
UTILIZING DATA AND KNOWLEDGE MINING FOR
PROBABILISTIC KNOWLEDGE BASES

THESIS

Daniel Joseph Stein III
Captain

AFIT/GCSIENG/96D-25

V~kau Mbl ex

I V~bum UbTM L QUALIT nwSEJ'rfl

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSIY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

AFIT/GCS/ENG/96D-25

UTILIZING DATA AND KNOWLEDGE MINING FOR
PROBABILISTIC KNOWLEDGE BASES

THESIS

Daniel Joseph Stein III
Captain

AFIT/GCS/ENG/96D-25

DTIC QUwjrry nu-PmcmTID

Approved for public release; distribution unlimited

19970317 030

The views expressed in this thesis are those of the author and do not reflect the official policy or

position of the Department of Defense or the U. S. Government.

AFIT/GCS/ENG/96D-25

UTILIZING DATA AND KNOWLEDGE MINING FOR

PROBABILISTIC KNOWLEDGE BASES

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Science

Daniel Joseph Stein III, B.S.

Captain

December, 1996

Approved for public release; distribution unlimited

Acknowledgments

There are many individuals who made this experience a little more bearable for me, without whom this

would have truly been an ordeal. Unfortunately, one page is not enough to properly thank each of them.

First, I'd like to thank God for bringing me here and for helping me through the journey. His gift of a

beautiful baby girl, Brittany, was just what I needed to keep the stress level down and to maintain my sanity.

Thanks to my advisor, Maj Sheila Banks, for her insightful comments and helpful suggestions. Thanks

to Dr. Eugene Santos for keeping me focused throughout the process. Thanks to Dr. Henry Potoczny for his

quiet tolerance and for generously giving his time and advice. And last, but not least, thanks to Capt

Michael Talbert for continuously encouraging and sustaining me. His insights and ideas were invaluable.

I'll miss the "30-second" discussions tremendously.

The AFIT library staff is positively "first rate." They are an exceptional group of individuals who truly

go "above and beyond the call."

Once in a great while, you encounter an individual who gives more than the job description requires.

Pat White is one of those people. She was there lending me a hand throughout the research process.

Having her assistance with my research was like having a silent partner. On more than one occasion, she

located a valuable resource for me long after I'd left the library. Thank you very much, Pat, for everything.

My dear wife Tamara deserves an award simply for tolerating me these last 18 months. This is the

second time she has been with me during a degree program. It wasn't easy the first time, either. She said,

"For better or worse," and she's proven that she meant it. I love you, darling.

Trust in the Lord with all your heart, and do not lean on your own understanding. In all your ways
acknowledge Him, and He will make your paths straight. Proverbs 3:5-6

Table of Contents

Page

I. Introduction .. 1-

1.1 Problem Statem ent .. 1-1
1.2 G oals of This Research ... 1-2
1.3 Thesis O verview ... 1-3

II. Background .. 2-1

2.1 The PESKI System .. 2-1
2.2 K now ledge A cquisition and Representation ... 2-2
2.3 The Bayesian Know ledge Base Representation ... 2-3
2.4 K now ledge Base V erification and V alidation .. 2-4
2.5 Incompleteness Uncovered During Verification and Validation 2-5
2.6 D ata M ining ... 2-7

2.6.1 Information Extraction .. 2-8
2.6.2 Extracting Belief Networks (Dependency Networks)from Databases 2-11
2.6.3 Association Rules .. 2-11
2.6.4 Exploiting M ultiple, H eterogeneous Sources .. 2-12
2.6.5 Autonomy vs. Flexibility .. 2-14
2.6.6 General D ifficulties in D ata M ining .. 2-15
2.6.7 Idealized M odel of a D ata M ining System .. 2-16

2.7 Sum m ary ... 2-18

III. M ethodologies Considered for D ata M ining ... 3-1

3.1 Inform ation Extraction .. 3-1
3.2 Belief N etw orks .. 3-2
3.3 M ining A ssociation Rules ... 3-4

3.3.1 Repairing Incompleteness W ith Association Rules ... 3-6
3.4 D iscovering N um eric States .. 3-8
3.5 Pruning the Search Space .. 3-10

IV. Incorporating D ata M ining Results .. 4-1

4.1 M utual Exclusion ... 4-1
4.2 Advantages of this M ethod ... 4-4
4.3 D isadvantages of this M ethod ... 4-5

V. Implem enting the PESKI D ata M ining Tool .. 5-1

5.1 The PESKI Fram ew ork ... 5-1
5.2 D ata M ining and the Big Picture .. 5-3
5.3 D ata M ining O perations w ithin PESKI .. 5-3

VI. Future W ork ... 6-1

6.1 Selecting A lternate D ata M ines .. 6-1
6.2 U sing N atural Language Processing to G uide D ata M ining ... 6-3

* 6.3 A lternate U ses for the D ata M ining Tool ... 6-5
6.4 Extending the Functionality of the D ata M ining Tool .. 6-6

iii

6.5 Conclusions ... 6-8

Bibliography .. BIB- I

Vita .. VITA -2

iv

List of Figures
Figure Page

FIGURE 2-1.. 2-3
FIGURE 2-2.. 2-6
FIGURE 2-3.. 2-7
FIGURE 3-1 ... 3-7
FIGURE 3-2.. 3-8
FIGURE 3-3.. 3-13
FIGURE 4-1... 4-2
FIGURE 4-2.. 4-3
FIGURE 4-3.. 4-4
FIGURE 5-1.. 5-2
FIGURE 5-2.. 5-4

List of Tables
Table Page

TABLE3 .3-1 .. 3-5

AFIT/GCS/ENG/96D-25

Abstract

Problems can arise whenever inferencing is attempted on a knowledge base that is

incomplete. Our work shows that data mining techniques can be applied to fill in incomplete

areas in Bayesian Knowledge Bases (BKBs), as well as in other knowledge-based systems

utilizing probabilistic representations. The problem of inconsistency in BKBs has been addressed

in previous work, where reinforcement learning techniques from neural networks were applied.

However, the issue of automatically solving incompleteness in BKBs has yet to be addressed.

Presently, incompleteness in BKBs is repaired through the application of traditional knowledge

acquisition techniques. We show how association rules can be extracted from databases in order

to replace excluded information and express missing relationships. A methodology for

incorporating those results while maintaining a consistent knowledge base is also included.

vii

UTILIZING DATA AND KNOWLEDGE MINING FOR PROBABILISTIC KNOWLEDGE BASES

I. Introduction

In this research we present a methodology and a tool for mining association rules and

incorporating those rules into a knowledge base. The purpose of this is to repair knowledge base

incompleteness uncovered during validation. We will discuss how this incompleteness is

uncovered and show the three fundamental forms this incompleteness can take. We then

describe how the mining of association rules are used to solve the incompleteness. We also show

how we focus traditional techniques in order to make data mining operations more tractable.

1.1 Problem Statement

The relationship between the efficiency of a reasoning algorithm and the flexibility of its

knowledge representation scheme is an inverse one. In order to implement a realistic, real-world

application, both of these properties must not only be balanced, but maximized as well. Bayesian

Knowledge Bases (BKBs) provide the needed blend of efficiency and flexibility, while also

providing an ease of understanding lacking in many representation schemes [19]. For this

reason, we have chosen the BKB representation for our Probabilities, Expert System,

Knowledge, and Inference (PESKI), an integrated framework for expert system development

[19].

1-1

Validation of a BKB is performed by submitting test cases and comparing the expected

solutions with the actual ones. Incompleteness in a BKB is encountered during testing whenever

the inference engine cannot reach one or more elements in the expected solution. This normally

happens because one or more relationships are missing from the BKB. This work addresses a

method for automatically extracting the necessary relationships uncovered during testing and

incorporating those relationships back into the BKB.

1.2 Goals of This Research

The problem of inconsistency in BKBs was addressed by Gleason [6], where reinforcement

learning techniques from neural networks were applied. However, the issue of automatically

solving incompleteness in BKBs has yet to be addressed. Presently, incompleteness in BKBs is

repaired by applying the same knowledge acquisition techniques that created the BKB.

Whenever incompleteness is encountered, the PESKI user must manually augment the BKB to

fill in the missing areas. In this work, we show that it is possible to repair each of the primary

forms of incompleteness' using data mining techniques. Typical data mining approaches can

become bogged down by an overabundance of patterns. In this research, we show how our

approach, goal-directed data mining, can help bound the scope of data mining operations and

make those operations more feasible.

See Chapter 2 for a more thorough discussion of the forms of incompleteness.

1-2

1.3 Thesis Overview

In Chapter 2, we provide a thorough discussion of the problem background and describe

some of the existing data mining techniques that were considered for the issue at hand. Chapter

3 covers the methods we considered and discarded, and then describes how we utilized data

mining to extract probabilistic information from existing databases in a form suitable for

incorporation into a BKB (and also into any other probabilistic knowledge base). A

methodology for incorporating the data mining results is contained in Chapter 4. Chapter 5

discusses the actual implementation of the PESKI data mining tool and its integration into the

PESKI framework. Conclusions and recommendations for further research are included in

Chapter 6.

1-3

II. Background

This research sprang from a need to address incompleteness discovered during knowledge

base validation. Here we present background material pertinent to our effort. We briefly discuss

knowledge acquisition as a whole, and the knowledge representation scheme for PESKI, the

Bayesian Knowledge Base (BKB). We then discuss verification and validation in PESKI, how

validation can uncover incompleteness, and the fundamental ways incompleteness presents itself

in a BKB. We then present a background discussion in data mining and a number of methods we

considered for repairing incompleteness.

