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University of Washington 

Abstract 

Efficient Implementation of 
Image Warping on a Multimedia Processor 

by Owen Daniel Evans 

Chairperson of the Supervisory Committee: Professor Yongmin Kim 
Department of Electrical Engineering 

The spatial transformation of images, commonly known as image warping, is 
fundamental to many applications, e.g., remote sensing, medical imaging, computer 
vision, and computer graphics. Computational demands in image warping are high, 
requiring a geometric transformation, address and coefficient generation, and some form 
of interpolation. However, unlike most image processing algorithms, the data flow for 
image warping can be highly irregular, which makes any efficient implementation 
challenging. 

This paper describes an efficient algorithm which addresses these challenges by making 
use of the capabilities of a single-chip multiprocessing microprocessor, the Texas 
Instruments TMS320C80 MVP (Multimedia Video Processor). The MVP's advanced 
digital signal processors (ADSPs) offer tremendous computational power through 
instruction-level parallelism and several key features designed for image processing. The 
MVP's intelligent input/output interface via the Transfer Controller (TC) permits efficient 
irregular memory accesses. 

Affine and perspective warps have been implemented for 8-bit, 16-bit, and RGB color 
data using bilinear interpolation. The affine warp can generate 512 x 512 warped output 
images faster than real-time video rates require. For 8-bit images, the performance is 
14.1 ms. Although the amount of computation necessary is the same for 16-bit images, 
the execution time increases to 15.2 ms since twice as many bytes need to be transferred. 
For RGB color images, it takes 28.0 ms. The perspective warp requires 46.3 ms for 8-bit 
and 16-bit images, and 60.4 ms for RGB color images. This unprecedented performance 
for software-based image warping exceeds many hardwired approaches reported in the 
literature. 
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Chapter 1 

Introduction 

Image warping is a spatial transformation defining a geometric mapping between source 

and target images. A warp relates a source pointy to a target pointer by a transformation 

T, i.e., pT = T(ps). The inverse transformation is specified as ps = Tl(pT). Figures 1 and 2 

illustrate an example perspective warp using forward and inverse transformations, 

respectively. For the forward transformation, a grid is drawn in the source image. 

Depending on the perspective warp coefficients, the grid lines may converge in the target 

image. For the inverse transformation, a grid is drawn in the target image while the grid 

lines may converge in the source image. In Figures 1 and 2, the gray shapes designate the 

areas of valid image points. Points outside of this area are designated as background 

points. The source and target images consist of discrete points called pixels having 

intensity I(ps) and l(pT). A pixel's intensity representing its average brightness, also a 

discrete value, is limited by the image format. For example, the intensity for 8-bit images 

is limited to 28 or 0 to 255. The intensity of a target point l(pr) is generated by using a 

forward mapping with integration or an inverse mapping with interpolation. In general, 

since mapped points do not lie on discrete pixel locations, integration is used to construct 

the intensity of a target pixel from surrounding forward-mapped target points, and 

interpolation is used to reconstruct an inverse-mapped target point from surrounding 

source pixels. There are some advantages to an inverse-mapped approach. Integration 

requires computationally-expensive intersection tests to determine which points should 

contribute. Since the number of contributing points may vary, normalizing the integrated 

intensity is not a fixed or known element. The result must be checked if it exceeds the 

intensity range and clipped if necessary. In addition, holes or missing output points may 

occur if no surrounding points exist within a specified integration window. By using an 

inverse mapping, each target point is mapped uniquely, so no holes occur. In addition, a 



fixed interpolation kernel is used requiring a fixed neighborhood of source pixels. For 

these reasons, an inverse mapping approach has been more widely used. 

Image warping is fundamental to many applications, e.g., remote sensing, medical 

imaging, computer vision, and computer graphics [1]. For each of these application 

areas, image warping is often employed for different reasons. In remote sensing, the need 

is often on correcting geometric distortions occurred in image acquisition [2]. Typically, 

real images are not acquired from an ideal stationary pin-hole camera. In practice, the 

physical lens and the environment in which it operates can deform the acquired image, 

thus not faithfully representing the projection of points in the scene [2]. In medical 

imaging, we often need to integrate information from multiple imaging modalities (CT 

and MRI for anatomical information and PET or fMRI for functional information) or 

detect changes between acquired images [3]. A spatial transformation is used to register 

the images to aid in patient diagnosis and treatment planning [4]. Computer graphics 

applications involving image warping include texture mapping, ray tracing, and volume 

rendering. 

