
REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and
reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for
Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-01BB), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank} 2. REPORT DATE

 29 Apr 97

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

EFFICIENT IMPLEMENTATION OF IMAGE WARPING ON A MULTIMEDIA
PROCESSOR

6. AUTHOR(S)

OWEN DANIEL EVANS

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

UNIVERSITY OF WASHINGTON
. PERFORMING ORGANIZATION
REPORT NUMBER

97-026

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

DEPARTMENT OF THE AIR FORCE
AFIT/CI
2950 P STREET
WRIGHT-PATTTERSON AFB OH 45433-7765

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

1 2a. DISTRIBUTION AVAILABILITY STATEMENT

DISTRIBUTION STATEMENT £

Approved for public release;
Distribution Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

19970505 133
14. SUBJECT TERMS 15. NUMBER OF PAGES

28
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF ABSTRACT

)TXO QTJÄLHY XKSi'EGii^'
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHSIDI0R, Oct 94

Efficient Implementation of
Image Warping on a Multimedia Processor

by

Owen Daniel Evans

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering

University of Washington

1996

Approved by
(Chairperson of Supervisory Committee'

Program Authorized
to Offer Degree

ElectriLA-t Bm'ineerinoj

Date Pec, li, l<ft£

In presenting this thesis in partial fulfillment of the requirements for a Master's degree at
the University of Washington, I agree that the library shall make its copies freely
available for inspection. I further agree that extensive copying of the thesis is allowable
only for scholarly purposes, consistent with "fair use" as prescribed in the U.S. Copyright
Law. Any other reproduction for any purposes or by any means shall not be allowed
without my written permission.

(%VJ\ O Z^>— Signature

Date)3 &2XL. %

University of Washington

Abstract

Efficient Implementation of
Image Warping on a Multimedia Processor

by Owen Daniel Evans

Chairperson of the Supervisory Committee: Professor Yongmin Kim
Department of Electrical Engineering

The spatial transformation of images, commonly known as image warping, is
fundamental to many applications, e.g., remote sensing, medical imaging, computer
vision, and computer graphics. Computational demands in image warping are high,
requiring a geometric transformation, address and coefficient generation, and some form
of interpolation. However, unlike most image processing algorithms, the data flow for
image warping can be highly irregular, which makes any efficient implementation
challenging.

This paper describes an efficient algorithm which addresses these challenges by making
use of the capabilities of a single-chip multiprocessing microprocessor, the Texas
Instruments TMS320C80 MVP (Multimedia Video Processor). The MVP's advanced
digital signal processors (ADSPs) offer tremendous computational power through
instruction-level parallelism and several key features designed for image processing. The
MVP's intelligent input/output interface via the Transfer Controller (TC) permits efficient
irregular memory accesses.

Affine and perspective warps have been implemented for 8-bit, 16-bit, and RGB color
data using bilinear interpolation. The affine warp can generate 512 x 512 warped output
images faster than real-time video rates require. For 8-bit images, the performance is
14.1 ms. Although the amount of computation necessary is the same for 16-bit images,
the execution time increases to 15.2 ms since twice as many bytes need to be transferred.
For RGB color images, it takes 28.0 ms. The perspective warp requires 46.3 ms for 8-bit
and 16-bit images, and 60.4 ms for RGB color images. This unprecedented performance
for software-based image warping exceeds many hardwired approaches reported in the
literature.

TABLE OF CONTENTS

List of Tables iii

List of Figures iv

Chapter 1: Introduction 1

Chapter 2: Affine and Perspective Warping 5

Chapter 3: Description of MVP Architecture and Key Features 7

Chapter 4: Implementation on the Texas Instruments TMS320C80 9

Chapter 5: Results and Discussion 15

Chapter 6: Conclusion 19

References 20

Tables 21

Figures 22

LIST OF TABLES

Number Page

1: Execution times for affine warps 21

2: Execution times for perspective warps 21

m

LIST OF FIGURES

Number Page

1: Forward transformation 22

2: Inverse transformation 22

3: Affine warp 23

4: Bilinear interpolation 23

5: Internal architecture of the TMS320C80 24

6: Block based image warping 24

Source pixel block determination 25

Affine warp bounding block 26

Perspective warp bounding block 26

10: Example affine warps 27

11: Example perspective warps 28

IV

Chapter 1

Introduction

Image warping is a spatial transformation defining a geometric mapping between source

and target images. A warp relates a source pointy to a target pointer by a transformation

T, i.e., pT = T(ps). The inverse transformation is specified as ps = Tl(pT). Figures 1 and 2

illustrate an example perspective warp using forward and inverse transformations,

respectively. For the forward transformation, a grid is drawn in the source image.