2.1 The PESKI System

PESKI is the physical realization of an integrated knowledge-based system framework that

combines the functions of natural language interface, inferencing, explanation and interpretation,

and knowledge acquisition and maintenance into a single, consolidated application [6], [20].

PESKI is the combination of the following closely interrelated, yet specialized tools:

1. Intelligent Graphical User Interface

2. Inference Engine

3. Knowledge Acquisition

4. Verification and Validation

5. Data Mining

2-1

PESKI is presently in the late prototype stage, where each of the fully functioning components

are being brought together into a single cohesive whole. The interoperability of the separate

components within PESKI, and how the data mining tool contributes to the overall project, will

be addressed in detail in Chapter 5.

2.2 Knowledge Acquisition and Representation

Knowledge acquisition is defined as the transfer and transformation of problem-solving

expertise from a knowledge source (usually a human expert) to an automated system. The

knowledge acquisition phase represents a significant portion of the development effort for a

knowledge-based system, and normally involves face-to-face interviews between one or more

domain experts and one or more knowledge engineers. It has been called the bottleneck of

artificial intelligence and is arguably the most difficult phase in the development of knowledge-

based systems [9], [7].

The process of knowledge acquisition is very tightly coupled with that of knowledge

representation. A knowledge representation scheme suitable for the problem domain is crucial to

the successful completion of the overall system. In general, a successful acquisition strategy can

be negated by poor or inadequate representation and vice versa. Unfortunately, a poor choice for

a representation scheme is not always apparent. The knowledge engineer may progress all the

way through system development before realizing the inferiority of the representation scheme,

thus having to re-implement the system [7].

2-2

2.3 The Bayesian Knowledge Base Representation

BKBs depend on Bayesian probabilities to represent uncertain information in a knowledge

base. This probabilistic aspect of BKBs make them almost ideal for operating in an uncertain

environment [19]. Figure 2-1, which represents a single piece of information in BKB format,

illustrates the structure of a BKB. Read in English, it would say, "Given that it is raining, it is

almost certain that the sidewalk is wet." By BKB convention, the term "almost certain" would

represent the probabilistic range2 of 0.90 - 1.00. The large ovals are called instantiation nodes,

or I-nodes for short, and represent a single state of a component. In mathematical terms, a

component would represent a random variable and an I-node would represent a single instance of

a random variable. The solid black circles are support nodes, or S-nodes, and represent the

probability associated with one or more I-nodes. The support conditions for a given I-node

consists of all the other instantiation nodes belonging to that I-node's direct ancestry. In Figure

2-1, the support for I-node Sidewalk = Wet consists of the single I-node Weather = Raining.

Raining

Almost
Certain

Sidewalk:
Wet

Figure 2-1

2 See Santos [19] for each of the probabilistic ranges used in BKBs.

2-3

The theoretical foundation of BKBs is strongly grounded in probability theory. This

probabilistic framework also enables BKB systems to make inferences using incomplete

knowledge. Incompleteness is allowed in a BKB, but only as long as the requirements (i.e., the

conclusions drawn based on given evidence) of the BKB are kept consistent. Incompleteness in

BKBs occurs whenever essential connections are missing between I-nodes or when I-nodes lack

certain necessary states 3. Problems can arise whenever inferencing is attempted on a knowledge

base which is incomplete. Our work shows that data mining techniques can be applied to fill in

incomplete areas in BKBs, as well as in other knowledge-based systems utilizing probabilistic

representations.

2.4 Knowledge Base Verification and Validation

Once the knowledge acquisition process is assumed to be complete, the knowledge base must

be validated and verified by the knowledge engineer and/or the problem domain expert. There

are a number of different types of errors that could be present in a knowledge base, but the focus

of this research is on solving incompleteness that was discovered during verification and

validation by applying data mining techniques.

The ultimate purpose of verification and validation is to guarantee that a knowledge-based

system works properly and produces the correct answer in the correct form. Verification is

"building the system right," a demonstration of the consistency and completeness of a system

with respect to its specifications. In short, it confirms that the system actually does what the

3 Incompleteness is evident when some answer in a test case cannot be concluded based on the evidence in
that test case. See Section 2.5 for more details on test cases. See Gleason [4] and Lyle [9] for a more
thorough discussion of incompleteness in BKBs.

2-4

specifications say it will do. It also ensures that the system is free from semantic and syntactic

errors. Validation refers to the process of "building the right system." It involves insuring the

system is correct with respect to user needs and system requirements. Validation guarantees the

system produces the correct output and that it does what the users actually want it to do [7], [14].

2.5 Incompleteness Uncovered During Verification and Validation

Validation is performed in PESKI by submitting a series of test cases and comparing the

resulting solution to the one that was expected. Each test case consists of a number of pieces of

evidence (known events) and a set of expected answers (anticipated events). A test case is said

to be valid if the expected answers are part of the overall solution set obtained after inferencing

over the BKB based on the evidence. Normally, if the submitted answers aren't present, the

weights inside our network are adjusted by applying reinforcement learning, to force the answers

into our solution set [6].

Incompleteness in a BKB cannot be determined simply by inspection. Contrarily, it must be

determined based on test cases and the semantics of the knowledge base. In PESKI,

incompleteness is evident whenever it is impossible to conclude one or more elements of the

answer set given the evidence. Incompleteness uncovered during validation can occur in one of

three fundamental ways. It occurs when

1. A relationship between two different states in the BKB is missing. In other words,
there may not be a probabilistic link, either direct or indirect, between some state in
the evidence set and some other state in the answer set.

2. A given state may have insufficient support conditions (i.e. more evidence is needed
to indicate the instantiation of a given state).

2-5

3. A component has one or more missing or unspecified states. For example, the
component Weather might have states Cloudy, Foggy, and Rainy present, but the
state Snowing might be missing.

Figure 2-2 and Figure 2-3 illustrate one example of incompleteness in a BKB4. The

knowledge base shown in Figure 2-2 depicts the state of a Sidewalk based on Sprinkler and

Weather activity. On the surface, the BKB appears to be complete, since the obvious

relationships are captured.

Figure 2-2

Now observe the answer and answer nodes as shown in Figure 2-3. Assume for a moment

that the sprinkler system is state-of-the-art and that it is designed to shut itself off whenever it is

raining. If this were true, then we would want to know the probabilistic relationship between

Weather = Rainy and Sprinkler = Off and the test case depicted in Figure 2-3 would be

meaningful to the user. However, since the answer doesn't directly depend5 on the evidence, the

knowledge base is said to be incomplete.

4 The probabilistic values have been intentionally left out to keep the figures uncluttered.
SSee Lyle [11] for a more thorough discussion of test cases and dependency regions.

2-6

We consider data mining to be a promising method for repairing incompleteness in BKBs. In

Section 2.6, we discuss some of the most promising data mining techniques and show how each

may apply to repairing incompleteness.

Answer

SEvidence Sdwl

Figure 2-3

2.6 Data Mining

Even though machine learning, a close relative of data mining, has been researched for a

number of decades, the field of data mining is still relatively immature. Significant work in the

field of data mining has been accomplished only in the last few years. It has only been in the last

eight or nine years that data mining has been distinguishable from other knowledge gathering

activities [5] , [13].

Attempts at trying to define data mining usually result in circular arguments about the

meaning of data, knowledge, and information and what it means to learn. A good working

definition for data mining is the automatic extraction of useful information from raw data [22].

2-7

Data mining usually refers to tools and methods used to extract meaningful information from

data that is unformatted and either unstructured or partially structured [10].

There are a number of different synonyms for data mining, including knowledge extraction,

database exploration, information harvesting, and knowledge discovery in databases (KDD). In

each case, the purpose of the activity is the nontrivial extraction of implicit, previously unknown,

and potentially useful information. Some of the different data mining activities include

information extraction, clustering, data summarization, extracting association rules, learning

classification rules, and finding dependency networks [16]. In this section we present a brief

overview of the most relevant data mining techniques considered for this work and some of the

key features of each technique. In Sections 2.6.4 through 2.6.7, we also discuss some general

data mining issues confronting the developer of a data mining tool.

2.6.1 Information Extraction

Information extraction systems attempt to obtain meaningful information from some text-

based source, such as an on-line encyclopedia or an Internet web page. Most often, these

systems are highly focused and specialize in a single application or domain area. They usually

deal only with specific types of text and are only partially accurate. In some applications of

information extraction, a high-precision text classifier is employed to determine the relevancy of

a given text prior to actual mining efforts begin [18]. According to Cowie and Lehnert [4], a

slightly different type of method for acquiring information from text, knowledge extraction, is

being performed at some research sites. The goal of these systems is to deduce a rule base or

domain model from a textual source. It has long been acknowledged that textual information is a

2-8

potentially useful, but largely untapped source of valuable knowledge in a number of domains,

ranging from complex medical diagnosis to automobile engine repair. The problem at hand is to

exploit those sources for use in knowledge-based systems. This is a considerably more ambitious

task than most information extraction systems try to solve. Given the vast potential of textual

sources, the applicability of information extraction must be at least considered for this research

effort.

Research cited in Cowie and Lehnert [4] points to the cost-effectiveness of retrieving

"shallow" knowledge. Shallow knowledge refers to knowledge that requires less effort for

knowledge acquisition. It is also domain specific and ad hoc by nature. By using shallow

knowledge, the data mining tool may be able gather large amounts of information in a short

period of time. The idea is that each piece of knowledge taken from an external source comes at

some measurable cost in terms of time, resources, effort, etc. Gathering large quantities of

shallow knowledge may be more cost effective than painstakingly distilling a small amount of

deeper knowledge. Also, the refinement of shallow knowledge will be simpler than the original

knowledge extraction process.

