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Abstract 

The goal of this project was to turn the intuitions behind dynamic backtracking 
into a series of formally verified algorithms, implement the algorithms, and test the 
results on realistic problems. These goals have been met and exceeded. Dynamic 
backtracking has been generalized to partial-order dynamic backtracking, and has 
been formalized, tested on academic benchmarks, and applied (by one of CIRL's 
industrial partners) to real industrial scheduling problems. 

Equally importantly, the search for novel search algorithms for scheduling prob- 
lems has led beyond dynamic backtracking to include new techniques, such as limited 
discrepancy search and doubleback optimization, that are currently the best known 
techniques for benchmark scheduling problems of realistic size and character. 



Chapter 1 

Introduction 

Within the planning community, the general attitude toward search has often been, 
"Search and you're dead." That is, if the available domain knowledge is so weak that 
search is necessary, then realistically large problems cannot be solved. The attitude 
within the CSP and scheduling communities has been quite different. The focus there 
has been on search control: focusing limited computational resources on productive 
regions within extremely large search spaces. The work reported here is about search 
control and, more specifically, search control for realistically large applications. 

Almost all of the algorithms commonly applied to scheduling and related problems 
can be put into one of three broad classes: tree search (backtracking) algorithms, 
local search algorithms, and heuristic approaches that do not involve search. Tree 
search algorithms have attractive formal properties and work quite well on small to 
medium-sized problems. Heuristic approaches and local search algorithms are the 
methods of choice for many practical problems: they are generally straightforward 
to implement and work well on larger problems. One of the primary contributions 
of the work funded under this project has been an understanding of the limitations 
of traditional backtracking algorithms, and more importantly, the development of a 
series of algorithms that have the desirable formal properties of tree search approaches 
but scale successfully to larger problems. 

To illustrate existing approaches, consider a large scheduling problem. We can 
view such a problem (like many other search problems) as a set of decisions to be 
made, subject to a set of constraints. For example, in a TPFDD one has to decide 
which transport to use for each move requirement. The constraints in a TPFDD are 
the capacities of the transports, the ALD (Available Load Date) and LAD (Latest 
Arrival Date) for the move requirements, etc. 

In tree search approaches, each decision is viewed as a node in the tree, with 
one child for each way the decision can be made. The size of the overall tree grows 
exponentially with the number of decisions (since we end up with a leaf node for 
every combination of ways all the decisions can be made). A variety of techniques 
have been developed in an attempt to minimize the size of this search tree (arc 



consistency and other preprocessing techniques, dependency-directed backtracking, 
etc.), but for problems of realistic size and complexity the trees are still huge. For 
example, for a set of scheduling problems relevant to aircraft manufacture currently 
being studied at CIRL, we estimate that the entire search tree has approximately 10300 

leaves (without using preprocessing or dependency-directed backtracking techniques). 
TPFDDs appear to be even larger than this. 

The fastest current implementations may examine on the order of a billion leaf 
nodes in a reasonable period of time (say an hour). This means that on large problems 
one can examine a vanishingly small percentage of the overall search space. This 
means that we must be careful that we spend our limited time well. 

The primary problem with tree-search techniques is that they end up spending 
their time badly because of a phenomenon we call the early mistake problem. Tree 
search algorithms work by making decisions sequentially. If a dead-end is reached 
(a point where there is no way to satisfy the constraints given the current set of 
decisions), the most recent decision is retracted.1 Now consider what happens if one 
of the early decisions is made incorrectly. It will then be necessary to search the 
entire subtree below this mistake before the mistake can be corrected. Effectively 
this means that if we are searching a billion nodes out of a tree of size 1030, we will 
search through all the ways to make the last 20 decisions and never reconsider the 
first 60 decisions.2 If any of these first 60 decisions are early mistakes then they will 
never be corrected. To make matters worse, it turns out that these early decisions 
are often the most likely decisions to be wrong. This is because the heuristics used 
to make decisions are often more accurate in the presence of more information, and 
the amount of information available increases as we go down the tree. 

One way to overcome the early mistake problem is to use local search. Local 
search algorithms always work with a complete (though not necessarily valid) set of 
decisions - e.g., a complete schedule. At each point, heuristics are used to pick a 
decision to reconsider. The other options at the chosen decision point are considered 
and an option is chosen that maximizes some global measure of schedule quality. This 
avoids the early mistake problem since any decision can be reconsidered at any point. 
Local search algorithms are currently the method of choice for some problem classes. 

In some realistic problem classes, for example some manufacturing scheduling 
applications and TPFDDs, the current best fielded method seems to be the use of 
heuristics only, with no search. Under this approach, each decision is made by apply- 
ing heuristics, but decisions are never reconsidered. If a constraint is violated, that 
constraint is relaxed. These algorithms can be seen as a degenerate case of tree search 
or local search in which the first leaf node visited is taken as the final solution. 

Despite their drawbacks, tree search algorithms have one key advantage over other 
approaches: they are systematic. This means that each possible schedule is considered 

xOr in more sophisticated algorithms, the most recent decision relevant to the current dead-end 
is retracted. 

2 This assumes a branching factor of three. 



at most once (unlike local search approaches that may "wander" over a given schedule 
any number.of times), and eventually the optimal schedule is found. One way to view 
the algorithmic work that has gone on at CIRL under this award is as a search for 
algorithms that solve the early-mistake problem without giving up systematicity. 

One such algorithm is partial-order dynamic backtracking (PDB). This algorithm 
is described in detail in chapter 3. In essence the idea is to allow almost any decision 
to be reconsidered at any point, but to keep around enough information about the 
parts of the search space visited to maintain systematicity. One could just modify a 
local search algorithm to record every schedule visited, and make sure that no sched- 
ule is ever visited twice, but the memory use (and, more importantly, the memory 
management overhead) would be prohibitive. We therefore require that PDB never 
use more than an amount of memory polynomial in the size of the problem. This 
requirement forces some restrictions on the moves available (there are some points at 
which some decisions cannot be reconsidered) but PDB still allows nearly the search 
flexibility of local search without giving up systematicity. 

A second example of a systematic local search algorithm is limited discrepancy 
search (LDS). LDS can best be seen as a way to efficiently add search on top of 
heuristic methods that currently do no search. Assume we have a heuristic for a 
scheduling problem. The heuristic gives a single preferred schedule (found by applying 
the heuristic to each decision in turn). Now consider the set of all variants of this 
schedule derivable by ignoring the heuristic at one point. In some sense these schedules 
are "neighbors" of the preferred schedule (since they are reachable by deviating from 
the heuristic exactly once). If the heuristic is good but imperfect (which is usually 
the case with heuristics) one can generally expect one or more of these neighboring 
schedules to be an improvement over the heuristically preferred schedule. As we 
increase the number of points at which we deviate from the heuristic we examine 
schedules successively further from the heuristic and so visit successively broader 
portions of the search space. 

This is the essence of LDS. LDS(O) follows the heuristic at all points. LDS(1) 

deviates from the heuristic exactly once on any path from the root to a leaf node, 
LDS(2) deviates twice, and so on. When the number of deviations reaches the num- 
ber of choices, LDS is guaranteed to find the optimal schedule (in this sense LDS is 
systematic). As described in chapter 6, LDS has been tested on a set of job shop 
scheduling problems from the literature. Its performance is significantly better than 
that of tree-search based techniques and is comparable to that of the best known 
local search techniques. As described in chapter 7, on realistic problems relevant to 
aircraft manufacture, a combination of LDS with doubleback optimization yields the 
best schedules currently known.3 

Finally, while we have had significant success in improving search, efficient and 
3Doubleback optimization is a variant of a technique called schedule packing developed by Barry 

Fox [19]. We use the term doubleback optimization because the technique was invented indepen- 
dently at CIRL and because there are technical differences between the CIRL work and Fox's work. 



effective search techniques for scheduling and combinatorial optimization do not suf- 
fice, in themselves, to solve complex planning problems in general. At least two other 
factors must be taken into account. Firstly, practical planning requires the ability to 
focus search effort so as to that ensure that issues are considered according to their 
importance. Secondly, it is important to develop plans that are general and flexible 
enough to actually be usable, not mere idealizations. Accordingly, we have also fo- 
cussed on more fundamental issues in automated reasoning, leading to innovations 
that begin to address each of these requirements. 

In confronting the first requirement, we noted that a planning system's knowledge 
about the world can be expected to be sprinkled with modalities concerning possi- 
bility, the planner's or other agents' knowledge or lack of knowledge, etc. We have 
shown that these modalities can provide clues as to where the reasoner, faced with 
limited computational resources, might take expedient short cuts. We developed a 
theory of how such modal operators, in addition to their well-understood semantic role 
in declarative systems, also mark points at which these systems can interrupt their 
reasoning in favor of other, perhaps more important, tasks. We have used this idea 
to describe an interruptible declarative system that gradually refines its responses to 
queries. Although initial responses may be in error, a correct answer will be provided 
if sufficient computational resources are available. 

As we mentioned, usable plans need to be flexible and general. Flexibility requires 
modularity: separate aspects of a problem must be, to the extend possible, planned for 
separately. This allows plans for particular subgoals - and perhaps even the subgoals 
themselves - to be replaced or amended without invalidating the rest of a plan. 
Generality dictates that planners cannot presume total specifications of everything 
that will be going on, but must rather allow for the fact that other things will happen 
as the plan is executing. Approximate planning is an approach we have developed 
that addresses these issues, producing plans that are more robust and flexible and 
more modular. The central idea is that plans are not programs: they do not specify 
exactly what happens at every instance. Rather, they are recipes: plans specify what 
must be done, in addition to whatever else is being done for independent reasons, to 
achieve a goal. An approximate plan is a plan that will "generally" achieve the goal, 
assuming pathological actions are not interspersed with the required ones. Such plans 
can be refined (made less approximate), explicitly planning to preclude undesirable 
courses of action, until a desired degree of confidence is obtained. As a side effect, 
approximate planning supports mixed-initiative planning, and produces plans that 
accord better with people's intuitions about planning. We began to develop the 
framework for approximate planning under this award, and it has become a major 
focus of our ARPI Phase III award. 

Specific accomplishments funded by, or directly resulting from, this award include 
the following: 

• The dynamic backtracking algorithm has been formalized and generalized to 
partial-order dynamic backtracking. 
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• 

• 

Dynamic backtracking has been implemented and tested on academic bench- 
marks (so called "crystolographic problems"). 

Dynamic backtracking is being used at Honeywell (one of CIRL's industrial 
affiliates) to solve batch manufacturing problems [31]. 

A simplified version of dynamic backtracking ("dynamic backtracking light") 
has been developed that overcomes the difficulties discussed in chapter 4. This 
version is still being tested, but it appears to be superior to both TABLEAU and 
GSAT on the scheduling problems discussed in chapter 5. It is also able to solve 
SAT encodings of planning problems that are referred to in a paper appearing 
at AAAI-96 [40] as being unsolvable by any systematic methods. 

Limited discrepancy search has been developed and experimentally evaluated. 

Partition search - a technique that brings the advantages of dependency-directed 
backtracking to adversarial search - has been developed and experimentally 
evaluated. 

A scheduler has "been built that utilizes both LDS and doubleback optimization 
to generate the best known results on benchmark problems of realistic size and 
character. 

• A translator has been developed that translates theories expressed in a finite- 
sorted first-order syntax to propositional theories, and supports procedural at- 
tachment (see chapter 8). This greatly simplifies the process of encoding new 
problems into propositional logic. 

• The basic ideas behind approximate planning have been developed. This led 
directly to our approximate planning work in phase three of the ARPI. 

The body of this report is organized as follows. We begin with the basic dynamic 
backtracking algorithm, and the generalization to partial-order dynamic backtrack- 
ing. We discuss some of the technical problems encountered in incorporating value 
propagation into dynamic backtracking. We then focus on scheduling problems and 
discuss several search techniques that perform particularly well in this domain. Fi- 
nally we discuss related work on procedural attachment and more general issues in 
planning and the control of reasoning. 

Beside the work discussed here in detail, the following additional papers were 
supported by this grant: 

• Symmetry breaking predicates for search problems. J. Crawford, M. Ginsberg, 
E. Luks, and A. Roy. KR-96 

• A new algorithm for generative planning. M. Ginsberg. KR-96 



• Do computers need common sense? M. Ginsberg. KR-96 

• Experimental results on the crossover point in random 3SAT. J. Crawford and 
L. Auton. Artificial Intelligence, vol. 81, 1996 

• Implicates and prime implicates in random 3SAT. B. Schräg and J. Crawford 
Artificial Intelligence, vol. 81, 1996 

• Toward efficient default reasoning. D. Etherington and J. Crawford. AAAI-96 

• When is "early commitment" in plan generation a good idea? D. Joslin and M. 
Pollack. AAAI-96 

• Path-based rules in object-oriented programming. J. Crawford, D. Dvorak, D. 
Litman, A. Mishra, and P. Patel-Schneider. AAAI-96 

• Partition search. M. Ginsberg. AAAI-96 

• Tuning local search for satisfiability testing. A. Parkes and P. Walser. AAAI-96 

• Modality and interrupts. M. Ginsberg. Journal of Automated Reasoning, 1995. 

• Approximate planning. M. Ginsberg. Artificial Intelligence, 1995. 

• K-best: A new method for real-time decision making. J. Pemberton. IJCAI-95 

• Device-structured monitoring: A middle ground. J. Crawford, D. Dvorak, D. 
Litman, A. Mishra, and P. Patel-Schneider. IJCAI-95 

• Underlying semantics for the assessment of Reiter's solution to the frame prob- 
lem. T. Bedrax-Weiss. SBIA-95 

• Easy to be hard: Difficult problems for greedy algorithms. K. Konolige. KR-94 
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Chapter 2 

Dynamic Backtracking 

We begin with the basic dynamic backtracking algorithm. This material appeared in 
"Dynamic backtracking" by Ginsberg, in JAIR 1:25-46. 

2.1    Introduction 

Imagine that you are trying to solve some constraint-satisfaction problem, or CSP. In 
the interests of definiteness, I will suppose that the CSP in question involves coloring 
a map of the United States subject to the restriction that adjacent states be colored 
differently. 

Imagine we begin by coloring the states along the Mississippi, thereby splitting 
the remaining problem in two. We now begin to color the states in the western half of 
the country, coloring perhaps half a dozen of them before deciding that we are likely 
to be able to color the rest. Suppose also that the last state colored was Arizona. 

At this point, we change our focus to the eastern half of the country. After all, if 
we can't color the eastern half because of our coloring choices for the states along the 
Mississippi, there is no point in wasting time completing the coloring of the western 
states. 

We successfully color the eastern states and then return to the west. Unfortu- 
nately, we color New Mexico and Utah and then get stuck, unable to color (say) 
Nevada. What's more, backtracking doesn't help, at least in the sense that chang- 
ing the colors for New Mexico and Utah alone does not allow us to proceed farther. 
Depth-first search would now have us backtrack to the eastern states, trying a new 
color for (say) New York in the vain hope that this would solve our problems out 
West. 

This is obviously pointless; the blockade along the Mississippi makes it impossible 
for New York to have any impact on our attempt to color Nevada or other western 
states. What's more, we are likely to examine every possible coloring of the eastern 
states before addressing the problem that is actually the source of our difficulties. 

The solutions that have been proposed to this involve finding ways to backtrack 

11 



directly to some state that might actually allow us to make progress, in this case 
Arizona or earlier. Dependency-directed backtracking [70] involves a direct backtrack 
to the source of the difficulty; backjumping [21] avoids the computational overhead of 
this technique by using syntactic methods to estimate the point to which backtrack 
is necessary. 

In both cases, however, note that although we backtrack to the source of the 
problem, we backtrack over our successful solution to half of the original problem, 
discarding our solution to the problem of coloring the states in the East. And once 
again, the problem is worse than this - after we recolor Arizona, we are in danger of 
solving the East yet again before realizing that our new choice for Arizona needs to 
be changed after all. We won't examine every possible coloring of the eastern states, 
but we are in danger of rediscovering our successful coloring an exponential number 
of times. 

This hardly seems sensible; a human problem solver working on this problem would 
simply ignore the East if possible, returning directly to Arizona and proceeding. Only 
if the states along the Mississippi needed new colors would the East be reconsidered 
- and even then only if no new coloring could be found for the Mississippi that was 
consistent with the eastern solution. 

In this paper we formalize this technique, presenting a modification to conven- 
tional search techniques that is capable of backtracking not only to the most recently 
expanded node, but also directly to a node elsewhere in the search tree. Because 
of the dynamic way in which the search is structured, we refer to this technique as 
dynamic backtracking. 

A more specific outline is as follows: We begin in the next section by introducing 
a variety of notational conventions that allow us to cast both existing work and our 
new ideas in a uniform computational setting. Section 2.3 discusses backjumping, 
an intermediate between simple chronological backtracking and our ideas, which are 
themselves presented in Section 2.4. An example of the dynamic backtracking algo- 
rithm in use appears in Section 2.5 and an experimental analysis of the technique in 
Section 2.6. A summary of our results and suggestions for future work are in Section 
2.7. All proofs have been deferred to the last section in the interests of continuity of 
exposition. 

2.2    Preliminaries 

Definition 2.2.1 By a constraint satisfaction problem (I, V, K) we will mean a set I 
of variables; for each % 6 i", there is a set Vi of possible values for the variable i. K, is 
a set of constraints, each a pair (J,P) where J = (ji,.. .,jk) is an ordered subset of 
I and P is a subset ofV^ x • • • x Vjk. 

A solution to the CSP is a set Vi of values for each of the variables in I such that 
Vi £ Vi for each % and for every constraint (J, P) of the above form in K, {V^,. .., vjk) G 
P. 

12 



In the example of the introduction, I is the set of states and Vi is the set of possible 
colors for the state i. For each constraint, the first part of the constraint is a pair of 
adjacent states and the second part is a set of allowable color combinations for these 
states. 

Our basic plan in this paper is to present formal versions of the search algorithms 
described in the introduction, beginning with simple depth-first search and proceed- 
ing to backjumping and dynamic backtracking. As a start, we make the following 
definition of a partial solution to a CSP: 

Definition 2.2.2 Let (I, V, K) be a CSP. By a partial solution to the CSP we mean 
an ordered subset JCJ and an assignment of a value to each variable in J. 

We will denote a partial solution by a tuple of ordered pairs, where each ordered 
pair (i, v) assigns the value v to the variable i. For a partial solution P, we will denote 
by P the set of variables assigned values by P. 

Constraint-satisfaction problems are solved in practice by taking partial solutions 
and extending them by assigning values to new variables. In general, of course, 
not any value can be assigned to a variable because some are inconsistent with the 
constraints. We therefore make the following definition: 

Definition 2.2.3 Given a partial solution P to a CSP, an eliminating explanation 
for a variable i is a pair (v, S) where v G Vi and S C P. The intended meaning is that 
i cannot take the value v because of the values already assigned by P to the variables 
in S. An elimination mechanism e for a CSP is a function that accepts as arguments 
a partial solution P, and a variable i G" P. The function returns a (possibly empty) 
set e(P, i) of eliminating explanations for i. 

For a set E of eliminating explanations, we will denote by E the values that have 
been identified as eliminated, ignoring the reasons given. We therefore denote by 
e(P, i) the set of values eliminated by elements of e(P, i). 

Note that the above definition is somewhat flexible with regard to the amount 
of work done by the elimination mechanism - all values that violate completed con- 
straints might be eliminated, or some amount of lookahead might be done. We will, 
however, make the following assumptions about all elimination mechanisms: 

1. They are correct. For a partial solution P, if the value Vi G' e{P, i), then every 
constraint (S, T) in K with S C P U {i} is satisfied by the values in the partial 
solution and the value vi for i. These are the constraints that are complete after 
the value vi is assigned to i. 

2. They are complete. Suppose that P is a partial solution to a CSP, and there 
is some solution that extends P while assigning the value v to i. UP' is an 
extension of P with (v, E) G e(P', i), then 

£ n (F - P) / 0 (2.1) 
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In other words, whenever P can be successfully extended after assigning v to 
i but P' cannot be, at least one element of P' — P is identified as a possible 
reason for the problem. 

3. They are concise. For a partial solution P, variable i and eliminated value v, 
there is at most a single element of the form (v, E) e e(P, i). Only one reason 
is given why the variable i cannot have the value v. 

Lemma 2.2.4 Let e be a complete elimination mechanism for a CSP, let P be a 
partial solution to this CSP and let i g" P. Now if P can be successfully extended to a 
complete solution after assigning i the value v, then v qL e(P,i). 

I apologize for the swarm of definitions, but they allow us to give a clean descrip- 
tion of depth-first search: 

Algorithm 2.2.5 (Depth-first search) Given as inputs a constraint-satisfaction 
problem and an elimination mechanism e: 

1. Set P — 0. P is a partial solution to the CSP. Set Ei — 0 for each i 6 I; Ei is 
the set of values that have been eliminated for the variable i. 

2. If P = I, so that P assigns a value to every element in I, it is a solution to 
the original problem. Return it. Otherwise, select a variable i E I — P. Set 
Ei = e(P,i), the values that have been eliminated as possible choices for i. 

3. Set S = Vi — Ei, the set of remaining possibilities for i. If S is nonempty, choose 
an element v G S. Add (i, v) to P, thereby setting i 's value to v, and return to 
step 2. 

4- If S is empty, let (j,Vj) be the last entry in P; if there is no such entry, return 
failure. Remove (j,Vj) from P, add Vj to Ej, set i = j and return to step 3. 

We have written the algorithm so that it returns a single answer to the CSP; the 
modification to accumulate all such answers is straightforward. 

The problem with Algorithm 2.2.5 is that it looks very little like conventional 
depth-first search, since instead of recording the unexpanded children of any particular 
node, we are keeping track of the failed siblings of that node. But we have the 
following: 

Lemma 2.2.6 At any point in the execution of Algorithm 2.2.5, if the last element 
of the partial solution P assigns a value to the variable i, then the unexplored siblings 
of the current node are those that assign to i the values in Vi — Ei. 

Proposition 2.2.7 Algorithm 2.2.5 is equivalent to depth-first search and therefore 
complete. 

14 



As we have remarked, the basic difference between Algorithm 2.2.5 and a more 
conventional description of depth-first search is the inclusion of the elimination sets 
Ei. The conventional description expects nodes to include pointers back to their 
parents; the siblings of a given node are found by examining the children of that 
node's parent. Since we will be reorganizing the space as we search, this is impractical 
in our framework. 

It might seem that a more natural solution to this difficulty would be to record 
not the values that have been eliminated for a variable i, but those that remain to 
be considered. The technical reason that we have not done this is that it is much 
easier to maintain elimination information as the search progresses. To understand 
this at an intuitive level, note that when the search backtracks, the conclusion that 
has implicitly been drawn is that a particular node fails to expand to a solution, as 
opposed to a conclusion about the currently unexplored portion of the search space. 
It should be little surprise that the most efficient way to manipulate this information 
is by recording it in approximately this form. 

2.3    Backj umping 

How are we to describe dependency-directed backtracking or backjumping in this set- 
ting? In these cases, we have a partial solution and have been forced to backtrack; 
these more sophisticated backtracking mechanisms use information about the reason 
for the failure to identify backtrack points that might allow the problem to be ad- 
dressed. As a start, we need to modify Algorithm 2.2.5 to maintain the explanations 
for the eliminated values: 

Algorithm 2.3.1 Given as inputs a constraint-satisfaction problem and an elimina- 
tion mechanism e: 

1. Set P = Ei = 0 for each i e i". Ei is a set of eliminating explanations for i. 

2. If P = I, return P. Otherwise, select a variable i E I — P. Set Ei — e(P,i). 

3. Set S = Vi — Ei. If S is nonempty, choose an element v G S. Add (i, v) to P 
and return to step 2. 

4- If S is empty, let (j,Vj) be the last entry in P; if there is no such entry, return 
failure. Remove (j, Vj) from P. We must have Ei = Vi, so that every value for i 
has been eliminated; let E be the set of all variables appearing in the explanations 
for each eliminated value. Add (VJ, E — {j}) to Ej, set i = j and return to step 
3. 

Lemma 2.3.2 Let P be a partial solution obtained during the execution of Algorithm 
2.3.1, and let % e P be a variable assigned a value by P.   Now if P' C P can be 
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successfully extended to a complete solution after assigning i the value v but (v,E) G 
Ei, we must have 

En(P-P1)^0 
ji> 

In other words, the assignment of a value to some variable in P — P' is correctly 
identified as the source of the problem. 

Note that in step 4 of the algorithm, we could have added (VJ, E n P) instead of 
(VJ,E — '{j}) to Ej\ either way, the idea is to remove from E any variables that are 
no longer assigned values by P. 

In backjumping, we now simply change our backtrack method; instead of removing 
a single entry from P and returning to the variable assigned a value prior to the 
problematic variable i, we return to a variable that has actually had an impact on i. 
In other words, we return to some variable in the set E. 

Algorithm 2.3.3 (Backjumping)  Given as inputs a constraint-satisfaction prob- 
lem and an elimination mechanism e: 

1. Set P = Ei = 0 for each i G I. 

2. If P = I, return P. Otherwise, select a variable i E I — P. Set Ei = e(P, i). 

3. Set S = Vi — E{. If S is nonempty, choose an element v G S. Add (i,v) to P 
and return to step 2. 

4- If S is empty, we must have Ei — Vi. Let E be the set of all variables appearing 
in the explanations for each eliminated value. 

5. If E = 0, return failure. Otherwise, let (j,Vj) be the last entry in P such that 
j G E. Remove from P this entry and any entry following it. Add (VJ, E D P) 
to Ej, set i = j and return to step 3. 

In step 5, we add (VJ, E n P) to Ej, removing from E any variables that are no 
longer assigned values by P. 

Proposition 2.3.4 Backjumping is complete and always expands fewer nodes than 
does depth-first search. 

Let us have a look at this in our map-coloring example. If we have a partial 
coloring P and are looking at a specific state i, suppose that we denote by C the 
set of colors that are obviously illegal for i because they conflict with a color already 
assigned to one of i's neighbors. _ 

One possible elimination mechanism returns as e(P, i) a list of (c, P) for each color 
c G C that has been used to color a neighbor of i. This reproduces depth-first search, 
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since we gradually try all possible colors but have no idea what went wrong when 
we need to backtrack since every colored state is included in P. A far more sensible 
choice would take e(P, i) to be a list of (c, {n}) where n is a neighbor that is already 
colored c. This would ensure that we backjump to a neighbor of i if no coloring for i 
can be found. 

If this causes us to backjump to another state j, we will add i's neighbors to the 
eliminating explanation for j's original color, so that if we need to backtrack still 
further, we consider neighbors of either i or j. This is as it should be, since changing 
the color of one of i's other neighbors might allow us to solve the coloring problem 
by reverting to our original choice of color for the state j. 

We also have: 

Proposition 2.3.5 The amount of space needed by backjumping is o(i2v), where i = 
\I\ is the number of variables in the problem and v is the number of values for that 
variable with the largest value set V*. 

This result contrasts sharply with an approach to CSPs that relies on truth- 
maintenance techniques to maintain a list of nogoods [17]. There, the number of 
nogoods found can grow linearly with the time taken for the analysis, and this will 
typically be exponential in the size of the problem. Backjumping avoids this problem 
by resetting the set Ei of eliminating explanations in step 2 of Algorithm 2.3.3. 

The description that we have given is quite similar to that developed in [4]. The 
explanations there are somewhat coarser than ours, listing all of the variables that 
have been involved in any eliminating explanation for a particular variable in the 
CSP, but the idea is essentially the same. Bruynooghe's eliminating explanations can 
be stored in o(i2) space (instead of o(i2v)), but the associated loss of information 
makes the technique less effective in practice. This earlier work is also a description 
of backjumping only, since intermediate information is erased as the search proceeds. 

2.4    Dynamic backtracking 

We finally turn to new results. The basic problem with Algorithm 2.3.3 is not that it 
backjumps to the wrong place, but that it needlessly erases a great deal of the work 
that has been done thus far. At the very least, we can retain the values selected for 
variables that are backjumped over, in some sense moving the backjump variable to 
the end of the partial solution in order to replace its value without modifying the 
values of the variables that followed it. 

There is an additional modification that will probably be clearest if we return to 
the example of the introduction. Suppose that in this example, we color only some 
of the eastern states before returning to the western half of the country. We reorder 
the variables in order to backtrack to Arizona and eventually succeed in coloring the 
West without disturbing the colors used in the East. 
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Unfortunately, when we return East backtracking is required and we find ourselves 
needing to change the coloring on some of the eastern states with which we dealt 
earlier. The ideas that we have presented will allow us to avoid erasing our solution 
to the problems out West, but if the search through the eastern states is to be efficient, 
we will need to retain the information we have about the portion of the East's search 
space that has been eliminated. After all, if we have determined that New York 
cannot be colored yellow, our changes in the West will not reverse this conclusion - 
the Mississippi really does isolate one section of the country from the other. 

The machinery needed to capture this sort of reasoning is already in place. When 
we backjump over a variable k, we should retain not only the choice of value for k, 
but also fc's elimination set. We do, however, need to remove from this elimination 
set any entry that involves the eventual backtrack variable j, since these entries are 
no longer valid - they depend on the assumption that j takes its old value, and this 
assumption is now false. 