Depending on the perspective warp coefficients, the grid lines may converge in the target

image. For the inverse transformation, a grid is drawn in the target image while the grid

lines may converge in the source image. In Figures 1 and 2, the gray shapes designate the

areas of valid image points. Points outside of this area are designated as background

points. The source and target images consist of discrete points called pixels having

intensity I(ps) and l(pT). A pixel's intensity representing its average brightness, also a

discrete value, is limited by the image format. For example, the intensity for 8-bit images

is limited to 28 or 0 to 255. The intensity of a target point l(pr) is generated by using a

forward mapping with integration or an inverse mapping with interpolation. In general,

since mapped points do not lie on discrete pixel locations, integration is used to construct

the intensity of a target pixel from surrounding forward-mapped target points, and

interpolation is used to reconstruct an inverse-mapped target point from surrounding

source pixels. There are some advantages to an inverse-mapped approach. Integration

requires computationally-expensive intersection tests to determine which points should

contribute. Since the number of contributing points may vary, normalizing the integrated

intensity is not a fixed or known element. The result must be checked if it exceeds the

intensity range and clipped if necessary. In addition, holes or missing output points may

occur if no surrounding points exist within a specified integration window. By using an

inverse mapping, each target point is mapped uniquely, so no holes occur. In addition, a

fixed interpolation kernel is used requiring a fixed neighborhood of source pixels. For

these reasons, an inverse mapping approach has been more widely used.

Image warping is fundamental to many applications, e.g., remote sensing, medical

imaging, computer vision, and computer graphics [1]. For each of these application

areas, image warping is often employed for different reasons. In remote sensing, the need

is often on correcting geometric distortions occurred in image acquisition [2]. Typically,

real images are not acquired from an ideal stationary pin-hole camera. In practice, the

physical lens and the environment in which it operates can deform the acquired image,

thus not faithfully representing the projection of points in the scene [2]. In medical

imaging, we often need to integrate information from multiple imaging modalities (CT

and MRI for anatomical information and PET or fMRI for functional information) or

detect changes between acquired images [3]. A spatial transformation is used to register

the images to aid in patient diagnosis and treatment planning [4]. Computer graphics

applications involving image warping include texture mapping, ray tracing, and volume

rendering.

With various applications generating an increasing number of images, there is a strong

need for developing efficient image warping algorithms. For example, image registration

uses many image warps in overlaying two images before detecting the optimum

registration parameters. Depending on the search extent, this application may require

hundreds of spatial transformations for each pair of images. To provide timely feedback

to the clinicians and other specialists without using an expensive supercomputer, it is

critical to use an efficient image warp. A machine vision application may require

perspective view changes along with other image processing functions for each acquired

frame. To meet timing constraints in numerous real-time machine vision applications, a

fast image warp is essential.

Developing an efficient image warping algorithm is quite challenging considering the

computational demands and data flow requirements. Computational demands are high,

requiring a geometric transformation, address and coefficient generation, and some form

of interpolation. An inverse transformation, defining a mapping between the output and

input images, can involve simple multiplications and additions or costly divisions or

transcendental functions. The mapped coordinate is used to generate the addresses of

needed input pixels and interpolation coefficients. These input pixels are multiplied by

the interpolation kernel coefficients and added together to generate the final target pixel

value. In addition to these computational demands, an efficient data flow is critical to

high performance. Working on adjacent target pixels may require irregularly-spaced

source pixels. Irregular memory accesses must be supported without a severe penalty.

Recently, several commercially-available general-purpose processors have incorporated

advances in computer architecture and VLSI technology to meet the demanding needs of

digital video processing, HDTV, and networking environments [5]. Some of these new

superscalar and very long instruction word (VLIW) processors employ instruction-level

parallelism, which permits multiple operations to be executed in parallel per cycle. When

combined with efficient parallel algorithms, these new processors can execute signal and

image processing functions much faster than conventional processor architectures [6].