With various applications generating an increasing number of images, there is a strong 

need for developing efficient image warping algorithms. For example, image registration 

uses many image warps in overlaying two images before detecting the optimum 

registration parameters. Depending on the search extent, this application may require 

hundreds of spatial transformations for each pair of images. To provide timely feedback 

to the clinicians and other specialists without using an expensive supercomputer, it is 

critical to use an efficient image warp. A machine vision application may require 

perspective view changes along with other image processing functions for each acquired 

frame. To meet timing constraints in numerous real-time machine vision applications, a 

fast image warp is essential. 



Developing an efficient image warping algorithm is quite challenging considering the 

computational demands and data flow requirements. Computational demands are high, 

requiring a geometric transformation, address and coefficient generation, and some form 

of interpolation. An inverse transformation, defining a mapping between the output and 

input images, can involve simple multiplications and additions or costly divisions or 

transcendental functions. The mapped coordinate is used to generate the addresses of 

needed input pixels and interpolation coefficients. These input pixels are multiplied by 

the interpolation kernel coefficients and added together to generate the final target pixel 

value. In addition to these computational demands, an efficient data flow is critical to 

high performance. Working on adjacent target pixels may require irregularly-spaced 

source pixels. Irregular memory accesses must be supported without a severe penalty. 

Recently, several commercially-available general-purpose processors have incorporated 

advances in computer architecture and VLSI technology to meet the demanding needs of 

digital video processing, HDTV, and networking environments [5]. Some of these new 

superscalar and very long instruction word (VLIW) processors employ instruction-level 

parallelism, which permits multiple operations to be executed in parallel per cycle. When 

combined with efficient parallel algorithms, these new processors can execute signal and 

image processing functions much faster than conventional processor architectures [6]. 

This paper presents a new image warping algorithm and its implementation for affine and 

perspective warps. The algorithm heavily utilizes the capabilities of the Texas 

Instruments TMS320C80 Multimedia Video Processor (MVP). A 14.1 ms execution 

time for an affine-warped 512x512 8-bit image using bilinear interpolation is better than 

any software-based algorithms and faster than even many hardwired approaches reported 

in the literature. Image warps have been implemented on numerous workstation 

platforms. Their execution times are typically 100 times or more slower than our 

performance. Parallel algorithms have been developed for several systems. In 1990, our 

group reported a performance of 2.2 seconds for a second-order warp on a 512x512 8-bit 



image using bilinear interpolation using four floating-point processors [7]. More 

recently, another group at the University of Washington reported that the MasPar-1 

parallel image processing computer with 16,384 processing elements requires 67.9 ms to 

complete a 512x512 affine warp using bilinear interpolation [8]. Researchers at the 

Princeton University developed a hardwired board and reported a performance of 25 ms 

to rotate, i.e. a special affine warp, a 512x512 8-bit image [9]. Siegel and Goetz- 

Greenwald [10] used the Datacube's Warper MKII and reported an execution time of 

26 ms to warp a 512 x 512 image using a second-order mapping and 4x2 interpolation 

and 52 ms to warp a 512 x 512 image using a third-order mapping and 4x4 interpolation. 



Chapter 2 

Affine and Perspective Warping 

An affine warp is very useful since it can handle several common geometric 

transformations such as scaling, shearing, rotation, translation and flipping. Figure 3 is an 

example affine warp in which the image has been rotated, stretched vertically, and 

translated. It has been also clipped to a finite output image window. An affine warp is 

specified by the following first-order analytic expressions: 

xs=allxT+a2lyT+a31 Eq. (1) 

ys=al2xT+a22yT+a32 Eq. (2) 

where coefficients all, all, a3l, all, a22, and a32 are arbitrary real numbers. As 

shown in Figure 3, a first-order mapping produces the uniformly-spaced grid of points. 

Function Tl(pT) generates a source pointy for every target pixelpT. Invalid points are 

also identified in Figure 3. This situation occurs whenpT generates ps located outside of 

the source image boundaries. In case of an invalid point, the intensity of the target pixel 

l(pT) is set to a background pixel's value. 

