whereas the NX algorithm 

produces a slightly smaller total area for the point data but the same leaf level area.   Note that 
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Point Data Region Data, Density = 5.0 
Data Size STR HS NX HS/STR NX/STR STR        HS NX HS/STR NX/STR 

Point Queries 
25 0.13 0.14 0.13 1.03 1.00 0.14        0.14 0.20 1.05 1.43 
50 0.52 0.69 0.52 1.33 1.01 0.79        1.00 3.85 1.27 4.88 
100 0.74 1.04 0.77 1.41 1.04 1.16        1.53 8.05 1.32 6.95 
300 0.91 1.23 0.92 1.35 1.01 1.45        1.83 16.98 1.26 11.67 

Region Queries, Query Region = 1% of Data 
25 0.16 0.17 0.49 1.06 3.05 0.17        0.19 1.01 1.14 6.04 
50 4.74 5.30 26.24 1.12 5.54 5.57        6.15 29.85 1.10 5.36 
100 12.14 13.27 76.60 1.09 6.31 13.84      14.94 84.53 1.08 6.11 
300 36.72 38.92 279.67 1.06 7.62 39.84      42.04 296.80 1.06 7.45 

Region Queries, Query Region = 9% of Data 
25 0.20 0.21 1.29 1.08 6.51 0.25        0.25 2.88 1.00 11.57 
50 20.11 21.20 76.11 1.05 3.78 22.12      23.10 81.78 1.04 3.70 
100 61.78 64.18 228.98 1.04 3.71 65.52      68.12 239.43 1.04 3.65 
300 218.61 224.09 769.74 1.03 3.52 226.77    231.62 787.30 1.02 3.47 

Table 3:  Number of Disk Accesses, Synthetic Data, Buffersize = 250 

the NX algorithm has much larger perimeters than the other two algorithms accounting for its poor 

performance on regions queries. 

4.2    GIS tiger data 

We now present results for the Long Beach County TIGER, data set. In Figure 10 we plot the number 

of disk accesses versus buffer size for point queries. The data set requires 532 leaf level nodes and 7 

Point Data 
STR 50K HS 50K NX 50K STR 300K HS 300K NX 300K 

leaf area 0.97 1.33 0.97 0.97 1.31 0.97 
total area 3.05 3.64 2.97 3.12 3.76 2.97 

leaf perimeter 88.21 106.26 982.49 216.24 258.36 5882.38 
total perimeter 101.74 120.76 998.48 243.85 289.45 5948.36 

Region Data, Densitj • = 5.0 
leaf area 1.53 1.96 7.58 1.54 1.96 17.47 

total area 3.65 4.31 9.63 3.74 4.46 19.63 
leaf perimeter 110.82 127.46 1000.77 272.79 312.57 5937.22 
total perimeter 124.51 142.09 1016.88 300.78 344.03 6003.54 

Table 4: Synthetic Data Areas and Perimeters 
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Buffer Size STR HS NX HS/STR NX/STR 
Point Queries 

10 0.72 1.07 3.54 1.49 4.90 
25 0.52 0.73 3.08 1.41 5.94 
50 0.48 0.63 2.76 1.33 5.78 
100 0.42 0.54 2.31 1.27 5.49 
250 0.31 0.38 1.39 1.20 4.45 

Region Queries, Query Region = 1% of Data 
10 10.51 11.11 35.89 1.06 3.41 
25 9.90 10.40 35.59 1.05 3.59 
50 8.98 9.38 34.44 1.04 3.83 
100 7.83 8.10 31.61 1.04 4.04 
250 5.12 5.34 19.25 1.04 3.76 

Region Queries, Query Region = 9% of Data 
10 51.17 52.13 107.51 1.02 2.10 
25 50.82 51.72 107.32 1.02 2.11 
50 49.52 50.54 106.23 1.02 2.15 
100 45.67 46.60 101.47 1.02 2.22 
250 30.50 31.11 77.17 1.02 2.53 

Table 5:   Number of Disk Accesses, Long Beach Data, Point and Region Queries and Different Buffer 

Sizes 

STR HS NX 
leaf area 0.53 0.76 2.85 
total area 2.00 2.51 4.27 

leaf perimeter 74.11 76.67 544.30 
total perimeter 86.04 89.77 557.07 

Table 6: Tiger Long Beach Data, Areas and Perimeters 

index nodes for a total of 539 pages. Thus, a buffer of size (10 25 50 100 250) holds (1.86% 4.64% 

9.28%, 18.55% 46.38%) of the Rtree. The HS algorithm requires 20 - 50% more disk accesses than 

STR. Again, the relative difference increases as the buffer size decreases. For region queries of sizes 

up to 9% of the space the two algorithms are similar, with HS requiring 2 - 6% more disk accesses. 