This paper presents a new image warping algorithm and its implementation for affine and

perspective warps. The algorithm heavily utilizes the capabilities of the Texas

Instruments TMS320C80 Multimedia Video Processor (MVP). A 14.1 ms execution

time for an affine-warped 512x512 8-bit image using bilinear interpolation is better than

any software-based algorithms and faster than even many hardwired approaches reported

in the literature. Image warps have been implemented on numerous workstation

platforms. Their execution times are typically 100 times or more slower than our

performance. Parallel algorithms have been developed for several systems. In 1990, our

group reported a performance of 2.2 seconds for a second-order warp on a 512x512 8-bit

image using bilinear interpolation using four floating-point processors [7]. More

recently, another group at the University of Washington reported that the MasPar-1

parallel image processing computer with 16,384 processing elements requires 67.9 ms to

complete a 512x512 affine warp using bilinear interpolation [8]. Researchers at the

Princeton University developed a hardwired board and reported a performance of 25 ms

to rotate, i.e. a special affine warp, a 512x512 8-bit image [9]. Siegel and Goetz-

Greenwald [10] used the Datacube's Warper MKII and reported an execution time of

26 ms to warp a 512 x 512 image using a second-order mapping and 4x2 interpolation

and 52 ms to warp a 512 x 512 image using a third-order mapping and 4x4 interpolation.

Chapter 2

Affine and Perspective Warping

An affine warp is very useful since it can handle several common geometric

transformations such as scaling, shearing, rotation, translation and flipping. Figure 3 is an

example affine warp in which the image has been rotated, stretched vertically, and

translated. It has been also clipped to a finite output image window. An affine warp is

specified by the following first-order analytic expressions:

xs=allxT+a2lyT+a31 Eq. (1)

ys=al2xT+a22yT+a32 Eq. (2)

where coefficients all, all, a3l, all, a22, and a32 are arbitrary real numbers. As

shown in Figure 3, a first-order mapping produces the uniformly-spaced grid of points.

Function Tl(pT) generates a source pointy for every target pixelpT. Invalid points are

also identified in Figure 3. This situation occurs whenpT generates ps located outside of

the source image boundaries. In case of an invalid point, the intensity of the target pixel

l(pT) is set to a background pixel's value.

For each target pixel, ps is used to generate the interpolation coefficients and the memory

addresses of all needed source pixels. Interpolation is performed to resample the source

image at a sub-pixel location. To determine the intensity of a target pixel, the source

pixels surrounding;?., are multiplied by interpolation coefficients and their products

accumulated. The interpolation coefficients determine how much of each source pixel

would contribute to the final target pixel's intensity. The size of the interpolation kernel

(thus, the number of needed source pixels) varies depending on the type of interpolation.

We have used bilinear interpolation in our warping algorithms. As shown in Figure 4,

bilinear interpolation with a kernel size of 2x2 uses the four surrounding pixels. Four

coefficients which correspond to the pixels 1 through 4 in Figure 4 are:

Cl C2

c3 c4

•- -\transpose
l-xs ,frac

XS,frac

Eq. (3) 1 ysjrac

ys,frac

These coefficients are a function of the fractional source point j9i/rac (composed of x5/rac and

ys./mc) relative to the pixel 1.

To generate the memory addresses of the needed input pixels, the following equation is

used.

Memory Address = Base Address + pitch • ySwhole + pixel size • xSwhole Eq. (4)

Base address is the byte address of the upper-left corner pixel in the source image. Pitch

is the memory offset between successive source image rows. Pixel size is the number of

bytes per pixel. Using the whole number components of ps, Eq. (4) generates the base

pixel's memory address. Adjacent pixels can be easily located in reference to this

memory address.

As already shown in Figures 1 and 2, a perspective warp alters the spatial relationship of

pixels so that lines may converge to a vanishing point. The transformation is considered

an image projection onto a new viewing plane created by a relative change in position of

the image or the observer. Mathematically, the perspective warp is generated by dividing

two affine warps point-by-point.

allxr+a21yr+a31 „ /c^
xs = - — Eq. (5)

al3xr +ö23yr +a32

al2xr +ö22y7,+ö32 „ ,,.
ys =

T- il Eq. (6)
al3xr +«23yr +a33

Compared to Eqs. (1) and (2), the common denominator in Eqs. (5) and (6) introduces the

effect of converging lines. Interpolation and memory addressing for perspective warping

work in the same way as with affine warping.