According to Riloff and Lehnert [18], traditional information extraction normally consists of

keyword searches based on statistical techniques. These techniques, while useful, have a number

of limitations, some of which are

1. Synonymy - different words or phrases have the same meaning. For example, the
words make, manufacture, and produce can all represent the same concept.

2. Polysemy - the same word can have multiple meanings in different contexts. For
example, the word "fly" can mean conveyance aboard an aircraft or a small,
annoying insect.

2-9

3. Phrases - some words are useful as indexes only when they are used in certain
phrases. For example, the phrase "passed away" indicates that someone has died,
but the two words used independently could have a different meaning (e.g. the
phrase "the procession passed slowly away" does not suggest death).

4. Local Context - some words or phrases are useful as indexes only in certain
contexts. For example, when mining for information about murders from terrorist
attack, the terms "murder" or "killed" are not sufficient to indicate terrorism, but
they do indicate terrorism in conjunction with words like "car bomb."

5. Global Context - some documents do not contain any words or phrases that are
useful for indexing. The relevance of a document may depend on the context of any
of its component parts. For example, the phrase "the man took the money and fled"
clearly describe a robbery, even though none of the words alone would indicate a
robbery.

The work done by Riloff and Lehnert [18] is aimed at using information extraction as a basis

for text classification. Text classification is a process in which one or more categorical labels are

associated with documents. While in-depth natural-language processing is an enormously

difficult task, information extraction is a more tractable and robust technology. The goal of their

work was to classify texts in a highly precise manner for categorization. The high precision

aspect refers to the ability of their system to be as liberal or as conservative as the user desires in

classifying the documents. Most systems of this type retrieve a small number of relevant

documents, most of which are almost guaranteed to be useful. However, the approach used in

Riloff and Lehnert [18] allows the user to make tradeoff decisions between relevancy and the

amount of information extracted. Of course, once a document has been classified as relevant, the

task of actually gathering the information still remains.

The goal of information extraction is to extract specific types of information from a

document. The primary advantage of information extraction is that it allows significant amounts

of irrelevant information to be disregarded. This restricts the search space and facilitates other

2-10

subsequent data mining operations. The relevance of information extraction techniques to this

research effort is discussed further in Section 3. 1.

2.6.2 Extracting Belief Networks (Dependency Networks) from Databases

According to Sarkar and Murthy [21], a belief network is any network that stores

probabilities using "probability calculus." They are directed, acyclic graphs where nodes

represent propositions and arcs represent dependencies between the propositions. The belief

assigned to the various propositions are stored as probabilities, and the strengths of the

propositions across the network are represented as conditional probabilities. Under this

definition, a BKB could be classified as a belief network. In a belief network, the

representational flexibility of the network with a given connectivity is inversely proportional to

the computational complexity necessary to make inferences across that network, so the

knowledge engineer must always balance computability with representative strength. In Sarkar

and Murthy [21], work is cited by Herskovitz and Cooper [3] that introduces a heuristic, K2, to

extract the most probable belief network from a database. The suitability of K2 in solving our

research problem is further discussed in Section 3.2.

2.6.3 Association Rules

Association rules are those in which one or more items in the antecedent of an implication

are correlated with one or more items in the consequent with some level of confidence and

support. An example of an association rule would be, "If a supermarket customer buys bread and

2-11

eggs, he will also buy milk with a 90% probability." In this rule, the purchase of bread and eggs

comprise the antecedent, the purchase of milk the consequent, and the value 90% is the

confidence [I]. When searching for a rule of the form 6 X > Y (read "X implies Y"), that rule

has a confidence value of C if C% of the database records containing X also contain Y. If S% of

the records in the database contain both X and Y, then the rule has a support value of S [2].

Association rules can have enormous implications in many domains. For instance, in retail

sales, association rules can be employed in the areas of catalog design, add-on sales, store layout,

and customer segmentation based on buying patterns [2]. Some examples are shown below [1]:

* Find all rules that have "Diet Coke" as the consequent. These rules may help
retailers devise strategies to boost sales of Diet Coke.

" Find all rules that have bagels in the antecedent. These rules would indicate which
products might be effected by discontinuing bagels.

" Find rules relating shelf A in the store with shelf B. These rules would help retailers
to plan the layout of the two shelves by stocking items whose sales are related.

2.6.4 Exploiting Multiple, Heterogeneous Sources

With today's widespread use of database technology, there are a plethora of data

representation formats. A potentially serious challenge to data mining operations in this

unfriendly environment is the capability of interfacing with multiple, heterogeneous information

sources. The developer of a data mining tool must be able to provide access to diverse and

6 It is important to note that causality is not indicated in an implication because we have no way of inferring
whether or not X causes Y to happen. To the contrary, we can only observe that when X occurs, Y also
occurs some percentage of the time.

2-12

dynamic information sources. Some of the difficulties of working with such sources include the

following [15]:

* The exploitation of data that is unstructured or semi-structured, having no
regular schema to describe it. For example, free-form text may have some loose
structure, but the "fields" may not have any explicit descriptions.

* The dynamic nature of some environments, where sources, their contents, and the
meaning of their contents change frequently.

* The access and integration of information that is intertwined. Normally, a
distinct integration phase is performed first, where data models and schemas are
combined. Then the access phase is performed, where the actual data is extracted.
In a heterogeneous environment, the interrelationships between pieces of information
may not be apparent until a set of samples are examined. Those interrelationships
may also change as further exploration takes place.

" The need for human intervention in order to integrate or exploit the
information. On one extreme, information extraction may be done manually. At
the other extreme, the system can perform the mining operation in a completely
automated manner. However, it is usually necessary for a human to first study
samples of the data and determine which procedures and methods to follow.

According to Papakonstantinou et. al. [15], the framework surrounding a heterogeneous

information extraction tool should contain at least the following components:

* Information Exchange. The system components need to be able to exchange data
objects freely. In order to accomplish this, there must be a standard data
representation scheme and a format for transportation over a network. Once these
standards are agreed upon, tools must be developed to translate between the various
external representation formats and the standard, intermediate format.

" Information Discovery and Browsing. These tools will allow a human to become
familiar with the semantics of objects, allowing the human to further direct the data
mining process. These tools will enable the browser to query for sources of interest,
request specific data from those sources, and to ask questions about the meaning of
objects and their components.

* Mediators. A mediator is a component that collects information from a number of
different sources, translates and processes that information, and makes the results
available to other information sources.

2-13

Researchers at Stanford have devised a common language and information format for

communication among heterogeneous entities in the form of a self-describing object exchange

model [15]. In this model, called the Object Exchange Model (OEM), there is no notion of a

fixed schema for an object or class of objects, because each object contains its own schema. The

representation is generic enough to encompass all types of information, and each data object

contains the semantic meaning necessary to describe that object [15].

Each object in the OEM model has the following structure:

I Label I Type I Value I Object ID

The meaning of each of the four fields is as follows:

1. Label: A variable-length character string that describes what the object
represents.

2. Type: The data type of the stored object. The types used in OEM consist of the
standard atomic types integer, string, real, etc. as well as the aggregate type set.

3. Value: A variable-length value for the stored object.

4. Object ID: A unique, variable-length identifier for the object, or the special
value null.

2.6.5 Autonomy vs. Flexibility

The ultimate purpose of any data mining or knowledge discovery system is to process large

amounts of raw data, extract the most meaningful and interesting patterns, and present them to

2-14

the user in a manner appropriate to the user's goals. Unfortunately, the evolution of the data

mining field is such that a general-purpose, fully-automated system is far beyond reach. While

considerable research has been performed on increasingly autonomous systems, user interaction

remains an integral component of most systems. Very few knowledge discovery algorithms are

totally autonomous, and those that are have limited applicability and generalizability. According

to Matheus et. al. [12], autonomy and flexibility are inversely related. The more autonomous a

system is, the less flexible it tends to be. More versatile systems have a wider range of

discovery techniques at the expense of reliance on user guidance. Autonomy requires domain

knowledge, while versatility implies domain independence.

2.6.6 General Difficulties in Data Mining

Little or no forethought is given to data mining during the design and creation of large

databases. Databases are usually constructed with a particular organizational activity in mind.

Consequently, a data mining application has to overcome numerous difficulties, each of which is

representative of databases in general. Some of these difficulties include the following [12]:

The fundamentally dynamic nature of a database's contents. The contents of
most real-world databases are constantly changing. The designer of a real-time
data mining application must use caution in order to prevent these constant
changes from producing erroneous discoveries. This problem is sometimes
overcome by focusing on snapshots of the data, and is appropriate whenever data
storage activities take place in recurring, periodic intervals (e.g. yearly,
quarterly, etc.). A possible drawback to this approach is the increased storage
capacity needed to contain each individual snapshot.

" The fact that erroneous data is replete within most databases. Error-prone,
manual collection of data is still commonplace. In fact, the purpose of some
knowledge discovery systems is to identify data-entry errors. Also, useful
patterns are seldom valid over more than a small percentage of the data. This

2-15

requires the application of probabilistic techniques (e.g. it is very likely that
someone with a high income is a good credit risk).

* The incomplete nature of data, either through missing record fields or from
data missing from individual records. In relational databases, all records must
have the same fields, even though some fields are blank in many records.

" The wasted time and effort needed to process redundant data. Duplicated
information sometimes leads to the discovery of superfluous "facts," such as
Profits = Sales - Expenses. This type of redundancy is called functional
dependency. Another form of redundancy in data occurs when the value of one
field is constrained by the value in another (e.g. Start Date __ End Date). To
avoid the problem of discovering these relationships as "knowledge," the
discovery system must know the database's structure and inherent, implicit
dependencies ahead of time.