In Table 5 we present the number of disk accesses and the ratio relative to STR. for point and region 

queries. 

We present area and perimeter information in Table 6. The STR. algorithm produces significantly 

smaller areas than both HS and NX, and slightly smaller perimeters than HS. 
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Buffer Size STR HS NX HS/STR NX/STR 
Point Queries 

10 14.13 13.67 197.57 0.97 14.45 
25 12.80 11.84 197.15 0.93 16.65 
50 11.54 10.36 196.27 0.90 18.94 
100 9.57 8.48 193.50 0.89 22.81 
250 6.46 5.78 177.10 0.90 30.63 
500 4.26 4.01 134.57 0.94 33.55 

Region Queries, Query Region = = 1% of Data 
10 93.98 92.98 605.61 0.99 6.51 
25 93.68 92.71 605.48 0.99 6.53 
50 93.11 92.07 604.96 0.99 6.57 

100 91.53 90.34 602.17 0.99 6.67 
250 85.53 84.05 593.18 0.98 7.06 
500 76.50 75.51 570.91 0.99 7.56 

Region Queries, Query Region = = 9% of Da a 
10 398.78 396.26 1243.05 0.99 3.14 
25 398.44 396.01 1242.93 0.99 3.14 
50 398.07 395.63 1242.54 0.99 3.14 

100 396.97 394.76 1241.10 0.99 3.14 
250 389.71 389.00 1235.85 1.00 3.18 
500 369.43 366.31 1216.26 0.99 3.32 

Table 7:  Number of Disk Accesses, VLSI Data, Buffer Size Varied for Point and Region Queries 

4.3 VLSI 

The VLSI data set consists of approximately 453,994 rectangles which vary considerably in both size 

and location. As can be seen in Figure 11, HS and STR perform almost the same (HS performs 

slightly better) for both point and region queries regardless of buffer size. 

In Table 7 we present the detailed results for point and region queries as the buffer size is varied. 

The HS algorithm performs slightly better than STR for point queries (by a factor of 3% - 11%) and 

practically the same for region queries. The NX algorithm is significantly worse for both point and 

region queries. In Table 8 we present area and perimeter information which is consistent with the 

experimental results. 

4.4 Computation Fluid Dynamics 

For the experiments in this section we restricted point and region queries to the area bounded by 

the box (0.48,0.48) (0.6,0.6). When allowed to range over the entire data set there was a large 

variance in the number of nodes accessed as the remaining area is extremely sparse. Note that the 
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STR HS NX 
leaf area 9.81 8.40 181.06 
total area 14.79 14.33 194.54 

leaf perimeter 707.92 686.92 7733.60 
total perimeter 769.40 753.46 7852.27 

Table 8: VLSI Data, Areas and Perimeters 

region considered is also highly skewed. Point queries and the lower left corner of region queries 

are uniformly distributed in the reduced space. Region query size is also reduced to fit within this 

reduced space. The upper right corner of the region queries were obtained by adding 0.01 or 0.03 to 

the lower left corner coordinates and truncating at 0.6 if needed. This area roughly corresponds to 

the 1% and 9% of the data region used in the other experiments. 

In Figure 12 we plot the number of disk accesses required for point queries for STR and HS. 

In Table 9 we present the results of all our experiments and in Table 10 the area and perimeter 

information for the 52,510 node data set. The data set requires 526 leaf level nodes and 7 index 

nodes for a total of 533 pages. Thus, a buffer of size (10 15 20 25 50 100 250) holds (1.88% 2.81% 

3.75%. 4.69% 9.38% 18.76% 46.90%) of the Rtree. As can be seen in Figure 12, for point queries the 

STR algorithm requires significantly fewer disk accesses than HS, especially for small buffer sizes. 

For region queries HS and STR perform similarly. The NX algorithm requires significantly more 

accesses than the other two. 