Chapter 3

Description of MVP Architecture and Key Features

The Texas Instruments TMS320C80 Multimedia Video Processor (MVP) is a single-chip

multiprocessing microprocessor designed for high-speed image processing and real-time

multimedia applications [11]. Figure 5 shows the block diagram of the MVP's internal

architecture. It contains a RISC processor called the Master Processor (MP), four

Advanced Digital Signal Processors (ADSPs), and a programmable Direct Memory

Access (DMA) controller called the Transfer Controller (TC). The MP has a floating-

point unit which can issue floating-point operations on every cycle. Each ADSP has a

unique parallel architecture optimized for pixel operations. It contains a 16-bit fixed-

point multiplier, a 3-input 32-bit ALU, and two load/store units, which can each be

utilized concurrently. The TC allows various types of complex address calculations and

data transfers.

MVP also has 50 kbytes of on-chip memory accessible in a single cycle. The memory is

organized as 25 blocks of 2-kbyte modules, and each module is designated as an

instruction cache, data cache, or data RAM. An instruction cache is assigned to the MP

and each ADSP, but the data cache is available only to the MP. For the ADSPs, the data

RAMs serve as the local storage area. While the cache memory is automatically serviced

by the hardware to read from and write to the external memory, the data RAM needs

explicit management and transfer requests by the programmer in software. Although this

places additional demands on the programmer, tremendous performance gains are

achieved through its effective use. The processors and on-chip memory modules are fully

interconnected via the crossbar switch which operates at the instruction clock rate. In

case of simultaneous accesses to the same location (contention), the crossbar resolves it

through priority-based scheduling.

Several key features of the MVP summarized below contribute to efficient image

warping, and they will be discussed more in detail in the following chapter.

• The TC, an on-chip DMA controller which can be programmed to meet the irregular

data access requirements associated with image warping.

• Multiple banks of fast on-chip memory used in a ping-pong double-buffering mode

enable the computations performed by the ADSPs and data input and output

performed by the TC to go on simultaneously without interfering with each other.

• Instruction-level parallelism in developing a highly efficient core processing loop.

• Dedicated address unit adders used for secondary arithmetic operations.

• Three zero-overhead hardware loop controllers replacing multiple loop count and

conditional branch instructions.

Chapter 4

Implementation on the Texas Instruments TMS320C80

Image warping involves four stages: geometric transformation, source pixel transfer,

interpolation, and target pixel transfer. Due to the geometric transformation stage,

adjacent target pixels often require source pixels in an irregular fashion. These source

pixels can be transferred individually or collectively. Even though our algorithm uses a

collective approach, it is worthwhile to review a system which transfers source pixels

individually for comparison. Using a hardwired approach, the Datacube's Warper MKII,

an optional component of the Datacube's Max Video system, divides the image warping

task among two hardwired boards. The MKIFs address unit inverse-maps target points to

generate memory addresses for the needed source pixels and lookup table (LUT)

addresses for the needed interpolation coefficients. The MKIFs interpolator performs

interpolation by multiplying the fetched source pixels with the respective interpolation

coefficients and accumulating the results. Transferring source pixels individually has one

key advantage. No descriptive parameters are needed. Since source pixels and

interpolation coefficients are fetched to generate individual target pixels, they are always

in a specific linear order. The MKIFs interpolator can blindly use the fetched source

pixels and interpolation coefficients in a predetermined fashion, i.e., multiply and

accumulate.

To transfer source pixels collectively, the minimum and maximum mapped coordinates

must be found to calculate the necessary data transfer parameters. Although transferring

source pixels individually can avoid these calculations, a fast implementation demands

the use of single-cycle memory to avoid page miss penalties associated with accessing

more popular dynamic random access memory (DRAM). The MKII uses an expensive

high bandwidth single-cycle memory buffer for the source image and coefficient LUT so

that any source pixel or interpolation coefficient can be quickly referenced.