For each target pixel, ps is used to generate the interpolation coefficients and the memory 

addresses of all needed source pixels. Interpolation is performed to resample the source 

image at a sub-pixel location. To determine the intensity of a target pixel, the source 

pixels surrounding;?., are multiplied by interpolation coefficients and their products 

accumulated. The interpolation coefficients determine how much of each source pixel 

would contribute to the final target pixel's intensity. The size of the interpolation kernel 

(thus, the number of needed source pixels) varies depending on the type of interpolation. 

We have used bilinear interpolation in our warping algorithms. As shown in Figure 4, 

bilinear interpolation with a kernel size of 2x2 uses the four surrounding pixels. Four 

coefficients which correspond to the pixels 1 through 4 in Figure 4 are: 



Cl       C2 

c3    c4 

•- -\transpose 
l-xs ,frac 

XS,frac 

Eq. (3) 1      ysjrac 

ys,frac 

These coefficients are a function of the fractional source point j9i/rac (composed of x5/rac and 

ys./mc) relative to the pixel 1. 

To generate the memory addresses of the needed input pixels, the following equation is 

used. 

Memory Address = Base Address + pitch • ySwhole + pixel size • xSwhole Eq. (4) 

Base address is the byte address of the upper-left corner pixel in the source image. Pitch 

is the memory offset between successive source image rows. Pixel size is the number of 

bytes per pixel. Using the whole number components of ps, Eq. (4) generates the base 

pixel's memory address. Adjacent pixels can be easily located in reference to this 

memory address. 

As already shown in Figures 1 and 2, a perspective warp alters the spatial relationship of 

pixels so that lines may converge to a vanishing point. The transformation is considered 

an image projection onto a new viewing plane created by a relative change in position of 

the image or the observer. Mathematically, the perspective warp is generated by dividing 

two affine warps point-by-point. 

allxr+a21yr+a31 „    /c^ 
xs = - —  Eq. (5) 

al3xr +ö23yr +a32 

al2xr +ö22y7,+ö32 „    ,,. 
ys = 

T- il  Eq. (6) 
al3xr +«23yr +a33 

Compared to Eqs. (1) and (2), the common denominator in Eqs. (5) and (6) introduces the 

effect of converging lines. Interpolation and memory addressing for perspective warping 

work in the same way as with affine warping. 



Chapter 3 

Description of MVP Architecture and Key Features 

The Texas Instruments TMS320C80 Multimedia Video Processor (MVP) is a single-chip 

multiprocessing microprocessor designed for high-speed image processing and real-time 

multimedia applications [11]. Figure 5 shows the block diagram of the MVP's internal 

architecture. It contains a RISC processor called the Master Processor (MP), four 

Advanced Digital Signal Processors (ADSPs), and a programmable Direct Memory 

Access (DMA) controller called the Transfer Controller (TC). The MP has a floating- 

point unit which can issue floating-point operations on every cycle. Each ADSP has a 

unique parallel architecture optimized for pixel operations. It contains a 16-bit fixed- 

point multiplier, a 3-input 32-bit ALU, and two load/store units, which can each be 

utilized concurrently. The TC allows various types of complex address calculations and 

data transfers. 

MVP also has 50 kbytes of on-chip memory accessible in a single cycle. The memory is 

organized as 25 blocks of 2-kbyte modules, and each module is designated as an 

instruction cache, data cache, or data RAM. An instruction cache is assigned to the MP 

and each ADSP, but the data cache is available only to the MP. For the ADSPs, the data 

RAMs serve as the local storage area. While the cache memory is automatically serviced 

by the hardware to read from and write to the external memory, the data RAM needs 

explicit management and transfer requests by the programmer in software. Although this 

places additional demands on the programmer, tremendous performance gains are 

achieved through its effective use. The processors and on-chip memory modules are fully 

interconnected via the crossbar switch which operates at the instruction clock rate. In 

case of simultaneous accesses to the same location (contention), the crossbar resolves it 

through priority-based scheduling. 



Several key features of the MVP summarized below contribute to efficient image 

warping, and they will be discussed more in detail in the following chapter. 

• The TC, an on-chip DMA controller which can be programmed to meet the irregular 

data access requirements associated with image warping. 