5     Conclusions 

All three algorithms studied are based on heuristics and provide no performance guarantees. Thus, 

it is not surprising that none of them is best for all data sets. By studying the performance of the 

algorithms on the different types of data we can gain insight into when a specific algorithm performs 

well and when it does not. We considered three general classes of data: 1) Uniformly distributed 

point and region data (synthetic) ; 2) Mildly skewed line segment data (tiger) ; 3) Highly skewed, in 

terms of location and size, region data (VLSI) ; 4) Highly skewed, in terms of location, point data 

(CFD). 

Consider first the uniformly distributed data. For this type of data the HS algorithm requires 

up to 42% more disk accesses than the STR algorithm for both point and region queries. The NX 

algorithm performs as well as STR for point queries on point data but much worse for point queries 
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Buffer Size STR HS NX HS/STR NX/STR 
Point Queries 

250 0.19 0.21 0.26 1.11 1.38 
100 0.25 0.28 0.38 1.15 1.56 
50 0.41 0.47 0.53 1.15 1.30 
25 0.69 0.81 0.72 1.18 1.05 
20 0.79 0.95 0.79 1.20 1.00 
15 0.89 1.23 0.88 1.38 0.99 
10 1.05 1.76 1.06 1.68 1.01 

Region Queries, Query Region Area = 0.0001 
250 2.37 2.42 14.19 1.02 6.00 
100 4.88 4.79 23.73 0.98 4.86 
50 6.08 5.83 26.81 0.96 4.41 
25 6.88 6.66 28.32 0.97 4.12 
20 7.15 6.98 28.84 0.98 4.03 
15 7.43 7.50 29.27 1.01 3.94 
10 7.87 8.41 29.64 1.07 3.77 

Region Queries, Query Regior i Area = 0.0009 
250 11.83 11.72 44.48 0.99 3.76 
100 19.05 18.95 66.23 0.99 3.48 
50 20.90 20.82 72.68 1.00 3.48 
25 22.80 22.31 74.97 0.98 3.29 
20 23.45 22.75 75.53 0.97 3.22 
15 24.46 23.42 75.91 0.96 3.10 
10 25.55 25.02 76.32 0.98 2.99 

Table 9:   Number of Disk Accesses, CFD 52,510 Node Data, Buffer Size Varied for Point and Region 

Queries 

STR HS NX 
leaf area 0.93 1.73 0.88 
total area 2.93 4.68 2.87 

leaf perimeter 62.15 30.78 206.69 
total perimeter 75.54 45.23 223.61 

Table 10: CFD 52,510 Node Data Set, Areas and Perimeters 
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on region data or region queries. As previously pointed out [6], by ignoring all but one dimension 

the NX algorithm packs in long skinny rectangles (see Figure 2) resulting in a large perimeter of the 

nodes and hence poor performance for region queries. For all other types of data the NX algorithm 

does not compete and we drop it from subsequent discussion. 

Consider now the mildly skewed tiger data set. The HS algorithm requires up to 49% more disk 

accesses than STR for both point and region queries. As expected, the difference is more noticeable 

for smaller buffer sizes. 

For highly skewed data, firm conclusions are more difficult to draw. For the VLSI (region) data, 

HS performed 3% - 11% faster than STR for point queries, and roughly the same for region queries. 

For the CFD (point) data the situation is reversed: HS required 11% - 68% more disk access than 

STR for point queries, and roughly the same for region queries. 

In summary, no single algorithm is best under all cases. It is clear that the NX algorithm is 

not competitive, but which of STR or HS to use, depends on the situation at hand. It appears 

that STR outperforms HS for mildly skewed or uniform data. For highly skewed data, choosing a 

packing algorithm is a toss up between STR or HS, particularly for region queries. As expected, the 

importance of choosing a packing algorithm is diminished as either the query size or the buffer size 

increase. 