Algorithm 2.4.1 (Dynamic backtracking I)  Given as inputs a constraint-satisfaction 
problem and an elimination mechanism e: 

1. Set P = Ei = 0 for each i e I. 

2. IfP = i", return P. Otherwise, select a variable i E I-P. Set Ei - EiUe{P,i). 

3. Set S — Vi - Ei. If S is nonempty, choose an element v 6 S. Add (i,v) to P 
and return to step 2. 

4. If S is empty, we must have Et = Vi; let E be the set of all variables appearing 
in the explanations for each eliminated value. 

5. If E = 0, return failure. Otherwise, let (j,Vj) be the last entry in P such that 
j e E. Remove (j,Vj) from P and, for each variable k assigned a value after j, 
remove from E^ any eliminating explanation that involves j. Set 

Ej = EjöeiPJ) U {(Vj,EnP)} (2.2) 

so that Vj is eliminated as a value for j because of the values taken by variables 
in E n P. The inclusion of the term e(P,j) incorporates new information from 
variables that have been assigned values since the original assignment of Vj to 
j. Now set i = j and return to step 3. 

Theorem 2.4.2 Dynamic backtracking always terminates and is complete. It con- 
tinues to satisfy Proposition 2.3.5 and can be expected to expand fewer nodes than 
backjumping provided that the goal nodes are distributed randomly in the search space. 

18 



The essential difference between dynamic and dependency-directed backtracking 
is that the structure of our eliminating explanations means that we only save nogood 
information based on the current values of assigned variables; if a nogood depends 
on outdated information, we drop it. By doing this, we avoid the need to retain an 
exponential amount of nogood information. What makes this technique valuable is 
that (as stated in the theorem) termination is still guaranteed. 

There is one trivial modification that we can make to Algorithm 2.4.1 that is 
quite useful in practice. After removing the current value for the backtrack variable 
j, Algorithm 2.4.1 immediately replaces it with another. But there is no real reason 
to do this; we could instead pick a value for an entirely different variable: 

Algorithm. 2.4.3 (Dynamic backtracking)  Given as inputs a constraint-satisfaction 
problem and an elimination mechanism e: 

1. Set P = Ei = 0 for each i G I. 

2. If P = I, return P. Otherwise, select a variable iel — P. Set Ei = EiUe(P, i). 

3. Set S = Vi — Ei. If S is nonempty, choose an element v E S. Add (i,v) to P 
and return to step 2. 

4. If S is empty, we must have Ei = V*; let E be the set of all variables appearing 
in the explanations for each eliminated value. 

5. If E — 0, return failure. Otherwise, let (j, Vj) be the last entry in P that 
binds a variable appearing in E. Remove (j,Vj) from P and, for each variable 
k assigned a value after j, remove from E\. any eliminating explanation that 
involves j. Add (VJ, E D P) to Ej and return to step 2. 

2.5    An example 

In order to make Algorithm 2.4.3 a bit clearer, suppose that we consider a small 
map-coloring problem in detail. The map is shown in Figure 2.1 and consists of 
five countries: Albania, Bulgaria, Czechoslovakia, Denmark and England. We will 
assume (wrongly!) that the countries border each other as shown in the figure, where 
countries are denoted by nodes and border one another if and only if there is an arc 
connecting them. 

In coloring the map, we can use the three colors red, yellow and blue. We will 
typically abbreviate the country names to single letters in the obvious way. 

We begin our search with Albania, deciding (say) to color it red. When we now 
look at Bulgaria, no colors are eliminated because Albania and Bulgaria do not share 
a border; we decide to color Bulgaria yellow. (This is a mistake.) 
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Denmark 

Albania 

Czechoslovakia 
Bulgaria 

England 

Figure 2.1: A small map-coloring problem 

We now go on to consider Czechoslovakia; since it borders Albania, the color red 
is eliminated. We decide to color Czechoslovakia blue and the situation is now this: 

country color red yellow blue 
Albania red 
Bulgaria yellow 

Czechoslovakia blue A 
Denmark 
England 

For each country, we indicate its current color and the eliminating explanations that 
mean it cannot be colored each of the three colors (when such explanations exist). 
We now look at Denmark. 

Denmark cannot be colored red because of its border with Albania and cannot 
be colored yellow because of its border with Bulgaria; it must therefore be colored 
blue. But now England cannot be colored any color at all because of its borders with 
Albania, Bulgaria and Denmark, and we therefore need to backtrack to one of these 
three countries. At this point, the elimination lists are as follows: 

country color red yellow blue 
Albania red 
Bulgaria yellow 

Czechoslovakia blue A 
Denmark blue A B 
England A B D 

We backtrack to Denmark because it is the most recent of the three possibilities, 
and begin by removing any eliminating explanation involving Denmark from the above 
table to get: 
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country color red yellow blue 
Albania red 
Bulgaria yellow 

Czechoslovakia blue A 
Denmark A B 
England A B 

Next, we add to Denmark's elimination list the pair 

(blue, {A, B}) 

This indicates correctly that because of the current colors for Albania and Bulgaria, 
Denmark cannot be colored blue (because of the subsequent dead end at England). 
Since every color is now eliminated, we must backtrack to a country in the set {A, B}. 
Changing Czechoslovakia's color won't help and we must deal with Bulgaria instead. 
The elimination lists are now: 

country color red yellow blue 
Albania red 
Bulgaria 

Czechoslovakia blue A 
Denmark A B A,B 
England A B 

We remove the eliminating explanations involving Bulgaria and also add to Bulgaria's 
elimination list the pair 

(yellow, A) 

indicating correctly that Bulgaria cannot be colored yellow because of the current 
choice of color for Albania (red). 

The situation is now: 

country color red yellow blue 
Albania red 

Czechoslovakia blue A 
Bulgaria A 
Denmark A 
England A 

We have moved Bulgaria past Czechoslovakia to reflect the search reordering in the 
algorithm. We can now complete the problem by coloring Bulgaria red, Denmark 
either yellow or blue, and England the color not used for Denmark. 

This example is almost trivially simple, of course; the thing to note is that when 
we changed the color for Bulgaria, we retained both the blue color for Czechoslovakia 
and the information indicating that none of Czechoslovakia, Denmark and England 
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could be red. In more complex examples, this information may be very hard-won and 
retaining it may save us a great deal of subsequent search effort. 

Another feature of this specific example (and of the example of the introduction 
as well) is that the computational benefits of dynamic backtracking are a consequence 
of the automatic realization that the problem splits into disjoint subproblems. Other 
authors have also discussed the idea of applying divide-and-conquer techniques to 
CSPs [58, 79], but their methods suffer from the disadvantage that they constrain the 
order in which unassigned variables are assigned values, perhaps at odds with the 
common heuristic of assigning values first to those variables that are most tightly 
constrained. Dynamic backtracking can also be expected to be of use in situations 
where the problem in question does not split into two or more disjoint subproblems.1 

2.6    Experimentation 

Dynamic backtracking has been incorporated into the crossword-puzzle generation 
program described in [28], and leads to significant performance improvements in that 
restricted domain. More specifically, the method was tested on the problem of gen- 
erating 19 puzzles of sizes ranging from 2x2 to 13x13; each puzzle was attempted 
100 times using both dynamic backtracking and simple backjumping. The dictionary 
was shuffled between solution attempts and a maximum of 1000 backtracks were 
permitted before the program was deemed to have failed. 

In both cases, the algorithms were extended to include iterative broadening [29], 
the cheapest-first heuristic and forward checking. Cheapest-first has also been called 
"most constrained first" and selects for instantiation that variable with the fewest 
number of remaining possibilities (i.e., that variable for which it is cheapest to enu- 
merate the possible values [66]). Forward checking prunes the set of possibilities 
for crossing words whenever a new word is entered and constitutes our experimental 
choice of elimination mechanism: at any point, words for which there is no legal cross- 
ing word are eliminated. This ensures that no word will be entered into the crossword 
if the word has no potential crossing words at some point. The cheapest-first heuristic 
would identify the problem at the next step in the search, but forward checking re- 
duces the number of backtracks substantially. The "least-constraining" heuristic [28] 
was not used; this heuristic suggests that each word slot be filled with the word that 
minimally constrains the subsequent search. The heuristic was not used because it 
would invalidate the technique of shuffling the dictionary between solution attempts 
in order to gather useful statistics. 

The table in Figure 2.2 indicates the number of successful solution attempts (out 
of 100) for each of the two methods on each of the 19 crossword frames. Dynamic 
backtracking is more successful in six cases and less successful in none. 

With regard to the number of nodes expanded by the two methods, consider the 

lI am indebted to David McAllester for these observations. 
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Dynamic Dynamic 
Frame backtracking Backjumping Frame backtracking Backjumping 

1 100 100 11 100 98 
2 100 100 12 100 100 
3 100 100 13 100 100 
4 100 100 14 100 100 
5 100 100 15 99 14 

6 100 100 16 100 26 
7 100 100 17 100 30 
8 100 100 18 61 0 
9 100 100 19 10 0 
10 100 100 

Figure 2.2: Number of problems solved successfully 
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_L 
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Figure 2.3: Number of backtracks needed 
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Region 1 

Region 2 

Figure 2.4: A difficult problem for dynamic backtracking 

data presented in Figure 2.3, where we graph the average number of backtracks needed 
by the two methods.2 Although initially comparable, dynamic backtracking provides 
increasing computational savings as the problems become more difficult. A somewhat 
broader set of experiments is described in [39] and leads to similar conclusions. 

There are some examples in [39] where dynamic backtracking leads to performance 
degradation, however; a typical case appears in Figure 2.4.3 In this figure, we first 
color A, then B, then the countries in region 1, and then get stuck in region 2. 

We now presumably backtrack directly to B, leaving the coloring of region 1 alone. 
But this may well be a mistake - the colors in region 1 will restrict our choices for B, 
perhaps making the subproblem consisting of A, B and region 2 more difficult than 
it might be. If region 1 were easy to color, we would have been better off erasing it 
even though we didn't need to. 

This analysis suggests that dependency-directed backtracking should also fare 
worse on those coloring problems where dynamic backtracking has trouble, and we 
are currently extending the experiments of [39] to confirm this. If this conjecture is 
borne out, a variety of solutions come to mind. We might, for example, record how 
many backtracks are made to a node such as B in the above figure, and then use this 
to determine that flexibility at B is more important than retaining the choices made 
in region 1. The difficulty of finding a coloring for region 1 can also be determined 
from the number of backtracks involved in the search. 

2 Only 17 points are shown because no point is plotted where backjumping was unable to solve 
the problem. 

3 The worst performance degradation observed was a factor of approximately 4. 
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2.7    Discussion 

2.7.1 Why it works 

There are two separate ideas that we have exploited in the development of Algorithm 
2.4.3 and the others leading up to it. The first, and easily the most important, is the 
notion that it is possible to modify variable order on the fly in a way that allows us to 
retain the results of earlier work when backtracking to a variable that was assigned a 
value early in the search. 

This reordering should not be confused with the work of authors who have sug- 
gested a dynamic choice among the variables that remain to be assigned values 
[18, 28, 55, 81]; we are instead reordering the variables that have been assigned values 
in the search thus far. 

Another way to look at this idea is that we have found a way to "erase" the 
value given to a variable directly as opposed to backtracking to it. This idea has also 
been explored by Minton et.al. in [50] and by Selman et.al. in [63]; these authors also 
directly replace values assigned to variables in satisfiability problems. Unfortunately, 
the heuristic repair method used is incomplete because no dependency information is 
retained from one state of the problem solver to the next. 

There is a third way to view this as well. The space that we are examining is 
really a graph, as opposed to a tree; we reach the same point by coloring Albania 
blue and then Bulgaria red as if we color them in the opposite order. When we decide 
to backjump from a particular node in the search space, we know that we need to back 
up until some particular property of that node ceases to hold - and the key idea is that 
by backtracking along a path other than the one by which the node was generated, 
we may be able to backtrack only slightly when we would otherwise need to retreat 
a great deal. This observation is interesting because it may well apply to problems 
other than CSPS. Unfortunately, it is not clear how to guarantee completeness for a 
search that discovers a node using one path and backtracks using another. 

The other idea is less novel. As we have already remarked, our use of eliminating 
explanations is quite similar to the use of nogoods in the ATMS community; the 
principal difference is that we attach the explanations to the variables they impact 
and drop them when they cease to be relevant. (They might become relevant again 
later, of course.) This avoids the prohibitive space requirements of systems that 
permanently cache the results of their nogood calculations; this observation also may 
be extensible beyond the domain of CSPS specifically. Again, there are other ways to 
view this - Gashnig's notion of backmarking [21] records similar information about the 
reason that particular portions of a search space are known not to contain solutions. 

2.7.2 Future work 

There are a variety of ways in which the techniques we have presented can be extended; 
in this section, we sketch a few of the more obvious ones. 
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Backtracking to older culprits 

One extension to our work involves lifting the restriction in Algorithm 2.4.3 that the 
variable erased always be the most recently assigned member of the set E. 

In general, we cannot do this while retaining the completeness of the search. 
Consider the following example: 

Imagine that our CSP involves three variables, x, y and z, that can each take the 
value 0 or 1. Further, suppose that this CSP has no solutions, in that after we pick 
any two values for x and for y, we realize that there is no suitable choice for z. 

We begin by taking x = y = 0; when we realize the need to backtrack, we introduce 
the nogood 

x = 0Dy^0 (2.3) 

and replace the value for y with y = 1. 
This fails, too, but now suppose that we were to decide to backtrack to x, intro- 

ducing the new nogood 
!/ = lD^0 (2.4) 

We change x's value to 1 and erase (2.3). 
This also fails. We decide that y is the problem and change its value to 0, intro- 

ducing the nogood 
x=lDy^l 

but erasing (2.4). And when this fails, we are in danger of returning to x = y = 0, 
which we eliminated at the beginning of the example. This loop may cause a modified 
version of the dynamic backtracking algorithm to fail to terminate. 

In terms of the proof of Theorem 2.4.2, \he nogoods discovered already include 
information about all assigned variables, so there is no difference between (2.7) and 
(2.8). When we drop (2.3) in favor of (2.4), we are no longer in a position to recover 
(2.3). 

We can deal with this by placing conditions on the variables to which we choose 
to backtrack; the conditions need to be defined so that the proof of Theorem 2.4.2 
continues to hold.4 Experimentation indicates that loops of the form we have de- 
scribed are extremely rare in practice; it may also be possible to detect them directly 
and thereby retain more substantial freedom in the choice of backtrack point. 

This freedom of backtrack raises an important question that has not yet been 
addressed in the literature: When backtracking to avoid a difficulty of some sort, to 
where should one backtrack? 

Previous work has been constrained to backtrack no further than the most recent 
choice that might impact the problem in question; any other decision would be both 
incomplete and inefficient. Although an extension of Algorithm 2.4.3 need not operate 
under this restriction, we have given no indication of how the backtrack point should 
be selected. 

4Another solution appears in [49]. 
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There are several easily identified factors that can be expected to bear on this 
choice. The first is that there remains a reason to expect backtracking to chronolog- 
ically recent choices to be the most effective - these choices can be expected to have 
contributed to the fewest eliminating explanations, and there is obvious advantage to 
retaining as many eliminating explanations as possible from one point in the search to 
the next. It is possible, however, to simply identify that backtrack point that affects 
the fewest number of eliminating explanations and to use that. 

Alternatively, it might be important to backtrack to the choice point for which 
there will be as many new choices as possible; as an extreme example, if there is a 
variable i for which every value other than its current one has already been elimi- 
nated for other reasons, backtracking to i is guaranteed to generate another backtrack 
immediately and should probably be avoided if possible. 

Finally, there is some measure of the "directness" with which a variable bears on 
a problem. If we are unable to find a value for a particular variable i, it is probably 
sensible to backtrack to a second variable that shares a constraint with i itself, as 
opposed to some variable that affects i only indirectly. 

How are these competing considerations to be weighed? I have no idea. But 
the framework we have developed is interesting because it allows us to work on this 
question. In more basic terms, we can now "debug" partial solutions to CSPs directly, 
moving laterally through the search space in an attempt to remain as close to a 
solution as possible. This sort of lateral movement seems central to human solution 
of difficult search problems, and it is encouraging to begin to understand it in a formal 
way. 

Dependency pruning 

It is often the case that when one value for a variable is eliminated while solving a 
CSP, others are eliminated as well. As an example, in solving a scheduling problem a 
particular choice of time (say t = 16) may be eliminated for a task A because there 
then isn't enough time between A and a subsequent task B; in this case, all later 
times can obviously be eliminated for A as well. 

Formalizing this can be subtle; after all, a later time for A isn't uniformly worse 
than an earlier time because there may be other tasks that need to precede A and 
making A later makes that part of the schedule easier. It's the problem with B alone 
that forces A to be earlier; once again, the analysis depends on the ability to maintain 
dependency information as the search proceeds. 

We can formalize this as follows. Given a CSP (I, V, n), suppose that the value v has 
been assigned to some i € I. Now we can construct a new CSP (/', V, K!) involving the 
remaining variables I' = I — {«}, where the new set V need not mention the possible 
values Vi for i, and where K' is generated from K by modifying the constraints to 
indicate that i has been assigned the value v. We also make the following definition: 

Definition 2.7.1  Given a CSP, suppose that i is a variable that has two possible 
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values u and v. We will say that v is stricter than u if every constraint in the CSP 
induced by assigning u to i is also a constraint in the CSP induced by assigning i the 
value v. 

The point, of course, is that if v is stricter than u is, there is no point to trying 
a solution involving v once u has been eliminated. After all, finding such a solution 
would involve satisfying all of the constraints in the v restriction, these are a superset 
of those in the u restriction, and we were unable to satisfy the constraints in the u 
restriction originally. 

The example with which we began this section now generalizes to the following: 

Proposition 2.7.2 Suppose that a CSP involves a set S of variables, and that we 
have a partial solution that assigns values to the variables in some subset PCS. 
Suppose further that if we extend this partial solution by assigning the value u to a 
variable i $. P, there is no further extension to a solution of the entire CSP. Now 
consider the CSP involving the variables in S — P that is induced by the choices of 
values for variables in P. If v is stricter than u as a choice of value for i in this 
problem, the original CSP has no solution that both assigns v to i and extends the 
given partial solution on P.        ■ 

This proposition isn't quite enough; in the earlier example, the choice of t = 17 for 
A will not be stricter than t = 16 if there is any task that needs to be scheduled before 
A is. We need to record the fact that B (which is no longer assigned a value) is the 
source of the difficulty. To do this, we need to augment the dependency information 
with which we are working. 

More precisely, when we say that a set of variables {xi} eliminates a value v for a 
variable x, we mean that our search to date has allowed us to conclude that 

(vi = x±) A • • • A (vk = xk) D v ^ x 

where the Vi are the current choices for the Xi. We can obviously rewrite this as 

(vi = xr) A • • • A (yk = xk) A (v = x) D F (2.5) 

where F indicates that the CSP in question has no solution. 
Let's be more specific still, indicating in (2.5) exactly which CSP has no solution: 

(v1=x1)A---A {vk = xk) A {v = x) D F(I) (2.6) 

where / is the set of variables in the complete CSP. 
Now we can address the example with which we began this section; the CSP that 

is known to fail in an expression such as (2.6) is not the entire problem, but only a 
subset of it. In the example, we are considering, the subproblem involves only the 
two tasks A and B. In general, we can augment our nogoods to include information 
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about the subproblems on which they fail, and then measure strictness with respect 
to these restricted subproblems only. In our example, this will indeed allow us to 
eliminate t = 17 from consideration as a possible time for A. 

The additional information stored with the nogoods doubles their size (we have to 
store a second subset of the variables in the CSP), and the variable sets involved can 
be manipulated easily as the search proceeds. The cost involved in employing this 
technique is therefore that of the strictness computation. This may be substantial 
given the data structures currently used to represent CSPs (which typically support 
the need to check if a constraint has been violated but little more), but it seems likely 
that compile-time modifications to these data structures can be used to make the 
strictness question easier to answer. In scheduling problems, preliminary experimental 
work shows that the idea is an important one; here, too, there is much to be done. 

The basic lesson of dynamic backtracking is that by retaining only those nogoods 
that are still relevant given the partial solution with which we are working, the storage 
difficulties encountered by full dependency-directed methods can be alleviated. This 
is what makes all of the ideas we have proposed possible - erasing values, selecting 
alternate backtrack points, and dependency pruning. There are surely many other 
effective uses for a practical dependency maintenance system as well. 

2.8    Proofs 

Lemma 2.2.4 Let e be a complete elimination mechanism for a CSP, let P be a 
partial solution to this CSP and let i ^ P. Now if P can be successfully extended to a 
complete solution after assigning i the value v, then v ^ e(P, i). 
Proof. Suppose otherwise, so that (v,E)  e e(P,i).   It follows directly from the 
completeness of e that 

En(F-P)^0 

a contradiction.        ■ 
Lemma 2.2.6 At any point in the execution of Algorithm 2.2.5, if the last element 
of the partial solution P assigns a value to the variable i, then the unexplored siblings 
of the current node are those that assign to i the values inVi — E^. 
Proof. We first note that when we decide to assign a value to a new variable i in step 
2 of the algorithm, we take Ei = e(P, i) so that Vi — Ei is the set of allowed values for 
this variable. The lemma therefore holds in this case. The fact that it continues to 
hold through each repetition of the loop in steps 3 and 4 is now a simple induction; 
at each point, we add to Ei the node that has just failed as a possible value to be 
assigned to i.        m 

Proposition 2.2.7 Algorithm 2.2.5 is equivalent to depth-first search and therefore 
complete. 
Proof. This is an easy consequence of the lemma.  Partial solutions correspond to 
nodes in the search space.       ■ 
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Lemma 2.3.2 Let P be a partial solution obtained during the execution of Algorithm 
2.3.1, and let i G P be a variable assigned a value by P. Now if P' C P can be 
successfully extended to a complete solution after assigning i the value v but (v, E) G 
Ei, we must have 

En(F-F)/0 

Proof. As in the proof of Lemma 2.2.6, we show that no step of Algorithm 2.3.1 can 
cause Lemma 2.3.2 to become false. 

That the lemma holds after step 2, where the search is extended to consider a 
new variable, is an immediate consequence of the assumption that the elimination 
mechanism is complete. 

In step 4, when we add (VJ,E — {j}) to the set of eliminating explanations for 
j, we are simply recording the fact that the search for a solution with j set to Vj 
failed because we were unable to extend the solution to i. It is a consequence of the 
inductive hypothesis that as long as no variable in E — {j} changes, this conclusion 
will remain valid.        ■ 
Proposition 2.3.4 Backjumping is'complete and always expands fewer nodes than 
does depth-first search. 
Proof. That fewer nodes are examined is clear; for completeness, it follows from 
Lemma 2.3.2 that the backtrack to some element of E in step 5 will always be neces- 
sary if a solution is to be found.        ■ 
Proposition 2.3.5 The amount of space needed by backjumping is o(i2v), where 
i = |/| is the number of variables in the problem and v is the number of values for 
that variable with the largest value set V{. 
Proof. The amount of space needed is dominated by the storage requirements of the 
elimination sets Ej] there are i of these. Each one might refer to each of the possible 
values for a particular variable j; the space needed to store the reason that the value 
j is eliminated is at most \I\, since the reason is simply a list of variables that have 
been assigned values. There will never be two eliminating explanations for the same 
variable, since e is concise and we never rebind a.variable to a value that has been 
eliminated.        ■ 
Theorem 2.4.2 Dynamic backtracking always terminates and is complete. It con- 
tinues to satisfy Proposition 2.3.5 and can be expected to expand fewer nodes than 
backjumping provided that the goal nodes are distributed randomly in the search space. 
Proof. There are four things we need to show: That dynamic backtracking needs 
o(i2v) space, that it is complete, that it can be expected to expand fewer nodes than 
backjumping, and that it terminates. We prove things in this order. 

Space This is clear; the amount of space needed continues to be bounded by the 
structure of the eliminating explanations. 
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Completeness This is also clear, since by Lemma 2.3.2, all of the eliminating 
explanations retained in the algorithm are obviously still valid. The new explanations 
added in (2.2) are also obviously correct, since they indicate that j cannot take the 
value Vj as in backjumping and that j also cannot take any values that are eliminated 
by the variables being backjumped over. 

Efficiency To see that we expect to expand fewer nodes, suppose that the sub- 
problem involving only the variables being jumped over has s solutions in total, one 
of which is given by the existing variable assignments. Assuming that the solutions 
are distributed randomly in the search space, there is at least a 1/s chance that this 
particular solution leads to a solution of the entire CSP; if so, the reordered search - 
which considers this solution earlier than the other - will save the expense of either 
assigning new values to these variables or repeating the search that led to the existing 
choices. The reordered search will also benefit from the information in the nogoods 
that have been retained for the variables being jumped over. 

Termination    This is the most difficult part of the proof. 
As we work through the algorithm, we will be generating (and then discarding) 

a variety of eliminating explanations. Suppose that e is such an explanation, saying 
that j cannot take the value Vj because of the values currently taken by the variables 
in some set ey. We will denote the variables in e^ by ii,...,^ and their current 
values by ui,... ,Ufc. In declarative terms, the eliminating explanation is telling us 
that 

(xx = vi) A • • • A (xk = vk) D j / Vj (2.7) 

Dependency-directed backtracking would have us accumulate all of these nogoods; 
dynamic backtracking allows us to drop any particular instance of (2.7) for which the 
antecedent is no longer valid. 

The reason that dependency-directed backtracking is guaranteed to terminate is 
that the set of accumulated nogoods eliminates a monotonically increasing amount of 
the search space. Each nogood eliminates a new section of the search space because 
the nature of the search process is such that any node examined is consistent with 
the nogoods that have been accumulated thus far; the process is monotonic because 
all nogoods are retained throughout the search. These arguments cannot be applied 
to dynamic backtracking, since nogoods are forgotten as the search proceeds. But we 
can make an analogous argument. 

To do this, suppose that when we discover a nogood like (2.7), we record with it 
all of the variables that precede the variable j in the partial order,'together with the 
values currently assigned to these variables. Thus an eliminating explanation becomes 
essentially a nogood n of the form (2.7) together with a set S of variable/value pairs. 

We now define a mapping A(n, S) that changes the antecedent of (2.7) to include 
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assumptions about all the variables bound in S, so that if S = {s;, Vi}, 

X(n, S) = [(si = Vl) A • • • A {Sl = vi) Dj^ v,] (2.8) 

At any point in the execution of the algorithm, we denote by N the conjunction of 
the modified nogoods of the form (2.8). 

We now make the following claims: 

1. For any eliminating explanation (n, S), n (= A(n, S) so that X(n, S) is valid for 
the problem at hand. 

2. For any new eliminating explanation (n, S), X(n, S) is not a consequence of N. 

3. The deductive consequences of N grow monotonically as the dynamic back- 
tracking algorithm proceeds. 

The theorem will follow from these three observations, since we will know that N is 
a valid set of conclusions for our search problem and that we are once again making 
monotonic progress toward eliminating the entire search space and concluding that 
the problem is unsolvable. 

That X(n, S) is a consequence of (n, S) is clear, since the modification used to 
obtain (2.8) from (2.7) involves strengthening that antecedent of (2.7). It is also clear 
that X(n, S) is not a consequence of the nogoods already obtained, since we have 
added to the antecedent only conditions that hold for the node of the search space 
currently under examination. If X(n, S) were a consequence of the nogoods we had 
obtained thus far, this node would not be being considered. 

The last observation depends on the following lemma: 

Lemma 2.8.1 Suppose that x is a variable assigned a value by our partial solution 
and that x appears in the antecedent of the nogood n in the pair (n, S). Then if S' is 
the set of variables assigned values no later than x, S' C S. 

Proof. Consider &y £ S', and suppose that it were not in S. We cannot have y = x, 
since y would then be mentioned in the nogood n and therefore in S. So we can 
suppose that y is actually assigned a value earlier than x is. Now when (n, S) was 
added to the set of eliminating explanations, it must have been the case that x was 
assigned a value (since it appears in the antecedent of n) but that y was not. But we 
also know that there was a later time when y was assigned a value but x was not, since 
y precedes x in the current partial solution. This means that x must have changed 
value at some point after (n, S) was added to the set of eliminating explanations - but 
(n, S) would have been deleted when this happened. This contradiction completes 
the proof.        ■ 

Returning to the proof the Theorem 2.4.2, suppose that we eventually drop (n, S) 
from our collection of nogoods and that when we do so, the new nogood being added 
is (n',S').  It follows from the lemma that S' C S.  Since Xi = vi is a clause in the 

32 



antecedent of A(n, S), it follows that A(n', S') will imply the negation of the antecedent 
of A(n, S) and will therefore imply A(n, S) itself. Although we drop A(n, S) when we 
drop the nogood (n,S), X(n,S) continues to be entailed by the modified set TV, the 
consequences of which are seen to be growing monotonically.       ■ 
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Chapter 3 

Partial Order Dynamic 
Backtracking 

Dynamic backtracking is the first search algorithm to allow branch variables to be 
reordered as the search progresses. However, it is still limited in an important way: 
backtracking remains chronological. By this we mean that when an inconsistency is 
detected, the chronologically most recent variable is always the one whose value is 
changed. This means that if an "early mistake" is made (i.e., if a variable early in the 
search tree is given an incorrect value) the entire subtree under this "mistake" will 
have to be searched before the variable is revalued. Partial order dynamic backtrack- 
ing changes this. Variables anywhere in the search tree can be revalued at any point. 
There is one catch though: each backtrack point adds to an evolving partial order 
on the set of variables, and this partial order eventually does constrain the order in 
which variables can be reordered (the partial order can be over-ridden only at the 
cost of an increase in the storage space needed). 