Rather than using dedicated hardware, our algorithm is designed for a software solution

using the Texas Instruments TMS320C80 Multimedia Video Processor (MVP). The

irregular data flow requirement associated with image warping is a critical issue to be

addressed in any software approach. Without relying on dedicated single-cycle memory,

we generate pixels collectively to equally distribute the irregular memory access penalty

across a group of target pixels. As illustrated in Figure 6, the target image is divided into

a series of blocks. A fixed block size is used so that parameters such as target block

addresses are easier to maintain. Depending on the image dimension and selected block

size, target blocks located along the right and bottom edges may be smaller than this fixed

size as shown in Figure 6. By processing pixels in blocks, the algorithm benefits from

local coherency, i.e., a group of neighboring points in the target image tend to map to a

group of closely-spaced points in the source image. For each group of closely-mapped

points, the bounding block of source points, identified in Figure 6 with dashed lines, is

transferred to the MVP's on-chip memory. Since a bounding block varies in size and

location, parameters describing the data flow must be updated for every block of target

pixels. The MVP's programmable memory interface provides this flexibility. As shown

in Figure 6, three different cases may occur depending on the mapped location. First, no

source pixels are needed if the bounding block is located outside of the source image. For

this situation, the target pixels are set to the black background value, i.e., zero. Second,

the bounding block may be located across an image border. In this case, the bounding

block is clipped so that only valid source pixels are referenced and transferred to on-chip

memory. Third, the bounding block may contain entirely valid source pixels.

Figure 7 shows a sequence of steps taken by our algorithm in determining the needed

source pixel blocks. For each target block, the values x.Sm,„, ys.ml„, x&max, and y^ define the

bounding source block. To determine these parameters directly, all of the mapped source

points for a specific target block must be compared. For some transformations, these

comparisons can be avoided or reduced due to the properties of the transformation. As

10

shown in Figure 8, since the affine warp is a linear transformation, xs,„,„, ys,mi„, xs.max, and

ys,max are always generated by mapping a specific target block vertex point and these

associations are identical for each target block throughout the entire image. For the

perspective warp, determining the bounding block is a little more difficult. Due to the

divisions needed in perspective warping, the associations between xSim,„, ys,mi„, xs,max, >w,

and the target block vertex points vary depending on the target block location. Figure 9 is

an example in which xs.ml„ and xw are generated from different target block vertices

within the same image warp.

Returning back to Figure 7, after the bounding block of source pixels is calculated, the

block is adjusted for interpolation. To generate a target pixel, the source pixels

surrounding the mapped source point ps are needed. To ensure that the surrounding

source pixels for every mapped source point including those located near the block

boundary are contained in a bounding source block to be fetched, we need to increase the

block size slightly depending on the interpolation kernel size. This block-based

collective fetching of the source pixels smoothes the need for irregular data accesses

across the group of target block pixels.

Since the needed source block may contain background pixels, more calculations are

needed to determine the source pixel transfer. If the source block is located entirely

outside of the source image dimensions, no pixel is needed. In this case, no target block

pixel is inverse mapped and interpolation is skipped. The target block is filled with

background pixels. If this condition is not true, then there is at least one valid source

pixel within the source block. The source block is tested whether it is located along an

image border. This test separates blocks which contain exclusively valid source pixels

and blocks which contain some valid source pixels. If any of the test conditions is true as

shown in figure 7, the source block is filled with background pixels and the parameters

describing the needed source pixels are clipped. When the source pixels are transferred to

the MVP's on-chip memory, they overwrite some of the background pixels. The

11

resulting on-chip memory block is the desired mixture of background and source pixels.

As shown in Figure 7, if the source block contains entirely valid source pixels, the

bounding block parameters do not have to be adjusted.

The steps shown in Figure 7 are rather complex, but it ensures that all the pixels needed

for warping a particular target block are available in fast on-chip memory, which

improves the performance of the core processing tight loop responsible for inverse

mapping all target points and interpolating the results. Since all source pixels needed for

interpolating the mapped points in a target block are available on-chip, no checking of the

mapped points is needed. Source pixels are simply referenced from the generated

addresses. By knowing a priori that all memory addresses would be valid, several tight

loop instructions used in checking the generated addresses can be eliminated.

Multiple banks of fast on-chip memory in the MVP enable simultaneous processing and

data transfer. While the ADSPs are tasked with processing source pixels and computing

the parameters for the next needed source pixel transfer (the steps in Figure 7), the TC is

programmed to transfer the previously processed target pixels off-chip and the source

pixels to be processed next on-chip. By using these multiple memory banks in a ping-

pong double-buffering mode, we can avoid memory contention and improve the

performance by hiding the data transfer time behind the processing time via running the

ADSPs and the TC concurrently.