• Multiple banks of fast on-chip memory used in a ping-pong double-buffering mode 

enable the computations performed by the ADSPs and data input and output 

performed by the TC to go on simultaneously without interfering with each other. 

• Instruction-level parallelism in developing a highly efficient core processing loop. 

• Dedicated address unit adders used for secondary arithmetic operations. 

• Three zero-overhead hardware loop controllers replacing multiple loop count and 

conditional branch instructions. 



Chapter 4 

Implementation on the Texas Instruments TMS320C80 

Image warping involves four stages: geometric transformation, source pixel transfer, 

interpolation, and target pixel transfer. Due to the geometric transformation stage, 

adjacent target pixels often require source pixels in an irregular fashion. These source 

pixels can be transferred individually or collectively. Even though our algorithm uses a 

collective approach, it is worthwhile to review a system which transfers source pixels 

individually for comparison. Using a hardwired approach, the Datacube's Warper MKII, 

an optional component of the Datacube's Max Video system, divides the image warping 

task among two hardwired boards. The MKIFs address unit inverse-maps target points to 

generate memory addresses for the needed source pixels and lookup table (LUT) 

addresses for the needed interpolation coefficients. The MKIFs interpolator performs 

interpolation by multiplying the fetched source pixels with the respective interpolation 

coefficients and accumulating the results. Transferring source pixels individually has one 

key advantage. No descriptive parameters are needed. Since source pixels and 

interpolation coefficients are fetched to generate individual target pixels, they are always 

in a specific linear order. The MKIFs interpolator can blindly use the fetched source 

pixels and interpolation coefficients in a predetermined fashion, i.e., multiply and 

accumulate. 

To transfer source pixels collectively, the minimum and maximum mapped coordinates 

must be found to calculate the necessary data transfer parameters. Although transferring 

source pixels individually can avoid these calculations, a fast implementation demands 

the use of single-cycle memory to avoid page miss penalties associated with accessing 

more popular dynamic random access memory (DRAM). The MKII uses an expensive 

high bandwidth single-cycle memory buffer for the source image and coefficient LUT so 

that any source pixel or interpolation coefficient can be quickly referenced. 



Rather than using dedicated hardware, our algorithm is designed for a software solution 

using the Texas Instruments TMS320C80 Multimedia Video Processor (MVP). The 

irregular data flow requirement associated with image warping is a critical issue to be 

addressed in any software approach. Without relying on dedicated single-cycle memory, 

we generate pixels collectively to equally distribute the irregular memory access penalty 

across a group of target pixels. As illustrated in Figure 6, the target image is divided into 

a series of blocks. A fixed block size is used so that parameters such as target block 

addresses are easier to maintain. Depending on the image dimension and selected block 

size, target blocks located along the right and bottom edges may be smaller than this fixed 

size as shown in Figure 6. By processing pixels in blocks, the algorithm benefits from 

local coherency, i.e., a group of neighboring points in the target image tend to map to a 

group of closely-spaced points in the source image. For each group of closely-mapped 

points, the bounding block of source points, identified in Figure 6 with dashed lines, is 

transferred to the MVP's on-chip memory. Since a bounding block varies in size and 

location, parameters describing the data flow must be updated for every block of target 

pixels. The MVP's programmable memory interface provides this flexibility. As shown 

in Figure 6, three different cases may occur depending on the mapped location. First, no 

source pixels are needed if the bounding block is located outside of the source image. For 

this situation, the target pixels are set to the black background value, i.e., zero. Second, 

the bounding block may be located across an image border. In this case, the bounding 

block is clipped so that only valid source pixels are referenced and transferred to on-chip 

memory. Third, the bounding block may contain entirely valid source pixels. 

Figure 7 shows a sequence of steps taken by our algorithm in determining the needed 

source pixel blocks. For each target block, the values x.Sm,„, ys.ml„, x&max, and y^ define the 

bounding source block. To determine these parameters directly, all of the mapped source 

points for a specific target block must be compared. For some transformations, these 

comparisons can be avoided or reduced due to the properties of the transformation. As 

10 



shown in Figure 8, since the affine warp is a linear transformation, xs,„,„, ys,mi„, xs.max, and 

ys,max are always generated by mapping a specific target block vertex point and these 

associations are identical for each target block throughout the entire image. For the 

perspective warp, determining the bounding block is a little more difficult. Due to the 

divisions needed in perspective warping, the associations between xSim,„, ys,mi„, xs,max, >w, 

and the target block vertex points vary depending on the target block location. Figure 9 is 

an example in which xs.ml„ and xw are generated from different target block vertices 

within the same image warp. 