This material appeared in "GSAT and dynamic backtracking" by Ginsberg and 
McAllester, in KR-94. 

3.1    Introduction 

The past few years have seen rapid progress in the development of algorithms for 
solving constraint-satisfaction problems, or CSPs. CSPS arise naturally in subfields of 
AI from planning to vision, and examples include propositional theorem proving, map 
coloring and scheduling problems. The problems are difficult because they involve 
search; there is never a guarantee that (for example) a successful coloring of a portion 
of a large map can be extended to a coloring of the map in its entirety. 

The algorithms developed recently have been of two types. Systematic algorithms 
determine whether a solution exists by searching the entire space. Local algorithms 
use hill-climbing techniques to find a solution quickly but are nonsystematic in that 
they search the entire space in only a probabilistic sense. 
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The empirical effectiveness of these nonsystematic algorithms appears to be a 
result of their ability to follow local gradients in the search space. Traditional sys- 
tematic procedures explore the space in a fixed order that is independent of local 
gradients; the fixed order makes following local gradients impossible but is needed to 
ensure that no node is examined twice and that the search remains systematic. 

Dynamic backtracking [25] attempts to overcome this problem by retaining specific 
information about those portions of the search space that have been eliminated and 
then following local gradients in the remainder. Unlike previous algorithms that 
recorded such elimination information, such as dependency-directed backtracking [70], 
dynamic backtracking is selective about the information it caches so that only a 
polynomial amount of memory is required. These earlier techniques cached a new 
result with every backtrack, using an amount of memory that was linear in the run 
time and thus exponential in the size of the problem being solved. 

Unfortunately, neither dynamic nor dependency-directed backtracking (or any 
other known similar method) is truly effective at local maneuvering within the search 
space, since the basic underlying methodology remains simple chronological back- 
tracking. New techniques are included to make the search more efficient, but an 
exponential number of nodes in the search space must still be examined before early 
choices can be retracted. No existing search technique is able to both move freely 
within the search space and keep track of what has been searched and what hasn't. 

The second class of algorithms developed recently presume that freedom of move- 
ment is of greater importance than systematicity. Algorithms in this class achieve 
their freedom of movement by abandoning the conventional description of the search 
space as a tree of partial solutions, instead thinking of it as a space of total assign- 
ments of values to variables. Motion is permitted between any two assignments that 
differ on a single value, and a hill-climbing procedure is employed to try to mini- 
mize the number of constraints violated by the overall assignment. The best-known 
algorithms in this class are min-conflicts [50] and GSAT [63]. 

Min-conflicts has been applied to the scheduling domain specifically and used 
to schedule tasks on the Hubble space telescope. GSAT is restricted to Boolean 
satisfiability problems (where every variable is assigned simply true or false), and has 
led to remarkable progress in the solution of randomly generated problems of this type; 
its performance is reported [59, 63, 60] as surpassing that of other techniques such 
as simulated annealing [41] and systematic techniques based on the Davis-Putnam 
procedure [15]. 

GSAT is not a panacea, however; there are many problems on which it performs 
fairly poorly. If a problem has no solution, for example, GSAT will never be able to 
report this with confidence. Even if a solution does exist, there appear to be at least 
two possible difficulties that GSAT may encounter. 

First, the GSAT search space may contain so many local minima that it is not 
clear how GSAT can move so as to reduce the number of constraints violated by a 
given assignment. As an example, consider the CSP of generating crossword puzzles 

35 



by filling words from a fixed dictionary into an empty frame [28]. The constraints 
indicate that there must be no conflict in each of the squares; thus two words that 
begin on the same square must also begin with the same letter. In this domain, 
getting "close" is not necessarily any indication that the problem is nearly solved, 
since correcting a conflict at a single square may involve modifying much of the 
current solution. Konolige has recently reported that GSAT specifically has difficulty 
solving problems of this sort [42]. 

Second, GSAT does no forward propagation. In the crossword domain once again, 
selecting one word may well force the selection of a variety of subsequent words. In 
a Boolean satisfiability problem, assigning one variable the value true may cause an 
immediate cascade of values to be assigned to other variables via a technique known 
as unit resolution. It seems plausible that forward propagation will be more common 
on realistic problems than on randomly generated ones; the most difficult random 
problems appear to be tangles of closely related individual variables while naturally 
occurring problems tend to be tangles of sequences of related variables. Furthermore, 
it appears that GSAT's performance degrades (relative to systematic approaches) as 
these sequences of variables arise [12]. 

Our aim in this paper is to describe a new search procedure that appears to 
combine the benefits of both of the earlier approaches; in some very loose sense, it 
can be thought of as a systematic version of GSAT. 

The next three sections summarize the original dynamic backtracking algorithm 
[25], presenting it from the perspective of local search. The termination proof is 
omitted here but can be found in earlier papers [25, 49]. Section 3.5 present a mod- 
ification of dynamic backtracking called partial-order dynamic backtracking, or PDB. 

This algorithm builds on work of McAllester's [49]. Partial-order dynamic backtrack- 
ing provides greater flexibility in the allowed set of search directions while preserving 
systematicity and polynomial worst case space usage. Section 3.6 presents a new 
variant of dynamic backtracking that is still more flexible in the allowed set of search 
directions. While this final procedure is still systematic, it can use exponential space 
in the worst case. Section 3.7 presents some empirical results comparing PDB with 
other well known algorithms on a class of "local" randomly generated 3-SAT prob- 
lems. Concluding remarks are contained in Section 3.8, and proofs appear in the last 
section. 

3.2    Constraints and Nogoods 

We begin with a slightly nonstandard definition of a CSP. 

Definition 3.2.1 By a constraint satisfaction problem (I, V, K) we will mean a finite 
set I of variables; for each x £ I, there is a finite set Vx of possible values for the 
variablex. K is a set of constraints each of the form ->[(xi = t>i)A- • -A(xk = vk)] where 
each Xj is a variable in I and each Vj is an element ofVXj. A solution to the CSP is an 

36 



assignment P of values to variables that satisfies every constraint. For each variable 
x we require that P(x) G Vx and for each constraint ->[(xi = Vi) A • • • A (xk = vk)] we 
require that P(XJ) =£ Vi for some Xj. 

5?/ i/te size of a constraint-satisfaction problem (I, V, K), we will mean the product 
of the domain sizes of the various variables, FT   \VX\. 

The technical convenience of the above definition of a constraint will be clear 
shortly. For the moment, we merely note that the above description is clearly equiva- 
lent to the conventional one; rather than represent the constraints in terms of allowed 
value combinations for various variables, we write axioms that disallow specific value 
combinations one at a time. The size of a CSP is the number of possible assignments 
of values to variables. 

Systematic algorithms attempting to find a solution to a CSP typically work with 
partial solutions that are then discovered to be inextensible or to violate the given 
constraints; when this happens, a backtrack occurs and the partial solution under 
consideration is modified. Such a procedure will, of course, need to record information 
that guarantees that the same partial solution not be considered again as the search 
proceeds. This information might be recorded in the structure of the search itself; 
depth-first search with chronological backtracking is an example. More sophisticated 
methods maintain a database of some form indicating explicitly which choices have 
been eliminated and which have not. In this paper, we will use a database consisting 
of a set of nogoods [17]. 

Definition 3.2.2 A nogood is an expression of the form 

(xi = vi) A • • • A (xk = vk) ->• x ^ v (3.1) 

A nogood can be used to represent a constraint as an implication; (3.1) is logically 
equivalent to the constraint 

-■[(ffi = vi) A • • • A (xk = vk) A (x = v)] 

There are clearly many different ways of representing a given constraint as a nogood. 
One special nogood is the empty nogood, which is tautologically false. We will 

denote the empty nogood by _L; if _L can be derived from the given set of constraints, 
it follows that no solution exists for the problem being attempted. 

The typical way in which new nogoods are obtained is by resolving together old 
ones. As an example, suppose we have derived the following: 

(x = a) A (y = b) —>    U ^ V\ 

(x = a) A (z = c) ->     «/«2 

(y = b) ->   u^v3 
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Denmark 

Albani 
Czechoslovakia 

Bulgaria 

England 

Figure 3.1: A small map-coloring problem 

where vi, v2 and u3 are the only values in the domain of u. It follows that we can 
combine these nogoods to conclude that there is no solution with 

(x = a) A {y = b) A (z = c) (3.2) 

Moving z to the conclusion of (3.2) gives us 

(x = a) A (y = b) ->• z / c 

In general, suppose we have a collection of nogoods of the form 

xn = vn A • • • A xiTH = vini ->■ x ^ Vi 

as i varies, where the same variable appears in the conclusions of all the nogoods. 
Suppose further that the antecedents all agree as to the value of the x^s, so that any 
time Xi appears in the antecedent of one of the nogoods, it is in a term Xi = vt for a 
fixed Vi. If the nogoods collectively eliminate all of the possible values for x, we can 
conclude that /\(XJ = Vj) is inconsistent; moving one specific xk to the conclusion 
gives us 

f\(xj = Vj) -+xkj^vk (3.3) 

As before, note the freedom in our choice of variable appearing in the conclusion 
of the nogood. Since the next step in our search algorithm will presumably satisfy 
(3.3) by changing the value for xk, the selection of consequent variable corresponds 
to the choice of variable to "flip" in the terms used by GSAT or other hill-climbing 
algorithms. 

As we have remarked, dynamic backtracking accumulates information in a set of 
nogoods. To see how this is done, consider the map coloring problem in Figure 3.1, 
repeated from [25]. The map consists of five countries: Albania, Bulgaria, Czechoslo- 
vakia, Denmark and England. We assume - wrongly - that the countries border each 
other as shown in the figure, where countries are denoted by nodes and border one 
another if and only if there is an arc connecting them. 
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In coloring the map, we can use the three colors red, green and blue. We will 
typically abbreviate the colors and country names to single letters in the obvious 
way. The following table gives a trace of how a conventional dependency-directed 
backtracking scheme might attack this problem; each row shows a state of the pro- 
cedure in the middle of a backtrack step, after a new nogood has been identified but 
before colors are erased to reflect the new conclusion. The coloring that is about to 
be removed appears in boldface. The "drop" column will be discussed shortly. 

A B C D E add drop 
r 9 r A = r ->■ C ^ r 1 
r 9 b r A = r -> D ^ r 2 
r 9 b g B=g^D^g 3 
r 9 b b r A = r ->• E ^r 4 
r 9 b b g B = g^E^g 5 
r 9 b b b D = b^E^b 6 
r 9 b b (A = r)A{B = g) 

->D^b 
7 6 

r g b A = r ->• B ^ g 8 3,5,7 

We begin by coloring Albania red and Bulgaria green, and then try to color 
Czechoslovakia red as well. Since this violates the constraint that Albania and 
Czechoslovakia be different colors, nogood (1) in the above table is produced. 

We change Czechoslovakia's color to blue and then turn to Denmark. Since Den- 
mark cannot be colored red or green, nogoods (2) and (3) appear; the only remaining 
color for Denmark is blue. 

Unfortunately, having colored Denmark blue, we cannot color England. The three 
nogoods generated are (4), (5) and (6), and we can resolve these together because the 
three conclusions eliminate all of the possible colors for England. The result is that 
there is no solution with (A — r) A (B = g) A (D = b), which we rewrite as (7) above. 
This can in turn be resolved with (2) and (3) to get (8), correctly indicating that 
the color of red for Albania is inconsistent with the choice of green for Bulgaria. The 
analysis can continue at this point to gradually determine that Bulgaria has to be 
red, Denmark can be green or blue, and England must then be the color not chosen 
for Denmark. 

As we mentioned in the introduction, the problem with this approach is that the 
set T of nogoods grows monotonically, with a new nogood being added at every step. 
The number of nogoods stored therefore grows linearly with the run time and thus 
(presumably) exponentially with the size of the problem. A related problem is that it 
may become increasingly difficult to extend the partial solution P without violating 
one of the nogoods in I\ 

Dynamic backtracking deals with this by discarding nogoods when they become 
"irrelevant" in the sense that their antecedents no longer match the partial solution 
in question.  In the example above, nogoods can be eliminated as indicated in the 
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final column of the trace. When we derive (7), we remove (6) because Denmark is no 
longer colored blue. When we derive (8), we remove all of the nogoods with B = g 
in their antecedents. Thus the only information we retain is that Albania's red color 
precludes red for Czechoslovakia, Denmark and England (1, 2 and 4) and also green 
for Bulgaria (8). 

3.3    Dynamic Backtracking 

Dynamic backtracking uses the set of nogoods to both record information about the 
portion of the search space that has been eliminated and to record the current partial 
assignment being considered by the procedure. The current partial assignment is 
encoded in the antecedents of the current nogood set. More formally: 

Definition 3.3.1 An acceptable next assignment for a nogood set F is an assignment 
P satisfying every nogood in F and every antecedent of every such nogood. We will 
call a set of nogoods F acceptable if no two nogoods in F have the same conclusion 
and either _L G T or there exists an acceptable next assignment for F. 

If T is acceptable, the antecedents of the nogoods in T induce a partial assignment 
of values to variables; any acceptable next assignment must be an extension of this 
partial assignment. In the above table, for example, nogoods (1) through (6) encode 
the partial assignment given by A = r, B = g, and D = b. Nogoods (1) though (7) 
fail to encode a partial assignment because the seventh nogood is inconsistent with 
the partial assignment encoded in nogoods (1) through (6). This is why the sixth 
nogood is removed when the seventh nogood is added. 

Procedure 3.3.2 (Dynamic backtracking) To solve a CSP: 

P := any complete assignment of values to variables 
F:=0 
until either P is a solution or 1 e T: 

7 := any constraint violated by P 
T := simp(rU7) 
P := any acceptable next assignment for F 

To simplify the discussion we assume a fixed total order on the variables. Versions 
of dynamic backtracking with dynamic rearrangement of the variable order can be 
found elsewhere [25, 49]. Whenever a new nogood is added, the fixed variable ordering 
is used to select the variable that appears in the conclusion of the nogood - the latest 
variable always appears in the conclusion. The subroutine simp closes the set of 
nogoods under the resolution inference rule discussed in the previous section and 
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removes all nogoods which have an antecedent x = v such that x ^ v appears in the 
conclusion of some other nogood. Without giving a detailed analysis, we note that 
simplification ensures that T remains acceptable. To prove termination we introduce 
the following notation: 

Definition 3.3.3 For any acceptable T and variable x, we define the live domain of x 
to be those values v such that x±v does not appear in the conclusion of any nogood 
in T. We will denote the size of the live domain of x by \x\r, and will denote by 
m(T) the tuple (\xi\r,..., \xn\r) where xi,...,xn are the variables in the CSP in their 
specified order. 

Given an acceptable T, we define the size of V to be 

size(r) = Hl^|-£ (i^i - Mr) n 1^1 

Informally, the size of T is the size of the remaining search space given the live 
domains for the variables and assuming that all information about x{ will be lost 
when we change the value for any variable Xj < X{. 

The following result is obvious: 

Lemma 3.3.4 Suppose that Y and V are such that m(T) is lexicographically less than 
m(T').  Then size(T) < size(r').        ■ 

The termination proof (which we do not repeat here) is based on the observa- 
tion that every simplification lexicographically reduces m(T). Assuming that T — 0 
initially, since 

size(0) = JI|K| 
X 

it follows that the running time of dynamic backtracking is bounded by the size of 
the problem being solved. 

Proposition 3.3.5 Any acceptable set of nogoods can be stored in o(n2v) space where 
n is the number of variables and v is the maximum domain size of any single variable. 

It is worth considering the behavior of Procedure 3.3.2 when applied to a CSP that 
is the union of two disjoint CSPs that do not share variables or constraints. If each of 
the two subproblems is unsatisfiable and the variable ordering interleaves the variables 
of the two subproblems, a classical backtracking search will take time proportional 
to the product of the times required to search each assignment space separately.1 In 

^his observation remains true even if backjumping techniques are used. 
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contrast, Procedure 3.3.2 works on the two problems independently, and the time 
taken to solve the union of problems is therefore the sum of the times needed for the 
individual subproblems. It follows that Procedure 3.3.2 is fundamentally different 
from classical backtracking or backjumping procedures; Procedure 3.3.2 is in fact 
what has been called a polynomial space aggressive backtracking procedure [49]. 

3.4    Dynamic Backtracking as Local Search 

Before proceeding, let us highlight the obvious similarities between Procedure 3.3.2 
and Selman's description of GSAT [63]: 

Procedure 3.4.1 (GSAT) TO solve a CSP: 

for i := 1 to MAX-TRIES 
P := a randomly generated truth assignment 
for j := 1 to MAX-FLIPS 

if P is a solution, then return it 
else flip any variable in P that results in 

the greatest decrease in the number 
of unsatisfied clauses 

end if 
end for 

end for 
return failure 

The inner loop of the above procedure makes a local move in the search space in 
a direction consistent with the goal of satisfying a maximum number of clauses; we 
will say that GSAT follows the local gradient of a "maxsat" objective function. But 
local search can get stuck in local minima; the outer loop provides a partial escape 
by giving the procedure several independent chances to find a solution. 

Like GSAT, dynamic backtracking examines a sequence of total assignments. Ini- 
tially, dynamic backtracking has considerable freedom in selecting the next assign- 
ment; in many cases, it can update the total assignment in a manner identical to 
GSAT. The nogood set ultimately both constrains the allowed directions of motion 
and forces the procedure to search systematically. Dynamic backtracking cannot get 
stuck in local minima. 

Both systematicity and the ability to follow local gradients are desirable. The 
observations of the previous paragraphs, however, indicate that these two properties 
are in conflict - systematic enumeration of the search space appears incompatible 
with gradient descent. To better understand the interaction of systematicity and 
local gradients, we need to examine more closely the structure of the nogoods used 
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in dynamic backtracking. 
We have already discussed the fact that a single constraint can be represented 

as a nogood in a variety of ways. For example, the constraint ->(A = r A B — g) 
can be represented either as A —r ^ B ^ g ox as B = g —y A ^ r. Although 
these nogoods capture the same information, they behave differently in the dynamic 
backtracking procedure because they encode different partial truth assignments and 
represent different choices of variable ordering. In particular, the set of acceptable 
next assignments for A = r ->• B ^ g is quite different from the set of acceptable 
next assignments for B = g —>• A ^ r. In the former case an acceptable assignment 
must satisfy A = r; in the latter case, B — g must hold. Intuitively, the former 
nogood corresponds to changing the value of B while the latter nogood corresponds 
to changing that of A. The manner in which we represent the constraint -<(A = 
r A B = g) influences the direction in which the search is allowed to proceed. In 
Procedure 3.3.2, the choice of representation is forced by the need to respect the 
fixed variable ordering and to change the latest variable in the constraint.2 Similar 
restrictions exist in the original presentation of dynamic backtracking itself [25]. 

3.5    Partial-order Dynamic Backtracking 

Partial-order dynamic backtracking [49] replaces the fixed variable order with a partial 
order that is dynamically modified during the search. When a new nogood is added, 
this partial ordering need not fix a unique representation - there can be considerable 
choice in the selection of the variable to appear in the conclusion of the nogood. 
This leads to freedom in the selection of the variable whose value is to be changed, 
thereby allowing greater flexibility in the directions that the procedure can take while 
traversing the search space. The locally optimal gradient followed by GSAT can be 
adhered to more often. The partial order on variables is represented by a set of 
ordering constraints called safety conditions. 

Definition 3.5.1 A safety condition is an assertion of the form x < y where x and y 
are variables. Given a set S of safety conditions, we will denote by <s the transitive 
closure of <, saying that S is acyclic if <s is antisymmetric. We will write x <s y 
to mean that x <s y and y ^5 x. 

In other words, x < y if there is some (possibly empty) sequence of safety condi- 
tions 

x < Zx < ... < zn <y 

The requirement of antisymmetry means simply that there are no two distinct x and 
y for which x < y and y < x; in other words, <s has no "loops" and is a partial order 

2Note, however, that there is still considerable freedom in the choice of the constraint itself. A 
total assignment usually violates many different constraints. 
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on the variables.   In this section, we restrict our attention to acyclic sets of safety 
conditions. 

Definition 3.5.2 For a nogood 7, we will denote by 57 the set of all safety conditions 
x < y such that x is in the antecedent of 7 and y is the variable in its conclusion. 

Informally, we require variables in the antecedent of nogoods to precede the vari- 
ables in their conclusions, since the antecedent variables have been used to constrain 
the live domains of the conclusions. 

The state of the partial order dynamic backtracking procedure is represented by 
a pair (r, S) consisting of a set of nogoods and a set of safety conditions. In many 
cases, we will be interested in only the ordering information about variables that can 
precede a fixed variable x. To discard the rest of the ordering information, we discard 
all of the safety conditions involving any variable y that follows x, and then record 
only that y does indeed follow x. Somewhat more formally: 

Definition 3.5.3 For any set S of safety conditions and variable x, we define the 
weakening of S at x, to be denoted W(S,x), to be the set of safety conditions given 
by removing from S all safety conditions of the form z < y where x <s y and then 
adding the safety condition x < y for all such y. 

The set W(S, x) is a weakening of S in the sense that every total ordering consis- 
tent with S is also consistent with W(S,x). However W(S,x) usually admits more 
total orderings than S does; for example, if S specifies a total order then W(S,x) 
allows any order which agrees with S up to and including the variable x. In general, 
we have the following: 

Lemma 3.5.4 For any set S of safety conditions, variable x, and total order < 
consistent with the safety conditions in W(S,x), there exists a total order consistent 
with S that agrees with < through x. 

We now state the PDB procedure. 

Procedure 3.5.5 To solve a CSP: 

P := any complete assignment of values to variables 
T:=0 
S:=0 
until either P is a solution or 1 G F: 

7 := a constraint violated by P 

(r,5>:=simp(rj5,7) 
P := any acceptable next assignment for T 
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Procedure 3.5.6 To compute simp(r,5,7): 

select the conclusion £ of 7 so that S U S7 is acyclic 
r:=ru{7} 
S:=W(SUS7,x) 
remove from T each nogood with x in its antecedent 
if the conclusions of nogoods in T rule out all 

possible values for x then 
p := the result of resolving all nogoods in T with x 

in their conclusion 
(r,S):=simp(T,S,p)       . 

end if 
return (r, S) 

The above simplification procedure maintains the invariant that T be acceptable 
and S be acyclic; in addition, the time needed for a single call to simp appears to 
grow significantly sublinearly with the size of the problem in question (see Section 
3.7). 

Theorem 3.5.7 Procedure 3.5.5 terminates.  The number of calls to simp is bounded 
by the size of the problem being solved. 

As an example, suppose that we return to our map-coloring problem. We begin 
by coloring all of the countries red except Bulgaria, which is green. The following 
table shows the total assignment that existed at the moment each new nogood was 
generated. 

A B C D E add drop 
r 9 r r r C = r ->■ A^r 1 
b 9 r r r D = r -> E ^ r 2 
b 9 r r 9 B = g-*E^g 3 
b 9 r r b A = b^E^b 

(A = b)A(B = g) 
-»■ D^r 

D<E 

4 
5 

6 

2 

b 9 r 9 r B=g^D^g 7 
b 9 r b r A^b^D^b 

A = b->B^g 
B <E 
B <D 

8 
9 
10 
11 

3,5,7 
6 

The initial coloring violates a variety of constraints; suppose that we choose to 
work on one with Albania in its conclusion because Albania is involved in three 
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violated constraints. We choose C = r -» A ^ r specifically, and add it as (1) above. 
We now modify Albania to be blue. The only constraint violated is that Denmark 

and England be different colors, so we add (2) to T. This suggests that we change the 
color for England; we try green, but this conflicts with Bulgaria. If we write the new 
nogood as E = g -» B / g, we will change Bulgaria to blue and be done. In the table 
above, however, we have made the less optimal choice (3), changing the coloring for 
England again. 

We are now forced to color England blue. This conflicts with Albania, and we 
continue to leave England in the conclusion of the nogood as we add (4). This nogood 
resolves with (2) and (3) to produce (5), where we have once again made the worst 
choice and put D in the conclusion. We add this nogood to T and remove nogood 
(2), which is the only nogood with D in its antecedent. In (6) we add a safety 
condition indicating that D must continue to precede E. (This safety condition has 
been present since nogood (2) was discovered, but we have not indicated it explicitly 
until the original nogood was dropped from the database.) 

We next change Denmark to green; England is forced to be red once again. But 
now Bulgaria and Denmark are both green; we have to write this new nogood (7) 
with Denmark in the conclusion because of the ordering implied by nogood (5) above. 
Changing Denmark to blue conflicts with Albania (8), which we have to write as 
A = b ->■ D / b. This new nogood resolves with (5) and (7) to produce (9). 

We drop (3), (5) and (7) because they involve B = g, and introduce the two safety 
conditions (10) and (11). Since E follows B, we drop the safety condition E < D. 
At this point, we are finally forced to change the color for Bulgaria and the search 
continues. 

It is important to note that the added flexibility of PDB over dynamic backtracking 
arises from the flexibility in the first step of the simplification procedure where the 
conclusion of the new nogood is selected. This selection corresponds to a selection of 
a variable whose value is to be changed. 

As with the procedure in the previous section, when given a CSP that is a union 
of disjoint CSPs the above procedure will treat the two subproblems independently. 
The total running time remains the sum of the times required for the subproblems. 

3.6    Arbitrary Movement 

Partial-order dynamic backtracking still does not provide total freedom in the choice 
of direction through the search space. When a new nogood is discovered, the existing 
partial order constrains how we are to interpret that nogood - roughly speaking, 
we are forced to change the value of late variables before changing the values of 
their predecessors. The use of a partial order makes this constraint looser than 
previously, but it is still present. In this section, we allow cycles in the nogoods and 
safety conditions, thereby permitting arbitrary choice in the selection of the variable 
appearing in the conclusion of a new nogood. 
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The basic idea is the following: Suppose that we have introduced a loop into the 
variable ordering, perhaps by including the pair of nogoods x -> ->y and y ->• x. 
Rather than rewrite one of these nogoods so that the same variable appears in the 
conclusion of both, we will view the (x, y) combination as a single variable that takes 
a value in the product set Vx x Vy. 

If x and y are variables that have been "combined" in this way, we can rewrite a 
nogood with (for example) x in its antecedent and y in its conclusion so that both x 
and y are in the conclusion. As an example, we can rewrite 

x vxA-z = vz->y^vy (3.4) 

as 
z = vz->(x,y)^{vx,Vy) (3.5) 

which is logically equivalent. We can view this as eliminating a particular value for 
the pair of variables (x, y). 

Definition 3.6.1 Let S be a set of safety conditions (possibly not acyclic). We will 
write x =s y if x <s y and y <s x. The equivalence class of x under = will be denoted 
(x)s- If 7 is a nogood whose conclusion involves the variable x, we will denote by js 

the result of moving to the conclusion of 7 all terms involving members of (x)s. If 
r is a set of nogoods, we will denote by Ts is the set of nogoods of the form js for 
7GT. 

It is not difficult to show that for any set S of safety conditions, the relation =s 

is an equivalence relation. As an example of rewriting a nogood in the presence of 
ordering cycles, suppose that 7 is the nogood (3.4) and let S be such that (y)s = 
{x,y}; now 75 is given by (3.5). 

Placing more than one literal in the conclusions of nogoods forces us to reconsider 
the notion of an acceptable next assignment: 

Definition 3.6.2 A cyclically acceptable next assignment for a nogood set T under 
a set S of safety conditions is a total assignment P of values to variables satisfying 
every nogood in Ys and every antecedent of every such nogood. 

We now define a third dynamic backtracking procedure. Note that W(S, x) remains 
well defined even if S is not acyclic, since W(S, x) drops ordering constraints only on 
variables y such that x <s y. 
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Procedure 3.6.3 To solve a CSP: 

P := any complete assignment of values to variables 
T:=0 
S:=0 
until either P is a solution or JL G T: 

7 := a constraint violated by P 
<r,S):=simp(r\S,7) 
P := any cyclically acceptable next assignment 

for T under S 

Procedure 3.6.4 To compute simp(r,S, 7): 

select a conclusion x for 7 (now unconstrained) 
r-ru{7} 
S:= W(S{JS7,x) 
remove from T each nogood a with an element of (x)s 

in the antecedent of as 
if the conclusions of nogoods in Ts rule out all 

possible values for the variables in (x)s then 
p := the result of resolving all nogoods in Ts whose 

conclusions involve variables in (x)s 
(r,S):=simp(T,S,p) 
end if 

return (r, S) 

If the conclusion is selected so that S remains acyclic, the above procedure is 
identical to the one in the previous section. 