Developing a new algorithm that works well for all types of data is a challenge that should be 

pursued. In the future we plan to continue our search for a better packing algorithm, investigate 

dynamic R-tree variants based on the STR packing algorithm, and also extend our results to a 

parallel shared-nothing platform. 
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Figure 2:  Leaf Bounding Rectangles for Long Beach Data using NX 
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Figure 3:  Leaf Bounding Rectangles for Long Beach Data using HS 
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Figure 4:  Leaf Bounding Rectangles for Long Beach Data using STR 
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Figure 5:  Full Data for 5088 Node Data Set 

22 



0.52 

0.515 

0.51 

0.505 

> 0.5 

0.495 

0.49 

0.485 

0.48 

"5k.RectNQde.ijormal.ascii" 

«       «        °    © » © 
© » 

o        o       ♦   © °       .  ° 

»        o   °    o 

»©©o»«©       ° 

© « o   © ° «    *<>< 

o 
0 © o   © o o       o 

> o 

o" © . °      ©  ° ° .••••« ©       ° 
*        ©°   ©°° o     ©o   o     o       *     o 

o   o       » ©       © „©o «• « 
© °      o°       ° rt°        o ©     ©     © 

*     »        o°    °°  0©o©   * «8    oo o.    ©    o 

*••     •    ♦•    .\''\-\K*.*"*  '.   *    ©\' 

,»V Ä   ©       © °       *   ° o     o     o        °   ©° o0o«.0<5>W0<,o '»   o   »    © C 

o    © «     o ~ ©     ©     o 

°     ©°00<>     o     o     < 

o°   °      °    ©o©©    \°     o 

©      o    o"      .y.',   «    © 
o    o   o°°   yv'.5   ©° 

©    o      o oo    . „ o   o   ©        © 
o o ©°©°0 o    „ 

-o.«   oo ©      «      © o © 
o  ©   © o ©      o 

,      ©©00©©00©000©  ©  o©© 
^»©©oooo^Vo^ o© o   o   © 

*o     ©%oo0-»^° 

o   o o-o^oo©©«©»;^-© % ©   © 
o  o_« „©©«o0©o©©o   o.°_© 

o ©Oo    oo .©o   ©    »      © 
© ©°   ©     ©      o o© o  0° o©o   ©      o       © 

o   o   „  00©   0 00oo©  0©       © © 

©«©o       ©© 

©ooo\©oO^ 

© ©    ©   © o o o 

K0»\v* o © o 
Ä. o~ © °   © ©    © © 
"&••;• o       o   o 

>©o©V©°o o  0 o    © 
o©o©°©o©000  © © © © 

^»V©» V °   °       o       © 

^.V...«        o 
>©°©«o 0»o o 

p©to|o5°r©© o    *° ^oy^o« «© ©0 o    © 

-0"° «V« o    0      „ 
>© © ©   © 

■%Vo o ©© © 
~«>~-©o©o © © ° © 

o        °   »"©o'olo©0©0©©^»    WSSäV/© ° o «    ©     o ©Oo©o^o©©^^    «o©oS>©ooo0«o0        0 
©    ©       © © © 0ä5°©5<*><S8ö©     ^fö^Äj©©©©°.    © . 

"      «     ©    o        °  © O «©©©©©©<*Kg%,   %&S©0 ©© © O    °  .        O 

o    ©©©   ©   o «©©oo^^^^^^o   ^ 

o © o o© 0%-v;^^Kfer^..-N 
o o        o    «    ©«     ©       ©©  ©" 

©        ©    ©   o     ©v ©o   ©© oo < 

••-•>£. .  

*>      o       0       o    o      o 

o       o       o o 

o        o        o        © 

o © © 

„   o        ©, 

o o © ©-  ©» ©«    ©©©© 
© ©    o    ©   © ©„   --~ ©     ©o    o    o      ©    «   ©   ©o©»©^ 

© o " «    ©o © o©^ ©< 
© „©_©o©y~-* o o        „o ©" o     0"0 ©©< 

o      °  ©°    ©o       0oV°000©,o! 

o       © ©©o 0©o©©^     _^ 
o       o       „ o        o    ©       o©0 o©J*»© o0 0 

o       o o © °©o©   °o©?<=©» © V 
" a     ©°o©©>«o©   ©° 

©©©©© 
>©°©     © 

;o©°«oO  ^    o 
>©Oo©/©     o 

o©0©o    © 

=© Oo    o     o 
/o© © o 
°©o ©        ©     © 
'©o©       ©    © 

°o °o© o©©°oO©o- o© 

o o   -       o    '%"«<>%„^.'     © 

\  ?°©Oo©©©o   ©O    . 

0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 
X 

Figure 6:  Data Around Center for 5088 Node Data Set 
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