* The sparse nature of data in terms of the density of records over the potential
instance space. For example, it is likely that few patients in a clinical database
will have rare diseases.

" The enormous size of many databases. This problem has been the major
driving force behind knowledge discovery efforts. Exhaustive searches through
terabyte-sized databases are impractical, if not impossible. A knowledge
discovery system must be able to focus on a set of fields or a subset of records,
thereby limiting the size of the search space.

2.6.7 Idealized Model of a Data Mining System

The work done by Matheus et. al. [12] has led to a model for an idealized knowledge

discovery system, which defines a system in terms of a collection of components. The

components represent functional areas that should be present in a KDD system. Each component

may not be explicitly identifiable, but the functionality represented that component should be

present. The elements of this model are the following:

1. The Controller, which handles the invocation of the other components and
parameter passing to each of them.

2-16

2. The Database Interface, which generates and processes database queries.
Many knowledge discovery systems manipulate intermediate representations and
do not interact with a database directly.

3. The Knowledge Base, which acts as a repository for domain-specific
knowledge.

4. The Focus, which determines what portions of the data to analyze next.

5. The Evaluation element, which assesses the interestingness and usefulness of
the extracted patterns.

In this model, autonomy comes from the controller, whose decisions are based on inputs

from the user and on pre-existing domain knowledge. If the discovery task at hand is well

defined, the controller may be able to perform in a more autonomous manner. However, in

normal data mining operations, this is rarely the case. The user almost always has to assist the

decision-making process in knowledge discovery.

Even though the database interface usually plays a subordinate role in data mining

operations, it is nevertheless an important one. When dealing with very large databases, the

interface becomes much more important because large databases cannot entirely fit into memory

at once. This issue has been ignored in many data mining systems.

The focusing component of a data mining system determines which parts of the database

should be examined. This component specifies which tables need to be accessed, which fields

need to be returned, and how many records need to be retrieved. In order to perform efficiently

and correctly, the focusing element must have detailed information about the database's structure

and organization. It may use this information to limit the scope of the search to a relevant set of

fields, but given the large size of many databases, the focus may also be forced to limit the

number of records examined as well.

2-17

Databases contain many patterns, most of which are uninteresting and unusable. The

interestingness of a pattern is the degree to which it is novel, accurate, and useful with respect to

the user's needs. The evaluation component of a data mining tool determines the degree of

interestingness for a particular pattern and decides which patterns to present to the user and in

what order. Statistical significance is the usual means of determining interest, but raw statistics

are not always indicative of interestingness. As an example, a small increase of sales in one

region of the country might be more significant than a large increase in another region. The

determination of interestingness will vary between applications, and even between databases.

Consequently, significant domain knowledge must be applied when deciding interestingness

[121.

2.7 Summary

In this chapter we present the context of this research and some of the essential issues

involved therein. The impetus for this research stems both from knowledge acquisition and from

knowledge base validation. We show a number of data mining techniques that could be used to

solve incompleteness in knowledge bases. In Chapter 3, we consider each of these techniques in

turn, show how each technique could be applied to our problem, and discuss the advantages and

disadvantages to using each technique.

2-18

III. Methodologies Considered for Data Mining

Knowledge acquisition rarely ends when the knowledge base is assumed to be complete.

Even the most detailed and careful knowledge acquisition activities induce inconsistency and/or

incompleteness into the knowledge base. Verification and validation functions are normally

sufficient to uncover most knowledge base problems, but once identified, incompleteness can be

as difficult to address as the original knowledge acquisition task which created it.

Data mining techniques offer a number of possible solutions to the problem of

incompleteness in knowledge bases. In Chapter 3, we consider a number of different data mining

operations and show how they were considered for repairing incompleteness. We first present

some methods we considered and discarded, such as information extraction and the derivation of

belief networks from databases, and why we chose not to use them. In Section 3.3 we then

illustrate the method chosen for this problem, mining association rules, and how we applied this

technique to the problem of incompleteness. Some association rule issues particular to our

research are also discussed as well as some specific techniques to make our data mining

operations more tractable.

3.1 Information Extraction

One of the first data mining techniques we considered was that of information extraction.

Given the tremendous amount of information stored in an easily retrievable text-based format,

information extraction gives the promise of expansive sources for exploitation. Ignoring the vast

numbers of existing on-line reference manuals, the Intemet alone provides an enormous pool

3-1

from which useful and interesting knowledge can be discovered. Unfortunately, of all the data

mining techniques available, information extraction also proved to be the most difficult to

implement.

Work done in Riloff and Lehnert [18] is used primarily for classifying texts with regard to

their relevancy to a particular domain. The context of their research was to determine whether a

given document discussed terrorist activity. Their system employs a part-of-speech dictionary

with 5,436 definitions. This domain-specific dictionary alone took over 1,500 person-hours to

develop by highly-trained researchers. Also, once a given text has been classified as relevant, it

still has to be further processed, using subsequent information extraction or natural language

processing techniques, to obtain the necessary information.

In solving our problem, we ultimately require the representation of information in

probabilistic form. Even after a document has been classified as being relevant and an

interesting set of facts or rules have been discovered, deducing a probabilistic value from raw

text is no trivial matter. In fact, it is not always possible to deduce probabilistic values directly

simply because they are not always explicitly represented in texts. While the possibility of a

text-based system is intriguing, the amount of effort necessary to realized a fully functioning tool

was beyond the scope of this research.

3.2 Belief Networks

As described in Chapter 2, algorithms have been proposed to extract the most probable belief

networks from a given database [21]. This approach also seemed promising initially because the

3-2

networks extracted by these algorithms had probabilistic representations. This meant that

converting the information contained in one of these networks into a format suitable for BKBs

would require minimal effort. However, beneath the surface, there were also difficulties

associated with these methods. With one algorithm, K2, the number of different network

structures that were possible grew exponentially with the number of variables in the database [3].

In addition, K2 employed a greedy algorithm that did not guarantee an optimal solution. Also,

obtaining the best network configuration from a given database was NP-hard, therefore

computationally prohibitive. Another algorithm, ITRULE, generated the K best rules from a

database, where K was a user-specified parameter [21]. However, the algorithm did not yield the

best set of K rules, and it did not guarantee that the generated network would contain all of the

variables in the database.

Our requirement for repairing incompleteness necessitates the consideration (at minimum) of

certain user-specified variables. One of our three fundamental forms of incompleteness

(Category 1) requires establishing a relationship between two specific states (see Chapter 1). If

such a relationship is needed between two component states, it is clearly unacceptable for a data

mining solution to ignore either of them simply because they aren't part of the best K rules.

Similarly, if a direct relationship exists within a given database between the states in question,

the user shouldn't have to wait while an NP-complete algorithm derives an entire network.

Given these limitations on the extraction of belief networks, we also discarded this approach and

chose instead the formation of association rules to solve our problem.

3-3

3.3 Mining Association Rules

Of all the methods considered, association rules were the simplest to implement while also

providing the best fit to our problem. The basic algorithm for determining an association rule is

relatively straightforward, and the resulting rule is already in the correct form for incorporation

into a BKB (or, for that matter, in any other probabilistic knowledge base). When searching for a

rule of the form

we search the entire database and compute the percentage of records containing X that also

contain Y. This value, called the confidence, is treated in this work, as in other similar research

([2], [23]), as the probabilistic strength of the association rule. The intuition behind this is that if

the rule X * Y has a confidence value of C, then whenever we observe X we can expect to also

find Y with a probability of C. From a statistical point of view, the confidence of a rule

represents the correlation between its antecedent and its consequent.

The support for a rule is the value that represents the frequency of co-occurrence of all the

variables in that rule within the database. For instance, in the above example, the support for the

rule would be the percentage of records in the database that included both X and Y. In simple

terms, the support represents the amount of "belief' or "faith" we have in the plausibility of the

discovered rule. It is important that the support value for a rule is well chosen, for if the support

is too low, unfounded rules with sufficient confidence values could be presented as valid

associations. Consider once again the above example in a database containing 100,000 records.

Suppose that the only occurrences of X and Y were together in the same record. The confidence

for the derived rule would be 1.0 (or 100%), since every instance of X would be correlated with

3-4

an instance of Y. However, the support, only 0.00001, would be insufficient in almost any

imaginable circumstance for the formation of a rule.

A subtle but important point regarding confidence is that if A = B with confidence C, it is

almost certainly not the case that B > A with the same confidence. (It is possible that both rules

have the same confidence values given the right circumstances, but we cannot automatically

draw this conclusion.) Consider the sample database shown in Table 1. If we're looking for a

relationship between being married and the number of automobiles owned, then the rule would

be:

Marital Status = Married => Number of Automobiles = 2 with confidence 0.66

On the other hand, deriving the reciprocal relationship using the same states would yield the rule:

Number of Automobiles = 2 Marital Status = Married with confidence 1.00

Individual ID Income Marital Status Number of
Automobiles

100 35,000 Single I
200 40,000 Married 2
300 30,000 Single I
400 45,000 Married I
500 46,000 Married 2

Table 3-1

3-5

3.3.1 Repairing Incompleteness With Association Rules

In a typical data mining application, the objective would be to generate all possible

association rules whose support and confidence values exceeded some user-specified minimum.

In this case, for each rule to be derived, the data mining tool would need to make as many passes

over the data as the number of possible combinations of items in the antecedent. This number is

exponentially large, and is often prohibitive for extremely massive databases. For our particular

problem, it is sufficient to try to find associations between specific states (instances) in the

database.