Proposition 3.6.5 Suppose that we are working on a problem with n variables, that 
the size of the largest domain of any variable is v, and that we have constructed T and 
S using repeated applications of simp. If the largest equivalence class (x)s contains d 
elements, the space required to store T is o(n2vd). 

If we have an equivalence class of d variables each of which has v possible values 
then the number of possible values of the "combined variable" is vd. The above 
procedure can now generate a distinct nogood to eliminate each of the vd possible 
values, and the space requirements of the procedure can therefore grow exponentially 
in the size of the equivalence classes. The time required to find a cyclically allowed 
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next assignment can also grow exponentially in the size of the equivalence classes. We 
can address these difficulties by selecting in advance a bound for the largest allowed 
size of any equivalence class. In any event, termination is still guaranteed: 

Theorem 3.6.6 Procedure 3.6.3 terminates. The number of calls to simp is bounded 
by the size of the problem being solved. 

Selecting a variable to place in the conclusion of a new nogood corresponds to 
choosing the variable whose value is to be changed on the next iteration and is anal- 
ogous to selecting the variable to flip in GSAT. Since the choice of conclusion is 
unconstrained in the above procedure, the procedure has tremendous flexibility in 
the way it traverses the search space. Like the procedures in the previous sections, 
Procedure 3.6.3 continues to solve combinations of independent subproblems in time 
bounded by the sum of the times needed to solve the subproblems individually. 

Here are these ideas in use on a Boolean CSP with the constraints a —)■ 6, b —> c 
and c —>■ -ib. As before, we present a trace and then explain it: 

a b c add to T remove from T 
t f f a-^b 1 
t t f b ->■ c 2 
t t t c —> —16 3 

->a 4 1 
a <b 5 

The first three nogoods are simply the three constraints appearing in the problem. 
Although the orderings of the second and third nogoods conflict, we choose to write 
them in the given form in any case. 

Since this puts b and c into an equivalence class, we do not drop nogood (2) at 
this point. Instead, we interpret nogood (1) as requiring that the value taken by (b, c) 
be either (t,t) or (t, /); (2) disallows (t, /) and (3) disallows (t,t). It follows that the 
three nogoods can be resolved together to obtain the new nogood given simply by -ia. 
We add this as (4) above, dropping nogood (1) because its antecedent is falsified. 

3.7    Experimental Results 

In this section, we present preliminary results regarding the implemented effectiveness 
of the procedure we have described. The implementation is based on the somewhat 
restricted Procedure 3.5.5 as opposed to the more general Procedure 3.6.3. We com- 
pared a search engine based on this procedure with two others, TABLEAU [11] and 
WSAT, or "walk-sat" [60]. TABLEAU is an efficient implementation of the Davis- 
Putnam algorithm and is systematic; WSAT is a modification to GSAT and is not. We 
used WSAT instead of GSAT because WSAT is more effective on a fairly wide range of 
problem distributions [60]. 

49 



The experimental data was not collected using the random 3-SAT problems that 
have been the target of much recent investigation, since there is growing evidence that 
these problems are not representative of the difficulties encountered in practice [12]. 
Instead, we generated our problems so that the clauses they contain involve groups 
of locally connected variables as opposed to variables selected at random. 

Somewhat more specifically, we filled an n x n square grid with variables, and 
then required that the three variables appearing in any single clause be neighbors in 
this grid. LlSP code generating these examples appears in the appendix. We believe 
that the qualitative properties of the results reported here hold for a wide class of 
distributions where variables are given spatial locations and clauses are required to 
be local. 

The experiments were performed at the crossover point where approximately half 
of the instances generated could be expected to be satisfiable, since this appears to be 
where the most difficult problems lie [11]. Note that not all instances at the crossover 
point are hard; as an example, the local variable interactions in these problems can 
lead to short resolution proofs that no solution exists in unsatisfiable cases. This is in 
sharp contrast with random 3-SAT problems (where no short proofs appear to exist 
in general, and it can even be shown that proof lengths are growing exponentially 
on average [7]). Realistic problems may often have short proof paths: A particular 
scheduling problem may be unsatisfiable simply because there is no way to schedule 
a specific resource as opposed to because of global issues involving the problem in its 
entirety. Satisfiability problems arising in VLSI circuit design can also be expected 
to have locality properties similar to those we have described. 

The problems involved 25, 100, 225, 400 and 625 variables. For each size, we 
generated 100 satisfiable and 100 unsatisfiable instances and then executed the three 
procedures to measure their performance. (WSAT was not tested on the unsatisfiable 
instances.) For WSAT, we measured the number of times specific variable values were 
flipped. For PDB, we measured the number of top-level calls to Procedure 3.5.6. For 
TABLEAU, we measured the number of choice nodes expanded. WSAT and PDB were 
limited to 100,000 flips; TABLEAU was limited to a running time of 150 seconds. 

The results for the satisfiable problems were as follows. For TABLEAU, we give the 
node count for successful runs only; we also indicate parenthetically what fraction of 
the problems were solved given the computational resource limitations. (WSAT and 
PDB successfully solved all instances.) 

Variables PDB WSAT TABLEAU 
25 35 89 9 (1.0) 
100 210 877 255 (1.0) 
225 434 1626 504 (.98) 
400 731 2737 856 (.70) 
625 816 3121 502 (.68) 

For the unsatisfiable instances, the results were: 
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Variables PDB TABLEAU 
25 122 8 (1.0) 
100 509 1779 (1.0) 
225 988 5682 (.38) 
400 1090 558 (.11) 
625 1204 114 (.06) 

The times required for PDB and WSAT appear to be growing comparably, although 
only PDB is able to solve the unsatisfiable instances. The eventual decrease in the 
average time needed by TABLEAU is because it is only managing to solve the easiest 
instances in each class. This causes TABLEAU to become almost completely ineffective 
in the unsatisfiable case and only partially effective in the satisfiable case. Even where 
it does succeed on large problems, TABLEAU'S run time is greater than that of the 
other two methods. 

Finally, we collected data on the time needed for each top-level call to simp in 
partial-order dynamic backtracking. As a function of the number of variables in the 
problem, this was: 

Number of PDB WSAT 
variables (msec) (msec) 

25 3.9 0.5 
100 5.3 0.3 
225 6.7 0.6 
400 7.0 0.7 
625 8.4 1.4 

All times were measured on a Sparc 10/40 running unoptimized Allegro Common 
Lisp. An efficient C implementation could expect to improve either method by ap- 
proximately an order of magnitude. As mentioned in Section 3.5, the time per flip is 
growing sublinearly with the number of variables in question. 

3.8    Discussion 

Our aim in this paper has been to make a primarily theoretical contribution, describ- 
ing a new class of constraint-satisfaction algorithms that appear to combine many of 
the advantages of previous systematic and nonsystematic approaches. Since our focus 
has been on a description of the algorithms, there is obviously much that remains to 
be done. 

First, of course, the procedures must be tested on a variety of problems, both 
synthetic and naturally occurring; the results reported in Section 3.7 only scratch the 
surface. It is especially important that realistic problems be included in any experi- 
mental evaluation of these ideas, since these problems are likely to have performance 
profiles substantially different from those of randomly generated problems [12]. The 
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experiments of the previous section need to be extended to include unit resolution, 
and we need to determine the frequency with which exponential space is needed in 
practice by the full procedure 3.6.3. 

Finally, we have left completely untouched the question of how the flexibility of 
Procedure 3.6.3 is to be exploited. Given a group of violated constraints, which should 
we pick to add to T? Which variable should be in the conclusion of the constraint? 
These choices correspond to choice of backtrack strategy in a more conventional set- 
ting, and it will be important to understand them in this setting as well. 

3.9    Proofs 

Proposition 3.3.5 Any acceptable set of nogoods can be stored in o(n2v) space where 
n is the number of variables and v is the maximum domain size of any single variable. 
Proof. This can be done by first storing the partial assignment encoded in T using 
o{n) space. The antecedent of each nogood can now be represented as a bit vector 
specifying the set of variables appearing in the antecedent, allowing the nogood itself 
to be stored in o(n) space. Since no two nogoods share the same conclusion there are 
at most nv nogoods.        ■ 
Lemma 3.5.4 For any set S of safety conditions, variable x and total order < con- 
sistent with the safety conditions in W(S, x), there is a total order consistent with S 
that agrees with < through x. 
Proof. Suppose that the ordering < is given by 

xi < ■ ■ ■ < xk = x < 2/i < • • • < ym (3.6) 

Now let <' be any ordering consistent with S, and suppose that the ordering given 
by <' on the yi in (3.6) is 

Z\ <  ■ • • <  zm 

We claim that the ordering given by 

x1,...,xk = x,z1,...,zm (3.7) 

is consistent with all of S. We will show this by showing that (3.7) is consistent with 
any specific safety condition u < v in S. 

If both u and v are Xj's, then the safety condition u < v will remain in W(S,x) 
and is therefore satisfied by (3.7). If both u and v are Zi's, they are ordered as u < v 
by <' which is known to satisfy the safety conditions in S. If u is an Xi and v is a zj: 

u < v clearly follows from (3.7). 
The remaining case is where u = Z{ and v = Xj for some specific Zj and Xj. The 

safety condition Zi < Xj cannot appear in W(S,x), since it is violated by < in (3.6). 
It must therefore be the case that Xj >s x. But now W(S,x) will include the safety 
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condition Xj > x, in conflict with the ordering given by (3.6).   This contradiction 
completes the proof.       ■ 
Theorem 3.5.7 Procedure 3.5.5 terminates. The number of calls to simp is bounded 
by the size of the problem being solved. 
Proof. In fact, we will not prove the theorem using Procedure 3.5.6 as stated. In- 
stead, consider the following simplification procedure: 

Procedure 3.9.1 To compute simp'(r, 5,7): 

select the conclusion a: of 7 so that S U S^y is acyclic 
r:=ru{7} 
s — wisus^x) 
remove from T any nogood with conclusion y such 

that y >s x 
if the conclusions of nogoods in T rule out all 

possible values for x then 
p := the result of resolving all nogoods in T with x 

in their conclusion 
<r,5>:=simp(r,S,/>) 

end if 
return (r, S) 

The difference between this procedure and Procedure 3.5.6 is that where Procedure 
3.5.6 removed only nogoods with x in their antecedents, Procedure 3.9.1 removes all 
nogoods with conclusion following x in the partial order <5. 

We now have the following: 

Lemma 3.9.2 Suppose that T and S are chosen so that S D S7 for each 7 e I\ Now 
if 7 is a nogood that violates some acceptable next assignment for T and (V, S') = 
simp'(r, 5,7), S' D 57 for each 7 € V. 

Proof. It is clear that the lemma would hold if we were to take S := S U 57, so we 
must only show that the weakening at x cannot drop the safety condition associated 
with some nogood in T'. But if the weakening drops the safety condition z < y, it 
must be that y >Sus1 x. Since x is the variable in the conclusion of 7, this implies that 
we must have y >s x, in which case the underlying nogood with y in its conclusion 
will have been deleted as well. ■ 

It follows from the lemma that if simp removes a nogood 7, simp' will drop it as 
well, since if y is the variable in the conclusion of 7, we clearly have of y >s x (since 
simp drops only nogoods with x in their antecedents) so that y >s x by virtue of the 
lemma and simp' drops the nogood as well. 

We therefore see that the difference between the two procedures is only in the set 
of nogoods maintained; Procedure 3.5.5 as stated retains a superset of the nogoods 
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retained by a version based on simp'. The set S of safety conditions is the same in 
both cases, and the nogood set is acceptable in both cases. It thus suffices to prove the 
theorem for simp', since the larger set of nogoods computed using simp will simply 
result in fewer acceptable next assignments for the procedure to consider. 

To see that the procedure using simp' terminates, we begin with the following 
definition: 

Definition 3.9.3 Given a set of safety conditions S and a fixed variable ordering 
x\ < %2 < • ■ ■ < xn that respects <s, let m(V, S, <) be the tuple (\xi\r,..., l^nlr)- We 
will denote by size(r, S, <) the size of the remaining search space as given in Defini- 
tion 3.3.3, and will denote by size(r, 5) the maximum size as < is allowed to vary. 

Proposition 3.9.4 Suppose that T is acceptable, S is acyclic, and S3 57 for each 
7 G T. Now if 7 is a nogood that violates some acceptable next assignment for T and 
(T',S') = simp'(r,5,7), then size(r',S') < size(I\S). 

Proof. Let x be the variable in the conclusion of 7. The first nontrivial step of 
the procedure simp' is T := T U {7}. This reduces \x\r- The next step is S := 
W(SL)S7,X). This introduces new orderings. Let < be any total ordering consistent 
with W(S U Sy,x). There must now exist a total ordering <' which is consistent • 
with S U S7 such that < and <' agree through x. Since \x\r has been reduced, the 
tuple associated with < must be lexicographically smaller then the tuple associated 
with <' at the time the procedure was called. This implies that all tuples allowed 
after S := W(S, x) U ST are lexicographically smaller than some tuple allowed at the 
beginning of the simplification. Applying Lemma 3.3.4, we can conclude that the size 
of the (r, S) pair has been reduced. 

The next step removes from T all nogoods with conclusion y >s x. Although this 
increases the size of the live domain for y, the fact that y >s x allows us to repeat 
the lexicographic argument of the preceding paragraph. Finally, if the simplification 
performs a resolution and executes a recursive call, then that recursion must continue 
to decrease the size of (r, S).       ■ 

It follows that a modification of Procedure 3.5.5 using simp' will in fact terminate 
in a number of steps bounded by the original value of size(T, S), which is the size of 
the problem being solved. Procedure 3.5.5 itself will terminate no less quickly. ■ 
Proposition 3.6.5 Suppose that we are working on a problem with n variables, that 
the size of the largest domain of any variable is v, and that we have constructed F and 
S using repeated applications o/simp. If the largest equivalence class (x)s contains d 
elements, the space required to store V is o(n2vd). 
Proof. We know that the nogood set will be acyclic if we group together variables 
that are equivalent under <r. Since this results in at most d variables being grouped 
together at any point, the maximum domain size in the reduced problem is vd and 
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the maximum number of nogoods stored is thus bounded by nvd. As previously, the 
amount of space needed to store each nogood is o{n).       ■ 
Theorem 3.6.6 Procedure 3.6.3 terminates. The number of calls to simp is bounded 
by the size of the problem being solved. 
Proof. The proof is essentially unchanged from that of Theorem 3.5.7; we provide 
only a sketch here. The only novel features of the proof involve showing that the 
lexicographic size falls as either variables are merged into an equivalence class or an 
equivalence class is broken so that the variables it contains are once again handled 
separately. In order to do this, we extend Definition 3.9.3 to handle equivalence 
classes as follows: 

Definition 3.9.5 Given a set of safety conditions S and a fixed variable ordering 
x\ < x2 < ■ • ■ < xn that respects <s, let \\%i\\ be given by  ■ 

II    11 = I*' ifxi = xi+1; 
l]Xin      lIIyeta>sMr>    otherwise. ^ ■ > 

Now denote by rh(T,S, <) the tuple (||xi||, • • •, ||^n||)- We will denote by rh(T,S) 
that tuple which is lexicographically maximal as < is allowed to vary. 

This definition ensures that the lexicographic value decreases whenever we com- 
bine variables, since the remaining choices for the combined variable aren't counted 
until the latest possible point. It remains to show that the removal of nogoods or 
safety conditions does not split an equivalence class prematurely. 

This, however, is clear. If removing a safety condition y < z causes two other 
variables y\ and y2 to become not equivalent, it must be the case that yi = y2 = z 
before the safety condition was removed. But note that when the safety condition 
is removed, we must have made progress on a variable x <s z. There is thus no 
lexicographic harm in splitting z's equivalence class.        ■ 

Experimental code Here is the code used to generate instances of the class of 
problems on which our ideas were tested. The two arguments to the procedure are 
the size s of the variable grid and the number c of clauses to be "centered" on any 
single variable. 

For each variable x on the grid we generated either [c\ or [c\ + 1 clauses at 
random subject to the constraint that the variables in each clause form a right triangle 
with horizontal and vertical sides of length 1 and where x is the vertex opposite the 
hypotenuse. There are four such triangles for a given x. There are eight assignments 
of values to variable for each triangle giving 32 possible clauses. Our Common Lisp 
code for generating these 3-SAT problems is given below. Variables at the edge of 
the grid usually generate fewer than c clauses so the boundary of the grid is relatively 
unconstrained. 
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(defun make-problem (s c &aux result xx yy) 

(dotimes (x s) 

(dotimes (y s) 
(dotimes (i (+ (floor c) 

(if (> (random 1.0) 
(rem c 1.0)) 

0 1))) 

(setq xx (+ x -1 (* 2 (random 2))) 
yy (+ y -1 (* 2 (random 2)))) 

(when (and (< -1 xx) (< xx s) 
(< -1 yy) (< yy s)) 

(push (new-clause x y xx yy s) 

result))))) 

result)) 

(defun new-clause (x y xx yy s) 

(mapcar 
#' (lambda (a b feaux (v (+ 1 (* s a) b))) 

(if (zerop (random 2)) v (- v)))) 

(list x xx x) (list y y yy)) 
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Chapter 4 

The Hazards of Fancy 
Backtracking 

When dynamic backtracking was tested on some important problem classes, a strange 
thing happened: performance went down relative to traditional methods. Now, it is 
possible for dependency techniques to degrade performance because the savings in 
number of nodes examined is outweighed by the extra book-keeping overhead. How- 
ever, in some notable cases dynamic backtracking was actually increasing the node 
count. In this paper, presented at AAAI-94 as "The hazards of fancy backtrack- 
ing" Baker explains how and why this can occur, and offers some suggestions for 
overcoming the problem. 

4.1    Introduction 

We are interested in systematic search techniques for solving constraint satisfaction 
problems. There has been some recent work on intelligent backtracking procedures 
that can return to the source of a difficulty without erasing the intermediate work. 
In this paper, we will argue that these procedures have a substantial drawback, but 
first let us see why they might make sense. Consider an example from [25]. Suppose 
we are coloring a map of the United States (subject to the usual constraint that only 
some fixed set of colors may be used, and adjacent states cannot be the same color). 

Let us assume that we first color the states along the Mississippi, thus dividing 
the rest of the problem into two independent parts. We now color some of the western 
states, then we color some eastern states, and then we return to the west. Assume 
further that upon our return to the west we immediately get stuck: we find a western 
state that we cannot color. What do we do? 

Ordinary chronological backtracking (depth-first search) would backtrack to the 
most recent decision, but this would be a state east of the Mississippi and hence 
irrelevant; the search procedure would only address the real problem after trying 
every possible coloring for the previous eastern states. 
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Backjumping [22] is somewhat more intelligent; it would immediately jump back 
to some state adjacent to the one that we cannot color. In the process of doing this, 
however, it would erase all the intervening work, i.e., it would uncolor the whole 
eastern section of the country. This is unfortunate; it means that each time we 
backjump in this fashion, we will have to start solving the eastern subproblem all 
over again. 

Ginsberg has recently introduced dynamic backtracking [25] to address this dif- 
ficulty. In dynamic backtracking, one moves to the source of the problem without 
erasing the intermediate work. Of course, simply retaining the values of the inter- 
vening variables is not enough; if these values turn out to be wrong, we will need to 
know where we were in the search space so that we can continue the search systemat- 
ically. In order to do this, dynamic backtracking accumulates nogoods to keep track 
of portions of the space that have been ruled out. 

Taken to an extreme, this would end up being very similar to dependency-directed 
backtracking [71]. Although dependency-directed backtracking does not save inter- 
mediate values, it saves enough dependency information for it to quickly recover its 
position in the search space. Unfortunately, dependency-directed backtracking saves 
far too much information. Since it learns a new nogood from every backtrack point, 
it generally requires an exponential amount of memory — and for each move in the 
search space, it may have to wade through a great many of these nogoods. Dynamic 
backtracking, on the other hand, only keeps nogoods that are "relevant" to the cur- 
rent position in the search space. It not only learns new nogoods; it also throws aways 
those old nogoods that are no longer applicable. 

Dynamic backtracking, then, would seem to be a happy medium between back- 
jumping and full dependency-directed backtracking. Furthermore, Ginsberg has pre- 
sented empirical evidence that dynamic backtracking outperforms backjumping on 
the problem of solving crossword puzzles [25]. 

Unfortunately, as we will soon see, dynamic backtracking has problems of its own. 
The plan of the paper is as follows. The next section reviews the details of dy- 

namic backtracking. Section 3 describes an experiment comparing the performance of 
dynamic backtracking with that of depth-first search and backjumping on a problem 
class that has become somewhat of a standard benchmark. We will see that dynamic 
backtracking is worse by a factor exponential in the size of the problem. Note that 
this will not be simply the usual complaint that intelligent search schemes often have 
a lot of overhead. Rather, our complaint will be that the effective search space it- 
self becomes larger; even if dynamic backtracking could be implemented without any 
additional overhead, it would still be far less efficient than the other algorithms. 

Section 4 contains both our analysis of what is going wrong with dynamic back- 
tracking and an experiment consistent with our view. In Section 5, we describe a 
modification to dynamic backtracking that appears to fix the problem. Concluding 
remarks are in Section 6. 
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4.2    Dynamic backtracking 

Let us begin by reviewing the definition of a constraint satisfaction problem, or CSP. 

Definition 4.2.1 A constraint satisfaction problem (V,D,C) is defined by a fi- 
nite set of variables V, a finite set of values Dv for each v e V, and a finite set of 
constraints C, where each constraint (W, P) G C consists of a list of variables W = 
(wi,...,wk) C V 
and a predicate on these variables P C DWl x • • • x DWk. A solution to the problem is 
a total assignment f of values to variables, such that for each v G V, f(v) G Dv and 
for each constraint ((wi,..., wk), P), (f(wx),..., f(wk)) G P. 

Like depth-first search, dynamic backtracking works with partial solutions; a par- 
tial solution to a CSP is an assignment of values to some subset of the variables, 
where the assignment satisfies all of the constraints that apply to this particular sub- 
set. The algorithm starts by initializing the partial solution to have an empty domain, 
and then it gradually extends this solution. As the algorithm proceeds, it will derive 
new constraints, or "nogoods," that rule out portions of the search space that contain 
no solutions. Eventually, the algorithm will either derive the empty nogood, proving 
that the problem is unsolvable, or it will succeed in constructing a total solution that 
satisfies all of the constraints. We will always write the nogoods in directed form; 
e-g-, 

(vi = qi) A • • • A (ufc_i = gfc_i) =>vk^qk 

tells us that variables vx through vk cannot simultaneously have the values qx through 
qk respectively. 

The main innovation of dynamic backtracking (compared to dependency-directed 
backtracking) is that it only retains nogoods whose left-hand sides are currently true. 
That is to say that if the above nogood were stored, then vx through vk-\ would have 
to have the indicated values (and since the current partial solution has to respect the 
nogoods as well as the original constraints, vk would either have some value other than 
qk or be unbound). If at some point, one of the left-hand variables were changed, then 
the nogood would have to be deleted since it would no longer be "relevant." Because 
of this relevance requirement, it is easy to compute the currently permissible values 
for any variable. Furthermore, if all of the values for some variable are eliminated by 
nogoods, then one can resolve these nogoods together to generate a new nogood. For 
example, assuming that DVg = {1,2}, we could resolve 

(vi = a) A (v3 = c) =^ v9 ^ 1 

with 
(v2 = b) A (u3 = c) => v9 ^ 2 

to obtain 
(yi = a) A (v2 = 6) => vs ^ c 
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In order for our partial solution to remain consistent with the nogoods, we would 
have to simultaneously unbind v3. This corresponds to backjumping from v9 to vs, 
but without erasing any intermediate work. Note that we had to make a decision 
about which variable to put on the right-hand side of the new nogood. The rule of 
dynamic backtracking is that the right-hand variable must always be the one that was 
most recently assigned a value; this is absolutely crucial, as without this restriction, 
the algorithm would not be guaranteed to terminate. 

The only thing left to mention is how nogoods get acquired in the first place. 
Before we try to bind a new variable, we will check the consistency of each possible 
value1 for this variable with the values of all currently bound variables. If a constraint 
would be violated, we write the constraint as a directed nogood with the new variable 
on the right-hand side. 

We have now reviewed all the major ideas of dynamic backtracking, so we will 
give the algorithm below in a somewhat informal style. For the precise mathematical 
definitions, see [25]. 

Procedure DYNAMIC-BACKTRACKING 

1. Initialize the partial assignment / to have the empty domain, and the set of 
nogoods T to be the empty set. At all times, / will satisfy the nogoods in T as 
well as the original constraints. 

2. If / is a total assignment, then return / as the answer. Otherwise, choose an 
unassigned variable v and for each possible value of this variable that would 
cause a constraint violation, add the appropriate nogood to T. 

3. If variable v has some value x that is not ruled out by any nogood, then set 
f(v) = x, and return to step 2. 

4. Each value of v violates a nogood. Resolve these nogoods together to generate 
a new nogood that does not mention v. If it is the empty nogood, then return 
"unsatisfiable" as the answer. Otherwise, write it with its chronologically most 
recent variable (say, w) on the right-hand side, add this directed nogood to T, 
and call ERASE-VARIABLE(IO). If each value of w now violates a nogood, then 
set v = w and return to step 4; otherwise, return to step 2. 

Procedure ERASE-VARIABLE(IO) 

1. Remove w from the domain of /. 

2. For each nogood 7 G T whose left-hand side mentions w, call DELETE-NOGOOD(7) . 

Procedure DELETE-NOGOOD(7) 

XA value is possible if it is not eliminated by a nogood. 

60 



1. Remove 7 from T. 

Each variable-value pair can have at most one nogood at a given time, so it is 
easy to see that the algorithm only requires a polynomial amount of memory. In [25], 
it is proven that dynamic backtracking always terminates with a correct answer. 

This is the theory of dynamic backtracking. How well does it do in practice? 

4.3    Experiments 

To compare dynamic backtracking with depth-first search and backjumping, we will 
use randomly-generated propositional satisfiability problems, or to be more specific, 
random 3-SAT problems with n variables and m clauses.2 Since a SAT problem 
is just a Boolean CSP, the above discussion applies directly. Each clause will be 
chosen independently using the uniform distribution over the (ß)23 non-redundant 
3-literal clauses. It turns out that the hardest random 3-SAT problems appear to 
arise at the "crossover point" where the ratio of clauses to variables is such that 
about half the problems are satisfiable [51]; the best current estimate for the location 
of this crossover point is at m = 4.24n + 6.21 [10]. Several recent authors have used 
these crossover-point 3-SAT problems to measure the performance of their algorithms 
[10, 64]. 

In the dynamic backtracking algorithm, step 2 leaves open the choice of which 
variable to select next; backtracking and backjumping have similar indeterminacies. 
We used the following variable-selection heuristics: 

1. If there is an unassigned variable with one of its two values currently eliminated 
by a nogood, then choose that variable. 

2. Otherwise, if there is an unassigned variable that appears in a clause in which 
all the other literals have been assigned false, then choose that variable. 

3. Otherwise, choose the unassigned variable that appears in the most binary 
clauses. A binary clause is a clause in which exactly two literals are unvalued, 
and all the rest are false.3 

The first heuristic is just a typical backtracking convention, and in fact is in- 
trinsically part of depth-first search and backjumping. The second heuristic is unit 
propagation, a standard part of the Davis-Putnam procedure for propositional sat- 
isfiability [14, 16]. The last heuristic is also a fairly common SAT heuristic; see for 
example [10, 80]. These heuristics choose variables that are highly constrained and 
constraining in an attempt to make the ultimate search space as small as possible. 

2Each clause in a 3-SAT problem is a disjunction of three literals. A literal is either a propositional 
variable or its negation. 

3On the very first iteration in a 3-SAT problem, there will not yet be any binary clauses, so 
instead choose the variable that appears in the most clauses overall. 
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Variables 
Average Number of Assignments 

Depth-First Search Backjumping Dynamic Backtracking 
10 20 20 22 
20 54 54 94 
30 120 120 643 
40 217 216 4,532 
50 388 387 31,297 
60 709 705 212,596 

Table 4.1: A comparison using randomly-generated 3-SAT problems. 

For our experiments, we varied the number of variables n from 10 to 60 in in- 
crements of 10. For each value of n we generated random crossover-point problems4 

until we had accumulated 100 satisfiable and 100 unsatisfiable instances. We then 
ran each of the three algorithms on the 200 instances in each problem set. The mean 
number of times that a variable is assigned a value is displayed in Table 1. 

Dynamic backtracking appears to be worse than the other two algorithms by a 
factor exponential in the size of the problem; this is rather surprising. Because of the 
lack of structure in these randomly-generated problems, we might not expect dynamic 
backtracking to be significantly better than the other algorithms, but why would it 
be worse? This question is of more than academic interest. Some real-world search 
problems may turn out to be similar in some respects to the crossword puzzles on 
which dynamic backtracking does well, while being similar in other respects to these 
random 3-SAT problems — and as we can see from Table 1, even a small "random 
3-SAT component" will be enough to make dynamic backtracking virtually useless. 