Instruction-level parallelism of the MVP has been heavily utilized to develop a highly

efficient core processing routine. In each ADSP, arithmetic and memory access

operations for interpolation, address generation and memory reads/writes are often

simultaneously executed. For example, an interpolation multiplication is executed at the

same time as the previous multiplication result is accumulated and the next source pixel

needed is fetched. By having multiple execution units available in each ADSP to be

utilized simultaneously and multiple processors available in the MVP, developing an

12

efficient implementation on the MVP can involve quite a lengthy optimization process.

To achieve this instruction-level parallelism, algorithm steps need to be reordered

frequently. For example, some instructions can be executed ahead of time in parallel with

previous instructions to be able to free up the busy execution units for the following

instructions, thus reducing the overall number of cycles. In addition, the same operation

can sometimes be accomplished with different resources. For example, extracting the

lower half-word of a 32-bit register can be done with the multiplier, ALU, or global

address unit. The 16-bit multiplier can multiply the register by 1. The ALU can perform

a 32-bit logical AND operation with a mask to remove the upper 16-bits. The global

address unit is capable of extracting a byte or a half-word from a 32-bit register.

The ADSP's address units are used to generate the memory addresses of source pixels. It

is used to add the source base address in generating the final memory address as defined

in Eq. (4). It is also used to update the address pointing to successive rows by adding or

subtracting the source pitch to or from the on-chip memory address.

To improve the overall performance even further, we often utilize the dedicated address

unit adders for performing additional arithmetic operations simultaneously. Since the

affine warp is a linear transformation, adjacent mapped pixels differ only by a constant

value. This arithmetic operation can be realized by using the ADSP's address units, i.e.,

using the computed address as a result rather than using it for memory access. Since the

perspective warp is a division of two affine warps, the numerator and denominator can be

each computed using the same approach. Since all mapped coordinates must be offset by

the minimum source block x and y coordinates, the address unit adders are used again to

accomplish other needed arithmetic operations.

The MVP's three zero-overhead hardware loop controllers are very useful in significantly

reducing the image warp tight loop length by not requiring multiple loop count and

conditional software branch instructions. Since a fixed block of target pixels is

13

processed, the number of loop iterations is known, i.e., the block width and height. While

the inner loop processes horizontal pixels, the outer loop updates parameters for the next

row.

14

Chapter 5

Results and Discussion

For an 8-bit affine warp using bilinear interpolation, each ADSP determines a target pixel

value every 10 clock cycles. Since there are four ADSPs, the TMS320C80 generates a

target pixel every 2.5 clock cycles. For a 512x512 target image, the tight loop for the 8-

bit affine warping should be completed in 13.1 ms with the TMS320C80 running at 50

MHz. The measured performance of 14.1 ms was obtained including the additional setup

instructions needed per target block and other overhead. The measured execution time

for a 16-bit affine warp was 15.2 ms. Since the number of computing cycles for the 16-

bit warp tight loop is the same as that for the 8-bit warp tight loop, this result shows that

1.1 ms of additional I/O time is needed to transfer twice as many bytes per pixel. For a

RGB color affine warp using bilinear interpolation, each ADSP determines a target pixel

value every 19 clock cycles, resulting in 24.9 ms for a 512x512 target image. The

measured execution time of 28.0 ms indicates that the I/O time exceeds the computation

time. Since there are three 8-bit bands for color data, target pixels are generated using

smaller image blocks than before due to the limited on-chip memory size. By processing

smaller target blocks, there is a little more overhead compared to 8-bit and 16-bit affine

warps. Three affine warp examples with various rotation and shearing angles, scaling

factors, and translation amounts are shown in Figure 10.

For the perspective warp using bilinear interpolation, each ADSP determines an output

pixel value every 33 clock cycles. Compared to the affine warp, the additional cycles are

directly attributed to the divisions needed for a perspective warping geometric

transformation. For a 512x512 target image, perspective warping should be completed in

43.3 ms with the TMS320C80 running at 50 MHz. The measured performance of

46.3 ms is close to the expected 43.3 ms performance indicating that it is a compute-

bound operation due to the overhead in handling the next source block transfer.

Execution times for 8-bit, 16-bit, and RGB color data are summarized in Table 2. Two

example perspective warps are shown in Figure 11.