Referring back to the three primary categories of incompleteness listed in Chapter 1,

categories I and 2 can be directly solved by a goal-directed search for association rules. By

goal-directed, we mean the search for specific rules (i.e. a search for associations between

specific states), rather than the search for all possible rules.

In incompleteness Category 1, we try to find an association rule of the form

X Y

where X and Y are component states in need of some heretofore unspecified relationship (see

Figure 3-1). If both the confidence and support values of the rule X : Y meet the minimum

values specified by the user, then the relationship is considered to be a direct one. On the other

hand, if the minimum values aren't met, the data mining tool searches for all possible

relationships of the form

X Zi, i-= 1, 2,..n

3-6

where n is the user-specified branching factor7 and the confidence of the rule X r* Zi is greater

than or equal to the confidence of X > Zj+1. The tool then tries to associate each Zi with Y by

finding rules of the form

Zi = Y

If such associations are not possible, the process continues until either some associative

relationship is found to Y, or until a user-specified lookahead value is exceeded. This lookahead

value is used to specify the maximum number of intermediate relationships allowed between the

original antecedent (X) and consequent (Y). For instance, a lookahead value of 1 would allow

only a single intermediate state between X and Y (e.g. X * Z * Y). Note that it is feasible that

each individual Zi branch could lead to the consequent Y.

4 Antecedent

Consequent

Category 1

Figure 3-1

In Category 2, illustrated in Figure 3-2, we look for support conditions that are immediately

related to a given node. In terms of data mining, this reduces to searching for all association

rules of the form

Xi *Y, i=1, 2,.. n

The meaning of the term branching factor is used in this work to either specify the maximum
number of intermediate associative relationships considered (Category 1) or the maximum
number of supporting association rules that will be presented to the user (Category 2).

3-7

where Y is the state for which support is needed, n is the user-specified branching factor, and

where the confidence of the rule Xj = Y is greater than or equal to the confidence of Xj+, I Y.

1 X2 Support
Conditions

(Support State

Category 2

Figure 3-2

Finally, in Category 3, we are given a component (an attribute in database terms) for which

new states are needed. The data mining tool searches the database and extracts all possible states

for that component. This is a reasonably straightforward process for categorical (non-numerical)

components. We simply examine each record and if we discover a previously unencountered

state, we add the new state to a list. However, much more work is involved for numerical

components.

3.4 Discovering Numeric States

There are several problems concerned with choosing states, or intervals, for numeric

components. If the number of states for the component is large (i.e. if the size of each interval is

small), then the support for any state will probably be low. As a result, any potential rules

involving the numeric component may never be discovered. Conversely, there is always some

3-8

information lost whenever we partition numeric values into intervals. This loss increases as the

size of the interval increases. Some rules may only have sufficient confidence when the numeric

interval consists of a single value. Referring back to the sample database in Table 1, the

associative rule

Number of Automobiles = 2 => Marital Status = Married

has a confidence of 1.00, or 100%. However, when specifying a range in the antecedent,

Number of Automobiles = 1 - 2 =: Marital Status = Married,

the confidence is reduced to 0.60 [23]. Clearly, when dealing with numeric database attributes,

support and confidence values are inversely related.

To alleviate this problem, we could consider all possible continuous intervals involving a

specific numeric component. The problem of losing support disappears, because we can

combine adjacent intervals or values in order to increase support when necessary. We may lose

confidence, but we can still increase the number of intervals while still maintaining a minimum

support. Unfortunately, there are problems with this approach also.

If a numeric component has n different values, there are, on average, n2 different intervals

that include each distinct value or interval. Computing the ideal set of interval ranges will drive

up the execution time inordinately. On the other hand, if a value or interval of a numeric

component has adequate support, then so will any interval containing it. Thus, the number of

rules we derive based on that interval explodes. Many of these rules will be uninteresting. So

once again, there is an inverse tradeoff between execution time and the number of derivable

interesting rules [23]. To balance all of the aforementioned factors, we set the number of

3-9

intervals, or states, for each numeric component to be 11S, where S is the user-specified support

value (see Srikant and Agrawal [23] for a detailed proof).

3.5 Pruning the Search Space

In performing a Category 2 data mining operation, and possibly during a Category I

operation (see Figure 3-1 and Figure), it is necessary to compare a component state with all the

states of all the other components in the database. For instance, if there are A components in the

database, and if each component has on average S states, then the tool would have to make (A -

1) x S passes through the database. If the database is quite large, as most modern databases of

interest are, these passes can be prohibitive.

Our approach to solving this problem, at least in part, was to compute the support of each

state during the initial formation of states. It should be obvious that, in order to determine the

number of states for a component, and the extent of each state, a single pass will have to be made

through the database for that component. As we make that pass, we compute the amount of

support for each state. Recall that the support value is the number of occurrences for a given

state divided by the number of records in the database.

It is also necessary to make a pass through the database each time we attempt to associate

two different states with each other. In order to determine the correlation between two states, we

must count the number of times they occur together in a record versus the total number of times

they occur in the database. If at any point we consider comparing two different states, say X and

Y, we can examine the minimum of their individual support values to determine whether it is

3-10

even possible for their combined support to exceed the user-specified minimum. A more formal

definition of support is

support(X = Y) = IX r YI/I databasel (1)

Clearly, the greatest support value a rule can have is the minimum of the support values of the

two states. If the user has directed the mining operation with a minimum support of 20%, and if

we consider two states X and Y with support values of 10% and %3 respectively, then we know

the most the support for the rule can be is %3, which does not exceed the minimum value. We

can therefore reject the possibility that these two states could be related, thus saving an entire

pass through the database to investigate the hypothesis. Note that the most support that any pair

of states could contribute to a rule would only occur when the confidence value of their

association was 1.0 (i.e. when the antecedent always occurred in the same record with the

consequent).

Typically, the formation of association rules is a two-step process [2], [8]. First, all itemsets

meeting the minimum support criteria are uncovered. Second, all possible combinations of items

in each itemset are enumerated, where each combination places a single item in the consequent

and all remaining items in the antecedent. If the confidence value of that combination is above

the minimum, then a valid association rule is concluded. Our approach differs in that we know

ahead of time which singular items we need to have associated. By screening the individual

items on the basis of support, as mentioned above, we perform a step analogous to Step 1 in the

traditional algorithms.

3-11

Of course, we never allow alternate states of the antecedent to be considered in a rule. This

would be meaningless and might possibly allow the formation of a contradictory rule. For

example, if we were mining for a rule of the form

A=l I B=7

and if we considered other states of A, we might conclude a rule of the form

A=I =* C=2 = A=5 * B=7

which is clearly contradictory, since A = 1 can never imply the occurrence of A = 5.

Finally, in order to avoid cycles or redundant rules, we maintain a list of all comparisons

made. Each time we consider correlating two states, we first ensure those states haven't already

been compared. This prevents the formation of rules like

X =*Y =Z =>W =*Y =Z ...

It also prevents inclusion of the same sequence of associations in multiple branches of the results

tree. Observe that in Figure 3-3, the sub-rule Z =* W is present in two different associative paths

leading to the consequent V. Clearly this is superfluous and should be avoided.

3-12

x

T

z z

w w

V V

Figure 3-3

3-13

IV. Incorporating Data Mining Results

Extracting meaningful rules from raw data is only the first step of acquiring knowledge. The

more important task of incorporating the results into the BKB which originally exhibited

incompleteness remains to be accomplished. As stated in Chapter 1, the present technique for

repairing incompleteness is the same as that of the original knowledge acquisition task. We

simply poll the expert for the desired missing information and include it in the knowledge base.

While knowledge acquisition of this type can be tedious, error-prone, and lengthy, automatically

including new information obtained during data mining is also quite complicated.

4.1 Mutual Exclusion

Consider the knowledge acquisition task portrayed in Figure 4-1. The solid lines represent

the state of a BKB prior to data mining, where a relationship between Z and X is missing, and the

dashed lines represent the automatic inclusion of the rule Z =* X into the knowledge base, where

Z * X was discovered by the data mining tool8 . In this example, by simply creating a direct link

between Z and X, we have violated one of the eight constraints on the structure and consistency

of a BKB, namely that of mutual exclusion [19]. The rule of mutual exclusion states that any

S-nodes which support a common I-node must be mutually exclusive. In the BKB in Figure 4-1,

it is possible for all of the support values for X (i.e. A, B, and Z) to be active at the same time.

8 It is entirely possible that some subset of the data mining results already exist in the BKB. In that case, we
simply augment the BKB with the remaining portion of the results.

4-1

There is nothing to differentiate between the two support conditions. This would mean that it

would be possible for both of the S-nodes leading into X to be active simultaneously, which

leads to a conflict, since only one S-node parent of a given I-node can be active at any given

time.

A B z

Figure 4-1

Figure 4-2 represents two possible solutions (depicted in dashed lines) to the mutual

exclusion problem. If we assume that conditions A, B, and Z represent Boolean instantiations,

then we can exclude one support condition by including the negation of the other support

condition. In this example, we can either include the negation of Z in the A-B support, or we can

include the negation of B and A in the Z support. If there were more supports for X, then each

additional support would need to be included in this exclusion process. Conversely, if A, B, and

Z were non-Boolean instantiations, then it would be necessary to enumerate all possible

combinations of states for each of the supports of X. Applying this process over an extended

period of time, we would cause the number of supports in the BKB to explode factorially,

making future inferencing all but impossible.