4.4    Analysis 

To understand what is going wrong with dynamic backtracking, consider the following 
abstract SAT example: 

a   -> x (4.1) 

=* ^a (4.2) 

^a   =* b (4.3) 

b   => c (4.4) 

c   => d (4.5) 

x   => ^d (4.6) 

Formula (1) represents the clause -laVs; we have written it in the directed form above 
to suggest how it will be used in our example.  The remaining formulas correspond 

4The numbers of clauses that we used were 49, 91, 133, 176, 218, and 261 respectively. 
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Variables 
Average Number of Assignments 

Depth-First Search Backjumping Dynamic Backtracking 
10 
20 
30 

77 
2,243 

53,007 

61 
750 

7,210 

51 
478 

3,741 

Table 4.2: The same comparison as Table 1, but with all variable-selection heuristics 
disabled. 

to groups of clauses; to indicate this, we have written them using the double arrow 
(=>). Formula (2) represents some number of clauses that can be used to prove that 
a is contradictory. Formula (3) represents some set of clauses showing that if a is 
false, then b must be true; similar remarks apply to the remaining formulas. These 
formulas will also represent the nogoods that will eventually be learned. 

Imagine dynamic backtracking exploring the search space in the order suggested 
above. First it sets a true, and then it concludes x using unit resolution (and adds a 
nogood corresponding to (1)). Then after some amount of further search, it finds that 
a has to be false. So it erases a, adds the nogood (2), and then deletes the nogood 
(1) since it is no longer "relevant." Note that it does not delete the proposition x — 
the whole point of dynamic backtracking is to preserve this intermediate work. 

It will then set a false, and after some more search will learn nogoods (3)-(5), and 
set b, c and d true. It will then go on to discover that x and d cannot both be true, 
so it will have to add a new nogood (6) and erase d. The rule, remember, is that the 
most recently valued variable goes on the right-hand side of the nogood. Nogoods (5) 
and (6) are resolved together to produce the nogood 

x=>->c (4.7) 

where once again, since c is the most recent variable, it must be the one that is 
retracted and placed on the right-hand side of the nogood; and when c is retracted, 
nogood (5) must be deleted also. Continuing in this fashion, dynamic backtracking 
will derive the nogoods 

x 

x 

(4.8) 

(4.9) 

The values of b and a will be erased, and nogoods (4) and (3) will be deleted. 
Finally, (2) and (9) will be resolved together producing 

->x (4.10) 

The value of x will be erased, nogoods (6)-(9) will be deleted, and the search proce- 
dure will then go on to rediscover (3)-(5) all over again. 
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Variables 
Average Number of Assignments 

Depth-First Search Backjumping Dynamic Backtracking 
10 20 20 20 
20 54 54 53 
30 120 120 118 
40 217 216 209 
50 388 387 375 
60 709 705 672 

Table 4.3: The same comparison as Table 1, but with dynamic backtracking modified 
to undo unit propagation when it backtracks. 

By contrast, backtracking and backjumping would erase x before (or at the same 
time as) erasing a. They could then proceed to solve the rest of the problem without 
being encumbered by this leftover inference. It might help to think of this in terms 
of search trees even though dynamic backtracking is not really searching a tree. By 
failing to retract x, dynamic backtracking is in a sense choosing to "branch" on x 
before branching on a through d. This virtually doubles the size of the ultimate 
search space. 

This example has been a bit involved, and so far it has only demonstrated that 
it is possible for dynamic backtracking to be worse than the simpler methods; why 
would it be worse in the average case? The answer lies in the heuristics that are being 
used to guide the search. 

At each stage, a good search algorithm will try to select the variable that will make 
the remaining search space as small as possible. The appropriate choice will depend 
heavily on the values of previous variables. Unit propagation, as in equation (1), is an 
obvious example: if a is true, then we should immediately set x true as well; but if a 
is false, then there is no longer any particular reason to branch on x. After a is unset, 
our variable-selection heuristic would most likely choose to branch on a variable other 
than x; branching on x anyway is tantamount to randomly corrupting this heuristic. 
Now, dynamic backtracking does not really "branch" on variables since it has the 
ability to jump around in the search space. As we have seen, however, the decision 
not to erase x amounts to the same thing. In short, the leftover work that dynamic 
backtracking tries so hard to preserve often does more harm than good because it 
perpetuates decisions whose heuristic justifications have expired. 

This analysis suggests that if we were to eliminate the heuristics, then dynamic 
backtracking would no longer be defeated by the other search methods. Table 2 
contains the results of such an experiment. It is important to note that all of the 
previously listed heuristics (including unit resolution!) were disabled for the purpose 
of this experiment; at each stage, we simply chose the first unbound variable (using 
some fixed ordering).   For each value of n listed, we used the same 200 random 
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problems that were generated earlier. 
The results in Table 2 are as expected. All of the algorithms fare far worse than 

before, but at least dynamic backtracking is not worse than the others. In fact, it is 
a bit better than backjumping and substantially better than backtracking. So given 
that there is nothing intrinsically wrong with dynamic backtracking, the challenge is 
to modify it in order to reduce or eliminate its negative interaction with our search 
heuristics. 

4.5    Solution 

We have to balance two considerations. When backtracking, we would like to preserve 
as much nontrivial work as possible. On the other hand, we do not want to leave 
a lot of "junk" lying around whose main effect is to degrade the effectiveness of the 
heuristics. In general, it is not obvious how to strike the appropriate balance. For 
the propositional case, however, there is a simple modification that seems to help, 
namely, undoing unit propagation when backtracking. 

We will need the following definition: 

Definition 4.5.1 Let v be a variable (in a Boolean CSPJ that is currently assigned 
a value. A nogood whose conclusion eliminates the other value for v will be said to 
justify this assignment. 

If a value is justified by a nogood, and this nogood is deleted at some point, then the 
value should be erased as well. Selecting the given value was once a good heuristic 
decision, but now that its justification has been deleted, the value would probably 
just get in the way. Therefore, we will rewrite DELETE-NOGOOD as follows, and leave 
the rest of dynamic backtracking intact: 

Procedure DELETE-NOGOOD(7) 

1. Remove 7 from T. 

2. For each variable w justified by 7, call ERASE-VARIABLE(U>). 

Note that ERASE-VARIABLE calls DELETE-NOGOOD in turn; the two procedures 
are mutually recursive. This corresponds to the possibility of undoing a cascade of 
unit resolutions. Like Ginsberg's original algorithm, this modified version is sound 
and complete, uses only polynomial space, and can solve the the union of several 
independent problems in time proportional to the sum of that required for the original 
problems. 

We ran this modified procedure on the same experiments as before, and the results 
are in Table 3. Happily, dynamic backtracking no longer blows up the search space. 
It does not do much good either, but there may well be other examples for which this 
modified version of dynamic backtracking is the method of choice. 
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How will this apply to non-Boolean problems? First of all, for non-Boolean CSPS, 

the problem is not quite as dire. Suppose a variable has twenty possible values, all but 
two of which are eliminated by nogoods. Suppose further that on this basis, one of 
the remaining values is assigned to the variable. If one of the eighteen nogoods is later 
eliminated, then the variable will still have but three possibilities and will probably 
remain a good choice. It is only in the Boolean problems that an assignment can go all 
the way from being totally justified to totally unjustified with the deletion of a single 
nogood. Nonetheless, in experiments by Jönsson and Ginsberg it was found that 
dynamic backtracking often did worse than depth-first search when coloring random 
graphs [38]. Perhaps some variant of our new method would help on these problems. 
One idea would be to delete a value if it loses a certain number (or percentage) of the 
nogoods that once supported it. 

4.6    Discussion 

Although we have presented this research in terms of Ginsberg's dynamic backtrack- 
ing algorithm, the implications are much broader. Any systematic search algorithm 
that learns and forgets nogoods as it moves laterally through a search space will 
have to address—in some way or another—the problem that we have discussed. The 
fundamental problem is that when a decision is retracted, there may be subsequent 
decisions whose justifications are thereby undercut. While there is no logical reason 
to retract these decisions as well, there may be good heuristic reasons for doing so. 

On the other hand, the solution that we have presented is not the only one possible, 
and it is probably not the best one either. Instead of erasing a variable that has lost 
its heuristic justification, it would be better to keep the value around, but in the event 
of a contradiction remember to backtrack on this variable instead of a later one. With 
standard dynamic backtracking, however, we do not have this option; we always have 
to backtrack on the most recent variable in the new nogood. Ginsberg and McAllester 
have recently developed partial-order dynamic backtracking [30], a variant of dynamic 
backtracking that relaxes this restriction to some extent, and it might be interesting 
to explore some of the possibilities that this more general method makes possible. 

Perhaps the main purpose of this paper is to sound a note of caution with regard 
to the new search algorithms. Ginsberg claims in one of his theorems that dynamic 
backtracking "can be expected to expand fewer nodes than backjumping provided that 
the goal nodes are distributed randomly in the search space" [25]. In the presence 
of search heuristics, this is false. For example, the goal nodes in unsatisfiable 3-SAT 
problems are certainly randomly distributed (since there are not any goal nodes), and 
yet standard dynamic backtracking can take orders of magnitude longer to search the 
space. 

Therefore, while there are some obvious benefits to the new backtracking tech- 
niques, the reader should be aware that there are also some hazards. 
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Chapter 5 

The Application of Satisfiability 
Algorithms to Scheduling Problems 

In this chapter we turn from randomly generated problems to more structured job- 
shop scheduling problems. The results are rather surprising: a simple probing algo- 
rithm called ISAMP outperforms both state-of-the art local search and backtracking 
techniques. 

This work appeared as "Experimental results on the application of satisfiability 
algorithms to scheduling problems" by Crawford and Baker, at AAAI-94. 

5.1    Introduction 

Many classes of problems in knowledge representation, learning, planning, and other 
areas of AI are known to be NP-complete. In the worst case, all known algorithms 
for solving such problems require run time exponential in the size of the problem. 
Propositional satisfiability (SAT) is, in a sense, the prototypical example of an NP- 
complete problem. It is simply formalized, yet has an amazingly complex structure. 

Paradoxically, one perennial problem with work on SAT has been the difficulty 
of finding hard instances on which to test algorithms; it turns out to be surprisingly 
hard to collect a sufficiently large body of reasonably sized "real" problems. Randomly 
generated problems, on the other hand, tend to end up being quite easily solved. 

One important advance in recent years has been the discovery that the diffi- 
culty of randomly generated problems depends critically on whether they are under- 
constrained, over-constrained, or critically-constrained [5, 52, 11]. Consider a ran- 
domly generated constraint satisfaction problem. Intuitively, if there are very few 
constraints, it should be easy to find a solution (since there will generally be many 
solutions). Similarly, if there are very many constraints then an intelligent algorithm 
will generally be able to quickly close off most or all of the branches in the search 
tree. The hardest problems are thus those which are critically constrained: these 
problems have relatively few solutions, but most branches in the search tree go fairly 
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deep before reaching a dead end. 
Critically constrained randomly generated satisfiability problems provide a ready 

supply of hard test cases of arbitrary size. This discovery has lead to work on un- 
derstanding [11, 77], and solving [63] these problems. GSAT in particular appears to 
be well suited to solving large randomly generated critically constrained problems. 
However, concerns have been raised that randomly generated problems are bad test 
cases because they have no structure and thus may bear little resemblance to "real" 
problems. 

This paper reports on a series of experiments applying satisfiability algorithms to 
scheduling problems. In these experiments we have used Sadeh's job shop scheduling 
problems (both because they are readily accessible and because they have been well 
studied in the scheduling community). These problems do have a random component, 
namely the ready times and deadlines for the jobs. However, these times have been 
chosen according to a variety of distributions in an effort to mimic various types of 
scheduling problems encountered in the field. 

Our main result from these experiments is that Sadeh's scheduling problems bear 
little resemblance to critically constrained 3SAT, but not for the expected reason. 
When translated into SAT problems, these scheduling problems are much larger than 
previously studied random 3SAT problems. However, they are still solvable because 
they are highly under-constrained - very many solutions exist so it is a fairly simple 
matter to "bump" into one. However, GSAT has not proven to be the best algorithm 
on these problems. We hypothesize that this is due to the presence of a small num- 
ber of "control" variables (those define the schedule) and a much larger number of 
"dependent" variables (whose values are determined by the control variables). Since 
GSAT has no notion of forward checking, it appears to have considerable difficulty 
with problems involving large numbers of dependent variables (this effect is discussed 
further in in the discussion section). 

TABLEAU, a Davis-Putnam derivative, also performed poorly. On some problems 
it almost immediately found a solution. On others, however, it made an initial bad 
guess and was stuck searching a virtually infinite search tree (typically these trees 
were of depth seventy to eighty which means that the search trees have on the order 
of 270 nodes). We refer to this as the early mistake problem. 

This mode of failure suggested replacing depth-first search (in TABLEAU) with it- 
erative sampling [45]. Iterative sampling is a simple technique in which variable values 
are chosen at random (but with forward checking1) until a model or a contradiction is 
found. At this point we return to the root of the search tree and start over. Iterative 
sampling successfully solved all of Sadeh's scheduling problems after an average of 
only 64 restarts (using no heuristics). This confirms that these problems have a very 
large number of solutions, and suggests that the domain-specific heuristics commonly 
used in scheduling problems are less useful than might be expected. 

1 Adding forward checking to iterative sampling seems to have been first suggested by Kurt 
Konolige. 
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If these problems are truly representative of "real" constraint-satisfaction prob- 
lems, these results suggest quite a different research agenda than has previously been 
pursued. Large under-constrained constraint-satisfaction problems pose a number of 
interesting challenges not found in critically constrained problems. Chief among these 
is the early mistake problem. Forward checking also seems to be important, so GSAT 
is not necessarily the solution. The best current candidates seem to be hill-climbing 
algorithms with forward checking (see discussion section) and variants of dynamic 
backtracking [25]. It is also becoming clear that a purely propositional representation 
is impractical - a large fraction of the run time is spent simply reading the theory in 
from disk. Generalizing existing SAT algorithms to use some sort of "semi-first-order" 
shorthand is clearly in order. One other important question that currently remains 
open is whether these scheduling problems are perhaps similar to under-constrained 
3SAT problems. This seems relatively unlikely (since forward checking appears to be 
more important in scheduling than in any of the randomly generated problems) but 
deserves to be investigated. 

5.2    Scheduling 

The scheduling problem is ubiquitous. One may, for example, have a set of machine 
tools and be told to schedule a series of jobs so as to maximize the efficiency of 
the use of the tools. Alternatively, one may have a collection of transport ships in 
various locations and be told to transport some number of divisions to a variety of 
locations as reliably and cheaply as possibly. Or, one may have to assemble some 
number of surgical teams using a variety of specialists subject to a set of constraints 
on consecutive numbers of hours worked, availability of operating rooms, etc. In all 
cases, the general form of the problem is that one is given a set of tasks to achieve, 
and a collection of resources to use. 

One important type of scheduling problems is machine shop scheduling [78, 68]. 
Sadeh has developed a test suite of machine shop scheduling problems that are in- 
tended to represent a range of the types of machine shop scheduling problems en- 
countered in the field. 

Machine shop scheduling problems are usually taken to consist of a number of 
operations 1,... ,n to be scheduled subject to a collection of constraints. Each op- 
eration requires processing time pi (given as part of the problem). A solution is a 
schedule giving the start time, Si, for each operation. 

The constraints are usually taken to consist of sequencing restrictions, resource 
capacity constraints, and ready times and deadlines [68]. Sequencing restrictions, writ- 
ten i —y j state that operation % must complete before j can begin. The restriction 
i —y j is thus equivalent to St + Pi < Sj ("the start time of i plus processing time 
for i is less than or equal to the start time of j"). Resource capacity constraints, 
written cy, state that operations i and j conflict (usually because both require the 
same resource) and thus cannot be scheduled concurrently.  c;j is equivalent to the 
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disjunction (SJ + Pi < Sj) V (SJ + Pj < Sj) ("i completes before j begins or j completes 
before i begins"). Ready times, represented by ri; are the earliest time at which oper- 
ation % can start. A deadline d{ is the time by which operation i must be completed. 
Ready times thus just state Sj > 71 and deadlines that Sj + Pi < d{. 

We now discuss propositional satisfiability (SAT) and then show how scheduling 
problems can be converted into SAT problems. 

5.3 Propositional Satisfiability 

The propositional satisfiability problem is the following [20]: Given a set of clauses2 

C on a finite set U of variables, find a truth assignment3 for U that satisfies all the 
clauses in C. 

Clearly one can determine whether a satisfying assignment exists by trying all 
possible assignments. Unfortunately, if the set U is of size n then there are 2n such 
assignments. SAT algorithms thus typically either (1) walk through the space of 
assignments following some set of heuristics and hope to run into a solution, or (2) 
work with partial assignments and use some sort of forward checking to compute forced 
values for other variables. Algorithms in this second class generally use depth-first 
search to systematically search the space of assignments. In section on satisfiability 
algorithms below we discuss examples of both types of algorithms. 

5.4 Encoding Scheduling Problems as SAT Prob- 
lems 

At first glance there seems to be an "obvious" translation of scheduling problems 
into SAT: create variables to represent the start times of the operations (e.g., sit true 
means operation s; starts at time t), and create clauses to represent the necessary 
inequalities. However, the search space in SAT problems so generated turns out to 
be much larger than necessary. 

To see this, note that the key decisions to be made in scheduling problems concern 
the orderings of conflicting operations. Thus, for example, if i and j share a resource 
then we have to decide whether to schedule i then j, or j then i. We do not necessarily 
have to specify the exact start times of operations i and j, as long as we can be sure 
that there is some way to do so that is consistent with our ordering decisions (this 
observation, and the essence of the encoding we use here, is due to Smith and Cheng 
(1993)). 

More formally, for each pair of operations i and j, we introduce a boolean variable 
prij meaning ui precedes j", and for each operation i and each time t we introduce 

2A clause is a disjunction of variables or negated variables. 
3A truth assignment is a mapping from U to {true, false}. 
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a boolean variable saitt meaning "i starts at time t or later", and a boolean variable 
ebi>t meaning "i ends by time t."4 

Scheduling constraints are then translate by: 

i —y j becomes pritj = true 
Cjj becomes pr^j V pr^i 
Ti becomes sa^Ti = true 
di becomes eb^ = true 

We refer to the set of constraints generated by this mapping as C. 
It is also necessary to add a collection of "coherence conditions" on the introduced 

variables. In all conditions below, i and j are quantified over all relevant operations 
and t is quantified over all relevant times. 

1. sai:t -> saitt_i (coherence of sa). This ensures that if i starts at or after time t 
then it starts at or after time t — 1. 

2. ebijt ->• ebitt+i (coherence of eb). This ensures that if i ends by t then it ends by 
t + 1. 

3. saitt -> ^ebi>t+Pi-i (job i requires time pi). This ensures that if i starts at or 
after time t then it cannot end before time t + p^. 

4. sai>tApru -> saj>t+Pi (coherence of prid). This ensures that if i start at or after 
t and j follows i then j cannot start until i is finished. 

We refer to the set of coherence conditions as <S. Any mapping of the variables'pitj 

to {T, F} that extends to a model of C A <S is then a template describing a set of 
solutions to the scheduling problem. 

There are several advantages to this translation from scheduling problems to SAT: 

1. A set of legal values for the pr variables corresponds to a collection of feasible 
schedules. If there are additional optimization conditions (e.g., robustness), one 
can then use these to select a particular schedule. 

2. The constraints in S apply to all scheduling problems and thus need be com- 
puted and stored only once (they might therefore be compiled into a procedure 
rather than being stored explicitly). Further, S is symmetric under any permu- 
tation of the operations. In order to check for symmetries among operations it 
is thus only necessary to consider C. 

4To help avoid confusion, in this section all boolean variables (variables taking values 
{true, false}) are of length two (e.g., pritj) and variables taking integral values (e.g., s») are of 
length one. 
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3. Without loss of generality, one can omit the variable pritj (and all clauses con- 
taining it) if there are no sequencing restrictions or resource capacity constraints 
for i and j. This means that the size of the SAT problem is of order nd + c 
(where n is the number of operations, d is the number of distinct time points, 
and c is the number of constraints in the scheduling problem). If <S is repre- 
sented as a compiled procedure then the number of clauses in the SAT problem 
is further reduced to order c (plus the size of the compiled procedure). 

5.5    Three Satisfiability Algorithms 

5.5.1 Tableau 

TABLEAU is a Davis-Putnam algorithm that does a depth-first search of possible as- 
signments using unit propagation for forward checking. This basic algorithm dates 
back to the work of Davis, Logemann, and Loveland [13]. TABLEAU adds efficient 
data-structures for fast unit propagation and a series of heuristics for selecting branch 
variables (these are discussed in [11]). Most of these heuristics do not seem particu- 
larly helpful for scheduling problems (see discussion of experimental results below). 

Unit propagation consists of the repeated application of the inference rule: 
x 
-ix\/yi...Vyn 

j/i V ... V y„ 
(similarly for ->x). Unit propagation is a special case of resolution (the singleton x 
is resolved against the -ix in the clause). It is a particularly useful case, however, 
since it can always be performed to completion in time linear in the size of the theory, 
and since, in practice, it greatly reduces the number of nodes in the search tree (by 
propagating variable values through the theory). 

The basic depth-first search algorithm is then the following: 

tableau(theory) 
unit„propagate(theory); 
if contradiction discovered return(false); 

else if all variables are valued 
return(current assignment); 

else { 
x = some unvalued variable; 
return(tableau(theory AND x) OR 

tableau(theory AND NOT x)); 

} 

5.5.2 Gsat 
GSAT is the most successful hill-climbing search algorithm for SAT to date. A com- 
plete assignment of variables to values is always kept. Variables are "flipped" (their 
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value is changed) so as to increase the number of satisfied clauses (if possible). In our 
experiments we found the use of the "walk" strategy [61] to be critical. The basic 
WS AT ("walk sat") algorithm is the following: 

WSAT(theory) 
for i := 1 to MAX-TRIES { 

A := a randomly generated truth assignment; 

for j := 1 to MAX-FLIPS { 

if A is a solution return it; 
else { 

C := randomly chosen unsatisfied clause; 
With probability P, 

Flip a random variable in C; 

Otherwise (that is, with probability 1-P) 

Flip a variable in C resulting in the 

greatest decrease in the number of 

unsat clauses; 

> 

} 
} 
return failure 

> 

The experimental performance of GSAT [63] with walk on certain problem classes 
is impressive. GSAT is often able to find models for randomly generated 2000 vari- 
able critically-constrained 3SAT problems.5 Systematic methods (methods that are 
guaranteed to always to find a solution or determine that none exists) are currently 
not able to solve any critically-constrained problems of this size. 

5.5.3    Isamp 
ISAMP is basically a variant of TABLEAU in which one gives up on backtracking and 
simply starts over whenever a contradiction is discovered: 

Isamp(theory) { 
for i := 1 to MAX-TRIES { 

set all variables to unassigned; 
loop { 

if all variables are valued 
return(current assignment); 

v := random unvalued variable; 

assign v a randomly chosen value; 
unit„propagate(); 
if contradiction exit loop; 

} 

> 
return failure 

} 

5Since GSAT never determines unsatisfiability, there is no way to reliably determine what per- 
centage of satisfiable problems GSAT solves (but it is believed to be high). 
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Obviously this approach will only work on problems with a large number of models. 
One of the surprises in our work on scheduling problems has been that this algorithm 
outperforms both TABLEAU and GSAT. 

5.6    Experimental Results 

Our experiments were designed to assess the performance of each of these three al- 
gorithms on scheduling problems. We used the sixty scheduling problems produced 
by Sadeh [57]. Each of these problems consists of fifty operations to be scheduled 
subject to sequencing restrictions and resource capacity constraints. The operations 
are grouped into ten jobs of five operations each. Operations within each job must be 
performed in order. Further, each job requires one of five resources and each resource 
can be used by at most one job at a time. 

Ready times and deadlines were generated randomly using several distributions. 
The distributions were defined by two parameters: (1) degree of constraint: (w) wide, 
(n) narrow, and (t) tight, and (2) number of bottlenecks: none, one, or two. These 
two parameters yield the six classes shown in Figure 5.1. Sadeh produced ten sample 
problems from each class. 

The results for IS AMP and GSAT are shown in figure 5.1. The GSAT results are 
for our version of the WSAT ("walk sat") variant of GSAT [61]. These results are an 
average over ten runs on each problem. In each run GSAT was given ten tries of four 
million flips each which corresponds to about forty-five minutes of computation time. 
The mean flip and time data is for the successful cases only (these counts would be 
higher if we "punished" GSAT for the cases on which it ran out of time). For ISAMP 
the results are an average over 100 runs. ISAMP runs were given twenty-thousand 
tries. TABLEAU was run with only the non-horn heuristic ("branch first on variables 
appearing in non-horn clauses"). This has the effect of forcing TABLEAU to branch 
on the pr variables.6 Since TABLEAU currently has no random component, the results 
are for one run on each problem. TABLEAU was interrupted after forty-five minutes. 
The averages are over the successful cases only. All algorithms are implemented in 
C, and all experiments were run on a SPARC 10/51. 

In order to test the hypothesis that the lack of unit propagation was hurting GSAT, 
we performed a linear time simplification on the propositionally encoded scheduling 
problems and ran the experiments again. The simplification consisted of running 
unit propagation to completion on the initial theory (the encoding is such that the 
initial theories contain a number of unit clauses). We then deleted any clauses that 
were subsumed by a unit literal (e.g., if the theory contained x and x V y V z then 
we deleted the clause). Finally we "compacted" the encoding - our encoding uses 
integers to represent variables so this step ensured that if the largest variable in the 

6We have some evidence to suggest that branching on randomly chosen variables would be better 
for these problems, but have not yet finished this experiment with TABLEAU. 
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TABLEAU: 
Class Success Rate Branches Time (sec.) 

w/1 90 3947.1 255.4 
w/2 100 221.2 104.8 
n/1 70 1719,7 79.2 
n/2 100 93.8 90.6 
t/1 80 1160.4 66.3 
t/2 100 119.4 81.7 

GSAT: 
Class Success Rate Flips (millions) Time (sec.) 
w/1 99 6.7 500 
w/2 99 7.0 599 
n/1 100 3.2 258 
n/2 100 3.7 312 
t/1 96 3.9 274 
t/2 88 5.0 354 

ISAMP: 
Class Success Rate Tries Time (sec.) 
w/1 100 7 10 
w/2 100 15 13 
n/1 100 13 11 
n/2 100 45 21 
t/1 100 52 19 
t/2 100 252 68 

 Figure 5.1: Experimental results for scheduling problems.  

theory is n then every integer less than n is also used for some variable in the theory. 
The data for the simplified theories is shown in Figure 5.2. As expected, the GSAT 
run times are much lower. The ISAMP run times are also lower. We believe that this 
is primarily due to the fact that the simplified theory is smaller (and thus faster to 
read in from disk). We did not rerun TABLEAU since the simplification should have 
minimal effect on its run time. In this experiment GSAT and ISAMP were each run 
ten times on each problem. 

5.7    Discussion 

The success of ISAMP indicates that, given the right encoding, Sadeh's scheduling 
problems are not that difficult. The encoding we use is domain specific only in that it 
is implicitly based on the observation that the key choices to be made are the relative 
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GSAT: 
Class Success Rate Flips (millions) Time (sec.) 
w/1 100 0.39 27 
w/2 100 0.29 23 
n/1 100 0.31 23 
n/2 100 0.55 43 
t/1 100 1.1 77 
t/2 97 2.9 211 

ISAMP: 
Class Success Rate Tries Time (sec.) 
w/1 100 7 7 
w/2 100 18 10 
n/1 100 13 8 
n/2 100 42 15 
t/1 100 62 16 
t/2 100 180 43 

Figure 5.2: Experimental results for scheduling problems after simplification. 

orders of the conflicting operations. This is much less domain-specific than the slack- 
based heuristics used by Smith and Cheng [68]. Of course Smith and Cheng do solve 
these problems almost two orders of magnitude faster than ISAMP . However, most 
of this difference is probably due to our use of propositional logic as a representation 
language (just to read in a propositional version of these theories takes about thirty 
times as long as Smith and Cheng take to solve them). The obvious experiment of 
implementing ISAMP using a more natural representation language (e.g., a constraint- 
satisfaction language with integral valued variables) is underway. 

A great deal of recent work has been done on analysis and solution methods 
for randomly generated satisfiability problems. An important open question in this 
body of work has been its relevance to "real" problems. Our work attempts to begin 
providing an answer to this question by studying the performance of a variety of 
satisfiability algorithms on propositional encodings of scheduling problems. 

We have found that scheduling problems generate propositional theories that are 
much larger and much less constrained than the randomly generated theories generally 
studied. Further, the variables in scheduling problems can be partitioned into control 
variables that define a solution (e.g., the pr variables in scheduling problems) and 
dependent variables whose values are derived from the control variables (e.g., all the 
rest of the variables in the scheduling problems). 

The fact that' TABLEAU generally performs poorly on these problems while ISAMP 
performs well indicates that there are a large number of solutions but that these 
solutions are not uniformly distributed throughout the search space.   Rather there 
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seem to be large "deserts" containing no solutions. TABLEAU sometimes wanders into 
one of these deserts by making an unlucky choice at some early branch in the tree. 
It then has no way to recover. We refer to this as the early mistake problem. Since 
ISAMP restarts on every contradiction, it is sensitive only to the number of solutions, 
not their uniformity. 