Returning back to Figure 7, after the bounding block of source pixels is calculated, the 

block is adjusted for interpolation. To generate a target pixel, the source pixels 

surrounding the mapped source point ps are needed. To ensure that the surrounding 

source pixels for every mapped source point including those located near the block 

boundary are contained in a bounding source block to be fetched, we need to increase the 

block size slightly depending on the interpolation kernel size. This block-based 

collective fetching of the source pixels smoothes the need for irregular data accesses 

across the group of target block pixels. 

Since the needed source block may contain background pixels, more calculations are 

needed to determine the source pixel transfer. If the source block is located entirely 

outside of the source image dimensions, no pixel is needed. In this case, no target block 

pixel is inverse mapped and interpolation is skipped. The target block is filled with 

background pixels. If this condition is not true, then there is at least one valid source 

pixel within the source block. The source block is tested whether it is located along an 

image border. This test separates blocks which contain exclusively valid source pixels 

and blocks which contain some valid source pixels. If any of the test conditions is true as 

shown in figure 7, the source block is filled with background pixels and the parameters 

describing the needed source pixels are clipped. When the source pixels are transferred to 

the MVP's on-chip memory, they overwrite some of the background pixels. The 

11 



resulting on-chip memory block is the desired mixture of background and source pixels. 

As shown in Figure 7, if the source block contains entirely valid source pixels, the 

bounding block parameters do not have to be adjusted. 

The steps shown in Figure 7 are rather complex, but it ensures that all the pixels needed 

for warping a particular target block are available in fast on-chip memory, which 

improves the performance of the core processing tight loop responsible for inverse 

mapping all target points and interpolating the results. Since all source pixels needed for 

interpolating the mapped points in a target block are available on-chip, no checking of the 

mapped points is needed. Source pixels are simply referenced from the generated 

addresses. By knowing a priori that all memory addresses would be valid, several tight 

loop instructions used in checking the generated addresses can be eliminated. 

Multiple banks of fast on-chip memory in the MVP enable simultaneous processing and 

data transfer. While the ADSPs are tasked with processing source pixels and computing 

the parameters for the next needed source pixel transfer (the steps in Figure 7), the TC is 

programmed to transfer the previously processed target pixels off-chip and the source 

pixels to be processed next on-chip. By using these multiple memory banks in a ping- 

pong double-buffering mode, we can avoid memory contention and improve the 

performance by hiding the data transfer time behind the processing time via running the 

ADSPs and the TC concurrently. 

Instruction-level parallelism of the MVP has been heavily utilized to develop a highly 

efficient core processing routine. In each ADSP, arithmetic and memory access 

operations for interpolation, address generation and memory reads/writes are often 

simultaneously executed. For example, an interpolation multiplication is executed at the 

same time as the previous multiplication result is accumulated and the next source pixel 

needed is fetched. By having multiple execution units available in each ADSP to be 

utilized simultaneously and multiple processors available in the MVP, developing an 

12 



efficient implementation on the MVP can involve quite a lengthy optimization process. 

To achieve this instruction-level parallelism, algorithm steps need to be reordered 

frequently. For example, some instructions can be executed ahead of time in parallel with 

previous instructions to be able to free up the busy execution units for the following 

instructions, thus reducing the overall number of cycles. In addition, the same operation 

can sometimes be accomplished with different resources. For example, extracting the 

lower half-word of a 32-bit register can be done with the multiplier, ALU, or global 

address unit. The 16-bit multiplier can multiply the register by 1. The ALU can perform 

a 32-bit logical AND operation with a mask to remove the upper 16-bits. The global 

address unit is capable of extracting a byte or a half-word from a 32-bit register. 

The ADSP's address units are used to generate the memory addresses of source pixels. It 

is used to add the source base address in generating the final memory address as defined 

in Eq. (4). It is also used to update the address pointing to successive rows by adding or 

subtracting the source pitch to or from the on-chip memory address. 