The performance of our image warping algorithm can be compared to the performance

that has been reported in the literature. Image warps have been implemented in a

programmable fashion on numerous workstation platforms. Typically, execution times

are at least 100 times or more slower than those reported in Tables 1 and 2. Parallel

algorithms have been developed for several systems, but their performance is still much

less than that of our algorithm. In 1990, our group reported a performance of 2.2 seconds

for a second-order warp on a 512x512 8-bit image using bilinear interpolation using four

floating-point processors [7]. More recently, another group at the University of

Washington reported that image warping was implemented on the MasPar-1 parallel

computer with 16,384 processing nodes [8]. The MasPar-1 took 67.9 ms to warp a

512x512 image using bilinear interpolation compared to 14.1 ms in the MVP .

With the advancement of VLSI technology, several researchers and companies have

developed dedicated hardware systems for image warping. Researchers at the Princeton

University have designed and implemented a board which claimed to achieve real-time

video-rate image rotation [9]. Image rotation can be easily achieved via an affine warp as

shown in Figure 10. They reported an execution time of 25 ms to rotate an 8-bit 512x512

image. They did not specify the type of interpolation used. The Datacube's Warper

MKII takes 26 ms to warp a 512x512 image using 4x2 interpolation and 52 ms using 4x4

interpolation [10]. Since the Datacube's MKII can use a second-order transformation and

4x2 interpolation or a third-order transformation and 4x4 interpolation, a direct

comparison to our results cannot be made. However, the execution times for our affine

and perspective warps provides a basis for estimating performance with other geometric

transformations. Since divisions are very computationally expensive, it is reasonable to

assume that second-order and third-order warps can be implemented between the

performances of the affine and perspective warps. For bilinear interpolation, our

16

performances of 14.1 ms for an affine warp and 46.3 ms for a perspective warp indicate

that our implementation is close to the Datacube's hardwired approach.

Demonstrating the flexibility of a programmable approach, our algorithm supports

multiple data formats. 8-bit, 16-bit, 32-bit CCCX (C represents an 8-bit color band and X

represents an 8-bit don't care band), and 32-bit XCCC formats have been implemented.

Since the MVP has a 16-bit multiplier, no additional computations are needed in handling

16-bit data. To transfer twice as much data, however, it takes slightly longer than the 8-

bit affine warp. Support for multiple data formats may be quite challenging or impossible

for a hardwired approach with limited programmability. For example, the MKII can

operate on 16-bit data, but it takes twice as long since it must operate on the least

significant byte and most significant byte separately. To warp color images, the MKII

must operate on each band independently. Target points are inverse-mapped for each

color band, instead of mapping once and interpolating all of the color bands.

Our affine and perspective warps have already been used as building blocks for several

higher-level image processing routines. They are part of the University of Washington

Image Computing Library developed for use in MVP-based systems to provide a portable

infrastructure of low-level routines so that higher-level algorithms and applications can be

quickly developed [12]. The affine warp has been heavily utilized in wavlet-based

multiresolution image registration [13]. Since the reference image must be rotated many

hundred times once for each angle of interest at each resolution level, it is critical to use

an efficient image warp in order to provide timely feedback to the clinicians and other

specialists. The perspective warp has been used in our visualization algorithm to render

3D ultrasound images [14]. Siemens Medical Systems Ultrasound Group has been using

the affine warp as part of a new acquisition and display process called SieScape™, which

is used to produce panoramic Extended Field of View (XFOV) images. Narrow fields of

view acquired by ultrasound scanners can be placed side-by-side via image correlation to

17

provide a bigger picture. To align these multiple images within real-time video-rate

constraints, our affine warp is heavily used.

18

Chapter 6

Conclusion

We have developed a very efficient warping algorithm and implemented both affine and

perspective warping functions in software on a modern microprocessor. This algorithm

makes use of a commercially-available programmable multiprocessing microprocessor

incorporating advances in computer architecture and VLSI technology. Its performance

exceeds any software-based approach reported in the literature. It also compares

favorably with several hardwired implementations such as the Datacube's Warper MKII.

Its demonstrated flexibility, support of multiple data formats and interpolation types, and

performance indicate that a software-based solution can now meet the demands of many

image processing applications without the use of dedicated hardware.