The existence of a large number of dependent variables appears to be hobbling 
GSAT relative to ISAMP . One can see this by the following analysis. Assume that 
we can divide the variables in a problem into c control variables and d dependent 
variables, such that a polynomial time procedure will always determine whether an 
assignment to the control variables extends to a model. This will be the case, for 
example, if we choose the control variables to be variables appearing in non-horn 
clauses (e.g., the pr variables in scheduling problems) and choose unit propagation 
as the polynomial time procedure. If there are any constraints on the dependent 
variables the density of solutions in "control variable space" will then be higher than 
density of solutions in the original search space (to see this note that the density 
could be equal only if any satisfying assignment to the control variables extended to 
2d models). GsAT clearly searches in the full space (since it uses no forward checking). 
We hypothesize that ISAMP effectively searches in a smaller space (even though it 
makes no explicit distinction between control and dependent variables7) because of 
its use of unit propagation (TABLEAU also used unit propagation but it appears to 
fail because of the early mistake problem discussed above). Work on GSAT suggests 
that hill-climbing is a useful technique for satisfiability problems and in general one 
would expect hill-climbing to be superior to the random probing of ISAMP . This 
clearly suggests that the next step in this line of work is to develop algorithms that 
hill-climb in control space. 

7When we do explicitly force ISAMP  to value only the pr variables its performance falls. As yet 
we have no explanation for this phenomenon. 
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Chapter 6 

Limited Discrepancy Search 

The reason that ISAMP works for scheduling problems is that value propagation is 
critical - once some decisions have been made many other decisions are forced. This 
means that local search, which has no notion of value propagation, is ineffective. 
Backtracking search does utilize value propagation but it fails because of the early 
mistake problem - decisions made early in the search cannot be undone until huge por- 
tions of the search space are traversed. On even small job-shop scheduling problems 
this is often fatal. 

Limited discrepancy search (LDS) was one of the most important innovations to 
come out of this project. LDS uses value propagation, but avoids the early mistake 
problem. It turns out to be a quite general method that is applicable in almost any 
domain where the search space is huge, but where we have available a good, but 
imperfect, heuristic. 

This work first appeared as "Limited discrepancy search" by Harvey and Ginsberg, 
in IJCAI-95. 

6.1    Introduction 

In practice, many search problems have spaces that are too large to search exhaus- 
tively. One can often find solutions while searching only a small fraction of the space 
by relying on carefully tuned heuristics to guide the search toward regions of the space 
that are likely to contain solutions. For many problems, heuristics can lead directly 
to a solution—most of the time. In this paper, we consider what to do when the 
heuristics fail. 

We will focus our attention on procedures for tree search. Our objective is simple: 
For search problems with heuristically ordered successors, we will develop a search 
procedure that is more likely to find a solution in any given time limit than existing 
methods such as chronological backtracking and iterative sampling [46]. The outline 
of this paper is as follows: In the next section, we discuss existing algorithms. Limited 
discrepancy search (LDS) is introduced in Section 6.3 and compared to existing tech- 
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niques in Section 6.4. We discuss variations of LDS that we believe will be useful for 
solving realistic problems in Section 6.5. We conclude by presenting our experimental 
results in Section 6.6. 

6.2    Existing Strategies 

Consider a tree search problem for which the successor ordering heuristic is so good 
that it almost always leads directly to a solution. Such problems are common both in 
practice and in areas of AI research such as planning and scheduling [67, 76]. If the 
heuristic is good enough, one might be satisfied with an algorithm that follows the 
heuristic and just gives up if the heuristic fails to lead to a solution, an algorithm we 
will call "1-samp" [35, 67]. If the performance of 1-samp is not satisfactory, however, 
one is confronted with the question of what search algorithm to use instead. Iterative 
sampling and backtracking are two candidates. 

6.2.1 Iterative Sampling 

Iterative sampling [46], or isamp, is the simple idea of following random paths, or 
probes, from the root until eventually a path that leads to a solution is discovered. 
At each node on a path, one of the successors is selected at random and expanded. 
Then one of its successors is selected at random, and so on until a goal node or dead 
end is reached. If the path ends at a dead end, isamp starts a new probe, beginning 
again at the root. 

Since the algorithm samples with replacement, there is a uniform chance of finding 
a goal node on any particular probe. Provided that there is a goal node somewhere 
in the space, it follows that the probability of find a goal node increases uniformly 
toward 1 as the number of probes grows without limit. 

Iterative sampling has been shown to be effective on problems where the solution 
density is high [9], but its performance as a fallback procedure for 1-samp is question- 
able because it ignores the successor-ordering heuristic. If the heuristic were the key 
to solving the problem despite a low solution density, one would not expect iterative 
sampling to be effective.1 

6.2.2 Backtracking 

An alternative fallback procedure is simply to backtrack chronologically when 1- 
samp fails. Our experiments in Section 6.6 with scheduling show that this approach 
provides little improvement over 1-samp itself, and the analysis of mistakes provides 
an explanation [36]. There is a reasonable chance that, somewhere early in-1-samp's 

1 We have experimented with biasing the random selection of successors according to the heuristic, 
but our results suggest this is not a viable approach [36]. 
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path, it made a mistake by selecting a successor that had no goal nodes in the entire 
subtree below it. Once this early mistake is made and the successor's subtree is 
committed to, none of the subsequent decisions makes any difference. 

If the subtree below a mistake is large, chronological backtracking will spend all 
of the allowed run time exploring the empty subtree, without ever returning to the 
last decision that actually matters. If one is counting on the heuristics to find a goal 
node in a small fraction of the search space, then chronological backtracking puts a 
tremendous burden on the heuristics early in the search and a relatively light burden 
on the heuristics deep in the search. Unfortunately, for many problems the heuristics 
are least reliable early in the search, before making decisions that reduce the problem 
to a size for which the heuristics become reliable. Because of the uneven reliance on 
the heuristics, it is unlikely that chronological backtracking is making the best use of 
the heuristic information. 

6.3    Discrepancies 

Let us return to the search problems for which the successor ordering heuristic is a 
good one. Our intuition is that, when 1-samp fails, the heuristic probably would have 
led to a solution if only it had not made one or two "wrong turns" that got it off 
track. It ought to be possible to systematically follow the heuristic at all but one 
decision point. If that fails, we can follow the heuristic at all but two decision points. 
If the number of wrong turns is small, we will find a solution fairly quickly using this 
approach. 

We call the decision points at which we do not follow the heuristic "discrepancies." 
Limited discrepancy search embodies the idea of iteratively searching the space with 
a limit on the number of discrepancies allowed on any path. The first iteration, 
with a limit of zero discrepancies, is just like 1-samp. The next iteration searches all 
possibilities with at most one discrepancy, and so on. 

The algorithm is shown in Figure 6.1. We will assume the search tree is binary. 
SUCCESSORS is a function that returns a list of the either zero or two successors, with 
the heuristic preference first. 

In Figure 6.1, x is the discrepancy limit. We iteratively call LDS-PROBE, increas- 
ing x each time. LDS-PROBE does a depth-first search traversal of the tree, limiting 
the number of discrepancies to x. When eventually x reaches d, the maximum depth 
of the tree, LDS-PROBE searches the entire tree exhaustively. Thus the search is 
guaranteed to find a goal node if one exists and is guaranteed to terminate if there 
are no goal nodes. 

Since each iteration of LDS-PROBE limits the number of discrepancies to x instead 
of restricting the search to those nodes with exactly x discrepancies, iteration n 
reexamines the nodes considered by previous iterations (see Figure 6.2). As with other 
iterative techniques, however, the final iteration is far and away the most expensive 
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LDS-PROBE(node, k) 
1 if GOAL-P(node) return node 
2 si- SucCESSORS(node) 
3 if NULL-P(S) return NIL 
4 if k = 0 return LDS-PROBE(FIRST(S) , 0) 
5 else 
6 result <- LDS-PROBE(SECOND(S), k - 1) 
7 if result / NIL return result 
8 return LDS-PROBE(FIRST(S), k) 

LDS(node) 
1 for x <— 0 to maximum depth 
2 result <- LDS-PROBE(node, x) 
3 if result ^ NIL return result 
4 return NIL 

Figure 6.1: Limited Discrepancy Search. 

and the redundancy is therefore not a significant factor in the complexity of the 
search. 

Figure 6.2 shows a trace of LDS exhaustively searching a full binary tree of height 
three. The heuristic orders nodes left to right. The twenty pictures show all the 
paths to depth three, in order. The dotted lines and open circles represent nodes that 
were not backtracked over since the previous picture, so the trace can be followed by 
examining at the pictures in sequence. Counting all the black circles gives the total 
number of nodes expanded in the search, forty. 

In general, the number of nodes expanded by LDS with a discrepancy limit of x is 
bounded by dx+1 (for iteration x, there are at most dx fringe nodes, with each path 
to a fringe node expanding at most d nodes). If d is large, the cost of any single 
iteration dominates the summed costs of the preceding ones. 

6.4    Comparison with existing methods 

In practice, of course, we will typically not have time to search the space exhaustively. 
We would therefore like to know the likelihood of finding a solution, using the various 
methods, in the amount of time we are actually willing to wait. We will make this 
question precise by formalizing what we mean for the heuristic to make a "wrong 
turn." 
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Figure 6.2: Execution trace of LDS. 

6.4.1    Wrong Turns 

For simplicity, we will consider only the case of a full binary tree. The two children 
of each choice point are assumed to be in the order of heuristic preference. We will 
further assume that if a choice point has a goal node in the subtree below it, then with 
probability p (the heuristic probability) its first child has a goal node in its subtree. If 
the first child does not have a goal, the other child must have a goal since the choice 
point has only two children. In this case the heuristic has made a wrong turn by 
putting the children in the "wrong" order. 

The notion of a wrong turn is closely related to the mistake probability. We define 
a bad node to be a node that does not have any goal nodes in its subtree. We define 
a mistake to be a bad node whose parent is not bad. The mistake probability, m, 
is the probability that a randomly selected child of a good node is bad [36]. If the 
heuristic orders successors randomly, the heuristic probability is the complement of 
the mistake probability, p = 1 — m. If the heuristic does better than random selection, 
p > 1 — m. 

Figure 6.3 shows the four possibilities for a node and its children. An x indicates 

82 



W X Y Z 

Figure 6.3: The four possibilities for a node and its children. 

a bad node, a solid dot a good node. In the figure, p is the probability that a node is 
in class X or Y (the two classes with good left children) given that it is not in class 
W (the only class where the parent is bad). The mistake probability m is one half 
the probability that a node is in class Y or Z (the classes with one mistake child) 
given that it is not in class W. 

Experimentally, it appears that m is generally fairly constant throughout many 
search trees [36]. In order to simplify our analyses, we will assume that p is constant 
as well, although the experimental evidence is that p tends to increase somewhat as 
we search the tree because most heuristics are more accurate at deep nodes than at 
shallow ones. 

The chance of finding a solution on a random path to depth d (i.e., using isamp) is 
simply (1 — m)d. Using heuristics and assuming a constant p, 1-samp has probability 
pd of finding a solution on its one and only path. 

This observation allows us to estimate p by running 1-samp on a large training 
set of problems from the domain of interest. Let s be the success rate of 1-samp on 
the training set. Since the probability of success for 1-samp is pd, we have p = slld. 
If s is small, the training set may have to be impractically large to get a reliable 
estimate. For some problems, though, s is not small. Heuristics developed for job 
shop scheduling have been shown to yield a probability s that is nearly one for small 
research problems [67]. We have found in earlier experimental work on the same 
problems [35] that even standard CSP heuristics can yield a success rate of about 
75%. On larger scheduling problems [73] the success rate of 1-samp is less, but more 
sophisticated heuristics from operations research keep 1-samp competitive with other 
search techniques [6]. 

6.4.2    Theoretical results 

Given specific values for m and for p, Figures 6.4 and 6.5 show the theoretical prob- 
ability of success as a function of time for iterative sampling (isamp), chronological 
backtracking (DFS), and limited discrepancy search (LDS) for various heuristic prob- 
abilities p.2 The graphs show the probability of finding a solution in some number of 
probes i, where we define a probe to be a search until a dead end is reached for isamp 

2The combinatoric manipulations underlying these figures are quite involved and appear elsewhere 
[36]. 
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or LDS, or simply a search of an additional d nodes for DFS. The number of probes 
is limited by the height of the tree because the combinatorics of solving the problem 
beyond the one-discrepancy limit are intractable. The analyses are biased toward DFS 
because depth-first search is given the highest of the heuristic probabilities shown in 
each figure. 

Probability of success 
1.0 0 LDS (p = 0.95) 
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Figure 6.4: A problem of height 30. 

Figure 6.4 shows results for a problem of height 30, with a mistake probability m of 
0.2. The problem has about a billion fringe nodes of which a few more than a million 
are goals.3 With a solution density of 1/1000, we would expect iterative sampling to 
sample about 500 fringe nodes before finding a solution (807, to be exact).4 By many 
accounts, a problem with a solution density of 0.001 is a fairly easy problem. It takes 
only 807 • 30 = 24, 210 nodes, on average, to find a solution using iterative sampling. 
The expected number of probes is slightly more than the number of probes required 
to have a 50% chance of finding a solution, 560 • 30 = 16, 800.5 

In practice, we may be interested in the number of nodes required to find a solution 
with a higher probability of success. The number of nodes required by iterative 
sampling for a success probability of 0.8 on this problem is 1300 • 30 = 39, 000. 
Compare this to the performance of limited discrepancy search. For p — 0.95, LDS 
has probability of success 0.8 with just eleven probes, or 990 nodes. The savings, 
nearly a factor of forty, depends on the heuristic to order successors correctly seven 
out of eight times when one of the successors is a mistake. 

3The number of goals is (2 — 2m)d. 
4The expected number of probes is 1/(1 ■m)° 
5For example, the expected number of coin flips before getting heads is two, whereas it takes only 

a single coin flip to have probability 0.5 of getting heads. The number of probes required to achieve 
log(l-g) a given success probability s is lo (1_ (l-m)d)- 
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Figure 6.5: A problem of height 100. 

For p — 0.8 = 1 — m, the heuristic orders the successors correctly half the time, 
no better than random selection. The p = 0.8 curve in the figure (almost completely 
obscured by the isamp curve) shows that the performance of LDS is slightly worse than 
iterative sampling under these conditions. For p = 0.85,0.9, and 0.95 the heuristic 
orders nodes correctly five, six, and seven out of eight times. The curves show that 
the expected performance of LDS increases dramatically with the better p. 

The DFS curve for p = 0.95 rises only marginally above the probability 0.21 that 
its first fringe node is a goal.6 The futility of DFS is even clearer in the deeper search 
shown in Figure 6.5. 

The problem of Figure 6.5 has height 100, and approximately 1030 nodes. The 
density of solutions for m = 0.1 is about 2.6 x 10~5. Iterative sampling needs 26,096 
probes (2.6 million nodes) to have a 50% chance of success. If, as in the earlier 
problem, the heuristic orders nodes correctly seven out of eight times (p = 0.975 for 
m = 0.1), LDS has a similar chance with just twenty probes (2,000 nodes), a savings of 
three orders of magnitude over iterative sampling. The savings is similar if a success 
probability of 0.8 is desired instead. 

For higher probabilities of success, the three orders of magnitude savings is more 
doubtful, though perhaps not as doubtful as the graph seems to suggest. The one 
discrepancy iteration ends after 101 probes. The later probes of the one discrepancy 
iteration have much of their paths in common, so the likelihood that one of these 
later probes succeeds given that the others failed is small. After 101 probes, though, 
the two discrepancy iteration begins to explore "fresh" paths again. Consequently, 
we would expect the LDS curve to rise steadily once again where the graph leaves off.7 

6The probability that the first fringe node examined by DFS is a goal is simply jr. 
7As remarked earlier, we are unfortunately unable to verify this essentially theoretical claim 

because the combinatorics overwhelm us. 
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6.5    Variations and Extensions 

The reason we have focused on analyzing the early iterations of limited discrepancy 
search is that we believe in practice they are the only iterations that matter. Earlier, 
we argued on intuitive grounds that they would be more important than the later 
iterations. We will now take the position that in practice the later iterations don't 
matter at all. The reason is that if the objective is to maximize the probability of 
finding a solution in a given number of nodes, there are always better things to do 
than use those nodes on later iterations of limited discrepancy search. 

This section discusses a few of the more promising choices. Since some involve 
combinations with other techniques and others depend on search space properties 
that are difficult to quantify, this discussion will be less precise than that of earlier 
sections. Here, we will view limited discrepancy search as a tool that can be used in 
combination with other techniques to craft an effective search procedure for a given 
real world problem. 

6.5.1 Variable Reordering 

Constraint satisfaction problems and SAT problems are formulated as tree search by 
fixing an order for the variables to be instantiated or determining the order dynam- 
ically as the search progresses. In either case, a node in the search tree is a choice 
point for the possible instantiations of a particular variable. If an effective heuristic 
does not solve the problem with a limit of one discrepancy for some chosen variable 
order, it may still solve the problem with one discrepancy given a different variable 
order. The "wrong turn" instantiations that the heuristic makes on the first variable 
order may even follow from unit propagation on the second. This suggests the simple 
technique of repeating the one discrepancy iteration of LDS with different variable or- 
ders. When variable order is determined dynamically, it may suffice simply to begin 
the search with a different variable on each iteration. A similar technique improves 
the efficiency of depth-first search as well (see Section 6.6). 

6.5.2 Using Different Heuristics 

If multiple heuristics exist for a particular problem, one can try repeating the one- 
or two-discrepancy limit iterations of LDS with different heuristics. If one heuristic 
is unlucky and makes more than two wrong turns on a given problem, some other 
heuristic may be luckier. In general, what is hard for one heuristic may not be hard 
for another. LDS is an effective way to give one heuristic a reasonable chance before 
switching to another. 
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6.5.3 Combining LDS with Bounded Backtrack Search 

LDS can also be combined with bounded backtrack search (BBS) [36] to produce an 
algorithm that does not count "small" discrepancies (those that fail quickly) toward 
the discrepancy limit. This algorithm can also be viewed as modifying the heuristic 
to avoid choices that can be seen to fail using a fixed lookahead. (The algorithm itself 
appears in the last section of this chapter.) 

The combined LDS-BBS algorithm outperforms both LDS and BBS on job shop 
scheduling problems. In fact, LDS-BBS appears to be the algorithm of choice among all 
systematic backtracking strategies in this domain. There is a compelling theoretical 
argument for this. Many mistakes result in quick, if not immediate, failures. If a 
heuristic makes few wrong turns to begin with, it makes even fewer wrong turns that 
exceed the backtrack bound. Adding a bounded backtrack enables limited discrepancy 
search to discover solutions with a discrepancy limit of no more than the number 
of wrong turns that actually exceed the backtrack bound, potentially reducing the 
number of required iterations. Since the cost of each LDS iteration grows by a factor of 
d, the savings can be substantial. The added cost of the backtrack bound is relatively 
insignificant. Adding a backtrack bound of one node can cost at most a factor of 2. A 
backtrack bound of / costs at most a factor 2l and, for small I, is likely to be cheaper 
than the cost of an additional iteration. This upper bound is conservative since the 
heuristic, by assumption, makes few mistakes. 

6.5.4 Local Optimization Using LDS 

For problems like scheduling, LDS can also be used to search the neighborhood of an 
existing solution. The one discrepancy iteration of LDS is modified to begin following 
the path of the previous best solution instead of following the heuristic. At the depth 
of the discrepancy, the algorithm diverges from the previous solution and follows the 
heuristic for the remaining decisions. If the path ends in a solution that is better 
than the previous best, it can be adopted immediately or stored as a contender for 
the basis of the next iteration. 

This variation of LDS requires some measure of the "goodness" of a solution. For 
scheduling problems, the schedule length is often the appropriate measure. Searching 
for a schedule that takes less than time L, if successful, produces a schedule that 
takes time V. A set of standard LDS iterations can be repeated with the lower time 
bound L', or the optimization variant of LDS can be applied to consider variations of 
the previous schedule that differ by at most one discrepancy8 

8Alternatively, the time bound can be adjusted by binary division. A single iteration of LDS, 
though, is not a decision procedure, so failure to find a schedule for a given time bound is no proof 
that no such schedule exists. 
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6.5.5    Non-Boolean problems 

Finally, we should at least comment on the possible extension of LDS to constraint- 
satisfaction problems involving variables with domain sizes larger than 2. Although 
we have focussed on Boolean problems in this paper (in part because the most natural 
encoding of job-shop scheduling problems is Boolean [67]), the technique can obviously 
be applied in a wider setting. There are a variety of choices that will need to be 
made, however: Should the one-discrepancy search include every alternate value for 
the variable that violates the heuristic, or only the single next most attractive choice? 
If the number of nodes expanded is to increase by a factor of no more than d on each 
iteration, we will need to take the latter view. 

6.6    Experimental Results 

Our experimental results comparing limited discrepancy search with chronological 
backtracking and iterative sampling are based on a set of thirteen job shop scheduling 
problems taken from a recent survey of operations research techniques [73].9 Each 
of the problems involves scheduling the tasks that might be involved in producing 
widgets in a manufacturing setting: Each job ji needs to be performed on a particular 
machine rrii and takes time £;. There are constaints indicating that some jobs need 
to be completed before others can be started, and so on. 

The most effective encoding of problems such as these focusses directly on the 
resource contentions that arise; if two jobs ji and jk require the same machine, we 
introduce a variable pik indicating whether it is job ji or job jk that uses the machine 
first [67]. Because these variables are Boolean, the search space is far smaller than 
it would be if we were to make the variables the start times of the various jobs 
themselves. 

Our experimental work formulated each problem as a CSP with a loose bound on 
the schedule length. We then iteratively repeated the search, decreasing the bound 
each time to slightly less than the length of the last schedule found. We recorded the 
length of the best schedule found as a function of the total number of nodes expanded 
until reaching a final cutoff of 500,000 nodes per problem (see Figure 6.6). 

At any given node cutoff M < 500,000, each algorithm had completed some 
number of iterations for each problem, resulting in schedules of various lengths. We 
evaluated the schedules by these lengths, measuring their percent above the optimal 
length for each problem.10 We took the average percent above optimal (a function of 
M) as the overall measure of the performance of the search algorithms. 

In Figure 6.6, LDS is clearly superior to chronological backtracking and iterative 
sampling. We chose this particular benchmark, though, so that we could also compare 

9The problems can be obtained by sending a message to o.rlibrary@ic.ac.uk. 
10The optimal lengths were taken to be the best reported lengths as of November, 1994. 
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Figure 6.6: Comparison to DFS and iterative sampling. 

our results with other scheduling research in artificial intelligence and operations re- 
search. On this benchmark, contemporary OR scheduling programs score in the range 
0.45% to 8.31% above optimal [73]. Although the performance of our implementation 
does not match the best of these programs, it appears to be in the same range. 

Our scheduling implementation uses general CSP heuristics, which are weak by 
scheduling standards. Relative to the larger pool of programs, our implementation ap- 
pears to be comparable using limited discrepancy search but disastrous using chrono- 
logical backtracking and iterative sampling. Since limited discrepancy search relies 
heavily on the heuristics, we expect that the combination of LDS with the more accu- 
rate heuristics of the dedicated scheduling programs would have the best performance 
overall. Experiments in this vein are under way. 

We also experimented with a variety of nonsystematic algorithms [36]. Depth-first 
search with restarts, iterative broadening, and bounded backtrack search scored 4.9%, 
4.6%, and 4.2% above optimal on the benchmark and all outperformed pure limited 
discrepancy search slightly (LDS was also 4.9% above optimal).11 

However, since all of these nonsystematic methods rely less on the heuristics than 
LDS, we believe that LDS is likely to benefit more significantly from future improve- 

11 Although the overall difference of 0.7% between the best and worst of these algorithms may 
appear slight, it is substantial in this domain, since the problems can be expected to become expo- 
nentially more difficult as one approaches the crossover point corresponding to optimality [8]. 
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ments to the heuristics. As we commented in Section 6.5.3, limited discrepancy 
search can also be combined with bounded backtrack search. The results are shown 
in Figure 6.7.12 
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Figure 6.7: Adding bounded backtrack improves BBS. 

The combination of limited discrepancy with bounded backtrack search had the 
best performance of all the systematic and nonsystematic methods we tested. At 
3.68% over optimal, its performance with a four-node backtrack bound is respectable 
when compared to the dedicated scheduling programs. 

6.7    Discussion 

We have shown both theoretically and experimentally that limited discrepancy search 
is an effective way to exploit heuristic information in tree search problems. It is more 
effective than either chronological backtracking or iterative sampling, and we have 
attempted to explain why. 

The scheduling problems that we used in our experiments, while large by contem- 
porary research standards, are not large relative to the types and sizes of scheduling 
problems it would be useful to solve in the real world. Because of the complexity of 

12 The parameter I in the figure is the depth of backtrack allowed in checking for heuristics that 
led to dead ends. 
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scheduling, it is likely that the challenge of scaling up from research problems to real 
world problems will be met more quickly by advances in heuristics than by the evo- 
lution of brute force methods. We expect that in the future, techniques that depend 
on heuristics yet recover gracefully by searching alternatives when the heuristics fail 
will be the methods of choice for solving real world problems. 

6.8    The combined LDS-BBS algorithm 

LB-PROBE( node, k, look) 
1 if GOAL-P(node) return (node,0) 
2 s 4- SuccESSORs(node) 
3 if k > 0, s4- REVERSE(S) 

4 i4-0 
5 count 4- 0 
6 maxheight 4- 0 
7 for child in s 
8 if k = 0 and count > 1 break 
9 if k > 0 and i = 0 k' <- k - 1 
10 else k' <- k 
11 {result, height) <— LB-PROBF,(child, k!', look) 
12 maxheight <— M.Ax(maxheight, 1 + height) 
13 if result ^ NIL return (result, 0) 
14 i i- i + 1 
15 if height > look, count 4— count + 1 
16 return ( NIL, maxheight ) 

LDS-BBS(node, look) 
1 for x 4- 0 to maximum depth 
2 (result, height) 4- LB-PROBE(node, x, look) 
3 if result ^ NIL return result 
4 return NIL 
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Chapter 7 

Scaling Up 

The real question, of course, is not whether one can solve academic benchmarks, but 
whether one can solve scheduling problems of realistic size and character. In this 
chapter we turn to a body of work aimed at doing just that. The results to date have 
been quite good: as of this writing the CIRL scheduler is able to find the best known 
solutions to the set of large resource-constraints project scheduling problems posted 
to the internet by Barry Fox of McDonnell Douglas and Mark Ringer of Honeywell. 

The work described here was first reported on in "An approach to resource con- 
strained project scheduling" by Crawford appearing in the proceedings of the 1996 
Artificial Intelligence and Manufacturing Research Planning Workshop, published by 
AAAI press. 

7.1    Introduction 

Historically there has often been a mismatch between the types of scheduling problems 
that have been studied academically and the needs of the manufacturing community. 
The most obvious difference is that many real problems are much larger than com- 
mon academic benchmarks. A second, and equally important, difference is that real 
problems generally involve constraints that have a more complex structure than can 
be expressed within a limited framework like job shop scheduling. 

In this paper we overview ongoing work on resource constrained project scheduling 
(RCPS). RCPS is a generalization of job shop scheduling in which tasks can use 
multiple resources, and resources can have a capacity greater than one. RCPS is thus 
a good model for problems, like aircraft assembly, that cannot be expressed as job shop 
problems. In fact, if we take arguably the most widely used commercial scheduling 
program, Microsoft Project, RCPS seems to capture exactly the optimization problem 
that the "resource leveler" in Project solves. 

It turns out that the algorithms that have been developed for job shop scheduling 
do not work particularly well for RCPS. In this paper we overview an approach to 
RCPS that is based on the combination of limited discrepancy search (LDS) with a 

92 



novel optimization technique. The resulting system produces the best known sched- 
ules for problems of realistic size and character. 

7.2 Resource Constrained Project Scheduling 

A Resource Constrained Project Scheduling (RCPS) problem consists of a set of tasks, 
and a set of finite capacity resources. Each task puts some demand on the resources. 
For example, changing the oil might require one workman and one car lift. A partial 
ordering on the tasks is also given specifying that some tasks must preceded others 
(e.g., you have to sand the board before you can paint it). Generally the goal is to 
minimize makespan without violating the precedence constraints or over-utilizing the 
resources. 

RCPS is more general than job shop because resources can have capacity greater 
than one, and because tasks can use a collection of resources. This allows resources 
to be taken to be anything from scarce tools, to specialized workmen, to work zones 
(such as the cockpit of an airplane). RCPS problems arise in applications ranging 
from aircraft assembly to chemical refining. 

Formally, Resource Constrained Project Scheduling is the following: 
Given: A set of tasks T, a set of resources R, a capacity function C : R —>■ N, a 

duration function D : T —>■ N, a utilization function U : T x R —>■ N, a partial order 
■P on T, and a deadline d. 

Find: An assignment of start times S : T —>• N, satisfying the following: 

1. Precedence constraints:  if tx precedes t2 in the partial order P, then S(ti) + 

2. Resource constraints: For any time x, let running(x) = {t|5(t) < x < S(t) + 
D(t)} Then for all times x, and all r e R, £tertmninff(x) U(t, r) < C(r). 