To improve the overall performance even further, we often utilize the dedicated address 

unit adders for performing additional arithmetic operations simultaneously. Since the 

affine warp is a linear transformation, adjacent mapped pixels differ only by a constant 

value. This arithmetic operation can be realized by using the ADSP's address units, i.e., 

using the computed address as a result rather than using it for memory access. Since the 

perspective warp is a division of two affine warps, the numerator and denominator can be 

each computed using the same approach. Since all mapped coordinates must be offset by 

the minimum source block x and y coordinates, the address unit adders are used again to 

accomplish other needed arithmetic operations. 

The MVP's three zero-overhead hardware loop controllers are very useful in significantly 

reducing the image warp tight loop length by not requiring multiple loop count and 

conditional software branch instructions. Since a fixed block of target pixels is 

13 



processed, the number of loop iterations is known, i.e., the block width and height. While 

the inner loop processes horizontal pixels, the outer loop updates parameters for the next 

row. 

14 



Chapter 5 

Results and Discussion 

For an 8-bit affine warp using bilinear interpolation, each ADSP determines a target pixel 

value every 10 clock cycles. Since there are four ADSPs, the TMS320C80 generates a 

target pixel every 2.5 clock cycles. For a 512x512 target image, the tight loop for the 8- 

bit affine warping should be completed in 13.1 ms with the TMS320C80 running at 50 

MHz. The measured performance of 14.1 ms was obtained including the additional setup 

instructions needed per target block and other overhead. The measured execution time 

for a 16-bit affine warp was 15.2 ms. Since the number of computing cycles for the 16- 

bit warp tight loop is the same as that for the 8-bit warp tight loop, this result shows that 

1.1 ms of additional I/O time is needed to transfer twice as many bytes per pixel. For a 

RGB color affine warp using bilinear interpolation, each ADSP determines a target pixel 

value every 19 clock cycles, resulting in 24.9 ms for a 512x512 target image. The 

measured execution time of 28.0 ms indicates that the I/O time exceeds the computation 

time. Since there are three 8-bit bands for color data, target pixels are generated using 

smaller image blocks than before due to the limited on-chip memory size. By processing 

smaller target blocks, there is a little more overhead compared to 8-bit and 16-bit affine 

warps. Three affine warp examples with various rotation and shearing angles, scaling 

factors, and translation amounts are shown in Figure 10. 

For the perspective warp using bilinear interpolation, each ADSP determines an output 

pixel value every 33 clock cycles. Compared to the affine warp, the additional cycles are 

directly attributed to the divisions needed for a perspective warping geometric 

transformation. For a 512x512 target image, perspective warping should be completed in 

43.3 ms with the TMS320C80 running at 50 MHz. The measured performance of 

46.3 ms is close to the expected 43.3 ms performance indicating that it is a compute- 

bound operation due to the overhead in handling the next source block transfer. 



Execution times for 8-bit, 16-bit, and RGB color data are summarized in Table 2. Two 

example perspective warps are shown in Figure 11. 

The performance of our image warping algorithm can be compared to the performance 

that has been reported in the literature. Image warps have been implemented in a 

programmable fashion on numerous workstation platforms. Typically, execution times 

are at least 100 times or more slower than those reported in Tables 1 and 2. Parallel 

algorithms have been developed for several systems, but their performance is still much 

less than that of our algorithm. In 1990, our group reported a performance of 2.2 seconds 

for a second-order warp on a 512x512 8-bit image using bilinear interpolation using four 

floating-point processors [7]. More recently, another group at the University of 

Washington reported that image warping was implemented on the MasPar-1 parallel 

computer with 16,384 processing nodes [8]. The MasPar-1 took 67.9 ms to warp a 

512x512 image using bilinear interpolation compared to 14.1 ms in the MVP . 