References

[I] Wolberg G., Digital Image Warping. IEEE Computer Society Press, Los Alamitos,
CA, 1990.
[2] Breen L. and Bryant J., "Image warping by scanline operations," Comput. &
Graphics, vol. 17, no. 2, pp. 127-130,1993.
[3] Weinhaus F. and Walterman M., "A flexible approach to image warping," SPIE
Proceedings, vol. 1244, pp. 108-122, 1990.
[4] Goshtasby A., "Piecewise linear mapping functions for image registration," Pattern
Recognition, vol. 19, pp. 459-466, 1986.
[5] Pirsch P., Demassieux N., and Gehrke W., "VLSI architectures for video compression
- a survey," Proceedings of the IEEE vol. 83, pp. 220-245, 1995
[6] Basoglu C., Lee W., and Kim Y., "An efficient FFT algorithm for superscalar and
VLIW processor architectures," Real-Time Imaging, sumitted, Feb. 1996.
[7] Wong, G., "The design and implementation of parallel algorithms for UWGSP3, a
high performance image processing and graphics subsystem for theNeXT computer,"
MSEE Thesis, University of Washington, 1990.
[8] Wittenbrink C. M. and Somani A. K., "2D and 3D optimal parallel image warping,"
Journal of Parallel and Distributed Computing vol. 25, pp. 197-208, 1995.
[9] Ghosh I. and Majumdar B., "VLSI implementation of an efficient ASIC architecture
for real-time rotation of digital images", International Journal of Pattern Recognition and
Artificial Intelligence, vol. 9, pp.449-462, 1995.
[10] Siegel S. and Goetz-Greenwald B., "VME boards perform high speed spatial
warping", SPIE Proceedings, vol. 1027, pp. 77-80, 1989.
[II] Guttag K., Gove R. J., and Van-Aken J. R., "A single chip multiprocessor for
multimedia: The MVP," IEEE Comput. Graphics. Appl., vol. 12, no. 6, pp. 53-64, 1992.
[12] Kim J. and Kim Y., "UWICL: A multi-layered parallel image computing library for
single-chip multiprocessor-based time-critical systems," Real-Time Imaging, vol. 2, pp.
187-199, 1996.
[13] Wu H., "Fast wavelet-based multiresolution image registration on a multiprocessing
digital signal processor," MSEE Thesis, University of Washington, 1996.
[14] Deforge C, "Near real-time 3-D ultrasound: a feasibility study," MSEE Thesis,
University of Washington, 1996.

20

Execution Time (ms)

Affine warps 8-bit 16-bit BGRX 32-bit

2x2 interpolation (bilinear) 14.1 ms 15.2 ms 28.0 ms

Table 1: Execution times for affine warps.

Execution Time (ms)

Perspective warps 8-bit 16-bit BGRX 32-bit

2x2 interpolation (bilinear) 46.3 ms 46.3 ms 60.4 ms

Table 2: Execution times for perspective warps.

21

Source Image Target Image

i

Figure 1: Forward transformation of a perspective warp.

Source Image

Target Image

< r
1

Figure 2: Inverse transformation of a perspective warp.

22

Source Image Target Image
► x7

Figure 3: Affine warp.

Source Image

Base Address

•l
X •

2
ysfrac

XSfrac •*
" *Ps
•3 *4

Figure 4: Bilinear interpolation.

23

Transfer
Controller

.64

SRAM

Figure 5: Internal architecture of the TMS320C80.

Source Image

Target Image
"""

»a

|
111

Figure 6: Block based image warping.

24

Determine bounding
source pixel block

J'S.min

Adjust for interpolation
(k„-l)

XS,min " (kj, " *■)
XS,m«x """ ^w

ys,™,+ K

Background block?
if xSjMa > source image width

or
if xSmai<0

or
if ySrain > source image height

or
ifys,™<o

else
no

Border block?
if xs^<0

or
if xs,max ^ source image width

or
if ys,mi„<o

or
if ys,™* > source image height

else
no

Transfer needed source pixels

source pixels

source block w/o background pixels

k„ = half the interpolation kernel width

k,, = half the interpolation kernel height

k„ = k,, = 1 for 2x2 bilinear interpolation

Fill target block w/ backgroud pixels
and skip interpolation

^>
background pixels

target block

Fill source block w/ background pixels
and clip exceeded parameters

background pixels

source block

^ r

Transfer needed source pixels

background pixels

source pixels

sourc e block w/ background rixels

Figure 7: Source pixel block determination.

25

Source Image Target Image

Figure 8: Affine warp bounding block.

Source Image Target Image

S,min

Figure 9: Perspective warp bounding block.

26

(a) (b)

(c) (d)

Figure 10: Example affine warps, (a) original (b) (c) and (d) affine warps.

27

(b)

(c)

Figure 11: Example perspective warps, (a) original (b) and (c) perspective warps.

28