4-2

-z-

Figure 4-2

Our alternative to this clearly unacceptable method is to create a new form of node in the

BKB called an exclusion node9, or E-node (see Figure 4-3). An exclusion node, as its name

implies, serves the purpose of excluding two or more supports of an I-node. To perform

automated exclusion for the supports of a given I-node, in our example X, we create a new

component whose name appropriately indicates that it is the exclusion of X (called E(X) in

Figure 4-3). This new component will necessarily have as many states as X has supports. We

reconnect the previous supports of X as supports of E(X), and connect the individual states of

E(X) as the new supports of X. The probabilities of X's original support nodes, in this case P]

and P,, remain the same, thus preserving the intended semantics of the original BKB

configuration. The support values leading out of each state of E(X) (in this case P3 and P4) are

all set as high as possible and then normalized' ° with respect to all other states of X in order to

alter the BKB semantics as little as possible [19]. Since only one state of a given component can

be active at one time, only one of the exclusion nodes will ever be active. Since each of the new

supports of X represents a different state of the same component, the supports of X are, by

definition, mutually exclusive of each other. Hence the incompleteness originally identified is

9 In implementation, each exclusion node is simply another I-node whose name indicates the fact that it
excludes the supports of some other I-node.
0 One of the probabilistic constraints of a BKB is that all supports for a given component sum to less than

1.0 (see [19]).

4-3

repaired, the integrity of the BKB is restored, and the BKB semantics intended by the user are

preserved as accurately as possible.

A B Z

PI P2

P

44
P3 P4

Figure 4-3

4.2 Advantages of this Method

On the positive side, E-nodes will indicate to the user where to go in order to rectify any

occurrences of the mutual exclusion problem manually. If necessary, they can effect their own

changes, based on their own expertise and domain understanding, while preserving the

correctness, consistency, and intended meaning of the BKB. This should be easier for the expert

to accomplish because of his knowledge of the problem domain's interrelationships. It will also

be possible to remove the E-nodes at a later time, either manually or automatically, without

effecting the semantics, structure, or consistency of the BKB, as long as the supports that

originally violated the mutual exclusion property are addressed by the user. As another

4-4

possibility, leaving the E-nodes in the BKB should require a minimal amount of storage, as

compared to the remainder of the BKB.

4.3 Disadvantages of this Method

Unfortunately, there are drawbacks to this approach. The creation of E-nodes will eventually

clutter the BKB if they are not dealt with by the user. This will put the burden of BKB

maintenance on the user, such that he will be responsible for periodically examining the BKB

and manually repairing any inconsistency indicated by the presence of an E-node. With this in

mind, even though E-nodes leave the BKB in a consistent and correct state, their presence should

be viewed as a temporary solution to an inconsistent configuration of the BKB which should be

addressed as soon possible.

Attempts are currently being made to give the user of PESKI a visual representation of the

BKB through the use of the DaVinci TM graphical display tool, and the presence of numerous

E-nodes may prove to be visually distracting. Their appearance may distort the semantic

meaning of the BKB connections as perceived by the user (e.g. Phlegmatic Cough

Exclusion(Tuberculosis) = Tuberculosis), even though the actual inferential relationships of

the domain are preserved intact.

The cluttered display problem could be solved by merely filtering out the E-nodes before

presenting them to the user, but this would require extra work on the part of the user interface.

This would entail displaying all the nodes and arcs around an E-node, effectively treating the

E-node as though it were a single arc. This could also frustrate the user if he was attempting to

4-5

locate and remove the E-nodes, so this filtering property of the display should probably be

optional.

4-6

V. Implementing the PESKI Data Mining Tool

One of the key properties of PESKI is that it is a fully integrated suite of tools performing a

wide range of tasks whose ultimate purpose is to create a customized knowledge-based system.

Here we present a brief overview of the structure and functionality of PESKI. We then present

the PESKI Data mining tool and show how this tool integrates with the other PESKI subsystems.

5.1 The PESKI Framework

At a conceptual level, PESKI consists of four major components [20]

1. Natural Language Interface - facilitates the processing of queries and the
presentation of results in English.

2. Inference Engine - performs the reasoning in response to user queries and

selects the reasoning strategy to apply.

3. Explanation and Interpretation - keeps track of the inferencing path taken to
produce a solution.

4. Knowledge Acquisition and Maintenance - allows the user of PESKI to
incorporate new or modified information into the knowledge base.

As mentioned in Chapter 2, PESKI is implemented as a combination of the following closely

interconnected subsystems:

1. Intelligent Graphical User Interface

2. Inference Engine

5-1

3. Knowledge Acquisition

4. Verification and Validation

5. Data Mining

Figure 5-1 illustrates the interaction between the separate elements. The User Interface acts as a

system controller and arbitrates the intercommunication between the separate entities. The

Knowledge Acquisition module allows the user to create and modify a BKB. Verification and

Validation ensures the BKB is consistent based on the user's test cases. The Inference Engine

finds a solution in the BKB based on submitted evidence and provides that solution to the user.

The broken arrows represent future connections between the Data Mining Tool and other

modules (see Chapter 6 for a comprehensive discussion on future implementation).

INRAC

Figure 5-1

5-2

5.2 Data Mining and the Big Picture

By its very nature, the data mining tool is categorically subordinate to knowledge

acquisition, since data mining is a knowledge acquisition activity. Data mining simply takes

place after the initial knowledge acquisition is assumed to be complete. On a functional level,

however, data mining falls within the purview of verification and validation, since it is this

module that uncovers the incompleteness necessitating data mining. In its present state, the

verification and validation module reports incompleteness to the user, who then invokes data

mining manually. In the future, this invocation should take place automatically during

verification and validation whenever possible. The user should only be notified after a mining

operation has taken place and modified the BKB so that he can approve or disapprove the

knowledge base modifications.

5.3 Data Mining Operations within PESKI

Consider PESKI's Data Mining control screen shown in Figure 5-2. In this example, the

goldfish diagnosis BKB GF2 has already been loaded into PESKI (see [Il] for details about

GF2). One of the existing components, Chlorine Level, has been selected and the Find States

mining operation is about to take place. None of the required numeric parameters (Minimum

Support, etc.) have been set. The Status window, in the lower right-hand corner, is used to

communicate interim messages to the user of the data mining tool. In this case, the user has been

notified that Chlorine Level has been selected for this mining operation. In the upper right-hand

corner of the screen, the user indicates the mining source in the Search Location window. This

can be done either manually or by browsing the contents of any available disk drive. The Results

5-3

window displays the outcome of the data mining operation in a textual format. The user is able

to select these results individually for incorporation into the BKB. Note that the user has the

ability to terminate any data mining operation by pressing the Stop Mining button in the upper

right-hand comer.

Di-ata Mining: Ihomehawkeyel 3 /csceS 94rng/Spak/E-LHA/BKB /g otld1shbkb1

Fie o k oman. oentictir

([W] pH Level p
W] clarity [.25 -. 50] ppm t:a.1i i _____________.___

[W] color [.75 - 1] ppm
[W Odor [2 - 3] ppm

[4 - 5] ppm Start,
[WI Ammonia Level n . ng n r (I
[Objects] Cleanliness ,J 2E !2!LJ
[WI Algae
,[F] Fin Position
[F] Breathing
[W] Nitrite Level
[F] Appetite

][F] Stress Level
*[] pH Level >= 7.2
[W] Ammonia 3-Level
[DI Ammonia Poisoning
[FJ Organ Failure
IF] Bloody Fins i:/

[F] Blood Congestion in Bc

[D] Ammonia Burns
[F] Blackened Fins

incoriQrate
st Component '[w] Ohl orinre Lev el etdResults'

or State _______

Status
2nd comorT Fist tat

or State ----
Second stat

&Find Ne~w ItTes s tt
Find uppetG~'Second state -FindSu)or C, di ton-DM Option =

~' First state =
__________________________Second state=

___.DM Option -

minimum Supprort: Look head ValueiFirst state =[(W] Chlorine Level
Second state -
DM Option

Branchinj Factor ~ i. Mi~um Coif idence i __________________

Figure 5-2

5-4

VI. Future Work

Any research project worth considering rarely solves a given problem in its entirety, and this

work is no exception. Here we present some ideas for the future researcher of data mining

techniques. We discuss some areas that will improve the performance of our data mining tool as

well as some alternate applications for the tool that were not part of our original design. We also

suggest some extensions to the tool that will enable it to perform its designated task more

effectively.

6.1 Selecting Alternate Data Mines

Of course, when constructing the ideal data mining tool, there are numerous issues that need

to be addressed. In order to function successfully, a tool must be able to maneuver through

various databases, each potentially having a different format. The tool must accept these

differing formats effortlessly and, as presented in Chapter 2, should be able to represent all

pieces of data in a single, universal intermediate format. This intermediate format must be

flexible as well as accurate so that it doesn't encumber the otherwise difficult task of data

mining.

Whenever a mining operation cannot be successfully completed, the model tool should be

able to apply a number of different strategies to further the mining effort. Normally, the user is

responsible for selecting the data mining source. However, in a perfect situation, the system

would autonomously identify and prioritize a set of possibly heterogeneous sources and select its

6-1

own data mine or mines. This could be done using embedded heuristic rules (e. g. database

Format 1 is always better than Format 2, or newswire text is preferable to html's). Alternatively,

the data mining tool could also become truly intelligent and "learn," through trial-and-error

experience, which sources were more applicable to the problem domain and which evaluation

criteria were the better predictors of usefulness. The tool should be able to contemplate new

sources for exploitation, classify them based on their significance and relevance, and select the

most promising ones to exploit. This would entail examining each database and classifying it

with regard to its relevance to the domain of interest. From the user's perspective, one would

hope that the tool would not indiscriminately search every available database. Contrarily, the

tool should consider each database as being a potential source of knowledge, but it should only

mine the most promising ones for the desired information. In short, a good data mining tool

should adapt to the difficulties it encounters and overcome them without supervision or user

intervention.