3. Deadline: For all tasks t-: S(t) > 0 and S(t) + D(t) < d. 

7.3 A Benchmark Problem 

Our experiments have been run on a series of problems made available on the WWW 
at: 

http://www.neosoft.com/~benchmrx 

by Barry Fox of McDonnell Douglas and Mark Ringer of Honeywell, serving as Bench- 
marks Secretary in the AAAI SIGMAN and in the AIAA AITC, respectively. These 
problems have 575 tasks and 17 resources. Some of the resources represent zone (ge- 
ometric) constraints, and some represent labor constraints. Labor availability varies 
by shift. This is a synthetic problem that has been generated from experience with 

93 



multiple large scale assembly problems. It is comparable to real problems is size and 
character, but simpler in the complexity of the constraints. 

The results that have been posted to the WWW to date are shown in figure 7.1. 
Mark Ringer's results were found using a simple, first fit, interval based algorithm 
with no optimization. They were posted to encourage other contributions, rather 
than to generate the best solutions possible. 

Who Problem Note 
2 3 4 

Mark Ringer 
Nitin Agarwal 
Colin Bell 
Barry Fox 

45 
40 
39 
38 

57 
47 

45 

56 
57 

42 

Honeywell 
SAS 
Univ. of Iowa 
McDonnell Douglas 

Crawford et. al. 38 43 41 CIRL 

Crawford et. al. 38 39 38 (Lower Bound) 

Figure 7.1: Results 

7.4    Solution Methods 

The two most important methods used in our scheduler are doubleback optimization 
and limited-discrepancy search. We discuss each in turn and then discuss how they 
work together in the scheduler. 

7.4.1    Doubleback Optimization 

The optimizer starts with any schedule satisfying the precedence constraints and 
generates a legal (and often a shorter) schedule. It works in two steps: a right shift 
and then a left shift (a very similar technique, schedule packing was independently 
invented previously by Barry Fox [1996] ). 

We first establish the right hand end point. Recall that the availability of some 
labor resources varies by shift. Because of this it turns out that it matters where 
in the daily cycle the endpoint is set.1 The best heuristic seems to be to set it at 
the same point in the daily cycle as the end point of the current schedule. Another 
approach is to select the right hand end point randomly. This tends to shake things 
up a bit and makes iterating the optimizer more effective. 

Once the right hand endpoint is selected we right shift the schedule. In the right 
shift we take the tasks in order of decreasing finish times (i.e., from the right hand 
end).   We shift each task as far right as it will go.   In doing this shift we consider 

^his was first observed by Joe Pemberton. 
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only precedence constraints and resource constraints with previously shifted tasks 
(one way to think about this is to envision the new right hand endpoint as being at 
positive infinity: the tasks that have not yet been shifted do not interfere with the 
construction of the new schedule). 

Once the right shift is completed, we left shift back to time zero, starting from 
the beginning of the right shifted schedule. As before, we left shift as far as possible 
subject to precedence constraints, and resource conflicts with previously left shifted 
tasks. 

This sequence can be iterated. At some points this produces longer schedules 
(possibly then followed by shorter schedules after additional iterations). At present 
we have no theoretical method to predict the optimal number of iterations: we simply 
iterate ten times and keep the best schedule produced. 

To see the optimization works, consider the example shown in figure 7.2. 

1 —    3 

2    —    1 

Figure 7.2: A simple scheduling problem. 

1 —    3 

Figure 7.3: A bad schedule. 

Here the boxes represent tasks and the arrows represent precedence relations. The 
numbers in the boxes are the resources the tasks need. For this example all resources 
have capacity one. 

In order to break the resource conflict between the two tasks using resource one, 
we have to establish an ordering between the tasks. Assume that we do this non- 
optimally, generating the schedule shown in figure 7.3.2 

Now consider what happens when we apply the optimizer. The right-shifted, and 
then left-shifted, schedules are shown in figure 7.4.  The key thing to notice is that 

2Such a mistake is unlikely in such a small problem, but our ability to avoid analogous mistakes 
in larger problems is, in a sense, the entire source of the intractability of scheduling. 
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Right shift: 

1  *■ 3 

2  *• 1 

Left shift: 

1  *■ 3 

2 1 

Figure 7.4: The effect of a right and then left shift. 

in the right shift the bottom task falls to the end of the schedule (because it has no 
successors), while the top task is forced to the beginning of the schedule. Thus the 
left shift schedules the top task first, generating the optimal schedule. 

We can, of course, generate test cases in which the optimizer fails to find the 
shortest schedule, and we currently cannot offer any theoretical guarantees on the 
optimizer's performance. The strongest statement we can make is that on the bench- 
mark examples, the optimizer is experimentally the single most effective scheduling 
technique we are aware of. 

7.5    Why the Optimizer Works 

Experimentally doubleback optimization is quite effective. Starting with the schedule 
that starts each task as early as possible subject to only the precedence constraints, 
the optimizer is able to produce 43 day schedules for problem 4. The obvious question 
is why such a simple technique works so well. 

In a sense the key decision to be made in scheduling is the ordering of tasks 
that compete for a resource. In fact the search portion of our approach (see below) 
essentially searches all possible ways to break resource contention by establishing an 
ordering between competing tasks. 

The challenge of breaking resource contention is that we do not know which task 
will turn out to be the most important. In some cases it is obvious which tasks are 
most critical. For example, if a task must be followed by a long series of tasks, then 
clearly we want to give it a high priority - otherwise it will be postponed and the 
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"tail" of tasks that follow it is likely to exceed the deadline. Unfortunately it is not 
generally this simple (or else scheduling would be tractable). In essence what goes 
wrong is that we do not know how hard it will be to schedule the sets of tasks that 
must follow the conflicting tasks. However, if we start from a "seed" schedule, then 
we can decide with reference to the seed, how hard the subsequent tasks will be, and 
use this information to make better decisions about task priorities. 

It turns out that this is exactly what the optimizer does. The right shift pushes 
all tasks as late as possible. So, if a task is near the beginning of the right shifted 
schedule, it is there because it must be followed by a large number of tasks. So it 
should be given high priority. This is exactly what the left shift does: the left shifted 
schedule is formed by first schedule the tasks that are near the beginning of the right 
shifted schedule. 

7.6    Limited Discrepancy Search 

The results returned by the optimizer are sensitive to the "seed" schedule given to 
the optimizer. One can construct examples of "bad" schedules that the optimizer 
cannot correct. In a sense the optimizer is walking down to a kind of local minimum, 
and the quality of the final schedule depends on where the walk starts. 

Our implementation uses LDS [37] to produce a series of seed schedules that are 
then passed to the optimizer. Here we give a brief overview of LDS. Details can be 
found in Harvey and Ginsberg [1995]. 

Imagine that we have a schedule that satisfies the precedence constraints, but not 
the resource constraints. The natural way to produce a legal schedule is to iteratively 
pick a resource conflict, delay one or more tasks long enough to break the conflict, and 
then propagate these delays through the precedence constraints. This is, in fact, how 
our current implementation works (starting from the left shifted schedule satisfying 
only the precedence constraints). 

Each conflict that is broken creates a choice point, and breaking a series of conflicts 
produces a search tree. In the case of the benchmark problems this produces a search 
tree with a branching factor of about three, and a depth of about 1000. 

The traditional approach to searching such a tree is to use a depth-first search. 
In a depth-first search, we make a series of decisions until we reach a leaf node in the 
tree (in this case a leaf node is a schedule satisfying both precedence and resource 
constraints). We then back up to the last choice point and take the other branch, and 
follow it to a leaf node. We then back up again, this time to the latest branch point 
that still has unexplored children. Repeating this we eventually search the entire tree, 
and are thus guaranteed to find the optimal schedule. 

Unfortunately, if the search tree is 1000 nodes deep then a depth-first search will 
examine only a tiny fraction of the entire search tree (backing up perhaps 10 or 20 
nodes). Further, it is reasonable to expect that the choices that will be reconsidered 
are exactly the choice for which the heuristic is most likely to have made the right 
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decision. To see why this is so, notice that near the top of the search tree there are 
still many resource conflicts, so the heuristics are working from a "schedule" that is 
far from legal, so the heuristics are having to guess at how the resolution of these other 
conflicts will interact with the current conflict. Near the bottom of the tree, however, 
the schedule is in nearly its final form so the heuristics have good information on 
which to base their decisions. 

As a result, traditional depth-first search is relatively little help on scheduling 
problems. This has lead many practitioners to either use no search (just following 
the heuristic and returning the first schedule produced) or to use a local search (which 
can reconsider any decision at any point). 

In LDS we fix a bound on the number of times we will diverge from the heuristic. If 
that bound is zero then we just produce the single schedule given by always following 
the heuristics. If the bound is one then we produce a set of schedules generated by 
ignoring the heuristic exactly once. 

The difference between LDS and depth-first search is illustrated in figures 7.5 and 
7.6. In both search trees the branch preferred by the heuristic is always drawn on the 
left. In figure 7.5 the leaves are numbered according to the order in which depth-first 
search will visit them. Notice that if the heuristic makes a mistake high in the tree, 
for example, at the first choice point, then depth-first search will have to search half 
of the search tree before correcting the mistake. In the LDS search tree (figure 7.6), 
leaf nodes are labeled according to how many times the path from the root to the 
leaf diverges from the heuristic (i.e., how many right turns are necessary to reach the 
leaf). LDS searches the leaves by first searching the leaf marked 0, then all the leaves 
marked 1, and so on. 

If the heuristic is generally correct, but sometimes makes mistakes (as if generally 
the case with heuristics) then we can reasonably expect to find good quality schedules 
by searching the nodes for which the number of divergences is low. If the height of 
the tree is h, then the complexity of visiting each node with d divergences is hd. In 
practice we usually set d to 1 or 2. This produces much better results than a depth- 
first search examining the same number of nodes. Further, unlike a local search, 
LDS is systematic: if we continue to raise d we are guaranteed to eventually find the 
optimal schedule. 

12  34  56  78  9 10  1112  1314  1516 

Figure 7.5: Backtracking search tree. 
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12       12       23       12 

Figure 7.6: LDS search tree. 

Finally we should node that LDS and the optimizer work well together. The 
optimizer is sensitive to the nature of the schedule it gets as input. Since LDS 
produces a series of reasonably good (but different) seed schedules, we can optimize 
each one, and in the end produce a schedule that is significantly shorter than we get 
by just optimizing the schedule given by following the heuristics exactly. 

We can take this one step further and design the heuristic to avoid the kind of 
mistakes that the optimizer cannot fix.3 This goes beyond the scope of the current 
paper, but it turns out that we can identify certain kinds of task-ordering mistakes 
that a simple right-left shift is unable to untangle. We can then generate heuristics 
that will generally avoid these mistakes. This may cause us to find worse unoptimized 
schedules, but better schedules after optimization. 

7.7    Discussion 

We have outlined an approach to RCPS problems that is based on using LDS to 
generate a series of "seed" schedules that are passed to an optimizer that can be seen 
as doing a kind of scheduling-specific local search. The results are currently the best 
known on problems of realistic size and character. Work continues on transitioning 
this technology to various application areas, and increasing the complexity of the 
constraints we can represent and effective optimize under. 

3This idea came out of discussions with Matt Ginsberg. 
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Chapter 8 

Procedural Attachment 

For larger scheduling problems, like those discussed in chapter 7, it is impractical to 
encode as a constraint-satisfaction problem (CSP) or a satisfiability (SAT) problem. 
However, universal encodings, like CSP or SAT, have some clear advantages. If we 
have a problem encoded in such a form then we can immediately test out any one of a 
handful of modern, efficient algorithms with little or no programming time. Similarly, 
new algorithms can be implemented just once (and then be highly optimized), instead 
of being implemented once for each kind of specialized data structure required for a 
particular problem class. 

Fortunately one can often hide the details of a domain (like scheduling) in a 
"black box" procedure that takes a partial assignment (e.g., a partial schedule) and 
augments it with additional, forced, assignments. If we can do this successfully then 
we can implement each base search strategy (LDS, ISAMP, dynamic backtracking, 
TABLEAU, etc.) once and simply plug in a different black box propagator for each 
specific domain. This chapter addresses the key theoretical questions underlying 
such a modular architecture - specifically, what properties must the base level search 
algorithm and the propagator have to ensure that when plugged together they will be 
guaranteed to produce correct results. This work will appear in "Procedural reasoning 
in constraint satisfaction" by Jonsson and Ginsberg, at KR-96. 

8.1    Introduction 

For many constraint satisfaction problems there are simple functional relations (e.g. 
arithmetic equations) and simple subproblems (e.g. linear equations with unknowns) 
that can be done quickly, using simple algorithms. Needless to say, taking advantage 
of such methods can significantly decrease the time needed to find a solution. But 
doing so, without rewriting solvers and redoing correctness proofs, has proved to be 
difficult. 

For general search engines, such as tableau [10], adding any kind of procedural 
reasoning can only be done by axiomatizing the functions and algorithms, and add 
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the axioms as constraints to the problem. This requires introducing new variables and 
constraints, which increases the size of the problem. Furthermore, solving the problem 
is made harder since we end up using search to do simple things like arithmetic. 

To use the procedures themselves, two approaches have been used in the past. 
One has been to rewrite the search engine, adding the procedure as part of the search 
mechanism. The other is to use procedural attachments [32] (see [54] for a description 
of procedural attachments), functions that a solver can call to directly calculate the 
value of certain variables. 

Both solutions have their problems. The drawbacks of rewriting the solver each 
time we have a new technique to add, are many and obvious. 

• It becomes almost impossible to do rapid prototyping, e.g. to compare dif- 
ferent search engines, without sacrificing the efficiency of applicable reasoning 
algorithms. 

• Specialized implementations tend to be brittle, they cannot handle small changes 
in the problem or additional constraint types. 

• Without theoretical analysis, a search engine incorporating a number of addi- 
tional algorithms, may not have the properties that were expected. For exam- 
ple, some search engines that use the pure literal rule, become incomplete when 
combined with a symmetry breaking algorithm. 

The only advantage of specialized implementations is that clever coding can min- 
imize the overhead of using reasoning procedures, such as unit propagation, by using 
data structures that are as efficient as possible for both solver and procedure. 

The procedural attachment method has its problems too. 

• Procedural attachments directly calculate values for problem variables, making 
it difficult to reuse a procedure in another search engine that has different data 
structures. 

• The procedural attachments are basically functions, specifying the value of one 
variable, based on assignments to other variables. This makes it practically 
impossible to implement global algorithms like unit propagation. 

• Procedural attachments do not take into account the effects they have on the 
search engine. Many authors assume the search engine is cooperative, while 
others assume the search engine does simple backtracking [48]. For instance, 
procedural attachments do not work with some dependency directed methods. 

Instead of a handful of specially implemented solvers and a few safe procedural 
attachments, we need a general framework that allows us to combine any procedure 
with any search engine. The framework should precisely define what search engines 
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and procedures are, and how they interface. This would allow procedures and search 
engines to be developed and implemented separately, at the same time making it 
trivial to use any applicable procedures with the search engine of choice. Finally, 
to guarantee that search engines and procedures work correctly together, we want 
to establish conditions that are sufficient to guarantee correctness, completeness and 
systematicity. These conditions should be as weak as possible. 

In this paper we present such a general framework. In section 2 we present a 
formal description of search engines and extension procedures, and describe how the 
two are combined. In section 3, we prove easily satisfied conditions to be sufficient 
to guarantee systematicity and completeness. Concluding remarks are in section 4. 
In this extended abstract, all proofs, and a comprehensive example for the general 
reader, have been omitted. 

8.2    Framework 

8.2.1    Constraint Satisfaction Problems 

A constraint satisfaction problem is a finite set of variables, a finite set of domain 
values for each variable, and a collection of constraints on the values assigned to the 
variables. This is formalized as follows: 

Definition 8.2.1 A constraint satisfaction problem (CSP) is a triple (X, V, K), where 
X = {xi,...., xn} is a finite set of variables, V = {VXi} i>s a set °f domains for each 
variable, and K is a set of constraints. Each constraint is of the form (Y, R), where 
Y = {xh,..., xik} C X and R C n*=i VXiu. 

To solve a constraint satisfaction problem, we need to find an assignment for each 
variable, such that all the constraints are satisfied. Formally: 

Definition 8.2.2 A solution to a CSP (X,V,K) is an n-tuple (vXl,... ,vXn), where 
n = \X\, such that: 

1. vXk £ VXk for k = 1,..., n, and 
2. For any (Y, R) £ K with Y = {x^,..., xik}, we have (v^,..., vik) £ R. 

Few methods for solving constraint satisfaction problems are able to jump directly 
to a solution, most work with intermediate assignments that either do not assign 
values to all the variables, or do not satisfy all of the applicable constraints. These 
intermediate assignments are referred to as partial assignments: 

Definition 8.2.3 Given a CSP (X, V, K) with n variables, a partial assignment is 
a pair of m-tuples (x^,..., xim) and (v^,..., vim), where m < n and vik £ VXi for 
k = 1,..., m. A partial assignment will be called consistent if for any (Y, R) £ K with 
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Y = {xh ,...,xjk} C {Xil,..., xim }, we have (%,..., vjk) £ R. A partial assignment 
that is not consistent will be- called inconsistent. 

If p — (Y, W) is a partial assignment such that X{ $. Y, we will call the partial 
assignment (Y U {xi}, W U {v}) the result of extending p by assigning the value v to 
the variable Xi.  We will denote this by p+ {xif v). 

8.2.2    Search Engines 
Constraint satisfaction problems are invariably solved with a search engine, an algo- 
rithm that searches for a solution by modifying a partial assignment. The prototypical 
example of a search engine is the depth-first search method: 

Algorithm 8.2.4 To SOLVE a CSP (X,V,K), given a partial assignment p: 
1 if p is inconsistent, return failure 
2 if p is a solution, return p 
3 let ibea variable not assigned a value by p, let Ex = Vx 

4 if Ex is empty, return failure, else select v G Ex 

5 if SOLVE(p + (x, v)) succeeds, return result, 
else remove v from Ex and goto 4 

Taking p to initially be the empty assignment, it is well known that the algorithm 
is systematic and complete. 

The literature contains many such specific algorithms, but there is little discussion 
about search engines in abstract terms. Most researchers have focused on specific 
algorithms or presented ideas that intuitively apply to a certain class of algorithms. 
This, unfortunately, is not enough for our purpose, we need an abstract definition for 
search engines. 

Let us examine how the depth-first algorithm above works. We notice that the Ex 

sets are used to control the search, by keeping track of which value assignments have 
been tried. In fact, the algorithm makes steady progress by gradually shrinking the 
set of partial assignments which are consistent with the Ex sets. The recursive nature 
of the algorithm controls the backtracking, by automatically returning to the calling 
function when a SOLVE function call fails. To sum up these observations, the Ex sets 
define the state, and the recursive calls determine how the states are updated. 

Given this, the obvious way to define a search engine is to use a general state 
and an update function. This turns out to be too strong, since any Turing machine 
can be implemented within those parameters. Therefore we should focus on what 
differentiates search engines from other algorithms. 

Consider any search engine that works by examining partial assignments, changing 
or extending them, trying to get to a solution. Such an engine will invariably have 
a set of partial assignments that may be considered in the near future, and will use 
this set to determine which partial assignment it will examine next. This is true for 
engines ranging from simple depth-first search and isamp [47] to dependency directed 
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backtracking [69] and WSAT [62]. Based on these observations, we define a search 
engine as having a state that consists of a set of partial assignments, and a step 
function to update its state. 

To formally define a search engine, we will need to identify certain concepts in 
constraint satisfaction. Given a CSP C, we will use Vc to denote the set of all 
possible partial assignments, consistent and inconsistent. The set of possible states 
will be Sc :— 2Vc, namely the set of all possible sets of partial assignments. Finally, 
to identify partial assignments that are solutions, we will use Tc to denote the set of 
all solutions to C. These concepts can be defined as follows: 

Definition 8.2.5 Given a CSP C, let Vc be the set of all partial assignments. Let 
Sc = 2Tc. Let rc be the set of all solutions to C. 

A search engine will have a state that is a member of Sc, i-e. a set of partial as- 
signments. The states will be updated using a successor function succ that maps.one 
state to another. Associated with each state S will be a specific partial assignment, 
which corresponds to the partial assignment p in the depth first search engine above. 
This "current assignment" will be denoted by curr(S'). Both succ and curr will be 
partial functions, since a given search engine will only use a small subset of Sc to 
represent all of its states. Finally, a search engine will be problem-independent, so 
each of the functions succ and curr take the problem C as an argument. But since a 
search engine is only solving one problem at a time, we will omit the CSP parameter, 
for the sake of clarity. 

Formally: 

Definition 8.2.6 A search engine is defined by a pair of partial functions (succ, curr), 
such that succ : Sc -¥ Sc, and curr : Sc -> VC- Furthermore the partial functions 
satisfy: 

1. succ("Pc) is defined. 
2. succ(0) = 0 
3. If succ(S) is defined, curr(S') is defined. 
4- If succ(S) is defined, succ(succ(5')) is defined. 

This may look complicated, but the basic idea is simple. At each point, a search 
engine will have a state, consisting of a set of partial assignments that it views as 
candidates for examination. The function succ does one step in the search, updating 
the state by refining or changing the set of candidates. The function curr returns 
the partial assignment associated with that state, the "current" partial assignment. 
Given this, it is easy to see how (succ, curr) would typically be used to solve a CSP 
C: 
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Algorithm 8.2.7 To solve a CSP C, given a search engine (succ, curr): 

1 let S = Vc 
2 if S = 0, return failure 
3 if curr (S) G Fc, return curr(S) 
4 let S = succ(S), goto 2 

Conditions 1 and 2 in the definition merely state that the search engine has a 
zero-information initial state Vc, and a final state 0 that is used to terminate the 
search engine. Condition 3 means there is a "current" assignment associated with 
each state, and finally condition 4 says that once running, the search engine can keep 
running. 

To further illustrate how this formalization works, let us look at depth-first search 
again. The function curr(S) returns one of the members of S that are at max- 
imal depth and don't have parents in S.    The update function succ(S') returns 
5 — {curr(S')}. See figure 8.1 for a small example. 

(0,0)( (0,0)O (0,0)0 

(1,0)© (1,0) (1,0)0 

(2,0)     (2,1)       (2,2)   (2,3) (2,0)     (2,1)       (2,2)   (2,3) (2,0)     (2,1)       (2,2)   (2,3) 

Figure 8.1: Depth first search, first three iterations.  The non-white nodes are the 
partial assignments in S, the black node is curr(5). 

The two properties of a search engine that we are most concerned about, are 
systematicity and completeness. These properties are easy to define in this setting: 

Definition 8.2.8 A search engine (succ, curr) is complete if, for any CSP C, such 
that Tc 7^ 0, there exists s eTc and fe G IN, such that s = curr(succfc('Pc))- 

A search engine (succ, curr) is systematic if, for any CSP C, and i,jEf^ with 
i ^ j, either succ^Pc) ¥" succ^Pc), or both are empty. 

Completeness simply says that if there are any solutions to the problem, at least 
one of them will be found using the search engine. This is a weaker definition of 
completeness than many authors use (cf. [56] and [72]), but it is easy to see how an 
algorithm can be changed to find all solutions. Simply turn each solution found into 
a negative constraint, eliminating it from Tc, and start the search again. 
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The condition of systematicity states that the same state can never show up twice 
when a search engine is running. Since the number of possible states is finite, this 
also guarantees termination. This definition of systematicity differs from the standard 
definition, that the same path in the search tree is never examined twice. Our version 
allows the same paths to be explored repeatedly, but each time in a different global 
state. This new definition is better applicable to modern search engines, which may in 
fact search the same path more than once, e.g. iterative deepening [43] and dynamic 
backtracking [26]. 

8.2.3 Procedures 

The mechanism we propose for procedural reasoning is simple, but powerful. Given 
a partial assignment to a CSP, the mechanism will either indicate which variable 
assignments are to be added or that the current partial assignment is a dead end. 
Almost any function and algorithm applicable to a CSP fits within this framework. 

Let us formally define an extension procedure: 

Definition 8.2.9 Let C be a CSP. An extension procedure for C is a function e : 
Vc —>• Vc U {-L}, such that if e(p) ^ _L, then p C e(p). 

An extension procedure is correct if for any p € Vc and s G Tc, such that p 
extends to s, e(p) Cs. 

The correctness criteria states that if p can be extended to a specific solution, e(p) 
can be extended to the same solution. This means that ways to extend p, other than 
through e(p), do not lead to a solution. 

8.2.4 Combining Engines and Procedures 

Having formalized the concepts of search engines and extension procedures, let us turn 
to the task of combining the two. The main problem is that procedures can potentially 
return information that does not fit within the data structures used by the search 
engine, causing the search engine to fail. This is solved by allowing the search engine 
to choose a subset of the information returned by the extension procedure. 

More formally, let us define Cc = {S € Sc \ sncc(S) is defined}, the set of all 
legal states for the search engine (succ, curr) working on problem C. As long as 
the search engine does not encounter a state S # Cc, it will not fail while solving C 
(although it may return failure). So if e is an extension procedure, all we need to do 
is to require the result of invoking e to be within this set of legal states. 

We can now formally define how a search engine uses an extension procedure: 

Definition 8.2.10 Given a search engine (succ, curr), a CSP C and an extension 
procedure e for C, we define a search engine using procedure e as any function succe : 
»Sc -> Sc such that for any S £ Cc, we have: 
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1. succ(5) - elim(e, curr(S')) C succe(5
r) C succ(S) 

2. succe(S') e Cc 

where elim(e,p) is the set of nodes that can safely be eliminated from the search 
space, when e is invoked on the partial assignment p. The definition is valid, since 
there is always at least one legal state that satisfies it, namely succ(S'). The only 
question remaining is what elim(e,p) is. Figure 8.2 will make it clear. 

e(p) = l 

e(p)Q 

Figure 8.2: The set of nodes (colored gray) that can be eliminated from the search 
space when extension procedure e is invoked on partial assignment p. 

If the procedure e is correct, extending the current partial assignment p to e(p) 
means that the gray nodes in the left tree cannot be extended to a solution, making 
it safe to remove them from the search space. If we use ext(p) to denote the set of 
all possible ways to extend p, including p itself, the nodes that can be eliminated are 
those that appear in ext(p) but not in ext(e(p)). 

If the extension procedure finds that p is a dead end, i.e. it cannot be extended 
to a solution, it and every partial assignment that extends it, can safely be pruned 
from the tree. This set is exactly ext(p). 

Therefore we define el im as follows: 

Definition 8.2.11 Given a partial assignment p, a correct extension procedure e, 
elim(e,p), the set of partial assignments that can be eliminated from the search space 
is: 

1. elim(e,p) = ext(p) - ext(e(p)) if e(p) ^ _L 
2. elim(e,p) = ext(p) if e(p) = ± 

By choosing a set that contains all, some or none of the partial assignments 
eliminated by the extension procedure, the search engine can fit the information from 
the extension procedures to its own data structure. In most cases a search engine will 
choose a minimal set for succe(S'). 
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8.3    Theory 
Having defined search engines, procedures and their interface, we now turn our atten- 
tion to what properties a search engine will have, when used with a procedure. The 
reasons for doing this are clear. The framework allows search engines and procedures 
that are implemented separately, to be used together. The possibility of conflict is 
real, experiments have shown that sophisticated search engines may lose systematic- 
ity if care is not taken. Theoretical conditions that will prevent this possibility of 

conflict, are essential. 
Given that procedures simply put us in a different part of the search space, the 

most obvious solution is to require the search engine to be complete and systematic, 

regardless of its starting point. 

Definition 8.3.1 A search engine (succ,curr) is globally complete if for any CSP 
C, and any S G Cc, such that S n Tc ^ 0, there exists s G S n Tc and n G IN such 
that curr(succ"(S')) = s. 

A search engine (succ, curr) is globally systematic if for any CSP C, any S G Cc, 
and i,j G IN with i ^ j, either succ^S) + succ^'(S) or both are empty. 

These are useful concepts that we will use later, but they are not sufficient to 
guarantee completeness and systematicity when an extension procedure is used. To 
see why, let us assume a search engine gradually expands its scope of candidates, e.g. 
some sort of iterative best first search. If an extension procedure happened to prune 
a state such that the result was a state encountered in an earlier iteration, the search 
engine would start to loop, losing both systematicity and completeness. 

So we need to be a little bit more careful. The problem in this case turns out be 
that reducing the set of possible candidates can actually set us back. This can be 
avoided by requiring the search engine to satisfy succk{S) 2 S, for all S £ £c and 
k G IN. This is quite reasonable, most systematic search engines make progress by 
gradually (but not necessarily monotonically) reducing the set of partial assignments 
that may be looked at. Unfortunately this is too weak, figure 8.3 shows the problem 
that can be encountered. 