With the advancement of VLSI technology, several researchers and companies have 

developed dedicated hardware systems for image warping. Researchers at the Princeton 

University have designed and implemented a board which claimed to achieve real-time 

video-rate image rotation [9]. Image rotation can be easily achieved via an affine warp as 

shown in Figure 10. They reported an execution time of 25 ms to rotate an 8-bit 512x512 

image. They did not specify the type of interpolation used. The Datacube's Warper 

MKII takes 26 ms to warp a 512x512 image using 4x2 interpolation and 52 ms using 4x4 

interpolation [10]. Since the Datacube's MKII can use a second-order transformation and 

4x2 interpolation or a third-order transformation and 4x4 interpolation, a direct 

comparison to our results cannot be made. However, the execution times for our affine 

and perspective warps provides a basis for estimating performance with other geometric 

transformations. Since divisions are very computationally expensive, it is reasonable to 

assume that second-order and third-order warps can be implemented between the 

performances of the affine and perspective warps. For bilinear interpolation, our 
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performances of 14.1 ms for an affine warp and 46.3 ms for a perspective warp indicate 

that our implementation is close to the Datacube's hardwired approach. 

Demonstrating the flexibility of a programmable approach, our algorithm supports 

multiple data formats. 8-bit, 16-bit, 32-bit CCCX (C represents an 8-bit color band and X 

represents an 8-bit don't care band), and 32-bit XCCC formats have been implemented. 

Since the MVP has a 16-bit multiplier, no additional computations are needed in handling 

16-bit data. To transfer twice as much data, however, it takes slightly longer than the 8- 

bit affine warp. Support for multiple data formats may be quite challenging or impossible 

for a hardwired approach with limited programmability. For example, the MKII can 

operate on 16-bit data, but it takes twice as long since it must operate on the least 

significant byte and most significant byte separately. To warp color images, the MKII 

must operate on each band independently. Target points are inverse-mapped for each 

color band, instead of mapping once and interpolating all of the color bands. 

Our affine and perspective warps have already been used as building blocks for several 

higher-level image processing routines. They are part of the University of Washington 

Image Computing Library developed for use in MVP-based systems to provide a portable 

infrastructure of low-level routines so that higher-level algorithms and applications can be 

quickly developed [12]. The affine warp has been heavily utilized in wavlet-based 

multiresolution image registration [13]. Since the reference image must be rotated many 

hundred times once for each angle of interest at each resolution level, it is critical to use 

an efficient image warp in order to provide timely feedback to the clinicians and other 

specialists. The perspective warp has been used in our visualization algorithm to render 

3D ultrasound images [14]. Siemens Medical Systems Ultrasound Group has been using 

the affine warp as part of a new acquisition and display process called SieScape™, which 

is used to produce panoramic Extended Field of View (XFOV) images. Narrow fields of 

view acquired by ultrasound scanners can be placed side-by-side via image correlation to 
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provide a bigger picture. To align these multiple images within real-time video-rate 

constraints, our affine warp is heavily used. 
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Chapter 6 

Conclusion 

We have developed a very efficient warping algorithm and implemented both affine and 

perspective warping functions in software on a modern microprocessor. This algorithm 

makes use of a commercially-available programmable multiprocessing microprocessor 

incorporating advances in computer architecture and VLSI technology. Its performance 

exceeds any software-based approach reported in the literature. It also compares 

favorably with several hardwired implementations such as the Datacube's Warper MKII. 

Its demonstrated flexibility, support of multiple data formats and interpolation types, and 

performance indicate that a software-based solution can now meet the demands of many 

image processing applications without the use of dedicated hardware. 
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Execution Time (ms) 

Affine warps 8-bit 16-bit BGRX 32-bit 

2x2 interpolation (bilinear) 14.1 ms 15.2 ms 28.0 ms 

Table 1: Execution times for affine warps. 

Execution Time (ms) 

Perspective warps 8-bit 16-bit BGRX 32-bit 

2x2 interpolation (bilinear) 46.3 ms 46.3 ms 60.4 ms 

Table 2: Execution times for perspective warps. 
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Figure 1: Forward transformation of a perspective warp. 
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Figure 2: Inverse transformation of a perspective warp. 
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Figure 3: Affine warp. 
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Figure 4: Bilinear interpolation. 
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Figure 5: Internal architecture of the TMS320C80. 
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Figure 6: Block based image warping. 
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Figure 7: Source pixel block determination. 
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Figure 8: Affine warp bounding block. 
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Figure 9: Perspective warp bounding block. 
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(a) (b) 

(c) (d) 

Figure 10: Example affine warps, (a) original (b) (c) and (d) affine warps. 
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(b) 

(c) 

Figure 11: Example perspective warps, (a) original (b) and (c) perspective warps. 

28 