This raises another issue, namely that of which metrics to use in order to differentiate

between potential sources. The tool must decide how to prioritize its sources so that it can search

the most promising ones first. There are many factors which could influence this decision, some

of which include the following:

" Ease of access - the tool may want to examine databases or files on a local drive
before looking at files across a network or on the Internet.

* Ease of exploitation - by virtue of query optimization, an object-oriented or
relational database might be easier to mine than a flat file.

" Promise of interestingness - in the medical domain, we might want to examine a
mining source that contains 500 disease references before we consider one with only
200.

6-2

* Estimated accuracy anticipated from a result - medical journals contain more
accurate information than newspaper articles, though both could be valid sources.

" The type of data mining problem being considered - when researching terrorist
activity, the newswire might be the most valuable source of information because of
its timeliness, even though it could be more difficult to exploit than a more
structured representation such as a relational database.

It would be useful to express each of the above measures in some weighted numerical fashion,

like a percentage or a probability of usefulness. Weighting each of the measures would allow the

tool to place varying amounts of importance on different factors based on the situation and type

of mining operation.

As an aside, the utilization of multiple sources for data mining can also be used to increase

the validity of the extracted information. Even though more effort is involved, there are a

number of benefits to mining from several databases, namely [17]:

1. It maximizes the probability of extracting all the core associations for a particular
problem domain.

2. During knowledge acquisition, it forces the knowledge engineer to consider different
perspectives on rules.

3. It allows for the fact that certain cases may not be fully covered in any single source.

6.2 Using Natural Language Processing to Guide Data Mining

Quite often, a data mining operation aimed at a particular database is capable of providing

meaningful, interesting, and useful information. However, it is frequently the case that either the

desired relationships aren't contained in a given database, or that the necessary concepts are

6-3

disguised or hidden from the data mining tool. In these situations, it becomes necessary for the

tool to "spread out" its search context and to investigate other ancillary means of discovering

information. It should be able to consider secondary definitions and synonyms for each of the

attributes currently being considered. This ensures that a concept will not be overlooked simply

because of incorrect phrasing or inadequately descriptive labeling.

One possibility for the data mining tool would be to re-examine each of the fields to

determine whether the needed attributes were represented under a different label or at a different

level of abstraction. This would require the tool to be able to reformulate or rephrase queries

based on information synonymous to the original query. It would also be helpful if the database

itself stored a set of related concepts describing each attribute of each relation.

It would be beneficial to invoke some form of a natural language processing or information

extraction function to draw out the relevant concepts from the database's meta-data. The tool

would have to compare a list of terms equivalent to the query against each of the database

attributes' synonyms to see if and where any matches occurred. It could also exploit hierarchical

relationships within terms (e.g. is-a relations such as Tuberculosis is-a Lung Disease). The

tool could examine the header of each database relation, in addition to any descriptive comments

contained about each attribute, and compute a relevancy metric in order to determine whether

any of the fields were appropriate for the mining operation.

One important precaution to take in this situation would be to avoid over-generalizing the

query terms. For instance, if the original data mining query was between the instances Cough =

Phlegmatic and Disease = Tuberculosis, the tool might consider searching for a relationship

between Symptom and Disease = Tuberculosis, or between Cough = Phlegmatic and Lung

6-4

Disease. However, a potentially undesirable mistake would be to search between Symptom

and Lung Disease due to the highly indeterminate nature of the query.

6.3 Alternate Uses for the Data Mining Tool

In addition to performing knowledge acquisition during validation to repair incompleteness,

we recognize that the data mining tool could increase our confidence in the validity of a given

test case used during validation. The data mining tool can provide a "sanity check" of each test

case by determining whether a relationship exists between each element of the evidence set and

the elements of the solution set. By submitting a test case, we assert that the answer should

somehow be concluded from the evidence. If this is true, then we should be able to establish a

probabilistic relationship between the evidence and the answer through data mining. After all, if

the evidence can "cause" the answers to occur, then we should be able to find at least an indirect

relationship between the evidence and the answers using data mining results. With this said,

whenever a test case fails, it may mean that the test case, not the BKB, is invalid. So whenever a

test case fails to yield the expected results, we can subsequently submit a query or a set of

queries to the data miner prior to reinforcement learning, in order to substantiate the legitimacy

of the test case.

Similarly, the data miner can perform the same kind of validation on the BKB itself, both

during and after knowledge acquisition. We create test cases to validate a BKB, but each test

case is based on the structure of the BKB itself, as well as on our understanding of the problem

domain. Since no expert is infallible, there is a distinct possibility that the BKB structure elicited

from that expert could be also in error. We could compare our BKB configuration to a set of

6-5

data mining results to cross-check the structure, or we could consult the data mining tool to give

an alternate, and possibly more efficient, structure to consider. Also, according to Sarkar and

Murthy [21], in a problem domain where numerous components exist, the probabilistic values

taken from an expert are more likely to be in error than those derived from an existing database.

With this in mind, it may be reasonable to either authenticate the probabilities given by the

expert or to simply derive the probabilities through data mining whenever possible".

Finally, and perhaps most obviously, the data mining tool can be used during initial

knowledge acquisition to establish the nuclear set of rules to be placed in the BKB. Once the

knowledge engineer knows the central elements and concepts of the problem domain, he can

invoke the data mining tool to establish the fundamental relationships between those concepts.

By doing this, the knowledge engineer could greatly reduce the amount of time required during

interviews with the domain expert.

6.4 Extending the Functionality of the Data Mining Tool

In addition to the functionalities listed previously, there are a number of extensions that can

be made to the data mining tool to make it more versatile. The original motivation for the tool

was to find relationships between an antecedent and a consequent, where each side of the

implication was a singular entity. However, real-world relationships are often more complex.

Rules in a BKB frequently involve multiple terms logically ANDed together in the antecedent.

The data mining tool should be extended to allow for this case by searching for relationships

I IIt is important to note that the assignment of exact probabilities is not crucial to the overall success of
inferencing over a BKB (see [1]). The probabilistic values are refined through inferencing and validation.
However, experts don't always reason in terms of probabilities, and the use of probabilistic values may be
awkward and unnatural for them.

6-6

between sets of items, as opposed to single items, during rule formation. Agrawal and Srikant

[2] present one algorithm for finding association rules between itemsets. Essentially, their

algorithm begins with all itemsets of size 1, and extends the size of each set until no larger sized

sets exist that meet the minimum support conditions. They then apply techniques similar to ours

to mine for association rules between the large itemsets. Houtsma and Swami [8] also express a

number of algorithms dealing with itemsets that can be expressed in the form of SQL queries.

There are several other areas in this realm which need to be addressed. Some of these areas

include the following:

* Automatic invocation of the data mining tool by PESKI's Verification and Validation
sub-system. At present, the tool must be invoked manually by the user of PESKI, but
since incompleteness is uncovered during knowledge base validation, it would be
possible to begin data mining to fill some incomplete area without the user's
involvement or knowledge. In the situation where a suite of test cases are being
processed, the test case exposing the incompleteness could be skipped while the next
test case is considered.

* Natural Language Processing (NLP) exploitation of text documents for probabilistic
information. While this capability is probably the least likely to extract probabilistic
rules, it is entirely possible that there may be no databases available, relational or
otherwise, that pertain to the problem domain. In this case, text-based information
may be the only source accessible for exploitation.

" Formation of dependency networks from databases for initial knowledge acquisition.
This technique, mentioned in Section 2.6.2, is not suited for addressing
incompleteness due to its computational complexity. However, it may prove useful
during the early stages of knowledge base creation by inferring an initial knowledge
base structure based on existing database dependencies.

6-7

6.5 Conclusions

This research develops a methodology and a tool for mining association rules and

incorporating those rules into a knowledge base. The results extracted by our tool are intended

for incorporation into a BKB, but are in a form suitable for incorporation into any knowledge

base with a probabilistic representation. The tool extracts information in one of three forms

depending on the type of incompleteness encountered during knowledge base validation. These

three forms are as follows:

1. A series of association rules relating an antecedent state to a consequent state.

2. A set of associations related to a single consequent.

3. A set of states for a particular component in the database.

Our data mining tool is designed specifically for integration into PESKI, though the

techniques we present are general enough for incorporation into other comparable systems.

Most data mining tools attempt to derive all possible rules meeting minimum support and

confidence criteria. The enormous size of most real-world databases, and the corresponding

overabundance of rules they contain, restrict the feasibility of data mining and effective comprise

a "bottleneck" to database mining operations. Our approach is slightly different in that each

mining operation is aimed at finding specific rules relating two or more database attributes. We

call these focused operations goal-directed data mining, the goal being the association of two

specific states to each other, either directly or indirectly. We enhance the effectiveness of data

6-8

mining operations by:

1. Always attempting to find an association rule involving a particular state.

2. Eliminating attempts at rule formation whenever possible by considering the support
value of each state involved.

3. Preventing the same states from being compared more than once, thus avoiding
circular or repetitive rules.

This work has presented some key issues regarding database mining activities with respect to

knowledge acquisition with an emphasis on probabilistic knowledge base validation. As both

techniques and technology continue to mature, data mining will almost certainly play roles of

ever increasing importance in both the domains of knowledge acquisition and verification and

validation.