The key observation that allows us to arrive at the correct condition, is that 
search engines are systematic for various different reasons. To take advantage of 
this observation, let us first note that global systematicity is equivalent to having an 
enumeration of the states so that each update moves to a lower numbered state. More 

formally: 

Lemma 8.3.2 A search engine (succ, curr) is globally systematic if and only if, for 
any CSP C, there exists a function enum : £c -» IN, such that enum(succ(5)) < 

enum(S'), for all S G Cc- 

Given this lemma, we can now formalize the condition we need to guarantee 
systematicity in search engines using procedures: Using a procedure must count as 
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Figure 8.3: How a procedure may cause a loop in the search engine, even when 
succ(S') is not a superset of S. 

progress, i.e. if S' is the result of using procedure e in state S, we have enum(S') > 
enum(S"). Since procedures work by reducing the given state, we simply require that 
making a state smaller counts as progress, i.e. if S' C S then enum(S") < enum(S'). 

And when we have systematicity, it is easy to guarantee completeness: If a state 
contains solutions, either the current partial assignment must be a solution, or at least 
one solution remains in the updated state. This is enough, since a correct procedure 
will not eliminate any solutions. 

To state our main theorem formally: 

Theorem 8.3.3 Let (succ, curr) be a search engine such that for any CSP C it 
satisfies: 

1. There exists a function enum : Cc —> IN, such that for any S,S' G Cc, with 
S' C succ(S') we have enum(S") < enum(5), or S' and S are both empty. 

2. For any S E Cc, such that Sf\Tc ^ ®> either curr(S') e Tc or succ(5)nrc / 
0. 

Then, for any correct extension procedure e, the search engine using procedure e, i.e. 
(succe, curr), satisfies the same conditions. 

The conditions in this theorem guarantee global systematicity and global com- 
pleteness: 

Lemma 8.3.4 If a search engine (succ, curr) satisfies condition 1 in Theorem 8.3.3, 
it is globally systematic. If a search engine satisfies conditions 1 and 2 in Theorem 
8.3.3, it is globally complete. 

It is worth noting that the converse does not hold, the conditions stated in the 
theorem are strictly stronger than global systematicity and global completeness. 

Using this last lemma and the main theorem, we get exactly what we wanted, 
namely conditions that guarantee completeness and systematicity for a search engine 
using a correct procedure. 
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Corollary 8.3.5 // (succ,curr) satisfies the conditions in Theorem 8.3.3, and e is 
a correct procedure, then (succe, curr) is complete and systematic. 

The conditions of Theorem 8.3.3 are fairly weak, in the sense that almost any 
known systematic search engine can be made to satisfy those conditions. In fact, 
most systematic search engines are covered by the following corollary: 

Corollary 8.3.6 Let (succ,curr) be a search engine that is monotonic in the sense 
that for any CSP C we have succ(S') C S for all S £ CC- If (succ, curr) satisfies 
condition 2 in Theorem 8.3.3, then (succe, curr) is systematic and complete, for any 
correct extension procedure e. 

Finally, let us note that Theorem 8.3.3 allows us to use as many correct exten- 
sion procedures as desired, since the conditions remain unaffected by the addition of 
extension procedures. 

8.4    Discussion 

We have presented a theoretically sound framework that allows search engines to use 
extension procedures to speed up the search. We have also presented conditions are 
sufficient to guarantee correctness, completeness and systematicity, regardless of the 
number of correct procedures the search engine uses. 

The theoretical results are based on having found the correct definition for each 
entity in the framework. As we have already pointed out, certain concepts (e.g. ab- 
stract search engine) needed to be invented, while others (e.g. systematicity and 
completeness) were modified to be more generally applicable. This theoretical frame- 
work provides a foundation, on which further theoretical analysis of search engines 
can be built, even if the framework appears obvious in retrospect. 

Finally, the framework allows us to implement CSP solvers that can access a 
library of extension procedures that speed up the search. As long as the solvers 
satisfy the conditions expressed in Theorem 8.3.3, and each of the procedures is 
correct, the system will remain complete and systematic. This is invaluable in the 
search for better search engines and more powerful reasoning methods, in addition to 
moving us closer to an efficient, general problem solver. 
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Chapter 9 

Broader Issues in Planning 

Although the main thrust of our work under this award has been on scheduling 
and combinatorial optimization, we have continued to concern ourselves with the 
broader issues involved in building practical planning systems. Having very efficient 
and effective search-control techniques clearly helps in the development of planning 
systems, but practical planning requires more than this. Realistic planning problems 
don't fall to idealized solution methods. Assuming you can exhaustively consider all 
contingencies and totally specify exactly what will happen at every instant doesn't 
work. Practical planners must attend to the most important things first, and be 
prepared to give their current best guess at a solution when a solution is required: 
a fully-thought-out solution derived too late is no solution at all. Similarly, the 
traditional approach in generative planning, which presumes that the plan will be 
executed exactly as described, with nothing else being done (even by other agents), 
clearly doesn't jibe with the experience of planning in the real world. 

We have discovered that an appropriate view of modality points the way toward 
solutions to both of these problems, by providing a well-grounded mechanism for in- 
terrupting and resuming computation in favor of higher-level goals and by making 
possible a more natural and flexible representation of plans. In this chapter we briefly 
summarize our work on these more fundamental issues in automated reasoning. We 
first describe various concepts of modality and a unifying semantic framework that we 
have discovered that underlies them. Then, we discuss how modalities can serve as in- 
terruption markers. These markers allow the reasoner to substitute an approximation 
for the result of evaluating the modality if time pressure dictates, and later return to 
refine its answers by actually continuing the evaluation. Finally, we describe a gen- 
eral framework for planning - "approximate planning" - that we have developed using 
these ideas. This work is described in detail in two papers by Ginsberg: "Modality 
and interrupts" in the Journal of Automated Reasoning, and "Approximate planning" 
in Artificial Intelligence. 

Modal operators are used in a variety of ways in AI, including reasoning about 
knowledge and belief, reasoning about time, and applications to nonmonotonic infer- 
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ence [33, 65, 53, and others]. The semantics assigned to a particular modal operator 
are usually determined using a scheme due to Kripke [44] that is based on the notion 
of possible worlds linked by an accessibility relation. Moore, however, needs to de- 
fine his own semantics in [53] in order to establish the desired link between a modal 
operator of knowledge and existing ideas in nonmonotonic reasoning. 

Our work on modality has shown that Moore's and Kripke's ideas can be unified 
into a single approach if we view modal operators not in terms of possible worlds, 
but as mappings on the truth values assigned to various sentences. Thus the modal 
operator L, where Lp means, "I know that p" simply assigns the truth value true to 
Lp if p is known to be true, and assigns Lp the value false if p is either known to be 
false or is neither known to be true nor to be false. 

This approach is made possible by the fact that we have worked with a formal 
system that explicitly allows us to label sentences with values other than the con- 
ventional true and false. The description in the previous paragraph, for example, 
implicitly took advantage of the availability of a label indicating that p was "un- 
known" - not known to be true nor to be false. Somewhat more precisely, the truth 
values are taken not from the two-point set {£, /} but from a larger set known as 
a bilattice. Formally, then, a modal operator can be viewed as a function on the 
elements of the bilattice of truth values. 

We have shown that first-order logic, Kripke's work, and Moore's construction 
are all special cases of our general approach. Moreover, our ideas also let us extend 
existing notions, not just combine them under a single formal framework. As an 
immediate example, it becomes possible to define modal operators that combine the 
features of Kripke's and of Moore's. We have also implemented an automated theorem 
prover that handles modal operators of the sort we have defined. The implementation 
extends existing work on stratification, [1, 23, 74, 75] which can be used to compute 
the consequences of some autoepistemic theories, to our more general setting. 

This truth-value-mapping approach to modality allows "modality" to be inter- 
preted very generally. For example, causality, temporal notions, and even negation 
can be viewed as modal operators. This, in turn, has suggested a new role for modal- 
ities in the control of computation in resource-limited reasoning. We argue that 
modal operators can improve the usefulness of declarative systems by marking points 
at which inference can be suspended and an approximate answer returned. Viewing 
the modal operators truth-functionally, their correct evaluation requires a recursive 
call to the theorem prover to evaluate the sentential arguments of any particular 
modal expression. If the computational resources needed by this recursive call are 
not available, we can instead use the values found by simply searching the database 
for these sentences. 

Thus, for example, if l>systemh Jones codes is interpreted as "The system knows that 
'Jones knows the launch codes.'," the reasoner may initially decide to approximate 
the results of trying to prove that it knows that Jones knows the codes by whether 
it explicitly knows. Later, should sufficient resources be available, the reasoner could 
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go back and devote more effort to proving it, perhaps again approximating the inner 
modality (LJones codes) with a check for whether codes is explicitly in the system's 
representation of Jones' knowledge base, KBjones. Finally, an attempt could be 
made to prove codes from KBjones. 

We have characterized when it makes sense to interrupt computation at a modal- 
ity, and developed an anytime declarative procedure that responds to queries by 
repeatedly calling a conventional first-order theorem prover and then accumulating 
the results. Approximate answers are computed quickly and gradually refined if time 
permits. Although the final answer returned by the system may appear to be changing 
in a nonsystematic way, the quality of the answer improves uniformly as additional 
information is considered. 

To apply these notions to planning, however, we must be able to handle temporal 
notions. These can also be captured in our setting. One conventional approach 
to temporal reasoning involves treating sentences in the representation language as 
themselves objects in that language. For example, in order to say that some sentence 
p holds at a time t, we might actually write 

holds(p,t). (9.1) 

It seems more natural to treat holds as a modal operator, although this requires us 
to deal with the temporal variable appearing in (9.1). We can do this by temporally 
extending the bilattice B with which we are working, replacing it with BT, where 
T is the set of time points in our temporal language. Thus we label a sentence not 
with an element of B, but with a function that gives its truth value as a function of 
time. Other modalities in this setting include delay (which separates the occurrence 
of an action from its effects) and propagate (which is responsible for describing the 
frame axiom in our setting). All of these modalities underlie the implementation of 
the approximate planning framework, which we now describe. 

Just as it is typically computationally infeasible to completely ground out every 
inference in realistic large reasoning problems, it is infeasible to plan every single 
thing that will happen during an attempt to achieve a goal. The traditional notion 
of a "plan" in the generative planning community is remarkably different from what 
people generally mean by "plans". When we talk about a plan for achieving a goal, 
we typically mean not one course of action but many. As an example, if our plan 
for suppressing a rebel uprising is to establish a beachhead and then advance inland, 
we hardly mean that these are the only actions to be taken. We may also plan on 
conducting a variety of unrelated military actions elsewhere, on briefing the chain of 
command as the plan proceeds, and so on. 

In fact, the plan "establish a beachhead and advance inland" might be represented 
something like this: 

[.. .beachhead... advance... ] (9.2) 

where the ellipses denote currently undetermined action sequences that might be in- 
terspersed into the above plan. If we need to advance immediately after the beachhead 
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is established, we might write 

[... beachhead advance... ] (9.3) 

dropping the second set of ellipses. 
There are, of course, many instance of (9.2) that are unsatisfactory. Perhaps we 

abandon the beachhead after establishing it, or dump all of our fuel into the ocean. 
The nub of building a planning system that preserves our intuitive view of what a 
plan is is finding an answer to the question, "In what sense can we say that (9.2) is 
our plan, when so many things can go wrong?" 

The conventional approach to this problem is to deal not with plans such as that 
appearing in (9.2), but with far more specific plans such as 

[beachhead status-report move-destroyer advance status-report]      (9.4) 

where there are guaranteed to be no extraneous actions that might interfere with 
our achieving our goal. But from a practical point of view, the plan (9.4) is nearly 
worthless, since it is almost inconceivable that we execute it exactly as written, but in 
every other case there are no guarantees that the plan is reasonable: the justification 
for the plan presumes the whole plan's being executed exactly as written. 

There are many other examples of the inadequacy of fully specified plans. If we 
intend to construct plans by retrieving them from a library of known solutions to 
similar problems (so-called case-based planning [34]), it is important that the plans 
in the library include some measure of flexibility. After all, it is unlikely that the new 
situation in which we find ourselves will be an exact match for the situation in which 
the plan was constructed. 

Approximate planning is an attempt to formalize the ideas that are implicit in 
plans like (9.2). Plans dictate what must be done, but generally do not preclude 
other things being done. They provide recipes that will generally achieve the goal, 
but there are generally pathological execution sequences (involving extra actions or 
events) that may fail. They may explicitly rule out certain "extra" actions that 
would otherwise break the plan, but eventually they ground out in some level of 
"approximate correctness" that suffices for the problem at hand. 

Our successful formalization of approximate planning involved developing a mech- 
anism for expressing plans that can have new actions added to them in arbitrary ways 
but that can still express the immediacy requirements of a plan such as (9.3), and then 
defining conditions under which a plan "approximately" achieves a goal. The basic 
idea here is that a plan P is approximately correct if most instances of P that could 
actually be executed do indeed achieve the goal. We formalized this by introducing 
the idea of an exception to a plan and formalizing conditions under which plans hold 
sufficiently frequently that we are prepared to treat them as approximately correct. 
The intuitions underlying this formalization are based on the analytic notion of one 
set being of measure zero in another. 
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An anytime planning process then consists of finding a plan that approximately 
achieves the objectives. If time allows, the planner may then look for instantiations of 
the plan that, because of pathological actions added in, amount to approximate plans 
to fail to achieve the objective. The original plan can then be refined to exclude these. 
These classes can be further refined as time allows, iterating the planning process to 
achieve arbitrarily fine-grained plan sets. 

Our ability to plan for conjunctive goals rests on similar ideas. When possible, it 
is important that we plan for conjuncts separately and then merge the results; this 
appears to require that the solutions to the individual conjuncts be plan Schemas like 
(9.2). Planning for conjuncts separately enables us to take computational advantage 
of the relative benevolence of our environment reflected by the frame assumption - we 
can typically achieve one subgoal and then not worry about it while we work on other 
things. Merging the plans for the different subgoals requires the flexibility implicit in 
(9.2) but not in (9.4). 

Related problems appear in plan debugging. If a human planner discovers a bug 
in one portion of a plan to achieve a complex goal, the typical response is to identify 
a small portion of the analysis to which the impact of the bug is restricted, and to 
then plan around the problem. That we can make modifications that address the 
bug without destroying the effect of the original plan depends on our common sense 
ability to construct and manipulate plans like (9.2) - plans that, while not succeeding 
universally, generally suffice. 

The framework also facilitates mixed-initiative planning, since an externally pro- 
vided plan for part of an objective can be integrated in the same way the independent 
plans generated for conjunctive subgoals are. The merging process makes sure that 
the plans are sufficiently compatible that the resulting plan remains approximately 
correct. 

We built a prototype planner based on these ideas. The implementation exploits 
the fact that it is theoretically possible to plan for conjuncts separately using this 
approach, allowing problems to be decomposed into smaller subproblems. The notions 
of modality described earlier underlie our implementation of approximate planning, 
allowing for declarative representations of the system's knowledge about the effects 
of actions. We can thus use the declarative -mechanisms that exist in the bilattice 
framework to manipulate the plan sets in question. This means that all we need do 
is provide a declarative description of action. We do not need to construct a special- 
purpose planner but can instead employ a general multivalued theorem prover [24, 27]. 

The notion of anytime refinement of plans that underlies approximate planning 
turns out to be the same as that of anytime refinement of modalities: the underly- 
ing assumption that what happens between specified actions "approximately" won't 
break the plan is handled by a modality that propagates the world state forward. 
Full evaluation of the modality involves trying to break the plan, repair it, break the 
repair, etc. For anytime evaluation, it may suffice to simply assume that nothing goes 
wrong, and refine (patch) later if time allows. 
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We believe that the understanding of modality we have developed, with its con- 
comitant notions of interruptibility, will eventually play a key role in building planners 
(and reasoning systems in general) that have acceptable behavior, both computation- 
ally and epistemologically. 
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Chapter 10 

Conclusion 

The original dynamic backtracking algorithm was motivated by the observation that 
search algorithms solving crossword puzzles appeared to repeatedly erase, and then 
rediscover, solutions to parts of the puzzle. Over the course of this project the dynamic 
backtracking algorithm has been developed theoretically, and has been tested against 
a variety of academic and industrial problems. Out of this have come three novel 
algorithms that are now sufficiently mature to be applied to real problems: limited 
discrepancy search (LDS), relevance-bounded learning, and doubleback optimization. 
Equally important, our understanding of search in general, and dynamic backtracking 
in particular, has matured. In this concluding chapter we survey the types of problems 
for which these new algorithms are applicable, discuss our broader view of search 
control, and indicate the paths we expect the research to take from here. 

Limited-discrepancy search is arguably the most significant new algorithm to come 
out of this project. Its significance lies not in its sophistication or mathematical depth, 
but in its range of applicability and in the ease with which it can be added to existing 
systems. It is sometimes said that "NP-completeness" matters only to academics: in 
the "real world" no one ever tells the plant manager that scheduling is intractable 
and as a result he goes again and generates schedules that he is happy with. If we 
look closely at how he does this, we find that he applies various heuristics and rules- 
of-thumb that he has learned from years of experience. When automated systems are 
built, the most practical approach has often been to build these heuristics into the 
system. Among other advantages, this makes the automated system more likely to 
generate schedules that are "like" those that the manager is used to seeing. 

It is tempting to take such an automated system and make it systematic, or, 
equivalently, modify it to generate provably optimal solutions. This is usually done 
by augmenting the heuristic scheduler with some sort of branch-and-bound or chrono- 
logical backtracking mechanism. In some cases this works, but more often it is an 
uphill battle, for various good reasons. One of the main reasons is that, as discussed 
in chapter 6, for medium to large problems, adding chronological backtracking to a 
good heuristic method is very unlikely to yield a significant improvement in solution 
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quality. 
LDS, on the other hand, is a systematic technique in the limit, but with limited 

computational resources it quite successfully searches "near" an existing heuristic. It 
can thus be easily added on top of existing heuristic techniques, and can be expected 
to yield a significant improvement in solution quality. The potential domain of appli- 
cability of LDS is thus any combinatorially difficult problem currently solved using 
heuristics without search. TPFDDs are an obvious example, and we have been work- 
ing with Kestrel on adding LDS to KTS. In addition there are many other applications 
in military and industrial domains. 

The reason that LDS works is simple. Heuristics make mistakes; if they made 
no mistakes we would call them algorithms. In most domains, however, we can 
reasonably assume that heuristics make relatively few mistakes. LDS searches by 
first assuming that the heuristic has made no mistakes, then that the heuristic has 
made at most one mistake, then two mistakes, etc., gradually widening the search 
until, eventually, the entire space is covered. The theme of finding and correcting 
mistakes in heuristically generated solutions is something we see repeated in each of 
the three successful algorithms developed in this project. 

Doubleback optimization (DBO) is superficially quite different from LDS. Its ap- 
plicability is limited to resource-constrained project scheduling (RCPS) in which the 
objective is to minimize the time to completion. However, for large RCPS problems 
doubleback optimization seems to be able to produce solutions that are of consider- 
ably better quality than a human expert could generate. In fact, on large benchmark 
problems relevant to aircraft manufacture (discussed in chapter 7) LDS and double- 
back optimization together produce the best schedules currently known. RCPS may 
appear to be a limited domain, but it is essentially the domain served by the widely 
used "resource leveler" in Microsoft Project™. We have recently connected the 
optimizer to Microsoft Project, and are generally able to produce much better 
schedules than Microsoft's leveler, moreover, the improvement seems to grow with 
problem size. Using this tie to Microsoft Project, the optimizer can be easily 
tested on potential applications and can be deployed with a COTS interface. 

One distinguishing feature of DBO is that it makes quite large jumps through 
the search space. That is, if we look at schedules before and after DBO executes 
they are very different (especially compared to a more traditional local search-based 
optimizer). For example, a single pass of DBO might move thirty or forty tasks 
from early in the schedule to fill in holes in the night shifts late in the schedule, and 
compress the schedule to take advantage of the resources that this frees up. In a sense 
DBO is correcting systematic or distributed mistakes throughout the schedule in a 
single pass (in this case the distributed mistake is the failure to put off tasks that can 
be done in the later night shifts). This complements LDS' ability to fix more subtle 
"spot" mistakes in the heuristic. 

The third mature technique is now called relevance-bounded learning [2] in the 
literature, but we often refer to it as dynamic backtracking light.   One lesson we 
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have learned over the course of this project is that dynamic backtracking differs from 
previous algorithms in two orthogonal directions. First, like fc-bounded learning or 
dependency-directed backtracking, dynamic backtracking learns from mistakes by 
generating nogoods. Unlike these techniques, however, it has a notion of "relevance" 
and it throws out nogoods when they become irrelevant. Second, and separately, 
dynamic backtracking allows lateral moves through the search tree. That is, decisions 
do not have to be revised chronologically, but rather can be revisited in a more flexible 
order. This gives dynamic backtracking the ability to make local-search-like moves, 
while maintaining systematicity. Adding lateral moves was the primary focus of the 
original grant proposal, and we still expect lateral moves to be critical, but relevance- 
bounded learning has proven easier to merge into larger systems. 

Perfect relevance learning would involve keeping only those nogoods that will 
apply later in the search, and throwing out any nogood after its last application. 
Obviously we cannot do this. Even if we could there is no guarantee of polynomial 
memory usage since there may be an exponential number of future nodes in the search 
tree. The relevance-bounded learning used in dynamic backtracking is more modest. 
Whenever an infeasible node is reached, we choose a variable to revalue, and record 
a nogood as a justification for its new value. For example, if the nogood generated 
at the infeasible node is air-attack A sea-attack A ground-attack (i.e., some sort of 
attack is necessary) and the variable chosen is air .attack, then the new justification 
is: 

(sea-attack A ground-attack) —» air-attack 

This justification is kept and if at some future point in the search sea-attack A 
ground-attack becomes true again, then air-attack is immediately set true. However, 
if a new justification for air-attack is eventually learned, then the old justification is 
erased, and the new justification takes its place. Since only one justification is kept 
for each variable, memory usage is guaranteed to be polynomial. 

A version of TABLEAU using relevance bounded learning is currently the best 
technique we have for propositional encodings of planning problems. Furthermore, 
as discussed in the introduction, it also gives quite good performance on academic 
scheduling problems. In fact, the RBL version of TABLEAU is currently the first 
algorithm we would try on a new satisfiability problem of unknown structure. 

RBL works because, like dependency-directed backtracking, it is able to learn from 
its mistakes. However, unlike dependency-directed backtracking, RBL is guaranteed 
to use a polynomial amount of memory, which is critical on larger problems. 

Dynamic variable reordering, or equivalently moving laterally through the search 
space, is a more complex technique to apply. When it is combined with essential basic) 
techniques like value propagation, one tends to run into the problems described in 
chapter 4. These problems have been found to occur in both academic problems 
and in industrial scheduling problems [3]. Nevertheless, in the longer term we view 
allowing lateral moves while maintaining systematicity as critical to solving large, 
hard optimization problems.  Clearly one needs to be able to move easily from one 
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portion of the search space to another. When people talk about debugging or patching 
an existing plan, they are generally referring to the creation of another plan that is 
similar to - but not the same as - an existing one. Changing only the few relevant 
features typically corresponds to a large transverse move in the search tree being 
investigated. 

This brings us back to our broader vision of search and combinatorial optimization. 
Search problems are hard because they involve a large number of interacting decisions 
and it is extremely difficult to make them all correctly. As a result, we can generally 
assume (as each of these three algorithms do) that we will be working from a candidate 
solution that contains sub-optimal decisions - i.e., mistakes. Our "big picture" goal 
is to be able to correct mistakes, including distributed mistakes, and so arrive at 
optimal solutions. Our research on dynamic backtracking suggests that this requires 
the ability both to reconsider any decision at any time, and to learn from mistakes 
without being overwhelmed by bookkeeping. 

The algorithms developed under this project take a number of steps toward this 
goal. LDS provides a way of solving the odd mistake made by a good but imperfect 
heuristic, DBO allows distributed mistakes to be corrected, and RBL lets the system 
learn from mistakes without drowning in bookkeeping. Full dynamic backtracking 
allows considerable freedom in the order in which decisions are reconsidered without 
giving up guarantees of systematicity and optimality. Abstracting and generalizing 
these attributes to develop a single systematic search control mechanism presents a 
number of technical problems that provide focus for our ongoing research. 
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ARLINGTON VA 22203 

DR TOM GARVEV 
ÄRPA/ISO 
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OR GEORGE FERGUSON 
UNIVERSITY OF ROCHESTER 
COMPUTER STUDIES 3LOG, RM 732 
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OEPT OF COMPUTER SCIENCE & ENS'S 
UNIVERSITY OF WASHINGTON 
SEATTLE WA 98195 

MR DON MORROW 
S8N SYSTEMS t   TECHOLOGIES 
101 MOONSLOW OR 
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OR CHRISTOPHER OWENS 
BSN SYSTEMS t   TECHNOLOGIES 
10 MOULTON ST 
CAMBRIDGE MA 02133 

OR AONAN OARWICHE 
INFORMATION & DECISION SCIENCE! 
ROCKWELL INT*L SCIENCE CENTER 
1049 CAMINO .DOS RIOS 
THOUSAND OAKS CA 91360 

OR JAIME CARBONNEL 
THE ROBOTICS INSTITUTE 
CARNEGIE MELLON UNIVERSITY 
OOHERTY HALL, ROOM 3325 
PITTSBURGH PA 15213 

OR NORMAN SADEH 
THE ROBOTICS INSTITUTE 
CARNEGIE MELLON UNIVERSITY 
OOHERTY HALL, ROOM 3315 
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UNIVERSITY OF OREGON 
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UNIVERSITY OF PITTSBURGH 
OEPT OF COMPUTER SCIENCE 
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DR MARIE OEJARDINS 
SRI INTERNATIONAL 
333 RAVENSWOOD AVENUE 
NENLO PAR IC CA 94025 

ROBERT J. KRUCHTEN 
HQ AMC/SCA 
203 W LOSEY ST, SUITE 1016 
SCOTT AF5  IL  62225-5223 

OR. DAVE SUNNING 
OARPA/ISO 
3701 NORTH FAIRFAX DRIVE 
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MS. LEAH WONG 
NCCOSC ROTE OIVISIION 
53560 HULL STREET 
SAN DIEGO CA  92152-5001 
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NCCOSC RÖT£E DIVISION 
CODE 421 
53560 HULL STREET 
SAN DIEGO CÄ  95152-5001 

GINNY ALBERT 
LÖGICQN ITG 
2100 WASHINGTON 8LVD 
ARLINGTON VA  22204 

OAVID HESS 
SAIC ATLANTIC PROGRAMS 
ONE ENTERPRISE PARKWAY» SUITE 370 
HAMPTOM VA  23666 

COL ROBERT PLE3ANEK. 
DARPA/ISO 
3701 N FAIRFAX DR 
ARLINGTON VA  22203 

ÄOäM PEASE 
TECK.MOWLEDGE 
1810 EMSARCAOERO RD 
PALO ALTO CA  94303 
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JIM SHOQP 
ISX CORPORATION 
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WE5TLAKE VILLAGE CA  91361 
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DARPA/ISO 
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NRAO 
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SAN DIEGO CÄ  92152 

OR STEPHEN WESTFOLD 
KESTREL INSTITUTE 
3260 HILLVIEW AVE 
PALO ALTO CA  94304 

MAJ TOMMY LANCASTER 
USTRANSCOM/TCJ5-SC 
508 SCOTT DR 
SCOTT AF8 IL  62225-5357 

JAMES APPLEGATE 
MITRE 
EAGLE CENTER 
O'FALLON IL 

3, SUITE 
62269 

SOFTWARE ENGINEERING INSTITUTE 
CARNEGIE MELLON UNIVERSITY 
4500 FIFTH AVE 
PITTSBURGH PA  15213 

DIRNSA 
R509 
9800 SAVAGE RD 
FT MEAOE MO  20755-6000 
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Kl 
FT MEAOE MD  20755-6000 
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OCMAO/WICHITA/GKEP 
SUITE 9-34 
401 N MARKET ST 
WICHITA KS  67202-2095 

PHILLIPS LABORATORY 
PL/TL (LIBRARY) 
5 WRIGHT STREET 
HAMSCOM AFB MA  01731-3004 

THE MITRE CORPORATION 
ATTN: E LAOURE 
04SQ 
202 BURLINGTON RD 
3E0F0R0 MA  01732 

OUSD <P)/ÖTSA/ÖUTÖ 
ATTN: PATRICK G. SULLIVAN, JR 
400 ARMY NAVY OR 
SUITE 300 
ARLINGTON VA  22202 
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MISSION 
OF 

ROME LABORATORY 

Mission. The mission of Rome Laboratory is to advance the science and 
technologies of command, control, communications and intelligence and to 
transition them into systems to meet customer needs. To achieve this, 
Rome Lab: 

a. Conducts vigorous research, development and test programs in all 
applicable technologies; 

b. Transitions technology to current and future systems to improve 
operational capability, readiness, and supportability; 

c. Provides a full range of technical support to Air Force Material 
Command product centers and other Air Force organizations; 

d. Promotes transfer of technology to the private sector; 

e. Maintains leading edge technological expertise in the areas of 
surveillance, communications, command and control, intelligence, 
reliability science, electro-magnetic technology, photonics, signal 
processing, and computational science. 

The thrust areas of technical competence include: Surveillance, 
Communications, Command and Control, Intelligence, Signal Processing, 
Computer Science and Technology, Electromagnetic Technology, 
Photonics and Reliability Sciences. 