6-9

Bibliography

1. Agrawal, Rakesh, et. al. "Database Mining: A Performance Perspective." December 1993
IEEE Transactions on Knowledge and Data Engineering, Vol. 5, No. 6. 914 - 925.

2. Agrawal, Rakesh and Ramakrishnan Srikant "Fast Algorithms for Mining Association Rules."
September 1994 Proceedings of the 20th Very Large Data Bases Conference, Santiago, Chile.
487 - 499.

3. Cooper, Gregory F. and Edward Herskovits "A Bayesian Method for Constructing Bayesian
Belief Networks from Databases." 1991 Proceedings of the 7th Annual Conference on
Uncertainty in Artificial Intelligence, Los Angeles, California. 86 - 94.

4. Cowie, Jim and Wendy Lehnert "Information Extraction." January 1996 Communications of
the ACM, Vol. 39, No. 1.80-91.

5. Frawley, William J. et. al. "Knowledge Discovery in Databases: An Overview." Fall 1992 Al
Magazine, 57 - 70.

6. Gleason, Howard T. "Probabilistic Knowledge Base Validation." MS Thesis
AFIT/GCS/ENG/95D-04. Graduate School of Engineering, Air Force Institute of Technology,
Wright-Patterson AFB, OH, December, 1995.

7. Gonzalez, Avelino J. and Douglas D. Dankel The Engineering of Knowledge-Based Systems,
Theory and Practice, Prentice Hall, Englewood Cliffs, New Jersey.

8. Houtsma, Maurice and Arun Swami "Set-Oriented Mining for Association Rules in Relational
Databases" Proceedings of the International Conference on Data Engineering, Taipei, Taiwan,
March 1995. 25 - 33.

9. G. Kabanda "An Automatic Knowledge Acquisition Methodology for Agro-Meterological
Data Analysis and Interpretation" Applications of Artificial Intelligence in Engineering, 9th
International Conference 1994 Central Computing Services, Causeway, Harare, Zimbabwe. 438
- 451

10. Kloesgen, Willi and Jan Zytkow "Machine Discovery Terminology." Internet document
found at address "http://info.gte.com/~kdd/kdd-terms.html" (date unknown).

11. Lyle, Louise J. "A Test-Case Based Approach to Bayesian Knowledge Base Incompleteness
Detection and Correction." MS Thesis AFIT/GCS/ENG/96D-17. Graduate School of
Engineering, Air Force Institute of Technology, Wright-Patterson AFB, OH, December, 1996.

12. Matheus, Christopher J., et. al. "Systems for Knowledge Discovery in Databases." December
1993 IEEE Transactions on Knowledge and Data Engineering, Vol. 5, No. 6. 903 - 913.

13. Moulet, M. And Y. Kodtratoff "From Machine Learning Towards Knowledge Discovery in
Databases." 1995 lEE Colloquium on Knowledge Discovery in Databases. 5/1 - 5/3.

BIB- I

14. O'Keefe, Robert M., et. al. "Validating Expert System Performance." Winter 1987 IEEE
Expert. 81 - 89.

15. Papakonstantinou, Yannis, et. al. "Object Exchange Across Heterogeneous Information
Sources." Proceedings of the 1995 IEEE 11th International Conference on Data Engineering.
251 - 253.

16. Piatetsky-Shapiro, Gregory, et. al. "KDD-93: Progress and Challenges in Knowledge
Discovery in Databases." AI Magazine, vol. 15, Fall 1994. 77 - 82.

17. Ram, Sudha and Sundaresan Ram "Design and Validation of a Knowledge-Based System for
Screening Product Innovations." March 1996 IEEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans, vol. 26, No. 2, 213 - 221.

18. Riloff, Ellen and Wendy Lehnert "Information Extraction as a Basis for High-Precision Text
Classification." July 1994 ACM Transaction on Information Systems, Vol. 12, No. 3. 296 - 333.

19. Santos, Eugene Jr. And Darwin 0. Banks "Acquiring Consistent Knowledge in the Face of
Uncertainty." IEEE Transactions on Knowledge and Data Engineering (1995) (Submitted to).

20. Santos, Eugene Jr. "A Fully Integrated Probabilistic Framework for Expert Systems
Development." November 12, 1993 Research proposal from Air Force Institute of Technology to
Air Force Office of Scientific Research.

21. Sarkar, Sumit and Ishwar Murthy "Constructing Efficient Belief Network Structures with
Expert Provided Information." February 1996 IEEE Transactions on Knowledge and Data
Engineering, Vol. 8, No. 1. 134 - 143.

22. Shortland, Richard and Richard Scarfe "Digging for Gold." September 1995 IEEE Review.
213-217.

23. Srikant, Ramakrishnan and Rakesh Agrawal "Mining Quantitative Association Rules in
Large Relational Databases" June 1996 Proceedings of the ACM SIGMOD Conference on
Management of Data, Montreal, Canada (to appear in).

BIB-2

Vita

Daniel Stein was born in Gloster, Mississippi in March, 1964. He was awarded dual Bachelors

of Science in Mathematics and Computer Science from the University of Denver in 1990. Upon

his commission, he was trained as a Communications-Computer Officer, and assigned to the

(then) Strategic Operations Division, Headquarters Strategic Air Command. He arrived at the

Air Force Institute of Technology in May 1994.

Permanent Address: 1517 Colorado Blvd.
La Junta, CO 81050

VITA-1

REPORT DOCUMENTATION PAGE Form Approved

IT OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Sand comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE - 3. REPORT TYPE AND DATES COVERED

I December 1996I Master's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

UTILIZING DATA AND KNOWLEDGE MINING FOR PROBABILISTIC
KNOWLEDGE BASES

6. AUTHOR(S)
Daniel J. Stein III, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Air Force Institute of Technology REPORT NUMBER

2750 P Street AFIT/GCS/ENG/96D-25
WPAFB, OH 45433-7126

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Dr. Abraham Waksman AGENCY REPORT NUMBER
110 Duncan Ave.
Boiling AFB, D.C. 20332

11. SUPPLEMENTARY NOTES

12a. DISTRIBVTON/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved tor public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

Problems can arise whenever inferencing is attempted on a knowledge base that is incomplete. Our work shows
that data mining techniques can be applied to fill in incomplete areas in Bayesian Knowledge Bases (BKBs), as well as in
other knowledge-based systems utilizing probabilistic representations. The problem of inconsistency in BKBs has been
addressed in previous work, where reinforcement learning techniques from neural networks were applied. However, the
issue of automatically solving incompleteness in BKBs has yet to be addressed. Presently, incompleteness in BKBs is
repaired through the application of traditional knowledge acquisition techniques. We show how association rules can be
extracted from databases in order to replace excluded information and express missing relationships. A methodology for
incorporating those results while maintaining a consistent knowledge base is also included.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Data Mining, Knowledge Discovery in Databases, KDD, Knowledge Acquisition, 65
Bayesian Networks, Bayesian Knowledge Bases, Expert Systems. 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning reqtirements.

Block 1. Aqency Use Only (Leave blank). Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any

Block 2. Report Date. Full publication date availability to the public. Enter additional
including day, month, and year, if available (e.g. 1 limitations or special markings in all capitals (e.g.
Jan 88). Must cite at least the year. NOFORN, REL, ITAR).

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If DOD - See DoDD 5230.24, "Distribution
applicable, enter inclusive report dates (e.g. 10 Statements on TechnicalJun 7-30Jun 8).Documents."
Jun 87 -30 Jun 88). DOE - See authorities.
Block 4. Title and Subtitle. A title is taken from NASA - See Handbook NHB 2200.2.
the part of the report that provides the most NTIS - Leave blank.
meaningful and complete information. When a
report is prepared in more than one volume, Block 12b. Distribution Code.
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification DOD - Eae blank.in prnhess DOE -Enter DOE distribution categories

nparentheses. from the Standard Distribution for
Block 5. Funding Numbers. To include contract Unclassified Scientific and Technical
and grant numbers; may include program Reports.
element number(s), project number(s), task NASA - Leave blank.
number(s), and work unit number(s). Use the NTIS - Leave blank.

following labels:

C - Contract PR - Project Block 13. Abstract. Include a brief (Maximum
G - Grant TA - Task 200 words) factual summary of the most
PE - Program WU - Work Unit significant information contained in the report.

Element Accession No.

Block 6. Author(s). Name(s) of person(s) Block 14. Subiect Terms. Keywords or phrases
responsible for writing the report, performing identifying major subjects in the report.
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s). Block 15. Number of Pages. Enter the total

number of pages.
Block7. Performing Organization Name(s) and
Address(es). Self-explanatory. Block 16. Price Code. Enter appropriate price

Block 8. Performing Organization Report code (NTIS only).
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the report. Blocks 17. - 19. Security Classifications. Self-

explanatory. Enter U.S. Security Classification in
Block g. Sponsoring/Monitoring Agency Name(s) accordance with U.S. Security Regulations (i.e.,
and Address(es). Self-explanatory. UNCLASSIFIED). If form contains classified

information, stamp classification on the top and
Block 10. Sponsoring/Monitoring Agency bottom of the page.
Report Number. (If known)

Block 11. Supplementary Notes. Enter Block 20. Limitation of Abstract. This block must
information not included elsewhere such as: be completed to assign a limitation to the
Prepared in cooperation with...; Trans. of...; To be abstract. Enter either UL (unlimited) or SAR (same
published in.... When a report is revised, include as report). An entry in this block is necessary if
a statement whether the new report supersedes the abstract is to be limited. If blank, the abstract
or supplements the older report. is assumed to be unlimited.

*U.S.GpO:1 993-0-336-043 Standard Form 298 Back (Rev. 2-89)

